xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDecl.cpp (revision a90b9d0159070121c221b966469c3e36d912bf82)
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/HLSLRuntime.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaInternal.h"
49 #include "clang/Sema/Template.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/TargetParser/Triple.h"
53 #include <algorithm>
54 #include <cstring>
55 #include <functional>
56 #include <optional>
57 #include <unordered_map>
58 
59 using namespace clang;
60 using namespace sema;
61 
62 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
63   if (OwnedType) {
64     Decl *Group[2] = { OwnedType, Ptr };
65     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
66   }
67 
68   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
69 }
70 
71 namespace {
72 
73 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
74  public:
75    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
76                         bool AllowTemplates = false,
77                         bool AllowNonTemplates = true)
78        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
79          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
80      WantExpressionKeywords = false;
81      WantCXXNamedCasts = false;
82      WantRemainingKeywords = false;
83   }
84 
85   bool ValidateCandidate(const TypoCorrection &candidate) override {
86     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
87       if (!AllowInvalidDecl && ND->isInvalidDecl())
88         return false;
89 
90       if (getAsTypeTemplateDecl(ND))
91         return AllowTemplates;
92 
93       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
94       if (!IsType)
95         return false;
96 
97       if (AllowNonTemplates)
98         return true;
99 
100       // An injected-class-name of a class template (specialization) is valid
101       // as a template or as a non-template.
102       if (AllowTemplates) {
103         auto *RD = dyn_cast<CXXRecordDecl>(ND);
104         if (!RD || !RD->isInjectedClassName())
105           return false;
106         RD = cast<CXXRecordDecl>(RD->getDeclContext());
107         return RD->getDescribedClassTemplate() ||
108                isa<ClassTemplateSpecializationDecl>(RD);
109       }
110 
111       return false;
112     }
113 
114     return !WantClassName && candidate.isKeyword();
115   }
116 
117   std::unique_ptr<CorrectionCandidateCallback> clone() override {
118     return std::make_unique<TypeNameValidatorCCC>(*this);
119   }
120 
121  private:
122   bool AllowInvalidDecl;
123   bool WantClassName;
124   bool AllowTemplates;
125   bool AllowNonTemplates;
126 };
127 
128 } // end anonymous namespace
129 
130 /// Determine whether the token kind starts a simple-type-specifier.
131 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
132   switch (Kind) {
133   // FIXME: Take into account the current language when deciding whether a
134   // token kind is a valid type specifier
135   case tok::kw_short:
136   case tok::kw_long:
137   case tok::kw___int64:
138   case tok::kw___int128:
139   case tok::kw_signed:
140   case tok::kw_unsigned:
141   case tok::kw_void:
142   case tok::kw_char:
143   case tok::kw_int:
144   case tok::kw_half:
145   case tok::kw_float:
146   case tok::kw_double:
147   case tok::kw___bf16:
148   case tok::kw__Float16:
149   case tok::kw___float128:
150   case tok::kw___ibm128:
151   case tok::kw_wchar_t:
152   case tok::kw_bool:
153   case tok::kw__Accum:
154   case tok::kw__Fract:
155   case tok::kw__Sat:
156 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
157 #include "clang/Basic/TransformTypeTraits.def"
158   case tok::kw___auto_type:
159     return true;
160 
161   case tok::annot_typename:
162   case tok::kw_char16_t:
163   case tok::kw_char32_t:
164   case tok::kw_typeof:
165   case tok::annot_decltype:
166   case tok::kw_decltype:
167     return getLangOpts().CPlusPlus;
168 
169   case tok::kw_char8_t:
170     return getLangOpts().Char8;
171 
172   default:
173     break;
174   }
175 
176   return false;
177 }
178 
179 namespace {
180 enum class UnqualifiedTypeNameLookupResult {
181   NotFound,
182   FoundNonType,
183   FoundType
184 };
185 } // end anonymous namespace
186 
187 /// Tries to perform unqualified lookup of the type decls in bases for
188 /// dependent class.
189 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
190 /// type decl, \a FoundType if only type decls are found.
191 static UnqualifiedTypeNameLookupResult
192 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
193                                 SourceLocation NameLoc,
194                                 const CXXRecordDecl *RD) {
195   if (!RD->hasDefinition())
196     return UnqualifiedTypeNameLookupResult::NotFound;
197   // Look for type decls in base classes.
198   UnqualifiedTypeNameLookupResult FoundTypeDecl =
199       UnqualifiedTypeNameLookupResult::NotFound;
200   for (const auto &Base : RD->bases()) {
201     const CXXRecordDecl *BaseRD = nullptr;
202     if (auto *BaseTT = Base.getType()->getAs<TagType>())
203       BaseRD = BaseTT->getAsCXXRecordDecl();
204     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
205       // Look for type decls in dependent base classes that have known primary
206       // templates.
207       if (!TST || !TST->isDependentType())
208         continue;
209       auto *TD = TST->getTemplateName().getAsTemplateDecl();
210       if (!TD)
211         continue;
212       if (auto *BasePrimaryTemplate =
213           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
214         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
215           BaseRD = BasePrimaryTemplate;
216         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
217           if (const ClassTemplatePartialSpecializationDecl *PS =
218                   CTD->findPartialSpecialization(Base.getType()))
219             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
220               BaseRD = PS;
221         }
222       }
223     }
224     if (BaseRD) {
225       for (NamedDecl *ND : BaseRD->lookup(&II)) {
226         if (!isa<TypeDecl>(ND))
227           return UnqualifiedTypeNameLookupResult::FoundNonType;
228         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
229       }
230       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
231         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
232         case UnqualifiedTypeNameLookupResult::FoundNonType:
233           return UnqualifiedTypeNameLookupResult::FoundNonType;
234         case UnqualifiedTypeNameLookupResult::FoundType:
235           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
236           break;
237         case UnqualifiedTypeNameLookupResult::NotFound:
238           break;
239         }
240       }
241     }
242   }
243 
244   return FoundTypeDecl;
245 }
246 
247 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
248                                                       const IdentifierInfo &II,
249                                                       SourceLocation NameLoc) {
250   // Lookup in the parent class template context, if any.
251   const CXXRecordDecl *RD = nullptr;
252   UnqualifiedTypeNameLookupResult FoundTypeDecl =
253       UnqualifiedTypeNameLookupResult::NotFound;
254   for (DeclContext *DC = S.CurContext;
255        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
256        DC = DC->getParent()) {
257     // Look for type decls in dependent base classes that have known primary
258     // templates.
259     RD = dyn_cast<CXXRecordDecl>(DC);
260     if (RD && RD->getDescribedClassTemplate())
261       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
262   }
263   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
264     return nullptr;
265 
266   // We found some types in dependent base classes.  Recover as if the user
267   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
268   // lookup during template instantiation.
269   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
270 
271   ASTContext &Context = S.Context;
272   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
273                                           cast<Type>(Context.getRecordType(RD)));
274   QualType T =
275       Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II);
276 
277   CXXScopeSpec SS;
278   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
279 
280   TypeLocBuilder Builder;
281   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
282   DepTL.setNameLoc(NameLoc);
283   DepTL.setElaboratedKeywordLoc(SourceLocation());
284   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
285   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
286 }
287 
288 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
289 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
290                                  SourceLocation NameLoc,
291                                  bool WantNontrivialTypeSourceInfo = true) {
292   switch (T->getTypeClass()) {
293   case Type::DeducedTemplateSpecialization:
294   case Type::Enum:
295   case Type::InjectedClassName:
296   case Type::Record:
297   case Type::Typedef:
298   case Type::UnresolvedUsing:
299   case Type::Using:
300     break;
301   // These can never be qualified so an ElaboratedType node
302   // would carry no additional meaning.
303   case Type::ObjCInterface:
304   case Type::ObjCTypeParam:
305   case Type::TemplateTypeParm:
306     return ParsedType::make(T);
307   default:
308     llvm_unreachable("Unexpected Type Class");
309   }
310 
311   if (!SS || SS->isEmpty())
312     return ParsedType::make(S.Context.getElaboratedType(
313         ElaboratedTypeKeyword::None, nullptr, T, nullptr));
314 
315   QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T);
316   if (!WantNontrivialTypeSourceInfo)
317     return ParsedType::make(ElTy);
318 
319   TypeLocBuilder Builder;
320   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
321   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
322   ElabTL.setElaboratedKeywordLoc(SourceLocation());
323   ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
324   return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
325 }
326 
327 /// If the identifier refers to a type name within this scope,
328 /// return the declaration of that type.
329 ///
330 /// This routine performs ordinary name lookup of the identifier II
331 /// within the given scope, with optional C++ scope specifier SS, to
332 /// determine whether the name refers to a type. If so, returns an
333 /// opaque pointer (actually a QualType) corresponding to that
334 /// type. Otherwise, returns NULL.
335 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
336                              Scope *S, CXXScopeSpec *SS, bool isClassName,
337                              bool HasTrailingDot, ParsedType ObjectTypePtr,
338                              bool IsCtorOrDtorName,
339                              bool WantNontrivialTypeSourceInfo,
340                              bool IsClassTemplateDeductionContext,
341                              ImplicitTypenameContext AllowImplicitTypename,
342                              IdentifierInfo **CorrectedII) {
343   // FIXME: Consider allowing this outside C++1z mode as an extension.
344   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
345                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
346                               !isClassName && !HasTrailingDot;
347 
348   // Determine where we will perform name lookup.
349   DeclContext *LookupCtx = nullptr;
350   if (ObjectTypePtr) {
351     QualType ObjectType = ObjectTypePtr.get();
352     if (ObjectType->isRecordType())
353       LookupCtx = computeDeclContext(ObjectType);
354   } else if (SS && SS->isNotEmpty()) {
355     LookupCtx = computeDeclContext(*SS, false);
356 
357     if (!LookupCtx) {
358       if (isDependentScopeSpecifier(*SS)) {
359         // C++ [temp.res]p3:
360         //   A qualified-id that refers to a type and in which the
361         //   nested-name-specifier depends on a template-parameter (14.6.2)
362         //   shall be prefixed by the keyword typename to indicate that the
363         //   qualified-id denotes a type, forming an
364         //   elaborated-type-specifier (7.1.5.3).
365         //
366         // We therefore do not perform any name lookup if the result would
367         // refer to a member of an unknown specialization.
368         // In C++2a, in several contexts a 'typename' is not required. Also
369         // allow this as an extension.
370         if (AllowImplicitTypename == ImplicitTypenameContext::No &&
371             !isClassName && !IsCtorOrDtorName)
372           return nullptr;
373         bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName;
374         if (IsImplicitTypename) {
375           SourceLocation QualifiedLoc = SS->getRange().getBegin();
376           if (getLangOpts().CPlusPlus20)
377             Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename);
378           else
379             Diag(QualifiedLoc, diag::ext_implicit_typename)
380                 << SS->getScopeRep() << II.getName()
381                 << FixItHint::CreateInsertion(QualifiedLoc, "typename ");
382         }
383 
384         // We know from the grammar that this name refers to a type,
385         // so build a dependent node to describe the type.
386         if (WantNontrivialTypeSourceInfo)
387           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc,
388                                    (ImplicitTypenameContext)IsImplicitTypename)
389               .get();
390 
391         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
392         QualType T = CheckTypenameType(
393             IsImplicitTypename ? ElaboratedTypeKeyword::Typename
394                                : ElaboratedTypeKeyword::None,
395             SourceLocation(), QualifierLoc, II, NameLoc);
396         return ParsedType::make(T);
397       }
398 
399       return nullptr;
400     }
401 
402     if (!LookupCtx->isDependentContext() &&
403         RequireCompleteDeclContext(*SS, LookupCtx))
404       return nullptr;
405   }
406 
407   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
408   // lookup for class-names.
409   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
410                                       LookupOrdinaryName;
411   LookupResult Result(*this, &II, NameLoc, Kind);
412   if (LookupCtx) {
413     // Perform "qualified" name lookup into the declaration context we
414     // computed, which is either the type of the base of a member access
415     // expression or the declaration context associated with a prior
416     // nested-name-specifier.
417     LookupQualifiedName(Result, LookupCtx);
418 
419     if (ObjectTypePtr && Result.empty()) {
420       // C++ [basic.lookup.classref]p3:
421       //   If the unqualified-id is ~type-name, the type-name is looked up
422       //   in the context of the entire postfix-expression. If the type T of
423       //   the object expression is of a class type C, the type-name is also
424       //   looked up in the scope of class C. At least one of the lookups shall
425       //   find a name that refers to (possibly cv-qualified) T.
426       LookupName(Result, S);
427     }
428   } else {
429     // Perform unqualified name lookup.
430     LookupName(Result, S);
431 
432     // For unqualified lookup in a class template in MSVC mode, look into
433     // dependent base classes where the primary class template is known.
434     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
435       if (ParsedType TypeInBase =
436               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
437         return TypeInBase;
438     }
439   }
440 
441   NamedDecl *IIDecl = nullptr;
442   UsingShadowDecl *FoundUsingShadow = nullptr;
443   switch (Result.getResultKind()) {
444   case LookupResult::NotFound:
445     if (CorrectedII) {
446       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
447                                AllowDeducedTemplate);
448       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
449                                               S, SS, CCC, CTK_ErrorRecovery);
450       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
451       TemplateTy Template;
452       bool MemberOfUnknownSpecialization;
453       UnqualifiedId TemplateName;
454       TemplateName.setIdentifier(NewII, NameLoc);
455       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
456       CXXScopeSpec NewSS, *NewSSPtr = SS;
457       if (SS && NNS) {
458         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
459         NewSSPtr = &NewSS;
460       }
461       if (Correction && (NNS || NewII != &II) &&
462           // Ignore a correction to a template type as the to-be-corrected
463           // identifier is not a template (typo correction for template names
464           // is handled elsewhere).
465           !(getLangOpts().CPlusPlus && NewSSPtr &&
466             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
467                            Template, MemberOfUnknownSpecialization))) {
468         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
469                                     isClassName, HasTrailingDot, ObjectTypePtr,
470                                     IsCtorOrDtorName,
471                                     WantNontrivialTypeSourceInfo,
472                                     IsClassTemplateDeductionContext);
473         if (Ty) {
474           diagnoseTypo(Correction,
475                        PDiag(diag::err_unknown_type_or_class_name_suggest)
476                          << Result.getLookupName() << isClassName);
477           if (SS && NNS)
478             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
479           *CorrectedII = NewII;
480           return Ty;
481         }
482       }
483     }
484     Result.suppressDiagnostics();
485     return nullptr;
486   case LookupResult::NotFoundInCurrentInstantiation:
487     if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
488       QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
489                                                 SS->getScopeRep(), &II);
490       TypeLocBuilder TLB;
491       DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T);
492       TL.setElaboratedKeywordLoc(SourceLocation());
493       TL.setQualifierLoc(SS->getWithLocInContext(Context));
494       TL.setNameLoc(NameLoc);
495       return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
496     }
497     [[fallthrough]];
498   case LookupResult::FoundOverloaded:
499   case LookupResult::FoundUnresolvedValue:
500     Result.suppressDiagnostics();
501     return nullptr;
502 
503   case LookupResult::Ambiguous:
504     // Recover from type-hiding ambiguities by hiding the type.  We'll
505     // do the lookup again when looking for an object, and we can
506     // diagnose the error then.  If we don't do this, then the error
507     // about hiding the type will be immediately followed by an error
508     // that only makes sense if the identifier was treated like a type.
509     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
510       Result.suppressDiagnostics();
511       return nullptr;
512     }
513 
514     // Look to see if we have a type anywhere in the list of results.
515     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
516          Res != ResEnd; ++Res) {
517       NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
518       if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
519               RealRes) ||
520           (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
521         if (!IIDecl ||
522             // Make the selection of the recovery decl deterministic.
523             RealRes->getLocation() < IIDecl->getLocation()) {
524           IIDecl = RealRes;
525           FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
526         }
527       }
528     }
529 
530     if (!IIDecl) {
531       // None of the entities we found is a type, so there is no way
532       // to even assume that the result is a type. In this case, don't
533       // complain about the ambiguity. The parser will either try to
534       // perform this lookup again (e.g., as an object name), which
535       // will produce the ambiguity, or will complain that it expected
536       // a type name.
537       Result.suppressDiagnostics();
538       return nullptr;
539     }
540 
541     // We found a type within the ambiguous lookup; diagnose the
542     // ambiguity and then return that type. This might be the right
543     // answer, or it might not be, but it suppresses any attempt to
544     // perform the name lookup again.
545     break;
546 
547   case LookupResult::Found:
548     IIDecl = Result.getFoundDecl();
549     FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
550     break;
551   }
552 
553   assert(IIDecl && "Didn't find decl");
554 
555   QualType T;
556   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
557     // C++ [class.qual]p2: A lookup that would find the injected-class-name
558     // instead names the constructors of the class, except when naming a class.
559     // This is ill-formed when we're not actually forming a ctor or dtor name.
560     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
561     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
562     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
563         FoundRD->isInjectedClassName() &&
564         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
565       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
566           << &II << /*Type*/1;
567 
568     DiagnoseUseOfDecl(IIDecl, NameLoc);
569 
570     T = Context.getTypeDeclType(TD);
571     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
572   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
573     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
574     if (!HasTrailingDot)
575       T = Context.getObjCInterfaceType(IDecl);
576     FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
577   } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
578     (void)DiagnoseUseOfDecl(UD, NameLoc);
579     // Recover with 'int'
580     return ParsedType::make(Context.IntTy);
581   } else if (AllowDeducedTemplate) {
582     if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
583       assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
584       TemplateName Template =
585           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
586       T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
587                                                        false);
588       // Don't wrap in a further UsingType.
589       FoundUsingShadow = nullptr;
590     }
591   }
592 
593   if (T.isNull()) {
594     // If it's not plausibly a type, suppress diagnostics.
595     Result.suppressDiagnostics();
596     return nullptr;
597   }
598 
599   if (FoundUsingShadow)
600     T = Context.getUsingType(FoundUsingShadow, T);
601 
602   return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
603 }
604 
605 // Builds a fake NNS for the given decl context.
606 static NestedNameSpecifier *
607 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
608   for (;; DC = DC->getLookupParent()) {
609     DC = DC->getPrimaryContext();
610     auto *ND = dyn_cast<NamespaceDecl>(DC);
611     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
612       return NestedNameSpecifier::Create(Context, nullptr, ND);
613     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
614       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
615                                          RD->getTypeForDecl());
616     else if (isa<TranslationUnitDecl>(DC))
617       return NestedNameSpecifier::GlobalSpecifier(Context);
618   }
619   llvm_unreachable("something isn't in TU scope?");
620 }
621 
622 /// Find the parent class with dependent bases of the innermost enclosing method
623 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
624 /// up allowing unqualified dependent type names at class-level, which MSVC
625 /// correctly rejects.
626 static const CXXRecordDecl *
627 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
628   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
629     DC = DC->getPrimaryContext();
630     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
631       if (MD->getParent()->hasAnyDependentBases())
632         return MD->getParent();
633   }
634   return nullptr;
635 }
636 
637 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
638                                           SourceLocation NameLoc,
639                                           bool IsTemplateTypeArg) {
640   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
641 
642   NestedNameSpecifier *NNS = nullptr;
643   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
644     // If we weren't able to parse a default template argument, delay lookup
645     // until instantiation time by making a non-dependent DependentTypeName. We
646     // pretend we saw a NestedNameSpecifier referring to the current scope, and
647     // lookup is retried.
648     // FIXME: This hurts our diagnostic quality, since we get errors like "no
649     // type named 'Foo' in 'current_namespace'" when the user didn't write any
650     // name specifiers.
651     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
652     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
653   } else if (const CXXRecordDecl *RD =
654                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
655     // Build a DependentNameType that will perform lookup into RD at
656     // instantiation time.
657     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
658                                       RD->getTypeForDecl());
659 
660     // Diagnose that this identifier was undeclared, and retry the lookup during
661     // template instantiation.
662     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
663                                                                       << RD;
664   } else {
665     // This is not a situation that we should recover from.
666     return ParsedType();
667   }
668 
669   QualType T =
670       Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II);
671 
672   // Build type location information.  We synthesized the qualifier, so we have
673   // to build a fake NestedNameSpecifierLoc.
674   NestedNameSpecifierLocBuilder NNSLocBuilder;
675   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
676   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
677 
678   TypeLocBuilder Builder;
679   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
680   DepTL.setNameLoc(NameLoc);
681   DepTL.setElaboratedKeywordLoc(SourceLocation());
682   DepTL.setQualifierLoc(QualifierLoc);
683   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
684 }
685 
686 /// isTagName() - This method is called *for error recovery purposes only*
687 /// to determine if the specified name is a valid tag name ("struct foo").  If
688 /// so, this returns the TST for the tag corresponding to it (TST_enum,
689 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
690 /// cases in C where the user forgot to specify the tag.
691 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
692   // Do a tag name lookup in this scope.
693   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
694   LookupName(R, S, false);
695   R.suppressDiagnostics();
696   if (R.getResultKind() == LookupResult::Found)
697     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
698       switch (TD->getTagKind()) {
699       case TagTypeKind::Struct:
700         return DeclSpec::TST_struct;
701       case TagTypeKind::Interface:
702         return DeclSpec::TST_interface;
703       case TagTypeKind::Union:
704         return DeclSpec::TST_union;
705       case TagTypeKind::Class:
706         return DeclSpec::TST_class;
707       case TagTypeKind::Enum:
708         return DeclSpec::TST_enum;
709       }
710     }
711 
712   return DeclSpec::TST_unspecified;
713 }
714 
715 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
716 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
717 /// then downgrade the missing typename error to a warning.
718 /// This is needed for MSVC compatibility; Example:
719 /// @code
720 /// template<class T> class A {
721 /// public:
722 ///   typedef int TYPE;
723 /// };
724 /// template<class T> class B : public A<T> {
725 /// public:
726 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
727 /// };
728 /// @endcode
729 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
730   if (CurContext->isRecord()) {
731     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
732       return true;
733 
734     const Type *Ty = SS->getScopeRep()->getAsType();
735 
736     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
737     for (const auto &Base : RD->bases())
738       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
739         return true;
740     return S->isFunctionPrototypeScope();
741   }
742   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
743 }
744 
745 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
746                                    SourceLocation IILoc,
747                                    Scope *S,
748                                    CXXScopeSpec *SS,
749                                    ParsedType &SuggestedType,
750                                    bool IsTemplateName) {
751   // Don't report typename errors for editor placeholders.
752   if (II->isEditorPlaceholder())
753     return;
754   // We don't have anything to suggest (yet).
755   SuggestedType = nullptr;
756 
757   // There may have been a typo in the name of the type. Look up typo
758   // results, in case we have something that we can suggest.
759   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
760                            /*AllowTemplates=*/IsTemplateName,
761                            /*AllowNonTemplates=*/!IsTemplateName);
762   if (TypoCorrection Corrected =
763           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
764                       CCC, CTK_ErrorRecovery)) {
765     // FIXME: Support error recovery for the template-name case.
766     bool CanRecover = !IsTemplateName;
767     if (Corrected.isKeyword()) {
768       // We corrected to a keyword.
769       diagnoseTypo(Corrected,
770                    PDiag(IsTemplateName ? diag::err_no_template_suggest
771                                         : diag::err_unknown_typename_suggest)
772                        << II);
773       II = Corrected.getCorrectionAsIdentifierInfo();
774     } else {
775       // We found a similarly-named type or interface; suggest that.
776       if (!SS || !SS->isSet()) {
777         diagnoseTypo(Corrected,
778                      PDiag(IsTemplateName ? diag::err_no_template_suggest
779                                           : diag::err_unknown_typename_suggest)
780                          << II, CanRecover);
781       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
782         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
783         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
784                                 II->getName().equals(CorrectedStr);
785         diagnoseTypo(Corrected,
786                      PDiag(IsTemplateName
787                                ? diag::err_no_member_template_suggest
788                                : diag::err_unknown_nested_typename_suggest)
789                          << II << DC << DroppedSpecifier << SS->getRange(),
790                      CanRecover);
791       } else {
792         llvm_unreachable("could not have corrected a typo here");
793       }
794 
795       if (!CanRecover)
796         return;
797 
798       CXXScopeSpec tmpSS;
799       if (Corrected.getCorrectionSpecifier())
800         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
801                           SourceRange(IILoc));
802       // FIXME: Support class template argument deduction here.
803       SuggestedType =
804           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
805                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
806                       /*IsCtorOrDtorName=*/false,
807                       /*WantNontrivialTypeSourceInfo=*/true);
808     }
809     return;
810   }
811 
812   if (getLangOpts().CPlusPlus && !IsTemplateName) {
813     // See if II is a class template that the user forgot to pass arguments to.
814     UnqualifiedId Name;
815     Name.setIdentifier(II, IILoc);
816     CXXScopeSpec EmptySS;
817     TemplateTy TemplateResult;
818     bool MemberOfUnknownSpecialization;
819     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
820                        Name, nullptr, true, TemplateResult,
821                        MemberOfUnknownSpecialization) == TNK_Type_template) {
822       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
823       return;
824     }
825   }
826 
827   // FIXME: Should we move the logic that tries to recover from a missing tag
828   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
829 
830   if (!SS || (!SS->isSet() && !SS->isInvalid()))
831     Diag(IILoc, IsTemplateName ? diag::err_no_template
832                                : diag::err_unknown_typename)
833         << II;
834   else if (DeclContext *DC = computeDeclContext(*SS, false))
835     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
836                                : diag::err_typename_nested_not_found)
837         << II << DC << SS->getRange();
838   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
839     SuggestedType =
840         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
841   } else if (isDependentScopeSpecifier(*SS)) {
842     unsigned DiagID = diag::err_typename_missing;
843     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
844       DiagID = diag::ext_typename_missing;
845 
846     Diag(SS->getRange().getBegin(), DiagID)
847       << SS->getScopeRep() << II->getName()
848       << SourceRange(SS->getRange().getBegin(), IILoc)
849       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
850     SuggestedType = ActOnTypenameType(S, SourceLocation(),
851                                       *SS, *II, IILoc).get();
852   } else {
853     assert(SS && SS->isInvalid() &&
854            "Invalid scope specifier has already been diagnosed");
855   }
856 }
857 
858 /// Determine whether the given result set contains either a type name
859 /// or
860 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
861   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
862                        NextToken.is(tok::less);
863 
864   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
865     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
866       return true;
867 
868     if (CheckTemplate && isa<TemplateDecl>(*I))
869       return true;
870   }
871 
872   return false;
873 }
874 
875 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
876                                     Scope *S, CXXScopeSpec &SS,
877                                     IdentifierInfo *&Name,
878                                     SourceLocation NameLoc) {
879   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
880   SemaRef.LookupParsedName(R, S, &SS);
881   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
882     StringRef FixItTagName;
883     switch (Tag->getTagKind()) {
884     case TagTypeKind::Class:
885       FixItTagName = "class ";
886       break;
887 
888     case TagTypeKind::Enum:
889       FixItTagName = "enum ";
890       break;
891 
892     case TagTypeKind::Struct:
893       FixItTagName = "struct ";
894       break;
895 
896     case TagTypeKind::Interface:
897       FixItTagName = "__interface ";
898       break;
899 
900     case TagTypeKind::Union:
901       FixItTagName = "union ";
902       break;
903     }
904 
905     StringRef TagName = FixItTagName.drop_back();
906     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
907       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
908       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
909 
910     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
911          I != IEnd; ++I)
912       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
913         << Name << TagName;
914 
915     // Replace lookup results with just the tag decl.
916     Result.clear(Sema::LookupTagName);
917     SemaRef.LookupParsedName(Result, S, &SS);
918     return true;
919   }
920 
921   return false;
922 }
923 
924 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
925                                             IdentifierInfo *&Name,
926                                             SourceLocation NameLoc,
927                                             const Token &NextToken,
928                                             CorrectionCandidateCallback *CCC) {
929   DeclarationNameInfo NameInfo(Name, NameLoc);
930   ObjCMethodDecl *CurMethod = getCurMethodDecl();
931 
932   assert(NextToken.isNot(tok::coloncolon) &&
933          "parse nested name specifiers before calling ClassifyName");
934   if (getLangOpts().CPlusPlus && SS.isSet() &&
935       isCurrentClassName(*Name, S, &SS)) {
936     // Per [class.qual]p2, this names the constructors of SS, not the
937     // injected-class-name. We don't have a classification for that.
938     // There's not much point caching this result, since the parser
939     // will reject it later.
940     return NameClassification::Unknown();
941   }
942 
943   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
944   LookupParsedName(Result, S, &SS, !CurMethod);
945 
946   if (SS.isInvalid())
947     return NameClassification::Error();
948 
949   // For unqualified lookup in a class template in MSVC mode, look into
950   // dependent base classes where the primary class template is known.
951   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
952     if (ParsedType TypeInBase =
953             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
954       return TypeInBase;
955   }
956 
957   // Perform lookup for Objective-C instance variables (including automatically
958   // synthesized instance variables), if we're in an Objective-C method.
959   // FIXME: This lookup really, really needs to be folded in to the normal
960   // unqualified lookup mechanism.
961   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
962     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
963     if (Ivar.isInvalid())
964       return NameClassification::Error();
965     if (Ivar.isUsable())
966       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
967 
968     // We defer builtin creation until after ivar lookup inside ObjC methods.
969     if (Result.empty())
970       LookupBuiltin(Result);
971   }
972 
973   bool SecondTry = false;
974   bool IsFilteredTemplateName = false;
975 
976 Corrected:
977   switch (Result.getResultKind()) {
978   case LookupResult::NotFound:
979     // If an unqualified-id is followed by a '(', then we have a function
980     // call.
981     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
982       // In C++, this is an ADL-only call.
983       // FIXME: Reference?
984       if (getLangOpts().CPlusPlus)
985         return NameClassification::UndeclaredNonType();
986 
987       // C90 6.3.2.2:
988       //   If the expression that precedes the parenthesized argument list in a
989       //   function call consists solely of an identifier, and if no
990       //   declaration is visible for this identifier, the identifier is
991       //   implicitly declared exactly as if, in the innermost block containing
992       //   the function call, the declaration
993       //
994       //     extern int identifier ();
995       //
996       //   appeared.
997       //
998       // We also allow this in C99 as an extension. However, this is not
999       // allowed in all language modes as functions without prototypes may not
1000       // be supported.
1001       if (getLangOpts().implicitFunctionsAllowed()) {
1002         if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
1003           return NameClassification::NonType(D);
1004       }
1005     }
1006 
1007     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
1008       // In C++20 onwards, this could be an ADL-only call to a function
1009       // template, and we're required to assume that this is a template name.
1010       //
1011       // FIXME: Find a way to still do typo correction in this case.
1012       TemplateName Template =
1013           Context.getAssumedTemplateName(NameInfo.getName());
1014       return NameClassification::UndeclaredTemplate(Template);
1015     }
1016 
1017     // In C, we first see whether there is a tag type by the same name, in
1018     // which case it's likely that the user just forgot to write "enum",
1019     // "struct", or "union".
1020     if (!getLangOpts().CPlusPlus && !SecondTry &&
1021         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1022       break;
1023     }
1024 
1025     // Perform typo correction to determine if there is another name that is
1026     // close to this name.
1027     if (!SecondTry && CCC) {
1028       SecondTry = true;
1029       if (TypoCorrection Corrected =
1030               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
1031                           &SS, *CCC, CTK_ErrorRecovery)) {
1032         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
1033         unsigned QualifiedDiag = diag::err_no_member_suggest;
1034 
1035         NamedDecl *FirstDecl = Corrected.getFoundDecl();
1036         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
1037         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1038             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
1039           UnqualifiedDiag = diag::err_no_template_suggest;
1040           QualifiedDiag = diag::err_no_member_template_suggest;
1041         } else if (UnderlyingFirstDecl &&
1042                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
1043                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
1044                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
1045           UnqualifiedDiag = diag::err_unknown_typename_suggest;
1046           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
1047         }
1048 
1049         if (SS.isEmpty()) {
1050           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
1051         } else {// FIXME: is this even reachable? Test it.
1052           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1053           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
1054                                   Name->getName().equals(CorrectedStr);
1055           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
1056                                     << Name << computeDeclContext(SS, false)
1057                                     << DroppedSpecifier << SS.getRange());
1058         }
1059 
1060         // Update the name, so that the caller has the new name.
1061         Name = Corrected.getCorrectionAsIdentifierInfo();
1062 
1063         // Typo correction corrected to a keyword.
1064         if (Corrected.isKeyword())
1065           return Name;
1066 
1067         // Also update the LookupResult...
1068         // FIXME: This should probably go away at some point
1069         Result.clear();
1070         Result.setLookupName(Corrected.getCorrection());
1071         if (FirstDecl)
1072           Result.addDecl(FirstDecl);
1073 
1074         // If we found an Objective-C instance variable, let
1075         // LookupInObjCMethod build the appropriate expression to
1076         // reference the ivar.
1077         // FIXME: This is a gross hack.
1078         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1079           DeclResult R =
1080               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1081           if (R.isInvalid())
1082             return NameClassification::Error();
1083           if (R.isUsable())
1084             return NameClassification::NonType(Ivar);
1085         }
1086 
1087         goto Corrected;
1088       }
1089     }
1090 
1091     // We failed to correct; just fall through and let the parser deal with it.
1092     Result.suppressDiagnostics();
1093     return NameClassification::Unknown();
1094 
1095   case LookupResult::NotFoundInCurrentInstantiation: {
1096     // We performed name lookup into the current instantiation, and there were
1097     // dependent bases, so we treat this result the same way as any other
1098     // dependent nested-name-specifier.
1099 
1100     // C++ [temp.res]p2:
1101     //   A name used in a template declaration or definition and that is
1102     //   dependent on a template-parameter is assumed not to name a type
1103     //   unless the applicable name lookup finds a type name or the name is
1104     //   qualified by the keyword typename.
1105     //
1106     // FIXME: If the next token is '<', we might want to ask the parser to
1107     // perform some heroics to see if we actually have a
1108     // template-argument-list, which would indicate a missing 'template'
1109     // keyword here.
1110     return NameClassification::DependentNonType();
1111   }
1112 
1113   case LookupResult::Found:
1114   case LookupResult::FoundOverloaded:
1115   case LookupResult::FoundUnresolvedValue:
1116     break;
1117 
1118   case LookupResult::Ambiguous:
1119     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1120         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1121                                       /*AllowDependent=*/false)) {
1122       // C++ [temp.local]p3:
1123       //   A lookup that finds an injected-class-name (10.2) can result in an
1124       //   ambiguity in certain cases (for example, if it is found in more than
1125       //   one base class). If all of the injected-class-names that are found
1126       //   refer to specializations of the same class template, and if the name
1127       //   is followed by a template-argument-list, the reference refers to the
1128       //   class template itself and not a specialization thereof, and is not
1129       //   ambiguous.
1130       //
1131       // This filtering can make an ambiguous result into an unambiguous one,
1132       // so try again after filtering out template names.
1133       FilterAcceptableTemplateNames(Result);
1134       if (!Result.isAmbiguous()) {
1135         IsFilteredTemplateName = true;
1136         break;
1137       }
1138     }
1139 
1140     // Diagnose the ambiguity and return an error.
1141     return NameClassification::Error();
1142   }
1143 
1144   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1145       (IsFilteredTemplateName ||
1146        hasAnyAcceptableTemplateNames(
1147            Result, /*AllowFunctionTemplates=*/true,
1148            /*AllowDependent=*/false,
1149            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1150                getLangOpts().CPlusPlus20))) {
1151     // C++ [temp.names]p3:
1152     //   After name lookup (3.4) finds that a name is a template-name or that
1153     //   an operator-function-id or a literal- operator-id refers to a set of
1154     //   overloaded functions any member of which is a function template if
1155     //   this is followed by a <, the < is always taken as the delimiter of a
1156     //   template-argument-list and never as the less-than operator.
1157     // C++2a [temp.names]p2:
1158     //   A name is also considered to refer to a template if it is an
1159     //   unqualified-id followed by a < and name lookup finds either one
1160     //   or more functions or finds nothing.
1161     if (!IsFilteredTemplateName)
1162       FilterAcceptableTemplateNames(Result);
1163 
1164     bool IsFunctionTemplate;
1165     bool IsVarTemplate;
1166     TemplateName Template;
1167     if (Result.end() - Result.begin() > 1) {
1168       IsFunctionTemplate = true;
1169       Template = Context.getOverloadedTemplateName(Result.begin(),
1170                                                    Result.end());
1171     } else if (!Result.empty()) {
1172       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1173           *Result.begin(), /*AllowFunctionTemplates=*/true,
1174           /*AllowDependent=*/false));
1175       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1176       IsVarTemplate = isa<VarTemplateDecl>(TD);
1177 
1178       UsingShadowDecl *FoundUsingShadow =
1179           dyn_cast<UsingShadowDecl>(*Result.begin());
1180       assert(!FoundUsingShadow ||
1181              TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1182       Template =
1183           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
1184       if (SS.isNotEmpty())
1185         Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1186                                                     /*TemplateKeyword=*/false,
1187                                                     Template);
1188     } else {
1189       // All results were non-template functions. This is a function template
1190       // name.
1191       IsFunctionTemplate = true;
1192       Template = Context.getAssumedTemplateName(NameInfo.getName());
1193     }
1194 
1195     if (IsFunctionTemplate) {
1196       // Function templates always go through overload resolution, at which
1197       // point we'll perform the various checks (e.g., accessibility) we need
1198       // to based on which function we selected.
1199       Result.suppressDiagnostics();
1200 
1201       return NameClassification::FunctionTemplate(Template);
1202     }
1203 
1204     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1205                          : NameClassification::TypeTemplate(Template);
1206   }
1207 
1208   auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1209     QualType T = Context.getTypeDeclType(Type);
1210     if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1211       T = Context.getUsingType(USD, T);
1212     return buildNamedType(*this, &SS, T, NameLoc);
1213   };
1214 
1215   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1216   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1217     DiagnoseUseOfDecl(Type, NameLoc);
1218     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1219     return BuildTypeFor(Type, *Result.begin());
1220   }
1221 
1222   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1223   if (!Class) {
1224     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1225     if (ObjCCompatibleAliasDecl *Alias =
1226             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1227       Class = Alias->getClassInterface();
1228   }
1229 
1230   if (Class) {
1231     DiagnoseUseOfDecl(Class, NameLoc);
1232 
1233     if (NextToken.is(tok::period)) {
1234       // Interface. <something> is parsed as a property reference expression.
1235       // Just return "unknown" as a fall-through for now.
1236       Result.suppressDiagnostics();
1237       return NameClassification::Unknown();
1238     }
1239 
1240     QualType T = Context.getObjCInterfaceType(Class);
1241     return ParsedType::make(T);
1242   }
1243 
1244   if (isa<ConceptDecl>(FirstDecl))
1245     return NameClassification::Concept(
1246         TemplateName(cast<TemplateDecl>(FirstDecl)));
1247 
1248   if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1249     (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1250     return NameClassification::Error();
1251   }
1252 
1253   // We can have a type template here if we're classifying a template argument.
1254   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1255       !isa<VarTemplateDecl>(FirstDecl))
1256     return NameClassification::TypeTemplate(
1257         TemplateName(cast<TemplateDecl>(FirstDecl)));
1258 
1259   // Check for a tag type hidden by a non-type decl in a few cases where it
1260   // seems likely a type is wanted instead of the non-type that was found.
1261   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1262   if ((NextToken.is(tok::identifier) ||
1263        (NextIsOp &&
1264         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1265       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1266     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1267     DiagnoseUseOfDecl(Type, NameLoc);
1268     return BuildTypeFor(Type, *Result.begin());
1269   }
1270 
1271   // If we already know which single declaration is referenced, just annotate
1272   // that declaration directly. Defer resolving even non-overloaded class
1273   // member accesses, as we need to defer certain access checks until we know
1274   // the context.
1275   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1276   if (Result.isSingleResult() && !ADL &&
1277       (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl)))
1278     return NameClassification::NonType(Result.getRepresentativeDecl());
1279 
1280   // Otherwise, this is an overload set that we will need to resolve later.
1281   Result.suppressDiagnostics();
1282   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1283       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1284       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1285       Result.begin(), Result.end()));
1286 }
1287 
1288 ExprResult
1289 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1290                                              SourceLocation NameLoc) {
1291   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1292   CXXScopeSpec SS;
1293   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1294   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1295 }
1296 
1297 ExprResult
1298 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1299                                             IdentifierInfo *Name,
1300                                             SourceLocation NameLoc,
1301                                             bool IsAddressOfOperand) {
1302   DeclarationNameInfo NameInfo(Name, NameLoc);
1303   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1304                                     NameInfo, IsAddressOfOperand,
1305                                     /*TemplateArgs=*/nullptr);
1306 }
1307 
1308 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1309                                               NamedDecl *Found,
1310                                               SourceLocation NameLoc,
1311                                               const Token &NextToken) {
1312   if (getCurMethodDecl() && SS.isEmpty())
1313     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1314       return BuildIvarRefExpr(S, NameLoc, Ivar);
1315 
1316   // Reconstruct the lookup result.
1317   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1318   Result.addDecl(Found);
1319   Result.resolveKind();
1320 
1321   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1322   return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true);
1323 }
1324 
1325 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1326   // For an implicit class member access, transform the result into a member
1327   // access expression if necessary.
1328   auto *ULE = cast<UnresolvedLookupExpr>(E);
1329   if ((*ULE->decls_begin())->isCXXClassMember()) {
1330     CXXScopeSpec SS;
1331     SS.Adopt(ULE->getQualifierLoc());
1332 
1333     // Reconstruct the lookup result.
1334     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1335                         LookupOrdinaryName);
1336     Result.setNamingClass(ULE->getNamingClass());
1337     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1338       Result.addDecl(*I, I.getAccess());
1339     Result.resolveKind();
1340     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1341                                            nullptr, S);
1342   }
1343 
1344   // Otherwise, this is already in the form we needed, and no further checks
1345   // are necessary.
1346   return ULE;
1347 }
1348 
1349 Sema::TemplateNameKindForDiagnostics
1350 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1351   auto *TD = Name.getAsTemplateDecl();
1352   if (!TD)
1353     return TemplateNameKindForDiagnostics::DependentTemplate;
1354   if (isa<ClassTemplateDecl>(TD))
1355     return TemplateNameKindForDiagnostics::ClassTemplate;
1356   if (isa<FunctionTemplateDecl>(TD))
1357     return TemplateNameKindForDiagnostics::FunctionTemplate;
1358   if (isa<VarTemplateDecl>(TD))
1359     return TemplateNameKindForDiagnostics::VarTemplate;
1360   if (isa<TypeAliasTemplateDecl>(TD))
1361     return TemplateNameKindForDiagnostics::AliasTemplate;
1362   if (isa<TemplateTemplateParmDecl>(TD))
1363     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1364   if (isa<ConceptDecl>(TD))
1365     return TemplateNameKindForDiagnostics::Concept;
1366   return TemplateNameKindForDiagnostics::DependentTemplate;
1367 }
1368 
1369 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1370   assert(DC->getLexicalParent() == CurContext &&
1371       "The next DeclContext should be lexically contained in the current one.");
1372   CurContext = DC;
1373   S->setEntity(DC);
1374 }
1375 
1376 void Sema::PopDeclContext() {
1377   assert(CurContext && "DeclContext imbalance!");
1378 
1379   CurContext = CurContext->getLexicalParent();
1380   assert(CurContext && "Popped translation unit!");
1381 }
1382 
1383 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1384                                                                     Decl *D) {
1385   // Unlike PushDeclContext, the context to which we return is not necessarily
1386   // the containing DC of TD, because the new context will be some pre-existing
1387   // TagDecl definition instead of a fresh one.
1388   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1389   CurContext = cast<TagDecl>(D)->getDefinition();
1390   assert(CurContext && "skipping definition of undefined tag");
1391   // Start lookups from the parent of the current context; we don't want to look
1392   // into the pre-existing complete definition.
1393   S->setEntity(CurContext->getLookupParent());
1394   return Result;
1395 }
1396 
1397 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1398   CurContext = static_cast<decltype(CurContext)>(Context);
1399 }
1400 
1401 /// EnterDeclaratorContext - Used when we must lookup names in the context
1402 /// of a declarator's nested name specifier.
1403 ///
1404 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1405   // C++0x [basic.lookup.unqual]p13:
1406   //   A name used in the definition of a static data member of class
1407   //   X (after the qualified-id of the static member) is looked up as
1408   //   if the name was used in a member function of X.
1409   // C++0x [basic.lookup.unqual]p14:
1410   //   If a variable member of a namespace is defined outside of the
1411   //   scope of its namespace then any name used in the definition of
1412   //   the variable member (after the declarator-id) is looked up as
1413   //   if the definition of the variable member occurred in its
1414   //   namespace.
1415   // Both of these imply that we should push a scope whose context
1416   // is the semantic context of the declaration.  We can't use
1417   // PushDeclContext here because that context is not necessarily
1418   // lexically contained in the current context.  Fortunately,
1419   // the containing scope should have the appropriate information.
1420 
1421   assert(!S->getEntity() && "scope already has entity");
1422 
1423 #ifndef NDEBUG
1424   Scope *Ancestor = S->getParent();
1425   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1426   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1427 #endif
1428 
1429   CurContext = DC;
1430   S->setEntity(DC);
1431 
1432   if (S->getParent()->isTemplateParamScope()) {
1433     // Also set the corresponding entities for all immediately-enclosing
1434     // template parameter scopes.
1435     EnterTemplatedContext(S->getParent(), DC);
1436   }
1437 }
1438 
1439 void Sema::ExitDeclaratorContext(Scope *S) {
1440   assert(S->getEntity() == CurContext && "Context imbalance!");
1441 
1442   // Switch back to the lexical context.  The safety of this is
1443   // enforced by an assert in EnterDeclaratorContext.
1444   Scope *Ancestor = S->getParent();
1445   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1446   CurContext = Ancestor->getEntity();
1447 
1448   // We don't need to do anything with the scope, which is going to
1449   // disappear.
1450 }
1451 
1452 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1453   assert(S->isTemplateParamScope() &&
1454          "expected to be initializing a template parameter scope");
1455 
1456   // C++20 [temp.local]p7:
1457   //   In the definition of a member of a class template that appears outside
1458   //   of the class template definition, the name of a member of the class
1459   //   template hides the name of a template-parameter of any enclosing class
1460   //   templates (but not a template-parameter of the member if the member is a
1461   //   class or function template).
1462   // C++20 [temp.local]p9:
1463   //   In the definition of a class template or in the definition of a member
1464   //   of such a template that appears outside of the template definition, for
1465   //   each non-dependent base class (13.8.2.1), if the name of the base class
1466   //   or the name of a member of the base class is the same as the name of a
1467   //   template-parameter, the base class name or member name hides the
1468   //   template-parameter name (6.4.10).
1469   //
1470   // This means that a template parameter scope should be searched immediately
1471   // after searching the DeclContext for which it is a template parameter
1472   // scope. For example, for
1473   //   template<typename T> template<typename U> template<typename V>
1474   //     void N::A<T>::B<U>::f(...)
1475   // we search V then B<U> (and base classes) then U then A<T> (and base
1476   // classes) then T then N then ::.
1477   unsigned ScopeDepth = getTemplateDepth(S);
1478   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1479     DeclContext *SearchDCAfterScope = DC;
1480     for (; DC; DC = DC->getLookupParent()) {
1481       if (const TemplateParameterList *TPL =
1482               cast<Decl>(DC)->getDescribedTemplateParams()) {
1483         unsigned DCDepth = TPL->getDepth() + 1;
1484         if (DCDepth > ScopeDepth)
1485           continue;
1486         if (ScopeDepth == DCDepth)
1487           SearchDCAfterScope = DC = DC->getLookupParent();
1488         break;
1489       }
1490     }
1491     S->setLookupEntity(SearchDCAfterScope);
1492   }
1493 }
1494 
1495 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1496   // We assume that the caller has already called
1497   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1498   FunctionDecl *FD = D->getAsFunction();
1499   if (!FD)
1500     return;
1501 
1502   // Same implementation as PushDeclContext, but enters the context
1503   // from the lexical parent, rather than the top-level class.
1504   assert(CurContext == FD->getLexicalParent() &&
1505     "The next DeclContext should be lexically contained in the current one.");
1506   CurContext = FD;
1507   S->setEntity(CurContext);
1508 
1509   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1510     ParmVarDecl *Param = FD->getParamDecl(P);
1511     // If the parameter has an identifier, then add it to the scope
1512     if (Param->getIdentifier()) {
1513       S->AddDecl(Param);
1514       IdResolver.AddDecl(Param);
1515     }
1516   }
1517 }
1518 
1519 void Sema::ActOnExitFunctionContext() {
1520   // Same implementation as PopDeclContext, but returns to the lexical parent,
1521   // rather than the top-level class.
1522   assert(CurContext && "DeclContext imbalance!");
1523   CurContext = CurContext->getLexicalParent();
1524   assert(CurContext && "Popped translation unit!");
1525 }
1526 
1527 /// Determine whether overloading is allowed for a new function
1528 /// declaration considering prior declarations of the same name.
1529 ///
1530 /// This routine determines whether overloading is possible, not
1531 /// whether a new declaration actually overloads a previous one.
1532 /// It will return true in C++ (where overloads are alway permitted)
1533 /// or, as a C extension, when either the new declaration or a
1534 /// previous one is declared with the 'overloadable' attribute.
1535 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1536                                        ASTContext &Context,
1537                                        const FunctionDecl *New) {
1538   if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1539     return true;
1540 
1541   // Multiversion function declarations are not overloads in the
1542   // usual sense of that term, but lookup will report that an
1543   // overload set was found if more than one multiversion function
1544   // declaration is present for the same name. It is therefore
1545   // inadequate to assume that some prior declaration(s) had
1546   // the overloadable attribute; checking is required. Since one
1547   // declaration is permitted to omit the attribute, it is necessary
1548   // to check at least two; hence the 'any_of' check below. Note that
1549   // the overloadable attribute is implicitly added to declarations
1550   // that were required to have it but did not.
1551   if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1552     return llvm::any_of(Previous, [](const NamedDecl *ND) {
1553       return ND->hasAttr<OverloadableAttr>();
1554     });
1555   } else if (Previous.getResultKind() == LookupResult::Found)
1556     return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1557 
1558   return false;
1559 }
1560 
1561 /// Add this decl to the scope shadowed decl chains.
1562 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1563   // Move up the scope chain until we find the nearest enclosing
1564   // non-transparent context. The declaration will be introduced into this
1565   // scope.
1566   while (S->getEntity() && S->getEntity()->isTransparentContext())
1567     S = S->getParent();
1568 
1569   // Add scoped declarations into their context, so that they can be
1570   // found later. Declarations without a context won't be inserted
1571   // into any context.
1572   if (AddToContext)
1573     CurContext->addDecl(D);
1574 
1575   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1576   // are function-local declarations.
1577   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1578     return;
1579 
1580   // Template instantiations should also not be pushed into scope.
1581   if (isa<FunctionDecl>(D) &&
1582       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1583     return;
1584 
1585   // If this replaces anything in the current scope,
1586   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1587                                IEnd = IdResolver.end();
1588   for (; I != IEnd; ++I) {
1589     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1590       S->RemoveDecl(*I);
1591       IdResolver.RemoveDecl(*I);
1592 
1593       // Should only need to replace one decl.
1594       break;
1595     }
1596   }
1597 
1598   S->AddDecl(D);
1599 
1600   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1601     // Implicitly-generated labels may end up getting generated in an order that
1602     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1603     // the label at the appropriate place in the identifier chain.
1604     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1605       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1606       if (IDC == CurContext) {
1607         if (!S->isDeclScope(*I))
1608           continue;
1609       } else if (IDC->Encloses(CurContext))
1610         break;
1611     }
1612 
1613     IdResolver.InsertDeclAfter(I, D);
1614   } else {
1615     IdResolver.AddDecl(D);
1616   }
1617   warnOnReservedIdentifier(D);
1618 }
1619 
1620 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1621                          bool AllowInlineNamespace) const {
1622   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1623 }
1624 
1625 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1626   DeclContext *TargetDC = DC->getPrimaryContext();
1627   do {
1628     if (DeclContext *ScopeDC = S->getEntity())
1629       if (ScopeDC->getPrimaryContext() == TargetDC)
1630         return S;
1631   } while ((S = S->getParent()));
1632 
1633   return nullptr;
1634 }
1635 
1636 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1637                                             DeclContext*,
1638                                             ASTContext&);
1639 
1640 /// Filters out lookup results that don't fall within the given scope
1641 /// as determined by isDeclInScope.
1642 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1643                                 bool ConsiderLinkage,
1644                                 bool AllowInlineNamespace) {
1645   LookupResult::Filter F = R.makeFilter();
1646   while (F.hasNext()) {
1647     NamedDecl *D = F.next();
1648 
1649     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1650       continue;
1651 
1652     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1653       continue;
1654 
1655     F.erase();
1656   }
1657 
1658   F.done();
1659 }
1660 
1661 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1662 /// have compatible owning modules.
1663 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1664   // [module.interface]p7:
1665   // A declaration is attached to a module as follows:
1666   // - If the declaration is a non-dependent friend declaration that nominates a
1667   // function with a declarator-id that is a qualified-id or template-id or that
1668   // nominates a class other than with an elaborated-type-specifier with neither
1669   // a nested-name-specifier nor a simple-template-id, it is attached to the
1670   // module to which the friend is attached ([basic.link]).
1671   if (New->getFriendObjectKind() &&
1672       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1673     New->setLocalOwningModule(Old->getOwningModule());
1674     makeMergedDefinitionVisible(New);
1675     return false;
1676   }
1677 
1678   Module *NewM = New->getOwningModule();
1679   Module *OldM = Old->getOwningModule();
1680 
1681   if (NewM && NewM->isPrivateModule())
1682     NewM = NewM->Parent;
1683   if (OldM && OldM->isPrivateModule())
1684     OldM = OldM->Parent;
1685 
1686   if (NewM == OldM)
1687     return false;
1688 
1689   if (NewM && OldM) {
1690     // A module implementation unit has visibility of the decls in its
1691     // implicitly imported interface.
1692     if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface)
1693       return false;
1694 
1695     // Partitions are part of the module, but a partition could import another
1696     // module, so verify that the PMIs agree.
1697     if ((NewM->isModulePartition() || OldM->isModulePartition()) &&
1698         NewM->getPrimaryModuleInterfaceName() ==
1699             OldM->getPrimaryModuleInterfaceName())
1700       return false;
1701   }
1702 
1703   bool NewIsModuleInterface = NewM && NewM->isNamedModule();
1704   bool OldIsModuleInterface = OldM && OldM->isNamedModule();
1705   if (NewIsModuleInterface || OldIsModuleInterface) {
1706     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1707     //   if a declaration of D [...] appears in the purview of a module, all
1708     //   other such declarations shall appear in the purview of the same module
1709     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1710       << New
1711       << NewIsModuleInterface
1712       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1713       << OldIsModuleInterface
1714       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1715     Diag(Old->getLocation(), diag::note_previous_declaration);
1716     New->setInvalidDecl();
1717     return true;
1718   }
1719 
1720   return false;
1721 }
1722 
1723 // [module.interface]p6:
1724 // A redeclaration of an entity X is implicitly exported if X was introduced by
1725 // an exported declaration; otherwise it shall not be exported.
1726 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1727   // [module.interface]p1:
1728   // An export-declaration shall inhabit a namespace scope.
1729   //
1730   // So it is meaningless to talk about redeclaration which is not at namespace
1731   // scope.
1732   if (!New->getLexicalDeclContext()
1733            ->getNonTransparentContext()
1734            ->isFileContext() ||
1735       !Old->getLexicalDeclContext()
1736            ->getNonTransparentContext()
1737            ->isFileContext())
1738     return false;
1739 
1740   bool IsNewExported = New->isInExportDeclContext();
1741   bool IsOldExported = Old->isInExportDeclContext();
1742 
1743   // It should be irrevelant if both of them are not exported.
1744   if (!IsNewExported && !IsOldExported)
1745     return false;
1746 
1747   if (IsOldExported)
1748     return false;
1749 
1750   assert(IsNewExported);
1751 
1752   auto Lk = Old->getFormalLinkage();
1753   int S = 0;
1754   if (Lk == Linkage::Internal)
1755     S = 1;
1756   else if (Lk == Linkage::Module)
1757     S = 2;
1758   Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1759   Diag(Old->getLocation(), diag::note_previous_declaration);
1760   return true;
1761 }
1762 
1763 // A wrapper function for checking the semantic restrictions of
1764 // a redeclaration within a module.
1765 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1766   if (CheckRedeclarationModuleOwnership(New, Old))
1767     return true;
1768 
1769   if (CheckRedeclarationExported(New, Old))
1770     return true;
1771 
1772   return false;
1773 }
1774 
1775 // Check the redefinition in C++20 Modules.
1776 //
1777 // [basic.def.odr]p14:
1778 // For any definable item D with definitions in multiple translation units,
1779 // - if D is a non-inline non-templated function or variable, or
1780 // - if the definitions in different translation units do not satisfy the
1781 // following requirements,
1782 //   the program is ill-formed; a diagnostic is required only if the definable
1783 //   item is attached to a named module and a prior definition is reachable at
1784 //   the point where a later definition occurs.
1785 // - Each such definition shall not be attached to a named module
1786 // ([module.unit]).
1787 // - Each such definition shall consist of the same sequence of tokens, ...
1788 // ...
1789 //
1790 // Return true if the redefinition is not allowed. Return false otherwise.
1791 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1792                                      const NamedDecl *Old) const {
1793   assert(getASTContext().isSameEntity(New, Old) &&
1794          "New and Old are not the same definition, we should diagnostic it "
1795          "immediately instead of checking it.");
1796   assert(const_cast<Sema *>(this)->isReachable(New) &&
1797          const_cast<Sema *>(this)->isReachable(Old) &&
1798          "We shouldn't see unreachable definitions here.");
1799 
1800   Module *NewM = New->getOwningModule();
1801   Module *OldM = Old->getOwningModule();
1802 
1803   // We only checks for named modules here. The header like modules is skipped.
1804   // FIXME: This is not right if we import the header like modules in the module
1805   // purview.
1806   //
1807   // For example, assuming "header.h" provides definition for `D`.
1808   // ```C++
1809   // //--- M.cppm
1810   // export module M;
1811   // import "header.h"; // or #include "header.h" but import it by clang modules
1812   // actually.
1813   //
1814   // //--- Use.cpp
1815   // import M;
1816   // import "header.h"; // or uses clang modules.
1817   // ```
1818   //
1819   // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1820   // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1821   // reject it. But the current implementation couldn't detect the case since we
1822   // don't record the information about the importee modules.
1823   //
1824   // But this might not be painful in practice. Since the design of C++20 Named
1825   // Modules suggests us to use headers in global module fragment instead of
1826   // module purview.
1827   if (NewM && NewM->isHeaderLikeModule())
1828     NewM = nullptr;
1829   if (OldM && OldM->isHeaderLikeModule())
1830     OldM = nullptr;
1831 
1832   if (!NewM && !OldM)
1833     return true;
1834 
1835   // [basic.def.odr]p14.3
1836   // Each such definition shall not be attached to a named module
1837   // ([module.unit]).
1838   if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule()))
1839     return true;
1840 
1841   // Then New and Old lives in the same TU if their share one same module unit.
1842   if (NewM)
1843     NewM = NewM->getTopLevelModule();
1844   if (OldM)
1845     OldM = OldM->getTopLevelModule();
1846   return OldM == NewM;
1847 }
1848 
1849 static bool isUsingDeclNotAtClassScope(NamedDecl *D) {
1850   if (D->getDeclContext()->isFileContext())
1851     return false;
1852 
1853   return isa<UsingShadowDecl>(D) ||
1854          isa<UnresolvedUsingTypenameDecl>(D) ||
1855          isa<UnresolvedUsingValueDecl>(D);
1856 }
1857 
1858 /// Removes using shadow declarations not at class scope from the lookup
1859 /// results.
1860 static void RemoveUsingDecls(LookupResult &R) {
1861   LookupResult::Filter F = R.makeFilter();
1862   while (F.hasNext())
1863     if (isUsingDeclNotAtClassScope(F.next()))
1864       F.erase();
1865 
1866   F.done();
1867 }
1868 
1869 /// Check for this common pattern:
1870 /// @code
1871 /// class S {
1872 ///   S(const S&); // DO NOT IMPLEMENT
1873 ///   void operator=(const S&); // DO NOT IMPLEMENT
1874 /// };
1875 /// @endcode
1876 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1877   // FIXME: Should check for private access too but access is set after we get
1878   // the decl here.
1879   if (D->doesThisDeclarationHaveABody())
1880     return false;
1881 
1882   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1883     return CD->isCopyConstructor();
1884   return D->isCopyAssignmentOperator();
1885 }
1886 
1887 // We need this to handle
1888 //
1889 // typedef struct {
1890 //   void *foo() { return 0; }
1891 // } A;
1892 //
1893 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1894 // for example. If 'A', foo will have external linkage. If we have '*A',
1895 // foo will have no linkage. Since we can't know until we get to the end
1896 // of the typedef, this function finds out if D might have non-external linkage.
1897 // Callers should verify at the end of the TU if it D has external linkage or
1898 // not.
1899 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1900   const DeclContext *DC = D->getDeclContext();
1901   while (!DC->isTranslationUnit()) {
1902     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1903       if (!RD->hasNameForLinkage())
1904         return true;
1905     }
1906     DC = DC->getParent();
1907   }
1908 
1909   return !D->isExternallyVisible();
1910 }
1911 
1912 // FIXME: This needs to be refactored; some other isInMainFile users want
1913 // these semantics.
1914 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1915   if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1916     return false;
1917   return S.SourceMgr.isInMainFile(Loc);
1918 }
1919 
1920 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1921   assert(D);
1922 
1923   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1924     return false;
1925 
1926   // Ignore all entities declared within templates, and out-of-line definitions
1927   // of members of class templates.
1928   if (D->getDeclContext()->isDependentContext() ||
1929       D->getLexicalDeclContext()->isDependentContext())
1930     return false;
1931 
1932   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1933     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1934       return false;
1935     // A non-out-of-line declaration of a member specialization was implicitly
1936     // instantiated; it's the out-of-line declaration that we're interested in.
1937     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1938         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1939       return false;
1940 
1941     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1942       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1943         return false;
1944     } else {
1945       // 'static inline' functions are defined in headers; don't warn.
1946       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1947         return false;
1948     }
1949 
1950     if (FD->doesThisDeclarationHaveABody() &&
1951         Context.DeclMustBeEmitted(FD))
1952       return false;
1953   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1954     // Constants and utility variables are defined in headers with internal
1955     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1956     // like "inline".)
1957     if (!isMainFileLoc(*this, VD->getLocation()))
1958       return false;
1959 
1960     if (Context.DeclMustBeEmitted(VD))
1961       return false;
1962 
1963     if (VD->isStaticDataMember() &&
1964         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1965       return false;
1966     if (VD->isStaticDataMember() &&
1967         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1968         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1969       return false;
1970 
1971     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1972       return false;
1973   } else {
1974     return false;
1975   }
1976 
1977   // Only warn for unused decls internal to the translation unit.
1978   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1979   // for inline functions defined in the main source file, for instance.
1980   return mightHaveNonExternalLinkage(D);
1981 }
1982 
1983 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1984   if (!D)
1985     return;
1986 
1987   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1988     const FunctionDecl *First = FD->getFirstDecl();
1989     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1990       return; // First should already be in the vector.
1991   }
1992 
1993   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1994     const VarDecl *First = VD->getFirstDecl();
1995     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1996       return; // First should already be in the vector.
1997   }
1998 
1999   if (ShouldWarnIfUnusedFileScopedDecl(D))
2000     UnusedFileScopedDecls.push_back(D);
2001 }
2002 
2003 static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts,
2004                                      const NamedDecl *D) {
2005   if (D->isInvalidDecl())
2006     return false;
2007 
2008   if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
2009     // For a decomposition declaration, warn if none of the bindings are
2010     // referenced, instead of if the variable itself is referenced (which
2011     // it is, by the bindings' expressions).
2012     bool IsAllPlaceholders = true;
2013     for (const auto *BD : DD->bindings()) {
2014       if (BD->isReferenced())
2015         return false;
2016       IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts);
2017     }
2018     if (IsAllPlaceholders)
2019       return false;
2020   } else if (!D->getDeclName()) {
2021     return false;
2022   } else if (D->isReferenced() || D->isUsed()) {
2023     return false;
2024   }
2025 
2026   if (D->isPlaceholderVar(LangOpts))
2027     return false;
2028 
2029   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() ||
2030       D->hasAttr<CleanupAttr>())
2031     return false;
2032 
2033   if (isa<LabelDecl>(D))
2034     return true;
2035 
2036   // Except for labels, we only care about unused decls that are local to
2037   // functions.
2038   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
2039   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
2040     // For dependent types, the diagnostic is deferred.
2041     WithinFunction =
2042         WithinFunction || (R->isLocalClass() && !R->isDependentType());
2043   if (!WithinFunction)
2044     return false;
2045 
2046   if (isa<TypedefNameDecl>(D))
2047     return true;
2048 
2049   // White-list anything that isn't a local variable.
2050   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
2051     return false;
2052 
2053   // Types of valid local variables should be complete, so this should succeed.
2054   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2055 
2056     const Expr *Init = VD->getInit();
2057     if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Init))
2058       Init = Cleanups->getSubExpr();
2059 
2060     const auto *Ty = VD->getType().getTypePtr();
2061 
2062     // Only look at the outermost level of typedef.
2063     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
2064       // Allow anything marked with __attribute__((unused)).
2065       if (TT->getDecl()->hasAttr<UnusedAttr>())
2066         return false;
2067     }
2068 
2069     // Warn for reference variables whose initializtion performs lifetime
2070     // extension.
2071     if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Init);
2072         MTE && MTE->getExtendingDecl()) {
2073       Ty = VD->getType().getNonReferenceType().getTypePtr();
2074       Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
2075     }
2076 
2077     // If we failed to complete the type for some reason, or if the type is
2078     // dependent, don't diagnose the variable.
2079     if (Ty->isIncompleteType() || Ty->isDependentType())
2080       return false;
2081 
2082     // Look at the element type to ensure that the warning behaviour is
2083     // consistent for both scalars and arrays.
2084     Ty = Ty->getBaseElementTypeUnsafe();
2085 
2086     if (const TagType *TT = Ty->getAs<TagType>()) {
2087       const TagDecl *Tag = TT->getDecl();
2088       if (Tag->hasAttr<UnusedAttr>())
2089         return false;
2090 
2091       if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2092         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2093           return false;
2094 
2095         if (Init) {
2096           const auto *Construct = dyn_cast<CXXConstructExpr>(Init);
2097           if (Construct && !Construct->isElidable()) {
2098             const CXXConstructorDecl *CD = Construct->getConstructor();
2099             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2100                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2101               return false;
2102           }
2103 
2104           // Suppress the warning if we don't know how this is constructed, and
2105           // it could possibly be non-trivial constructor.
2106           if (Init->isTypeDependent()) {
2107             for (const CXXConstructorDecl *Ctor : RD->ctors())
2108               if (!Ctor->isTrivial())
2109                 return false;
2110           }
2111 
2112           // Suppress the warning if the constructor is unresolved because
2113           // its arguments are dependent.
2114           if (isa<CXXUnresolvedConstructExpr>(Init))
2115             return false;
2116         }
2117       }
2118     }
2119 
2120     // TODO: __attribute__((unused)) templates?
2121   }
2122 
2123   return true;
2124 }
2125 
2126 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2127                                      FixItHint &Hint) {
2128   if (isa<LabelDecl>(D)) {
2129     SourceLocation AfterColon = Lexer::findLocationAfterToken(
2130         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2131         /*SkipTrailingWhitespaceAndNewline=*/false);
2132     if (AfterColon.isInvalid())
2133       return;
2134     Hint = FixItHint::CreateRemoval(
2135         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2136   }
2137 }
2138 
2139 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2140   DiagnoseUnusedNestedTypedefs(
2141       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2142 }
2143 
2144 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
2145                                         DiagReceiverTy DiagReceiver) {
2146   if (D->getTypeForDecl()->isDependentType())
2147     return;
2148 
2149   for (auto *TmpD : D->decls()) {
2150     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2151       DiagnoseUnusedDecl(T, DiagReceiver);
2152     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2153       DiagnoseUnusedNestedTypedefs(R, DiagReceiver);
2154   }
2155 }
2156 
2157 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2158   DiagnoseUnusedDecl(
2159       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2160 }
2161 
2162 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2163 /// unless they are marked attr(unused).
2164 void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) {
2165   if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D))
2166     return;
2167 
2168   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2169     // typedefs can be referenced later on, so the diagnostics are emitted
2170     // at end-of-translation-unit.
2171     UnusedLocalTypedefNameCandidates.insert(TD);
2172     return;
2173   }
2174 
2175   FixItHint Hint;
2176   GenerateFixForUnusedDecl(D, Context, Hint);
2177 
2178   unsigned DiagID;
2179   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2180     DiagID = diag::warn_unused_exception_param;
2181   else if (isa<LabelDecl>(D))
2182     DiagID = diag::warn_unused_label;
2183   else
2184     DiagID = diag::warn_unused_variable;
2185 
2186   SourceLocation DiagLoc = D->getLocation();
2187   DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc));
2188 }
2189 
2190 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD,
2191                                     DiagReceiverTy DiagReceiver) {
2192   // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2193   // it's not really unused.
2194   if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>())
2195     return;
2196 
2197   //  In C++, `_` variables behave as if they were maybe_unused
2198   if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts()))
2199     return;
2200 
2201   const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2202 
2203   if (Ty->isReferenceType() || Ty->isDependentType())
2204     return;
2205 
2206   if (const TagType *TT = Ty->getAs<TagType>()) {
2207     const TagDecl *Tag = TT->getDecl();
2208     if (Tag->hasAttr<UnusedAttr>())
2209       return;
2210     // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2211     // mimic gcc's behavior.
2212     if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag);
2213         RD && !RD->hasAttr<WarnUnusedAttr>())
2214       return;
2215   }
2216 
2217   // Don't warn about __block Objective-C pointer variables, as they might
2218   // be assigned in the block but not used elsewhere for the purpose of lifetime
2219   // extension.
2220   if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2221     return;
2222 
2223   // Don't warn about Objective-C pointer variables with precise lifetime
2224   // semantics; they can be used to ensure ARC releases the object at a known
2225   // time, which may mean assignment but no other references.
2226   if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2227     return;
2228 
2229   auto iter = RefsMinusAssignments.find(VD);
2230   if (iter == RefsMinusAssignments.end())
2231     return;
2232 
2233   assert(iter->getSecond() >= 0 &&
2234          "Found a negative number of references to a VarDecl");
2235   if (iter->getSecond() != 0)
2236     return;
2237   unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2238                                          : diag::warn_unused_but_set_variable;
2239   DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD);
2240 }
2241 
2242 static void CheckPoppedLabel(LabelDecl *L, Sema &S,
2243                              Sema::DiagReceiverTy DiagReceiver) {
2244   // Verify that we have no forward references left.  If so, there was a goto
2245   // or address of a label taken, but no definition of it.  Label fwd
2246   // definitions are indicated with a null substmt which is also not a resolved
2247   // MS inline assembly label name.
2248   bool Diagnose = false;
2249   if (L->isMSAsmLabel())
2250     Diagnose = !L->isResolvedMSAsmLabel();
2251   else
2252     Diagnose = L->getStmt() == nullptr;
2253   if (Diagnose)
2254     DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use)
2255                                        << L);
2256 }
2257 
2258 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2259   S->applyNRVO();
2260 
2261   if (S->decl_empty()) return;
2262   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2263          "Scope shouldn't contain decls!");
2264 
2265   /// We visit the decls in non-deterministic order, but we want diagnostics
2266   /// emitted in deterministic order. Collect any diagnostic that may be emitted
2267   /// and sort the diagnostics before emitting them, after we visited all decls.
2268   struct LocAndDiag {
2269     SourceLocation Loc;
2270     std::optional<SourceLocation> PreviousDeclLoc;
2271     PartialDiagnostic PD;
2272   };
2273   SmallVector<LocAndDiag, 16> DeclDiags;
2274   auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) {
2275     DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)});
2276   };
2277   auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc,
2278                                       SourceLocation PreviousDeclLoc,
2279                                       PartialDiagnostic PD) {
2280     DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)});
2281   };
2282 
2283   for (auto *TmpD : S->decls()) {
2284     assert(TmpD && "This decl didn't get pushed??");
2285 
2286     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2287     NamedDecl *D = cast<NamedDecl>(TmpD);
2288 
2289     // Diagnose unused variables in this scope.
2290     if (!S->hasUnrecoverableErrorOccurred()) {
2291       DiagnoseUnusedDecl(D, addDiag);
2292       if (const auto *RD = dyn_cast<RecordDecl>(D))
2293         DiagnoseUnusedNestedTypedefs(RD, addDiag);
2294       if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2295         DiagnoseUnusedButSetDecl(VD, addDiag);
2296         RefsMinusAssignments.erase(VD);
2297       }
2298     }
2299 
2300     if (!D->getDeclName()) continue;
2301 
2302     // If this was a forward reference to a label, verify it was defined.
2303     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2304       CheckPoppedLabel(LD, *this, addDiag);
2305 
2306     // Remove this name from our lexical scope, and warn on it if we haven't
2307     // already.
2308     IdResolver.RemoveDecl(D);
2309     auto ShadowI = ShadowingDecls.find(D);
2310     if (ShadowI != ShadowingDecls.end()) {
2311       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2312         addDiagWithPrev(D->getLocation(), FD->getLocation(),
2313                         PDiag(diag::warn_ctor_parm_shadows_field)
2314                             << D << FD << FD->getParent());
2315       }
2316       ShadowingDecls.erase(ShadowI);
2317     }
2318 
2319     if (!getLangOpts().CPlusPlus && S->isClassScope()) {
2320       if (auto *FD = dyn_cast<FieldDecl>(TmpD);
2321           FD && FD->hasAttr<CountedByAttr>())
2322         CheckCountedByAttr(S, FD);
2323     }
2324   }
2325 
2326   llvm::sort(DeclDiags,
2327              [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool {
2328                // The particular order for diagnostics is not important, as long
2329                // as the order is deterministic. Using the raw location is going
2330                // to generally be in source order unless there are macro
2331                // expansions involved.
2332                return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding();
2333              });
2334   for (const LocAndDiag &D : DeclDiags) {
2335     Diag(D.Loc, D.PD);
2336     if (D.PreviousDeclLoc)
2337       Diag(*D.PreviousDeclLoc, diag::note_previous_declaration);
2338   }
2339 }
2340 
2341 /// Look for an Objective-C class in the translation unit.
2342 ///
2343 /// \param Id The name of the Objective-C class we're looking for. If
2344 /// typo-correction fixes this name, the Id will be updated
2345 /// to the fixed name.
2346 ///
2347 /// \param IdLoc The location of the name in the translation unit.
2348 ///
2349 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2350 /// if there is no class with the given name.
2351 ///
2352 /// \returns The declaration of the named Objective-C class, or NULL if the
2353 /// class could not be found.
2354 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2355                                               SourceLocation IdLoc,
2356                                               bool DoTypoCorrection) {
2357   // The third "scope" argument is 0 since we aren't enabling lazy built-in
2358   // creation from this context.
2359   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2360 
2361   if (!IDecl && DoTypoCorrection) {
2362     // Perform typo correction at the given location, but only if we
2363     // find an Objective-C class name.
2364     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2365     if (TypoCorrection C =
2366             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2367                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2368       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2369       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2370       Id = IDecl->getIdentifier();
2371     }
2372   }
2373   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2374   // This routine must always return a class definition, if any.
2375   if (Def && Def->getDefinition())
2376       Def = Def->getDefinition();
2377   return Def;
2378 }
2379 
2380 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2381 /// from S, where a non-field would be declared. This routine copes
2382 /// with the difference between C and C++ scoping rules in structs and
2383 /// unions. For example, the following code is well-formed in C but
2384 /// ill-formed in C++:
2385 /// @code
2386 /// struct S6 {
2387 ///   enum { BAR } e;
2388 /// };
2389 ///
2390 /// void test_S6() {
2391 ///   struct S6 a;
2392 ///   a.e = BAR;
2393 /// }
2394 /// @endcode
2395 /// For the declaration of BAR, this routine will return a different
2396 /// scope. The scope S will be the scope of the unnamed enumeration
2397 /// within S6. In C++, this routine will return the scope associated
2398 /// with S6, because the enumeration's scope is a transparent
2399 /// context but structures can contain non-field names. In C, this
2400 /// routine will return the translation unit scope, since the
2401 /// enumeration's scope is a transparent context and structures cannot
2402 /// contain non-field names.
2403 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2404   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2405          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2406          (S->isClassScope() && !getLangOpts().CPlusPlus))
2407     S = S->getParent();
2408   return S;
2409 }
2410 
2411 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2412                                ASTContext::GetBuiltinTypeError Error) {
2413   switch (Error) {
2414   case ASTContext::GE_None:
2415     return "";
2416   case ASTContext::GE_Missing_type:
2417     return BuiltinInfo.getHeaderName(ID);
2418   case ASTContext::GE_Missing_stdio:
2419     return "stdio.h";
2420   case ASTContext::GE_Missing_setjmp:
2421     return "setjmp.h";
2422   case ASTContext::GE_Missing_ucontext:
2423     return "ucontext.h";
2424   }
2425   llvm_unreachable("unhandled error kind");
2426 }
2427 
2428 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2429                                   unsigned ID, SourceLocation Loc) {
2430   DeclContext *Parent = Context.getTranslationUnitDecl();
2431 
2432   if (getLangOpts().CPlusPlus) {
2433     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2434         Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false);
2435     CLinkageDecl->setImplicit();
2436     Parent->addDecl(CLinkageDecl);
2437     Parent = CLinkageDecl;
2438   }
2439 
2440   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2441                                            /*TInfo=*/nullptr, SC_Extern,
2442                                            getCurFPFeatures().isFPConstrained(),
2443                                            false, Type->isFunctionProtoType());
2444   New->setImplicit();
2445   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2446 
2447   // Create Decl objects for each parameter, adding them to the
2448   // FunctionDecl.
2449   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2450     SmallVector<ParmVarDecl *, 16> Params;
2451     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2452       ParmVarDecl *parm = ParmVarDecl::Create(
2453           Context, New, SourceLocation(), SourceLocation(), nullptr,
2454           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2455       parm->setScopeInfo(0, i);
2456       Params.push_back(parm);
2457     }
2458     New->setParams(Params);
2459   }
2460 
2461   AddKnownFunctionAttributes(New);
2462   return New;
2463 }
2464 
2465 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2466 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2467 /// if we're creating this built-in in anticipation of redeclaring the
2468 /// built-in.
2469 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2470                                      Scope *S, bool ForRedeclaration,
2471                                      SourceLocation Loc) {
2472   LookupNecessaryTypesForBuiltin(S, ID);
2473 
2474   ASTContext::GetBuiltinTypeError Error;
2475   QualType R = Context.GetBuiltinType(ID, Error);
2476   if (Error) {
2477     if (!ForRedeclaration)
2478       return nullptr;
2479 
2480     // If we have a builtin without an associated type we should not emit a
2481     // warning when we were not able to find a type for it.
2482     if (Error == ASTContext::GE_Missing_type ||
2483         Context.BuiltinInfo.allowTypeMismatch(ID))
2484       return nullptr;
2485 
2486     // If we could not find a type for setjmp it is because the jmp_buf type was
2487     // not defined prior to the setjmp declaration.
2488     if (Error == ASTContext::GE_Missing_setjmp) {
2489       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2490           << Context.BuiltinInfo.getName(ID);
2491       return nullptr;
2492     }
2493 
2494     // Generally, we emit a warning that the declaration requires the
2495     // appropriate header.
2496     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2497         << getHeaderName(Context.BuiltinInfo, ID, Error)
2498         << Context.BuiltinInfo.getName(ID);
2499     return nullptr;
2500   }
2501 
2502   if (!ForRedeclaration &&
2503       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2504        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2505     Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2506                            : diag::ext_implicit_lib_function_decl)
2507         << Context.BuiltinInfo.getName(ID) << R;
2508     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2509       Diag(Loc, diag::note_include_header_or_declare)
2510           << Header << Context.BuiltinInfo.getName(ID);
2511   }
2512 
2513   if (R.isNull())
2514     return nullptr;
2515 
2516   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2517   RegisterLocallyScopedExternCDecl(New, S);
2518 
2519   // TUScope is the translation-unit scope to insert this function into.
2520   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2521   // relate Scopes to DeclContexts, and probably eliminate CurContext
2522   // entirely, but we're not there yet.
2523   DeclContext *SavedContext = CurContext;
2524   CurContext = New->getDeclContext();
2525   PushOnScopeChains(New, TUScope);
2526   CurContext = SavedContext;
2527   return New;
2528 }
2529 
2530 /// Typedef declarations don't have linkage, but they still denote the same
2531 /// entity if their types are the same.
2532 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2533 /// isSameEntity.
2534 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2535                                                      TypedefNameDecl *Decl,
2536                                                      LookupResult &Previous) {
2537   // This is only interesting when modules are enabled.
2538   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2539     return;
2540 
2541   // Empty sets are uninteresting.
2542   if (Previous.empty())
2543     return;
2544 
2545   LookupResult::Filter Filter = Previous.makeFilter();
2546   while (Filter.hasNext()) {
2547     NamedDecl *Old = Filter.next();
2548 
2549     // Non-hidden declarations are never ignored.
2550     if (S.isVisible(Old))
2551       continue;
2552 
2553     // Declarations of the same entity are not ignored, even if they have
2554     // different linkages.
2555     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2556       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2557                                 Decl->getUnderlyingType()))
2558         continue;
2559 
2560       // If both declarations give a tag declaration a typedef name for linkage
2561       // purposes, then they declare the same entity.
2562       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2563           Decl->getAnonDeclWithTypedefName())
2564         continue;
2565     }
2566 
2567     Filter.erase();
2568   }
2569 
2570   Filter.done();
2571 }
2572 
2573 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2574   QualType OldType;
2575   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2576     OldType = OldTypedef->getUnderlyingType();
2577   else
2578     OldType = Context.getTypeDeclType(Old);
2579   QualType NewType = New->getUnderlyingType();
2580 
2581   if (NewType->isVariablyModifiedType()) {
2582     // Must not redefine a typedef with a variably-modified type.
2583     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2584     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2585       << Kind << NewType;
2586     if (Old->getLocation().isValid())
2587       notePreviousDefinition(Old, New->getLocation());
2588     New->setInvalidDecl();
2589     return true;
2590   }
2591 
2592   if (OldType != NewType &&
2593       !OldType->isDependentType() &&
2594       !NewType->isDependentType() &&
2595       !Context.hasSameType(OldType, NewType)) {
2596     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2597     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2598       << Kind << NewType << OldType;
2599     if (Old->getLocation().isValid())
2600       notePreviousDefinition(Old, New->getLocation());
2601     New->setInvalidDecl();
2602     return true;
2603   }
2604   return false;
2605 }
2606 
2607 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2608 /// same name and scope as a previous declaration 'Old'.  Figure out
2609 /// how to resolve this situation, merging decls or emitting
2610 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2611 ///
2612 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2613                                 LookupResult &OldDecls) {
2614   // If the new decl is known invalid already, don't bother doing any
2615   // merging checks.
2616   if (New->isInvalidDecl()) return;
2617 
2618   // Allow multiple definitions for ObjC built-in typedefs.
2619   // FIXME: Verify the underlying types are equivalent!
2620   if (getLangOpts().ObjC) {
2621     const IdentifierInfo *TypeID = New->getIdentifier();
2622     switch (TypeID->getLength()) {
2623     default: break;
2624     case 2:
2625       {
2626         if (!TypeID->isStr("id"))
2627           break;
2628         QualType T = New->getUnderlyingType();
2629         if (!T->isPointerType())
2630           break;
2631         if (!T->isVoidPointerType()) {
2632           QualType PT = T->castAs<PointerType>()->getPointeeType();
2633           if (!PT->isStructureType())
2634             break;
2635         }
2636         Context.setObjCIdRedefinitionType(T);
2637         // Install the built-in type for 'id', ignoring the current definition.
2638         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2639         return;
2640       }
2641     case 5:
2642       if (!TypeID->isStr("Class"))
2643         break;
2644       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2645       // Install the built-in type for 'Class', ignoring the current definition.
2646       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2647       return;
2648     case 3:
2649       if (!TypeID->isStr("SEL"))
2650         break;
2651       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2652       // Install the built-in type for 'SEL', ignoring the current definition.
2653       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2654       return;
2655     }
2656     // Fall through - the typedef name was not a builtin type.
2657   }
2658 
2659   // Verify the old decl was also a type.
2660   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2661   if (!Old) {
2662     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2663       << New->getDeclName();
2664 
2665     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2666     if (OldD->getLocation().isValid())
2667       notePreviousDefinition(OldD, New->getLocation());
2668 
2669     return New->setInvalidDecl();
2670   }
2671 
2672   // If the old declaration is invalid, just give up here.
2673   if (Old->isInvalidDecl())
2674     return New->setInvalidDecl();
2675 
2676   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2677     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2678     auto *NewTag = New->getAnonDeclWithTypedefName();
2679     NamedDecl *Hidden = nullptr;
2680     if (OldTag && NewTag &&
2681         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2682         !hasVisibleDefinition(OldTag, &Hidden)) {
2683       // There is a definition of this tag, but it is not visible. Use it
2684       // instead of our tag.
2685       New->setTypeForDecl(OldTD->getTypeForDecl());
2686       if (OldTD->isModed())
2687         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2688                                     OldTD->getUnderlyingType());
2689       else
2690         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2691 
2692       // Make the old tag definition visible.
2693       makeMergedDefinitionVisible(Hidden);
2694 
2695       // If this was an unscoped enumeration, yank all of its enumerators
2696       // out of the scope.
2697       if (isa<EnumDecl>(NewTag)) {
2698         Scope *EnumScope = getNonFieldDeclScope(S);
2699         for (auto *D : NewTag->decls()) {
2700           auto *ED = cast<EnumConstantDecl>(D);
2701           assert(EnumScope->isDeclScope(ED));
2702           EnumScope->RemoveDecl(ED);
2703           IdResolver.RemoveDecl(ED);
2704           ED->getLexicalDeclContext()->removeDecl(ED);
2705         }
2706       }
2707     }
2708   }
2709 
2710   // If the typedef types are not identical, reject them in all languages and
2711   // with any extensions enabled.
2712   if (isIncompatibleTypedef(Old, New))
2713     return;
2714 
2715   // The types match.  Link up the redeclaration chain and merge attributes if
2716   // the old declaration was a typedef.
2717   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2718     New->setPreviousDecl(Typedef);
2719     mergeDeclAttributes(New, Old);
2720   }
2721 
2722   if (getLangOpts().MicrosoftExt)
2723     return;
2724 
2725   if (getLangOpts().CPlusPlus) {
2726     // C++ [dcl.typedef]p2:
2727     //   In a given non-class scope, a typedef specifier can be used to
2728     //   redefine the name of any type declared in that scope to refer
2729     //   to the type to which it already refers.
2730     if (!isa<CXXRecordDecl>(CurContext))
2731       return;
2732 
2733     // C++0x [dcl.typedef]p4:
2734     //   In a given class scope, a typedef specifier can be used to redefine
2735     //   any class-name declared in that scope that is not also a typedef-name
2736     //   to refer to the type to which it already refers.
2737     //
2738     // This wording came in via DR424, which was a correction to the
2739     // wording in DR56, which accidentally banned code like:
2740     //
2741     //   struct S {
2742     //     typedef struct A { } A;
2743     //   };
2744     //
2745     // in the C++03 standard. We implement the C++0x semantics, which
2746     // allow the above but disallow
2747     //
2748     //   struct S {
2749     //     typedef int I;
2750     //     typedef int I;
2751     //   };
2752     //
2753     // since that was the intent of DR56.
2754     if (!isa<TypedefNameDecl>(Old))
2755       return;
2756 
2757     Diag(New->getLocation(), diag::err_redefinition)
2758       << New->getDeclName();
2759     notePreviousDefinition(Old, New->getLocation());
2760     return New->setInvalidDecl();
2761   }
2762 
2763   // Modules always permit redefinition of typedefs, as does C11.
2764   if (getLangOpts().Modules || getLangOpts().C11)
2765     return;
2766 
2767   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2768   // is normally mapped to an error, but can be controlled with
2769   // -Wtypedef-redefinition.  If either the original or the redefinition is
2770   // in a system header, don't emit this for compatibility with GCC.
2771   if (getDiagnostics().getSuppressSystemWarnings() &&
2772       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2773       (Old->isImplicit() ||
2774        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2775        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2776     return;
2777 
2778   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2779     << New->getDeclName();
2780   notePreviousDefinition(Old, New->getLocation());
2781 }
2782 
2783 /// DeclhasAttr - returns true if decl Declaration already has the target
2784 /// attribute.
2785 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2786   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2787   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2788   for (const auto *i : D->attrs())
2789     if (i->getKind() == A->getKind()) {
2790       if (Ann) {
2791         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2792           return true;
2793         continue;
2794       }
2795       // FIXME: Don't hardcode this check
2796       if (OA && isa<OwnershipAttr>(i))
2797         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2798       return true;
2799     }
2800 
2801   return false;
2802 }
2803 
2804 static bool isAttributeTargetADefinition(Decl *D) {
2805   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2806     return VD->isThisDeclarationADefinition();
2807   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2808     return TD->isCompleteDefinition() || TD->isBeingDefined();
2809   return true;
2810 }
2811 
2812 /// Merge alignment attributes from \p Old to \p New, taking into account the
2813 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2814 ///
2815 /// \return \c true if any attributes were added to \p New.
2816 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2817   // Look for alignas attributes on Old, and pick out whichever attribute
2818   // specifies the strictest alignment requirement.
2819   AlignedAttr *OldAlignasAttr = nullptr;
2820   AlignedAttr *OldStrictestAlignAttr = nullptr;
2821   unsigned OldAlign = 0;
2822   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2823     // FIXME: We have no way of representing inherited dependent alignments
2824     // in a case like:
2825     //   template<int A, int B> struct alignas(A) X;
2826     //   template<int A, int B> struct alignas(B) X {};
2827     // For now, we just ignore any alignas attributes which are not on the
2828     // definition in such a case.
2829     if (I->isAlignmentDependent())
2830       return false;
2831 
2832     if (I->isAlignas())
2833       OldAlignasAttr = I;
2834 
2835     unsigned Align = I->getAlignment(S.Context);
2836     if (Align > OldAlign) {
2837       OldAlign = Align;
2838       OldStrictestAlignAttr = I;
2839     }
2840   }
2841 
2842   // Look for alignas attributes on New.
2843   AlignedAttr *NewAlignasAttr = nullptr;
2844   unsigned NewAlign = 0;
2845   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2846     if (I->isAlignmentDependent())
2847       return false;
2848 
2849     if (I->isAlignas())
2850       NewAlignasAttr = I;
2851 
2852     unsigned Align = I->getAlignment(S.Context);
2853     if (Align > NewAlign)
2854       NewAlign = Align;
2855   }
2856 
2857   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2858     // Both declarations have 'alignas' attributes. We require them to match.
2859     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2860     // fall short. (If two declarations both have alignas, they must both match
2861     // every definition, and so must match each other if there is a definition.)
2862 
2863     // If either declaration only contains 'alignas(0)' specifiers, then it
2864     // specifies the natural alignment for the type.
2865     if (OldAlign == 0 || NewAlign == 0) {
2866       QualType Ty;
2867       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2868         Ty = VD->getType();
2869       else
2870         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2871 
2872       if (OldAlign == 0)
2873         OldAlign = S.Context.getTypeAlign(Ty);
2874       if (NewAlign == 0)
2875         NewAlign = S.Context.getTypeAlign(Ty);
2876     }
2877 
2878     if (OldAlign != NewAlign) {
2879       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2880         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2881         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2882       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2883     }
2884   }
2885 
2886   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2887     // C++11 [dcl.align]p6:
2888     //   if any declaration of an entity has an alignment-specifier,
2889     //   every defining declaration of that entity shall specify an
2890     //   equivalent alignment.
2891     // C11 6.7.5/7:
2892     //   If the definition of an object does not have an alignment
2893     //   specifier, any other declaration of that object shall also
2894     //   have no alignment specifier.
2895     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2896       << OldAlignasAttr;
2897     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2898       << OldAlignasAttr;
2899   }
2900 
2901   bool AnyAdded = false;
2902 
2903   // Ensure we have an attribute representing the strictest alignment.
2904   if (OldAlign > NewAlign) {
2905     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2906     Clone->setInherited(true);
2907     New->addAttr(Clone);
2908     AnyAdded = true;
2909   }
2910 
2911   // Ensure we have an alignas attribute if the old declaration had one.
2912   if (OldAlignasAttr && !NewAlignasAttr &&
2913       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2914     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2915     Clone->setInherited(true);
2916     New->addAttr(Clone);
2917     AnyAdded = true;
2918   }
2919 
2920   return AnyAdded;
2921 }
2922 
2923 #define WANT_DECL_MERGE_LOGIC
2924 #include "clang/Sema/AttrParsedAttrImpl.inc"
2925 #undef WANT_DECL_MERGE_LOGIC
2926 
2927 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2928                                const InheritableAttr *Attr,
2929                                Sema::AvailabilityMergeKind AMK) {
2930   // Diagnose any mutual exclusions between the attribute that we want to add
2931   // and attributes that already exist on the declaration.
2932   if (!DiagnoseMutualExclusions(S, D, Attr))
2933     return false;
2934 
2935   // This function copies an attribute Attr from a previous declaration to the
2936   // new declaration D if the new declaration doesn't itself have that attribute
2937   // yet or if that attribute allows duplicates.
2938   // If you're adding a new attribute that requires logic different from
2939   // "use explicit attribute on decl if present, else use attribute from
2940   // previous decl", for example if the attribute needs to be consistent
2941   // between redeclarations, you need to call a custom merge function here.
2942   InheritableAttr *NewAttr = nullptr;
2943   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2944     NewAttr = S.mergeAvailabilityAttr(
2945         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2946         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2947         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2948         AA->getPriority());
2949   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2950     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2951   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2952     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2953   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2954     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2955   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2956     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2957   else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2958     NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2959   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2960     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2961                                 FA->getFirstArg());
2962   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2963     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2964   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2965     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2966   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2967     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2968                                        IA->getInheritanceModel());
2969   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2970     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2971                                       &S.Context.Idents.get(AA->getSpelling()));
2972   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2973            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2974             isa<CUDAGlobalAttr>(Attr))) {
2975     // CUDA target attributes are part of function signature for
2976     // overloading purposes and must not be merged.
2977     return false;
2978   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2979     NewAttr = S.mergeMinSizeAttr(D, *MA);
2980   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2981     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2982   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2983     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2984   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2985     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2986   else if (isa<AlignedAttr>(Attr))
2987     // AlignedAttrs are handled separately, because we need to handle all
2988     // such attributes on a declaration at the same time.
2989     NewAttr = nullptr;
2990   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2991            (AMK == Sema::AMK_Override ||
2992             AMK == Sema::AMK_ProtocolImplementation ||
2993             AMK == Sema::AMK_OptionalProtocolImplementation))
2994     NewAttr = nullptr;
2995   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2996     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2997   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2998     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2999   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
3000     NewAttr = S.mergeImportNameAttr(D, *INA);
3001   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
3002     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
3003   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
3004     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
3005   else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
3006     NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
3007   else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
3008     NewAttr =
3009         S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
3010   else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
3011     NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType());
3012   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
3013     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
3014 
3015   if (NewAttr) {
3016     NewAttr->setInherited(true);
3017     D->addAttr(NewAttr);
3018     if (isa<MSInheritanceAttr>(NewAttr))
3019       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
3020     return true;
3021   }
3022 
3023   return false;
3024 }
3025 
3026 static const NamedDecl *getDefinition(const Decl *D) {
3027   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
3028     return TD->getDefinition();
3029   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3030     const VarDecl *Def = VD->getDefinition();
3031     if (Def)
3032       return Def;
3033     return VD->getActingDefinition();
3034   }
3035   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3036     const FunctionDecl *Def = nullptr;
3037     if (FD->isDefined(Def, true))
3038       return Def;
3039   }
3040   return nullptr;
3041 }
3042 
3043 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
3044   for (const auto *Attribute : D->attrs())
3045     if (Attribute->getKind() == Kind)
3046       return true;
3047   return false;
3048 }
3049 
3050 /// checkNewAttributesAfterDef - If we already have a definition, check that
3051 /// there are no new attributes in this declaration.
3052 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
3053   if (!New->hasAttrs())
3054     return;
3055 
3056   const NamedDecl *Def = getDefinition(Old);
3057   if (!Def || Def == New)
3058     return;
3059 
3060   AttrVec &NewAttributes = New->getAttrs();
3061   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
3062     const Attr *NewAttribute = NewAttributes[I];
3063 
3064     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
3065       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
3066         Sema::SkipBodyInfo SkipBody;
3067         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
3068 
3069         // If we're skipping this definition, drop the "alias" attribute.
3070         if (SkipBody.ShouldSkip) {
3071           NewAttributes.erase(NewAttributes.begin() + I);
3072           --E;
3073           continue;
3074         }
3075       } else {
3076         VarDecl *VD = cast<VarDecl>(New);
3077         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
3078                                 VarDecl::TentativeDefinition
3079                             ? diag::err_alias_after_tentative
3080                             : diag::err_redefinition;
3081         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
3082         if (Diag == diag::err_redefinition)
3083           S.notePreviousDefinition(Def, VD->getLocation());
3084         else
3085           S.Diag(Def->getLocation(), diag::note_previous_definition);
3086         VD->setInvalidDecl();
3087       }
3088       ++I;
3089       continue;
3090     }
3091 
3092     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
3093       // Tentative definitions are only interesting for the alias check above.
3094       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
3095         ++I;
3096         continue;
3097       }
3098     }
3099 
3100     if (hasAttribute(Def, NewAttribute->getKind())) {
3101       ++I;
3102       continue; // regular attr merging will take care of validating this.
3103     }
3104 
3105     if (isa<C11NoReturnAttr>(NewAttribute)) {
3106       // C's _Noreturn is allowed to be added to a function after it is defined.
3107       ++I;
3108       continue;
3109     } else if (isa<UuidAttr>(NewAttribute)) {
3110       // msvc will allow a subsequent definition to add an uuid to a class
3111       ++I;
3112       continue;
3113     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
3114       if (AA->isAlignas()) {
3115         // C++11 [dcl.align]p6:
3116         //   if any declaration of an entity has an alignment-specifier,
3117         //   every defining declaration of that entity shall specify an
3118         //   equivalent alignment.
3119         // C11 6.7.5/7:
3120         //   If the definition of an object does not have an alignment
3121         //   specifier, any other declaration of that object shall also
3122         //   have no alignment specifier.
3123         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
3124           << AA;
3125         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
3126           << AA;
3127         NewAttributes.erase(NewAttributes.begin() + I);
3128         --E;
3129         continue;
3130       }
3131     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
3132       // If there is a C definition followed by a redeclaration with this
3133       // attribute then there are two different definitions. In C++, prefer the
3134       // standard diagnostics.
3135       if (!S.getLangOpts().CPlusPlus) {
3136         S.Diag(NewAttribute->getLocation(),
3137                diag::err_loader_uninitialized_redeclaration);
3138         S.Diag(Def->getLocation(), diag::note_previous_definition);
3139         NewAttributes.erase(NewAttributes.begin() + I);
3140         --E;
3141         continue;
3142       }
3143     } else if (isa<SelectAnyAttr>(NewAttribute) &&
3144                cast<VarDecl>(New)->isInline() &&
3145                !cast<VarDecl>(New)->isInlineSpecified()) {
3146       // Don't warn about applying selectany to implicitly inline variables.
3147       // Older compilers and language modes would require the use of selectany
3148       // to make such variables inline, and it would have no effect if we
3149       // honored it.
3150       ++I;
3151       continue;
3152     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3153       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3154       // declarations after definitions.
3155       ++I;
3156       continue;
3157     }
3158 
3159     S.Diag(NewAttribute->getLocation(),
3160            diag::warn_attribute_precede_definition);
3161     S.Diag(Def->getLocation(), diag::note_previous_definition);
3162     NewAttributes.erase(NewAttributes.begin() + I);
3163     --E;
3164   }
3165 }
3166 
3167 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3168                                      const ConstInitAttr *CIAttr,
3169                                      bool AttrBeforeInit) {
3170   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3171 
3172   // Figure out a good way to write this specifier on the old declaration.
3173   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3174   // enough of the attribute list spelling information to extract that without
3175   // heroics.
3176   std::string SuitableSpelling;
3177   if (S.getLangOpts().CPlusPlus20)
3178     SuitableSpelling = std::string(
3179         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3180   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3181     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3182         InsertLoc, {tok::l_square, tok::l_square,
3183                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3184                     S.PP.getIdentifierInfo("require_constant_initialization"),
3185                     tok::r_square, tok::r_square}));
3186   if (SuitableSpelling.empty())
3187     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3188         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3189                     S.PP.getIdentifierInfo("require_constant_initialization"),
3190                     tok::r_paren, tok::r_paren}));
3191   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3192     SuitableSpelling = "constinit";
3193   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3194     SuitableSpelling = "[[clang::require_constant_initialization]]";
3195   if (SuitableSpelling.empty())
3196     SuitableSpelling = "__attribute__((require_constant_initialization))";
3197   SuitableSpelling += " ";
3198 
3199   if (AttrBeforeInit) {
3200     // extern constinit int a;
3201     // int a = 0; // error (missing 'constinit'), accepted as extension
3202     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3203     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3204         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3205     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3206   } else {
3207     // int a = 0;
3208     // constinit extern int a; // error (missing 'constinit')
3209     S.Diag(CIAttr->getLocation(),
3210            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3211                                  : diag::warn_require_const_init_added_too_late)
3212         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3213     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3214         << CIAttr->isConstinit()
3215         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3216   }
3217 }
3218 
3219 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3220 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3221                                AvailabilityMergeKind AMK) {
3222   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3223     UsedAttr *NewAttr = OldAttr->clone(Context);
3224     NewAttr->setInherited(true);
3225     New->addAttr(NewAttr);
3226   }
3227   if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3228     RetainAttr *NewAttr = OldAttr->clone(Context);
3229     NewAttr->setInherited(true);
3230     New->addAttr(NewAttr);
3231   }
3232 
3233   if (!Old->hasAttrs() && !New->hasAttrs())
3234     return;
3235 
3236   // [dcl.constinit]p1:
3237   //   If the [constinit] specifier is applied to any declaration of a
3238   //   variable, it shall be applied to the initializing declaration.
3239   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3240   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3241   if (bool(OldConstInit) != bool(NewConstInit)) {
3242     const auto *OldVD = cast<VarDecl>(Old);
3243     auto *NewVD = cast<VarDecl>(New);
3244 
3245     // Find the initializing declaration. Note that we might not have linked
3246     // the new declaration into the redeclaration chain yet.
3247     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3248     if (!InitDecl &&
3249         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3250       InitDecl = NewVD;
3251 
3252     if (InitDecl == NewVD) {
3253       // This is the initializing declaration. If it would inherit 'constinit',
3254       // that's ill-formed. (Note that we do not apply this to the attribute
3255       // form).
3256       if (OldConstInit && OldConstInit->isConstinit())
3257         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3258                                  /*AttrBeforeInit=*/true);
3259     } else if (NewConstInit) {
3260       // This is the first time we've been told that this declaration should
3261       // have a constant initializer. If we already saw the initializing
3262       // declaration, this is too late.
3263       if (InitDecl && InitDecl != NewVD) {
3264         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3265                                  /*AttrBeforeInit=*/false);
3266         NewVD->dropAttr<ConstInitAttr>();
3267       }
3268     }
3269   }
3270 
3271   // Attributes declared post-definition are currently ignored.
3272   checkNewAttributesAfterDef(*this, New, Old);
3273 
3274   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3275     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3276       if (!OldA->isEquivalent(NewA)) {
3277         // This redeclaration changes __asm__ label.
3278         Diag(New->getLocation(), diag::err_different_asm_label);
3279         Diag(OldA->getLocation(), diag::note_previous_declaration);
3280       }
3281     } else if (Old->isUsed()) {
3282       // This redeclaration adds an __asm__ label to a declaration that has
3283       // already been ODR-used.
3284       Diag(New->getLocation(), diag::err_late_asm_label_name)
3285         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3286     }
3287   }
3288 
3289   // Re-declaration cannot add abi_tag's.
3290   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3291     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3292       for (const auto &NewTag : NewAbiTagAttr->tags()) {
3293         if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3294           Diag(NewAbiTagAttr->getLocation(),
3295                diag::err_new_abi_tag_on_redeclaration)
3296               << NewTag;
3297           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3298         }
3299       }
3300     } else {
3301       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3302       Diag(Old->getLocation(), diag::note_previous_declaration);
3303     }
3304   }
3305 
3306   // This redeclaration adds a section attribute.
3307   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3308     if (auto *VD = dyn_cast<VarDecl>(New)) {
3309       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3310         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3311         Diag(Old->getLocation(), diag::note_previous_declaration);
3312       }
3313     }
3314   }
3315 
3316   // Redeclaration adds code-seg attribute.
3317   const auto *NewCSA = New->getAttr<CodeSegAttr>();
3318   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3319       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3320     Diag(New->getLocation(), diag::warn_mismatched_section)
3321          << 0 /*codeseg*/;
3322     Diag(Old->getLocation(), diag::note_previous_declaration);
3323   }
3324 
3325   if (!Old->hasAttrs())
3326     return;
3327 
3328   bool foundAny = New->hasAttrs();
3329 
3330   // Ensure that any moving of objects within the allocated map is done before
3331   // we process them.
3332   if (!foundAny) New->setAttrs(AttrVec());
3333 
3334   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3335     // Ignore deprecated/unavailable/availability attributes if requested.
3336     AvailabilityMergeKind LocalAMK = AMK_None;
3337     if (isa<DeprecatedAttr>(I) ||
3338         isa<UnavailableAttr>(I) ||
3339         isa<AvailabilityAttr>(I)) {
3340       switch (AMK) {
3341       case AMK_None:
3342         continue;
3343 
3344       case AMK_Redeclaration:
3345       case AMK_Override:
3346       case AMK_ProtocolImplementation:
3347       case AMK_OptionalProtocolImplementation:
3348         LocalAMK = AMK;
3349         break;
3350       }
3351     }
3352 
3353     // Already handled.
3354     if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3355       continue;
3356 
3357     if (mergeDeclAttribute(*this, New, I, LocalAMK))
3358       foundAny = true;
3359   }
3360 
3361   if (mergeAlignedAttrs(*this, New, Old))
3362     foundAny = true;
3363 
3364   if (!foundAny) New->dropAttrs();
3365 }
3366 
3367 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3368 /// to the new one.
3369 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3370                                      const ParmVarDecl *oldDecl,
3371                                      Sema &S) {
3372   // C++11 [dcl.attr.depend]p2:
3373   //   The first declaration of a function shall specify the
3374   //   carries_dependency attribute for its declarator-id if any declaration
3375   //   of the function specifies the carries_dependency attribute.
3376   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3377   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3378     S.Diag(CDA->getLocation(),
3379            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3380     // Find the first declaration of the parameter.
3381     // FIXME: Should we build redeclaration chains for function parameters?
3382     const FunctionDecl *FirstFD =
3383       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3384     const ParmVarDecl *FirstVD =
3385       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3386     S.Diag(FirstVD->getLocation(),
3387            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3388   }
3389 
3390   // HLSL parameter declarations for inout and out must match between
3391   // declarations. In HLSL inout and out are ambiguous at the call site, but
3392   // have different calling behavior, so you cannot overload a method based on a
3393   // difference between inout and out annotations.
3394   if (S.getLangOpts().HLSL) {
3395     const auto *NDAttr = newDecl->getAttr<HLSLParamModifierAttr>();
3396     const auto *ODAttr = oldDecl->getAttr<HLSLParamModifierAttr>();
3397     // We don't need to cover the case where one declaration doesn't have an
3398     // attribute. The only possible case there is if one declaration has an `in`
3399     // attribute and the other declaration has no attribute. This case is
3400     // allowed since parameters are `in` by default.
3401     if (NDAttr && ODAttr &&
3402         NDAttr->getSpellingListIndex() != ODAttr->getSpellingListIndex()) {
3403       S.Diag(newDecl->getLocation(), diag::err_hlsl_param_qualifier_mismatch)
3404           << NDAttr << newDecl;
3405       S.Diag(oldDecl->getLocation(), diag::note_previous_declaration_as)
3406           << ODAttr;
3407     }
3408   }
3409 
3410   if (!oldDecl->hasAttrs())
3411     return;
3412 
3413   bool foundAny = newDecl->hasAttrs();
3414 
3415   // Ensure that any moving of objects within the allocated map is
3416   // done before we process them.
3417   if (!foundAny) newDecl->setAttrs(AttrVec());
3418 
3419   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3420     if (!DeclHasAttr(newDecl, I)) {
3421       InheritableAttr *newAttr =
3422         cast<InheritableParamAttr>(I->clone(S.Context));
3423       newAttr->setInherited(true);
3424       newDecl->addAttr(newAttr);
3425       foundAny = true;
3426     }
3427   }
3428 
3429   if (!foundAny) newDecl->dropAttrs();
3430 }
3431 
3432 static bool EquivalentArrayTypes(QualType Old, QualType New,
3433                                  const ASTContext &Ctx) {
3434 
3435   auto NoSizeInfo = [&Ctx](QualType Ty) {
3436     if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3437       return true;
3438     if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3439       return VAT->getSizeModifier() == ArraySizeModifier::Star;
3440     return false;
3441   };
3442 
3443   // `type[]` is equivalent to `type *` and `type[*]`.
3444   if (NoSizeInfo(Old) && NoSizeInfo(New))
3445     return true;
3446 
3447   // Don't try to compare VLA sizes, unless one of them has the star modifier.
3448   if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3449     const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3450     const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3451     if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^
3452         (NewVAT->getSizeModifier() == ArraySizeModifier::Star))
3453       return false;
3454     return true;
3455   }
3456 
3457   // Only compare size, ignore Size modifiers and CVR.
3458   if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3459     return Ctx.getAsConstantArrayType(Old)->getSize() ==
3460            Ctx.getAsConstantArrayType(New)->getSize();
3461   }
3462 
3463   // Don't try to compare dependent sized array
3464   if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3465     return true;
3466   }
3467 
3468   return Old == New;
3469 }
3470 
3471 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3472                                 const ParmVarDecl *OldParam,
3473                                 Sema &S) {
3474   if (auto Oldnullability = OldParam->getType()->getNullability()) {
3475     if (auto Newnullability = NewParam->getType()->getNullability()) {
3476       if (*Oldnullability != *Newnullability) {
3477         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3478           << DiagNullabilityKind(
3479                *Newnullability,
3480                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3481                 != 0))
3482           << DiagNullabilityKind(
3483                *Oldnullability,
3484                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3485                 != 0));
3486         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3487       }
3488     } else {
3489       QualType NewT = NewParam->getType();
3490       NewT = S.Context.getAttributedType(
3491                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3492                          NewT, NewT);
3493       NewParam->setType(NewT);
3494     }
3495   }
3496   const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3497   const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3498   if (OldParamDT && NewParamDT &&
3499       OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3500     QualType OldParamOT = OldParamDT->getOriginalType();
3501     QualType NewParamOT = NewParamDT->getOriginalType();
3502     if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3503       S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3504           << NewParam << NewParamOT;
3505       S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3506           << OldParamOT;
3507     }
3508   }
3509 }
3510 
3511 namespace {
3512 
3513 /// Used in MergeFunctionDecl to keep track of function parameters in
3514 /// C.
3515 struct GNUCompatibleParamWarning {
3516   ParmVarDecl *OldParm;
3517   ParmVarDecl *NewParm;
3518   QualType PromotedType;
3519 };
3520 
3521 } // end anonymous namespace
3522 
3523 // Determine whether the previous declaration was a definition, implicit
3524 // declaration, or a declaration.
3525 template <typename T>
3526 static std::pair<diag::kind, SourceLocation>
3527 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3528   diag::kind PrevDiag;
3529   SourceLocation OldLocation = Old->getLocation();
3530   if (Old->isThisDeclarationADefinition())
3531     PrevDiag = diag::note_previous_definition;
3532   else if (Old->isImplicit()) {
3533     PrevDiag = diag::note_previous_implicit_declaration;
3534     if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3535       if (FD->getBuiltinID())
3536         PrevDiag = diag::note_previous_builtin_declaration;
3537     }
3538     if (OldLocation.isInvalid())
3539       OldLocation = New->getLocation();
3540   } else
3541     PrevDiag = diag::note_previous_declaration;
3542   return std::make_pair(PrevDiag, OldLocation);
3543 }
3544 
3545 /// canRedefineFunction - checks if a function can be redefined. Currently,
3546 /// only extern inline functions can be redefined, and even then only in
3547 /// GNU89 mode.
3548 static bool canRedefineFunction(const FunctionDecl *FD,
3549                                 const LangOptions& LangOpts) {
3550   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3551           !LangOpts.CPlusPlus &&
3552           FD->isInlineSpecified() &&
3553           FD->getStorageClass() == SC_Extern);
3554 }
3555 
3556 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3557   const AttributedType *AT = T->getAs<AttributedType>();
3558   while (AT && !AT->isCallingConv())
3559     AT = AT->getModifiedType()->getAs<AttributedType>();
3560   return AT;
3561 }
3562 
3563 template <typename T>
3564 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3565   const DeclContext *DC = Old->getDeclContext();
3566   if (DC->isRecord())
3567     return false;
3568 
3569   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3570   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3571     return true;
3572   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3573     return true;
3574   return false;
3575 }
3576 
3577 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3578 static bool isExternC(VarTemplateDecl *) { return false; }
3579 static bool isExternC(FunctionTemplateDecl *) { return false; }
3580 
3581 /// Check whether a redeclaration of an entity introduced by a
3582 /// using-declaration is valid, given that we know it's not an overload
3583 /// (nor a hidden tag declaration).
3584 template<typename ExpectedDecl>
3585 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3586                                    ExpectedDecl *New) {
3587   // C++11 [basic.scope.declarative]p4:
3588   //   Given a set of declarations in a single declarative region, each of
3589   //   which specifies the same unqualified name,
3590   //   -- they shall all refer to the same entity, or all refer to functions
3591   //      and function templates; or
3592   //   -- exactly one declaration shall declare a class name or enumeration
3593   //      name that is not a typedef name and the other declarations shall all
3594   //      refer to the same variable or enumerator, or all refer to functions
3595   //      and function templates; in this case the class name or enumeration
3596   //      name is hidden (3.3.10).
3597 
3598   // C++11 [namespace.udecl]p14:
3599   //   If a function declaration in namespace scope or block scope has the
3600   //   same name and the same parameter-type-list as a function introduced
3601   //   by a using-declaration, and the declarations do not declare the same
3602   //   function, the program is ill-formed.
3603 
3604   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3605   if (Old &&
3606       !Old->getDeclContext()->getRedeclContext()->Equals(
3607           New->getDeclContext()->getRedeclContext()) &&
3608       !(isExternC(Old) && isExternC(New)))
3609     Old = nullptr;
3610 
3611   if (!Old) {
3612     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3613     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3614     S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3615     return true;
3616   }
3617   return false;
3618 }
3619 
3620 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3621                                             const FunctionDecl *B) {
3622   assert(A->getNumParams() == B->getNumParams());
3623 
3624   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3625     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3626     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3627     if (AttrA == AttrB)
3628       return true;
3629     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3630            AttrA->isDynamic() == AttrB->isDynamic();
3631   };
3632 
3633   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3634 }
3635 
3636 /// If necessary, adjust the semantic declaration context for a qualified
3637 /// declaration to name the correct inline namespace within the qualifier.
3638 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3639                                                DeclaratorDecl *OldD) {
3640   // The only case where we need to update the DeclContext is when
3641   // redeclaration lookup for a qualified name finds a declaration
3642   // in an inline namespace within the context named by the qualifier:
3643   //
3644   //   inline namespace N { int f(); }
3645   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3646   //
3647   // For unqualified declarations, the semantic context *can* change
3648   // along the redeclaration chain (for local extern declarations,
3649   // extern "C" declarations, and friend declarations in particular).
3650   if (!NewD->getQualifier())
3651     return;
3652 
3653   // NewD is probably already in the right context.
3654   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3655   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3656   if (NamedDC->Equals(SemaDC))
3657     return;
3658 
3659   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3660           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3661          "unexpected context for redeclaration");
3662 
3663   auto *LexDC = NewD->getLexicalDeclContext();
3664   auto FixSemaDC = [=](NamedDecl *D) {
3665     if (!D)
3666       return;
3667     D->setDeclContext(SemaDC);
3668     D->setLexicalDeclContext(LexDC);
3669   };
3670 
3671   FixSemaDC(NewD);
3672   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3673     FixSemaDC(FD->getDescribedFunctionTemplate());
3674   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3675     FixSemaDC(VD->getDescribedVarTemplate());
3676 }
3677 
3678 /// MergeFunctionDecl - We just parsed a function 'New' from
3679 /// declarator D which has the same name and scope as a previous
3680 /// declaration 'Old'.  Figure out how to resolve this situation,
3681 /// merging decls or emitting diagnostics as appropriate.
3682 ///
3683 /// In C++, New and Old must be declarations that are not
3684 /// overloaded. Use IsOverload to determine whether New and Old are
3685 /// overloaded, and to select the Old declaration that New should be
3686 /// merged with.
3687 ///
3688 /// Returns true if there was an error, false otherwise.
3689 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3690                              bool MergeTypeWithOld, bool NewDeclIsDefn) {
3691   // Verify the old decl was also a function.
3692   FunctionDecl *Old = OldD->getAsFunction();
3693   if (!Old) {
3694     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3695       if (New->getFriendObjectKind()) {
3696         Diag(New->getLocation(), diag::err_using_decl_friend);
3697         Diag(Shadow->getTargetDecl()->getLocation(),
3698              diag::note_using_decl_target);
3699         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3700             << 0;
3701         return true;
3702       }
3703 
3704       // Check whether the two declarations might declare the same function or
3705       // function template.
3706       if (FunctionTemplateDecl *NewTemplate =
3707               New->getDescribedFunctionTemplate()) {
3708         if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3709                                                          NewTemplate))
3710           return true;
3711         OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3712                          ->getAsFunction();
3713       } else {
3714         if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3715           return true;
3716         OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3717       }
3718     } else {
3719       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3720         << New->getDeclName();
3721       notePreviousDefinition(OldD, New->getLocation());
3722       return true;
3723     }
3724   }
3725 
3726   // If the old declaration was found in an inline namespace and the new
3727   // declaration was qualified, update the DeclContext to match.
3728   adjustDeclContextForDeclaratorDecl(New, Old);
3729 
3730   // If the old declaration is invalid, just give up here.
3731   if (Old->isInvalidDecl())
3732     return true;
3733 
3734   // Disallow redeclaration of some builtins.
3735   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3736     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3737     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3738         << Old << Old->getType();
3739     return true;
3740   }
3741 
3742   diag::kind PrevDiag;
3743   SourceLocation OldLocation;
3744   std::tie(PrevDiag, OldLocation) =
3745       getNoteDiagForInvalidRedeclaration(Old, New);
3746 
3747   // Don't complain about this if we're in GNU89 mode and the old function
3748   // is an extern inline function.
3749   // Don't complain about specializations. They are not supposed to have
3750   // storage classes.
3751   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3752       New->getStorageClass() == SC_Static &&
3753       Old->hasExternalFormalLinkage() &&
3754       !New->getTemplateSpecializationInfo() &&
3755       !canRedefineFunction(Old, getLangOpts())) {
3756     if (getLangOpts().MicrosoftExt) {
3757       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3758       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3759     } else {
3760       Diag(New->getLocation(), diag::err_static_non_static) << New;
3761       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3762       return true;
3763     }
3764   }
3765 
3766   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3767     if (!Old->hasAttr<InternalLinkageAttr>()) {
3768       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3769           << ILA;
3770       Diag(Old->getLocation(), diag::note_previous_declaration);
3771       New->dropAttr<InternalLinkageAttr>();
3772     }
3773 
3774   if (auto *EA = New->getAttr<ErrorAttr>()) {
3775     if (!Old->hasAttr<ErrorAttr>()) {
3776       Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3777       Diag(Old->getLocation(), diag::note_previous_declaration);
3778       New->dropAttr<ErrorAttr>();
3779     }
3780   }
3781 
3782   if (CheckRedeclarationInModule(New, Old))
3783     return true;
3784 
3785   if (!getLangOpts().CPlusPlus) {
3786     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3787     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3788       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3789         << New << OldOvl;
3790 
3791       // Try our best to find a decl that actually has the overloadable
3792       // attribute for the note. In most cases (e.g. programs with only one
3793       // broken declaration/definition), this won't matter.
3794       //
3795       // FIXME: We could do this if we juggled some extra state in
3796       // OverloadableAttr, rather than just removing it.
3797       const Decl *DiagOld = Old;
3798       if (OldOvl) {
3799         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3800           const auto *A = D->getAttr<OverloadableAttr>();
3801           return A && !A->isImplicit();
3802         });
3803         // If we've implicitly added *all* of the overloadable attrs to this
3804         // chain, emitting a "previous redecl" note is pointless.
3805         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3806       }
3807 
3808       if (DiagOld)
3809         Diag(DiagOld->getLocation(),
3810              diag::note_attribute_overloadable_prev_overload)
3811           << OldOvl;
3812 
3813       if (OldOvl)
3814         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3815       else
3816         New->dropAttr<OverloadableAttr>();
3817     }
3818   }
3819 
3820   // It is not permitted to redeclare an SME function with different SME
3821   // attributes.
3822   if (IsInvalidSMECallConversion(Old->getType(), New->getType())) {
3823     Diag(New->getLocation(), diag::err_sme_attr_mismatch)
3824         << New->getType() << Old->getType();
3825     Diag(OldLocation, diag::note_previous_declaration);
3826     return true;
3827   }
3828 
3829   // If a function is first declared with a calling convention, but is later
3830   // declared or defined without one, all following decls assume the calling
3831   // convention of the first.
3832   //
3833   // It's OK if a function is first declared without a calling convention,
3834   // but is later declared or defined with the default calling convention.
3835   //
3836   // To test if either decl has an explicit calling convention, we look for
3837   // AttributedType sugar nodes on the type as written.  If they are missing or
3838   // were canonicalized away, we assume the calling convention was implicit.
3839   //
3840   // Note also that we DO NOT return at this point, because we still have
3841   // other tests to run.
3842   QualType OldQType = Context.getCanonicalType(Old->getType());
3843   QualType NewQType = Context.getCanonicalType(New->getType());
3844   const FunctionType *OldType = cast<FunctionType>(OldQType);
3845   const FunctionType *NewType = cast<FunctionType>(NewQType);
3846   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3847   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3848   bool RequiresAdjustment = false;
3849 
3850   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3851     FunctionDecl *First = Old->getFirstDecl();
3852     const FunctionType *FT =
3853         First->getType().getCanonicalType()->castAs<FunctionType>();
3854     FunctionType::ExtInfo FI = FT->getExtInfo();
3855     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3856     if (!NewCCExplicit) {
3857       // Inherit the CC from the previous declaration if it was specified
3858       // there but not here.
3859       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3860       RequiresAdjustment = true;
3861     } else if (Old->getBuiltinID()) {
3862       // Builtin attribute isn't propagated to the new one yet at this point,
3863       // so we check if the old one is a builtin.
3864 
3865       // Calling Conventions on a Builtin aren't really useful and setting a
3866       // default calling convention and cdecl'ing some builtin redeclarations is
3867       // common, so warn and ignore the calling convention on the redeclaration.
3868       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3869           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3870           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3871       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3872       RequiresAdjustment = true;
3873     } else {
3874       // Calling conventions aren't compatible, so complain.
3875       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3876       Diag(New->getLocation(), diag::err_cconv_change)
3877         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3878         << !FirstCCExplicit
3879         << (!FirstCCExplicit ? "" :
3880             FunctionType::getNameForCallConv(FI.getCC()));
3881 
3882       // Put the note on the first decl, since it is the one that matters.
3883       Diag(First->getLocation(), diag::note_previous_declaration);
3884       return true;
3885     }
3886   }
3887 
3888   // FIXME: diagnose the other way around?
3889   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3890     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3891     RequiresAdjustment = true;
3892   }
3893 
3894   // Merge regparm attribute.
3895   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3896       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3897     if (NewTypeInfo.getHasRegParm()) {
3898       Diag(New->getLocation(), diag::err_regparm_mismatch)
3899         << NewType->getRegParmType()
3900         << OldType->getRegParmType();
3901       Diag(OldLocation, diag::note_previous_declaration);
3902       return true;
3903     }
3904 
3905     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3906     RequiresAdjustment = true;
3907   }
3908 
3909   // Merge ns_returns_retained attribute.
3910   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3911     if (NewTypeInfo.getProducesResult()) {
3912       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3913           << "'ns_returns_retained'";
3914       Diag(OldLocation, diag::note_previous_declaration);
3915       return true;
3916     }
3917 
3918     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3919     RequiresAdjustment = true;
3920   }
3921 
3922   if (OldTypeInfo.getNoCallerSavedRegs() !=
3923       NewTypeInfo.getNoCallerSavedRegs()) {
3924     if (NewTypeInfo.getNoCallerSavedRegs()) {
3925       AnyX86NoCallerSavedRegistersAttr *Attr =
3926         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3927       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3928       Diag(OldLocation, diag::note_previous_declaration);
3929       return true;
3930     }
3931 
3932     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3933     RequiresAdjustment = true;
3934   }
3935 
3936   if (RequiresAdjustment) {
3937     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3938     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3939     New->setType(QualType(AdjustedType, 0));
3940     NewQType = Context.getCanonicalType(New->getType());
3941   }
3942 
3943   // If this redeclaration makes the function inline, we may need to add it to
3944   // UndefinedButUsed.
3945   if (!Old->isInlined() && New->isInlined() &&
3946       !New->hasAttr<GNUInlineAttr>() &&
3947       !getLangOpts().GNUInline &&
3948       Old->isUsed(false) &&
3949       !Old->isDefined() && !New->isThisDeclarationADefinition())
3950     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3951                                            SourceLocation()));
3952 
3953   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3954   // about it.
3955   if (New->hasAttr<GNUInlineAttr>() &&
3956       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3957     UndefinedButUsed.erase(Old->getCanonicalDecl());
3958   }
3959 
3960   // If pass_object_size params don't match up perfectly, this isn't a valid
3961   // redeclaration.
3962   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3963       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3964     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3965         << New->getDeclName();
3966     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3967     return true;
3968   }
3969 
3970   if (getLangOpts().CPlusPlus) {
3971     OldQType = Context.getCanonicalType(Old->getType());
3972     NewQType = Context.getCanonicalType(New->getType());
3973 
3974     // Go back to the type source info to compare the declared return types,
3975     // per C++1y [dcl.type.auto]p13:
3976     //   Redeclarations or specializations of a function or function template
3977     //   with a declared return type that uses a placeholder type shall also
3978     //   use that placeholder, not a deduced type.
3979     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3980     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3981     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3982         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3983                                        OldDeclaredReturnType)) {
3984       QualType ResQT;
3985       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3986           OldDeclaredReturnType->isObjCObjectPointerType())
3987         // FIXME: This does the wrong thing for a deduced return type.
3988         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3989       if (ResQT.isNull()) {
3990         if (New->isCXXClassMember() && New->isOutOfLine())
3991           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3992               << New << New->getReturnTypeSourceRange();
3993         else
3994           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3995               << New->getReturnTypeSourceRange();
3996         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3997                                     << Old->getReturnTypeSourceRange();
3998         return true;
3999       }
4000       else
4001         NewQType = ResQT;
4002     }
4003 
4004     QualType OldReturnType = OldType->getReturnType();
4005     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
4006     if (OldReturnType != NewReturnType) {
4007       // If this function has a deduced return type and has already been
4008       // defined, copy the deduced value from the old declaration.
4009       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
4010       if (OldAT && OldAT->isDeduced()) {
4011         QualType DT = OldAT->getDeducedType();
4012         if (DT.isNull()) {
4013           New->setType(SubstAutoTypeDependent(New->getType()));
4014           NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
4015         } else {
4016           New->setType(SubstAutoType(New->getType(), DT));
4017           NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
4018         }
4019       }
4020     }
4021 
4022     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
4023     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
4024     if (OldMethod && NewMethod) {
4025       // Preserve triviality.
4026       NewMethod->setTrivial(OldMethod->isTrivial());
4027 
4028       // MSVC allows explicit template specialization at class scope:
4029       // 2 CXXMethodDecls referring to the same function will be injected.
4030       // We don't want a redeclaration error.
4031       bool IsClassScopeExplicitSpecialization =
4032                               OldMethod->isFunctionTemplateSpecialization() &&
4033                               NewMethod->isFunctionTemplateSpecialization();
4034       bool isFriend = NewMethod->getFriendObjectKind();
4035 
4036       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
4037           !IsClassScopeExplicitSpecialization) {
4038         //    -- Member function declarations with the same name and the
4039         //       same parameter types cannot be overloaded if any of them
4040         //       is a static member function declaration.
4041         if (OldMethod->isStatic() != NewMethod->isStatic()) {
4042           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
4043           Diag(OldLocation, PrevDiag) << Old << Old->getType();
4044           return true;
4045         }
4046 
4047         // C++ [class.mem]p1:
4048         //   [...] A member shall not be declared twice in the
4049         //   member-specification, except that a nested class or member
4050         //   class template can be declared and then later defined.
4051         if (!inTemplateInstantiation()) {
4052           unsigned NewDiag;
4053           if (isa<CXXConstructorDecl>(OldMethod))
4054             NewDiag = diag::err_constructor_redeclared;
4055           else if (isa<CXXDestructorDecl>(NewMethod))
4056             NewDiag = diag::err_destructor_redeclared;
4057           else if (isa<CXXConversionDecl>(NewMethod))
4058             NewDiag = diag::err_conv_function_redeclared;
4059           else
4060             NewDiag = diag::err_member_redeclared;
4061 
4062           Diag(New->getLocation(), NewDiag);
4063         } else {
4064           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
4065             << New << New->getType();
4066         }
4067         Diag(OldLocation, PrevDiag) << Old << Old->getType();
4068         return true;
4069 
4070       // Complain if this is an explicit declaration of a special
4071       // member that was initially declared implicitly.
4072       //
4073       // As an exception, it's okay to befriend such methods in order
4074       // to permit the implicit constructor/destructor/operator calls.
4075       } else if (OldMethod->isImplicit()) {
4076         if (isFriend) {
4077           NewMethod->setImplicit();
4078         } else {
4079           Diag(NewMethod->getLocation(),
4080                diag::err_definition_of_implicitly_declared_member)
4081             << New << getSpecialMember(OldMethod);
4082           return true;
4083         }
4084       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
4085         Diag(NewMethod->getLocation(),
4086              diag::err_definition_of_explicitly_defaulted_member)
4087           << getSpecialMember(OldMethod);
4088         return true;
4089       }
4090     }
4091 
4092     // C++1z [over.load]p2
4093     //   Certain function declarations cannot be overloaded:
4094     //     -- Function declarations that differ only in the return type,
4095     //        the exception specification, or both cannot be overloaded.
4096 
4097     // Check the exception specifications match. This may recompute the type of
4098     // both Old and New if it resolved exception specifications, so grab the
4099     // types again after this. Because this updates the type, we do this before
4100     // any of the other checks below, which may update the "de facto" NewQType
4101     // but do not necessarily update the type of New.
4102     if (CheckEquivalentExceptionSpec(Old, New))
4103       return true;
4104 
4105     // C++11 [dcl.attr.noreturn]p1:
4106     //   The first declaration of a function shall specify the noreturn
4107     //   attribute if any declaration of that function specifies the noreturn
4108     //   attribute.
4109     if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
4110       if (!Old->hasAttr<CXX11NoReturnAttr>()) {
4111         Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
4112             << NRA;
4113         Diag(Old->getLocation(), diag::note_previous_declaration);
4114       }
4115 
4116     // C++11 [dcl.attr.depend]p2:
4117     //   The first declaration of a function shall specify the
4118     //   carries_dependency attribute for its declarator-id if any declaration
4119     //   of the function specifies the carries_dependency attribute.
4120     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
4121     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
4122       Diag(CDA->getLocation(),
4123            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
4124       Diag(Old->getFirstDecl()->getLocation(),
4125            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
4126     }
4127 
4128     // (C++98 8.3.5p3):
4129     //   All declarations for a function shall agree exactly in both the
4130     //   return type and the parameter-type-list.
4131     // We also want to respect all the extended bits except noreturn.
4132 
4133     // noreturn should now match unless the old type info didn't have it.
4134     QualType OldQTypeForComparison = OldQType;
4135     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
4136       auto *OldType = OldQType->castAs<FunctionProtoType>();
4137       const FunctionType *OldTypeForComparison
4138         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
4139       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
4140       assert(OldQTypeForComparison.isCanonical());
4141     }
4142 
4143     if (haveIncompatibleLanguageLinkages(Old, New)) {
4144       // As a special case, retain the language linkage from previous
4145       // declarations of a friend function as an extension.
4146       //
4147       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4148       // and is useful because there's otherwise no way to specify language
4149       // linkage within class scope.
4150       //
4151       // Check cautiously as the friend object kind isn't yet complete.
4152       if (New->getFriendObjectKind() != Decl::FOK_None) {
4153         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4154         Diag(OldLocation, PrevDiag);
4155       } else {
4156         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4157         Diag(OldLocation, PrevDiag);
4158         return true;
4159       }
4160     }
4161 
4162     // If the function types are compatible, merge the declarations. Ignore the
4163     // exception specifier because it was already checked above in
4164     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4165     // about incompatible types under -fms-compatibility.
4166     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4167                                                          NewQType))
4168       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4169 
4170     // If the types are imprecise (due to dependent constructs in friends or
4171     // local extern declarations), it's OK if they differ. We'll check again
4172     // during instantiation.
4173     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4174       return false;
4175 
4176     // Fall through for conflicting redeclarations and redefinitions.
4177   }
4178 
4179   // C: Function types need to be compatible, not identical. This handles
4180   // duplicate function decls like "void f(int); void f(enum X);" properly.
4181   if (!getLangOpts().CPlusPlus) {
4182     // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4183     // type is specified by a function definition that contains a (possibly
4184     // empty) identifier list, both shall agree in the number of parameters
4185     // and the type of each parameter shall be compatible with the type that
4186     // results from the application of default argument promotions to the
4187     // type of the corresponding identifier. ...
4188     // This cannot be handled by ASTContext::typesAreCompatible() because that
4189     // doesn't know whether the function type is for a definition or not when
4190     // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4191     // we need to cover here is that the number of arguments agree as the
4192     // default argument promotion rules were already checked by
4193     // ASTContext::typesAreCompatible().
4194     if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4195         Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4196       if (Old->hasInheritedPrototype())
4197         Old = Old->getCanonicalDecl();
4198       Diag(New->getLocation(), diag::err_conflicting_types) << New;
4199       Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4200       return true;
4201     }
4202 
4203     // If we are merging two functions where only one of them has a prototype,
4204     // we may have enough information to decide to issue a diagnostic that the
4205     // function without a protoype will change behavior in C23. This handles
4206     // cases like:
4207     //   void i(); void i(int j);
4208     //   void i(int j); void i();
4209     //   void i(); void i(int j) {}
4210     // See ActOnFinishFunctionBody() for other cases of the behavior change
4211     // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4212     // type without a prototype.
4213     if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4214         !New->isImplicit() && !Old->isImplicit()) {
4215       const FunctionDecl *WithProto, *WithoutProto;
4216       if (New->hasWrittenPrototype()) {
4217         WithProto = New;
4218         WithoutProto = Old;
4219       } else {
4220         WithProto = Old;
4221         WithoutProto = New;
4222       }
4223 
4224       if (WithProto->getNumParams() != 0) {
4225         if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4226           // The one without the prototype will be changing behavior in C23, so
4227           // warn about that one so long as it's a user-visible declaration.
4228           bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4229           if (WithoutProto == New)
4230             IsWithoutProtoADef = NewDeclIsDefn;
4231           else
4232             IsWithProtoADef = NewDeclIsDefn;
4233           Diag(WithoutProto->getLocation(),
4234                diag::warn_non_prototype_changes_behavior)
4235               << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4236               << (WithoutProto == Old) << IsWithProtoADef;
4237 
4238           // The reason the one without the prototype will be changing behavior
4239           // is because of the one with the prototype, so note that so long as
4240           // it's a user-visible declaration. There is one exception to this:
4241           // when the new declaration is a definition without a prototype, the
4242           // old declaration with a prototype is not the cause of the issue,
4243           // and that does not need to be noted because the one with a
4244           // prototype will not change behavior in C23.
4245           if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4246               !IsWithoutProtoADef)
4247             Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4248         }
4249       }
4250     }
4251 
4252     if (Context.typesAreCompatible(OldQType, NewQType)) {
4253       const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4254       const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4255       const FunctionProtoType *OldProto = nullptr;
4256       if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4257           (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4258         // The old declaration provided a function prototype, but the
4259         // new declaration does not. Merge in the prototype.
4260         assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4261         NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4262                                            OldProto->getParamTypes(),
4263                                            OldProto->getExtProtoInfo());
4264         New->setType(NewQType);
4265         New->setHasInheritedPrototype();
4266 
4267         // Synthesize parameters with the same types.
4268         SmallVector<ParmVarDecl *, 16> Params;
4269         for (const auto &ParamType : OldProto->param_types()) {
4270           ParmVarDecl *Param = ParmVarDecl::Create(
4271               Context, New, SourceLocation(), SourceLocation(), nullptr,
4272               ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4273           Param->setScopeInfo(0, Params.size());
4274           Param->setImplicit();
4275           Params.push_back(Param);
4276         }
4277 
4278         New->setParams(Params);
4279       }
4280 
4281       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4282     }
4283   }
4284 
4285   // Check if the function types are compatible when pointer size address
4286   // spaces are ignored.
4287   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4288     return false;
4289 
4290   // GNU C permits a K&R definition to follow a prototype declaration
4291   // if the declared types of the parameters in the K&R definition
4292   // match the types in the prototype declaration, even when the
4293   // promoted types of the parameters from the K&R definition differ
4294   // from the types in the prototype. GCC then keeps the types from
4295   // the prototype.
4296   //
4297   // If a variadic prototype is followed by a non-variadic K&R definition,
4298   // the K&R definition becomes variadic.  This is sort of an edge case, but
4299   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4300   // C99 6.9.1p8.
4301   if (!getLangOpts().CPlusPlus &&
4302       Old->hasPrototype() && !New->hasPrototype() &&
4303       New->getType()->getAs<FunctionProtoType>() &&
4304       Old->getNumParams() == New->getNumParams()) {
4305     SmallVector<QualType, 16> ArgTypes;
4306     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4307     const FunctionProtoType *OldProto
4308       = Old->getType()->getAs<FunctionProtoType>();
4309     const FunctionProtoType *NewProto
4310       = New->getType()->getAs<FunctionProtoType>();
4311 
4312     // Determine whether this is the GNU C extension.
4313     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4314                                                NewProto->getReturnType());
4315     bool LooseCompatible = !MergedReturn.isNull();
4316     for (unsigned Idx = 0, End = Old->getNumParams();
4317          LooseCompatible && Idx != End; ++Idx) {
4318       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4319       ParmVarDecl *NewParm = New->getParamDecl(Idx);
4320       if (Context.typesAreCompatible(OldParm->getType(),
4321                                      NewProto->getParamType(Idx))) {
4322         ArgTypes.push_back(NewParm->getType());
4323       } else if (Context.typesAreCompatible(OldParm->getType(),
4324                                             NewParm->getType(),
4325                                             /*CompareUnqualified=*/true)) {
4326         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4327                                            NewProto->getParamType(Idx) };
4328         Warnings.push_back(Warn);
4329         ArgTypes.push_back(NewParm->getType());
4330       } else
4331         LooseCompatible = false;
4332     }
4333 
4334     if (LooseCompatible) {
4335       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4336         Diag(Warnings[Warn].NewParm->getLocation(),
4337              diag::ext_param_promoted_not_compatible_with_prototype)
4338           << Warnings[Warn].PromotedType
4339           << Warnings[Warn].OldParm->getType();
4340         if (Warnings[Warn].OldParm->getLocation().isValid())
4341           Diag(Warnings[Warn].OldParm->getLocation(),
4342                diag::note_previous_declaration);
4343       }
4344 
4345       if (MergeTypeWithOld)
4346         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4347                                              OldProto->getExtProtoInfo()));
4348       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4349     }
4350 
4351     // Fall through to diagnose conflicting types.
4352   }
4353 
4354   // A function that has already been declared has been redeclared or
4355   // defined with a different type; show an appropriate diagnostic.
4356 
4357   // If the previous declaration was an implicitly-generated builtin
4358   // declaration, then at the very least we should use a specialized note.
4359   unsigned BuiltinID;
4360   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4361     // If it's actually a library-defined builtin function like 'malloc'
4362     // or 'printf', just warn about the incompatible redeclaration.
4363     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4364       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4365       Diag(OldLocation, diag::note_previous_builtin_declaration)
4366         << Old << Old->getType();
4367       return false;
4368     }
4369 
4370     PrevDiag = diag::note_previous_builtin_declaration;
4371   }
4372 
4373   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4374   Diag(OldLocation, PrevDiag) << Old << Old->getType();
4375   return true;
4376 }
4377 
4378 /// Completes the merge of two function declarations that are
4379 /// known to be compatible.
4380 ///
4381 /// This routine handles the merging of attributes and other
4382 /// properties of function declarations from the old declaration to
4383 /// the new declaration, once we know that New is in fact a
4384 /// redeclaration of Old.
4385 ///
4386 /// \returns false
4387 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4388                                         Scope *S, bool MergeTypeWithOld) {
4389   // Merge the attributes
4390   mergeDeclAttributes(New, Old);
4391 
4392   // Merge "pure" flag.
4393   if (Old->isPureVirtual())
4394     New->setIsPureVirtual();
4395 
4396   // Merge "used" flag.
4397   if (Old->getMostRecentDecl()->isUsed(false))
4398     New->setIsUsed();
4399 
4400   // Merge attributes from the parameters.  These can mismatch with K&R
4401   // declarations.
4402   if (New->getNumParams() == Old->getNumParams())
4403       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4404         ParmVarDecl *NewParam = New->getParamDecl(i);
4405         ParmVarDecl *OldParam = Old->getParamDecl(i);
4406         mergeParamDeclAttributes(NewParam, OldParam, *this);
4407         mergeParamDeclTypes(NewParam, OldParam, *this);
4408       }
4409 
4410   if (getLangOpts().CPlusPlus)
4411     return MergeCXXFunctionDecl(New, Old, S);
4412 
4413   // Merge the function types so the we get the composite types for the return
4414   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4415   // was visible.
4416   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4417   if (!Merged.isNull() && MergeTypeWithOld)
4418     New->setType(Merged);
4419 
4420   return false;
4421 }
4422 
4423 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4424                                 ObjCMethodDecl *oldMethod) {
4425   // Merge the attributes, including deprecated/unavailable
4426   AvailabilityMergeKind MergeKind =
4427       isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4428           ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4429                                      : AMK_ProtocolImplementation)
4430           : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4431                                                            : AMK_Override;
4432 
4433   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4434 
4435   // Merge attributes from the parameters.
4436   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4437                                        oe = oldMethod->param_end();
4438   for (ObjCMethodDecl::param_iterator
4439          ni = newMethod->param_begin(), ne = newMethod->param_end();
4440        ni != ne && oi != oe; ++ni, ++oi)
4441     mergeParamDeclAttributes(*ni, *oi, *this);
4442 
4443   CheckObjCMethodOverride(newMethod, oldMethod);
4444 }
4445 
4446 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4447   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4448 
4449   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4450          ? diag::err_redefinition_different_type
4451          : diag::err_redeclaration_different_type)
4452     << New->getDeclName() << New->getType() << Old->getType();
4453 
4454   diag::kind PrevDiag;
4455   SourceLocation OldLocation;
4456   std::tie(PrevDiag, OldLocation)
4457     = getNoteDiagForInvalidRedeclaration(Old, New);
4458   S.Diag(OldLocation, PrevDiag) << Old << Old->getType();
4459   New->setInvalidDecl();
4460 }
4461 
4462 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4463 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
4464 /// emitting diagnostics as appropriate.
4465 ///
4466 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4467 /// to here in AddInitializerToDecl. We can't check them before the initializer
4468 /// is attached.
4469 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4470                              bool MergeTypeWithOld) {
4471   if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors())
4472     return;
4473 
4474   QualType MergedT;
4475   if (getLangOpts().CPlusPlus) {
4476     if (New->getType()->isUndeducedType()) {
4477       // We don't know what the new type is until the initializer is attached.
4478       return;
4479     } else if (Context.hasSameType(New->getType(), Old->getType())) {
4480       // These could still be something that needs exception specs checked.
4481       return MergeVarDeclExceptionSpecs(New, Old);
4482     }
4483     // C++ [basic.link]p10:
4484     //   [...] the types specified by all declarations referring to a given
4485     //   object or function shall be identical, except that declarations for an
4486     //   array object can specify array types that differ by the presence or
4487     //   absence of a major array bound (8.3.4).
4488     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4489       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4490       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4491 
4492       // We are merging a variable declaration New into Old. If it has an array
4493       // bound, and that bound differs from Old's bound, we should diagnose the
4494       // mismatch.
4495       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4496         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4497              PrevVD = PrevVD->getPreviousDecl()) {
4498           QualType PrevVDTy = PrevVD->getType();
4499           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4500             continue;
4501 
4502           if (!Context.hasSameType(New->getType(), PrevVDTy))
4503             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4504         }
4505       }
4506 
4507       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4508         if (Context.hasSameType(OldArray->getElementType(),
4509                                 NewArray->getElementType()))
4510           MergedT = New->getType();
4511       }
4512       // FIXME: Check visibility. New is hidden but has a complete type. If New
4513       // has no array bound, it should not inherit one from Old, if Old is not
4514       // visible.
4515       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4516         if (Context.hasSameType(OldArray->getElementType(),
4517                                 NewArray->getElementType()))
4518           MergedT = Old->getType();
4519       }
4520     }
4521     else if (New->getType()->isObjCObjectPointerType() &&
4522                Old->getType()->isObjCObjectPointerType()) {
4523       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4524                                               Old->getType());
4525     }
4526   } else {
4527     // C 6.2.7p2:
4528     //   All declarations that refer to the same object or function shall have
4529     //   compatible type.
4530     MergedT = Context.mergeTypes(New->getType(), Old->getType());
4531   }
4532   if (MergedT.isNull()) {
4533     // It's OK if we couldn't merge types if either type is dependent, for a
4534     // block-scope variable. In other cases (static data members of class
4535     // templates, variable templates, ...), we require the types to be
4536     // equivalent.
4537     // FIXME: The C++ standard doesn't say anything about this.
4538     if ((New->getType()->isDependentType() ||
4539          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4540       // If the old type was dependent, we can't merge with it, so the new type
4541       // becomes dependent for now. We'll reproduce the original type when we
4542       // instantiate the TypeSourceInfo for the variable.
4543       if (!New->getType()->isDependentType() && MergeTypeWithOld)
4544         New->setType(Context.DependentTy);
4545       return;
4546     }
4547     return diagnoseVarDeclTypeMismatch(*this, New, Old);
4548   }
4549 
4550   // Don't actually update the type on the new declaration if the old
4551   // declaration was an extern declaration in a different scope.
4552   if (MergeTypeWithOld)
4553     New->setType(MergedT);
4554 }
4555 
4556 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4557                                   LookupResult &Previous) {
4558   // C11 6.2.7p4:
4559   //   For an identifier with internal or external linkage declared
4560   //   in a scope in which a prior declaration of that identifier is
4561   //   visible, if the prior declaration specifies internal or
4562   //   external linkage, the type of the identifier at the later
4563   //   declaration becomes the composite type.
4564   //
4565   // If the variable isn't visible, we do not merge with its type.
4566   if (Previous.isShadowed())
4567     return false;
4568 
4569   if (S.getLangOpts().CPlusPlus) {
4570     // C++11 [dcl.array]p3:
4571     //   If there is a preceding declaration of the entity in the same
4572     //   scope in which the bound was specified, an omitted array bound
4573     //   is taken to be the same as in that earlier declaration.
4574     return NewVD->isPreviousDeclInSameBlockScope() ||
4575            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4576             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4577   } else {
4578     // If the old declaration was function-local, don't merge with its
4579     // type unless we're in the same function.
4580     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4581            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4582   }
4583 }
4584 
4585 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4586 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4587 /// situation, merging decls or emitting diagnostics as appropriate.
4588 ///
4589 /// Tentative definition rules (C99 6.9.2p2) are checked by
4590 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4591 /// definitions here, since the initializer hasn't been attached.
4592 ///
4593 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4594   // If the new decl is already invalid, don't do any other checking.
4595   if (New->isInvalidDecl())
4596     return;
4597 
4598   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4599     return;
4600 
4601   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4602 
4603   // Verify the old decl was also a variable or variable template.
4604   VarDecl *Old = nullptr;
4605   VarTemplateDecl *OldTemplate = nullptr;
4606   if (Previous.isSingleResult()) {
4607     if (NewTemplate) {
4608       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4609       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4610 
4611       if (auto *Shadow =
4612               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4613         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4614           return New->setInvalidDecl();
4615     } else {
4616       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4617 
4618       if (auto *Shadow =
4619               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4620         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4621           return New->setInvalidDecl();
4622     }
4623   }
4624   if (!Old) {
4625     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4626         << New->getDeclName();
4627     notePreviousDefinition(Previous.getRepresentativeDecl(),
4628                            New->getLocation());
4629     return New->setInvalidDecl();
4630   }
4631 
4632   // If the old declaration was found in an inline namespace and the new
4633   // declaration was qualified, update the DeclContext to match.
4634   adjustDeclContextForDeclaratorDecl(New, Old);
4635 
4636   // Ensure the template parameters are compatible.
4637   if (NewTemplate &&
4638       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4639                                       OldTemplate->getTemplateParameters(),
4640                                       /*Complain=*/true, TPL_TemplateMatch))
4641     return New->setInvalidDecl();
4642 
4643   // C++ [class.mem]p1:
4644   //   A member shall not be declared twice in the member-specification [...]
4645   //
4646   // Here, we need only consider static data members.
4647   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4648     Diag(New->getLocation(), diag::err_duplicate_member)
4649       << New->getIdentifier();
4650     Diag(Old->getLocation(), diag::note_previous_declaration);
4651     New->setInvalidDecl();
4652   }
4653 
4654   mergeDeclAttributes(New, Old);
4655   // Warn if an already-declared variable is made a weak_import in a subsequent
4656   // declaration
4657   if (New->hasAttr<WeakImportAttr>() &&
4658       Old->getStorageClass() == SC_None &&
4659       !Old->hasAttr<WeakImportAttr>()) {
4660     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4661     Diag(Old->getLocation(), diag::note_previous_declaration);
4662     // Remove weak_import attribute on new declaration.
4663     New->dropAttr<WeakImportAttr>();
4664   }
4665 
4666   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4667     if (!Old->hasAttr<InternalLinkageAttr>()) {
4668       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4669           << ILA;
4670       Diag(Old->getLocation(), diag::note_previous_declaration);
4671       New->dropAttr<InternalLinkageAttr>();
4672     }
4673 
4674   // Merge the types.
4675   VarDecl *MostRecent = Old->getMostRecentDecl();
4676   if (MostRecent != Old) {
4677     MergeVarDeclTypes(New, MostRecent,
4678                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4679     if (New->isInvalidDecl())
4680       return;
4681   }
4682 
4683   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4684   if (New->isInvalidDecl())
4685     return;
4686 
4687   diag::kind PrevDiag;
4688   SourceLocation OldLocation;
4689   std::tie(PrevDiag, OldLocation) =
4690       getNoteDiagForInvalidRedeclaration(Old, New);
4691 
4692   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4693   if (New->getStorageClass() == SC_Static &&
4694       !New->isStaticDataMember() &&
4695       Old->hasExternalFormalLinkage()) {
4696     if (getLangOpts().MicrosoftExt) {
4697       Diag(New->getLocation(), diag::ext_static_non_static)
4698           << New->getDeclName();
4699       Diag(OldLocation, PrevDiag);
4700     } else {
4701       Diag(New->getLocation(), diag::err_static_non_static)
4702           << New->getDeclName();
4703       Diag(OldLocation, PrevDiag);
4704       return New->setInvalidDecl();
4705     }
4706   }
4707   // C99 6.2.2p4:
4708   //   For an identifier declared with the storage-class specifier
4709   //   extern in a scope in which a prior declaration of that
4710   //   identifier is visible,23) if the prior declaration specifies
4711   //   internal or external linkage, the linkage of the identifier at
4712   //   the later declaration is the same as the linkage specified at
4713   //   the prior declaration. If no prior declaration is visible, or
4714   //   if the prior declaration specifies no linkage, then the
4715   //   identifier has external linkage.
4716   if (New->hasExternalStorage() && Old->hasLinkage())
4717     /* Okay */;
4718   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4719            !New->isStaticDataMember() &&
4720            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4721     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4722     Diag(OldLocation, PrevDiag);
4723     return New->setInvalidDecl();
4724   }
4725 
4726   // Check if extern is followed by non-extern and vice-versa.
4727   if (New->hasExternalStorage() &&
4728       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4729     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4730     Diag(OldLocation, PrevDiag);
4731     return New->setInvalidDecl();
4732   }
4733   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4734       !New->hasExternalStorage()) {
4735     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4736     Diag(OldLocation, PrevDiag);
4737     return New->setInvalidDecl();
4738   }
4739 
4740   if (CheckRedeclarationInModule(New, Old))
4741     return;
4742 
4743   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4744 
4745   // FIXME: The test for external storage here seems wrong? We still
4746   // need to check for mismatches.
4747   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4748       // Don't complain about out-of-line definitions of static members.
4749       !(Old->getLexicalDeclContext()->isRecord() &&
4750         !New->getLexicalDeclContext()->isRecord())) {
4751     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4752     Diag(OldLocation, PrevDiag);
4753     return New->setInvalidDecl();
4754   }
4755 
4756   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4757     if (VarDecl *Def = Old->getDefinition()) {
4758       // C++1z [dcl.fcn.spec]p4:
4759       //   If the definition of a variable appears in a translation unit before
4760       //   its first declaration as inline, the program is ill-formed.
4761       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4762       Diag(Def->getLocation(), diag::note_previous_definition);
4763     }
4764   }
4765 
4766   // If this redeclaration makes the variable inline, we may need to add it to
4767   // UndefinedButUsed.
4768   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4769       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4770     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4771                                            SourceLocation()));
4772 
4773   if (New->getTLSKind() != Old->getTLSKind()) {
4774     if (!Old->getTLSKind()) {
4775       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4776       Diag(OldLocation, PrevDiag);
4777     } else if (!New->getTLSKind()) {
4778       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4779       Diag(OldLocation, PrevDiag);
4780     } else {
4781       // Do not allow redeclaration to change the variable between requiring
4782       // static and dynamic initialization.
4783       // FIXME: GCC allows this, but uses the TLS keyword on the first
4784       // declaration to determine the kind. Do we need to be compatible here?
4785       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4786         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4787       Diag(OldLocation, PrevDiag);
4788     }
4789   }
4790 
4791   // C++ doesn't have tentative definitions, so go right ahead and check here.
4792   if (getLangOpts().CPlusPlus) {
4793     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4794         Old->getCanonicalDecl()->isConstexpr()) {
4795       // This definition won't be a definition any more once it's been merged.
4796       Diag(New->getLocation(),
4797            diag::warn_deprecated_redundant_constexpr_static_def);
4798     } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4799       VarDecl *Def = Old->getDefinition();
4800       if (Def && checkVarDeclRedefinition(Def, New))
4801         return;
4802     }
4803   }
4804 
4805   if (haveIncompatibleLanguageLinkages(Old, New)) {
4806     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4807     Diag(OldLocation, PrevDiag);
4808     New->setInvalidDecl();
4809     return;
4810   }
4811 
4812   // Merge "used" flag.
4813   if (Old->getMostRecentDecl()->isUsed(false))
4814     New->setIsUsed();
4815 
4816   // Keep a chain of previous declarations.
4817   New->setPreviousDecl(Old);
4818   if (NewTemplate)
4819     NewTemplate->setPreviousDecl(OldTemplate);
4820 
4821   // Inherit access appropriately.
4822   New->setAccess(Old->getAccess());
4823   if (NewTemplate)
4824     NewTemplate->setAccess(New->getAccess());
4825 
4826   if (Old->isInline())
4827     New->setImplicitlyInline();
4828 }
4829 
4830 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4831   SourceManager &SrcMgr = getSourceManager();
4832   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4833   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4834   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4835   auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first);
4836   auto &HSI = PP.getHeaderSearchInfo();
4837   StringRef HdrFilename =
4838       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4839 
4840   auto noteFromModuleOrInclude = [&](Module *Mod,
4841                                      SourceLocation IncLoc) -> bool {
4842     // Redefinition errors with modules are common with non modular mapped
4843     // headers, example: a non-modular header H in module A that also gets
4844     // included directly in a TU. Pointing twice to the same header/definition
4845     // is confusing, try to get better diagnostics when modules is on.
4846     if (IncLoc.isValid()) {
4847       if (Mod) {
4848         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4849             << HdrFilename.str() << Mod->getFullModuleName();
4850         if (!Mod->DefinitionLoc.isInvalid())
4851           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4852               << Mod->getFullModuleName();
4853       } else {
4854         Diag(IncLoc, diag::note_redefinition_include_same_file)
4855             << HdrFilename.str();
4856       }
4857       return true;
4858     }
4859 
4860     return false;
4861   };
4862 
4863   // Is it the same file and same offset? Provide more information on why
4864   // this leads to a redefinition error.
4865   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4866     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4867     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4868     bool EmittedDiag =
4869         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4870     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4871 
4872     // If the header has no guards, emit a note suggesting one.
4873     if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld))
4874       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4875 
4876     if (EmittedDiag)
4877       return;
4878   }
4879 
4880   // Redefinition coming from different files or couldn't do better above.
4881   if (Old->getLocation().isValid())
4882     Diag(Old->getLocation(), diag::note_previous_definition);
4883 }
4884 
4885 /// We've just determined that \p Old and \p New both appear to be definitions
4886 /// of the same variable. Either diagnose or fix the problem.
4887 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4888   if (!hasVisibleDefinition(Old) &&
4889       (New->getFormalLinkage() == Linkage::Internal || New->isInline() ||
4890        isa<VarTemplateSpecializationDecl>(New) ||
4891        New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() ||
4892        New->getDeclContext()->isDependentContext())) {
4893     // The previous definition is hidden, and multiple definitions are
4894     // permitted (in separate TUs). Demote this to a declaration.
4895     New->demoteThisDefinitionToDeclaration();
4896 
4897     // Make the canonical definition visible.
4898     if (auto *OldTD = Old->getDescribedVarTemplate())
4899       makeMergedDefinitionVisible(OldTD);
4900     makeMergedDefinitionVisible(Old);
4901     return false;
4902   } else {
4903     Diag(New->getLocation(), diag::err_redefinition) << New;
4904     notePreviousDefinition(Old, New->getLocation());
4905     New->setInvalidDecl();
4906     return true;
4907   }
4908 }
4909 
4910 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4911 /// no declarator (e.g. "struct foo;") is parsed.
4912 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4913                                        DeclSpec &DS,
4914                                        const ParsedAttributesView &DeclAttrs,
4915                                        RecordDecl *&AnonRecord) {
4916   return ParsedFreeStandingDeclSpec(
4917       S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4918 }
4919 
4920 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4921 // disambiguate entities defined in different scopes.
4922 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4923 // compatibility.
4924 // We will pick our mangling number depending on which version of MSVC is being
4925 // targeted.
4926 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4927   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4928              ? S->getMSCurManglingNumber()
4929              : S->getMSLastManglingNumber();
4930 }
4931 
4932 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4933   if (!Context.getLangOpts().CPlusPlus)
4934     return;
4935 
4936   if (isa<CXXRecordDecl>(Tag->getParent())) {
4937     // If this tag is the direct child of a class, number it if
4938     // it is anonymous.
4939     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4940       return;
4941     MangleNumberingContext &MCtx =
4942         Context.getManglingNumberContext(Tag->getParent());
4943     Context.setManglingNumber(
4944         Tag, MCtx.getManglingNumber(
4945                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4946     return;
4947   }
4948 
4949   // If this tag isn't a direct child of a class, number it if it is local.
4950   MangleNumberingContext *MCtx;
4951   Decl *ManglingContextDecl;
4952   std::tie(MCtx, ManglingContextDecl) =
4953       getCurrentMangleNumberContext(Tag->getDeclContext());
4954   if (MCtx) {
4955     Context.setManglingNumber(
4956         Tag, MCtx->getManglingNumber(
4957                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4958   }
4959 }
4960 
4961 namespace {
4962 struct NonCLikeKind {
4963   enum {
4964     None,
4965     BaseClass,
4966     DefaultMemberInit,
4967     Lambda,
4968     Friend,
4969     OtherMember,
4970     Invalid,
4971   } Kind = None;
4972   SourceRange Range;
4973 
4974   explicit operator bool() { return Kind != None; }
4975 };
4976 }
4977 
4978 /// Determine whether a class is C-like, according to the rules of C++
4979 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4980 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4981   if (RD->isInvalidDecl())
4982     return {NonCLikeKind::Invalid, {}};
4983 
4984   // C++ [dcl.typedef]p9: [P1766R1]
4985   //   An unnamed class with a typedef name for linkage purposes shall not
4986   //
4987   //    -- have any base classes
4988   if (RD->getNumBases())
4989     return {NonCLikeKind::BaseClass,
4990             SourceRange(RD->bases_begin()->getBeginLoc(),
4991                         RD->bases_end()[-1].getEndLoc())};
4992   bool Invalid = false;
4993   for (Decl *D : RD->decls()) {
4994     // Don't complain about things we already diagnosed.
4995     if (D->isInvalidDecl()) {
4996       Invalid = true;
4997       continue;
4998     }
4999 
5000     //  -- have any [...] default member initializers
5001     if (auto *FD = dyn_cast<FieldDecl>(D)) {
5002       if (FD->hasInClassInitializer()) {
5003         auto *Init = FD->getInClassInitializer();
5004         return {NonCLikeKind::DefaultMemberInit,
5005                 Init ? Init->getSourceRange() : D->getSourceRange()};
5006       }
5007       continue;
5008     }
5009 
5010     // FIXME: We don't allow friend declarations. This violates the wording of
5011     // P1766, but not the intent.
5012     if (isa<FriendDecl>(D))
5013       return {NonCLikeKind::Friend, D->getSourceRange()};
5014 
5015     //  -- declare any members other than non-static data members, member
5016     //     enumerations, or member classes,
5017     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
5018         isa<EnumDecl>(D))
5019       continue;
5020     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
5021     if (!MemberRD) {
5022       if (D->isImplicit())
5023         continue;
5024       return {NonCLikeKind::OtherMember, D->getSourceRange()};
5025     }
5026 
5027     //  -- contain a lambda-expression,
5028     if (MemberRD->isLambda())
5029       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
5030 
5031     //  and all member classes shall also satisfy these requirements
5032     //  (recursively).
5033     if (MemberRD->isThisDeclarationADefinition()) {
5034       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
5035         return Kind;
5036     }
5037   }
5038 
5039   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
5040 }
5041 
5042 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
5043                                         TypedefNameDecl *NewTD) {
5044   if (TagFromDeclSpec->isInvalidDecl())
5045     return;
5046 
5047   // Do nothing if the tag already has a name for linkage purposes.
5048   if (TagFromDeclSpec->hasNameForLinkage())
5049     return;
5050 
5051   // A well-formed anonymous tag must always be a TUK_Definition.
5052   assert(TagFromDeclSpec->isThisDeclarationADefinition());
5053 
5054   // The type must match the tag exactly;  no qualifiers allowed.
5055   if (!Context.hasSameType(NewTD->getUnderlyingType(),
5056                            Context.getTagDeclType(TagFromDeclSpec))) {
5057     if (getLangOpts().CPlusPlus)
5058       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
5059     return;
5060   }
5061 
5062   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5063   //   An unnamed class with a typedef name for linkage purposes shall [be
5064   //   C-like].
5065   //
5066   // FIXME: Also diagnose if we've already computed the linkage. That ideally
5067   // shouldn't happen, but there are constructs that the language rule doesn't
5068   // disallow for which we can't reasonably avoid computing linkage early.
5069   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
5070   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
5071                              : NonCLikeKind();
5072   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
5073   if (NonCLike || ChangesLinkage) {
5074     if (NonCLike.Kind == NonCLikeKind::Invalid)
5075       return;
5076 
5077     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
5078     if (ChangesLinkage) {
5079       // If the linkage changes, we can't accept this as an extension.
5080       if (NonCLike.Kind == NonCLikeKind::None)
5081         DiagID = diag::err_typedef_changes_linkage;
5082       else
5083         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
5084     }
5085 
5086     SourceLocation FixitLoc =
5087         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
5088     llvm::SmallString<40> TextToInsert;
5089     TextToInsert += ' ';
5090     TextToInsert += NewTD->getIdentifier()->getName();
5091 
5092     Diag(FixitLoc, DiagID)
5093       << isa<TypeAliasDecl>(NewTD)
5094       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
5095     if (NonCLike.Kind != NonCLikeKind::None) {
5096       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
5097         << NonCLike.Kind - 1 << NonCLike.Range;
5098     }
5099     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
5100       << NewTD << isa<TypeAliasDecl>(NewTD);
5101 
5102     if (ChangesLinkage)
5103       return;
5104   }
5105 
5106   // Otherwise, set this as the anon-decl typedef for the tag.
5107   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
5108 }
5109 
5110 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) {
5111   DeclSpec::TST T = DS.getTypeSpecType();
5112   switch (T) {
5113   case DeclSpec::TST_class:
5114     return 0;
5115   case DeclSpec::TST_struct:
5116     return 1;
5117   case DeclSpec::TST_interface:
5118     return 2;
5119   case DeclSpec::TST_union:
5120     return 3;
5121   case DeclSpec::TST_enum:
5122     if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) {
5123       if (ED->isScopedUsingClassTag())
5124         return 5;
5125       if (ED->isScoped())
5126         return 6;
5127     }
5128     return 4;
5129   default:
5130     llvm_unreachable("unexpected type specifier");
5131   }
5132 }
5133 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5134 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5135 /// parameters to cope with template friend declarations.
5136 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
5137                                        DeclSpec &DS,
5138                                        const ParsedAttributesView &DeclAttrs,
5139                                        MultiTemplateParamsArg TemplateParams,
5140                                        bool IsExplicitInstantiation,
5141                                        RecordDecl *&AnonRecord) {
5142   Decl *TagD = nullptr;
5143   TagDecl *Tag = nullptr;
5144   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
5145       DS.getTypeSpecType() == DeclSpec::TST_struct ||
5146       DS.getTypeSpecType() == DeclSpec::TST_interface ||
5147       DS.getTypeSpecType() == DeclSpec::TST_union ||
5148       DS.getTypeSpecType() == DeclSpec::TST_enum) {
5149     TagD = DS.getRepAsDecl();
5150 
5151     if (!TagD) // We probably had an error
5152       return nullptr;
5153 
5154     // Note that the above type specs guarantee that the
5155     // type rep is a Decl, whereas in many of the others
5156     // it's a Type.
5157     if (isa<TagDecl>(TagD))
5158       Tag = cast<TagDecl>(TagD);
5159     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5160       Tag = CTD->getTemplatedDecl();
5161   }
5162 
5163   if (Tag) {
5164     handleTagNumbering(Tag, S);
5165     Tag->setFreeStanding();
5166     if (Tag->isInvalidDecl())
5167       return Tag;
5168   }
5169 
5170   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5171     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5172     // or incomplete types shall not be restrict-qualified."
5173     if (TypeQuals & DeclSpec::TQ_restrict)
5174       Diag(DS.getRestrictSpecLoc(),
5175            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5176            << DS.getSourceRange();
5177   }
5178 
5179   if (DS.isInlineSpecified())
5180     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5181         << getLangOpts().CPlusPlus17;
5182 
5183   if (DS.hasConstexprSpecifier()) {
5184     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5185     // and definitions of functions and variables.
5186     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5187     // the declaration of a function or function template
5188     if (Tag)
5189       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5190           << GetDiagnosticTypeSpecifierID(DS)
5191           << static_cast<int>(DS.getConstexprSpecifier());
5192     else
5193       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5194           << static_cast<int>(DS.getConstexprSpecifier());
5195     // Don't emit warnings after this error.
5196     return TagD;
5197   }
5198 
5199   DiagnoseFunctionSpecifiers(DS);
5200 
5201   if (DS.isFriendSpecified()) {
5202     // If we're dealing with a decl but not a TagDecl, assume that
5203     // whatever routines created it handled the friendship aspect.
5204     if (TagD && !Tag)
5205       return nullptr;
5206     return ActOnFriendTypeDecl(S, DS, TemplateParams);
5207   }
5208 
5209   const CXXScopeSpec &SS = DS.getTypeSpecScope();
5210   bool IsExplicitSpecialization =
5211     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
5212   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
5213       !IsExplicitInstantiation && !IsExplicitSpecialization &&
5214       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
5215     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5216     // nested-name-specifier unless it is an explicit instantiation
5217     // or an explicit specialization.
5218     //
5219     // FIXME: We allow class template partial specializations here too, per the
5220     // obvious intent of DR1819.
5221     //
5222     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5223     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
5224         << GetDiagnosticTypeSpecifierID(DS) << SS.getRange();
5225     return nullptr;
5226   }
5227 
5228   // Track whether this decl-specifier declares anything.
5229   bool DeclaresAnything = true;
5230 
5231   // Handle anonymous struct definitions.
5232   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5233     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5234         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5235       if (getLangOpts().CPlusPlus ||
5236           Record->getDeclContext()->isRecord()) {
5237         // If CurContext is a DeclContext that can contain statements,
5238         // RecursiveASTVisitor won't visit the decls that
5239         // BuildAnonymousStructOrUnion() will put into CurContext.
5240         // Also store them here so that they can be part of the
5241         // DeclStmt that gets created in this case.
5242         // FIXME: Also return the IndirectFieldDecls created by
5243         // BuildAnonymousStructOr union, for the same reason?
5244         if (CurContext->isFunctionOrMethod())
5245           AnonRecord = Record;
5246         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5247                                            Context.getPrintingPolicy());
5248       }
5249 
5250       DeclaresAnything = false;
5251     }
5252   }
5253 
5254   // C11 6.7.2.1p2:
5255   //   A struct-declaration that does not declare an anonymous structure or
5256   //   anonymous union shall contain a struct-declarator-list.
5257   //
5258   // This rule also existed in C89 and C99; the grammar for struct-declaration
5259   // did not permit a struct-declaration without a struct-declarator-list.
5260   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5261       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5262     // Check for Microsoft C extension: anonymous struct/union member.
5263     // Handle 2 kinds of anonymous struct/union:
5264     //   struct STRUCT;
5265     //   union UNION;
5266     // and
5267     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
5268     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
5269     if ((Tag && Tag->getDeclName()) ||
5270         DS.getTypeSpecType() == DeclSpec::TST_typename) {
5271       RecordDecl *Record = nullptr;
5272       if (Tag)
5273         Record = dyn_cast<RecordDecl>(Tag);
5274       else if (const RecordType *RT =
5275                    DS.getRepAsType().get()->getAsStructureType())
5276         Record = RT->getDecl();
5277       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5278         Record = UT->getDecl();
5279 
5280       if (Record && getLangOpts().MicrosoftExt) {
5281         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5282             << Record->isUnion() << DS.getSourceRange();
5283         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5284       }
5285 
5286       DeclaresAnything = false;
5287     }
5288   }
5289 
5290   // Skip all the checks below if we have a type error.
5291   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5292       (TagD && TagD->isInvalidDecl()))
5293     return TagD;
5294 
5295   if (getLangOpts().CPlusPlus &&
5296       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5297     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5298       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5299           !Enum->getIdentifier() && !Enum->isInvalidDecl())
5300         DeclaresAnything = false;
5301 
5302   if (!DS.isMissingDeclaratorOk()) {
5303     // Customize diagnostic for a typedef missing a name.
5304     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5305       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5306           << DS.getSourceRange();
5307     else
5308       DeclaresAnything = false;
5309   }
5310 
5311   if (DS.isModulePrivateSpecified() &&
5312       Tag && Tag->getDeclContext()->isFunctionOrMethod())
5313     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5314         << llvm::to_underlying(Tag->getTagKind())
5315         << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5316 
5317   ActOnDocumentableDecl(TagD);
5318 
5319   // C 6.7/2:
5320   //   A declaration [...] shall declare at least a declarator [...], a tag,
5321   //   or the members of an enumeration.
5322   // C++ [dcl.dcl]p3:
5323   //   [If there are no declarators], and except for the declaration of an
5324   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5325   //   names into the program, or shall redeclare a name introduced by a
5326   //   previous declaration.
5327   if (!DeclaresAnything) {
5328     // In C, we allow this as a (popular) extension / bug. Don't bother
5329     // producing further diagnostics for redundant qualifiers after this.
5330     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5331                                ? diag::err_no_declarators
5332                                : diag::ext_no_declarators)
5333         << DS.getSourceRange();
5334     return TagD;
5335   }
5336 
5337   // C++ [dcl.stc]p1:
5338   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5339   //   init-declarator-list of the declaration shall not be empty.
5340   // C++ [dcl.fct.spec]p1:
5341   //   If a cv-qualifier appears in a decl-specifier-seq, the
5342   //   init-declarator-list of the declaration shall not be empty.
5343   //
5344   // Spurious qualifiers here appear to be valid in C.
5345   unsigned DiagID = diag::warn_standalone_specifier;
5346   if (getLangOpts().CPlusPlus)
5347     DiagID = diag::ext_standalone_specifier;
5348 
5349   // Note that a linkage-specification sets a storage class, but
5350   // 'extern "C" struct foo;' is actually valid and not theoretically
5351   // useless.
5352   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5353     if (SCS == DeclSpec::SCS_mutable)
5354       // Since mutable is not a viable storage class specifier in C, there is
5355       // no reason to treat it as an extension. Instead, diagnose as an error.
5356       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5357     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5358       Diag(DS.getStorageClassSpecLoc(), DiagID)
5359         << DeclSpec::getSpecifierName(SCS);
5360   }
5361 
5362   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5363     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5364       << DeclSpec::getSpecifierName(TSCS);
5365   if (DS.getTypeQualifiers()) {
5366     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5367       Diag(DS.getConstSpecLoc(), DiagID) << "const";
5368     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5369       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5370     // Restrict is covered above.
5371     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5372       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5373     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5374       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5375   }
5376 
5377   // Warn about ignored type attributes, for example:
5378   // __attribute__((aligned)) struct A;
5379   // Attributes should be placed after tag to apply to type declaration.
5380   if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5381     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5382     if (TypeSpecType == DeclSpec::TST_class ||
5383         TypeSpecType == DeclSpec::TST_struct ||
5384         TypeSpecType == DeclSpec::TST_interface ||
5385         TypeSpecType == DeclSpec::TST_union ||
5386         TypeSpecType == DeclSpec::TST_enum) {
5387 
5388       auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) {
5389         unsigned DiagnosticId = diag::warn_declspec_attribute_ignored;
5390         if (AL.isAlignas() && !getLangOpts().CPlusPlus)
5391           DiagnosticId = diag::warn_attribute_ignored;
5392         else if (AL.isRegularKeywordAttribute())
5393           DiagnosticId = diag::err_declspec_keyword_has_no_effect;
5394         else
5395           DiagnosticId = diag::warn_declspec_attribute_ignored;
5396         Diag(AL.getLoc(), DiagnosticId)
5397             << AL << GetDiagnosticTypeSpecifierID(DS);
5398       };
5399 
5400       llvm::for_each(DS.getAttributes(), EmitAttributeDiagnostic);
5401       llvm::for_each(DeclAttrs, EmitAttributeDiagnostic);
5402     }
5403   }
5404 
5405   return TagD;
5406 }
5407 
5408 /// We are trying to inject an anonymous member into the given scope;
5409 /// check if there's an existing declaration that can't be overloaded.
5410 ///
5411 /// \return true if this is a forbidden redeclaration
5412 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S,
5413                                          DeclContext *Owner,
5414                                          DeclarationName Name,
5415                                          SourceLocation NameLoc, bool IsUnion,
5416                                          StorageClass SC) {
5417   LookupResult R(SemaRef, Name, NameLoc,
5418                  Owner->isRecord() ? Sema::LookupMemberName
5419                                    : Sema::LookupOrdinaryName,
5420                  Sema::ForVisibleRedeclaration);
5421   if (!SemaRef.LookupName(R, S)) return false;
5422 
5423   // Pick a representative declaration.
5424   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5425   assert(PrevDecl && "Expected a non-null Decl");
5426 
5427   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5428     return false;
5429 
5430   if (SC == StorageClass::SC_None &&
5431       PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) &&
5432       (Owner->isFunctionOrMethod() || Owner->isRecord())) {
5433     if (!Owner->isRecord())
5434       SemaRef.DiagPlaceholderVariableDefinition(NameLoc);
5435     return false;
5436   }
5437 
5438   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5439     << IsUnion << Name;
5440   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5441 
5442   return true;
5443 }
5444 
5445 void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) {
5446   if (auto *RD = dyn_cast_if_present<RecordDecl>(D))
5447     DiagPlaceholderFieldDeclDefinitions(RD);
5448 }
5449 
5450 /// Emit diagnostic warnings for placeholder members.
5451 /// We can only do that after the class is fully constructed,
5452 /// as anonymous union/structs can insert placeholders
5453 /// in their parent scope (which might be a Record).
5454 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) {
5455   if (!getLangOpts().CPlusPlus)
5456     return;
5457 
5458   // This function can be parsed before we have validated the
5459   // structure as an anonymous struct
5460   if (Record->isAnonymousStructOrUnion())
5461     return;
5462 
5463   const NamedDecl *First = 0;
5464   for (const Decl *D : Record->decls()) {
5465     const NamedDecl *ND = dyn_cast<NamedDecl>(D);
5466     if (!ND || !ND->isPlaceholderVar(getLangOpts()))
5467       continue;
5468     if (!First)
5469       First = ND;
5470     else
5471       DiagPlaceholderVariableDefinition(ND->getLocation());
5472   }
5473 }
5474 
5475 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5476 /// anonymous struct or union AnonRecord into the owning context Owner
5477 /// and scope S. This routine will be invoked just after we realize
5478 /// that an unnamed union or struct is actually an anonymous union or
5479 /// struct, e.g.,
5480 ///
5481 /// @code
5482 /// union {
5483 ///   int i;
5484 ///   float f;
5485 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5486 ///    // f into the surrounding scope.x
5487 /// @endcode
5488 ///
5489 /// This routine is recursive, injecting the names of nested anonymous
5490 /// structs/unions into the owning context and scope as well.
5491 static bool
5492 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5493                                     RecordDecl *AnonRecord, AccessSpecifier AS,
5494                                     StorageClass SC,
5495                                     SmallVectorImpl<NamedDecl *> &Chaining) {
5496   bool Invalid = false;
5497 
5498   // Look every FieldDecl and IndirectFieldDecl with a name.
5499   for (auto *D : AnonRecord->decls()) {
5500     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5501         cast<NamedDecl>(D)->getDeclName()) {
5502       ValueDecl *VD = cast<ValueDecl>(D);
5503       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5504                                        VD->getLocation(), AnonRecord->isUnion(),
5505                                        SC)) {
5506         // C++ [class.union]p2:
5507         //   The names of the members of an anonymous union shall be
5508         //   distinct from the names of any other entity in the
5509         //   scope in which the anonymous union is declared.
5510         Invalid = true;
5511       } else {
5512         // C++ [class.union]p2:
5513         //   For the purpose of name lookup, after the anonymous union
5514         //   definition, the members of the anonymous union are
5515         //   considered to have been defined in the scope in which the
5516         //   anonymous union is declared.
5517         unsigned OldChainingSize = Chaining.size();
5518         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5519           Chaining.append(IF->chain_begin(), IF->chain_end());
5520         else
5521           Chaining.push_back(VD);
5522 
5523         assert(Chaining.size() >= 2);
5524         NamedDecl **NamedChain =
5525           new (SemaRef.Context)NamedDecl*[Chaining.size()];
5526         for (unsigned i = 0; i < Chaining.size(); i++)
5527           NamedChain[i] = Chaining[i];
5528 
5529         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5530             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5531             VD->getType(), {NamedChain, Chaining.size()});
5532 
5533         for (const auto *Attr : VD->attrs())
5534           IndirectField->addAttr(Attr->clone(SemaRef.Context));
5535 
5536         IndirectField->setAccess(AS);
5537         IndirectField->setImplicit();
5538         SemaRef.PushOnScopeChains(IndirectField, S);
5539 
5540         // That includes picking up the appropriate access specifier.
5541         if (AS != AS_none) IndirectField->setAccess(AS);
5542 
5543         Chaining.resize(OldChainingSize);
5544       }
5545     }
5546   }
5547 
5548   return Invalid;
5549 }
5550 
5551 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5552 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5553 /// illegal input values are mapped to SC_None.
5554 static StorageClass
5555 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5556   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5557   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5558          "Parser allowed 'typedef' as storage class VarDecl.");
5559   switch (StorageClassSpec) {
5560   case DeclSpec::SCS_unspecified:    return SC_None;
5561   case DeclSpec::SCS_extern:
5562     if (DS.isExternInLinkageSpec())
5563       return SC_None;
5564     return SC_Extern;
5565   case DeclSpec::SCS_static:         return SC_Static;
5566   case DeclSpec::SCS_auto:           return SC_Auto;
5567   case DeclSpec::SCS_register:       return SC_Register;
5568   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5569     // Illegal SCSs map to None: error reporting is up to the caller.
5570   case DeclSpec::SCS_mutable:        // Fall through.
5571   case DeclSpec::SCS_typedef:        return SC_None;
5572   }
5573   llvm_unreachable("unknown storage class specifier");
5574 }
5575 
5576 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5577   assert(Record->hasInClassInitializer());
5578 
5579   for (const auto *I : Record->decls()) {
5580     const auto *FD = dyn_cast<FieldDecl>(I);
5581     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5582       FD = IFD->getAnonField();
5583     if (FD && FD->hasInClassInitializer())
5584       return FD->getLocation();
5585   }
5586 
5587   llvm_unreachable("couldn't find in-class initializer");
5588 }
5589 
5590 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5591                                       SourceLocation DefaultInitLoc) {
5592   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5593     return;
5594 
5595   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5596   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5597 }
5598 
5599 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5600                                       CXXRecordDecl *AnonUnion) {
5601   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5602     return;
5603 
5604   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5605 }
5606 
5607 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5608 /// anonymous structure or union. Anonymous unions are a C++ feature
5609 /// (C++ [class.union]) and a C11 feature; anonymous structures
5610 /// are a C11 feature and GNU C++ extension.
5611 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5612                                         AccessSpecifier AS,
5613                                         RecordDecl *Record,
5614                                         const PrintingPolicy &Policy) {
5615   DeclContext *Owner = Record->getDeclContext();
5616 
5617   // Diagnose whether this anonymous struct/union is an extension.
5618   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5619     Diag(Record->getLocation(), diag::ext_anonymous_union);
5620   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5621     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5622   else if (!Record->isUnion() && !getLangOpts().C11)
5623     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5624 
5625   // C and C++ require different kinds of checks for anonymous
5626   // structs/unions.
5627   bool Invalid = false;
5628   if (getLangOpts().CPlusPlus) {
5629     const char *PrevSpec = nullptr;
5630     if (Record->isUnion()) {
5631       // C++ [class.union]p6:
5632       // C++17 [class.union.anon]p2:
5633       //   Anonymous unions declared in a named namespace or in the
5634       //   global namespace shall be declared static.
5635       unsigned DiagID;
5636       DeclContext *OwnerScope = Owner->getRedeclContext();
5637       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5638           (OwnerScope->isTranslationUnit() ||
5639            (OwnerScope->isNamespace() &&
5640             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5641         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5642           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5643 
5644         // Recover by adding 'static'.
5645         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5646                                PrevSpec, DiagID, Policy);
5647       }
5648       // C++ [class.union]p6:
5649       //   A storage class is not allowed in a declaration of an
5650       //   anonymous union in a class scope.
5651       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5652                isa<RecordDecl>(Owner)) {
5653         Diag(DS.getStorageClassSpecLoc(),
5654              diag::err_anonymous_union_with_storage_spec)
5655           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5656 
5657         // Recover by removing the storage specifier.
5658         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5659                                SourceLocation(),
5660                                PrevSpec, DiagID, Context.getPrintingPolicy());
5661       }
5662     }
5663 
5664     // Ignore const/volatile/restrict qualifiers.
5665     if (DS.getTypeQualifiers()) {
5666       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5667         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5668           << Record->isUnion() << "const"
5669           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5670       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5671         Diag(DS.getVolatileSpecLoc(),
5672              diag::ext_anonymous_struct_union_qualified)
5673           << Record->isUnion() << "volatile"
5674           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5675       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5676         Diag(DS.getRestrictSpecLoc(),
5677              diag::ext_anonymous_struct_union_qualified)
5678           << Record->isUnion() << "restrict"
5679           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5680       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5681         Diag(DS.getAtomicSpecLoc(),
5682              diag::ext_anonymous_struct_union_qualified)
5683           << Record->isUnion() << "_Atomic"
5684           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5685       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5686         Diag(DS.getUnalignedSpecLoc(),
5687              diag::ext_anonymous_struct_union_qualified)
5688           << Record->isUnion() << "__unaligned"
5689           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5690 
5691       DS.ClearTypeQualifiers();
5692     }
5693 
5694     // C++ [class.union]p2:
5695     //   The member-specification of an anonymous union shall only
5696     //   define non-static data members. [Note: nested types and
5697     //   functions cannot be declared within an anonymous union. ]
5698     for (auto *Mem : Record->decls()) {
5699       // Ignore invalid declarations; we already diagnosed them.
5700       if (Mem->isInvalidDecl())
5701         continue;
5702 
5703       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5704         // C++ [class.union]p3:
5705         //   An anonymous union shall not have private or protected
5706         //   members (clause 11).
5707         assert(FD->getAccess() != AS_none);
5708         if (FD->getAccess() != AS_public) {
5709           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5710             << Record->isUnion() << (FD->getAccess() == AS_protected);
5711           Invalid = true;
5712         }
5713 
5714         // C++ [class.union]p1
5715         //   An object of a class with a non-trivial constructor, a non-trivial
5716         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5717         //   assignment operator cannot be a member of a union, nor can an
5718         //   array of such objects.
5719         if (CheckNontrivialField(FD))
5720           Invalid = true;
5721       } else if (Mem->isImplicit()) {
5722         // Any implicit members are fine.
5723       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5724         // This is a type that showed up in an
5725         // elaborated-type-specifier inside the anonymous struct or
5726         // union, but which actually declares a type outside of the
5727         // anonymous struct or union. It's okay.
5728       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5729         if (!MemRecord->isAnonymousStructOrUnion() &&
5730             MemRecord->getDeclName()) {
5731           // Visual C++ allows type definition in anonymous struct or union.
5732           if (getLangOpts().MicrosoftExt)
5733             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5734               << Record->isUnion();
5735           else {
5736             // This is a nested type declaration.
5737             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5738               << Record->isUnion();
5739             Invalid = true;
5740           }
5741         } else {
5742           // This is an anonymous type definition within another anonymous type.
5743           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5744           // not part of standard C++.
5745           Diag(MemRecord->getLocation(),
5746                diag::ext_anonymous_record_with_anonymous_type)
5747             << Record->isUnion();
5748         }
5749       } else if (isa<AccessSpecDecl>(Mem)) {
5750         // Any access specifier is fine.
5751       } else if (isa<StaticAssertDecl>(Mem)) {
5752         // In C++1z, static_assert declarations are also fine.
5753       } else {
5754         // We have something that isn't a non-static data
5755         // member. Complain about it.
5756         unsigned DK = diag::err_anonymous_record_bad_member;
5757         if (isa<TypeDecl>(Mem))
5758           DK = diag::err_anonymous_record_with_type;
5759         else if (isa<FunctionDecl>(Mem))
5760           DK = diag::err_anonymous_record_with_function;
5761         else if (isa<VarDecl>(Mem))
5762           DK = diag::err_anonymous_record_with_static;
5763 
5764         // Visual C++ allows type definition in anonymous struct or union.
5765         if (getLangOpts().MicrosoftExt &&
5766             DK == diag::err_anonymous_record_with_type)
5767           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5768             << Record->isUnion();
5769         else {
5770           Diag(Mem->getLocation(), DK) << Record->isUnion();
5771           Invalid = true;
5772         }
5773       }
5774     }
5775 
5776     // C++11 [class.union]p8 (DR1460):
5777     //   At most one variant member of a union may have a
5778     //   brace-or-equal-initializer.
5779     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5780         Owner->isRecord())
5781       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5782                                 cast<CXXRecordDecl>(Record));
5783   }
5784 
5785   if (!Record->isUnion() && !Owner->isRecord()) {
5786     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5787       << getLangOpts().CPlusPlus;
5788     Invalid = true;
5789   }
5790 
5791   // C++ [dcl.dcl]p3:
5792   //   [If there are no declarators], and except for the declaration of an
5793   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5794   //   names into the program
5795   // C++ [class.mem]p2:
5796   //   each such member-declaration shall either declare at least one member
5797   //   name of the class or declare at least one unnamed bit-field
5798   //
5799   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5800   if (getLangOpts().CPlusPlus && Record->field_empty())
5801     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5802 
5803   // Mock up a declarator.
5804   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5805   StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5806   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5807   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5808 
5809   // Create a declaration for this anonymous struct/union.
5810   NamedDecl *Anon = nullptr;
5811   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5812     Anon = FieldDecl::Create(
5813         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5814         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5815         /*BitWidth=*/nullptr, /*Mutable=*/false,
5816         /*InitStyle=*/ICIS_NoInit);
5817     Anon->setAccess(AS);
5818     ProcessDeclAttributes(S, Anon, Dc);
5819 
5820     if (getLangOpts().CPlusPlus)
5821       FieldCollector->Add(cast<FieldDecl>(Anon));
5822   } else {
5823     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5824     if (SCSpec == DeclSpec::SCS_mutable) {
5825       // mutable can only appear on non-static class members, so it's always
5826       // an error here
5827       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5828       Invalid = true;
5829       SC = SC_None;
5830     }
5831 
5832     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5833                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5834                            Context.getTypeDeclType(Record), TInfo, SC);
5835     ProcessDeclAttributes(S, Anon, Dc);
5836 
5837     // Default-initialize the implicit variable. This initialization will be
5838     // trivial in almost all cases, except if a union member has an in-class
5839     // initializer:
5840     //   union { int n = 0; };
5841     ActOnUninitializedDecl(Anon);
5842   }
5843   Anon->setImplicit();
5844 
5845   // Mark this as an anonymous struct/union type.
5846   Record->setAnonymousStructOrUnion(true);
5847 
5848   // Add the anonymous struct/union object to the current
5849   // context. We'll be referencing this object when we refer to one of
5850   // its members.
5851   Owner->addDecl(Anon);
5852 
5853   // Inject the members of the anonymous struct/union into the owning
5854   // context and into the identifier resolver chain for name lookup
5855   // purposes.
5856   SmallVector<NamedDecl*, 2> Chain;
5857   Chain.push_back(Anon);
5858 
5859   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC,
5860                                           Chain))
5861     Invalid = true;
5862 
5863   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5864     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5865       MangleNumberingContext *MCtx;
5866       Decl *ManglingContextDecl;
5867       std::tie(MCtx, ManglingContextDecl) =
5868           getCurrentMangleNumberContext(NewVD->getDeclContext());
5869       if (MCtx) {
5870         Context.setManglingNumber(
5871             NewVD, MCtx->getManglingNumber(
5872                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5873         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5874       }
5875     }
5876   }
5877 
5878   if (Invalid)
5879     Anon->setInvalidDecl();
5880 
5881   return Anon;
5882 }
5883 
5884 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5885 /// Microsoft C anonymous structure.
5886 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5887 /// Example:
5888 ///
5889 /// struct A { int a; };
5890 /// struct B { struct A; int b; };
5891 ///
5892 /// void foo() {
5893 ///   B var;
5894 ///   var.a = 3;
5895 /// }
5896 ///
5897 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5898                                            RecordDecl *Record) {
5899   assert(Record && "expected a record!");
5900 
5901   // Mock up a declarator.
5902   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5903   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc);
5904   assert(TInfo && "couldn't build declarator info for anonymous struct");
5905 
5906   auto *ParentDecl = cast<RecordDecl>(CurContext);
5907   QualType RecTy = Context.getTypeDeclType(Record);
5908 
5909   // Create a declaration for this anonymous struct.
5910   NamedDecl *Anon =
5911       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5912                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5913                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5914                         /*InitStyle=*/ICIS_NoInit);
5915   Anon->setImplicit();
5916 
5917   // Add the anonymous struct object to the current context.
5918   CurContext->addDecl(Anon);
5919 
5920   // Inject the members of the anonymous struct into the current
5921   // context and into the identifier resolver chain for name lookup
5922   // purposes.
5923   SmallVector<NamedDecl*, 2> Chain;
5924   Chain.push_back(Anon);
5925 
5926   RecordDecl *RecordDef = Record->getDefinition();
5927   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5928                                diag::err_field_incomplete_or_sizeless) ||
5929       InjectAnonymousStructOrUnionMembers(
5930           *this, S, CurContext, RecordDef, AS_none,
5931           StorageClassSpecToVarDeclStorageClass(DS), Chain)) {
5932     Anon->setInvalidDecl();
5933     ParentDecl->setInvalidDecl();
5934   }
5935 
5936   return Anon;
5937 }
5938 
5939 /// GetNameForDeclarator - Determine the full declaration name for the
5940 /// given Declarator.
5941 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5942   return GetNameFromUnqualifiedId(D.getName());
5943 }
5944 
5945 /// Retrieves the declaration name from a parsed unqualified-id.
5946 DeclarationNameInfo
5947 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5948   DeclarationNameInfo NameInfo;
5949   NameInfo.setLoc(Name.StartLocation);
5950 
5951   switch (Name.getKind()) {
5952 
5953   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5954   case UnqualifiedIdKind::IK_Identifier:
5955     NameInfo.setName(Name.Identifier);
5956     return NameInfo;
5957 
5958   case UnqualifiedIdKind::IK_DeductionGuideName: {
5959     // C++ [temp.deduct.guide]p3:
5960     //   The simple-template-id shall name a class template specialization.
5961     //   The template-name shall be the same identifier as the template-name
5962     //   of the simple-template-id.
5963     // These together intend to imply that the template-name shall name a
5964     // class template.
5965     // FIXME: template<typename T> struct X {};
5966     //        template<typename T> using Y = X<T>;
5967     //        Y(int) -> Y<int>;
5968     //   satisfies these rules but does not name a class template.
5969     TemplateName TN = Name.TemplateName.get().get();
5970     auto *Template = TN.getAsTemplateDecl();
5971     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5972       Diag(Name.StartLocation,
5973            diag::err_deduction_guide_name_not_class_template)
5974         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5975       if (Template)
5976         NoteTemplateLocation(*Template);
5977       return DeclarationNameInfo();
5978     }
5979 
5980     NameInfo.setName(
5981         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5982     return NameInfo;
5983   }
5984 
5985   case UnqualifiedIdKind::IK_OperatorFunctionId:
5986     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5987                                            Name.OperatorFunctionId.Operator));
5988     NameInfo.setCXXOperatorNameRange(SourceRange(
5989         Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5990     return NameInfo;
5991 
5992   case UnqualifiedIdKind::IK_LiteralOperatorId:
5993     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5994                                                            Name.Identifier));
5995     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5996     return NameInfo;
5997 
5998   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5999     TypeSourceInfo *TInfo;
6000     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
6001     if (Ty.isNull())
6002       return DeclarationNameInfo();
6003     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
6004                                                Context.getCanonicalType(Ty)));
6005     NameInfo.setNamedTypeInfo(TInfo);
6006     return NameInfo;
6007   }
6008 
6009   case UnqualifiedIdKind::IK_ConstructorName: {
6010     TypeSourceInfo *TInfo;
6011     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
6012     if (Ty.isNull())
6013       return DeclarationNameInfo();
6014     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6015                                               Context.getCanonicalType(Ty)));
6016     NameInfo.setNamedTypeInfo(TInfo);
6017     return NameInfo;
6018   }
6019 
6020   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
6021     // In well-formed code, we can only have a constructor
6022     // template-id that refers to the current context, so go there
6023     // to find the actual type being constructed.
6024     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
6025     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
6026       return DeclarationNameInfo();
6027 
6028     // Determine the type of the class being constructed.
6029     QualType CurClassType = Context.getTypeDeclType(CurClass);
6030 
6031     // FIXME: Check two things: that the template-id names the same type as
6032     // CurClassType, and that the template-id does not occur when the name
6033     // was qualified.
6034 
6035     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6036                                     Context.getCanonicalType(CurClassType)));
6037     // FIXME: should we retrieve TypeSourceInfo?
6038     NameInfo.setNamedTypeInfo(nullptr);
6039     return NameInfo;
6040   }
6041 
6042   case UnqualifiedIdKind::IK_DestructorName: {
6043     TypeSourceInfo *TInfo;
6044     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
6045     if (Ty.isNull())
6046       return DeclarationNameInfo();
6047     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
6048                                               Context.getCanonicalType(Ty)));
6049     NameInfo.setNamedTypeInfo(TInfo);
6050     return NameInfo;
6051   }
6052 
6053   case UnqualifiedIdKind::IK_TemplateId: {
6054     TemplateName TName = Name.TemplateId->Template.get();
6055     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
6056     return Context.getNameForTemplate(TName, TNameLoc);
6057   }
6058 
6059   } // switch (Name.getKind())
6060 
6061   llvm_unreachable("Unknown name kind");
6062 }
6063 
6064 static QualType getCoreType(QualType Ty) {
6065   do {
6066     if (Ty->isPointerType() || Ty->isReferenceType())
6067       Ty = Ty->getPointeeType();
6068     else if (Ty->isArrayType())
6069       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
6070     else
6071       return Ty.withoutLocalFastQualifiers();
6072   } while (true);
6073 }
6074 
6075 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6076 /// and Definition have "nearly" matching parameters. This heuristic is
6077 /// used to improve diagnostics in the case where an out-of-line function
6078 /// definition doesn't match any declaration within the class or namespace.
6079 /// Also sets Params to the list of indices to the parameters that differ
6080 /// between the declaration and the definition. If hasSimilarParameters
6081 /// returns true and Params is empty, then all of the parameters match.
6082 static bool hasSimilarParameters(ASTContext &Context,
6083                                      FunctionDecl *Declaration,
6084                                      FunctionDecl *Definition,
6085                                      SmallVectorImpl<unsigned> &Params) {
6086   Params.clear();
6087   if (Declaration->param_size() != Definition->param_size())
6088     return false;
6089   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
6090     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
6091     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
6092 
6093     // The parameter types are identical
6094     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
6095       continue;
6096 
6097     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
6098     QualType DefParamBaseTy = getCoreType(DefParamTy);
6099     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
6100     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
6101 
6102     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
6103         (DeclTyName && DeclTyName == DefTyName))
6104       Params.push_back(Idx);
6105     else  // The two parameters aren't even close
6106       return false;
6107   }
6108 
6109   return true;
6110 }
6111 
6112 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6113 /// declarator needs to be rebuilt in the current instantiation.
6114 /// Any bits of declarator which appear before the name are valid for
6115 /// consideration here.  That's specifically the type in the decl spec
6116 /// and the base type in any member-pointer chunks.
6117 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
6118                                                     DeclarationName Name) {
6119   // The types we specifically need to rebuild are:
6120   //   - typenames, typeofs, and decltypes
6121   //   - types which will become injected class names
6122   // Of course, we also need to rebuild any type referencing such a
6123   // type.  It's safest to just say "dependent", but we call out a
6124   // few cases here.
6125 
6126   DeclSpec &DS = D.getMutableDeclSpec();
6127   switch (DS.getTypeSpecType()) {
6128   case DeclSpec::TST_typename:
6129   case DeclSpec::TST_typeofType:
6130   case DeclSpec::TST_typeof_unqualType:
6131 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6132 #include "clang/Basic/TransformTypeTraits.def"
6133   case DeclSpec::TST_atomic: {
6134     // Grab the type from the parser.
6135     TypeSourceInfo *TSI = nullptr;
6136     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
6137     if (T.isNull() || !T->isInstantiationDependentType()) break;
6138 
6139     // Make sure there's a type source info.  This isn't really much
6140     // of a waste; most dependent types should have type source info
6141     // attached already.
6142     if (!TSI)
6143       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
6144 
6145     // Rebuild the type in the current instantiation.
6146     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
6147     if (!TSI) return true;
6148 
6149     // Store the new type back in the decl spec.
6150     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
6151     DS.UpdateTypeRep(LocType);
6152     break;
6153   }
6154 
6155   case DeclSpec::TST_decltype:
6156   case DeclSpec::TST_typeof_unqualExpr:
6157   case DeclSpec::TST_typeofExpr: {
6158     Expr *E = DS.getRepAsExpr();
6159     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
6160     if (Result.isInvalid()) return true;
6161     DS.UpdateExprRep(Result.get());
6162     break;
6163   }
6164 
6165   default:
6166     // Nothing to do for these decl specs.
6167     break;
6168   }
6169 
6170   // It doesn't matter what order we do this in.
6171   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
6172     DeclaratorChunk &Chunk = D.getTypeObject(I);
6173 
6174     // The only type information in the declarator which can come
6175     // before the declaration name is the base type of a member
6176     // pointer.
6177     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
6178       continue;
6179 
6180     // Rebuild the scope specifier in-place.
6181     CXXScopeSpec &SS = Chunk.Mem.Scope();
6182     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
6183       return true;
6184   }
6185 
6186   return false;
6187 }
6188 
6189 /// Returns true if the declaration is declared in a system header or from a
6190 /// system macro.
6191 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
6192   return SM.isInSystemHeader(D->getLocation()) ||
6193          SM.isInSystemMacro(D->getLocation());
6194 }
6195 
6196 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
6197   // Avoid warning twice on the same identifier, and don't warn on redeclaration
6198   // of system decl.
6199   if (D->getPreviousDecl() || D->isImplicit())
6200     return;
6201   ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
6202   if (Status != ReservedIdentifierStatus::NotReserved &&
6203       !isFromSystemHeader(Context.getSourceManager(), D)) {
6204     Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
6205         << D << static_cast<int>(Status);
6206   }
6207 }
6208 
6209 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6210   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6211 
6212   // Check if we are in an `omp begin/end declare variant` scope. Handle this
6213   // declaration only if the `bind_to_declaration` extension is set.
6214   SmallVector<FunctionDecl *, 4> Bases;
6215   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
6216     if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6217               implementation_extension_bind_to_declaration))
6218     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6219         S, D, MultiTemplateParamsArg(), Bases);
6220 
6221   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6222 
6223   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6224       Dcl && Dcl->getDeclContext()->isFileContext())
6225     Dcl->setTopLevelDeclInObjCContainer();
6226 
6227   if (!Bases.empty())
6228     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
6229 
6230   return Dcl;
6231 }
6232 
6233 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6234 ///   If T is the name of a class, then each of the following shall have a
6235 ///   name different from T:
6236 ///     - every static data member of class T;
6237 ///     - every member function of class T
6238 ///     - every member of class T that is itself a type;
6239 /// \returns true if the declaration name violates these rules.
6240 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6241                                    DeclarationNameInfo NameInfo) {
6242   DeclarationName Name = NameInfo.getName();
6243 
6244   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6245   while (Record && Record->isAnonymousStructOrUnion())
6246     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6247   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6248     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6249     return true;
6250   }
6251 
6252   return false;
6253 }
6254 
6255 /// Diagnose a declaration whose declarator-id has the given
6256 /// nested-name-specifier.
6257 ///
6258 /// \param SS The nested-name-specifier of the declarator-id.
6259 ///
6260 /// \param DC The declaration context to which the nested-name-specifier
6261 /// resolves.
6262 ///
6263 /// \param Name The name of the entity being declared.
6264 ///
6265 /// \param Loc The location of the name of the entity being declared.
6266 ///
6267 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6268 /// we're declaring an explicit / partial specialization / instantiation.
6269 ///
6270 /// \returns true if we cannot safely recover from this error, false otherwise.
6271 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6272                                         DeclarationName Name,
6273                                         SourceLocation Loc, bool IsTemplateId) {
6274   DeclContext *Cur = CurContext;
6275   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6276     Cur = Cur->getParent();
6277 
6278   // If the user provided a superfluous scope specifier that refers back to the
6279   // class in which the entity is already declared, diagnose and ignore it.
6280   //
6281   // class X {
6282   //   void X::f();
6283   // };
6284   //
6285   // Note, it was once ill-formed to give redundant qualification in all
6286   // contexts, but that rule was removed by DR482.
6287   if (Cur->Equals(DC)) {
6288     if (Cur->isRecord()) {
6289       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6290                                       : diag::err_member_extra_qualification)
6291         << Name << FixItHint::CreateRemoval(SS.getRange());
6292       SS.clear();
6293     } else {
6294       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6295     }
6296     return false;
6297   }
6298 
6299   // Check whether the qualifying scope encloses the scope of the original
6300   // declaration. For a template-id, we perform the checks in
6301   // CheckTemplateSpecializationScope.
6302   if (!Cur->Encloses(DC) && !IsTemplateId) {
6303     if (Cur->isRecord())
6304       Diag(Loc, diag::err_member_qualification)
6305         << Name << SS.getRange();
6306     else if (isa<TranslationUnitDecl>(DC))
6307       Diag(Loc, diag::err_invalid_declarator_global_scope)
6308         << Name << SS.getRange();
6309     else if (isa<FunctionDecl>(Cur))
6310       Diag(Loc, diag::err_invalid_declarator_in_function)
6311         << Name << SS.getRange();
6312     else if (isa<BlockDecl>(Cur))
6313       Diag(Loc, diag::err_invalid_declarator_in_block)
6314         << Name << SS.getRange();
6315     else if (isa<ExportDecl>(Cur)) {
6316       if (!isa<NamespaceDecl>(DC))
6317         Diag(Loc, diag::err_export_non_namespace_scope_name)
6318             << Name << SS.getRange();
6319       else
6320         // The cases that DC is not NamespaceDecl should be handled in
6321         // CheckRedeclarationExported.
6322         return false;
6323     } else
6324       Diag(Loc, diag::err_invalid_declarator_scope)
6325       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6326 
6327     return true;
6328   }
6329 
6330   if (Cur->isRecord()) {
6331     // Cannot qualify members within a class.
6332     Diag(Loc, diag::err_member_qualification)
6333       << Name << SS.getRange();
6334     SS.clear();
6335 
6336     // C++ constructors and destructors with incorrect scopes can break
6337     // our AST invariants by having the wrong underlying types. If
6338     // that's the case, then drop this declaration entirely.
6339     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6340          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6341         !Context.hasSameType(Name.getCXXNameType(),
6342                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6343       return true;
6344 
6345     return false;
6346   }
6347 
6348   // C++11 [dcl.meaning]p1:
6349   //   [...] "The nested-name-specifier of the qualified declarator-id shall
6350   //   not begin with a decltype-specifer"
6351   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6352   while (SpecLoc.getPrefix())
6353     SpecLoc = SpecLoc.getPrefix();
6354   if (isa_and_nonnull<DecltypeType>(
6355           SpecLoc.getNestedNameSpecifier()->getAsType()))
6356     Diag(Loc, diag::err_decltype_in_declarator)
6357       << SpecLoc.getTypeLoc().getSourceRange();
6358 
6359   return false;
6360 }
6361 
6362 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6363                                   MultiTemplateParamsArg TemplateParamLists) {
6364   // TODO: consider using NameInfo for diagnostic.
6365   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6366   DeclarationName Name = NameInfo.getName();
6367 
6368   // All of these full declarators require an identifier.  If it doesn't have
6369   // one, the ParsedFreeStandingDeclSpec action should be used.
6370   if (D.isDecompositionDeclarator()) {
6371     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6372   } else if (!Name) {
6373     if (!D.isInvalidType())  // Reject this if we think it is valid.
6374       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6375           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6376     return nullptr;
6377   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6378     return nullptr;
6379 
6380   // The scope passed in may not be a decl scope.  Zip up the scope tree until
6381   // we find one that is.
6382   while ((S->getFlags() & Scope::DeclScope) == 0 ||
6383          (S->getFlags() & Scope::TemplateParamScope) != 0)
6384     S = S->getParent();
6385 
6386   DeclContext *DC = CurContext;
6387   if (D.getCXXScopeSpec().isInvalid())
6388     D.setInvalidType();
6389   else if (D.getCXXScopeSpec().isSet()) {
6390     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6391                                         UPPC_DeclarationQualifier))
6392       return nullptr;
6393 
6394     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6395     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6396     if (!DC || isa<EnumDecl>(DC)) {
6397       // If we could not compute the declaration context, it's because the
6398       // declaration context is dependent but does not refer to a class,
6399       // class template, or class template partial specialization. Complain
6400       // and return early, to avoid the coming semantic disaster.
6401       Diag(D.getIdentifierLoc(),
6402            diag::err_template_qualified_declarator_no_match)
6403         << D.getCXXScopeSpec().getScopeRep()
6404         << D.getCXXScopeSpec().getRange();
6405       return nullptr;
6406     }
6407     bool IsDependentContext = DC->isDependentContext();
6408 
6409     if (!IsDependentContext &&
6410         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6411       return nullptr;
6412 
6413     // If a class is incomplete, do not parse entities inside it.
6414     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6415       Diag(D.getIdentifierLoc(),
6416            diag::err_member_def_undefined_record)
6417         << Name << DC << D.getCXXScopeSpec().getRange();
6418       return nullptr;
6419     }
6420     if (!D.getDeclSpec().isFriendSpecified()) {
6421       if (diagnoseQualifiedDeclaration(
6422               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6423               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6424         if (DC->isRecord())
6425           return nullptr;
6426 
6427         D.setInvalidType();
6428       }
6429     }
6430 
6431     // Check whether we need to rebuild the type of the given
6432     // declaration in the current instantiation.
6433     if (EnteringContext && IsDependentContext &&
6434         TemplateParamLists.size() != 0) {
6435       ContextRAII SavedContext(*this, DC);
6436       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6437         D.setInvalidType();
6438     }
6439   }
6440 
6441   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6442   QualType R = TInfo->getType();
6443 
6444   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6445                                       UPPC_DeclarationType))
6446     D.setInvalidType();
6447 
6448   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6449                         forRedeclarationInCurContext());
6450 
6451   // See if this is a redefinition of a variable in the same scope.
6452   if (!D.getCXXScopeSpec().isSet()) {
6453     bool IsLinkageLookup = false;
6454     bool CreateBuiltins = false;
6455 
6456     // If the declaration we're planning to build will be a function
6457     // or object with linkage, then look for another declaration with
6458     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6459     //
6460     // If the declaration we're planning to build will be declared with
6461     // external linkage in the translation unit, create any builtin with
6462     // the same name.
6463     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6464       /* Do nothing*/;
6465     else if (CurContext->isFunctionOrMethod() &&
6466              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6467               R->isFunctionType())) {
6468       IsLinkageLookup = true;
6469       CreateBuiltins =
6470           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6471     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6472                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6473       CreateBuiltins = true;
6474 
6475     if (IsLinkageLookup) {
6476       Previous.clear(LookupRedeclarationWithLinkage);
6477       Previous.setRedeclarationKind(ForExternalRedeclaration);
6478     }
6479 
6480     LookupName(Previous, S, CreateBuiltins);
6481   } else { // Something like "int foo::x;"
6482     LookupQualifiedName(Previous, DC);
6483 
6484     // C++ [dcl.meaning]p1:
6485     //   When the declarator-id is qualified, the declaration shall refer to a
6486     //  previously declared member of the class or namespace to which the
6487     //  qualifier refers (or, in the case of a namespace, of an element of the
6488     //  inline namespace set of that namespace (7.3.1)) or to a specialization
6489     //  thereof; [...]
6490     //
6491     // Note that we already checked the context above, and that we do not have
6492     // enough information to make sure that Previous contains the declaration
6493     // we want to match. For example, given:
6494     //
6495     //   class X {
6496     //     void f();
6497     //     void f(float);
6498     //   };
6499     //
6500     //   void X::f(int) { } // ill-formed
6501     //
6502     // In this case, Previous will point to the overload set
6503     // containing the two f's declared in X, but neither of them
6504     // matches.
6505 
6506     RemoveUsingDecls(Previous);
6507   }
6508 
6509   if (Previous.isSingleResult() &&
6510       Previous.getFoundDecl()->isTemplateParameter()) {
6511     // Maybe we will complain about the shadowed template parameter.
6512     if (!D.isInvalidType())
6513       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6514                                       Previous.getFoundDecl());
6515 
6516     // Just pretend that we didn't see the previous declaration.
6517     Previous.clear();
6518   }
6519 
6520   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6521     // Forget that the previous declaration is the injected-class-name.
6522     Previous.clear();
6523 
6524   // In C++, the previous declaration we find might be a tag type
6525   // (class or enum). In this case, the new declaration will hide the
6526   // tag type. Note that this applies to functions, function templates, and
6527   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6528   if (Previous.isSingleTagDecl() &&
6529       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6530       (TemplateParamLists.size() == 0 || R->isFunctionType()))
6531     Previous.clear();
6532 
6533   // Check that there are no default arguments other than in the parameters
6534   // of a function declaration (C++ only).
6535   if (getLangOpts().CPlusPlus)
6536     CheckExtraCXXDefaultArguments(D);
6537 
6538   NamedDecl *New;
6539 
6540   bool AddToScope = true;
6541   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6542     if (TemplateParamLists.size()) {
6543       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6544       return nullptr;
6545     }
6546 
6547     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6548   } else if (R->isFunctionType()) {
6549     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6550                                   TemplateParamLists,
6551                                   AddToScope);
6552   } else {
6553     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6554                                   AddToScope);
6555   }
6556 
6557   if (!New)
6558     return nullptr;
6559 
6560   // If this has an identifier and is not a function template specialization,
6561   // add it to the scope stack.
6562   if (New->getDeclName() && AddToScope)
6563     PushOnScopeChains(New, S);
6564 
6565   if (isInOpenMPDeclareTargetContext())
6566     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6567 
6568   return New;
6569 }
6570 
6571 /// Helper method to turn variable array types into constant array
6572 /// types in certain situations which would otherwise be errors (for
6573 /// GCC compatibility).
6574 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6575                                                     ASTContext &Context,
6576                                                     bool &SizeIsNegative,
6577                                                     llvm::APSInt &Oversized) {
6578   // This method tries to turn a variable array into a constant
6579   // array even when the size isn't an ICE.  This is necessary
6580   // for compatibility with code that depends on gcc's buggy
6581   // constant expression folding, like struct {char x[(int)(char*)2];}
6582   SizeIsNegative = false;
6583   Oversized = 0;
6584 
6585   if (T->isDependentType())
6586     return QualType();
6587 
6588   QualifierCollector Qs;
6589   const Type *Ty = Qs.strip(T);
6590 
6591   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6592     QualType Pointee = PTy->getPointeeType();
6593     QualType FixedType =
6594         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6595                                             Oversized);
6596     if (FixedType.isNull()) return FixedType;
6597     FixedType = Context.getPointerType(FixedType);
6598     return Qs.apply(Context, FixedType);
6599   }
6600   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6601     QualType Inner = PTy->getInnerType();
6602     QualType FixedType =
6603         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6604                                             Oversized);
6605     if (FixedType.isNull()) return FixedType;
6606     FixedType = Context.getParenType(FixedType);
6607     return Qs.apply(Context, FixedType);
6608   }
6609 
6610   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6611   if (!VLATy)
6612     return QualType();
6613 
6614   QualType ElemTy = VLATy->getElementType();
6615   if (ElemTy->isVariablyModifiedType()) {
6616     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6617                                                  SizeIsNegative, Oversized);
6618     if (ElemTy.isNull())
6619       return QualType();
6620   }
6621 
6622   Expr::EvalResult Result;
6623   if (!VLATy->getSizeExpr() ||
6624       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6625     return QualType();
6626 
6627   llvm::APSInt Res = Result.Val.getInt();
6628 
6629   // Check whether the array size is negative.
6630   if (Res.isSigned() && Res.isNegative()) {
6631     SizeIsNegative = true;
6632     return QualType();
6633   }
6634 
6635   // Check whether the array is too large to be addressed.
6636   unsigned ActiveSizeBits =
6637       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6638        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6639           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6640           : Res.getActiveBits();
6641   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6642     Oversized = Res;
6643     return QualType();
6644   }
6645 
6646   QualType FoldedArrayType = Context.getConstantArrayType(
6647       ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0);
6648   return Qs.apply(Context, FoldedArrayType);
6649 }
6650 
6651 static void
6652 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6653   SrcTL = SrcTL.getUnqualifiedLoc();
6654   DstTL = DstTL.getUnqualifiedLoc();
6655   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6656     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6657     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6658                                       DstPTL.getPointeeLoc());
6659     DstPTL.setStarLoc(SrcPTL.getStarLoc());
6660     return;
6661   }
6662   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6663     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6664     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6665                                       DstPTL.getInnerLoc());
6666     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6667     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6668     return;
6669   }
6670   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6671   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6672   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6673   TypeLoc DstElemTL = DstATL.getElementLoc();
6674   if (VariableArrayTypeLoc SrcElemATL =
6675           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6676     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6677     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6678   } else {
6679     DstElemTL.initializeFullCopy(SrcElemTL);
6680   }
6681   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6682   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6683   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6684 }
6685 
6686 /// Helper method to turn variable array types into constant array
6687 /// types in certain situations which would otherwise be errors (for
6688 /// GCC compatibility).
6689 static TypeSourceInfo*
6690 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6691                                               ASTContext &Context,
6692                                               bool &SizeIsNegative,
6693                                               llvm::APSInt &Oversized) {
6694   QualType FixedTy
6695     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6696                                           SizeIsNegative, Oversized);
6697   if (FixedTy.isNull())
6698     return nullptr;
6699   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6700   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6701                                     FixedTInfo->getTypeLoc());
6702   return FixedTInfo;
6703 }
6704 
6705 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6706 /// true if we were successful.
6707 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6708                                            QualType &T, SourceLocation Loc,
6709                                            unsigned FailedFoldDiagID) {
6710   bool SizeIsNegative;
6711   llvm::APSInt Oversized;
6712   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6713       TInfo, Context, SizeIsNegative, Oversized);
6714   if (FixedTInfo) {
6715     Diag(Loc, diag::ext_vla_folded_to_constant);
6716     TInfo = FixedTInfo;
6717     T = FixedTInfo->getType();
6718     return true;
6719   }
6720 
6721   if (SizeIsNegative)
6722     Diag(Loc, diag::err_typecheck_negative_array_size);
6723   else if (Oversized.getBoolValue())
6724     Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6725   else if (FailedFoldDiagID)
6726     Diag(Loc, FailedFoldDiagID);
6727   return false;
6728 }
6729 
6730 /// Register the given locally-scoped extern "C" declaration so
6731 /// that it can be found later for redeclarations. We include any extern "C"
6732 /// declaration that is not visible in the translation unit here, not just
6733 /// function-scope declarations.
6734 void
6735 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6736   if (!getLangOpts().CPlusPlus &&
6737       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6738     // Don't need to track declarations in the TU in C.
6739     return;
6740 
6741   // Note that we have a locally-scoped external with this name.
6742   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6743 }
6744 
6745 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6746   // FIXME: We can have multiple results via __attribute__((overloadable)).
6747   auto Result = Context.getExternCContextDecl()->lookup(Name);
6748   return Result.empty() ? nullptr : *Result.begin();
6749 }
6750 
6751 /// Diagnose function specifiers on a declaration of an identifier that
6752 /// does not identify a function.
6753 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6754   // FIXME: We should probably indicate the identifier in question to avoid
6755   // confusion for constructs like "virtual int a(), b;"
6756   if (DS.isVirtualSpecified())
6757     Diag(DS.getVirtualSpecLoc(),
6758          diag::err_virtual_non_function);
6759 
6760   if (DS.hasExplicitSpecifier())
6761     Diag(DS.getExplicitSpecLoc(),
6762          diag::err_explicit_non_function);
6763 
6764   if (DS.isNoreturnSpecified())
6765     Diag(DS.getNoreturnSpecLoc(),
6766          diag::err_noreturn_non_function);
6767 }
6768 
6769 NamedDecl*
6770 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6771                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6772   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6773   if (D.getCXXScopeSpec().isSet()) {
6774     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6775       << D.getCXXScopeSpec().getRange();
6776     D.setInvalidType();
6777     // Pretend we didn't see the scope specifier.
6778     DC = CurContext;
6779     Previous.clear();
6780   }
6781 
6782   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6783 
6784   if (D.getDeclSpec().isInlineSpecified())
6785     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6786         << getLangOpts().CPlusPlus17;
6787   if (D.getDeclSpec().hasConstexprSpecifier())
6788     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6789         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6790 
6791   if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6792     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6793       Diag(D.getName().StartLocation,
6794            diag::err_deduction_guide_invalid_specifier)
6795           << "typedef";
6796     else
6797       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6798           << D.getName().getSourceRange();
6799     return nullptr;
6800   }
6801 
6802   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6803   if (!NewTD) return nullptr;
6804 
6805   // Handle attributes prior to checking for duplicates in MergeVarDecl
6806   ProcessDeclAttributes(S, NewTD, D);
6807 
6808   CheckTypedefForVariablyModifiedType(S, NewTD);
6809 
6810   bool Redeclaration = D.isRedeclaration();
6811   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6812   D.setRedeclaration(Redeclaration);
6813   return ND;
6814 }
6815 
6816 void
6817 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6818   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6819   // then it shall have block scope.
6820   // Note that variably modified types must be fixed before merging the decl so
6821   // that redeclarations will match.
6822   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6823   QualType T = TInfo->getType();
6824   if (T->isVariablyModifiedType()) {
6825     setFunctionHasBranchProtectedScope();
6826 
6827     if (S->getFnParent() == nullptr) {
6828       bool SizeIsNegative;
6829       llvm::APSInt Oversized;
6830       TypeSourceInfo *FixedTInfo =
6831         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6832                                                       SizeIsNegative,
6833                                                       Oversized);
6834       if (FixedTInfo) {
6835         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6836         NewTD->setTypeSourceInfo(FixedTInfo);
6837       } else {
6838         if (SizeIsNegative)
6839           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6840         else if (T->isVariableArrayType())
6841           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6842         else if (Oversized.getBoolValue())
6843           Diag(NewTD->getLocation(), diag::err_array_too_large)
6844             << toString(Oversized, 10);
6845         else
6846           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6847         NewTD->setInvalidDecl();
6848       }
6849     }
6850   }
6851 }
6852 
6853 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6854 /// declares a typedef-name, either using the 'typedef' type specifier or via
6855 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6856 NamedDecl*
6857 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6858                            LookupResult &Previous, bool &Redeclaration) {
6859 
6860   // Find the shadowed declaration before filtering for scope.
6861   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6862 
6863   // Merge the decl with the existing one if appropriate. If the decl is
6864   // in an outer scope, it isn't the same thing.
6865   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6866                        /*AllowInlineNamespace*/false);
6867   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6868   if (!Previous.empty()) {
6869     Redeclaration = true;
6870     MergeTypedefNameDecl(S, NewTD, Previous);
6871   } else {
6872     inferGslPointerAttribute(NewTD);
6873   }
6874 
6875   if (ShadowedDecl && !Redeclaration)
6876     CheckShadow(NewTD, ShadowedDecl, Previous);
6877 
6878   // If this is the C FILE type, notify the AST context.
6879   if (IdentifierInfo *II = NewTD->getIdentifier())
6880     if (!NewTD->isInvalidDecl() &&
6881         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6882       switch (II->getInterestingIdentifierID()) {
6883       case tok::InterestingIdentifierKind::FILE:
6884         Context.setFILEDecl(NewTD);
6885         break;
6886       case tok::InterestingIdentifierKind::jmp_buf:
6887         Context.setjmp_bufDecl(NewTD);
6888         break;
6889       case tok::InterestingIdentifierKind::sigjmp_buf:
6890         Context.setsigjmp_bufDecl(NewTD);
6891         break;
6892       case tok::InterestingIdentifierKind::ucontext_t:
6893         Context.setucontext_tDecl(NewTD);
6894         break;
6895       case tok::InterestingIdentifierKind::float_t:
6896       case tok::InterestingIdentifierKind::double_t:
6897         NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context));
6898         break;
6899       default:
6900         break;
6901       }
6902     }
6903 
6904   return NewTD;
6905 }
6906 
6907 /// Determines whether the given declaration is an out-of-scope
6908 /// previous declaration.
6909 ///
6910 /// This routine should be invoked when name lookup has found a
6911 /// previous declaration (PrevDecl) that is not in the scope where a
6912 /// new declaration by the same name is being introduced. If the new
6913 /// declaration occurs in a local scope, previous declarations with
6914 /// linkage may still be considered previous declarations (C99
6915 /// 6.2.2p4-5, C++ [basic.link]p6).
6916 ///
6917 /// \param PrevDecl the previous declaration found by name
6918 /// lookup
6919 ///
6920 /// \param DC the context in which the new declaration is being
6921 /// declared.
6922 ///
6923 /// \returns true if PrevDecl is an out-of-scope previous declaration
6924 /// for a new delcaration with the same name.
6925 static bool
6926 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6927                                 ASTContext &Context) {
6928   if (!PrevDecl)
6929     return false;
6930 
6931   if (!PrevDecl->hasLinkage())
6932     return false;
6933 
6934   if (Context.getLangOpts().CPlusPlus) {
6935     // C++ [basic.link]p6:
6936     //   If there is a visible declaration of an entity with linkage
6937     //   having the same name and type, ignoring entities declared
6938     //   outside the innermost enclosing namespace scope, the block
6939     //   scope declaration declares that same entity and receives the
6940     //   linkage of the previous declaration.
6941     DeclContext *OuterContext = DC->getRedeclContext();
6942     if (!OuterContext->isFunctionOrMethod())
6943       // This rule only applies to block-scope declarations.
6944       return false;
6945 
6946     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6947     if (PrevOuterContext->isRecord())
6948       // We found a member function: ignore it.
6949       return false;
6950 
6951     // Find the innermost enclosing namespace for the new and
6952     // previous declarations.
6953     OuterContext = OuterContext->getEnclosingNamespaceContext();
6954     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6955 
6956     // The previous declaration is in a different namespace, so it
6957     // isn't the same function.
6958     if (!OuterContext->Equals(PrevOuterContext))
6959       return false;
6960   }
6961 
6962   return true;
6963 }
6964 
6965 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6966   CXXScopeSpec &SS = D.getCXXScopeSpec();
6967   if (!SS.isSet()) return;
6968   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6969 }
6970 
6971 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6972   QualType type = decl->getType();
6973   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6974   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6975     // Various kinds of declaration aren't allowed to be __autoreleasing.
6976     unsigned kind = -1U;
6977     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6978       if (var->hasAttr<BlocksAttr>())
6979         kind = 0; // __block
6980       else if (!var->hasLocalStorage())
6981         kind = 1; // global
6982     } else if (isa<ObjCIvarDecl>(decl)) {
6983       kind = 3; // ivar
6984     } else if (isa<FieldDecl>(decl)) {
6985       kind = 2; // field
6986     }
6987 
6988     if (kind != -1U) {
6989       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6990         << kind;
6991     }
6992   } else if (lifetime == Qualifiers::OCL_None) {
6993     // Try to infer lifetime.
6994     if (!type->isObjCLifetimeType())
6995       return false;
6996 
6997     lifetime = type->getObjCARCImplicitLifetime();
6998     type = Context.getLifetimeQualifiedType(type, lifetime);
6999     decl->setType(type);
7000   }
7001 
7002   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
7003     // Thread-local variables cannot have lifetime.
7004     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
7005         var->getTLSKind()) {
7006       Diag(var->getLocation(), diag::err_arc_thread_ownership)
7007         << var->getType();
7008       return true;
7009     }
7010   }
7011 
7012   return false;
7013 }
7014 
7015 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
7016   if (Decl->getType().hasAddressSpace())
7017     return;
7018   if (Decl->getType()->isDependentType())
7019     return;
7020   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
7021     QualType Type = Var->getType();
7022     if (Type->isSamplerT() || Type->isVoidType())
7023       return;
7024     LangAS ImplAS = LangAS::opencl_private;
7025     // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
7026     // __opencl_c_program_scope_global_variables feature, the address space
7027     // for a variable at program scope or a static or extern variable inside
7028     // a function are inferred to be __global.
7029     if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
7030         Var->hasGlobalStorage())
7031       ImplAS = LangAS::opencl_global;
7032     // If the original type from a decayed type is an array type and that array
7033     // type has no address space yet, deduce it now.
7034     if (auto DT = dyn_cast<DecayedType>(Type)) {
7035       auto OrigTy = DT->getOriginalType();
7036       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
7037         // Add the address space to the original array type and then propagate
7038         // that to the element type through `getAsArrayType`.
7039         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
7040         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
7041         // Re-generate the decayed type.
7042         Type = Context.getDecayedType(OrigTy);
7043       }
7044     }
7045     Type = Context.getAddrSpaceQualType(Type, ImplAS);
7046     // Apply any qualifiers (including address space) from the array type to
7047     // the element type. This implements C99 6.7.3p8: "If the specification of
7048     // an array type includes any type qualifiers, the element type is so
7049     // qualified, not the array type."
7050     if (Type->isArrayType())
7051       Type = QualType(Context.getAsArrayType(Type), 0);
7052     Decl->setType(Type);
7053   }
7054 }
7055 
7056 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
7057   // Ensure that an auto decl is deduced otherwise the checks below might cache
7058   // the wrong linkage.
7059   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
7060 
7061   // 'weak' only applies to declarations with external linkage.
7062   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
7063     if (!ND.isExternallyVisible()) {
7064       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
7065       ND.dropAttr<WeakAttr>();
7066     }
7067   }
7068   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
7069     if (ND.isExternallyVisible()) {
7070       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
7071       ND.dropAttrs<WeakRefAttr, AliasAttr>();
7072     }
7073   }
7074 
7075   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
7076     if (VD->hasInit()) {
7077       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
7078         assert(VD->isThisDeclarationADefinition() &&
7079                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
7080         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
7081         VD->dropAttr<AliasAttr>();
7082       }
7083     }
7084   }
7085 
7086   // 'selectany' only applies to externally visible variable declarations.
7087   // It does not apply to functions.
7088   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
7089     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
7090       S.Diag(Attr->getLocation(),
7091              diag::err_attribute_selectany_non_extern_data);
7092       ND.dropAttr<SelectAnyAttr>();
7093     }
7094   }
7095 
7096   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
7097     auto *VD = dyn_cast<VarDecl>(&ND);
7098     bool IsAnonymousNS = false;
7099     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
7100     if (VD) {
7101       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
7102       while (NS && !IsAnonymousNS) {
7103         IsAnonymousNS = NS->isAnonymousNamespace();
7104         NS = dyn_cast<NamespaceDecl>(NS->getParent());
7105       }
7106     }
7107     // dll attributes require external linkage. Static locals may have external
7108     // linkage but still cannot be explicitly imported or exported.
7109     // In Microsoft mode, a variable defined in anonymous namespace must have
7110     // external linkage in order to be exported.
7111     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
7112     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
7113         (!AnonNSInMicrosoftMode &&
7114          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
7115       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
7116         << &ND << Attr;
7117       ND.setInvalidDecl();
7118     }
7119   }
7120 
7121   // Check the attributes on the function type, if any.
7122   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
7123     // Don't declare this variable in the second operand of the for-statement;
7124     // GCC miscompiles that by ending its lifetime before evaluating the
7125     // third operand. See gcc.gnu.org/PR86769.
7126     AttributedTypeLoc ATL;
7127     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
7128          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7129          TL = ATL.getModifiedLoc()) {
7130       // The [[lifetimebound]] attribute can be applied to the implicit object
7131       // parameter of a non-static member function (other than a ctor or dtor)
7132       // by applying it to the function type.
7133       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
7134         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
7135         if (!MD || MD->isStatic()) {
7136           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
7137               << !MD << A->getRange();
7138         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
7139           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
7140               << isa<CXXDestructorDecl>(MD) << A->getRange();
7141         }
7142       }
7143     }
7144   }
7145 }
7146 
7147 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
7148                                            NamedDecl *NewDecl,
7149                                            bool IsSpecialization,
7150                                            bool IsDefinition) {
7151   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
7152     return;
7153 
7154   bool IsTemplate = false;
7155   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
7156     OldDecl = OldTD->getTemplatedDecl();
7157     IsTemplate = true;
7158     if (!IsSpecialization)
7159       IsDefinition = false;
7160   }
7161   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
7162     NewDecl = NewTD->getTemplatedDecl();
7163     IsTemplate = true;
7164   }
7165 
7166   if (!OldDecl || !NewDecl)
7167     return;
7168 
7169   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
7170   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
7171   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
7172   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
7173 
7174   // dllimport and dllexport are inheritable attributes so we have to exclude
7175   // inherited attribute instances.
7176   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
7177                     (NewExportAttr && !NewExportAttr->isInherited());
7178 
7179   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7180   // the only exception being explicit specializations.
7181   // Implicitly generated declarations are also excluded for now because there
7182   // is no other way to switch these to use dllimport or dllexport.
7183   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
7184 
7185   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
7186     // Allow with a warning for free functions and global variables.
7187     bool JustWarn = false;
7188     if (!OldDecl->isCXXClassMember()) {
7189       auto *VD = dyn_cast<VarDecl>(OldDecl);
7190       if (VD && !VD->getDescribedVarTemplate())
7191         JustWarn = true;
7192       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
7193       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
7194         JustWarn = true;
7195     }
7196 
7197     // We cannot change a declaration that's been used because IR has already
7198     // been emitted. Dllimported functions will still work though (modulo
7199     // address equality) as they can use the thunk.
7200     if (OldDecl->isUsed())
7201       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
7202         JustWarn = false;
7203 
7204     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
7205                                : diag::err_attribute_dll_redeclaration;
7206     S.Diag(NewDecl->getLocation(), DiagID)
7207         << NewDecl
7208         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
7209     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7210     if (!JustWarn) {
7211       NewDecl->setInvalidDecl();
7212       return;
7213     }
7214   }
7215 
7216   // A redeclaration is not allowed to drop a dllimport attribute, the only
7217   // exceptions being inline function definitions (except for function
7218   // templates), local extern declarations, qualified friend declarations or
7219   // special MSVC extension: in the last case, the declaration is treated as if
7220   // it were marked dllexport.
7221   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7222   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7223   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7224     // Ignore static data because out-of-line definitions are diagnosed
7225     // separately.
7226     IsStaticDataMember = VD->isStaticDataMember();
7227     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7228                    VarDecl::DeclarationOnly;
7229   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7230     IsInline = FD->isInlined();
7231     IsQualifiedFriend = FD->getQualifier() &&
7232                         FD->getFriendObjectKind() == Decl::FOK_Declared;
7233   }
7234 
7235   if (OldImportAttr && !HasNewAttr &&
7236       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7237       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7238     if (IsMicrosoftABI && IsDefinition) {
7239       if (IsSpecialization) {
7240         S.Diag(
7241             NewDecl->getLocation(),
7242             diag::err_attribute_dllimport_function_specialization_definition);
7243         S.Diag(OldImportAttr->getLocation(), diag::note_attribute);
7244         NewDecl->dropAttr<DLLImportAttr>();
7245       } else {
7246         S.Diag(NewDecl->getLocation(),
7247                diag::warn_redeclaration_without_import_attribute)
7248             << NewDecl;
7249         S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7250         NewDecl->dropAttr<DLLImportAttr>();
7251         NewDecl->addAttr(DLLExportAttr::CreateImplicit(
7252             S.Context, NewImportAttr->getRange()));
7253       }
7254     } else if (IsMicrosoftABI && IsSpecialization) {
7255       assert(!IsDefinition);
7256       // MSVC allows this. Keep the inherited attribute.
7257     } else {
7258       S.Diag(NewDecl->getLocation(),
7259              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7260           << NewDecl << OldImportAttr;
7261       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7262       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7263       OldDecl->dropAttr<DLLImportAttr>();
7264       NewDecl->dropAttr<DLLImportAttr>();
7265     }
7266   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7267     // In MinGW, seeing a function declared inline drops the dllimport
7268     // attribute.
7269     OldDecl->dropAttr<DLLImportAttr>();
7270     NewDecl->dropAttr<DLLImportAttr>();
7271     S.Diag(NewDecl->getLocation(),
7272            diag::warn_dllimport_dropped_from_inline_function)
7273         << NewDecl << OldImportAttr;
7274   }
7275 
7276   // A specialization of a class template member function is processed here
7277   // since it's a redeclaration. If the parent class is dllexport, the
7278   // specialization inherits that attribute. This doesn't happen automatically
7279   // since the parent class isn't instantiated until later.
7280   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7281     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7282         !NewImportAttr && !NewExportAttr) {
7283       if (const DLLExportAttr *ParentExportAttr =
7284               MD->getParent()->getAttr<DLLExportAttr>()) {
7285         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7286         NewAttr->setInherited(true);
7287         NewDecl->addAttr(NewAttr);
7288       }
7289     }
7290   }
7291 }
7292 
7293 /// Given that we are within the definition of the given function,
7294 /// will that definition behave like C99's 'inline', where the
7295 /// definition is discarded except for optimization purposes?
7296 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7297   // Try to avoid calling GetGVALinkageForFunction.
7298 
7299   // All cases of this require the 'inline' keyword.
7300   if (!FD->isInlined()) return false;
7301 
7302   // This is only possible in C++ with the gnu_inline attribute.
7303   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7304     return false;
7305 
7306   // Okay, go ahead and call the relatively-more-expensive function.
7307   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7308 }
7309 
7310 /// Determine whether a variable is extern "C" prior to attaching
7311 /// an initializer. We can't just call isExternC() here, because that
7312 /// will also compute and cache whether the declaration is externally
7313 /// visible, which might change when we attach the initializer.
7314 ///
7315 /// This can only be used if the declaration is known to not be a
7316 /// redeclaration of an internal linkage declaration.
7317 ///
7318 /// For instance:
7319 ///
7320 ///   auto x = []{};
7321 ///
7322 /// Attaching the initializer here makes this declaration not externally
7323 /// visible, because its type has internal linkage.
7324 ///
7325 /// FIXME: This is a hack.
7326 template<typename T>
7327 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7328   if (S.getLangOpts().CPlusPlus) {
7329     // In C++, the overloadable attribute negates the effects of extern "C".
7330     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7331       return false;
7332 
7333     // So do CUDA's host/device attributes.
7334     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7335                                  D->template hasAttr<CUDAHostAttr>()))
7336       return false;
7337   }
7338   return D->isExternC();
7339 }
7340 
7341 static bool shouldConsiderLinkage(const VarDecl *VD) {
7342   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7343   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7344       isa<OMPDeclareMapperDecl>(DC))
7345     return VD->hasExternalStorage();
7346   if (DC->isFileContext())
7347     return true;
7348   if (DC->isRecord())
7349     return false;
7350   if (DC->getDeclKind() == Decl::HLSLBuffer)
7351     return false;
7352 
7353   if (isa<RequiresExprBodyDecl>(DC))
7354     return false;
7355   llvm_unreachable("Unexpected context");
7356 }
7357 
7358 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7359   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7360   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7361       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7362     return true;
7363   if (DC->isRecord())
7364     return false;
7365   llvm_unreachable("Unexpected context");
7366 }
7367 
7368 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7369                           ParsedAttr::Kind Kind) {
7370   // Check decl attributes on the DeclSpec.
7371   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7372     return true;
7373 
7374   // Walk the declarator structure, checking decl attributes that were in a type
7375   // position to the decl itself.
7376   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7377     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7378       return true;
7379   }
7380 
7381   // Finally, check attributes on the decl itself.
7382   return PD.getAttributes().hasAttribute(Kind) ||
7383          PD.getDeclarationAttributes().hasAttribute(Kind);
7384 }
7385 
7386 /// Adjust the \c DeclContext for a function or variable that might be a
7387 /// function-local external declaration.
7388 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7389   if (!DC->isFunctionOrMethod())
7390     return false;
7391 
7392   // If this is a local extern function or variable declared within a function
7393   // template, don't add it into the enclosing namespace scope until it is
7394   // instantiated; it might have a dependent type right now.
7395   if (DC->isDependentContext())
7396     return true;
7397 
7398   // C++11 [basic.link]p7:
7399   //   When a block scope declaration of an entity with linkage is not found to
7400   //   refer to some other declaration, then that entity is a member of the
7401   //   innermost enclosing namespace.
7402   //
7403   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7404   // semantically-enclosing namespace, not a lexically-enclosing one.
7405   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7406     DC = DC->getParent();
7407   return true;
7408 }
7409 
7410 /// Returns true if given declaration has external C language linkage.
7411 static bool isDeclExternC(const Decl *D) {
7412   if (const auto *FD = dyn_cast<FunctionDecl>(D))
7413     return FD->isExternC();
7414   if (const auto *VD = dyn_cast<VarDecl>(D))
7415     return VD->isExternC();
7416 
7417   llvm_unreachable("Unknown type of decl!");
7418 }
7419 
7420 /// Returns true if there hasn't been any invalid type diagnosed.
7421 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7422   DeclContext *DC = NewVD->getDeclContext();
7423   QualType R = NewVD->getType();
7424 
7425   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7426   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7427   // argument.
7428   if (R->isImageType() || R->isPipeType()) {
7429     Se.Diag(NewVD->getLocation(),
7430             diag::err_opencl_type_can_only_be_used_as_function_parameter)
7431         << R;
7432     NewVD->setInvalidDecl();
7433     return false;
7434   }
7435 
7436   // OpenCL v1.2 s6.9.r:
7437   // The event type cannot be used to declare a program scope variable.
7438   // OpenCL v2.0 s6.9.q:
7439   // The clk_event_t and reserve_id_t types cannot be declared in program
7440   // scope.
7441   if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7442     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7443       Se.Diag(NewVD->getLocation(),
7444               diag::err_invalid_type_for_program_scope_var)
7445           << R;
7446       NewVD->setInvalidDecl();
7447       return false;
7448     }
7449   }
7450 
7451   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7452   if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7453                                                Se.getLangOpts())) {
7454     QualType NR = R.getCanonicalType();
7455     while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7456            NR->isReferenceType()) {
7457       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7458           NR->isFunctionReferenceType()) {
7459         Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7460             << NR->isReferenceType();
7461         NewVD->setInvalidDecl();
7462         return false;
7463       }
7464       NR = NR->getPointeeType();
7465     }
7466   }
7467 
7468   if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7469                                                Se.getLangOpts())) {
7470     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7471     // half array type (unless the cl_khr_fp16 extension is enabled).
7472     if (Se.Context.getBaseElementType(R)->isHalfType()) {
7473       Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7474       NewVD->setInvalidDecl();
7475       return false;
7476     }
7477   }
7478 
7479   // OpenCL v1.2 s6.9.r:
7480   // The event type cannot be used with the __local, __constant and __global
7481   // address space qualifiers.
7482   if (R->isEventT()) {
7483     if (R.getAddressSpace() != LangAS::opencl_private) {
7484       Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7485       NewVD->setInvalidDecl();
7486       return false;
7487     }
7488   }
7489 
7490   if (R->isSamplerT()) {
7491     // OpenCL v1.2 s6.9.b p4:
7492     // The sampler type cannot be used with the __local and __global address
7493     // space qualifiers.
7494     if (R.getAddressSpace() == LangAS::opencl_local ||
7495         R.getAddressSpace() == LangAS::opencl_global) {
7496       Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7497       NewVD->setInvalidDecl();
7498     }
7499 
7500     // OpenCL v1.2 s6.12.14.1:
7501     // A global sampler must be declared with either the constant address
7502     // space qualifier or with the const qualifier.
7503     if (DC->isTranslationUnit() &&
7504         !(R.getAddressSpace() == LangAS::opencl_constant ||
7505           R.isConstQualified())) {
7506       Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7507       NewVD->setInvalidDecl();
7508     }
7509     if (NewVD->isInvalidDecl())
7510       return false;
7511   }
7512 
7513   return true;
7514 }
7515 
7516 template <typename AttrTy>
7517 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7518   const TypedefNameDecl *TND = TT->getDecl();
7519   if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7520     AttrTy *Clone = Attribute->clone(S.Context);
7521     Clone->setInherited(true);
7522     D->addAttr(Clone);
7523   }
7524 }
7525 
7526 // This function emits warning and a corresponding note based on the
7527 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7528 // declarations of an annotated type must be const qualified.
7529 void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) {
7530   QualType VarType = VD->getType().getCanonicalType();
7531 
7532   // Ignore local declarations (for now) and those with const qualification.
7533   // TODO: Local variables should not be allowed if their type declaration has
7534   // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7535   if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified())
7536     return;
7537 
7538   if (VarType->isArrayType()) {
7539     // Retrieve element type for array declarations.
7540     VarType = S.getASTContext().getBaseElementType(VarType);
7541   }
7542 
7543   const RecordDecl *RD = VarType->getAsRecordDecl();
7544 
7545   // Check if the record declaration is present and if it has any attributes.
7546   if (RD == nullptr)
7547     return;
7548 
7549   if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) {
7550     S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD;
7551     S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement);
7552     return;
7553   }
7554 }
7555 
7556 NamedDecl *Sema::ActOnVariableDeclarator(
7557     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7558     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7559     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7560   QualType R = TInfo->getType();
7561   DeclarationName Name = GetNameForDeclarator(D).getName();
7562 
7563   IdentifierInfo *II = Name.getAsIdentifierInfo();
7564   bool IsPlaceholderVariable = false;
7565 
7566   if (D.isDecompositionDeclarator()) {
7567     // Take the name of the first declarator as our name for diagnostic
7568     // purposes.
7569     auto &Decomp = D.getDecompositionDeclarator();
7570     if (!Decomp.bindings().empty()) {
7571       II = Decomp.bindings()[0].Name;
7572       Name = II;
7573     }
7574   } else if (!II) {
7575     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7576     return nullptr;
7577   }
7578 
7579 
7580   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7581   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7582 
7583   if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) &&
7584       SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) {
7585     IsPlaceholderVariable = true;
7586     if (!Previous.empty()) {
7587       NamedDecl *PrevDecl = *Previous.begin();
7588       bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals(
7589           DC->getRedeclContext());
7590       if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false))
7591         DiagPlaceholderVariableDefinition(D.getIdentifierLoc());
7592     }
7593   }
7594 
7595   // dllimport globals without explicit storage class are treated as extern. We
7596   // have to change the storage class this early to get the right DeclContext.
7597   if (SC == SC_None && !DC->isRecord() &&
7598       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7599       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7600     SC = SC_Extern;
7601 
7602   DeclContext *OriginalDC = DC;
7603   bool IsLocalExternDecl = SC == SC_Extern &&
7604                            adjustContextForLocalExternDecl(DC);
7605 
7606   if (SCSpec == DeclSpec::SCS_mutable) {
7607     // mutable can only appear on non-static class members, so it's always
7608     // an error here
7609     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7610     D.setInvalidType();
7611     SC = SC_None;
7612   }
7613 
7614   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7615       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7616                               D.getDeclSpec().getStorageClassSpecLoc())) {
7617     // In C++11, the 'register' storage class specifier is deprecated.
7618     // Suppress the warning in system macros, it's used in macros in some
7619     // popular C system headers, such as in glibc's htonl() macro.
7620     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7621          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7622                                    : diag::warn_deprecated_register)
7623       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7624   }
7625 
7626   DiagnoseFunctionSpecifiers(D.getDeclSpec());
7627 
7628   if (!DC->isRecord() && S->getFnParent() == nullptr) {
7629     // C99 6.9p2: The storage-class specifiers auto and register shall not
7630     // appear in the declaration specifiers in an external declaration.
7631     // Global Register+Asm is a GNU extension we support.
7632     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7633       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7634       D.setInvalidType();
7635     }
7636   }
7637 
7638   // If this variable has a VLA type and an initializer, try to
7639   // fold to a constant-sized type. This is otherwise invalid.
7640   if (D.hasInitializer() && R->isVariableArrayType())
7641     tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7642                                     /*DiagID=*/0);
7643 
7644   bool IsMemberSpecialization = false;
7645   bool IsVariableTemplateSpecialization = false;
7646   bool IsPartialSpecialization = false;
7647   bool IsVariableTemplate = false;
7648   VarDecl *NewVD = nullptr;
7649   VarTemplateDecl *NewTemplate = nullptr;
7650   TemplateParameterList *TemplateParams = nullptr;
7651   if (!getLangOpts().CPlusPlus) {
7652     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7653                             II, R, TInfo, SC);
7654 
7655     if (R->getContainedDeducedType())
7656       ParsingInitForAutoVars.insert(NewVD);
7657 
7658     if (D.isInvalidType())
7659       NewVD->setInvalidDecl();
7660 
7661     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7662         NewVD->hasLocalStorage())
7663       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7664                             NTCUC_AutoVar, NTCUK_Destruct);
7665   } else {
7666     bool Invalid = false;
7667 
7668     if (DC->isRecord() && !CurContext->isRecord()) {
7669       // This is an out-of-line definition of a static data member.
7670       switch (SC) {
7671       case SC_None:
7672         break;
7673       case SC_Static:
7674         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7675              diag::err_static_out_of_line)
7676           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7677         break;
7678       case SC_Auto:
7679       case SC_Register:
7680       case SC_Extern:
7681         // [dcl.stc] p2: The auto or register specifiers shall be applied only
7682         // to names of variables declared in a block or to function parameters.
7683         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7684         // of class members
7685 
7686         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7687              diag::err_storage_class_for_static_member)
7688           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7689         break;
7690       case SC_PrivateExtern:
7691         llvm_unreachable("C storage class in c++!");
7692       }
7693     }
7694 
7695     if (SC == SC_Static && CurContext->isRecord()) {
7696       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7697         // Walk up the enclosing DeclContexts to check for any that are
7698         // incompatible with static data members.
7699         const DeclContext *FunctionOrMethod = nullptr;
7700         const CXXRecordDecl *AnonStruct = nullptr;
7701         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7702           if (Ctxt->isFunctionOrMethod()) {
7703             FunctionOrMethod = Ctxt;
7704             break;
7705           }
7706           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7707           if (ParentDecl && !ParentDecl->getDeclName()) {
7708             AnonStruct = ParentDecl;
7709             break;
7710           }
7711         }
7712         if (FunctionOrMethod) {
7713           // C++ [class.static.data]p5: A local class shall not have static data
7714           // members.
7715           Diag(D.getIdentifierLoc(),
7716                diag::err_static_data_member_not_allowed_in_local_class)
7717               << Name << RD->getDeclName()
7718               << llvm::to_underlying(RD->getTagKind());
7719         } else if (AnonStruct) {
7720           // C++ [class.static.data]p4: Unnamed classes and classes contained
7721           // directly or indirectly within unnamed classes shall not contain
7722           // static data members.
7723           Diag(D.getIdentifierLoc(),
7724                diag::err_static_data_member_not_allowed_in_anon_struct)
7725               << Name << llvm::to_underlying(AnonStruct->getTagKind());
7726           Invalid = true;
7727         } else if (RD->isUnion()) {
7728           // C++98 [class.union]p1: If a union contains a static data member,
7729           // the program is ill-formed. C++11 drops this restriction.
7730           Diag(D.getIdentifierLoc(),
7731                getLangOpts().CPlusPlus11
7732                  ? diag::warn_cxx98_compat_static_data_member_in_union
7733                  : diag::ext_static_data_member_in_union) << Name;
7734         }
7735       }
7736     }
7737 
7738     // Match up the template parameter lists with the scope specifier, then
7739     // determine whether we have a template or a template specialization.
7740     bool InvalidScope = false;
7741     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7742         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7743         D.getCXXScopeSpec(),
7744         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7745             ? D.getName().TemplateId
7746             : nullptr,
7747         TemplateParamLists,
7748         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7749     Invalid |= InvalidScope;
7750 
7751     if (TemplateParams) {
7752       if (!TemplateParams->size() &&
7753           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7754         // There is an extraneous 'template<>' for this variable. Complain
7755         // about it, but allow the declaration of the variable.
7756         Diag(TemplateParams->getTemplateLoc(),
7757              diag::err_template_variable_noparams)
7758           << II
7759           << SourceRange(TemplateParams->getTemplateLoc(),
7760                          TemplateParams->getRAngleLoc());
7761         TemplateParams = nullptr;
7762       } else {
7763         // Check that we can declare a template here.
7764         if (CheckTemplateDeclScope(S, TemplateParams))
7765           return nullptr;
7766 
7767         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7768           // This is an explicit specialization or a partial specialization.
7769           IsVariableTemplateSpecialization = true;
7770           IsPartialSpecialization = TemplateParams->size() > 0;
7771         } else { // if (TemplateParams->size() > 0)
7772           // This is a template declaration.
7773           IsVariableTemplate = true;
7774 
7775           // Only C++1y supports variable templates (N3651).
7776           Diag(D.getIdentifierLoc(),
7777                getLangOpts().CPlusPlus14
7778                    ? diag::warn_cxx11_compat_variable_template
7779                    : diag::ext_variable_template);
7780         }
7781       }
7782     } else {
7783       // Check that we can declare a member specialization here.
7784       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7785           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7786         return nullptr;
7787       assert((Invalid ||
7788               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7789              "should have a 'template<>' for this decl");
7790     }
7791 
7792     if (IsVariableTemplateSpecialization) {
7793       SourceLocation TemplateKWLoc =
7794           TemplateParamLists.size() > 0
7795               ? TemplateParamLists[0]->getTemplateLoc()
7796               : SourceLocation();
7797       DeclResult Res = ActOnVarTemplateSpecialization(
7798           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7799           IsPartialSpecialization);
7800       if (Res.isInvalid())
7801         return nullptr;
7802       NewVD = cast<VarDecl>(Res.get());
7803       AddToScope = false;
7804     } else if (D.isDecompositionDeclarator()) {
7805       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7806                                         D.getIdentifierLoc(), R, TInfo, SC,
7807                                         Bindings);
7808     } else
7809       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7810                               D.getIdentifierLoc(), II, R, TInfo, SC);
7811 
7812     // If this is supposed to be a variable template, create it as such.
7813     if (IsVariableTemplate) {
7814       NewTemplate =
7815           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7816                                   TemplateParams, NewVD);
7817       NewVD->setDescribedVarTemplate(NewTemplate);
7818     }
7819 
7820     // If this decl has an auto type in need of deduction, make a note of the
7821     // Decl so we can diagnose uses of it in its own initializer.
7822     if (R->getContainedDeducedType())
7823       ParsingInitForAutoVars.insert(NewVD);
7824 
7825     if (D.isInvalidType() || Invalid) {
7826       NewVD->setInvalidDecl();
7827       if (NewTemplate)
7828         NewTemplate->setInvalidDecl();
7829     }
7830 
7831     SetNestedNameSpecifier(*this, NewVD, D);
7832 
7833     // If we have any template parameter lists that don't directly belong to
7834     // the variable (matching the scope specifier), store them.
7835     // An explicit variable template specialization does not own any template
7836     // parameter lists.
7837     bool IsExplicitSpecialization =
7838         IsVariableTemplateSpecialization && !IsPartialSpecialization;
7839     unsigned VDTemplateParamLists =
7840         (TemplateParams && !IsExplicitSpecialization) ? 1 : 0;
7841     if (TemplateParamLists.size() > VDTemplateParamLists)
7842       NewVD->setTemplateParameterListsInfo(
7843           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7844   }
7845 
7846   if (D.getDeclSpec().isInlineSpecified()) {
7847     if (!getLangOpts().CPlusPlus) {
7848       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7849           << 0;
7850     } else if (CurContext->isFunctionOrMethod()) {
7851       // 'inline' is not allowed on block scope variable declaration.
7852       Diag(D.getDeclSpec().getInlineSpecLoc(),
7853            diag::err_inline_declaration_block_scope) << Name
7854         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7855     } else {
7856       Diag(D.getDeclSpec().getInlineSpecLoc(),
7857            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7858                                      : diag::ext_inline_variable);
7859       NewVD->setInlineSpecified();
7860     }
7861   }
7862 
7863   // Set the lexical context. If the declarator has a C++ scope specifier, the
7864   // lexical context will be different from the semantic context.
7865   NewVD->setLexicalDeclContext(CurContext);
7866   if (NewTemplate)
7867     NewTemplate->setLexicalDeclContext(CurContext);
7868 
7869   if (IsLocalExternDecl) {
7870     if (D.isDecompositionDeclarator())
7871       for (auto *B : Bindings)
7872         B->setLocalExternDecl();
7873     else
7874       NewVD->setLocalExternDecl();
7875   }
7876 
7877   bool EmitTLSUnsupportedError = false;
7878   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7879     // C++11 [dcl.stc]p4:
7880     //   When thread_local is applied to a variable of block scope the
7881     //   storage-class-specifier static is implied if it does not appear
7882     //   explicitly.
7883     // Core issue: 'static' is not implied if the variable is declared
7884     //   'extern'.
7885     if (NewVD->hasLocalStorage() &&
7886         (SCSpec != DeclSpec::SCS_unspecified ||
7887          TSCS != DeclSpec::TSCS_thread_local ||
7888          !DC->isFunctionOrMethod()))
7889       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7890            diag::err_thread_non_global)
7891         << DeclSpec::getSpecifierName(TSCS);
7892     else if (!Context.getTargetInfo().isTLSSupported()) {
7893       if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7894           getLangOpts().SYCLIsDevice) {
7895         // Postpone error emission until we've collected attributes required to
7896         // figure out whether it's a host or device variable and whether the
7897         // error should be ignored.
7898         EmitTLSUnsupportedError = true;
7899         // We still need to mark the variable as TLS so it shows up in AST with
7900         // proper storage class for other tools to use even if we're not going
7901         // to emit any code for it.
7902         NewVD->setTSCSpec(TSCS);
7903       } else
7904         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7905              diag::err_thread_unsupported);
7906     } else
7907       NewVD->setTSCSpec(TSCS);
7908   }
7909 
7910   switch (D.getDeclSpec().getConstexprSpecifier()) {
7911   case ConstexprSpecKind::Unspecified:
7912     break;
7913 
7914   case ConstexprSpecKind::Consteval:
7915     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7916          diag::err_constexpr_wrong_decl_kind)
7917         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7918     [[fallthrough]];
7919 
7920   case ConstexprSpecKind::Constexpr:
7921     NewVD->setConstexpr(true);
7922     // C++1z [dcl.spec.constexpr]p1:
7923     //   A static data member declared with the constexpr specifier is
7924     //   implicitly an inline variable.
7925     if (NewVD->isStaticDataMember() &&
7926         (getLangOpts().CPlusPlus17 ||
7927          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7928       NewVD->setImplicitlyInline();
7929     break;
7930 
7931   case ConstexprSpecKind::Constinit:
7932     if (!NewVD->hasGlobalStorage())
7933       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7934            diag::err_constinit_local_variable);
7935     else
7936       NewVD->addAttr(
7937           ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(),
7938                                 ConstInitAttr::Keyword_constinit));
7939     break;
7940   }
7941 
7942   // C99 6.7.4p3
7943   //   An inline definition of a function with external linkage shall
7944   //   not contain a definition of a modifiable object with static or
7945   //   thread storage duration...
7946   // We only apply this when the function is required to be defined
7947   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7948   // that a local variable with thread storage duration still has to
7949   // be marked 'static'.  Also note that it's possible to get these
7950   // semantics in C++ using __attribute__((gnu_inline)).
7951   if (SC == SC_Static && S->getFnParent() != nullptr &&
7952       !NewVD->getType().isConstQualified()) {
7953     FunctionDecl *CurFD = getCurFunctionDecl();
7954     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7955       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7956            diag::warn_static_local_in_extern_inline);
7957       MaybeSuggestAddingStaticToDecl(CurFD);
7958     }
7959   }
7960 
7961   if (D.getDeclSpec().isModulePrivateSpecified()) {
7962     if (IsVariableTemplateSpecialization)
7963       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7964           << (IsPartialSpecialization ? 1 : 0)
7965           << FixItHint::CreateRemoval(
7966                  D.getDeclSpec().getModulePrivateSpecLoc());
7967     else if (IsMemberSpecialization)
7968       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7969         << 2
7970         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7971     else if (NewVD->hasLocalStorage())
7972       Diag(NewVD->getLocation(), diag::err_module_private_local)
7973           << 0 << NewVD
7974           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7975           << FixItHint::CreateRemoval(
7976                  D.getDeclSpec().getModulePrivateSpecLoc());
7977     else {
7978       NewVD->setModulePrivate();
7979       if (NewTemplate)
7980         NewTemplate->setModulePrivate();
7981       for (auto *B : Bindings)
7982         B->setModulePrivate();
7983     }
7984   }
7985 
7986   if (getLangOpts().OpenCL) {
7987     deduceOpenCLAddressSpace(NewVD);
7988 
7989     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7990     if (TSC != TSCS_unspecified) {
7991       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7992            diag::err_opencl_unknown_type_specifier)
7993           << getLangOpts().getOpenCLVersionString()
7994           << DeclSpec::getSpecifierName(TSC) << 1;
7995       NewVD->setInvalidDecl();
7996     }
7997   }
7998 
7999   // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
8000   // address space if the table has local storage (semantic checks elsewhere
8001   // will produce an error anyway).
8002   if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) {
8003     if (ATy && ATy->getElementType().isWebAssemblyReferenceType() &&
8004         !NewVD->hasLocalStorage()) {
8005       QualType Type = Context.getAddrSpaceQualType(
8006           NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1));
8007       NewVD->setType(Type);
8008     }
8009   }
8010 
8011   // Handle attributes prior to checking for duplicates in MergeVarDecl
8012   ProcessDeclAttributes(S, NewVD, D);
8013 
8014   // FIXME: This is probably the wrong location to be doing this and we should
8015   // probably be doing this for more attributes (especially for function
8016   // pointer attributes such as format, warn_unused_result, etc.). Ideally
8017   // the code to copy attributes would be generated by TableGen.
8018   if (R->isFunctionPointerType())
8019     if (const auto *TT = R->getAs<TypedefType>())
8020       copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
8021 
8022   if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
8023       getLangOpts().SYCLIsDevice) {
8024     if (EmitTLSUnsupportedError &&
8025         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
8026          (getLangOpts().OpenMPIsTargetDevice &&
8027           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
8028       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8029            diag::err_thread_unsupported);
8030 
8031     if (EmitTLSUnsupportedError &&
8032         (LangOpts.SYCLIsDevice ||
8033          (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)))
8034       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
8035     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
8036     // storage [duration]."
8037     if (SC == SC_None && S->getFnParent() != nullptr &&
8038         (NewVD->hasAttr<CUDASharedAttr>() ||
8039          NewVD->hasAttr<CUDAConstantAttr>())) {
8040       NewVD->setStorageClass(SC_Static);
8041     }
8042   }
8043 
8044   // Ensure that dllimport globals without explicit storage class are treated as
8045   // extern. The storage class is set above using parsed attributes. Now we can
8046   // check the VarDecl itself.
8047   assert(!NewVD->hasAttr<DLLImportAttr>() ||
8048          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
8049          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
8050 
8051   // In auto-retain/release, infer strong retension for variables of
8052   // retainable type.
8053   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
8054     NewVD->setInvalidDecl();
8055 
8056   // Handle GNU asm-label extension (encoded as an attribute).
8057   if (Expr *E = (Expr*)D.getAsmLabel()) {
8058     // The parser guarantees this is a string.
8059     StringLiteral *SE = cast<StringLiteral>(E);
8060     StringRef Label = SE->getString();
8061     if (S->getFnParent() != nullptr) {
8062       switch (SC) {
8063       case SC_None:
8064       case SC_Auto:
8065         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
8066         break;
8067       case SC_Register:
8068         // Local Named register
8069         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
8070             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8071           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8072         break;
8073       case SC_Static:
8074       case SC_Extern:
8075       case SC_PrivateExtern:
8076         break;
8077       }
8078     } else if (SC == SC_Register) {
8079       // Global Named register
8080       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
8081         const auto &TI = Context.getTargetInfo();
8082         bool HasSizeMismatch;
8083 
8084         if (!TI.isValidGCCRegisterName(Label))
8085           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8086         else if (!TI.validateGlobalRegisterVariable(Label,
8087                                                     Context.getTypeSize(R),
8088                                                     HasSizeMismatch))
8089           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
8090         else if (HasSizeMismatch)
8091           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
8092       }
8093 
8094       if (!R->isIntegralType(Context) && !R->isPointerType()) {
8095         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
8096         NewVD->setInvalidDecl(true);
8097       }
8098     }
8099 
8100     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
8101                                         /*IsLiteralLabel=*/true,
8102                                         SE->getStrTokenLoc(0)));
8103   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8104     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8105       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
8106     if (I != ExtnameUndeclaredIdentifiers.end()) {
8107       if (isDeclExternC(NewVD)) {
8108         NewVD->addAttr(I->second);
8109         ExtnameUndeclaredIdentifiers.erase(I);
8110       } else
8111         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
8112             << /*Variable*/1 << NewVD;
8113     }
8114   }
8115 
8116   // Find the shadowed declaration before filtering for scope.
8117   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
8118                                 ? getShadowedDeclaration(NewVD, Previous)
8119                                 : nullptr;
8120 
8121   // Don't consider existing declarations that are in a different
8122   // scope and are out-of-semantic-context declarations (if the new
8123   // declaration has linkage).
8124   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
8125                        D.getCXXScopeSpec().isNotEmpty() ||
8126                        IsMemberSpecialization ||
8127                        IsVariableTemplateSpecialization);
8128 
8129   // Check whether the previous declaration is in the same block scope. This
8130   // affects whether we merge types with it, per C++11 [dcl.array]p3.
8131   if (getLangOpts().CPlusPlus &&
8132       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
8133     NewVD->setPreviousDeclInSameBlockScope(
8134         Previous.isSingleResult() && !Previous.isShadowed() &&
8135         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
8136 
8137   if (!getLangOpts().CPlusPlus) {
8138     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8139   } else {
8140     // If this is an explicit specialization of a static data member, check it.
8141     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
8142         CheckMemberSpecialization(NewVD, Previous))
8143       NewVD->setInvalidDecl();
8144 
8145     // Merge the decl with the existing one if appropriate.
8146     if (!Previous.empty()) {
8147       if (Previous.isSingleResult() &&
8148           isa<FieldDecl>(Previous.getFoundDecl()) &&
8149           D.getCXXScopeSpec().isSet()) {
8150         // The user tried to define a non-static data member
8151         // out-of-line (C++ [dcl.meaning]p1).
8152         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
8153           << D.getCXXScopeSpec().getRange();
8154         Previous.clear();
8155         NewVD->setInvalidDecl();
8156       }
8157     } else if (D.getCXXScopeSpec().isSet()) {
8158       // No previous declaration in the qualifying scope.
8159       Diag(D.getIdentifierLoc(), diag::err_no_member)
8160         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
8161         << D.getCXXScopeSpec().getRange();
8162       NewVD->setInvalidDecl();
8163     }
8164 
8165     if (!IsVariableTemplateSpecialization && !IsPlaceholderVariable)
8166       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8167 
8168     // CheckVariableDeclaration will set NewVD as invalid if something is in
8169     // error like WebAssembly tables being declared as arrays with a non-zero
8170     // size, but then parsing continues and emits further errors on that line.
8171     // To avoid that we check here if it happened and return nullptr.
8172     if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl())
8173       return nullptr;
8174 
8175     if (NewTemplate) {
8176       VarTemplateDecl *PrevVarTemplate =
8177           NewVD->getPreviousDecl()
8178               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
8179               : nullptr;
8180 
8181       // Check the template parameter list of this declaration, possibly
8182       // merging in the template parameter list from the previous variable
8183       // template declaration.
8184       if (CheckTemplateParameterList(
8185               TemplateParams,
8186               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
8187                               : nullptr,
8188               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
8189                DC->isDependentContext())
8190                   ? TPC_ClassTemplateMember
8191                   : TPC_VarTemplate))
8192         NewVD->setInvalidDecl();
8193 
8194       // If we are providing an explicit specialization of a static variable
8195       // template, make a note of that.
8196       if (PrevVarTemplate &&
8197           PrevVarTemplate->getInstantiatedFromMemberTemplate())
8198         PrevVarTemplate->setMemberSpecialization();
8199     }
8200   }
8201 
8202   // Diagnose shadowed variables iff this isn't a redeclaration.
8203   if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration())
8204     CheckShadow(NewVD, ShadowedDecl, Previous);
8205 
8206   ProcessPragmaWeak(S, NewVD);
8207 
8208   // If this is the first declaration of an extern C variable, update
8209   // the map of such variables.
8210   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
8211       isIncompleteDeclExternC(*this, NewVD))
8212     RegisterLocallyScopedExternCDecl(NewVD, S);
8213 
8214   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
8215     MangleNumberingContext *MCtx;
8216     Decl *ManglingContextDecl;
8217     std::tie(MCtx, ManglingContextDecl) =
8218         getCurrentMangleNumberContext(NewVD->getDeclContext());
8219     if (MCtx) {
8220       Context.setManglingNumber(
8221           NewVD, MCtx->getManglingNumber(
8222                      NewVD, getMSManglingNumber(getLangOpts(), S)));
8223       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
8224     }
8225   }
8226 
8227   // Special handling of variable named 'main'.
8228   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
8229       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8230       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
8231 
8232     // C++ [basic.start.main]p3
8233     // A program that declares a variable main at global scope is ill-formed.
8234     if (getLangOpts().CPlusPlus)
8235       Diag(D.getBeginLoc(), diag::err_main_global_variable);
8236 
8237     // In C, and external-linkage variable named main results in undefined
8238     // behavior.
8239     else if (NewVD->hasExternalFormalLinkage())
8240       Diag(D.getBeginLoc(), diag::warn_main_redefined);
8241   }
8242 
8243   if (D.isRedeclaration() && !Previous.empty()) {
8244     NamedDecl *Prev = Previous.getRepresentativeDecl();
8245     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
8246                                    D.isFunctionDefinition());
8247   }
8248 
8249   if (NewTemplate) {
8250     if (NewVD->isInvalidDecl())
8251       NewTemplate->setInvalidDecl();
8252     ActOnDocumentableDecl(NewTemplate);
8253     return NewTemplate;
8254   }
8255 
8256   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
8257     CompleteMemberSpecialization(NewVD, Previous);
8258 
8259   emitReadOnlyPlacementAttrWarning(*this, NewVD);
8260 
8261   return NewVD;
8262 }
8263 
8264 /// Enum describing the %select options in diag::warn_decl_shadow.
8265 enum ShadowedDeclKind {
8266   SDK_Local,
8267   SDK_Global,
8268   SDK_StaticMember,
8269   SDK_Field,
8270   SDK_Typedef,
8271   SDK_Using,
8272   SDK_StructuredBinding
8273 };
8274 
8275 /// Determine what kind of declaration we're shadowing.
8276 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
8277                                                 const DeclContext *OldDC) {
8278   if (isa<TypeAliasDecl>(ShadowedDecl))
8279     return SDK_Using;
8280   else if (isa<TypedefDecl>(ShadowedDecl))
8281     return SDK_Typedef;
8282   else if (isa<BindingDecl>(ShadowedDecl))
8283     return SDK_StructuredBinding;
8284   else if (isa<RecordDecl>(OldDC))
8285     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
8286 
8287   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
8288 }
8289 
8290 /// Return the location of the capture if the given lambda captures the given
8291 /// variable \p VD, or an invalid source location otherwise.
8292 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
8293                                          const VarDecl *VD) {
8294   for (const Capture &Capture : LSI->Captures) {
8295     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
8296       return Capture.getLocation();
8297   }
8298   return SourceLocation();
8299 }
8300 
8301 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8302                                      const LookupResult &R) {
8303   // Only diagnose if we're shadowing an unambiguous field or variable.
8304   if (R.getResultKind() != LookupResult::Found)
8305     return false;
8306 
8307   // Return false if warning is ignored.
8308   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8309 }
8310 
8311 /// Return the declaration shadowed by the given variable \p D, or null
8312 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8313 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8314                                         const LookupResult &R) {
8315   if (!shouldWarnIfShadowedDecl(Diags, R))
8316     return nullptr;
8317 
8318   // Don't diagnose declarations at file scope.
8319   if (D->hasGlobalStorage() && !D->isStaticLocal())
8320     return nullptr;
8321 
8322   NamedDecl *ShadowedDecl = R.getFoundDecl();
8323   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8324                                                             : nullptr;
8325 }
8326 
8327 /// Return the declaration shadowed by the given typedef \p D, or null
8328 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8329 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8330                                         const LookupResult &R) {
8331   // Don't warn if typedef declaration is part of a class
8332   if (D->getDeclContext()->isRecord())
8333     return nullptr;
8334 
8335   if (!shouldWarnIfShadowedDecl(Diags, R))
8336     return nullptr;
8337 
8338   NamedDecl *ShadowedDecl = R.getFoundDecl();
8339   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8340 }
8341 
8342 /// Return the declaration shadowed by the given variable \p D, or null
8343 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8344 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8345                                         const LookupResult &R) {
8346   if (!shouldWarnIfShadowedDecl(Diags, R))
8347     return nullptr;
8348 
8349   NamedDecl *ShadowedDecl = R.getFoundDecl();
8350   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8351                                                             : nullptr;
8352 }
8353 
8354 /// Diagnose variable or built-in function shadowing.  Implements
8355 /// -Wshadow.
8356 ///
8357 /// This method is called whenever a VarDecl is added to a "useful"
8358 /// scope.
8359 ///
8360 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8361 /// \param R the lookup of the name
8362 ///
8363 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8364                        const LookupResult &R) {
8365   DeclContext *NewDC = D->getDeclContext();
8366 
8367   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8368     // Fields are not shadowed by variables in C++ static methods.
8369     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
8370       if (MD->isStatic())
8371         return;
8372 
8373     // Fields shadowed by constructor parameters are a special case. Usually
8374     // the constructor initializes the field with the parameter.
8375     if (isa<CXXConstructorDecl>(NewDC))
8376       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8377         // Remember that this was shadowed so we can either warn about its
8378         // modification or its existence depending on warning settings.
8379         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8380         return;
8381       }
8382   }
8383 
8384   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8385     if (shadowedVar->isExternC()) {
8386       // For shadowing external vars, make sure that we point to the global
8387       // declaration, not a locally scoped extern declaration.
8388       for (auto *I : shadowedVar->redecls())
8389         if (I->isFileVarDecl()) {
8390           ShadowedDecl = I;
8391           break;
8392         }
8393     }
8394 
8395   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8396 
8397   unsigned WarningDiag = diag::warn_decl_shadow;
8398   SourceLocation CaptureLoc;
8399   if (isa<VarDecl>(D) && NewDC && isa<CXXMethodDecl>(NewDC)) {
8400     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8401       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8402         if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8403           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8404           if (RD->getLambdaCaptureDefault() == LCD_None) {
8405             // Try to avoid warnings for lambdas with an explicit capture
8406             // list. Warn only when the lambda captures the shadowed decl
8407             // explicitly.
8408             CaptureLoc = getCaptureLocation(LSI, VD);
8409             if (CaptureLoc.isInvalid())
8410               WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8411           } else {
8412             // Remember that this was shadowed so we can avoid the warning if
8413             // the shadowed decl isn't captured and the warning settings allow
8414             // it.
8415             cast<LambdaScopeInfo>(getCurFunction())
8416                 ->ShadowingDecls.push_back({D, VD});
8417             return;
8418           }
8419         }
8420         if (isa<FieldDecl>(ShadowedDecl)) {
8421           // If lambda can capture this, then emit default shadowing warning,
8422           // Otherwise it is not really a shadowing case since field is not
8423           // available in lambda's body.
8424           // At this point we don't know that lambda can capture this, so
8425           // remember that this was shadowed and delay until we know.
8426           cast<LambdaScopeInfo>(getCurFunction())
8427               ->ShadowingDecls.push_back({D, ShadowedDecl});
8428           return;
8429         }
8430       }
8431       if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl);
8432           VD && VD->hasLocalStorage()) {
8433         // A variable can't shadow a local variable in an enclosing scope, if
8434         // they are separated by a non-capturing declaration context.
8435         for (DeclContext *ParentDC = NewDC;
8436              ParentDC && !ParentDC->Equals(OldDC);
8437              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8438           // Only block literals, captured statements, and lambda expressions
8439           // can capture; other scopes don't.
8440           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8441               !isLambdaCallOperator(ParentDC)) {
8442             return;
8443           }
8444         }
8445       }
8446     }
8447   }
8448 
8449   // Never warn about shadowing a placeholder variable.
8450   if (ShadowedDecl->isPlaceholderVar(getLangOpts()))
8451     return;
8452 
8453   // Only warn about certain kinds of shadowing for class members.
8454   if (NewDC && NewDC->isRecord()) {
8455     // In particular, don't warn about shadowing non-class members.
8456     if (!OldDC->isRecord())
8457       return;
8458 
8459     // TODO: should we warn about static data members shadowing
8460     // static data members from base classes?
8461 
8462     // TODO: don't diagnose for inaccessible shadowed members.
8463     // This is hard to do perfectly because we might friend the
8464     // shadowing context, but that's just a false negative.
8465   }
8466 
8467 
8468   DeclarationName Name = R.getLookupName();
8469 
8470   // Emit warning and note.
8471   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8472   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8473   if (!CaptureLoc.isInvalid())
8474     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8475         << Name << /*explicitly*/ 1;
8476   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8477 }
8478 
8479 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8480 /// when these variables are captured by the lambda.
8481 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8482   for (const auto &Shadow : LSI->ShadowingDecls) {
8483     const NamedDecl *ShadowedDecl = Shadow.ShadowedDecl;
8484     // Try to avoid the warning when the shadowed decl isn't captured.
8485     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8486     if (const auto *VD = dyn_cast<VarDecl>(ShadowedDecl)) {
8487       SourceLocation CaptureLoc = getCaptureLocation(LSI, VD);
8488       Diag(Shadow.VD->getLocation(),
8489            CaptureLoc.isInvalid() ? diag::warn_decl_shadow_uncaptured_local
8490                                   : diag::warn_decl_shadow)
8491           << Shadow.VD->getDeclName()
8492           << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8493       if (CaptureLoc.isValid())
8494         Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8495             << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8496       Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8497     } else if (isa<FieldDecl>(ShadowedDecl)) {
8498       Diag(Shadow.VD->getLocation(),
8499            LSI->isCXXThisCaptured() ? diag::warn_decl_shadow
8500                                     : diag::warn_decl_shadow_uncaptured_local)
8501           << Shadow.VD->getDeclName()
8502           << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8503       Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8504     }
8505   }
8506 }
8507 
8508 /// Check -Wshadow without the advantage of a previous lookup.
8509 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8510   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8511     return;
8512 
8513   LookupResult R(*this, D->getDeclName(), D->getLocation(),
8514                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8515   LookupName(R, S);
8516   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8517     CheckShadow(D, ShadowedDecl, R);
8518 }
8519 
8520 /// Check if 'E', which is an expression that is about to be modified, refers
8521 /// to a constructor parameter that shadows a field.
8522 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8523   // Quickly ignore expressions that can't be shadowing ctor parameters.
8524   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8525     return;
8526   E = E->IgnoreParenImpCasts();
8527   auto *DRE = dyn_cast<DeclRefExpr>(E);
8528   if (!DRE)
8529     return;
8530   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8531   auto I = ShadowingDecls.find(D);
8532   if (I == ShadowingDecls.end())
8533     return;
8534   const NamedDecl *ShadowedDecl = I->second;
8535   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8536   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8537   Diag(D->getLocation(), diag::note_var_declared_here) << D;
8538   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8539 
8540   // Avoid issuing multiple warnings about the same decl.
8541   ShadowingDecls.erase(I);
8542 }
8543 
8544 /// Check for conflict between this global or extern "C" declaration and
8545 /// previous global or extern "C" declarations. This is only used in C++.
8546 template<typename T>
8547 static bool checkGlobalOrExternCConflict(
8548     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8549   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8550   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8551 
8552   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8553     // The common case: this global doesn't conflict with any extern "C"
8554     // declaration.
8555     return false;
8556   }
8557 
8558   if (Prev) {
8559     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8560       // Both the old and new declarations have C language linkage. This is a
8561       // redeclaration.
8562       Previous.clear();
8563       Previous.addDecl(Prev);
8564       return true;
8565     }
8566 
8567     // This is a global, non-extern "C" declaration, and there is a previous
8568     // non-global extern "C" declaration. Diagnose if this is a variable
8569     // declaration.
8570     if (!isa<VarDecl>(ND))
8571       return false;
8572   } else {
8573     // The declaration is extern "C". Check for any declaration in the
8574     // translation unit which might conflict.
8575     if (IsGlobal) {
8576       // We have already performed the lookup into the translation unit.
8577       IsGlobal = false;
8578       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8579            I != E; ++I) {
8580         if (isa<VarDecl>(*I)) {
8581           Prev = *I;
8582           break;
8583         }
8584       }
8585     } else {
8586       DeclContext::lookup_result R =
8587           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8588       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8589            I != E; ++I) {
8590         if (isa<VarDecl>(*I)) {
8591           Prev = *I;
8592           break;
8593         }
8594         // FIXME: If we have any other entity with this name in global scope,
8595         // the declaration is ill-formed, but that is a defect: it breaks the
8596         // 'stat' hack, for instance. Only variables can have mangled name
8597         // clashes with extern "C" declarations, so only they deserve a
8598         // diagnostic.
8599       }
8600     }
8601 
8602     if (!Prev)
8603       return false;
8604   }
8605 
8606   // Use the first declaration's location to ensure we point at something which
8607   // is lexically inside an extern "C" linkage-spec.
8608   assert(Prev && "should have found a previous declaration to diagnose");
8609   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8610     Prev = FD->getFirstDecl();
8611   else
8612     Prev = cast<VarDecl>(Prev)->getFirstDecl();
8613 
8614   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8615     << IsGlobal << ND;
8616   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8617     << IsGlobal;
8618   return false;
8619 }
8620 
8621 /// Apply special rules for handling extern "C" declarations. Returns \c true
8622 /// if we have found that this is a redeclaration of some prior entity.
8623 ///
8624 /// Per C++ [dcl.link]p6:
8625 ///   Two declarations [for a function or variable] with C language linkage
8626 ///   with the same name that appear in different scopes refer to the same
8627 ///   [entity]. An entity with C language linkage shall not be declared with
8628 ///   the same name as an entity in global scope.
8629 template<typename T>
8630 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8631                                                   LookupResult &Previous) {
8632   if (!S.getLangOpts().CPlusPlus) {
8633     // In C, when declaring a global variable, look for a corresponding 'extern'
8634     // variable declared in function scope. We don't need this in C++, because
8635     // we find local extern decls in the surrounding file-scope DeclContext.
8636     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8637       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8638         Previous.clear();
8639         Previous.addDecl(Prev);
8640         return true;
8641       }
8642     }
8643     return false;
8644   }
8645 
8646   // A declaration in the translation unit can conflict with an extern "C"
8647   // declaration.
8648   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8649     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8650 
8651   // An extern "C" declaration can conflict with a declaration in the
8652   // translation unit or can be a redeclaration of an extern "C" declaration
8653   // in another scope.
8654   if (isIncompleteDeclExternC(S,ND))
8655     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8656 
8657   // Neither global nor extern "C": nothing to do.
8658   return false;
8659 }
8660 
8661 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8662   // If the decl is already known invalid, don't check it.
8663   if (NewVD->isInvalidDecl())
8664     return;
8665 
8666   QualType T = NewVD->getType();
8667 
8668   // Defer checking an 'auto' type until its initializer is attached.
8669   if (T->isUndeducedType())
8670     return;
8671 
8672   if (NewVD->hasAttrs())
8673     CheckAlignasUnderalignment(NewVD);
8674 
8675   if (T->isObjCObjectType()) {
8676     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8677       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8678     T = Context.getObjCObjectPointerType(T);
8679     NewVD->setType(T);
8680   }
8681 
8682   // Emit an error if an address space was applied to decl with local storage.
8683   // This includes arrays of objects with address space qualifiers, but not
8684   // automatic variables that point to other address spaces.
8685   // ISO/IEC TR 18037 S5.1.2
8686   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8687       T.getAddressSpace() != LangAS::Default) {
8688     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8689     NewVD->setInvalidDecl();
8690     return;
8691   }
8692 
8693   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8694   // scope.
8695   if (getLangOpts().OpenCLVersion == 120 &&
8696       !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8697                                             getLangOpts()) &&
8698       NewVD->isStaticLocal()) {
8699     Diag(NewVD->getLocation(), diag::err_static_function_scope);
8700     NewVD->setInvalidDecl();
8701     return;
8702   }
8703 
8704   if (getLangOpts().OpenCL) {
8705     if (!diagnoseOpenCLTypes(*this, NewVD))
8706       return;
8707 
8708     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8709     if (NewVD->hasAttr<BlocksAttr>()) {
8710       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8711       return;
8712     }
8713 
8714     if (T->isBlockPointerType()) {
8715       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8716       // can't use 'extern' storage class.
8717       if (!T.isConstQualified()) {
8718         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8719             << 0 /*const*/;
8720         NewVD->setInvalidDecl();
8721         return;
8722       }
8723       if (NewVD->hasExternalStorage()) {
8724         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8725         NewVD->setInvalidDecl();
8726         return;
8727       }
8728     }
8729 
8730     // FIXME: Adding local AS in C++ for OpenCL might make sense.
8731     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8732         NewVD->hasExternalStorage()) {
8733       if (!T->isSamplerT() && !T->isDependentType() &&
8734           !(T.getAddressSpace() == LangAS::opencl_constant ||
8735             (T.getAddressSpace() == LangAS::opencl_global &&
8736              getOpenCLOptions().areProgramScopeVariablesSupported(
8737                  getLangOpts())))) {
8738         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8739         if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8740           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8741               << Scope << "global or constant";
8742         else
8743           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8744               << Scope << "constant";
8745         NewVD->setInvalidDecl();
8746         return;
8747       }
8748     } else {
8749       if (T.getAddressSpace() == LangAS::opencl_global) {
8750         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8751             << 1 /*is any function*/ << "global";
8752         NewVD->setInvalidDecl();
8753         return;
8754       }
8755       if (T.getAddressSpace() == LangAS::opencl_constant ||
8756           T.getAddressSpace() == LangAS::opencl_local) {
8757         FunctionDecl *FD = getCurFunctionDecl();
8758         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8759         // in functions.
8760         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8761           if (T.getAddressSpace() == LangAS::opencl_constant)
8762             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8763                 << 0 /*non-kernel only*/ << "constant";
8764           else
8765             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8766                 << 0 /*non-kernel only*/ << "local";
8767           NewVD->setInvalidDecl();
8768           return;
8769         }
8770         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8771         // in the outermost scope of a kernel function.
8772         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8773           if (!getCurScope()->isFunctionScope()) {
8774             if (T.getAddressSpace() == LangAS::opencl_constant)
8775               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8776                   << "constant";
8777             else
8778               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8779                   << "local";
8780             NewVD->setInvalidDecl();
8781             return;
8782           }
8783         }
8784       } else if (T.getAddressSpace() != LangAS::opencl_private &&
8785                  // If we are parsing a template we didn't deduce an addr
8786                  // space yet.
8787                  T.getAddressSpace() != LangAS::Default) {
8788         // Do not allow other address spaces on automatic variable.
8789         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8790         NewVD->setInvalidDecl();
8791         return;
8792       }
8793     }
8794   }
8795 
8796   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8797       && !NewVD->hasAttr<BlocksAttr>()) {
8798     if (getLangOpts().getGC() != LangOptions::NonGC)
8799       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8800     else {
8801       assert(!getLangOpts().ObjCAutoRefCount);
8802       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8803     }
8804   }
8805 
8806   // WebAssembly tables must be static with a zero length and can't be
8807   // declared within functions.
8808   if (T->isWebAssemblyTableType()) {
8809     if (getCurScope()->getParent()) { // Parent is null at top-level
8810       Diag(NewVD->getLocation(), diag::err_wasm_table_in_function);
8811       NewVD->setInvalidDecl();
8812       return;
8813     }
8814     if (NewVD->getStorageClass() != SC_Static) {
8815       Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static);
8816       NewVD->setInvalidDecl();
8817       return;
8818     }
8819     const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr());
8820     if (!ATy || ATy->getSize().getSExtValue() != 0) {
8821       Diag(NewVD->getLocation(),
8822            diag::err_typecheck_wasm_table_must_have_zero_length);
8823       NewVD->setInvalidDecl();
8824       return;
8825     }
8826   }
8827 
8828   bool isVM = T->isVariablyModifiedType();
8829   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8830       NewVD->hasAttr<BlocksAttr>())
8831     setFunctionHasBranchProtectedScope();
8832 
8833   if ((isVM && NewVD->hasLinkage()) ||
8834       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8835     bool SizeIsNegative;
8836     llvm::APSInt Oversized;
8837     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8838         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8839     QualType FixedT;
8840     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8841       FixedT = FixedTInfo->getType();
8842     else if (FixedTInfo) {
8843       // Type and type-as-written are canonically different. We need to fix up
8844       // both types separately.
8845       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8846                                                    Oversized);
8847     }
8848     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8849       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8850       // FIXME: This won't give the correct result for
8851       // int a[10][n];
8852       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8853 
8854       if (NewVD->isFileVarDecl())
8855         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8856         << SizeRange;
8857       else if (NewVD->isStaticLocal())
8858         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8859         << SizeRange;
8860       else
8861         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8862         << SizeRange;
8863       NewVD->setInvalidDecl();
8864       return;
8865     }
8866 
8867     if (!FixedTInfo) {
8868       if (NewVD->isFileVarDecl())
8869         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8870       else
8871         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8872       NewVD->setInvalidDecl();
8873       return;
8874     }
8875 
8876     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8877     NewVD->setType(FixedT);
8878     NewVD->setTypeSourceInfo(FixedTInfo);
8879   }
8880 
8881   if (T->isVoidType()) {
8882     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8883     //                    of objects and functions.
8884     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8885       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8886         << T;
8887       NewVD->setInvalidDecl();
8888       return;
8889     }
8890   }
8891 
8892   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8893     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8894     NewVD->setInvalidDecl();
8895     return;
8896   }
8897 
8898   if (!NewVD->hasLocalStorage() && T->isSizelessType() &&
8899       !T.isWebAssemblyReferenceType()) {
8900     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8901     NewVD->setInvalidDecl();
8902     return;
8903   }
8904 
8905   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8906     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8907     NewVD->setInvalidDecl();
8908     return;
8909   }
8910 
8911   if (NewVD->isConstexpr() && !T->isDependentType() &&
8912       RequireLiteralType(NewVD->getLocation(), T,
8913                          diag::err_constexpr_var_non_literal)) {
8914     NewVD->setInvalidDecl();
8915     return;
8916   }
8917 
8918   // PPC MMA non-pointer types are not allowed as non-local variable types.
8919   if (Context.getTargetInfo().getTriple().isPPC64() &&
8920       !NewVD->isLocalVarDecl() &&
8921       CheckPPCMMAType(T, NewVD->getLocation())) {
8922     NewVD->setInvalidDecl();
8923     return;
8924   }
8925 
8926   // Check that SVE types are only used in functions with SVE available.
8927   if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8928     const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8929     llvm::StringMap<bool> CallerFeatureMap;
8930     Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8931     if (!Builtin::evaluateRequiredTargetFeatures(
8932         "sve", CallerFeatureMap)) {
8933       Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T;
8934       NewVD->setInvalidDecl();
8935       return;
8936     }
8937   }
8938 
8939   if (T->isRVVSizelessBuiltinType())
8940     checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext));
8941 }
8942 
8943 /// Perform semantic checking on a newly-created variable
8944 /// declaration.
8945 ///
8946 /// This routine performs all of the type-checking required for a
8947 /// variable declaration once it has been built. It is used both to
8948 /// check variables after they have been parsed and their declarators
8949 /// have been translated into a declaration, and to check variables
8950 /// that have been instantiated from a template.
8951 ///
8952 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8953 ///
8954 /// Returns true if the variable declaration is a redeclaration.
8955 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8956   CheckVariableDeclarationType(NewVD);
8957 
8958   // If the decl is already known invalid, don't check it.
8959   if (NewVD->isInvalidDecl())
8960     return false;
8961 
8962   // If we did not find anything by this name, look for a non-visible
8963   // extern "C" declaration with the same name.
8964   if (Previous.empty() &&
8965       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8966     Previous.setShadowed();
8967 
8968   if (!Previous.empty()) {
8969     MergeVarDecl(NewVD, Previous);
8970     return true;
8971   }
8972   return false;
8973 }
8974 
8975 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8976 /// and if so, check that it's a valid override and remember it.
8977 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8978   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8979 
8980   // Look for methods in base classes that this method might override.
8981   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8982                      /*DetectVirtual=*/false);
8983   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8984     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8985     DeclarationName Name = MD->getDeclName();
8986 
8987     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8988       // We really want to find the base class destructor here.
8989       QualType T = Context.getTypeDeclType(BaseRecord);
8990       CanQualType CT = Context.getCanonicalType(T);
8991       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8992     }
8993 
8994     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8995       CXXMethodDecl *BaseMD =
8996           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8997       if (!BaseMD || !BaseMD->isVirtual() ||
8998           IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8999                      /*ConsiderCudaAttrs=*/true))
9000         continue;
9001       if (!CheckExplicitObjectOverride(MD, BaseMD))
9002         continue;
9003       if (Overridden.insert(BaseMD).second) {
9004         MD->addOverriddenMethod(BaseMD);
9005         CheckOverridingFunctionReturnType(MD, BaseMD);
9006         CheckOverridingFunctionAttributes(MD, BaseMD);
9007         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
9008         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
9009       }
9010 
9011       // A method can only override one function from each base class. We
9012       // don't track indirectly overridden methods from bases of bases.
9013       return true;
9014     }
9015 
9016     return false;
9017   };
9018 
9019   DC->lookupInBases(VisitBase, Paths);
9020   return !Overridden.empty();
9021 }
9022 
9023 namespace {
9024   // Struct for holding all of the extra arguments needed by
9025   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9026   struct ActOnFDArgs {
9027     Scope *S;
9028     Declarator &D;
9029     MultiTemplateParamsArg TemplateParamLists;
9030     bool AddToScope;
9031   };
9032 } // end anonymous namespace
9033 
9034 namespace {
9035 
9036 // Callback to only accept typo corrections that have a non-zero edit distance.
9037 // Also only accept corrections that have the same parent decl.
9038 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
9039  public:
9040   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
9041                             CXXRecordDecl *Parent)
9042       : Context(Context), OriginalFD(TypoFD),
9043         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
9044 
9045   bool ValidateCandidate(const TypoCorrection &candidate) override {
9046     if (candidate.getEditDistance() == 0)
9047       return false;
9048 
9049     SmallVector<unsigned, 1> MismatchedParams;
9050     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
9051                                           CDeclEnd = candidate.end();
9052          CDecl != CDeclEnd; ++CDecl) {
9053       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9054 
9055       if (FD && !FD->hasBody() &&
9056           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
9057         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
9058           CXXRecordDecl *Parent = MD->getParent();
9059           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
9060             return true;
9061         } else if (!ExpectedParent) {
9062           return true;
9063         }
9064       }
9065     }
9066 
9067     return false;
9068   }
9069 
9070   std::unique_ptr<CorrectionCandidateCallback> clone() override {
9071     return std::make_unique<DifferentNameValidatorCCC>(*this);
9072   }
9073 
9074  private:
9075   ASTContext &Context;
9076   FunctionDecl *OriginalFD;
9077   CXXRecordDecl *ExpectedParent;
9078 };
9079 
9080 } // end anonymous namespace
9081 
9082 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
9083   TypoCorrectedFunctionDefinitions.insert(F);
9084 }
9085 
9086 /// Generate diagnostics for an invalid function redeclaration.
9087 ///
9088 /// This routine handles generating the diagnostic messages for an invalid
9089 /// function redeclaration, including finding possible similar declarations
9090 /// or performing typo correction if there are no previous declarations with
9091 /// the same name.
9092 ///
9093 /// Returns a NamedDecl iff typo correction was performed and substituting in
9094 /// the new declaration name does not cause new errors.
9095 static NamedDecl *DiagnoseInvalidRedeclaration(
9096     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
9097     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
9098   DeclarationName Name = NewFD->getDeclName();
9099   DeclContext *NewDC = NewFD->getDeclContext();
9100   SmallVector<unsigned, 1> MismatchedParams;
9101   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
9102   TypoCorrection Correction;
9103   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
9104   unsigned DiagMsg =
9105     IsLocalFriend ? diag::err_no_matching_local_friend :
9106     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
9107     diag::err_member_decl_does_not_match;
9108   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
9109                     IsLocalFriend ? Sema::LookupLocalFriendName
9110                                   : Sema::LookupOrdinaryName,
9111                     Sema::ForVisibleRedeclaration);
9112 
9113   NewFD->setInvalidDecl();
9114   if (IsLocalFriend)
9115     SemaRef.LookupName(Prev, S);
9116   else
9117     SemaRef.LookupQualifiedName(Prev, NewDC);
9118   assert(!Prev.isAmbiguous() &&
9119          "Cannot have an ambiguity in previous-declaration lookup");
9120   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9121   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
9122                                 MD ? MD->getParent() : nullptr);
9123   if (!Prev.empty()) {
9124     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
9125          Func != FuncEnd; ++Func) {
9126       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
9127       if (FD &&
9128           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9129         // Add 1 to the index so that 0 can mean the mismatch didn't
9130         // involve a parameter
9131         unsigned ParamNum =
9132             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
9133         NearMatches.push_back(std::make_pair(FD, ParamNum));
9134       }
9135     }
9136   // If the qualified name lookup yielded nothing, try typo correction
9137   } else if ((Correction = SemaRef.CorrectTypo(
9138                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
9139                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
9140                   IsLocalFriend ? nullptr : NewDC))) {
9141     // Set up everything for the call to ActOnFunctionDeclarator
9142     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
9143                               ExtraArgs.D.getIdentifierLoc());
9144     Previous.clear();
9145     Previous.setLookupName(Correction.getCorrection());
9146     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
9147                                     CDeclEnd = Correction.end();
9148          CDecl != CDeclEnd; ++CDecl) {
9149       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9150       if (FD && !FD->hasBody() &&
9151           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9152         Previous.addDecl(FD);
9153       }
9154     }
9155     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
9156 
9157     NamedDecl *Result;
9158     // Retry building the function declaration with the new previous
9159     // declarations, and with errors suppressed.
9160     {
9161       // Trap errors.
9162       Sema::SFINAETrap Trap(SemaRef);
9163 
9164       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9165       // pieces need to verify the typo-corrected C++ declaration and hopefully
9166       // eliminate the need for the parameter pack ExtraArgs.
9167       Result = SemaRef.ActOnFunctionDeclarator(
9168           ExtraArgs.S, ExtraArgs.D,
9169           Correction.getCorrectionDecl()->getDeclContext(),
9170           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
9171           ExtraArgs.AddToScope);
9172 
9173       if (Trap.hasErrorOccurred())
9174         Result = nullptr;
9175     }
9176 
9177     if (Result) {
9178       // Determine which correction we picked.
9179       Decl *Canonical = Result->getCanonicalDecl();
9180       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9181            I != E; ++I)
9182         if ((*I)->getCanonicalDecl() == Canonical)
9183           Correction.setCorrectionDecl(*I);
9184 
9185       // Let Sema know about the correction.
9186       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
9187       SemaRef.diagnoseTypo(
9188           Correction,
9189           SemaRef.PDiag(IsLocalFriend
9190                           ? diag::err_no_matching_local_friend_suggest
9191                           : diag::err_member_decl_does_not_match_suggest)
9192             << Name << NewDC << IsDefinition);
9193       return Result;
9194     }
9195 
9196     // Pretend the typo correction never occurred
9197     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
9198                               ExtraArgs.D.getIdentifierLoc());
9199     ExtraArgs.D.setRedeclaration(wasRedeclaration);
9200     Previous.clear();
9201     Previous.setLookupName(Name);
9202   }
9203 
9204   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
9205       << Name << NewDC << IsDefinition << NewFD->getLocation();
9206 
9207   bool NewFDisConst = false;
9208   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
9209     NewFDisConst = NewMD->isConst();
9210 
9211   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
9212        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
9213        NearMatch != NearMatchEnd; ++NearMatch) {
9214     FunctionDecl *FD = NearMatch->first;
9215     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9216     bool FDisConst = MD && MD->isConst();
9217     bool IsMember = MD || !IsLocalFriend;
9218 
9219     // FIXME: These notes are poorly worded for the local friend case.
9220     if (unsigned Idx = NearMatch->second) {
9221       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
9222       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
9223       if (Loc.isInvalid()) Loc = FD->getLocation();
9224       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
9225                                  : diag::note_local_decl_close_param_match)
9226         << Idx << FDParam->getType()
9227         << NewFD->getParamDecl(Idx - 1)->getType();
9228     } else if (FDisConst != NewFDisConst) {
9229       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
9230           << NewFDisConst << FD->getSourceRange().getEnd()
9231           << (NewFDisConst
9232                   ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
9233                                                  .getConstQualifierLoc())
9234                   : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
9235                                                    .getRParenLoc()
9236                                                    .getLocWithOffset(1),
9237                                                " const"));
9238     } else
9239       SemaRef.Diag(FD->getLocation(),
9240                    IsMember ? diag::note_member_def_close_match
9241                             : diag::note_local_decl_close_match);
9242   }
9243   return nullptr;
9244 }
9245 
9246 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
9247   switch (D.getDeclSpec().getStorageClassSpec()) {
9248   default: llvm_unreachable("Unknown storage class!");
9249   case DeclSpec::SCS_auto:
9250   case DeclSpec::SCS_register:
9251   case DeclSpec::SCS_mutable:
9252     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9253                  diag::err_typecheck_sclass_func);
9254     D.getMutableDeclSpec().ClearStorageClassSpecs();
9255     D.setInvalidType();
9256     break;
9257   case DeclSpec::SCS_unspecified: break;
9258   case DeclSpec::SCS_extern:
9259     if (D.getDeclSpec().isExternInLinkageSpec())
9260       return SC_None;
9261     return SC_Extern;
9262   case DeclSpec::SCS_static: {
9263     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
9264       // C99 6.7.1p5:
9265       //   The declaration of an identifier for a function that has
9266       //   block scope shall have no explicit storage-class specifier
9267       //   other than extern
9268       // See also (C++ [dcl.stc]p4).
9269       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9270                    diag::err_static_block_func);
9271       break;
9272     } else
9273       return SC_Static;
9274   }
9275   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
9276   }
9277 
9278   // No explicit storage class has already been returned
9279   return SC_None;
9280 }
9281 
9282 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
9283                                            DeclContext *DC, QualType &R,
9284                                            TypeSourceInfo *TInfo,
9285                                            StorageClass SC,
9286                                            bool &IsVirtualOkay) {
9287   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
9288   DeclarationName Name = NameInfo.getName();
9289 
9290   FunctionDecl *NewFD = nullptr;
9291   bool isInline = D.getDeclSpec().isInlineSpecified();
9292 
9293   if (!SemaRef.getLangOpts().CPlusPlus) {
9294     // Determine whether the function was written with a prototype. This is
9295     // true when:
9296     //   - there is a prototype in the declarator, or
9297     //   - the type R of the function is some kind of typedef or other non-
9298     //     attributed reference to a type name (which eventually refers to a
9299     //     function type). Note, we can't always look at the adjusted type to
9300     //     check this case because attributes may cause a non-function
9301     //     declarator to still have a function type. e.g.,
9302     //       typedef void func(int a);
9303     //       __attribute__((noreturn)) func other_func; // This has a prototype
9304     bool HasPrototype =
9305         (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
9306         (D.getDeclSpec().isTypeRep() &&
9307          SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr)
9308              ->isFunctionProtoType()) ||
9309         (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
9310     assert(
9311         (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
9312         "Strict prototypes are required");
9313 
9314     NewFD = FunctionDecl::Create(
9315         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9316         SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
9317         ConstexprSpecKind::Unspecified,
9318         /*TrailingRequiresClause=*/nullptr);
9319     if (D.isInvalidType())
9320       NewFD->setInvalidDecl();
9321 
9322     return NewFD;
9323   }
9324 
9325   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
9326 
9327   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9328   if (ConstexprKind == ConstexprSpecKind::Constinit) {
9329     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9330                  diag::err_constexpr_wrong_decl_kind)
9331         << static_cast<int>(ConstexprKind);
9332     ConstexprKind = ConstexprSpecKind::Unspecified;
9333     D.getMutableDeclSpec().ClearConstexprSpec();
9334   }
9335   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
9336 
9337   SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R);
9338 
9339   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
9340     // This is a C++ constructor declaration.
9341     assert(DC->isRecord() &&
9342            "Constructors can only be declared in a member context");
9343 
9344     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
9345     return CXXConstructorDecl::Create(
9346         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9347         TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
9348         isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
9349         InheritedConstructor(), TrailingRequiresClause);
9350 
9351   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9352     // This is a C++ destructor declaration.
9353     if (DC->isRecord()) {
9354       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9355       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9356       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9357           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9358           SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9359           /*isImplicitlyDeclared=*/false, ConstexprKind,
9360           TrailingRequiresClause);
9361       // User defined destructors start as not selected if the class definition is still
9362       // not done.
9363       if (Record->isBeingDefined())
9364         NewDD->setIneligibleOrNotSelected(true);
9365 
9366       // If the destructor needs an implicit exception specification, set it
9367       // now. FIXME: It'd be nice to be able to create the right type to start
9368       // with, but the type needs to reference the destructor declaration.
9369       if (SemaRef.getLangOpts().CPlusPlus11)
9370         SemaRef.AdjustDestructorExceptionSpec(NewDD);
9371 
9372       IsVirtualOkay = true;
9373       return NewDD;
9374 
9375     } else {
9376       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9377       D.setInvalidType();
9378 
9379       // Create a FunctionDecl to satisfy the function definition parsing
9380       // code path.
9381       return FunctionDecl::Create(
9382           SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9383           TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9384           /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9385     }
9386 
9387   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9388     if (!DC->isRecord()) {
9389       SemaRef.Diag(D.getIdentifierLoc(),
9390            diag::err_conv_function_not_member);
9391       return nullptr;
9392     }
9393 
9394     SemaRef.CheckConversionDeclarator(D, R, SC);
9395     if (D.isInvalidType())
9396       return nullptr;
9397 
9398     IsVirtualOkay = true;
9399     return CXXConversionDecl::Create(
9400         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9401         TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9402         ExplicitSpecifier, ConstexprKind, SourceLocation(),
9403         TrailingRequiresClause);
9404 
9405   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9406     if (TrailingRequiresClause)
9407       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
9408                    diag::err_trailing_requires_clause_on_deduction_guide)
9409           << TrailingRequiresClause->getSourceRange();
9410     if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC))
9411       return nullptr;
9412     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
9413                                          ExplicitSpecifier, NameInfo, R, TInfo,
9414                                          D.getEndLoc());
9415   } else if (DC->isRecord()) {
9416     // If the name of the function is the same as the name of the record,
9417     // then this must be an invalid constructor that has a return type.
9418     // (The parser checks for a return type and makes the declarator a
9419     // constructor if it has no return type).
9420     if (Name.getAsIdentifierInfo() &&
9421         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9422       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9423         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9424         << SourceRange(D.getIdentifierLoc());
9425       return nullptr;
9426     }
9427 
9428     // This is a C++ method declaration.
9429     CXXMethodDecl *Ret = CXXMethodDecl::Create(
9430         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9431         TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9432         ConstexprKind, SourceLocation(), TrailingRequiresClause);
9433     IsVirtualOkay = !Ret->isStatic();
9434     return Ret;
9435   } else {
9436     bool isFriend =
9437         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9438     if (!isFriend && SemaRef.CurContext->isRecord())
9439       return nullptr;
9440 
9441     // Determine whether the function was written with a
9442     // prototype. This true when:
9443     //   - we're in C++ (where every function has a prototype),
9444     return FunctionDecl::Create(
9445         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9446         SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9447         true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9448   }
9449 }
9450 
9451 enum OpenCLParamType {
9452   ValidKernelParam,
9453   PtrPtrKernelParam,
9454   PtrKernelParam,
9455   InvalidAddrSpacePtrKernelParam,
9456   InvalidKernelParam,
9457   RecordKernelParam
9458 };
9459 
9460 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9461   // Size dependent types are just typedefs to normal integer types
9462   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9463   // integers other than by their names.
9464   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9465 
9466   // Remove typedefs one by one until we reach a typedef
9467   // for a size dependent type.
9468   QualType DesugaredTy = Ty;
9469   do {
9470     ArrayRef<StringRef> Names(SizeTypeNames);
9471     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9472     if (Names.end() != Match)
9473       return true;
9474 
9475     Ty = DesugaredTy;
9476     DesugaredTy = Ty.getSingleStepDesugaredType(C);
9477   } while (DesugaredTy != Ty);
9478 
9479   return false;
9480 }
9481 
9482 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9483   if (PT->isDependentType())
9484     return InvalidKernelParam;
9485 
9486   if (PT->isPointerType() || PT->isReferenceType()) {
9487     QualType PointeeType = PT->getPointeeType();
9488     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9489         PointeeType.getAddressSpace() == LangAS::opencl_private ||
9490         PointeeType.getAddressSpace() == LangAS::Default)
9491       return InvalidAddrSpacePtrKernelParam;
9492 
9493     if (PointeeType->isPointerType()) {
9494       // This is a pointer to pointer parameter.
9495       // Recursively check inner type.
9496       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9497       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9498           ParamKind == InvalidKernelParam)
9499         return ParamKind;
9500 
9501       // OpenCL v3.0 s6.11.a:
9502       // A restriction to pass pointers to pointers only applies to OpenCL C
9503       // v1.2 or below.
9504       if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9505         return ValidKernelParam;
9506 
9507       return PtrPtrKernelParam;
9508     }
9509 
9510     // C++ for OpenCL v1.0 s2.4:
9511     // Moreover the types used in parameters of the kernel functions must be:
9512     // Standard layout types for pointer parameters. The same applies to
9513     // reference if an implementation supports them in kernel parameters.
9514     if (S.getLangOpts().OpenCLCPlusPlus &&
9515         !S.getOpenCLOptions().isAvailableOption(
9516             "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) {
9517      auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl();
9518      bool IsStandardLayoutType = true;
9519      if (CXXRec) {
9520        // If template type is not ODR-used its definition is only available
9521        // in the template definition not its instantiation.
9522        // FIXME: This logic doesn't work for types that depend on template
9523        // parameter (PR58590).
9524        if (!CXXRec->hasDefinition())
9525          CXXRec = CXXRec->getTemplateInstantiationPattern();
9526        if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout())
9527          IsStandardLayoutType = false;
9528      }
9529      if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9530         !IsStandardLayoutType)
9531       return InvalidKernelParam;
9532     }
9533 
9534     // OpenCL v1.2 s6.9.p:
9535     // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9536     if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9537       return ValidKernelParam;
9538 
9539     return PtrKernelParam;
9540   }
9541 
9542   // OpenCL v1.2 s6.9.k:
9543   // Arguments to kernel functions in a program cannot be declared with the
9544   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9545   // uintptr_t or a struct and/or union that contain fields declared to be one
9546   // of these built-in scalar types.
9547   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9548     return InvalidKernelParam;
9549 
9550   if (PT->isImageType())
9551     return PtrKernelParam;
9552 
9553   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9554     return InvalidKernelParam;
9555 
9556   // OpenCL extension spec v1.2 s9.5:
9557   // This extension adds support for half scalar and vector types as built-in
9558   // types that can be used for arithmetic operations, conversions etc.
9559   if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9560       PT->isHalfType())
9561     return InvalidKernelParam;
9562 
9563   // Look into an array argument to check if it has a forbidden type.
9564   if (PT->isArrayType()) {
9565     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9566     // Call ourself to check an underlying type of an array. Since the
9567     // getPointeeOrArrayElementType returns an innermost type which is not an
9568     // array, this recursive call only happens once.
9569     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9570   }
9571 
9572   // C++ for OpenCL v1.0 s2.4:
9573   // Moreover the types used in parameters of the kernel functions must be:
9574   // Trivial and standard-layout types C++17 [basic.types] (plain old data
9575   // types) for parameters passed by value;
9576   if (S.getLangOpts().OpenCLCPlusPlus &&
9577       !S.getOpenCLOptions().isAvailableOption(
9578           "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9579       !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9580     return InvalidKernelParam;
9581 
9582   if (PT->isRecordType())
9583     return RecordKernelParam;
9584 
9585   return ValidKernelParam;
9586 }
9587 
9588 static void checkIsValidOpenCLKernelParameter(
9589   Sema &S,
9590   Declarator &D,
9591   ParmVarDecl *Param,
9592   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9593   QualType PT = Param->getType();
9594 
9595   // Cache the valid types we encounter to avoid rechecking structs that are
9596   // used again
9597   if (ValidTypes.count(PT.getTypePtr()))
9598     return;
9599 
9600   switch (getOpenCLKernelParameterType(S, PT)) {
9601   case PtrPtrKernelParam:
9602     // OpenCL v3.0 s6.11.a:
9603     // A kernel function argument cannot be declared as a pointer to a pointer
9604     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9605     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9606     D.setInvalidType();
9607     return;
9608 
9609   case InvalidAddrSpacePtrKernelParam:
9610     // OpenCL v1.0 s6.5:
9611     // __kernel function arguments declared to be a pointer of a type can point
9612     // to one of the following address spaces only : __global, __local or
9613     // __constant.
9614     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9615     D.setInvalidType();
9616     return;
9617 
9618     // OpenCL v1.2 s6.9.k:
9619     // Arguments to kernel functions in a program cannot be declared with the
9620     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9621     // uintptr_t or a struct and/or union that contain fields declared to be
9622     // one of these built-in scalar types.
9623 
9624   case InvalidKernelParam:
9625     // OpenCL v1.2 s6.8 n:
9626     // A kernel function argument cannot be declared
9627     // of event_t type.
9628     // Do not diagnose half type since it is diagnosed as invalid argument
9629     // type for any function elsewhere.
9630     if (!PT->isHalfType()) {
9631       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9632 
9633       // Explain what typedefs are involved.
9634       const TypedefType *Typedef = nullptr;
9635       while ((Typedef = PT->getAs<TypedefType>())) {
9636         SourceLocation Loc = Typedef->getDecl()->getLocation();
9637         // SourceLocation may be invalid for a built-in type.
9638         if (Loc.isValid())
9639           S.Diag(Loc, diag::note_entity_declared_at) << PT;
9640         PT = Typedef->desugar();
9641       }
9642     }
9643 
9644     D.setInvalidType();
9645     return;
9646 
9647   case PtrKernelParam:
9648   case ValidKernelParam:
9649     ValidTypes.insert(PT.getTypePtr());
9650     return;
9651 
9652   case RecordKernelParam:
9653     break;
9654   }
9655 
9656   // Track nested structs we will inspect
9657   SmallVector<const Decl *, 4> VisitStack;
9658 
9659   // Track where we are in the nested structs. Items will migrate from
9660   // VisitStack to HistoryStack as we do the DFS for bad field.
9661   SmallVector<const FieldDecl *, 4> HistoryStack;
9662   HistoryStack.push_back(nullptr);
9663 
9664   // At this point we already handled everything except of a RecordType or
9665   // an ArrayType of a RecordType.
9666   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9667   const RecordType *RecTy =
9668       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9669   const RecordDecl *OrigRecDecl = RecTy->getDecl();
9670 
9671   VisitStack.push_back(RecTy->getDecl());
9672   assert(VisitStack.back() && "First decl null?");
9673 
9674   do {
9675     const Decl *Next = VisitStack.pop_back_val();
9676     if (!Next) {
9677       assert(!HistoryStack.empty());
9678       // Found a marker, we have gone up a level
9679       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9680         ValidTypes.insert(Hist->getType().getTypePtr());
9681 
9682       continue;
9683     }
9684 
9685     // Adds everything except the original parameter declaration (which is not a
9686     // field itself) to the history stack.
9687     const RecordDecl *RD;
9688     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9689       HistoryStack.push_back(Field);
9690 
9691       QualType FieldTy = Field->getType();
9692       // Other field types (known to be valid or invalid) are handled while we
9693       // walk around RecordDecl::fields().
9694       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9695              "Unexpected type.");
9696       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9697 
9698       RD = FieldRecTy->castAs<RecordType>()->getDecl();
9699     } else {
9700       RD = cast<RecordDecl>(Next);
9701     }
9702 
9703     // Add a null marker so we know when we've gone back up a level
9704     VisitStack.push_back(nullptr);
9705 
9706     for (const auto *FD : RD->fields()) {
9707       QualType QT = FD->getType();
9708 
9709       if (ValidTypes.count(QT.getTypePtr()))
9710         continue;
9711 
9712       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9713       if (ParamType == ValidKernelParam)
9714         continue;
9715 
9716       if (ParamType == RecordKernelParam) {
9717         VisitStack.push_back(FD);
9718         continue;
9719       }
9720 
9721       // OpenCL v1.2 s6.9.p:
9722       // Arguments to kernel functions that are declared to be a struct or union
9723       // do not allow OpenCL objects to be passed as elements of the struct or
9724       // union. This restriction was lifted in OpenCL v2.0 with the introduction
9725       // of SVM.
9726       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9727           ParamType == InvalidAddrSpacePtrKernelParam) {
9728         S.Diag(Param->getLocation(),
9729                diag::err_record_with_pointers_kernel_param)
9730           << PT->isUnionType()
9731           << PT;
9732       } else {
9733         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9734       }
9735 
9736       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9737           << OrigRecDecl->getDeclName();
9738 
9739       // We have an error, now let's go back up through history and show where
9740       // the offending field came from
9741       for (ArrayRef<const FieldDecl *>::const_iterator
9742                I = HistoryStack.begin() + 1,
9743                E = HistoryStack.end();
9744            I != E; ++I) {
9745         const FieldDecl *OuterField = *I;
9746         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9747           << OuterField->getType();
9748       }
9749 
9750       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9751         << QT->isPointerType()
9752         << QT;
9753       D.setInvalidType();
9754       return;
9755     }
9756   } while (!VisitStack.empty());
9757 }
9758 
9759 /// Find the DeclContext in which a tag is implicitly declared if we see an
9760 /// elaborated type specifier in the specified context, and lookup finds
9761 /// nothing.
9762 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9763   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9764     DC = DC->getParent();
9765   return DC;
9766 }
9767 
9768 /// Find the Scope in which a tag is implicitly declared if we see an
9769 /// elaborated type specifier in the specified context, and lookup finds
9770 /// nothing.
9771 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9772   while (S->isClassScope() ||
9773          (LangOpts.CPlusPlus &&
9774           S->isFunctionPrototypeScope()) ||
9775          ((S->getFlags() & Scope::DeclScope) == 0) ||
9776          (S->getEntity() && S->getEntity()->isTransparentContext()))
9777     S = S->getParent();
9778   return S;
9779 }
9780 
9781 /// Determine whether a declaration matches a known function in namespace std.
9782 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9783                          unsigned BuiltinID) {
9784   switch (BuiltinID) {
9785   case Builtin::BI__GetExceptionInfo:
9786     // No type checking whatsoever.
9787     return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9788 
9789   case Builtin::BIaddressof:
9790   case Builtin::BI__addressof:
9791   case Builtin::BIforward:
9792   case Builtin::BIforward_like:
9793   case Builtin::BImove:
9794   case Builtin::BImove_if_noexcept:
9795   case Builtin::BIas_const: {
9796     // Ensure that we don't treat the algorithm
9797     //   OutputIt std::move(InputIt, InputIt, OutputIt)
9798     // as the builtin std::move.
9799     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9800     return FPT->getNumParams() == 1 && !FPT->isVariadic();
9801   }
9802 
9803   default:
9804     return false;
9805   }
9806 }
9807 
9808 NamedDecl*
9809 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9810                               TypeSourceInfo *TInfo, LookupResult &Previous,
9811                               MultiTemplateParamsArg TemplateParamListsRef,
9812                               bool &AddToScope) {
9813   QualType R = TInfo->getType();
9814 
9815   assert(R->isFunctionType());
9816   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9817     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9818 
9819   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9820   llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9821   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9822     if (!TemplateParamLists.empty() &&
9823         Invented->getDepth() == TemplateParamLists.back()->getDepth())
9824       TemplateParamLists.back() = Invented;
9825     else
9826       TemplateParamLists.push_back(Invented);
9827   }
9828 
9829   // TODO: consider using NameInfo for diagnostic.
9830   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9831   DeclarationName Name = NameInfo.getName();
9832   StorageClass SC = getFunctionStorageClass(*this, D);
9833 
9834   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9835     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9836          diag::err_invalid_thread)
9837       << DeclSpec::getSpecifierName(TSCS);
9838 
9839   if (D.isFirstDeclarationOfMember())
9840     adjustMemberFunctionCC(
9841         R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()),
9842         D.isCtorOrDtor(), D.getIdentifierLoc());
9843 
9844   bool isFriend = false;
9845   FunctionTemplateDecl *FunctionTemplate = nullptr;
9846   bool isMemberSpecialization = false;
9847   bool isFunctionTemplateSpecialization = false;
9848 
9849   bool HasExplicitTemplateArgs = false;
9850   TemplateArgumentListInfo TemplateArgs;
9851 
9852   bool isVirtualOkay = false;
9853 
9854   DeclContext *OriginalDC = DC;
9855   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9856 
9857   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9858                                               isVirtualOkay);
9859   if (!NewFD) return nullptr;
9860 
9861   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9862     NewFD->setTopLevelDeclInObjCContainer();
9863 
9864   // Set the lexical context. If this is a function-scope declaration, or has a
9865   // C++ scope specifier, or is the object of a friend declaration, the lexical
9866   // context will be different from the semantic context.
9867   NewFD->setLexicalDeclContext(CurContext);
9868 
9869   if (IsLocalExternDecl)
9870     NewFD->setLocalExternDecl();
9871 
9872   if (getLangOpts().CPlusPlus) {
9873     // The rules for implicit inlines changed in C++20 for methods and friends
9874     // with an in-class definition (when such a definition is not attached to
9875     // the global module).  User-specified 'inline' overrides this (set when
9876     // the function decl is created above).
9877     // FIXME: We need a better way to separate C++ standard and clang modules.
9878     bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9879                                !NewFD->getOwningModule() ||
9880                                NewFD->getOwningModule()->isGlobalModule() ||
9881                                NewFD->getOwningModule()->isHeaderLikeModule();
9882     bool isInline = D.getDeclSpec().isInlineSpecified();
9883     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9884     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9885     isFriend = D.getDeclSpec().isFriendSpecified();
9886     if (isFriend && !isInline && D.isFunctionDefinition()) {
9887       // Pre-C++20 [class.friend]p5
9888       //   A function can be defined in a friend declaration of a
9889       //   class . . . . Such a function is implicitly inline.
9890       // Post C++20 [class.friend]p7
9891       //   Such a function is implicitly an inline function if it is attached
9892       //   to the global module.
9893       NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9894     }
9895 
9896     // If this is a method defined in an __interface, and is not a constructor
9897     // or an overloaded operator, then set the pure flag (isVirtual will already
9898     // return true).
9899     if (const CXXRecordDecl *Parent =
9900           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9901       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9902         NewFD->setIsPureVirtual(true);
9903 
9904       // C++ [class.union]p2
9905       //   A union can have member functions, but not virtual functions.
9906       if (isVirtual && Parent->isUnion()) {
9907         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9908         NewFD->setInvalidDecl();
9909       }
9910       if ((Parent->isClass() || Parent->isStruct()) &&
9911           Parent->hasAttr<SYCLSpecialClassAttr>() &&
9912           NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9913           NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9914         if (auto *Def = Parent->getDefinition())
9915           Def->setInitMethod(true);
9916       }
9917     }
9918 
9919     SetNestedNameSpecifier(*this, NewFD, D);
9920     isMemberSpecialization = false;
9921     isFunctionTemplateSpecialization = false;
9922     if (D.isInvalidType())
9923       NewFD->setInvalidDecl();
9924 
9925     // Match up the template parameter lists with the scope specifier, then
9926     // determine whether we have a template or a template specialization.
9927     bool Invalid = false;
9928     TemplateIdAnnotation *TemplateId =
9929         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9930             ? D.getName().TemplateId
9931             : nullptr;
9932     TemplateParameterList *TemplateParams =
9933         MatchTemplateParametersToScopeSpecifier(
9934             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9935             D.getCXXScopeSpec(), TemplateId, TemplateParamLists, isFriend,
9936             isMemberSpecialization, Invalid);
9937     if (TemplateParams) {
9938       // Check that we can declare a template here.
9939       if (CheckTemplateDeclScope(S, TemplateParams))
9940         NewFD->setInvalidDecl();
9941 
9942       if (TemplateParams->size() > 0) {
9943         // This is a function template
9944 
9945         // A destructor cannot be a template.
9946         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9947           Diag(NewFD->getLocation(), diag::err_destructor_template);
9948           NewFD->setInvalidDecl();
9949           // Function template with explicit template arguments.
9950         } else if (TemplateId) {
9951           Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9952               << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9953           NewFD->setInvalidDecl();
9954         }
9955 
9956         // If we're adding a template to a dependent context, we may need to
9957         // rebuilding some of the types used within the template parameter list,
9958         // now that we know what the current instantiation is.
9959         if (DC->isDependentContext()) {
9960           ContextRAII SavedContext(*this, DC);
9961           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9962             Invalid = true;
9963         }
9964 
9965         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9966                                                         NewFD->getLocation(),
9967                                                         Name, TemplateParams,
9968                                                         NewFD);
9969         FunctionTemplate->setLexicalDeclContext(CurContext);
9970         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9971 
9972         // For source fidelity, store the other template param lists.
9973         if (TemplateParamLists.size() > 1) {
9974           NewFD->setTemplateParameterListsInfo(Context,
9975               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9976                   .drop_back(1));
9977         }
9978       } else {
9979         // This is a function template specialization.
9980         isFunctionTemplateSpecialization = true;
9981         // For source fidelity, store all the template param lists.
9982         if (TemplateParamLists.size() > 0)
9983           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9984 
9985         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9986         if (isFriend) {
9987           // We want to remove the "template<>", found here.
9988           SourceRange RemoveRange = TemplateParams->getSourceRange();
9989 
9990           // If we remove the template<> and the name is not a
9991           // template-id, we're actually silently creating a problem:
9992           // the friend declaration will refer to an untemplated decl,
9993           // and clearly the user wants a template specialization.  So
9994           // we need to insert '<>' after the name.
9995           SourceLocation InsertLoc;
9996           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9997             InsertLoc = D.getName().getSourceRange().getEnd();
9998             InsertLoc = getLocForEndOfToken(InsertLoc);
9999           }
10000 
10001           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
10002             << Name << RemoveRange
10003             << FixItHint::CreateRemoval(RemoveRange)
10004             << FixItHint::CreateInsertion(InsertLoc, "<>");
10005           Invalid = true;
10006 
10007           // Recover by faking up an empty template argument list.
10008           HasExplicitTemplateArgs = true;
10009           TemplateArgs.setLAngleLoc(InsertLoc);
10010           TemplateArgs.setRAngleLoc(InsertLoc);
10011         }
10012       }
10013     } else {
10014       // Check that we can declare a template here.
10015       if (!TemplateParamLists.empty() && isMemberSpecialization &&
10016           CheckTemplateDeclScope(S, TemplateParamLists.back()))
10017         NewFD->setInvalidDecl();
10018 
10019       // All template param lists were matched against the scope specifier:
10020       // this is NOT (an explicit specialization of) a template.
10021       if (TemplateParamLists.size() > 0)
10022         // For source fidelity, store all the template param lists.
10023         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
10024 
10025       // "friend void foo<>(int);" is an implicit specialization decl.
10026       if (isFriend && TemplateId)
10027         isFunctionTemplateSpecialization = true;
10028     }
10029 
10030     // If this is a function template specialization and the unqualified-id of
10031     // the declarator-id is a template-id, convert the template argument list
10032     // into our AST format and check for unexpanded packs.
10033     if (isFunctionTemplateSpecialization && TemplateId) {
10034       HasExplicitTemplateArgs = true;
10035 
10036       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10037       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10038       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10039                                          TemplateId->NumArgs);
10040       translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
10041 
10042       // FIXME: Should we check for unexpanded packs if this was an (invalid)
10043       // declaration of a function template partial specialization? Should we
10044       // consider the unexpanded pack context to be a partial specialization?
10045       for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) {
10046         if (DiagnoseUnexpandedParameterPack(
10047                 ArgLoc, isFriend ? UPPC_FriendDeclaration
10048                                  : UPPC_ExplicitSpecialization))
10049           NewFD->setInvalidDecl();
10050       }
10051     }
10052 
10053     if (Invalid) {
10054       NewFD->setInvalidDecl();
10055       if (FunctionTemplate)
10056         FunctionTemplate->setInvalidDecl();
10057     }
10058 
10059     // C++ [dcl.fct.spec]p5:
10060     //   The virtual specifier shall only be used in declarations of
10061     //   nonstatic class member functions that appear within a
10062     //   member-specification of a class declaration; see 10.3.
10063     //
10064     if (isVirtual && !NewFD->isInvalidDecl()) {
10065       if (!isVirtualOkay) {
10066         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10067              diag::err_virtual_non_function);
10068       } else if (!CurContext->isRecord()) {
10069         // 'virtual' was specified outside of the class.
10070         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10071              diag::err_virtual_out_of_class)
10072           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10073       } else if (NewFD->getDescribedFunctionTemplate()) {
10074         // C++ [temp.mem]p3:
10075         //  A member function template shall not be virtual.
10076         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10077              diag::err_virtual_member_function_template)
10078           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10079       } else {
10080         // Okay: Add virtual to the method.
10081         NewFD->setVirtualAsWritten(true);
10082       }
10083 
10084       if (getLangOpts().CPlusPlus14 &&
10085           NewFD->getReturnType()->isUndeducedType())
10086         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
10087     }
10088 
10089     if (getLangOpts().CPlusPlus14 &&
10090         (NewFD->isDependentContext() ||
10091          (isFriend && CurContext->isDependentContext())) &&
10092         NewFD->getReturnType()->isUndeducedType()) {
10093       // If the function template is referenced directly (for instance, as a
10094       // member of the current instantiation), pretend it has a dependent type.
10095       // This is not really justified by the standard, but is the only sane
10096       // thing to do.
10097       // FIXME: For a friend function, we have not marked the function as being
10098       // a friend yet, so 'isDependentContext' on the FD doesn't work.
10099       const FunctionProtoType *FPT =
10100           NewFD->getType()->castAs<FunctionProtoType>();
10101       QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
10102       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
10103                                              FPT->getExtProtoInfo()));
10104     }
10105 
10106     // C++ [dcl.fct.spec]p3:
10107     //  The inline specifier shall not appear on a block scope function
10108     //  declaration.
10109     if (isInline && !NewFD->isInvalidDecl()) {
10110       if (CurContext->isFunctionOrMethod()) {
10111         // 'inline' is not allowed on block scope function declaration.
10112         Diag(D.getDeclSpec().getInlineSpecLoc(),
10113              diag::err_inline_declaration_block_scope) << Name
10114           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10115       }
10116     }
10117 
10118     // C++ [dcl.fct.spec]p6:
10119     //  The explicit specifier shall be used only in the declaration of a
10120     //  constructor or conversion function within its class definition;
10121     //  see 12.3.1 and 12.3.2.
10122     if (hasExplicit && !NewFD->isInvalidDecl() &&
10123         !isa<CXXDeductionGuideDecl>(NewFD)) {
10124       if (!CurContext->isRecord()) {
10125         // 'explicit' was specified outside of the class.
10126         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10127              diag::err_explicit_out_of_class)
10128             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10129       } else if (!isa<CXXConstructorDecl>(NewFD) &&
10130                  !isa<CXXConversionDecl>(NewFD)) {
10131         // 'explicit' was specified on a function that wasn't a constructor
10132         // or conversion function.
10133         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10134              diag::err_explicit_non_ctor_or_conv_function)
10135             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10136       }
10137     }
10138 
10139     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
10140     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
10141       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10142       // are implicitly inline.
10143       NewFD->setImplicitlyInline();
10144 
10145       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10146       // be either constructors or to return a literal type. Therefore,
10147       // destructors cannot be declared constexpr.
10148       if (isa<CXXDestructorDecl>(NewFD) &&
10149           (!getLangOpts().CPlusPlus20 ||
10150            ConstexprKind == ConstexprSpecKind::Consteval)) {
10151         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
10152             << static_cast<int>(ConstexprKind);
10153         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
10154                                     ? ConstexprSpecKind::Unspecified
10155                                     : ConstexprSpecKind::Constexpr);
10156       }
10157       // C++20 [dcl.constexpr]p2: An allocation function, or a
10158       // deallocation function shall not be declared with the consteval
10159       // specifier.
10160       if (ConstexprKind == ConstexprSpecKind::Consteval &&
10161           (NewFD->getOverloadedOperator() == OO_New ||
10162            NewFD->getOverloadedOperator() == OO_Array_New ||
10163            NewFD->getOverloadedOperator() == OO_Delete ||
10164            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
10165         Diag(D.getDeclSpec().getConstexprSpecLoc(),
10166              diag::err_invalid_consteval_decl_kind)
10167             << NewFD;
10168         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
10169       }
10170     }
10171 
10172     // If __module_private__ was specified, mark the function accordingly.
10173     if (D.getDeclSpec().isModulePrivateSpecified()) {
10174       if (isFunctionTemplateSpecialization) {
10175         SourceLocation ModulePrivateLoc
10176           = D.getDeclSpec().getModulePrivateSpecLoc();
10177         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
10178           << 0
10179           << FixItHint::CreateRemoval(ModulePrivateLoc);
10180       } else {
10181         NewFD->setModulePrivate();
10182         if (FunctionTemplate)
10183           FunctionTemplate->setModulePrivate();
10184       }
10185     }
10186 
10187     if (isFriend) {
10188       if (FunctionTemplate) {
10189         FunctionTemplate->setObjectOfFriendDecl();
10190         FunctionTemplate->setAccess(AS_public);
10191       }
10192       NewFD->setObjectOfFriendDecl();
10193       NewFD->setAccess(AS_public);
10194     }
10195 
10196     // If a function is defined as defaulted or deleted, mark it as such now.
10197     // We'll do the relevant checks on defaulted / deleted functions later.
10198     switch (D.getFunctionDefinitionKind()) {
10199     case FunctionDefinitionKind::Declaration:
10200     case FunctionDefinitionKind::Definition:
10201       break;
10202 
10203     case FunctionDefinitionKind::Defaulted:
10204       NewFD->setDefaulted();
10205       break;
10206 
10207     case FunctionDefinitionKind::Deleted:
10208       NewFD->setDeletedAsWritten();
10209       break;
10210     }
10211 
10212     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
10213         D.isFunctionDefinition() && !isInline) {
10214       // Pre C++20 [class.mfct]p2:
10215       //   A member function may be defined (8.4) in its class definition, in
10216       //   which case it is an inline member function (7.1.2)
10217       // Post C++20 [class.mfct]p1:
10218       //   If a member function is attached to the global module and is defined
10219       //   in its class definition, it is inline.
10220       NewFD->setImplicitlyInline(ImplicitInlineCXX20);
10221     }
10222 
10223     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
10224         !CurContext->isRecord()) {
10225       // C++ [class.static]p1:
10226       //   A data or function member of a class may be declared static
10227       //   in a class definition, in which case it is a static member of
10228       //   the class.
10229 
10230       // Complain about the 'static' specifier if it's on an out-of-line
10231       // member function definition.
10232 
10233       // MSVC permits the use of a 'static' storage specifier on an out-of-line
10234       // member function template declaration and class member template
10235       // declaration (MSVC versions before 2015), warn about this.
10236       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10237            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
10238              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
10239            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
10240            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
10241         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10242     }
10243 
10244     // C++11 [except.spec]p15:
10245     //   A deallocation function with no exception-specification is treated
10246     //   as if it were specified with noexcept(true).
10247     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
10248     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
10249          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
10250         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
10251       NewFD->setType(Context.getFunctionType(
10252           FPT->getReturnType(), FPT->getParamTypes(),
10253           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
10254 
10255     // C++20 [dcl.inline]/7
10256     // If an inline function or variable that is attached to a named module
10257     // is declared in a definition domain, it shall be defined in that
10258     // domain.
10259     // So, if the current declaration does not have a definition, we must
10260     // check at the end of the TU (or when the PMF starts) to see that we
10261     // have a definition at that point.
10262     if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
10263         NewFD->hasOwningModule() && NewFD->getOwningModule()->isNamedModule()) {
10264       PendingInlineFuncDecls.insert(NewFD);
10265     }
10266   }
10267 
10268   // Filter out previous declarations that don't match the scope.
10269   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
10270                        D.getCXXScopeSpec().isNotEmpty() ||
10271                        isMemberSpecialization ||
10272                        isFunctionTemplateSpecialization);
10273 
10274   // Handle GNU asm-label extension (encoded as an attribute).
10275   if (Expr *E = (Expr*) D.getAsmLabel()) {
10276     // The parser guarantees this is a string.
10277     StringLiteral *SE = cast<StringLiteral>(E);
10278     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
10279                                         /*IsLiteralLabel=*/true,
10280                                         SE->getStrTokenLoc(0)));
10281   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
10282     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
10283       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
10284     if (I != ExtnameUndeclaredIdentifiers.end()) {
10285       if (isDeclExternC(NewFD)) {
10286         NewFD->addAttr(I->second);
10287         ExtnameUndeclaredIdentifiers.erase(I);
10288       } else
10289         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
10290             << /*Variable*/0 << NewFD;
10291     }
10292   }
10293 
10294   // Copy the parameter declarations from the declarator D to the function
10295   // declaration NewFD, if they are available.  First scavenge them into Params.
10296   SmallVector<ParmVarDecl*, 16> Params;
10297   unsigned FTIIdx;
10298   if (D.isFunctionDeclarator(FTIIdx)) {
10299     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
10300 
10301     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10302     // function that takes no arguments, not a function that takes a
10303     // single void argument.
10304     // We let through "const void" here because Sema::GetTypeForDeclarator
10305     // already checks for that case.
10306     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
10307       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
10308         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
10309         assert(Param->getDeclContext() != NewFD && "Was set before ?");
10310         Param->setDeclContext(NewFD);
10311         Params.push_back(Param);
10312 
10313         if (Param->isInvalidDecl())
10314           NewFD->setInvalidDecl();
10315       }
10316     }
10317 
10318     if (!getLangOpts().CPlusPlus) {
10319       // In C, find all the tag declarations from the prototype and move them
10320       // into the function DeclContext. Remove them from the surrounding tag
10321       // injection context of the function, which is typically but not always
10322       // the TU.
10323       DeclContext *PrototypeTagContext =
10324           getTagInjectionContext(NewFD->getLexicalDeclContext());
10325       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
10326         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
10327 
10328         // We don't want to reparent enumerators. Look at their parent enum
10329         // instead.
10330         if (!TD) {
10331           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
10332             TD = cast<EnumDecl>(ECD->getDeclContext());
10333         }
10334         if (!TD)
10335           continue;
10336         DeclContext *TagDC = TD->getLexicalDeclContext();
10337         if (!TagDC->containsDecl(TD))
10338           continue;
10339         TagDC->removeDecl(TD);
10340         TD->setDeclContext(NewFD);
10341         NewFD->addDecl(TD);
10342 
10343         // Preserve the lexical DeclContext if it is not the surrounding tag
10344         // injection context of the FD. In this example, the semantic context of
10345         // E will be f and the lexical context will be S, while both the
10346         // semantic and lexical contexts of S will be f:
10347         //   void f(struct S { enum E { a } f; } s);
10348         if (TagDC != PrototypeTagContext)
10349           TD->setLexicalDeclContext(TagDC);
10350       }
10351     }
10352   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
10353     // When we're declaring a function with a typedef, typeof, etc as in the
10354     // following example, we'll need to synthesize (unnamed)
10355     // parameters for use in the declaration.
10356     //
10357     // @code
10358     // typedef void fn(int);
10359     // fn f;
10360     // @endcode
10361 
10362     // Synthesize a parameter for each argument type.
10363     for (const auto &AI : FT->param_types()) {
10364       ParmVarDecl *Param =
10365           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
10366       Param->setScopeInfo(0, Params.size());
10367       Params.push_back(Param);
10368     }
10369   } else {
10370     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
10371            "Should not need args for typedef of non-prototype fn");
10372   }
10373 
10374   // Finally, we know we have the right number of parameters, install them.
10375   NewFD->setParams(Params);
10376 
10377   if (D.getDeclSpec().isNoreturnSpecified())
10378     NewFD->addAttr(
10379         C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc()));
10380 
10381   // Functions returning a variably modified type violate C99 6.7.5.2p2
10382   // because all functions have linkage.
10383   if (!NewFD->isInvalidDecl() &&
10384       NewFD->getReturnType()->isVariablyModifiedType()) {
10385     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
10386     NewFD->setInvalidDecl();
10387   }
10388 
10389   // Apply an implicit SectionAttr if '#pragma clang section text' is active
10390   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
10391       !NewFD->hasAttr<SectionAttr>())
10392     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10393         Context, PragmaClangTextSection.SectionName,
10394         PragmaClangTextSection.PragmaLocation));
10395 
10396   // Apply an implicit SectionAttr if #pragma code_seg is active.
10397   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
10398       !NewFD->hasAttr<SectionAttr>()) {
10399     NewFD->addAttr(SectionAttr::CreateImplicit(
10400         Context, CodeSegStack.CurrentValue->getString(),
10401         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate));
10402     if (UnifySection(CodeSegStack.CurrentValue->getString(),
10403                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
10404                          ASTContext::PSF_Read,
10405                      NewFD))
10406       NewFD->dropAttr<SectionAttr>();
10407   }
10408 
10409   // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10410   // active.
10411   if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() &&
10412       !NewFD->hasAttr<StrictGuardStackCheckAttr>())
10413     NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10414         Context, PragmaClangTextSection.PragmaLocation));
10415 
10416   // Apply an implicit CodeSegAttr from class declspec or
10417   // apply an implicit SectionAttr from #pragma code_seg if active.
10418   if (!NewFD->hasAttr<CodeSegAttr>()) {
10419     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10420                                                                  D.isFunctionDefinition())) {
10421       NewFD->addAttr(SAttr);
10422     }
10423   }
10424 
10425   // Handle attributes.
10426   ProcessDeclAttributes(S, NewFD, D);
10427   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
10428   if (NewTVA && !NewTVA->isDefaultVersion() &&
10429       !Context.getTargetInfo().hasFeature("fmv")) {
10430     // Don't add to scope fmv functions declarations if fmv disabled
10431     AddToScope = false;
10432     return NewFD;
10433   }
10434 
10435   if (getLangOpts().OpenCL || getLangOpts().HLSL) {
10436     // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10437     // type.
10438     //
10439     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10440     // type declaration will generate a compilation error.
10441     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10442     if (AddressSpace != LangAS::Default) {
10443       Diag(NewFD->getLocation(), diag::err_return_value_with_address_space);
10444       NewFD->setInvalidDecl();
10445     }
10446   }
10447 
10448   if (!getLangOpts().CPlusPlus) {
10449     // Perform semantic checking on the function declaration.
10450     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10451       CheckMain(NewFD, D.getDeclSpec());
10452 
10453     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10454       CheckMSVCRTEntryPoint(NewFD);
10455 
10456     if (!NewFD->isInvalidDecl())
10457       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10458                                                   isMemberSpecialization,
10459                                                   D.isFunctionDefinition()));
10460     else if (!Previous.empty())
10461       // Recover gracefully from an invalid redeclaration.
10462       D.setRedeclaration(true);
10463     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10464             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10465            "previous declaration set still overloaded");
10466 
10467     // Diagnose no-prototype function declarations with calling conventions that
10468     // don't support variadic calls. Only do this in C and do it after merging
10469     // possibly prototyped redeclarations.
10470     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10471     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10472       CallingConv CC = FT->getExtInfo().getCC();
10473       if (!supportsVariadicCall(CC)) {
10474         // Windows system headers sometimes accidentally use stdcall without
10475         // (void) parameters, so we relax this to a warning.
10476         int DiagID =
10477             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10478         Diag(NewFD->getLocation(), DiagID)
10479             << FunctionType::getNameForCallConv(CC);
10480       }
10481     }
10482 
10483    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10484        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10485      checkNonTrivialCUnion(NewFD->getReturnType(),
10486                            NewFD->getReturnTypeSourceRange().getBegin(),
10487                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10488   } else {
10489     // C++11 [replacement.functions]p3:
10490     //  The program's definitions shall not be specified as inline.
10491     //
10492     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10493     //
10494     // Suppress the diagnostic if the function is __attribute__((used)), since
10495     // that forces an external definition to be emitted.
10496     if (D.getDeclSpec().isInlineSpecified() &&
10497         NewFD->isReplaceableGlobalAllocationFunction() &&
10498         !NewFD->hasAttr<UsedAttr>())
10499       Diag(D.getDeclSpec().getInlineSpecLoc(),
10500            diag::ext_operator_new_delete_declared_inline)
10501         << NewFD->getDeclName();
10502 
10503     // We do not add HD attributes to specializations here because
10504     // they may have different constexpr-ness compared to their
10505     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10506     // may end up with different effective targets. Instead, a
10507     // specialization inherits its target attributes from its template
10508     // in the CheckFunctionTemplateSpecialization() call below.
10509     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10510       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
10511 
10512     // Handle explict specializations of function templates
10513     // and friend function declarations with an explicit
10514     // template argument list.
10515     if (isFunctionTemplateSpecialization) {
10516       bool isDependentSpecialization = false;
10517       if (isFriend) {
10518         // For friend function specializations, this is a dependent
10519         // specialization if its semantic context is dependent, its
10520         // type is dependent, or if its template-id is dependent.
10521         isDependentSpecialization =
10522             DC->isDependentContext() || NewFD->getType()->isDependentType() ||
10523             (HasExplicitTemplateArgs &&
10524              TemplateSpecializationType::
10525                  anyInstantiationDependentTemplateArguments(
10526                      TemplateArgs.arguments()));
10527         assert((!isDependentSpecialization ||
10528                 (HasExplicitTemplateArgs == isDependentSpecialization)) &&
10529                "dependent friend function specialization without template "
10530                "args");
10531       } else {
10532         // For class-scope explicit specializations of function templates,
10533         // if the lexical context is dependent, then the specialization
10534         // is dependent.
10535         isDependentSpecialization =
10536             CurContext->isRecord() && CurContext->isDependentContext();
10537       }
10538 
10539       TemplateArgumentListInfo *ExplicitTemplateArgs =
10540           HasExplicitTemplateArgs ? &TemplateArgs : nullptr;
10541       if (isDependentSpecialization) {
10542         // If it's a dependent specialization, it may not be possible
10543         // to determine the primary template (for explicit specializations)
10544         // or befriended declaration (for friends) until the enclosing
10545         // template is instantiated. In such cases, we store the declarations
10546         // found by name lookup and defer resolution until instantiation.
10547         if (CheckDependentFunctionTemplateSpecialization(
10548                 NewFD, ExplicitTemplateArgs, Previous))
10549           NewFD->setInvalidDecl();
10550       } else if (!NewFD->isInvalidDecl()) {
10551         if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs,
10552                                                 Previous))
10553           NewFD->setInvalidDecl();
10554       }
10555 
10556       // C++ [dcl.stc]p1:
10557       //   A storage-class-specifier shall not be specified in an explicit
10558       //   specialization (14.7.3)
10559       // FIXME: We should be checking this for dependent specializations.
10560       FunctionTemplateSpecializationInfo *Info =
10561           NewFD->getTemplateSpecializationInfo();
10562       if (Info && SC != SC_None) {
10563         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
10564           Diag(NewFD->getLocation(),
10565                diag::err_explicit_specialization_inconsistent_storage_class)
10566             << SC
10567             << FixItHint::CreateRemoval(
10568                                       D.getDeclSpec().getStorageClassSpecLoc());
10569 
10570         else
10571           Diag(NewFD->getLocation(),
10572                diag::ext_explicit_specialization_storage_class)
10573             << FixItHint::CreateRemoval(
10574                                       D.getDeclSpec().getStorageClassSpecLoc());
10575       }
10576     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10577       if (CheckMemberSpecialization(NewFD, Previous))
10578           NewFD->setInvalidDecl();
10579     }
10580 
10581     // Perform semantic checking on the function declaration.
10582     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10583       CheckMain(NewFD, D.getDeclSpec());
10584 
10585     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10586       CheckMSVCRTEntryPoint(NewFD);
10587 
10588     if (!NewFD->isInvalidDecl())
10589       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10590                                                   isMemberSpecialization,
10591                                                   D.isFunctionDefinition()));
10592     else if (!Previous.empty())
10593       // Recover gracefully from an invalid redeclaration.
10594       D.setRedeclaration(true);
10595 
10596     assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||
10597             !D.isRedeclaration() ||
10598             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10599            "previous declaration set still overloaded");
10600 
10601     NamedDecl *PrincipalDecl = (FunctionTemplate
10602                                 ? cast<NamedDecl>(FunctionTemplate)
10603                                 : NewFD);
10604 
10605     if (isFriend && NewFD->getPreviousDecl()) {
10606       AccessSpecifier Access = AS_public;
10607       if (!NewFD->isInvalidDecl())
10608         Access = NewFD->getPreviousDecl()->getAccess();
10609 
10610       NewFD->setAccess(Access);
10611       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10612     }
10613 
10614     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10615         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10616       PrincipalDecl->setNonMemberOperator();
10617 
10618     // If we have a function template, check the template parameter
10619     // list. This will check and merge default template arguments.
10620     if (FunctionTemplate) {
10621       FunctionTemplateDecl *PrevTemplate =
10622                                      FunctionTemplate->getPreviousDecl();
10623       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10624                        PrevTemplate ? PrevTemplate->getTemplateParameters()
10625                                     : nullptr,
10626                             D.getDeclSpec().isFriendSpecified()
10627                               ? (D.isFunctionDefinition()
10628                                    ? TPC_FriendFunctionTemplateDefinition
10629                                    : TPC_FriendFunctionTemplate)
10630                               : (D.getCXXScopeSpec().isSet() &&
10631                                  DC && DC->isRecord() &&
10632                                  DC->isDependentContext())
10633                                   ? TPC_ClassTemplateMember
10634                                   : TPC_FunctionTemplate);
10635     }
10636 
10637     if (NewFD->isInvalidDecl()) {
10638       // Ignore all the rest of this.
10639     } else if (!D.isRedeclaration()) {
10640       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10641                                        AddToScope };
10642       // Fake up an access specifier if it's supposed to be a class member.
10643       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10644         NewFD->setAccess(AS_public);
10645 
10646       // Qualified decls generally require a previous declaration.
10647       if (D.getCXXScopeSpec().isSet()) {
10648         // ...with the major exception of templated-scope or
10649         // dependent-scope friend declarations.
10650 
10651         // TODO: we currently also suppress this check in dependent
10652         // contexts because (1) the parameter depth will be off when
10653         // matching friend templates and (2) we might actually be
10654         // selecting a friend based on a dependent factor.  But there
10655         // are situations where these conditions don't apply and we
10656         // can actually do this check immediately.
10657         //
10658         // Unless the scope is dependent, it's always an error if qualified
10659         // redeclaration lookup found nothing at all. Diagnose that now;
10660         // nothing will diagnose that error later.
10661         if (isFriend &&
10662             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10663              (!Previous.empty() && CurContext->isDependentContext()))) {
10664           // ignore these
10665         } else if (NewFD->isCPUDispatchMultiVersion() ||
10666                    NewFD->isCPUSpecificMultiVersion()) {
10667           // ignore this, we allow the redeclaration behavior here to create new
10668           // versions of the function.
10669         } else {
10670           // The user tried to provide an out-of-line definition for a
10671           // function that is a member of a class or namespace, but there
10672           // was no such member function declared (C++ [class.mfct]p2,
10673           // C++ [namespace.memdef]p2). For example:
10674           //
10675           // class X {
10676           //   void f() const;
10677           // };
10678           //
10679           // void X::f() { } // ill-formed
10680           //
10681           // Complain about this problem, and attempt to suggest close
10682           // matches (e.g., those that differ only in cv-qualifiers and
10683           // whether the parameter types are references).
10684 
10685           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10686                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10687             AddToScope = ExtraArgs.AddToScope;
10688             return Result;
10689           }
10690         }
10691 
10692         // Unqualified local friend declarations are required to resolve
10693         // to something.
10694       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10695         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10696                 *this, Previous, NewFD, ExtraArgs, true, S)) {
10697           AddToScope = ExtraArgs.AddToScope;
10698           return Result;
10699         }
10700       }
10701     } else if (!D.isFunctionDefinition() &&
10702                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10703                !isFriend && !isFunctionTemplateSpecialization &&
10704                !isMemberSpecialization) {
10705       // An out-of-line member function declaration must also be a
10706       // definition (C++ [class.mfct]p2).
10707       // Note that this is not the case for explicit specializations of
10708       // function templates or member functions of class templates, per
10709       // C++ [temp.expl.spec]p2. We also allow these declarations as an
10710       // extension for compatibility with old SWIG code which likes to
10711       // generate them.
10712       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10713         << D.getCXXScopeSpec().getRange();
10714     }
10715   }
10716 
10717   if (getLangOpts().HLSL && D.isFunctionDefinition()) {
10718     // Any top level function could potentially be specified as an entry.
10719     if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier())
10720       ActOnHLSLTopLevelFunction(NewFD);
10721 
10722     if (NewFD->hasAttr<HLSLShaderAttr>())
10723       CheckHLSLEntryPoint(NewFD);
10724   }
10725 
10726   // If this is the first declaration of a library builtin function, add
10727   // attributes as appropriate.
10728   if (!D.isRedeclaration()) {
10729     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10730       if (unsigned BuiltinID = II->getBuiltinID()) {
10731         bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10732         if (!InStdNamespace &&
10733             NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10734           if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10735             // Validate the type matches unless this builtin is specified as
10736             // matching regardless of its declared type.
10737             if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10738               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10739             } else {
10740               ASTContext::GetBuiltinTypeError Error;
10741               LookupNecessaryTypesForBuiltin(S, BuiltinID);
10742               QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10743 
10744               if (!Error && !BuiltinType.isNull() &&
10745                   Context.hasSameFunctionTypeIgnoringExceptionSpec(
10746                       NewFD->getType(), BuiltinType))
10747                 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10748             }
10749           }
10750         } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10751                    isStdBuiltin(Context, NewFD, BuiltinID)) {
10752           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10753         }
10754       }
10755     }
10756   }
10757 
10758   ProcessPragmaWeak(S, NewFD);
10759   checkAttributesAfterMerging(*this, *NewFD);
10760 
10761   AddKnownFunctionAttributes(NewFD);
10762 
10763   if (NewFD->hasAttr<OverloadableAttr>() &&
10764       !NewFD->getType()->getAs<FunctionProtoType>()) {
10765     Diag(NewFD->getLocation(),
10766          diag::err_attribute_overloadable_no_prototype)
10767       << NewFD;
10768     NewFD->dropAttr<OverloadableAttr>();
10769   }
10770 
10771   // If there's a #pragma GCC visibility in scope, and this isn't a class
10772   // member, set the visibility of this function.
10773   if (!DC->isRecord() && NewFD->isExternallyVisible())
10774     AddPushedVisibilityAttribute(NewFD);
10775 
10776   // If there's a #pragma clang arc_cf_code_audited in scope, consider
10777   // marking the function.
10778   AddCFAuditedAttribute(NewFD);
10779 
10780   // If this is a function definition, check if we have to apply any
10781   // attributes (i.e. optnone and no_builtin) due to a pragma.
10782   if (D.isFunctionDefinition()) {
10783     AddRangeBasedOptnone(NewFD);
10784     AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10785     AddSectionMSAllocText(NewFD);
10786     ModifyFnAttributesMSPragmaOptimize(NewFD);
10787   }
10788 
10789   // If this is the first declaration of an extern C variable, update
10790   // the map of such variables.
10791   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10792       isIncompleteDeclExternC(*this, NewFD))
10793     RegisterLocallyScopedExternCDecl(NewFD, S);
10794 
10795   // Set this FunctionDecl's range up to the right paren.
10796   NewFD->setRangeEnd(D.getSourceRange().getEnd());
10797 
10798   if (D.isRedeclaration() && !Previous.empty()) {
10799     NamedDecl *Prev = Previous.getRepresentativeDecl();
10800     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10801                                    isMemberSpecialization ||
10802                                        isFunctionTemplateSpecialization,
10803                                    D.isFunctionDefinition());
10804   }
10805 
10806   if (getLangOpts().CUDA) {
10807     IdentifierInfo *II = NewFD->getIdentifier();
10808     if (II && II->isStr(getCudaConfigureFuncName()) &&
10809         !NewFD->isInvalidDecl() &&
10810         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10811       if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10812         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10813             << getCudaConfigureFuncName();
10814       Context.setcudaConfigureCallDecl(NewFD);
10815     }
10816 
10817     // Variadic functions, other than a *declaration* of printf, are not allowed
10818     // in device-side CUDA code, unless someone passed
10819     // -fcuda-allow-variadic-functions.
10820     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10821         (NewFD->hasAttr<CUDADeviceAttr>() ||
10822          NewFD->hasAttr<CUDAGlobalAttr>()) &&
10823         !(II && II->isStr("printf") && NewFD->isExternC() &&
10824           !D.isFunctionDefinition())) {
10825       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10826     }
10827   }
10828 
10829   MarkUnusedFileScopedDecl(NewFD);
10830 
10831 
10832 
10833   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10834     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10835     if (SC == SC_Static) {
10836       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10837       D.setInvalidType();
10838     }
10839 
10840     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10841     if (!NewFD->getReturnType()->isVoidType()) {
10842       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10843       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10844           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10845                                 : FixItHint());
10846       D.setInvalidType();
10847     }
10848 
10849     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10850     for (auto *Param : NewFD->parameters())
10851       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10852 
10853     if (getLangOpts().OpenCLCPlusPlus) {
10854       if (DC->isRecord()) {
10855         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10856         D.setInvalidType();
10857       }
10858       if (FunctionTemplate) {
10859         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10860         D.setInvalidType();
10861       }
10862     }
10863   }
10864 
10865   if (getLangOpts().CPlusPlus) {
10866     // Precalculate whether this is a friend function template with a constraint
10867     // that depends on an enclosing template, per [temp.friend]p9.
10868     if (isFriend && FunctionTemplate &&
10869         FriendConstraintsDependOnEnclosingTemplate(NewFD)) {
10870       NewFD->setFriendConstraintRefersToEnclosingTemplate(true);
10871 
10872       // C++ [temp.friend]p9:
10873       //    A friend function template with a constraint that depends on a
10874       //    template parameter from an enclosing template shall be a definition.
10875       if (!D.isFunctionDefinition()) {
10876         Diag(NewFD->getBeginLoc(),
10877              diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def);
10878         NewFD->setInvalidDecl();
10879       }
10880     }
10881 
10882     if (FunctionTemplate) {
10883       if (NewFD->isInvalidDecl())
10884         FunctionTemplate->setInvalidDecl();
10885       return FunctionTemplate;
10886     }
10887 
10888     if (isMemberSpecialization && !NewFD->isInvalidDecl())
10889       CompleteMemberSpecialization(NewFD, Previous);
10890   }
10891 
10892   for (const ParmVarDecl *Param : NewFD->parameters()) {
10893     QualType PT = Param->getType();
10894 
10895     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10896     // types.
10897     if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10898       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10899         QualType ElemTy = PipeTy->getElementType();
10900           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10901             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10902             D.setInvalidType();
10903           }
10904       }
10905     }
10906     // WebAssembly tables can't be used as function parameters.
10907     if (Context.getTargetInfo().getTriple().isWasm()) {
10908       if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10909         Diag(Param->getTypeSpecStartLoc(),
10910              diag::err_wasm_table_as_function_parameter);
10911         D.setInvalidType();
10912       }
10913     }
10914   }
10915 
10916   // Diagnose availability attributes. Availability cannot be used on functions
10917   // that are run during load/unload.
10918   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10919     if (NewFD->hasAttr<ConstructorAttr>()) {
10920       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10921           << 1;
10922       NewFD->dropAttr<AvailabilityAttr>();
10923     }
10924     if (NewFD->hasAttr<DestructorAttr>()) {
10925       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10926           << 2;
10927       NewFD->dropAttr<AvailabilityAttr>();
10928     }
10929   }
10930 
10931   // Diagnose no_builtin attribute on function declaration that are not a
10932   // definition.
10933   // FIXME: We should really be doing this in
10934   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10935   // the FunctionDecl and at this point of the code
10936   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10937   // because Sema::ActOnStartOfFunctionDef has not been called yet.
10938   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10939     switch (D.getFunctionDefinitionKind()) {
10940     case FunctionDefinitionKind::Defaulted:
10941     case FunctionDefinitionKind::Deleted:
10942       Diag(NBA->getLocation(),
10943            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10944           << NBA->getSpelling();
10945       break;
10946     case FunctionDefinitionKind::Declaration:
10947       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10948           << NBA->getSpelling();
10949       break;
10950     case FunctionDefinitionKind::Definition:
10951       break;
10952     }
10953 
10954   return NewFD;
10955 }
10956 
10957 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
10958 /// when __declspec(code_seg) "is applied to a class, all member functions of
10959 /// the class and nested classes -- this includes compiler-generated special
10960 /// member functions -- are put in the specified segment."
10961 /// The actual behavior is a little more complicated. The Microsoft compiler
10962 /// won't check outer classes if there is an active value from #pragma code_seg.
10963 /// The CodeSeg is always applied from the direct parent but only from outer
10964 /// classes when the #pragma code_seg stack is empty. See:
10965 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10966 /// available since MS has removed the page.
10967 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10968   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10969   if (!Method)
10970     return nullptr;
10971   const CXXRecordDecl *Parent = Method->getParent();
10972   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10973     Attr *NewAttr = SAttr->clone(S.getASTContext());
10974     NewAttr->setImplicit(true);
10975     return NewAttr;
10976   }
10977 
10978   // The Microsoft compiler won't check outer classes for the CodeSeg
10979   // when the #pragma code_seg stack is active.
10980   if (S.CodeSegStack.CurrentValue)
10981    return nullptr;
10982 
10983   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10984     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10985       Attr *NewAttr = SAttr->clone(S.getASTContext());
10986       NewAttr->setImplicit(true);
10987       return NewAttr;
10988     }
10989   }
10990   return nullptr;
10991 }
10992 
10993 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10994 /// containing class. Otherwise it will return implicit SectionAttr if the
10995 /// function is a definition and there is an active value on CodeSegStack
10996 /// (from the current #pragma code-seg value).
10997 ///
10998 /// \param FD Function being declared.
10999 /// \param IsDefinition Whether it is a definition or just a declaration.
11000 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
11001 ///          nullptr if no attribute should be added.
11002 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
11003                                                        bool IsDefinition) {
11004   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
11005     return A;
11006   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
11007       CodeSegStack.CurrentValue)
11008     return SectionAttr::CreateImplicit(
11009         getASTContext(), CodeSegStack.CurrentValue->getString(),
11010         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate);
11011   return nullptr;
11012 }
11013 
11014 /// Determines if we can perform a correct type check for \p D as a
11015 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
11016 /// best-effort check.
11017 ///
11018 /// \param NewD The new declaration.
11019 /// \param OldD The old declaration.
11020 /// \param NewT The portion of the type of the new declaration to check.
11021 /// \param OldT The portion of the type of the old declaration to check.
11022 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
11023                                           QualType NewT, QualType OldT) {
11024   if (!NewD->getLexicalDeclContext()->isDependentContext())
11025     return true;
11026 
11027   // For dependently-typed local extern declarations and friends, we can't
11028   // perform a correct type check in general until instantiation:
11029   //
11030   //   int f();
11031   //   template<typename T> void g() { T f(); }
11032   //
11033   // (valid if g() is only instantiated with T = int).
11034   if (NewT->isDependentType() &&
11035       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
11036     return false;
11037 
11038   // Similarly, if the previous declaration was a dependent local extern
11039   // declaration, we don't really know its type yet.
11040   if (OldT->isDependentType() && OldD->isLocalExternDecl())
11041     return false;
11042 
11043   return true;
11044 }
11045 
11046 /// Checks if the new declaration declared in dependent context must be
11047 /// put in the same redeclaration chain as the specified declaration.
11048 ///
11049 /// \param D Declaration that is checked.
11050 /// \param PrevDecl Previous declaration found with proper lookup method for the
11051 ///                 same declaration name.
11052 /// \returns True if D must be added to the redeclaration chain which PrevDecl
11053 ///          belongs to.
11054 ///
11055 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
11056   if (!D->getLexicalDeclContext()->isDependentContext())
11057     return true;
11058 
11059   // Don't chain dependent friend function definitions until instantiation, to
11060   // permit cases like
11061   //
11062   //   void func();
11063   //   template<typename T> class C1 { friend void func() {} };
11064   //   template<typename T> class C2 { friend void func() {} };
11065   //
11066   // ... which is valid if only one of C1 and C2 is ever instantiated.
11067   //
11068   // FIXME: This need only apply to function definitions. For now, we proxy
11069   // this by checking for a file-scope function. We do not want this to apply
11070   // to friend declarations nominating member functions, because that gets in
11071   // the way of access checks.
11072   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
11073     return false;
11074 
11075   auto *VD = dyn_cast<ValueDecl>(D);
11076   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
11077   return !VD || !PrevVD ||
11078          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
11079                                         PrevVD->getType());
11080 }
11081 
11082 /// Check the target or target_version attribute of the function for
11083 /// MultiVersion validity.
11084 ///
11085 /// Returns true if there was an error, false otherwise.
11086 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
11087   const auto *TA = FD->getAttr<TargetAttr>();
11088   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11089   assert(
11090       (TA || TVA) &&
11091       "MultiVersion candidate requires a target or target_version attribute");
11092   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
11093   enum ErrType { Feature = 0, Architecture = 1 };
11094 
11095   if (TA) {
11096     ParsedTargetAttr ParseInfo =
11097         S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr());
11098     if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) {
11099       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11100           << Architecture << ParseInfo.CPU;
11101       return true;
11102     }
11103     for (const auto &Feat : ParseInfo.Features) {
11104       auto BareFeat = StringRef{Feat}.substr(1);
11105       if (Feat[0] == '-') {
11106         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11107             << Feature << ("no-" + BareFeat).str();
11108         return true;
11109       }
11110 
11111       if (!TargetInfo.validateCpuSupports(BareFeat) ||
11112           !TargetInfo.isValidFeatureName(BareFeat)) {
11113         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11114             << Feature << BareFeat;
11115         return true;
11116       }
11117     }
11118   }
11119 
11120   if (TVA) {
11121     llvm::SmallVector<StringRef, 8> Feats;
11122     TVA->getFeatures(Feats);
11123     for (const auto &Feat : Feats) {
11124       if (!TargetInfo.validateCpuSupports(Feat)) {
11125         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11126             << Feature << Feat;
11127         return true;
11128       }
11129     }
11130   }
11131   return false;
11132 }
11133 
11134 // Provide a white-list of attributes that are allowed to be combined with
11135 // multiversion functions.
11136 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
11137                                            MultiVersionKind MVKind) {
11138   // Note: this list/diagnosis must match the list in
11139   // checkMultiversionAttributesAllSame.
11140   switch (Kind) {
11141   default:
11142     return false;
11143   case attr::Used:
11144     return MVKind == MultiVersionKind::Target;
11145   case attr::NonNull:
11146   case attr::NoThrow:
11147     return true;
11148   }
11149 }
11150 
11151 static bool checkNonMultiVersionCompatAttributes(Sema &S,
11152                                                  const FunctionDecl *FD,
11153                                                  const FunctionDecl *CausedFD,
11154                                                  MultiVersionKind MVKind) {
11155   const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
11156     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
11157         << static_cast<unsigned>(MVKind) << A;
11158     if (CausedFD)
11159       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
11160     return true;
11161   };
11162 
11163   for (const Attr *A : FD->attrs()) {
11164     switch (A->getKind()) {
11165     case attr::CPUDispatch:
11166     case attr::CPUSpecific:
11167       if (MVKind != MultiVersionKind::CPUDispatch &&
11168           MVKind != MultiVersionKind::CPUSpecific)
11169         return Diagnose(S, A);
11170       break;
11171     case attr::Target:
11172       if (MVKind != MultiVersionKind::Target)
11173         return Diagnose(S, A);
11174       break;
11175     case attr::TargetVersion:
11176       if (MVKind != MultiVersionKind::TargetVersion)
11177         return Diagnose(S, A);
11178       break;
11179     case attr::TargetClones:
11180       if (MVKind != MultiVersionKind::TargetClones)
11181         return Diagnose(S, A);
11182       break;
11183     default:
11184       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
11185         return Diagnose(S, A);
11186       break;
11187     }
11188   }
11189   return false;
11190 }
11191 
11192 bool Sema::areMultiversionVariantFunctionsCompatible(
11193     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
11194     const PartialDiagnostic &NoProtoDiagID,
11195     const PartialDiagnosticAt &NoteCausedDiagIDAt,
11196     const PartialDiagnosticAt &NoSupportDiagIDAt,
11197     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
11198     bool ConstexprSupported, bool CLinkageMayDiffer) {
11199   enum DoesntSupport {
11200     FuncTemplates = 0,
11201     VirtFuncs = 1,
11202     DeducedReturn = 2,
11203     Constructors = 3,
11204     Destructors = 4,
11205     DeletedFuncs = 5,
11206     DefaultedFuncs = 6,
11207     ConstexprFuncs = 7,
11208     ConstevalFuncs = 8,
11209     Lambda = 9,
11210   };
11211   enum Different {
11212     CallingConv = 0,
11213     ReturnType = 1,
11214     ConstexprSpec = 2,
11215     InlineSpec = 3,
11216     Linkage = 4,
11217     LanguageLinkage = 5,
11218   };
11219 
11220   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
11221       !OldFD->getType()->getAs<FunctionProtoType>()) {
11222     Diag(OldFD->getLocation(), NoProtoDiagID);
11223     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
11224     return true;
11225   }
11226 
11227   if (NoProtoDiagID.getDiagID() != 0 &&
11228       !NewFD->getType()->getAs<FunctionProtoType>())
11229     return Diag(NewFD->getLocation(), NoProtoDiagID);
11230 
11231   if (!TemplatesSupported &&
11232       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11233     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11234            << FuncTemplates;
11235 
11236   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
11237     if (NewCXXFD->isVirtual())
11238       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11239              << VirtFuncs;
11240 
11241     if (isa<CXXConstructorDecl>(NewCXXFD))
11242       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11243              << Constructors;
11244 
11245     if (isa<CXXDestructorDecl>(NewCXXFD))
11246       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11247              << Destructors;
11248   }
11249 
11250   if (NewFD->isDeleted())
11251     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11252            << DeletedFuncs;
11253 
11254   if (NewFD->isDefaulted())
11255     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11256            << DefaultedFuncs;
11257 
11258   if (!ConstexprSupported && NewFD->isConstexpr())
11259     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11260            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
11261 
11262   QualType NewQType = Context.getCanonicalType(NewFD->getType());
11263   const auto *NewType = cast<FunctionType>(NewQType);
11264   QualType NewReturnType = NewType->getReturnType();
11265 
11266   if (NewReturnType->isUndeducedType())
11267     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11268            << DeducedReturn;
11269 
11270   // Ensure the return type is identical.
11271   if (OldFD) {
11272     QualType OldQType = Context.getCanonicalType(OldFD->getType());
11273     const auto *OldType = cast<FunctionType>(OldQType);
11274     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
11275     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
11276 
11277     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
11278       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
11279 
11280     QualType OldReturnType = OldType->getReturnType();
11281 
11282     if (OldReturnType != NewReturnType)
11283       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
11284 
11285     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
11286       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
11287 
11288     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
11289       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
11290 
11291     if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
11292       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
11293 
11294     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
11295       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
11296 
11297     if (CheckEquivalentExceptionSpec(
11298             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
11299             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
11300       return true;
11301   }
11302   return false;
11303 }
11304 
11305 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
11306                                              const FunctionDecl *NewFD,
11307                                              bool CausesMV,
11308                                              MultiVersionKind MVKind) {
11309   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11310     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
11311     if (OldFD)
11312       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11313     return true;
11314   }
11315 
11316   bool IsCPUSpecificCPUDispatchMVKind =
11317       MVKind == MultiVersionKind::CPUDispatch ||
11318       MVKind == MultiVersionKind::CPUSpecific;
11319 
11320   if (CausesMV && OldFD &&
11321       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
11322     return true;
11323 
11324   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
11325     return true;
11326 
11327   // Only allow transition to MultiVersion if it hasn't been used.
11328   if (OldFD && CausesMV && OldFD->isUsed(false))
11329     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11330 
11331   return S.areMultiversionVariantFunctionsCompatible(
11332       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
11333       PartialDiagnosticAt(NewFD->getLocation(),
11334                           S.PDiag(diag::note_multiversioning_caused_here)),
11335       PartialDiagnosticAt(NewFD->getLocation(),
11336                           S.PDiag(diag::err_multiversion_doesnt_support)
11337                               << static_cast<unsigned>(MVKind)),
11338       PartialDiagnosticAt(NewFD->getLocation(),
11339                           S.PDiag(diag::err_multiversion_diff)),
11340       /*TemplatesSupported=*/false,
11341       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
11342       /*CLinkageMayDiffer=*/false);
11343 }
11344 
11345 /// Check the validity of a multiversion function declaration that is the
11346 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11347 ///
11348 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11349 ///
11350 /// Returns true if there was an error, false otherwise.
11351 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) {
11352   MultiVersionKind MVKind = FD->getMultiVersionKind();
11353   assert(MVKind != MultiVersionKind::None &&
11354          "Function lacks multiversion attribute");
11355   const auto *TA = FD->getAttr<TargetAttr>();
11356   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11357   // Target and target_version only causes MV if it is default, otherwise this
11358   // is a normal function.
11359   if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion()))
11360     return false;
11361 
11362   if ((TA || TVA) && CheckMultiVersionValue(S, FD)) {
11363     FD->setInvalidDecl();
11364     return true;
11365   }
11366 
11367   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
11368     FD->setInvalidDecl();
11369     return true;
11370   }
11371 
11372   FD->setIsMultiVersion();
11373   return false;
11374 }
11375 
11376 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
11377   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
11378     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
11379       return true;
11380   }
11381 
11382   return false;
11383 }
11384 
11385 static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD,
11386                                              FunctionDecl *NewFD,
11387                                              bool &Redeclaration,
11388                                              NamedDecl *&OldDecl,
11389                                              LookupResult &Previous) {
11390   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11391   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11392   const auto *OldTA = OldFD->getAttr<TargetAttr>();
11393   const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>();
11394   // If the old decl is NOT MultiVersioned yet, and we don't cause that
11395   // to change, this is a simple redeclaration.
11396   if ((NewTA && !NewTA->isDefaultVersion() &&
11397        (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) ||
11398       (NewTVA && !NewTVA->isDefaultVersion() &&
11399        (!OldTVA || OldTVA->getName() == NewTVA->getName())))
11400     return false;
11401 
11402   // Otherwise, this decl causes MultiVersioning.
11403   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
11404                                        NewTVA ? MultiVersionKind::TargetVersion
11405                                               : MultiVersionKind::Target)) {
11406     NewFD->setInvalidDecl();
11407     return true;
11408   }
11409 
11410   if (CheckMultiVersionValue(S, NewFD)) {
11411     NewFD->setInvalidDecl();
11412     return true;
11413   }
11414 
11415   // If this is 'default', permit the forward declaration.
11416   if (!OldFD->isMultiVersion() &&
11417       ((NewTA && NewTA->isDefaultVersion() && !OldTA) ||
11418        (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) {
11419     Redeclaration = true;
11420     OldDecl = OldFD;
11421     OldFD->setIsMultiVersion();
11422     NewFD->setIsMultiVersion();
11423     return false;
11424   }
11425 
11426   if (CheckMultiVersionValue(S, OldFD)) {
11427     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11428     NewFD->setInvalidDecl();
11429     return true;
11430   }
11431 
11432   if (NewTA) {
11433     ParsedTargetAttr OldParsed =
11434         S.getASTContext().getTargetInfo().parseTargetAttr(
11435             OldTA->getFeaturesStr());
11436     llvm::sort(OldParsed.Features);
11437     ParsedTargetAttr NewParsed =
11438         S.getASTContext().getTargetInfo().parseTargetAttr(
11439             NewTA->getFeaturesStr());
11440     // Sort order doesn't matter, it just needs to be consistent.
11441     llvm::sort(NewParsed.Features);
11442     if (OldParsed == NewParsed) {
11443       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11444       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11445       NewFD->setInvalidDecl();
11446       return true;
11447     }
11448   }
11449 
11450   if (NewTVA) {
11451     llvm::SmallVector<StringRef, 8> Feats;
11452     OldTVA->getFeatures(Feats);
11453     llvm::sort(Feats);
11454     llvm::SmallVector<StringRef, 8> NewFeats;
11455     NewTVA->getFeatures(NewFeats);
11456     llvm::sort(NewFeats);
11457 
11458     if (Feats == NewFeats) {
11459       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11460       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11461       NewFD->setInvalidDecl();
11462       return true;
11463     }
11464   }
11465 
11466   for (const auto *FD : OldFD->redecls()) {
11467     const auto *CurTA = FD->getAttr<TargetAttr>();
11468     const auto *CurTVA = FD->getAttr<TargetVersionAttr>();
11469     // We allow forward declarations before ANY multiversioning attributes, but
11470     // nothing after the fact.
11471     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11472         ((NewTA && (!CurTA || CurTA->isInherited())) ||
11473          (NewTVA && (!CurTVA || CurTVA->isInherited())))) {
11474       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11475           << (NewTA ? 0 : 2);
11476       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11477       NewFD->setInvalidDecl();
11478       return true;
11479     }
11480   }
11481 
11482   OldFD->setIsMultiVersion();
11483   NewFD->setIsMultiVersion();
11484   Redeclaration = false;
11485   OldDecl = nullptr;
11486   Previous.clear();
11487   return false;
11488 }
11489 
11490 static bool MultiVersionTypesCompatible(MultiVersionKind Old,
11491                                         MultiVersionKind New) {
11492   if (Old == New || Old == MultiVersionKind::None ||
11493       New == MultiVersionKind::None)
11494     return true;
11495 
11496   return (Old == MultiVersionKind::CPUDispatch &&
11497           New == MultiVersionKind::CPUSpecific) ||
11498          (Old == MultiVersionKind::CPUSpecific &&
11499           New == MultiVersionKind::CPUDispatch);
11500 }
11501 
11502 /// Check the validity of a new function declaration being added to an existing
11503 /// multiversioned declaration collection.
11504 static bool CheckMultiVersionAdditionalDecl(
11505     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11506     MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp,
11507     const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones,
11508     bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
11509   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11510   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11511   MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11512   // Disallow mixing of multiversioning types.
11513   if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
11514     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11515     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11516     NewFD->setInvalidDecl();
11517     return true;
11518   }
11519 
11520   ParsedTargetAttr NewParsed;
11521   if (NewTA) {
11522     NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr(
11523         NewTA->getFeaturesStr());
11524     llvm::sort(NewParsed.Features);
11525   }
11526   llvm::SmallVector<StringRef, 8> NewFeats;
11527   if (NewTVA) {
11528     NewTVA->getFeatures(NewFeats);
11529     llvm::sort(NewFeats);
11530   }
11531 
11532   bool UseMemberUsingDeclRules =
11533       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11534 
11535   bool MayNeedOverloadableChecks =
11536       AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11537 
11538   // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11539   // of a previous member of the MultiVersion set.
11540   for (NamedDecl *ND : Previous) {
11541     FunctionDecl *CurFD = ND->getAsFunction();
11542     if (!CurFD || CurFD->isInvalidDecl())
11543       continue;
11544     if (MayNeedOverloadableChecks &&
11545         S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11546       continue;
11547 
11548     if (NewMVKind == MultiVersionKind::None &&
11549         OldMVKind == MultiVersionKind::TargetVersion) {
11550       NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11551           S.Context, "default", NewFD->getSourceRange()));
11552       NewFD->setIsMultiVersion();
11553       NewMVKind = MultiVersionKind::TargetVersion;
11554       if (!NewTVA) {
11555         NewTVA = NewFD->getAttr<TargetVersionAttr>();
11556         NewTVA->getFeatures(NewFeats);
11557         llvm::sort(NewFeats);
11558       }
11559     }
11560 
11561     switch (NewMVKind) {
11562     case MultiVersionKind::None:
11563       assert(OldMVKind == MultiVersionKind::TargetClones &&
11564              "Only target_clones can be omitted in subsequent declarations");
11565       break;
11566     case MultiVersionKind::Target: {
11567       const auto *CurTA = CurFD->getAttr<TargetAttr>();
11568       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11569         NewFD->setIsMultiVersion();
11570         Redeclaration = true;
11571         OldDecl = ND;
11572         return false;
11573       }
11574 
11575       ParsedTargetAttr CurParsed =
11576           S.getASTContext().getTargetInfo().parseTargetAttr(
11577               CurTA->getFeaturesStr());
11578       llvm::sort(CurParsed.Features);
11579       if (CurParsed == NewParsed) {
11580         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11581         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11582         NewFD->setInvalidDecl();
11583         return true;
11584       }
11585       break;
11586     }
11587     case MultiVersionKind::TargetVersion: {
11588       const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>();
11589       if (CurTVA->getName() == NewTVA->getName()) {
11590         NewFD->setIsMultiVersion();
11591         Redeclaration = true;
11592         OldDecl = ND;
11593         return false;
11594       }
11595       llvm::SmallVector<StringRef, 8> CurFeats;
11596       if (CurTVA) {
11597         CurTVA->getFeatures(CurFeats);
11598         llvm::sort(CurFeats);
11599       }
11600       if (CurFeats == NewFeats) {
11601         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11602         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11603         NewFD->setInvalidDecl();
11604         return true;
11605       }
11606       break;
11607     }
11608     case MultiVersionKind::TargetClones: {
11609       const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
11610       Redeclaration = true;
11611       OldDecl = CurFD;
11612       NewFD->setIsMultiVersion();
11613 
11614       if (CurClones && NewClones &&
11615           (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11616            !std::equal(CurClones->featuresStrs_begin(),
11617                        CurClones->featuresStrs_end(),
11618                        NewClones->featuresStrs_begin()))) {
11619         S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11620         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11621         NewFD->setInvalidDecl();
11622         return true;
11623       }
11624 
11625       return false;
11626     }
11627     case MultiVersionKind::CPUSpecific:
11628     case MultiVersionKind::CPUDispatch: {
11629       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11630       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11631       // Handle CPUDispatch/CPUSpecific versions.
11632       // Only 1 CPUDispatch function is allowed, this will make it go through
11633       // the redeclaration errors.
11634       if (NewMVKind == MultiVersionKind::CPUDispatch &&
11635           CurFD->hasAttr<CPUDispatchAttr>()) {
11636         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11637             std::equal(
11638                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11639                 NewCPUDisp->cpus_begin(),
11640                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11641                   return Cur->getName() == New->getName();
11642                 })) {
11643           NewFD->setIsMultiVersion();
11644           Redeclaration = true;
11645           OldDecl = ND;
11646           return false;
11647         }
11648 
11649         // If the declarations don't match, this is an error condition.
11650         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11651         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11652         NewFD->setInvalidDecl();
11653         return true;
11654       }
11655       if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11656         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11657             std::equal(
11658                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11659                 NewCPUSpec->cpus_begin(),
11660                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11661                   return Cur->getName() == New->getName();
11662                 })) {
11663           NewFD->setIsMultiVersion();
11664           Redeclaration = true;
11665           OldDecl = ND;
11666           return false;
11667         }
11668 
11669         // Only 1 version of CPUSpecific is allowed for each CPU.
11670         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11671           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11672             if (CurII == NewII) {
11673               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11674                   << NewII;
11675               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11676               NewFD->setInvalidDecl();
11677               return true;
11678             }
11679           }
11680         }
11681       }
11682       break;
11683     }
11684     }
11685   }
11686 
11687   // Else, this is simply a non-redecl case.  Checking the 'value' is only
11688   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11689   // handled in the attribute adding step.
11690   if ((NewMVKind == MultiVersionKind::TargetVersion ||
11691        NewMVKind == MultiVersionKind::Target) &&
11692       CheckMultiVersionValue(S, NewFD)) {
11693     NewFD->setInvalidDecl();
11694     return true;
11695   }
11696 
11697   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11698                                        !OldFD->isMultiVersion(), NewMVKind)) {
11699     NewFD->setInvalidDecl();
11700     return true;
11701   }
11702 
11703   // Permit forward declarations in the case where these two are compatible.
11704   if (!OldFD->isMultiVersion()) {
11705     OldFD->setIsMultiVersion();
11706     NewFD->setIsMultiVersion();
11707     Redeclaration = true;
11708     OldDecl = OldFD;
11709     return false;
11710   }
11711 
11712   NewFD->setIsMultiVersion();
11713   Redeclaration = false;
11714   OldDecl = nullptr;
11715   Previous.clear();
11716   return false;
11717 }
11718 
11719 /// Check the validity of a mulitversion function declaration.
11720 /// Also sets the multiversion'ness' of the function itself.
11721 ///
11722 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11723 ///
11724 /// Returns true if there was an error, false otherwise.
11725 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11726                                       bool &Redeclaration, NamedDecl *&OldDecl,
11727                                       LookupResult &Previous) {
11728   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11729   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11730   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11731   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11732   const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11733   MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11734 
11735   // Main isn't allowed to become a multiversion function, however it IS
11736   // permitted to have 'main' be marked with the 'target' optimization hint,
11737   // for 'target_version' only default is allowed.
11738   if (NewFD->isMain()) {
11739     if (MVKind != MultiVersionKind::None &&
11740         !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) &&
11741         !(MVKind == MultiVersionKind::TargetVersion &&
11742           NewTVA->isDefaultVersion())) {
11743       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11744       NewFD->setInvalidDecl();
11745       return true;
11746     }
11747     return false;
11748   }
11749 
11750   // Target attribute on AArch64 is not used for multiversioning
11751   if (NewTA && S.getASTContext().getTargetInfo().getTriple().isAArch64())
11752     return false;
11753 
11754   if (!OldDecl || !OldDecl->getAsFunction() ||
11755       OldDecl->getDeclContext()->getRedeclContext() !=
11756           NewFD->getDeclContext()->getRedeclContext()) {
11757     // If there's no previous declaration, AND this isn't attempting to cause
11758     // multiversioning, this isn't an error condition.
11759     if (MVKind == MultiVersionKind::None)
11760       return false;
11761     return CheckMultiVersionFirstFunction(S, NewFD);
11762   }
11763 
11764   FunctionDecl *OldFD = OldDecl->getAsFunction();
11765 
11766   if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) {
11767     if (NewTVA || !OldFD->getAttr<TargetVersionAttr>())
11768       return false;
11769     if (!NewFD->getType()->getAs<FunctionProtoType>()) {
11770       // Multiversion declaration doesn't have prototype.
11771       S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
11772       NewFD->setInvalidDecl();
11773     } else {
11774       // No "target_version" attribute is equivalent to "default" attribute.
11775       NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11776           S.Context, "default", NewFD->getSourceRange()));
11777       NewFD->setIsMultiVersion();
11778       OldFD->setIsMultiVersion();
11779       OldDecl = OldFD;
11780       Redeclaration = true;
11781     }
11782     return true;
11783   }
11784 
11785   // Multiversioned redeclarations aren't allowed to omit the attribute, except
11786   // for target_clones and target_version.
11787   if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11788       OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones &&
11789       OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) {
11790     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11791         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11792     NewFD->setInvalidDecl();
11793     return true;
11794   }
11795 
11796   if (!OldFD->isMultiVersion()) {
11797     switch (MVKind) {
11798     case MultiVersionKind::Target:
11799     case MultiVersionKind::TargetVersion:
11800       return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration,
11801                                               OldDecl, Previous);
11802     case MultiVersionKind::TargetClones:
11803       if (OldFD->isUsed(false)) {
11804         NewFD->setInvalidDecl();
11805         return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11806       }
11807       OldFD->setIsMultiVersion();
11808       break;
11809 
11810     case MultiVersionKind::CPUDispatch:
11811     case MultiVersionKind::CPUSpecific:
11812     case MultiVersionKind::None:
11813       break;
11814     }
11815   }
11816 
11817   // At this point, we have a multiversion function decl (in OldFD) AND an
11818   // appropriate attribute in the current function decl.  Resolve that these are
11819   // still compatible with previous declarations.
11820   return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp,
11821                                          NewCPUSpec, NewClones, Redeclaration,
11822                                          OldDecl, Previous);
11823 }
11824 
11825 static void CheckConstPureAttributesUsage(Sema &S, FunctionDecl *NewFD) {
11826   bool IsPure = NewFD->hasAttr<PureAttr>();
11827   bool IsConst = NewFD->hasAttr<ConstAttr>();
11828 
11829   // If there are no pure or const attributes, there's nothing to check.
11830   if (!IsPure && !IsConst)
11831     return;
11832 
11833   // If the function is marked both pure and const, we retain the const
11834   // attribute because it makes stronger guarantees than the pure attribute, and
11835   // we drop the pure attribute explicitly to prevent later confusion about
11836   // semantics.
11837   if (IsPure && IsConst) {
11838     S.Diag(NewFD->getLocation(), diag::warn_const_attr_with_pure_attr);
11839     NewFD->dropAttrs<PureAttr>();
11840   }
11841 
11842   // Constructors and destructors are functions which return void, so are
11843   // handled here as well.
11844   if (NewFD->getReturnType()->isVoidType()) {
11845     S.Diag(NewFD->getLocation(), diag::warn_pure_function_returns_void)
11846         << IsConst;
11847     NewFD->dropAttrs<PureAttr, ConstAttr>();
11848   }
11849 }
11850 
11851 /// Perform semantic checking of a new function declaration.
11852 ///
11853 /// Performs semantic analysis of the new function declaration
11854 /// NewFD. This routine performs all semantic checking that does not
11855 /// require the actual declarator involved in the declaration, and is
11856 /// used both for the declaration of functions as they are parsed
11857 /// (called via ActOnDeclarator) and for the declaration of functions
11858 /// that have been instantiated via C++ template instantiation (called
11859 /// via InstantiateDecl).
11860 ///
11861 /// \param IsMemberSpecialization whether this new function declaration is
11862 /// a member specialization (that replaces any definition provided by the
11863 /// previous declaration).
11864 ///
11865 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11866 ///
11867 /// \returns true if the function declaration is a redeclaration.
11868 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11869                                     LookupResult &Previous,
11870                                     bool IsMemberSpecialization,
11871                                     bool DeclIsDefn) {
11872   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11873          "Variably modified return types are not handled here");
11874 
11875   // Determine whether the type of this function should be merged with
11876   // a previous visible declaration. This never happens for functions in C++,
11877   // and always happens in C if the previous declaration was visible.
11878   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11879                                !Previous.isShadowed();
11880 
11881   bool Redeclaration = false;
11882   NamedDecl *OldDecl = nullptr;
11883   bool MayNeedOverloadableChecks = false;
11884 
11885   // Merge or overload the declaration with an existing declaration of
11886   // the same name, if appropriate.
11887   if (!Previous.empty()) {
11888     // Determine whether NewFD is an overload of PrevDecl or
11889     // a declaration that requires merging. If it's an overload,
11890     // there's no more work to do here; we'll just add the new
11891     // function to the scope.
11892     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11893       NamedDecl *Candidate = Previous.getRepresentativeDecl();
11894       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11895         Redeclaration = true;
11896         OldDecl = Candidate;
11897       }
11898     } else {
11899       MayNeedOverloadableChecks = true;
11900       switch (CheckOverload(S, NewFD, Previous, OldDecl,
11901                             /*NewIsUsingDecl*/ false)) {
11902       case Ovl_Match:
11903         Redeclaration = true;
11904         break;
11905 
11906       case Ovl_NonFunction:
11907         Redeclaration = true;
11908         break;
11909 
11910       case Ovl_Overload:
11911         Redeclaration = false;
11912         break;
11913       }
11914     }
11915   }
11916 
11917   // Check for a previous extern "C" declaration with this name.
11918   if (!Redeclaration &&
11919       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11920     if (!Previous.empty()) {
11921       // This is an extern "C" declaration with the same name as a previous
11922       // declaration, and thus redeclares that entity...
11923       Redeclaration = true;
11924       OldDecl = Previous.getFoundDecl();
11925       MergeTypeWithPrevious = false;
11926 
11927       // ... except in the presence of __attribute__((overloadable)).
11928       if (OldDecl->hasAttr<OverloadableAttr>() ||
11929           NewFD->hasAttr<OverloadableAttr>()) {
11930         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11931           MayNeedOverloadableChecks = true;
11932           Redeclaration = false;
11933           OldDecl = nullptr;
11934         }
11935       }
11936     }
11937   }
11938 
11939   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11940     return Redeclaration;
11941 
11942   // PPC MMA non-pointer types are not allowed as function return types.
11943   if (Context.getTargetInfo().getTriple().isPPC64() &&
11944       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11945     NewFD->setInvalidDecl();
11946   }
11947 
11948   CheckConstPureAttributesUsage(*this, NewFD);
11949 
11950   // C++11 [dcl.constexpr]p8:
11951   //   A constexpr specifier for a non-static member function that is not
11952   //   a constructor declares that member function to be const.
11953   //
11954   // This needs to be delayed until we know whether this is an out-of-line
11955   // definition of a static member function.
11956   //
11957   // This rule is not present in C++1y, so we produce a backwards
11958   // compatibility warning whenever it happens in C++11.
11959   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11960   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11961       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11962       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11963     CXXMethodDecl *OldMD = nullptr;
11964     if (OldDecl)
11965       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11966     if (!OldMD || !OldMD->isStatic()) {
11967       const FunctionProtoType *FPT =
11968         MD->getType()->castAs<FunctionProtoType>();
11969       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11970       EPI.TypeQuals.addConst();
11971       MD->setType(Context.getFunctionType(FPT->getReturnType(),
11972                                           FPT->getParamTypes(), EPI));
11973 
11974       // Warn that we did this, if we're not performing template instantiation.
11975       // In that case, we'll have warned already when the template was defined.
11976       if (!inTemplateInstantiation()) {
11977         SourceLocation AddConstLoc;
11978         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11979                 .IgnoreParens().getAs<FunctionTypeLoc>())
11980           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11981 
11982         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11983           << FixItHint::CreateInsertion(AddConstLoc, " const");
11984       }
11985     }
11986   }
11987 
11988   if (Redeclaration) {
11989     // NewFD and OldDecl represent declarations that need to be
11990     // merged.
11991     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11992                           DeclIsDefn)) {
11993       NewFD->setInvalidDecl();
11994       return Redeclaration;
11995     }
11996 
11997     Previous.clear();
11998     Previous.addDecl(OldDecl);
11999 
12000     if (FunctionTemplateDecl *OldTemplateDecl =
12001             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
12002       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
12003       FunctionTemplateDecl *NewTemplateDecl
12004         = NewFD->getDescribedFunctionTemplate();
12005       assert(NewTemplateDecl && "Template/non-template mismatch");
12006 
12007       // The call to MergeFunctionDecl above may have created some state in
12008       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
12009       // can add it as a redeclaration.
12010       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
12011 
12012       NewFD->setPreviousDeclaration(OldFD);
12013       if (NewFD->isCXXClassMember()) {
12014         NewFD->setAccess(OldTemplateDecl->getAccess());
12015         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
12016       }
12017 
12018       // If this is an explicit specialization of a member that is a function
12019       // template, mark it as a member specialization.
12020       if (IsMemberSpecialization &&
12021           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
12022         NewTemplateDecl->setMemberSpecialization();
12023         assert(OldTemplateDecl->isMemberSpecialization());
12024         // Explicit specializations of a member template do not inherit deleted
12025         // status from the parent member template that they are specializing.
12026         if (OldFD->isDeleted()) {
12027           // FIXME: This assert will not hold in the presence of modules.
12028           assert(OldFD->getCanonicalDecl() == OldFD);
12029           // FIXME: We need an update record for this AST mutation.
12030           OldFD->setDeletedAsWritten(false);
12031         }
12032       }
12033 
12034     } else {
12035       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
12036         auto *OldFD = cast<FunctionDecl>(OldDecl);
12037         // This needs to happen first so that 'inline' propagates.
12038         NewFD->setPreviousDeclaration(OldFD);
12039         if (NewFD->isCXXClassMember())
12040           NewFD->setAccess(OldFD->getAccess());
12041       }
12042     }
12043   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
12044              !NewFD->getAttr<OverloadableAttr>()) {
12045     assert((Previous.empty() ||
12046             llvm::any_of(Previous,
12047                          [](const NamedDecl *ND) {
12048                            return ND->hasAttr<OverloadableAttr>();
12049                          })) &&
12050            "Non-redecls shouldn't happen without overloadable present");
12051 
12052     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
12053       const auto *FD = dyn_cast<FunctionDecl>(ND);
12054       return FD && !FD->hasAttr<OverloadableAttr>();
12055     });
12056 
12057     if (OtherUnmarkedIter != Previous.end()) {
12058       Diag(NewFD->getLocation(),
12059            diag::err_attribute_overloadable_multiple_unmarked_overloads);
12060       Diag((*OtherUnmarkedIter)->getLocation(),
12061            diag::note_attribute_overloadable_prev_overload)
12062           << false;
12063 
12064       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
12065     }
12066   }
12067 
12068   if (LangOpts.OpenMP)
12069     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
12070 
12071   // Semantic checking for this function declaration (in isolation).
12072 
12073   if (getLangOpts().CPlusPlus) {
12074     // C++-specific checks.
12075     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
12076       CheckConstructor(Constructor);
12077     } else if (CXXDestructorDecl *Destructor =
12078                    dyn_cast<CXXDestructorDecl>(NewFD)) {
12079       // We check here for invalid destructor names.
12080       // If we have a friend destructor declaration that is dependent, we can't
12081       // diagnose right away because cases like this are still valid:
12082       // template <class T> struct A { friend T::X::~Y(); };
12083       // struct B { struct Y { ~Y(); }; using X = Y; };
12084       // template struct A<B>;
12085       if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
12086           !Destructor->getFunctionObjectParameterType()->isDependentType()) {
12087         CXXRecordDecl *Record = Destructor->getParent();
12088         QualType ClassType = Context.getTypeDeclType(Record);
12089 
12090         DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
12091             Context.getCanonicalType(ClassType));
12092         if (NewFD->getDeclName() != Name) {
12093           Diag(NewFD->getLocation(), diag::err_destructor_name);
12094           NewFD->setInvalidDecl();
12095           return Redeclaration;
12096         }
12097       }
12098     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
12099       if (auto *TD = Guide->getDescribedFunctionTemplate())
12100         CheckDeductionGuideTemplate(TD);
12101 
12102       // A deduction guide is not on the list of entities that can be
12103       // explicitly specialized.
12104       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
12105         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
12106             << /*explicit specialization*/ 1;
12107     }
12108 
12109     // Find any virtual functions that this function overrides.
12110     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
12111       if (!Method->isFunctionTemplateSpecialization() &&
12112           !Method->getDescribedFunctionTemplate() &&
12113           Method->isCanonicalDecl()) {
12114         AddOverriddenMethods(Method->getParent(), Method);
12115       }
12116       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
12117         // C++2a [class.virtual]p6
12118         // A virtual method shall not have a requires-clause.
12119         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
12120              diag::err_constrained_virtual_method);
12121 
12122       if (Method->isStatic())
12123         checkThisInStaticMemberFunctionType(Method);
12124     }
12125 
12126     if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
12127       // C++20: dcl.decl.general p4:
12128       // The optional requires-clause ([temp.pre]) in an init-declarator or
12129       // member-declarator shall be present only if the declarator declares a
12130       // templated function ([dcl.fct]).
12131       //
12132       // [temp.pre]/8:
12133       // An entity is templated if it is
12134       // - a template,
12135       // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12136       // templated entity,
12137       // - a member of a templated entity,
12138       // - an enumerator for an enumeration that is a templated entity, or
12139       // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12140       // appearing in the declaration of a templated entity. [Note 6: A local
12141       // class, a local or block variable, or a friend function defined in a
12142       // templated entity is a templated entity.  — end note]
12143       //
12144       // A templated function is a function template or a function that is
12145       // templated. A templated class is a class template or a class that is
12146       // templated. A templated variable is a variable template or a variable
12147       // that is templated.
12148 
12149       bool IsTemplate = NewFD->getDescribedFunctionTemplate();
12150       bool IsFriend = NewFD->getFriendObjectKind();
12151       if (!IsTemplate && // -a template
12152                          // defined... in a templated entity
12153           !(DeclIsDefn && NewFD->isTemplated()) &&
12154           // a member of a templated entity
12155           !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) &&
12156           // Don't complain about instantiations, they've already had these
12157           // rules + others enforced.
12158           !NewFD->isTemplateInstantiation() &&
12159           // If the function violates [temp.friend]p9 because it is missing
12160           // a definition, and adding a definition would make it templated,
12161           // then let that error take precedence.
12162           !(!DeclIsDefn && IsFriend && NewFD->isTemplated())) {
12163         Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
12164       } else if (!DeclIsDefn && !IsTemplate && IsFriend &&
12165                  !NewFD->isTemplateInstantiation()) {
12166         // C++ [temp.friend]p9:
12167         //   A non-template friend declaration with a requires-clause shall be a
12168         //   definition.
12169         Diag(NewFD->getBeginLoc(),
12170              diag::err_non_temp_friend_decl_with_requires_clause_must_be_def);
12171         NewFD->setInvalidDecl();
12172       }
12173     }
12174 
12175     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
12176       ActOnConversionDeclarator(Conversion);
12177 
12178     // Extra checking for C++ overloaded operators (C++ [over.oper]).
12179     if (NewFD->isOverloadedOperator() &&
12180         CheckOverloadedOperatorDeclaration(NewFD)) {
12181       NewFD->setInvalidDecl();
12182       return Redeclaration;
12183     }
12184 
12185     // Extra checking for C++0x literal operators (C++0x [over.literal]).
12186     if (NewFD->getLiteralIdentifier() &&
12187         CheckLiteralOperatorDeclaration(NewFD)) {
12188       NewFD->setInvalidDecl();
12189       return Redeclaration;
12190     }
12191 
12192     // In C++, check default arguments now that we have merged decls. Unless
12193     // the lexical context is the class, because in this case this is done
12194     // during delayed parsing anyway.
12195     if (!CurContext->isRecord())
12196       CheckCXXDefaultArguments(NewFD);
12197 
12198     // If this function is declared as being extern "C", then check to see if
12199     // the function returns a UDT (class, struct, or union type) that is not C
12200     // compatible, and if it does, warn the user.
12201     // But, issue any diagnostic on the first declaration only.
12202     if (Previous.empty() && NewFD->isExternC()) {
12203       QualType R = NewFD->getReturnType();
12204       if (R->isIncompleteType() && !R->isVoidType())
12205         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
12206             << NewFD << R;
12207       else if (!R.isPODType(Context) && !R->isVoidType() &&
12208                !R->isObjCObjectPointerType())
12209         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
12210     }
12211 
12212     // C++1z [dcl.fct]p6:
12213     //   [...] whether the function has a non-throwing exception-specification
12214     //   [is] part of the function type
12215     //
12216     // This results in an ABI break between C++14 and C++17 for functions whose
12217     // declared type includes an exception-specification in a parameter or
12218     // return type. (Exception specifications on the function itself are OK in
12219     // most cases, and exception specifications are not permitted in most other
12220     // contexts where they could make it into a mangling.)
12221     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
12222       auto HasNoexcept = [&](QualType T) -> bool {
12223         // Strip off declarator chunks that could be between us and a function
12224         // type. We don't need to look far, exception specifications are very
12225         // restricted prior to C++17.
12226         if (auto *RT = T->getAs<ReferenceType>())
12227           T = RT->getPointeeType();
12228         else if (T->isAnyPointerType())
12229           T = T->getPointeeType();
12230         else if (auto *MPT = T->getAs<MemberPointerType>())
12231           T = MPT->getPointeeType();
12232         if (auto *FPT = T->getAs<FunctionProtoType>())
12233           if (FPT->isNothrow())
12234             return true;
12235         return false;
12236       };
12237 
12238       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
12239       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
12240       for (QualType T : FPT->param_types())
12241         AnyNoexcept |= HasNoexcept(T);
12242       if (AnyNoexcept)
12243         Diag(NewFD->getLocation(),
12244              diag::warn_cxx17_compat_exception_spec_in_signature)
12245             << NewFD;
12246     }
12247 
12248     if (!Redeclaration && LangOpts.CUDA)
12249       checkCUDATargetOverload(NewFD, Previous);
12250   }
12251 
12252   // Check if the function definition uses any AArch64 SME features without
12253   // having the '+sme' feature enabled.
12254   if (DeclIsDefn) {
12255     const auto *Attr = NewFD->getAttr<ArmNewAttr>();
12256     bool UsesSM = NewFD->hasAttr<ArmLocallyStreamingAttr>();
12257     bool UsesZA = Attr && Attr->isNewZA();
12258     bool UsesZT0 = Attr && Attr->isNewZT0();
12259     if (const auto *FPT = NewFD->getType()->getAs<FunctionProtoType>()) {
12260       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12261       UsesSM |=
12262           EPI.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
12263       UsesZA |= FunctionType::getArmZAState(EPI.AArch64SMEAttributes) !=
12264                 FunctionType::ARM_None;
12265       UsesZT0 |= FunctionType::getArmZT0State(EPI.AArch64SMEAttributes) !=
12266                  FunctionType::ARM_None;
12267     }
12268 
12269     if (UsesSM || UsesZA) {
12270       llvm::StringMap<bool> FeatureMap;
12271       Context.getFunctionFeatureMap(FeatureMap, NewFD);
12272       if (!FeatureMap.contains("sme")) {
12273         if (UsesSM)
12274           Diag(NewFD->getLocation(),
12275                diag::err_sme_definition_using_sm_in_non_sme_target);
12276         else
12277           Diag(NewFD->getLocation(),
12278                diag::err_sme_definition_using_za_in_non_sme_target);
12279       }
12280     }
12281     if (UsesZT0) {
12282       llvm::StringMap<bool> FeatureMap;
12283       Context.getFunctionFeatureMap(FeatureMap, NewFD);
12284       if (!FeatureMap.contains("sme2")) {
12285         Diag(NewFD->getLocation(),
12286              diag::err_sme_definition_using_zt0_in_non_sme2_target);
12287       }
12288     }
12289   }
12290 
12291   return Redeclaration;
12292 }
12293 
12294 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
12295   // C++11 [basic.start.main]p3:
12296   //   A program that [...] declares main to be inline, static or
12297   //   constexpr is ill-formed.
12298   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
12299   //   appear in a declaration of main.
12300   // static main is not an error under C99, but we should warn about it.
12301   // We accept _Noreturn main as an extension.
12302   if (FD->getStorageClass() == SC_Static)
12303     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12304          ? diag::err_static_main : diag::warn_static_main)
12305       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12306   if (FD->isInlineSpecified())
12307     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
12308       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
12309   if (DS.isNoreturnSpecified()) {
12310     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
12311     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
12312     Diag(NoreturnLoc, diag::ext_noreturn_main);
12313     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
12314       << FixItHint::CreateRemoval(NoreturnRange);
12315   }
12316   if (FD->isConstexpr()) {
12317     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
12318         << FD->isConsteval()
12319         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
12320     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
12321   }
12322 
12323   if (getLangOpts().OpenCL) {
12324     Diag(FD->getLocation(), diag::err_opencl_no_main)
12325         << FD->hasAttr<OpenCLKernelAttr>();
12326     FD->setInvalidDecl();
12327     return;
12328   }
12329 
12330   // Functions named main in hlsl are default entries, but don't have specific
12331   // signatures they are required to conform to.
12332   if (getLangOpts().HLSL)
12333     return;
12334 
12335   QualType T = FD->getType();
12336   assert(T->isFunctionType() && "function decl is not of function type");
12337   const FunctionType* FT = T->castAs<FunctionType>();
12338 
12339   // Set default calling convention for main()
12340   if (FT->getCallConv() != CC_C) {
12341     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
12342     FD->setType(QualType(FT, 0));
12343     T = Context.getCanonicalType(FD->getType());
12344   }
12345 
12346   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
12347     // In C with GNU extensions we allow main() to have non-integer return
12348     // type, but we should warn about the extension, and we disable the
12349     // implicit-return-zero rule.
12350 
12351     // GCC in C mode accepts qualified 'int'.
12352     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
12353       FD->setHasImplicitReturnZero(true);
12354     else {
12355       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
12356       SourceRange RTRange = FD->getReturnTypeSourceRange();
12357       if (RTRange.isValid())
12358         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
12359             << FixItHint::CreateReplacement(RTRange, "int");
12360     }
12361   } else {
12362     // In C and C++, main magically returns 0 if you fall off the end;
12363     // set the flag which tells us that.
12364     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12365 
12366     // All the standards say that main() should return 'int'.
12367     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
12368       FD->setHasImplicitReturnZero(true);
12369     else {
12370       // Otherwise, this is just a flat-out error.
12371       SourceRange RTRange = FD->getReturnTypeSourceRange();
12372       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
12373           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
12374                                 : FixItHint());
12375       FD->setInvalidDecl(true);
12376     }
12377   }
12378 
12379   // Treat protoless main() as nullary.
12380   if (isa<FunctionNoProtoType>(FT)) return;
12381 
12382   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
12383   unsigned nparams = FTP->getNumParams();
12384   assert(FD->getNumParams() == nparams);
12385 
12386   bool HasExtraParameters = (nparams > 3);
12387 
12388   if (FTP->isVariadic()) {
12389     Diag(FD->getLocation(), diag::ext_variadic_main);
12390     // FIXME: if we had information about the location of the ellipsis, we
12391     // could add a FixIt hint to remove it as a parameter.
12392   }
12393 
12394   // Darwin passes an undocumented fourth argument of type char**.  If
12395   // other platforms start sprouting these, the logic below will start
12396   // getting shifty.
12397   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
12398     HasExtraParameters = false;
12399 
12400   if (HasExtraParameters) {
12401     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
12402     FD->setInvalidDecl(true);
12403     nparams = 3;
12404   }
12405 
12406   // FIXME: a lot of the following diagnostics would be improved
12407   // if we had some location information about types.
12408 
12409   QualType CharPP =
12410     Context.getPointerType(Context.getPointerType(Context.CharTy));
12411   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
12412 
12413   for (unsigned i = 0; i < nparams; ++i) {
12414     QualType AT = FTP->getParamType(i);
12415 
12416     bool mismatch = true;
12417 
12418     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
12419       mismatch = false;
12420     else if (Expected[i] == CharPP) {
12421       // As an extension, the following forms are okay:
12422       //   char const **
12423       //   char const * const *
12424       //   char * const *
12425 
12426       QualifierCollector qs;
12427       const PointerType* PT;
12428       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
12429           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
12430           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
12431                               Context.CharTy)) {
12432         qs.removeConst();
12433         mismatch = !qs.empty();
12434       }
12435     }
12436 
12437     if (mismatch) {
12438       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
12439       // TODO: suggest replacing given type with expected type
12440       FD->setInvalidDecl(true);
12441     }
12442   }
12443 
12444   if (nparams == 1 && !FD->isInvalidDecl()) {
12445     Diag(FD->getLocation(), diag::warn_main_one_arg);
12446   }
12447 
12448   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12449     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12450     FD->setInvalidDecl();
12451   }
12452 }
12453 
12454 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
12455 
12456   // Default calling convention for main and wmain is __cdecl
12457   if (FD->getName() == "main" || FD->getName() == "wmain")
12458     return false;
12459 
12460   // Default calling convention for MinGW is __cdecl
12461   const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
12462   if (T.isWindowsGNUEnvironment())
12463     return false;
12464 
12465   // Default calling convention for WinMain, wWinMain and DllMain
12466   // is __stdcall on 32 bit Windows
12467   if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
12468     return true;
12469 
12470   return false;
12471 }
12472 
12473 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
12474   QualType T = FD->getType();
12475   assert(T->isFunctionType() && "function decl is not of function type");
12476   const FunctionType *FT = T->castAs<FunctionType>();
12477 
12478   // Set an implicit return of 'zero' if the function can return some integral,
12479   // enumeration, pointer or nullptr type.
12480   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
12481       FT->getReturnType()->isAnyPointerType() ||
12482       FT->getReturnType()->isNullPtrType())
12483     // DllMain is exempt because a return value of zero means it failed.
12484     if (FD->getName() != "DllMain")
12485       FD->setHasImplicitReturnZero(true);
12486 
12487   // Explicity specified calling conventions are applied to MSVC entry points
12488   if (!hasExplicitCallingConv(T)) {
12489     if (isDefaultStdCall(FD, *this)) {
12490       if (FT->getCallConv() != CC_X86StdCall) {
12491         FT = Context.adjustFunctionType(
12492             FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
12493         FD->setType(QualType(FT, 0));
12494       }
12495     } else if (FT->getCallConv() != CC_C) {
12496       FT = Context.adjustFunctionType(FT,
12497                                       FT->getExtInfo().withCallingConv(CC_C));
12498       FD->setType(QualType(FT, 0));
12499     }
12500   }
12501 
12502   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12503     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12504     FD->setInvalidDecl();
12505   }
12506 }
12507 
12508 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl *FD) {
12509   auto &TargetInfo = getASTContext().getTargetInfo();
12510 
12511   if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
12512     return;
12513 
12514   StringRef Env = TargetInfo.getTriple().getEnvironmentName();
12515   HLSLShaderAttr::ShaderType ShaderType;
12516   if (HLSLShaderAttr::ConvertStrToShaderType(Env, ShaderType)) {
12517     if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
12518       // The entry point is already annotated - check that it matches the
12519       // triple.
12520       if (Shader->getType() != ShaderType) {
12521         Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
12522             << Shader;
12523         FD->setInvalidDecl();
12524       }
12525     } else {
12526       // Implicitly add the shader attribute if the entry function isn't
12527       // explicitly annotated.
12528       FD->addAttr(HLSLShaderAttr::CreateImplicit(Context, ShaderType,
12529                                                  FD->getBeginLoc()));
12530     }
12531   } else {
12532     switch (TargetInfo.getTriple().getEnvironment()) {
12533     case llvm::Triple::UnknownEnvironment:
12534     case llvm::Triple::Library:
12535       break;
12536     default:
12537       llvm_unreachable("Unhandled environment in triple");
12538     }
12539   }
12540 }
12541 
12542 void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) {
12543   const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
12544   assert(ShaderAttr && "Entry point has no shader attribute");
12545   HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12546 
12547   switch (ST) {
12548   case HLSLShaderAttr::Pixel:
12549   case HLSLShaderAttr::Vertex:
12550   case HLSLShaderAttr::Geometry:
12551   case HLSLShaderAttr::Hull:
12552   case HLSLShaderAttr::Domain:
12553   case HLSLShaderAttr::RayGeneration:
12554   case HLSLShaderAttr::Intersection:
12555   case HLSLShaderAttr::AnyHit:
12556   case HLSLShaderAttr::ClosestHit:
12557   case HLSLShaderAttr::Miss:
12558   case HLSLShaderAttr::Callable:
12559     if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
12560       DiagnoseHLSLAttrStageMismatch(NT, ST,
12561                                     {HLSLShaderAttr::Compute,
12562                                      HLSLShaderAttr::Amplification,
12563                                      HLSLShaderAttr::Mesh});
12564       FD->setInvalidDecl();
12565     }
12566     break;
12567 
12568   case HLSLShaderAttr::Compute:
12569   case HLSLShaderAttr::Amplification:
12570   case HLSLShaderAttr::Mesh:
12571     if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
12572       Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
12573           << HLSLShaderAttr::ConvertShaderTypeToStr(ST);
12574       FD->setInvalidDecl();
12575     }
12576     break;
12577   }
12578 
12579   for (ParmVarDecl *Param : FD->parameters()) {
12580     if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
12581       CheckHLSLSemanticAnnotation(FD, Param, AnnotationAttr);
12582     } else {
12583       // FIXME: Handle struct parameters where annotations are on struct fields.
12584       // See: https://github.com/llvm/llvm-project/issues/57875
12585       Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
12586       Diag(Param->getLocation(), diag::note_previous_decl) << Param;
12587       FD->setInvalidDecl();
12588     }
12589   }
12590   // FIXME: Verify return type semantic annotation.
12591 }
12592 
12593 void Sema::CheckHLSLSemanticAnnotation(
12594     FunctionDecl *EntryPoint, const Decl *Param,
12595     const HLSLAnnotationAttr *AnnotationAttr) {
12596   auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
12597   assert(ShaderAttr && "Entry point has no shader attribute");
12598   HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12599 
12600   switch (AnnotationAttr->getKind()) {
12601   case attr::HLSLSV_DispatchThreadID:
12602   case attr::HLSLSV_GroupIndex:
12603     if (ST == HLSLShaderAttr::Compute)
12604       return;
12605     DiagnoseHLSLAttrStageMismatch(AnnotationAttr, ST,
12606                                   {HLSLShaderAttr::Compute});
12607     break;
12608   default:
12609     llvm_unreachable("Unknown HLSLAnnotationAttr");
12610   }
12611 }
12612 
12613 void Sema::DiagnoseHLSLAttrStageMismatch(
12614     const Attr *A, HLSLShaderAttr::ShaderType Stage,
12615     std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages) {
12616   SmallVector<StringRef, 8> StageStrings;
12617   llvm::transform(AllowedStages, std::back_inserter(StageStrings),
12618                   [](HLSLShaderAttr::ShaderType ST) {
12619                     return StringRef(
12620                         HLSLShaderAttr::ConvertShaderTypeToStr(ST));
12621                   });
12622   Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
12623       << A << HLSLShaderAttr::ConvertShaderTypeToStr(Stage)
12624       << (AllowedStages.size() != 1) << join(StageStrings, ", ");
12625 }
12626 
12627 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
12628   // FIXME: Need strict checking.  In C89, we need to check for
12629   // any assignment, increment, decrement, function-calls, or
12630   // commas outside of a sizeof.  In C99, it's the same list,
12631   // except that the aforementioned are allowed in unevaluated
12632   // expressions.  Everything else falls under the
12633   // "may accept other forms of constant expressions" exception.
12634   //
12635   // Regular C++ code will not end up here (exceptions: language extensions,
12636   // OpenCL C++ etc), so the constant expression rules there don't matter.
12637   if (Init->isValueDependent()) {
12638     assert(Init->containsErrors() &&
12639            "Dependent code should only occur in error-recovery path.");
12640     return true;
12641   }
12642   const Expr *Culprit;
12643   if (Init->isConstantInitializer(Context, false, &Culprit))
12644     return false;
12645   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
12646     << Culprit->getSourceRange();
12647   return true;
12648 }
12649 
12650 namespace {
12651   // Visits an initialization expression to see if OrigDecl is evaluated in
12652   // its own initialization and throws a warning if it does.
12653   class SelfReferenceChecker
12654       : public EvaluatedExprVisitor<SelfReferenceChecker> {
12655     Sema &S;
12656     Decl *OrigDecl;
12657     bool isRecordType;
12658     bool isPODType;
12659     bool isReferenceType;
12660 
12661     bool isInitList;
12662     llvm::SmallVector<unsigned, 4> InitFieldIndex;
12663 
12664   public:
12665     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
12666 
12667     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
12668                                                     S(S), OrigDecl(OrigDecl) {
12669       isPODType = false;
12670       isRecordType = false;
12671       isReferenceType = false;
12672       isInitList = false;
12673       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
12674         isPODType = VD->getType().isPODType(S.Context);
12675         isRecordType = VD->getType()->isRecordType();
12676         isReferenceType = VD->getType()->isReferenceType();
12677       }
12678     }
12679 
12680     // For most expressions, just call the visitor.  For initializer lists,
12681     // track the index of the field being initialized since fields are
12682     // initialized in order allowing use of previously initialized fields.
12683     void CheckExpr(Expr *E) {
12684       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
12685       if (!InitList) {
12686         Visit(E);
12687         return;
12688       }
12689 
12690       // Track and increment the index here.
12691       isInitList = true;
12692       InitFieldIndex.push_back(0);
12693       for (auto *Child : InitList->children()) {
12694         CheckExpr(cast<Expr>(Child));
12695         ++InitFieldIndex.back();
12696       }
12697       InitFieldIndex.pop_back();
12698     }
12699 
12700     // Returns true if MemberExpr is checked and no further checking is needed.
12701     // Returns false if additional checking is required.
12702     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
12703       llvm::SmallVector<FieldDecl*, 4> Fields;
12704       Expr *Base = E;
12705       bool ReferenceField = false;
12706 
12707       // Get the field members used.
12708       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12709         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12710         if (!FD)
12711           return false;
12712         Fields.push_back(FD);
12713         if (FD->getType()->isReferenceType())
12714           ReferenceField = true;
12715         Base = ME->getBase()->IgnoreParenImpCasts();
12716       }
12717 
12718       // Keep checking only if the base Decl is the same.
12719       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
12720       if (!DRE || DRE->getDecl() != OrigDecl)
12721         return false;
12722 
12723       // A reference field can be bound to an unininitialized field.
12724       if (CheckReference && !ReferenceField)
12725         return true;
12726 
12727       // Convert FieldDecls to their index number.
12728       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12729       for (const FieldDecl *I : llvm::reverse(Fields))
12730         UsedFieldIndex.push_back(I->getFieldIndex());
12731 
12732       // See if a warning is needed by checking the first difference in index
12733       // numbers.  If field being used has index less than the field being
12734       // initialized, then the use is safe.
12735       for (auto UsedIter = UsedFieldIndex.begin(),
12736                 UsedEnd = UsedFieldIndex.end(),
12737                 OrigIter = InitFieldIndex.begin(),
12738                 OrigEnd = InitFieldIndex.end();
12739            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12740         if (*UsedIter < *OrigIter)
12741           return true;
12742         if (*UsedIter > *OrigIter)
12743           break;
12744       }
12745 
12746       // TODO: Add a different warning which will print the field names.
12747       HandleDeclRefExpr(DRE);
12748       return true;
12749     }
12750 
12751     // For most expressions, the cast is directly above the DeclRefExpr.
12752     // For conditional operators, the cast can be outside the conditional
12753     // operator if both expressions are DeclRefExpr's.
12754     void HandleValue(Expr *E) {
12755       E = E->IgnoreParens();
12756       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12757         HandleDeclRefExpr(DRE);
12758         return;
12759       }
12760 
12761       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12762         Visit(CO->getCond());
12763         HandleValue(CO->getTrueExpr());
12764         HandleValue(CO->getFalseExpr());
12765         return;
12766       }
12767 
12768       if (BinaryConditionalOperator *BCO =
12769               dyn_cast<BinaryConditionalOperator>(E)) {
12770         Visit(BCO->getCond());
12771         HandleValue(BCO->getFalseExpr());
12772         return;
12773       }
12774 
12775       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12776         if (Expr *SE = OVE->getSourceExpr())
12777           HandleValue(SE);
12778         return;
12779       }
12780 
12781       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12782         if (BO->getOpcode() == BO_Comma) {
12783           Visit(BO->getLHS());
12784           HandleValue(BO->getRHS());
12785           return;
12786         }
12787       }
12788 
12789       if (isa<MemberExpr>(E)) {
12790         if (isInitList) {
12791           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12792                                       false /*CheckReference*/))
12793             return;
12794         }
12795 
12796         Expr *Base = E->IgnoreParenImpCasts();
12797         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12798           // Check for static member variables and don't warn on them.
12799           if (!isa<FieldDecl>(ME->getMemberDecl()))
12800             return;
12801           Base = ME->getBase()->IgnoreParenImpCasts();
12802         }
12803         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12804           HandleDeclRefExpr(DRE);
12805         return;
12806       }
12807 
12808       Visit(E);
12809     }
12810 
12811     // Reference types not handled in HandleValue are handled here since all
12812     // uses of references are bad, not just r-value uses.
12813     void VisitDeclRefExpr(DeclRefExpr *E) {
12814       if (isReferenceType)
12815         HandleDeclRefExpr(E);
12816     }
12817 
12818     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12819       if (E->getCastKind() == CK_LValueToRValue) {
12820         HandleValue(E->getSubExpr());
12821         return;
12822       }
12823 
12824       Inherited::VisitImplicitCastExpr(E);
12825     }
12826 
12827     void VisitMemberExpr(MemberExpr *E) {
12828       if (isInitList) {
12829         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12830           return;
12831       }
12832 
12833       // Don't warn on arrays since they can be treated as pointers.
12834       if (E->getType()->canDecayToPointerType()) return;
12835 
12836       // Warn when a non-static method call is followed by non-static member
12837       // field accesses, which is followed by a DeclRefExpr.
12838       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12839       bool Warn = (MD && !MD->isStatic());
12840       Expr *Base = E->getBase()->IgnoreParenImpCasts();
12841       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12842         if (!isa<FieldDecl>(ME->getMemberDecl()))
12843           Warn = false;
12844         Base = ME->getBase()->IgnoreParenImpCasts();
12845       }
12846 
12847       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12848         if (Warn)
12849           HandleDeclRefExpr(DRE);
12850         return;
12851       }
12852 
12853       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12854       // Visit that expression.
12855       Visit(Base);
12856     }
12857 
12858     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12859       Expr *Callee = E->getCallee();
12860 
12861       if (isa<UnresolvedLookupExpr>(Callee))
12862         return Inherited::VisitCXXOperatorCallExpr(E);
12863 
12864       Visit(Callee);
12865       for (auto Arg: E->arguments())
12866         HandleValue(Arg->IgnoreParenImpCasts());
12867     }
12868 
12869     void VisitUnaryOperator(UnaryOperator *E) {
12870       // For POD record types, addresses of its own members are well-defined.
12871       if (E->getOpcode() == UO_AddrOf && isRecordType &&
12872           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12873         if (!isPODType)
12874           HandleValue(E->getSubExpr());
12875         return;
12876       }
12877 
12878       if (E->isIncrementDecrementOp()) {
12879         HandleValue(E->getSubExpr());
12880         return;
12881       }
12882 
12883       Inherited::VisitUnaryOperator(E);
12884     }
12885 
12886     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12887 
12888     void VisitCXXConstructExpr(CXXConstructExpr *E) {
12889       if (E->getConstructor()->isCopyConstructor()) {
12890         Expr *ArgExpr = E->getArg(0);
12891         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12892           if (ILE->getNumInits() == 1)
12893             ArgExpr = ILE->getInit(0);
12894         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12895           if (ICE->getCastKind() == CK_NoOp)
12896             ArgExpr = ICE->getSubExpr();
12897         HandleValue(ArgExpr);
12898         return;
12899       }
12900       Inherited::VisitCXXConstructExpr(E);
12901     }
12902 
12903     void VisitCallExpr(CallExpr *E) {
12904       // Treat std::move as a use.
12905       if (E->isCallToStdMove()) {
12906         HandleValue(E->getArg(0));
12907         return;
12908       }
12909 
12910       Inherited::VisitCallExpr(E);
12911     }
12912 
12913     void VisitBinaryOperator(BinaryOperator *E) {
12914       if (E->isCompoundAssignmentOp()) {
12915         HandleValue(E->getLHS());
12916         Visit(E->getRHS());
12917         return;
12918       }
12919 
12920       Inherited::VisitBinaryOperator(E);
12921     }
12922 
12923     // A custom visitor for BinaryConditionalOperator is needed because the
12924     // regular visitor would check the condition and true expression separately
12925     // but both point to the same place giving duplicate diagnostics.
12926     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12927       Visit(E->getCond());
12928       Visit(E->getFalseExpr());
12929     }
12930 
12931     void HandleDeclRefExpr(DeclRefExpr *DRE) {
12932       Decl* ReferenceDecl = DRE->getDecl();
12933       if (OrigDecl != ReferenceDecl) return;
12934       unsigned diag;
12935       if (isReferenceType) {
12936         diag = diag::warn_uninit_self_reference_in_reference_init;
12937       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12938         diag = diag::warn_static_self_reference_in_init;
12939       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12940                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12941                  DRE->getDecl()->getType()->isRecordType()) {
12942         diag = diag::warn_uninit_self_reference_in_init;
12943       } else {
12944         // Local variables will be handled by the CFG analysis.
12945         return;
12946       }
12947 
12948       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12949                             S.PDiag(diag)
12950                                 << DRE->getDecl() << OrigDecl->getLocation()
12951                                 << DRE->getSourceRange());
12952     }
12953   };
12954 
12955   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12956   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12957                                  bool DirectInit) {
12958     // Parameters arguments are occassionially constructed with itself,
12959     // for instance, in recursive functions.  Skip them.
12960     if (isa<ParmVarDecl>(OrigDecl))
12961       return;
12962 
12963     E = E->IgnoreParens();
12964 
12965     // Skip checking T a = a where T is not a record or reference type.
12966     // Doing so is a way to silence uninitialized warnings.
12967     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12968       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12969         if (ICE->getCastKind() == CK_LValueToRValue)
12970           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12971             if (DRE->getDecl() == OrigDecl)
12972               return;
12973 
12974     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12975   }
12976 } // end anonymous namespace
12977 
12978 namespace {
12979   // Simple wrapper to add the name of a variable or (if no variable is
12980   // available) a DeclarationName into a diagnostic.
12981   struct VarDeclOrName {
12982     VarDecl *VDecl;
12983     DeclarationName Name;
12984 
12985     friend const Sema::SemaDiagnosticBuilder &
12986     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12987       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12988     }
12989   };
12990 } // end anonymous namespace
12991 
12992 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12993                                             DeclarationName Name, QualType Type,
12994                                             TypeSourceInfo *TSI,
12995                                             SourceRange Range, bool DirectInit,
12996                                             Expr *Init) {
12997   bool IsInitCapture = !VDecl;
12998   assert((!VDecl || !VDecl->isInitCapture()) &&
12999          "init captures are expected to be deduced prior to initialization");
13000 
13001   VarDeclOrName VN{VDecl, Name};
13002 
13003   DeducedType *Deduced = Type->getContainedDeducedType();
13004   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
13005 
13006   // Diagnose auto array declarations in C23, unless it's a supported extension.
13007   if (getLangOpts().C23 && Type->isArrayType() &&
13008       !isa_and_present<StringLiteral, InitListExpr>(Init)) {
13009       Diag(Range.getBegin(), diag::err_auto_not_allowed)
13010           << (int)Deduced->getContainedAutoType()->getKeyword()
13011           << /*in array decl*/ 23 << Range;
13012     return QualType();
13013   }
13014 
13015   // C++11 [dcl.spec.auto]p3
13016   if (!Init) {
13017     assert(VDecl && "no init for init capture deduction?");
13018 
13019     // Except for class argument deduction, and then for an initializing
13020     // declaration only, i.e. no static at class scope or extern.
13021     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
13022         VDecl->hasExternalStorage() ||
13023         VDecl->isStaticDataMember()) {
13024       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
13025         << VDecl->getDeclName() << Type;
13026       return QualType();
13027     }
13028   }
13029 
13030   ArrayRef<Expr*> DeduceInits;
13031   if (Init)
13032     DeduceInits = Init;
13033 
13034   auto *PL = dyn_cast_if_present<ParenListExpr>(Init);
13035   if (DirectInit && PL)
13036     DeduceInits = PL->exprs();
13037 
13038   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
13039     assert(VDecl && "non-auto type for init capture deduction?");
13040     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13041     InitializationKind Kind = InitializationKind::CreateForInit(
13042         VDecl->getLocation(), DirectInit, Init);
13043     // FIXME: Initialization should not be taking a mutable list of inits.
13044     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
13045     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
13046                                                        InitsCopy);
13047   }
13048 
13049   if (DirectInit) {
13050     if (auto *IL = dyn_cast<InitListExpr>(Init))
13051       DeduceInits = IL->inits();
13052   }
13053 
13054   // Deduction only works if we have exactly one source expression.
13055   if (DeduceInits.empty()) {
13056     // It isn't possible to write this directly, but it is possible to
13057     // end up in this situation with "auto x(some_pack...);"
13058     Diag(Init->getBeginLoc(), IsInitCapture
13059                                   ? diag::err_init_capture_no_expression
13060                                   : diag::err_auto_var_init_no_expression)
13061         << VN << Type << Range;
13062     return QualType();
13063   }
13064 
13065   if (DeduceInits.size() > 1) {
13066     Diag(DeduceInits[1]->getBeginLoc(),
13067          IsInitCapture ? diag::err_init_capture_multiple_expressions
13068                        : diag::err_auto_var_init_multiple_expressions)
13069         << VN << Type << Range;
13070     return QualType();
13071   }
13072 
13073   Expr *DeduceInit = DeduceInits[0];
13074   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
13075     Diag(Init->getBeginLoc(), IsInitCapture
13076                                   ? diag::err_init_capture_paren_braces
13077                                   : diag::err_auto_var_init_paren_braces)
13078         << isa<InitListExpr>(Init) << VN << Type << Range;
13079     return QualType();
13080   }
13081 
13082   // Expressions default to 'id' when we're in a debugger.
13083   bool DefaultedAnyToId = false;
13084   if (getLangOpts().DebuggerCastResultToId &&
13085       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
13086     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13087     if (Result.isInvalid()) {
13088       return QualType();
13089     }
13090     Init = Result.get();
13091     DefaultedAnyToId = true;
13092   }
13093 
13094   // C++ [dcl.decomp]p1:
13095   //   If the assignment-expression [...] has array type A and no ref-qualifier
13096   //   is present, e has type cv A
13097   if (VDecl && isa<DecompositionDecl>(VDecl) &&
13098       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
13099       DeduceInit->getType()->isConstantArrayType())
13100     return Context.getQualifiedType(DeduceInit->getType(),
13101                                     Type.getQualifiers());
13102 
13103   QualType DeducedType;
13104   TemplateDeductionInfo Info(DeduceInit->getExprLoc());
13105   TemplateDeductionResult Result =
13106       DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
13107   if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) {
13108     if (!IsInitCapture)
13109       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
13110     else if (isa<InitListExpr>(Init))
13111       Diag(Range.getBegin(),
13112            diag::err_init_capture_deduction_failure_from_init_list)
13113           << VN
13114           << (DeduceInit->getType().isNull() ? TSI->getType()
13115                                              : DeduceInit->getType())
13116           << DeduceInit->getSourceRange();
13117     else
13118       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
13119           << VN << TSI->getType()
13120           << (DeduceInit->getType().isNull() ? TSI->getType()
13121                                              : DeduceInit->getType())
13122           << DeduceInit->getSourceRange();
13123   }
13124 
13125   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13126   // 'id' instead of a specific object type prevents most of our usual
13127   // checks.
13128   // We only want to warn outside of template instantiations, though:
13129   // inside a template, the 'id' could have come from a parameter.
13130   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
13131       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
13132     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
13133     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
13134   }
13135 
13136   return DeducedType;
13137 }
13138 
13139 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
13140                                          Expr *Init) {
13141   assert(!Init || !Init->containsErrors());
13142   QualType DeducedType = deduceVarTypeFromInitializer(
13143       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
13144       VDecl->getSourceRange(), DirectInit, Init);
13145   if (DeducedType.isNull()) {
13146     VDecl->setInvalidDecl();
13147     return true;
13148   }
13149 
13150   VDecl->setType(DeducedType);
13151   assert(VDecl->isLinkageValid());
13152 
13153   // In ARC, infer lifetime.
13154   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
13155     VDecl->setInvalidDecl();
13156 
13157   if (getLangOpts().OpenCL)
13158     deduceOpenCLAddressSpace(VDecl);
13159 
13160   // If this is a redeclaration, check that the type we just deduced matches
13161   // the previously declared type.
13162   if (VarDecl *Old = VDecl->getPreviousDecl()) {
13163     // We never need to merge the type, because we cannot form an incomplete
13164     // array of auto, nor deduce such a type.
13165     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
13166   }
13167 
13168   // Check the deduced type is valid for a variable declaration.
13169   CheckVariableDeclarationType(VDecl);
13170   return VDecl->isInvalidDecl();
13171 }
13172 
13173 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
13174                                               SourceLocation Loc) {
13175   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
13176     Init = EWC->getSubExpr();
13177 
13178   if (auto *CE = dyn_cast<ConstantExpr>(Init))
13179     Init = CE->getSubExpr();
13180 
13181   QualType InitType = Init->getType();
13182   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13183           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
13184          "shouldn't be called if type doesn't have a non-trivial C struct");
13185   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
13186     for (auto *I : ILE->inits()) {
13187       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13188           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
13189         continue;
13190       SourceLocation SL = I->getExprLoc();
13191       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
13192     }
13193     return;
13194   }
13195 
13196   if (isa<ImplicitValueInitExpr>(Init)) {
13197     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13198       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
13199                             NTCUK_Init);
13200   } else {
13201     // Assume all other explicit initializers involving copying some existing
13202     // object.
13203     // TODO: ignore any explicit initializers where we can guarantee
13204     // copy-elision.
13205     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
13206       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
13207   }
13208 }
13209 
13210 namespace {
13211 
13212 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
13213   // Ignore unavailable fields. A field can be marked as unavailable explicitly
13214   // in the source code or implicitly by the compiler if it is in a union
13215   // defined in a system header and has non-trivial ObjC ownership
13216   // qualifications. We don't want those fields to participate in determining
13217   // whether the containing union is non-trivial.
13218   return FD->hasAttr<UnavailableAttr>();
13219 }
13220 
13221 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13222     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13223                                     void> {
13224   using Super =
13225       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13226                                     void>;
13227 
13228   DiagNonTrivalCUnionDefaultInitializeVisitor(
13229       QualType OrigTy, SourceLocation OrigLoc,
13230       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13231       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13232 
13233   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
13234                      const FieldDecl *FD, bool InNonTrivialUnion) {
13235     if (const auto *AT = S.Context.getAsArrayType(QT))
13236       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13237                                      InNonTrivialUnion);
13238     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
13239   }
13240 
13241   void visitARCStrong(QualType QT, const FieldDecl *FD,
13242                       bool InNonTrivialUnion) {
13243     if (InNonTrivialUnion)
13244       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13245           << 1 << 0 << QT << FD->getName();
13246   }
13247 
13248   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13249     if (InNonTrivialUnion)
13250       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13251           << 1 << 0 << QT << FD->getName();
13252   }
13253 
13254   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13255     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13256     if (RD->isUnion()) {
13257       if (OrigLoc.isValid()) {
13258         bool IsUnion = false;
13259         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13260           IsUnion = OrigRD->isUnion();
13261         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13262             << 0 << OrigTy << IsUnion << UseContext;
13263         // Reset OrigLoc so that this diagnostic is emitted only once.
13264         OrigLoc = SourceLocation();
13265       }
13266       InNonTrivialUnion = true;
13267     }
13268 
13269     if (InNonTrivialUnion)
13270       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13271           << 0 << 0 << QT.getUnqualifiedType() << "";
13272 
13273     for (const FieldDecl *FD : RD->fields())
13274       if (!shouldIgnoreForRecordTriviality(FD))
13275         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13276   }
13277 
13278   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13279 
13280   // The non-trivial C union type or the struct/union type that contains a
13281   // non-trivial C union.
13282   QualType OrigTy;
13283   SourceLocation OrigLoc;
13284   Sema::NonTrivialCUnionContext UseContext;
13285   Sema &S;
13286 };
13287 
13288 struct DiagNonTrivalCUnionDestructedTypeVisitor
13289     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
13290   using Super =
13291       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
13292 
13293   DiagNonTrivalCUnionDestructedTypeVisitor(
13294       QualType OrigTy, SourceLocation OrigLoc,
13295       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13296       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13297 
13298   void visitWithKind(QualType::DestructionKind DK, QualType QT,
13299                      const FieldDecl *FD, bool InNonTrivialUnion) {
13300     if (const auto *AT = S.Context.getAsArrayType(QT))
13301       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13302                                      InNonTrivialUnion);
13303     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
13304   }
13305 
13306   void visitARCStrong(QualType QT, const FieldDecl *FD,
13307                       bool InNonTrivialUnion) {
13308     if (InNonTrivialUnion)
13309       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13310           << 1 << 1 << QT << FD->getName();
13311   }
13312 
13313   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13314     if (InNonTrivialUnion)
13315       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13316           << 1 << 1 << QT << FD->getName();
13317   }
13318 
13319   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13320     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13321     if (RD->isUnion()) {
13322       if (OrigLoc.isValid()) {
13323         bool IsUnion = false;
13324         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13325           IsUnion = OrigRD->isUnion();
13326         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13327             << 1 << OrigTy << IsUnion << UseContext;
13328         // Reset OrigLoc so that this diagnostic is emitted only once.
13329         OrigLoc = SourceLocation();
13330       }
13331       InNonTrivialUnion = true;
13332     }
13333 
13334     if (InNonTrivialUnion)
13335       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13336           << 0 << 1 << QT.getUnqualifiedType() << "";
13337 
13338     for (const FieldDecl *FD : RD->fields())
13339       if (!shouldIgnoreForRecordTriviality(FD))
13340         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13341   }
13342 
13343   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13344   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
13345                           bool InNonTrivialUnion) {}
13346 
13347   // The non-trivial C union type or the struct/union type that contains a
13348   // non-trivial C union.
13349   QualType OrigTy;
13350   SourceLocation OrigLoc;
13351   Sema::NonTrivialCUnionContext UseContext;
13352   Sema &S;
13353 };
13354 
13355 struct DiagNonTrivalCUnionCopyVisitor
13356     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
13357   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
13358 
13359   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
13360                                  Sema::NonTrivialCUnionContext UseContext,
13361                                  Sema &S)
13362       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13363 
13364   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
13365                      const FieldDecl *FD, bool InNonTrivialUnion) {
13366     if (const auto *AT = S.Context.getAsArrayType(QT))
13367       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13368                                      InNonTrivialUnion);
13369     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
13370   }
13371 
13372   void visitARCStrong(QualType QT, const FieldDecl *FD,
13373                       bool InNonTrivialUnion) {
13374     if (InNonTrivialUnion)
13375       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13376           << 1 << 2 << QT << FD->getName();
13377   }
13378 
13379   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13380     if (InNonTrivialUnion)
13381       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13382           << 1 << 2 << QT << FD->getName();
13383   }
13384 
13385   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13386     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13387     if (RD->isUnion()) {
13388       if (OrigLoc.isValid()) {
13389         bool IsUnion = false;
13390         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13391           IsUnion = OrigRD->isUnion();
13392         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13393             << 2 << OrigTy << IsUnion << UseContext;
13394         // Reset OrigLoc so that this diagnostic is emitted only once.
13395         OrigLoc = SourceLocation();
13396       }
13397       InNonTrivialUnion = true;
13398     }
13399 
13400     if (InNonTrivialUnion)
13401       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13402           << 0 << 2 << QT.getUnqualifiedType() << "";
13403 
13404     for (const FieldDecl *FD : RD->fields())
13405       if (!shouldIgnoreForRecordTriviality(FD))
13406         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13407   }
13408 
13409   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
13410                 const FieldDecl *FD, bool InNonTrivialUnion) {}
13411   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13412   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
13413                             bool InNonTrivialUnion) {}
13414 
13415   // The non-trivial C union type or the struct/union type that contains a
13416   // non-trivial C union.
13417   QualType OrigTy;
13418   SourceLocation OrigLoc;
13419   Sema::NonTrivialCUnionContext UseContext;
13420   Sema &S;
13421 };
13422 
13423 } // namespace
13424 
13425 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
13426                                  NonTrivialCUnionContext UseContext,
13427                                  unsigned NonTrivialKind) {
13428   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13429           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
13430           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
13431          "shouldn't be called if type doesn't have a non-trivial C union");
13432 
13433   if ((NonTrivialKind & NTCUK_Init) &&
13434       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13435     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
13436         .visit(QT, nullptr, false);
13437   if ((NonTrivialKind & NTCUK_Destruct) &&
13438       QT.hasNonTrivialToPrimitiveDestructCUnion())
13439     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
13440         .visit(QT, nullptr, false);
13441   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
13442     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
13443         .visit(QT, nullptr, false);
13444 }
13445 
13446 /// AddInitializerToDecl - Adds the initializer Init to the
13447 /// declaration dcl. If DirectInit is true, this is C++ direct
13448 /// initialization rather than copy initialization.
13449 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
13450   // If there is no declaration, there was an error parsing it.  Just ignore
13451   // the initializer.
13452   if (!RealDecl || RealDecl->isInvalidDecl()) {
13453     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
13454     return;
13455   }
13456 
13457   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
13458     // Pure-specifiers are handled in ActOnPureSpecifier.
13459     Diag(Method->getLocation(), diag::err_member_function_initialization)
13460       << Method->getDeclName() << Init->getSourceRange();
13461     Method->setInvalidDecl();
13462     return;
13463   }
13464 
13465   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
13466   if (!VDecl) {
13467     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
13468     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
13469     RealDecl->setInvalidDecl();
13470     return;
13471   }
13472 
13473   // WebAssembly tables can't be used to initialise a variable.
13474   if (Init && !Init->getType().isNull() &&
13475       Init->getType()->isWebAssemblyTableType()) {
13476     Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0;
13477     VDecl->setInvalidDecl();
13478     return;
13479   }
13480 
13481   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13482   if (VDecl->getType()->isUndeducedType()) {
13483     // Attempt typo correction early so that the type of the init expression can
13484     // be deduced based on the chosen correction if the original init contains a
13485     // TypoExpr.
13486     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13487     if (!Res.isUsable()) {
13488       // There are unresolved typos in Init, just drop them.
13489       // FIXME: improve the recovery strategy to preserve the Init.
13490       RealDecl->setInvalidDecl();
13491       return;
13492     }
13493     if (Res.get()->containsErrors()) {
13494       // Invalidate the decl as we don't know the type for recovery-expr yet.
13495       RealDecl->setInvalidDecl();
13496       VDecl->setInit(Res.get());
13497       return;
13498     }
13499     Init = Res.get();
13500 
13501     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
13502       return;
13503   }
13504 
13505   // dllimport cannot be used on variable definitions.
13506   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
13507     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
13508     VDecl->setInvalidDecl();
13509     return;
13510   }
13511 
13512   // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13513   // the identifier has external or internal linkage, the declaration shall
13514   // have no initializer for the identifier.
13515   // C++14 [dcl.init]p5 is the same restriction for C++.
13516   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
13517     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
13518     VDecl->setInvalidDecl();
13519     return;
13520   }
13521 
13522   if (!VDecl->getType()->isDependentType()) {
13523     // A definition must end up with a complete type, which means it must be
13524     // complete with the restriction that an array type might be completed by
13525     // the initializer; note that later code assumes this restriction.
13526     QualType BaseDeclType = VDecl->getType();
13527     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
13528       BaseDeclType = Array->getElementType();
13529     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
13530                             diag::err_typecheck_decl_incomplete_type)) {
13531       RealDecl->setInvalidDecl();
13532       return;
13533     }
13534 
13535     // The variable can not have an abstract class type.
13536     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
13537                                diag::err_abstract_type_in_decl,
13538                                AbstractVariableType))
13539       VDecl->setInvalidDecl();
13540   }
13541 
13542   // C++ [module.import/6] external definitions are not permitted in header
13543   // units.
13544   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
13545       !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() &&
13546       VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() &&
13547       !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(VDecl)) {
13548     Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit);
13549     VDecl->setInvalidDecl();
13550   }
13551 
13552   // If adding the initializer will turn this declaration into a definition,
13553   // and we already have a definition for this variable, diagnose or otherwise
13554   // handle the situation.
13555   if (VarDecl *Def = VDecl->getDefinition())
13556     if (Def != VDecl &&
13557         (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
13558         !VDecl->isThisDeclarationADemotedDefinition() &&
13559         checkVarDeclRedefinition(Def, VDecl))
13560       return;
13561 
13562   if (getLangOpts().CPlusPlus) {
13563     // C++ [class.static.data]p4
13564     //   If a static data member is of const integral or const
13565     //   enumeration type, its declaration in the class definition can
13566     //   specify a constant-initializer which shall be an integral
13567     //   constant expression (5.19). In that case, the member can appear
13568     //   in integral constant expressions. The member shall still be
13569     //   defined in a namespace scope if it is used in the program and the
13570     //   namespace scope definition shall not contain an initializer.
13571     //
13572     // We already performed a redefinition check above, but for static
13573     // data members we also need to check whether there was an in-class
13574     // declaration with an initializer.
13575     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
13576       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
13577           << VDecl->getDeclName();
13578       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
13579            diag::note_previous_initializer)
13580           << 0;
13581       return;
13582     }
13583 
13584     if (VDecl->hasLocalStorage())
13585       setFunctionHasBranchProtectedScope();
13586 
13587     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
13588       VDecl->setInvalidDecl();
13589       return;
13590     }
13591   }
13592 
13593   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13594   // a kernel function cannot be initialized."
13595   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
13596     Diag(VDecl->getLocation(), diag::err_local_cant_init);
13597     VDecl->setInvalidDecl();
13598     return;
13599   }
13600 
13601   // The LoaderUninitialized attribute acts as a definition (of undef).
13602   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
13603     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
13604     VDecl->setInvalidDecl();
13605     return;
13606   }
13607 
13608   // Get the decls type and save a reference for later, since
13609   // CheckInitializerTypes may change it.
13610   QualType DclT = VDecl->getType(), SavT = DclT;
13611 
13612   // Expressions default to 'id' when we're in a debugger
13613   // and we are assigning it to a variable of Objective-C pointer type.
13614   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
13615       Init->getType() == Context.UnknownAnyTy) {
13616     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13617     if (Result.isInvalid()) {
13618       VDecl->setInvalidDecl();
13619       return;
13620     }
13621     Init = Result.get();
13622   }
13623 
13624   // Perform the initialization.
13625   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
13626   bool IsParenListInit = false;
13627   if (!VDecl->isInvalidDecl()) {
13628     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13629     InitializationKind Kind = InitializationKind::CreateForInit(
13630         VDecl->getLocation(), DirectInit, Init);
13631 
13632     MultiExprArg Args = Init;
13633     if (CXXDirectInit)
13634       Args = MultiExprArg(CXXDirectInit->getExprs(),
13635                           CXXDirectInit->getNumExprs());
13636 
13637     // Try to correct any TypoExprs in the initialization arguments.
13638     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
13639       ExprResult Res = CorrectDelayedTyposInExpr(
13640           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
13641           [this, Entity, Kind](Expr *E) {
13642             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
13643             return Init.Failed() ? ExprError() : E;
13644           });
13645       if (Res.isInvalid()) {
13646         VDecl->setInvalidDecl();
13647       } else if (Res.get() != Args[Idx]) {
13648         Args[Idx] = Res.get();
13649       }
13650     }
13651     if (VDecl->isInvalidDecl())
13652       return;
13653 
13654     InitializationSequence InitSeq(*this, Entity, Kind, Args,
13655                                    /*TopLevelOfInitList=*/false,
13656                                    /*TreatUnavailableAsInvalid=*/false);
13657     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
13658     if (Result.isInvalid()) {
13659       // If the provided initializer fails to initialize the var decl,
13660       // we attach a recovery expr for better recovery.
13661       auto RecoveryExpr =
13662           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
13663       if (RecoveryExpr.get())
13664         VDecl->setInit(RecoveryExpr.get());
13665       // In general, for error recovery purposes, the initalizer doesn't play
13666       // part in the valid bit of the declaration. There are a few exceptions:
13667       //  1) if the var decl has a deduced auto type, and the type cannot be
13668       //     deduced by an invalid initializer;
13669       //  2) if the var decl is decompsition decl with a non-deduced type, and
13670       //     the initialization fails (e.g. `int [a] = {1, 2};`);
13671       // Case 1) was already handled elsewhere.
13672       if (isa<DecompositionDecl>(VDecl)) // Case 2)
13673         VDecl->setInvalidDecl();
13674       return;
13675     }
13676 
13677     Init = Result.getAs<Expr>();
13678     IsParenListInit = !InitSeq.steps().empty() &&
13679                       InitSeq.step_begin()->Kind ==
13680                           InitializationSequence::SK_ParenthesizedListInit;
13681     QualType VDeclType = VDecl->getType();
13682     if (Init && !Init->getType().isNull() &&
13683         !Init->getType()->isDependentType() && !VDeclType->isDependentType() &&
13684         Context.getAsIncompleteArrayType(VDeclType) &&
13685         Context.getAsIncompleteArrayType(Init->getType())) {
13686       // Bail out if it is not possible to deduce array size from the
13687       // initializer.
13688       Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
13689           << VDeclType;
13690       VDecl->setInvalidDecl();
13691       return;
13692     }
13693   }
13694 
13695   // Check for self-references within variable initializers.
13696   // Variables declared within a function/method body (except for references)
13697   // are handled by a dataflow analysis.
13698   // This is undefined behavior in C++, but valid in C.
13699   if (getLangOpts().CPlusPlus)
13700     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
13701         VDecl->getType()->isReferenceType())
13702       CheckSelfReference(*this, RealDecl, Init, DirectInit);
13703 
13704   // If the type changed, it means we had an incomplete type that was
13705   // completed by the initializer. For example:
13706   //   int ary[] = { 1, 3, 5 };
13707   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13708   if (!VDecl->isInvalidDecl() && (DclT != SavT))
13709     VDecl->setType(DclT);
13710 
13711   if (!VDecl->isInvalidDecl()) {
13712     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
13713 
13714     if (VDecl->hasAttr<BlocksAttr>())
13715       checkRetainCycles(VDecl, Init);
13716 
13717     // It is safe to assign a weak reference into a strong variable.
13718     // Although this code can still have problems:
13719     //   id x = self.weakProp;
13720     //   id y = self.weakProp;
13721     // we do not warn to warn spuriously when 'x' and 'y' are on separate
13722     // paths through the function. This should be revisited if
13723     // -Wrepeated-use-of-weak is made flow-sensitive.
13724     if (FunctionScopeInfo *FSI = getCurFunction())
13725       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
13726            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
13727           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13728                            Init->getBeginLoc()))
13729         FSI->markSafeWeakUse(Init);
13730   }
13731 
13732   // The initialization is usually a full-expression.
13733   //
13734   // FIXME: If this is a braced initialization of an aggregate, it is not
13735   // an expression, and each individual field initializer is a separate
13736   // full-expression. For instance, in:
13737   //
13738   //   struct Temp { ~Temp(); };
13739   //   struct S { S(Temp); };
13740   //   struct T { S a, b; } t = { Temp(), Temp() }
13741   //
13742   // we should destroy the first Temp before constructing the second.
13743   ExprResult Result =
13744       ActOnFinishFullExpr(Init, VDecl->getLocation(),
13745                           /*DiscardedValue*/ false, VDecl->isConstexpr());
13746   if (Result.isInvalid()) {
13747     VDecl->setInvalidDecl();
13748     return;
13749   }
13750   Init = Result.get();
13751 
13752   // Attach the initializer to the decl.
13753   VDecl->setInit(Init);
13754 
13755   if (VDecl->isLocalVarDecl()) {
13756     // Don't check the initializer if the declaration is malformed.
13757     if (VDecl->isInvalidDecl()) {
13758       // do nothing
13759 
13760     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13761     // This is true even in C++ for OpenCL.
13762     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
13763       CheckForConstantInitializer(Init, DclT);
13764 
13765     // Otherwise, C++ does not restrict the initializer.
13766     } else if (getLangOpts().CPlusPlus) {
13767       // do nothing
13768 
13769     // C99 6.7.8p4: All the expressions in an initializer for an object that has
13770     // static storage duration shall be constant expressions or string literals.
13771     } else if (VDecl->getStorageClass() == SC_Static) {
13772       CheckForConstantInitializer(Init, DclT);
13773 
13774     // C89 is stricter than C99 for aggregate initializers.
13775     // C89 6.5.7p3: All the expressions [...] in an initializer list
13776     // for an object that has aggregate or union type shall be
13777     // constant expressions.
13778     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
13779                isa<InitListExpr>(Init)) {
13780       const Expr *Culprit;
13781       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
13782         Diag(Culprit->getExprLoc(),
13783              diag::ext_aggregate_init_not_constant)
13784           << Culprit->getSourceRange();
13785       }
13786     }
13787 
13788     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13789       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13790         if (VDecl->hasLocalStorage())
13791           BE->getBlockDecl()->setCanAvoidCopyToHeap();
13792   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13793              VDecl->getLexicalDeclContext()->isRecord()) {
13794     // This is an in-class initialization for a static data member, e.g.,
13795     //
13796     // struct S {
13797     //   static const int value = 17;
13798     // };
13799 
13800     // C++ [class.mem]p4:
13801     //   A member-declarator can contain a constant-initializer only
13802     //   if it declares a static member (9.4) of const integral or
13803     //   const enumeration type, see 9.4.2.
13804     //
13805     // C++11 [class.static.data]p3:
13806     //   If a non-volatile non-inline const static data member is of integral
13807     //   or enumeration type, its declaration in the class definition can
13808     //   specify a brace-or-equal-initializer in which every initializer-clause
13809     //   that is an assignment-expression is a constant expression. A static
13810     //   data member of literal type can be declared in the class definition
13811     //   with the constexpr specifier; if so, its declaration shall specify a
13812     //   brace-or-equal-initializer in which every initializer-clause that is
13813     //   an assignment-expression is a constant expression.
13814 
13815     // Do nothing on dependent types.
13816     if (DclT->isDependentType()) {
13817 
13818     // Allow any 'static constexpr' members, whether or not they are of literal
13819     // type. We separately check that every constexpr variable is of literal
13820     // type.
13821     } else if (VDecl->isConstexpr()) {
13822 
13823     // Require constness.
13824     } else if (!DclT.isConstQualified()) {
13825       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13826         << Init->getSourceRange();
13827       VDecl->setInvalidDecl();
13828 
13829     // We allow integer constant expressions in all cases.
13830     } else if (DclT->isIntegralOrEnumerationType()) {
13831       // Check whether the expression is a constant expression.
13832       SourceLocation Loc;
13833       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13834         // In C++11, a non-constexpr const static data member with an
13835         // in-class initializer cannot be volatile.
13836         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13837       else if (Init->isValueDependent())
13838         ; // Nothing to check.
13839       else if (Init->isIntegerConstantExpr(Context, &Loc))
13840         ; // Ok, it's an ICE!
13841       else if (Init->getType()->isScopedEnumeralType() &&
13842                Init->isCXX11ConstantExpr(Context))
13843         ; // Ok, it is a scoped-enum constant expression.
13844       else if (Init->isEvaluatable(Context)) {
13845         // If we can constant fold the initializer through heroics, accept it,
13846         // but report this as a use of an extension for -pedantic.
13847         Diag(Loc, diag::ext_in_class_initializer_non_constant)
13848           << Init->getSourceRange();
13849       } else {
13850         // Otherwise, this is some crazy unknown case.  Report the issue at the
13851         // location provided by the isIntegerConstantExpr failed check.
13852         Diag(Loc, diag::err_in_class_initializer_non_constant)
13853           << Init->getSourceRange();
13854         VDecl->setInvalidDecl();
13855       }
13856 
13857     // We allow foldable floating-point constants as an extension.
13858     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13859       // In C++98, this is a GNU extension. In C++11, it is not, but we support
13860       // it anyway and provide a fixit to add the 'constexpr'.
13861       if (getLangOpts().CPlusPlus11) {
13862         Diag(VDecl->getLocation(),
13863              diag::ext_in_class_initializer_float_type_cxx11)
13864             << DclT << Init->getSourceRange();
13865         Diag(VDecl->getBeginLoc(),
13866              diag::note_in_class_initializer_float_type_cxx11)
13867             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13868       } else {
13869         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13870           << DclT << Init->getSourceRange();
13871 
13872         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13873           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13874             << Init->getSourceRange();
13875           VDecl->setInvalidDecl();
13876         }
13877       }
13878 
13879     // Suggest adding 'constexpr' in C++11 for literal types.
13880     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13881       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13882           << DclT << Init->getSourceRange()
13883           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13884       VDecl->setConstexpr(true);
13885 
13886     } else {
13887       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13888         << DclT << Init->getSourceRange();
13889       VDecl->setInvalidDecl();
13890     }
13891   } else if (VDecl->isFileVarDecl()) {
13892     // In C, extern is typically used to avoid tentative definitions when
13893     // declaring variables in headers, but adding an intializer makes it a
13894     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13895     // In C++, extern is often used to give implictly static const variables
13896     // external linkage, so don't warn in that case. If selectany is present,
13897     // this might be header code intended for C and C++ inclusion, so apply the
13898     // C++ rules.
13899     if (VDecl->getStorageClass() == SC_Extern &&
13900         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13901          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13902         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13903         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13904       Diag(VDecl->getLocation(), diag::warn_extern_init);
13905 
13906     // In Microsoft C++ mode, a const variable defined in namespace scope has
13907     // external linkage by default if the variable is declared with
13908     // __declspec(dllexport).
13909     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13910         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13911         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13912       VDecl->setStorageClass(SC_Extern);
13913 
13914     // C99 6.7.8p4. All file scoped initializers need to be constant.
13915     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
13916       CheckForConstantInitializer(Init, DclT);
13917   }
13918 
13919   QualType InitType = Init->getType();
13920   if (!InitType.isNull() &&
13921       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13922        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13923     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13924 
13925   // We will represent direct-initialization similarly to copy-initialization:
13926   //    int x(1);  -as-> int x = 1;
13927   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13928   //
13929   // Clients that want to distinguish between the two forms, can check for
13930   // direct initializer using VarDecl::getInitStyle().
13931   // A major benefit is that clients that don't particularly care about which
13932   // exactly form was it (like the CodeGen) can handle both cases without
13933   // special case code.
13934 
13935   // C++ 8.5p11:
13936   // The form of initialization (using parentheses or '=') is generally
13937   // insignificant, but does matter when the entity being initialized has a
13938   // class type.
13939   if (CXXDirectInit) {
13940     assert(DirectInit && "Call-style initializer must be direct init.");
13941     VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit
13942                                         : VarDecl::CallInit);
13943   } else if (DirectInit) {
13944     // This must be list-initialization. No other way is direct-initialization.
13945     VDecl->setInitStyle(VarDecl::ListInit);
13946   }
13947 
13948   if (LangOpts.OpenMP &&
13949       (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) &&
13950       VDecl->isFileVarDecl())
13951     DeclsToCheckForDeferredDiags.insert(VDecl);
13952   CheckCompleteVariableDeclaration(VDecl);
13953 }
13954 
13955 /// ActOnInitializerError - Given that there was an error parsing an
13956 /// initializer for the given declaration, try to at least re-establish
13957 /// invariants such as whether a variable's type is either dependent or
13958 /// complete.
13959 void Sema::ActOnInitializerError(Decl *D) {
13960   // Our main concern here is re-establishing invariants like "a
13961   // variable's type is either dependent or complete".
13962   if (!D || D->isInvalidDecl()) return;
13963 
13964   VarDecl *VD = dyn_cast<VarDecl>(D);
13965   if (!VD) return;
13966 
13967   // Bindings are not usable if we can't make sense of the initializer.
13968   if (auto *DD = dyn_cast<DecompositionDecl>(D))
13969     for (auto *BD : DD->bindings())
13970       BD->setInvalidDecl();
13971 
13972   // Auto types are meaningless if we can't make sense of the initializer.
13973   if (VD->getType()->isUndeducedType()) {
13974     D->setInvalidDecl();
13975     return;
13976   }
13977 
13978   QualType Ty = VD->getType();
13979   if (Ty->isDependentType()) return;
13980 
13981   // Require a complete type.
13982   if (RequireCompleteType(VD->getLocation(),
13983                           Context.getBaseElementType(Ty),
13984                           diag::err_typecheck_decl_incomplete_type)) {
13985     VD->setInvalidDecl();
13986     return;
13987   }
13988 
13989   // Require a non-abstract type.
13990   if (RequireNonAbstractType(VD->getLocation(), Ty,
13991                              diag::err_abstract_type_in_decl,
13992                              AbstractVariableType)) {
13993     VD->setInvalidDecl();
13994     return;
13995   }
13996 
13997   // Don't bother complaining about constructors or destructors,
13998   // though.
13999 }
14000 
14001 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
14002   // If there is no declaration, there was an error parsing it. Just ignore it.
14003   if (!RealDecl)
14004     return;
14005 
14006   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
14007     QualType Type = Var->getType();
14008 
14009     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
14010     if (isa<DecompositionDecl>(RealDecl)) {
14011       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
14012       Var->setInvalidDecl();
14013       return;
14014     }
14015 
14016     if (Type->isUndeducedType() &&
14017         DeduceVariableDeclarationType(Var, false, nullptr))
14018       return;
14019 
14020     // C++11 [class.static.data]p3: A static data member can be declared with
14021     // the constexpr specifier; if so, its declaration shall specify
14022     // a brace-or-equal-initializer.
14023     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
14024     // the definition of a variable [...] or the declaration of a static data
14025     // member.
14026     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
14027         !Var->isThisDeclarationADemotedDefinition()) {
14028       if (Var->isStaticDataMember()) {
14029         // C++1z removes the relevant rule; the in-class declaration is always
14030         // a definition there.
14031         if (!getLangOpts().CPlusPlus17 &&
14032             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14033           Diag(Var->getLocation(),
14034                diag::err_constexpr_static_mem_var_requires_init)
14035               << Var;
14036           Var->setInvalidDecl();
14037           return;
14038         }
14039       } else {
14040         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
14041         Var->setInvalidDecl();
14042         return;
14043       }
14044     }
14045 
14046     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
14047     // be initialized.
14048     if (!Var->isInvalidDecl() &&
14049         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
14050         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
14051       bool HasConstExprDefaultConstructor = false;
14052       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
14053         for (auto *Ctor : RD->ctors()) {
14054           if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
14055               Ctor->getMethodQualifiers().getAddressSpace() ==
14056                   LangAS::opencl_constant) {
14057             HasConstExprDefaultConstructor = true;
14058           }
14059         }
14060       }
14061       if (!HasConstExprDefaultConstructor) {
14062         Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
14063         Var->setInvalidDecl();
14064         return;
14065       }
14066     }
14067 
14068     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
14069       if (Var->getStorageClass() == SC_Extern) {
14070         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
14071             << Var;
14072         Var->setInvalidDecl();
14073         return;
14074       }
14075       if (RequireCompleteType(Var->getLocation(), Var->getType(),
14076                               diag::err_typecheck_decl_incomplete_type)) {
14077         Var->setInvalidDecl();
14078         return;
14079       }
14080       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
14081         if (!RD->hasTrivialDefaultConstructor()) {
14082           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
14083           Var->setInvalidDecl();
14084           return;
14085         }
14086       }
14087       // The declaration is unitialized, no need for further checks.
14088       return;
14089     }
14090 
14091     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
14092     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
14093         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
14094       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
14095                             NTCUC_DefaultInitializedObject, NTCUK_Init);
14096 
14097 
14098     switch (DefKind) {
14099     case VarDecl::Definition:
14100       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
14101         break;
14102 
14103       // We have an out-of-line definition of a static data member
14104       // that has an in-class initializer, so we type-check this like
14105       // a declaration.
14106       //
14107       [[fallthrough]];
14108 
14109     case VarDecl::DeclarationOnly:
14110       // It's only a declaration.
14111 
14112       // Block scope. C99 6.7p7: If an identifier for an object is
14113       // declared with no linkage (C99 6.2.2p6), the type for the
14114       // object shall be complete.
14115       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
14116           !Var->hasLinkage() && !Var->isInvalidDecl() &&
14117           RequireCompleteType(Var->getLocation(), Type,
14118                               diag::err_typecheck_decl_incomplete_type))
14119         Var->setInvalidDecl();
14120 
14121       // Make sure that the type is not abstract.
14122       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14123           RequireNonAbstractType(Var->getLocation(), Type,
14124                                  diag::err_abstract_type_in_decl,
14125                                  AbstractVariableType))
14126         Var->setInvalidDecl();
14127       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14128           Var->getStorageClass() == SC_PrivateExtern) {
14129         Diag(Var->getLocation(), diag::warn_private_extern);
14130         Diag(Var->getLocation(), diag::note_private_extern);
14131       }
14132 
14133       if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
14134           !Var->isInvalidDecl())
14135         ExternalDeclarations.push_back(Var);
14136 
14137       return;
14138 
14139     case VarDecl::TentativeDefinition:
14140       // File scope. C99 6.9.2p2: A declaration of an identifier for an
14141       // object that has file scope without an initializer, and without a
14142       // storage-class specifier or with the storage-class specifier "static",
14143       // constitutes a tentative definition. Note: A tentative definition with
14144       // external linkage is valid (C99 6.2.2p5).
14145       if (!Var->isInvalidDecl()) {
14146         if (const IncompleteArrayType *ArrayT
14147                                     = Context.getAsIncompleteArrayType(Type)) {
14148           if (RequireCompleteSizedType(
14149                   Var->getLocation(), ArrayT->getElementType(),
14150                   diag::err_array_incomplete_or_sizeless_type))
14151             Var->setInvalidDecl();
14152         } else if (Var->getStorageClass() == SC_Static) {
14153           // C99 6.9.2p3: If the declaration of an identifier for an object is
14154           // a tentative definition and has internal linkage (C99 6.2.2p3), the
14155           // declared type shall not be an incomplete type.
14156           // NOTE: code such as the following
14157           //     static struct s;
14158           //     struct s { int a; };
14159           // is accepted by gcc. Hence here we issue a warning instead of
14160           // an error and we do not invalidate the static declaration.
14161           // NOTE: to avoid multiple warnings, only check the first declaration.
14162           if (Var->isFirstDecl())
14163             RequireCompleteType(Var->getLocation(), Type,
14164                                 diag::ext_typecheck_decl_incomplete_type);
14165         }
14166       }
14167 
14168       // Record the tentative definition; we're done.
14169       if (!Var->isInvalidDecl())
14170         TentativeDefinitions.push_back(Var);
14171       return;
14172     }
14173 
14174     // Provide a specific diagnostic for uninitialized variable
14175     // definitions with incomplete array type.
14176     if (Type->isIncompleteArrayType()) {
14177       if (Var->isConstexpr())
14178         Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
14179             << Var;
14180       else
14181         Diag(Var->getLocation(),
14182              diag::err_typecheck_incomplete_array_needs_initializer);
14183       Var->setInvalidDecl();
14184       return;
14185     }
14186 
14187     // Provide a specific diagnostic for uninitialized variable
14188     // definitions with reference type.
14189     if (Type->isReferenceType()) {
14190       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
14191           << Var << SourceRange(Var->getLocation(), Var->getLocation());
14192       return;
14193     }
14194 
14195     // Do not attempt to type-check the default initializer for a
14196     // variable with dependent type.
14197     if (Type->isDependentType())
14198       return;
14199 
14200     if (Var->isInvalidDecl())
14201       return;
14202 
14203     if (!Var->hasAttr<AliasAttr>()) {
14204       if (RequireCompleteType(Var->getLocation(),
14205                               Context.getBaseElementType(Type),
14206                               diag::err_typecheck_decl_incomplete_type)) {
14207         Var->setInvalidDecl();
14208         return;
14209       }
14210     } else {
14211       return;
14212     }
14213 
14214     // The variable can not have an abstract class type.
14215     if (RequireNonAbstractType(Var->getLocation(), Type,
14216                                diag::err_abstract_type_in_decl,
14217                                AbstractVariableType)) {
14218       Var->setInvalidDecl();
14219       return;
14220     }
14221 
14222     // Check for jumps past the implicit initializer.  C++0x
14223     // clarifies that this applies to a "variable with automatic
14224     // storage duration", not a "local variable".
14225     // C++11 [stmt.dcl]p3
14226     //   A program that jumps from a point where a variable with automatic
14227     //   storage duration is not in scope to a point where it is in scope is
14228     //   ill-formed unless the variable has scalar type, class type with a
14229     //   trivial default constructor and a trivial destructor, a cv-qualified
14230     //   version of one of these types, or an array of one of the preceding
14231     //   types and is declared without an initializer.
14232     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
14233       if (const RecordType *Record
14234             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
14235         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
14236         // Mark the function (if we're in one) for further checking even if the
14237         // looser rules of C++11 do not require such checks, so that we can
14238         // diagnose incompatibilities with C++98.
14239         if (!CXXRecord->isPOD())
14240           setFunctionHasBranchProtectedScope();
14241       }
14242     }
14243     // In OpenCL, we can't initialize objects in the __local address space,
14244     // even implicitly, so don't synthesize an implicit initializer.
14245     if (getLangOpts().OpenCL &&
14246         Var->getType().getAddressSpace() == LangAS::opencl_local)
14247       return;
14248     // C++03 [dcl.init]p9:
14249     //   If no initializer is specified for an object, and the
14250     //   object is of (possibly cv-qualified) non-POD class type (or
14251     //   array thereof), the object shall be default-initialized; if
14252     //   the object is of const-qualified type, the underlying class
14253     //   type shall have a user-declared default
14254     //   constructor. Otherwise, if no initializer is specified for
14255     //   a non- static object, the object and its subobjects, if
14256     //   any, have an indeterminate initial value); if the object
14257     //   or any of its subobjects are of const-qualified type, the
14258     //   program is ill-formed.
14259     // C++0x [dcl.init]p11:
14260     //   If no initializer is specified for an object, the object is
14261     //   default-initialized; [...].
14262     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
14263     InitializationKind Kind
14264       = InitializationKind::CreateDefault(Var->getLocation());
14265 
14266     InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt);
14267     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt);
14268 
14269     if (Init.get()) {
14270       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
14271       // This is important for template substitution.
14272       Var->setInitStyle(VarDecl::CallInit);
14273     } else if (Init.isInvalid()) {
14274       // If default-init fails, attach a recovery-expr initializer to track
14275       // that initialization was attempted and failed.
14276       auto RecoveryExpr =
14277           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
14278       if (RecoveryExpr.get())
14279         Var->setInit(RecoveryExpr.get());
14280     }
14281 
14282     CheckCompleteVariableDeclaration(Var);
14283   }
14284 }
14285 
14286 void Sema::ActOnCXXForRangeDecl(Decl *D) {
14287   // If there is no declaration, there was an error parsing it. Ignore it.
14288   if (!D)
14289     return;
14290 
14291   VarDecl *VD = dyn_cast<VarDecl>(D);
14292   if (!VD) {
14293     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
14294     D->setInvalidDecl();
14295     return;
14296   }
14297 
14298   VD->setCXXForRangeDecl(true);
14299 
14300   // for-range-declaration cannot be given a storage class specifier.
14301   int Error = -1;
14302   switch (VD->getStorageClass()) {
14303   case SC_None:
14304     break;
14305   case SC_Extern:
14306     Error = 0;
14307     break;
14308   case SC_Static:
14309     Error = 1;
14310     break;
14311   case SC_PrivateExtern:
14312     Error = 2;
14313     break;
14314   case SC_Auto:
14315     Error = 3;
14316     break;
14317   case SC_Register:
14318     Error = 4;
14319     break;
14320   }
14321 
14322   // for-range-declaration cannot be given a storage class specifier con't.
14323   switch (VD->getTSCSpec()) {
14324   case TSCS_thread_local:
14325     Error = 6;
14326     break;
14327   case TSCS___thread:
14328   case TSCS__Thread_local:
14329   case TSCS_unspecified:
14330     break;
14331   }
14332 
14333   if (Error != -1) {
14334     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
14335         << VD << Error;
14336     D->setInvalidDecl();
14337   }
14338 }
14339 
14340 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
14341                                             IdentifierInfo *Ident,
14342                                             ParsedAttributes &Attrs) {
14343   // C++1y [stmt.iter]p1:
14344   //   A range-based for statement of the form
14345   //      for ( for-range-identifier : for-range-initializer ) statement
14346   //   is equivalent to
14347   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
14348   DeclSpec DS(Attrs.getPool().getFactory());
14349 
14350   const char *PrevSpec;
14351   unsigned DiagID;
14352   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
14353                      getPrintingPolicy());
14354 
14355   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
14356   D.SetIdentifier(Ident, IdentLoc);
14357   D.takeAttributes(Attrs);
14358 
14359   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
14360                 IdentLoc);
14361   Decl *Var = ActOnDeclarator(S, D);
14362   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
14363   FinalizeDeclaration(Var);
14364   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
14365                        Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
14366                                                       : IdentLoc);
14367 }
14368 
14369 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
14370   if (var->isInvalidDecl()) return;
14371 
14372   MaybeAddCUDAConstantAttr(var);
14373 
14374   if (getLangOpts().OpenCL) {
14375     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14376     // initialiser
14377     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14378         !var->hasInit()) {
14379       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
14380           << 1 /*Init*/;
14381       var->setInvalidDecl();
14382       return;
14383     }
14384   }
14385 
14386   // In Objective-C, don't allow jumps past the implicit initialization of a
14387   // local retaining variable.
14388   if (getLangOpts().ObjC &&
14389       var->hasLocalStorage()) {
14390     switch (var->getType().getObjCLifetime()) {
14391     case Qualifiers::OCL_None:
14392     case Qualifiers::OCL_ExplicitNone:
14393     case Qualifiers::OCL_Autoreleasing:
14394       break;
14395 
14396     case Qualifiers::OCL_Weak:
14397     case Qualifiers::OCL_Strong:
14398       setFunctionHasBranchProtectedScope();
14399       break;
14400     }
14401   }
14402 
14403   if (var->hasLocalStorage() &&
14404       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
14405     setFunctionHasBranchProtectedScope();
14406 
14407   // Warn about externally-visible variables being defined without a
14408   // prior declaration.  We only want to do this for global
14409   // declarations, but we also specifically need to avoid doing it for
14410   // class members because the linkage of an anonymous class can
14411   // change if it's later given a typedef name.
14412   if (var->isThisDeclarationADefinition() &&
14413       var->getDeclContext()->getRedeclContext()->isFileContext() &&
14414       var->isExternallyVisible() && var->hasLinkage() &&
14415       !var->isInline() && !var->getDescribedVarTemplate() &&
14416       var->getStorageClass() != SC_Register &&
14417       !isa<VarTemplatePartialSpecializationDecl>(var) &&
14418       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
14419       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
14420                                   var->getLocation())) {
14421     // Find a previous declaration that's not a definition.
14422     VarDecl *prev = var->getPreviousDecl();
14423     while (prev && prev->isThisDeclarationADefinition())
14424       prev = prev->getPreviousDecl();
14425 
14426     if (!prev) {
14427       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
14428       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14429           << /* variable */ 0;
14430     }
14431   }
14432 
14433   // Cache the result of checking for constant initialization.
14434   std::optional<bool> CacheHasConstInit;
14435   const Expr *CacheCulprit = nullptr;
14436   auto checkConstInit = [&]() mutable {
14437     if (!CacheHasConstInit)
14438       CacheHasConstInit = var->getInit()->isConstantInitializer(
14439             Context, var->getType()->isReferenceType(), &CacheCulprit);
14440     return *CacheHasConstInit;
14441   };
14442 
14443   if (var->getTLSKind() == VarDecl::TLS_Static) {
14444     if (var->getType().isDestructedType()) {
14445       // GNU C++98 edits for __thread, [basic.start.term]p3:
14446       //   The type of an object with thread storage duration shall not
14447       //   have a non-trivial destructor.
14448       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
14449       if (getLangOpts().CPlusPlus11)
14450         Diag(var->getLocation(), diag::note_use_thread_local);
14451     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
14452       if (!checkConstInit()) {
14453         // GNU C++98 edits for __thread, [basic.start.init]p4:
14454         //   An object of thread storage duration shall not require dynamic
14455         //   initialization.
14456         // FIXME: Need strict checking here.
14457         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
14458           << CacheCulprit->getSourceRange();
14459         if (getLangOpts().CPlusPlus11)
14460           Diag(var->getLocation(), diag::note_use_thread_local);
14461       }
14462     }
14463   }
14464 
14465 
14466   if (!var->getType()->isStructureType() && var->hasInit() &&
14467       isa<InitListExpr>(var->getInit())) {
14468     const auto *ILE = cast<InitListExpr>(var->getInit());
14469     unsigned NumInits = ILE->getNumInits();
14470     if (NumInits > 2)
14471       for (unsigned I = 0; I < NumInits; ++I) {
14472         const auto *Init = ILE->getInit(I);
14473         if (!Init)
14474           break;
14475         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14476         if (!SL)
14477           break;
14478 
14479         unsigned NumConcat = SL->getNumConcatenated();
14480         // Diagnose missing comma in string array initialization.
14481         // Do not warn when all the elements in the initializer are concatenated
14482         // together. Do not warn for macros too.
14483         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
14484           bool OnlyOneMissingComma = true;
14485           for (unsigned J = I + 1; J < NumInits; ++J) {
14486             const auto *Init = ILE->getInit(J);
14487             if (!Init)
14488               break;
14489             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14490             if (!SLJ || SLJ->getNumConcatenated() > 1) {
14491               OnlyOneMissingComma = false;
14492               break;
14493             }
14494           }
14495 
14496           if (OnlyOneMissingComma) {
14497             SmallVector<FixItHint, 1> Hints;
14498             for (unsigned i = 0; i < NumConcat - 1; ++i)
14499               Hints.push_back(FixItHint::CreateInsertion(
14500                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
14501 
14502             Diag(SL->getStrTokenLoc(1),
14503                  diag::warn_concatenated_literal_array_init)
14504                 << Hints;
14505             Diag(SL->getBeginLoc(),
14506                  diag::note_concatenated_string_literal_silence);
14507           }
14508           // In any case, stop now.
14509           break;
14510         }
14511       }
14512   }
14513 
14514 
14515   QualType type = var->getType();
14516 
14517   if (var->hasAttr<BlocksAttr>())
14518     getCurFunction()->addByrefBlockVar(var);
14519 
14520   Expr *Init = var->getInit();
14521   bool GlobalStorage = var->hasGlobalStorage();
14522   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
14523   QualType baseType = Context.getBaseElementType(type);
14524   bool HasConstInit = true;
14525 
14526   // Check whether the initializer is sufficiently constant.
14527   if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
14528       !Init->isValueDependent() &&
14529       (GlobalStorage || var->isConstexpr() ||
14530        var->mightBeUsableInConstantExpressions(Context))) {
14531     // If this variable might have a constant initializer or might be usable in
14532     // constant expressions, check whether or not it actually is now.  We can't
14533     // do this lazily, because the result might depend on things that change
14534     // later, such as which constexpr functions happen to be defined.
14535     SmallVector<PartialDiagnosticAt, 8> Notes;
14536     if (!getLangOpts().CPlusPlus11) {
14537       // Prior to C++11, in contexts where a constant initializer is required,
14538       // the set of valid constant initializers is described by syntactic rules
14539       // in [expr.const]p2-6.
14540       // FIXME: Stricter checking for these rules would be useful for constinit /
14541       // -Wglobal-constructors.
14542       HasConstInit = checkConstInit();
14543 
14544       // Compute and cache the constant value, and remember that we have a
14545       // constant initializer.
14546       if (HasConstInit) {
14547         (void)var->checkForConstantInitialization(Notes);
14548         Notes.clear();
14549       } else if (CacheCulprit) {
14550         Notes.emplace_back(CacheCulprit->getExprLoc(),
14551                            PDiag(diag::note_invalid_subexpr_in_const_expr));
14552         Notes.back().second << CacheCulprit->getSourceRange();
14553       }
14554     } else {
14555       // Evaluate the initializer to see if it's a constant initializer.
14556       HasConstInit = var->checkForConstantInitialization(Notes);
14557     }
14558 
14559     if (HasConstInit) {
14560       // FIXME: Consider replacing the initializer with a ConstantExpr.
14561     } else if (var->isConstexpr()) {
14562       SourceLocation DiagLoc = var->getLocation();
14563       // If the note doesn't add any useful information other than a source
14564       // location, fold it into the primary diagnostic.
14565       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14566                                    diag::note_invalid_subexpr_in_const_expr) {
14567         DiagLoc = Notes[0].first;
14568         Notes.clear();
14569       }
14570       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
14571           << var << Init->getSourceRange();
14572       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14573         Diag(Notes[I].first, Notes[I].second);
14574     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
14575       auto *Attr = var->getAttr<ConstInitAttr>();
14576       Diag(var->getLocation(), diag::err_require_constant_init_failed)
14577           << Init->getSourceRange();
14578       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
14579           << Attr->getRange() << Attr->isConstinit();
14580       for (auto &it : Notes)
14581         Diag(it.first, it.second);
14582     } else if (IsGlobal &&
14583                !getDiagnostics().isIgnored(diag::warn_global_constructor,
14584                                            var->getLocation())) {
14585       // Warn about globals which don't have a constant initializer.  Don't
14586       // warn about globals with a non-trivial destructor because we already
14587       // warned about them.
14588       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
14589       if (!(RD && !RD->hasTrivialDestructor())) {
14590         // checkConstInit() here permits trivial default initialization even in
14591         // C++11 onwards, where such an initializer is not a constant initializer
14592         // but nonetheless doesn't require a global constructor.
14593         if (!checkConstInit())
14594           Diag(var->getLocation(), diag::warn_global_constructor)
14595               << Init->getSourceRange();
14596       }
14597     }
14598   }
14599 
14600   // Apply section attributes and pragmas to global variables.
14601   if (GlobalStorage && var->isThisDeclarationADefinition() &&
14602       !inTemplateInstantiation()) {
14603     PragmaStack<StringLiteral *> *Stack = nullptr;
14604     int SectionFlags = ASTContext::PSF_Read;
14605     bool MSVCEnv =
14606         Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14607     std::optional<QualType::NonConstantStorageReason> Reason;
14608     if (HasConstInit &&
14609         !(Reason = var->getType().isNonConstantStorage(Context, true, false))) {
14610       Stack = &ConstSegStack;
14611     } else {
14612       SectionFlags |= ASTContext::PSF_Write;
14613       Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack;
14614     }
14615     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
14616       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
14617         SectionFlags |= ASTContext::PSF_Implicit;
14618       UnifySection(SA->getName(), SectionFlags, var);
14619     } else if (Stack->CurrentValue) {
14620       if (Stack != &ConstSegStack && MSVCEnv &&
14621           ConstSegStack.CurrentValue != ConstSegStack.DefaultValue &&
14622           var->getType().isConstQualified()) {
14623         assert((!Reason || Reason != QualType::NonConstantStorageReason::
14624                                          NonConstNonReferenceType) &&
14625                "This case should've already been handled elsewhere");
14626         Diag(var->getLocation(), diag::warn_section_msvc_compat)
14627                 << var << ConstSegStack.CurrentValue << (int)(!HasConstInit
14628             ? QualType::NonConstantStorageReason::NonTrivialCtor
14629             : *Reason);
14630       }
14631       SectionFlags |= ASTContext::PSF_Implicit;
14632       auto SectionName = Stack->CurrentValue->getString();
14633       var->addAttr(SectionAttr::CreateImplicit(Context, SectionName,
14634                                                Stack->CurrentPragmaLocation,
14635                                                SectionAttr::Declspec_allocate));
14636       if (UnifySection(SectionName, SectionFlags, var))
14637         var->dropAttr<SectionAttr>();
14638     }
14639 
14640     // Apply the init_seg attribute if this has an initializer.  If the
14641     // initializer turns out to not be dynamic, we'll end up ignoring this
14642     // attribute.
14643     if (CurInitSeg && var->getInit())
14644       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
14645                                                CurInitSegLoc));
14646   }
14647 
14648   // All the following checks are C++ only.
14649   if (!getLangOpts().CPlusPlus) {
14650     // If this variable must be emitted, add it as an initializer for the
14651     // current module.
14652     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14653       Context.addModuleInitializer(ModuleScopes.back().Module, var);
14654     return;
14655   }
14656 
14657   // Require the destructor.
14658   if (!type->isDependentType())
14659     if (const RecordType *recordType = baseType->getAs<RecordType>())
14660       FinalizeVarWithDestructor(var, recordType);
14661 
14662   // If this variable must be emitted, add it as an initializer for the current
14663   // module.
14664   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14665     Context.addModuleInitializer(ModuleScopes.back().Module, var);
14666 
14667   // Build the bindings if this is a structured binding declaration.
14668   if (auto *DD = dyn_cast<DecompositionDecl>(var))
14669     CheckCompleteDecompositionDeclaration(DD);
14670 }
14671 
14672 /// Check if VD needs to be dllexport/dllimport due to being in a
14673 /// dllexport/import function.
14674 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
14675   assert(VD->isStaticLocal());
14676 
14677   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14678 
14679   // Find outermost function when VD is in lambda function.
14680   while (FD && !getDLLAttr(FD) &&
14681          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
14682          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
14683     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
14684   }
14685 
14686   if (!FD)
14687     return;
14688 
14689   // Static locals inherit dll attributes from their function.
14690   if (Attr *A = getDLLAttr(FD)) {
14691     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
14692     NewAttr->setInherited(true);
14693     VD->addAttr(NewAttr);
14694   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
14695     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
14696     NewAttr->setInherited(true);
14697     VD->addAttr(NewAttr);
14698 
14699     // Export this function to enforce exporting this static variable even
14700     // if it is not used in this compilation unit.
14701     if (!FD->hasAttr<DLLExportAttr>())
14702       FD->addAttr(NewAttr);
14703 
14704   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
14705     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
14706     NewAttr->setInherited(true);
14707     VD->addAttr(NewAttr);
14708   }
14709 }
14710 
14711 void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) {
14712   assert(VD->getTLSKind());
14713 
14714   // Perform TLS alignment check here after attributes attached to the variable
14715   // which may affect the alignment have been processed. Only perform the check
14716   // if the target has a maximum TLS alignment (zero means no constraints).
14717   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
14718     // Protect the check so that it's not performed on dependent types and
14719     // dependent alignments (we can't determine the alignment in that case).
14720     if (!VD->hasDependentAlignment()) {
14721       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
14722       if (Context.getDeclAlign(VD) > MaxAlignChars) {
14723         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
14724             << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
14725             << (unsigned)MaxAlignChars.getQuantity();
14726       }
14727     }
14728   }
14729 }
14730 
14731 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14732 /// any semantic actions necessary after any initializer has been attached.
14733 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
14734   // Note that we are no longer parsing the initializer for this declaration.
14735   ParsingInitForAutoVars.erase(ThisDecl);
14736 
14737   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
14738   if (!VD)
14739     return;
14740 
14741   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14742   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
14743       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
14744     if (PragmaClangBSSSection.Valid)
14745       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14746           Context, PragmaClangBSSSection.SectionName,
14747           PragmaClangBSSSection.PragmaLocation));
14748     if (PragmaClangDataSection.Valid)
14749       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14750           Context, PragmaClangDataSection.SectionName,
14751           PragmaClangDataSection.PragmaLocation));
14752     if (PragmaClangRodataSection.Valid)
14753       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14754           Context, PragmaClangRodataSection.SectionName,
14755           PragmaClangRodataSection.PragmaLocation));
14756     if (PragmaClangRelroSection.Valid)
14757       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14758           Context, PragmaClangRelroSection.SectionName,
14759           PragmaClangRelroSection.PragmaLocation));
14760   }
14761 
14762   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
14763     for (auto *BD : DD->bindings()) {
14764       FinalizeDeclaration(BD);
14765     }
14766   }
14767 
14768   checkAttributesAfterMerging(*this, *VD);
14769 
14770   if (VD->isStaticLocal())
14771     CheckStaticLocalForDllExport(VD);
14772 
14773   if (VD->getTLSKind())
14774     CheckThreadLocalForLargeAlignment(VD);
14775 
14776   // Perform check for initializers of device-side global variables.
14777   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14778   // 7.5). We must also apply the same checks to all __shared__
14779   // variables whether they are local or not. CUDA also allows
14780   // constant initializers for __constant__ and __device__ variables.
14781   if (getLangOpts().CUDA)
14782     checkAllowedCUDAInitializer(VD);
14783 
14784   // Grab the dllimport or dllexport attribute off of the VarDecl.
14785   const InheritableAttr *DLLAttr = getDLLAttr(VD);
14786 
14787   // Imported static data members cannot be defined out-of-line.
14788   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
14789     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
14790         VD->isThisDeclarationADefinition()) {
14791       // We allow definitions of dllimport class template static data members
14792       // with a warning.
14793       CXXRecordDecl *Context =
14794         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14795       bool IsClassTemplateMember =
14796           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14797           Context->getDescribedClassTemplate();
14798 
14799       Diag(VD->getLocation(),
14800            IsClassTemplateMember
14801                ? diag::warn_attribute_dllimport_static_field_definition
14802                : diag::err_attribute_dllimport_static_field_definition);
14803       Diag(IA->getLocation(), diag::note_attribute);
14804       if (!IsClassTemplateMember)
14805         VD->setInvalidDecl();
14806     }
14807   }
14808 
14809   // dllimport/dllexport variables cannot be thread local, their TLS index
14810   // isn't exported with the variable.
14811   if (DLLAttr && VD->getTLSKind()) {
14812     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14813     if (F && getDLLAttr(F)) {
14814       assert(VD->isStaticLocal());
14815       // But if this is a static local in a dlimport/dllexport function, the
14816       // function will never be inlined, which means the var would never be
14817       // imported, so having it marked import/export is safe.
14818     } else {
14819       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14820                                                                     << DLLAttr;
14821       VD->setInvalidDecl();
14822     }
14823   }
14824 
14825   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14826     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14827       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14828           << Attr;
14829       VD->dropAttr<UsedAttr>();
14830     }
14831   }
14832   if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14833     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14834       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14835           << Attr;
14836       VD->dropAttr<RetainAttr>();
14837     }
14838   }
14839 
14840   const DeclContext *DC = VD->getDeclContext();
14841   // If there's a #pragma GCC visibility in scope, and this isn't a class
14842   // member, set the visibility of this variable.
14843   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14844     AddPushedVisibilityAttribute(VD);
14845 
14846   // FIXME: Warn on unused var template partial specializations.
14847   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14848     MarkUnusedFileScopedDecl(VD);
14849 
14850   // Now we have parsed the initializer and can update the table of magic
14851   // tag values.
14852   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14853       !VD->getType()->isIntegralOrEnumerationType())
14854     return;
14855 
14856   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14857     const Expr *MagicValueExpr = VD->getInit();
14858     if (!MagicValueExpr) {
14859       continue;
14860     }
14861     std::optional<llvm::APSInt> MagicValueInt;
14862     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14863       Diag(I->getRange().getBegin(),
14864            diag::err_type_tag_for_datatype_not_ice)
14865         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14866       continue;
14867     }
14868     if (MagicValueInt->getActiveBits() > 64) {
14869       Diag(I->getRange().getBegin(),
14870            diag::err_type_tag_for_datatype_too_large)
14871         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14872       continue;
14873     }
14874     uint64_t MagicValue = MagicValueInt->getZExtValue();
14875     RegisterTypeTagForDatatype(I->getArgumentKind(),
14876                                MagicValue,
14877                                I->getMatchingCType(),
14878                                I->getLayoutCompatible(),
14879                                I->getMustBeNull());
14880   }
14881 }
14882 
14883 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14884   auto *VD = dyn_cast<VarDecl>(DD);
14885   return VD && !VD->getType()->hasAutoForTrailingReturnType();
14886 }
14887 
14888 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14889                                                    ArrayRef<Decl *> Group) {
14890   SmallVector<Decl*, 8> Decls;
14891 
14892   if (DS.isTypeSpecOwned())
14893     Decls.push_back(DS.getRepAsDecl());
14894 
14895   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14896   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14897   bool DiagnosedMultipleDecomps = false;
14898   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14899   bool DiagnosedNonDeducedAuto = false;
14900 
14901   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14902     if (Decl *D = Group[i]) {
14903       // Check if the Decl has been declared in '#pragma omp declare target'
14904       // directive and has static storage duration.
14905       if (auto *VD = dyn_cast<VarDecl>(D);
14906           LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() &&
14907           VD->hasGlobalStorage())
14908         ActOnOpenMPDeclareTargetInitializer(D);
14909       // For declarators, there are some additional syntactic-ish checks we need
14910       // to perform.
14911       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14912         if (!FirstDeclaratorInGroup)
14913           FirstDeclaratorInGroup = DD;
14914         if (!FirstDecompDeclaratorInGroup)
14915           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14916         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14917             !hasDeducedAuto(DD))
14918           FirstNonDeducedAutoInGroup = DD;
14919 
14920         if (FirstDeclaratorInGroup != DD) {
14921           // A decomposition declaration cannot be combined with any other
14922           // declaration in the same group.
14923           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14924             Diag(FirstDecompDeclaratorInGroup->getLocation(),
14925                  diag::err_decomp_decl_not_alone)
14926                 << FirstDeclaratorInGroup->getSourceRange()
14927                 << DD->getSourceRange();
14928             DiagnosedMultipleDecomps = true;
14929           }
14930 
14931           // A declarator that uses 'auto' in any way other than to declare a
14932           // variable with a deduced type cannot be combined with any other
14933           // declarator in the same group.
14934           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14935             Diag(FirstNonDeducedAutoInGroup->getLocation(),
14936                  diag::err_auto_non_deduced_not_alone)
14937                 << FirstNonDeducedAutoInGroup->getType()
14938                        ->hasAutoForTrailingReturnType()
14939                 << FirstDeclaratorInGroup->getSourceRange()
14940                 << DD->getSourceRange();
14941             DiagnosedNonDeducedAuto = true;
14942           }
14943         }
14944       }
14945 
14946       Decls.push_back(D);
14947     }
14948   }
14949 
14950   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14951     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14952       handleTagNumbering(Tag, S);
14953       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14954           getLangOpts().CPlusPlus)
14955         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14956     }
14957   }
14958 
14959   return BuildDeclaratorGroup(Decls);
14960 }
14961 
14962 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14963 /// group, performing any necessary semantic checking.
14964 Sema::DeclGroupPtrTy
14965 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14966   // C++14 [dcl.spec.auto]p7: (DR1347)
14967   //   If the type that replaces the placeholder type is not the same in each
14968   //   deduction, the program is ill-formed.
14969   if (Group.size() > 1) {
14970     QualType Deduced;
14971     VarDecl *DeducedDecl = nullptr;
14972     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14973       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14974       if (!D || D->isInvalidDecl())
14975         break;
14976       DeducedType *DT = D->getType()->getContainedDeducedType();
14977       if (!DT || DT->getDeducedType().isNull())
14978         continue;
14979       if (Deduced.isNull()) {
14980         Deduced = DT->getDeducedType();
14981         DeducedDecl = D;
14982       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14983         auto *AT = dyn_cast<AutoType>(DT);
14984         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14985                         diag::err_auto_different_deductions)
14986                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14987                    << DeducedDecl->getDeclName() << DT->getDeducedType()
14988                    << D->getDeclName();
14989         if (DeducedDecl->hasInit())
14990           Dia << DeducedDecl->getInit()->getSourceRange();
14991         if (D->getInit())
14992           Dia << D->getInit()->getSourceRange();
14993         D->setInvalidDecl();
14994         break;
14995       }
14996     }
14997   }
14998 
14999   ActOnDocumentableDecls(Group);
15000 
15001   return DeclGroupPtrTy::make(
15002       DeclGroupRef::Create(Context, Group.data(), Group.size()));
15003 }
15004 
15005 void Sema::ActOnDocumentableDecl(Decl *D) {
15006   ActOnDocumentableDecls(D);
15007 }
15008 
15009 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
15010   // Don't parse the comment if Doxygen diagnostics are ignored.
15011   if (Group.empty() || !Group[0])
15012     return;
15013 
15014   if (Diags.isIgnored(diag::warn_doc_param_not_found,
15015                       Group[0]->getLocation()) &&
15016       Diags.isIgnored(diag::warn_unknown_comment_command_name,
15017                       Group[0]->getLocation()))
15018     return;
15019 
15020   if (Group.size() >= 2) {
15021     // This is a decl group.  Normally it will contain only declarations
15022     // produced from declarator list.  But in case we have any definitions or
15023     // additional declaration references:
15024     //   'typedef struct S {} S;'
15025     //   'typedef struct S *S;'
15026     //   'struct S *pS;'
15027     // FinalizeDeclaratorGroup adds these as separate declarations.
15028     Decl *MaybeTagDecl = Group[0];
15029     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
15030       Group = Group.slice(1);
15031     }
15032   }
15033 
15034   // FIMXE: We assume every Decl in the group is in the same file.
15035   // This is false when preprocessor constructs the group from decls in
15036   // different files (e. g. macros or #include).
15037   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
15038 }
15039 
15040 /// Common checks for a parameter-declaration that should apply to both function
15041 /// parameters and non-type template parameters.
15042 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
15043   // Check that there are no default arguments inside the type of this
15044   // parameter.
15045   if (getLangOpts().CPlusPlus)
15046     CheckExtraCXXDefaultArguments(D);
15047 
15048   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
15049   if (D.getCXXScopeSpec().isSet()) {
15050     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
15051       << D.getCXXScopeSpec().getRange();
15052   }
15053 
15054   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
15055   // simple identifier except [...irrelevant cases...].
15056   switch (D.getName().getKind()) {
15057   case UnqualifiedIdKind::IK_Identifier:
15058     break;
15059 
15060   case UnqualifiedIdKind::IK_OperatorFunctionId:
15061   case UnqualifiedIdKind::IK_ConversionFunctionId:
15062   case UnqualifiedIdKind::IK_LiteralOperatorId:
15063   case UnqualifiedIdKind::IK_ConstructorName:
15064   case UnqualifiedIdKind::IK_DestructorName:
15065   case UnqualifiedIdKind::IK_ImplicitSelfParam:
15066   case UnqualifiedIdKind::IK_DeductionGuideName:
15067     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
15068       << GetNameForDeclarator(D).getName();
15069     break;
15070 
15071   case UnqualifiedIdKind::IK_TemplateId:
15072   case UnqualifiedIdKind::IK_ConstructorTemplateId:
15073     // GetNameForDeclarator would not produce a useful name in this case.
15074     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
15075     break;
15076   }
15077 }
15078 
15079 static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P,
15080                                          SourceLocation ExplicitThisLoc) {
15081   if (!ExplicitThisLoc.isValid())
15082     return;
15083   assert(S.getLangOpts().CPlusPlus &&
15084          "explicit parameter in non-cplusplus mode");
15085   if (!S.getLangOpts().CPlusPlus23)
15086     S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this)
15087         << P->getSourceRange();
15088 
15089   // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
15090   // parameter pack.
15091   if (P->isParameterPack()) {
15092     S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack)
15093         << P->getSourceRange();
15094     return;
15095   }
15096   P->setExplicitObjectParameterLoc(ExplicitThisLoc);
15097   if (LambdaScopeInfo *LSI = S.getCurLambda())
15098     LSI->ExplicitObjectParameter = P;
15099 }
15100 
15101 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
15102 /// to introduce parameters into function prototype scope.
15103 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D,
15104                                  SourceLocation ExplicitThisLoc) {
15105   const DeclSpec &DS = D.getDeclSpec();
15106 
15107   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15108 
15109   // C++03 [dcl.stc]p2 also permits 'auto'.
15110   StorageClass SC = SC_None;
15111   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
15112     SC = SC_Register;
15113     // In C++11, the 'register' storage class specifier is deprecated.
15114     // In C++17, it is not allowed, but we tolerate it as an extension.
15115     if (getLangOpts().CPlusPlus11) {
15116       Diag(DS.getStorageClassSpecLoc(),
15117            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
15118                                      : diag::warn_deprecated_register)
15119         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
15120     }
15121   } else if (getLangOpts().CPlusPlus &&
15122              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
15123     SC = SC_Auto;
15124   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
15125     Diag(DS.getStorageClassSpecLoc(),
15126          diag::err_invalid_storage_class_in_func_decl);
15127     D.getMutableDeclSpec().ClearStorageClassSpecs();
15128   }
15129 
15130   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
15131     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
15132       << DeclSpec::getSpecifierName(TSCS);
15133   if (DS.isInlineSpecified())
15134     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
15135         << getLangOpts().CPlusPlus17;
15136   if (DS.hasConstexprSpecifier())
15137     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
15138         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
15139 
15140   DiagnoseFunctionSpecifiers(DS);
15141 
15142   CheckFunctionOrTemplateParamDeclarator(S, D);
15143 
15144   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
15145   QualType parmDeclType = TInfo->getType();
15146 
15147   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15148   IdentifierInfo *II = D.getIdentifier();
15149   if (II) {
15150     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
15151                    ForVisibleRedeclaration);
15152     LookupName(R, S);
15153     if (!R.empty()) {
15154       NamedDecl *PrevDecl = *R.begin();
15155       if (R.isSingleResult() && PrevDecl->isTemplateParameter()) {
15156         // Maybe we will complain about the shadowed template parameter.
15157         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15158         // Just pretend that we didn't see the previous declaration.
15159         PrevDecl = nullptr;
15160       }
15161       if (PrevDecl && S->isDeclScope(PrevDecl)) {
15162         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
15163         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15164         // Recover by removing the name
15165         II = nullptr;
15166         D.SetIdentifier(nullptr, D.getIdentifierLoc());
15167         D.setInvalidType(true);
15168       }
15169     }
15170   }
15171 
15172   // Temporarily put parameter variables in the translation unit, not
15173   // the enclosing context.  This prevents them from accidentally
15174   // looking like class members in C++.
15175   ParmVarDecl *New =
15176       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
15177                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
15178 
15179   if (D.isInvalidType())
15180     New->setInvalidDecl();
15181 
15182   CheckExplicitObjectParameter(*this, New, ExplicitThisLoc);
15183 
15184   assert(S->isFunctionPrototypeScope());
15185   assert(S->getFunctionPrototypeDepth() >= 1);
15186   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
15187                     S->getNextFunctionPrototypeIndex());
15188 
15189   // Add the parameter declaration into this scope.
15190   S->AddDecl(New);
15191   if (II)
15192     IdResolver.AddDecl(New);
15193 
15194   ProcessDeclAttributes(S, New, D);
15195 
15196   if (D.getDeclSpec().isModulePrivateSpecified())
15197     Diag(New->getLocation(), diag::err_module_private_local)
15198         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15199         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
15200 
15201   if (New->hasAttr<BlocksAttr>()) {
15202     Diag(New->getLocation(), diag::err_block_on_nonlocal);
15203   }
15204 
15205   if (getLangOpts().OpenCL)
15206     deduceOpenCLAddressSpace(New);
15207 
15208   return New;
15209 }
15210 
15211 /// Synthesizes a variable for a parameter arising from a
15212 /// typedef.
15213 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
15214                                               SourceLocation Loc,
15215                                               QualType T) {
15216   /* FIXME: setting StartLoc == Loc.
15217      Would it be worth to modify callers so as to provide proper source
15218      location for the unnamed parameters, embedding the parameter's type? */
15219   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
15220                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
15221                                            SC_None, nullptr);
15222   Param->setImplicit();
15223   return Param;
15224 }
15225 
15226 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
15227   // Don't diagnose unused-parameter errors in template instantiations; we
15228   // will already have done so in the template itself.
15229   if (inTemplateInstantiation())
15230     return;
15231 
15232   for (const ParmVarDecl *Parameter : Parameters) {
15233     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
15234         !Parameter->hasAttr<UnusedAttr>() &&
15235         !Parameter->getIdentifier()->isPlaceholder()) {
15236       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
15237         << Parameter->getDeclName();
15238     }
15239   }
15240 }
15241 
15242 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15243     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
15244   if (LangOpts.NumLargeByValueCopy == 0) // No check.
15245     return;
15246 
15247   // Warn if the return value is pass-by-value and larger than the specified
15248   // threshold.
15249   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
15250     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
15251     if (Size > LangOpts.NumLargeByValueCopy)
15252       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
15253   }
15254 
15255   // Warn if any parameter is pass-by-value and larger than the specified
15256   // threshold.
15257   for (const ParmVarDecl *Parameter : Parameters) {
15258     QualType T = Parameter->getType();
15259     if (T->isDependentType() || !T.isPODType(Context))
15260       continue;
15261     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
15262     if (Size > LangOpts.NumLargeByValueCopy)
15263       Diag(Parameter->getLocation(), diag::warn_parameter_size)
15264           << Parameter << Size;
15265   }
15266 }
15267 
15268 QualType Sema::AdjustParameterTypeForObjCAutoRefCount(QualType T,
15269                                                       SourceLocation NameLoc,
15270                                                       TypeSourceInfo *TSInfo) {
15271   // In ARC, infer a lifetime qualifier for appropriate parameter types.
15272   if (!getLangOpts().ObjCAutoRefCount ||
15273       T.getObjCLifetime() != Qualifiers::OCL_None || !T->isObjCLifetimeType())
15274     return T;
15275 
15276   Qualifiers::ObjCLifetime Lifetime;
15277 
15278   // Special cases for arrays:
15279   //   - if it's const, use __unsafe_unretained
15280   //   - otherwise, it's an error
15281   if (T->isArrayType()) {
15282     if (!T.isConstQualified()) {
15283       if (DelayedDiagnostics.shouldDelayDiagnostics())
15284         DelayedDiagnostics.add(sema::DelayedDiagnostic::makeForbiddenType(
15285             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15286       else
15287         Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15288             << TSInfo->getTypeLoc().getSourceRange();
15289     }
15290     Lifetime = Qualifiers::OCL_ExplicitNone;
15291   } else {
15292     Lifetime = T->getObjCARCImplicitLifetime();
15293   }
15294   T = Context.getLifetimeQualifiedType(T, Lifetime);
15295 
15296   return T;
15297 }
15298 
15299 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
15300                                   SourceLocation NameLoc, IdentifierInfo *Name,
15301                                   QualType T, TypeSourceInfo *TSInfo,
15302                                   StorageClass SC) {
15303   // In ARC, infer a lifetime qualifier for appropriate parameter types.
15304   if (getLangOpts().ObjCAutoRefCount &&
15305       T.getObjCLifetime() == Qualifiers::OCL_None &&
15306       T->isObjCLifetimeType()) {
15307 
15308     Qualifiers::ObjCLifetime lifetime;
15309 
15310     // Special cases for arrays:
15311     //   - if it's const, use __unsafe_unretained
15312     //   - otherwise, it's an error
15313     if (T->isArrayType()) {
15314       if (!T.isConstQualified()) {
15315         if (DelayedDiagnostics.shouldDelayDiagnostics())
15316           DelayedDiagnostics.add(
15317               sema::DelayedDiagnostic::makeForbiddenType(
15318               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15319         else
15320           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15321               << TSInfo->getTypeLoc().getSourceRange();
15322       }
15323       lifetime = Qualifiers::OCL_ExplicitNone;
15324     } else {
15325       lifetime = T->getObjCARCImplicitLifetime();
15326     }
15327     T = Context.getLifetimeQualifiedType(T, lifetime);
15328   }
15329 
15330   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
15331                                          Context.getAdjustedParameterType(T),
15332                                          TSInfo, SC, nullptr);
15333 
15334   // Make a note if we created a new pack in the scope of a lambda, so that
15335   // we know that references to that pack must also be expanded within the
15336   // lambda scope.
15337   if (New->isParameterPack())
15338     if (auto *LSI = getEnclosingLambda())
15339       LSI->LocalPacks.push_back(New);
15340 
15341   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15342       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
15343     checkNonTrivialCUnion(New->getType(), New->getLocation(),
15344                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
15345 
15346   // Parameter declarators cannot be interface types. All ObjC objects are
15347   // passed by reference.
15348   if (T->isObjCObjectType()) {
15349     SourceLocation TypeEndLoc =
15350         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
15351     Diag(NameLoc,
15352          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
15353       << FixItHint::CreateInsertion(TypeEndLoc, "*");
15354     T = Context.getObjCObjectPointerType(T);
15355     New->setType(T);
15356   }
15357 
15358   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15359   // duration shall not be qualified by an address-space qualifier."
15360   // Since all parameters have automatic store duration, they can not have
15361   // an address space.
15362   if (T.getAddressSpace() != LangAS::Default &&
15363       // OpenCL allows function arguments declared to be an array of a type
15364       // to be qualified with an address space.
15365       !(getLangOpts().OpenCL &&
15366         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) &&
15367       // WebAssembly allows reference types as parameters. Funcref in particular
15368       // lives in a different address space.
15369       !(T->isFunctionPointerType() &&
15370         T.getAddressSpace() == LangAS::wasm_funcref)) {
15371     Diag(NameLoc, diag::err_arg_with_address_space);
15372     New->setInvalidDecl();
15373   }
15374 
15375   // PPC MMA non-pointer types are not allowed as function argument types.
15376   if (Context.getTargetInfo().getTriple().isPPC64() &&
15377       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
15378     New->setInvalidDecl();
15379   }
15380 
15381   return New;
15382 }
15383 
15384 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
15385                                            SourceLocation LocAfterDecls) {
15386   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
15387 
15388   // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15389   // in the declaration list shall have at least one declarator, those
15390   // declarators shall only declare identifiers from the identifier list, and
15391   // every identifier in the identifier list shall be declared.
15392   //
15393   // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15394   // identifiers it names shall be declared in the declaration list."
15395   //
15396   // This is why we only diagnose in C99 and later. Note, the other conditions
15397   // listed are checked elsewhere.
15398   if (!FTI.hasPrototype) {
15399     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
15400       --i;
15401       if (FTI.Params[i].Param == nullptr) {
15402         if (getLangOpts().C99) {
15403           SmallString<256> Code;
15404           llvm::raw_svector_ostream(Code)
15405               << "  int " << FTI.Params[i].Ident->getName() << ";\n";
15406           Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
15407               << FTI.Params[i].Ident
15408               << FixItHint::CreateInsertion(LocAfterDecls, Code);
15409         }
15410 
15411         // Implicitly declare the argument as type 'int' for lack of a better
15412         // type.
15413         AttributeFactory attrs;
15414         DeclSpec DS(attrs);
15415         const char* PrevSpec; // unused
15416         unsigned DiagID; // unused
15417         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
15418                            DiagID, Context.getPrintingPolicy());
15419         // Use the identifier location for the type source range.
15420         DS.SetRangeStart(FTI.Params[i].IdentLoc);
15421         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
15422         Declarator ParamD(DS, ParsedAttributesView::none(),
15423                           DeclaratorContext::KNRTypeList);
15424         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
15425         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
15426       }
15427     }
15428   }
15429 }
15430 
15431 Decl *
15432 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
15433                               MultiTemplateParamsArg TemplateParameterLists,
15434                               SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
15435   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15436   assert(D.isFunctionDeclarator() && "Not a function declarator!");
15437   Scope *ParentScope = FnBodyScope->getParent();
15438 
15439   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15440   // we define a non-templated function definition, we will create a declaration
15441   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15442   // The base function declaration will have the equivalent of an `omp declare
15443   // variant` annotation which specifies the mangled definition as a
15444   // specialization function under the OpenMP context defined as part of the
15445   // `omp begin declare variant`.
15446   SmallVector<FunctionDecl *, 4> Bases;
15447   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
15448     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15449         ParentScope, D, TemplateParameterLists, Bases);
15450 
15451   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
15452   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
15453   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
15454 
15455   if (!Bases.empty())
15456     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
15457 
15458   return Dcl;
15459 }
15460 
15461 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
15462   Consumer.HandleInlineFunctionDefinition(D);
15463 }
15464 
15465 static bool FindPossiblePrototype(const FunctionDecl *FD,
15466                                   const FunctionDecl *&PossiblePrototype) {
15467   for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev;
15468        Prev = Prev->getPreviousDecl()) {
15469     // Ignore any declarations that occur in function or method
15470     // scope, because they aren't visible from the header.
15471     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
15472       continue;
15473 
15474     PossiblePrototype = Prev;
15475     return Prev->getType()->isFunctionProtoType();
15476   }
15477   return false;
15478 }
15479 
15480 static bool
15481 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
15482                                 const FunctionDecl *&PossiblePrototype) {
15483   // Don't warn about invalid declarations.
15484   if (FD->isInvalidDecl())
15485     return false;
15486 
15487   // Or declarations that aren't global.
15488   if (!FD->isGlobal())
15489     return false;
15490 
15491   // Don't warn about C++ member functions.
15492   if (isa<CXXMethodDecl>(FD))
15493     return false;
15494 
15495   // Don't warn about 'main'.
15496   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
15497     if (IdentifierInfo *II = FD->getIdentifier())
15498       if (II->isStr("main") || II->isStr("efi_main"))
15499         return false;
15500 
15501   // Don't warn about inline functions.
15502   if (FD->isInlined())
15503     return false;
15504 
15505   // Don't warn about function templates.
15506   if (FD->getDescribedFunctionTemplate())
15507     return false;
15508 
15509   // Don't warn about function template specializations.
15510   if (FD->isFunctionTemplateSpecialization())
15511     return false;
15512 
15513   // Don't warn for OpenCL kernels.
15514   if (FD->hasAttr<OpenCLKernelAttr>())
15515     return false;
15516 
15517   // Don't warn on explicitly deleted functions.
15518   if (FD->isDeleted())
15519     return false;
15520 
15521   // Don't warn on implicitly local functions (such as having local-typed
15522   // parameters).
15523   if (!FD->isExternallyVisible())
15524     return false;
15525 
15526   // If we were able to find a potential prototype, don't warn.
15527   if (FindPossiblePrototype(FD, PossiblePrototype))
15528     return false;
15529 
15530   return true;
15531 }
15532 
15533 void
15534 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
15535                                    const FunctionDecl *EffectiveDefinition,
15536                                    SkipBodyInfo *SkipBody) {
15537   const FunctionDecl *Definition = EffectiveDefinition;
15538   if (!Definition &&
15539       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
15540     return;
15541 
15542   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
15543     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
15544       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
15545         // A merged copy of the same function, instantiated as a member of
15546         // the same class, is OK.
15547         if (declaresSameEntity(OrigFD, OrigDef) &&
15548             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
15549                                cast<Decl>(FD->getLexicalDeclContext())))
15550           return;
15551       }
15552     }
15553   }
15554 
15555   if (canRedefineFunction(Definition, getLangOpts()))
15556     return;
15557 
15558   // Don't emit an error when this is redefinition of a typo-corrected
15559   // definition.
15560   if (TypoCorrectedFunctionDefinitions.count(Definition))
15561     return;
15562 
15563   // If we don't have a visible definition of the function, and it's inline or
15564   // a template, skip the new definition.
15565   if (SkipBody && !hasVisibleDefinition(Definition) &&
15566       (Definition->getFormalLinkage() == Linkage::Internal ||
15567        Definition->isInlined() || Definition->getDescribedFunctionTemplate() ||
15568        Definition->getNumTemplateParameterLists())) {
15569     SkipBody->ShouldSkip = true;
15570     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
15571     if (auto *TD = Definition->getDescribedFunctionTemplate())
15572       makeMergedDefinitionVisible(TD);
15573     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
15574     return;
15575   }
15576 
15577   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
15578       Definition->getStorageClass() == SC_Extern)
15579     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
15580         << FD << getLangOpts().CPlusPlus;
15581   else
15582     Diag(FD->getLocation(), diag::err_redefinition) << FD;
15583 
15584   Diag(Definition->getLocation(), diag::note_previous_definition);
15585   FD->setInvalidDecl();
15586 }
15587 
15588 LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) {
15589   CXXRecordDecl *LambdaClass = CallOperator->getParent();
15590 
15591   LambdaScopeInfo *LSI = PushLambdaScope();
15592   LSI->CallOperator = CallOperator;
15593   LSI->Lambda = LambdaClass;
15594   LSI->ReturnType = CallOperator->getReturnType();
15595   // This function in calls in situation where the context of the call operator
15596   // is not entered, so we set AfterParameterList to false, so that
15597   // `tryCaptureVariable` finds explicit captures in the appropriate context.
15598   LSI->AfterParameterList = false;
15599   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
15600 
15601   if (LCD == LCD_None)
15602     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
15603   else if (LCD == LCD_ByCopy)
15604     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
15605   else if (LCD == LCD_ByRef)
15606     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
15607   DeclarationNameInfo DNI = CallOperator->getNameInfo();
15608 
15609   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
15610   LSI->Mutable = !CallOperator->isConst();
15611   if (CallOperator->isExplicitObjectMemberFunction())
15612     LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0);
15613 
15614   // Add the captures to the LSI so they can be noted as already
15615   // captured within tryCaptureVar.
15616   auto I = LambdaClass->field_begin();
15617   for (const auto &C : LambdaClass->captures()) {
15618     if (C.capturesVariable()) {
15619       ValueDecl *VD = C.getCapturedVar();
15620       if (VD->isInitCapture())
15621         CurrentInstantiationScope->InstantiatedLocal(VD, VD);
15622       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
15623       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
15624           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
15625           /*EllipsisLoc*/C.isPackExpansion()
15626                          ? C.getEllipsisLoc() : SourceLocation(),
15627           I->getType(), /*Invalid*/false);
15628 
15629     } else if (C.capturesThis()) {
15630       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
15631                           C.getCaptureKind() == LCK_StarThis);
15632     } else {
15633       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
15634                              I->getType());
15635     }
15636     ++I;
15637   }
15638   return LSI;
15639 }
15640 
15641 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
15642                                     SkipBodyInfo *SkipBody,
15643                                     FnBodyKind BodyKind) {
15644   if (!D) {
15645     // Parsing the function declaration failed in some way. Push on a fake scope
15646     // anyway so we can try to parse the function body.
15647     PushFunctionScope();
15648     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15649     return D;
15650   }
15651 
15652   FunctionDecl *FD = nullptr;
15653 
15654   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
15655     FD = FunTmpl->getTemplatedDecl();
15656   else
15657     FD = cast<FunctionDecl>(D);
15658 
15659   // Do not push if it is a lambda because one is already pushed when building
15660   // the lambda in ActOnStartOfLambdaDefinition().
15661   if (!isLambdaCallOperator(FD))
15662     // [expr.const]/p14.1
15663     // An expression or conversion is in an immediate function context if it is
15664     // potentially evaluated and either: its innermost enclosing non-block scope
15665     // is a function parameter scope of an immediate function.
15666     PushExpressionEvaluationContext(
15667         FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15668                           : ExprEvalContexts.back().Context);
15669 
15670   // Each ExpressionEvaluationContextRecord also keeps track of whether the
15671   // context is nested in an immediate function context, so smaller contexts
15672   // that appear inside immediate functions (like variable initializers) are
15673   // considered to be inside an immediate function context even though by
15674   // themselves they are not immediate function contexts. But when a new
15675   // function is entered, we need to reset this tracking, since the entered
15676   // function might be not an immediate function.
15677   ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval();
15678   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
15679       getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
15680 
15681   // Check for defining attributes before the check for redefinition.
15682   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
15683     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
15684     FD->dropAttr<AliasAttr>();
15685     FD->setInvalidDecl();
15686   }
15687   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
15688     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
15689     FD->dropAttr<IFuncAttr>();
15690     FD->setInvalidDecl();
15691   }
15692   if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) {
15693     if (!Context.getTargetInfo().hasFeature("fmv") &&
15694         !Attr->isDefaultVersion()) {
15695       // If function multi versioning disabled skip parsing function body
15696       // defined with non-default target_version attribute
15697       if (SkipBody)
15698         SkipBody->ShouldSkip = true;
15699       return nullptr;
15700     }
15701   }
15702 
15703   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15704     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
15705         Ctor->isDefaultConstructor() &&
15706         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15707       // If this is an MS ABI dllexport default constructor, instantiate any
15708       // default arguments.
15709       InstantiateDefaultCtorDefaultArgs(Ctor);
15710     }
15711   }
15712 
15713   // See if this is a redefinition. If 'will have body' (or similar) is already
15714   // set, then these checks were already performed when it was set.
15715   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
15716       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15717     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
15718 
15719     // If we're skipping the body, we're done. Don't enter the scope.
15720     if (SkipBody && SkipBody->ShouldSkip)
15721       return D;
15722   }
15723 
15724   // Mark this function as "will have a body eventually".  This lets users to
15725   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15726   // this function.
15727   FD->setWillHaveBody();
15728 
15729   // If we are instantiating a generic lambda call operator, push
15730   // a LambdaScopeInfo onto the function stack.  But use the information
15731   // that's already been calculated (ActOnLambdaExpr) to prime the current
15732   // LambdaScopeInfo.
15733   // When the template operator is being specialized, the LambdaScopeInfo,
15734   // has to be properly restored so that tryCaptureVariable doesn't try
15735   // and capture any new variables. In addition when calculating potential
15736   // captures during transformation of nested lambdas, it is necessary to
15737   // have the LSI properly restored.
15738   if (isGenericLambdaCallOperatorSpecialization(FD)) {
15739     assert(inTemplateInstantiation() &&
15740            "There should be an active template instantiation on the stack "
15741            "when instantiating a generic lambda!");
15742     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D));
15743   } else {
15744     // Enter a new function scope
15745     PushFunctionScope();
15746   }
15747 
15748   // Builtin functions cannot be defined.
15749   if (unsigned BuiltinID = FD->getBuiltinID()) {
15750     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
15751         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
15752       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
15753       FD->setInvalidDecl();
15754     }
15755   }
15756 
15757   // The return type of a function definition must be complete (C99 6.9.1p3).
15758   // C++23 [dcl.fct.def.general]/p2
15759   // The type of [...] the return for a function definition
15760   // shall not be a (possibly cv-qualified) class type that is incomplete
15761   // or abstract within the function body unless the function is deleted.
15762   QualType ResultType = FD->getReturnType();
15763   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
15764       !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
15765       (RequireCompleteType(FD->getLocation(), ResultType,
15766                            diag::err_func_def_incomplete_result) ||
15767        RequireNonAbstractType(FD->getLocation(), FD->getReturnType(),
15768                               diag::err_abstract_type_in_decl,
15769                               AbstractReturnType)))
15770     FD->setInvalidDecl();
15771 
15772   if (FnBodyScope)
15773     PushDeclContext(FnBodyScope, FD);
15774 
15775   // Check the validity of our function parameters
15776   if (BodyKind != FnBodyKind::Delete)
15777     CheckParmsForFunctionDef(FD->parameters(),
15778                              /*CheckParameterNames=*/true);
15779 
15780   // Add non-parameter declarations already in the function to the current
15781   // scope.
15782   if (FnBodyScope) {
15783     for (Decl *NPD : FD->decls()) {
15784       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
15785       if (!NonParmDecl)
15786         continue;
15787       assert(!isa<ParmVarDecl>(NonParmDecl) &&
15788              "parameters should not be in newly created FD yet");
15789 
15790       // If the decl has a name, make it accessible in the current scope.
15791       if (NonParmDecl->getDeclName())
15792         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
15793 
15794       // Similarly, dive into enums and fish their constants out, making them
15795       // accessible in this scope.
15796       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
15797         for (auto *EI : ED->enumerators())
15798           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
15799       }
15800     }
15801   }
15802 
15803   // Introduce our parameters into the function scope
15804   for (auto *Param : FD->parameters()) {
15805     Param->setOwningFunction(FD);
15806 
15807     // If this has an identifier, add it to the scope stack.
15808     if (Param->getIdentifier() && FnBodyScope) {
15809       CheckShadow(FnBodyScope, Param);
15810 
15811       PushOnScopeChains(Param, FnBodyScope);
15812     }
15813   }
15814 
15815   // C++ [module.import/6] external definitions are not permitted in header
15816   // units.  Deleted and Defaulted functions are implicitly inline (but the
15817   // inline state is not set at this point, so check the BodyKind explicitly).
15818   // FIXME: Consider an alternate location for the test where the inlined()
15819   // state is complete.
15820   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
15821       !FD->isInvalidDecl() && !FD->isInlined() &&
15822       BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default &&
15823       FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() &&
15824       !FD->isTemplateInstantiation()) {
15825     assert(FD->isThisDeclarationADefinition());
15826     Diag(FD->getLocation(), diag::err_extern_def_in_header_unit);
15827     FD->setInvalidDecl();
15828   }
15829 
15830   // Ensure that the function's exception specification is instantiated.
15831   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
15832     ResolveExceptionSpec(D->getLocation(), FPT);
15833 
15834   // dllimport cannot be applied to non-inline function definitions.
15835   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
15836       !FD->isTemplateInstantiation()) {
15837     assert(!FD->hasAttr<DLLExportAttr>());
15838     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
15839     FD->setInvalidDecl();
15840     return D;
15841   }
15842   // We want to attach documentation to original Decl (which might be
15843   // a function template).
15844   ActOnDocumentableDecl(D);
15845   if (getCurLexicalContext()->isObjCContainer() &&
15846       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
15847       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
15848     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
15849 
15850   return D;
15851 }
15852 
15853 /// Given the set of return statements within a function body,
15854 /// compute the variables that are subject to the named return value
15855 /// optimization.
15856 ///
15857 /// Each of the variables that is subject to the named return value
15858 /// optimization will be marked as NRVO variables in the AST, and any
15859 /// return statement that has a marked NRVO variable as its NRVO candidate can
15860 /// use the named return value optimization.
15861 ///
15862 /// This function applies a very simplistic algorithm for NRVO: if every return
15863 /// statement in the scope of a variable has the same NRVO candidate, that
15864 /// candidate is an NRVO variable.
15865 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
15866   ReturnStmt **Returns = Scope->Returns.data();
15867 
15868   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
15869     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
15870       if (!NRVOCandidate->isNRVOVariable())
15871         Returns[I]->setNRVOCandidate(nullptr);
15872     }
15873   }
15874 }
15875 
15876 bool Sema::canDelayFunctionBody(const Declarator &D) {
15877   // We can't delay parsing the body of a constexpr function template (yet).
15878   if (D.getDeclSpec().hasConstexprSpecifier())
15879     return false;
15880 
15881   // We can't delay parsing the body of a function template with a deduced
15882   // return type (yet).
15883   if (D.getDeclSpec().hasAutoTypeSpec()) {
15884     // If the placeholder introduces a non-deduced trailing return type,
15885     // we can still delay parsing it.
15886     if (D.getNumTypeObjects()) {
15887       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
15888       if (Outer.Kind == DeclaratorChunk::Function &&
15889           Outer.Fun.hasTrailingReturnType()) {
15890         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
15891         return Ty.isNull() || !Ty->isUndeducedType();
15892       }
15893     }
15894     return false;
15895   }
15896 
15897   return true;
15898 }
15899 
15900 bool Sema::canSkipFunctionBody(Decl *D) {
15901   // We cannot skip the body of a function (or function template) which is
15902   // constexpr, since we may need to evaluate its body in order to parse the
15903   // rest of the file.
15904   // We cannot skip the body of a function with an undeduced return type,
15905   // because any callers of that function need to know the type.
15906   if (const FunctionDecl *FD = D->getAsFunction()) {
15907     if (FD->isConstexpr())
15908       return false;
15909     // We can't simply call Type::isUndeducedType here, because inside template
15910     // auto can be deduced to a dependent type, which is not considered
15911     // "undeduced".
15912     if (FD->getReturnType()->getContainedDeducedType())
15913       return false;
15914   }
15915   return Consumer.shouldSkipFunctionBody(D);
15916 }
15917 
15918 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15919   if (!Decl)
15920     return nullptr;
15921   if (FunctionDecl *FD = Decl->getAsFunction())
15922     FD->setHasSkippedBody();
15923   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15924     MD->setHasSkippedBody();
15925   return Decl;
15926 }
15927 
15928 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15929   return ActOnFinishFunctionBody(D, BodyArg, /*IsInstantiation=*/false);
15930 }
15931 
15932 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15933 /// body.
15934 class ExitFunctionBodyRAII {
15935 public:
15936   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
15937   ~ExitFunctionBodyRAII() {
15938     if (!IsLambda)
15939       S.PopExpressionEvaluationContext();
15940   }
15941 
15942 private:
15943   Sema &S;
15944   bool IsLambda = false;
15945 };
15946 
15947 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15948   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15949 
15950   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15951     if (EscapeInfo.count(BD))
15952       return EscapeInfo[BD];
15953 
15954     bool R = false;
15955     const BlockDecl *CurBD = BD;
15956 
15957     do {
15958       R = !CurBD->doesNotEscape();
15959       if (R)
15960         break;
15961       CurBD = CurBD->getParent()->getInnermostBlockDecl();
15962     } while (CurBD);
15963 
15964     return EscapeInfo[BD] = R;
15965   };
15966 
15967   // If the location where 'self' is implicitly retained is inside a escaping
15968   // block, emit a diagnostic.
15969   for (const std::pair<SourceLocation, const BlockDecl *> &P :
15970        S.ImplicitlyRetainedSelfLocs)
15971     if (IsOrNestedInEscapingBlock(P.second))
15972       S.Diag(P.first, diag::warn_implicitly_retains_self)
15973           << FixItHint::CreateInsertion(P.first, "self->");
15974 }
15975 
15976 static bool methodHasName(const FunctionDecl *FD, StringRef Name) {
15977   return isa<CXXMethodDecl>(FD) && FD->param_empty() &&
15978          FD->getDeclName().isIdentifier() && FD->getName().equals(Name);
15979 }
15980 
15981 bool Sema::CanBeGetReturnObject(const FunctionDecl *FD) {
15982   return methodHasName(FD, "get_return_object");
15983 }
15984 
15985 bool Sema::CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD) {
15986   return FD->isStatic() &&
15987          methodHasName(FD, "get_return_object_on_allocation_failure");
15988 }
15989 
15990 void Sema::CheckCoroutineWrapper(FunctionDecl *FD) {
15991   RecordDecl *RD = FD->getReturnType()->getAsRecordDecl();
15992   if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>())
15993     return;
15994   // Allow some_promise_type::get_return_object().
15995   if (CanBeGetReturnObject(FD) || CanBeGetReturnTypeOnAllocFailure(FD))
15996     return;
15997   if (!FD->hasAttr<CoroWrapperAttr>())
15998     Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD;
15999 }
16000 
16001 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
16002                                     bool IsInstantiation) {
16003   FunctionScopeInfo *FSI = getCurFunction();
16004   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
16005 
16006   if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
16007     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
16008 
16009   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
16010   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
16011 
16012   // If we skip function body, we can't tell if a function is a coroutine.
16013   if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) {
16014     if (FSI->isCoroutine())
16015       CheckCompletedCoroutineBody(FD, Body);
16016     else
16017       CheckCoroutineWrapper(FD);
16018   }
16019 
16020   {
16021     // Do not call PopExpressionEvaluationContext() if it is a lambda because
16022     // one is already popped when finishing the lambda in BuildLambdaExpr().
16023     // This is meant to pop the context added in ActOnStartOfFunctionDef().
16024     ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
16025     if (FD) {
16026       FD->setBody(Body);
16027       FD->setWillHaveBody(false);
16028       CheckImmediateEscalatingFunctionDefinition(FD, FSI);
16029 
16030       if (getLangOpts().CPlusPlus14) {
16031         if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
16032             FD->getReturnType()->isUndeducedType()) {
16033           // For a function with a deduced result type to return void,
16034           // the result type as written must be 'auto' or 'decltype(auto)',
16035           // possibly cv-qualified or constrained, but not ref-qualified.
16036           if (!FD->getReturnType()->getAs<AutoType>()) {
16037             Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
16038                 << FD->getReturnType();
16039             FD->setInvalidDecl();
16040           } else {
16041             // Falling off the end of the function is the same as 'return;'.
16042             Expr *Dummy = nullptr;
16043             if (DeduceFunctionTypeFromReturnExpr(
16044                     FD, dcl->getLocation(), Dummy,
16045                     FD->getReturnType()->getAs<AutoType>()))
16046               FD->setInvalidDecl();
16047           }
16048         }
16049       } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
16050         // In C++11, we don't use 'auto' deduction rules for lambda call
16051         // operators because we don't support return type deduction.
16052         auto *LSI = getCurLambda();
16053         if (LSI->HasImplicitReturnType) {
16054           deduceClosureReturnType(*LSI);
16055 
16056           // C++11 [expr.prim.lambda]p4:
16057           //   [...] if there are no return statements in the compound-statement
16058           //   [the deduced type is] the type void
16059           QualType RetType =
16060               LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
16061 
16062           // Update the return type to the deduced type.
16063           const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
16064           FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
16065                                               Proto->getExtProtoInfo()));
16066         }
16067       }
16068 
16069       // If the function implicitly returns zero (like 'main') or is naked,
16070       // don't complain about missing return statements.
16071       if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
16072         WP.disableCheckFallThrough();
16073 
16074       // MSVC permits the use of pure specifier (=0) on function definition,
16075       // defined at class scope, warn about this non-standard construct.
16076       if (getLangOpts().MicrosoftExt && FD->isPureVirtual() &&
16077           !FD->isOutOfLine())
16078         Diag(FD->getLocation(), diag::ext_pure_function_definition);
16079 
16080       if (!FD->isInvalidDecl()) {
16081         // Don't diagnose unused parameters of defaulted, deleted or naked
16082         // functions.
16083         if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
16084             !FD->hasAttr<NakedAttr>())
16085           DiagnoseUnusedParameters(FD->parameters());
16086         DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
16087                                                FD->getReturnType(), FD);
16088 
16089         // If this is a structor, we need a vtable.
16090         if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
16091           MarkVTableUsed(FD->getLocation(), Constructor->getParent());
16092         else if (CXXDestructorDecl *Destructor =
16093                      dyn_cast<CXXDestructorDecl>(FD))
16094           MarkVTableUsed(FD->getLocation(), Destructor->getParent());
16095 
16096         // Try to apply the named return value optimization. We have to check
16097         // if we can do this here because lambdas keep return statements around
16098         // to deduce an implicit return type.
16099         if (FD->getReturnType()->isRecordType() &&
16100             (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
16101           computeNRVO(Body, FSI);
16102       }
16103 
16104       // GNU warning -Wmissing-prototypes:
16105       //   Warn if a global function is defined without a previous
16106       //   prototype declaration. This warning is issued even if the
16107       //   definition itself provides a prototype. The aim is to detect
16108       //   global functions that fail to be declared in header files.
16109       const FunctionDecl *PossiblePrototype = nullptr;
16110       if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
16111         Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
16112 
16113         if (PossiblePrototype) {
16114           // We found a declaration that is not a prototype,
16115           // but that could be a zero-parameter prototype
16116           if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
16117             TypeLoc TL = TI->getTypeLoc();
16118             if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
16119               Diag(PossiblePrototype->getLocation(),
16120                    diag::note_declaration_not_a_prototype)
16121                   << (FD->getNumParams() != 0)
16122                   << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
16123                                                     FTL.getRParenLoc(), "void")
16124                                               : FixItHint{});
16125           }
16126         } else {
16127           // Returns true if the token beginning at this Loc is `const`.
16128           auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
16129                                   const LangOptions &LangOpts) {
16130             std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
16131             if (LocInfo.first.isInvalid())
16132               return false;
16133 
16134             bool Invalid = false;
16135             StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
16136             if (Invalid)
16137               return false;
16138 
16139             if (LocInfo.second > Buffer.size())
16140               return false;
16141 
16142             const char *LexStart = Buffer.data() + LocInfo.second;
16143             StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
16144 
16145             return StartTok.consume_front("const") &&
16146                    (StartTok.empty() || isWhitespace(StartTok[0]) ||
16147                     StartTok.starts_with("/*") || StartTok.starts_with("//"));
16148           };
16149 
16150           auto findBeginLoc = [&]() {
16151             // If the return type has `const` qualifier, we want to insert
16152             // `static` before `const` (and not before the typename).
16153             if ((FD->getReturnType()->isAnyPointerType() &&
16154                  FD->getReturnType()->getPointeeType().isConstQualified()) ||
16155                 FD->getReturnType().isConstQualified()) {
16156               // But only do this if we can determine where the `const` is.
16157 
16158               if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
16159                                getLangOpts()))
16160 
16161                 return FD->getBeginLoc();
16162             }
16163             return FD->getTypeSpecStartLoc();
16164           };
16165           Diag(FD->getTypeSpecStartLoc(),
16166                diag::note_static_for_internal_linkage)
16167               << /* function */ 1
16168               << (FD->getStorageClass() == SC_None
16169                       ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16170                       : FixItHint{});
16171         }
16172       }
16173 
16174       // We might not have found a prototype because we didn't wish to warn on
16175       // the lack of a missing prototype. Try again without the checks for
16176       // whether we want to warn on the missing prototype.
16177       if (!PossiblePrototype)
16178         (void)FindPossiblePrototype(FD, PossiblePrototype);
16179 
16180       // If the function being defined does not have a prototype, then we may
16181       // need to diagnose it as changing behavior in C23 because we now know
16182       // whether the function accepts arguments or not. This only handles the
16183       // case where the definition has no prototype but does have parameters
16184       // and either there is no previous potential prototype, or the previous
16185       // potential prototype also has no actual prototype. This handles cases
16186       // like:
16187       //   void f(); void f(a) int a; {}
16188       //   void g(a) int a; {}
16189       // See MergeFunctionDecl() for other cases of the behavior change
16190       // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16191       // type without a prototype.
16192       if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
16193           (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
16194                                   !PossiblePrototype->isImplicit()))) {
16195         // The function definition has parameters, so this will change behavior
16196         // in C23. If there is a possible prototype, it comes before the
16197         // function definition.
16198         // FIXME: The declaration may have already been diagnosed as being
16199         // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16200         // there's no way to test for the "changes behavior" condition in
16201         // SemaType.cpp when forming the declaration's function type. So, we do
16202         // this awkward dance instead.
16203         //
16204         // If we have a possible prototype and it declares a function with a
16205         // prototype, we don't want to diagnose it; if we have a possible
16206         // prototype and it has no prototype, it may have already been
16207         // diagnosed in SemaType.cpp as deprecated depending on whether
16208         // -Wstrict-prototypes is enabled. If we already warned about it being
16209         // deprecated, add a note that it also changes behavior. If we didn't
16210         // warn about it being deprecated (because the diagnostic is not
16211         // enabled), warn now that it is deprecated and changes behavior.
16212 
16213         // This K&R C function definition definitely changes behavior in C23,
16214         // so diagnose it.
16215         Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
16216             << /*definition*/ 1 << /* not supported in C23 */ 0;
16217 
16218         // If we have a possible prototype for the function which is a user-
16219         // visible declaration, we already tested that it has no prototype.
16220         // This will change behavior in C23. This gets a warning rather than a
16221         // note because it's the same behavior-changing problem as with the
16222         // definition.
16223         if (PossiblePrototype)
16224           Diag(PossiblePrototype->getLocation(),
16225                diag::warn_non_prototype_changes_behavior)
16226               << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16227               << /*definition*/ 1;
16228       }
16229 
16230       // Warn on CPUDispatch with an actual body.
16231       if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
16232         if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
16233           if (!CmpndBody->body_empty())
16234             Diag(CmpndBody->body_front()->getBeginLoc(),
16235                  diag::warn_dispatch_body_ignored);
16236 
16237       if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
16238         const CXXMethodDecl *KeyFunction;
16239         if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
16240             MD->isVirtual() &&
16241             (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
16242             MD == KeyFunction->getCanonicalDecl()) {
16243           // Update the key-function state if necessary for this ABI.
16244           if (FD->isInlined() &&
16245               !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16246             Context.setNonKeyFunction(MD);
16247 
16248             // If the newly-chosen key function is already defined, then we
16249             // need to mark the vtable as used retroactively.
16250             KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
16251             const FunctionDecl *Definition;
16252             if (KeyFunction && KeyFunction->isDefined(Definition))
16253               MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
16254           } else {
16255             // We just defined they key function; mark the vtable as used.
16256             MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
16257           }
16258         }
16259       }
16260 
16261       assert(
16262           (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
16263           "Function parsing confused");
16264     } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
16265       assert(MD == getCurMethodDecl() && "Method parsing confused");
16266       MD->setBody(Body);
16267       if (!MD->isInvalidDecl()) {
16268         DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
16269                                                MD->getReturnType(), MD);
16270 
16271         if (Body)
16272           computeNRVO(Body, FSI);
16273       }
16274       if (FSI->ObjCShouldCallSuper) {
16275         Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
16276             << MD->getSelector().getAsString();
16277         FSI->ObjCShouldCallSuper = false;
16278       }
16279       if (FSI->ObjCWarnForNoDesignatedInitChain) {
16280         const ObjCMethodDecl *InitMethod = nullptr;
16281         bool isDesignated =
16282             MD->isDesignatedInitializerForTheInterface(&InitMethod);
16283         assert(isDesignated && InitMethod);
16284         (void)isDesignated;
16285 
16286         auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
16287           auto IFace = MD->getClassInterface();
16288           if (!IFace)
16289             return false;
16290           auto SuperD = IFace->getSuperClass();
16291           if (!SuperD)
16292             return false;
16293           return SuperD->getIdentifier() ==
16294                  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
16295         };
16296         // Don't issue this warning for unavailable inits or direct subclasses
16297         // of NSObject.
16298         if (!MD->isUnavailable() && !superIsNSObject(MD)) {
16299           Diag(MD->getLocation(),
16300                diag::warn_objc_designated_init_missing_super_call);
16301           Diag(InitMethod->getLocation(),
16302                diag::note_objc_designated_init_marked_here);
16303         }
16304         FSI->ObjCWarnForNoDesignatedInitChain = false;
16305       }
16306       if (FSI->ObjCWarnForNoInitDelegation) {
16307         // Don't issue this warning for unavaialable inits.
16308         if (!MD->isUnavailable())
16309           Diag(MD->getLocation(),
16310                diag::warn_objc_secondary_init_missing_init_call);
16311         FSI->ObjCWarnForNoInitDelegation = false;
16312       }
16313 
16314       diagnoseImplicitlyRetainedSelf(*this);
16315     } else {
16316       // Parsing the function declaration failed in some way. Pop the fake scope
16317       // we pushed on.
16318       PopFunctionScopeInfo(ActivePolicy, dcl);
16319       return nullptr;
16320     }
16321 
16322     if (Body && FSI->HasPotentialAvailabilityViolations)
16323       DiagnoseUnguardedAvailabilityViolations(dcl);
16324 
16325     assert(!FSI->ObjCShouldCallSuper &&
16326            "This should only be set for ObjC methods, which should have been "
16327            "handled in the block above.");
16328 
16329     // Verify and clean out per-function state.
16330     if (Body && (!FD || !FD->isDefaulted())) {
16331       // C++ constructors that have function-try-blocks can't have return
16332       // statements in the handlers of that block. (C++ [except.handle]p14)
16333       // Verify this.
16334       if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
16335         DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
16336 
16337       // Verify that gotos and switch cases don't jump into scopes illegally.
16338       if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
16339         DiagnoseInvalidJumps(Body);
16340 
16341       if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
16342         if (!Destructor->getParent()->isDependentType())
16343           CheckDestructor(Destructor);
16344 
16345         MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16346                                                Destructor->getParent());
16347       }
16348 
16349       // If any errors have occurred, clear out any temporaries that may have
16350       // been leftover. This ensures that these temporaries won't be picked up
16351       // for deletion in some later function.
16352       if (hasUncompilableErrorOccurred() ||
16353           hasAnyUnrecoverableErrorsInThisFunction() ||
16354           getDiagnostics().getSuppressAllDiagnostics()) {
16355         DiscardCleanupsInEvaluationContext();
16356       }
16357       if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
16358         // Since the body is valid, issue any analysis-based warnings that are
16359         // enabled.
16360         ActivePolicy = &WP;
16361       }
16362 
16363       if (!IsInstantiation && FD &&
16364           (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) &&
16365           !FD->isInvalidDecl() &&
16366           !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
16367         FD->setInvalidDecl();
16368 
16369       if (FD && FD->hasAttr<NakedAttr>()) {
16370         for (const Stmt *S : Body->children()) {
16371           // Allow local register variables without initializer as they don't
16372           // require prologue.
16373           bool RegisterVariables = false;
16374           if (auto *DS = dyn_cast<DeclStmt>(S)) {
16375             for (const auto *Decl : DS->decls()) {
16376               if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
16377                 RegisterVariables =
16378                     Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
16379                 if (!RegisterVariables)
16380                   break;
16381               }
16382             }
16383           }
16384           if (RegisterVariables)
16385             continue;
16386           if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
16387             Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
16388             Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
16389             FD->setInvalidDecl();
16390             break;
16391           }
16392         }
16393       }
16394 
16395       assert(ExprCleanupObjects.size() ==
16396                  ExprEvalContexts.back().NumCleanupObjects &&
16397              "Leftover temporaries in function");
16398       assert(!Cleanup.exprNeedsCleanups() &&
16399              "Unaccounted cleanups in function");
16400       assert(MaybeODRUseExprs.empty() &&
16401              "Leftover expressions for odr-use checking");
16402     }
16403   } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16404     // the declaration context below. Otherwise, we're unable to transform
16405     // 'this' expressions when transforming immediate context functions.
16406 
16407   if (!IsInstantiation)
16408     PopDeclContext();
16409 
16410   PopFunctionScopeInfo(ActivePolicy, dcl);
16411   // If any errors have occurred, clear out any temporaries that may have
16412   // been leftover. This ensures that these temporaries won't be picked up for
16413   // deletion in some later function.
16414   if (hasUncompilableErrorOccurred()) {
16415     DiscardCleanupsInEvaluationContext();
16416   }
16417 
16418   if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice ||
16419                                   !LangOpts.OMPTargetTriples.empty())) ||
16420              LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
16421     auto ES = getEmissionStatus(FD);
16422     if (ES == Sema::FunctionEmissionStatus::Emitted ||
16423         ES == Sema::FunctionEmissionStatus::Unknown)
16424       DeclsToCheckForDeferredDiags.insert(FD);
16425   }
16426 
16427   if (FD && !FD->isDeleted())
16428     checkTypeSupport(FD->getType(), FD->getLocation(), FD);
16429 
16430   return dcl;
16431 }
16432 
16433 /// When we finish delayed parsing of an attribute, we must attach it to the
16434 /// relevant Decl.
16435 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
16436                                        ParsedAttributes &Attrs) {
16437   // Always attach attributes to the underlying decl.
16438   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
16439     D = TD->getTemplatedDecl();
16440   ProcessDeclAttributeList(S, D, Attrs);
16441 
16442   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
16443     if (Method->isStatic())
16444       checkThisInStaticMemberFunctionAttributes(Method);
16445 }
16446 
16447 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16448 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16449 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
16450                                           IdentifierInfo &II, Scope *S) {
16451   // It is not valid to implicitly define a function in C23.
16452   assert(LangOpts.implicitFunctionsAllowed() &&
16453          "Implicit function declarations aren't allowed in this language mode");
16454 
16455   // Find the scope in which the identifier is injected and the corresponding
16456   // DeclContext.
16457   // FIXME: C89 does not say what happens if there is no enclosing block scope.
16458   // In that case, we inject the declaration into the translation unit scope
16459   // instead.
16460   Scope *BlockScope = S;
16461   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
16462     BlockScope = BlockScope->getParent();
16463 
16464   // Loop until we find a DeclContext that is either a function/method or the
16465   // translation unit, which are the only two valid places to implicitly define
16466   // a function. This avoids accidentally defining the function within a tag
16467   // declaration, for example.
16468   Scope *ContextScope = BlockScope;
16469   while (!ContextScope->getEntity() ||
16470          (!ContextScope->getEntity()->isFunctionOrMethod() &&
16471           !ContextScope->getEntity()->isTranslationUnit()))
16472     ContextScope = ContextScope->getParent();
16473   ContextRAII SavedContext(*this, ContextScope->getEntity());
16474 
16475   // Before we produce a declaration for an implicitly defined
16476   // function, see whether there was a locally-scoped declaration of
16477   // this name as a function or variable. If so, use that
16478   // (non-visible) declaration, and complain about it.
16479   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
16480   if (ExternCPrev) {
16481     // We still need to inject the function into the enclosing block scope so
16482     // that later (non-call) uses can see it.
16483     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
16484 
16485     // C89 footnote 38:
16486     //   If in fact it is not defined as having type "function returning int",
16487     //   the behavior is undefined.
16488     if (!isa<FunctionDecl>(ExternCPrev) ||
16489         !Context.typesAreCompatible(
16490             cast<FunctionDecl>(ExternCPrev)->getType(),
16491             Context.getFunctionNoProtoType(Context.IntTy))) {
16492       Diag(Loc, diag::ext_use_out_of_scope_declaration)
16493           << ExternCPrev << !getLangOpts().C99;
16494       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
16495       return ExternCPrev;
16496     }
16497   }
16498 
16499   // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16500   unsigned diag_id;
16501   if (II.getName().starts_with("__builtin_"))
16502     diag_id = diag::warn_builtin_unknown;
16503   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16504   else if (getLangOpts().C99)
16505     diag_id = diag::ext_implicit_function_decl_c99;
16506   else
16507     diag_id = diag::warn_implicit_function_decl;
16508 
16509   TypoCorrection Corrected;
16510   // Because typo correction is expensive, only do it if the implicit
16511   // function declaration is going to be treated as an error.
16512   //
16513   // Perform the correction before issuing the main diagnostic, as some
16514   // consumers use typo-correction callbacks to enhance the main diagnostic.
16515   if (S && !ExternCPrev &&
16516       (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
16517     DeclFilterCCC<FunctionDecl> CCC{};
16518     Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
16519                             S, nullptr, CCC, CTK_NonError);
16520   }
16521 
16522   Diag(Loc, diag_id) << &II;
16523   if (Corrected) {
16524     // If the correction is going to suggest an implicitly defined function,
16525     // skip the correction as not being a particularly good idea.
16526     bool Diagnose = true;
16527     if (const auto *D = Corrected.getCorrectionDecl())
16528       Diagnose = !D->isImplicit();
16529     if (Diagnose)
16530       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
16531                    /*ErrorRecovery*/ false);
16532   }
16533 
16534   // If we found a prior declaration of this function, don't bother building
16535   // another one. We've already pushed that one into scope, so there's nothing
16536   // more to do.
16537   if (ExternCPrev)
16538     return ExternCPrev;
16539 
16540   // Set a Declarator for the implicit definition: int foo();
16541   const char *Dummy;
16542   AttributeFactory attrFactory;
16543   DeclSpec DS(attrFactory);
16544   unsigned DiagID;
16545   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
16546                                   Context.getPrintingPolicy());
16547   (void)Error; // Silence warning.
16548   assert(!Error && "Error setting up implicit decl!");
16549   SourceLocation NoLoc;
16550   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
16551   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16552                                              /*IsAmbiguous=*/false,
16553                                              /*LParenLoc=*/NoLoc,
16554                                              /*Params=*/nullptr,
16555                                              /*NumParams=*/0,
16556                                              /*EllipsisLoc=*/NoLoc,
16557                                              /*RParenLoc=*/NoLoc,
16558                                              /*RefQualifierIsLvalueRef=*/true,
16559                                              /*RefQualifierLoc=*/NoLoc,
16560                                              /*MutableLoc=*/NoLoc, EST_None,
16561                                              /*ESpecRange=*/SourceRange(),
16562                                              /*Exceptions=*/nullptr,
16563                                              /*ExceptionRanges=*/nullptr,
16564                                              /*NumExceptions=*/0,
16565                                              /*NoexceptExpr=*/nullptr,
16566                                              /*ExceptionSpecTokens=*/nullptr,
16567                                              /*DeclsInPrototype=*/std::nullopt,
16568                                              Loc, Loc, D),
16569                 std::move(DS.getAttributes()), SourceLocation());
16570   D.SetIdentifier(&II, Loc);
16571 
16572   // Insert this function into the enclosing block scope.
16573   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
16574   FD->setImplicit();
16575 
16576   AddKnownFunctionAttributes(FD);
16577 
16578   return FD;
16579 }
16580 
16581 /// If this function is a C++ replaceable global allocation function
16582 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16583 /// adds any function attributes that we know a priori based on the standard.
16584 ///
16585 /// We need to check for duplicate attributes both here and where user-written
16586 /// attributes are applied to declarations.
16587 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16588     FunctionDecl *FD) {
16589   if (FD->isInvalidDecl())
16590     return;
16591 
16592   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
16593       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
16594     return;
16595 
16596   std::optional<unsigned> AlignmentParam;
16597   bool IsNothrow = false;
16598   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
16599     return;
16600 
16601   // C++2a [basic.stc.dynamic.allocation]p4:
16602   //   An allocation function that has a non-throwing exception specification
16603   //   indicates failure by returning a null pointer value. Any other allocation
16604   //   function never returns a null pointer value and indicates failure only by
16605   //   throwing an exception [...]
16606   //
16607   // However, -fcheck-new invalidates this possible assumption, so don't add
16608   // NonNull when that is enabled.
16609   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() &&
16610       !getLangOpts().CheckNew)
16611     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
16612 
16613   // C++2a [basic.stc.dynamic.allocation]p2:
16614   //   An allocation function attempts to allocate the requested amount of
16615   //   storage. [...] If the request succeeds, the value returned by a
16616   //   replaceable allocation function is a [...] pointer value p0 different
16617   //   from any previously returned value p1 [...]
16618   //
16619   // However, this particular information is being added in codegen,
16620   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16621 
16622   // C++2a [basic.stc.dynamic.allocation]p2:
16623   //   An allocation function attempts to allocate the requested amount of
16624   //   storage. If it is successful, it returns the address of the start of a
16625   //   block of storage whose length in bytes is at least as large as the
16626   //   requested size.
16627   if (!FD->hasAttr<AllocSizeAttr>()) {
16628     FD->addAttr(AllocSizeAttr::CreateImplicit(
16629         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
16630         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
16631   }
16632 
16633   // C++2a [basic.stc.dynamic.allocation]p3:
16634   //   For an allocation function [...], the pointer returned on a successful
16635   //   call shall represent the address of storage that is aligned as follows:
16636   //   (3.1) If the allocation function takes an argument of type
16637   //         std​::​align_­val_­t, the storage will have the alignment
16638   //         specified by the value of this argument.
16639   if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
16640     FD->addAttr(AllocAlignAttr::CreateImplicit(
16641         Context, ParamIdx(*AlignmentParam, FD), FD->getLocation()));
16642   }
16643 
16644   // FIXME:
16645   // C++2a [basic.stc.dynamic.allocation]p3:
16646   //   For an allocation function [...], the pointer returned on a successful
16647   //   call shall represent the address of storage that is aligned as follows:
16648   //   (3.2) Otherwise, if the allocation function is named operator new[],
16649   //         the storage is aligned for any object that does not have
16650   //         new-extended alignment ([basic.align]) and is no larger than the
16651   //         requested size.
16652   //   (3.3) Otherwise, the storage is aligned for any object that does not
16653   //         have new-extended alignment and is of the requested size.
16654 }
16655 
16656 /// Adds any function attributes that we know a priori based on
16657 /// the declaration of this function.
16658 ///
16659 /// These attributes can apply both to implicitly-declared builtins
16660 /// (like __builtin___printf_chk) or to library-declared functions
16661 /// like NSLog or printf.
16662 ///
16663 /// We need to check for duplicate attributes both here and where user-written
16664 /// attributes are applied to declarations.
16665 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
16666   if (FD->isInvalidDecl())
16667     return;
16668 
16669   // If this is a built-in function, map its builtin attributes to
16670   // actual attributes.
16671   if (unsigned BuiltinID = FD->getBuiltinID()) {
16672     // Handle printf-formatting attributes.
16673     unsigned FormatIdx;
16674     bool HasVAListArg;
16675     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
16676       if (!FD->hasAttr<FormatAttr>()) {
16677         const char *fmt = "printf";
16678         unsigned int NumParams = FD->getNumParams();
16679         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
16680             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
16681           fmt = "NSString";
16682         FD->addAttr(FormatAttr::CreateImplicit(Context,
16683                                                &Context.Idents.get(fmt),
16684                                                FormatIdx+1,
16685                                                HasVAListArg ? 0 : FormatIdx+2,
16686                                                FD->getLocation()));
16687       }
16688     }
16689     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
16690                                              HasVAListArg)) {
16691      if (!FD->hasAttr<FormatAttr>())
16692        FD->addAttr(FormatAttr::CreateImplicit(Context,
16693                                               &Context.Idents.get("scanf"),
16694                                               FormatIdx+1,
16695                                               HasVAListArg ? 0 : FormatIdx+2,
16696                                               FD->getLocation()));
16697     }
16698 
16699     // Handle automatically recognized callbacks.
16700     SmallVector<int, 4> Encoding;
16701     if (!FD->hasAttr<CallbackAttr>() &&
16702         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
16703       FD->addAttr(CallbackAttr::CreateImplicit(
16704           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
16705 
16706     // Mark const if we don't care about errno and/or floating point exceptions
16707     // that are the only thing preventing the function from being const. This
16708     // allows IRgen to use LLVM intrinsics for such functions.
16709     bool NoExceptions =
16710         getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
16711     bool ConstWithoutErrnoAndExceptions =
16712         Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
16713     bool ConstWithoutExceptions =
16714         Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
16715     if (!FD->hasAttr<ConstAttr>() &&
16716         (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
16717         (!ConstWithoutErrnoAndExceptions ||
16718          (!getLangOpts().MathErrno && NoExceptions)) &&
16719         (!ConstWithoutExceptions || NoExceptions))
16720       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16721 
16722     // We make "fma" on GNU or Windows const because we know it does not set
16723     // errno in those environments even though it could set errno based on the
16724     // C standard.
16725     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
16726     if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
16727         !FD->hasAttr<ConstAttr>()) {
16728       switch (BuiltinID) {
16729       case Builtin::BI__builtin_fma:
16730       case Builtin::BI__builtin_fmaf:
16731       case Builtin::BI__builtin_fmal:
16732       case Builtin::BIfma:
16733       case Builtin::BIfmaf:
16734       case Builtin::BIfmal:
16735         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16736         break;
16737       default:
16738         break;
16739       }
16740     }
16741 
16742     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
16743         !FD->hasAttr<ReturnsTwiceAttr>())
16744       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
16745                                          FD->getLocation()));
16746     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
16747       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16748     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
16749       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
16750     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
16751       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16752     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
16753         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
16754       // Add the appropriate attribute, depending on the CUDA compilation mode
16755       // and which target the builtin belongs to. For example, during host
16756       // compilation, aux builtins are __device__, while the rest are __host__.
16757       if (getLangOpts().CUDAIsDevice !=
16758           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
16759         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
16760       else
16761         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
16762     }
16763 
16764     // Add known guaranteed alignment for allocation functions.
16765     switch (BuiltinID) {
16766     case Builtin::BImemalign:
16767     case Builtin::BIaligned_alloc:
16768       if (!FD->hasAttr<AllocAlignAttr>())
16769         FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
16770                                                    FD->getLocation()));
16771       break;
16772     default:
16773       break;
16774     }
16775 
16776     // Add allocsize attribute for allocation functions.
16777     switch (BuiltinID) {
16778     case Builtin::BIcalloc:
16779       FD->addAttr(AllocSizeAttr::CreateImplicit(
16780           Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
16781       break;
16782     case Builtin::BImemalign:
16783     case Builtin::BIaligned_alloc:
16784     case Builtin::BIrealloc:
16785       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
16786                                                 ParamIdx(), FD->getLocation()));
16787       break;
16788     case Builtin::BImalloc:
16789       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
16790                                                 ParamIdx(), FD->getLocation()));
16791       break;
16792     default:
16793       break;
16794     }
16795 
16796     // Add lifetime attribute to std::move, std::fowrard et al.
16797     switch (BuiltinID) {
16798     case Builtin::BIaddressof:
16799     case Builtin::BI__addressof:
16800     case Builtin::BI__builtin_addressof:
16801     case Builtin::BIas_const:
16802     case Builtin::BIforward:
16803     case Builtin::BIforward_like:
16804     case Builtin::BImove:
16805     case Builtin::BImove_if_noexcept:
16806       if (ParmVarDecl *P = FD->getParamDecl(0u);
16807           !P->hasAttr<LifetimeBoundAttr>())
16808         P->addAttr(
16809             LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation()));
16810       break;
16811     default:
16812       break;
16813     }
16814   }
16815 
16816   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
16817 
16818   // If C++ exceptions are enabled but we are told extern "C" functions cannot
16819   // throw, add an implicit nothrow attribute to any extern "C" function we come
16820   // across.
16821   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
16822       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
16823     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
16824     if (!FPT || FPT->getExceptionSpecType() == EST_None)
16825       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16826   }
16827 
16828   IdentifierInfo *Name = FD->getIdentifier();
16829   if (!Name)
16830     return;
16831   if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) ||
16832       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
16833        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
16834            LinkageSpecLanguageIDs::C)) {
16835     // Okay: this could be a libc/libm/Objective-C function we know
16836     // about.
16837   } else
16838     return;
16839 
16840   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
16841     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16842     // target-specific builtins, perhaps?
16843     if (!FD->hasAttr<FormatAttr>())
16844       FD->addAttr(FormatAttr::CreateImplicit(Context,
16845                                              &Context.Idents.get("printf"), 2,
16846                                              Name->isStr("vasprintf") ? 0 : 3,
16847                                              FD->getLocation()));
16848   }
16849 
16850   if (Name->isStr("__CFStringMakeConstantString")) {
16851     // We already have a __builtin___CFStringMakeConstantString,
16852     // but builds that use -fno-constant-cfstrings don't go through that.
16853     if (!FD->hasAttr<FormatArgAttr>())
16854       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
16855                                                 FD->getLocation()));
16856   }
16857 }
16858 
16859 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
16860                                     TypeSourceInfo *TInfo) {
16861   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
16862   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
16863 
16864   if (!TInfo) {
16865     assert(D.isInvalidType() && "no declarator info for valid type");
16866     TInfo = Context.getTrivialTypeSourceInfo(T);
16867   }
16868 
16869   // Scope manipulation handled by caller.
16870   TypedefDecl *NewTD =
16871       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
16872                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
16873 
16874   // Bail out immediately if we have an invalid declaration.
16875   if (D.isInvalidType()) {
16876     NewTD->setInvalidDecl();
16877     return NewTD;
16878   }
16879 
16880   if (D.getDeclSpec().isModulePrivateSpecified()) {
16881     if (CurContext->isFunctionOrMethod())
16882       Diag(NewTD->getLocation(), diag::err_module_private_local)
16883           << 2 << NewTD
16884           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
16885           << FixItHint::CreateRemoval(
16886                  D.getDeclSpec().getModulePrivateSpecLoc());
16887     else
16888       NewTD->setModulePrivate();
16889   }
16890 
16891   // C++ [dcl.typedef]p8:
16892   //   If the typedef declaration defines an unnamed class (or
16893   //   enum), the first typedef-name declared by the declaration
16894   //   to be that class type (or enum type) is used to denote the
16895   //   class type (or enum type) for linkage purposes only.
16896   // We need to check whether the type was declared in the declaration.
16897   switch (D.getDeclSpec().getTypeSpecType()) {
16898   case TST_enum:
16899   case TST_struct:
16900   case TST_interface:
16901   case TST_union:
16902   case TST_class: {
16903     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
16904     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
16905     break;
16906   }
16907 
16908   default:
16909     break;
16910   }
16911 
16912   return NewTD;
16913 }
16914 
16915 /// Check that this is a valid underlying type for an enum declaration.
16916 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
16917   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
16918   QualType T = TI->getType();
16919 
16920   if (T->isDependentType())
16921     return false;
16922 
16923   // This doesn't use 'isIntegralType' despite the error message mentioning
16924   // integral type because isIntegralType would also allow enum types in C.
16925   if (const BuiltinType *BT = T->getAs<BuiltinType>())
16926     if (BT->isInteger())
16927       return false;
16928 
16929   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
16930          << T << T->isBitIntType();
16931 }
16932 
16933 /// Check whether this is a valid redeclaration of a previous enumeration.
16934 /// \return true if the redeclaration was invalid.
16935 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
16936                                   QualType EnumUnderlyingTy, bool IsFixed,
16937                                   const EnumDecl *Prev) {
16938   if (IsScoped != Prev->isScoped()) {
16939     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
16940       << Prev->isScoped();
16941     Diag(Prev->getLocation(), diag::note_previous_declaration);
16942     return true;
16943   }
16944 
16945   if (IsFixed && Prev->isFixed()) {
16946     if (!EnumUnderlyingTy->isDependentType() &&
16947         !Prev->getIntegerType()->isDependentType() &&
16948         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
16949                                         Prev->getIntegerType())) {
16950       // TODO: Highlight the underlying type of the redeclaration.
16951       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
16952         << EnumUnderlyingTy << Prev->getIntegerType();
16953       Diag(Prev->getLocation(), diag::note_previous_declaration)
16954           << Prev->getIntegerTypeRange();
16955       return true;
16956     }
16957   } else if (IsFixed != Prev->isFixed()) {
16958     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
16959       << Prev->isFixed();
16960     Diag(Prev->getLocation(), diag::note_previous_declaration);
16961     return true;
16962   }
16963 
16964   return false;
16965 }
16966 
16967 /// Get diagnostic %select index for tag kind for
16968 /// redeclaration diagnostic message.
16969 /// WARNING: Indexes apply to particular diagnostics only!
16970 ///
16971 /// \returns diagnostic %select index.
16972 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16973   switch (Tag) {
16974   case TagTypeKind::Struct:
16975     return 0;
16976   case TagTypeKind::Interface:
16977     return 1;
16978   case TagTypeKind::Class:
16979     return 2;
16980   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16981   }
16982 }
16983 
16984 /// Determine if tag kind is a class-key compatible with
16985 /// class for redeclaration (class, struct, or __interface).
16986 ///
16987 /// \returns true iff the tag kind is compatible.
16988 static bool isClassCompatTagKind(TagTypeKind Tag)
16989 {
16990   return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class ||
16991          Tag == TagTypeKind::Interface;
16992 }
16993 
16994 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16995                                              TagTypeKind TTK) {
16996   if (isa<TypedefDecl>(PrevDecl))
16997     return NTK_Typedef;
16998   else if (isa<TypeAliasDecl>(PrevDecl))
16999     return NTK_TypeAlias;
17000   else if (isa<ClassTemplateDecl>(PrevDecl))
17001     return NTK_Template;
17002   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
17003     return NTK_TypeAliasTemplate;
17004   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
17005     return NTK_TemplateTemplateArgument;
17006   switch (TTK) {
17007   case TagTypeKind::Struct:
17008   case TagTypeKind::Interface:
17009   case TagTypeKind::Class:
17010     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
17011   case TagTypeKind::Union:
17012     return NTK_NonUnion;
17013   case TagTypeKind::Enum:
17014     return NTK_NonEnum;
17015   }
17016   llvm_unreachable("invalid TTK");
17017 }
17018 
17019 /// Determine whether a tag with a given kind is acceptable
17020 /// as a redeclaration of the given tag declaration.
17021 ///
17022 /// \returns true if the new tag kind is acceptable, false otherwise.
17023 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
17024                                         TagTypeKind NewTag, bool isDefinition,
17025                                         SourceLocation NewTagLoc,
17026                                         const IdentifierInfo *Name) {
17027   // C++ [dcl.type.elab]p3:
17028   //   The class-key or enum keyword present in the
17029   //   elaborated-type-specifier shall agree in kind with the
17030   //   declaration to which the name in the elaborated-type-specifier
17031   //   refers. This rule also applies to the form of
17032   //   elaborated-type-specifier that declares a class-name or
17033   //   friend class since it can be construed as referring to the
17034   //   definition of the class. Thus, in any
17035   //   elaborated-type-specifier, the enum keyword shall be used to
17036   //   refer to an enumeration (7.2), the union class-key shall be
17037   //   used to refer to a union (clause 9), and either the class or
17038   //   struct class-key shall be used to refer to a class (clause 9)
17039   //   declared using the class or struct class-key.
17040   TagTypeKind OldTag = Previous->getTagKind();
17041   if (OldTag != NewTag &&
17042       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
17043     return false;
17044 
17045   // Tags are compatible, but we might still want to warn on mismatched tags.
17046   // Non-class tags can't be mismatched at this point.
17047   if (!isClassCompatTagKind(NewTag))
17048     return true;
17049 
17050   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
17051   // by our warning analysis. We don't want to warn about mismatches with (eg)
17052   // declarations in system headers that are designed to be specialized, but if
17053   // a user asks us to warn, we should warn if their code contains mismatched
17054   // declarations.
17055   auto IsIgnoredLoc = [&](SourceLocation Loc) {
17056     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
17057                                       Loc);
17058   };
17059   if (IsIgnoredLoc(NewTagLoc))
17060     return true;
17061 
17062   auto IsIgnored = [&](const TagDecl *Tag) {
17063     return IsIgnoredLoc(Tag->getLocation());
17064   };
17065   while (IsIgnored(Previous)) {
17066     Previous = Previous->getPreviousDecl();
17067     if (!Previous)
17068       return true;
17069     OldTag = Previous->getTagKind();
17070   }
17071 
17072   bool isTemplate = false;
17073   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
17074     isTemplate = Record->getDescribedClassTemplate();
17075 
17076   if (inTemplateInstantiation()) {
17077     if (OldTag != NewTag) {
17078       // In a template instantiation, do not offer fix-its for tag mismatches
17079       // since they usually mess up the template instead of fixing the problem.
17080       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17081         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17082         << getRedeclDiagFromTagKind(OldTag);
17083       // FIXME: Note previous location?
17084     }
17085     return true;
17086   }
17087 
17088   if (isDefinition) {
17089     // On definitions, check all previous tags and issue a fix-it for each
17090     // one that doesn't match the current tag.
17091     if (Previous->getDefinition()) {
17092       // Don't suggest fix-its for redefinitions.
17093       return true;
17094     }
17095 
17096     bool previousMismatch = false;
17097     for (const TagDecl *I : Previous->redecls()) {
17098       if (I->getTagKind() != NewTag) {
17099         // Ignore previous declarations for which the warning was disabled.
17100         if (IsIgnored(I))
17101           continue;
17102 
17103         if (!previousMismatch) {
17104           previousMismatch = true;
17105           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
17106             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17107             << getRedeclDiagFromTagKind(I->getTagKind());
17108         }
17109         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
17110           << getRedeclDiagFromTagKind(NewTag)
17111           << FixItHint::CreateReplacement(I->getInnerLocStart(),
17112                TypeWithKeyword::getTagTypeKindName(NewTag));
17113       }
17114     }
17115     return true;
17116   }
17117 
17118   // Identify the prevailing tag kind: this is the kind of the definition (if
17119   // there is a non-ignored definition), or otherwise the kind of the prior
17120   // (non-ignored) declaration.
17121   const TagDecl *PrevDef = Previous->getDefinition();
17122   if (PrevDef && IsIgnored(PrevDef))
17123     PrevDef = nullptr;
17124   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
17125   if (Redecl->getTagKind() != NewTag) {
17126     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
17127       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
17128       << getRedeclDiagFromTagKind(OldTag);
17129     Diag(Redecl->getLocation(), diag::note_previous_use);
17130 
17131     // If there is a previous definition, suggest a fix-it.
17132     if (PrevDef) {
17133       Diag(NewTagLoc, diag::note_struct_class_suggestion)
17134         << getRedeclDiagFromTagKind(Redecl->getTagKind())
17135         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
17136              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
17137     }
17138   }
17139 
17140   return true;
17141 }
17142 
17143 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
17144 /// from an outer enclosing namespace or file scope inside a friend declaration.
17145 /// This should provide the commented out code in the following snippet:
17146 ///   namespace N {
17147 ///     struct X;
17148 ///     namespace M {
17149 ///       struct Y { friend struct /*N::*/ X; };
17150 ///     }
17151 ///   }
17152 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
17153                                          SourceLocation NameLoc) {
17154   // While the decl is in a namespace, do repeated lookup of that name and see
17155   // if we get the same namespace back.  If we do not, continue until
17156   // translation unit scope, at which point we have a fully qualified NNS.
17157   SmallVector<IdentifierInfo *, 4> Namespaces;
17158   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17159   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
17160     // This tag should be declared in a namespace, which can only be enclosed by
17161     // other namespaces.  Bail if there's an anonymous namespace in the chain.
17162     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
17163     if (!Namespace || Namespace->isAnonymousNamespace())
17164       return FixItHint();
17165     IdentifierInfo *II = Namespace->getIdentifier();
17166     Namespaces.push_back(II);
17167     NamedDecl *Lookup = SemaRef.LookupSingleName(
17168         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
17169     if (Lookup == Namespace)
17170       break;
17171   }
17172 
17173   // Once we have all the namespaces, reverse them to go outermost first, and
17174   // build an NNS.
17175   SmallString<64> Insertion;
17176   llvm::raw_svector_ostream OS(Insertion);
17177   if (DC->isTranslationUnit())
17178     OS << "::";
17179   std::reverse(Namespaces.begin(), Namespaces.end());
17180   for (auto *II : Namespaces)
17181     OS << II->getName() << "::";
17182   return FixItHint::CreateInsertion(NameLoc, Insertion);
17183 }
17184 
17185 /// Determine whether a tag originally declared in context \p OldDC can
17186 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17187 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17188 /// using-declaration).
17189 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
17190                                          DeclContext *NewDC) {
17191   OldDC = OldDC->getRedeclContext();
17192   NewDC = NewDC->getRedeclContext();
17193 
17194   if (OldDC->Equals(NewDC))
17195     return true;
17196 
17197   // In MSVC mode, we allow a redeclaration if the contexts are related (either
17198   // encloses the other).
17199   if (S.getLangOpts().MSVCCompat &&
17200       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
17201     return true;
17202 
17203   return false;
17204 }
17205 
17206 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
17207 /// former case, Name will be non-null.  In the later case, Name will be null.
17208 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17209 /// reference/declaration/definition of a tag.
17210 ///
17211 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17212 /// trailing-type-specifier) other than one in an alias-declaration.
17213 ///
17214 /// \param SkipBody If non-null, will be set to indicate if the caller should
17215 /// skip the definition of this tag and treat it as if it were a declaration.
17216 DeclResult
17217 Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
17218                CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17219                const ParsedAttributesView &Attrs, AccessSpecifier AS,
17220                SourceLocation ModulePrivateLoc,
17221                MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
17222                bool &IsDependent, SourceLocation ScopedEnumKWLoc,
17223                bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
17224                bool IsTypeSpecifier, bool IsTemplateParamOrArg,
17225                OffsetOfKind OOK, SkipBodyInfo *SkipBody) {
17226   // If this is not a definition, it must have a name.
17227   IdentifierInfo *OrigName = Name;
17228   assert((Name != nullptr || TUK == TUK_Definition) &&
17229          "Nameless record must be a definition!");
17230   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
17231 
17232   OwnedDecl = false;
17233   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17234   bool ScopedEnum = ScopedEnumKWLoc.isValid();
17235 
17236   // FIXME: Check member specializations more carefully.
17237   bool isMemberSpecialization = false;
17238   bool Invalid = false;
17239 
17240   // We only need to do this matching if we have template parameters
17241   // or a scope specifier, which also conveniently avoids this work
17242   // for non-C++ cases.
17243   if (TemplateParameterLists.size() > 0 ||
17244       (SS.isNotEmpty() && TUK != TUK_Reference)) {
17245     if (TemplateParameterList *TemplateParams =
17246             MatchTemplateParametersToScopeSpecifier(
17247                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
17248                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
17249       if (Kind == TagTypeKind::Enum) {
17250         Diag(KWLoc, diag::err_enum_template);
17251         return true;
17252       }
17253 
17254       if (TemplateParams->size() > 0) {
17255         // This is a declaration or definition of a class template (which may
17256         // be a member of another template).
17257 
17258         if (Invalid)
17259           return true;
17260 
17261         OwnedDecl = false;
17262         DeclResult Result = CheckClassTemplate(
17263             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
17264             AS, ModulePrivateLoc,
17265             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
17266             TemplateParameterLists.data(), SkipBody);
17267         return Result.get();
17268       } else {
17269         // The "template<>" header is extraneous.
17270         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17271           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17272         isMemberSpecialization = true;
17273       }
17274     }
17275 
17276     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
17277         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
17278       return true;
17279   }
17280 
17281   // Figure out the underlying type if this a enum declaration. We need to do
17282   // this early, because it's needed to detect if this is an incompatible
17283   // redeclaration.
17284   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
17285   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
17286 
17287   if (Kind == TagTypeKind::Enum) {
17288     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
17289       // No underlying type explicitly specified, or we failed to parse the
17290       // type, default to int.
17291       EnumUnderlying = Context.IntTy.getTypePtr();
17292     } else if (UnderlyingType.get()) {
17293       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17294       // integral type; any cv-qualification is ignored.
17295       TypeSourceInfo *TI = nullptr;
17296       GetTypeFromParser(UnderlyingType.get(), &TI);
17297       EnumUnderlying = TI;
17298 
17299       if (CheckEnumUnderlyingType(TI))
17300         // Recover by falling back to int.
17301         EnumUnderlying = Context.IntTy.getTypePtr();
17302 
17303       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
17304                                           UPPC_FixedUnderlyingType))
17305         EnumUnderlying = Context.IntTy.getTypePtr();
17306 
17307     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17308       // For MSVC ABI compatibility, unfixed enums must use an underlying type
17309       // of 'int'. However, if this is an unfixed forward declaration, don't set
17310       // the underlying type unless the user enables -fms-compatibility. This
17311       // makes unfixed forward declared enums incomplete and is more conforming.
17312       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
17313         EnumUnderlying = Context.IntTy.getTypePtr();
17314     }
17315   }
17316 
17317   DeclContext *SearchDC = CurContext;
17318   DeclContext *DC = CurContext;
17319   bool isStdBadAlloc = false;
17320   bool isStdAlignValT = false;
17321 
17322   RedeclarationKind Redecl = forRedeclarationInCurContext();
17323   if (TUK == TUK_Friend || TUK == TUK_Reference)
17324     Redecl = NotForRedeclaration;
17325 
17326   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17327   /// implemented asks for structural equivalence checking, the returned decl
17328   /// here is passed back to the parser, allowing the tag body to be parsed.
17329   auto createTagFromNewDecl = [&]() -> TagDecl * {
17330     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
17331     // If there is an identifier, use the location of the identifier as the
17332     // location of the decl, otherwise use the location of the struct/union
17333     // keyword.
17334     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17335     TagDecl *New = nullptr;
17336 
17337     if (Kind == TagTypeKind::Enum) {
17338       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
17339                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
17340       // If this is an undefined enum, bail.
17341       if (TUK != TUK_Definition && !Invalid)
17342         return nullptr;
17343       if (EnumUnderlying) {
17344         EnumDecl *ED = cast<EnumDecl>(New);
17345         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
17346           ED->setIntegerTypeSourceInfo(TI);
17347         else
17348           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17349         QualType EnumTy = ED->getIntegerType();
17350         ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17351                                  ? Context.getPromotedIntegerType(EnumTy)
17352                                  : EnumTy);
17353       }
17354     } else { // struct/union
17355       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17356                                nullptr);
17357     }
17358 
17359     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17360       // Add alignment attributes if necessary; these attributes are checked
17361       // when the ASTContext lays out the structure.
17362       //
17363       // It is important for implementing the correct semantics that this
17364       // happen here (in ActOnTag). The #pragma pack stack is
17365       // maintained as a result of parser callbacks which can occur at
17366       // many points during the parsing of a struct declaration (because
17367       // the #pragma tokens are effectively skipped over during the
17368       // parsing of the struct).
17369       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17370         AddAlignmentAttributesForRecord(RD);
17371         AddMsStructLayoutForRecord(RD);
17372       }
17373     }
17374     New->setLexicalDeclContext(CurContext);
17375     return New;
17376   };
17377 
17378   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
17379   if (Name && SS.isNotEmpty()) {
17380     // We have a nested-name tag ('struct foo::bar').
17381 
17382     // Check for invalid 'foo::'.
17383     if (SS.isInvalid()) {
17384       Name = nullptr;
17385       goto CreateNewDecl;
17386     }
17387 
17388     // If this is a friend or a reference to a class in a dependent
17389     // context, don't try to make a decl for it.
17390     if (TUK == TUK_Friend || TUK == TUK_Reference) {
17391       DC = computeDeclContext(SS, false);
17392       if (!DC) {
17393         IsDependent = true;
17394         return true;
17395       }
17396     } else {
17397       DC = computeDeclContext(SS, true);
17398       if (!DC) {
17399         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
17400           << SS.getRange();
17401         return true;
17402       }
17403     }
17404 
17405     if (RequireCompleteDeclContext(SS, DC))
17406       return true;
17407 
17408     SearchDC = DC;
17409     // Look-up name inside 'foo::'.
17410     LookupQualifiedName(Previous, DC);
17411 
17412     if (Previous.isAmbiguous())
17413       return true;
17414 
17415     if (Previous.empty()) {
17416       // Name lookup did not find anything. However, if the
17417       // nested-name-specifier refers to the current instantiation,
17418       // and that current instantiation has any dependent base
17419       // classes, we might find something at instantiation time: treat
17420       // this as a dependent elaborated-type-specifier.
17421       // But this only makes any sense for reference-like lookups.
17422       if (Previous.wasNotFoundInCurrentInstantiation() &&
17423           (TUK == TUK_Reference || TUK == TUK_Friend)) {
17424         IsDependent = true;
17425         return true;
17426       }
17427 
17428       // A tag 'foo::bar' must already exist.
17429       Diag(NameLoc, diag::err_not_tag_in_scope)
17430           << llvm::to_underlying(Kind) << Name << DC << SS.getRange();
17431       Name = nullptr;
17432       Invalid = true;
17433       goto CreateNewDecl;
17434     }
17435   } else if (Name) {
17436     // C++14 [class.mem]p14:
17437     //   If T is the name of a class, then each of the following shall have a
17438     //   name different from T:
17439     //    -- every member of class T that is itself a type
17440     if (TUK != TUK_Reference && TUK != TUK_Friend &&
17441         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
17442       return true;
17443 
17444     // If this is a named struct, check to see if there was a previous forward
17445     // declaration or definition.
17446     // FIXME: We're looking into outer scopes here, even when we
17447     // shouldn't be. Doing so can result in ambiguities that we
17448     // shouldn't be diagnosing.
17449     LookupName(Previous, S);
17450 
17451     // When declaring or defining a tag, ignore ambiguities introduced
17452     // by types using'ed into this scope.
17453     if (Previous.isAmbiguous() &&
17454         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
17455       LookupResult::Filter F = Previous.makeFilter();
17456       while (F.hasNext()) {
17457         NamedDecl *ND = F.next();
17458         if (!ND->getDeclContext()->getRedeclContext()->Equals(
17459                 SearchDC->getRedeclContext()))
17460           F.erase();
17461       }
17462       F.done();
17463     }
17464 
17465     // C++11 [namespace.memdef]p3:
17466     //   If the name in a friend declaration is neither qualified nor
17467     //   a template-id and the declaration is a function or an
17468     //   elaborated-type-specifier, the lookup to determine whether
17469     //   the entity has been previously declared shall not consider
17470     //   any scopes outside the innermost enclosing namespace.
17471     //
17472     // MSVC doesn't implement the above rule for types, so a friend tag
17473     // declaration may be a redeclaration of a type declared in an enclosing
17474     // scope.  They do implement this rule for friend functions.
17475     //
17476     // Does it matter that this should be by scope instead of by
17477     // semantic context?
17478     if (!Previous.empty() && TUK == TUK_Friend) {
17479       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
17480       LookupResult::Filter F = Previous.makeFilter();
17481       bool FriendSawTagOutsideEnclosingNamespace = false;
17482       while (F.hasNext()) {
17483         NamedDecl *ND = F.next();
17484         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17485         if (DC->isFileContext() &&
17486             !EnclosingNS->Encloses(ND->getDeclContext())) {
17487           if (getLangOpts().MSVCCompat)
17488             FriendSawTagOutsideEnclosingNamespace = true;
17489           else
17490             F.erase();
17491         }
17492       }
17493       F.done();
17494 
17495       // Diagnose this MSVC extension in the easy case where lookup would have
17496       // unambiguously found something outside the enclosing namespace.
17497       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
17498         NamedDecl *ND = Previous.getFoundDecl();
17499         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
17500             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
17501       }
17502     }
17503 
17504     // Note:  there used to be some attempt at recovery here.
17505     if (Previous.isAmbiguous())
17506       return true;
17507 
17508     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
17509       // FIXME: This makes sure that we ignore the contexts associated
17510       // with C structs, unions, and enums when looking for a matching
17511       // tag declaration or definition. See the similar lookup tweak
17512       // in Sema::LookupName; is there a better way to deal with this?
17513       while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
17514         SearchDC = SearchDC->getParent();
17515     } else if (getLangOpts().CPlusPlus) {
17516       // Inside ObjCContainer want to keep it as a lexical decl context but go
17517       // past it (most often to TranslationUnit) to find the semantic decl
17518       // context.
17519       while (isa<ObjCContainerDecl>(SearchDC))
17520         SearchDC = SearchDC->getParent();
17521     }
17522   } else if (getLangOpts().CPlusPlus) {
17523     // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17524     // TagDecl the same way as we skip it for named TagDecl.
17525     while (isa<ObjCContainerDecl>(SearchDC))
17526       SearchDC = SearchDC->getParent();
17527   }
17528 
17529   if (Previous.isSingleResult() &&
17530       Previous.getFoundDecl()->isTemplateParameter()) {
17531     // Maybe we will complain about the shadowed template parameter.
17532     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
17533     // Just pretend that we didn't see the previous declaration.
17534     Previous.clear();
17535   }
17536 
17537   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
17538       DC->Equals(getStdNamespace())) {
17539     if (Name->isStr("bad_alloc")) {
17540       // This is a declaration of or a reference to "std::bad_alloc".
17541       isStdBadAlloc = true;
17542 
17543       // If std::bad_alloc has been implicitly declared (but made invisible to
17544       // name lookup), fill in this implicit declaration as the previous
17545       // declaration, so that the declarations get chained appropriately.
17546       if (Previous.empty() && StdBadAlloc)
17547         Previous.addDecl(getStdBadAlloc());
17548     } else if (Name->isStr("align_val_t")) {
17549       isStdAlignValT = true;
17550       if (Previous.empty() && StdAlignValT)
17551         Previous.addDecl(getStdAlignValT());
17552     }
17553   }
17554 
17555   // If we didn't find a previous declaration, and this is a reference
17556   // (or friend reference), move to the correct scope.  In C++, we
17557   // also need to do a redeclaration lookup there, just in case
17558   // there's a shadow friend decl.
17559   if (Name && Previous.empty() &&
17560       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
17561     if (Invalid) goto CreateNewDecl;
17562     assert(SS.isEmpty());
17563 
17564     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
17565       // C++ [basic.scope.pdecl]p5:
17566       //   -- for an elaborated-type-specifier of the form
17567       //
17568       //          class-key identifier
17569       //
17570       //      if the elaborated-type-specifier is used in the
17571       //      decl-specifier-seq or parameter-declaration-clause of a
17572       //      function defined in namespace scope, the identifier is
17573       //      declared as a class-name in the namespace that contains
17574       //      the declaration; otherwise, except as a friend
17575       //      declaration, the identifier is declared in the smallest
17576       //      non-class, non-function-prototype scope that contains the
17577       //      declaration.
17578       //
17579       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17580       // C structs and unions.
17581       //
17582       // It is an error in C++ to declare (rather than define) an enum
17583       // type, including via an elaborated type specifier.  We'll
17584       // diagnose that later; for now, declare the enum in the same
17585       // scope as we would have picked for any other tag type.
17586       //
17587       // GNU C also supports this behavior as part of its incomplete
17588       // enum types extension, while GNU C++ does not.
17589       //
17590       // Find the context where we'll be declaring the tag.
17591       // FIXME: We would like to maintain the current DeclContext as the
17592       // lexical context,
17593       SearchDC = getTagInjectionContext(SearchDC);
17594 
17595       // Find the scope where we'll be declaring the tag.
17596       S = getTagInjectionScope(S, getLangOpts());
17597     } else {
17598       assert(TUK == TUK_Friend);
17599       CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC);
17600 
17601       // C++ [namespace.memdef]p3:
17602       //   If a friend declaration in a non-local class first declares a
17603       //   class or function, the friend class or function is a member of
17604       //   the innermost enclosing namespace.
17605       SearchDC = RD->isLocalClass() ? RD->isLocalClass()
17606                                     : SearchDC->getEnclosingNamespaceContext();
17607     }
17608 
17609     // In C++, we need to do a redeclaration lookup to properly
17610     // diagnose some problems.
17611     // FIXME: redeclaration lookup is also used (with and without C++) to find a
17612     // hidden declaration so that we don't get ambiguity errors when using a
17613     // type declared by an elaborated-type-specifier.  In C that is not correct
17614     // and we should instead merge compatible types found by lookup.
17615     if (getLangOpts().CPlusPlus) {
17616       // FIXME: This can perform qualified lookups into function contexts,
17617       // which are meaningless.
17618       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17619       LookupQualifiedName(Previous, SearchDC);
17620     } else {
17621       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17622       LookupName(Previous, S);
17623     }
17624   }
17625 
17626   // If we have a known previous declaration to use, then use it.
17627   if (Previous.empty() && SkipBody && SkipBody->Previous)
17628     Previous.addDecl(SkipBody->Previous);
17629 
17630   if (!Previous.empty()) {
17631     NamedDecl *PrevDecl = Previous.getFoundDecl();
17632     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
17633 
17634     // It's okay to have a tag decl in the same scope as a typedef
17635     // which hides a tag decl in the same scope.  Finding this
17636     // with a redeclaration lookup can only actually happen in C++.
17637     //
17638     // This is also okay for elaborated-type-specifiers, which is
17639     // technically forbidden by the current standard but which is
17640     // okay according to the likely resolution of an open issue;
17641     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17642     if (getLangOpts().CPlusPlus) {
17643       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17644         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
17645           TagDecl *Tag = TT->getDecl();
17646           if (Tag->getDeclName() == Name &&
17647               Tag->getDeclContext()->getRedeclContext()
17648                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
17649             PrevDecl = Tag;
17650             Previous.clear();
17651             Previous.addDecl(Tag);
17652             Previous.resolveKind();
17653           }
17654         }
17655       }
17656     }
17657 
17658     // If this is a redeclaration of a using shadow declaration, it must
17659     // declare a tag in the same context. In MSVC mode, we allow a
17660     // redefinition if either context is within the other.
17661     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
17662       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
17663       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
17664           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
17665           !(OldTag && isAcceptableTagRedeclContext(
17666                           *this, OldTag->getDeclContext(), SearchDC))) {
17667         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
17668         Diag(Shadow->getTargetDecl()->getLocation(),
17669              diag::note_using_decl_target);
17670         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
17671             << 0;
17672         // Recover by ignoring the old declaration.
17673         Previous.clear();
17674         goto CreateNewDecl;
17675       }
17676     }
17677 
17678     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
17679       // If this is a use of a previous tag, or if the tag is already declared
17680       // in the same scope (so that the definition/declaration completes or
17681       // rementions the tag), reuse the decl.
17682       if (TUK == TUK_Reference || TUK == TUK_Friend ||
17683           isDeclInScope(DirectPrevDecl, SearchDC, S,
17684                         SS.isNotEmpty() || isMemberSpecialization)) {
17685         // Make sure that this wasn't declared as an enum and now used as a
17686         // struct or something similar.
17687         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
17688                                           TUK == TUK_Definition, KWLoc,
17689                                           Name)) {
17690           bool SafeToContinue =
17691               (PrevTagDecl->getTagKind() != TagTypeKind::Enum &&
17692                Kind != TagTypeKind::Enum);
17693           if (SafeToContinue)
17694             Diag(KWLoc, diag::err_use_with_wrong_tag)
17695               << Name
17696               << FixItHint::CreateReplacement(SourceRange(KWLoc),
17697                                               PrevTagDecl->getKindName());
17698           else
17699             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
17700           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
17701 
17702           if (SafeToContinue)
17703             Kind = PrevTagDecl->getTagKind();
17704           else {
17705             // Recover by making this an anonymous redefinition.
17706             Name = nullptr;
17707             Previous.clear();
17708             Invalid = true;
17709           }
17710         }
17711 
17712         if (Kind == TagTypeKind::Enum &&
17713             PrevTagDecl->getTagKind() == TagTypeKind::Enum) {
17714           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
17715           if (TUK == TUK_Reference || TUK == TUK_Friend)
17716             return PrevTagDecl;
17717 
17718           QualType EnumUnderlyingTy;
17719           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17720             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
17721           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
17722             EnumUnderlyingTy = QualType(T, 0);
17723 
17724           // All conflicts with previous declarations are recovered by
17725           // returning the previous declaration, unless this is a definition,
17726           // in which case we want the caller to bail out.
17727           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
17728                                      ScopedEnum, EnumUnderlyingTy,
17729                                      IsFixed, PrevEnum))
17730             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
17731         }
17732 
17733         // C++11 [class.mem]p1:
17734         //   A member shall not be declared twice in the member-specification,
17735         //   except that a nested class or member class template can be declared
17736         //   and then later defined.
17737         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
17738             S->isDeclScope(PrevDecl)) {
17739           Diag(NameLoc, diag::ext_member_redeclared);
17740           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
17741         }
17742 
17743         if (!Invalid) {
17744           // If this is a use, just return the declaration we found, unless
17745           // we have attributes.
17746           if (TUK == TUK_Reference || TUK == TUK_Friend) {
17747             if (!Attrs.empty()) {
17748               // FIXME: Diagnose these attributes. For now, we create a new
17749               // declaration to hold them.
17750             } else if (TUK == TUK_Reference &&
17751                        (PrevTagDecl->getFriendObjectKind() ==
17752                             Decl::FOK_Undeclared ||
17753                         PrevDecl->getOwningModule() != getCurrentModule()) &&
17754                        SS.isEmpty()) {
17755               // This declaration is a reference to an existing entity, but
17756               // has different visibility from that entity: it either makes
17757               // a friend visible or it makes a type visible in a new module.
17758               // In either case, create a new declaration. We only do this if
17759               // the declaration would have meant the same thing if no prior
17760               // declaration were found, that is, if it was found in the same
17761               // scope where we would have injected a declaration.
17762               if (!getTagInjectionContext(CurContext)->getRedeclContext()
17763                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
17764                 return PrevTagDecl;
17765               // This is in the injected scope, create a new declaration in
17766               // that scope.
17767               S = getTagInjectionScope(S, getLangOpts());
17768             } else {
17769               return PrevTagDecl;
17770             }
17771           }
17772 
17773           // Diagnose attempts to redefine a tag.
17774           if (TUK == TUK_Definition) {
17775             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
17776               // If we're defining a specialization and the previous definition
17777               // is from an implicit instantiation, don't emit an error
17778               // here; we'll catch this in the general case below.
17779               bool IsExplicitSpecializationAfterInstantiation = false;
17780               if (isMemberSpecialization) {
17781                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
17782                   IsExplicitSpecializationAfterInstantiation =
17783                     RD->getTemplateSpecializationKind() !=
17784                     TSK_ExplicitSpecialization;
17785                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
17786                   IsExplicitSpecializationAfterInstantiation =
17787                     ED->getTemplateSpecializationKind() !=
17788                     TSK_ExplicitSpecialization;
17789               }
17790 
17791               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17792               // not keep more that one definition around (merge them). However,
17793               // ensure the decl passes the structural compatibility check in
17794               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17795               NamedDecl *Hidden = nullptr;
17796               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
17797                 // There is a definition of this tag, but it is not visible. We
17798                 // explicitly make use of C++'s one definition rule here, and
17799                 // assume that this definition is identical to the hidden one
17800                 // we already have. Make the existing definition visible and
17801                 // use it in place of this one.
17802                 if (!getLangOpts().CPlusPlus) {
17803                   // Postpone making the old definition visible until after we
17804                   // complete parsing the new one and do the structural
17805                   // comparison.
17806                   SkipBody->CheckSameAsPrevious = true;
17807                   SkipBody->New = createTagFromNewDecl();
17808                   SkipBody->Previous = Def;
17809                   return Def;
17810                 } else {
17811                   SkipBody->ShouldSkip = true;
17812                   SkipBody->Previous = Def;
17813                   makeMergedDefinitionVisible(Hidden);
17814                   // Carry on and handle it like a normal definition. We'll
17815                   // skip starting the definitiion later.
17816                 }
17817               } else if (!IsExplicitSpecializationAfterInstantiation) {
17818                 // A redeclaration in function prototype scope in C isn't
17819                 // visible elsewhere, so merely issue a warning.
17820                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
17821                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
17822                 else
17823                   Diag(NameLoc, diag::err_redefinition) << Name;
17824                 notePreviousDefinition(Def,
17825                                        NameLoc.isValid() ? NameLoc : KWLoc);
17826                 // If this is a redefinition, recover by making this
17827                 // struct be anonymous, which will make any later
17828                 // references get the previous definition.
17829                 Name = nullptr;
17830                 Previous.clear();
17831                 Invalid = true;
17832               }
17833             } else {
17834               // If the type is currently being defined, complain
17835               // about a nested redefinition.
17836               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
17837               if (TD->isBeingDefined()) {
17838                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
17839                 Diag(PrevTagDecl->getLocation(),
17840                      diag::note_previous_definition);
17841                 Name = nullptr;
17842                 Previous.clear();
17843                 Invalid = true;
17844               }
17845             }
17846 
17847             // Okay, this is definition of a previously declared or referenced
17848             // tag. We're going to create a new Decl for it.
17849           }
17850 
17851           // Okay, we're going to make a redeclaration.  If this is some kind
17852           // of reference, make sure we build the redeclaration in the same DC
17853           // as the original, and ignore the current access specifier.
17854           if (TUK == TUK_Friend || TUK == TUK_Reference) {
17855             SearchDC = PrevTagDecl->getDeclContext();
17856             AS = AS_none;
17857           }
17858         }
17859         // If we get here we have (another) forward declaration or we
17860         // have a definition.  Just create a new decl.
17861 
17862       } else {
17863         // If we get here, this is a definition of a new tag type in a nested
17864         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17865         // new decl/type.  We set PrevDecl to NULL so that the entities
17866         // have distinct types.
17867         Previous.clear();
17868       }
17869       // If we get here, we're going to create a new Decl. If PrevDecl
17870       // is non-NULL, it's a definition of the tag declared by
17871       // PrevDecl. If it's NULL, we have a new definition.
17872 
17873     // Otherwise, PrevDecl is not a tag, but was found with tag
17874     // lookup.  This is only actually possible in C++, where a few
17875     // things like templates still live in the tag namespace.
17876     } else {
17877       // Use a better diagnostic if an elaborated-type-specifier
17878       // found the wrong kind of type on the first
17879       // (non-redeclaration) lookup.
17880       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
17881           !Previous.isForRedeclaration()) {
17882         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17883         Diag(NameLoc, diag::err_tag_reference_non_tag)
17884             << PrevDecl << NTK << llvm::to_underlying(Kind);
17885         Diag(PrevDecl->getLocation(), diag::note_declared_at);
17886         Invalid = true;
17887 
17888       // Otherwise, only diagnose if the declaration is in scope.
17889       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
17890                                 SS.isNotEmpty() || isMemberSpecialization)) {
17891         // do nothing
17892 
17893       // Diagnose implicit declarations introduced by elaborated types.
17894       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
17895         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17896         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
17897         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17898         Invalid = true;
17899 
17900       // Otherwise it's a declaration.  Call out a particularly common
17901       // case here.
17902       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17903         unsigned Kind = 0;
17904         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
17905         Diag(NameLoc, diag::err_tag_definition_of_typedef)
17906           << Name << Kind << TND->getUnderlyingType();
17907         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17908         Invalid = true;
17909 
17910       // Otherwise, diagnose.
17911       } else {
17912         // The tag name clashes with something else in the target scope,
17913         // issue an error and recover by making this tag be anonymous.
17914         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
17915         notePreviousDefinition(PrevDecl, NameLoc);
17916         Name = nullptr;
17917         Invalid = true;
17918       }
17919 
17920       // The existing declaration isn't relevant to us; we're in a
17921       // new scope, so clear out the previous declaration.
17922       Previous.clear();
17923     }
17924   }
17925 
17926 CreateNewDecl:
17927 
17928   TagDecl *PrevDecl = nullptr;
17929   if (Previous.isSingleResult())
17930     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
17931 
17932   // If there is an identifier, use the location of the identifier as the
17933   // location of the decl, otherwise use the location of the struct/union
17934   // keyword.
17935   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17936 
17937   // Otherwise, create a new declaration. If there is a previous
17938   // declaration of the same entity, the two will be linked via
17939   // PrevDecl.
17940   TagDecl *New;
17941 
17942   if (Kind == TagTypeKind::Enum) {
17943     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17944     // enum X { A, B, C } D;    D should chain to X.
17945     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
17946                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
17947                            ScopedEnumUsesClassTag, IsFixed);
17948 
17949     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
17950       StdAlignValT = cast<EnumDecl>(New);
17951 
17952     // If this is an undefined enum, warn.
17953     if (TUK != TUK_Definition && !Invalid) {
17954       TagDecl *Def;
17955       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
17956         // C++0x: 7.2p2: opaque-enum-declaration.
17957         // Conflicts are diagnosed above. Do nothing.
17958       }
17959       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
17960         Diag(Loc, diag::ext_forward_ref_enum_def)
17961           << New;
17962         Diag(Def->getLocation(), diag::note_previous_definition);
17963       } else {
17964         unsigned DiagID = diag::ext_forward_ref_enum;
17965         if (getLangOpts().MSVCCompat)
17966           DiagID = diag::ext_ms_forward_ref_enum;
17967         else if (getLangOpts().CPlusPlus)
17968           DiagID = diag::err_forward_ref_enum;
17969         Diag(Loc, DiagID);
17970       }
17971     }
17972 
17973     if (EnumUnderlying) {
17974       EnumDecl *ED = cast<EnumDecl>(New);
17975       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17976         ED->setIntegerTypeSourceInfo(TI);
17977       else
17978         ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17979       QualType EnumTy = ED->getIntegerType();
17980       ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17981                                ? Context.getPromotedIntegerType(EnumTy)
17982                                : EnumTy);
17983       assert(ED->isComplete() && "enum with type should be complete");
17984     }
17985   } else {
17986     // struct/union/class
17987 
17988     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17989     // struct X { int A; } D;    D should chain to X.
17990     if (getLangOpts().CPlusPlus) {
17991       // FIXME: Look for a way to use RecordDecl for simple structs.
17992       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17993                                   cast_or_null<CXXRecordDecl>(PrevDecl));
17994 
17995       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17996         StdBadAlloc = cast<CXXRecordDecl>(New);
17997     } else
17998       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17999                                cast_or_null<RecordDecl>(PrevDecl));
18000   }
18001 
18002   if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus)
18003     Diag(New->getLocation(), diag::ext_type_defined_in_offsetof)
18004         << (OOK == OOK_Macro) << New->getSourceRange();
18005 
18006   // C++11 [dcl.type]p3:
18007   //   A type-specifier-seq shall not define a class or enumeration [...].
18008   if (!Invalid && getLangOpts().CPlusPlus &&
18009       (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) {
18010     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
18011       << Context.getTagDeclType(New);
18012     Invalid = true;
18013   }
18014 
18015   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
18016       DC->getDeclKind() == Decl::Enum) {
18017     Diag(New->getLocation(), diag::err_type_defined_in_enum)
18018       << Context.getTagDeclType(New);
18019     Invalid = true;
18020   }
18021 
18022   // Maybe add qualifier info.
18023   if (SS.isNotEmpty()) {
18024     if (SS.isSet()) {
18025       // If this is either a declaration or a definition, check the
18026       // nested-name-specifier against the current context.
18027       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
18028           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
18029                                        isMemberSpecialization))
18030         Invalid = true;
18031 
18032       New->setQualifierInfo(SS.getWithLocInContext(Context));
18033       if (TemplateParameterLists.size() > 0) {
18034         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
18035       }
18036     }
18037     else
18038       Invalid = true;
18039   }
18040 
18041   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
18042     // Add alignment attributes if necessary; these attributes are checked when
18043     // the ASTContext lays out the structure.
18044     //
18045     // It is important for implementing the correct semantics that this
18046     // happen here (in ActOnTag). The #pragma pack stack is
18047     // maintained as a result of parser callbacks which can occur at
18048     // many points during the parsing of a struct declaration (because
18049     // the #pragma tokens are effectively skipped over during the
18050     // parsing of the struct).
18051     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
18052       AddAlignmentAttributesForRecord(RD);
18053       AddMsStructLayoutForRecord(RD);
18054     }
18055   }
18056 
18057   if (ModulePrivateLoc.isValid()) {
18058     if (isMemberSpecialization)
18059       Diag(New->getLocation(), diag::err_module_private_specialization)
18060         << 2
18061         << FixItHint::CreateRemoval(ModulePrivateLoc);
18062     // __module_private__ does not apply to local classes. However, we only
18063     // diagnose this as an error when the declaration specifiers are
18064     // freestanding. Here, we just ignore the __module_private__.
18065     else if (!SearchDC->isFunctionOrMethod())
18066       New->setModulePrivate();
18067   }
18068 
18069   // If this is a specialization of a member class (of a class template),
18070   // check the specialization.
18071   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
18072     Invalid = true;
18073 
18074   // If we're declaring or defining a tag in function prototype scope in C,
18075   // note that this type can only be used within the function and add it to
18076   // the list of decls to inject into the function definition scope.
18077   if ((Name || Kind == TagTypeKind::Enum) &&
18078       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
18079     if (getLangOpts().CPlusPlus) {
18080       // C++ [dcl.fct]p6:
18081       //   Types shall not be defined in return or parameter types.
18082       if (TUK == TUK_Definition && !IsTypeSpecifier) {
18083         Diag(Loc, diag::err_type_defined_in_param_type)
18084             << Name;
18085         Invalid = true;
18086       }
18087     } else if (!PrevDecl) {
18088       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
18089     }
18090   }
18091 
18092   if (Invalid)
18093     New->setInvalidDecl();
18094 
18095   // Set the lexical context. If the tag has a C++ scope specifier, the
18096   // lexical context will be different from the semantic context.
18097   New->setLexicalDeclContext(CurContext);
18098 
18099   // Mark this as a friend decl if applicable.
18100   // In Microsoft mode, a friend declaration also acts as a forward
18101   // declaration so we always pass true to setObjectOfFriendDecl to make
18102   // the tag name visible.
18103   if (TUK == TUK_Friend)
18104     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
18105 
18106   // Set the access specifier.
18107   if (!Invalid && SearchDC->isRecord())
18108     SetMemberAccessSpecifier(New, PrevDecl, AS);
18109 
18110   if (PrevDecl)
18111     CheckRedeclarationInModule(New, PrevDecl);
18112 
18113   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
18114     New->startDefinition();
18115 
18116   ProcessDeclAttributeList(S, New, Attrs);
18117   AddPragmaAttributes(S, New);
18118 
18119   // If this has an identifier, add it to the scope stack.
18120   if (TUK == TUK_Friend) {
18121     // We might be replacing an existing declaration in the lookup tables;
18122     // if so, borrow its access specifier.
18123     if (PrevDecl)
18124       New->setAccess(PrevDecl->getAccess());
18125 
18126     DeclContext *DC = New->getDeclContext()->getRedeclContext();
18127     DC->makeDeclVisibleInContext(New);
18128     if (Name) // can be null along some error paths
18129       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
18130         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
18131   } else if (Name) {
18132     S = getNonFieldDeclScope(S);
18133     PushOnScopeChains(New, S, true);
18134   } else {
18135     CurContext->addDecl(New);
18136   }
18137 
18138   // If this is the C FILE type, notify the AST context.
18139   if (IdentifierInfo *II = New->getIdentifier())
18140     if (!New->isInvalidDecl() &&
18141         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
18142         II->isStr("FILE"))
18143       Context.setFILEDecl(New);
18144 
18145   if (PrevDecl)
18146     mergeDeclAttributes(New, PrevDecl);
18147 
18148   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
18149     inferGslOwnerPointerAttribute(CXXRD);
18150 
18151   // If there's a #pragma GCC visibility in scope, set the visibility of this
18152   // record.
18153   AddPushedVisibilityAttribute(New);
18154 
18155   if (isMemberSpecialization && !New->isInvalidDecl())
18156     CompleteMemberSpecialization(New, Previous);
18157 
18158   OwnedDecl = true;
18159   // In C++, don't return an invalid declaration. We can't recover well from
18160   // the cases where we make the type anonymous.
18161   if (Invalid && getLangOpts().CPlusPlus) {
18162     if (New->isBeingDefined())
18163       if (auto RD = dyn_cast<RecordDecl>(New))
18164         RD->completeDefinition();
18165     return true;
18166   } else if (SkipBody && SkipBody->ShouldSkip) {
18167     return SkipBody->Previous;
18168   } else {
18169     return New;
18170   }
18171 }
18172 
18173 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
18174   AdjustDeclIfTemplate(TagD);
18175   TagDecl *Tag = cast<TagDecl>(TagD);
18176 
18177   // Enter the tag context.
18178   PushDeclContext(S, Tag);
18179 
18180   ActOnDocumentableDecl(TagD);
18181 
18182   // If there's a #pragma GCC visibility in scope, set the visibility of this
18183   // record.
18184   AddPushedVisibilityAttribute(Tag);
18185 }
18186 
18187 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
18188   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
18189     return false;
18190 
18191   // Make the previous decl visible.
18192   makeMergedDefinitionVisible(SkipBody.Previous);
18193   return true;
18194 }
18195 
18196 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) {
18197   assert(IDecl->getLexicalParent() == CurContext &&
18198       "The next DeclContext should be lexically contained in the current one.");
18199   CurContext = IDecl;
18200 }
18201 
18202 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
18203                                            SourceLocation FinalLoc,
18204                                            bool IsFinalSpelledSealed,
18205                                            bool IsAbstract,
18206                                            SourceLocation LBraceLoc) {
18207   AdjustDeclIfTemplate(TagD);
18208   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
18209 
18210   FieldCollector->StartClass();
18211 
18212   if (!Record->getIdentifier())
18213     return;
18214 
18215   if (IsAbstract)
18216     Record->markAbstract();
18217 
18218   if (FinalLoc.isValid()) {
18219     Record->addAttr(FinalAttr::Create(Context, FinalLoc,
18220                                       IsFinalSpelledSealed
18221                                           ? FinalAttr::Keyword_sealed
18222                                           : FinalAttr::Keyword_final));
18223   }
18224   // C++ [class]p2:
18225   //   [...] The class-name is also inserted into the scope of the
18226   //   class itself; this is known as the injected-class-name. For
18227   //   purposes of access checking, the injected-class-name is treated
18228   //   as if it were a public member name.
18229   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
18230       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
18231       Record->getLocation(), Record->getIdentifier(),
18232       /*PrevDecl=*/nullptr,
18233       /*DelayTypeCreation=*/true);
18234   Context.getTypeDeclType(InjectedClassName, Record);
18235   InjectedClassName->setImplicit();
18236   InjectedClassName->setAccess(AS_public);
18237   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
18238       InjectedClassName->setDescribedClassTemplate(Template);
18239   PushOnScopeChains(InjectedClassName, S);
18240   assert(InjectedClassName->isInjectedClassName() &&
18241          "Broken injected-class-name");
18242 }
18243 
18244 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
18245                                     SourceRange BraceRange) {
18246   AdjustDeclIfTemplate(TagD);
18247   TagDecl *Tag = cast<TagDecl>(TagD);
18248   Tag->setBraceRange(BraceRange);
18249 
18250   // Make sure we "complete" the definition even it is invalid.
18251   if (Tag->isBeingDefined()) {
18252     assert(Tag->isInvalidDecl() && "We should already have completed it");
18253     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18254       RD->completeDefinition();
18255   }
18256 
18257   if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
18258     FieldCollector->FinishClass();
18259     if (RD->hasAttr<SYCLSpecialClassAttr>()) {
18260       auto *Def = RD->getDefinition();
18261       assert(Def && "The record is expected to have a completed definition");
18262       unsigned NumInitMethods = 0;
18263       for (auto *Method : Def->methods()) {
18264         if (!Method->getIdentifier())
18265             continue;
18266         if (Method->getName() == "__init")
18267           NumInitMethods++;
18268       }
18269       if (NumInitMethods > 1 || !Def->hasInitMethod())
18270         Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
18271     }
18272   }
18273 
18274   // Exit this scope of this tag's definition.
18275   PopDeclContext();
18276 
18277   if (getCurLexicalContext()->isObjCContainer() &&
18278       Tag->getDeclContext()->isFileContext())
18279     Tag->setTopLevelDeclInObjCContainer();
18280 
18281   // Notify the consumer that we've defined a tag.
18282   if (!Tag->isInvalidDecl())
18283     Consumer.HandleTagDeclDefinition(Tag);
18284 
18285   // Clangs implementation of #pragma align(packed) differs in bitfield layout
18286   // from XLs and instead matches the XL #pragma pack(1) behavior.
18287   if (Context.getTargetInfo().getTriple().isOSAIX() &&
18288       AlignPackStack.hasValue()) {
18289     AlignPackInfo APInfo = AlignPackStack.CurrentValue;
18290     // Only diagnose #pragma align(packed).
18291     if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
18292       return;
18293     const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
18294     if (!RD)
18295       return;
18296     // Only warn if there is at least 1 bitfield member.
18297     if (llvm::any_of(RD->fields(),
18298                      [](const FieldDecl *FD) { return FD->isBitField(); }))
18299       Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
18300   }
18301 }
18302 
18303 void Sema::ActOnObjCContainerFinishDefinition() {
18304   // Exit this scope of this interface definition.
18305   PopDeclContext();
18306 }
18307 
18308 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) {
18309   assert(ObjCCtx == CurContext && "Mismatch of container contexts");
18310   OriginalLexicalContext = ObjCCtx;
18311   ActOnObjCContainerFinishDefinition();
18312 }
18313 
18314 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) {
18315   ActOnObjCContainerStartDefinition(ObjCCtx);
18316   OriginalLexicalContext = nullptr;
18317 }
18318 
18319 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
18320   AdjustDeclIfTemplate(TagD);
18321   TagDecl *Tag = cast<TagDecl>(TagD);
18322   Tag->setInvalidDecl();
18323 
18324   // Make sure we "complete" the definition even it is invalid.
18325   if (Tag->isBeingDefined()) {
18326     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18327       RD->completeDefinition();
18328   }
18329 
18330   // We're undoing ActOnTagStartDefinition here, not
18331   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18332   // the FieldCollector.
18333 
18334   PopDeclContext();
18335 }
18336 
18337 // Note that FieldName may be null for anonymous bitfields.
18338 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
18339                                 IdentifierInfo *FieldName, QualType FieldTy,
18340                                 bool IsMsStruct, Expr *BitWidth) {
18341   assert(BitWidth);
18342   if (BitWidth->containsErrors())
18343     return ExprError();
18344 
18345   // C99 6.7.2.1p4 - verify the field type.
18346   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18347   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
18348     // Handle incomplete and sizeless types with a specific error.
18349     if (RequireCompleteSizedType(FieldLoc, FieldTy,
18350                                  diag::err_field_incomplete_or_sizeless))
18351       return ExprError();
18352     if (FieldName)
18353       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
18354         << FieldName << FieldTy << BitWidth->getSourceRange();
18355     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
18356       << FieldTy << BitWidth->getSourceRange();
18357   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
18358                                              UPPC_BitFieldWidth))
18359     return ExprError();
18360 
18361   // If the bit-width is type- or value-dependent, don't try to check
18362   // it now.
18363   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
18364     return BitWidth;
18365 
18366   llvm::APSInt Value;
18367   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
18368   if (ICE.isInvalid())
18369     return ICE;
18370   BitWidth = ICE.get();
18371 
18372   // Zero-width bitfield is ok for anonymous field.
18373   if (Value == 0 && FieldName)
18374     return Diag(FieldLoc, diag::err_bitfield_has_zero_width)
18375            << FieldName << BitWidth->getSourceRange();
18376 
18377   if (Value.isSigned() && Value.isNegative()) {
18378     if (FieldName)
18379       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
18380                << FieldName << toString(Value, 10);
18381     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
18382       << toString(Value, 10);
18383   }
18384 
18385   // The size of the bit-field must not exceed our maximum permitted object
18386   // size.
18387   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
18388     return Diag(FieldLoc, diag::err_bitfield_too_wide)
18389            << !FieldName << FieldName << toString(Value, 10);
18390   }
18391 
18392   if (!FieldTy->isDependentType()) {
18393     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
18394     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
18395     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
18396 
18397     // Over-wide bitfields are an error in C or when using the MSVC bitfield
18398     // ABI.
18399     bool CStdConstraintViolation =
18400         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
18401     bool MSBitfieldViolation =
18402         Value.ugt(TypeStorageSize) &&
18403         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
18404     if (CStdConstraintViolation || MSBitfieldViolation) {
18405       unsigned DiagWidth =
18406           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
18407       return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
18408              << (bool)FieldName << FieldName << toString(Value, 10)
18409              << !CStdConstraintViolation << DiagWidth;
18410     }
18411 
18412     // Warn on types where the user might conceivably expect to get all
18413     // specified bits as value bits: that's all integral types other than
18414     // 'bool'.
18415     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
18416       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
18417           << FieldName << toString(Value, 10)
18418           << (unsigned)TypeWidth;
18419     }
18420   }
18421 
18422   return BitWidth;
18423 }
18424 
18425 /// ActOnField - Each field of a C struct/union is passed into this in order
18426 /// to create a FieldDecl object for it.
18427 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
18428                        Declarator &D, Expr *BitfieldWidth) {
18429   FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart,
18430                                D, BitfieldWidth,
18431                                /*InitStyle=*/ICIS_NoInit, AS_public);
18432   return Res;
18433 }
18434 
18435 /// HandleField - Analyze a field of a C struct or a C++ data member.
18436 ///
18437 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
18438                              SourceLocation DeclStart,
18439                              Declarator &D, Expr *BitWidth,
18440                              InClassInitStyle InitStyle,
18441                              AccessSpecifier AS) {
18442   if (D.isDecompositionDeclarator()) {
18443     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
18444     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
18445       << Decomp.getSourceRange();
18446     return nullptr;
18447   }
18448 
18449   IdentifierInfo *II = D.getIdentifier();
18450   SourceLocation Loc = DeclStart;
18451   if (II) Loc = D.getIdentifierLoc();
18452 
18453   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
18454   QualType T = TInfo->getType();
18455   if (getLangOpts().CPlusPlus) {
18456     CheckExtraCXXDefaultArguments(D);
18457 
18458     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18459                                         UPPC_DataMemberType)) {
18460       D.setInvalidType();
18461       T = Context.IntTy;
18462       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18463     }
18464   }
18465 
18466   DiagnoseFunctionSpecifiers(D.getDeclSpec());
18467 
18468   if (D.getDeclSpec().isInlineSpecified())
18469     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18470         << getLangOpts().CPlusPlus17;
18471   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18472     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18473          diag::err_invalid_thread)
18474       << DeclSpec::getSpecifierName(TSCS);
18475 
18476   // Check to see if this name was declared as a member previously
18477   NamedDecl *PrevDecl = nullptr;
18478   LookupResult Previous(*this, II, Loc, LookupMemberName,
18479                         ForVisibleRedeclaration);
18480   LookupName(Previous, S);
18481   switch (Previous.getResultKind()) {
18482     case LookupResult::Found:
18483     case LookupResult::FoundUnresolvedValue:
18484       PrevDecl = Previous.getAsSingle<NamedDecl>();
18485       break;
18486 
18487     case LookupResult::FoundOverloaded:
18488       PrevDecl = Previous.getRepresentativeDecl();
18489       break;
18490 
18491     case LookupResult::NotFound:
18492     case LookupResult::NotFoundInCurrentInstantiation:
18493     case LookupResult::Ambiguous:
18494       break;
18495   }
18496   Previous.suppressDiagnostics();
18497 
18498   if (PrevDecl && PrevDecl->isTemplateParameter()) {
18499     // Maybe we will complain about the shadowed template parameter.
18500     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18501     // Just pretend that we didn't see the previous declaration.
18502     PrevDecl = nullptr;
18503   }
18504 
18505   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18506     PrevDecl = nullptr;
18507 
18508   bool Mutable
18509     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
18510   SourceLocation TSSL = D.getBeginLoc();
18511   FieldDecl *NewFD
18512     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
18513                      TSSL, AS, PrevDecl, &D);
18514 
18515   if (NewFD->isInvalidDecl())
18516     Record->setInvalidDecl();
18517 
18518   if (D.getDeclSpec().isModulePrivateSpecified())
18519     NewFD->setModulePrivate();
18520 
18521   if (NewFD->isInvalidDecl() && PrevDecl) {
18522     // Don't introduce NewFD into scope; there's already something
18523     // with the same name in the same scope.
18524   } else if (II) {
18525     PushOnScopeChains(NewFD, S);
18526   } else
18527     Record->addDecl(NewFD);
18528 
18529   return NewFD;
18530 }
18531 
18532 /// Build a new FieldDecl and check its well-formedness.
18533 ///
18534 /// This routine builds a new FieldDecl given the fields name, type,
18535 /// record, etc. \p PrevDecl should refer to any previous declaration
18536 /// with the same name and in the same scope as the field to be
18537 /// created.
18538 ///
18539 /// \returns a new FieldDecl.
18540 ///
18541 /// \todo The Declarator argument is a hack. It will be removed once
18542 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
18543                                 TypeSourceInfo *TInfo,
18544                                 RecordDecl *Record, SourceLocation Loc,
18545                                 bool Mutable, Expr *BitWidth,
18546                                 InClassInitStyle InitStyle,
18547                                 SourceLocation TSSL,
18548                                 AccessSpecifier AS, NamedDecl *PrevDecl,
18549                                 Declarator *D) {
18550   IdentifierInfo *II = Name.getAsIdentifierInfo();
18551   bool InvalidDecl = false;
18552   if (D) InvalidDecl = D->isInvalidType();
18553 
18554   // If we receive a broken type, recover by assuming 'int' and
18555   // marking this declaration as invalid.
18556   if (T.isNull() || T->containsErrors()) {
18557     InvalidDecl = true;
18558     T = Context.IntTy;
18559   }
18560 
18561   QualType EltTy = Context.getBaseElementType(T);
18562   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18563     if (RequireCompleteSizedType(Loc, EltTy,
18564                                  diag::err_field_incomplete_or_sizeless)) {
18565       // Fields of incomplete type force their record to be invalid.
18566       Record->setInvalidDecl();
18567       InvalidDecl = true;
18568     } else {
18569       NamedDecl *Def;
18570       EltTy->isIncompleteType(&Def);
18571       if (Def && Def->isInvalidDecl()) {
18572         Record->setInvalidDecl();
18573         InvalidDecl = true;
18574       }
18575     }
18576   }
18577 
18578   // TR 18037 does not allow fields to be declared with address space
18579   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
18580       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18581     Diag(Loc, diag::err_field_with_address_space);
18582     Record->setInvalidDecl();
18583     InvalidDecl = true;
18584   }
18585 
18586   if (LangOpts.OpenCL) {
18587     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18588     // used as structure or union field: image, sampler, event or block types.
18589     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
18590         T->isBlockPointerType()) {
18591       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
18592       Record->setInvalidDecl();
18593       InvalidDecl = true;
18594     }
18595     // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18596     // is enabled.
18597     if (BitWidth && !getOpenCLOptions().isAvailableOption(
18598                         "__cl_clang_bitfields", LangOpts)) {
18599       Diag(Loc, diag::err_opencl_bitfields);
18600       InvalidDecl = true;
18601     }
18602   }
18603 
18604   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18605   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
18606       T.hasQualifiers()) {
18607     InvalidDecl = true;
18608     Diag(Loc, diag::err_anon_bitfield_qualifiers);
18609   }
18610 
18611   // C99 6.7.2.1p8: A member of a structure or union may have any type other
18612   // than a variably modified type.
18613   if (!InvalidDecl && T->isVariablyModifiedType()) {
18614     if (!tryToFixVariablyModifiedVarType(
18615             TInfo, T, Loc, diag::err_typecheck_field_variable_size))
18616       InvalidDecl = true;
18617   }
18618 
18619   // Fields can not have abstract class types
18620   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
18621                                              diag::err_abstract_type_in_decl,
18622                                              AbstractFieldType))
18623     InvalidDecl = true;
18624 
18625   if (InvalidDecl)
18626     BitWidth = nullptr;
18627   // If this is declared as a bit-field, check the bit-field.
18628   if (BitWidth) {
18629     BitWidth =
18630         VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
18631     if (!BitWidth) {
18632       InvalidDecl = true;
18633       BitWidth = nullptr;
18634     }
18635   }
18636 
18637   // Check that 'mutable' is consistent with the type of the declaration.
18638   if (!InvalidDecl && Mutable) {
18639     unsigned DiagID = 0;
18640     if (T->isReferenceType())
18641       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
18642                                         : diag::err_mutable_reference;
18643     else if (T.isConstQualified())
18644       DiagID = diag::err_mutable_const;
18645 
18646     if (DiagID) {
18647       SourceLocation ErrLoc = Loc;
18648       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
18649         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
18650       Diag(ErrLoc, DiagID);
18651       if (DiagID != diag::ext_mutable_reference) {
18652         Mutable = false;
18653         InvalidDecl = true;
18654       }
18655     }
18656   }
18657 
18658   // C++11 [class.union]p8 (DR1460):
18659   //   At most one variant member of a union may have a
18660   //   brace-or-equal-initializer.
18661   if (InitStyle != ICIS_NoInit)
18662     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
18663 
18664   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
18665                                        BitWidth, Mutable, InitStyle);
18666   if (InvalidDecl)
18667     NewFD->setInvalidDecl();
18668 
18669   if (PrevDecl && !isa<TagDecl>(PrevDecl) &&
18670       !PrevDecl->isPlaceholderVar(getLangOpts())) {
18671     Diag(Loc, diag::err_duplicate_member) << II;
18672     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18673     NewFD->setInvalidDecl();
18674   }
18675 
18676   if (!InvalidDecl && getLangOpts().CPlusPlus) {
18677     if (Record->isUnion()) {
18678       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18679         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
18680         if (RDecl->getDefinition()) {
18681           // C++ [class.union]p1: An object of a class with a non-trivial
18682           // constructor, a non-trivial copy constructor, a non-trivial
18683           // destructor, or a non-trivial copy assignment operator
18684           // cannot be a member of a union, nor can an array of such
18685           // objects.
18686           if (CheckNontrivialField(NewFD))
18687             NewFD->setInvalidDecl();
18688         }
18689       }
18690 
18691       // C++ [class.union]p1: If a union contains a member of reference type,
18692       // the program is ill-formed, except when compiling with MSVC extensions
18693       // enabled.
18694       if (EltTy->isReferenceType()) {
18695         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
18696                                     diag::ext_union_member_of_reference_type :
18697                                     diag::err_union_member_of_reference_type)
18698           << NewFD->getDeclName() << EltTy;
18699         if (!getLangOpts().MicrosoftExt)
18700           NewFD->setInvalidDecl();
18701       }
18702     }
18703   }
18704 
18705   // FIXME: We need to pass in the attributes given an AST
18706   // representation, not a parser representation.
18707   if (D) {
18708     // FIXME: The current scope is almost... but not entirely... correct here.
18709     ProcessDeclAttributes(getCurScope(), NewFD, *D);
18710 
18711     if (NewFD->hasAttrs())
18712       CheckAlignasUnderalignment(NewFD);
18713   }
18714 
18715   // In auto-retain/release, infer strong retension for fields of
18716   // retainable type.
18717   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
18718     NewFD->setInvalidDecl();
18719 
18720   if (T.isObjCGCWeak())
18721     Diag(Loc, diag::warn_attribute_weak_on_field);
18722 
18723   // PPC MMA non-pointer types are not allowed as field types.
18724   if (Context.getTargetInfo().getTriple().isPPC64() &&
18725       CheckPPCMMAType(T, NewFD->getLocation()))
18726     NewFD->setInvalidDecl();
18727 
18728   NewFD->setAccess(AS);
18729   return NewFD;
18730 }
18731 
18732 bool Sema::CheckNontrivialField(FieldDecl *FD) {
18733   assert(FD);
18734   assert(getLangOpts().CPlusPlus && "valid check only for C++");
18735 
18736   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
18737     return false;
18738 
18739   QualType EltTy = Context.getBaseElementType(FD->getType());
18740   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18741     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
18742     if (RDecl->getDefinition()) {
18743       // We check for copy constructors before constructors
18744       // because otherwise we'll never get complaints about
18745       // copy constructors.
18746 
18747       CXXSpecialMember member = CXXInvalid;
18748       // We're required to check for any non-trivial constructors. Since the
18749       // implicit default constructor is suppressed if there are any
18750       // user-declared constructors, we just need to check that there is a
18751       // trivial default constructor and a trivial copy constructor. (We don't
18752       // worry about move constructors here, since this is a C++98 check.)
18753       if (RDecl->hasNonTrivialCopyConstructor())
18754         member = CXXCopyConstructor;
18755       else if (!RDecl->hasTrivialDefaultConstructor())
18756         member = CXXDefaultConstructor;
18757       else if (RDecl->hasNonTrivialCopyAssignment())
18758         member = CXXCopyAssignment;
18759       else if (RDecl->hasNonTrivialDestructor())
18760         member = CXXDestructor;
18761 
18762       if (member != CXXInvalid) {
18763         if (!getLangOpts().CPlusPlus11 &&
18764             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
18765           // Objective-C++ ARC: it is an error to have a non-trivial field of
18766           // a union. However, system headers in Objective-C programs
18767           // occasionally have Objective-C lifetime objects within unions,
18768           // and rather than cause the program to fail, we make those
18769           // members unavailable.
18770           SourceLocation Loc = FD->getLocation();
18771           if (getSourceManager().isInSystemHeader(Loc)) {
18772             if (!FD->hasAttr<UnavailableAttr>())
18773               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
18774                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
18775             return false;
18776           }
18777         }
18778 
18779         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
18780                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
18781                diag::err_illegal_union_or_anon_struct_member)
18782           << FD->getParent()->isUnion() << FD->getDeclName() << member;
18783         DiagnoseNontrivial(RDecl, member);
18784         return !getLangOpts().CPlusPlus11;
18785       }
18786     }
18787   }
18788 
18789   return false;
18790 }
18791 
18792 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18793 ///  AST enum value.
18794 static ObjCIvarDecl::AccessControl
18795 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
18796   switch (ivarVisibility) {
18797   default: llvm_unreachable("Unknown visitibility kind");
18798   case tok::objc_private: return ObjCIvarDecl::Private;
18799   case tok::objc_public: return ObjCIvarDecl::Public;
18800   case tok::objc_protected: return ObjCIvarDecl::Protected;
18801   case tok::objc_package: return ObjCIvarDecl::Package;
18802   }
18803 }
18804 
18805 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18806 /// in order to create an IvarDecl object for it.
18807 Decl *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
18808                       Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
18809 
18810   IdentifierInfo *II = D.getIdentifier();
18811   SourceLocation Loc = DeclStart;
18812   if (II) Loc = D.getIdentifierLoc();
18813 
18814   // FIXME: Unnamed fields can be handled in various different ways, for
18815   // example, unnamed unions inject all members into the struct namespace!
18816 
18817   TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
18818   QualType T = TInfo->getType();
18819 
18820   if (BitWidth) {
18821     // 6.7.2.1p3, 6.7.2.1p4
18822     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
18823     if (!BitWidth)
18824       D.setInvalidType();
18825   } else {
18826     // Not a bitfield.
18827 
18828     // validate II.
18829 
18830   }
18831   if (T->isReferenceType()) {
18832     Diag(Loc, diag::err_ivar_reference_type);
18833     D.setInvalidType();
18834   }
18835   // C99 6.7.2.1p8: A member of a structure or union may have any type other
18836   // than a variably modified type.
18837   else if (T->isVariablyModifiedType()) {
18838     if (!tryToFixVariablyModifiedVarType(
18839             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
18840       D.setInvalidType();
18841   }
18842 
18843   // Get the visibility (access control) for this ivar.
18844   ObjCIvarDecl::AccessControl ac =
18845     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
18846                                         : ObjCIvarDecl::None;
18847   // Must set ivar's DeclContext to its enclosing interface.
18848   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
18849   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
18850     return nullptr;
18851   ObjCContainerDecl *EnclosingContext;
18852   if (ObjCImplementationDecl *IMPDecl =
18853       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18854     if (LangOpts.ObjCRuntime.isFragile()) {
18855     // Case of ivar declared in an implementation. Context is that of its class.
18856       EnclosingContext = IMPDecl->getClassInterface();
18857       assert(EnclosingContext && "Implementation has no class interface!");
18858     }
18859     else
18860       EnclosingContext = EnclosingDecl;
18861   } else {
18862     if (ObjCCategoryDecl *CDecl =
18863         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18864       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
18865         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
18866         return nullptr;
18867       }
18868     }
18869     EnclosingContext = EnclosingDecl;
18870   }
18871 
18872   // Construct the decl.
18873   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(
18874       Context, EnclosingContext, DeclStart, Loc, II, T, TInfo, ac, BitWidth);
18875 
18876   if (T->containsErrors())
18877     NewID->setInvalidDecl();
18878 
18879   if (II) {
18880     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
18881                                            ForVisibleRedeclaration);
18882     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
18883         && !isa<TagDecl>(PrevDecl)) {
18884       Diag(Loc, diag::err_duplicate_member) << II;
18885       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18886       NewID->setInvalidDecl();
18887     }
18888   }
18889 
18890   // Process attributes attached to the ivar.
18891   ProcessDeclAttributes(S, NewID, D);
18892 
18893   if (D.isInvalidType())
18894     NewID->setInvalidDecl();
18895 
18896   // In ARC, infer 'retaining' for ivars of retainable type.
18897   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
18898     NewID->setInvalidDecl();
18899 
18900   if (D.getDeclSpec().isModulePrivateSpecified())
18901     NewID->setModulePrivate();
18902 
18903   if (II) {
18904     // FIXME: When interfaces are DeclContexts, we'll need to add
18905     // these to the interface.
18906     S->AddDecl(NewID);
18907     IdResolver.AddDecl(NewID);
18908   }
18909 
18910   if (LangOpts.ObjCRuntime.isNonFragile() &&
18911       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
18912     Diag(Loc, diag::warn_ivars_in_interface);
18913 
18914   return NewID;
18915 }
18916 
18917 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18918 /// class and class extensions. For every class \@interface and class
18919 /// extension \@interface, if the last ivar is a bitfield of any type,
18920 /// then add an implicit `char :0` ivar to the end of that interface.
18921 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
18922                              SmallVectorImpl<Decl *> &AllIvarDecls) {
18923   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
18924     return;
18925 
18926   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
18927   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
18928 
18929   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
18930     return;
18931   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
18932   if (!ID) {
18933     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
18934       if (!CD->IsClassExtension())
18935         return;
18936     }
18937     // No need to add this to end of @implementation.
18938     else
18939       return;
18940   }
18941   // All conditions are met. Add a new bitfield to the tail end of ivars.
18942   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
18943   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
18944 
18945   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
18946                               DeclLoc, DeclLoc, nullptr,
18947                               Context.CharTy,
18948                               Context.getTrivialTypeSourceInfo(Context.CharTy,
18949                                                                DeclLoc),
18950                               ObjCIvarDecl::Private, BW,
18951                               true);
18952   AllIvarDecls.push_back(Ivar);
18953 }
18954 
18955 /// [class.dtor]p4:
18956 ///   At the end of the definition of a class, overload resolution is
18957 ///   performed among the prospective destructors declared in that class with
18958 ///   an empty argument list to select the destructor for the class, also
18959 ///   known as the selected destructor.
18960 ///
18961 /// We do the overload resolution here, then mark the selected constructor in the AST.
18962 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18963 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
18964   if (!Record->hasUserDeclaredDestructor()) {
18965     return;
18966   }
18967 
18968   SourceLocation Loc = Record->getLocation();
18969   OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
18970 
18971   for (auto *Decl : Record->decls()) {
18972     if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
18973       if (DD->isInvalidDecl())
18974         continue;
18975       S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
18976                              OCS);
18977       assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18978     }
18979   }
18980 
18981   if (OCS.empty()) {
18982     return;
18983   }
18984   OverloadCandidateSet::iterator Best;
18985   unsigned Msg = 0;
18986   OverloadCandidateDisplayKind DisplayKind;
18987 
18988   switch (OCS.BestViableFunction(S, Loc, Best)) {
18989   case OR_Success:
18990   case OR_Deleted:
18991     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18992     break;
18993 
18994   case OR_Ambiguous:
18995     Msg = diag::err_ambiguous_destructor;
18996     DisplayKind = OCD_AmbiguousCandidates;
18997     break;
18998 
18999   case OR_No_Viable_Function:
19000     Msg = diag::err_no_viable_destructor;
19001     DisplayKind = OCD_AllCandidates;
19002     break;
19003   }
19004 
19005   if (Msg) {
19006     // OpenCL have got their own thing going with destructors. It's slightly broken,
19007     // but we allow it.
19008     if (!S.LangOpts.OpenCL) {
19009       PartialDiagnostic Diag = S.PDiag(Msg) << Record;
19010       OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
19011       Record->setInvalidDecl();
19012     }
19013     // It's a bit hacky: At this point we've raised an error but we want the
19014     // rest of the compiler to continue somehow working. However almost
19015     // everything we'll try to do with the class will depend on there being a
19016     // destructor. So let's pretend the first one is selected and hope for the
19017     // best.
19018     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
19019   }
19020 }
19021 
19022 /// [class.mem.special]p5
19023 /// Two special member functions are of the same kind if:
19024 /// - they are both default constructors,
19025 /// - they are both copy or move constructors with the same first parameter
19026 ///   type, or
19027 /// - they are both copy or move assignment operators with the same first
19028 ///   parameter type and the same cv-qualifiers and ref-qualifier, if any.
19029 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
19030                                               CXXMethodDecl *M1,
19031                                               CXXMethodDecl *M2,
19032                                               Sema::CXXSpecialMember CSM) {
19033   // We don't want to compare templates to non-templates: See
19034   // https://github.com/llvm/llvm-project/issues/59206
19035   if (CSM == Sema::CXXDefaultConstructor)
19036     return bool(M1->getDescribedFunctionTemplate()) ==
19037            bool(M2->getDescribedFunctionTemplate());
19038   // FIXME: better resolve CWG
19039   // https://cplusplus.github.io/CWG/issues/2787.html
19040   if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(),
19041                            M2->getNonObjectParameter(0)->getType()))
19042     return false;
19043   if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(),
19044                            M2->getFunctionObjectParameterReferenceType()))
19045     return false;
19046 
19047   return true;
19048 }
19049 
19050 /// [class.mem.special]p6:
19051 /// An eligible special member function is a special member function for which:
19052 /// - the function is not deleted,
19053 /// - the associated constraints, if any, are satisfied, and
19054 /// - no special member function of the same kind whose associated constraints
19055 ///   [CWG2595], if any, are satisfied is more constrained.
19056 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
19057                                ArrayRef<CXXMethodDecl *> Methods,
19058                                Sema::CXXSpecialMember CSM) {
19059   SmallVector<bool, 4> SatisfactionStatus;
19060 
19061   for (CXXMethodDecl *Method : Methods) {
19062     const Expr *Constraints = Method->getTrailingRequiresClause();
19063     if (!Constraints)
19064       SatisfactionStatus.push_back(true);
19065     else {
19066       ConstraintSatisfaction Satisfaction;
19067       if (S.CheckFunctionConstraints(Method, Satisfaction))
19068         SatisfactionStatus.push_back(false);
19069       else
19070         SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
19071     }
19072   }
19073 
19074   for (size_t i = 0; i < Methods.size(); i++) {
19075     if (!SatisfactionStatus[i])
19076       continue;
19077     CXXMethodDecl *Method = Methods[i];
19078     CXXMethodDecl *OrigMethod = Method;
19079     if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction())
19080       OrigMethod = cast<CXXMethodDecl>(MF);
19081 
19082     const Expr *Constraints = OrigMethod->getTrailingRequiresClause();
19083     bool AnotherMethodIsMoreConstrained = false;
19084     for (size_t j = 0; j < Methods.size(); j++) {
19085       if (i == j || !SatisfactionStatus[j])
19086         continue;
19087       CXXMethodDecl *OtherMethod = Methods[j];
19088       if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction())
19089         OtherMethod = cast<CXXMethodDecl>(MF);
19090 
19091       if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod,
19092                                              CSM))
19093         continue;
19094 
19095       const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
19096       if (!OtherConstraints)
19097         continue;
19098       if (!Constraints) {
19099         AnotherMethodIsMoreConstrained = true;
19100         break;
19101       }
19102       if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod,
19103                                    {Constraints},
19104                                    AnotherMethodIsMoreConstrained)) {
19105         // There was an error with the constraints comparison. Exit the loop
19106         // and don't consider this function eligible.
19107         AnotherMethodIsMoreConstrained = true;
19108       }
19109       if (AnotherMethodIsMoreConstrained)
19110         break;
19111     }
19112     // FIXME: Do not consider deleted methods as eligible after implementing
19113     // DR1734 and DR1496.
19114     if (!AnotherMethodIsMoreConstrained) {
19115       Method->setIneligibleOrNotSelected(false);
19116       Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM);
19117     }
19118   }
19119 }
19120 
19121 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
19122                                                     CXXRecordDecl *Record) {
19123   SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
19124   SmallVector<CXXMethodDecl *, 4> CopyConstructors;
19125   SmallVector<CXXMethodDecl *, 4> MoveConstructors;
19126   SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
19127   SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
19128 
19129   for (auto *Decl : Record->decls()) {
19130     auto *MD = dyn_cast<CXXMethodDecl>(Decl);
19131     if (!MD) {
19132       auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
19133       if (FTD)
19134         MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
19135     }
19136     if (!MD)
19137       continue;
19138     if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
19139       if (CD->isInvalidDecl())
19140         continue;
19141       if (CD->isDefaultConstructor())
19142         DefaultConstructors.push_back(MD);
19143       else if (CD->isCopyConstructor())
19144         CopyConstructors.push_back(MD);
19145       else if (CD->isMoveConstructor())
19146         MoveConstructors.push_back(MD);
19147     } else if (MD->isCopyAssignmentOperator()) {
19148       CopyAssignmentOperators.push_back(MD);
19149     } else if (MD->isMoveAssignmentOperator()) {
19150       MoveAssignmentOperators.push_back(MD);
19151     }
19152   }
19153 
19154   SetEligibleMethods(S, Record, DefaultConstructors,
19155                      Sema::CXXDefaultConstructor);
19156   SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor);
19157   SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor);
19158   SetEligibleMethods(S, Record, CopyAssignmentOperators,
19159                      Sema::CXXCopyAssignment);
19160   SetEligibleMethods(S, Record, MoveAssignmentOperators,
19161                      Sema::CXXMoveAssignment);
19162 }
19163 
19164 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
19165                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
19166                        SourceLocation RBrac,
19167                        const ParsedAttributesView &Attrs) {
19168   assert(EnclosingDecl && "missing record or interface decl");
19169 
19170   // If this is an Objective-C @implementation or category and we have
19171   // new fields here we should reset the layout of the interface since
19172   // it will now change.
19173   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
19174     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
19175     switch (DC->getKind()) {
19176     default: break;
19177     case Decl::ObjCCategory:
19178       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
19179       break;
19180     case Decl::ObjCImplementation:
19181       Context.
19182         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
19183       break;
19184     }
19185   }
19186 
19187   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
19188   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
19189 
19190   // Start counting up the number of named members; make sure to include
19191   // members of anonymous structs and unions in the total.
19192   unsigned NumNamedMembers = 0;
19193   if (Record) {
19194     for (const auto *I : Record->decls()) {
19195       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
19196         if (IFD->getDeclName())
19197           ++NumNamedMembers;
19198     }
19199   }
19200 
19201   // Verify that all the fields are okay.
19202   SmallVector<FieldDecl*, 32> RecFields;
19203 
19204   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
19205        i != end; ++i) {
19206     FieldDecl *FD = cast<FieldDecl>(*i);
19207 
19208     // Get the type for the field.
19209     const Type *FDTy = FD->getType().getTypePtr();
19210 
19211     if (!FD->isAnonymousStructOrUnion()) {
19212       // Remember all fields written by the user.
19213       RecFields.push_back(FD);
19214     }
19215 
19216     // If the field is already invalid for some reason, don't emit more
19217     // diagnostics about it.
19218     if (FD->isInvalidDecl()) {
19219       EnclosingDecl->setInvalidDecl();
19220       continue;
19221     }
19222 
19223     // C99 6.7.2.1p2:
19224     //   A structure or union shall not contain a member with
19225     //   incomplete or function type (hence, a structure shall not
19226     //   contain an instance of itself, but may contain a pointer to
19227     //   an instance of itself), except that the last member of a
19228     //   structure with more than one named member may have incomplete
19229     //   array type; such a structure (and any union containing,
19230     //   possibly recursively, a member that is such a structure)
19231     //   shall not be a member of a structure or an element of an
19232     //   array.
19233     bool IsLastField = (i + 1 == Fields.end());
19234     if (FDTy->isFunctionType()) {
19235       // Field declared as a function.
19236       Diag(FD->getLocation(), diag::err_field_declared_as_function)
19237         << FD->getDeclName();
19238       FD->setInvalidDecl();
19239       EnclosingDecl->setInvalidDecl();
19240       continue;
19241     } else if (FDTy->isIncompleteArrayType() &&
19242                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
19243       if (Record) {
19244         // Flexible array member.
19245         // Microsoft and g++ is more permissive regarding flexible array.
19246         // It will accept flexible array in union and also
19247         // as the sole element of a struct/class.
19248         unsigned DiagID = 0;
19249         if (!Record->isUnion() && !IsLastField) {
19250           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
19251               << FD->getDeclName() << FD->getType()
19252               << llvm::to_underlying(Record->getTagKind());
19253           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
19254           FD->setInvalidDecl();
19255           EnclosingDecl->setInvalidDecl();
19256           continue;
19257         } else if (Record->isUnion())
19258           DiagID = getLangOpts().MicrosoftExt
19259                        ? diag::ext_flexible_array_union_ms
19260                        : getLangOpts().CPlusPlus
19261                              ? diag::ext_flexible_array_union_gnu
19262                              : diag::err_flexible_array_union;
19263         else if (NumNamedMembers < 1)
19264           DiagID = getLangOpts().MicrosoftExt
19265                        ? diag::ext_flexible_array_empty_aggregate_ms
19266                        : getLangOpts().CPlusPlus
19267                              ? diag::ext_flexible_array_empty_aggregate_gnu
19268                              : diag::err_flexible_array_empty_aggregate;
19269 
19270         if (DiagID)
19271           Diag(FD->getLocation(), DiagID)
19272               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19273         // While the layout of types that contain virtual bases is not specified
19274         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19275         // virtual bases after the derived members.  This would make a flexible
19276         // array member declared at the end of an object not adjacent to the end
19277         // of the type.
19278         if (CXXRecord && CXXRecord->getNumVBases() != 0)
19279           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
19280               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19281         if (!getLangOpts().C99)
19282           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
19283               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19284 
19285         // If the element type has a non-trivial destructor, we would not
19286         // implicitly destroy the elements, so disallow it for now.
19287         //
19288         // FIXME: GCC allows this. We should probably either implicitly delete
19289         // the destructor of the containing class, or just allow this.
19290         QualType BaseElem = Context.getBaseElementType(FD->getType());
19291         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
19292           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
19293             << FD->getDeclName() << FD->getType();
19294           FD->setInvalidDecl();
19295           EnclosingDecl->setInvalidDecl();
19296           continue;
19297         }
19298         // Okay, we have a legal flexible array member at the end of the struct.
19299         Record->setHasFlexibleArrayMember(true);
19300       } else {
19301         // In ObjCContainerDecl ivars with incomplete array type are accepted,
19302         // unless they are followed by another ivar. That check is done
19303         // elsewhere, after synthesized ivars are known.
19304       }
19305     } else if (!FDTy->isDependentType() &&
19306                RequireCompleteSizedType(
19307                    FD->getLocation(), FD->getType(),
19308                    diag::err_field_incomplete_or_sizeless)) {
19309       // Incomplete type
19310       FD->setInvalidDecl();
19311       EnclosingDecl->setInvalidDecl();
19312       continue;
19313     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
19314       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
19315         // A type which contains a flexible array member is considered to be a
19316         // flexible array member.
19317         Record->setHasFlexibleArrayMember(true);
19318         if (!Record->isUnion()) {
19319           // If this is a struct/class and this is not the last element, reject
19320           // it.  Note that GCC supports variable sized arrays in the middle of
19321           // structures.
19322           if (!IsLastField)
19323             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
19324               << FD->getDeclName() << FD->getType();
19325           else {
19326             // We support flexible arrays at the end of structs in
19327             // other structs as an extension.
19328             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
19329               << FD->getDeclName();
19330           }
19331         }
19332       }
19333       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
19334           RequireNonAbstractType(FD->getLocation(), FD->getType(),
19335                                  diag::err_abstract_type_in_decl,
19336                                  AbstractIvarType)) {
19337         // Ivars can not have abstract class types
19338         FD->setInvalidDecl();
19339       }
19340       if (Record && FDTTy->getDecl()->hasObjectMember())
19341         Record->setHasObjectMember(true);
19342       if (Record && FDTTy->getDecl()->hasVolatileMember())
19343         Record->setHasVolatileMember(true);
19344     } else if (FDTy->isObjCObjectType()) {
19345       /// A field cannot be an Objective-c object
19346       Diag(FD->getLocation(), diag::err_statically_allocated_object)
19347         << FixItHint::CreateInsertion(FD->getLocation(), "*");
19348       QualType T = Context.getObjCObjectPointerType(FD->getType());
19349       FD->setType(T);
19350     } else if (Record && Record->isUnion() &&
19351                FD->getType().hasNonTrivialObjCLifetime() &&
19352                getSourceManager().isInSystemHeader(FD->getLocation()) &&
19353                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
19354                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
19355                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
19356       // For backward compatibility, fields of C unions declared in system
19357       // headers that have non-trivial ObjC ownership qualifications are marked
19358       // as unavailable unless the qualifier is explicit and __strong. This can
19359       // break ABI compatibility between programs compiled with ARC and MRR, but
19360       // is a better option than rejecting programs using those unions under
19361       // ARC.
19362       FD->addAttr(UnavailableAttr::CreateImplicit(
19363           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
19364           FD->getLocation()));
19365     } else if (getLangOpts().ObjC &&
19366                getLangOpts().getGC() != LangOptions::NonGC && Record &&
19367                !Record->hasObjectMember()) {
19368       if (FD->getType()->isObjCObjectPointerType() ||
19369           FD->getType().isObjCGCStrong())
19370         Record->setHasObjectMember(true);
19371       else if (Context.getAsArrayType(FD->getType())) {
19372         QualType BaseType = Context.getBaseElementType(FD->getType());
19373         if (BaseType->isRecordType() &&
19374             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
19375           Record->setHasObjectMember(true);
19376         else if (BaseType->isObjCObjectPointerType() ||
19377                  BaseType.isObjCGCStrong())
19378                Record->setHasObjectMember(true);
19379       }
19380     }
19381 
19382     if (Record && !getLangOpts().CPlusPlus &&
19383         !shouldIgnoreForRecordTriviality(FD)) {
19384       QualType FT = FD->getType();
19385       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
19386         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
19387         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19388             Record->isUnion())
19389           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19390       }
19391       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
19392       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
19393         Record->setNonTrivialToPrimitiveCopy(true);
19394         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
19395           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
19396       }
19397       if (FT.isDestructedType()) {
19398         Record->setNonTrivialToPrimitiveDestroy(true);
19399         Record->setParamDestroyedInCallee(true);
19400         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
19401           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
19402       }
19403 
19404       if (const auto *RT = FT->getAs<RecordType>()) {
19405         if (RT->getDecl()->getArgPassingRestrictions() ==
19406             RecordArgPassingKind::CanNeverPassInRegs)
19407           Record->setArgPassingRestrictions(
19408               RecordArgPassingKind::CanNeverPassInRegs);
19409       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
19410         Record->setArgPassingRestrictions(
19411             RecordArgPassingKind::CanNeverPassInRegs);
19412     }
19413 
19414     if (Record && FD->getType().isVolatileQualified())
19415       Record->setHasVolatileMember(true);
19416     // Keep track of the number of named members.
19417     if (FD->getIdentifier())
19418       ++NumNamedMembers;
19419   }
19420 
19421   // Okay, we successfully defined 'Record'.
19422   if (Record) {
19423     bool Completed = false;
19424     if (CXXRecord) {
19425       if (!CXXRecord->isInvalidDecl()) {
19426         // Set access bits correctly on the directly-declared conversions.
19427         for (CXXRecordDecl::conversion_iterator
19428                I = CXXRecord->conversion_begin(),
19429                E = CXXRecord->conversion_end(); I != E; ++I)
19430           I.setAccess((*I)->getAccess());
19431       }
19432 
19433       // Add any implicitly-declared members to this class.
19434       AddImplicitlyDeclaredMembersToClass(CXXRecord);
19435 
19436       if (!CXXRecord->isDependentType()) {
19437         if (!CXXRecord->isInvalidDecl()) {
19438           // If we have virtual base classes, we may end up finding multiple
19439           // final overriders for a given virtual function. Check for this
19440           // problem now.
19441           if (CXXRecord->getNumVBases()) {
19442             CXXFinalOverriderMap FinalOverriders;
19443             CXXRecord->getFinalOverriders(FinalOverriders);
19444 
19445             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
19446                                              MEnd = FinalOverriders.end();
19447                  M != MEnd; ++M) {
19448               for (OverridingMethods::iterator SO = M->second.begin(),
19449                                             SOEnd = M->second.end();
19450                    SO != SOEnd; ++SO) {
19451                 assert(SO->second.size() > 0 &&
19452                        "Virtual function without overriding functions?");
19453                 if (SO->second.size() == 1)
19454                   continue;
19455 
19456                 // C++ [class.virtual]p2:
19457                 //   In a derived class, if a virtual member function of a base
19458                 //   class subobject has more than one final overrider the
19459                 //   program is ill-formed.
19460                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
19461                   << (const NamedDecl *)M->first << Record;
19462                 Diag(M->first->getLocation(),
19463                      diag::note_overridden_virtual_function);
19464                 for (OverridingMethods::overriding_iterator
19465                           OM = SO->second.begin(),
19466                        OMEnd = SO->second.end();
19467                      OM != OMEnd; ++OM)
19468                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
19469                     << (const NamedDecl *)M->first << OM->Method->getParent();
19470 
19471                 Record->setInvalidDecl();
19472               }
19473             }
19474             CXXRecord->completeDefinition(&FinalOverriders);
19475             Completed = true;
19476           }
19477         }
19478         ComputeSelectedDestructor(*this, CXXRecord);
19479         ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
19480       }
19481     }
19482 
19483     if (!Completed)
19484       Record->completeDefinition();
19485 
19486     // Handle attributes before checking the layout.
19487     ProcessDeclAttributeList(S, Record, Attrs);
19488 
19489     // Check to see if a FieldDecl is a pointer to a function.
19490     auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) {
19491       const FieldDecl *FD = dyn_cast<FieldDecl>(D);
19492       if (!FD) {
19493         // Check whether this is a forward declaration that was inserted by
19494         // Clang. This happens when a non-forward declared / defined type is
19495         // used, e.g.:
19496         //
19497         //   struct foo {
19498         //     struct bar *(*f)();
19499         //     struct bar *(*g)();
19500         //   };
19501         //
19502         // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19503         // incomplete definition.
19504         if (const auto *TD = dyn_cast<TagDecl>(D))
19505           return !TD->isCompleteDefinition();
19506         return false;
19507       }
19508       QualType FieldType = FD->getType().getDesugaredType(Context);
19509       if (isa<PointerType>(FieldType)) {
19510         QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
19511         return PointeeType.getDesugaredType(Context)->isFunctionType();
19512       }
19513       return false;
19514     };
19515 
19516     // Maybe randomize the record's decls. We automatically randomize a record
19517     // of function pointers, unless it has the "no_randomize_layout" attribute.
19518     if (!getLangOpts().CPlusPlus &&
19519         (Record->hasAttr<RandomizeLayoutAttr>() ||
19520          (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
19521           llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) &&
19522         !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
19523         !Record->isRandomized()) {
19524       SmallVector<Decl *, 32> NewDeclOrdering;
19525       if (randstruct::randomizeStructureLayout(Context, Record,
19526                                                NewDeclOrdering))
19527         Record->reorderDecls(NewDeclOrdering);
19528     }
19529 
19530     // We may have deferred checking for a deleted destructor. Check now.
19531     if (CXXRecord) {
19532       auto *Dtor = CXXRecord->getDestructor();
19533       if (Dtor && Dtor->isImplicit() &&
19534           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
19535         CXXRecord->setImplicitDestructorIsDeleted();
19536         SetDeclDeleted(Dtor, CXXRecord->getLocation());
19537       }
19538     }
19539 
19540     if (Record->hasAttrs()) {
19541       CheckAlignasUnderalignment(Record);
19542 
19543       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
19544         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
19545                                            IA->getRange(), IA->getBestCase(),
19546                                            IA->getInheritanceModel());
19547     }
19548 
19549     // Check if the structure/union declaration is a type that can have zero
19550     // size in C. For C this is a language extension, for C++ it may cause
19551     // compatibility problems.
19552     bool CheckForZeroSize;
19553     if (!getLangOpts().CPlusPlus) {
19554       CheckForZeroSize = true;
19555     } else {
19556       // For C++ filter out types that cannot be referenced in C code.
19557       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
19558       CheckForZeroSize =
19559           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
19560           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
19561           CXXRecord->isCLike();
19562     }
19563     if (CheckForZeroSize) {
19564       bool ZeroSize = true;
19565       bool IsEmpty = true;
19566       unsigned NonBitFields = 0;
19567       for (RecordDecl::field_iterator I = Record->field_begin(),
19568                                       E = Record->field_end();
19569            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
19570         IsEmpty = false;
19571         if (I->isUnnamedBitfield()) {
19572           if (!I->isZeroLengthBitField(Context))
19573             ZeroSize = false;
19574         } else {
19575           ++NonBitFields;
19576           QualType FieldType = I->getType();
19577           if (FieldType->isIncompleteType() ||
19578               !Context.getTypeSizeInChars(FieldType).isZero())
19579             ZeroSize = false;
19580         }
19581       }
19582 
19583       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19584       // allowed in C++, but warn if its declaration is inside
19585       // extern "C" block.
19586       if (ZeroSize) {
19587         Diag(RecLoc, getLangOpts().CPlusPlus ?
19588                          diag::warn_zero_size_struct_union_in_extern_c :
19589                          diag::warn_zero_size_struct_union_compat)
19590           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
19591       }
19592 
19593       // Structs without named members are extension in C (C99 6.7.2.1p7),
19594       // but are accepted by GCC.
19595       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
19596         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
19597                                diag::ext_no_named_members_in_struct_union)
19598           << Record->isUnion();
19599       }
19600     }
19601   } else {
19602     ObjCIvarDecl **ClsFields =
19603       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
19604     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
19605       ID->setEndOfDefinitionLoc(RBrac);
19606       // Add ivar's to class's DeclContext.
19607       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19608         ClsFields[i]->setLexicalDeclContext(ID);
19609         ID->addDecl(ClsFields[i]);
19610       }
19611       // Must enforce the rule that ivars in the base classes may not be
19612       // duplicates.
19613       if (ID->getSuperClass())
19614         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
19615     } else if (ObjCImplementationDecl *IMPDecl =
19616                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
19617       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
19618       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
19619         // Ivar declared in @implementation never belongs to the implementation.
19620         // Only it is in implementation's lexical context.
19621         ClsFields[I]->setLexicalDeclContext(IMPDecl);
19622       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
19623       IMPDecl->setIvarLBraceLoc(LBrac);
19624       IMPDecl->setIvarRBraceLoc(RBrac);
19625     } else if (ObjCCategoryDecl *CDecl =
19626                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
19627       // case of ivars in class extension; all other cases have been
19628       // reported as errors elsewhere.
19629       // FIXME. Class extension does not have a LocEnd field.
19630       // CDecl->setLocEnd(RBrac);
19631       // Add ivar's to class extension's DeclContext.
19632       // Diagnose redeclaration of private ivars.
19633       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
19634       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19635         if (IDecl) {
19636           if (const ObjCIvarDecl *ClsIvar =
19637               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
19638             Diag(ClsFields[i]->getLocation(),
19639                  diag::err_duplicate_ivar_declaration);
19640             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
19641             continue;
19642           }
19643           for (const auto *Ext : IDecl->known_extensions()) {
19644             if (const ObjCIvarDecl *ClsExtIvar
19645                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
19646               Diag(ClsFields[i]->getLocation(),
19647                    diag::err_duplicate_ivar_declaration);
19648               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
19649               continue;
19650             }
19651           }
19652         }
19653         ClsFields[i]->setLexicalDeclContext(CDecl);
19654         CDecl->addDecl(ClsFields[i]);
19655       }
19656       CDecl->setIvarLBraceLoc(LBrac);
19657       CDecl->setIvarRBraceLoc(RBrac);
19658     }
19659   }
19660 }
19661 
19662 /// Determine whether the given integral value is representable within
19663 /// the given type T.
19664 static bool isRepresentableIntegerValue(ASTContext &Context,
19665                                         llvm::APSInt &Value,
19666                                         QualType T) {
19667   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
19668          "Integral type required!");
19669   unsigned BitWidth = Context.getIntWidth(T);
19670 
19671   if (Value.isUnsigned() || Value.isNonNegative()) {
19672     if (T->isSignedIntegerOrEnumerationType())
19673       --BitWidth;
19674     return Value.getActiveBits() <= BitWidth;
19675   }
19676   return Value.getSignificantBits() <= BitWidth;
19677 }
19678 
19679 // Given an integral type, return the next larger integral type
19680 // (or a NULL type of no such type exists).
19681 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
19682   // FIXME: Int128/UInt128 support, which also needs to be introduced into
19683   // enum checking below.
19684   assert((T->isIntegralType(Context) ||
19685          T->isEnumeralType()) && "Integral type required!");
19686   const unsigned NumTypes = 4;
19687   QualType SignedIntegralTypes[NumTypes] = {
19688     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
19689   };
19690   QualType UnsignedIntegralTypes[NumTypes] = {
19691     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
19692     Context.UnsignedLongLongTy
19693   };
19694 
19695   unsigned BitWidth = Context.getTypeSize(T);
19696   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19697                                                         : UnsignedIntegralTypes;
19698   for (unsigned I = 0; I != NumTypes; ++I)
19699     if (Context.getTypeSize(Types[I]) > BitWidth)
19700       return Types[I];
19701 
19702   return QualType();
19703 }
19704 
19705 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
19706                                           EnumConstantDecl *LastEnumConst,
19707                                           SourceLocation IdLoc,
19708                                           IdentifierInfo *Id,
19709                                           Expr *Val) {
19710   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19711   llvm::APSInt EnumVal(IntWidth);
19712   QualType EltTy;
19713 
19714   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
19715     Val = nullptr;
19716 
19717   if (Val)
19718     Val = DefaultLvalueConversion(Val).get();
19719 
19720   if (Val) {
19721     if (Enum->isDependentType() || Val->isTypeDependent() ||
19722         Val->containsErrors())
19723       EltTy = Context.DependentTy;
19724     else {
19725       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19726       // underlying type, but do allow it in all other contexts.
19727       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
19728         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19729         // constant-expression in the enumerator-definition shall be a converted
19730         // constant expression of the underlying type.
19731         EltTy = Enum->getIntegerType();
19732         ExprResult Converted =
19733           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
19734                                            CCEK_Enumerator);
19735         if (Converted.isInvalid())
19736           Val = nullptr;
19737         else
19738           Val = Converted.get();
19739       } else if (!Val->isValueDependent() &&
19740                  !(Val =
19741                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
19742                            .get())) {
19743         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19744       } else {
19745         if (Enum->isComplete()) {
19746           EltTy = Enum->getIntegerType();
19747 
19748           // In Obj-C and Microsoft mode, require the enumeration value to be
19749           // representable in the underlying type of the enumeration. In C++11,
19750           // we perform a non-narrowing conversion as part of converted constant
19751           // expression checking.
19752           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19753             if (Context.getTargetInfo()
19754                     .getTriple()
19755                     .isWindowsMSVCEnvironment()) {
19756               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
19757             } else {
19758               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
19759             }
19760           }
19761 
19762           // Cast to the underlying type.
19763           Val = ImpCastExprToType(Val, EltTy,
19764                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
19765                                                          : CK_IntegralCast)
19766                     .get();
19767         } else if (getLangOpts().CPlusPlus) {
19768           // C++11 [dcl.enum]p5:
19769           //   If the underlying type is not fixed, the type of each enumerator
19770           //   is the type of its initializing value:
19771           //     - If an initializer is specified for an enumerator, the
19772           //       initializing value has the same type as the expression.
19773           EltTy = Val->getType();
19774         } else {
19775           // C99 6.7.2.2p2:
19776           //   The expression that defines the value of an enumeration constant
19777           //   shall be an integer constant expression that has a value
19778           //   representable as an int.
19779 
19780           // Complain if the value is not representable in an int.
19781           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
19782             Diag(IdLoc, diag::ext_enum_value_not_int)
19783               << toString(EnumVal, 10) << Val->getSourceRange()
19784               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
19785           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
19786             // Force the type of the expression to 'int'.
19787             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
19788           }
19789           EltTy = Val->getType();
19790         }
19791       }
19792     }
19793   }
19794 
19795   if (!Val) {
19796     if (Enum->isDependentType())
19797       EltTy = Context.DependentTy;
19798     else if (!LastEnumConst) {
19799       // C++0x [dcl.enum]p5:
19800       //   If the underlying type is not fixed, the type of each enumerator
19801       //   is the type of its initializing value:
19802       //     - If no initializer is specified for the first enumerator, the
19803       //       initializing value has an unspecified integral type.
19804       //
19805       // GCC uses 'int' for its unspecified integral type, as does
19806       // C99 6.7.2.2p3.
19807       if (Enum->isFixed()) {
19808         EltTy = Enum->getIntegerType();
19809       }
19810       else {
19811         EltTy = Context.IntTy;
19812       }
19813     } else {
19814       // Assign the last value + 1.
19815       EnumVal = LastEnumConst->getInitVal();
19816       ++EnumVal;
19817       EltTy = LastEnumConst->getType();
19818 
19819       // Check for overflow on increment.
19820       if (EnumVal < LastEnumConst->getInitVal()) {
19821         // C++0x [dcl.enum]p5:
19822         //   If the underlying type is not fixed, the type of each enumerator
19823         //   is the type of its initializing value:
19824         //
19825         //     - Otherwise the type of the initializing value is the same as
19826         //       the type of the initializing value of the preceding enumerator
19827         //       unless the incremented value is not representable in that type,
19828         //       in which case the type is an unspecified integral type
19829         //       sufficient to contain the incremented value. If no such type
19830         //       exists, the program is ill-formed.
19831         QualType T = getNextLargerIntegralType(Context, EltTy);
19832         if (T.isNull() || Enum->isFixed()) {
19833           // There is no integral type larger enough to represent this
19834           // value. Complain, then allow the value to wrap around.
19835           EnumVal = LastEnumConst->getInitVal();
19836           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
19837           ++EnumVal;
19838           if (Enum->isFixed())
19839             // When the underlying type is fixed, this is ill-formed.
19840             Diag(IdLoc, diag::err_enumerator_wrapped)
19841               << toString(EnumVal, 10)
19842               << EltTy;
19843           else
19844             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
19845               << toString(EnumVal, 10);
19846         } else {
19847           EltTy = T;
19848         }
19849 
19850         // Retrieve the last enumerator's value, extent that type to the
19851         // type that is supposed to be large enough to represent the incremented
19852         // value, then increment.
19853         EnumVal = LastEnumConst->getInitVal();
19854         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19855         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
19856         ++EnumVal;
19857 
19858         // If we're not in C++, diagnose the overflow of enumerator values,
19859         // which in C99 means that the enumerator value is not representable in
19860         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19861         // permits enumerator values that are representable in some larger
19862         // integral type.
19863         if (!getLangOpts().CPlusPlus && !T.isNull())
19864           Diag(IdLoc, diag::warn_enum_value_overflow);
19865       } else if (!getLangOpts().CPlusPlus &&
19866                  !EltTy->isDependentType() &&
19867                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19868         // Enforce C99 6.7.2.2p2 even when we compute the next value.
19869         Diag(IdLoc, diag::ext_enum_value_not_int)
19870           << toString(EnumVal, 10) << 1;
19871       }
19872     }
19873   }
19874 
19875   if (!EltTy->isDependentType()) {
19876     // Make the enumerator value match the signedness and size of the
19877     // enumerator's type.
19878     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
19879     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19880   }
19881 
19882   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
19883                                   Val, EnumVal);
19884 }
19885 
19886 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
19887                                                 SourceLocation IILoc) {
19888   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
19889       !getLangOpts().CPlusPlus)
19890     return SkipBodyInfo();
19891 
19892   // We have an anonymous enum definition. Look up the first enumerator to
19893   // determine if we should merge the definition with an existing one and
19894   // skip the body.
19895   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
19896                                          forRedeclarationInCurContext());
19897   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
19898   if (!PrevECD)
19899     return SkipBodyInfo();
19900 
19901   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
19902   NamedDecl *Hidden;
19903   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
19904     SkipBodyInfo Skip;
19905     Skip.Previous = Hidden;
19906     return Skip;
19907   }
19908 
19909   return SkipBodyInfo();
19910 }
19911 
19912 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
19913                               SourceLocation IdLoc, IdentifierInfo *Id,
19914                               const ParsedAttributesView &Attrs,
19915                               SourceLocation EqualLoc, Expr *Val) {
19916   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
19917   EnumConstantDecl *LastEnumConst =
19918     cast_or_null<EnumConstantDecl>(lastEnumConst);
19919 
19920   // The scope passed in may not be a decl scope.  Zip up the scope tree until
19921   // we find one that is.
19922   S = getNonFieldDeclScope(S);
19923 
19924   // Verify that there isn't already something declared with this name in this
19925   // scope.
19926   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
19927   LookupName(R, S);
19928   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
19929 
19930   if (PrevDecl && PrevDecl->isTemplateParameter()) {
19931     // Maybe we will complain about the shadowed template parameter.
19932     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
19933     // Just pretend that we didn't see the previous declaration.
19934     PrevDecl = nullptr;
19935   }
19936 
19937   // C++ [class.mem]p15:
19938   // If T is the name of a class, then each of the following shall have a name
19939   // different from T:
19940   // - every enumerator of every member of class T that is an unscoped
19941   // enumerated type
19942   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
19943     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
19944                             DeclarationNameInfo(Id, IdLoc));
19945 
19946   EnumConstantDecl *New =
19947     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
19948   if (!New)
19949     return nullptr;
19950 
19951   if (PrevDecl) {
19952     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
19953       // Check for other kinds of shadowing not already handled.
19954       CheckShadow(New, PrevDecl, R);
19955     }
19956 
19957     // When in C++, we may get a TagDecl with the same name; in this case the
19958     // enum constant will 'hide' the tag.
19959     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
19960            "Received TagDecl when not in C++!");
19961     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
19962       if (isa<EnumConstantDecl>(PrevDecl))
19963         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
19964       else
19965         Diag(IdLoc, diag::err_redefinition) << Id;
19966       notePreviousDefinition(PrevDecl, IdLoc);
19967       return nullptr;
19968     }
19969   }
19970 
19971   // Process attributes.
19972   ProcessDeclAttributeList(S, New, Attrs);
19973   AddPragmaAttributes(S, New);
19974 
19975   // Register this decl in the current scope stack.
19976   New->setAccess(TheEnumDecl->getAccess());
19977   PushOnScopeChains(New, S);
19978 
19979   ActOnDocumentableDecl(New);
19980 
19981   return New;
19982 }
19983 
19984 // Returns true when the enum initial expression does not trigger the
19985 // duplicate enum warning.  A few common cases are exempted as follows:
19986 // Element2 = Element1
19987 // Element2 = Element1 + 1
19988 // Element2 = Element1 - 1
19989 // Where Element2 and Element1 are from the same enum.
19990 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
19991   Expr *InitExpr = ECD->getInitExpr();
19992   if (!InitExpr)
19993     return true;
19994   InitExpr = InitExpr->IgnoreImpCasts();
19995 
19996   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
19997     if (!BO->isAdditiveOp())
19998       return true;
19999     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
20000     if (!IL)
20001       return true;
20002     if (IL->getValue() != 1)
20003       return true;
20004 
20005     InitExpr = BO->getLHS();
20006   }
20007 
20008   // This checks if the elements are from the same enum.
20009   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
20010   if (!DRE)
20011     return true;
20012 
20013   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
20014   if (!EnumConstant)
20015     return true;
20016 
20017   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
20018       Enum)
20019     return true;
20020 
20021   return false;
20022 }
20023 
20024 // Emits a warning when an element is implicitly set a value that
20025 // a previous element has already been set to.
20026 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
20027                                         EnumDecl *Enum, QualType EnumType) {
20028   // Avoid anonymous enums
20029   if (!Enum->getIdentifier())
20030     return;
20031 
20032   // Only check for small enums.
20033   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
20034     return;
20035 
20036   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
20037     return;
20038 
20039   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
20040   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
20041 
20042   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
20043 
20044   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
20045   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
20046 
20047   // Use int64_t as a key to avoid needing special handling for map keys.
20048   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
20049     llvm::APSInt Val = D->getInitVal();
20050     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
20051   };
20052 
20053   DuplicatesVector DupVector;
20054   ValueToVectorMap EnumMap;
20055 
20056   // Populate the EnumMap with all values represented by enum constants without
20057   // an initializer.
20058   for (auto *Element : Elements) {
20059     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
20060 
20061     // Null EnumConstantDecl means a previous diagnostic has been emitted for
20062     // this constant.  Skip this enum since it may be ill-formed.
20063     if (!ECD) {
20064       return;
20065     }
20066 
20067     // Constants with initializers are handled in the next loop.
20068     if (ECD->getInitExpr())
20069       continue;
20070 
20071     // Duplicate values are handled in the next loop.
20072     EnumMap.insert({EnumConstantToKey(ECD), ECD});
20073   }
20074 
20075   if (EnumMap.size() == 0)
20076     return;
20077 
20078   // Create vectors for any values that has duplicates.
20079   for (auto *Element : Elements) {
20080     // The last loop returned if any constant was null.
20081     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
20082     if (!ValidDuplicateEnum(ECD, Enum))
20083       continue;
20084 
20085     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
20086     if (Iter == EnumMap.end())
20087       continue;
20088 
20089     DeclOrVector& Entry = Iter->second;
20090     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
20091       // Ensure constants are different.
20092       if (D == ECD)
20093         continue;
20094 
20095       // Create new vector and push values onto it.
20096       auto Vec = std::make_unique<ECDVector>();
20097       Vec->push_back(D);
20098       Vec->push_back(ECD);
20099 
20100       // Update entry to point to the duplicates vector.
20101       Entry = Vec.get();
20102 
20103       // Store the vector somewhere we can consult later for quick emission of
20104       // diagnostics.
20105       DupVector.emplace_back(std::move(Vec));
20106       continue;
20107     }
20108 
20109     ECDVector *Vec = Entry.get<ECDVector*>();
20110     // Make sure constants are not added more than once.
20111     if (*Vec->begin() == ECD)
20112       continue;
20113 
20114     Vec->push_back(ECD);
20115   }
20116 
20117   // Emit diagnostics.
20118   for (const auto &Vec : DupVector) {
20119     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
20120 
20121     // Emit warning for one enum constant.
20122     auto *FirstECD = Vec->front();
20123     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
20124       << FirstECD << toString(FirstECD->getInitVal(), 10)
20125       << FirstECD->getSourceRange();
20126 
20127     // Emit one note for each of the remaining enum constants with
20128     // the same value.
20129     for (auto *ECD : llvm::drop_begin(*Vec))
20130       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
20131         << ECD << toString(ECD->getInitVal(), 10)
20132         << ECD->getSourceRange();
20133   }
20134 }
20135 
20136 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
20137                              bool AllowMask) const {
20138   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
20139   assert(ED->isCompleteDefinition() && "expected enum definition");
20140 
20141   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
20142   llvm::APInt &FlagBits = R.first->second;
20143 
20144   if (R.second) {
20145     for (auto *E : ED->enumerators()) {
20146       const auto &EVal = E->getInitVal();
20147       // Only single-bit enumerators introduce new flag values.
20148       if (EVal.isPowerOf2())
20149         FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
20150     }
20151   }
20152 
20153   // A value is in a flag enum if either its bits are a subset of the enum's
20154   // flag bits (the first condition) or we are allowing masks and the same is
20155   // true of its complement (the second condition). When masks are allowed, we
20156   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20157   //
20158   // While it's true that any value could be used as a mask, the assumption is
20159   // that a mask will have all of the insignificant bits set. Anything else is
20160   // likely a logic error.
20161   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
20162   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
20163 }
20164 
20165 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
20166                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
20167                          const ParsedAttributesView &Attrs) {
20168   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
20169   QualType EnumType = Context.getTypeDeclType(Enum);
20170 
20171   ProcessDeclAttributeList(S, Enum, Attrs);
20172 
20173   if (Enum->isDependentType()) {
20174     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20175       EnumConstantDecl *ECD =
20176         cast_or_null<EnumConstantDecl>(Elements[i]);
20177       if (!ECD) continue;
20178 
20179       ECD->setType(EnumType);
20180     }
20181 
20182     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
20183     return;
20184   }
20185 
20186   // TODO: If the result value doesn't fit in an int, it must be a long or long
20187   // long value.  ISO C does not support this, but GCC does as an extension,
20188   // emit a warning.
20189   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
20190   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
20191   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
20192 
20193   // Verify that all the values are okay, compute the size of the values, and
20194   // reverse the list.
20195   unsigned NumNegativeBits = 0;
20196   unsigned NumPositiveBits = 0;
20197 
20198   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20199     EnumConstantDecl *ECD =
20200       cast_or_null<EnumConstantDecl>(Elements[i]);
20201     if (!ECD) continue;  // Already issued a diagnostic.
20202 
20203     const llvm::APSInt &InitVal = ECD->getInitVal();
20204 
20205     // Keep track of the size of positive and negative values.
20206     if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
20207       // If the enumerator is zero that should still be counted as a positive
20208       // bit since we need a bit to store the value zero.
20209       unsigned ActiveBits = InitVal.getActiveBits();
20210       NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
20211     } else {
20212       NumNegativeBits =
20213           std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits());
20214     }
20215   }
20216 
20217   // If we have an empty set of enumerators we still need one bit.
20218   // From [dcl.enum]p8
20219   // If the enumerator-list is empty, the values of the enumeration are as if
20220   // the enumeration had a single enumerator with value 0
20221   if (!NumPositiveBits && !NumNegativeBits)
20222     NumPositiveBits = 1;
20223 
20224   // Figure out the type that should be used for this enum.
20225   QualType BestType;
20226   unsigned BestWidth;
20227 
20228   // C++0x N3000 [conv.prom]p3:
20229   //   An rvalue of an unscoped enumeration type whose underlying
20230   //   type is not fixed can be converted to an rvalue of the first
20231   //   of the following types that can represent all the values of
20232   //   the enumeration: int, unsigned int, long int, unsigned long
20233   //   int, long long int, or unsigned long long int.
20234   // C99 6.4.4.3p2:
20235   //   An identifier declared as an enumeration constant has type int.
20236   // The C99 rule is modified by a gcc extension
20237   QualType BestPromotionType;
20238 
20239   bool Packed = Enum->hasAttr<PackedAttr>();
20240   // -fshort-enums is the equivalent to specifying the packed attribute on all
20241   // enum definitions.
20242   if (LangOpts.ShortEnums)
20243     Packed = true;
20244 
20245   // If the enum already has a type because it is fixed or dictated by the
20246   // target, promote that type instead of analyzing the enumerators.
20247   if (Enum->isComplete()) {
20248     BestType = Enum->getIntegerType();
20249     if (Context.isPromotableIntegerType(BestType))
20250       BestPromotionType = Context.getPromotedIntegerType(BestType);
20251     else
20252       BestPromotionType = BestType;
20253 
20254     BestWidth = Context.getIntWidth(BestType);
20255   }
20256   else if (NumNegativeBits) {
20257     // If there is a negative value, figure out the smallest integer type (of
20258     // int/long/longlong) that fits.
20259     // If it's packed, check also if it fits a char or a short.
20260     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
20261       BestType = Context.SignedCharTy;
20262       BestWidth = CharWidth;
20263     } else if (Packed && NumNegativeBits <= ShortWidth &&
20264                NumPositiveBits < ShortWidth) {
20265       BestType = Context.ShortTy;
20266       BestWidth = ShortWidth;
20267     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
20268       BestType = Context.IntTy;
20269       BestWidth = IntWidth;
20270     } else {
20271       BestWidth = Context.getTargetInfo().getLongWidth();
20272 
20273       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
20274         BestType = Context.LongTy;
20275       } else {
20276         BestWidth = Context.getTargetInfo().getLongLongWidth();
20277 
20278         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
20279           Diag(Enum->getLocation(), diag::ext_enum_too_large);
20280         BestType = Context.LongLongTy;
20281       }
20282     }
20283     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
20284   } else {
20285     // If there is no negative value, figure out the smallest type that fits
20286     // all of the enumerator values.
20287     // If it's packed, check also if it fits a char or a short.
20288     if (Packed && NumPositiveBits <= CharWidth) {
20289       BestType = Context.UnsignedCharTy;
20290       BestPromotionType = Context.IntTy;
20291       BestWidth = CharWidth;
20292     } else if (Packed && NumPositiveBits <= ShortWidth) {
20293       BestType = Context.UnsignedShortTy;
20294       BestPromotionType = Context.IntTy;
20295       BestWidth = ShortWidth;
20296     } else if (NumPositiveBits <= IntWidth) {
20297       BestType = Context.UnsignedIntTy;
20298       BestWidth = IntWidth;
20299       BestPromotionType
20300         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20301                            ? Context.UnsignedIntTy : Context.IntTy;
20302     } else if (NumPositiveBits <=
20303                (BestWidth = Context.getTargetInfo().getLongWidth())) {
20304       BestType = Context.UnsignedLongTy;
20305       BestPromotionType
20306         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20307                            ? Context.UnsignedLongTy : Context.LongTy;
20308     } else {
20309       BestWidth = Context.getTargetInfo().getLongLongWidth();
20310       assert(NumPositiveBits <= BestWidth &&
20311              "How could an initializer get larger than ULL?");
20312       BestType = Context.UnsignedLongLongTy;
20313       BestPromotionType
20314         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20315                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
20316     }
20317   }
20318 
20319   // Loop over all of the enumerator constants, changing their types to match
20320   // the type of the enum if needed.
20321   for (auto *D : Elements) {
20322     auto *ECD = cast_or_null<EnumConstantDecl>(D);
20323     if (!ECD) continue;  // Already issued a diagnostic.
20324 
20325     // Standard C says the enumerators have int type, but we allow, as an
20326     // extension, the enumerators to be larger than int size.  If each
20327     // enumerator value fits in an int, type it as an int, otherwise type it the
20328     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
20329     // that X has type 'int', not 'unsigned'.
20330 
20331     // Determine whether the value fits into an int.
20332     llvm::APSInt InitVal = ECD->getInitVal();
20333 
20334     // If it fits into an integer type, force it.  Otherwise force it to match
20335     // the enum decl type.
20336     QualType NewTy;
20337     unsigned NewWidth;
20338     bool NewSign;
20339     if (!getLangOpts().CPlusPlus &&
20340         !Enum->isFixed() &&
20341         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
20342       NewTy = Context.IntTy;
20343       NewWidth = IntWidth;
20344       NewSign = true;
20345     } else if (ECD->getType() == BestType) {
20346       // Already the right type!
20347       if (getLangOpts().CPlusPlus)
20348         // C++ [dcl.enum]p4: Following the closing brace of an
20349         // enum-specifier, each enumerator has the type of its
20350         // enumeration.
20351         ECD->setType(EnumType);
20352       continue;
20353     } else {
20354       NewTy = BestType;
20355       NewWidth = BestWidth;
20356       NewSign = BestType->isSignedIntegerOrEnumerationType();
20357     }
20358 
20359     // Adjust the APSInt value.
20360     InitVal = InitVal.extOrTrunc(NewWidth);
20361     InitVal.setIsSigned(NewSign);
20362     ECD->setInitVal(Context, InitVal);
20363 
20364     // Adjust the Expr initializer and type.
20365     if (ECD->getInitExpr() &&
20366         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
20367       ECD->setInitExpr(ImplicitCastExpr::Create(
20368           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
20369           /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
20370     if (getLangOpts().CPlusPlus)
20371       // C++ [dcl.enum]p4: Following the closing brace of an
20372       // enum-specifier, each enumerator has the type of its
20373       // enumeration.
20374       ECD->setType(EnumType);
20375     else
20376       ECD->setType(NewTy);
20377   }
20378 
20379   Enum->completeDefinition(BestType, BestPromotionType,
20380                            NumPositiveBits, NumNegativeBits);
20381 
20382   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
20383 
20384   if (Enum->isClosedFlag()) {
20385     for (Decl *D : Elements) {
20386       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
20387       if (!ECD) continue;  // Already issued a diagnostic.
20388 
20389       llvm::APSInt InitVal = ECD->getInitVal();
20390       if (InitVal != 0 && !InitVal.isPowerOf2() &&
20391           !IsValueInFlagEnum(Enum, InitVal, true))
20392         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
20393           << ECD << Enum;
20394     }
20395   }
20396 
20397   // Now that the enum type is defined, ensure it's not been underaligned.
20398   if (Enum->hasAttrs())
20399     CheckAlignasUnderalignment(Enum);
20400 }
20401 
20402 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
20403                                   SourceLocation StartLoc,
20404                                   SourceLocation EndLoc) {
20405   StringLiteral *AsmString = cast<StringLiteral>(expr);
20406 
20407   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
20408                                                    AsmString, StartLoc,
20409                                                    EndLoc);
20410   CurContext->addDecl(New);
20411   return New;
20412 }
20413 
20414 Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) {
20415   auto *New = TopLevelStmtDecl::Create(Context, Statement);
20416   Context.getTranslationUnitDecl()->addDecl(New);
20417   return New;
20418 }
20419 
20420 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
20421                                       IdentifierInfo* AliasName,
20422                                       SourceLocation PragmaLoc,
20423                                       SourceLocation NameLoc,
20424                                       SourceLocation AliasNameLoc) {
20425   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
20426                                          LookupOrdinaryName);
20427   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
20428                            AttributeCommonInfo::Form::Pragma());
20429   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
20430       Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
20431 
20432   // If a declaration that:
20433   // 1) declares a function or a variable
20434   // 2) has external linkage
20435   // already exists, add a label attribute to it.
20436   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20437     if (isDeclExternC(PrevDecl))
20438       PrevDecl->addAttr(Attr);
20439     else
20440       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
20441           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
20442     // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20443   } else
20444     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
20445 }
20446 
20447 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
20448                              SourceLocation PragmaLoc,
20449                              SourceLocation NameLoc) {
20450   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
20451 
20452   if (PrevDecl) {
20453     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
20454   } else {
20455     (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
20456   }
20457 }
20458 
20459 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
20460                                 IdentifierInfo* AliasName,
20461                                 SourceLocation PragmaLoc,
20462                                 SourceLocation NameLoc,
20463                                 SourceLocation AliasNameLoc) {
20464   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
20465                                     LookupOrdinaryName);
20466   WeakInfo W = WeakInfo(Name, NameLoc);
20467 
20468   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20469     if (!PrevDecl->hasAttr<AliasAttr>())
20470       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
20471         DeclApplyPragmaWeak(TUScope, ND, W);
20472   } else {
20473     (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
20474   }
20475 }
20476 
20477 ObjCContainerDecl *Sema::getObjCDeclContext() const {
20478   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
20479 }
20480 
20481 Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD,
20482                                                      bool Final) {
20483   assert(FD && "Expected non-null FunctionDecl");
20484 
20485   // SYCL functions can be template, so we check if they have appropriate
20486   // attribute prior to checking if it is a template.
20487   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
20488     return FunctionEmissionStatus::Emitted;
20489 
20490   // Templates are emitted when they're instantiated.
20491   if (FD->isDependentContext())
20492     return FunctionEmissionStatus::TemplateDiscarded;
20493 
20494   // Check whether this function is an externally visible definition.
20495   auto IsEmittedForExternalSymbol = [this, FD]() {
20496     // We have to check the GVA linkage of the function's *definition* -- if we
20497     // only have a declaration, we don't know whether or not the function will
20498     // be emitted, because (say) the definition could include "inline".
20499     const FunctionDecl *Def = FD->getDefinition();
20500 
20501     return Def && !isDiscardableGVALinkage(
20502                       getASTContext().GetGVALinkageForFunction(Def));
20503   };
20504 
20505   if (LangOpts.OpenMPIsTargetDevice) {
20506     // In OpenMP device mode we will not emit host only functions, or functions
20507     // we don't need due to their linkage.
20508     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20509         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20510     // DevTy may be changed later by
20511     //  #pragma omp declare target to(*) device_type(*).
20512     // Therefore DevTy having no value does not imply host. The emission status
20513     // will be checked again at the end of compilation unit with Final = true.
20514     if (DevTy)
20515       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
20516         return FunctionEmissionStatus::OMPDiscarded;
20517     // If we have an explicit value for the device type, or we are in a target
20518     // declare context, we need to emit all extern and used symbols.
20519     if (isInOpenMPDeclareTargetContext() || DevTy)
20520       if (IsEmittedForExternalSymbol())
20521         return FunctionEmissionStatus::Emitted;
20522     // Device mode only emits what it must, if it wasn't tagged yet and needed,
20523     // we'll omit it.
20524     if (Final)
20525       return FunctionEmissionStatus::OMPDiscarded;
20526   } else if (LangOpts.OpenMP > 45) {
20527     // In OpenMP host compilation prior to 5.0 everything was an emitted host
20528     // function. In 5.0, no_host was introduced which might cause a function to
20529     // be ommitted.
20530     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20531         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20532     if (DevTy)
20533       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
20534         return FunctionEmissionStatus::OMPDiscarded;
20535   }
20536 
20537   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
20538     return FunctionEmissionStatus::Emitted;
20539 
20540   if (LangOpts.CUDA) {
20541     // When compiling for device, host functions are never emitted.  Similarly,
20542     // when compiling for host, device and global functions are never emitted.
20543     // (Technically, we do emit a host-side stub for global functions, but this
20544     // doesn't count for our purposes here.)
20545     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
20546     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
20547       return FunctionEmissionStatus::CUDADiscarded;
20548     if (!LangOpts.CUDAIsDevice &&
20549         (T == Sema::CFT_Device || T == Sema::CFT_Global))
20550       return FunctionEmissionStatus::CUDADiscarded;
20551 
20552     if (IsEmittedForExternalSymbol())
20553       return FunctionEmissionStatus::Emitted;
20554   }
20555 
20556   // Otherwise, the function is known-emitted if it's in our set of
20557   // known-emitted functions.
20558   return FunctionEmissionStatus::Unknown;
20559 }
20560 
20561 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
20562   // Host-side references to a __global__ function refer to the stub, so the
20563   // function itself is never emitted and therefore should not be marked.
20564   // If we have host fn calls kernel fn calls host+device, the HD function
20565   // does not get instantiated on the host. We model this by omitting at the
20566   // call to the kernel from the callgraph. This ensures that, when compiling
20567   // for host, only HD functions actually called from the host get marked as
20568   // known-emitted.
20569   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
20570          IdentifyCUDATarget(Callee) == CFT_Global;
20571 }
20572