1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/CommentDiagnostic.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/NonTrivialTypeVisitor.h" 26 #include "clang/AST/StmtCXX.h" 27 #include "clang/Basic/Builtins.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/SourceManager.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 32 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 33 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 34 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 35 #include "clang/Sema/CXXFieldCollector.h" 36 #include "clang/Sema/DeclSpec.h" 37 #include "clang/Sema/DelayedDiagnostic.h" 38 #include "clang/Sema/Initialization.h" 39 #include "clang/Sema/Lookup.h" 40 #include "clang/Sema/ParsedTemplate.h" 41 #include "clang/Sema/Scope.h" 42 #include "clang/Sema/ScopeInfo.h" 43 #include "clang/Sema/SemaInternal.h" 44 #include "clang/Sema/Template.h" 45 #include "llvm/ADT/SmallString.h" 46 #include "llvm/ADT/Triple.h" 47 #include <algorithm> 48 #include <cstring> 49 #include <functional> 50 51 using namespace clang; 52 using namespace sema; 53 54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 55 if (OwnedType) { 56 Decl *Group[2] = { OwnedType, Ptr }; 57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 58 } 59 60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 61 } 62 63 namespace { 64 65 class TypeNameValidatorCCC final : public CorrectionCandidateCallback { 66 public: 67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, 68 bool AllowTemplates = false, 69 bool AllowNonTemplates = true) 70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { 72 WantExpressionKeywords = false; 73 WantCXXNamedCasts = false; 74 WantRemainingKeywords = false; 75 } 76 77 bool ValidateCandidate(const TypoCorrection &candidate) override { 78 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 79 if (!AllowInvalidDecl && ND->isInvalidDecl()) 80 return false; 81 82 if (getAsTypeTemplateDecl(ND)) 83 return AllowTemplates; 84 85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 86 if (!IsType) 87 return false; 88 89 if (AllowNonTemplates) 90 return true; 91 92 // An injected-class-name of a class template (specialization) is valid 93 // as a template or as a non-template. 94 if (AllowTemplates) { 95 auto *RD = dyn_cast<CXXRecordDecl>(ND); 96 if (!RD || !RD->isInjectedClassName()) 97 return false; 98 RD = cast<CXXRecordDecl>(RD->getDeclContext()); 99 return RD->getDescribedClassTemplate() || 100 isa<ClassTemplateSpecializationDecl>(RD); 101 } 102 103 return false; 104 } 105 106 return !WantClassName && candidate.isKeyword(); 107 } 108 109 std::unique_ptr<CorrectionCandidateCallback> clone() override { 110 return llvm::make_unique<TypeNameValidatorCCC>(*this); 111 } 112 113 private: 114 bool AllowInvalidDecl; 115 bool WantClassName; 116 bool AllowTemplates; 117 bool AllowNonTemplates; 118 }; 119 120 } // end anonymous namespace 121 122 /// Determine whether the token kind starts a simple-type-specifier. 123 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 124 switch (Kind) { 125 // FIXME: Take into account the current language when deciding whether a 126 // token kind is a valid type specifier 127 case tok::kw_short: 128 case tok::kw_long: 129 case tok::kw___int64: 130 case tok::kw___int128: 131 case tok::kw_signed: 132 case tok::kw_unsigned: 133 case tok::kw_void: 134 case tok::kw_char: 135 case tok::kw_int: 136 case tok::kw_half: 137 case tok::kw_float: 138 case tok::kw_double: 139 case tok::kw__Float16: 140 case tok::kw___float128: 141 case tok::kw_wchar_t: 142 case tok::kw_bool: 143 case tok::kw___underlying_type: 144 case tok::kw___auto_type: 145 return true; 146 147 case tok::annot_typename: 148 case tok::kw_char16_t: 149 case tok::kw_char32_t: 150 case tok::kw_typeof: 151 case tok::annot_decltype: 152 case tok::kw_decltype: 153 return getLangOpts().CPlusPlus; 154 155 case tok::kw_char8_t: 156 return getLangOpts().Char8; 157 158 default: 159 break; 160 } 161 162 return false; 163 } 164 165 namespace { 166 enum class UnqualifiedTypeNameLookupResult { 167 NotFound, 168 FoundNonType, 169 FoundType 170 }; 171 } // end anonymous namespace 172 173 /// Tries to perform unqualified lookup of the type decls in bases for 174 /// dependent class. 175 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a 176 /// type decl, \a FoundType if only type decls are found. 177 static UnqualifiedTypeNameLookupResult 178 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, 179 SourceLocation NameLoc, 180 const CXXRecordDecl *RD) { 181 if (!RD->hasDefinition()) 182 return UnqualifiedTypeNameLookupResult::NotFound; 183 // Look for type decls in base classes. 184 UnqualifiedTypeNameLookupResult FoundTypeDecl = 185 UnqualifiedTypeNameLookupResult::NotFound; 186 for (const auto &Base : RD->bases()) { 187 const CXXRecordDecl *BaseRD = nullptr; 188 if (auto *BaseTT = Base.getType()->getAs<TagType>()) 189 BaseRD = BaseTT->getAsCXXRecordDecl(); 190 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { 191 // Look for type decls in dependent base classes that have known primary 192 // templates. 193 if (!TST || !TST->isDependentType()) 194 continue; 195 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 196 if (!TD) 197 continue; 198 if (auto *BasePrimaryTemplate = 199 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { 200 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) 201 BaseRD = BasePrimaryTemplate; 202 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { 203 if (const ClassTemplatePartialSpecializationDecl *PS = 204 CTD->findPartialSpecialization(Base.getType())) 205 if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) 206 BaseRD = PS; 207 } 208 } 209 } 210 if (BaseRD) { 211 for (NamedDecl *ND : BaseRD->lookup(&II)) { 212 if (!isa<TypeDecl>(ND)) 213 return UnqualifiedTypeNameLookupResult::FoundNonType; 214 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 215 } 216 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { 217 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { 218 case UnqualifiedTypeNameLookupResult::FoundNonType: 219 return UnqualifiedTypeNameLookupResult::FoundNonType; 220 case UnqualifiedTypeNameLookupResult::FoundType: 221 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 222 break; 223 case UnqualifiedTypeNameLookupResult::NotFound: 224 break; 225 } 226 } 227 } 228 } 229 230 return FoundTypeDecl; 231 } 232 233 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 234 const IdentifierInfo &II, 235 SourceLocation NameLoc) { 236 // Lookup in the parent class template context, if any. 237 const CXXRecordDecl *RD = nullptr; 238 UnqualifiedTypeNameLookupResult FoundTypeDecl = 239 UnqualifiedTypeNameLookupResult::NotFound; 240 for (DeclContext *DC = S.CurContext; 241 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; 242 DC = DC->getParent()) { 243 // Look for type decls in dependent base classes that have known primary 244 // templates. 245 RD = dyn_cast<CXXRecordDecl>(DC); 246 if (RD && RD->getDescribedClassTemplate()) 247 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); 248 } 249 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) 250 return nullptr; 251 252 // We found some types in dependent base classes. Recover as if the user 253 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 254 // lookup during template instantiation. 255 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 256 257 ASTContext &Context = S.Context; 258 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 259 cast<Type>(Context.getRecordType(RD))); 260 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 261 262 CXXScopeSpec SS; 263 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 264 265 TypeLocBuilder Builder; 266 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 267 DepTL.setNameLoc(NameLoc); 268 DepTL.setElaboratedKeywordLoc(SourceLocation()); 269 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 270 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 271 } 272 273 /// If the identifier refers to a type name within this scope, 274 /// return the declaration of that type. 275 /// 276 /// This routine performs ordinary name lookup of the identifier II 277 /// within the given scope, with optional C++ scope specifier SS, to 278 /// determine whether the name refers to a type. If so, returns an 279 /// opaque pointer (actually a QualType) corresponding to that 280 /// type. Otherwise, returns NULL. 281 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 282 Scope *S, CXXScopeSpec *SS, 283 bool isClassName, bool HasTrailingDot, 284 ParsedType ObjectTypePtr, 285 bool IsCtorOrDtorName, 286 bool WantNontrivialTypeSourceInfo, 287 bool IsClassTemplateDeductionContext, 288 IdentifierInfo **CorrectedII) { 289 // FIXME: Consider allowing this outside C++1z mode as an extension. 290 bool AllowDeducedTemplate = IsClassTemplateDeductionContext && 291 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && 292 !isClassName && !HasTrailingDot; 293 294 // Determine where we will perform name lookup. 295 DeclContext *LookupCtx = nullptr; 296 if (ObjectTypePtr) { 297 QualType ObjectType = ObjectTypePtr.get(); 298 if (ObjectType->isRecordType()) 299 LookupCtx = computeDeclContext(ObjectType); 300 } else if (SS && SS->isNotEmpty()) { 301 LookupCtx = computeDeclContext(*SS, false); 302 303 if (!LookupCtx) { 304 if (isDependentScopeSpecifier(*SS)) { 305 // C++ [temp.res]p3: 306 // A qualified-id that refers to a type and in which the 307 // nested-name-specifier depends on a template-parameter (14.6.2) 308 // shall be prefixed by the keyword typename to indicate that the 309 // qualified-id denotes a type, forming an 310 // elaborated-type-specifier (7.1.5.3). 311 // 312 // We therefore do not perform any name lookup if the result would 313 // refer to a member of an unknown specialization. 314 if (!isClassName && !IsCtorOrDtorName) 315 return nullptr; 316 317 // We know from the grammar that this name refers to a type, 318 // so build a dependent node to describe the type. 319 if (WantNontrivialTypeSourceInfo) 320 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 321 322 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 323 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 324 II, NameLoc); 325 return ParsedType::make(T); 326 } 327 328 return nullptr; 329 } 330 331 if (!LookupCtx->isDependentContext() && 332 RequireCompleteDeclContext(*SS, LookupCtx)) 333 return nullptr; 334 } 335 336 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 337 // lookup for class-names. 338 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 339 LookupOrdinaryName; 340 LookupResult Result(*this, &II, NameLoc, Kind); 341 if (LookupCtx) { 342 // Perform "qualified" name lookup into the declaration context we 343 // computed, which is either the type of the base of a member access 344 // expression or the declaration context associated with a prior 345 // nested-name-specifier. 346 LookupQualifiedName(Result, LookupCtx); 347 348 if (ObjectTypePtr && Result.empty()) { 349 // C++ [basic.lookup.classref]p3: 350 // If the unqualified-id is ~type-name, the type-name is looked up 351 // in the context of the entire postfix-expression. If the type T of 352 // the object expression is of a class type C, the type-name is also 353 // looked up in the scope of class C. At least one of the lookups shall 354 // find a name that refers to (possibly cv-qualified) T. 355 LookupName(Result, S); 356 } 357 } else { 358 // Perform unqualified name lookup. 359 LookupName(Result, S); 360 361 // For unqualified lookup in a class template in MSVC mode, look into 362 // dependent base classes where the primary class template is known. 363 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 364 if (ParsedType TypeInBase = 365 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 366 return TypeInBase; 367 } 368 } 369 370 NamedDecl *IIDecl = nullptr; 371 switch (Result.getResultKind()) { 372 case LookupResult::NotFound: 373 case LookupResult::NotFoundInCurrentInstantiation: 374 if (CorrectedII) { 375 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, 376 AllowDeducedTemplate); 377 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, 378 S, SS, CCC, CTK_ErrorRecovery); 379 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 380 TemplateTy Template; 381 bool MemberOfUnknownSpecialization; 382 UnqualifiedId TemplateName; 383 TemplateName.setIdentifier(NewII, NameLoc); 384 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 385 CXXScopeSpec NewSS, *NewSSPtr = SS; 386 if (SS && NNS) { 387 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 388 NewSSPtr = &NewSS; 389 } 390 if (Correction && (NNS || NewII != &II) && 391 // Ignore a correction to a template type as the to-be-corrected 392 // identifier is not a template (typo correction for template names 393 // is handled elsewhere). 394 !(getLangOpts().CPlusPlus && NewSSPtr && 395 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, 396 Template, MemberOfUnknownSpecialization))) { 397 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 398 isClassName, HasTrailingDot, ObjectTypePtr, 399 IsCtorOrDtorName, 400 WantNontrivialTypeSourceInfo, 401 IsClassTemplateDeductionContext); 402 if (Ty) { 403 diagnoseTypo(Correction, 404 PDiag(diag::err_unknown_type_or_class_name_suggest) 405 << Result.getLookupName() << isClassName); 406 if (SS && NNS) 407 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 408 *CorrectedII = NewII; 409 return Ty; 410 } 411 } 412 } 413 // If typo correction failed or was not performed, fall through 414 LLVM_FALLTHROUGH; 415 case LookupResult::FoundOverloaded: 416 case LookupResult::FoundUnresolvedValue: 417 Result.suppressDiagnostics(); 418 return nullptr; 419 420 case LookupResult::Ambiguous: 421 // Recover from type-hiding ambiguities by hiding the type. We'll 422 // do the lookup again when looking for an object, and we can 423 // diagnose the error then. If we don't do this, then the error 424 // about hiding the type will be immediately followed by an error 425 // that only makes sense if the identifier was treated like a type. 426 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 427 Result.suppressDiagnostics(); 428 return nullptr; 429 } 430 431 // Look to see if we have a type anywhere in the list of results. 432 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 433 Res != ResEnd; ++Res) { 434 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || 435 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { 436 if (!IIDecl || 437 (*Res)->getLocation().getRawEncoding() < 438 IIDecl->getLocation().getRawEncoding()) 439 IIDecl = *Res; 440 } 441 } 442 443 if (!IIDecl) { 444 // None of the entities we found is a type, so there is no way 445 // to even assume that the result is a type. In this case, don't 446 // complain about the ambiguity. The parser will either try to 447 // perform this lookup again (e.g., as an object name), which 448 // will produce the ambiguity, or will complain that it expected 449 // a type name. 450 Result.suppressDiagnostics(); 451 return nullptr; 452 } 453 454 // We found a type within the ambiguous lookup; diagnose the 455 // ambiguity and then return that type. This might be the right 456 // answer, or it might not be, but it suppresses any attempt to 457 // perform the name lookup again. 458 break; 459 460 case LookupResult::Found: 461 IIDecl = Result.getFoundDecl(); 462 break; 463 } 464 465 assert(IIDecl && "Didn't find decl"); 466 467 QualType T; 468 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 469 // C++ [class.qual]p2: A lookup that would find the injected-class-name 470 // instead names the constructors of the class, except when naming a class. 471 // This is ill-formed when we're not actually forming a ctor or dtor name. 472 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 473 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); 474 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && 475 FoundRD->isInjectedClassName() && 476 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 477 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) 478 << &II << /*Type*/1; 479 480 DiagnoseUseOfDecl(IIDecl, NameLoc); 481 482 T = Context.getTypeDeclType(TD); 483 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 484 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 485 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 486 if (!HasTrailingDot) 487 T = Context.getObjCInterfaceType(IDecl); 488 } else if (AllowDeducedTemplate) { 489 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) 490 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), 491 QualType(), false); 492 } 493 494 if (T.isNull()) { 495 // If it's not plausibly a type, suppress diagnostics. 496 Result.suppressDiagnostics(); 497 return nullptr; 498 } 499 500 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 501 // constructor or destructor name (in such a case, the scope specifier 502 // will be attached to the enclosing Expr or Decl node). 503 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && 504 !isa<ObjCInterfaceDecl>(IIDecl)) { 505 if (WantNontrivialTypeSourceInfo) { 506 // Construct a type with type-source information. 507 TypeLocBuilder Builder; 508 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 509 510 T = getElaboratedType(ETK_None, *SS, T); 511 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 512 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 513 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 514 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 515 } else { 516 T = getElaboratedType(ETK_None, *SS, T); 517 } 518 } 519 520 return ParsedType::make(T); 521 } 522 523 // Builds a fake NNS for the given decl context. 524 static NestedNameSpecifier * 525 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 526 for (;; DC = DC->getLookupParent()) { 527 DC = DC->getPrimaryContext(); 528 auto *ND = dyn_cast<NamespaceDecl>(DC); 529 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 530 return NestedNameSpecifier::Create(Context, nullptr, ND); 531 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 532 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 533 RD->getTypeForDecl()); 534 else if (isa<TranslationUnitDecl>(DC)) 535 return NestedNameSpecifier::GlobalSpecifier(Context); 536 } 537 llvm_unreachable("something isn't in TU scope?"); 538 } 539 540 /// Find the parent class with dependent bases of the innermost enclosing method 541 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end 542 /// up allowing unqualified dependent type names at class-level, which MSVC 543 /// correctly rejects. 544 static const CXXRecordDecl * 545 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { 546 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { 547 DC = DC->getPrimaryContext(); 548 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) 549 if (MD->getParent()->hasAnyDependentBases()) 550 return MD->getParent(); 551 } 552 return nullptr; 553 } 554 555 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, 556 SourceLocation NameLoc, 557 bool IsTemplateTypeArg) { 558 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); 559 560 NestedNameSpecifier *NNS = nullptr; 561 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { 562 // If we weren't able to parse a default template argument, delay lookup 563 // until instantiation time by making a non-dependent DependentTypeName. We 564 // pretend we saw a NestedNameSpecifier referring to the current scope, and 565 // lookup is retried. 566 // FIXME: This hurts our diagnostic quality, since we get errors like "no 567 // type named 'Foo' in 'current_namespace'" when the user didn't write any 568 // name specifiers. 569 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); 570 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 571 } else if (const CXXRecordDecl *RD = 572 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { 573 // Build a DependentNameType that will perform lookup into RD at 574 // instantiation time. 575 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 576 RD->getTypeForDecl()); 577 578 // Diagnose that this identifier was undeclared, and retry the lookup during 579 // template instantiation. 580 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II 581 << RD; 582 } else { 583 // This is not a situation that we should recover from. 584 return ParsedType(); 585 } 586 587 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 588 589 // Build type location information. We synthesized the qualifier, so we have 590 // to build a fake NestedNameSpecifierLoc. 591 NestedNameSpecifierLocBuilder NNSLocBuilder; 592 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 593 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 594 595 TypeLocBuilder Builder; 596 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 597 DepTL.setNameLoc(NameLoc); 598 DepTL.setElaboratedKeywordLoc(SourceLocation()); 599 DepTL.setQualifierLoc(QualifierLoc); 600 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 601 } 602 603 /// isTagName() - This method is called *for error recovery purposes only* 604 /// to determine if the specified name is a valid tag name ("struct foo"). If 605 /// so, this returns the TST for the tag corresponding to it (TST_enum, 606 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 607 /// cases in C where the user forgot to specify the tag. 608 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 609 // Do a tag name lookup in this scope. 610 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 611 LookupName(R, S, false); 612 R.suppressDiagnostics(); 613 if (R.getResultKind() == LookupResult::Found) 614 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 615 switch (TD->getTagKind()) { 616 case TTK_Struct: return DeclSpec::TST_struct; 617 case TTK_Interface: return DeclSpec::TST_interface; 618 case TTK_Union: return DeclSpec::TST_union; 619 case TTK_Class: return DeclSpec::TST_class; 620 case TTK_Enum: return DeclSpec::TST_enum; 621 } 622 } 623 624 return DeclSpec::TST_unspecified; 625 } 626 627 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 628 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 629 /// then downgrade the missing typename error to a warning. 630 /// This is needed for MSVC compatibility; Example: 631 /// @code 632 /// template<class T> class A { 633 /// public: 634 /// typedef int TYPE; 635 /// }; 636 /// template<class T> class B : public A<T> { 637 /// public: 638 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 639 /// }; 640 /// @endcode 641 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 642 if (CurContext->isRecord()) { 643 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 644 return true; 645 646 const Type *Ty = SS->getScopeRep()->getAsType(); 647 648 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 649 for (const auto &Base : RD->bases()) 650 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 651 return true; 652 return S->isFunctionPrototypeScope(); 653 } 654 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 655 } 656 657 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 658 SourceLocation IILoc, 659 Scope *S, 660 CXXScopeSpec *SS, 661 ParsedType &SuggestedType, 662 bool IsTemplateName) { 663 // Don't report typename errors for editor placeholders. 664 if (II->isEditorPlaceholder()) 665 return; 666 // We don't have anything to suggest (yet). 667 SuggestedType = nullptr; 668 669 // There may have been a typo in the name of the type. Look up typo 670 // results, in case we have something that we can suggest. 671 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, 672 /*AllowTemplates=*/IsTemplateName, 673 /*AllowNonTemplates=*/!IsTemplateName); 674 if (TypoCorrection Corrected = 675 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 676 CCC, CTK_ErrorRecovery)) { 677 // FIXME: Support error recovery for the template-name case. 678 bool CanRecover = !IsTemplateName; 679 if (Corrected.isKeyword()) { 680 // We corrected to a keyword. 681 diagnoseTypo(Corrected, 682 PDiag(IsTemplateName ? diag::err_no_template_suggest 683 : diag::err_unknown_typename_suggest) 684 << II); 685 II = Corrected.getCorrectionAsIdentifierInfo(); 686 } else { 687 // We found a similarly-named type or interface; suggest that. 688 if (!SS || !SS->isSet()) { 689 diagnoseTypo(Corrected, 690 PDiag(IsTemplateName ? diag::err_no_template_suggest 691 : diag::err_unknown_typename_suggest) 692 << II, CanRecover); 693 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 694 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 695 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 696 II->getName().equals(CorrectedStr); 697 diagnoseTypo(Corrected, 698 PDiag(IsTemplateName 699 ? diag::err_no_member_template_suggest 700 : diag::err_unknown_nested_typename_suggest) 701 << II << DC << DroppedSpecifier << SS->getRange(), 702 CanRecover); 703 } else { 704 llvm_unreachable("could not have corrected a typo here"); 705 } 706 707 if (!CanRecover) 708 return; 709 710 CXXScopeSpec tmpSS; 711 if (Corrected.getCorrectionSpecifier()) 712 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 713 SourceRange(IILoc)); 714 // FIXME: Support class template argument deduction here. 715 SuggestedType = 716 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, 717 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, 718 /*IsCtorOrDtorName=*/false, 719 /*WantNontrivialTypeSourceInfo=*/true); 720 } 721 return; 722 } 723 724 if (getLangOpts().CPlusPlus && !IsTemplateName) { 725 // See if II is a class template that the user forgot to pass arguments to. 726 UnqualifiedId Name; 727 Name.setIdentifier(II, IILoc); 728 CXXScopeSpec EmptySS; 729 TemplateTy TemplateResult; 730 bool MemberOfUnknownSpecialization; 731 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 732 Name, nullptr, true, TemplateResult, 733 MemberOfUnknownSpecialization) == TNK_Type_template) { 734 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); 735 return; 736 } 737 } 738 739 // FIXME: Should we move the logic that tries to recover from a missing tag 740 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 741 742 if (!SS || (!SS->isSet() && !SS->isInvalid())) 743 Diag(IILoc, IsTemplateName ? diag::err_no_template 744 : diag::err_unknown_typename) 745 << II; 746 else if (DeclContext *DC = computeDeclContext(*SS, false)) 747 Diag(IILoc, IsTemplateName ? diag::err_no_member_template 748 : diag::err_typename_nested_not_found) 749 << II << DC << SS->getRange(); 750 else if (isDependentScopeSpecifier(*SS)) { 751 unsigned DiagID = diag::err_typename_missing; 752 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 753 DiagID = diag::ext_typename_missing; 754 755 Diag(SS->getRange().getBegin(), DiagID) 756 << SS->getScopeRep() << II->getName() 757 << SourceRange(SS->getRange().getBegin(), IILoc) 758 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 759 SuggestedType = ActOnTypenameType(S, SourceLocation(), 760 *SS, *II, IILoc).get(); 761 } else { 762 assert(SS && SS->isInvalid() && 763 "Invalid scope specifier has already been diagnosed"); 764 } 765 } 766 767 /// Determine whether the given result set contains either a type name 768 /// or 769 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 770 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 771 NextToken.is(tok::less); 772 773 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 774 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 775 return true; 776 777 if (CheckTemplate && isa<TemplateDecl>(*I)) 778 return true; 779 } 780 781 return false; 782 } 783 784 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 785 Scope *S, CXXScopeSpec &SS, 786 IdentifierInfo *&Name, 787 SourceLocation NameLoc) { 788 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 789 SemaRef.LookupParsedName(R, S, &SS); 790 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 791 StringRef FixItTagName; 792 switch (Tag->getTagKind()) { 793 case TTK_Class: 794 FixItTagName = "class "; 795 break; 796 797 case TTK_Enum: 798 FixItTagName = "enum "; 799 break; 800 801 case TTK_Struct: 802 FixItTagName = "struct "; 803 break; 804 805 case TTK_Interface: 806 FixItTagName = "__interface "; 807 break; 808 809 case TTK_Union: 810 FixItTagName = "union "; 811 break; 812 } 813 814 StringRef TagName = FixItTagName.drop_back(); 815 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 816 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 817 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 818 819 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 820 I != IEnd; ++I) 821 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 822 << Name << TagName; 823 824 // Replace lookup results with just the tag decl. 825 Result.clear(Sema::LookupTagName); 826 SemaRef.LookupParsedName(Result, S, &SS); 827 return true; 828 } 829 830 return false; 831 } 832 833 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 834 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 835 QualType T, SourceLocation NameLoc) { 836 ASTContext &Context = S.Context; 837 838 TypeLocBuilder Builder; 839 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 840 841 T = S.getElaboratedType(ETK_None, SS, T); 842 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 843 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 844 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 845 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 846 } 847 848 Sema::NameClassification 849 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name, 850 SourceLocation NameLoc, const Token &NextToken, 851 bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) { 852 DeclarationNameInfo NameInfo(Name, NameLoc); 853 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 854 855 if (NextToken.is(tok::coloncolon)) { 856 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation()); 857 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false); 858 } else if (getLangOpts().CPlusPlus && SS.isSet() && 859 isCurrentClassName(*Name, S, &SS)) { 860 // Per [class.qual]p2, this names the constructors of SS, not the 861 // injected-class-name. We don't have a classification for that. 862 // There's not much point caching this result, since the parser 863 // will reject it later. 864 return NameClassification::Unknown(); 865 } 866 867 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 868 LookupParsedName(Result, S, &SS, !CurMethod); 869 870 // For unqualified lookup in a class template in MSVC mode, look into 871 // dependent base classes where the primary class template is known. 872 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 873 if (ParsedType TypeInBase = 874 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 875 return TypeInBase; 876 } 877 878 // Perform lookup for Objective-C instance variables (including automatically 879 // synthesized instance variables), if we're in an Objective-C method. 880 // FIXME: This lookup really, really needs to be folded in to the normal 881 // unqualified lookup mechanism. 882 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 883 ExprResult E = LookupInObjCMethod(Result, S, Name, true); 884 if (E.get() || E.isInvalid()) 885 return E; 886 } 887 888 bool SecondTry = false; 889 bool IsFilteredTemplateName = false; 890 891 Corrected: 892 switch (Result.getResultKind()) { 893 case LookupResult::NotFound: 894 // If an unqualified-id is followed by a '(', then we have a function 895 // call. 896 if (!SS.isSet() && NextToken.is(tok::l_paren)) { 897 // In C++, this is an ADL-only call. 898 // FIXME: Reference? 899 if (getLangOpts().CPlusPlus) 900 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 901 902 // C90 6.3.2.2: 903 // If the expression that precedes the parenthesized argument list in a 904 // function call consists solely of an identifier, and if no 905 // declaration is visible for this identifier, the identifier is 906 // implicitly declared exactly as if, in the innermost block containing 907 // the function call, the declaration 908 // 909 // extern int identifier (); 910 // 911 // appeared. 912 // 913 // We also allow this in C99 as an extension. 914 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) { 915 Result.addDecl(D); 916 Result.resolveKind(); 917 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false); 918 } 919 } 920 921 if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) { 922 // In C++20 onwards, this could be an ADL-only call to a function 923 // template, and we're required to assume that this is a template name. 924 // 925 // FIXME: Find a way to still do typo correction in this case. 926 TemplateName Template = 927 Context.getAssumedTemplateName(NameInfo.getName()); 928 return NameClassification::UndeclaredTemplate(Template); 929 } 930 931 // In C, we first see whether there is a tag type by the same name, in 932 // which case it's likely that the user just forgot to write "enum", 933 // "struct", or "union". 934 if (!getLangOpts().CPlusPlus && !SecondTry && 935 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 936 break; 937 } 938 939 // Perform typo correction to determine if there is another name that is 940 // close to this name. 941 if (!SecondTry && CCC) { 942 SecondTry = true; 943 if (TypoCorrection Corrected = 944 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, 945 &SS, *CCC, CTK_ErrorRecovery)) { 946 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 947 unsigned QualifiedDiag = diag::err_no_member_suggest; 948 949 NamedDecl *FirstDecl = Corrected.getFoundDecl(); 950 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); 951 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 952 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 953 UnqualifiedDiag = diag::err_no_template_suggest; 954 QualifiedDiag = diag::err_no_member_template_suggest; 955 } else if (UnderlyingFirstDecl && 956 (isa<TypeDecl>(UnderlyingFirstDecl) || 957 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 958 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 959 UnqualifiedDiag = diag::err_unknown_typename_suggest; 960 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 961 } 962 963 if (SS.isEmpty()) { 964 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 965 } else {// FIXME: is this even reachable? Test it. 966 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 967 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 968 Name->getName().equals(CorrectedStr); 969 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 970 << Name << computeDeclContext(SS, false) 971 << DroppedSpecifier << SS.getRange()); 972 } 973 974 // Update the name, so that the caller has the new name. 975 Name = Corrected.getCorrectionAsIdentifierInfo(); 976 977 // Typo correction corrected to a keyword. 978 if (Corrected.isKeyword()) 979 return Name; 980 981 // Also update the LookupResult... 982 // FIXME: This should probably go away at some point 983 Result.clear(); 984 Result.setLookupName(Corrected.getCorrection()); 985 if (FirstDecl) 986 Result.addDecl(FirstDecl); 987 988 // If we found an Objective-C instance variable, let 989 // LookupInObjCMethod build the appropriate expression to 990 // reference the ivar. 991 // FIXME: This is a gross hack. 992 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 993 Result.clear(); 994 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier())); 995 return E; 996 } 997 998 goto Corrected; 999 } 1000 } 1001 1002 // We failed to correct; just fall through and let the parser deal with it. 1003 Result.suppressDiagnostics(); 1004 return NameClassification::Unknown(); 1005 1006 case LookupResult::NotFoundInCurrentInstantiation: { 1007 // We performed name lookup into the current instantiation, and there were 1008 // dependent bases, so we treat this result the same way as any other 1009 // dependent nested-name-specifier. 1010 1011 // C++ [temp.res]p2: 1012 // A name used in a template declaration or definition and that is 1013 // dependent on a template-parameter is assumed not to name a type 1014 // unless the applicable name lookup finds a type name or the name is 1015 // qualified by the keyword typename. 1016 // 1017 // FIXME: If the next token is '<', we might want to ask the parser to 1018 // perform some heroics to see if we actually have a 1019 // template-argument-list, which would indicate a missing 'template' 1020 // keyword here. 1021 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 1022 NameInfo, IsAddressOfOperand, 1023 /*TemplateArgs=*/nullptr); 1024 } 1025 1026 case LookupResult::Found: 1027 case LookupResult::FoundOverloaded: 1028 case LookupResult::FoundUnresolvedValue: 1029 break; 1030 1031 case LookupResult::Ambiguous: 1032 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1033 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, 1034 /*AllowDependent=*/false)) { 1035 // C++ [temp.local]p3: 1036 // A lookup that finds an injected-class-name (10.2) can result in an 1037 // ambiguity in certain cases (for example, if it is found in more than 1038 // one base class). If all of the injected-class-names that are found 1039 // refer to specializations of the same class template, and if the name 1040 // is followed by a template-argument-list, the reference refers to the 1041 // class template itself and not a specialization thereof, and is not 1042 // ambiguous. 1043 // 1044 // This filtering can make an ambiguous result into an unambiguous one, 1045 // so try again after filtering out template names. 1046 FilterAcceptableTemplateNames(Result); 1047 if (!Result.isAmbiguous()) { 1048 IsFilteredTemplateName = true; 1049 break; 1050 } 1051 } 1052 1053 // Diagnose the ambiguity and return an error. 1054 return NameClassification::Error(); 1055 } 1056 1057 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1058 (IsFilteredTemplateName || 1059 hasAnyAcceptableTemplateNames( 1060 Result, /*AllowFunctionTemplates=*/true, 1061 /*AllowDependent=*/false, 1062 /*AllowNonTemplateFunctions*/ !SS.isSet() && 1063 getLangOpts().CPlusPlus2a))) { 1064 // C++ [temp.names]p3: 1065 // After name lookup (3.4) finds that a name is a template-name or that 1066 // an operator-function-id or a literal- operator-id refers to a set of 1067 // overloaded functions any member of which is a function template if 1068 // this is followed by a <, the < is always taken as the delimiter of a 1069 // template-argument-list and never as the less-than operator. 1070 // C++2a [temp.names]p2: 1071 // A name is also considered to refer to a template if it is an 1072 // unqualified-id followed by a < and name lookup finds either one 1073 // or more functions or finds nothing. 1074 if (!IsFilteredTemplateName) 1075 FilterAcceptableTemplateNames(Result); 1076 1077 bool IsFunctionTemplate; 1078 bool IsVarTemplate; 1079 TemplateName Template; 1080 if (Result.end() - Result.begin() > 1) { 1081 IsFunctionTemplate = true; 1082 Template = Context.getOverloadedTemplateName(Result.begin(), 1083 Result.end()); 1084 } else if (!Result.empty()) { 1085 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( 1086 *Result.begin(), /*AllowFunctionTemplates=*/true, 1087 /*AllowDependent=*/false)); 1088 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 1089 IsVarTemplate = isa<VarTemplateDecl>(TD); 1090 1091 if (SS.isSet() && !SS.isInvalid()) 1092 Template = 1093 Context.getQualifiedTemplateName(SS.getScopeRep(), 1094 /*TemplateKeyword=*/false, TD); 1095 else 1096 Template = TemplateName(TD); 1097 } else { 1098 // All results were non-template functions. This is a function template 1099 // name. 1100 IsFunctionTemplate = true; 1101 Template = Context.getAssumedTemplateName(NameInfo.getName()); 1102 } 1103 1104 if (IsFunctionTemplate) { 1105 // Function templates always go through overload resolution, at which 1106 // point we'll perform the various checks (e.g., accessibility) we need 1107 // to based on which function we selected. 1108 Result.suppressDiagnostics(); 1109 1110 return NameClassification::FunctionTemplate(Template); 1111 } 1112 1113 return IsVarTemplate ? NameClassification::VarTemplate(Template) 1114 : NameClassification::TypeTemplate(Template); 1115 } 1116 1117 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 1118 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 1119 DiagnoseUseOfDecl(Type, NameLoc); 1120 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 1121 QualType T = Context.getTypeDeclType(Type); 1122 if (SS.isNotEmpty()) 1123 return buildNestedType(*this, SS, T, NameLoc); 1124 return ParsedType::make(T); 1125 } 1126 1127 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 1128 if (!Class) { 1129 // FIXME: It's unfortunate that we don't have a Type node for handling this. 1130 if (ObjCCompatibleAliasDecl *Alias = 1131 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 1132 Class = Alias->getClassInterface(); 1133 } 1134 1135 if (Class) { 1136 DiagnoseUseOfDecl(Class, NameLoc); 1137 1138 if (NextToken.is(tok::period)) { 1139 // Interface. <something> is parsed as a property reference expression. 1140 // Just return "unknown" as a fall-through for now. 1141 Result.suppressDiagnostics(); 1142 return NameClassification::Unknown(); 1143 } 1144 1145 QualType T = Context.getObjCInterfaceType(Class); 1146 return ParsedType::make(T); 1147 } 1148 1149 // We can have a type template here if we're classifying a template argument. 1150 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && 1151 !isa<VarTemplateDecl>(FirstDecl)) 1152 return NameClassification::TypeTemplate( 1153 TemplateName(cast<TemplateDecl>(FirstDecl))); 1154 1155 // Check for a tag type hidden by a non-type decl in a few cases where it 1156 // seems likely a type is wanted instead of the non-type that was found. 1157 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); 1158 if ((NextToken.is(tok::identifier) || 1159 (NextIsOp && 1160 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 1161 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 1162 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 1163 DiagnoseUseOfDecl(Type, NameLoc); 1164 QualType T = Context.getTypeDeclType(Type); 1165 if (SS.isNotEmpty()) 1166 return buildNestedType(*this, SS, T, NameLoc); 1167 return ParsedType::make(T); 1168 } 1169 1170 if (FirstDecl->isCXXClassMember()) 1171 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 1172 nullptr, S); 1173 1174 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1175 return BuildDeclarationNameExpr(SS, Result, ADL); 1176 } 1177 1178 Sema::TemplateNameKindForDiagnostics 1179 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { 1180 auto *TD = Name.getAsTemplateDecl(); 1181 if (!TD) 1182 return TemplateNameKindForDiagnostics::DependentTemplate; 1183 if (isa<ClassTemplateDecl>(TD)) 1184 return TemplateNameKindForDiagnostics::ClassTemplate; 1185 if (isa<FunctionTemplateDecl>(TD)) 1186 return TemplateNameKindForDiagnostics::FunctionTemplate; 1187 if (isa<VarTemplateDecl>(TD)) 1188 return TemplateNameKindForDiagnostics::VarTemplate; 1189 if (isa<TypeAliasTemplateDecl>(TD)) 1190 return TemplateNameKindForDiagnostics::AliasTemplate; 1191 if (isa<TemplateTemplateParmDecl>(TD)) 1192 return TemplateNameKindForDiagnostics::TemplateTemplateParam; 1193 if (isa<ConceptDecl>(TD)) 1194 return TemplateNameKindForDiagnostics::Concept; 1195 return TemplateNameKindForDiagnostics::DependentTemplate; 1196 } 1197 1198 // Determines the context to return to after temporarily entering a 1199 // context. This depends in an unnecessarily complicated way on the 1200 // exact ordering of callbacks from the parser. 1201 DeclContext *Sema::getContainingDC(DeclContext *DC) { 1202 1203 // Functions defined inline within classes aren't parsed until we've 1204 // finished parsing the top-level class, so the top-level class is 1205 // the context we'll need to return to. 1206 // A Lambda call operator whose parent is a class must not be treated 1207 // as an inline member function. A Lambda can be used legally 1208 // either as an in-class member initializer or a default argument. These 1209 // are parsed once the class has been marked complete and so the containing 1210 // context would be the nested class (when the lambda is defined in one); 1211 // If the class is not complete, then the lambda is being used in an 1212 // ill-formed fashion (such as to specify the width of a bit-field, or 1213 // in an array-bound) - in which case we still want to return the 1214 // lexically containing DC (which could be a nested class). 1215 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { 1216 DC = DC->getLexicalParent(); 1217 1218 // A function not defined within a class will always return to its 1219 // lexical context. 1220 if (!isa<CXXRecordDecl>(DC)) 1221 return DC; 1222 1223 // A C++ inline method/friend is parsed *after* the topmost class 1224 // it was declared in is fully parsed ("complete"); the topmost 1225 // class is the context we need to return to. 1226 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) 1227 DC = RD; 1228 1229 // Return the declaration context of the topmost class the inline method is 1230 // declared in. 1231 return DC; 1232 } 1233 1234 return DC->getLexicalParent(); 1235 } 1236 1237 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1238 assert(getContainingDC(DC) == CurContext && 1239 "The next DeclContext should be lexically contained in the current one."); 1240 CurContext = DC; 1241 S->setEntity(DC); 1242 } 1243 1244 void Sema::PopDeclContext() { 1245 assert(CurContext && "DeclContext imbalance!"); 1246 1247 CurContext = getContainingDC(CurContext); 1248 assert(CurContext && "Popped translation unit!"); 1249 } 1250 1251 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, 1252 Decl *D) { 1253 // Unlike PushDeclContext, the context to which we return is not necessarily 1254 // the containing DC of TD, because the new context will be some pre-existing 1255 // TagDecl definition instead of a fresh one. 1256 auto Result = static_cast<SkippedDefinitionContext>(CurContext); 1257 CurContext = cast<TagDecl>(D)->getDefinition(); 1258 assert(CurContext && "skipping definition of undefined tag"); 1259 // Start lookups from the parent of the current context; we don't want to look 1260 // into the pre-existing complete definition. 1261 S->setEntity(CurContext->getLookupParent()); 1262 return Result; 1263 } 1264 1265 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { 1266 CurContext = static_cast<decltype(CurContext)>(Context); 1267 } 1268 1269 /// EnterDeclaratorContext - Used when we must lookup names in the context 1270 /// of a declarator's nested name specifier. 1271 /// 1272 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1273 // C++0x [basic.lookup.unqual]p13: 1274 // A name used in the definition of a static data member of class 1275 // X (after the qualified-id of the static member) is looked up as 1276 // if the name was used in a member function of X. 1277 // C++0x [basic.lookup.unqual]p14: 1278 // If a variable member of a namespace is defined outside of the 1279 // scope of its namespace then any name used in the definition of 1280 // the variable member (after the declarator-id) is looked up as 1281 // if the definition of the variable member occurred in its 1282 // namespace. 1283 // Both of these imply that we should push a scope whose context 1284 // is the semantic context of the declaration. We can't use 1285 // PushDeclContext here because that context is not necessarily 1286 // lexically contained in the current context. Fortunately, 1287 // the containing scope should have the appropriate information. 1288 1289 assert(!S->getEntity() && "scope already has entity"); 1290 1291 #ifndef NDEBUG 1292 Scope *Ancestor = S->getParent(); 1293 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1294 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1295 #endif 1296 1297 CurContext = DC; 1298 S->setEntity(DC); 1299 } 1300 1301 void Sema::ExitDeclaratorContext(Scope *S) { 1302 assert(S->getEntity() == CurContext && "Context imbalance!"); 1303 1304 // Switch back to the lexical context. The safety of this is 1305 // enforced by an assert in EnterDeclaratorContext. 1306 Scope *Ancestor = S->getParent(); 1307 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1308 CurContext = Ancestor->getEntity(); 1309 1310 // We don't need to do anything with the scope, which is going to 1311 // disappear. 1312 } 1313 1314 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1315 // We assume that the caller has already called 1316 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1317 FunctionDecl *FD = D->getAsFunction(); 1318 if (!FD) 1319 return; 1320 1321 // Same implementation as PushDeclContext, but enters the context 1322 // from the lexical parent, rather than the top-level class. 1323 assert(CurContext == FD->getLexicalParent() && 1324 "The next DeclContext should be lexically contained in the current one."); 1325 CurContext = FD; 1326 S->setEntity(CurContext); 1327 1328 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1329 ParmVarDecl *Param = FD->getParamDecl(P); 1330 // If the parameter has an identifier, then add it to the scope 1331 if (Param->getIdentifier()) { 1332 S->AddDecl(Param); 1333 IdResolver.AddDecl(Param); 1334 } 1335 } 1336 } 1337 1338 void Sema::ActOnExitFunctionContext() { 1339 // Same implementation as PopDeclContext, but returns to the lexical parent, 1340 // rather than the top-level class. 1341 assert(CurContext && "DeclContext imbalance!"); 1342 CurContext = CurContext->getLexicalParent(); 1343 assert(CurContext && "Popped translation unit!"); 1344 } 1345 1346 /// Determine whether we allow overloading of the function 1347 /// PrevDecl with another declaration. 1348 /// 1349 /// This routine determines whether overloading is possible, not 1350 /// whether some new function is actually an overload. It will return 1351 /// true in C++ (where we can always provide overloads) or, as an 1352 /// extension, in C when the previous function is already an 1353 /// overloaded function declaration or has the "overloadable" 1354 /// attribute. 1355 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1356 ASTContext &Context, 1357 const FunctionDecl *New) { 1358 if (Context.getLangOpts().CPlusPlus) 1359 return true; 1360 1361 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1362 return true; 1363 1364 return Previous.getResultKind() == LookupResult::Found && 1365 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || 1366 New->hasAttr<OverloadableAttr>()); 1367 } 1368 1369 /// Add this decl to the scope shadowed decl chains. 1370 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1371 // Move up the scope chain until we find the nearest enclosing 1372 // non-transparent context. The declaration will be introduced into this 1373 // scope. 1374 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1375 S = S->getParent(); 1376 1377 // Add scoped declarations into their context, so that they can be 1378 // found later. Declarations without a context won't be inserted 1379 // into any context. 1380 if (AddToContext) 1381 CurContext->addDecl(D); 1382 1383 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1384 // are function-local declarations. 1385 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 1386 !D->getDeclContext()->getRedeclContext()->Equals( 1387 D->getLexicalDeclContext()->getRedeclContext()) && 1388 !D->getLexicalDeclContext()->isFunctionOrMethod()) 1389 return; 1390 1391 // Template instantiations should also not be pushed into scope. 1392 if (isa<FunctionDecl>(D) && 1393 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1394 return; 1395 1396 // If this replaces anything in the current scope, 1397 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1398 IEnd = IdResolver.end(); 1399 for (; I != IEnd; ++I) { 1400 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1401 S->RemoveDecl(*I); 1402 IdResolver.RemoveDecl(*I); 1403 1404 // Should only need to replace one decl. 1405 break; 1406 } 1407 } 1408 1409 S->AddDecl(D); 1410 1411 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1412 // Implicitly-generated labels may end up getting generated in an order that 1413 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1414 // the label at the appropriate place in the identifier chain. 1415 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1416 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1417 if (IDC == CurContext) { 1418 if (!S->isDeclScope(*I)) 1419 continue; 1420 } else if (IDC->Encloses(CurContext)) 1421 break; 1422 } 1423 1424 IdResolver.InsertDeclAfter(I, D); 1425 } else { 1426 IdResolver.AddDecl(D); 1427 } 1428 } 1429 1430 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1431 bool AllowInlineNamespace) { 1432 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1433 } 1434 1435 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1436 DeclContext *TargetDC = DC->getPrimaryContext(); 1437 do { 1438 if (DeclContext *ScopeDC = S->getEntity()) 1439 if (ScopeDC->getPrimaryContext() == TargetDC) 1440 return S; 1441 } while ((S = S->getParent())); 1442 1443 return nullptr; 1444 } 1445 1446 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1447 DeclContext*, 1448 ASTContext&); 1449 1450 /// Filters out lookup results that don't fall within the given scope 1451 /// as determined by isDeclInScope. 1452 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1453 bool ConsiderLinkage, 1454 bool AllowInlineNamespace) { 1455 LookupResult::Filter F = R.makeFilter(); 1456 while (F.hasNext()) { 1457 NamedDecl *D = F.next(); 1458 1459 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1460 continue; 1461 1462 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1463 continue; 1464 1465 F.erase(); 1466 } 1467 1468 F.done(); 1469 } 1470 1471 /// We've determined that \p New is a redeclaration of \p Old. Check that they 1472 /// have compatible owning modules. 1473 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { 1474 // FIXME: The Modules TS is not clear about how friend declarations are 1475 // to be treated. It's not meaningful to have different owning modules for 1476 // linkage in redeclarations of the same entity, so for now allow the 1477 // redeclaration and change the owning modules to match. 1478 if (New->getFriendObjectKind() && 1479 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { 1480 New->setLocalOwningModule(Old->getOwningModule()); 1481 makeMergedDefinitionVisible(New); 1482 return false; 1483 } 1484 1485 Module *NewM = New->getOwningModule(); 1486 Module *OldM = Old->getOwningModule(); 1487 1488 if (NewM && NewM->Kind == Module::PrivateModuleFragment) 1489 NewM = NewM->Parent; 1490 if (OldM && OldM->Kind == Module::PrivateModuleFragment) 1491 OldM = OldM->Parent; 1492 1493 if (NewM == OldM) 1494 return false; 1495 1496 bool NewIsModuleInterface = NewM && NewM->isModulePurview(); 1497 bool OldIsModuleInterface = OldM && OldM->isModulePurview(); 1498 if (NewIsModuleInterface || OldIsModuleInterface) { 1499 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: 1500 // if a declaration of D [...] appears in the purview of a module, all 1501 // other such declarations shall appear in the purview of the same module 1502 Diag(New->getLocation(), diag::err_mismatched_owning_module) 1503 << New 1504 << NewIsModuleInterface 1505 << (NewIsModuleInterface ? NewM->getFullModuleName() : "") 1506 << OldIsModuleInterface 1507 << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); 1508 Diag(Old->getLocation(), diag::note_previous_declaration); 1509 New->setInvalidDecl(); 1510 return true; 1511 } 1512 1513 return false; 1514 } 1515 1516 static bool isUsingDecl(NamedDecl *D) { 1517 return isa<UsingShadowDecl>(D) || 1518 isa<UnresolvedUsingTypenameDecl>(D) || 1519 isa<UnresolvedUsingValueDecl>(D); 1520 } 1521 1522 /// Removes using shadow declarations from the lookup results. 1523 static void RemoveUsingDecls(LookupResult &R) { 1524 LookupResult::Filter F = R.makeFilter(); 1525 while (F.hasNext()) 1526 if (isUsingDecl(F.next())) 1527 F.erase(); 1528 1529 F.done(); 1530 } 1531 1532 /// Check for this common pattern: 1533 /// @code 1534 /// class S { 1535 /// S(const S&); // DO NOT IMPLEMENT 1536 /// void operator=(const S&); // DO NOT IMPLEMENT 1537 /// }; 1538 /// @endcode 1539 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1540 // FIXME: Should check for private access too but access is set after we get 1541 // the decl here. 1542 if (D->doesThisDeclarationHaveABody()) 1543 return false; 1544 1545 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1546 return CD->isCopyConstructor(); 1547 return D->isCopyAssignmentOperator(); 1548 } 1549 1550 // We need this to handle 1551 // 1552 // typedef struct { 1553 // void *foo() { return 0; } 1554 // } A; 1555 // 1556 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1557 // for example. If 'A', foo will have external linkage. If we have '*A', 1558 // foo will have no linkage. Since we can't know until we get to the end 1559 // of the typedef, this function finds out if D might have non-external linkage. 1560 // Callers should verify at the end of the TU if it D has external linkage or 1561 // not. 1562 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1563 const DeclContext *DC = D->getDeclContext(); 1564 while (!DC->isTranslationUnit()) { 1565 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1566 if (!RD->hasNameForLinkage()) 1567 return true; 1568 } 1569 DC = DC->getParent(); 1570 } 1571 1572 return !D->isExternallyVisible(); 1573 } 1574 1575 // FIXME: This needs to be refactored; some other isInMainFile users want 1576 // these semantics. 1577 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1578 if (S.TUKind != TU_Complete) 1579 return false; 1580 return S.SourceMgr.isInMainFile(Loc); 1581 } 1582 1583 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1584 assert(D); 1585 1586 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1587 return false; 1588 1589 // Ignore all entities declared within templates, and out-of-line definitions 1590 // of members of class templates. 1591 if (D->getDeclContext()->isDependentContext() || 1592 D->getLexicalDeclContext()->isDependentContext()) 1593 return false; 1594 1595 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1596 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1597 return false; 1598 // A non-out-of-line declaration of a member specialization was implicitly 1599 // instantiated; it's the out-of-line declaration that we're interested in. 1600 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1601 FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) 1602 return false; 1603 1604 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1605 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1606 return false; 1607 } else { 1608 // 'static inline' functions are defined in headers; don't warn. 1609 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1610 return false; 1611 } 1612 1613 if (FD->doesThisDeclarationHaveABody() && 1614 Context.DeclMustBeEmitted(FD)) 1615 return false; 1616 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1617 // Constants and utility variables are defined in headers with internal 1618 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1619 // like "inline".) 1620 if (!isMainFileLoc(*this, VD->getLocation())) 1621 return false; 1622 1623 if (Context.DeclMustBeEmitted(VD)) 1624 return false; 1625 1626 if (VD->isStaticDataMember() && 1627 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1628 return false; 1629 if (VD->isStaticDataMember() && 1630 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1631 VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) 1632 return false; 1633 1634 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) 1635 return false; 1636 } else { 1637 return false; 1638 } 1639 1640 // Only warn for unused decls internal to the translation unit. 1641 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1642 // for inline functions defined in the main source file, for instance. 1643 return mightHaveNonExternalLinkage(D); 1644 } 1645 1646 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1647 if (!D) 1648 return; 1649 1650 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1651 const FunctionDecl *First = FD->getFirstDecl(); 1652 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1653 return; // First should already be in the vector. 1654 } 1655 1656 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1657 const VarDecl *First = VD->getFirstDecl(); 1658 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1659 return; // First should already be in the vector. 1660 } 1661 1662 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1663 UnusedFileScopedDecls.push_back(D); 1664 } 1665 1666 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1667 if (D->isInvalidDecl()) 1668 return false; 1669 1670 bool Referenced = false; 1671 if (auto *DD = dyn_cast<DecompositionDecl>(D)) { 1672 // For a decomposition declaration, warn if none of the bindings are 1673 // referenced, instead of if the variable itself is referenced (which 1674 // it is, by the bindings' expressions). 1675 for (auto *BD : DD->bindings()) { 1676 if (BD->isReferenced()) { 1677 Referenced = true; 1678 break; 1679 } 1680 } 1681 } else if (!D->getDeclName()) { 1682 return false; 1683 } else if (D->isReferenced() || D->isUsed()) { 1684 Referenced = true; 1685 } 1686 1687 if (Referenced || D->hasAttr<UnusedAttr>() || 1688 D->hasAttr<ObjCPreciseLifetimeAttr>()) 1689 return false; 1690 1691 if (isa<LabelDecl>(D)) 1692 return true; 1693 1694 // Except for labels, we only care about unused decls that are local to 1695 // functions. 1696 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1697 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1698 // For dependent types, the diagnostic is deferred. 1699 WithinFunction = 1700 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1701 if (!WithinFunction) 1702 return false; 1703 1704 if (isa<TypedefNameDecl>(D)) 1705 return true; 1706 1707 // White-list anything that isn't a local variable. 1708 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1709 return false; 1710 1711 // Types of valid local variables should be complete, so this should succeed. 1712 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1713 1714 // White-list anything with an __attribute__((unused)) type. 1715 const auto *Ty = VD->getType().getTypePtr(); 1716 1717 // Only look at the outermost level of typedef. 1718 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1719 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1720 return false; 1721 } 1722 1723 // If we failed to complete the type for some reason, or if the type is 1724 // dependent, don't diagnose the variable. 1725 if (Ty->isIncompleteType() || Ty->isDependentType()) 1726 return false; 1727 1728 // Look at the element type to ensure that the warning behaviour is 1729 // consistent for both scalars and arrays. 1730 Ty = Ty->getBaseElementTypeUnsafe(); 1731 1732 if (const TagType *TT = Ty->getAs<TagType>()) { 1733 const TagDecl *Tag = TT->getDecl(); 1734 if (Tag->hasAttr<UnusedAttr>()) 1735 return false; 1736 1737 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1738 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1739 return false; 1740 1741 if (const Expr *Init = VD->getInit()) { 1742 if (const ExprWithCleanups *Cleanups = 1743 dyn_cast<ExprWithCleanups>(Init)) 1744 Init = Cleanups->getSubExpr(); 1745 const CXXConstructExpr *Construct = 1746 dyn_cast<CXXConstructExpr>(Init); 1747 if (Construct && !Construct->isElidable()) { 1748 CXXConstructorDecl *CD = Construct->getConstructor(); 1749 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && 1750 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 1751 return false; 1752 } 1753 } 1754 } 1755 } 1756 1757 // TODO: __attribute__((unused)) templates? 1758 } 1759 1760 return true; 1761 } 1762 1763 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1764 FixItHint &Hint) { 1765 if (isa<LabelDecl>(D)) { 1766 SourceLocation AfterColon = Lexer::findLocationAfterToken( 1767 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), 1768 true); 1769 if (AfterColon.isInvalid()) 1770 return; 1771 Hint = FixItHint::CreateRemoval( 1772 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); 1773 } 1774 } 1775 1776 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1777 if (D->getTypeForDecl()->isDependentType()) 1778 return; 1779 1780 for (auto *TmpD : D->decls()) { 1781 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1782 DiagnoseUnusedDecl(T); 1783 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1784 DiagnoseUnusedNestedTypedefs(R); 1785 } 1786 } 1787 1788 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1789 /// unless they are marked attr(unused). 1790 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1791 if (!ShouldDiagnoseUnusedDecl(D)) 1792 return; 1793 1794 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1795 // typedefs can be referenced later on, so the diagnostics are emitted 1796 // at end-of-translation-unit. 1797 UnusedLocalTypedefNameCandidates.insert(TD); 1798 return; 1799 } 1800 1801 FixItHint Hint; 1802 GenerateFixForUnusedDecl(D, Context, Hint); 1803 1804 unsigned DiagID; 1805 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1806 DiagID = diag::warn_unused_exception_param; 1807 else if (isa<LabelDecl>(D)) 1808 DiagID = diag::warn_unused_label; 1809 else 1810 DiagID = diag::warn_unused_variable; 1811 1812 Diag(D->getLocation(), DiagID) << D << Hint; 1813 } 1814 1815 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1816 // Verify that we have no forward references left. If so, there was a goto 1817 // or address of a label taken, but no definition of it. Label fwd 1818 // definitions are indicated with a null substmt which is also not a resolved 1819 // MS inline assembly label name. 1820 bool Diagnose = false; 1821 if (L->isMSAsmLabel()) 1822 Diagnose = !L->isResolvedMSAsmLabel(); 1823 else 1824 Diagnose = L->getStmt() == nullptr; 1825 if (Diagnose) 1826 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 1827 } 1828 1829 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1830 S->mergeNRVOIntoParent(); 1831 1832 if (S->decl_empty()) return; 1833 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1834 "Scope shouldn't contain decls!"); 1835 1836 for (auto *TmpD : S->decls()) { 1837 assert(TmpD && "This decl didn't get pushed??"); 1838 1839 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1840 NamedDecl *D = cast<NamedDecl>(TmpD); 1841 1842 // Diagnose unused variables in this scope. 1843 if (!S->hasUnrecoverableErrorOccurred()) { 1844 DiagnoseUnusedDecl(D); 1845 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1846 DiagnoseUnusedNestedTypedefs(RD); 1847 } 1848 1849 if (!D->getDeclName()) continue; 1850 1851 // If this was a forward reference to a label, verify it was defined. 1852 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1853 CheckPoppedLabel(LD, *this); 1854 1855 // Remove this name from our lexical scope, and warn on it if we haven't 1856 // already. 1857 IdResolver.RemoveDecl(D); 1858 auto ShadowI = ShadowingDecls.find(D); 1859 if (ShadowI != ShadowingDecls.end()) { 1860 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { 1861 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) 1862 << D << FD << FD->getParent(); 1863 Diag(FD->getLocation(), diag::note_previous_declaration); 1864 } 1865 ShadowingDecls.erase(ShadowI); 1866 } 1867 } 1868 } 1869 1870 /// Look for an Objective-C class in the translation unit. 1871 /// 1872 /// \param Id The name of the Objective-C class we're looking for. If 1873 /// typo-correction fixes this name, the Id will be updated 1874 /// to the fixed name. 1875 /// 1876 /// \param IdLoc The location of the name in the translation unit. 1877 /// 1878 /// \param DoTypoCorrection If true, this routine will attempt typo correction 1879 /// if there is no class with the given name. 1880 /// 1881 /// \returns The declaration of the named Objective-C class, or NULL if the 1882 /// class could not be found. 1883 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 1884 SourceLocation IdLoc, 1885 bool DoTypoCorrection) { 1886 // The third "scope" argument is 0 since we aren't enabling lazy built-in 1887 // creation from this context. 1888 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 1889 1890 if (!IDecl && DoTypoCorrection) { 1891 // Perform typo correction at the given location, but only if we 1892 // find an Objective-C class name. 1893 DeclFilterCCC<ObjCInterfaceDecl> CCC{}; 1894 if (TypoCorrection C = 1895 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, 1896 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 1897 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 1898 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 1899 Id = IDecl->getIdentifier(); 1900 } 1901 } 1902 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 1903 // This routine must always return a class definition, if any. 1904 if (Def && Def->getDefinition()) 1905 Def = Def->getDefinition(); 1906 return Def; 1907 } 1908 1909 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 1910 /// from S, where a non-field would be declared. This routine copes 1911 /// with the difference between C and C++ scoping rules in structs and 1912 /// unions. For example, the following code is well-formed in C but 1913 /// ill-formed in C++: 1914 /// @code 1915 /// struct S6 { 1916 /// enum { BAR } e; 1917 /// }; 1918 /// 1919 /// void test_S6() { 1920 /// struct S6 a; 1921 /// a.e = BAR; 1922 /// } 1923 /// @endcode 1924 /// For the declaration of BAR, this routine will return a different 1925 /// scope. The scope S will be the scope of the unnamed enumeration 1926 /// within S6. In C++, this routine will return the scope associated 1927 /// with S6, because the enumeration's scope is a transparent 1928 /// context but structures can contain non-field names. In C, this 1929 /// routine will return the translation unit scope, since the 1930 /// enumeration's scope is a transparent context and structures cannot 1931 /// contain non-field names. 1932 Scope *Sema::getNonFieldDeclScope(Scope *S) { 1933 while (((S->getFlags() & Scope::DeclScope) == 0) || 1934 (S->getEntity() && S->getEntity()->isTransparentContext()) || 1935 (S->isClassScope() && !getLangOpts().CPlusPlus)) 1936 S = S->getParent(); 1937 return S; 1938 } 1939 1940 /// Looks up the declaration of "struct objc_super" and 1941 /// saves it for later use in building builtin declaration of 1942 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 1943 /// pre-existing declaration exists no action takes place. 1944 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 1945 IdentifierInfo *II) { 1946 if (!II->isStr("objc_msgSendSuper")) 1947 return; 1948 ASTContext &Context = ThisSema.Context; 1949 1950 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 1951 SourceLocation(), Sema::LookupTagName); 1952 ThisSema.LookupName(Result, S); 1953 if (Result.getResultKind() == LookupResult::Found) 1954 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 1955 Context.setObjCSuperType(Context.getTagDeclType(TD)); 1956 } 1957 1958 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, 1959 ASTContext::GetBuiltinTypeError Error) { 1960 switch (Error) { 1961 case ASTContext::GE_None: 1962 return ""; 1963 case ASTContext::GE_Missing_type: 1964 return BuiltinInfo.getHeaderName(ID); 1965 case ASTContext::GE_Missing_stdio: 1966 return "stdio.h"; 1967 case ASTContext::GE_Missing_setjmp: 1968 return "setjmp.h"; 1969 case ASTContext::GE_Missing_ucontext: 1970 return "ucontext.h"; 1971 } 1972 llvm_unreachable("unhandled error kind"); 1973 } 1974 1975 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 1976 /// file scope. lazily create a decl for it. ForRedeclaration is true 1977 /// if we're creating this built-in in anticipation of redeclaring the 1978 /// built-in. 1979 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 1980 Scope *S, bool ForRedeclaration, 1981 SourceLocation Loc) { 1982 LookupPredefedObjCSuperType(*this, S, II); 1983 1984 ASTContext::GetBuiltinTypeError Error; 1985 QualType R = Context.GetBuiltinType(ID, Error); 1986 if (Error) { 1987 if (!ForRedeclaration) 1988 return nullptr; 1989 1990 // If we have a builtin without an associated type we should not emit a 1991 // warning when we were not able to find a type for it. 1992 if (Error == ASTContext::GE_Missing_type) 1993 return nullptr; 1994 1995 // If we could not find a type for setjmp it is because the jmp_buf type was 1996 // not defined prior to the setjmp declaration. 1997 if (Error == ASTContext::GE_Missing_setjmp) { 1998 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) 1999 << Context.BuiltinInfo.getName(ID); 2000 return nullptr; 2001 } 2002 2003 // Generally, we emit a warning that the declaration requires the 2004 // appropriate header. 2005 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 2006 << getHeaderName(Context.BuiltinInfo, ID, Error) 2007 << Context.BuiltinInfo.getName(ID); 2008 return nullptr; 2009 } 2010 2011 if (!ForRedeclaration && 2012 (Context.BuiltinInfo.isPredefinedLibFunction(ID) || 2013 Context.BuiltinInfo.isHeaderDependentFunction(ID))) { 2014 Diag(Loc, diag::ext_implicit_lib_function_decl) 2015 << Context.BuiltinInfo.getName(ID) << R; 2016 if (Context.BuiltinInfo.getHeaderName(ID) && 2017 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 2018 Diag(Loc, diag::note_include_header_or_declare) 2019 << Context.BuiltinInfo.getHeaderName(ID) 2020 << Context.BuiltinInfo.getName(ID); 2021 } 2022 2023 if (R.isNull()) 2024 return nullptr; 2025 2026 DeclContext *Parent = Context.getTranslationUnitDecl(); 2027 if (getLangOpts().CPlusPlus) { 2028 LinkageSpecDecl *CLinkageDecl = 2029 LinkageSpecDecl::Create(Context, Parent, Loc, Loc, 2030 LinkageSpecDecl::lang_c, false); 2031 CLinkageDecl->setImplicit(); 2032 Parent->addDecl(CLinkageDecl); 2033 Parent = CLinkageDecl; 2034 } 2035 2036 FunctionDecl *New = FunctionDecl::Create(Context, 2037 Parent, 2038 Loc, Loc, II, R, /*TInfo=*/nullptr, 2039 SC_Extern, 2040 false, 2041 R->isFunctionProtoType()); 2042 New->setImplicit(); 2043 2044 // Create Decl objects for each parameter, adding them to the 2045 // FunctionDecl. 2046 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { 2047 SmallVector<ParmVarDecl*, 16> Params; 2048 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2049 ParmVarDecl *parm = 2050 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), 2051 nullptr, FT->getParamType(i), /*TInfo=*/nullptr, 2052 SC_None, nullptr); 2053 parm->setScopeInfo(0, i); 2054 Params.push_back(parm); 2055 } 2056 New->setParams(Params); 2057 } 2058 2059 AddKnownFunctionAttributes(New); 2060 RegisterLocallyScopedExternCDecl(New, S); 2061 2062 // TUScope is the translation-unit scope to insert this function into. 2063 // FIXME: This is hideous. We need to teach PushOnScopeChains to 2064 // relate Scopes to DeclContexts, and probably eliminate CurContext 2065 // entirely, but we're not there yet. 2066 DeclContext *SavedContext = CurContext; 2067 CurContext = Parent; 2068 PushOnScopeChains(New, TUScope); 2069 CurContext = SavedContext; 2070 return New; 2071 } 2072 2073 /// Typedef declarations don't have linkage, but they still denote the same 2074 /// entity if their types are the same. 2075 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 2076 /// isSameEntity. 2077 static void filterNonConflictingPreviousTypedefDecls(Sema &S, 2078 TypedefNameDecl *Decl, 2079 LookupResult &Previous) { 2080 // This is only interesting when modules are enabled. 2081 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) 2082 return; 2083 2084 // Empty sets are uninteresting. 2085 if (Previous.empty()) 2086 return; 2087 2088 LookupResult::Filter Filter = Previous.makeFilter(); 2089 while (Filter.hasNext()) { 2090 NamedDecl *Old = Filter.next(); 2091 2092 // Non-hidden declarations are never ignored. 2093 if (S.isVisible(Old)) 2094 continue; 2095 2096 // Declarations of the same entity are not ignored, even if they have 2097 // different linkages. 2098 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2099 if (S.Context.hasSameType(OldTD->getUnderlyingType(), 2100 Decl->getUnderlyingType())) 2101 continue; 2102 2103 // If both declarations give a tag declaration a typedef name for linkage 2104 // purposes, then they declare the same entity. 2105 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && 2106 Decl->getAnonDeclWithTypedefName()) 2107 continue; 2108 } 2109 2110 Filter.erase(); 2111 } 2112 2113 Filter.done(); 2114 } 2115 2116 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 2117 QualType OldType; 2118 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 2119 OldType = OldTypedef->getUnderlyingType(); 2120 else 2121 OldType = Context.getTypeDeclType(Old); 2122 QualType NewType = New->getUnderlyingType(); 2123 2124 if (NewType->isVariablyModifiedType()) { 2125 // Must not redefine a typedef with a variably-modified type. 2126 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2127 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 2128 << Kind << NewType; 2129 if (Old->getLocation().isValid()) 2130 notePreviousDefinition(Old, New->getLocation()); 2131 New->setInvalidDecl(); 2132 return true; 2133 } 2134 2135 if (OldType != NewType && 2136 !OldType->isDependentType() && 2137 !NewType->isDependentType() && 2138 !Context.hasSameType(OldType, NewType)) { 2139 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2140 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 2141 << Kind << NewType << OldType; 2142 if (Old->getLocation().isValid()) 2143 notePreviousDefinition(Old, New->getLocation()); 2144 New->setInvalidDecl(); 2145 return true; 2146 } 2147 return false; 2148 } 2149 2150 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 2151 /// same name and scope as a previous declaration 'Old'. Figure out 2152 /// how to resolve this situation, merging decls or emitting 2153 /// diagnostics as appropriate. If there was an error, set New to be invalid. 2154 /// 2155 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, 2156 LookupResult &OldDecls) { 2157 // If the new decl is known invalid already, don't bother doing any 2158 // merging checks. 2159 if (New->isInvalidDecl()) return; 2160 2161 // Allow multiple definitions for ObjC built-in typedefs. 2162 // FIXME: Verify the underlying types are equivalent! 2163 if (getLangOpts().ObjC) { 2164 const IdentifierInfo *TypeID = New->getIdentifier(); 2165 switch (TypeID->getLength()) { 2166 default: break; 2167 case 2: 2168 { 2169 if (!TypeID->isStr("id")) 2170 break; 2171 QualType T = New->getUnderlyingType(); 2172 if (!T->isPointerType()) 2173 break; 2174 if (!T->isVoidPointerType()) { 2175 QualType PT = T->getAs<PointerType>()->getPointeeType(); 2176 if (!PT->isStructureType()) 2177 break; 2178 } 2179 Context.setObjCIdRedefinitionType(T); 2180 // Install the built-in type for 'id', ignoring the current definition. 2181 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 2182 return; 2183 } 2184 case 5: 2185 if (!TypeID->isStr("Class")) 2186 break; 2187 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 2188 // Install the built-in type for 'Class', ignoring the current definition. 2189 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 2190 return; 2191 case 3: 2192 if (!TypeID->isStr("SEL")) 2193 break; 2194 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 2195 // Install the built-in type for 'SEL', ignoring the current definition. 2196 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 2197 return; 2198 } 2199 // Fall through - the typedef name was not a builtin type. 2200 } 2201 2202 // Verify the old decl was also a type. 2203 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 2204 if (!Old) { 2205 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2206 << New->getDeclName(); 2207 2208 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 2209 if (OldD->getLocation().isValid()) 2210 notePreviousDefinition(OldD, New->getLocation()); 2211 2212 return New->setInvalidDecl(); 2213 } 2214 2215 // If the old declaration is invalid, just give up here. 2216 if (Old->isInvalidDecl()) 2217 return New->setInvalidDecl(); 2218 2219 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2220 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); 2221 auto *NewTag = New->getAnonDeclWithTypedefName(); 2222 NamedDecl *Hidden = nullptr; 2223 if (OldTag && NewTag && 2224 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && 2225 !hasVisibleDefinition(OldTag, &Hidden)) { 2226 // There is a definition of this tag, but it is not visible. Use it 2227 // instead of our tag. 2228 New->setTypeForDecl(OldTD->getTypeForDecl()); 2229 if (OldTD->isModed()) 2230 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), 2231 OldTD->getUnderlyingType()); 2232 else 2233 New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); 2234 2235 // Make the old tag definition visible. 2236 makeMergedDefinitionVisible(Hidden); 2237 2238 // If this was an unscoped enumeration, yank all of its enumerators 2239 // out of the scope. 2240 if (isa<EnumDecl>(NewTag)) { 2241 Scope *EnumScope = getNonFieldDeclScope(S); 2242 for (auto *D : NewTag->decls()) { 2243 auto *ED = cast<EnumConstantDecl>(D); 2244 assert(EnumScope->isDeclScope(ED)); 2245 EnumScope->RemoveDecl(ED); 2246 IdResolver.RemoveDecl(ED); 2247 ED->getLexicalDeclContext()->removeDecl(ED); 2248 } 2249 } 2250 } 2251 } 2252 2253 // If the typedef types are not identical, reject them in all languages and 2254 // with any extensions enabled. 2255 if (isIncompatibleTypedef(Old, New)) 2256 return; 2257 2258 // The types match. Link up the redeclaration chain and merge attributes if 2259 // the old declaration was a typedef. 2260 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 2261 New->setPreviousDecl(Typedef); 2262 mergeDeclAttributes(New, Old); 2263 } 2264 2265 if (getLangOpts().MicrosoftExt) 2266 return; 2267 2268 if (getLangOpts().CPlusPlus) { 2269 // C++ [dcl.typedef]p2: 2270 // In a given non-class scope, a typedef specifier can be used to 2271 // redefine the name of any type declared in that scope to refer 2272 // to the type to which it already refers. 2273 if (!isa<CXXRecordDecl>(CurContext)) 2274 return; 2275 2276 // C++0x [dcl.typedef]p4: 2277 // In a given class scope, a typedef specifier can be used to redefine 2278 // any class-name declared in that scope that is not also a typedef-name 2279 // to refer to the type to which it already refers. 2280 // 2281 // This wording came in via DR424, which was a correction to the 2282 // wording in DR56, which accidentally banned code like: 2283 // 2284 // struct S { 2285 // typedef struct A { } A; 2286 // }; 2287 // 2288 // in the C++03 standard. We implement the C++0x semantics, which 2289 // allow the above but disallow 2290 // 2291 // struct S { 2292 // typedef int I; 2293 // typedef int I; 2294 // }; 2295 // 2296 // since that was the intent of DR56. 2297 if (!isa<TypedefNameDecl>(Old)) 2298 return; 2299 2300 Diag(New->getLocation(), diag::err_redefinition) 2301 << New->getDeclName(); 2302 notePreviousDefinition(Old, New->getLocation()); 2303 return New->setInvalidDecl(); 2304 } 2305 2306 // Modules always permit redefinition of typedefs, as does C11. 2307 if (getLangOpts().Modules || getLangOpts().C11) 2308 return; 2309 2310 // If we have a redefinition of a typedef in C, emit a warning. This warning 2311 // is normally mapped to an error, but can be controlled with 2312 // -Wtypedef-redefinition. If either the original or the redefinition is 2313 // in a system header, don't emit this for compatibility with GCC. 2314 if (getDiagnostics().getSuppressSystemWarnings() && 2315 // Some standard types are defined implicitly in Clang (e.g. OpenCL). 2316 (Old->isImplicit() || 2317 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 2318 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 2319 return; 2320 2321 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 2322 << New->getDeclName(); 2323 notePreviousDefinition(Old, New->getLocation()); 2324 } 2325 2326 /// DeclhasAttr - returns true if decl Declaration already has the target 2327 /// attribute. 2328 static bool DeclHasAttr(const Decl *D, const Attr *A) { 2329 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 2330 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 2331 for (const auto *i : D->attrs()) 2332 if (i->getKind() == A->getKind()) { 2333 if (Ann) { 2334 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 2335 return true; 2336 continue; 2337 } 2338 // FIXME: Don't hardcode this check 2339 if (OA && isa<OwnershipAttr>(i)) 2340 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 2341 return true; 2342 } 2343 2344 return false; 2345 } 2346 2347 static bool isAttributeTargetADefinition(Decl *D) { 2348 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2349 return VD->isThisDeclarationADefinition(); 2350 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2351 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2352 return true; 2353 } 2354 2355 /// Merge alignment attributes from \p Old to \p New, taking into account the 2356 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2357 /// 2358 /// \return \c true if any attributes were added to \p New. 2359 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2360 // Look for alignas attributes on Old, and pick out whichever attribute 2361 // specifies the strictest alignment requirement. 2362 AlignedAttr *OldAlignasAttr = nullptr; 2363 AlignedAttr *OldStrictestAlignAttr = nullptr; 2364 unsigned OldAlign = 0; 2365 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2366 // FIXME: We have no way of representing inherited dependent alignments 2367 // in a case like: 2368 // template<int A, int B> struct alignas(A) X; 2369 // template<int A, int B> struct alignas(B) X {}; 2370 // For now, we just ignore any alignas attributes which are not on the 2371 // definition in such a case. 2372 if (I->isAlignmentDependent()) 2373 return false; 2374 2375 if (I->isAlignas()) 2376 OldAlignasAttr = I; 2377 2378 unsigned Align = I->getAlignment(S.Context); 2379 if (Align > OldAlign) { 2380 OldAlign = Align; 2381 OldStrictestAlignAttr = I; 2382 } 2383 } 2384 2385 // Look for alignas attributes on New. 2386 AlignedAttr *NewAlignasAttr = nullptr; 2387 unsigned NewAlign = 0; 2388 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2389 if (I->isAlignmentDependent()) 2390 return false; 2391 2392 if (I->isAlignas()) 2393 NewAlignasAttr = I; 2394 2395 unsigned Align = I->getAlignment(S.Context); 2396 if (Align > NewAlign) 2397 NewAlign = Align; 2398 } 2399 2400 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2401 // Both declarations have 'alignas' attributes. We require them to match. 2402 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2403 // fall short. (If two declarations both have alignas, they must both match 2404 // every definition, and so must match each other if there is a definition.) 2405 2406 // If either declaration only contains 'alignas(0)' specifiers, then it 2407 // specifies the natural alignment for the type. 2408 if (OldAlign == 0 || NewAlign == 0) { 2409 QualType Ty; 2410 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2411 Ty = VD->getType(); 2412 else 2413 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2414 2415 if (OldAlign == 0) 2416 OldAlign = S.Context.getTypeAlign(Ty); 2417 if (NewAlign == 0) 2418 NewAlign = S.Context.getTypeAlign(Ty); 2419 } 2420 2421 if (OldAlign != NewAlign) { 2422 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2423 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2424 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2425 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2426 } 2427 } 2428 2429 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2430 // C++11 [dcl.align]p6: 2431 // if any declaration of an entity has an alignment-specifier, 2432 // every defining declaration of that entity shall specify an 2433 // equivalent alignment. 2434 // C11 6.7.5/7: 2435 // If the definition of an object does not have an alignment 2436 // specifier, any other declaration of that object shall also 2437 // have no alignment specifier. 2438 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2439 << OldAlignasAttr; 2440 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2441 << OldAlignasAttr; 2442 } 2443 2444 bool AnyAdded = false; 2445 2446 // Ensure we have an attribute representing the strictest alignment. 2447 if (OldAlign > NewAlign) { 2448 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2449 Clone->setInherited(true); 2450 New->addAttr(Clone); 2451 AnyAdded = true; 2452 } 2453 2454 // Ensure we have an alignas attribute if the old declaration had one. 2455 if (OldAlignasAttr && !NewAlignasAttr && 2456 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2457 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2458 Clone->setInherited(true); 2459 New->addAttr(Clone); 2460 AnyAdded = true; 2461 } 2462 2463 return AnyAdded; 2464 } 2465 2466 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2467 const InheritableAttr *Attr, 2468 Sema::AvailabilityMergeKind AMK) { 2469 // This function copies an attribute Attr from a previous declaration to the 2470 // new declaration D if the new declaration doesn't itself have that attribute 2471 // yet or if that attribute allows duplicates. 2472 // If you're adding a new attribute that requires logic different from 2473 // "use explicit attribute on decl if present, else use attribute from 2474 // previous decl", for example if the attribute needs to be consistent 2475 // between redeclarations, you need to call a custom merge function here. 2476 InheritableAttr *NewAttr = nullptr; 2477 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex(); 2478 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2479 NewAttr = S.mergeAvailabilityAttr( 2480 D, AA->getRange(), AA->getPlatform(), AA->isImplicit(), 2481 AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(), 2482 AA->getUnavailable(), AA->getMessage(), AA->getStrict(), 2483 AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex); 2484 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2485 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2486 AttrSpellingListIndex); 2487 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2488 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(), 2489 AttrSpellingListIndex); 2490 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2491 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(), 2492 AttrSpellingListIndex); 2493 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2494 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(), 2495 AttrSpellingListIndex); 2496 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2497 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(), 2498 FA->getFormatIdx(), FA->getFirstArg(), 2499 AttrSpellingListIndex); 2500 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2501 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(), 2502 AttrSpellingListIndex); 2503 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) 2504 NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(), 2505 AttrSpellingListIndex); 2506 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2507 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(), 2508 AttrSpellingListIndex, 2509 IA->getSemanticSpelling()); 2510 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2511 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(), 2512 &S.Context.Idents.get(AA->getSpelling()), 2513 AttrSpellingListIndex); 2514 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && 2515 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || 2516 isa<CUDAGlobalAttr>(Attr))) { 2517 // CUDA target attributes are part of function signature for 2518 // overloading purposes and must not be merged. 2519 return false; 2520 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2521 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex); 2522 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2523 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex); 2524 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) 2525 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); 2526 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) 2527 NewAttr = S.mergeCommonAttr(D, *CommonA); 2528 else if (isa<AlignedAttr>(Attr)) 2529 // AlignedAttrs are handled separately, because we need to handle all 2530 // such attributes on a declaration at the same time. 2531 NewAttr = nullptr; 2532 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && 2533 (AMK == Sema::AMK_Override || 2534 AMK == Sema::AMK_ProtocolImplementation)) 2535 NewAttr = nullptr; 2536 else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) 2537 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex, 2538 UA->getGuid()); 2539 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr)) 2540 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA); 2541 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr)) 2542 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA); 2543 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) 2544 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2545 2546 if (NewAttr) { 2547 NewAttr->setInherited(true); 2548 D->addAttr(NewAttr); 2549 if (isa<MSInheritanceAttr>(NewAttr)) 2550 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 2551 return true; 2552 } 2553 2554 return false; 2555 } 2556 2557 static const NamedDecl *getDefinition(const Decl *D) { 2558 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2559 return TD->getDefinition(); 2560 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2561 const VarDecl *Def = VD->getDefinition(); 2562 if (Def) 2563 return Def; 2564 return VD->getActingDefinition(); 2565 } 2566 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 2567 return FD->getDefinition(); 2568 return nullptr; 2569 } 2570 2571 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2572 for (const auto *Attribute : D->attrs()) 2573 if (Attribute->getKind() == Kind) 2574 return true; 2575 return false; 2576 } 2577 2578 /// checkNewAttributesAfterDef - If we already have a definition, check that 2579 /// there are no new attributes in this declaration. 2580 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2581 if (!New->hasAttrs()) 2582 return; 2583 2584 const NamedDecl *Def = getDefinition(Old); 2585 if (!Def || Def == New) 2586 return; 2587 2588 AttrVec &NewAttributes = New->getAttrs(); 2589 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2590 const Attr *NewAttribute = NewAttributes[I]; 2591 2592 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { 2593 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { 2594 Sema::SkipBodyInfo SkipBody; 2595 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); 2596 2597 // If we're skipping this definition, drop the "alias" attribute. 2598 if (SkipBody.ShouldSkip) { 2599 NewAttributes.erase(NewAttributes.begin() + I); 2600 --E; 2601 continue; 2602 } 2603 } else { 2604 VarDecl *VD = cast<VarDecl>(New); 2605 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2606 VarDecl::TentativeDefinition 2607 ? diag::err_alias_after_tentative 2608 : diag::err_redefinition; 2609 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2610 if (Diag == diag::err_redefinition) 2611 S.notePreviousDefinition(Def, VD->getLocation()); 2612 else 2613 S.Diag(Def->getLocation(), diag::note_previous_definition); 2614 VD->setInvalidDecl(); 2615 } 2616 ++I; 2617 continue; 2618 } 2619 2620 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2621 // Tentative definitions are only interesting for the alias check above. 2622 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2623 ++I; 2624 continue; 2625 } 2626 } 2627 2628 if (hasAttribute(Def, NewAttribute->getKind())) { 2629 ++I; 2630 continue; // regular attr merging will take care of validating this. 2631 } 2632 2633 if (isa<C11NoReturnAttr>(NewAttribute)) { 2634 // C's _Noreturn is allowed to be added to a function after it is defined. 2635 ++I; 2636 continue; 2637 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2638 if (AA->isAlignas()) { 2639 // C++11 [dcl.align]p6: 2640 // if any declaration of an entity has an alignment-specifier, 2641 // every defining declaration of that entity shall specify an 2642 // equivalent alignment. 2643 // C11 6.7.5/7: 2644 // If the definition of an object does not have an alignment 2645 // specifier, any other declaration of that object shall also 2646 // have no alignment specifier. 2647 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2648 << AA; 2649 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2650 << AA; 2651 NewAttributes.erase(NewAttributes.begin() + I); 2652 --E; 2653 continue; 2654 } 2655 } 2656 2657 S.Diag(NewAttribute->getLocation(), 2658 diag::warn_attribute_precede_definition); 2659 S.Diag(Def->getLocation(), diag::note_previous_definition); 2660 NewAttributes.erase(NewAttributes.begin() + I); 2661 --E; 2662 } 2663 } 2664 2665 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2666 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2667 AvailabilityMergeKind AMK) { 2668 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2669 UsedAttr *NewAttr = OldAttr->clone(Context); 2670 NewAttr->setInherited(true); 2671 New->addAttr(NewAttr); 2672 } 2673 2674 if (!Old->hasAttrs() && !New->hasAttrs()) 2675 return; 2676 2677 // Attributes declared post-definition are currently ignored. 2678 checkNewAttributesAfterDef(*this, New, Old); 2679 2680 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { 2681 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { 2682 if (OldA->getLabel() != NewA->getLabel()) { 2683 // This redeclaration changes __asm__ label. 2684 Diag(New->getLocation(), diag::err_different_asm_label); 2685 Diag(OldA->getLocation(), diag::note_previous_declaration); 2686 } 2687 } else if (Old->isUsed()) { 2688 // This redeclaration adds an __asm__ label to a declaration that has 2689 // already been ODR-used. 2690 Diag(New->getLocation(), diag::err_late_asm_label_name) 2691 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); 2692 } 2693 } 2694 2695 // Re-declaration cannot add abi_tag's. 2696 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { 2697 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { 2698 for (const auto &NewTag : NewAbiTagAttr->tags()) { 2699 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), 2700 NewTag) == OldAbiTagAttr->tags_end()) { 2701 Diag(NewAbiTagAttr->getLocation(), 2702 diag::err_new_abi_tag_on_redeclaration) 2703 << NewTag; 2704 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); 2705 } 2706 } 2707 } else { 2708 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); 2709 Diag(Old->getLocation(), diag::note_previous_declaration); 2710 } 2711 } 2712 2713 // This redeclaration adds a section attribute. 2714 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { 2715 if (auto *VD = dyn_cast<VarDecl>(New)) { 2716 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { 2717 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); 2718 Diag(Old->getLocation(), diag::note_previous_declaration); 2719 } 2720 } 2721 } 2722 2723 // Redeclaration adds code-seg attribute. 2724 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 2725 if (NewCSA && !Old->hasAttr<CodeSegAttr>() && 2726 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { 2727 Diag(New->getLocation(), diag::warn_mismatched_section) 2728 << 0 /*codeseg*/; 2729 Diag(Old->getLocation(), diag::note_previous_declaration); 2730 } 2731 2732 if (!Old->hasAttrs()) 2733 return; 2734 2735 bool foundAny = New->hasAttrs(); 2736 2737 // Ensure that any moving of objects within the allocated map is done before 2738 // we process them. 2739 if (!foundAny) New->setAttrs(AttrVec()); 2740 2741 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 2742 // Ignore deprecated/unavailable/availability attributes if requested. 2743 AvailabilityMergeKind LocalAMK = AMK_None; 2744 if (isa<DeprecatedAttr>(I) || 2745 isa<UnavailableAttr>(I) || 2746 isa<AvailabilityAttr>(I)) { 2747 switch (AMK) { 2748 case AMK_None: 2749 continue; 2750 2751 case AMK_Redeclaration: 2752 case AMK_Override: 2753 case AMK_ProtocolImplementation: 2754 LocalAMK = AMK; 2755 break; 2756 } 2757 } 2758 2759 // Already handled. 2760 if (isa<UsedAttr>(I)) 2761 continue; 2762 2763 if (mergeDeclAttribute(*this, New, I, LocalAMK)) 2764 foundAny = true; 2765 } 2766 2767 if (mergeAlignedAttrs(*this, New, Old)) 2768 foundAny = true; 2769 2770 if (!foundAny) New->dropAttrs(); 2771 } 2772 2773 /// mergeParamDeclAttributes - Copy attributes from the old parameter 2774 /// to the new one. 2775 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 2776 const ParmVarDecl *oldDecl, 2777 Sema &S) { 2778 // C++11 [dcl.attr.depend]p2: 2779 // The first declaration of a function shall specify the 2780 // carries_dependency attribute for its declarator-id if any declaration 2781 // of the function specifies the carries_dependency attribute. 2782 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 2783 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 2784 S.Diag(CDA->getLocation(), 2785 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 2786 // Find the first declaration of the parameter. 2787 // FIXME: Should we build redeclaration chains for function parameters? 2788 const FunctionDecl *FirstFD = 2789 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 2790 const ParmVarDecl *FirstVD = 2791 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 2792 S.Diag(FirstVD->getLocation(), 2793 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 2794 } 2795 2796 if (!oldDecl->hasAttrs()) 2797 return; 2798 2799 bool foundAny = newDecl->hasAttrs(); 2800 2801 // Ensure that any moving of objects within the allocated map is 2802 // done before we process them. 2803 if (!foundAny) newDecl->setAttrs(AttrVec()); 2804 2805 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 2806 if (!DeclHasAttr(newDecl, I)) { 2807 InheritableAttr *newAttr = 2808 cast<InheritableParamAttr>(I->clone(S.Context)); 2809 newAttr->setInherited(true); 2810 newDecl->addAttr(newAttr); 2811 foundAny = true; 2812 } 2813 } 2814 2815 if (!foundAny) newDecl->dropAttrs(); 2816 } 2817 2818 static void mergeParamDeclTypes(ParmVarDecl *NewParam, 2819 const ParmVarDecl *OldParam, 2820 Sema &S) { 2821 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { 2822 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { 2823 if (*Oldnullability != *Newnullability) { 2824 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) 2825 << DiagNullabilityKind( 2826 *Newnullability, 2827 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2828 != 0)) 2829 << DiagNullabilityKind( 2830 *Oldnullability, 2831 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 2832 != 0)); 2833 S.Diag(OldParam->getLocation(), diag::note_previous_declaration); 2834 } 2835 } else { 2836 QualType NewT = NewParam->getType(); 2837 NewT = S.Context.getAttributedType( 2838 AttributedType::getNullabilityAttrKind(*Oldnullability), 2839 NewT, NewT); 2840 NewParam->setType(NewT); 2841 } 2842 } 2843 } 2844 2845 namespace { 2846 2847 /// Used in MergeFunctionDecl to keep track of function parameters in 2848 /// C. 2849 struct GNUCompatibleParamWarning { 2850 ParmVarDecl *OldParm; 2851 ParmVarDecl *NewParm; 2852 QualType PromotedType; 2853 }; 2854 2855 } // end anonymous namespace 2856 2857 /// getSpecialMember - get the special member enum for a method. 2858 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) { 2859 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) { 2860 if (Ctor->isDefaultConstructor()) 2861 return Sema::CXXDefaultConstructor; 2862 2863 if (Ctor->isCopyConstructor()) 2864 return Sema::CXXCopyConstructor; 2865 2866 if (Ctor->isMoveConstructor()) 2867 return Sema::CXXMoveConstructor; 2868 } else if (isa<CXXDestructorDecl>(MD)) { 2869 return Sema::CXXDestructor; 2870 } else if (MD->isCopyAssignmentOperator()) { 2871 return Sema::CXXCopyAssignment; 2872 } else if (MD->isMoveAssignmentOperator()) { 2873 return Sema::CXXMoveAssignment; 2874 } 2875 2876 return Sema::CXXInvalid; 2877 } 2878 2879 // Determine whether the previous declaration was a definition, implicit 2880 // declaration, or a declaration. 2881 template <typename T> 2882 static std::pair<diag::kind, SourceLocation> 2883 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 2884 diag::kind PrevDiag; 2885 SourceLocation OldLocation = Old->getLocation(); 2886 if (Old->isThisDeclarationADefinition()) 2887 PrevDiag = diag::note_previous_definition; 2888 else if (Old->isImplicit()) { 2889 PrevDiag = diag::note_previous_implicit_declaration; 2890 if (OldLocation.isInvalid()) 2891 OldLocation = New->getLocation(); 2892 } else 2893 PrevDiag = diag::note_previous_declaration; 2894 return std::make_pair(PrevDiag, OldLocation); 2895 } 2896 2897 /// canRedefineFunction - checks if a function can be redefined. Currently, 2898 /// only extern inline functions can be redefined, and even then only in 2899 /// GNU89 mode. 2900 static bool canRedefineFunction(const FunctionDecl *FD, 2901 const LangOptions& LangOpts) { 2902 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 2903 !LangOpts.CPlusPlus && 2904 FD->isInlineSpecified() && 2905 FD->getStorageClass() == SC_Extern); 2906 } 2907 2908 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 2909 const AttributedType *AT = T->getAs<AttributedType>(); 2910 while (AT && !AT->isCallingConv()) 2911 AT = AT->getModifiedType()->getAs<AttributedType>(); 2912 return AT; 2913 } 2914 2915 template <typename T> 2916 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 2917 const DeclContext *DC = Old->getDeclContext(); 2918 if (DC->isRecord()) 2919 return false; 2920 2921 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 2922 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 2923 return true; 2924 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 2925 return true; 2926 return false; 2927 } 2928 2929 template<typename T> static bool isExternC(T *D) { return D->isExternC(); } 2930 static bool isExternC(VarTemplateDecl *) { return false; } 2931 2932 /// Check whether a redeclaration of an entity introduced by a 2933 /// using-declaration is valid, given that we know it's not an overload 2934 /// (nor a hidden tag declaration). 2935 template<typename ExpectedDecl> 2936 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, 2937 ExpectedDecl *New) { 2938 // C++11 [basic.scope.declarative]p4: 2939 // Given a set of declarations in a single declarative region, each of 2940 // which specifies the same unqualified name, 2941 // -- they shall all refer to the same entity, or all refer to functions 2942 // and function templates; or 2943 // -- exactly one declaration shall declare a class name or enumeration 2944 // name that is not a typedef name and the other declarations shall all 2945 // refer to the same variable or enumerator, or all refer to functions 2946 // and function templates; in this case the class name or enumeration 2947 // name is hidden (3.3.10). 2948 2949 // C++11 [namespace.udecl]p14: 2950 // If a function declaration in namespace scope or block scope has the 2951 // same name and the same parameter-type-list as a function introduced 2952 // by a using-declaration, and the declarations do not declare the same 2953 // function, the program is ill-formed. 2954 2955 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); 2956 if (Old && 2957 !Old->getDeclContext()->getRedeclContext()->Equals( 2958 New->getDeclContext()->getRedeclContext()) && 2959 !(isExternC(Old) && isExternC(New))) 2960 Old = nullptr; 2961 2962 if (!Old) { 2963 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 2964 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); 2965 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 2966 return true; 2967 } 2968 return false; 2969 } 2970 2971 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, 2972 const FunctionDecl *B) { 2973 assert(A->getNumParams() == B->getNumParams()); 2974 2975 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { 2976 const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); 2977 const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); 2978 if (AttrA == AttrB) 2979 return true; 2980 return AttrA && AttrB && AttrA->getType() == AttrB->getType() && 2981 AttrA->isDynamic() == AttrB->isDynamic(); 2982 }; 2983 2984 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); 2985 } 2986 2987 /// If necessary, adjust the semantic declaration context for a qualified 2988 /// declaration to name the correct inline namespace within the qualifier. 2989 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, 2990 DeclaratorDecl *OldD) { 2991 // The only case where we need to update the DeclContext is when 2992 // redeclaration lookup for a qualified name finds a declaration 2993 // in an inline namespace within the context named by the qualifier: 2994 // 2995 // inline namespace N { int f(); } 2996 // int ::f(); // Sema DC needs adjusting from :: to N::. 2997 // 2998 // For unqualified declarations, the semantic context *can* change 2999 // along the redeclaration chain (for local extern declarations, 3000 // extern "C" declarations, and friend declarations in particular). 3001 if (!NewD->getQualifier()) 3002 return; 3003 3004 // NewD is probably already in the right context. 3005 auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); 3006 auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); 3007 if (NamedDC->Equals(SemaDC)) 3008 return; 3009 3010 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || 3011 NewD->isInvalidDecl() || OldD->isInvalidDecl()) && 3012 "unexpected context for redeclaration"); 3013 3014 auto *LexDC = NewD->getLexicalDeclContext(); 3015 auto FixSemaDC = [=](NamedDecl *D) { 3016 if (!D) 3017 return; 3018 D->setDeclContext(SemaDC); 3019 D->setLexicalDeclContext(LexDC); 3020 }; 3021 3022 FixSemaDC(NewD); 3023 if (auto *FD = dyn_cast<FunctionDecl>(NewD)) 3024 FixSemaDC(FD->getDescribedFunctionTemplate()); 3025 else if (auto *VD = dyn_cast<VarDecl>(NewD)) 3026 FixSemaDC(VD->getDescribedVarTemplate()); 3027 } 3028 3029 /// MergeFunctionDecl - We just parsed a function 'New' from 3030 /// declarator D which has the same name and scope as a previous 3031 /// declaration 'Old'. Figure out how to resolve this situation, 3032 /// merging decls or emitting diagnostics as appropriate. 3033 /// 3034 /// In C++, New and Old must be declarations that are not 3035 /// overloaded. Use IsOverload to determine whether New and Old are 3036 /// overloaded, and to select the Old declaration that New should be 3037 /// merged with. 3038 /// 3039 /// Returns true if there was an error, false otherwise. 3040 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 3041 Scope *S, bool MergeTypeWithOld) { 3042 // Verify the old decl was also a function. 3043 FunctionDecl *Old = OldD->getAsFunction(); 3044 if (!Old) { 3045 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 3046 if (New->getFriendObjectKind()) { 3047 Diag(New->getLocation(), diag::err_using_decl_friend); 3048 Diag(Shadow->getTargetDecl()->getLocation(), 3049 diag::note_using_decl_target); 3050 Diag(Shadow->getUsingDecl()->getLocation(), 3051 diag::note_using_decl) << 0; 3052 return true; 3053 } 3054 3055 // Check whether the two declarations might declare the same function. 3056 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) 3057 return true; 3058 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); 3059 } else { 3060 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3061 << New->getDeclName(); 3062 notePreviousDefinition(OldD, New->getLocation()); 3063 return true; 3064 } 3065 } 3066 3067 // If the old declaration is invalid, just give up here. 3068 if (Old->isInvalidDecl()) 3069 return true; 3070 3071 // Disallow redeclaration of some builtins. 3072 if (!getASTContext().canBuiltinBeRedeclared(Old)) { 3073 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); 3074 Diag(Old->getLocation(), diag::note_previous_builtin_declaration) 3075 << Old << Old->getType(); 3076 return true; 3077 } 3078 3079 diag::kind PrevDiag; 3080 SourceLocation OldLocation; 3081 std::tie(PrevDiag, OldLocation) = 3082 getNoteDiagForInvalidRedeclaration(Old, New); 3083 3084 // Don't complain about this if we're in GNU89 mode and the old function 3085 // is an extern inline function. 3086 // Don't complain about specializations. They are not supposed to have 3087 // storage classes. 3088 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 3089 New->getStorageClass() == SC_Static && 3090 Old->hasExternalFormalLinkage() && 3091 !New->getTemplateSpecializationInfo() && 3092 !canRedefineFunction(Old, getLangOpts())) { 3093 if (getLangOpts().MicrosoftExt) { 3094 Diag(New->getLocation(), diag::ext_static_non_static) << New; 3095 Diag(OldLocation, PrevDiag); 3096 } else { 3097 Diag(New->getLocation(), diag::err_static_non_static) << New; 3098 Diag(OldLocation, PrevDiag); 3099 return true; 3100 } 3101 } 3102 3103 if (New->hasAttr<InternalLinkageAttr>() && 3104 !Old->hasAttr<InternalLinkageAttr>()) { 3105 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 3106 << New->getDeclName(); 3107 notePreviousDefinition(Old, New->getLocation()); 3108 New->dropAttr<InternalLinkageAttr>(); 3109 } 3110 3111 if (CheckRedeclarationModuleOwnership(New, Old)) 3112 return true; 3113 3114 if (!getLangOpts().CPlusPlus) { 3115 bool OldOvl = Old->hasAttr<OverloadableAttr>(); 3116 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { 3117 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) 3118 << New << OldOvl; 3119 3120 // Try our best to find a decl that actually has the overloadable 3121 // attribute for the note. In most cases (e.g. programs with only one 3122 // broken declaration/definition), this won't matter. 3123 // 3124 // FIXME: We could do this if we juggled some extra state in 3125 // OverloadableAttr, rather than just removing it. 3126 const Decl *DiagOld = Old; 3127 if (OldOvl) { 3128 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { 3129 const auto *A = D->getAttr<OverloadableAttr>(); 3130 return A && !A->isImplicit(); 3131 }); 3132 // If we've implicitly added *all* of the overloadable attrs to this 3133 // chain, emitting a "previous redecl" note is pointless. 3134 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; 3135 } 3136 3137 if (DiagOld) 3138 Diag(DiagOld->getLocation(), 3139 diag::note_attribute_overloadable_prev_overload) 3140 << OldOvl; 3141 3142 if (OldOvl) 3143 New->addAttr(OverloadableAttr::CreateImplicit(Context)); 3144 else 3145 New->dropAttr<OverloadableAttr>(); 3146 } 3147 } 3148 3149 // If a function is first declared with a calling convention, but is later 3150 // declared or defined without one, all following decls assume the calling 3151 // convention of the first. 3152 // 3153 // It's OK if a function is first declared without a calling convention, 3154 // but is later declared or defined with the default calling convention. 3155 // 3156 // To test if either decl has an explicit calling convention, we look for 3157 // AttributedType sugar nodes on the type as written. If they are missing or 3158 // were canonicalized away, we assume the calling convention was implicit. 3159 // 3160 // Note also that we DO NOT return at this point, because we still have 3161 // other tests to run. 3162 QualType OldQType = Context.getCanonicalType(Old->getType()); 3163 QualType NewQType = Context.getCanonicalType(New->getType()); 3164 const FunctionType *OldType = cast<FunctionType>(OldQType); 3165 const FunctionType *NewType = cast<FunctionType>(NewQType); 3166 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 3167 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 3168 bool RequiresAdjustment = false; 3169 3170 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 3171 FunctionDecl *First = Old->getFirstDecl(); 3172 const FunctionType *FT = 3173 First->getType().getCanonicalType()->castAs<FunctionType>(); 3174 FunctionType::ExtInfo FI = FT->getExtInfo(); 3175 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 3176 if (!NewCCExplicit) { 3177 // Inherit the CC from the previous declaration if it was specified 3178 // there but not here. 3179 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3180 RequiresAdjustment = true; 3181 } else if (New->getBuiltinID()) { 3182 // Calling Conventions on a Builtin aren't really useful and setting a 3183 // default calling convention and cdecl'ing some builtin redeclarations is 3184 // common, so warn and ignore the calling convention on the redeclaration. 3185 Diag(New->getLocation(), diag::warn_cconv_unsupported) 3186 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3187 << (int)CallingConventionIgnoredReason::BuiltinFunction; 3188 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3189 RequiresAdjustment = true; 3190 } else { 3191 // Calling conventions aren't compatible, so complain. 3192 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 3193 Diag(New->getLocation(), diag::err_cconv_change) 3194 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3195 << !FirstCCExplicit 3196 << (!FirstCCExplicit ? "" : 3197 FunctionType::getNameForCallConv(FI.getCC())); 3198 3199 // Put the note on the first decl, since it is the one that matters. 3200 Diag(First->getLocation(), diag::note_previous_declaration); 3201 return true; 3202 } 3203 } 3204 3205 // FIXME: diagnose the other way around? 3206 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 3207 NewTypeInfo = NewTypeInfo.withNoReturn(true); 3208 RequiresAdjustment = true; 3209 } 3210 3211 // Merge regparm attribute. 3212 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 3213 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 3214 if (NewTypeInfo.getHasRegParm()) { 3215 Diag(New->getLocation(), diag::err_regparm_mismatch) 3216 << NewType->getRegParmType() 3217 << OldType->getRegParmType(); 3218 Diag(OldLocation, diag::note_previous_declaration); 3219 return true; 3220 } 3221 3222 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 3223 RequiresAdjustment = true; 3224 } 3225 3226 // Merge ns_returns_retained attribute. 3227 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 3228 if (NewTypeInfo.getProducesResult()) { 3229 Diag(New->getLocation(), diag::err_function_attribute_mismatch) 3230 << "'ns_returns_retained'"; 3231 Diag(OldLocation, diag::note_previous_declaration); 3232 return true; 3233 } 3234 3235 NewTypeInfo = NewTypeInfo.withProducesResult(true); 3236 RequiresAdjustment = true; 3237 } 3238 3239 if (OldTypeInfo.getNoCallerSavedRegs() != 3240 NewTypeInfo.getNoCallerSavedRegs()) { 3241 if (NewTypeInfo.getNoCallerSavedRegs()) { 3242 AnyX86NoCallerSavedRegistersAttr *Attr = 3243 New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); 3244 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; 3245 Diag(OldLocation, diag::note_previous_declaration); 3246 return true; 3247 } 3248 3249 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); 3250 RequiresAdjustment = true; 3251 } 3252 3253 if (RequiresAdjustment) { 3254 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 3255 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 3256 New->setType(QualType(AdjustedType, 0)); 3257 NewQType = Context.getCanonicalType(New->getType()); 3258 } 3259 3260 // If this redeclaration makes the function inline, we may need to add it to 3261 // UndefinedButUsed. 3262 if (!Old->isInlined() && New->isInlined() && 3263 !New->hasAttr<GNUInlineAttr>() && 3264 !getLangOpts().GNUInline && 3265 Old->isUsed(false) && 3266 !Old->isDefined() && !New->isThisDeclarationADefinition()) 3267 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 3268 SourceLocation())); 3269 3270 // If this redeclaration makes it newly gnu_inline, we don't want to warn 3271 // about it. 3272 if (New->hasAttr<GNUInlineAttr>() && 3273 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 3274 UndefinedButUsed.erase(Old->getCanonicalDecl()); 3275 } 3276 3277 // If pass_object_size params don't match up perfectly, this isn't a valid 3278 // redeclaration. 3279 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && 3280 !hasIdenticalPassObjectSizeAttrs(Old, New)) { 3281 Diag(New->getLocation(), diag::err_different_pass_object_size_params) 3282 << New->getDeclName(); 3283 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3284 return true; 3285 } 3286 3287 if (getLangOpts().CPlusPlus) { 3288 // C++1z [over.load]p2 3289 // Certain function declarations cannot be overloaded: 3290 // -- Function declarations that differ only in the return type, 3291 // the exception specification, or both cannot be overloaded. 3292 3293 // Check the exception specifications match. This may recompute the type of 3294 // both Old and New if it resolved exception specifications, so grab the 3295 // types again after this. Because this updates the type, we do this before 3296 // any of the other checks below, which may update the "de facto" NewQType 3297 // but do not necessarily update the type of New. 3298 if (CheckEquivalentExceptionSpec(Old, New)) 3299 return true; 3300 OldQType = Context.getCanonicalType(Old->getType()); 3301 NewQType = Context.getCanonicalType(New->getType()); 3302 3303 // Go back to the type source info to compare the declared return types, 3304 // per C++1y [dcl.type.auto]p13: 3305 // Redeclarations or specializations of a function or function template 3306 // with a declared return type that uses a placeholder type shall also 3307 // use that placeholder, not a deduced type. 3308 QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); 3309 QualType NewDeclaredReturnType = New->getDeclaredReturnType(); 3310 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 3311 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, 3312 OldDeclaredReturnType)) { 3313 QualType ResQT; 3314 if (NewDeclaredReturnType->isObjCObjectPointerType() && 3315 OldDeclaredReturnType->isObjCObjectPointerType()) 3316 // FIXME: This does the wrong thing for a deduced return type. 3317 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 3318 if (ResQT.isNull()) { 3319 if (New->isCXXClassMember() && New->isOutOfLine()) 3320 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 3321 << New << New->getReturnTypeSourceRange(); 3322 else 3323 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 3324 << New->getReturnTypeSourceRange(); 3325 Diag(OldLocation, PrevDiag) << Old << Old->getType() 3326 << Old->getReturnTypeSourceRange(); 3327 return true; 3328 } 3329 else 3330 NewQType = ResQT; 3331 } 3332 3333 QualType OldReturnType = OldType->getReturnType(); 3334 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 3335 if (OldReturnType != NewReturnType) { 3336 // If this function has a deduced return type and has already been 3337 // defined, copy the deduced value from the old declaration. 3338 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 3339 if (OldAT && OldAT->isDeduced()) { 3340 New->setType( 3341 SubstAutoType(New->getType(), 3342 OldAT->isDependentType() ? Context.DependentTy 3343 : OldAT->getDeducedType())); 3344 NewQType = Context.getCanonicalType( 3345 SubstAutoType(NewQType, 3346 OldAT->isDependentType() ? Context.DependentTy 3347 : OldAT->getDeducedType())); 3348 } 3349 } 3350 3351 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 3352 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 3353 if (OldMethod && NewMethod) { 3354 // Preserve triviality. 3355 NewMethod->setTrivial(OldMethod->isTrivial()); 3356 3357 // MSVC allows explicit template specialization at class scope: 3358 // 2 CXXMethodDecls referring to the same function will be injected. 3359 // We don't want a redeclaration error. 3360 bool IsClassScopeExplicitSpecialization = 3361 OldMethod->isFunctionTemplateSpecialization() && 3362 NewMethod->isFunctionTemplateSpecialization(); 3363 bool isFriend = NewMethod->getFriendObjectKind(); 3364 3365 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 3366 !IsClassScopeExplicitSpecialization) { 3367 // -- Member function declarations with the same name and the 3368 // same parameter types cannot be overloaded if any of them 3369 // is a static member function declaration. 3370 if (OldMethod->isStatic() != NewMethod->isStatic()) { 3371 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 3372 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3373 return true; 3374 } 3375 3376 // C++ [class.mem]p1: 3377 // [...] A member shall not be declared twice in the 3378 // member-specification, except that a nested class or member 3379 // class template can be declared and then later defined. 3380 if (!inTemplateInstantiation()) { 3381 unsigned NewDiag; 3382 if (isa<CXXConstructorDecl>(OldMethod)) 3383 NewDiag = diag::err_constructor_redeclared; 3384 else if (isa<CXXDestructorDecl>(NewMethod)) 3385 NewDiag = diag::err_destructor_redeclared; 3386 else if (isa<CXXConversionDecl>(NewMethod)) 3387 NewDiag = diag::err_conv_function_redeclared; 3388 else 3389 NewDiag = diag::err_member_redeclared; 3390 3391 Diag(New->getLocation(), NewDiag); 3392 } else { 3393 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 3394 << New << New->getType(); 3395 } 3396 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3397 return true; 3398 3399 // Complain if this is an explicit declaration of a special 3400 // member that was initially declared implicitly. 3401 // 3402 // As an exception, it's okay to befriend such methods in order 3403 // to permit the implicit constructor/destructor/operator calls. 3404 } else if (OldMethod->isImplicit()) { 3405 if (isFriend) { 3406 NewMethod->setImplicit(); 3407 } else { 3408 Diag(NewMethod->getLocation(), 3409 diag::err_definition_of_implicitly_declared_member) 3410 << New << getSpecialMember(OldMethod); 3411 return true; 3412 } 3413 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { 3414 Diag(NewMethod->getLocation(), 3415 diag::err_definition_of_explicitly_defaulted_member) 3416 << getSpecialMember(OldMethod); 3417 return true; 3418 } 3419 } 3420 3421 // C++11 [dcl.attr.noreturn]p1: 3422 // The first declaration of a function shall specify the noreturn 3423 // attribute if any declaration of that function specifies the noreturn 3424 // attribute. 3425 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 3426 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 3427 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 3428 Diag(Old->getFirstDecl()->getLocation(), 3429 diag::note_noreturn_missing_first_decl); 3430 } 3431 3432 // C++11 [dcl.attr.depend]p2: 3433 // The first declaration of a function shall specify the 3434 // carries_dependency attribute for its declarator-id if any declaration 3435 // of the function specifies the carries_dependency attribute. 3436 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 3437 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 3438 Diag(CDA->getLocation(), 3439 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 3440 Diag(Old->getFirstDecl()->getLocation(), 3441 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 3442 } 3443 3444 // (C++98 8.3.5p3): 3445 // All declarations for a function shall agree exactly in both the 3446 // return type and the parameter-type-list. 3447 // We also want to respect all the extended bits except noreturn. 3448 3449 // noreturn should now match unless the old type info didn't have it. 3450 QualType OldQTypeForComparison = OldQType; 3451 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 3452 auto *OldType = OldQType->castAs<FunctionProtoType>(); 3453 const FunctionType *OldTypeForComparison 3454 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 3455 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 3456 assert(OldQTypeForComparison.isCanonical()); 3457 } 3458 3459 if (haveIncompatibleLanguageLinkages(Old, New)) { 3460 // As a special case, retain the language linkage from previous 3461 // declarations of a friend function as an extension. 3462 // 3463 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 3464 // and is useful because there's otherwise no way to specify language 3465 // linkage within class scope. 3466 // 3467 // Check cautiously as the friend object kind isn't yet complete. 3468 if (New->getFriendObjectKind() != Decl::FOK_None) { 3469 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 3470 Diag(OldLocation, PrevDiag); 3471 } else { 3472 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3473 Diag(OldLocation, PrevDiag); 3474 return true; 3475 } 3476 } 3477 3478 // If the function types are compatible, merge the declarations. Ignore the 3479 // exception specifier because it was already checked above in 3480 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics 3481 // about incompatible types under -fms-compatibility. 3482 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, 3483 NewQType)) 3484 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3485 3486 // If the types are imprecise (due to dependent constructs in friends or 3487 // local extern declarations), it's OK if they differ. We'll check again 3488 // during instantiation. 3489 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) 3490 return false; 3491 3492 // Fall through for conflicting redeclarations and redefinitions. 3493 } 3494 3495 // C: Function types need to be compatible, not identical. This handles 3496 // duplicate function decls like "void f(int); void f(enum X);" properly. 3497 if (!getLangOpts().CPlusPlus && 3498 Context.typesAreCompatible(OldQType, NewQType)) { 3499 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 3500 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 3501 const FunctionProtoType *OldProto = nullptr; 3502 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 3503 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 3504 // The old declaration provided a function prototype, but the 3505 // new declaration does not. Merge in the prototype. 3506 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 3507 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 3508 NewQType = 3509 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 3510 OldProto->getExtProtoInfo()); 3511 New->setType(NewQType); 3512 New->setHasInheritedPrototype(); 3513 3514 // Synthesize parameters with the same types. 3515 SmallVector<ParmVarDecl*, 16> Params; 3516 for (const auto &ParamType : OldProto->param_types()) { 3517 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 3518 SourceLocation(), nullptr, 3519 ParamType, /*TInfo=*/nullptr, 3520 SC_None, nullptr); 3521 Param->setScopeInfo(0, Params.size()); 3522 Param->setImplicit(); 3523 Params.push_back(Param); 3524 } 3525 3526 New->setParams(Params); 3527 } 3528 3529 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3530 } 3531 3532 // GNU C permits a K&R definition to follow a prototype declaration 3533 // if the declared types of the parameters in the K&R definition 3534 // match the types in the prototype declaration, even when the 3535 // promoted types of the parameters from the K&R definition differ 3536 // from the types in the prototype. GCC then keeps the types from 3537 // the prototype. 3538 // 3539 // If a variadic prototype is followed by a non-variadic K&R definition, 3540 // the K&R definition becomes variadic. This is sort of an edge case, but 3541 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 3542 // C99 6.9.1p8. 3543 if (!getLangOpts().CPlusPlus && 3544 Old->hasPrototype() && !New->hasPrototype() && 3545 New->getType()->getAs<FunctionProtoType>() && 3546 Old->getNumParams() == New->getNumParams()) { 3547 SmallVector<QualType, 16> ArgTypes; 3548 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 3549 const FunctionProtoType *OldProto 3550 = Old->getType()->getAs<FunctionProtoType>(); 3551 const FunctionProtoType *NewProto 3552 = New->getType()->getAs<FunctionProtoType>(); 3553 3554 // Determine whether this is the GNU C extension. 3555 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 3556 NewProto->getReturnType()); 3557 bool LooseCompatible = !MergedReturn.isNull(); 3558 for (unsigned Idx = 0, End = Old->getNumParams(); 3559 LooseCompatible && Idx != End; ++Idx) { 3560 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 3561 ParmVarDecl *NewParm = New->getParamDecl(Idx); 3562 if (Context.typesAreCompatible(OldParm->getType(), 3563 NewProto->getParamType(Idx))) { 3564 ArgTypes.push_back(NewParm->getType()); 3565 } else if (Context.typesAreCompatible(OldParm->getType(), 3566 NewParm->getType(), 3567 /*CompareUnqualified=*/true)) { 3568 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 3569 NewProto->getParamType(Idx) }; 3570 Warnings.push_back(Warn); 3571 ArgTypes.push_back(NewParm->getType()); 3572 } else 3573 LooseCompatible = false; 3574 } 3575 3576 if (LooseCompatible) { 3577 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 3578 Diag(Warnings[Warn].NewParm->getLocation(), 3579 diag::ext_param_promoted_not_compatible_with_prototype) 3580 << Warnings[Warn].PromotedType 3581 << Warnings[Warn].OldParm->getType(); 3582 if (Warnings[Warn].OldParm->getLocation().isValid()) 3583 Diag(Warnings[Warn].OldParm->getLocation(), 3584 diag::note_previous_declaration); 3585 } 3586 3587 if (MergeTypeWithOld) 3588 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 3589 OldProto->getExtProtoInfo())); 3590 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3591 } 3592 3593 // Fall through to diagnose conflicting types. 3594 } 3595 3596 // A function that has already been declared has been redeclared or 3597 // defined with a different type; show an appropriate diagnostic. 3598 3599 // If the previous declaration was an implicitly-generated builtin 3600 // declaration, then at the very least we should use a specialized note. 3601 unsigned BuiltinID; 3602 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 3603 // If it's actually a library-defined builtin function like 'malloc' 3604 // or 'printf', just warn about the incompatible redeclaration. 3605 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 3606 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 3607 Diag(OldLocation, diag::note_previous_builtin_declaration) 3608 << Old << Old->getType(); 3609 3610 // If this is a global redeclaration, just forget hereafter 3611 // about the "builtin-ness" of the function. 3612 // 3613 // Doing this for local extern declarations is problematic. If 3614 // the builtin declaration remains visible, a second invalid 3615 // local declaration will produce a hard error; if it doesn't 3616 // remain visible, a single bogus local redeclaration (which is 3617 // actually only a warning) could break all the downstream code. 3618 if (!New->getLexicalDeclContext()->isFunctionOrMethod()) 3619 New->getIdentifier()->revertBuiltin(); 3620 3621 return false; 3622 } 3623 3624 PrevDiag = diag::note_previous_builtin_declaration; 3625 } 3626 3627 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 3628 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3629 return true; 3630 } 3631 3632 /// Completes the merge of two function declarations that are 3633 /// known to be compatible. 3634 /// 3635 /// This routine handles the merging of attributes and other 3636 /// properties of function declarations from the old declaration to 3637 /// the new declaration, once we know that New is in fact a 3638 /// redeclaration of Old. 3639 /// 3640 /// \returns false 3641 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3642 Scope *S, bool MergeTypeWithOld) { 3643 // Merge the attributes 3644 mergeDeclAttributes(New, Old); 3645 3646 // Merge "pure" flag. 3647 if (Old->isPure()) 3648 New->setPure(); 3649 3650 // Merge "used" flag. 3651 if (Old->getMostRecentDecl()->isUsed(false)) 3652 New->setIsUsed(); 3653 3654 // Merge attributes from the parameters. These can mismatch with K&R 3655 // declarations. 3656 if (New->getNumParams() == Old->getNumParams()) 3657 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { 3658 ParmVarDecl *NewParam = New->getParamDecl(i); 3659 ParmVarDecl *OldParam = Old->getParamDecl(i); 3660 mergeParamDeclAttributes(NewParam, OldParam, *this); 3661 mergeParamDeclTypes(NewParam, OldParam, *this); 3662 } 3663 3664 if (getLangOpts().CPlusPlus) 3665 return MergeCXXFunctionDecl(New, Old, S); 3666 3667 // Merge the function types so the we get the composite types for the return 3668 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3669 // was visible. 3670 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3671 if (!Merged.isNull() && MergeTypeWithOld) 3672 New->setType(Merged); 3673 3674 return false; 3675 } 3676 3677 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3678 ObjCMethodDecl *oldMethod) { 3679 // Merge the attributes, including deprecated/unavailable 3680 AvailabilityMergeKind MergeKind = 3681 isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) 3682 ? AMK_ProtocolImplementation 3683 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3684 : AMK_Override; 3685 3686 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3687 3688 // Merge attributes from the parameters. 3689 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3690 oe = oldMethod->param_end(); 3691 for (ObjCMethodDecl::param_iterator 3692 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3693 ni != ne && oi != oe; ++ni, ++oi) 3694 mergeParamDeclAttributes(*ni, *oi, *this); 3695 3696 CheckObjCMethodOverride(newMethod, oldMethod); 3697 } 3698 3699 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { 3700 assert(!S.Context.hasSameType(New->getType(), Old->getType())); 3701 3702 S.Diag(New->getLocation(), New->isThisDeclarationADefinition() 3703 ? diag::err_redefinition_different_type 3704 : diag::err_redeclaration_different_type) 3705 << New->getDeclName() << New->getType() << Old->getType(); 3706 3707 diag::kind PrevDiag; 3708 SourceLocation OldLocation; 3709 std::tie(PrevDiag, OldLocation) 3710 = getNoteDiagForInvalidRedeclaration(Old, New); 3711 S.Diag(OldLocation, PrevDiag); 3712 New->setInvalidDecl(); 3713 } 3714 3715 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3716 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3717 /// emitting diagnostics as appropriate. 3718 /// 3719 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3720 /// to here in AddInitializerToDecl. We can't check them before the initializer 3721 /// is attached. 3722 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3723 bool MergeTypeWithOld) { 3724 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3725 return; 3726 3727 QualType MergedT; 3728 if (getLangOpts().CPlusPlus) { 3729 if (New->getType()->isUndeducedType()) { 3730 // We don't know what the new type is until the initializer is attached. 3731 return; 3732 } else if (Context.hasSameType(New->getType(), Old->getType())) { 3733 // These could still be something that needs exception specs checked. 3734 return MergeVarDeclExceptionSpecs(New, Old); 3735 } 3736 // C++ [basic.link]p10: 3737 // [...] the types specified by all declarations referring to a given 3738 // object or function shall be identical, except that declarations for an 3739 // array object can specify array types that differ by the presence or 3740 // absence of a major array bound (8.3.4). 3741 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { 3742 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3743 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3744 3745 // We are merging a variable declaration New into Old. If it has an array 3746 // bound, and that bound differs from Old's bound, we should diagnose the 3747 // mismatch. 3748 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { 3749 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; 3750 PrevVD = PrevVD->getPreviousDecl()) { 3751 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType()); 3752 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) 3753 continue; 3754 3755 if (!Context.hasSameType(NewArray, PrevVDTy)) 3756 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); 3757 } 3758 } 3759 3760 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { 3761 if (Context.hasSameType(OldArray->getElementType(), 3762 NewArray->getElementType())) 3763 MergedT = New->getType(); 3764 } 3765 // FIXME: Check visibility. New is hidden but has a complete type. If New 3766 // has no array bound, it should not inherit one from Old, if Old is not 3767 // visible. 3768 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { 3769 if (Context.hasSameType(OldArray->getElementType(), 3770 NewArray->getElementType())) 3771 MergedT = Old->getType(); 3772 } 3773 } 3774 else if (New->getType()->isObjCObjectPointerType() && 3775 Old->getType()->isObjCObjectPointerType()) { 3776 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 3777 Old->getType()); 3778 } 3779 } else { 3780 // C 6.2.7p2: 3781 // All declarations that refer to the same object or function shall have 3782 // compatible type. 3783 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 3784 } 3785 if (MergedT.isNull()) { 3786 // It's OK if we couldn't merge types if either type is dependent, for a 3787 // block-scope variable. In other cases (static data members of class 3788 // templates, variable templates, ...), we require the types to be 3789 // equivalent. 3790 // FIXME: The C++ standard doesn't say anything about this. 3791 if ((New->getType()->isDependentType() || 3792 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 3793 // If the old type was dependent, we can't merge with it, so the new type 3794 // becomes dependent for now. We'll reproduce the original type when we 3795 // instantiate the TypeSourceInfo for the variable. 3796 if (!New->getType()->isDependentType() && MergeTypeWithOld) 3797 New->setType(Context.DependentTy); 3798 return; 3799 } 3800 return diagnoseVarDeclTypeMismatch(*this, New, Old); 3801 } 3802 3803 // Don't actually update the type on the new declaration if the old 3804 // declaration was an extern declaration in a different scope. 3805 if (MergeTypeWithOld) 3806 New->setType(MergedT); 3807 } 3808 3809 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 3810 LookupResult &Previous) { 3811 // C11 6.2.7p4: 3812 // For an identifier with internal or external linkage declared 3813 // in a scope in which a prior declaration of that identifier is 3814 // visible, if the prior declaration specifies internal or 3815 // external linkage, the type of the identifier at the later 3816 // declaration becomes the composite type. 3817 // 3818 // If the variable isn't visible, we do not merge with its type. 3819 if (Previous.isShadowed()) 3820 return false; 3821 3822 if (S.getLangOpts().CPlusPlus) { 3823 // C++11 [dcl.array]p3: 3824 // If there is a preceding declaration of the entity in the same 3825 // scope in which the bound was specified, an omitted array bound 3826 // is taken to be the same as in that earlier declaration. 3827 return NewVD->isPreviousDeclInSameBlockScope() || 3828 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 3829 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 3830 } else { 3831 // If the old declaration was function-local, don't merge with its 3832 // type unless we're in the same function. 3833 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 3834 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 3835 } 3836 } 3837 3838 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 3839 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 3840 /// situation, merging decls or emitting diagnostics as appropriate. 3841 /// 3842 /// Tentative definition rules (C99 6.9.2p2) are checked by 3843 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 3844 /// definitions here, since the initializer hasn't been attached. 3845 /// 3846 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 3847 // If the new decl is already invalid, don't do any other checking. 3848 if (New->isInvalidDecl()) 3849 return; 3850 3851 if (!shouldLinkPossiblyHiddenDecl(Previous, New)) 3852 return; 3853 3854 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 3855 3856 // Verify the old decl was also a variable or variable template. 3857 VarDecl *Old = nullptr; 3858 VarTemplateDecl *OldTemplate = nullptr; 3859 if (Previous.isSingleResult()) { 3860 if (NewTemplate) { 3861 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 3862 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 3863 3864 if (auto *Shadow = 3865 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 3866 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) 3867 return New->setInvalidDecl(); 3868 } else { 3869 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 3870 3871 if (auto *Shadow = 3872 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 3873 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) 3874 return New->setInvalidDecl(); 3875 } 3876 } 3877 if (!Old) { 3878 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3879 << New->getDeclName(); 3880 notePreviousDefinition(Previous.getRepresentativeDecl(), 3881 New->getLocation()); 3882 return New->setInvalidDecl(); 3883 } 3884 3885 // Ensure the template parameters are compatible. 3886 if (NewTemplate && 3887 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 3888 OldTemplate->getTemplateParameters(), 3889 /*Complain=*/true, TPL_TemplateMatch)) 3890 return New->setInvalidDecl(); 3891 3892 // C++ [class.mem]p1: 3893 // A member shall not be declared twice in the member-specification [...] 3894 // 3895 // Here, we need only consider static data members. 3896 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 3897 Diag(New->getLocation(), diag::err_duplicate_member) 3898 << New->getIdentifier(); 3899 Diag(Old->getLocation(), diag::note_previous_declaration); 3900 New->setInvalidDecl(); 3901 } 3902 3903 mergeDeclAttributes(New, Old); 3904 // Warn if an already-declared variable is made a weak_import in a subsequent 3905 // declaration 3906 if (New->hasAttr<WeakImportAttr>() && 3907 Old->getStorageClass() == SC_None && 3908 !Old->hasAttr<WeakImportAttr>()) { 3909 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 3910 notePreviousDefinition(Old, New->getLocation()); 3911 // Remove weak_import attribute on new declaration. 3912 New->dropAttr<WeakImportAttr>(); 3913 } 3914 3915 if (New->hasAttr<InternalLinkageAttr>() && 3916 !Old->hasAttr<InternalLinkageAttr>()) { 3917 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 3918 << New->getDeclName(); 3919 notePreviousDefinition(Old, New->getLocation()); 3920 New->dropAttr<InternalLinkageAttr>(); 3921 } 3922 3923 // Merge the types. 3924 VarDecl *MostRecent = Old->getMostRecentDecl(); 3925 if (MostRecent != Old) { 3926 MergeVarDeclTypes(New, MostRecent, 3927 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 3928 if (New->isInvalidDecl()) 3929 return; 3930 } 3931 3932 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 3933 if (New->isInvalidDecl()) 3934 return; 3935 3936 diag::kind PrevDiag; 3937 SourceLocation OldLocation; 3938 std::tie(PrevDiag, OldLocation) = 3939 getNoteDiagForInvalidRedeclaration(Old, New); 3940 3941 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 3942 if (New->getStorageClass() == SC_Static && 3943 !New->isStaticDataMember() && 3944 Old->hasExternalFormalLinkage()) { 3945 if (getLangOpts().MicrosoftExt) { 3946 Diag(New->getLocation(), diag::ext_static_non_static) 3947 << New->getDeclName(); 3948 Diag(OldLocation, PrevDiag); 3949 } else { 3950 Diag(New->getLocation(), diag::err_static_non_static) 3951 << New->getDeclName(); 3952 Diag(OldLocation, PrevDiag); 3953 return New->setInvalidDecl(); 3954 } 3955 } 3956 // C99 6.2.2p4: 3957 // For an identifier declared with the storage-class specifier 3958 // extern in a scope in which a prior declaration of that 3959 // identifier is visible,23) if the prior declaration specifies 3960 // internal or external linkage, the linkage of the identifier at 3961 // the later declaration is the same as the linkage specified at 3962 // the prior declaration. If no prior declaration is visible, or 3963 // if the prior declaration specifies no linkage, then the 3964 // identifier has external linkage. 3965 if (New->hasExternalStorage() && Old->hasLinkage()) 3966 /* Okay */; 3967 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 3968 !New->isStaticDataMember() && 3969 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 3970 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 3971 Diag(OldLocation, PrevDiag); 3972 return New->setInvalidDecl(); 3973 } 3974 3975 // Check if extern is followed by non-extern and vice-versa. 3976 if (New->hasExternalStorage() && 3977 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 3978 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 3979 Diag(OldLocation, PrevDiag); 3980 return New->setInvalidDecl(); 3981 } 3982 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 3983 !New->hasExternalStorage()) { 3984 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 3985 Diag(OldLocation, PrevDiag); 3986 return New->setInvalidDecl(); 3987 } 3988 3989 if (CheckRedeclarationModuleOwnership(New, Old)) 3990 return; 3991 3992 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 3993 3994 // FIXME: The test for external storage here seems wrong? We still 3995 // need to check for mismatches. 3996 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 3997 // Don't complain about out-of-line definitions of static members. 3998 !(Old->getLexicalDeclContext()->isRecord() && 3999 !New->getLexicalDeclContext()->isRecord())) { 4000 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 4001 Diag(OldLocation, PrevDiag); 4002 return New->setInvalidDecl(); 4003 } 4004 4005 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { 4006 if (VarDecl *Def = Old->getDefinition()) { 4007 // C++1z [dcl.fcn.spec]p4: 4008 // If the definition of a variable appears in a translation unit before 4009 // its first declaration as inline, the program is ill-formed. 4010 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 4011 Diag(Def->getLocation(), diag::note_previous_definition); 4012 } 4013 } 4014 4015 // If this redeclaration makes the variable inline, we may need to add it to 4016 // UndefinedButUsed. 4017 if (!Old->isInline() && New->isInline() && Old->isUsed(false) && 4018 !Old->getDefinition() && !New->isThisDeclarationADefinition()) 4019 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 4020 SourceLocation())); 4021 4022 if (New->getTLSKind() != Old->getTLSKind()) { 4023 if (!Old->getTLSKind()) { 4024 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 4025 Diag(OldLocation, PrevDiag); 4026 } else if (!New->getTLSKind()) { 4027 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 4028 Diag(OldLocation, PrevDiag); 4029 } else { 4030 // Do not allow redeclaration to change the variable between requiring 4031 // static and dynamic initialization. 4032 // FIXME: GCC allows this, but uses the TLS keyword on the first 4033 // declaration to determine the kind. Do we need to be compatible here? 4034 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 4035 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 4036 Diag(OldLocation, PrevDiag); 4037 } 4038 } 4039 4040 // C++ doesn't have tentative definitions, so go right ahead and check here. 4041 if (getLangOpts().CPlusPlus && 4042 New->isThisDeclarationADefinition() == VarDecl::Definition) { 4043 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && 4044 Old->getCanonicalDecl()->isConstexpr()) { 4045 // This definition won't be a definition any more once it's been merged. 4046 Diag(New->getLocation(), 4047 diag::warn_deprecated_redundant_constexpr_static_def); 4048 } else if (VarDecl *Def = Old->getDefinition()) { 4049 if (checkVarDeclRedefinition(Def, New)) 4050 return; 4051 } 4052 } 4053 4054 if (haveIncompatibleLanguageLinkages(Old, New)) { 4055 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 4056 Diag(OldLocation, PrevDiag); 4057 New->setInvalidDecl(); 4058 return; 4059 } 4060 4061 // Merge "used" flag. 4062 if (Old->getMostRecentDecl()->isUsed(false)) 4063 New->setIsUsed(); 4064 4065 // Keep a chain of previous declarations. 4066 New->setPreviousDecl(Old); 4067 if (NewTemplate) 4068 NewTemplate->setPreviousDecl(OldTemplate); 4069 adjustDeclContextForDeclaratorDecl(New, Old); 4070 4071 // Inherit access appropriately. 4072 New->setAccess(Old->getAccess()); 4073 if (NewTemplate) 4074 NewTemplate->setAccess(New->getAccess()); 4075 4076 if (Old->isInline()) 4077 New->setImplicitlyInline(); 4078 } 4079 4080 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { 4081 SourceManager &SrcMgr = getSourceManager(); 4082 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); 4083 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); 4084 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); 4085 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); 4086 auto &HSI = PP.getHeaderSearchInfo(); 4087 StringRef HdrFilename = 4088 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); 4089 4090 auto noteFromModuleOrInclude = [&](Module *Mod, 4091 SourceLocation IncLoc) -> bool { 4092 // Redefinition errors with modules are common with non modular mapped 4093 // headers, example: a non-modular header H in module A that also gets 4094 // included directly in a TU. Pointing twice to the same header/definition 4095 // is confusing, try to get better diagnostics when modules is on. 4096 if (IncLoc.isValid()) { 4097 if (Mod) { 4098 Diag(IncLoc, diag::note_redefinition_modules_same_file) 4099 << HdrFilename.str() << Mod->getFullModuleName(); 4100 if (!Mod->DefinitionLoc.isInvalid()) 4101 Diag(Mod->DefinitionLoc, diag::note_defined_here) 4102 << Mod->getFullModuleName(); 4103 } else { 4104 Diag(IncLoc, diag::note_redefinition_include_same_file) 4105 << HdrFilename.str(); 4106 } 4107 return true; 4108 } 4109 4110 return false; 4111 }; 4112 4113 // Is it the same file and same offset? Provide more information on why 4114 // this leads to a redefinition error. 4115 bool EmittedDiag = false; 4116 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { 4117 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); 4118 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); 4119 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); 4120 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); 4121 4122 // If the header has no guards, emit a note suggesting one. 4123 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) 4124 Diag(Old->getLocation(), diag::note_use_ifdef_guards); 4125 4126 if (EmittedDiag) 4127 return; 4128 } 4129 4130 // Redefinition coming from different files or couldn't do better above. 4131 if (Old->getLocation().isValid()) 4132 Diag(Old->getLocation(), diag::note_previous_definition); 4133 } 4134 4135 /// We've just determined that \p Old and \p New both appear to be definitions 4136 /// of the same variable. Either diagnose or fix the problem. 4137 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { 4138 if (!hasVisibleDefinition(Old) && 4139 (New->getFormalLinkage() == InternalLinkage || 4140 New->isInline() || 4141 New->getDescribedVarTemplate() || 4142 New->getNumTemplateParameterLists() || 4143 New->getDeclContext()->isDependentContext())) { 4144 // The previous definition is hidden, and multiple definitions are 4145 // permitted (in separate TUs). Demote this to a declaration. 4146 New->demoteThisDefinitionToDeclaration(); 4147 4148 // Make the canonical definition visible. 4149 if (auto *OldTD = Old->getDescribedVarTemplate()) 4150 makeMergedDefinitionVisible(OldTD); 4151 makeMergedDefinitionVisible(Old); 4152 return false; 4153 } else { 4154 Diag(New->getLocation(), diag::err_redefinition) << New; 4155 notePreviousDefinition(Old, New->getLocation()); 4156 New->setInvalidDecl(); 4157 return true; 4158 } 4159 } 4160 4161 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4162 /// no declarator (e.g. "struct foo;") is parsed. 4163 Decl * 4164 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4165 RecordDecl *&AnonRecord) { 4166 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, 4167 AnonRecord); 4168 } 4169 4170 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to 4171 // disambiguate entities defined in different scopes. 4172 // While the VS2015 ABI fixes potential miscompiles, it is also breaks 4173 // compatibility. 4174 // We will pick our mangling number depending on which version of MSVC is being 4175 // targeted. 4176 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { 4177 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) 4178 ? S->getMSCurManglingNumber() 4179 : S->getMSLastManglingNumber(); 4180 } 4181 4182 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { 4183 if (!Context.getLangOpts().CPlusPlus) 4184 return; 4185 4186 if (isa<CXXRecordDecl>(Tag->getParent())) { 4187 // If this tag is the direct child of a class, number it if 4188 // it is anonymous. 4189 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 4190 return; 4191 MangleNumberingContext &MCtx = 4192 Context.getManglingNumberContext(Tag->getParent()); 4193 Context.setManglingNumber( 4194 Tag, MCtx.getManglingNumber( 4195 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4196 return; 4197 } 4198 4199 // If this tag isn't a direct child of a class, number it if it is local. 4200 Decl *ManglingContextDecl; 4201 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( 4202 Tag->getDeclContext(), ManglingContextDecl)) { 4203 Context.setManglingNumber( 4204 Tag, MCtx->getManglingNumber( 4205 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4206 } 4207 } 4208 4209 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, 4210 TypedefNameDecl *NewTD) { 4211 if (TagFromDeclSpec->isInvalidDecl()) 4212 return; 4213 4214 // Do nothing if the tag already has a name for linkage purposes. 4215 if (TagFromDeclSpec->hasNameForLinkage()) 4216 return; 4217 4218 // A well-formed anonymous tag must always be a TUK_Definition. 4219 assert(TagFromDeclSpec->isThisDeclarationADefinition()); 4220 4221 // The type must match the tag exactly; no qualifiers allowed. 4222 if (!Context.hasSameType(NewTD->getUnderlyingType(), 4223 Context.getTagDeclType(TagFromDeclSpec))) { 4224 if (getLangOpts().CPlusPlus) 4225 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); 4226 return; 4227 } 4228 4229 // If we've already computed linkage for the anonymous tag, then 4230 // adding a typedef name for the anonymous decl can change that 4231 // linkage, which might be a serious problem. Diagnose this as 4232 // unsupported and ignore the typedef name. TODO: we should 4233 // pursue this as a language defect and establish a formal rule 4234 // for how to handle it. 4235 if (TagFromDeclSpec->hasLinkageBeenComputed()) { 4236 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage); 4237 4238 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart(); 4239 tagLoc = getLocForEndOfToken(tagLoc); 4240 4241 llvm::SmallString<40> textToInsert; 4242 textToInsert += ' '; 4243 textToInsert += NewTD->getIdentifier()->getName(); 4244 Diag(tagLoc, diag::note_typedef_changes_linkage) 4245 << FixItHint::CreateInsertion(tagLoc, textToInsert); 4246 return; 4247 } 4248 4249 // Otherwise, set this is the anon-decl typedef for the tag. 4250 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 4251 } 4252 4253 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { 4254 switch (T) { 4255 case DeclSpec::TST_class: 4256 return 0; 4257 case DeclSpec::TST_struct: 4258 return 1; 4259 case DeclSpec::TST_interface: 4260 return 2; 4261 case DeclSpec::TST_union: 4262 return 3; 4263 case DeclSpec::TST_enum: 4264 return 4; 4265 default: 4266 llvm_unreachable("unexpected type specifier"); 4267 } 4268 } 4269 4270 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4271 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 4272 /// parameters to cope with template friend declarations. 4273 Decl * 4274 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4275 MultiTemplateParamsArg TemplateParams, 4276 bool IsExplicitInstantiation, 4277 RecordDecl *&AnonRecord) { 4278 Decl *TagD = nullptr; 4279 TagDecl *Tag = nullptr; 4280 if (DS.getTypeSpecType() == DeclSpec::TST_class || 4281 DS.getTypeSpecType() == DeclSpec::TST_struct || 4282 DS.getTypeSpecType() == DeclSpec::TST_interface || 4283 DS.getTypeSpecType() == DeclSpec::TST_union || 4284 DS.getTypeSpecType() == DeclSpec::TST_enum) { 4285 TagD = DS.getRepAsDecl(); 4286 4287 if (!TagD) // We probably had an error 4288 return nullptr; 4289 4290 // Note that the above type specs guarantee that the 4291 // type rep is a Decl, whereas in many of the others 4292 // it's a Type. 4293 if (isa<TagDecl>(TagD)) 4294 Tag = cast<TagDecl>(TagD); 4295 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 4296 Tag = CTD->getTemplatedDecl(); 4297 } 4298 4299 if (Tag) { 4300 handleTagNumbering(Tag, S); 4301 Tag->setFreeStanding(); 4302 if (Tag->isInvalidDecl()) 4303 return Tag; 4304 } 4305 4306 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 4307 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 4308 // or incomplete types shall not be restrict-qualified." 4309 if (TypeQuals & DeclSpec::TQ_restrict) 4310 Diag(DS.getRestrictSpecLoc(), 4311 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 4312 << DS.getSourceRange(); 4313 } 4314 4315 if (DS.isInlineSpecified()) 4316 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 4317 << getLangOpts().CPlusPlus17; 4318 4319 if (DS.hasConstexprSpecifier()) { 4320 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 4321 // and definitions of functions and variables. 4322 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to 4323 // the declaration of a function or function template 4324 bool IsConsteval = DS.getConstexprSpecifier() == CSK_consteval; 4325 if (Tag) 4326 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 4327 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << IsConsteval; 4328 else 4329 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) 4330 << IsConsteval; 4331 // Don't emit warnings after this error. 4332 return TagD; 4333 } 4334 4335 DiagnoseFunctionSpecifiers(DS); 4336 4337 if (DS.isFriendSpecified()) { 4338 // If we're dealing with a decl but not a TagDecl, assume that 4339 // whatever routines created it handled the friendship aspect. 4340 if (TagD && !Tag) 4341 return nullptr; 4342 return ActOnFriendTypeDecl(S, DS, TemplateParams); 4343 } 4344 4345 const CXXScopeSpec &SS = DS.getTypeSpecScope(); 4346 bool IsExplicitSpecialization = 4347 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 4348 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 4349 !IsExplicitInstantiation && !IsExplicitSpecialization && 4350 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { 4351 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 4352 // nested-name-specifier unless it is an explicit instantiation 4353 // or an explicit specialization. 4354 // 4355 // FIXME: We allow class template partial specializations here too, per the 4356 // obvious intent of DR1819. 4357 // 4358 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 4359 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 4360 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); 4361 return nullptr; 4362 } 4363 4364 // Track whether this decl-specifier declares anything. 4365 bool DeclaresAnything = true; 4366 4367 // Handle anonymous struct definitions. 4368 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 4369 if (!Record->getDeclName() && Record->isCompleteDefinition() && 4370 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 4371 if (getLangOpts().CPlusPlus || 4372 Record->getDeclContext()->isRecord()) { 4373 // If CurContext is a DeclContext that can contain statements, 4374 // RecursiveASTVisitor won't visit the decls that 4375 // BuildAnonymousStructOrUnion() will put into CurContext. 4376 // Also store them here so that they can be part of the 4377 // DeclStmt that gets created in this case. 4378 // FIXME: Also return the IndirectFieldDecls created by 4379 // BuildAnonymousStructOr union, for the same reason? 4380 if (CurContext->isFunctionOrMethod()) 4381 AnonRecord = Record; 4382 return BuildAnonymousStructOrUnion(S, DS, AS, Record, 4383 Context.getPrintingPolicy()); 4384 } 4385 4386 DeclaresAnything = false; 4387 } 4388 } 4389 4390 // C11 6.7.2.1p2: 4391 // A struct-declaration that does not declare an anonymous structure or 4392 // anonymous union shall contain a struct-declarator-list. 4393 // 4394 // This rule also existed in C89 and C99; the grammar for struct-declaration 4395 // did not permit a struct-declaration without a struct-declarator-list. 4396 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 4397 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 4398 // Check for Microsoft C extension: anonymous struct/union member. 4399 // Handle 2 kinds of anonymous struct/union: 4400 // struct STRUCT; 4401 // union UNION; 4402 // and 4403 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 4404 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 4405 if ((Tag && Tag->getDeclName()) || 4406 DS.getTypeSpecType() == DeclSpec::TST_typename) { 4407 RecordDecl *Record = nullptr; 4408 if (Tag) 4409 Record = dyn_cast<RecordDecl>(Tag); 4410 else if (const RecordType *RT = 4411 DS.getRepAsType().get()->getAsStructureType()) 4412 Record = RT->getDecl(); 4413 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 4414 Record = UT->getDecl(); 4415 4416 if (Record && getLangOpts().MicrosoftExt) { 4417 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) 4418 << Record->isUnion() << DS.getSourceRange(); 4419 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 4420 } 4421 4422 DeclaresAnything = false; 4423 } 4424 } 4425 4426 // Skip all the checks below if we have a type error. 4427 if (DS.getTypeSpecType() == DeclSpec::TST_error || 4428 (TagD && TagD->isInvalidDecl())) 4429 return TagD; 4430 4431 if (getLangOpts().CPlusPlus && 4432 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 4433 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 4434 if (Enum->enumerator_begin() == Enum->enumerator_end() && 4435 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 4436 DeclaresAnything = false; 4437 4438 if (!DS.isMissingDeclaratorOk()) { 4439 // Customize diagnostic for a typedef missing a name. 4440 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 4441 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) 4442 << DS.getSourceRange(); 4443 else 4444 DeclaresAnything = false; 4445 } 4446 4447 if (DS.isModulePrivateSpecified() && 4448 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 4449 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 4450 << Tag->getTagKind() 4451 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 4452 4453 ActOnDocumentableDecl(TagD); 4454 4455 // C 6.7/2: 4456 // A declaration [...] shall declare at least a declarator [...], a tag, 4457 // or the members of an enumeration. 4458 // C++ [dcl.dcl]p3: 4459 // [If there are no declarators], and except for the declaration of an 4460 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4461 // names into the program, or shall redeclare a name introduced by a 4462 // previous declaration. 4463 if (!DeclaresAnything) { 4464 // In C, we allow this as a (popular) extension / bug. Don't bother 4465 // producing further diagnostics for redundant qualifiers after this. 4466 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 4467 return TagD; 4468 } 4469 4470 // C++ [dcl.stc]p1: 4471 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 4472 // init-declarator-list of the declaration shall not be empty. 4473 // C++ [dcl.fct.spec]p1: 4474 // If a cv-qualifier appears in a decl-specifier-seq, the 4475 // init-declarator-list of the declaration shall not be empty. 4476 // 4477 // Spurious qualifiers here appear to be valid in C. 4478 unsigned DiagID = diag::warn_standalone_specifier; 4479 if (getLangOpts().CPlusPlus) 4480 DiagID = diag::ext_standalone_specifier; 4481 4482 // Note that a linkage-specification sets a storage class, but 4483 // 'extern "C" struct foo;' is actually valid and not theoretically 4484 // useless. 4485 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 4486 if (SCS == DeclSpec::SCS_mutable) 4487 // Since mutable is not a viable storage class specifier in C, there is 4488 // no reason to treat it as an extension. Instead, diagnose as an error. 4489 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 4490 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 4491 Diag(DS.getStorageClassSpecLoc(), DiagID) 4492 << DeclSpec::getSpecifierName(SCS); 4493 } 4494 4495 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 4496 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 4497 << DeclSpec::getSpecifierName(TSCS); 4498 if (DS.getTypeQualifiers()) { 4499 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4500 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 4501 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4502 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 4503 // Restrict is covered above. 4504 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4505 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 4506 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4507 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; 4508 } 4509 4510 // Warn about ignored type attributes, for example: 4511 // __attribute__((aligned)) struct A; 4512 // Attributes should be placed after tag to apply to type declaration. 4513 if (!DS.getAttributes().empty()) { 4514 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 4515 if (TypeSpecType == DeclSpec::TST_class || 4516 TypeSpecType == DeclSpec::TST_struct || 4517 TypeSpecType == DeclSpec::TST_interface || 4518 TypeSpecType == DeclSpec::TST_union || 4519 TypeSpecType == DeclSpec::TST_enum) { 4520 for (const ParsedAttr &AL : DS.getAttributes()) 4521 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) 4522 << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType); 4523 } 4524 } 4525 4526 return TagD; 4527 } 4528 4529 /// We are trying to inject an anonymous member into the given scope; 4530 /// check if there's an existing declaration that can't be overloaded. 4531 /// 4532 /// \return true if this is a forbidden redeclaration 4533 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 4534 Scope *S, 4535 DeclContext *Owner, 4536 DeclarationName Name, 4537 SourceLocation NameLoc, 4538 bool IsUnion) { 4539 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 4540 Sema::ForVisibleRedeclaration); 4541 if (!SemaRef.LookupName(R, S)) return false; 4542 4543 // Pick a representative declaration. 4544 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 4545 assert(PrevDecl && "Expected a non-null Decl"); 4546 4547 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 4548 return false; 4549 4550 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) 4551 << IsUnion << Name; 4552 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 4553 4554 return true; 4555 } 4556 4557 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 4558 /// anonymous struct or union AnonRecord into the owning context Owner 4559 /// and scope S. This routine will be invoked just after we realize 4560 /// that an unnamed union or struct is actually an anonymous union or 4561 /// struct, e.g., 4562 /// 4563 /// @code 4564 /// union { 4565 /// int i; 4566 /// float f; 4567 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 4568 /// // f into the surrounding scope.x 4569 /// @endcode 4570 /// 4571 /// This routine is recursive, injecting the names of nested anonymous 4572 /// structs/unions into the owning context and scope as well. 4573 static bool 4574 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, 4575 RecordDecl *AnonRecord, AccessSpecifier AS, 4576 SmallVectorImpl<NamedDecl *> &Chaining) { 4577 bool Invalid = false; 4578 4579 // Look every FieldDecl and IndirectFieldDecl with a name. 4580 for (auto *D : AnonRecord->decls()) { 4581 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 4582 cast<NamedDecl>(D)->getDeclName()) { 4583 ValueDecl *VD = cast<ValueDecl>(D); 4584 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 4585 VD->getLocation(), 4586 AnonRecord->isUnion())) { 4587 // C++ [class.union]p2: 4588 // The names of the members of an anonymous union shall be 4589 // distinct from the names of any other entity in the 4590 // scope in which the anonymous union is declared. 4591 Invalid = true; 4592 } else { 4593 // C++ [class.union]p2: 4594 // For the purpose of name lookup, after the anonymous union 4595 // definition, the members of the anonymous union are 4596 // considered to have been defined in the scope in which the 4597 // anonymous union is declared. 4598 unsigned OldChainingSize = Chaining.size(); 4599 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 4600 Chaining.append(IF->chain_begin(), IF->chain_end()); 4601 else 4602 Chaining.push_back(VD); 4603 4604 assert(Chaining.size() >= 2); 4605 NamedDecl **NamedChain = 4606 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 4607 for (unsigned i = 0; i < Chaining.size(); i++) 4608 NamedChain[i] = Chaining[i]; 4609 4610 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 4611 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 4612 VD->getType(), {NamedChain, Chaining.size()}); 4613 4614 for (const auto *Attr : VD->attrs()) 4615 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 4616 4617 IndirectField->setAccess(AS); 4618 IndirectField->setImplicit(); 4619 SemaRef.PushOnScopeChains(IndirectField, S); 4620 4621 // That includes picking up the appropriate access specifier. 4622 if (AS != AS_none) IndirectField->setAccess(AS); 4623 4624 Chaining.resize(OldChainingSize); 4625 } 4626 } 4627 } 4628 4629 return Invalid; 4630 } 4631 4632 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 4633 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 4634 /// illegal input values are mapped to SC_None. 4635 static StorageClass 4636 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 4637 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 4638 assert(StorageClassSpec != DeclSpec::SCS_typedef && 4639 "Parser allowed 'typedef' as storage class VarDecl."); 4640 switch (StorageClassSpec) { 4641 case DeclSpec::SCS_unspecified: return SC_None; 4642 case DeclSpec::SCS_extern: 4643 if (DS.isExternInLinkageSpec()) 4644 return SC_None; 4645 return SC_Extern; 4646 case DeclSpec::SCS_static: return SC_Static; 4647 case DeclSpec::SCS_auto: return SC_Auto; 4648 case DeclSpec::SCS_register: return SC_Register; 4649 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 4650 // Illegal SCSs map to None: error reporting is up to the caller. 4651 case DeclSpec::SCS_mutable: // Fall through. 4652 case DeclSpec::SCS_typedef: return SC_None; 4653 } 4654 llvm_unreachable("unknown storage class specifier"); 4655 } 4656 4657 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 4658 assert(Record->hasInClassInitializer()); 4659 4660 for (const auto *I : Record->decls()) { 4661 const auto *FD = dyn_cast<FieldDecl>(I); 4662 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 4663 FD = IFD->getAnonField(); 4664 if (FD && FD->hasInClassInitializer()) 4665 return FD->getLocation(); 4666 } 4667 4668 llvm_unreachable("couldn't find in-class initializer"); 4669 } 4670 4671 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4672 SourceLocation DefaultInitLoc) { 4673 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4674 return; 4675 4676 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 4677 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 4678 } 4679 4680 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4681 CXXRecordDecl *AnonUnion) { 4682 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4683 return; 4684 4685 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 4686 } 4687 4688 /// BuildAnonymousStructOrUnion - Handle the declaration of an 4689 /// anonymous structure or union. Anonymous unions are a C++ feature 4690 /// (C++ [class.union]) and a C11 feature; anonymous structures 4691 /// are a C11 feature and GNU C++ extension. 4692 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 4693 AccessSpecifier AS, 4694 RecordDecl *Record, 4695 const PrintingPolicy &Policy) { 4696 DeclContext *Owner = Record->getDeclContext(); 4697 4698 // Diagnose whether this anonymous struct/union is an extension. 4699 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 4700 Diag(Record->getLocation(), diag::ext_anonymous_union); 4701 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 4702 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 4703 else if (!Record->isUnion() && !getLangOpts().C11) 4704 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 4705 4706 // C and C++ require different kinds of checks for anonymous 4707 // structs/unions. 4708 bool Invalid = false; 4709 if (getLangOpts().CPlusPlus) { 4710 const char *PrevSpec = nullptr; 4711 unsigned DiagID; 4712 if (Record->isUnion()) { 4713 // C++ [class.union]p6: 4714 // C++17 [class.union.anon]p2: 4715 // Anonymous unions declared in a named namespace or in the 4716 // global namespace shall be declared static. 4717 DeclContext *OwnerScope = Owner->getRedeclContext(); 4718 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 4719 (OwnerScope->isTranslationUnit() || 4720 (OwnerScope->isNamespace() && 4721 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { 4722 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 4723 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 4724 4725 // Recover by adding 'static'. 4726 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 4727 PrevSpec, DiagID, Policy); 4728 } 4729 // C++ [class.union]p6: 4730 // A storage class is not allowed in a declaration of an 4731 // anonymous union in a class scope. 4732 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 4733 isa<RecordDecl>(Owner)) { 4734 Diag(DS.getStorageClassSpecLoc(), 4735 diag::err_anonymous_union_with_storage_spec) 4736 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 4737 4738 // Recover by removing the storage specifier. 4739 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 4740 SourceLocation(), 4741 PrevSpec, DiagID, Context.getPrintingPolicy()); 4742 } 4743 } 4744 4745 // Ignore const/volatile/restrict qualifiers. 4746 if (DS.getTypeQualifiers()) { 4747 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4748 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 4749 << Record->isUnion() << "const" 4750 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 4751 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4752 Diag(DS.getVolatileSpecLoc(), 4753 diag::ext_anonymous_struct_union_qualified) 4754 << Record->isUnion() << "volatile" 4755 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 4756 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 4757 Diag(DS.getRestrictSpecLoc(), 4758 diag::ext_anonymous_struct_union_qualified) 4759 << Record->isUnion() << "restrict" 4760 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 4761 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4762 Diag(DS.getAtomicSpecLoc(), 4763 diag::ext_anonymous_struct_union_qualified) 4764 << Record->isUnion() << "_Atomic" 4765 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 4766 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4767 Diag(DS.getUnalignedSpecLoc(), 4768 diag::ext_anonymous_struct_union_qualified) 4769 << Record->isUnion() << "__unaligned" 4770 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); 4771 4772 DS.ClearTypeQualifiers(); 4773 } 4774 4775 // C++ [class.union]p2: 4776 // The member-specification of an anonymous union shall only 4777 // define non-static data members. [Note: nested types and 4778 // functions cannot be declared within an anonymous union. ] 4779 for (auto *Mem : Record->decls()) { 4780 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 4781 // C++ [class.union]p3: 4782 // An anonymous union shall not have private or protected 4783 // members (clause 11). 4784 assert(FD->getAccess() != AS_none); 4785 if (FD->getAccess() != AS_public) { 4786 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 4787 << Record->isUnion() << (FD->getAccess() == AS_protected); 4788 Invalid = true; 4789 } 4790 4791 // C++ [class.union]p1 4792 // An object of a class with a non-trivial constructor, a non-trivial 4793 // copy constructor, a non-trivial destructor, or a non-trivial copy 4794 // assignment operator cannot be a member of a union, nor can an 4795 // array of such objects. 4796 if (CheckNontrivialField(FD)) 4797 Invalid = true; 4798 } else if (Mem->isImplicit()) { 4799 // Any implicit members are fine. 4800 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 4801 // This is a type that showed up in an 4802 // elaborated-type-specifier inside the anonymous struct or 4803 // union, but which actually declares a type outside of the 4804 // anonymous struct or union. It's okay. 4805 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 4806 if (!MemRecord->isAnonymousStructOrUnion() && 4807 MemRecord->getDeclName()) { 4808 // Visual C++ allows type definition in anonymous struct or union. 4809 if (getLangOpts().MicrosoftExt) 4810 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 4811 << Record->isUnion(); 4812 else { 4813 // This is a nested type declaration. 4814 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 4815 << Record->isUnion(); 4816 Invalid = true; 4817 } 4818 } else { 4819 // This is an anonymous type definition within another anonymous type. 4820 // This is a popular extension, provided by Plan9, MSVC and GCC, but 4821 // not part of standard C++. 4822 Diag(MemRecord->getLocation(), 4823 diag::ext_anonymous_record_with_anonymous_type) 4824 << Record->isUnion(); 4825 } 4826 } else if (isa<AccessSpecDecl>(Mem)) { 4827 // Any access specifier is fine. 4828 } else if (isa<StaticAssertDecl>(Mem)) { 4829 // In C++1z, static_assert declarations are also fine. 4830 } else { 4831 // We have something that isn't a non-static data 4832 // member. Complain about it. 4833 unsigned DK = diag::err_anonymous_record_bad_member; 4834 if (isa<TypeDecl>(Mem)) 4835 DK = diag::err_anonymous_record_with_type; 4836 else if (isa<FunctionDecl>(Mem)) 4837 DK = diag::err_anonymous_record_with_function; 4838 else if (isa<VarDecl>(Mem)) 4839 DK = diag::err_anonymous_record_with_static; 4840 4841 // Visual C++ allows type definition in anonymous struct or union. 4842 if (getLangOpts().MicrosoftExt && 4843 DK == diag::err_anonymous_record_with_type) 4844 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 4845 << Record->isUnion(); 4846 else { 4847 Diag(Mem->getLocation(), DK) << Record->isUnion(); 4848 Invalid = true; 4849 } 4850 } 4851 } 4852 4853 // C++11 [class.union]p8 (DR1460): 4854 // At most one variant member of a union may have a 4855 // brace-or-equal-initializer. 4856 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 4857 Owner->isRecord()) 4858 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 4859 cast<CXXRecordDecl>(Record)); 4860 } 4861 4862 if (!Record->isUnion() && !Owner->isRecord()) { 4863 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 4864 << getLangOpts().CPlusPlus; 4865 Invalid = true; 4866 } 4867 4868 // C++ [dcl.dcl]p3: 4869 // [If there are no declarators], and except for the declaration of an 4870 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4871 // names into the program 4872 // C++ [class.mem]p2: 4873 // each such member-declaration shall either declare at least one member 4874 // name of the class or declare at least one unnamed bit-field 4875 // 4876 // For C this is an error even for a named struct, and is diagnosed elsewhere. 4877 if (getLangOpts().CPlusPlus && Record->field_empty()) 4878 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 4879 4880 // Mock up a declarator. 4881 Declarator Dc(DS, DeclaratorContext::MemberContext); 4882 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 4883 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 4884 4885 // Create a declaration for this anonymous struct/union. 4886 NamedDecl *Anon = nullptr; 4887 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 4888 Anon = FieldDecl::Create( 4889 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), 4890 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, 4891 /*BitWidth=*/nullptr, /*Mutable=*/false, 4892 /*InitStyle=*/ICIS_NoInit); 4893 Anon->setAccess(AS); 4894 if (getLangOpts().CPlusPlus) 4895 FieldCollector->Add(cast<FieldDecl>(Anon)); 4896 } else { 4897 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 4898 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 4899 if (SCSpec == DeclSpec::SCS_mutable) { 4900 // mutable can only appear on non-static class members, so it's always 4901 // an error here 4902 Diag(Record->getLocation(), diag::err_mutable_nonmember); 4903 Invalid = true; 4904 SC = SC_None; 4905 } 4906 4907 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), 4908 Record->getLocation(), /*IdentifierInfo=*/nullptr, 4909 Context.getTypeDeclType(Record), TInfo, SC); 4910 4911 // Default-initialize the implicit variable. This initialization will be 4912 // trivial in almost all cases, except if a union member has an in-class 4913 // initializer: 4914 // union { int n = 0; }; 4915 ActOnUninitializedDecl(Anon); 4916 } 4917 Anon->setImplicit(); 4918 4919 // Mark this as an anonymous struct/union type. 4920 Record->setAnonymousStructOrUnion(true); 4921 4922 // Add the anonymous struct/union object to the current 4923 // context. We'll be referencing this object when we refer to one of 4924 // its members. 4925 Owner->addDecl(Anon); 4926 4927 // Inject the members of the anonymous struct/union into the owning 4928 // context and into the identifier resolver chain for name lookup 4929 // purposes. 4930 SmallVector<NamedDecl*, 2> Chain; 4931 Chain.push_back(Anon); 4932 4933 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) 4934 Invalid = true; 4935 4936 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 4937 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 4938 Decl *ManglingContextDecl; 4939 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( 4940 NewVD->getDeclContext(), ManglingContextDecl)) { 4941 Context.setManglingNumber( 4942 NewVD, MCtx->getManglingNumber( 4943 NewVD, getMSManglingNumber(getLangOpts(), S))); 4944 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 4945 } 4946 } 4947 } 4948 4949 if (Invalid) 4950 Anon->setInvalidDecl(); 4951 4952 return Anon; 4953 } 4954 4955 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 4956 /// Microsoft C anonymous structure. 4957 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 4958 /// Example: 4959 /// 4960 /// struct A { int a; }; 4961 /// struct B { struct A; int b; }; 4962 /// 4963 /// void foo() { 4964 /// B var; 4965 /// var.a = 3; 4966 /// } 4967 /// 4968 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 4969 RecordDecl *Record) { 4970 assert(Record && "expected a record!"); 4971 4972 // Mock up a declarator. 4973 Declarator Dc(DS, DeclaratorContext::TypeNameContext); 4974 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 4975 assert(TInfo && "couldn't build declarator info for anonymous struct"); 4976 4977 auto *ParentDecl = cast<RecordDecl>(CurContext); 4978 QualType RecTy = Context.getTypeDeclType(Record); 4979 4980 // Create a declaration for this anonymous struct. 4981 NamedDecl *Anon = 4982 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), 4983 /*IdentifierInfo=*/nullptr, RecTy, TInfo, 4984 /*BitWidth=*/nullptr, /*Mutable=*/false, 4985 /*InitStyle=*/ICIS_NoInit); 4986 Anon->setImplicit(); 4987 4988 // Add the anonymous struct object to the current context. 4989 CurContext->addDecl(Anon); 4990 4991 // Inject the members of the anonymous struct into the current 4992 // context and into the identifier resolver chain for name lookup 4993 // purposes. 4994 SmallVector<NamedDecl*, 2> Chain; 4995 Chain.push_back(Anon); 4996 4997 RecordDecl *RecordDef = Record->getDefinition(); 4998 if (RequireCompleteType(Anon->getLocation(), RecTy, 4999 diag::err_field_incomplete) || 5000 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 5001 AS_none, Chain)) { 5002 Anon->setInvalidDecl(); 5003 ParentDecl->setInvalidDecl(); 5004 } 5005 5006 return Anon; 5007 } 5008 5009 /// GetNameForDeclarator - Determine the full declaration name for the 5010 /// given Declarator. 5011 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 5012 return GetNameFromUnqualifiedId(D.getName()); 5013 } 5014 5015 /// Retrieves the declaration name from a parsed unqualified-id. 5016 DeclarationNameInfo 5017 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 5018 DeclarationNameInfo NameInfo; 5019 NameInfo.setLoc(Name.StartLocation); 5020 5021 switch (Name.getKind()) { 5022 5023 case UnqualifiedIdKind::IK_ImplicitSelfParam: 5024 case UnqualifiedIdKind::IK_Identifier: 5025 NameInfo.setName(Name.Identifier); 5026 return NameInfo; 5027 5028 case UnqualifiedIdKind::IK_DeductionGuideName: { 5029 // C++ [temp.deduct.guide]p3: 5030 // The simple-template-id shall name a class template specialization. 5031 // The template-name shall be the same identifier as the template-name 5032 // of the simple-template-id. 5033 // These together intend to imply that the template-name shall name a 5034 // class template. 5035 // FIXME: template<typename T> struct X {}; 5036 // template<typename T> using Y = X<T>; 5037 // Y(int) -> Y<int>; 5038 // satisfies these rules but does not name a class template. 5039 TemplateName TN = Name.TemplateName.get().get(); 5040 auto *Template = TN.getAsTemplateDecl(); 5041 if (!Template || !isa<ClassTemplateDecl>(Template)) { 5042 Diag(Name.StartLocation, 5043 diag::err_deduction_guide_name_not_class_template) 5044 << (int)getTemplateNameKindForDiagnostics(TN) << TN; 5045 if (Template) 5046 Diag(Template->getLocation(), diag::note_template_decl_here); 5047 return DeclarationNameInfo(); 5048 } 5049 5050 NameInfo.setName( 5051 Context.DeclarationNames.getCXXDeductionGuideName(Template)); 5052 return NameInfo; 5053 } 5054 5055 case UnqualifiedIdKind::IK_OperatorFunctionId: 5056 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 5057 Name.OperatorFunctionId.Operator)); 5058 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 5059 = Name.OperatorFunctionId.SymbolLocations[0]; 5060 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 5061 = Name.EndLocation.getRawEncoding(); 5062 return NameInfo; 5063 5064 case UnqualifiedIdKind::IK_LiteralOperatorId: 5065 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 5066 Name.Identifier)); 5067 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 5068 return NameInfo; 5069 5070 case UnqualifiedIdKind::IK_ConversionFunctionId: { 5071 TypeSourceInfo *TInfo; 5072 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 5073 if (Ty.isNull()) 5074 return DeclarationNameInfo(); 5075 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 5076 Context.getCanonicalType(Ty))); 5077 NameInfo.setNamedTypeInfo(TInfo); 5078 return NameInfo; 5079 } 5080 5081 case UnqualifiedIdKind::IK_ConstructorName: { 5082 TypeSourceInfo *TInfo; 5083 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 5084 if (Ty.isNull()) 5085 return DeclarationNameInfo(); 5086 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5087 Context.getCanonicalType(Ty))); 5088 NameInfo.setNamedTypeInfo(TInfo); 5089 return NameInfo; 5090 } 5091 5092 case UnqualifiedIdKind::IK_ConstructorTemplateId: { 5093 // In well-formed code, we can only have a constructor 5094 // template-id that refers to the current context, so go there 5095 // to find the actual type being constructed. 5096 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 5097 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 5098 return DeclarationNameInfo(); 5099 5100 // Determine the type of the class being constructed. 5101 QualType CurClassType = Context.getTypeDeclType(CurClass); 5102 5103 // FIXME: Check two things: that the template-id names the same type as 5104 // CurClassType, and that the template-id does not occur when the name 5105 // was qualified. 5106 5107 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5108 Context.getCanonicalType(CurClassType))); 5109 // FIXME: should we retrieve TypeSourceInfo? 5110 NameInfo.setNamedTypeInfo(nullptr); 5111 return NameInfo; 5112 } 5113 5114 case UnqualifiedIdKind::IK_DestructorName: { 5115 TypeSourceInfo *TInfo; 5116 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 5117 if (Ty.isNull()) 5118 return DeclarationNameInfo(); 5119 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 5120 Context.getCanonicalType(Ty))); 5121 NameInfo.setNamedTypeInfo(TInfo); 5122 return NameInfo; 5123 } 5124 5125 case UnqualifiedIdKind::IK_TemplateId: { 5126 TemplateName TName = Name.TemplateId->Template.get(); 5127 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 5128 return Context.getNameForTemplate(TName, TNameLoc); 5129 } 5130 5131 } // switch (Name.getKind()) 5132 5133 llvm_unreachable("Unknown name kind"); 5134 } 5135 5136 static QualType getCoreType(QualType Ty) { 5137 do { 5138 if (Ty->isPointerType() || Ty->isReferenceType()) 5139 Ty = Ty->getPointeeType(); 5140 else if (Ty->isArrayType()) 5141 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 5142 else 5143 return Ty.withoutLocalFastQualifiers(); 5144 } while (true); 5145 } 5146 5147 /// hasSimilarParameters - Determine whether the C++ functions Declaration 5148 /// and Definition have "nearly" matching parameters. This heuristic is 5149 /// used to improve diagnostics in the case where an out-of-line function 5150 /// definition doesn't match any declaration within the class or namespace. 5151 /// Also sets Params to the list of indices to the parameters that differ 5152 /// between the declaration and the definition. If hasSimilarParameters 5153 /// returns true and Params is empty, then all of the parameters match. 5154 static bool hasSimilarParameters(ASTContext &Context, 5155 FunctionDecl *Declaration, 5156 FunctionDecl *Definition, 5157 SmallVectorImpl<unsigned> &Params) { 5158 Params.clear(); 5159 if (Declaration->param_size() != Definition->param_size()) 5160 return false; 5161 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 5162 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 5163 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 5164 5165 // The parameter types are identical 5166 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) 5167 continue; 5168 5169 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 5170 QualType DefParamBaseTy = getCoreType(DefParamTy); 5171 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 5172 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 5173 5174 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 5175 (DeclTyName && DeclTyName == DefTyName)) 5176 Params.push_back(Idx); 5177 else // The two parameters aren't even close 5178 return false; 5179 } 5180 5181 return true; 5182 } 5183 5184 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 5185 /// declarator needs to be rebuilt in the current instantiation. 5186 /// Any bits of declarator which appear before the name are valid for 5187 /// consideration here. That's specifically the type in the decl spec 5188 /// and the base type in any member-pointer chunks. 5189 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 5190 DeclarationName Name) { 5191 // The types we specifically need to rebuild are: 5192 // - typenames, typeofs, and decltypes 5193 // - types which will become injected class names 5194 // Of course, we also need to rebuild any type referencing such a 5195 // type. It's safest to just say "dependent", but we call out a 5196 // few cases here. 5197 5198 DeclSpec &DS = D.getMutableDeclSpec(); 5199 switch (DS.getTypeSpecType()) { 5200 case DeclSpec::TST_typename: 5201 case DeclSpec::TST_typeofType: 5202 case DeclSpec::TST_underlyingType: 5203 case DeclSpec::TST_atomic: { 5204 // Grab the type from the parser. 5205 TypeSourceInfo *TSI = nullptr; 5206 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 5207 if (T.isNull() || !T->isDependentType()) break; 5208 5209 // Make sure there's a type source info. This isn't really much 5210 // of a waste; most dependent types should have type source info 5211 // attached already. 5212 if (!TSI) 5213 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 5214 5215 // Rebuild the type in the current instantiation. 5216 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 5217 if (!TSI) return true; 5218 5219 // Store the new type back in the decl spec. 5220 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 5221 DS.UpdateTypeRep(LocType); 5222 break; 5223 } 5224 5225 case DeclSpec::TST_decltype: 5226 case DeclSpec::TST_typeofExpr: { 5227 Expr *E = DS.getRepAsExpr(); 5228 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 5229 if (Result.isInvalid()) return true; 5230 DS.UpdateExprRep(Result.get()); 5231 break; 5232 } 5233 5234 default: 5235 // Nothing to do for these decl specs. 5236 break; 5237 } 5238 5239 // It doesn't matter what order we do this in. 5240 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 5241 DeclaratorChunk &Chunk = D.getTypeObject(I); 5242 5243 // The only type information in the declarator which can come 5244 // before the declaration name is the base type of a member 5245 // pointer. 5246 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 5247 continue; 5248 5249 // Rebuild the scope specifier in-place. 5250 CXXScopeSpec &SS = Chunk.Mem.Scope(); 5251 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 5252 return true; 5253 } 5254 5255 return false; 5256 } 5257 5258 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 5259 D.setFunctionDefinitionKind(FDK_Declaration); 5260 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 5261 5262 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 5263 Dcl && Dcl->getDeclContext()->isFileContext()) 5264 Dcl->setTopLevelDeclInObjCContainer(); 5265 5266 if (getLangOpts().OpenCL) 5267 setCurrentOpenCLExtensionForDecl(Dcl); 5268 5269 return Dcl; 5270 } 5271 5272 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 5273 /// If T is the name of a class, then each of the following shall have a 5274 /// name different from T: 5275 /// - every static data member of class T; 5276 /// - every member function of class T 5277 /// - every member of class T that is itself a type; 5278 /// \returns true if the declaration name violates these rules. 5279 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 5280 DeclarationNameInfo NameInfo) { 5281 DeclarationName Name = NameInfo.getName(); 5282 5283 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); 5284 while (Record && Record->isAnonymousStructOrUnion()) 5285 Record = dyn_cast<CXXRecordDecl>(Record->getParent()); 5286 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { 5287 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 5288 return true; 5289 } 5290 5291 return false; 5292 } 5293 5294 /// Diagnose a declaration whose declarator-id has the given 5295 /// nested-name-specifier. 5296 /// 5297 /// \param SS The nested-name-specifier of the declarator-id. 5298 /// 5299 /// \param DC The declaration context to which the nested-name-specifier 5300 /// resolves. 5301 /// 5302 /// \param Name The name of the entity being declared. 5303 /// 5304 /// \param Loc The location of the name of the entity being declared. 5305 /// 5306 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus 5307 /// we're declaring an explicit / partial specialization / instantiation. 5308 /// 5309 /// \returns true if we cannot safely recover from this error, false otherwise. 5310 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 5311 DeclarationName Name, 5312 SourceLocation Loc, bool IsTemplateId) { 5313 DeclContext *Cur = CurContext; 5314 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 5315 Cur = Cur->getParent(); 5316 5317 // If the user provided a superfluous scope specifier that refers back to the 5318 // class in which the entity is already declared, diagnose and ignore it. 5319 // 5320 // class X { 5321 // void X::f(); 5322 // }; 5323 // 5324 // Note, it was once ill-formed to give redundant qualification in all 5325 // contexts, but that rule was removed by DR482. 5326 if (Cur->Equals(DC)) { 5327 if (Cur->isRecord()) { 5328 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 5329 : diag::err_member_extra_qualification) 5330 << Name << FixItHint::CreateRemoval(SS.getRange()); 5331 SS.clear(); 5332 } else { 5333 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 5334 } 5335 return false; 5336 } 5337 5338 // Check whether the qualifying scope encloses the scope of the original 5339 // declaration. For a template-id, we perform the checks in 5340 // CheckTemplateSpecializationScope. 5341 if (!Cur->Encloses(DC) && !IsTemplateId) { 5342 if (Cur->isRecord()) 5343 Diag(Loc, diag::err_member_qualification) 5344 << Name << SS.getRange(); 5345 else if (isa<TranslationUnitDecl>(DC)) 5346 Diag(Loc, diag::err_invalid_declarator_global_scope) 5347 << Name << SS.getRange(); 5348 else if (isa<FunctionDecl>(Cur)) 5349 Diag(Loc, diag::err_invalid_declarator_in_function) 5350 << Name << SS.getRange(); 5351 else if (isa<BlockDecl>(Cur)) 5352 Diag(Loc, diag::err_invalid_declarator_in_block) 5353 << Name << SS.getRange(); 5354 else 5355 Diag(Loc, diag::err_invalid_declarator_scope) 5356 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 5357 5358 return true; 5359 } 5360 5361 if (Cur->isRecord()) { 5362 // Cannot qualify members within a class. 5363 Diag(Loc, diag::err_member_qualification) 5364 << Name << SS.getRange(); 5365 SS.clear(); 5366 5367 // C++ constructors and destructors with incorrect scopes can break 5368 // our AST invariants by having the wrong underlying types. If 5369 // that's the case, then drop this declaration entirely. 5370 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 5371 Name.getNameKind() == DeclarationName::CXXDestructorName) && 5372 !Context.hasSameType(Name.getCXXNameType(), 5373 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 5374 return true; 5375 5376 return false; 5377 } 5378 5379 // C++11 [dcl.meaning]p1: 5380 // [...] "The nested-name-specifier of the qualified declarator-id shall 5381 // not begin with a decltype-specifer" 5382 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 5383 while (SpecLoc.getPrefix()) 5384 SpecLoc = SpecLoc.getPrefix(); 5385 if (dyn_cast_or_null<DecltypeType>( 5386 SpecLoc.getNestedNameSpecifier()->getAsType())) 5387 Diag(Loc, diag::err_decltype_in_declarator) 5388 << SpecLoc.getTypeLoc().getSourceRange(); 5389 5390 return false; 5391 } 5392 5393 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 5394 MultiTemplateParamsArg TemplateParamLists) { 5395 // TODO: consider using NameInfo for diagnostic. 5396 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5397 DeclarationName Name = NameInfo.getName(); 5398 5399 // All of these full declarators require an identifier. If it doesn't have 5400 // one, the ParsedFreeStandingDeclSpec action should be used. 5401 if (D.isDecompositionDeclarator()) { 5402 return ActOnDecompositionDeclarator(S, D, TemplateParamLists); 5403 } else if (!Name) { 5404 if (!D.isInvalidType()) // Reject this if we think it is valid. 5405 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) 5406 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 5407 return nullptr; 5408 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 5409 return nullptr; 5410 5411 // The scope passed in may not be a decl scope. Zip up the scope tree until 5412 // we find one that is. 5413 while ((S->getFlags() & Scope::DeclScope) == 0 || 5414 (S->getFlags() & Scope::TemplateParamScope) != 0) 5415 S = S->getParent(); 5416 5417 DeclContext *DC = CurContext; 5418 if (D.getCXXScopeSpec().isInvalid()) 5419 D.setInvalidType(); 5420 else if (D.getCXXScopeSpec().isSet()) { 5421 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 5422 UPPC_DeclarationQualifier)) 5423 return nullptr; 5424 5425 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 5426 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 5427 if (!DC || isa<EnumDecl>(DC)) { 5428 // If we could not compute the declaration context, it's because the 5429 // declaration context is dependent but does not refer to a class, 5430 // class template, or class template partial specialization. Complain 5431 // and return early, to avoid the coming semantic disaster. 5432 Diag(D.getIdentifierLoc(), 5433 diag::err_template_qualified_declarator_no_match) 5434 << D.getCXXScopeSpec().getScopeRep() 5435 << D.getCXXScopeSpec().getRange(); 5436 return nullptr; 5437 } 5438 bool IsDependentContext = DC->isDependentContext(); 5439 5440 if (!IsDependentContext && 5441 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 5442 return nullptr; 5443 5444 // If a class is incomplete, do not parse entities inside it. 5445 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 5446 Diag(D.getIdentifierLoc(), 5447 diag::err_member_def_undefined_record) 5448 << Name << DC << D.getCXXScopeSpec().getRange(); 5449 return nullptr; 5450 } 5451 if (!D.getDeclSpec().isFriendSpecified()) { 5452 if (diagnoseQualifiedDeclaration( 5453 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), 5454 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { 5455 if (DC->isRecord()) 5456 return nullptr; 5457 5458 D.setInvalidType(); 5459 } 5460 } 5461 5462 // Check whether we need to rebuild the type of the given 5463 // declaration in the current instantiation. 5464 if (EnteringContext && IsDependentContext && 5465 TemplateParamLists.size() != 0) { 5466 ContextRAII SavedContext(*this, DC); 5467 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 5468 D.setInvalidType(); 5469 } 5470 } 5471 5472 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5473 QualType R = TInfo->getType(); 5474 5475 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 5476 UPPC_DeclarationType)) 5477 D.setInvalidType(); 5478 5479 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 5480 forRedeclarationInCurContext()); 5481 5482 // See if this is a redefinition of a variable in the same scope. 5483 if (!D.getCXXScopeSpec().isSet()) { 5484 bool IsLinkageLookup = false; 5485 bool CreateBuiltins = false; 5486 5487 // If the declaration we're planning to build will be a function 5488 // or object with linkage, then look for another declaration with 5489 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 5490 // 5491 // If the declaration we're planning to build will be declared with 5492 // external linkage in the translation unit, create any builtin with 5493 // the same name. 5494 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 5495 /* Do nothing*/; 5496 else if (CurContext->isFunctionOrMethod() && 5497 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 5498 R->isFunctionType())) { 5499 IsLinkageLookup = true; 5500 CreateBuiltins = 5501 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 5502 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 5503 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 5504 CreateBuiltins = true; 5505 5506 if (IsLinkageLookup) { 5507 Previous.clear(LookupRedeclarationWithLinkage); 5508 Previous.setRedeclarationKind(ForExternalRedeclaration); 5509 } 5510 5511 LookupName(Previous, S, CreateBuiltins); 5512 } else { // Something like "int foo::x;" 5513 LookupQualifiedName(Previous, DC); 5514 5515 // C++ [dcl.meaning]p1: 5516 // When the declarator-id is qualified, the declaration shall refer to a 5517 // previously declared member of the class or namespace to which the 5518 // qualifier refers (or, in the case of a namespace, of an element of the 5519 // inline namespace set of that namespace (7.3.1)) or to a specialization 5520 // thereof; [...] 5521 // 5522 // Note that we already checked the context above, and that we do not have 5523 // enough information to make sure that Previous contains the declaration 5524 // we want to match. For example, given: 5525 // 5526 // class X { 5527 // void f(); 5528 // void f(float); 5529 // }; 5530 // 5531 // void X::f(int) { } // ill-formed 5532 // 5533 // In this case, Previous will point to the overload set 5534 // containing the two f's declared in X, but neither of them 5535 // matches. 5536 5537 // C++ [dcl.meaning]p1: 5538 // [...] the member shall not merely have been introduced by a 5539 // using-declaration in the scope of the class or namespace nominated by 5540 // the nested-name-specifier of the declarator-id. 5541 RemoveUsingDecls(Previous); 5542 } 5543 5544 if (Previous.isSingleResult() && 5545 Previous.getFoundDecl()->isTemplateParameter()) { 5546 // Maybe we will complain about the shadowed template parameter. 5547 if (!D.isInvalidType()) 5548 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 5549 Previous.getFoundDecl()); 5550 5551 // Just pretend that we didn't see the previous declaration. 5552 Previous.clear(); 5553 } 5554 5555 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) 5556 // Forget that the previous declaration is the injected-class-name. 5557 Previous.clear(); 5558 5559 // In C++, the previous declaration we find might be a tag type 5560 // (class or enum). In this case, the new declaration will hide the 5561 // tag type. Note that this applies to functions, function templates, and 5562 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. 5563 if (Previous.isSingleTagDecl() && 5564 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 5565 (TemplateParamLists.size() == 0 || R->isFunctionType())) 5566 Previous.clear(); 5567 5568 // Check that there are no default arguments other than in the parameters 5569 // of a function declaration (C++ only). 5570 if (getLangOpts().CPlusPlus) 5571 CheckExtraCXXDefaultArguments(D); 5572 5573 NamedDecl *New; 5574 5575 bool AddToScope = true; 5576 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5577 if (TemplateParamLists.size()) { 5578 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 5579 return nullptr; 5580 } 5581 5582 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 5583 } else if (R->isFunctionType()) { 5584 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 5585 TemplateParamLists, 5586 AddToScope); 5587 } else { 5588 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 5589 AddToScope); 5590 } 5591 5592 if (!New) 5593 return nullptr; 5594 5595 // If this has an identifier and is not a function template specialization, 5596 // add it to the scope stack. 5597 if (New->getDeclName() && AddToScope) 5598 PushOnScopeChains(New, S); 5599 5600 if (isInOpenMPDeclareTargetContext()) 5601 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 5602 5603 return New; 5604 } 5605 5606 /// Helper method to turn variable array types into constant array 5607 /// types in certain situations which would otherwise be errors (for 5608 /// GCC compatibility). 5609 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 5610 ASTContext &Context, 5611 bool &SizeIsNegative, 5612 llvm::APSInt &Oversized) { 5613 // This method tries to turn a variable array into a constant 5614 // array even when the size isn't an ICE. This is necessary 5615 // for compatibility with code that depends on gcc's buggy 5616 // constant expression folding, like struct {char x[(int)(char*)2];} 5617 SizeIsNegative = false; 5618 Oversized = 0; 5619 5620 if (T->isDependentType()) 5621 return QualType(); 5622 5623 QualifierCollector Qs; 5624 const Type *Ty = Qs.strip(T); 5625 5626 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 5627 QualType Pointee = PTy->getPointeeType(); 5628 QualType FixedType = 5629 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 5630 Oversized); 5631 if (FixedType.isNull()) return FixedType; 5632 FixedType = Context.getPointerType(FixedType); 5633 return Qs.apply(Context, FixedType); 5634 } 5635 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 5636 QualType Inner = PTy->getInnerType(); 5637 QualType FixedType = 5638 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 5639 Oversized); 5640 if (FixedType.isNull()) return FixedType; 5641 FixedType = Context.getParenType(FixedType); 5642 return Qs.apply(Context, FixedType); 5643 } 5644 5645 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 5646 if (!VLATy) 5647 return QualType(); 5648 // FIXME: We should probably handle this case 5649 if (VLATy->getElementType()->isVariablyModifiedType()) 5650 return QualType(); 5651 5652 Expr::EvalResult Result; 5653 if (!VLATy->getSizeExpr() || 5654 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) 5655 return QualType(); 5656 5657 llvm::APSInt Res = Result.Val.getInt(); 5658 5659 // Check whether the array size is negative. 5660 if (Res.isSigned() && Res.isNegative()) { 5661 SizeIsNegative = true; 5662 return QualType(); 5663 } 5664 5665 // Check whether the array is too large to be addressed. 5666 unsigned ActiveSizeBits 5667 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 5668 Res); 5669 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 5670 Oversized = Res; 5671 return QualType(); 5672 } 5673 5674 return Context.getConstantArrayType(VLATy->getElementType(), 5675 Res, ArrayType::Normal, 0); 5676 } 5677 5678 static void 5679 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 5680 SrcTL = SrcTL.getUnqualifiedLoc(); 5681 DstTL = DstTL.getUnqualifiedLoc(); 5682 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 5683 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 5684 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 5685 DstPTL.getPointeeLoc()); 5686 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 5687 return; 5688 } 5689 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 5690 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 5691 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 5692 DstPTL.getInnerLoc()); 5693 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 5694 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 5695 return; 5696 } 5697 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 5698 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 5699 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 5700 TypeLoc DstElemTL = DstATL.getElementLoc(); 5701 DstElemTL.initializeFullCopy(SrcElemTL); 5702 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 5703 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 5704 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 5705 } 5706 5707 /// Helper method to turn variable array types into constant array 5708 /// types in certain situations which would otherwise be errors (for 5709 /// GCC compatibility). 5710 static TypeSourceInfo* 5711 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 5712 ASTContext &Context, 5713 bool &SizeIsNegative, 5714 llvm::APSInt &Oversized) { 5715 QualType FixedTy 5716 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 5717 SizeIsNegative, Oversized); 5718 if (FixedTy.isNull()) 5719 return nullptr; 5720 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 5721 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 5722 FixedTInfo->getTypeLoc()); 5723 return FixedTInfo; 5724 } 5725 5726 /// Register the given locally-scoped extern "C" declaration so 5727 /// that it can be found later for redeclarations. We include any extern "C" 5728 /// declaration that is not visible in the translation unit here, not just 5729 /// function-scope declarations. 5730 void 5731 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 5732 if (!getLangOpts().CPlusPlus && 5733 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 5734 // Don't need to track declarations in the TU in C. 5735 return; 5736 5737 // Note that we have a locally-scoped external with this name. 5738 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); 5739 } 5740 5741 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 5742 // FIXME: We can have multiple results via __attribute__((overloadable)). 5743 auto Result = Context.getExternCContextDecl()->lookup(Name); 5744 return Result.empty() ? nullptr : *Result.begin(); 5745 } 5746 5747 /// Diagnose function specifiers on a declaration of an identifier that 5748 /// does not identify a function. 5749 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 5750 // FIXME: We should probably indicate the identifier in question to avoid 5751 // confusion for constructs like "virtual int a(), b;" 5752 if (DS.isVirtualSpecified()) 5753 Diag(DS.getVirtualSpecLoc(), 5754 diag::err_virtual_non_function); 5755 5756 if (DS.hasExplicitSpecifier()) 5757 Diag(DS.getExplicitSpecLoc(), 5758 diag::err_explicit_non_function); 5759 5760 if (DS.isNoreturnSpecified()) 5761 Diag(DS.getNoreturnSpecLoc(), 5762 diag::err_noreturn_non_function); 5763 } 5764 5765 NamedDecl* 5766 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 5767 TypeSourceInfo *TInfo, LookupResult &Previous) { 5768 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 5769 if (D.getCXXScopeSpec().isSet()) { 5770 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 5771 << D.getCXXScopeSpec().getRange(); 5772 D.setInvalidType(); 5773 // Pretend we didn't see the scope specifier. 5774 DC = CurContext; 5775 Previous.clear(); 5776 } 5777 5778 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 5779 5780 if (D.getDeclSpec().isInlineSpecified()) 5781 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 5782 << getLangOpts().CPlusPlus17; 5783 if (D.getDeclSpec().hasConstexprSpecifier()) 5784 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 5785 << 1 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval); 5786 5787 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { 5788 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) 5789 Diag(D.getName().StartLocation, 5790 diag::err_deduction_guide_invalid_specifier) 5791 << "typedef"; 5792 else 5793 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 5794 << D.getName().getSourceRange(); 5795 return nullptr; 5796 } 5797 5798 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 5799 if (!NewTD) return nullptr; 5800 5801 // Handle attributes prior to checking for duplicates in MergeVarDecl 5802 ProcessDeclAttributes(S, NewTD, D); 5803 5804 CheckTypedefForVariablyModifiedType(S, NewTD); 5805 5806 bool Redeclaration = D.isRedeclaration(); 5807 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 5808 D.setRedeclaration(Redeclaration); 5809 return ND; 5810 } 5811 5812 void 5813 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 5814 // C99 6.7.7p2: If a typedef name specifies a variably modified type 5815 // then it shall have block scope. 5816 // Note that variably modified types must be fixed before merging the decl so 5817 // that redeclarations will match. 5818 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 5819 QualType T = TInfo->getType(); 5820 if (T->isVariablyModifiedType()) { 5821 setFunctionHasBranchProtectedScope(); 5822 5823 if (S->getFnParent() == nullptr) { 5824 bool SizeIsNegative; 5825 llvm::APSInt Oversized; 5826 TypeSourceInfo *FixedTInfo = 5827 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 5828 SizeIsNegative, 5829 Oversized); 5830 if (FixedTInfo) { 5831 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 5832 NewTD->setTypeSourceInfo(FixedTInfo); 5833 } else { 5834 if (SizeIsNegative) 5835 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 5836 else if (T->isVariableArrayType()) 5837 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 5838 else if (Oversized.getBoolValue()) 5839 Diag(NewTD->getLocation(), diag::err_array_too_large) 5840 << Oversized.toString(10); 5841 else 5842 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 5843 NewTD->setInvalidDecl(); 5844 } 5845 } 5846 } 5847 } 5848 5849 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 5850 /// declares a typedef-name, either using the 'typedef' type specifier or via 5851 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 5852 NamedDecl* 5853 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 5854 LookupResult &Previous, bool &Redeclaration) { 5855 5856 // Find the shadowed declaration before filtering for scope. 5857 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); 5858 5859 // Merge the decl with the existing one if appropriate. If the decl is 5860 // in an outer scope, it isn't the same thing. 5861 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 5862 /*AllowInlineNamespace*/false); 5863 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); 5864 if (!Previous.empty()) { 5865 Redeclaration = true; 5866 MergeTypedefNameDecl(S, NewTD, Previous); 5867 } 5868 5869 if (ShadowedDecl && !Redeclaration) 5870 CheckShadow(NewTD, ShadowedDecl, Previous); 5871 5872 // If this is the C FILE type, notify the AST context. 5873 if (IdentifierInfo *II = NewTD->getIdentifier()) 5874 if (!NewTD->isInvalidDecl() && 5875 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 5876 if (II->isStr("FILE")) 5877 Context.setFILEDecl(NewTD); 5878 else if (II->isStr("jmp_buf")) 5879 Context.setjmp_bufDecl(NewTD); 5880 else if (II->isStr("sigjmp_buf")) 5881 Context.setsigjmp_bufDecl(NewTD); 5882 else if (II->isStr("ucontext_t")) 5883 Context.setucontext_tDecl(NewTD); 5884 } 5885 5886 return NewTD; 5887 } 5888 5889 /// Determines whether the given declaration is an out-of-scope 5890 /// previous declaration. 5891 /// 5892 /// This routine should be invoked when name lookup has found a 5893 /// previous declaration (PrevDecl) that is not in the scope where a 5894 /// new declaration by the same name is being introduced. If the new 5895 /// declaration occurs in a local scope, previous declarations with 5896 /// linkage may still be considered previous declarations (C99 5897 /// 6.2.2p4-5, C++ [basic.link]p6). 5898 /// 5899 /// \param PrevDecl the previous declaration found by name 5900 /// lookup 5901 /// 5902 /// \param DC the context in which the new declaration is being 5903 /// declared. 5904 /// 5905 /// \returns true if PrevDecl is an out-of-scope previous declaration 5906 /// for a new delcaration with the same name. 5907 static bool 5908 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 5909 ASTContext &Context) { 5910 if (!PrevDecl) 5911 return false; 5912 5913 if (!PrevDecl->hasLinkage()) 5914 return false; 5915 5916 if (Context.getLangOpts().CPlusPlus) { 5917 // C++ [basic.link]p6: 5918 // If there is a visible declaration of an entity with linkage 5919 // having the same name and type, ignoring entities declared 5920 // outside the innermost enclosing namespace scope, the block 5921 // scope declaration declares that same entity and receives the 5922 // linkage of the previous declaration. 5923 DeclContext *OuterContext = DC->getRedeclContext(); 5924 if (!OuterContext->isFunctionOrMethod()) 5925 // This rule only applies to block-scope declarations. 5926 return false; 5927 5928 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 5929 if (PrevOuterContext->isRecord()) 5930 // We found a member function: ignore it. 5931 return false; 5932 5933 // Find the innermost enclosing namespace for the new and 5934 // previous declarations. 5935 OuterContext = OuterContext->getEnclosingNamespaceContext(); 5936 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 5937 5938 // The previous declaration is in a different namespace, so it 5939 // isn't the same function. 5940 if (!OuterContext->Equals(PrevOuterContext)) 5941 return false; 5942 } 5943 5944 return true; 5945 } 5946 5947 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { 5948 CXXScopeSpec &SS = D.getCXXScopeSpec(); 5949 if (!SS.isSet()) return; 5950 DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); 5951 } 5952 5953 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 5954 QualType type = decl->getType(); 5955 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 5956 if (lifetime == Qualifiers::OCL_Autoreleasing) { 5957 // Various kinds of declaration aren't allowed to be __autoreleasing. 5958 unsigned kind = -1U; 5959 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 5960 if (var->hasAttr<BlocksAttr>()) 5961 kind = 0; // __block 5962 else if (!var->hasLocalStorage()) 5963 kind = 1; // global 5964 } else if (isa<ObjCIvarDecl>(decl)) { 5965 kind = 3; // ivar 5966 } else if (isa<FieldDecl>(decl)) { 5967 kind = 2; // field 5968 } 5969 5970 if (kind != -1U) { 5971 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 5972 << kind; 5973 } 5974 } else if (lifetime == Qualifiers::OCL_None) { 5975 // Try to infer lifetime. 5976 if (!type->isObjCLifetimeType()) 5977 return false; 5978 5979 lifetime = type->getObjCARCImplicitLifetime(); 5980 type = Context.getLifetimeQualifiedType(type, lifetime); 5981 decl->setType(type); 5982 } 5983 5984 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 5985 // Thread-local variables cannot have lifetime. 5986 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 5987 var->getTLSKind()) { 5988 Diag(var->getLocation(), diag::err_arc_thread_ownership) 5989 << var->getType(); 5990 return true; 5991 } 5992 } 5993 5994 return false; 5995 } 5996 5997 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 5998 // Ensure that an auto decl is deduced otherwise the checks below might cache 5999 // the wrong linkage. 6000 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 6001 6002 // 'weak' only applies to declarations with external linkage. 6003 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 6004 if (!ND.isExternallyVisible()) { 6005 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 6006 ND.dropAttr<WeakAttr>(); 6007 } 6008 } 6009 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 6010 if (ND.isExternallyVisible()) { 6011 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 6012 ND.dropAttr<WeakRefAttr>(); 6013 ND.dropAttr<AliasAttr>(); 6014 } 6015 } 6016 6017 if (auto *VD = dyn_cast<VarDecl>(&ND)) { 6018 if (VD->hasInit()) { 6019 if (const auto *Attr = VD->getAttr<AliasAttr>()) { 6020 assert(VD->isThisDeclarationADefinition() && 6021 !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); 6022 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; 6023 VD->dropAttr<AliasAttr>(); 6024 } 6025 } 6026 } 6027 6028 // 'selectany' only applies to externally visible variable declarations. 6029 // It does not apply to functions. 6030 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 6031 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 6032 S.Diag(Attr->getLocation(), 6033 diag::err_attribute_selectany_non_extern_data); 6034 ND.dropAttr<SelectAnyAttr>(); 6035 } 6036 } 6037 6038 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 6039 auto *VD = dyn_cast<VarDecl>(&ND); 6040 bool IsAnonymousNS = false; 6041 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6042 if (VD) { 6043 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); 6044 while (NS && !IsAnonymousNS) { 6045 IsAnonymousNS = NS->isAnonymousNamespace(); 6046 NS = dyn_cast<NamespaceDecl>(NS->getParent()); 6047 } 6048 } 6049 // dll attributes require external linkage. Static locals may have external 6050 // linkage but still cannot be explicitly imported or exported. 6051 // In Microsoft mode, a variable defined in anonymous namespace must have 6052 // external linkage in order to be exported. 6053 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; 6054 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || 6055 (!AnonNSInMicrosoftMode && 6056 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { 6057 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 6058 << &ND << Attr; 6059 ND.setInvalidDecl(); 6060 } 6061 } 6062 6063 // Virtual functions cannot be marked as 'notail'. 6064 if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) 6065 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) 6066 if (MD->isVirtual()) { 6067 S.Diag(ND.getLocation(), 6068 diag::err_invalid_attribute_on_virtual_function) 6069 << Attr; 6070 ND.dropAttr<NotTailCalledAttr>(); 6071 } 6072 6073 // Check the attributes on the function type, if any. 6074 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { 6075 // Don't declare this variable in the second operand of the for-statement; 6076 // GCC miscompiles that by ending its lifetime before evaluating the 6077 // third operand. See gcc.gnu.org/PR86769. 6078 AttributedTypeLoc ATL; 6079 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); 6080 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6081 TL = ATL.getModifiedLoc()) { 6082 // The [[lifetimebound]] attribute can be applied to the implicit object 6083 // parameter of a non-static member function (other than a ctor or dtor) 6084 // by applying it to the function type. 6085 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { 6086 const auto *MD = dyn_cast<CXXMethodDecl>(FD); 6087 if (!MD || MD->isStatic()) { 6088 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) 6089 << !MD << A->getRange(); 6090 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { 6091 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) 6092 << isa<CXXDestructorDecl>(MD) << A->getRange(); 6093 } 6094 } 6095 } 6096 } 6097 } 6098 6099 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 6100 NamedDecl *NewDecl, 6101 bool IsSpecialization, 6102 bool IsDefinition) { 6103 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) 6104 return; 6105 6106 bool IsTemplate = false; 6107 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { 6108 OldDecl = OldTD->getTemplatedDecl(); 6109 IsTemplate = true; 6110 if (!IsSpecialization) 6111 IsDefinition = false; 6112 } 6113 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { 6114 NewDecl = NewTD->getTemplatedDecl(); 6115 IsTemplate = true; 6116 } 6117 6118 if (!OldDecl || !NewDecl) 6119 return; 6120 6121 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 6122 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 6123 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 6124 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 6125 6126 // dllimport and dllexport are inheritable attributes so we have to exclude 6127 // inherited attribute instances. 6128 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 6129 (NewExportAttr && !NewExportAttr->isInherited()); 6130 6131 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 6132 // the only exception being explicit specializations. 6133 // Implicitly generated declarations are also excluded for now because there 6134 // is no other way to switch these to use dllimport or dllexport. 6135 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 6136 6137 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 6138 // Allow with a warning for free functions and global variables. 6139 bool JustWarn = false; 6140 if (!OldDecl->isCXXClassMember()) { 6141 auto *VD = dyn_cast<VarDecl>(OldDecl); 6142 if (VD && !VD->getDescribedVarTemplate()) 6143 JustWarn = true; 6144 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 6145 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 6146 JustWarn = true; 6147 } 6148 6149 // We cannot change a declaration that's been used because IR has already 6150 // been emitted. Dllimported functions will still work though (modulo 6151 // address equality) as they can use the thunk. 6152 if (OldDecl->isUsed()) 6153 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) 6154 JustWarn = false; 6155 6156 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 6157 : diag::err_attribute_dll_redeclaration; 6158 S.Diag(NewDecl->getLocation(), DiagID) 6159 << NewDecl 6160 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 6161 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6162 if (!JustWarn) { 6163 NewDecl->setInvalidDecl(); 6164 return; 6165 } 6166 } 6167 6168 // A redeclaration is not allowed to drop a dllimport attribute, the only 6169 // exceptions being inline function definitions (except for function 6170 // templates), local extern declarations, qualified friend declarations or 6171 // special MSVC extension: in the last case, the declaration is treated as if 6172 // it were marked dllexport. 6173 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 6174 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6175 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { 6176 // Ignore static data because out-of-line definitions are diagnosed 6177 // separately. 6178 IsStaticDataMember = VD->isStaticDataMember(); 6179 IsDefinition = VD->isThisDeclarationADefinition(S.Context) != 6180 VarDecl::DeclarationOnly; 6181 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 6182 IsInline = FD->isInlined(); 6183 IsQualifiedFriend = FD->getQualifier() && 6184 FD->getFriendObjectKind() == Decl::FOK_Declared; 6185 } 6186 6187 if (OldImportAttr && !HasNewAttr && 6188 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember && 6189 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 6190 if (IsMicrosoft && IsDefinition) { 6191 S.Diag(NewDecl->getLocation(), 6192 diag::warn_redeclaration_without_import_attribute) 6193 << NewDecl; 6194 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6195 NewDecl->dropAttr<DLLImportAttr>(); 6196 NewDecl->addAttr(::new (S.Context) DLLExportAttr( 6197 NewImportAttr->getRange(), S.Context, 6198 NewImportAttr->getSpellingListIndex())); 6199 } else { 6200 S.Diag(NewDecl->getLocation(), 6201 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 6202 << NewDecl << OldImportAttr; 6203 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6204 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 6205 OldDecl->dropAttr<DLLImportAttr>(); 6206 NewDecl->dropAttr<DLLImportAttr>(); 6207 } 6208 } else if (IsInline && OldImportAttr && !IsMicrosoft) { 6209 // In MinGW, seeing a function declared inline drops the dllimport 6210 // attribute. 6211 OldDecl->dropAttr<DLLImportAttr>(); 6212 NewDecl->dropAttr<DLLImportAttr>(); 6213 S.Diag(NewDecl->getLocation(), 6214 diag::warn_dllimport_dropped_from_inline_function) 6215 << NewDecl << OldImportAttr; 6216 } 6217 6218 // A specialization of a class template member function is processed here 6219 // since it's a redeclaration. If the parent class is dllexport, the 6220 // specialization inherits that attribute. This doesn't happen automatically 6221 // since the parent class isn't instantiated until later. 6222 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { 6223 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && 6224 !NewImportAttr && !NewExportAttr) { 6225 if (const DLLExportAttr *ParentExportAttr = 6226 MD->getParent()->getAttr<DLLExportAttr>()) { 6227 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); 6228 NewAttr->setInherited(true); 6229 NewDecl->addAttr(NewAttr); 6230 } 6231 } 6232 } 6233 } 6234 6235 /// Given that we are within the definition of the given function, 6236 /// will that definition behave like C99's 'inline', where the 6237 /// definition is discarded except for optimization purposes? 6238 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 6239 // Try to avoid calling GetGVALinkageForFunction. 6240 6241 // All cases of this require the 'inline' keyword. 6242 if (!FD->isInlined()) return false; 6243 6244 // This is only possible in C++ with the gnu_inline attribute. 6245 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 6246 return false; 6247 6248 // Okay, go ahead and call the relatively-more-expensive function. 6249 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 6250 } 6251 6252 /// Determine whether a variable is extern "C" prior to attaching 6253 /// an initializer. We can't just call isExternC() here, because that 6254 /// will also compute and cache whether the declaration is externally 6255 /// visible, which might change when we attach the initializer. 6256 /// 6257 /// This can only be used if the declaration is known to not be a 6258 /// redeclaration of an internal linkage declaration. 6259 /// 6260 /// For instance: 6261 /// 6262 /// auto x = []{}; 6263 /// 6264 /// Attaching the initializer here makes this declaration not externally 6265 /// visible, because its type has internal linkage. 6266 /// 6267 /// FIXME: This is a hack. 6268 template<typename T> 6269 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 6270 if (S.getLangOpts().CPlusPlus) { 6271 // In C++, the overloadable attribute negates the effects of extern "C". 6272 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 6273 return false; 6274 6275 // So do CUDA's host/device attributes. 6276 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || 6277 D->template hasAttr<CUDAHostAttr>())) 6278 return false; 6279 } 6280 return D->isExternC(); 6281 } 6282 6283 static bool shouldConsiderLinkage(const VarDecl *VD) { 6284 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 6285 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || 6286 isa<OMPDeclareMapperDecl>(DC)) 6287 return VD->hasExternalStorage(); 6288 if (DC->isFileContext()) 6289 return true; 6290 if (DC->isRecord()) 6291 return false; 6292 llvm_unreachable("Unexpected context"); 6293 } 6294 6295 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 6296 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 6297 if (DC->isFileContext() || DC->isFunctionOrMethod() || 6298 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) 6299 return true; 6300 if (DC->isRecord()) 6301 return false; 6302 llvm_unreachable("Unexpected context"); 6303 } 6304 6305 static bool hasParsedAttr(Scope *S, const Declarator &PD, 6306 ParsedAttr::Kind Kind) { 6307 // Check decl attributes on the DeclSpec. 6308 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) 6309 return true; 6310 6311 // Walk the declarator structure, checking decl attributes that were in a type 6312 // position to the decl itself. 6313 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 6314 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) 6315 return true; 6316 } 6317 6318 // Finally, check attributes on the decl itself. 6319 return PD.getAttributes().hasAttribute(Kind); 6320 } 6321 6322 /// Adjust the \c DeclContext for a function or variable that might be a 6323 /// function-local external declaration. 6324 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 6325 if (!DC->isFunctionOrMethod()) 6326 return false; 6327 6328 // If this is a local extern function or variable declared within a function 6329 // template, don't add it into the enclosing namespace scope until it is 6330 // instantiated; it might have a dependent type right now. 6331 if (DC->isDependentContext()) 6332 return true; 6333 6334 // C++11 [basic.link]p7: 6335 // When a block scope declaration of an entity with linkage is not found to 6336 // refer to some other declaration, then that entity is a member of the 6337 // innermost enclosing namespace. 6338 // 6339 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 6340 // semantically-enclosing namespace, not a lexically-enclosing one. 6341 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 6342 DC = DC->getParent(); 6343 return true; 6344 } 6345 6346 /// Returns true if given declaration has external C language linkage. 6347 static bool isDeclExternC(const Decl *D) { 6348 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 6349 return FD->isExternC(); 6350 if (const auto *VD = dyn_cast<VarDecl>(D)) 6351 return VD->isExternC(); 6352 6353 llvm_unreachable("Unknown type of decl!"); 6354 } 6355 6356 NamedDecl *Sema::ActOnVariableDeclarator( 6357 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, 6358 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, 6359 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { 6360 QualType R = TInfo->getType(); 6361 DeclarationName Name = GetNameForDeclarator(D).getName(); 6362 6363 IdentifierInfo *II = Name.getAsIdentifierInfo(); 6364 6365 if (D.isDecompositionDeclarator()) { 6366 // Take the name of the first declarator as our name for diagnostic 6367 // purposes. 6368 auto &Decomp = D.getDecompositionDeclarator(); 6369 if (!Decomp.bindings().empty()) { 6370 II = Decomp.bindings()[0].Name; 6371 Name = II; 6372 } 6373 } else if (!II) { 6374 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; 6375 return nullptr; 6376 } 6377 6378 if (getLangOpts().OpenCL) { 6379 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. 6380 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function 6381 // argument. 6382 if (R->isImageType() || R->isPipeType()) { 6383 Diag(D.getIdentifierLoc(), 6384 diag::err_opencl_type_can_only_be_used_as_function_parameter) 6385 << R; 6386 D.setInvalidType(); 6387 return nullptr; 6388 } 6389 6390 // OpenCL v1.2 s6.9.r: 6391 // The event type cannot be used to declare a program scope variable. 6392 // OpenCL v2.0 s6.9.q: 6393 // The clk_event_t and reserve_id_t types cannot be declared in program scope. 6394 if (NULL == S->getParent()) { 6395 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { 6396 Diag(D.getIdentifierLoc(), 6397 diag::err_invalid_type_for_program_scope_var) << R; 6398 D.setInvalidType(); 6399 return nullptr; 6400 } 6401 } 6402 6403 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 6404 QualType NR = R; 6405 while (NR->isPointerType()) { 6406 if (NR->isFunctionPointerType()) { 6407 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); 6408 D.setInvalidType(); 6409 break; 6410 } 6411 NR = NR->getPointeeType(); 6412 } 6413 6414 if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) { 6415 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 6416 // half array type (unless the cl_khr_fp16 extension is enabled). 6417 if (Context.getBaseElementType(R)->isHalfType()) { 6418 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 6419 D.setInvalidType(); 6420 } 6421 } 6422 6423 if (R->isSamplerT()) { 6424 // OpenCL v1.2 s6.9.b p4: 6425 // The sampler type cannot be used with the __local and __global address 6426 // space qualifiers. 6427 if (R.getAddressSpace() == LangAS::opencl_local || 6428 R.getAddressSpace() == LangAS::opencl_global) { 6429 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 6430 } 6431 6432 // OpenCL v1.2 s6.12.14.1: 6433 // A global sampler must be declared with either the constant address 6434 // space qualifier or with the const qualifier. 6435 if (DC->isTranslationUnit() && 6436 !(R.getAddressSpace() == LangAS::opencl_constant || 6437 R.isConstQualified())) { 6438 Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); 6439 D.setInvalidType(); 6440 } 6441 } 6442 6443 // OpenCL v1.2 s6.9.r: 6444 // The event type cannot be used with the __local, __constant and __global 6445 // address space qualifiers. 6446 if (R->isEventT()) { 6447 if (R.getAddressSpace() != LangAS::opencl_private) { 6448 Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual); 6449 D.setInvalidType(); 6450 } 6451 } 6452 6453 // C++ for OpenCL does not allow the thread_local storage qualifier. 6454 // OpenCL C does not support thread_local either, and 6455 // also reject all other thread storage class specifiers. 6456 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); 6457 if (TSC != TSCS_unspecified) { 6458 bool IsCXX = getLangOpts().OpenCLCPlusPlus; 6459 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6460 diag::err_opencl_unknown_type_specifier) 6461 << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString() 6462 << DeclSpec::getSpecifierName(TSC) << 1; 6463 D.setInvalidType(); 6464 return nullptr; 6465 } 6466 } 6467 6468 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 6469 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 6470 6471 // dllimport globals without explicit storage class are treated as extern. We 6472 // have to change the storage class this early to get the right DeclContext. 6473 if (SC == SC_None && !DC->isRecord() && 6474 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && 6475 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) 6476 SC = SC_Extern; 6477 6478 DeclContext *OriginalDC = DC; 6479 bool IsLocalExternDecl = SC == SC_Extern && 6480 adjustContextForLocalExternDecl(DC); 6481 6482 if (SCSpec == DeclSpec::SCS_mutable) { 6483 // mutable can only appear on non-static class members, so it's always 6484 // an error here 6485 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 6486 D.setInvalidType(); 6487 SC = SC_None; 6488 } 6489 6490 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 6491 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 6492 D.getDeclSpec().getStorageClassSpecLoc())) { 6493 // In C++11, the 'register' storage class specifier is deprecated. 6494 // Suppress the warning in system macros, it's used in macros in some 6495 // popular C system headers, such as in glibc's htonl() macro. 6496 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6497 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 6498 : diag::warn_deprecated_register) 6499 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6500 } 6501 6502 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6503 6504 if (!DC->isRecord() && S->getFnParent() == nullptr) { 6505 // C99 6.9p2: The storage-class specifiers auto and register shall not 6506 // appear in the declaration specifiers in an external declaration. 6507 // Global Register+Asm is a GNU extension we support. 6508 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 6509 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 6510 D.setInvalidType(); 6511 } 6512 } 6513 6514 bool IsMemberSpecialization = false; 6515 bool IsVariableTemplateSpecialization = false; 6516 bool IsPartialSpecialization = false; 6517 bool IsVariableTemplate = false; 6518 VarDecl *NewVD = nullptr; 6519 VarTemplateDecl *NewTemplate = nullptr; 6520 TemplateParameterList *TemplateParams = nullptr; 6521 if (!getLangOpts().CPlusPlus) { 6522 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), 6523 II, R, TInfo, SC); 6524 6525 if (R->getContainedDeducedType()) 6526 ParsingInitForAutoVars.insert(NewVD); 6527 6528 if (D.isInvalidType()) 6529 NewVD->setInvalidDecl(); 6530 6531 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && 6532 NewVD->hasLocalStorage()) 6533 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), 6534 NTCUC_AutoVar, NTCUK_Destruct); 6535 } else { 6536 bool Invalid = false; 6537 6538 if (DC->isRecord() && !CurContext->isRecord()) { 6539 // This is an out-of-line definition of a static data member. 6540 switch (SC) { 6541 case SC_None: 6542 break; 6543 case SC_Static: 6544 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6545 diag::err_static_out_of_line) 6546 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6547 break; 6548 case SC_Auto: 6549 case SC_Register: 6550 case SC_Extern: 6551 // [dcl.stc] p2: The auto or register specifiers shall be applied only 6552 // to names of variables declared in a block or to function parameters. 6553 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 6554 // of class members 6555 6556 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6557 diag::err_storage_class_for_static_member) 6558 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6559 break; 6560 case SC_PrivateExtern: 6561 llvm_unreachable("C storage class in c++!"); 6562 } 6563 } 6564 6565 if (SC == SC_Static && CurContext->isRecord()) { 6566 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 6567 if (RD->isLocalClass()) 6568 Diag(D.getIdentifierLoc(), 6569 diag::err_static_data_member_not_allowed_in_local_class) 6570 << Name << RD->getDeclName(); 6571 6572 // C++98 [class.union]p1: If a union contains a static data member, 6573 // the program is ill-formed. C++11 drops this restriction. 6574 if (RD->isUnion()) 6575 Diag(D.getIdentifierLoc(), 6576 getLangOpts().CPlusPlus11 6577 ? diag::warn_cxx98_compat_static_data_member_in_union 6578 : diag::ext_static_data_member_in_union) << Name; 6579 // We conservatively disallow static data members in anonymous structs. 6580 else if (!RD->getDeclName()) 6581 Diag(D.getIdentifierLoc(), 6582 diag::err_static_data_member_not_allowed_in_anon_struct) 6583 << Name << RD->isUnion(); 6584 } 6585 } 6586 6587 // Match up the template parameter lists with the scope specifier, then 6588 // determine whether we have a template or a template specialization. 6589 TemplateParams = MatchTemplateParametersToScopeSpecifier( 6590 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 6591 D.getCXXScopeSpec(), 6592 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 6593 ? D.getName().TemplateId 6594 : nullptr, 6595 TemplateParamLists, 6596 /*never a friend*/ false, IsMemberSpecialization, Invalid); 6597 6598 if (TemplateParams) { 6599 if (!TemplateParams->size() && 6600 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 6601 // There is an extraneous 'template<>' for this variable. Complain 6602 // about it, but allow the declaration of the variable. 6603 Diag(TemplateParams->getTemplateLoc(), 6604 diag::err_template_variable_noparams) 6605 << II 6606 << SourceRange(TemplateParams->getTemplateLoc(), 6607 TemplateParams->getRAngleLoc()); 6608 TemplateParams = nullptr; 6609 } else { 6610 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 6611 // This is an explicit specialization or a partial specialization. 6612 // FIXME: Check that we can declare a specialization here. 6613 IsVariableTemplateSpecialization = true; 6614 IsPartialSpecialization = TemplateParams->size() > 0; 6615 } else { // if (TemplateParams->size() > 0) 6616 // This is a template declaration. 6617 IsVariableTemplate = true; 6618 6619 // Check that we can declare a template here. 6620 if (CheckTemplateDeclScope(S, TemplateParams)) 6621 return nullptr; 6622 6623 // Only C++1y supports variable templates (N3651). 6624 Diag(D.getIdentifierLoc(), 6625 getLangOpts().CPlusPlus14 6626 ? diag::warn_cxx11_compat_variable_template 6627 : diag::ext_variable_template); 6628 } 6629 } 6630 } else { 6631 assert((Invalid || 6632 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && 6633 "should have a 'template<>' for this decl"); 6634 } 6635 6636 if (IsVariableTemplateSpecialization) { 6637 SourceLocation TemplateKWLoc = 6638 TemplateParamLists.size() > 0 6639 ? TemplateParamLists[0]->getTemplateLoc() 6640 : SourceLocation(); 6641 DeclResult Res = ActOnVarTemplateSpecialization( 6642 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 6643 IsPartialSpecialization); 6644 if (Res.isInvalid()) 6645 return nullptr; 6646 NewVD = cast<VarDecl>(Res.get()); 6647 AddToScope = false; 6648 } else if (D.isDecompositionDeclarator()) { 6649 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), 6650 D.getIdentifierLoc(), R, TInfo, SC, 6651 Bindings); 6652 } else 6653 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), 6654 D.getIdentifierLoc(), II, R, TInfo, SC); 6655 6656 // If this is supposed to be a variable template, create it as such. 6657 if (IsVariableTemplate) { 6658 NewTemplate = 6659 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 6660 TemplateParams, NewVD); 6661 NewVD->setDescribedVarTemplate(NewTemplate); 6662 } 6663 6664 // If this decl has an auto type in need of deduction, make a note of the 6665 // Decl so we can diagnose uses of it in its own initializer. 6666 if (R->getContainedDeducedType()) 6667 ParsingInitForAutoVars.insert(NewVD); 6668 6669 if (D.isInvalidType() || Invalid) { 6670 NewVD->setInvalidDecl(); 6671 if (NewTemplate) 6672 NewTemplate->setInvalidDecl(); 6673 } 6674 6675 SetNestedNameSpecifier(*this, NewVD, D); 6676 6677 // If we have any template parameter lists that don't directly belong to 6678 // the variable (matching the scope specifier), store them. 6679 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 6680 if (TemplateParamLists.size() > VDTemplateParamLists) 6681 NewVD->setTemplateParameterListsInfo( 6682 Context, TemplateParamLists.drop_back(VDTemplateParamLists)); 6683 6684 if (D.getDeclSpec().hasConstexprSpecifier()) { 6685 NewVD->setConstexpr(true); 6686 // C++1z [dcl.spec.constexpr]p1: 6687 // A static data member declared with the constexpr specifier is 6688 // implicitly an inline variable. 6689 if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17) 6690 NewVD->setImplicitlyInline(); 6691 if (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval) 6692 Diag(D.getDeclSpec().getConstexprSpecLoc(), 6693 diag::err_constexpr_wrong_decl_kind) 6694 << /*consteval*/ 1; 6695 } 6696 } 6697 6698 if (D.getDeclSpec().isInlineSpecified()) { 6699 if (!getLangOpts().CPlusPlus) { 6700 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 6701 << 0; 6702 } else if (CurContext->isFunctionOrMethod()) { 6703 // 'inline' is not allowed on block scope variable declaration. 6704 Diag(D.getDeclSpec().getInlineSpecLoc(), 6705 diag::err_inline_declaration_block_scope) << Name 6706 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 6707 } else { 6708 Diag(D.getDeclSpec().getInlineSpecLoc(), 6709 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable 6710 : diag::ext_inline_variable); 6711 NewVD->setInlineSpecified(); 6712 } 6713 } 6714 6715 // Set the lexical context. If the declarator has a C++ scope specifier, the 6716 // lexical context will be different from the semantic context. 6717 NewVD->setLexicalDeclContext(CurContext); 6718 if (NewTemplate) 6719 NewTemplate->setLexicalDeclContext(CurContext); 6720 6721 if (IsLocalExternDecl) { 6722 if (D.isDecompositionDeclarator()) 6723 for (auto *B : Bindings) 6724 B->setLocalExternDecl(); 6725 else 6726 NewVD->setLocalExternDecl(); 6727 } 6728 6729 bool EmitTLSUnsupportedError = false; 6730 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 6731 // C++11 [dcl.stc]p4: 6732 // When thread_local is applied to a variable of block scope the 6733 // storage-class-specifier static is implied if it does not appear 6734 // explicitly. 6735 // Core issue: 'static' is not implied if the variable is declared 6736 // 'extern'. 6737 if (NewVD->hasLocalStorage() && 6738 (SCSpec != DeclSpec::SCS_unspecified || 6739 TSCS != DeclSpec::TSCS_thread_local || 6740 !DC->isFunctionOrMethod())) 6741 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6742 diag::err_thread_non_global) 6743 << DeclSpec::getSpecifierName(TSCS); 6744 else if (!Context.getTargetInfo().isTLSSupported()) { 6745 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { 6746 // Postpone error emission until we've collected attributes required to 6747 // figure out whether it's a host or device variable and whether the 6748 // error should be ignored. 6749 EmitTLSUnsupportedError = true; 6750 // We still need to mark the variable as TLS so it shows up in AST with 6751 // proper storage class for other tools to use even if we're not going 6752 // to emit any code for it. 6753 NewVD->setTSCSpec(TSCS); 6754 } else 6755 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6756 diag::err_thread_unsupported); 6757 } else 6758 NewVD->setTSCSpec(TSCS); 6759 } 6760 6761 // C99 6.7.4p3 6762 // An inline definition of a function with external linkage shall 6763 // not contain a definition of a modifiable object with static or 6764 // thread storage duration... 6765 // We only apply this when the function is required to be defined 6766 // elsewhere, i.e. when the function is not 'extern inline'. Note 6767 // that a local variable with thread storage duration still has to 6768 // be marked 'static'. Also note that it's possible to get these 6769 // semantics in C++ using __attribute__((gnu_inline)). 6770 if (SC == SC_Static && S->getFnParent() != nullptr && 6771 !NewVD->getType().isConstQualified()) { 6772 FunctionDecl *CurFD = getCurFunctionDecl(); 6773 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 6774 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6775 diag::warn_static_local_in_extern_inline); 6776 MaybeSuggestAddingStaticToDecl(CurFD); 6777 } 6778 } 6779 6780 if (D.getDeclSpec().isModulePrivateSpecified()) { 6781 if (IsVariableTemplateSpecialization) 6782 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 6783 << (IsPartialSpecialization ? 1 : 0) 6784 << FixItHint::CreateRemoval( 6785 D.getDeclSpec().getModulePrivateSpecLoc()); 6786 else if (IsMemberSpecialization) 6787 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 6788 << 2 6789 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 6790 else if (NewVD->hasLocalStorage()) 6791 Diag(NewVD->getLocation(), diag::err_module_private_local) 6792 << 0 << NewVD->getDeclName() 6793 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 6794 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 6795 else { 6796 NewVD->setModulePrivate(); 6797 if (NewTemplate) 6798 NewTemplate->setModulePrivate(); 6799 for (auto *B : Bindings) 6800 B->setModulePrivate(); 6801 } 6802 } 6803 6804 // Handle attributes prior to checking for duplicates in MergeVarDecl 6805 ProcessDeclAttributes(S, NewVD, D); 6806 6807 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { 6808 if (EmitTLSUnsupportedError && 6809 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || 6810 (getLangOpts().OpenMPIsDevice && 6811 NewVD->hasAttr<OMPDeclareTargetDeclAttr>()))) 6812 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6813 diag::err_thread_unsupported); 6814 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 6815 // storage [duration]." 6816 if (SC == SC_None && S->getFnParent() != nullptr && 6817 (NewVD->hasAttr<CUDASharedAttr>() || 6818 NewVD->hasAttr<CUDAConstantAttr>())) { 6819 NewVD->setStorageClass(SC_Static); 6820 } 6821 } 6822 6823 // Ensure that dllimport globals without explicit storage class are treated as 6824 // extern. The storage class is set above using parsed attributes. Now we can 6825 // check the VarDecl itself. 6826 assert(!NewVD->hasAttr<DLLImportAttr>() || 6827 NewVD->getAttr<DLLImportAttr>()->isInherited() || 6828 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 6829 6830 // In auto-retain/release, infer strong retension for variables of 6831 // retainable type. 6832 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 6833 NewVD->setInvalidDecl(); 6834 6835 // Handle GNU asm-label extension (encoded as an attribute). 6836 if (Expr *E = (Expr*)D.getAsmLabel()) { 6837 // The parser guarantees this is a string. 6838 StringLiteral *SE = cast<StringLiteral>(E); 6839 StringRef Label = SE->getString(); 6840 if (S->getFnParent() != nullptr) { 6841 switch (SC) { 6842 case SC_None: 6843 case SC_Auto: 6844 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 6845 break; 6846 case SC_Register: 6847 // Local Named register 6848 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && 6849 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) 6850 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 6851 break; 6852 case SC_Static: 6853 case SC_Extern: 6854 case SC_PrivateExtern: 6855 break; 6856 } 6857 } else if (SC == SC_Register) { 6858 // Global Named register 6859 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { 6860 const auto &TI = Context.getTargetInfo(); 6861 bool HasSizeMismatch; 6862 6863 if (!TI.isValidGCCRegisterName(Label)) 6864 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 6865 else if (!TI.validateGlobalRegisterVariable(Label, 6866 Context.getTypeSize(R), 6867 HasSizeMismatch)) 6868 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; 6869 else if (HasSizeMismatch) 6870 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; 6871 } 6872 6873 if (!R->isIntegralType(Context) && !R->isPointerType()) { 6874 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); 6875 NewVD->setInvalidDecl(true); 6876 } 6877 } 6878 6879 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), 6880 Context, Label, 0)); 6881 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 6882 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 6883 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 6884 if (I != ExtnameUndeclaredIdentifiers.end()) { 6885 if (isDeclExternC(NewVD)) { 6886 NewVD->addAttr(I->second); 6887 ExtnameUndeclaredIdentifiers.erase(I); 6888 } else 6889 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) 6890 << /*Variable*/1 << NewVD; 6891 } 6892 } 6893 6894 // Find the shadowed declaration before filtering for scope. 6895 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 6896 ? getShadowedDeclaration(NewVD, Previous) 6897 : nullptr; 6898 6899 // Don't consider existing declarations that are in a different 6900 // scope and are out-of-semantic-context declarations (if the new 6901 // declaration has linkage). 6902 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 6903 D.getCXXScopeSpec().isNotEmpty() || 6904 IsMemberSpecialization || 6905 IsVariableTemplateSpecialization); 6906 6907 // Check whether the previous declaration is in the same block scope. This 6908 // affects whether we merge types with it, per C++11 [dcl.array]p3. 6909 if (getLangOpts().CPlusPlus && 6910 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 6911 NewVD->setPreviousDeclInSameBlockScope( 6912 Previous.isSingleResult() && !Previous.isShadowed() && 6913 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 6914 6915 if (!getLangOpts().CPlusPlus) { 6916 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 6917 } else { 6918 // If this is an explicit specialization of a static data member, check it. 6919 if (IsMemberSpecialization && !NewVD->isInvalidDecl() && 6920 CheckMemberSpecialization(NewVD, Previous)) 6921 NewVD->setInvalidDecl(); 6922 6923 // Merge the decl with the existing one if appropriate. 6924 if (!Previous.empty()) { 6925 if (Previous.isSingleResult() && 6926 isa<FieldDecl>(Previous.getFoundDecl()) && 6927 D.getCXXScopeSpec().isSet()) { 6928 // The user tried to define a non-static data member 6929 // out-of-line (C++ [dcl.meaning]p1). 6930 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 6931 << D.getCXXScopeSpec().getRange(); 6932 Previous.clear(); 6933 NewVD->setInvalidDecl(); 6934 } 6935 } else if (D.getCXXScopeSpec().isSet()) { 6936 // No previous declaration in the qualifying scope. 6937 Diag(D.getIdentifierLoc(), diag::err_no_member) 6938 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 6939 << D.getCXXScopeSpec().getRange(); 6940 NewVD->setInvalidDecl(); 6941 } 6942 6943 if (!IsVariableTemplateSpecialization) 6944 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 6945 6946 if (NewTemplate) { 6947 VarTemplateDecl *PrevVarTemplate = 6948 NewVD->getPreviousDecl() 6949 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 6950 : nullptr; 6951 6952 // Check the template parameter list of this declaration, possibly 6953 // merging in the template parameter list from the previous variable 6954 // template declaration. 6955 if (CheckTemplateParameterList( 6956 TemplateParams, 6957 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 6958 : nullptr, 6959 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 6960 DC->isDependentContext()) 6961 ? TPC_ClassTemplateMember 6962 : TPC_VarTemplate)) 6963 NewVD->setInvalidDecl(); 6964 6965 // If we are providing an explicit specialization of a static variable 6966 // template, make a note of that. 6967 if (PrevVarTemplate && 6968 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 6969 PrevVarTemplate->setMemberSpecialization(); 6970 } 6971 } 6972 6973 // Diagnose shadowed variables iff this isn't a redeclaration. 6974 if (ShadowedDecl && !D.isRedeclaration()) 6975 CheckShadow(NewVD, ShadowedDecl, Previous); 6976 6977 ProcessPragmaWeak(S, NewVD); 6978 6979 // If this is the first declaration of an extern C variable, update 6980 // the map of such variables. 6981 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 6982 isIncompleteDeclExternC(*this, NewVD)) 6983 RegisterLocallyScopedExternCDecl(NewVD, S); 6984 6985 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 6986 Decl *ManglingContextDecl; 6987 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext( 6988 NewVD->getDeclContext(), ManglingContextDecl)) { 6989 Context.setManglingNumber( 6990 NewVD, MCtx->getManglingNumber( 6991 NewVD, getMSManglingNumber(getLangOpts(), S))); 6992 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 6993 } 6994 } 6995 6996 // Special handling of variable named 'main'. 6997 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && 6998 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && 6999 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { 7000 7001 // C++ [basic.start.main]p3 7002 // A program that declares a variable main at global scope is ill-formed. 7003 if (getLangOpts().CPlusPlus) 7004 Diag(D.getBeginLoc(), diag::err_main_global_variable); 7005 7006 // In C, and external-linkage variable named main results in undefined 7007 // behavior. 7008 else if (NewVD->hasExternalFormalLinkage()) 7009 Diag(D.getBeginLoc(), diag::warn_main_redefined); 7010 } 7011 7012 if (D.isRedeclaration() && !Previous.empty()) { 7013 NamedDecl *Prev = Previous.getRepresentativeDecl(); 7014 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, 7015 D.isFunctionDefinition()); 7016 } 7017 7018 if (NewTemplate) { 7019 if (NewVD->isInvalidDecl()) 7020 NewTemplate->setInvalidDecl(); 7021 ActOnDocumentableDecl(NewTemplate); 7022 return NewTemplate; 7023 } 7024 7025 if (IsMemberSpecialization && !NewVD->isInvalidDecl()) 7026 CompleteMemberSpecialization(NewVD, Previous); 7027 7028 return NewVD; 7029 } 7030 7031 /// Enum describing the %select options in diag::warn_decl_shadow. 7032 enum ShadowedDeclKind { 7033 SDK_Local, 7034 SDK_Global, 7035 SDK_StaticMember, 7036 SDK_Field, 7037 SDK_Typedef, 7038 SDK_Using 7039 }; 7040 7041 /// Determine what kind of declaration we're shadowing. 7042 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, 7043 const DeclContext *OldDC) { 7044 if (isa<TypeAliasDecl>(ShadowedDecl)) 7045 return SDK_Using; 7046 else if (isa<TypedefDecl>(ShadowedDecl)) 7047 return SDK_Typedef; 7048 else if (isa<RecordDecl>(OldDC)) 7049 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; 7050 7051 return OldDC->isFileContext() ? SDK_Global : SDK_Local; 7052 } 7053 7054 /// Return the location of the capture if the given lambda captures the given 7055 /// variable \p VD, or an invalid source location otherwise. 7056 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, 7057 const VarDecl *VD) { 7058 for (const Capture &Capture : LSI->Captures) { 7059 if (Capture.isVariableCapture() && Capture.getVariable() == VD) 7060 return Capture.getLocation(); 7061 } 7062 return SourceLocation(); 7063 } 7064 7065 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, 7066 const LookupResult &R) { 7067 // Only diagnose if we're shadowing an unambiguous field or variable. 7068 if (R.getResultKind() != LookupResult::Found) 7069 return false; 7070 7071 // Return false if warning is ignored. 7072 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); 7073 } 7074 7075 /// Return the declaration shadowed by the given variable \p D, or null 7076 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7077 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, 7078 const LookupResult &R) { 7079 if (!shouldWarnIfShadowedDecl(Diags, R)) 7080 return nullptr; 7081 7082 // Don't diagnose declarations at file scope. 7083 if (D->hasGlobalStorage()) 7084 return nullptr; 7085 7086 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7087 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) 7088 ? ShadowedDecl 7089 : nullptr; 7090 } 7091 7092 /// Return the declaration shadowed by the given typedef \p D, or null 7093 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7094 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, 7095 const LookupResult &R) { 7096 // Don't warn if typedef declaration is part of a class 7097 if (D->getDeclContext()->isRecord()) 7098 return nullptr; 7099 7100 if (!shouldWarnIfShadowedDecl(Diags, R)) 7101 return nullptr; 7102 7103 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7104 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; 7105 } 7106 7107 /// Diagnose variable or built-in function shadowing. Implements 7108 /// -Wshadow. 7109 /// 7110 /// This method is called whenever a VarDecl is added to a "useful" 7111 /// scope. 7112 /// 7113 /// \param ShadowedDecl the declaration that is shadowed by the given variable 7114 /// \param R the lookup of the name 7115 /// 7116 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, 7117 const LookupResult &R) { 7118 DeclContext *NewDC = D->getDeclContext(); 7119 7120 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { 7121 // Fields are not shadowed by variables in C++ static methods. 7122 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 7123 if (MD->isStatic()) 7124 return; 7125 7126 // Fields shadowed by constructor parameters are a special case. Usually 7127 // the constructor initializes the field with the parameter. 7128 if (isa<CXXConstructorDecl>(NewDC)) 7129 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { 7130 // Remember that this was shadowed so we can either warn about its 7131 // modification or its existence depending on warning settings. 7132 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); 7133 return; 7134 } 7135 } 7136 7137 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 7138 if (shadowedVar->isExternC()) { 7139 // For shadowing external vars, make sure that we point to the global 7140 // declaration, not a locally scoped extern declaration. 7141 for (auto I : shadowedVar->redecls()) 7142 if (I->isFileVarDecl()) { 7143 ShadowedDecl = I; 7144 break; 7145 } 7146 } 7147 7148 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); 7149 7150 unsigned WarningDiag = diag::warn_decl_shadow; 7151 SourceLocation CaptureLoc; 7152 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && 7153 isa<CXXMethodDecl>(NewDC)) { 7154 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { 7155 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { 7156 if (RD->getLambdaCaptureDefault() == LCD_None) { 7157 // Try to avoid warnings for lambdas with an explicit capture list. 7158 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); 7159 // Warn only when the lambda captures the shadowed decl explicitly. 7160 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); 7161 if (CaptureLoc.isInvalid()) 7162 WarningDiag = diag::warn_decl_shadow_uncaptured_local; 7163 } else { 7164 // Remember that this was shadowed so we can avoid the warning if the 7165 // shadowed decl isn't captured and the warning settings allow it. 7166 cast<LambdaScopeInfo>(getCurFunction()) 7167 ->ShadowingDecls.push_back( 7168 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); 7169 return; 7170 } 7171 } 7172 7173 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { 7174 // A variable can't shadow a local variable in an enclosing scope, if 7175 // they are separated by a non-capturing declaration context. 7176 for (DeclContext *ParentDC = NewDC; 7177 ParentDC && !ParentDC->Equals(OldDC); 7178 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { 7179 // Only block literals, captured statements, and lambda expressions 7180 // can capture; other scopes don't. 7181 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && 7182 !isLambdaCallOperator(ParentDC)) { 7183 return; 7184 } 7185 } 7186 } 7187 } 7188 } 7189 7190 // Only warn about certain kinds of shadowing for class members. 7191 if (NewDC && NewDC->isRecord()) { 7192 // In particular, don't warn about shadowing non-class members. 7193 if (!OldDC->isRecord()) 7194 return; 7195 7196 // TODO: should we warn about static data members shadowing 7197 // static data members from base classes? 7198 7199 // TODO: don't diagnose for inaccessible shadowed members. 7200 // This is hard to do perfectly because we might friend the 7201 // shadowing context, but that's just a false negative. 7202 } 7203 7204 7205 DeclarationName Name = R.getLookupName(); 7206 7207 // Emit warning and note. 7208 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 7209 return; 7210 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); 7211 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; 7212 if (!CaptureLoc.isInvalid()) 7213 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7214 << Name << /*explicitly*/ 1; 7215 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7216 } 7217 7218 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD 7219 /// when these variables are captured by the lambda. 7220 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { 7221 for (const auto &Shadow : LSI->ShadowingDecls) { 7222 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; 7223 // Try to avoid the warning when the shadowed decl isn't captured. 7224 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); 7225 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7226 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() 7227 ? diag::warn_decl_shadow_uncaptured_local 7228 : diag::warn_decl_shadow) 7229 << Shadow.VD->getDeclName() 7230 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; 7231 if (!CaptureLoc.isInvalid()) 7232 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7233 << Shadow.VD->getDeclName() << /*explicitly*/ 0; 7234 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7235 } 7236 } 7237 7238 /// Check -Wshadow without the advantage of a previous lookup. 7239 void Sema::CheckShadow(Scope *S, VarDecl *D) { 7240 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 7241 return; 7242 7243 LookupResult R(*this, D->getDeclName(), D->getLocation(), 7244 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 7245 LookupName(R, S); 7246 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) 7247 CheckShadow(D, ShadowedDecl, R); 7248 } 7249 7250 /// Check if 'E', which is an expression that is about to be modified, refers 7251 /// to a constructor parameter that shadows a field. 7252 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { 7253 // Quickly ignore expressions that can't be shadowing ctor parameters. 7254 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) 7255 return; 7256 E = E->IgnoreParenImpCasts(); 7257 auto *DRE = dyn_cast<DeclRefExpr>(E); 7258 if (!DRE) 7259 return; 7260 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 7261 auto I = ShadowingDecls.find(D); 7262 if (I == ShadowingDecls.end()) 7263 return; 7264 const NamedDecl *ShadowedDecl = I->second; 7265 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7266 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; 7267 Diag(D->getLocation(), diag::note_var_declared_here) << D; 7268 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7269 7270 // Avoid issuing multiple warnings about the same decl. 7271 ShadowingDecls.erase(I); 7272 } 7273 7274 /// Check for conflict between this global or extern "C" declaration and 7275 /// previous global or extern "C" declarations. This is only used in C++. 7276 template<typename T> 7277 static bool checkGlobalOrExternCConflict( 7278 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 7279 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 7280 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 7281 7282 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 7283 // The common case: this global doesn't conflict with any extern "C" 7284 // declaration. 7285 return false; 7286 } 7287 7288 if (Prev) { 7289 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 7290 // Both the old and new declarations have C language linkage. This is a 7291 // redeclaration. 7292 Previous.clear(); 7293 Previous.addDecl(Prev); 7294 return true; 7295 } 7296 7297 // This is a global, non-extern "C" declaration, and there is a previous 7298 // non-global extern "C" declaration. Diagnose if this is a variable 7299 // declaration. 7300 if (!isa<VarDecl>(ND)) 7301 return false; 7302 } else { 7303 // The declaration is extern "C". Check for any declaration in the 7304 // translation unit which might conflict. 7305 if (IsGlobal) { 7306 // We have already performed the lookup into the translation unit. 7307 IsGlobal = false; 7308 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7309 I != E; ++I) { 7310 if (isa<VarDecl>(*I)) { 7311 Prev = *I; 7312 break; 7313 } 7314 } 7315 } else { 7316 DeclContext::lookup_result R = 7317 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 7318 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 7319 I != E; ++I) { 7320 if (isa<VarDecl>(*I)) { 7321 Prev = *I; 7322 break; 7323 } 7324 // FIXME: If we have any other entity with this name in global scope, 7325 // the declaration is ill-formed, but that is a defect: it breaks the 7326 // 'stat' hack, for instance. Only variables can have mangled name 7327 // clashes with extern "C" declarations, so only they deserve a 7328 // diagnostic. 7329 } 7330 } 7331 7332 if (!Prev) 7333 return false; 7334 } 7335 7336 // Use the first declaration's location to ensure we point at something which 7337 // is lexically inside an extern "C" linkage-spec. 7338 assert(Prev && "should have found a previous declaration to diagnose"); 7339 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 7340 Prev = FD->getFirstDecl(); 7341 else 7342 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 7343 7344 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 7345 << IsGlobal << ND; 7346 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 7347 << IsGlobal; 7348 return false; 7349 } 7350 7351 /// Apply special rules for handling extern "C" declarations. Returns \c true 7352 /// if we have found that this is a redeclaration of some prior entity. 7353 /// 7354 /// Per C++ [dcl.link]p6: 7355 /// Two declarations [for a function or variable] with C language linkage 7356 /// with the same name that appear in different scopes refer to the same 7357 /// [entity]. An entity with C language linkage shall not be declared with 7358 /// the same name as an entity in global scope. 7359 template<typename T> 7360 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 7361 LookupResult &Previous) { 7362 if (!S.getLangOpts().CPlusPlus) { 7363 // In C, when declaring a global variable, look for a corresponding 'extern' 7364 // variable declared in function scope. We don't need this in C++, because 7365 // we find local extern decls in the surrounding file-scope DeclContext. 7366 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7367 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 7368 Previous.clear(); 7369 Previous.addDecl(Prev); 7370 return true; 7371 } 7372 } 7373 return false; 7374 } 7375 7376 // A declaration in the translation unit can conflict with an extern "C" 7377 // declaration. 7378 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 7379 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 7380 7381 // An extern "C" declaration can conflict with a declaration in the 7382 // translation unit or can be a redeclaration of an extern "C" declaration 7383 // in another scope. 7384 if (isIncompleteDeclExternC(S,ND)) 7385 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 7386 7387 // Neither global nor extern "C": nothing to do. 7388 return false; 7389 } 7390 7391 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 7392 // If the decl is already known invalid, don't check it. 7393 if (NewVD->isInvalidDecl()) 7394 return; 7395 7396 QualType T = NewVD->getType(); 7397 7398 // Defer checking an 'auto' type until its initializer is attached. 7399 if (T->isUndeducedType()) 7400 return; 7401 7402 if (NewVD->hasAttrs()) 7403 CheckAlignasUnderalignment(NewVD); 7404 7405 if (T->isObjCObjectType()) { 7406 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 7407 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 7408 T = Context.getObjCObjectPointerType(T); 7409 NewVD->setType(T); 7410 } 7411 7412 // Emit an error if an address space was applied to decl with local storage. 7413 // This includes arrays of objects with address space qualifiers, but not 7414 // automatic variables that point to other address spaces. 7415 // ISO/IEC TR 18037 S5.1.2 7416 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && 7417 T.getAddressSpace() != LangAS::Default) { 7418 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; 7419 NewVD->setInvalidDecl(); 7420 return; 7421 } 7422 7423 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program 7424 // scope. 7425 if (getLangOpts().OpenCLVersion == 120 && 7426 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && 7427 NewVD->isStaticLocal()) { 7428 Diag(NewVD->getLocation(), diag::err_static_function_scope); 7429 NewVD->setInvalidDecl(); 7430 return; 7431 } 7432 7433 if (getLangOpts().OpenCL) { 7434 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. 7435 if (NewVD->hasAttr<BlocksAttr>()) { 7436 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); 7437 return; 7438 } 7439 7440 if (T->isBlockPointerType()) { 7441 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and 7442 // can't use 'extern' storage class. 7443 if (!T.isConstQualified()) { 7444 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) 7445 << 0 /*const*/; 7446 NewVD->setInvalidDecl(); 7447 return; 7448 } 7449 if (NewVD->hasExternalStorage()) { 7450 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); 7451 NewVD->setInvalidDecl(); 7452 return; 7453 } 7454 } 7455 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the 7456 // __constant address space. 7457 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static 7458 // variables inside a function can also be declared in the global 7459 // address space. 7460 // C++ for OpenCL inherits rule from OpenCL C v2.0. 7461 // FIXME: Adding local AS in C++ for OpenCL might make sense. 7462 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || 7463 NewVD->hasExternalStorage()) { 7464 if (!T->isSamplerT() && 7465 !(T.getAddressSpace() == LangAS::opencl_constant || 7466 (T.getAddressSpace() == LangAS::opencl_global && 7467 (getLangOpts().OpenCLVersion == 200 || 7468 getLangOpts().OpenCLCPlusPlus)))) { 7469 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; 7470 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus) 7471 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7472 << Scope << "global or constant"; 7473 else 7474 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7475 << Scope << "constant"; 7476 NewVD->setInvalidDecl(); 7477 return; 7478 } 7479 } else { 7480 if (T.getAddressSpace() == LangAS::opencl_global) { 7481 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7482 << 1 /*is any function*/ << "global"; 7483 NewVD->setInvalidDecl(); 7484 return; 7485 } 7486 if (T.getAddressSpace() == LangAS::opencl_constant || 7487 T.getAddressSpace() == LangAS::opencl_local) { 7488 FunctionDecl *FD = getCurFunctionDecl(); 7489 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables 7490 // in functions. 7491 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { 7492 if (T.getAddressSpace() == LangAS::opencl_constant) 7493 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7494 << 0 /*non-kernel only*/ << "constant"; 7495 else 7496 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7497 << 0 /*non-kernel only*/ << "local"; 7498 NewVD->setInvalidDecl(); 7499 return; 7500 } 7501 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be 7502 // in the outermost scope of a kernel function. 7503 if (FD && FD->hasAttr<OpenCLKernelAttr>()) { 7504 if (!getCurScope()->isFunctionScope()) { 7505 if (T.getAddressSpace() == LangAS::opencl_constant) 7506 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7507 << "constant"; 7508 else 7509 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7510 << "local"; 7511 NewVD->setInvalidDecl(); 7512 return; 7513 } 7514 } 7515 } else if (T.getAddressSpace() != LangAS::opencl_private && 7516 // If we are parsing a template we didn't deduce an addr 7517 // space yet. 7518 T.getAddressSpace() != LangAS::Default) { 7519 // Do not allow other address spaces on automatic variable. 7520 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; 7521 NewVD->setInvalidDecl(); 7522 return; 7523 } 7524 } 7525 } 7526 7527 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 7528 && !NewVD->hasAttr<BlocksAttr>()) { 7529 if (getLangOpts().getGC() != LangOptions::NonGC) 7530 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 7531 else { 7532 assert(!getLangOpts().ObjCAutoRefCount); 7533 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 7534 } 7535 } 7536 7537 bool isVM = T->isVariablyModifiedType(); 7538 if (isVM || NewVD->hasAttr<CleanupAttr>() || 7539 NewVD->hasAttr<BlocksAttr>()) 7540 setFunctionHasBranchProtectedScope(); 7541 7542 if ((isVM && NewVD->hasLinkage()) || 7543 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 7544 bool SizeIsNegative; 7545 llvm::APSInt Oversized; 7546 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 7547 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); 7548 QualType FixedT; 7549 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) 7550 FixedT = FixedTInfo->getType(); 7551 else if (FixedTInfo) { 7552 // Type and type-as-written are canonically different. We need to fix up 7553 // both types separately. 7554 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, 7555 Oversized); 7556 } 7557 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { 7558 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 7559 // FIXME: This won't give the correct result for 7560 // int a[10][n]; 7561 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 7562 7563 if (NewVD->isFileVarDecl()) 7564 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 7565 << SizeRange; 7566 else if (NewVD->isStaticLocal()) 7567 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 7568 << SizeRange; 7569 else 7570 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 7571 << SizeRange; 7572 NewVD->setInvalidDecl(); 7573 return; 7574 } 7575 7576 if (!FixedTInfo) { 7577 if (NewVD->isFileVarDecl()) 7578 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 7579 else 7580 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 7581 NewVD->setInvalidDecl(); 7582 return; 7583 } 7584 7585 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 7586 NewVD->setType(FixedT); 7587 NewVD->setTypeSourceInfo(FixedTInfo); 7588 } 7589 7590 if (T->isVoidType()) { 7591 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 7592 // of objects and functions. 7593 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 7594 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 7595 << T; 7596 NewVD->setInvalidDecl(); 7597 return; 7598 } 7599 } 7600 7601 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 7602 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 7603 NewVD->setInvalidDecl(); 7604 return; 7605 } 7606 7607 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 7608 Diag(NewVD->getLocation(), diag::err_block_on_vm); 7609 NewVD->setInvalidDecl(); 7610 return; 7611 } 7612 7613 if (NewVD->isConstexpr() && !T->isDependentType() && 7614 RequireLiteralType(NewVD->getLocation(), T, 7615 diag::err_constexpr_var_non_literal)) { 7616 NewVD->setInvalidDecl(); 7617 return; 7618 } 7619 } 7620 7621 /// Perform semantic checking on a newly-created variable 7622 /// declaration. 7623 /// 7624 /// This routine performs all of the type-checking required for a 7625 /// variable declaration once it has been built. It is used both to 7626 /// check variables after they have been parsed and their declarators 7627 /// have been translated into a declaration, and to check variables 7628 /// that have been instantiated from a template. 7629 /// 7630 /// Sets NewVD->isInvalidDecl() if an error was encountered. 7631 /// 7632 /// Returns true if the variable declaration is a redeclaration. 7633 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 7634 CheckVariableDeclarationType(NewVD); 7635 7636 // If the decl is already known invalid, don't check it. 7637 if (NewVD->isInvalidDecl()) 7638 return false; 7639 7640 // If we did not find anything by this name, look for a non-visible 7641 // extern "C" declaration with the same name. 7642 if (Previous.empty() && 7643 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 7644 Previous.setShadowed(); 7645 7646 if (!Previous.empty()) { 7647 MergeVarDecl(NewVD, Previous); 7648 return true; 7649 } 7650 return false; 7651 } 7652 7653 namespace { 7654 struct FindOverriddenMethod { 7655 Sema *S; 7656 CXXMethodDecl *Method; 7657 7658 /// Member lookup function that determines whether a given C++ 7659 /// method overrides a method in a base class, to be used with 7660 /// CXXRecordDecl::lookupInBases(). 7661 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 7662 RecordDecl *BaseRecord = 7663 Specifier->getType()->getAs<RecordType>()->getDecl(); 7664 7665 DeclarationName Name = Method->getDeclName(); 7666 7667 // FIXME: Do we care about other names here too? 7668 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 7669 // We really want to find the base class destructor here. 7670 QualType T = S->Context.getTypeDeclType(BaseRecord); 7671 CanQualType CT = S->Context.getCanonicalType(T); 7672 7673 Name = S->Context.DeclarationNames.getCXXDestructorName(CT); 7674 } 7675 7676 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 7677 Path.Decls = Path.Decls.slice(1)) { 7678 NamedDecl *D = Path.Decls.front(); 7679 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 7680 if (MD->isVirtual() && !S->IsOverload(Method, MD, false)) 7681 return true; 7682 } 7683 } 7684 7685 return false; 7686 } 7687 }; 7688 7689 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted }; 7690 } // end anonymous namespace 7691 7692 /// Report an error regarding overriding, along with any relevant 7693 /// overridden methods. 7694 /// 7695 /// \param DiagID the primary error to report. 7696 /// \param MD the overriding method. 7697 /// \param OEK which overrides to include as notes. 7698 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD, 7699 OverrideErrorKind OEK = OEK_All) { 7700 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); 7701 for (const CXXMethodDecl *O : MD->overridden_methods()) { 7702 // This check (& the OEK parameter) could be replaced by a predicate, but 7703 // without lambdas that would be overkill. This is still nicer than writing 7704 // out the diag loop 3 times. 7705 if ((OEK == OEK_All) || 7706 (OEK == OEK_NonDeleted && !O->isDeleted()) || 7707 (OEK == OEK_Deleted && O->isDeleted())) 7708 S.Diag(O->getLocation(), diag::note_overridden_virtual_function); 7709 } 7710 } 7711 7712 /// AddOverriddenMethods - See if a method overrides any in the base classes, 7713 /// and if so, check that it's a valid override and remember it. 7714 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 7715 // Look for methods in base classes that this method might override. 7716 CXXBasePaths Paths; 7717 FindOverriddenMethod FOM; 7718 FOM.Method = MD; 7719 FOM.S = this; 7720 bool hasDeletedOverridenMethods = false; 7721 bool hasNonDeletedOverridenMethods = false; 7722 bool AddedAny = false; 7723 if (DC->lookupInBases(FOM, Paths)) { 7724 for (auto *I : Paths.found_decls()) { 7725 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 7726 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 7727 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 7728 !CheckOverridingFunctionAttributes(MD, OldMD) && 7729 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 7730 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 7731 hasDeletedOverridenMethods |= OldMD->isDeleted(); 7732 hasNonDeletedOverridenMethods |= !OldMD->isDeleted(); 7733 AddedAny = true; 7734 } 7735 } 7736 } 7737 } 7738 7739 if (hasDeletedOverridenMethods && !MD->isDeleted()) { 7740 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted); 7741 } 7742 if (hasNonDeletedOverridenMethods && MD->isDeleted()) { 7743 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted); 7744 } 7745 7746 return AddedAny; 7747 } 7748 7749 namespace { 7750 // Struct for holding all of the extra arguments needed by 7751 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 7752 struct ActOnFDArgs { 7753 Scope *S; 7754 Declarator &D; 7755 MultiTemplateParamsArg TemplateParamLists; 7756 bool AddToScope; 7757 }; 7758 } // end anonymous namespace 7759 7760 namespace { 7761 7762 // Callback to only accept typo corrections that have a non-zero edit distance. 7763 // Also only accept corrections that have the same parent decl. 7764 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { 7765 public: 7766 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 7767 CXXRecordDecl *Parent) 7768 : Context(Context), OriginalFD(TypoFD), 7769 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 7770 7771 bool ValidateCandidate(const TypoCorrection &candidate) override { 7772 if (candidate.getEditDistance() == 0) 7773 return false; 7774 7775 SmallVector<unsigned, 1> MismatchedParams; 7776 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 7777 CDeclEnd = candidate.end(); 7778 CDecl != CDeclEnd; ++CDecl) { 7779 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 7780 7781 if (FD && !FD->hasBody() && 7782 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 7783 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 7784 CXXRecordDecl *Parent = MD->getParent(); 7785 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 7786 return true; 7787 } else if (!ExpectedParent) { 7788 return true; 7789 } 7790 } 7791 } 7792 7793 return false; 7794 } 7795 7796 std::unique_ptr<CorrectionCandidateCallback> clone() override { 7797 return llvm::make_unique<DifferentNameValidatorCCC>(*this); 7798 } 7799 7800 private: 7801 ASTContext &Context; 7802 FunctionDecl *OriginalFD; 7803 CXXRecordDecl *ExpectedParent; 7804 }; 7805 7806 } // end anonymous namespace 7807 7808 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { 7809 TypoCorrectedFunctionDefinitions.insert(F); 7810 } 7811 7812 /// Generate diagnostics for an invalid function redeclaration. 7813 /// 7814 /// This routine handles generating the diagnostic messages for an invalid 7815 /// function redeclaration, including finding possible similar declarations 7816 /// or performing typo correction if there are no previous declarations with 7817 /// the same name. 7818 /// 7819 /// Returns a NamedDecl iff typo correction was performed and substituting in 7820 /// the new declaration name does not cause new errors. 7821 static NamedDecl *DiagnoseInvalidRedeclaration( 7822 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 7823 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 7824 DeclarationName Name = NewFD->getDeclName(); 7825 DeclContext *NewDC = NewFD->getDeclContext(); 7826 SmallVector<unsigned, 1> MismatchedParams; 7827 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 7828 TypoCorrection Correction; 7829 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 7830 unsigned DiagMsg = 7831 IsLocalFriend ? diag::err_no_matching_local_friend : 7832 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : 7833 diag::err_member_decl_does_not_match; 7834 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 7835 IsLocalFriend ? Sema::LookupLocalFriendName 7836 : Sema::LookupOrdinaryName, 7837 Sema::ForVisibleRedeclaration); 7838 7839 NewFD->setInvalidDecl(); 7840 if (IsLocalFriend) 7841 SemaRef.LookupName(Prev, S); 7842 else 7843 SemaRef.LookupQualifiedName(Prev, NewDC); 7844 assert(!Prev.isAmbiguous() && 7845 "Cannot have an ambiguity in previous-declaration lookup"); 7846 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 7847 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, 7848 MD ? MD->getParent() : nullptr); 7849 if (!Prev.empty()) { 7850 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 7851 Func != FuncEnd; ++Func) { 7852 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 7853 if (FD && 7854 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 7855 // Add 1 to the index so that 0 can mean the mismatch didn't 7856 // involve a parameter 7857 unsigned ParamNum = 7858 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 7859 NearMatches.push_back(std::make_pair(FD, ParamNum)); 7860 } 7861 } 7862 // If the qualified name lookup yielded nothing, try typo correction 7863 } else if ((Correction = SemaRef.CorrectTypo( 7864 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 7865 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, 7866 IsLocalFriend ? nullptr : NewDC))) { 7867 // Set up everything for the call to ActOnFunctionDeclarator 7868 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 7869 ExtraArgs.D.getIdentifierLoc()); 7870 Previous.clear(); 7871 Previous.setLookupName(Correction.getCorrection()); 7872 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 7873 CDeclEnd = Correction.end(); 7874 CDecl != CDeclEnd; ++CDecl) { 7875 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 7876 if (FD && !FD->hasBody() && 7877 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 7878 Previous.addDecl(FD); 7879 } 7880 } 7881 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 7882 7883 NamedDecl *Result; 7884 // Retry building the function declaration with the new previous 7885 // declarations, and with errors suppressed. 7886 { 7887 // Trap errors. 7888 Sema::SFINAETrap Trap(SemaRef); 7889 7890 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 7891 // pieces need to verify the typo-corrected C++ declaration and hopefully 7892 // eliminate the need for the parameter pack ExtraArgs. 7893 Result = SemaRef.ActOnFunctionDeclarator( 7894 ExtraArgs.S, ExtraArgs.D, 7895 Correction.getCorrectionDecl()->getDeclContext(), 7896 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 7897 ExtraArgs.AddToScope); 7898 7899 if (Trap.hasErrorOccurred()) 7900 Result = nullptr; 7901 } 7902 7903 if (Result) { 7904 // Determine which correction we picked. 7905 Decl *Canonical = Result->getCanonicalDecl(); 7906 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7907 I != E; ++I) 7908 if ((*I)->getCanonicalDecl() == Canonical) 7909 Correction.setCorrectionDecl(*I); 7910 7911 // Let Sema know about the correction. 7912 SemaRef.MarkTypoCorrectedFunctionDefinition(Result); 7913 SemaRef.diagnoseTypo( 7914 Correction, 7915 SemaRef.PDiag(IsLocalFriend 7916 ? diag::err_no_matching_local_friend_suggest 7917 : diag::err_member_decl_does_not_match_suggest) 7918 << Name << NewDC << IsDefinition); 7919 return Result; 7920 } 7921 7922 // Pretend the typo correction never occurred 7923 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 7924 ExtraArgs.D.getIdentifierLoc()); 7925 ExtraArgs.D.setRedeclaration(wasRedeclaration); 7926 Previous.clear(); 7927 Previous.setLookupName(Name); 7928 } 7929 7930 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 7931 << Name << NewDC << IsDefinition << NewFD->getLocation(); 7932 7933 bool NewFDisConst = false; 7934 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 7935 NewFDisConst = NewMD->isConst(); 7936 7937 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 7938 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 7939 NearMatch != NearMatchEnd; ++NearMatch) { 7940 FunctionDecl *FD = NearMatch->first; 7941 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 7942 bool FDisConst = MD && MD->isConst(); 7943 bool IsMember = MD || !IsLocalFriend; 7944 7945 // FIXME: These notes are poorly worded for the local friend case. 7946 if (unsigned Idx = NearMatch->second) { 7947 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 7948 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 7949 if (Loc.isInvalid()) Loc = FD->getLocation(); 7950 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 7951 : diag::note_local_decl_close_param_match) 7952 << Idx << FDParam->getType() 7953 << NewFD->getParamDecl(Idx - 1)->getType(); 7954 } else if (FDisConst != NewFDisConst) { 7955 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 7956 << NewFDisConst << FD->getSourceRange().getEnd(); 7957 } else 7958 SemaRef.Diag(FD->getLocation(), 7959 IsMember ? diag::note_member_def_close_match 7960 : diag::note_local_decl_close_match); 7961 } 7962 return nullptr; 7963 } 7964 7965 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 7966 switch (D.getDeclSpec().getStorageClassSpec()) { 7967 default: llvm_unreachable("Unknown storage class!"); 7968 case DeclSpec::SCS_auto: 7969 case DeclSpec::SCS_register: 7970 case DeclSpec::SCS_mutable: 7971 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7972 diag::err_typecheck_sclass_func); 7973 D.getMutableDeclSpec().ClearStorageClassSpecs(); 7974 D.setInvalidType(); 7975 break; 7976 case DeclSpec::SCS_unspecified: break; 7977 case DeclSpec::SCS_extern: 7978 if (D.getDeclSpec().isExternInLinkageSpec()) 7979 return SC_None; 7980 return SC_Extern; 7981 case DeclSpec::SCS_static: { 7982 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 7983 // C99 6.7.1p5: 7984 // The declaration of an identifier for a function that has 7985 // block scope shall have no explicit storage-class specifier 7986 // other than extern 7987 // See also (C++ [dcl.stc]p4). 7988 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7989 diag::err_static_block_func); 7990 break; 7991 } else 7992 return SC_Static; 7993 } 7994 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 7995 } 7996 7997 // No explicit storage class has already been returned 7998 return SC_None; 7999 } 8000 8001 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 8002 DeclContext *DC, QualType &R, 8003 TypeSourceInfo *TInfo, 8004 StorageClass SC, 8005 bool &IsVirtualOkay) { 8006 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 8007 DeclarationName Name = NameInfo.getName(); 8008 8009 FunctionDecl *NewFD = nullptr; 8010 bool isInline = D.getDeclSpec().isInlineSpecified(); 8011 8012 if (!SemaRef.getLangOpts().CPlusPlus) { 8013 // Determine whether the function was written with a 8014 // prototype. This true when: 8015 // - there is a prototype in the declarator, or 8016 // - the type R of the function is some kind of typedef or other non- 8017 // attributed reference to a type name (which eventually refers to a 8018 // function type). 8019 bool HasPrototype = 8020 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 8021 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); 8022 8023 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8024 R, TInfo, SC, isInline, HasPrototype, 8025 CSK_unspecified); 8026 if (D.isInvalidType()) 8027 NewFD->setInvalidDecl(); 8028 8029 return NewFD; 8030 } 8031 8032 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); 8033 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8034 // Check that the return type is not an abstract class type. 8035 // For record types, this is done by the AbstractClassUsageDiagnoser once 8036 // the class has been completely parsed. 8037 if (!DC->isRecord() && 8038 SemaRef.RequireNonAbstractType( 8039 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(), 8040 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 8041 D.setInvalidType(); 8042 8043 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 8044 // This is a C++ constructor declaration. 8045 assert(DC->isRecord() && 8046 "Constructors can only be declared in a member context"); 8047 8048 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 8049 return CXXConstructorDecl::Create( 8050 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8051 TInfo, ExplicitSpecifier, isInline, 8052 /*isImplicitlyDeclared=*/false, ConstexprKind); 8053 8054 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8055 // This is a C++ destructor declaration. 8056 if (DC->isRecord()) { 8057 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 8058 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 8059 CXXDestructorDecl *NewDD = 8060 CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(), 8061 NameInfo, R, TInfo, isInline, 8062 /*isImplicitlyDeclared=*/false); 8063 8064 // If the destructor needs an implicit exception specification, set it 8065 // now. FIXME: It'd be nice to be able to create the right type to start 8066 // with, but the type needs to reference the destructor declaration. 8067 if (SemaRef.getLangOpts().CPlusPlus11) 8068 SemaRef.AdjustDestructorExceptionSpec(NewDD); 8069 8070 IsVirtualOkay = true; 8071 return NewDD; 8072 8073 } else { 8074 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 8075 D.setInvalidType(); 8076 8077 // Create a FunctionDecl to satisfy the function definition parsing 8078 // code path. 8079 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8080 D.getIdentifierLoc(), Name, R, TInfo, SC, 8081 isInline, 8082 /*hasPrototype=*/true, ConstexprKind); 8083 } 8084 8085 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 8086 if (!DC->isRecord()) { 8087 SemaRef.Diag(D.getIdentifierLoc(), 8088 diag::err_conv_function_not_member); 8089 return nullptr; 8090 } 8091 8092 SemaRef.CheckConversionDeclarator(D, R, SC); 8093 IsVirtualOkay = true; 8094 return CXXConversionDecl::Create( 8095 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8096 TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation()); 8097 8098 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 8099 SemaRef.CheckDeductionGuideDeclarator(D, R, SC); 8100 8101 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8102 ExplicitSpecifier, NameInfo, R, TInfo, 8103 D.getEndLoc()); 8104 } else if (DC->isRecord()) { 8105 // If the name of the function is the same as the name of the record, 8106 // then this must be an invalid constructor that has a return type. 8107 // (The parser checks for a return type and makes the declarator a 8108 // constructor if it has no return type). 8109 if (Name.getAsIdentifierInfo() && 8110 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 8111 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 8112 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8113 << SourceRange(D.getIdentifierLoc()); 8114 return nullptr; 8115 } 8116 8117 // This is a C++ method declaration. 8118 CXXMethodDecl *Ret = CXXMethodDecl::Create( 8119 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8120 TInfo, SC, isInline, ConstexprKind, SourceLocation()); 8121 IsVirtualOkay = !Ret->isStatic(); 8122 return Ret; 8123 } else { 8124 bool isFriend = 8125 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 8126 if (!isFriend && SemaRef.CurContext->isRecord()) 8127 return nullptr; 8128 8129 // Determine whether the function was written with a 8130 // prototype. This true when: 8131 // - we're in C++ (where every function has a prototype), 8132 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8133 R, TInfo, SC, isInline, true /*HasPrototype*/, 8134 ConstexprKind); 8135 } 8136 } 8137 8138 enum OpenCLParamType { 8139 ValidKernelParam, 8140 PtrPtrKernelParam, 8141 PtrKernelParam, 8142 InvalidAddrSpacePtrKernelParam, 8143 InvalidKernelParam, 8144 RecordKernelParam 8145 }; 8146 8147 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { 8148 // Size dependent types are just typedefs to normal integer types 8149 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to 8150 // integers other than by their names. 8151 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; 8152 8153 // Remove typedefs one by one until we reach a typedef 8154 // for a size dependent type. 8155 QualType DesugaredTy = Ty; 8156 do { 8157 ArrayRef<StringRef> Names(SizeTypeNames); 8158 auto Match = llvm::find(Names, DesugaredTy.getAsString()); 8159 if (Names.end() != Match) 8160 return true; 8161 8162 Ty = DesugaredTy; 8163 DesugaredTy = Ty.getSingleStepDesugaredType(C); 8164 } while (DesugaredTy != Ty); 8165 8166 return false; 8167 } 8168 8169 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { 8170 if (PT->isPointerType()) { 8171 QualType PointeeType = PT->getPointeeType(); 8172 if (PointeeType->isPointerType()) 8173 return PtrPtrKernelParam; 8174 if (PointeeType.getAddressSpace() == LangAS::opencl_generic || 8175 PointeeType.getAddressSpace() == LangAS::opencl_private || 8176 PointeeType.getAddressSpace() == LangAS::Default) 8177 return InvalidAddrSpacePtrKernelParam; 8178 return PtrKernelParam; 8179 } 8180 8181 // OpenCL v1.2 s6.9.k: 8182 // Arguments to kernel functions in a program cannot be declared with the 8183 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8184 // uintptr_t or a struct and/or union that contain fields declared to be one 8185 // of these built-in scalar types. 8186 if (isOpenCLSizeDependentType(S.getASTContext(), PT)) 8187 return InvalidKernelParam; 8188 8189 if (PT->isImageType()) 8190 return PtrKernelParam; 8191 8192 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) 8193 return InvalidKernelParam; 8194 8195 // OpenCL extension spec v1.2 s9.5: 8196 // This extension adds support for half scalar and vector types as built-in 8197 // types that can be used for arithmetic operations, conversions etc. 8198 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) 8199 return InvalidKernelParam; 8200 8201 if (PT->isRecordType()) 8202 return RecordKernelParam; 8203 8204 // Look into an array argument to check if it has a forbidden type. 8205 if (PT->isArrayType()) { 8206 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); 8207 // Call ourself to check an underlying type of an array. Since the 8208 // getPointeeOrArrayElementType returns an innermost type which is not an 8209 // array, this recursive call only happens once. 8210 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); 8211 } 8212 8213 return ValidKernelParam; 8214 } 8215 8216 static void checkIsValidOpenCLKernelParameter( 8217 Sema &S, 8218 Declarator &D, 8219 ParmVarDecl *Param, 8220 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 8221 QualType PT = Param->getType(); 8222 8223 // Cache the valid types we encounter to avoid rechecking structs that are 8224 // used again 8225 if (ValidTypes.count(PT.getTypePtr())) 8226 return; 8227 8228 switch (getOpenCLKernelParameterType(S, PT)) { 8229 case PtrPtrKernelParam: 8230 // OpenCL v1.2 s6.9.a: 8231 // A kernel function argument cannot be declared as a 8232 // pointer to a pointer type. 8233 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 8234 D.setInvalidType(); 8235 return; 8236 8237 case InvalidAddrSpacePtrKernelParam: 8238 // OpenCL v1.0 s6.5: 8239 // __kernel function arguments declared to be a pointer of a type can point 8240 // to one of the following address spaces only : __global, __local or 8241 // __constant. 8242 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); 8243 D.setInvalidType(); 8244 return; 8245 8246 // OpenCL v1.2 s6.9.k: 8247 // Arguments to kernel functions in a program cannot be declared with the 8248 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8249 // uintptr_t or a struct and/or union that contain fields declared to be 8250 // one of these built-in scalar types. 8251 8252 case InvalidKernelParam: 8253 // OpenCL v1.2 s6.8 n: 8254 // A kernel function argument cannot be declared 8255 // of event_t type. 8256 // Do not diagnose half type since it is diagnosed as invalid argument 8257 // type for any function elsewhere. 8258 if (!PT->isHalfType()) { 8259 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8260 8261 // Explain what typedefs are involved. 8262 const TypedefType *Typedef = nullptr; 8263 while ((Typedef = PT->getAs<TypedefType>())) { 8264 SourceLocation Loc = Typedef->getDecl()->getLocation(); 8265 // SourceLocation may be invalid for a built-in type. 8266 if (Loc.isValid()) 8267 S.Diag(Loc, diag::note_entity_declared_at) << PT; 8268 PT = Typedef->desugar(); 8269 } 8270 } 8271 8272 D.setInvalidType(); 8273 return; 8274 8275 case PtrKernelParam: 8276 case ValidKernelParam: 8277 ValidTypes.insert(PT.getTypePtr()); 8278 return; 8279 8280 case RecordKernelParam: 8281 break; 8282 } 8283 8284 // Track nested structs we will inspect 8285 SmallVector<const Decl *, 4> VisitStack; 8286 8287 // Track where we are in the nested structs. Items will migrate from 8288 // VisitStack to HistoryStack as we do the DFS for bad field. 8289 SmallVector<const FieldDecl *, 4> HistoryStack; 8290 HistoryStack.push_back(nullptr); 8291 8292 // At this point we already handled everything except of a RecordType or 8293 // an ArrayType of a RecordType. 8294 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); 8295 const RecordType *RecTy = 8296 PT->getPointeeOrArrayElementType()->getAs<RecordType>(); 8297 const RecordDecl *OrigRecDecl = RecTy->getDecl(); 8298 8299 VisitStack.push_back(RecTy->getDecl()); 8300 assert(VisitStack.back() && "First decl null?"); 8301 8302 do { 8303 const Decl *Next = VisitStack.pop_back_val(); 8304 if (!Next) { 8305 assert(!HistoryStack.empty()); 8306 // Found a marker, we have gone up a level 8307 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 8308 ValidTypes.insert(Hist->getType().getTypePtr()); 8309 8310 continue; 8311 } 8312 8313 // Adds everything except the original parameter declaration (which is not a 8314 // field itself) to the history stack. 8315 const RecordDecl *RD; 8316 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 8317 HistoryStack.push_back(Field); 8318 8319 QualType FieldTy = Field->getType(); 8320 // Other field types (known to be valid or invalid) are handled while we 8321 // walk around RecordDecl::fields(). 8322 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && 8323 "Unexpected type."); 8324 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); 8325 8326 RD = FieldRecTy->castAs<RecordType>()->getDecl(); 8327 } else { 8328 RD = cast<RecordDecl>(Next); 8329 } 8330 8331 // Add a null marker so we know when we've gone back up a level 8332 VisitStack.push_back(nullptr); 8333 8334 for (const auto *FD : RD->fields()) { 8335 QualType QT = FD->getType(); 8336 8337 if (ValidTypes.count(QT.getTypePtr())) 8338 continue; 8339 8340 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); 8341 if (ParamType == ValidKernelParam) 8342 continue; 8343 8344 if (ParamType == RecordKernelParam) { 8345 VisitStack.push_back(FD); 8346 continue; 8347 } 8348 8349 // OpenCL v1.2 s6.9.p: 8350 // Arguments to kernel functions that are declared to be a struct or union 8351 // do not allow OpenCL objects to be passed as elements of the struct or 8352 // union. 8353 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 8354 ParamType == InvalidAddrSpacePtrKernelParam) { 8355 S.Diag(Param->getLocation(), 8356 diag::err_record_with_pointers_kernel_param) 8357 << PT->isUnionType() 8358 << PT; 8359 } else { 8360 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8361 } 8362 8363 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) 8364 << OrigRecDecl->getDeclName(); 8365 8366 // We have an error, now let's go back up through history and show where 8367 // the offending field came from 8368 for (ArrayRef<const FieldDecl *>::const_iterator 8369 I = HistoryStack.begin() + 1, 8370 E = HistoryStack.end(); 8371 I != E; ++I) { 8372 const FieldDecl *OuterField = *I; 8373 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 8374 << OuterField->getType(); 8375 } 8376 8377 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 8378 << QT->isPointerType() 8379 << QT; 8380 D.setInvalidType(); 8381 return; 8382 } 8383 } while (!VisitStack.empty()); 8384 } 8385 8386 /// Find the DeclContext in which a tag is implicitly declared if we see an 8387 /// elaborated type specifier in the specified context, and lookup finds 8388 /// nothing. 8389 static DeclContext *getTagInjectionContext(DeclContext *DC) { 8390 while (!DC->isFileContext() && !DC->isFunctionOrMethod()) 8391 DC = DC->getParent(); 8392 return DC; 8393 } 8394 8395 /// Find the Scope in which a tag is implicitly declared if we see an 8396 /// elaborated type specifier in the specified context, and lookup finds 8397 /// nothing. 8398 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { 8399 while (S->isClassScope() || 8400 (LangOpts.CPlusPlus && 8401 S->isFunctionPrototypeScope()) || 8402 ((S->getFlags() & Scope::DeclScope) == 0) || 8403 (S->getEntity() && S->getEntity()->isTransparentContext())) 8404 S = S->getParent(); 8405 return S; 8406 } 8407 8408 NamedDecl* 8409 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 8410 TypeSourceInfo *TInfo, LookupResult &Previous, 8411 MultiTemplateParamsArg TemplateParamLists, 8412 bool &AddToScope) { 8413 QualType R = TInfo->getType(); 8414 8415 assert(R->isFunctionType()); 8416 8417 // TODO: consider using NameInfo for diagnostic. 8418 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 8419 DeclarationName Name = NameInfo.getName(); 8420 StorageClass SC = getFunctionStorageClass(*this, D); 8421 8422 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 8423 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 8424 diag::err_invalid_thread) 8425 << DeclSpec::getSpecifierName(TSCS); 8426 8427 if (D.isFirstDeclarationOfMember()) 8428 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), 8429 D.getIdentifierLoc()); 8430 8431 bool isFriend = false; 8432 FunctionTemplateDecl *FunctionTemplate = nullptr; 8433 bool isMemberSpecialization = false; 8434 bool isFunctionTemplateSpecialization = false; 8435 8436 bool isDependentClassScopeExplicitSpecialization = false; 8437 bool HasExplicitTemplateArgs = false; 8438 TemplateArgumentListInfo TemplateArgs; 8439 8440 bool isVirtualOkay = false; 8441 8442 DeclContext *OriginalDC = DC; 8443 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 8444 8445 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 8446 isVirtualOkay); 8447 if (!NewFD) return nullptr; 8448 8449 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 8450 NewFD->setTopLevelDeclInObjCContainer(); 8451 8452 // Set the lexical context. If this is a function-scope declaration, or has a 8453 // C++ scope specifier, or is the object of a friend declaration, the lexical 8454 // context will be different from the semantic context. 8455 NewFD->setLexicalDeclContext(CurContext); 8456 8457 if (IsLocalExternDecl) 8458 NewFD->setLocalExternDecl(); 8459 8460 if (getLangOpts().CPlusPlus) { 8461 bool isInline = D.getDeclSpec().isInlineSpecified(); 8462 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 8463 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); 8464 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8465 isFriend = D.getDeclSpec().isFriendSpecified(); 8466 if (isFriend && !isInline && D.isFunctionDefinition()) { 8467 // C++ [class.friend]p5 8468 // A function can be defined in a friend declaration of a 8469 // class . . . . Such a function is implicitly inline. 8470 NewFD->setImplicitlyInline(); 8471 } 8472 8473 // If this is a method defined in an __interface, and is not a constructor 8474 // or an overloaded operator, then set the pure flag (isVirtual will already 8475 // return true). 8476 if (const CXXRecordDecl *Parent = 8477 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 8478 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 8479 NewFD->setPure(true); 8480 8481 // C++ [class.union]p2 8482 // A union can have member functions, but not virtual functions. 8483 if (isVirtual && Parent->isUnion()) 8484 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); 8485 } 8486 8487 SetNestedNameSpecifier(*this, NewFD, D); 8488 isMemberSpecialization = false; 8489 isFunctionTemplateSpecialization = false; 8490 if (D.isInvalidType()) 8491 NewFD->setInvalidDecl(); 8492 8493 // Match up the template parameter lists with the scope specifier, then 8494 // determine whether we have a template or a template specialization. 8495 bool Invalid = false; 8496 if (TemplateParameterList *TemplateParams = 8497 MatchTemplateParametersToScopeSpecifier( 8498 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 8499 D.getCXXScopeSpec(), 8500 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 8501 ? D.getName().TemplateId 8502 : nullptr, 8503 TemplateParamLists, isFriend, isMemberSpecialization, 8504 Invalid)) { 8505 if (TemplateParams->size() > 0) { 8506 // This is a function template 8507 8508 // Check that we can declare a template here. 8509 if (CheckTemplateDeclScope(S, TemplateParams)) 8510 NewFD->setInvalidDecl(); 8511 8512 // A destructor cannot be a template. 8513 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8514 Diag(NewFD->getLocation(), diag::err_destructor_template); 8515 NewFD->setInvalidDecl(); 8516 } 8517 8518 // If we're adding a template to a dependent context, we may need to 8519 // rebuilding some of the types used within the template parameter list, 8520 // now that we know what the current instantiation is. 8521 if (DC->isDependentContext()) { 8522 ContextRAII SavedContext(*this, DC); 8523 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 8524 Invalid = true; 8525 } 8526 8527 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 8528 NewFD->getLocation(), 8529 Name, TemplateParams, 8530 NewFD); 8531 FunctionTemplate->setLexicalDeclContext(CurContext); 8532 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 8533 8534 // For source fidelity, store the other template param lists. 8535 if (TemplateParamLists.size() > 1) { 8536 NewFD->setTemplateParameterListsInfo(Context, 8537 TemplateParamLists.drop_back(1)); 8538 } 8539 } else { 8540 // This is a function template specialization. 8541 isFunctionTemplateSpecialization = true; 8542 // For source fidelity, store all the template param lists. 8543 if (TemplateParamLists.size() > 0) 8544 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8545 8546 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 8547 if (isFriend) { 8548 // We want to remove the "template<>", found here. 8549 SourceRange RemoveRange = TemplateParams->getSourceRange(); 8550 8551 // If we remove the template<> and the name is not a 8552 // template-id, we're actually silently creating a problem: 8553 // the friend declaration will refer to an untemplated decl, 8554 // and clearly the user wants a template specialization. So 8555 // we need to insert '<>' after the name. 8556 SourceLocation InsertLoc; 8557 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 8558 InsertLoc = D.getName().getSourceRange().getEnd(); 8559 InsertLoc = getLocForEndOfToken(InsertLoc); 8560 } 8561 8562 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 8563 << Name << RemoveRange 8564 << FixItHint::CreateRemoval(RemoveRange) 8565 << FixItHint::CreateInsertion(InsertLoc, "<>"); 8566 } 8567 } 8568 } else { 8569 // All template param lists were matched against the scope specifier: 8570 // this is NOT (an explicit specialization of) a template. 8571 if (TemplateParamLists.size() > 0) 8572 // For source fidelity, store all the template param lists. 8573 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8574 } 8575 8576 if (Invalid) { 8577 NewFD->setInvalidDecl(); 8578 if (FunctionTemplate) 8579 FunctionTemplate->setInvalidDecl(); 8580 } 8581 8582 // C++ [dcl.fct.spec]p5: 8583 // The virtual specifier shall only be used in declarations of 8584 // nonstatic class member functions that appear within a 8585 // member-specification of a class declaration; see 10.3. 8586 // 8587 if (isVirtual && !NewFD->isInvalidDecl()) { 8588 if (!isVirtualOkay) { 8589 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8590 diag::err_virtual_non_function); 8591 } else if (!CurContext->isRecord()) { 8592 // 'virtual' was specified outside of the class. 8593 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8594 diag::err_virtual_out_of_class) 8595 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 8596 } else if (NewFD->getDescribedFunctionTemplate()) { 8597 // C++ [temp.mem]p3: 8598 // A member function template shall not be virtual. 8599 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8600 diag::err_virtual_member_function_template) 8601 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 8602 } else { 8603 // Okay: Add virtual to the method. 8604 NewFD->setVirtualAsWritten(true); 8605 } 8606 8607 if (getLangOpts().CPlusPlus14 && 8608 NewFD->getReturnType()->isUndeducedType()) 8609 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 8610 } 8611 8612 if (getLangOpts().CPlusPlus14 && 8613 (NewFD->isDependentContext() || 8614 (isFriend && CurContext->isDependentContext())) && 8615 NewFD->getReturnType()->isUndeducedType()) { 8616 // If the function template is referenced directly (for instance, as a 8617 // member of the current instantiation), pretend it has a dependent type. 8618 // This is not really justified by the standard, but is the only sane 8619 // thing to do. 8620 // FIXME: For a friend function, we have not marked the function as being 8621 // a friend yet, so 'isDependentContext' on the FD doesn't work. 8622 const FunctionProtoType *FPT = 8623 NewFD->getType()->castAs<FunctionProtoType>(); 8624 QualType Result = 8625 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 8626 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 8627 FPT->getExtProtoInfo())); 8628 } 8629 8630 // C++ [dcl.fct.spec]p3: 8631 // The inline specifier shall not appear on a block scope function 8632 // declaration. 8633 if (isInline && !NewFD->isInvalidDecl()) { 8634 if (CurContext->isFunctionOrMethod()) { 8635 // 'inline' is not allowed on block scope function declaration. 8636 Diag(D.getDeclSpec().getInlineSpecLoc(), 8637 diag::err_inline_declaration_block_scope) << Name 8638 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 8639 } 8640 } 8641 8642 // C++ [dcl.fct.spec]p6: 8643 // The explicit specifier shall be used only in the declaration of a 8644 // constructor or conversion function within its class definition; 8645 // see 12.3.1 and 12.3.2. 8646 if (hasExplicit && !NewFD->isInvalidDecl() && 8647 !isa<CXXDeductionGuideDecl>(NewFD)) { 8648 if (!CurContext->isRecord()) { 8649 // 'explicit' was specified outside of the class. 8650 Diag(D.getDeclSpec().getExplicitSpecLoc(), 8651 diag::err_explicit_out_of_class) 8652 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 8653 } else if (!isa<CXXConstructorDecl>(NewFD) && 8654 !isa<CXXConversionDecl>(NewFD)) { 8655 // 'explicit' was specified on a function that wasn't a constructor 8656 // or conversion function. 8657 Diag(D.getDeclSpec().getExplicitSpecLoc(), 8658 diag::err_explicit_non_ctor_or_conv_function) 8659 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 8660 } 8661 } 8662 8663 if (ConstexprKind != CSK_unspecified) { 8664 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 8665 // are implicitly inline. 8666 NewFD->setImplicitlyInline(); 8667 8668 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 8669 // be either constructors or to return a literal type. Therefore, 8670 // destructors cannot be declared constexpr. 8671 if (isa<CXXDestructorDecl>(NewFD)) 8672 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) 8673 << (ConstexprKind == CSK_consteval); 8674 } 8675 8676 // If __module_private__ was specified, mark the function accordingly. 8677 if (D.getDeclSpec().isModulePrivateSpecified()) { 8678 if (isFunctionTemplateSpecialization) { 8679 SourceLocation ModulePrivateLoc 8680 = D.getDeclSpec().getModulePrivateSpecLoc(); 8681 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 8682 << 0 8683 << FixItHint::CreateRemoval(ModulePrivateLoc); 8684 } else { 8685 NewFD->setModulePrivate(); 8686 if (FunctionTemplate) 8687 FunctionTemplate->setModulePrivate(); 8688 } 8689 } 8690 8691 if (isFriend) { 8692 if (FunctionTemplate) { 8693 FunctionTemplate->setObjectOfFriendDecl(); 8694 FunctionTemplate->setAccess(AS_public); 8695 } 8696 NewFD->setObjectOfFriendDecl(); 8697 NewFD->setAccess(AS_public); 8698 } 8699 8700 // If a function is defined as defaulted or deleted, mark it as such now. 8701 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function 8702 // definition kind to FDK_Definition. 8703 switch (D.getFunctionDefinitionKind()) { 8704 case FDK_Declaration: 8705 case FDK_Definition: 8706 break; 8707 8708 case FDK_Defaulted: 8709 NewFD->setDefaulted(); 8710 break; 8711 8712 case FDK_Deleted: 8713 NewFD->setDeletedAsWritten(); 8714 break; 8715 } 8716 8717 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 8718 D.isFunctionDefinition()) { 8719 // C++ [class.mfct]p2: 8720 // A member function may be defined (8.4) in its class definition, in 8721 // which case it is an inline member function (7.1.2) 8722 NewFD->setImplicitlyInline(); 8723 } 8724 8725 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 8726 !CurContext->isRecord()) { 8727 // C++ [class.static]p1: 8728 // A data or function member of a class may be declared static 8729 // in a class definition, in which case it is a static member of 8730 // the class. 8731 8732 // Complain about the 'static' specifier if it's on an out-of-line 8733 // member function definition. 8734 8735 // MSVC permits the use of a 'static' storage specifier on an out-of-line 8736 // member function template declaration and class member template 8737 // declaration (MSVC versions before 2015), warn about this. 8738 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8739 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 8740 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || 8741 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) 8742 ? diag::ext_static_out_of_line : diag::err_static_out_of_line) 8743 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 8744 } 8745 8746 // C++11 [except.spec]p15: 8747 // A deallocation function with no exception-specification is treated 8748 // as if it were specified with noexcept(true). 8749 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 8750 if ((Name.getCXXOverloadedOperator() == OO_Delete || 8751 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 8752 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 8753 NewFD->setType(Context.getFunctionType( 8754 FPT->getReturnType(), FPT->getParamTypes(), 8755 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 8756 } 8757 8758 // Filter out previous declarations that don't match the scope. 8759 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 8760 D.getCXXScopeSpec().isNotEmpty() || 8761 isMemberSpecialization || 8762 isFunctionTemplateSpecialization); 8763 8764 // Handle GNU asm-label extension (encoded as an attribute). 8765 if (Expr *E = (Expr*) D.getAsmLabel()) { 8766 // The parser guarantees this is a string. 8767 StringLiteral *SE = cast<StringLiteral>(E); 8768 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context, 8769 SE->getString(), 0)); 8770 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 8771 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 8772 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 8773 if (I != ExtnameUndeclaredIdentifiers.end()) { 8774 if (isDeclExternC(NewFD)) { 8775 NewFD->addAttr(I->second); 8776 ExtnameUndeclaredIdentifiers.erase(I); 8777 } else 8778 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) 8779 << /*Variable*/0 << NewFD; 8780 } 8781 } 8782 8783 // Copy the parameter declarations from the declarator D to the function 8784 // declaration NewFD, if they are available. First scavenge them into Params. 8785 SmallVector<ParmVarDecl*, 16> Params; 8786 unsigned FTIIdx; 8787 if (D.isFunctionDeclarator(FTIIdx)) { 8788 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; 8789 8790 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 8791 // function that takes no arguments, not a function that takes a 8792 // single void argument. 8793 // We let through "const void" here because Sema::GetTypeForDeclarator 8794 // already checks for that case. 8795 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 8796 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 8797 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 8798 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 8799 Param->setDeclContext(NewFD); 8800 Params.push_back(Param); 8801 8802 if (Param->isInvalidDecl()) 8803 NewFD->setInvalidDecl(); 8804 } 8805 } 8806 8807 if (!getLangOpts().CPlusPlus) { 8808 // In C, find all the tag declarations from the prototype and move them 8809 // into the function DeclContext. Remove them from the surrounding tag 8810 // injection context of the function, which is typically but not always 8811 // the TU. 8812 DeclContext *PrototypeTagContext = 8813 getTagInjectionContext(NewFD->getLexicalDeclContext()); 8814 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { 8815 auto *TD = dyn_cast<TagDecl>(NonParmDecl); 8816 8817 // We don't want to reparent enumerators. Look at their parent enum 8818 // instead. 8819 if (!TD) { 8820 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) 8821 TD = cast<EnumDecl>(ECD->getDeclContext()); 8822 } 8823 if (!TD) 8824 continue; 8825 DeclContext *TagDC = TD->getLexicalDeclContext(); 8826 if (!TagDC->containsDecl(TD)) 8827 continue; 8828 TagDC->removeDecl(TD); 8829 TD->setDeclContext(NewFD); 8830 NewFD->addDecl(TD); 8831 8832 // Preserve the lexical DeclContext if it is not the surrounding tag 8833 // injection context of the FD. In this example, the semantic context of 8834 // E will be f and the lexical context will be S, while both the 8835 // semantic and lexical contexts of S will be f: 8836 // void f(struct S { enum E { a } f; } s); 8837 if (TagDC != PrototypeTagContext) 8838 TD->setLexicalDeclContext(TagDC); 8839 } 8840 } 8841 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 8842 // When we're declaring a function with a typedef, typeof, etc as in the 8843 // following example, we'll need to synthesize (unnamed) 8844 // parameters for use in the declaration. 8845 // 8846 // @code 8847 // typedef void fn(int); 8848 // fn f; 8849 // @endcode 8850 8851 // Synthesize a parameter for each argument type. 8852 for (const auto &AI : FT->param_types()) { 8853 ParmVarDecl *Param = 8854 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 8855 Param->setScopeInfo(0, Params.size()); 8856 Params.push_back(Param); 8857 } 8858 } else { 8859 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 8860 "Should not need args for typedef of non-prototype fn"); 8861 } 8862 8863 // Finally, we know we have the right number of parameters, install them. 8864 NewFD->setParams(Params); 8865 8866 if (D.getDeclSpec().isNoreturnSpecified()) 8867 NewFD->addAttr( 8868 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(), 8869 Context, 0)); 8870 8871 // Functions returning a variably modified type violate C99 6.7.5.2p2 8872 // because all functions have linkage. 8873 if (!NewFD->isInvalidDecl() && 8874 NewFD->getReturnType()->isVariablyModifiedType()) { 8875 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 8876 NewFD->setInvalidDecl(); 8877 } 8878 8879 // Apply an implicit SectionAttr if '#pragma clang section text' is active 8880 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && 8881 !NewFD->hasAttr<SectionAttr>()) { 8882 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context, 8883 PragmaClangTextSection.SectionName, 8884 PragmaClangTextSection.PragmaLocation)); 8885 } 8886 8887 // Apply an implicit SectionAttr if #pragma code_seg is active. 8888 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && 8889 !NewFD->hasAttr<SectionAttr>()) { 8890 NewFD->addAttr( 8891 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate, 8892 CodeSegStack.CurrentValue->getString(), 8893 CodeSegStack.CurrentPragmaLocation)); 8894 if (UnifySection(CodeSegStack.CurrentValue->getString(), 8895 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 8896 ASTContext::PSF_Read, 8897 NewFD)) 8898 NewFD->dropAttr<SectionAttr>(); 8899 } 8900 8901 // Apply an implicit CodeSegAttr from class declspec or 8902 // apply an implicit SectionAttr from #pragma code_seg if active. 8903 if (!NewFD->hasAttr<CodeSegAttr>()) { 8904 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, 8905 D.isFunctionDefinition())) { 8906 NewFD->addAttr(SAttr); 8907 } 8908 } 8909 8910 // Handle attributes. 8911 ProcessDeclAttributes(S, NewFD, D); 8912 8913 if (getLangOpts().OpenCL) { 8914 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 8915 // type declaration will generate a compilation error. 8916 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); 8917 if (AddressSpace != LangAS::Default) { 8918 Diag(NewFD->getLocation(), 8919 diag::err_opencl_return_value_with_address_space); 8920 NewFD->setInvalidDecl(); 8921 } 8922 } 8923 8924 if (!getLangOpts().CPlusPlus) { 8925 // Perform semantic checking on the function declaration. 8926 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 8927 CheckMain(NewFD, D.getDeclSpec()); 8928 8929 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 8930 CheckMSVCRTEntryPoint(NewFD); 8931 8932 if (!NewFD->isInvalidDecl()) 8933 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 8934 isMemberSpecialization)); 8935 else if (!Previous.empty()) 8936 // Recover gracefully from an invalid redeclaration. 8937 D.setRedeclaration(true); 8938 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 8939 Previous.getResultKind() != LookupResult::FoundOverloaded) && 8940 "previous declaration set still overloaded"); 8941 8942 // Diagnose no-prototype function declarations with calling conventions that 8943 // don't support variadic calls. Only do this in C and do it after merging 8944 // possibly prototyped redeclarations. 8945 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 8946 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 8947 CallingConv CC = FT->getExtInfo().getCC(); 8948 if (!supportsVariadicCall(CC)) { 8949 // Windows system headers sometimes accidentally use stdcall without 8950 // (void) parameters, so we relax this to a warning. 8951 int DiagID = 8952 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 8953 Diag(NewFD->getLocation(), DiagID) 8954 << FunctionType::getNameForCallConv(CC); 8955 } 8956 } 8957 8958 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || 8959 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) 8960 checkNonTrivialCUnion(NewFD->getReturnType(), 8961 NewFD->getReturnTypeSourceRange().getBegin(), 8962 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); 8963 } else { 8964 // C++11 [replacement.functions]p3: 8965 // The program's definitions shall not be specified as inline. 8966 // 8967 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 8968 // 8969 // Suppress the diagnostic if the function is __attribute__((used)), since 8970 // that forces an external definition to be emitted. 8971 if (D.getDeclSpec().isInlineSpecified() && 8972 NewFD->isReplaceableGlobalAllocationFunction() && 8973 !NewFD->hasAttr<UsedAttr>()) 8974 Diag(D.getDeclSpec().getInlineSpecLoc(), 8975 diag::ext_operator_new_delete_declared_inline) 8976 << NewFD->getDeclName(); 8977 8978 // If the declarator is a template-id, translate the parser's template 8979 // argument list into our AST format. 8980 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 8981 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 8982 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 8983 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 8984 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 8985 TemplateId->NumArgs); 8986 translateTemplateArguments(TemplateArgsPtr, 8987 TemplateArgs); 8988 8989 HasExplicitTemplateArgs = true; 8990 8991 if (NewFD->isInvalidDecl()) { 8992 HasExplicitTemplateArgs = false; 8993 } else if (FunctionTemplate) { 8994 // Function template with explicit template arguments. 8995 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 8996 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 8997 8998 HasExplicitTemplateArgs = false; 8999 } else { 9000 assert((isFunctionTemplateSpecialization || 9001 D.getDeclSpec().isFriendSpecified()) && 9002 "should have a 'template<>' for this decl"); 9003 // "friend void foo<>(int);" is an implicit specialization decl. 9004 isFunctionTemplateSpecialization = true; 9005 } 9006 } else if (isFriend && isFunctionTemplateSpecialization) { 9007 // This combination is only possible in a recovery case; the user 9008 // wrote something like: 9009 // template <> friend void foo(int); 9010 // which we're recovering from as if the user had written: 9011 // friend void foo<>(int); 9012 // Go ahead and fake up a template id. 9013 HasExplicitTemplateArgs = true; 9014 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 9015 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 9016 } 9017 9018 // We do not add HD attributes to specializations here because 9019 // they may have different constexpr-ness compared to their 9020 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, 9021 // may end up with different effective targets. Instead, a 9022 // specialization inherits its target attributes from its template 9023 // in the CheckFunctionTemplateSpecialization() call below. 9024 if (getLangOpts().CUDA & !isFunctionTemplateSpecialization) 9025 maybeAddCUDAHostDeviceAttrs(NewFD, Previous); 9026 9027 // If it's a friend (and only if it's a friend), it's possible 9028 // that either the specialized function type or the specialized 9029 // template is dependent, and therefore matching will fail. In 9030 // this case, don't check the specialization yet. 9031 bool InstantiationDependent = false; 9032 if (isFunctionTemplateSpecialization && isFriend && 9033 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 9034 TemplateSpecializationType::anyDependentTemplateArguments( 9035 TemplateArgs, 9036 InstantiationDependent))) { 9037 assert(HasExplicitTemplateArgs && 9038 "friend function specialization without template args"); 9039 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 9040 Previous)) 9041 NewFD->setInvalidDecl(); 9042 } else if (isFunctionTemplateSpecialization) { 9043 if (CurContext->isDependentContext() && CurContext->isRecord() 9044 && !isFriend) { 9045 isDependentClassScopeExplicitSpecialization = true; 9046 } else if (!NewFD->isInvalidDecl() && 9047 CheckFunctionTemplateSpecialization( 9048 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), 9049 Previous)) 9050 NewFD->setInvalidDecl(); 9051 9052 // C++ [dcl.stc]p1: 9053 // A storage-class-specifier shall not be specified in an explicit 9054 // specialization (14.7.3) 9055 FunctionTemplateSpecializationInfo *Info = 9056 NewFD->getTemplateSpecializationInfo(); 9057 if (Info && SC != SC_None) { 9058 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 9059 Diag(NewFD->getLocation(), 9060 diag::err_explicit_specialization_inconsistent_storage_class) 9061 << SC 9062 << FixItHint::CreateRemoval( 9063 D.getDeclSpec().getStorageClassSpecLoc()); 9064 9065 else 9066 Diag(NewFD->getLocation(), 9067 diag::ext_explicit_specialization_storage_class) 9068 << FixItHint::CreateRemoval( 9069 D.getDeclSpec().getStorageClassSpecLoc()); 9070 } 9071 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { 9072 if (CheckMemberSpecialization(NewFD, Previous)) 9073 NewFD->setInvalidDecl(); 9074 } 9075 9076 // Perform semantic checking on the function declaration. 9077 if (!isDependentClassScopeExplicitSpecialization) { 9078 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9079 CheckMain(NewFD, D.getDeclSpec()); 9080 9081 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9082 CheckMSVCRTEntryPoint(NewFD); 9083 9084 if (!NewFD->isInvalidDecl()) 9085 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9086 isMemberSpecialization)); 9087 else if (!Previous.empty()) 9088 // Recover gracefully from an invalid redeclaration. 9089 D.setRedeclaration(true); 9090 } 9091 9092 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9093 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9094 "previous declaration set still overloaded"); 9095 9096 NamedDecl *PrincipalDecl = (FunctionTemplate 9097 ? cast<NamedDecl>(FunctionTemplate) 9098 : NewFD); 9099 9100 if (isFriend && NewFD->getPreviousDecl()) { 9101 AccessSpecifier Access = AS_public; 9102 if (!NewFD->isInvalidDecl()) 9103 Access = NewFD->getPreviousDecl()->getAccess(); 9104 9105 NewFD->setAccess(Access); 9106 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 9107 } 9108 9109 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 9110 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 9111 PrincipalDecl->setNonMemberOperator(); 9112 9113 // If we have a function template, check the template parameter 9114 // list. This will check and merge default template arguments. 9115 if (FunctionTemplate) { 9116 FunctionTemplateDecl *PrevTemplate = 9117 FunctionTemplate->getPreviousDecl(); 9118 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 9119 PrevTemplate ? PrevTemplate->getTemplateParameters() 9120 : nullptr, 9121 D.getDeclSpec().isFriendSpecified() 9122 ? (D.isFunctionDefinition() 9123 ? TPC_FriendFunctionTemplateDefinition 9124 : TPC_FriendFunctionTemplate) 9125 : (D.getCXXScopeSpec().isSet() && 9126 DC && DC->isRecord() && 9127 DC->isDependentContext()) 9128 ? TPC_ClassTemplateMember 9129 : TPC_FunctionTemplate); 9130 } 9131 9132 if (NewFD->isInvalidDecl()) { 9133 // Ignore all the rest of this. 9134 } else if (!D.isRedeclaration()) { 9135 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 9136 AddToScope }; 9137 // Fake up an access specifier if it's supposed to be a class member. 9138 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 9139 NewFD->setAccess(AS_public); 9140 9141 // Qualified decls generally require a previous declaration. 9142 if (D.getCXXScopeSpec().isSet()) { 9143 // ...with the major exception of templated-scope or 9144 // dependent-scope friend declarations. 9145 9146 // TODO: we currently also suppress this check in dependent 9147 // contexts because (1) the parameter depth will be off when 9148 // matching friend templates and (2) we might actually be 9149 // selecting a friend based on a dependent factor. But there 9150 // are situations where these conditions don't apply and we 9151 // can actually do this check immediately. 9152 // 9153 // Unless the scope is dependent, it's always an error if qualified 9154 // redeclaration lookup found nothing at all. Diagnose that now; 9155 // nothing will diagnose that error later. 9156 if (isFriend && 9157 (D.getCXXScopeSpec().getScopeRep()->isDependent() || 9158 (!Previous.empty() && CurContext->isDependentContext()))) { 9159 // ignore these 9160 } else { 9161 // The user tried to provide an out-of-line definition for a 9162 // function that is a member of a class or namespace, but there 9163 // was no such member function declared (C++ [class.mfct]p2, 9164 // C++ [namespace.memdef]p2). For example: 9165 // 9166 // class X { 9167 // void f() const; 9168 // }; 9169 // 9170 // void X::f() { } // ill-formed 9171 // 9172 // Complain about this problem, and attempt to suggest close 9173 // matches (e.g., those that differ only in cv-qualifiers and 9174 // whether the parameter types are references). 9175 9176 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9177 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 9178 AddToScope = ExtraArgs.AddToScope; 9179 return Result; 9180 } 9181 } 9182 9183 // Unqualified local friend declarations are required to resolve 9184 // to something. 9185 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 9186 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9187 *this, Previous, NewFD, ExtraArgs, true, S)) { 9188 AddToScope = ExtraArgs.AddToScope; 9189 return Result; 9190 } 9191 } 9192 } else if (!D.isFunctionDefinition() && 9193 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 9194 !isFriend && !isFunctionTemplateSpecialization && 9195 !isMemberSpecialization) { 9196 // An out-of-line member function declaration must also be a 9197 // definition (C++ [class.mfct]p2). 9198 // Note that this is not the case for explicit specializations of 9199 // function templates or member functions of class templates, per 9200 // C++ [temp.expl.spec]p2. We also allow these declarations as an 9201 // extension for compatibility with old SWIG code which likes to 9202 // generate them. 9203 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 9204 << D.getCXXScopeSpec().getRange(); 9205 } 9206 } 9207 9208 ProcessPragmaWeak(S, NewFD); 9209 checkAttributesAfterMerging(*this, *NewFD); 9210 9211 AddKnownFunctionAttributes(NewFD); 9212 9213 if (NewFD->hasAttr<OverloadableAttr>() && 9214 !NewFD->getType()->getAs<FunctionProtoType>()) { 9215 Diag(NewFD->getLocation(), 9216 diag::err_attribute_overloadable_no_prototype) 9217 << NewFD; 9218 9219 // Turn this into a variadic function with no parameters. 9220 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 9221 FunctionProtoType::ExtProtoInfo EPI( 9222 Context.getDefaultCallingConvention(true, false)); 9223 EPI.Variadic = true; 9224 EPI.ExtInfo = FT->getExtInfo(); 9225 9226 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 9227 NewFD->setType(R); 9228 } 9229 9230 // If there's a #pragma GCC visibility in scope, and this isn't a class 9231 // member, set the visibility of this function. 9232 if (!DC->isRecord() && NewFD->isExternallyVisible()) 9233 AddPushedVisibilityAttribute(NewFD); 9234 9235 // If there's a #pragma clang arc_cf_code_audited in scope, consider 9236 // marking the function. 9237 AddCFAuditedAttribute(NewFD); 9238 9239 // If this is a function definition, check if we have to apply optnone due to 9240 // a pragma. 9241 if(D.isFunctionDefinition()) 9242 AddRangeBasedOptnone(NewFD); 9243 9244 // If this is the first declaration of an extern C variable, update 9245 // the map of such variables. 9246 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 9247 isIncompleteDeclExternC(*this, NewFD)) 9248 RegisterLocallyScopedExternCDecl(NewFD, S); 9249 9250 // Set this FunctionDecl's range up to the right paren. 9251 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 9252 9253 if (D.isRedeclaration() && !Previous.empty()) { 9254 NamedDecl *Prev = Previous.getRepresentativeDecl(); 9255 checkDLLAttributeRedeclaration(*this, Prev, NewFD, 9256 isMemberSpecialization || 9257 isFunctionTemplateSpecialization, 9258 D.isFunctionDefinition()); 9259 } 9260 9261 if (getLangOpts().CUDA) { 9262 IdentifierInfo *II = NewFD->getIdentifier(); 9263 if (II && II->isStr(getCudaConfigureFuncName()) && 9264 !NewFD->isInvalidDecl() && 9265 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 9266 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 9267 Diag(NewFD->getLocation(), diag::err_config_scalar_return) 9268 << getCudaConfigureFuncName(); 9269 Context.setcudaConfigureCallDecl(NewFD); 9270 } 9271 9272 // Variadic functions, other than a *declaration* of printf, are not allowed 9273 // in device-side CUDA code, unless someone passed 9274 // -fcuda-allow-variadic-functions. 9275 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && 9276 (NewFD->hasAttr<CUDADeviceAttr>() || 9277 NewFD->hasAttr<CUDAGlobalAttr>()) && 9278 !(II && II->isStr("printf") && NewFD->isExternC() && 9279 !D.isFunctionDefinition())) { 9280 Diag(NewFD->getLocation(), diag::err_variadic_device_fn); 9281 } 9282 } 9283 9284 MarkUnusedFileScopedDecl(NewFD); 9285 9286 9287 9288 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { 9289 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 9290 if ((getLangOpts().OpenCLVersion >= 120) 9291 && (SC == SC_Static)) { 9292 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 9293 D.setInvalidType(); 9294 } 9295 9296 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 9297 if (!NewFD->getReturnType()->isVoidType()) { 9298 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 9299 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 9300 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 9301 : FixItHint()); 9302 D.setInvalidType(); 9303 } 9304 9305 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 9306 for (auto Param : NewFD->parameters()) 9307 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 9308 9309 if (getLangOpts().OpenCLCPlusPlus) { 9310 if (DC->isRecord()) { 9311 Diag(D.getIdentifierLoc(), diag::err_method_kernel); 9312 D.setInvalidType(); 9313 } 9314 if (FunctionTemplate) { 9315 Diag(D.getIdentifierLoc(), diag::err_template_kernel); 9316 D.setInvalidType(); 9317 } 9318 } 9319 } 9320 9321 if (getLangOpts().CPlusPlus) { 9322 if (FunctionTemplate) { 9323 if (NewFD->isInvalidDecl()) 9324 FunctionTemplate->setInvalidDecl(); 9325 return FunctionTemplate; 9326 } 9327 9328 if (isMemberSpecialization && !NewFD->isInvalidDecl()) 9329 CompleteMemberSpecialization(NewFD, Previous); 9330 } 9331 9332 for (const ParmVarDecl *Param : NewFD->parameters()) { 9333 QualType PT = Param->getType(); 9334 9335 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value 9336 // types. 9337 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { 9338 if(const PipeType *PipeTy = PT->getAs<PipeType>()) { 9339 QualType ElemTy = PipeTy->getElementType(); 9340 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { 9341 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); 9342 D.setInvalidType(); 9343 } 9344 } 9345 } 9346 } 9347 9348 // Here we have an function template explicit specialization at class scope. 9349 // The actual specialization will be postponed to template instatiation 9350 // time via the ClassScopeFunctionSpecializationDecl node. 9351 if (isDependentClassScopeExplicitSpecialization) { 9352 ClassScopeFunctionSpecializationDecl *NewSpec = 9353 ClassScopeFunctionSpecializationDecl::Create( 9354 Context, CurContext, NewFD->getLocation(), 9355 cast<CXXMethodDecl>(NewFD), 9356 HasExplicitTemplateArgs, TemplateArgs); 9357 CurContext->addDecl(NewSpec); 9358 AddToScope = false; 9359 } 9360 9361 // Diagnose availability attributes. Availability cannot be used on functions 9362 // that are run during load/unload. 9363 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { 9364 if (NewFD->hasAttr<ConstructorAttr>()) { 9365 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9366 << 1; 9367 NewFD->dropAttr<AvailabilityAttr>(); 9368 } 9369 if (NewFD->hasAttr<DestructorAttr>()) { 9370 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9371 << 2; 9372 NewFD->dropAttr<AvailabilityAttr>(); 9373 } 9374 } 9375 9376 return NewFD; 9377 } 9378 9379 /// Return a CodeSegAttr from a containing class. The Microsoft docs say 9380 /// when __declspec(code_seg) "is applied to a class, all member functions of 9381 /// the class and nested classes -- this includes compiler-generated special 9382 /// member functions -- are put in the specified segment." 9383 /// The actual behavior is a little more complicated. The Microsoft compiler 9384 /// won't check outer classes if there is an active value from #pragma code_seg. 9385 /// The CodeSeg is always applied from the direct parent but only from outer 9386 /// classes when the #pragma code_seg stack is empty. See: 9387 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer 9388 /// available since MS has removed the page. 9389 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { 9390 const auto *Method = dyn_cast<CXXMethodDecl>(FD); 9391 if (!Method) 9392 return nullptr; 9393 const CXXRecordDecl *Parent = Method->getParent(); 9394 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9395 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9396 NewAttr->setImplicit(true); 9397 return NewAttr; 9398 } 9399 9400 // The Microsoft compiler won't check outer classes for the CodeSeg 9401 // when the #pragma code_seg stack is active. 9402 if (S.CodeSegStack.CurrentValue) 9403 return nullptr; 9404 9405 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { 9406 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9407 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9408 NewAttr->setImplicit(true); 9409 return NewAttr; 9410 } 9411 } 9412 return nullptr; 9413 } 9414 9415 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a 9416 /// containing class. Otherwise it will return implicit SectionAttr if the 9417 /// function is a definition and there is an active value on CodeSegStack 9418 /// (from the current #pragma code-seg value). 9419 /// 9420 /// \param FD Function being declared. 9421 /// \param IsDefinition Whether it is a definition or just a declarartion. 9422 /// \returns A CodeSegAttr or SectionAttr to apply to the function or 9423 /// nullptr if no attribute should be added. 9424 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, 9425 bool IsDefinition) { 9426 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) 9427 return A; 9428 if (!FD->hasAttr<SectionAttr>() && IsDefinition && 9429 CodeSegStack.CurrentValue) { 9430 return SectionAttr::CreateImplicit(getASTContext(), 9431 SectionAttr::Declspec_allocate, 9432 CodeSegStack.CurrentValue->getString(), 9433 CodeSegStack.CurrentPragmaLocation); 9434 } 9435 return nullptr; 9436 } 9437 9438 /// Determines if we can perform a correct type check for \p D as a 9439 /// redeclaration of \p PrevDecl. If not, we can generally still perform a 9440 /// best-effort check. 9441 /// 9442 /// \param NewD The new declaration. 9443 /// \param OldD The old declaration. 9444 /// \param NewT The portion of the type of the new declaration to check. 9445 /// \param OldT The portion of the type of the old declaration to check. 9446 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, 9447 QualType NewT, QualType OldT) { 9448 if (!NewD->getLexicalDeclContext()->isDependentContext()) 9449 return true; 9450 9451 // For dependently-typed local extern declarations and friends, we can't 9452 // perform a correct type check in general until instantiation: 9453 // 9454 // int f(); 9455 // template<typename T> void g() { T f(); } 9456 // 9457 // (valid if g() is only instantiated with T = int). 9458 if (NewT->isDependentType() && 9459 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) 9460 return false; 9461 9462 // Similarly, if the previous declaration was a dependent local extern 9463 // declaration, we don't really know its type yet. 9464 if (OldT->isDependentType() && OldD->isLocalExternDecl()) 9465 return false; 9466 9467 return true; 9468 } 9469 9470 /// Checks if the new declaration declared in dependent context must be 9471 /// put in the same redeclaration chain as the specified declaration. 9472 /// 9473 /// \param D Declaration that is checked. 9474 /// \param PrevDecl Previous declaration found with proper lookup method for the 9475 /// same declaration name. 9476 /// \returns True if D must be added to the redeclaration chain which PrevDecl 9477 /// belongs to. 9478 /// 9479 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { 9480 if (!D->getLexicalDeclContext()->isDependentContext()) 9481 return true; 9482 9483 // Don't chain dependent friend function definitions until instantiation, to 9484 // permit cases like 9485 // 9486 // void func(); 9487 // template<typename T> class C1 { friend void func() {} }; 9488 // template<typename T> class C2 { friend void func() {} }; 9489 // 9490 // ... which is valid if only one of C1 and C2 is ever instantiated. 9491 // 9492 // FIXME: This need only apply to function definitions. For now, we proxy 9493 // this by checking for a file-scope function. We do not want this to apply 9494 // to friend declarations nominating member functions, because that gets in 9495 // the way of access checks. 9496 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) 9497 return false; 9498 9499 auto *VD = dyn_cast<ValueDecl>(D); 9500 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); 9501 return !VD || !PrevVD || 9502 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), 9503 PrevVD->getType()); 9504 } 9505 9506 /// Check the target attribute of the function for MultiVersion 9507 /// validity. 9508 /// 9509 /// Returns true if there was an error, false otherwise. 9510 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { 9511 const auto *TA = FD->getAttr<TargetAttr>(); 9512 assert(TA && "MultiVersion Candidate requires a target attribute"); 9513 TargetAttr::ParsedTargetAttr ParseInfo = TA->parse(); 9514 const TargetInfo &TargetInfo = S.Context.getTargetInfo(); 9515 enum ErrType { Feature = 0, Architecture = 1 }; 9516 9517 if (!ParseInfo.Architecture.empty() && 9518 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { 9519 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9520 << Architecture << ParseInfo.Architecture; 9521 return true; 9522 } 9523 9524 for (const auto &Feat : ParseInfo.Features) { 9525 auto BareFeat = StringRef{Feat}.substr(1); 9526 if (Feat[0] == '-') { 9527 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9528 << Feature << ("no-" + BareFeat).str(); 9529 return true; 9530 } 9531 9532 if (!TargetInfo.validateCpuSupports(BareFeat) || 9533 !TargetInfo.isValidFeatureName(BareFeat)) { 9534 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9535 << Feature << BareFeat; 9536 return true; 9537 } 9538 } 9539 return false; 9540 } 9541 9542 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD, 9543 MultiVersionKind MVType) { 9544 for (const Attr *A : FD->attrs()) { 9545 switch (A->getKind()) { 9546 case attr::CPUDispatch: 9547 case attr::CPUSpecific: 9548 if (MVType != MultiVersionKind::CPUDispatch && 9549 MVType != MultiVersionKind::CPUSpecific) 9550 return true; 9551 break; 9552 case attr::Target: 9553 if (MVType != MultiVersionKind::Target) 9554 return true; 9555 break; 9556 default: 9557 return true; 9558 } 9559 } 9560 return false; 9561 } 9562 9563 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, 9564 const FunctionDecl *NewFD, 9565 bool CausesMV, 9566 MultiVersionKind MVType) { 9567 enum DoesntSupport { 9568 FuncTemplates = 0, 9569 VirtFuncs = 1, 9570 DeducedReturn = 2, 9571 Constructors = 3, 9572 Destructors = 4, 9573 DeletedFuncs = 5, 9574 DefaultedFuncs = 6, 9575 ConstexprFuncs = 7, 9576 ConstevalFuncs = 8, 9577 }; 9578 enum Different { 9579 CallingConv = 0, 9580 ReturnType = 1, 9581 ConstexprSpec = 2, 9582 InlineSpec = 3, 9583 StorageClass = 4, 9584 Linkage = 5 9585 }; 9586 9587 bool IsCPUSpecificCPUDispatchMVType = 9588 MVType == MultiVersionKind::CPUDispatch || 9589 MVType == MultiVersionKind::CPUSpecific; 9590 9591 if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) { 9592 S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto); 9593 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 9594 return true; 9595 } 9596 9597 if (!NewFD->getType()->getAs<FunctionProtoType>()) 9598 return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto); 9599 9600 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 9601 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 9602 if (OldFD) 9603 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 9604 return true; 9605 } 9606 9607 // For now, disallow all other attributes. These should be opt-in, but 9608 // an analysis of all of them is a future FIXME. 9609 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) { 9610 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs) 9611 << IsCPUSpecificCPUDispatchMVType; 9612 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 9613 return true; 9614 } 9615 9616 if (HasNonMultiVersionAttributes(NewFD, MVType)) 9617 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs) 9618 << IsCPUSpecificCPUDispatchMVType; 9619 9620 if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 9621 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) 9622 << IsCPUSpecificCPUDispatchMVType << FuncTemplates; 9623 9624 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { 9625 if (NewCXXFD->isVirtual()) 9626 return S.Diag(NewCXXFD->getLocation(), 9627 diag::err_multiversion_doesnt_support) 9628 << IsCPUSpecificCPUDispatchMVType << VirtFuncs; 9629 9630 if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD)) 9631 return S.Diag(NewCXXCtor->getLocation(), 9632 diag::err_multiversion_doesnt_support) 9633 << IsCPUSpecificCPUDispatchMVType << Constructors; 9634 9635 if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD)) 9636 return S.Diag(NewCXXDtor->getLocation(), 9637 diag::err_multiversion_doesnt_support) 9638 << IsCPUSpecificCPUDispatchMVType << Destructors; 9639 } 9640 9641 if (NewFD->isDeleted()) 9642 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) 9643 << IsCPUSpecificCPUDispatchMVType << DeletedFuncs; 9644 9645 if (NewFD->isDefaulted()) 9646 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) 9647 << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs; 9648 9649 if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch || 9650 MVType == MultiVersionKind::CPUSpecific)) 9651 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) 9652 << IsCPUSpecificCPUDispatchMVType 9653 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); 9654 9655 QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType()); 9656 const auto *NewType = cast<FunctionType>(NewQType); 9657 QualType NewReturnType = NewType->getReturnType(); 9658 9659 if (NewReturnType->isUndeducedType()) 9660 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support) 9661 << IsCPUSpecificCPUDispatchMVType << DeducedReturn; 9662 9663 // Only allow transition to MultiVersion if it hasn't been used. 9664 if (OldFD && CausesMV && OldFD->isUsed(false)) 9665 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 9666 9667 // Ensure the return type is identical. 9668 if (OldFD) { 9669 QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType()); 9670 const auto *OldType = cast<FunctionType>(OldQType); 9671 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 9672 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 9673 9674 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) 9675 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9676 << CallingConv; 9677 9678 QualType OldReturnType = OldType->getReturnType(); 9679 9680 if (OldReturnType != NewReturnType) 9681 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9682 << ReturnType; 9683 9684 if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) 9685 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9686 << ConstexprSpec; 9687 9688 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) 9689 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9690 << InlineSpec; 9691 9692 if (OldFD->getStorageClass() != NewFD->getStorageClass()) 9693 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9694 << StorageClass; 9695 9696 if (OldFD->isExternC() != NewFD->isExternC()) 9697 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff) 9698 << Linkage; 9699 9700 if (S.CheckEquivalentExceptionSpec( 9701 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), 9702 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) 9703 return true; 9704 } 9705 return false; 9706 } 9707 9708 /// Check the validity of a multiversion function declaration that is the 9709 /// first of its kind. Also sets the multiversion'ness' of the function itself. 9710 /// 9711 /// This sets NewFD->isInvalidDecl() to true if there was an error. 9712 /// 9713 /// Returns true if there was an error, false otherwise. 9714 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, 9715 MultiVersionKind MVType, 9716 const TargetAttr *TA) { 9717 assert(MVType != MultiVersionKind::None && 9718 "Function lacks multiversion attribute"); 9719 9720 // Target only causes MV if it is default, otherwise this is a normal 9721 // function. 9722 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) 9723 return false; 9724 9725 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { 9726 FD->setInvalidDecl(); 9727 return true; 9728 } 9729 9730 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { 9731 FD->setInvalidDecl(); 9732 return true; 9733 } 9734 9735 FD->setIsMultiVersion(); 9736 return false; 9737 } 9738 9739 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { 9740 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { 9741 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) 9742 return true; 9743 } 9744 9745 return false; 9746 } 9747 9748 static bool CheckTargetCausesMultiVersioning( 9749 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, 9750 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 9751 LookupResult &Previous) { 9752 const auto *OldTA = OldFD->getAttr<TargetAttr>(); 9753 TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse(); 9754 // Sort order doesn't matter, it just needs to be consistent. 9755 llvm::sort(NewParsed.Features); 9756 9757 // If the old decl is NOT MultiVersioned yet, and we don't cause that 9758 // to change, this is a simple redeclaration. 9759 if (!NewTA->isDefaultVersion() && 9760 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) 9761 return false; 9762 9763 // Otherwise, this decl causes MultiVersioning. 9764 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 9765 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 9766 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 9767 NewFD->setInvalidDecl(); 9768 return true; 9769 } 9770 9771 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, 9772 MultiVersionKind::Target)) { 9773 NewFD->setInvalidDecl(); 9774 return true; 9775 } 9776 9777 if (CheckMultiVersionValue(S, NewFD)) { 9778 NewFD->setInvalidDecl(); 9779 return true; 9780 } 9781 9782 // If this is 'default', permit the forward declaration. 9783 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { 9784 Redeclaration = true; 9785 OldDecl = OldFD; 9786 OldFD->setIsMultiVersion(); 9787 NewFD->setIsMultiVersion(); 9788 return false; 9789 } 9790 9791 if (CheckMultiVersionValue(S, OldFD)) { 9792 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 9793 NewFD->setInvalidDecl(); 9794 return true; 9795 } 9796 9797 TargetAttr::ParsedTargetAttr OldParsed = 9798 OldTA->parse(std::less<std::string>()); 9799 9800 if (OldParsed == NewParsed) { 9801 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 9802 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 9803 NewFD->setInvalidDecl(); 9804 return true; 9805 } 9806 9807 for (const auto *FD : OldFD->redecls()) { 9808 const auto *CurTA = FD->getAttr<TargetAttr>(); 9809 // We allow forward declarations before ANY multiversioning attributes, but 9810 // nothing after the fact. 9811 if (PreviousDeclsHaveMultiVersionAttribute(FD) && 9812 (!CurTA || CurTA->isInherited())) { 9813 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) 9814 << 0; 9815 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 9816 NewFD->setInvalidDecl(); 9817 return true; 9818 } 9819 } 9820 9821 OldFD->setIsMultiVersion(); 9822 NewFD->setIsMultiVersion(); 9823 Redeclaration = false; 9824 MergeTypeWithPrevious = false; 9825 OldDecl = nullptr; 9826 Previous.clear(); 9827 return false; 9828 } 9829 9830 /// Check the validity of a new function declaration being added to an existing 9831 /// multiversioned declaration collection. 9832 static bool CheckMultiVersionAdditionalDecl( 9833 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, 9834 MultiVersionKind NewMVType, const TargetAttr *NewTA, 9835 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, 9836 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 9837 LookupResult &Previous) { 9838 9839 MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); 9840 // Disallow mixing of multiversioning types. 9841 if ((OldMVType == MultiVersionKind::Target && 9842 NewMVType != MultiVersionKind::Target) || 9843 (NewMVType == MultiVersionKind::Target && 9844 OldMVType != MultiVersionKind::Target)) { 9845 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 9846 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 9847 NewFD->setInvalidDecl(); 9848 return true; 9849 } 9850 9851 TargetAttr::ParsedTargetAttr NewParsed; 9852 if (NewTA) { 9853 NewParsed = NewTA->parse(); 9854 llvm::sort(NewParsed.Features); 9855 } 9856 9857 bool UseMemberUsingDeclRules = 9858 S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); 9859 9860 // Next, check ALL non-overloads to see if this is a redeclaration of a 9861 // previous member of the MultiVersion set. 9862 for (NamedDecl *ND : Previous) { 9863 FunctionDecl *CurFD = ND->getAsFunction(); 9864 if (!CurFD) 9865 continue; 9866 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) 9867 continue; 9868 9869 if (NewMVType == MultiVersionKind::Target) { 9870 const auto *CurTA = CurFD->getAttr<TargetAttr>(); 9871 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { 9872 NewFD->setIsMultiVersion(); 9873 Redeclaration = true; 9874 OldDecl = ND; 9875 return false; 9876 } 9877 9878 TargetAttr::ParsedTargetAttr CurParsed = 9879 CurTA->parse(std::less<std::string>()); 9880 if (CurParsed == NewParsed) { 9881 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 9882 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 9883 NewFD->setInvalidDecl(); 9884 return true; 9885 } 9886 } else { 9887 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); 9888 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); 9889 // Handle CPUDispatch/CPUSpecific versions. 9890 // Only 1 CPUDispatch function is allowed, this will make it go through 9891 // the redeclaration errors. 9892 if (NewMVType == MultiVersionKind::CPUDispatch && 9893 CurFD->hasAttr<CPUDispatchAttr>()) { 9894 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && 9895 std::equal( 9896 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), 9897 NewCPUDisp->cpus_begin(), 9898 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 9899 return Cur->getName() == New->getName(); 9900 })) { 9901 NewFD->setIsMultiVersion(); 9902 Redeclaration = true; 9903 OldDecl = ND; 9904 return false; 9905 } 9906 9907 // If the declarations don't match, this is an error condition. 9908 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); 9909 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 9910 NewFD->setInvalidDecl(); 9911 return true; 9912 } 9913 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { 9914 9915 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && 9916 std::equal( 9917 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), 9918 NewCPUSpec->cpus_begin(), 9919 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 9920 return Cur->getName() == New->getName(); 9921 })) { 9922 NewFD->setIsMultiVersion(); 9923 Redeclaration = true; 9924 OldDecl = ND; 9925 return false; 9926 } 9927 9928 // Only 1 version of CPUSpecific is allowed for each CPU. 9929 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { 9930 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { 9931 if (CurII == NewII) { 9932 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) 9933 << NewII; 9934 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 9935 NewFD->setInvalidDecl(); 9936 return true; 9937 } 9938 } 9939 } 9940 } 9941 // If the two decls aren't the same MVType, there is no possible error 9942 // condition. 9943 } 9944 } 9945 9946 // Else, this is simply a non-redecl case. Checking the 'value' is only 9947 // necessary in the Target case, since The CPUSpecific/Dispatch cases are 9948 // handled in the attribute adding step. 9949 if (NewMVType == MultiVersionKind::Target && 9950 CheckMultiVersionValue(S, NewFD)) { 9951 NewFD->setInvalidDecl(); 9952 return true; 9953 } 9954 9955 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, 9956 !OldFD->isMultiVersion(), NewMVType)) { 9957 NewFD->setInvalidDecl(); 9958 return true; 9959 } 9960 9961 // Permit forward declarations in the case where these two are compatible. 9962 if (!OldFD->isMultiVersion()) { 9963 OldFD->setIsMultiVersion(); 9964 NewFD->setIsMultiVersion(); 9965 Redeclaration = true; 9966 OldDecl = OldFD; 9967 return false; 9968 } 9969 9970 NewFD->setIsMultiVersion(); 9971 Redeclaration = false; 9972 MergeTypeWithPrevious = false; 9973 OldDecl = nullptr; 9974 Previous.clear(); 9975 return false; 9976 } 9977 9978 9979 /// Check the validity of a mulitversion function declaration. 9980 /// Also sets the multiversion'ness' of the function itself. 9981 /// 9982 /// This sets NewFD->isInvalidDecl() to true if there was an error. 9983 /// 9984 /// Returns true if there was an error, false otherwise. 9985 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, 9986 bool &Redeclaration, NamedDecl *&OldDecl, 9987 bool &MergeTypeWithPrevious, 9988 LookupResult &Previous) { 9989 const auto *NewTA = NewFD->getAttr<TargetAttr>(); 9990 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); 9991 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); 9992 9993 // Mixing Multiversioning types is prohibited. 9994 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || 9995 (NewCPUDisp && NewCPUSpec)) { 9996 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 9997 NewFD->setInvalidDecl(); 9998 return true; 9999 } 10000 10001 MultiVersionKind MVType = NewFD->getMultiVersionKind(); 10002 10003 // Main isn't allowed to become a multiversion function, however it IS 10004 // permitted to have 'main' be marked with the 'target' optimization hint. 10005 if (NewFD->isMain()) { 10006 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || 10007 MVType == MultiVersionKind::CPUDispatch || 10008 MVType == MultiVersionKind::CPUSpecific) { 10009 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); 10010 NewFD->setInvalidDecl(); 10011 return true; 10012 } 10013 return false; 10014 } 10015 10016 if (!OldDecl || !OldDecl->getAsFunction() || 10017 OldDecl->getDeclContext()->getRedeclContext() != 10018 NewFD->getDeclContext()->getRedeclContext()) { 10019 // If there's no previous declaration, AND this isn't attempting to cause 10020 // multiversioning, this isn't an error condition. 10021 if (MVType == MultiVersionKind::None) 10022 return false; 10023 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); 10024 } 10025 10026 FunctionDecl *OldFD = OldDecl->getAsFunction(); 10027 10028 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) 10029 return false; 10030 10031 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { 10032 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) 10033 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); 10034 NewFD->setInvalidDecl(); 10035 return true; 10036 } 10037 10038 // Handle the target potentially causes multiversioning case. 10039 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) 10040 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10041 Redeclaration, OldDecl, 10042 MergeTypeWithPrevious, Previous); 10043 10044 // At this point, we have a multiversion function decl (in OldFD) AND an 10045 // appropriate attribute in the current function decl. Resolve that these are 10046 // still compatible with previous declarations. 10047 return CheckMultiVersionAdditionalDecl( 10048 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, 10049 OldDecl, MergeTypeWithPrevious, Previous); 10050 } 10051 10052 /// Perform semantic checking of a new function declaration. 10053 /// 10054 /// Performs semantic analysis of the new function declaration 10055 /// NewFD. This routine performs all semantic checking that does not 10056 /// require the actual declarator involved in the declaration, and is 10057 /// used both for the declaration of functions as they are parsed 10058 /// (called via ActOnDeclarator) and for the declaration of functions 10059 /// that have been instantiated via C++ template instantiation (called 10060 /// via InstantiateDecl). 10061 /// 10062 /// \param IsMemberSpecialization whether this new function declaration is 10063 /// a member specialization (that replaces any definition provided by the 10064 /// previous declaration). 10065 /// 10066 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10067 /// 10068 /// \returns true if the function declaration is a redeclaration. 10069 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 10070 LookupResult &Previous, 10071 bool IsMemberSpecialization) { 10072 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 10073 "Variably modified return types are not handled here"); 10074 10075 // Determine whether the type of this function should be merged with 10076 // a previous visible declaration. This never happens for functions in C++, 10077 // and always happens in C if the previous declaration was visible. 10078 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 10079 !Previous.isShadowed(); 10080 10081 bool Redeclaration = false; 10082 NamedDecl *OldDecl = nullptr; 10083 bool MayNeedOverloadableChecks = false; 10084 10085 // Merge or overload the declaration with an existing declaration of 10086 // the same name, if appropriate. 10087 if (!Previous.empty()) { 10088 // Determine whether NewFD is an overload of PrevDecl or 10089 // a declaration that requires merging. If it's an overload, 10090 // there's no more work to do here; we'll just add the new 10091 // function to the scope. 10092 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { 10093 NamedDecl *Candidate = Previous.getRepresentativeDecl(); 10094 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 10095 Redeclaration = true; 10096 OldDecl = Candidate; 10097 } 10098 } else { 10099 MayNeedOverloadableChecks = true; 10100 switch (CheckOverload(S, NewFD, Previous, OldDecl, 10101 /*NewIsUsingDecl*/ false)) { 10102 case Ovl_Match: 10103 Redeclaration = true; 10104 break; 10105 10106 case Ovl_NonFunction: 10107 Redeclaration = true; 10108 break; 10109 10110 case Ovl_Overload: 10111 Redeclaration = false; 10112 break; 10113 } 10114 } 10115 } 10116 10117 // Check for a previous extern "C" declaration with this name. 10118 if (!Redeclaration && 10119 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 10120 if (!Previous.empty()) { 10121 // This is an extern "C" declaration with the same name as a previous 10122 // declaration, and thus redeclares that entity... 10123 Redeclaration = true; 10124 OldDecl = Previous.getFoundDecl(); 10125 MergeTypeWithPrevious = false; 10126 10127 // ... except in the presence of __attribute__((overloadable)). 10128 if (OldDecl->hasAttr<OverloadableAttr>() || 10129 NewFD->hasAttr<OverloadableAttr>()) { 10130 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 10131 MayNeedOverloadableChecks = true; 10132 Redeclaration = false; 10133 OldDecl = nullptr; 10134 } 10135 } 10136 } 10137 } 10138 10139 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, 10140 MergeTypeWithPrevious, Previous)) 10141 return Redeclaration; 10142 10143 // C++11 [dcl.constexpr]p8: 10144 // A constexpr specifier for a non-static member function that is not 10145 // a constructor declares that member function to be const. 10146 // 10147 // This needs to be delayed until we know whether this is an out-of-line 10148 // definition of a static member function. 10149 // 10150 // This rule is not present in C++1y, so we produce a backwards 10151 // compatibility warning whenever it happens in C++11. 10152 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 10153 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 10154 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 10155 !MD->getMethodQualifiers().hasConst()) { 10156 CXXMethodDecl *OldMD = nullptr; 10157 if (OldDecl) 10158 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 10159 if (!OldMD || !OldMD->isStatic()) { 10160 const FunctionProtoType *FPT = 10161 MD->getType()->castAs<FunctionProtoType>(); 10162 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10163 EPI.TypeQuals.addConst(); 10164 MD->setType(Context.getFunctionType(FPT->getReturnType(), 10165 FPT->getParamTypes(), EPI)); 10166 10167 // Warn that we did this, if we're not performing template instantiation. 10168 // In that case, we'll have warned already when the template was defined. 10169 if (!inTemplateInstantiation()) { 10170 SourceLocation AddConstLoc; 10171 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 10172 .IgnoreParens().getAs<FunctionTypeLoc>()) 10173 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 10174 10175 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 10176 << FixItHint::CreateInsertion(AddConstLoc, " const"); 10177 } 10178 } 10179 } 10180 10181 if (Redeclaration) { 10182 // NewFD and OldDecl represent declarations that need to be 10183 // merged. 10184 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 10185 NewFD->setInvalidDecl(); 10186 return Redeclaration; 10187 } 10188 10189 Previous.clear(); 10190 Previous.addDecl(OldDecl); 10191 10192 if (FunctionTemplateDecl *OldTemplateDecl = 10193 dyn_cast<FunctionTemplateDecl>(OldDecl)) { 10194 auto *OldFD = OldTemplateDecl->getTemplatedDecl(); 10195 FunctionTemplateDecl *NewTemplateDecl 10196 = NewFD->getDescribedFunctionTemplate(); 10197 assert(NewTemplateDecl && "Template/non-template mismatch"); 10198 10199 // The call to MergeFunctionDecl above may have created some state in 10200 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we 10201 // can add it as a redeclaration. 10202 NewTemplateDecl->mergePrevDecl(OldTemplateDecl); 10203 10204 NewFD->setPreviousDeclaration(OldFD); 10205 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10206 if (NewFD->isCXXClassMember()) { 10207 NewFD->setAccess(OldTemplateDecl->getAccess()); 10208 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 10209 } 10210 10211 // If this is an explicit specialization of a member that is a function 10212 // template, mark it as a member specialization. 10213 if (IsMemberSpecialization && 10214 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 10215 NewTemplateDecl->setMemberSpecialization(); 10216 assert(OldTemplateDecl->isMemberSpecialization()); 10217 // Explicit specializations of a member template do not inherit deleted 10218 // status from the parent member template that they are specializing. 10219 if (OldFD->isDeleted()) { 10220 // FIXME: This assert will not hold in the presence of modules. 10221 assert(OldFD->getCanonicalDecl() == OldFD); 10222 // FIXME: We need an update record for this AST mutation. 10223 OldFD->setDeletedAsWritten(false); 10224 } 10225 } 10226 10227 } else { 10228 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { 10229 auto *OldFD = cast<FunctionDecl>(OldDecl); 10230 // This needs to happen first so that 'inline' propagates. 10231 NewFD->setPreviousDeclaration(OldFD); 10232 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10233 if (NewFD->isCXXClassMember()) 10234 NewFD->setAccess(OldFD->getAccess()); 10235 } 10236 } 10237 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && 10238 !NewFD->getAttr<OverloadableAttr>()) { 10239 assert((Previous.empty() || 10240 llvm::any_of(Previous, 10241 [](const NamedDecl *ND) { 10242 return ND->hasAttr<OverloadableAttr>(); 10243 })) && 10244 "Non-redecls shouldn't happen without overloadable present"); 10245 10246 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { 10247 const auto *FD = dyn_cast<FunctionDecl>(ND); 10248 return FD && !FD->hasAttr<OverloadableAttr>(); 10249 }); 10250 10251 if (OtherUnmarkedIter != Previous.end()) { 10252 Diag(NewFD->getLocation(), 10253 diag::err_attribute_overloadable_multiple_unmarked_overloads); 10254 Diag((*OtherUnmarkedIter)->getLocation(), 10255 diag::note_attribute_overloadable_prev_overload) 10256 << false; 10257 10258 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 10259 } 10260 } 10261 10262 // Semantic checking for this function declaration (in isolation). 10263 10264 if (getLangOpts().CPlusPlus) { 10265 // C++-specific checks. 10266 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 10267 CheckConstructor(Constructor); 10268 } else if (CXXDestructorDecl *Destructor = 10269 dyn_cast<CXXDestructorDecl>(NewFD)) { 10270 CXXRecordDecl *Record = Destructor->getParent(); 10271 QualType ClassType = Context.getTypeDeclType(Record); 10272 10273 // FIXME: Shouldn't we be able to perform this check even when the class 10274 // type is dependent? Both gcc and edg can handle that. 10275 if (!ClassType->isDependentType()) { 10276 DeclarationName Name 10277 = Context.DeclarationNames.getCXXDestructorName( 10278 Context.getCanonicalType(ClassType)); 10279 if (NewFD->getDeclName() != Name) { 10280 Diag(NewFD->getLocation(), diag::err_destructor_name); 10281 NewFD->setInvalidDecl(); 10282 return Redeclaration; 10283 } 10284 } 10285 } else if (CXXConversionDecl *Conversion 10286 = dyn_cast<CXXConversionDecl>(NewFD)) { 10287 ActOnConversionDeclarator(Conversion); 10288 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { 10289 if (auto *TD = Guide->getDescribedFunctionTemplate()) 10290 CheckDeductionGuideTemplate(TD); 10291 10292 // A deduction guide is not on the list of entities that can be 10293 // explicitly specialized. 10294 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 10295 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) 10296 << /*explicit specialization*/ 1; 10297 } 10298 10299 // Find any virtual functions that this function overrides. 10300 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 10301 if (!Method->isFunctionTemplateSpecialization() && 10302 !Method->getDescribedFunctionTemplate() && 10303 Method->isCanonicalDecl()) { 10304 if (AddOverriddenMethods(Method->getParent(), Method)) { 10305 // If the function was marked as "static", we have a problem. 10306 if (NewFD->getStorageClass() == SC_Static) { 10307 ReportOverrides(*this, diag::err_static_overrides_virtual, Method); 10308 } 10309 } 10310 } 10311 10312 if (Method->isStatic()) 10313 checkThisInStaticMemberFunctionType(Method); 10314 } 10315 10316 // Extra checking for C++ overloaded operators (C++ [over.oper]). 10317 if (NewFD->isOverloadedOperator() && 10318 CheckOverloadedOperatorDeclaration(NewFD)) { 10319 NewFD->setInvalidDecl(); 10320 return Redeclaration; 10321 } 10322 10323 // Extra checking for C++0x literal operators (C++0x [over.literal]). 10324 if (NewFD->getLiteralIdentifier() && 10325 CheckLiteralOperatorDeclaration(NewFD)) { 10326 NewFD->setInvalidDecl(); 10327 return Redeclaration; 10328 } 10329 10330 // In C++, check default arguments now that we have merged decls. Unless 10331 // the lexical context is the class, because in this case this is done 10332 // during delayed parsing anyway. 10333 if (!CurContext->isRecord()) 10334 CheckCXXDefaultArguments(NewFD); 10335 10336 // If this function declares a builtin function, check the type of this 10337 // declaration against the expected type for the builtin. 10338 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 10339 ASTContext::GetBuiltinTypeError Error; 10340 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 10341 QualType T = Context.GetBuiltinType(BuiltinID, Error); 10342 // If the type of the builtin differs only in its exception 10343 // specification, that's OK. 10344 // FIXME: If the types do differ in this way, it would be better to 10345 // retain the 'noexcept' form of the type. 10346 if (!T.isNull() && 10347 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T, 10348 NewFD->getType())) 10349 // The type of this function differs from the type of the builtin, 10350 // so forget about the builtin entirely. 10351 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); 10352 } 10353 10354 // If this function is declared as being extern "C", then check to see if 10355 // the function returns a UDT (class, struct, or union type) that is not C 10356 // compatible, and if it does, warn the user. 10357 // But, issue any diagnostic on the first declaration only. 10358 if (Previous.empty() && NewFD->isExternC()) { 10359 QualType R = NewFD->getReturnType(); 10360 if (R->isIncompleteType() && !R->isVoidType()) 10361 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 10362 << NewFD << R; 10363 else if (!R.isPODType(Context) && !R->isVoidType() && 10364 !R->isObjCObjectPointerType()) 10365 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 10366 } 10367 10368 // C++1z [dcl.fct]p6: 10369 // [...] whether the function has a non-throwing exception-specification 10370 // [is] part of the function type 10371 // 10372 // This results in an ABI break between C++14 and C++17 for functions whose 10373 // declared type includes an exception-specification in a parameter or 10374 // return type. (Exception specifications on the function itself are OK in 10375 // most cases, and exception specifications are not permitted in most other 10376 // contexts where they could make it into a mangling.) 10377 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { 10378 auto HasNoexcept = [&](QualType T) -> bool { 10379 // Strip off declarator chunks that could be between us and a function 10380 // type. We don't need to look far, exception specifications are very 10381 // restricted prior to C++17. 10382 if (auto *RT = T->getAs<ReferenceType>()) 10383 T = RT->getPointeeType(); 10384 else if (T->isAnyPointerType()) 10385 T = T->getPointeeType(); 10386 else if (auto *MPT = T->getAs<MemberPointerType>()) 10387 T = MPT->getPointeeType(); 10388 if (auto *FPT = T->getAs<FunctionProtoType>()) 10389 if (FPT->isNothrow()) 10390 return true; 10391 return false; 10392 }; 10393 10394 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); 10395 bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); 10396 for (QualType T : FPT->param_types()) 10397 AnyNoexcept |= HasNoexcept(T); 10398 if (AnyNoexcept) 10399 Diag(NewFD->getLocation(), 10400 diag::warn_cxx17_compat_exception_spec_in_signature) 10401 << NewFD; 10402 } 10403 10404 if (!Redeclaration && LangOpts.CUDA) 10405 checkCUDATargetOverload(NewFD, Previous); 10406 } 10407 return Redeclaration; 10408 } 10409 10410 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 10411 // C++11 [basic.start.main]p3: 10412 // A program that [...] declares main to be inline, static or 10413 // constexpr is ill-formed. 10414 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 10415 // appear in a declaration of main. 10416 // static main is not an error under C99, but we should warn about it. 10417 // We accept _Noreturn main as an extension. 10418 if (FD->getStorageClass() == SC_Static) 10419 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 10420 ? diag::err_static_main : diag::warn_static_main) 10421 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 10422 if (FD->isInlineSpecified()) 10423 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 10424 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 10425 if (DS.isNoreturnSpecified()) { 10426 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 10427 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 10428 Diag(NoreturnLoc, diag::ext_noreturn_main); 10429 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 10430 << FixItHint::CreateRemoval(NoreturnRange); 10431 } 10432 if (FD->isConstexpr()) { 10433 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 10434 << FD->isConsteval() 10435 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 10436 FD->setConstexprKind(CSK_unspecified); 10437 } 10438 10439 if (getLangOpts().OpenCL) { 10440 Diag(FD->getLocation(), diag::err_opencl_no_main) 10441 << FD->hasAttr<OpenCLKernelAttr>(); 10442 FD->setInvalidDecl(); 10443 return; 10444 } 10445 10446 QualType T = FD->getType(); 10447 assert(T->isFunctionType() && "function decl is not of function type"); 10448 const FunctionType* FT = T->castAs<FunctionType>(); 10449 10450 // Set default calling convention for main() 10451 if (FT->getCallConv() != CC_C) { 10452 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); 10453 FD->setType(QualType(FT, 0)); 10454 T = Context.getCanonicalType(FD->getType()); 10455 } 10456 10457 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 10458 // In C with GNU extensions we allow main() to have non-integer return 10459 // type, but we should warn about the extension, and we disable the 10460 // implicit-return-zero rule. 10461 10462 // GCC in C mode accepts qualified 'int'. 10463 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 10464 FD->setHasImplicitReturnZero(true); 10465 else { 10466 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 10467 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10468 if (RTRange.isValid()) 10469 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 10470 << FixItHint::CreateReplacement(RTRange, "int"); 10471 } 10472 } else { 10473 // In C and C++, main magically returns 0 if you fall off the end; 10474 // set the flag which tells us that. 10475 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 10476 10477 // All the standards say that main() should return 'int'. 10478 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 10479 FD->setHasImplicitReturnZero(true); 10480 else { 10481 // Otherwise, this is just a flat-out error. 10482 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10483 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 10484 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 10485 : FixItHint()); 10486 FD->setInvalidDecl(true); 10487 } 10488 } 10489 10490 // Treat protoless main() as nullary. 10491 if (isa<FunctionNoProtoType>(FT)) return; 10492 10493 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 10494 unsigned nparams = FTP->getNumParams(); 10495 assert(FD->getNumParams() == nparams); 10496 10497 bool HasExtraParameters = (nparams > 3); 10498 10499 if (FTP->isVariadic()) { 10500 Diag(FD->getLocation(), diag::ext_variadic_main); 10501 // FIXME: if we had information about the location of the ellipsis, we 10502 // could add a FixIt hint to remove it as a parameter. 10503 } 10504 10505 // Darwin passes an undocumented fourth argument of type char**. If 10506 // other platforms start sprouting these, the logic below will start 10507 // getting shifty. 10508 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 10509 HasExtraParameters = false; 10510 10511 if (HasExtraParameters) { 10512 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 10513 FD->setInvalidDecl(true); 10514 nparams = 3; 10515 } 10516 10517 // FIXME: a lot of the following diagnostics would be improved 10518 // if we had some location information about types. 10519 10520 QualType CharPP = 10521 Context.getPointerType(Context.getPointerType(Context.CharTy)); 10522 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 10523 10524 for (unsigned i = 0; i < nparams; ++i) { 10525 QualType AT = FTP->getParamType(i); 10526 10527 bool mismatch = true; 10528 10529 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 10530 mismatch = false; 10531 else if (Expected[i] == CharPP) { 10532 // As an extension, the following forms are okay: 10533 // char const ** 10534 // char const * const * 10535 // char * const * 10536 10537 QualifierCollector qs; 10538 const PointerType* PT; 10539 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 10540 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 10541 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 10542 Context.CharTy)) { 10543 qs.removeConst(); 10544 mismatch = !qs.empty(); 10545 } 10546 } 10547 10548 if (mismatch) { 10549 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 10550 // TODO: suggest replacing given type with expected type 10551 FD->setInvalidDecl(true); 10552 } 10553 } 10554 10555 if (nparams == 1 && !FD->isInvalidDecl()) { 10556 Diag(FD->getLocation(), diag::warn_main_one_arg); 10557 } 10558 10559 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 10560 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 10561 FD->setInvalidDecl(); 10562 } 10563 } 10564 10565 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 10566 QualType T = FD->getType(); 10567 assert(T->isFunctionType() && "function decl is not of function type"); 10568 const FunctionType *FT = T->castAs<FunctionType>(); 10569 10570 // Set an implicit return of 'zero' if the function can return some integral, 10571 // enumeration, pointer or nullptr type. 10572 if (FT->getReturnType()->isIntegralOrEnumerationType() || 10573 FT->getReturnType()->isAnyPointerType() || 10574 FT->getReturnType()->isNullPtrType()) 10575 // DllMain is exempt because a return value of zero means it failed. 10576 if (FD->getName() != "DllMain") 10577 FD->setHasImplicitReturnZero(true); 10578 10579 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 10580 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 10581 FD->setInvalidDecl(); 10582 } 10583 } 10584 10585 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 10586 // FIXME: Need strict checking. In C89, we need to check for 10587 // any assignment, increment, decrement, function-calls, or 10588 // commas outside of a sizeof. In C99, it's the same list, 10589 // except that the aforementioned are allowed in unevaluated 10590 // expressions. Everything else falls under the 10591 // "may accept other forms of constant expressions" exception. 10592 // (We never end up here for C++, so the constant expression 10593 // rules there don't matter.) 10594 const Expr *Culprit; 10595 if (Init->isConstantInitializer(Context, false, &Culprit)) 10596 return false; 10597 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 10598 << Culprit->getSourceRange(); 10599 return true; 10600 } 10601 10602 namespace { 10603 // Visits an initialization expression to see if OrigDecl is evaluated in 10604 // its own initialization and throws a warning if it does. 10605 class SelfReferenceChecker 10606 : public EvaluatedExprVisitor<SelfReferenceChecker> { 10607 Sema &S; 10608 Decl *OrigDecl; 10609 bool isRecordType; 10610 bool isPODType; 10611 bool isReferenceType; 10612 10613 bool isInitList; 10614 llvm::SmallVector<unsigned, 4> InitFieldIndex; 10615 10616 public: 10617 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 10618 10619 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 10620 S(S), OrigDecl(OrigDecl) { 10621 isPODType = false; 10622 isRecordType = false; 10623 isReferenceType = false; 10624 isInitList = false; 10625 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 10626 isPODType = VD->getType().isPODType(S.Context); 10627 isRecordType = VD->getType()->isRecordType(); 10628 isReferenceType = VD->getType()->isReferenceType(); 10629 } 10630 } 10631 10632 // For most expressions, just call the visitor. For initializer lists, 10633 // track the index of the field being initialized since fields are 10634 // initialized in order allowing use of previously initialized fields. 10635 void CheckExpr(Expr *E) { 10636 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 10637 if (!InitList) { 10638 Visit(E); 10639 return; 10640 } 10641 10642 // Track and increment the index here. 10643 isInitList = true; 10644 InitFieldIndex.push_back(0); 10645 for (auto Child : InitList->children()) { 10646 CheckExpr(cast<Expr>(Child)); 10647 ++InitFieldIndex.back(); 10648 } 10649 InitFieldIndex.pop_back(); 10650 } 10651 10652 // Returns true if MemberExpr is checked and no further checking is needed. 10653 // Returns false if additional checking is required. 10654 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 10655 llvm::SmallVector<FieldDecl*, 4> Fields; 10656 Expr *Base = E; 10657 bool ReferenceField = false; 10658 10659 // Get the field members used. 10660 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 10661 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 10662 if (!FD) 10663 return false; 10664 Fields.push_back(FD); 10665 if (FD->getType()->isReferenceType()) 10666 ReferenceField = true; 10667 Base = ME->getBase()->IgnoreParenImpCasts(); 10668 } 10669 10670 // Keep checking only if the base Decl is the same. 10671 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 10672 if (!DRE || DRE->getDecl() != OrigDecl) 10673 return false; 10674 10675 // A reference field can be bound to an unininitialized field. 10676 if (CheckReference && !ReferenceField) 10677 return true; 10678 10679 // Convert FieldDecls to their index number. 10680 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 10681 for (const FieldDecl *I : llvm::reverse(Fields)) 10682 UsedFieldIndex.push_back(I->getFieldIndex()); 10683 10684 // See if a warning is needed by checking the first difference in index 10685 // numbers. If field being used has index less than the field being 10686 // initialized, then the use is safe. 10687 for (auto UsedIter = UsedFieldIndex.begin(), 10688 UsedEnd = UsedFieldIndex.end(), 10689 OrigIter = InitFieldIndex.begin(), 10690 OrigEnd = InitFieldIndex.end(); 10691 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 10692 if (*UsedIter < *OrigIter) 10693 return true; 10694 if (*UsedIter > *OrigIter) 10695 break; 10696 } 10697 10698 // TODO: Add a different warning which will print the field names. 10699 HandleDeclRefExpr(DRE); 10700 return true; 10701 } 10702 10703 // For most expressions, the cast is directly above the DeclRefExpr. 10704 // For conditional operators, the cast can be outside the conditional 10705 // operator if both expressions are DeclRefExpr's. 10706 void HandleValue(Expr *E) { 10707 E = E->IgnoreParens(); 10708 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 10709 HandleDeclRefExpr(DRE); 10710 return; 10711 } 10712 10713 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 10714 Visit(CO->getCond()); 10715 HandleValue(CO->getTrueExpr()); 10716 HandleValue(CO->getFalseExpr()); 10717 return; 10718 } 10719 10720 if (BinaryConditionalOperator *BCO = 10721 dyn_cast<BinaryConditionalOperator>(E)) { 10722 Visit(BCO->getCond()); 10723 HandleValue(BCO->getFalseExpr()); 10724 return; 10725 } 10726 10727 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 10728 HandleValue(OVE->getSourceExpr()); 10729 return; 10730 } 10731 10732 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 10733 if (BO->getOpcode() == BO_Comma) { 10734 Visit(BO->getLHS()); 10735 HandleValue(BO->getRHS()); 10736 return; 10737 } 10738 } 10739 10740 if (isa<MemberExpr>(E)) { 10741 if (isInitList) { 10742 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 10743 false /*CheckReference*/)) 10744 return; 10745 } 10746 10747 Expr *Base = E->IgnoreParenImpCasts(); 10748 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 10749 // Check for static member variables and don't warn on them. 10750 if (!isa<FieldDecl>(ME->getMemberDecl())) 10751 return; 10752 Base = ME->getBase()->IgnoreParenImpCasts(); 10753 } 10754 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 10755 HandleDeclRefExpr(DRE); 10756 return; 10757 } 10758 10759 Visit(E); 10760 } 10761 10762 // Reference types not handled in HandleValue are handled here since all 10763 // uses of references are bad, not just r-value uses. 10764 void VisitDeclRefExpr(DeclRefExpr *E) { 10765 if (isReferenceType) 10766 HandleDeclRefExpr(E); 10767 } 10768 10769 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 10770 if (E->getCastKind() == CK_LValueToRValue) { 10771 HandleValue(E->getSubExpr()); 10772 return; 10773 } 10774 10775 Inherited::VisitImplicitCastExpr(E); 10776 } 10777 10778 void VisitMemberExpr(MemberExpr *E) { 10779 if (isInitList) { 10780 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 10781 return; 10782 } 10783 10784 // Don't warn on arrays since they can be treated as pointers. 10785 if (E->getType()->canDecayToPointerType()) return; 10786 10787 // Warn when a non-static method call is followed by non-static member 10788 // field accesses, which is followed by a DeclRefExpr. 10789 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 10790 bool Warn = (MD && !MD->isStatic()); 10791 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 10792 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 10793 if (!isa<FieldDecl>(ME->getMemberDecl())) 10794 Warn = false; 10795 Base = ME->getBase()->IgnoreParenImpCasts(); 10796 } 10797 10798 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 10799 if (Warn) 10800 HandleDeclRefExpr(DRE); 10801 return; 10802 } 10803 10804 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 10805 // Visit that expression. 10806 Visit(Base); 10807 } 10808 10809 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 10810 Expr *Callee = E->getCallee(); 10811 10812 if (isa<UnresolvedLookupExpr>(Callee)) 10813 return Inherited::VisitCXXOperatorCallExpr(E); 10814 10815 Visit(Callee); 10816 for (auto Arg: E->arguments()) 10817 HandleValue(Arg->IgnoreParenImpCasts()); 10818 } 10819 10820 void VisitUnaryOperator(UnaryOperator *E) { 10821 // For POD record types, addresses of its own members are well-defined. 10822 if (E->getOpcode() == UO_AddrOf && isRecordType && 10823 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 10824 if (!isPODType) 10825 HandleValue(E->getSubExpr()); 10826 return; 10827 } 10828 10829 if (E->isIncrementDecrementOp()) { 10830 HandleValue(E->getSubExpr()); 10831 return; 10832 } 10833 10834 Inherited::VisitUnaryOperator(E); 10835 } 10836 10837 void VisitObjCMessageExpr(ObjCMessageExpr *E) {} 10838 10839 void VisitCXXConstructExpr(CXXConstructExpr *E) { 10840 if (E->getConstructor()->isCopyConstructor()) { 10841 Expr *ArgExpr = E->getArg(0); 10842 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 10843 if (ILE->getNumInits() == 1) 10844 ArgExpr = ILE->getInit(0); 10845 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 10846 if (ICE->getCastKind() == CK_NoOp) 10847 ArgExpr = ICE->getSubExpr(); 10848 HandleValue(ArgExpr); 10849 return; 10850 } 10851 Inherited::VisitCXXConstructExpr(E); 10852 } 10853 10854 void VisitCallExpr(CallExpr *E) { 10855 // Treat std::move as a use. 10856 if (E->isCallToStdMove()) { 10857 HandleValue(E->getArg(0)); 10858 return; 10859 } 10860 10861 Inherited::VisitCallExpr(E); 10862 } 10863 10864 void VisitBinaryOperator(BinaryOperator *E) { 10865 if (E->isCompoundAssignmentOp()) { 10866 HandleValue(E->getLHS()); 10867 Visit(E->getRHS()); 10868 return; 10869 } 10870 10871 Inherited::VisitBinaryOperator(E); 10872 } 10873 10874 // A custom visitor for BinaryConditionalOperator is needed because the 10875 // regular visitor would check the condition and true expression separately 10876 // but both point to the same place giving duplicate diagnostics. 10877 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 10878 Visit(E->getCond()); 10879 Visit(E->getFalseExpr()); 10880 } 10881 10882 void HandleDeclRefExpr(DeclRefExpr *DRE) { 10883 Decl* ReferenceDecl = DRE->getDecl(); 10884 if (OrigDecl != ReferenceDecl) return; 10885 unsigned diag; 10886 if (isReferenceType) { 10887 diag = diag::warn_uninit_self_reference_in_reference_init; 10888 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 10889 diag = diag::warn_static_self_reference_in_init; 10890 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || 10891 isa<NamespaceDecl>(OrigDecl->getDeclContext()) || 10892 DRE->getDecl()->getType()->isRecordType()) { 10893 diag = diag::warn_uninit_self_reference_in_init; 10894 } else { 10895 // Local variables will be handled by the CFG analysis. 10896 return; 10897 } 10898 10899 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, 10900 S.PDiag(diag) 10901 << DRE->getDecl() << OrigDecl->getLocation() 10902 << DRE->getSourceRange()); 10903 } 10904 }; 10905 10906 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 10907 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 10908 bool DirectInit) { 10909 // Parameters arguments are occassionially constructed with itself, 10910 // for instance, in recursive functions. Skip them. 10911 if (isa<ParmVarDecl>(OrigDecl)) 10912 return; 10913 10914 E = E->IgnoreParens(); 10915 10916 // Skip checking T a = a where T is not a record or reference type. 10917 // Doing so is a way to silence uninitialized warnings. 10918 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 10919 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 10920 if (ICE->getCastKind() == CK_LValueToRValue) 10921 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 10922 if (DRE->getDecl() == OrigDecl) 10923 return; 10924 10925 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 10926 } 10927 } // end anonymous namespace 10928 10929 namespace { 10930 // Simple wrapper to add the name of a variable or (if no variable is 10931 // available) a DeclarationName into a diagnostic. 10932 struct VarDeclOrName { 10933 VarDecl *VDecl; 10934 DeclarationName Name; 10935 10936 friend const Sema::SemaDiagnosticBuilder & 10937 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { 10938 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; 10939 } 10940 }; 10941 } // end anonymous namespace 10942 10943 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, 10944 DeclarationName Name, QualType Type, 10945 TypeSourceInfo *TSI, 10946 SourceRange Range, bool DirectInit, 10947 Expr *Init) { 10948 bool IsInitCapture = !VDecl; 10949 assert((!VDecl || !VDecl->isInitCapture()) && 10950 "init captures are expected to be deduced prior to initialization"); 10951 10952 VarDeclOrName VN{VDecl, Name}; 10953 10954 DeducedType *Deduced = Type->getContainedDeducedType(); 10955 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); 10956 10957 // C++11 [dcl.spec.auto]p3 10958 if (!Init) { 10959 assert(VDecl && "no init for init capture deduction?"); 10960 10961 // Except for class argument deduction, and then for an initializing 10962 // declaration only, i.e. no static at class scope or extern. 10963 if (!isa<DeducedTemplateSpecializationType>(Deduced) || 10964 VDecl->hasExternalStorage() || 10965 VDecl->isStaticDataMember()) { 10966 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) 10967 << VDecl->getDeclName() << Type; 10968 return QualType(); 10969 } 10970 } 10971 10972 ArrayRef<Expr*> DeduceInits; 10973 if (Init) 10974 DeduceInits = Init; 10975 10976 if (DirectInit) { 10977 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) 10978 DeduceInits = PL->exprs(); 10979 } 10980 10981 if (isa<DeducedTemplateSpecializationType>(Deduced)) { 10982 assert(VDecl && "non-auto type for init capture deduction?"); 10983 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 10984 InitializationKind Kind = InitializationKind::CreateForInit( 10985 VDecl->getLocation(), DirectInit, Init); 10986 // FIXME: Initialization should not be taking a mutable list of inits. 10987 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); 10988 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, 10989 InitsCopy); 10990 } 10991 10992 if (DirectInit) { 10993 if (auto *IL = dyn_cast<InitListExpr>(Init)) 10994 DeduceInits = IL->inits(); 10995 } 10996 10997 // Deduction only works if we have exactly one source expression. 10998 if (DeduceInits.empty()) { 10999 // It isn't possible to write this directly, but it is possible to 11000 // end up in this situation with "auto x(some_pack...);" 11001 Diag(Init->getBeginLoc(), IsInitCapture 11002 ? diag::err_init_capture_no_expression 11003 : diag::err_auto_var_init_no_expression) 11004 << VN << Type << Range; 11005 return QualType(); 11006 } 11007 11008 if (DeduceInits.size() > 1) { 11009 Diag(DeduceInits[1]->getBeginLoc(), 11010 IsInitCapture ? diag::err_init_capture_multiple_expressions 11011 : diag::err_auto_var_init_multiple_expressions) 11012 << VN << Type << Range; 11013 return QualType(); 11014 } 11015 11016 Expr *DeduceInit = DeduceInits[0]; 11017 if (DirectInit && isa<InitListExpr>(DeduceInit)) { 11018 Diag(Init->getBeginLoc(), IsInitCapture 11019 ? diag::err_init_capture_paren_braces 11020 : diag::err_auto_var_init_paren_braces) 11021 << isa<InitListExpr>(Init) << VN << Type << Range; 11022 return QualType(); 11023 } 11024 11025 // Expressions default to 'id' when we're in a debugger. 11026 bool DefaultedAnyToId = false; 11027 if (getLangOpts().DebuggerCastResultToId && 11028 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { 11029 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11030 if (Result.isInvalid()) { 11031 return QualType(); 11032 } 11033 Init = Result.get(); 11034 DefaultedAnyToId = true; 11035 } 11036 11037 // C++ [dcl.decomp]p1: 11038 // If the assignment-expression [...] has array type A and no ref-qualifier 11039 // is present, e has type cv A 11040 if (VDecl && isa<DecompositionDecl>(VDecl) && 11041 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && 11042 DeduceInit->getType()->isConstantArrayType()) 11043 return Context.getQualifiedType(DeduceInit->getType(), 11044 Type.getQualifiers()); 11045 11046 QualType DeducedType; 11047 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 11048 if (!IsInitCapture) 11049 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 11050 else if (isa<InitListExpr>(Init)) 11051 Diag(Range.getBegin(), 11052 diag::err_init_capture_deduction_failure_from_init_list) 11053 << VN 11054 << (DeduceInit->getType().isNull() ? TSI->getType() 11055 : DeduceInit->getType()) 11056 << DeduceInit->getSourceRange(); 11057 else 11058 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) 11059 << VN << TSI->getType() 11060 << (DeduceInit->getType().isNull() ? TSI->getType() 11061 : DeduceInit->getType()) 11062 << DeduceInit->getSourceRange(); 11063 } 11064 11065 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 11066 // 'id' instead of a specific object type prevents most of our usual 11067 // checks. 11068 // We only want to warn outside of template instantiations, though: 11069 // inside a template, the 'id' could have come from a parameter. 11070 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && 11071 !DeducedType.isNull() && DeducedType->isObjCIdType()) { 11072 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); 11073 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; 11074 } 11075 11076 return DeducedType; 11077 } 11078 11079 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, 11080 Expr *Init) { 11081 QualType DeducedType = deduceVarTypeFromInitializer( 11082 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), 11083 VDecl->getSourceRange(), DirectInit, Init); 11084 if (DeducedType.isNull()) { 11085 VDecl->setInvalidDecl(); 11086 return true; 11087 } 11088 11089 VDecl->setType(DeducedType); 11090 assert(VDecl->isLinkageValid()); 11091 11092 // In ARC, infer lifetime. 11093 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 11094 VDecl->setInvalidDecl(); 11095 11096 // If this is a redeclaration, check that the type we just deduced matches 11097 // the previously declared type. 11098 if (VarDecl *Old = VDecl->getPreviousDecl()) { 11099 // We never need to merge the type, because we cannot form an incomplete 11100 // array of auto, nor deduce such a type. 11101 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); 11102 } 11103 11104 // Check the deduced type is valid for a variable declaration. 11105 CheckVariableDeclarationType(VDecl); 11106 return VDecl->isInvalidDecl(); 11107 } 11108 11109 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, 11110 SourceLocation Loc) { 11111 if (auto *CE = dyn_cast<ConstantExpr>(Init)) 11112 Init = CE->getSubExpr(); 11113 11114 QualType InitType = Init->getType(); 11115 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11116 InitType.hasNonTrivialToPrimitiveCopyCUnion()) && 11117 "shouldn't be called if type doesn't have a non-trivial C struct"); 11118 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 11119 for (auto I : ILE->inits()) { 11120 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && 11121 !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) 11122 continue; 11123 SourceLocation SL = I->getExprLoc(); 11124 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); 11125 } 11126 return; 11127 } 11128 11129 if (isa<ImplicitValueInitExpr>(Init)) { 11130 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11131 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, 11132 NTCUK_Init); 11133 } else { 11134 // Assume all other explicit initializers involving copying some existing 11135 // object. 11136 // TODO: ignore any explicit initializers where we can guarantee 11137 // copy-elision. 11138 if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) 11139 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); 11140 } 11141 } 11142 11143 namespace { 11144 11145 struct DiagNonTrivalCUnionDefaultInitializeVisitor 11146 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11147 void> { 11148 using Super = 11149 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11150 void>; 11151 11152 DiagNonTrivalCUnionDefaultInitializeVisitor( 11153 QualType OrigTy, SourceLocation OrigLoc, 11154 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11155 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11156 11157 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, 11158 const FieldDecl *FD, bool InNonTrivialUnion) { 11159 if (const auto *AT = S.Context.getAsArrayType(QT)) 11160 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11161 InNonTrivialUnion); 11162 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); 11163 } 11164 11165 void visitARCStrong(QualType QT, const FieldDecl *FD, 11166 bool InNonTrivialUnion) { 11167 if (InNonTrivialUnion) 11168 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11169 << 1 << 0 << QT << FD->getName(); 11170 } 11171 11172 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11173 if (InNonTrivialUnion) 11174 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11175 << 1 << 0 << QT << FD->getName(); 11176 } 11177 11178 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11179 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11180 if (RD->isUnion()) { 11181 if (OrigLoc.isValid()) { 11182 bool IsUnion = false; 11183 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11184 IsUnion = OrigRD->isUnion(); 11185 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11186 << 0 << OrigTy << IsUnion << UseContext; 11187 // Reset OrigLoc so that this diagnostic is emitted only once. 11188 OrigLoc = SourceLocation(); 11189 } 11190 InNonTrivialUnion = true; 11191 } 11192 11193 if (InNonTrivialUnion) 11194 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11195 << 0 << 0 << QT.getUnqualifiedType() << ""; 11196 11197 for (const FieldDecl *FD : RD->fields()) 11198 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11199 } 11200 11201 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11202 11203 // The non-trivial C union type or the struct/union type that contains a 11204 // non-trivial C union. 11205 QualType OrigTy; 11206 SourceLocation OrigLoc; 11207 Sema::NonTrivialCUnionContext UseContext; 11208 Sema &S; 11209 }; 11210 11211 struct DiagNonTrivalCUnionDestructedTypeVisitor 11212 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { 11213 using Super = 11214 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; 11215 11216 DiagNonTrivalCUnionDestructedTypeVisitor( 11217 QualType OrigTy, SourceLocation OrigLoc, 11218 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11219 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11220 11221 void visitWithKind(QualType::DestructionKind DK, QualType QT, 11222 const FieldDecl *FD, bool InNonTrivialUnion) { 11223 if (const auto *AT = S.Context.getAsArrayType(QT)) 11224 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11225 InNonTrivialUnion); 11226 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); 11227 } 11228 11229 void visitARCStrong(QualType QT, const FieldDecl *FD, 11230 bool InNonTrivialUnion) { 11231 if (InNonTrivialUnion) 11232 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11233 << 1 << 1 << QT << FD->getName(); 11234 } 11235 11236 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11237 if (InNonTrivialUnion) 11238 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11239 << 1 << 1 << QT << FD->getName(); 11240 } 11241 11242 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11243 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11244 if (RD->isUnion()) { 11245 if (OrigLoc.isValid()) { 11246 bool IsUnion = false; 11247 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11248 IsUnion = OrigRD->isUnion(); 11249 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11250 << 1 << OrigTy << IsUnion << UseContext; 11251 // Reset OrigLoc so that this diagnostic is emitted only once. 11252 OrigLoc = SourceLocation(); 11253 } 11254 InNonTrivialUnion = true; 11255 } 11256 11257 if (InNonTrivialUnion) 11258 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11259 << 0 << 1 << QT.getUnqualifiedType() << ""; 11260 11261 for (const FieldDecl *FD : RD->fields()) 11262 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11263 } 11264 11265 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11266 void visitCXXDestructor(QualType QT, const FieldDecl *FD, 11267 bool InNonTrivialUnion) {} 11268 11269 // The non-trivial C union type or the struct/union type that contains a 11270 // non-trivial C union. 11271 QualType OrigTy; 11272 SourceLocation OrigLoc; 11273 Sema::NonTrivialCUnionContext UseContext; 11274 Sema &S; 11275 }; 11276 11277 struct DiagNonTrivalCUnionCopyVisitor 11278 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { 11279 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; 11280 11281 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, 11282 Sema::NonTrivialCUnionContext UseContext, 11283 Sema &S) 11284 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11285 11286 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, 11287 const FieldDecl *FD, bool InNonTrivialUnion) { 11288 if (const auto *AT = S.Context.getAsArrayType(QT)) 11289 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11290 InNonTrivialUnion); 11291 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); 11292 } 11293 11294 void visitARCStrong(QualType QT, const FieldDecl *FD, 11295 bool InNonTrivialUnion) { 11296 if (InNonTrivialUnion) 11297 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11298 << 1 << 2 << QT << FD->getName(); 11299 } 11300 11301 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11302 if (InNonTrivialUnion) 11303 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11304 << 1 << 2 << QT << FD->getName(); 11305 } 11306 11307 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11308 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11309 if (RD->isUnion()) { 11310 if (OrigLoc.isValid()) { 11311 bool IsUnion = false; 11312 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11313 IsUnion = OrigRD->isUnion(); 11314 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11315 << 2 << OrigTy << IsUnion << UseContext; 11316 // Reset OrigLoc so that this diagnostic is emitted only once. 11317 OrigLoc = SourceLocation(); 11318 } 11319 InNonTrivialUnion = true; 11320 } 11321 11322 if (InNonTrivialUnion) 11323 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11324 << 0 << 2 << QT.getUnqualifiedType() << ""; 11325 11326 for (const FieldDecl *FD : RD->fields()) 11327 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11328 } 11329 11330 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, 11331 const FieldDecl *FD, bool InNonTrivialUnion) {} 11332 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11333 void visitVolatileTrivial(QualType QT, const FieldDecl *FD, 11334 bool InNonTrivialUnion) {} 11335 11336 // The non-trivial C union type or the struct/union type that contains a 11337 // non-trivial C union. 11338 QualType OrigTy; 11339 SourceLocation OrigLoc; 11340 Sema::NonTrivialCUnionContext UseContext; 11341 Sema &S; 11342 }; 11343 11344 } // namespace 11345 11346 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, 11347 NonTrivialCUnionContext UseContext, 11348 unsigned NonTrivialKind) { 11349 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11350 QT.hasNonTrivialToPrimitiveDestructCUnion() || 11351 QT.hasNonTrivialToPrimitiveCopyCUnion()) && 11352 "shouldn't be called if type doesn't have a non-trivial C union"); 11353 11354 if ((NonTrivialKind & NTCUK_Init) && 11355 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11356 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) 11357 .visit(QT, nullptr, false); 11358 if ((NonTrivialKind & NTCUK_Destruct) && 11359 QT.hasNonTrivialToPrimitiveDestructCUnion()) 11360 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) 11361 .visit(QT, nullptr, false); 11362 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) 11363 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) 11364 .visit(QT, nullptr, false); 11365 } 11366 11367 /// AddInitializerToDecl - Adds the initializer Init to the 11368 /// declaration dcl. If DirectInit is true, this is C++ direct 11369 /// initialization rather than copy initialization. 11370 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { 11371 // If there is no declaration, there was an error parsing it. Just ignore 11372 // the initializer. 11373 if (!RealDecl || RealDecl->isInvalidDecl()) { 11374 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); 11375 return; 11376 } 11377 11378 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 11379 // Pure-specifiers are handled in ActOnPureSpecifier. 11380 Diag(Method->getLocation(), diag::err_member_function_initialization) 11381 << Method->getDeclName() << Init->getSourceRange(); 11382 Method->setInvalidDecl(); 11383 return; 11384 } 11385 11386 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 11387 if (!VDecl) { 11388 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 11389 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 11390 RealDecl->setInvalidDecl(); 11391 return; 11392 } 11393 11394 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 11395 if (VDecl->getType()->isUndeducedType()) { 11396 // Attempt typo correction early so that the type of the init expression can 11397 // be deduced based on the chosen correction if the original init contains a 11398 // TypoExpr. 11399 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); 11400 if (!Res.isUsable()) { 11401 RealDecl->setInvalidDecl(); 11402 return; 11403 } 11404 Init = Res.get(); 11405 11406 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) 11407 return; 11408 } 11409 11410 // dllimport cannot be used on variable definitions. 11411 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 11412 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 11413 VDecl->setInvalidDecl(); 11414 return; 11415 } 11416 11417 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 11418 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 11419 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 11420 VDecl->setInvalidDecl(); 11421 return; 11422 } 11423 11424 if (!VDecl->getType()->isDependentType()) { 11425 // A definition must end up with a complete type, which means it must be 11426 // complete with the restriction that an array type might be completed by 11427 // the initializer; note that later code assumes this restriction. 11428 QualType BaseDeclType = VDecl->getType(); 11429 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 11430 BaseDeclType = Array->getElementType(); 11431 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 11432 diag::err_typecheck_decl_incomplete_type)) { 11433 RealDecl->setInvalidDecl(); 11434 return; 11435 } 11436 11437 // The variable can not have an abstract class type. 11438 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 11439 diag::err_abstract_type_in_decl, 11440 AbstractVariableType)) 11441 VDecl->setInvalidDecl(); 11442 } 11443 11444 // If adding the initializer will turn this declaration into a definition, 11445 // and we already have a definition for this variable, diagnose or otherwise 11446 // handle the situation. 11447 VarDecl *Def; 11448 if ((Def = VDecl->getDefinition()) && Def != VDecl && 11449 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && 11450 !VDecl->isThisDeclarationADemotedDefinition() && 11451 checkVarDeclRedefinition(Def, VDecl)) 11452 return; 11453 11454 if (getLangOpts().CPlusPlus) { 11455 // C++ [class.static.data]p4 11456 // If a static data member is of const integral or const 11457 // enumeration type, its declaration in the class definition can 11458 // specify a constant-initializer which shall be an integral 11459 // constant expression (5.19). In that case, the member can appear 11460 // in integral constant expressions. The member shall still be 11461 // defined in a namespace scope if it is used in the program and the 11462 // namespace scope definition shall not contain an initializer. 11463 // 11464 // We already performed a redefinition check above, but for static 11465 // data members we also need to check whether there was an in-class 11466 // declaration with an initializer. 11467 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { 11468 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 11469 << VDecl->getDeclName(); 11470 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), 11471 diag::note_previous_initializer) 11472 << 0; 11473 return; 11474 } 11475 11476 if (VDecl->hasLocalStorage()) 11477 setFunctionHasBranchProtectedScope(); 11478 11479 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 11480 VDecl->setInvalidDecl(); 11481 return; 11482 } 11483 } 11484 11485 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 11486 // a kernel function cannot be initialized." 11487 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { 11488 Diag(VDecl->getLocation(), diag::err_local_cant_init); 11489 VDecl->setInvalidDecl(); 11490 return; 11491 } 11492 11493 // Get the decls type and save a reference for later, since 11494 // CheckInitializerTypes may change it. 11495 QualType DclT = VDecl->getType(), SavT = DclT; 11496 11497 // Expressions default to 'id' when we're in a debugger 11498 // and we are assigning it to a variable of Objective-C pointer type. 11499 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 11500 Init->getType() == Context.UnknownAnyTy) { 11501 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11502 if (Result.isInvalid()) { 11503 VDecl->setInvalidDecl(); 11504 return; 11505 } 11506 Init = Result.get(); 11507 } 11508 11509 // Perform the initialization. 11510 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 11511 if (!VDecl->isInvalidDecl()) { 11512 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11513 InitializationKind Kind = InitializationKind::CreateForInit( 11514 VDecl->getLocation(), DirectInit, Init); 11515 11516 MultiExprArg Args = Init; 11517 if (CXXDirectInit) 11518 Args = MultiExprArg(CXXDirectInit->getExprs(), 11519 CXXDirectInit->getNumExprs()); 11520 11521 // Try to correct any TypoExprs in the initialization arguments. 11522 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 11523 ExprResult Res = CorrectDelayedTyposInExpr( 11524 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) { 11525 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 11526 return Init.Failed() ? ExprError() : E; 11527 }); 11528 if (Res.isInvalid()) { 11529 VDecl->setInvalidDecl(); 11530 } else if (Res.get() != Args[Idx]) { 11531 Args[Idx] = Res.get(); 11532 } 11533 } 11534 if (VDecl->isInvalidDecl()) 11535 return; 11536 11537 InitializationSequence InitSeq(*this, Entity, Kind, Args, 11538 /*TopLevelOfInitList=*/false, 11539 /*TreatUnavailableAsInvalid=*/false); 11540 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 11541 if (Result.isInvalid()) { 11542 VDecl->setInvalidDecl(); 11543 return; 11544 } 11545 11546 Init = Result.getAs<Expr>(); 11547 } 11548 11549 // Check for self-references within variable initializers. 11550 // Variables declared within a function/method body (except for references) 11551 // are handled by a dataflow analysis. 11552 // This is undefined behavior in C++, but valid in C. 11553 if (getLangOpts().CPlusPlus) { 11554 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 11555 VDecl->getType()->isReferenceType()) { 11556 CheckSelfReference(*this, RealDecl, Init, DirectInit); 11557 } 11558 } 11559 11560 // If the type changed, it means we had an incomplete type that was 11561 // completed by the initializer. For example: 11562 // int ary[] = { 1, 3, 5 }; 11563 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 11564 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 11565 VDecl->setType(DclT); 11566 11567 if (!VDecl->isInvalidDecl()) { 11568 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 11569 11570 if (VDecl->hasAttr<BlocksAttr>()) 11571 checkRetainCycles(VDecl, Init); 11572 11573 // It is safe to assign a weak reference into a strong variable. 11574 // Although this code can still have problems: 11575 // id x = self.weakProp; 11576 // id y = self.weakProp; 11577 // we do not warn to warn spuriously when 'x' and 'y' are on separate 11578 // paths through the function. This should be revisited if 11579 // -Wrepeated-use-of-weak is made flow-sensitive. 11580 if (FunctionScopeInfo *FSI = getCurFunction()) 11581 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 11582 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && 11583 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 11584 Init->getBeginLoc())) 11585 FSI->markSafeWeakUse(Init); 11586 } 11587 11588 // The initialization is usually a full-expression. 11589 // 11590 // FIXME: If this is a braced initialization of an aggregate, it is not 11591 // an expression, and each individual field initializer is a separate 11592 // full-expression. For instance, in: 11593 // 11594 // struct Temp { ~Temp(); }; 11595 // struct S { S(Temp); }; 11596 // struct T { S a, b; } t = { Temp(), Temp() } 11597 // 11598 // we should destroy the first Temp before constructing the second. 11599 ExprResult Result = 11600 ActOnFinishFullExpr(Init, VDecl->getLocation(), 11601 /*DiscardedValue*/ false, VDecl->isConstexpr()); 11602 if (Result.isInvalid()) { 11603 VDecl->setInvalidDecl(); 11604 return; 11605 } 11606 Init = Result.get(); 11607 11608 // Attach the initializer to the decl. 11609 VDecl->setInit(Init); 11610 11611 if (VDecl->isLocalVarDecl()) { 11612 // Don't check the initializer if the declaration is malformed. 11613 if (VDecl->isInvalidDecl()) { 11614 // do nothing 11615 11616 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. 11617 // This is true even in C++ for OpenCL. 11618 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { 11619 CheckForConstantInitializer(Init, DclT); 11620 11621 // Otherwise, C++ does not restrict the initializer. 11622 } else if (getLangOpts().CPlusPlus) { 11623 // do nothing 11624 11625 // C99 6.7.8p4: All the expressions in an initializer for an object that has 11626 // static storage duration shall be constant expressions or string literals. 11627 } else if (VDecl->getStorageClass() == SC_Static) { 11628 CheckForConstantInitializer(Init, DclT); 11629 11630 // C89 is stricter than C99 for aggregate initializers. 11631 // C89 6.5.7p3: All the expressions [...] in an initializer list 11632 // for an object that has aggregate or union type shall be 11633 // constant expressions. 11634 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 11635 isa<InitListExpr>(Init)) { 11636 const Expr *Culprit; 11637 if (!Init->isConstantInitializer(Context, false, &Culprit)) { 11638 Diag(Culprit->getExprLoc(), 11639 diag::ext_aggregate_init_not_constant) 11640 << Culprit->getSourceRange(); 11641 } 11642 } 11643 11644 if (auto *E = dyn_cast<ExprWithCleanups>(Init)) 11645 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) 11646 if (VDecl->hasLocalStorage()) 11647 BE->getBlockDecl()->setCanAvoidCopyToHeap(); 11648 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && 11649 VDecl->getLexicalDeclContext()->isRecord()) { 11650 // This is an in-class initialization for a static data member, e.g., 11651 // 11652 // struct S { 11653 // static const int value = 17; 11654 // }; 11655 11656 // C++ [class.mem]p4: 11657 // A member-declarator can contain a constant-initializer only 11658 // if it declares a static member (9.4) of const integral or 11659 // const enumeration type, see 9.4.2. 11660 // 11661 // C++11 [class.static.data]p3: 11662 // If a non-volatile non-inline const static data member is of integral 11663 // or enumeration type, its declaration in the class definition can 11664 // specify a brace-or-equal-initializer in which every initializer-clause 11665 // that is an assignment-expression is a constant expression. A static 11666 // data member of literal type can be declared in the class definition 11667 // with the constexpr specifier; if so, its declaration shall specify a 11668 // brace-or-equal-initializer in which every initializer-clause that is 11669 // an assignment-expression is a constant expression. 11670 11671 // Do nothing on dependent types. 11672 if (DclT->isDependentType()) { 11673 11674 // Allow any 'static constexpr' members, whether or not they are of literal 11675 // type. We separately check that every constexpr variable is of literal 11676 // type. 11677 } else if (VDecl->isConstexpr()) { 11678 11679 // Require constness. 11680 } else if (!DclT.isConstQualified()) { 11681 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 11682 << Init->getSourceRange(); 11683 VDecl->setInvalidDecl(); 11684 11685 // We allow integer constant expressions in all cases. 11686 } else if (DclT->isIntegralOrEnumerationType()) { 11687 // Check whether the expression is a constant expression. 11688 SourceLocation Loc; 11689 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 11690 // In C++11, a non-constexpr const static data member with an 11691 // in-class initializer cannot be volatile. 11692 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 11693 else if (Init->isValueDependent()) 11694 ; // Nothing to check. 11695 else if (Init->isIntegerConstantExpr(Context, &Loc)) 11696 ; // Ok, it's an ICE! 11697 else if (Init->getType()->isScopedEnumeralType() && 11698 Init->isCXX11ConstantExpr(Context)) 11699 ; // Ok, it is a scoped-enum constant expression. 11700 else if (Init->isEvaluatable(Context)) { 11701 // If we can constant fold the initializer through heroics, accept it, 11702 // but report this as a use of an extension for -pedantic. 11703 Diag(Loc, diag::ext_in_class_initializer_non_constant) 11704 << Init->getSourceRange(); 11705 } else { 11706 // Otherwise, this is some crazy unknown case. Report the issue at the 11707 // location provided by the isIntegerConstantExpr failed check. 11708 Diag(Loc, diag::err_in_class_initializer_non_constant) 11709 << Init->getSourceRange(); 11710 VDecl->setInvalidDecl(); 11711 } 11712 11713 // We allow foldable floating-point constants as an extension. 11714 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 11715 // In C++98, this is a GNU extension. In C++11, it is not, but we support 11716 // it anyway and provide a fixit to add the 'constexpr'. 11717 if (getLangOpts().CPlusPlus11) { 11718 Diag(VDecl->getLocation(), 11719 diag::ext_in_class_initializer_float_type_cxx11) 11720 << DclT << Init->getSourceRange(); 11721 Diag(VDecl->getBeginLoc(), 11722 diag::note_in_class_initializer_float_type_cxx11) 11723 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 11724 } else { 11725 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 11726 << DclT << Init->getSourceRange(); 11727 11728 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 11729 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 11730 << Init->getSourceRange(); 11731 VDecl->setInvalidDecl(); 11732 } 11733 } 11734 11735 // Suggest adding 'constexpr' in C++11 for literal types. 11736 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 11737 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 11738 << DclT << Init->getSourceRange() 11739 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 11740 VDecl->setConstexpr(true); 11741 11742 } else { 11743 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 11744 << DclT << Init->getSourceRange(); 11745 VDecl->setInvalidDecl(); 11746 } 11747 } else if (VDecl->isFileVarDecl()) { 11748 // In C, extern is typically used to avoid tentative definitions when 11749 // declaring variables in headers, but adding an intializer makes it a 11750 // definition. This is somewhat confusing, so GCC and Clang both warn on it. 11751 // In C++, extern is often used to give implictly static const variables 11752 // external linkage, so don't warn in that case. If selectany is present, 11753 // this might be header code intended for C and C++ inclusion, so apply the 11754 // C++ rules. 11755 if (VDecl->getStorageClass() == SC_Extern && 11756 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || 11757 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && 11758 !(getLangOpts().CPlusPlus && VDecl->isExternC()) && 11759 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 11760 Diag(VDecl->getLocation(), diag::warn_extern_init); 11761 11762 // In Microsoft C++ mode, a const variable defined in namespace scope has 11763 // external linkage by default if the variable is declared with 11764 // __declspec(dllexport). 11765 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 11766 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && 11767 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) 11768 VDecl->setStorageClass(SC_Extern); 11769 11770 // C99 6.7.8p4. All file scoped initializers need to be constant. 11771 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 11772 CheckForConstantInitializer(Init, DclT); 11773 } 11774 11775 QualType InitType = Init->getType(); 11776 if (!InitType.isNull() && 11777 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11778 InitType.hasNonTrivialToPrimitiveCopyCUnion())) 11779 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); 11780 11781 // We will represent direct-initialization similarly to copy-initialization: 11782 // int x(1); -as-> int x = 1; 11783 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 11784 // 11785 // Clients that want to distinguish between the two forms, can check for 11786 // direct initializer using VarDecl::getInitStyle(). 11787 // A major benefit is that clients that don't particularly care about which 11788 // exactly form was it (like the CodeGen) can handle both cases without 11789 // special case code. 11790 11791 // C++ 8.5p11: 11792 // The form of initialization (using parentheses or '=') is generally 11793 // insignificant, but does matter when the entity being initialized has a 11794 // class type. 11795 if (CXXDirectInit) { 11796 assert(DirectInit && "Call-style initializer must be direct init."); 11797 VDecl->setInitStyle(VarDecl::CallInit); 11798 } else if (DirectInit) { 11799 // This must be list-initialization. No other way is direct-initialization. 11800 VDecl->setInitStyle(VarDecl::ListInit); 11801 } 11802 11803 CheckCompleteVariableDeclaration(VDecl); 11804 } 11805 11806 /// ActOnInitializerError - Given that there was an error parsing an 11807 /// initializer for the given declaration, try to return to some form 11808 /// of sanity. 11809 void Sema::ActOnInitializerError(Decl *D) { 11810 // Our main concern here is re-establishing invariants like "a 11811 // variable's type is either dependent or complete". 11812 if (!D || D->isInvalidDecl()) return; 11813 11814 VarDecl *VD = dyn_cast<VarDecl>(D); 11815 if (!VD) return; 11816 11817 // Bindings are not usable if we can't make sense of the initializer. 11818 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 11819 for (auto *BD : DD->bindings()) 11820 BD->setInvalidDecl(); 11821 11822 // Auto types are meaningless if we can't make sense of the initializer. 11823 if (ParsingInitForAutoVars.count(D)) { 11824 D->setInvalidDecl(); 11825 return; 11826 } 11827 11828 QualType Ty = VD->getType(); 11829 if (Ty->isDependentType()) return; 11830 11831 // Require a complete type. 11832 if (RequireCompleteType(VD->getLocation(), 11833 Context.getBaseElementType(Ty), 11834 diag::err_typecheck_decl_incomplete_type)) { 11835 VD->setInvalidDecl(); 11836 return; 11837 } 11838 11839 // Require a non-abstract type. 11840 if (RequireNonAbstractType(VD->getLocation(), Ty, 11841 diag::err_abstract_type_in_decl, 11842 AbstractVariableType)) { 11843 VD->setInvalidDecl(); 11844 return; 11845 } 11846 11847 // Don't bother complaining about constructors or destructors, 11848 // though. 11849 } 11850 11851 void Sema::ActOnUninitializedDecl(Decl *RealDecl) { 11852 // If there is no declaration, there was an error parsing it. Just ignore it. 11853 if (!RealDecl) 11854 return; 11855 11856 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 11857 QualType Type = Var->getType(); 11858 11859 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. 11860 if (isa<DecompositionDecl>(RealDecl)) { 11861 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; 11862 Var->setInvalidDecl(); 11863 return; 11864 } 11865 11866 if (Type->isUndeducedType() && 11867 DeduceVariableDeclarationType(Var, false, nullptr)) 11868 return; 11869 11870 // C++11 [class.static.data]p3: A static data member can be declared with 11871 // the constexpr specifier; if so, its declaration shall specify 11872 // a brace-or-equal-initializer. 11873 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 11874 // the definition of a variable [...] or the declaration of a static data 11875 // member. 11876 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && 11877 !Var->isThisDeclarationADemotedDefinition()) { 11878 if (Var->isStaticDataMember()) { 11879 // C++1z removes the relevant rule; the in-class declaration is always 11880 // a definition there. 11881 if (!getLangOpts().CPlusPlus17) { 11882 Diag(Var->getLocation(), 11883 diag::err_constexpr_static_mem_var_requires_init) 11884 << Var->getDeclName(); 11885 Var->setInvalidDecl(); 11886 return; 11887 } 11888 } else { 11889 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 11890 Var->setInvalidDecl(); 11891 return; 11892 } 11893 } 11894 11895 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 11896 // be initialized. 11897 if (!Var->isInvalidDecl() && 11898 Var->getType().getAddressSpace() == LangAS::opencl_constant && 11899 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 11900 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 11901 Var->setInvalidDecl(); 11902 return; 11903 } 11904 11905 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); 11906 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && 11907 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11908 checkNonTrivialCUnion(Var->getType(), Var->getLocation(), 11909 NTCUC_DefaultInitializedObject, NTCUK_Init); 11910 11911 11912 switch (DefKind) { 11913 case VarDecl::Definition: 11914 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 11915 break; 11916 11917 // We have an out-of-line definition of a static data member 11918 // that has an in-class initializer, so we type-check this like 11919 // a declaration. 11920 // 11921 LLVM_FALLTHROUGH; 11922 11923 case VarDecl::DeclarationOnly: 11924 // It's only a declaration. 11925 11926 // Block scope. C99 6.7p7: If an identifier for an object is 11927 // declared with no linkage (C99 6.2.2p6), the type for the 11928 // object shall be complete. 11929 if (!Type->isDependentType() && Var->isLocalVarDecl() && 11930 !Var->hasLinkage() && !Var->isInvalidDecl() && 11931 RequireCompleteType(Var->getLocation(), Type, 11932 diag::err_typecheck_decl_incomplete_type)) 11933 Var->setInvalidDecl(); 11934 11935 // Make sure that the type is not abstract. 11936 if (!Type->isDependentType() && !Var->isInvalidDecl() && 11937 RequireNonAbstractType(Var->getLocation(), Type, 11938 diag::err_abstract_type_in_decl, 11939 AbstractVariableType)) 11940 Var->setInvalidDecl(); 11941 if (!Type->isDependentType() && !Var->isInvalidDecl() && 11942 Var->getStorageClass() == SC_PrivateExtern) { 11943 Diag(Var->getLocation(), diag::warn_private_extern); 11944 Diag(Var->getLocation(), diag::note_private_extern); 11945 } 11946 11947 return; 11948 11949 case VarDecl::TentativeDefinition: 11950 // File scope. C99 6.9.2p2: A declaration of an identifier for an 11951 // object that has file scope without an initializer, and without a 11952 // storage-class specifier or with the storage-class specifier "static", 11953 // constitutes a tentative definition. Note: A tentative definition with 11954 // external linkage is valid (C99 6.2.2p5). 11955 if (!Var->isInvalidDecl()) { 11956 if (const IncompleteArrayType *ArrayT 11957 = Context.getAsIncompleteArrayType(Type)) { 11958 if (RequireCompleteType(Var->getLocation(), 11959 ArrayT->getElementType(), 11960 diag::err_illegal_decl_array_incomplete_type)) 11961 Var->setInvalidDecl(); 11962 } else if (Var->getStorageClass() == SC_Static) { 11963 // C99 6.9.2p3: If the declaration of an identifier for an object is 11964 // a tentative definition and has internal linkage (C99 6.2.2p3), the 11965 // declared type shall not be an incomplete type. 11966 // NOTE: code such as the following 11967 // static struct s; 11968 // struct s { int a; }; 11969 // is accepted by gcc. Hence here we issue a warning instead of 11970 // an error and we do not invalidate the static declaration. 11971 // NOTE: to avoid multiple warnings, only check the first declaration. 11972 if (Var->isFirstDecl()) 11973 RequireCompleteType(Var->getLocation(), Type, 11974 diag::ext_typecheck_decl_incomplete_type); 11975 } 11976 } 11977 11978 // Record the tentative definition; we're done. 11979 if (!Var->isInvalidDecl()) 11980 TentativeDefinitions.push_back(Var); 11981 return; 11982 } 11983 11984 // Provide a specific diagnostic for uninitialized variable 11985 // definitions with incomplete array type. 11986 if (Type->isIncompleteArrayType()) { 11987 Diag(Var->getLocation(), 11988 diag::err_typecheck_incomplete_array_needs_initializer); 11989 Var->setInvalidDecl(); 11990 return; 11991 } 11992 11993 // Provide a specific diagnostic for uninitialized variable 11994 // definitions with reference type. 11995 if (Type->isReferenceType()) { 11996 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 11997 << Var->getDeclName() 11998 << SourceRange(Var->getLocation(), Var->getLocation()); 11999 Var->setInvalidDecl(); 12000 return; 12001 } 12002 12003 // Do not attempt to type-check the default initializer for a 12004 // variable with dependent type. 12005 if (Type->isDependentType()) 12006 return; 12007 12008 if (Var->isInvalidDecl()) 12009 return; 12010 12011 if (!Var->hasAttr<AliasAttr>()) { 12012 if (RequireCompleteType(Var->getLocation(), 12013 Context.getBaseElementType(Type), 12014 diag::err_typecheck_decl_incomplete_type)) { 12015 Var->setInvalidDecl(); 12016 return; 12017 } 12018 } else { 12019 return; 12020 } 12021 12022 // The variable can not have an abstract class type. 12023 if (RequireNonAbstractType(Var->getLocation(), Type, 12024 diag::err_abstract_type_in_decl, 12025 AbstractVariableType)) { 12026 Var->setInvalidDecl(); 12027 return; 12028 } 12029 12030 // Check for jumps past the implicit initializer. C++0x 12031 // clarifies that this applies to a "variable with automatic 12032 // storage duration", not a "local variable". 12033 // C++11 [stmt.dcl]p3 12034 // A program that jumps from a point where a variable with automatic 12035 // storage duration is not in scope to a point where it is in scope is 12036 // ill-formed unless the variable has scalar type, class type with a 12037 // trivial default constructor and a trivial destructor, a cv-qualified 12038 // version of one of these types, or an array of one of the preceding 12039 // types and is declared without an initializer. 12040 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 12041 if (const RecordType *Record 12042 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 12043 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 12044 // Mark the function (if we're in one) for further checking even if the 12045 // looser rules of C++11 do not require such checks, so that we can 12046 // diagnose incompatibilities with C++98. 12047 if (!CXXRecord->isPOD()) 12048 setFunctionHasBranchProtectedScope(); 12049 } 12050 } 12051 // In OpenCL, we can't initialize objects in the __local address space, 12052 // even implicitly, so don't synthesize an implicit initializer. 12053 if (getLangOpts().OpenCL && 12054 Var->getType().getAddressSpace() == LangAS::opencl_local) 12055 return; 12056 // C++03 [dcl.init]p9: 12057 // If no initializer is specified for an object, and the 12058 // object is of (possibly cv-qualified) non-POD class type (or 12059 // array thereof), the object shall be default-initialized; if 12060 // the object is of const-qualified type, the underlying class 12061 // type shall have a user-declared default 12062 // constructor. Otherwise, if no initializer is specified for 12063 // a non- static object, the object and its subobjects, if 12064 // any, have an indeterminate initial value); if the object 12065 // or any of its subobjects are of const-qualified type, the 12066 // program is ill-formed. 12067 // C++0x [dcl.init]p11: 12068 // If no initializer is specified for an object, the object is 12069 // default-initialized; [...]. 12070 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 12071 InitializationKind Kind 12072 = InitializationKind::CreateDefault(Var->getLocation()); 12073 12074 InitializationSequence InitSeq(*this, Entity, Kind, None); 12075 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 12076 if (Init.isInvalid()) 12077 Var->setInvalidDecl(); 12078 else if (Init.get()) { 12079 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 12080 // This is important for template substitution. 12081 Var->setInitStyle(VarDecl::CallInit); 12082 } 12083 12084 CheckCompleteVariableDeclaration(Var); 12085 } 12086 } 12087 12088 void Sema::ActOnCXXForRangeDecl(Decl *D) { 12089 // If there is no declaration, there was an error parsing it. Ignore it. 12090 if (!D) 12091 return; 12092 12093 VarDecl *VD = dyn_cast<VarDecl>(D); 12094 if (!VD) { 12095 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 12096 D->setInvalidDecl(); 12097 return; 12098 } 12099 12100 VD->setCXXForRangeDecl(true); 12101 12102 // for-range-declaration cannot be given a storage class specifier. 12103 int Error = -1; 12104 switch (VD->getStorageClass()) { 12105 case SC_None: 12106 break; 12107 case SC_Extern: 12108 Error = 0; 12109 break; 12110 case SC_Static: 12111 Error = 1; 12112 break; 12113 case SC_PrivateExtern: 12114 Error = 2; 12115 break; 12116 case SC_Auto: 12117 Error = 3; 12118 break; 12119 case SC_Register: 12120 Error = 4; 12121 break; 12122 } 12123 if (Error != -1) { 12124 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 12125 << VD->getDeclName() << Error; 12126 D->setInvalidDecl(); 12127 } 12128 } 12129 12130 StmtResult 12131 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 12132 IdentifierInfo *Ident, 12133 ParsedAttributes &Attrs, 12134 SourceLocation AttrEnd) { 12135 // C++1y [stmt.iter]p1: 12136 // A range-based for statement of the form 12137 // for ( for-range-identifier : for-range-initializer ) statement 12138 // is equivalent to 12139 // for ( auto&& for-range-identifier : for-range-initializer ) statement 12140 DeclSpec DS(Attrs.getPool().getFactory()); 12141 12142 const char *PrevSpec; 12143 unsigned DiagID; 12144 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 12145 getPrintingPolicy()); 12146 12147 Declarator D(DS, DeclaratorContext::ForContext); 12148 D.SetIdentifier(Ident, IdentLoc); 12149 D.takeAttributes(Attrs, AttrEnd); 12150 12151 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), 12152 IdentLoc); 12153 Decl *Var = ActOnDeclarator(S, D); 12154 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 12155 FinalizeDeclaration(Var); 12156 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 12157 AttrEnd.isValid() ? AttrEnd : IdentLoc); 12158 } 12159 12160 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 12161 if (var->isInvalidDecl()) return; 12162 12163 if (getLangOpts().OpenCL) { 12164 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an 12165 // initialiser 12166 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && 12167 !var->hasInit()) { 12168 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) 12169 << 1 /*Init*/; 12170 var->setInvalidDecl(); 12171 return; 12172 } 12173 } 12174 12175 // In Objective-C, don't allow jumps past the implicit initialization of a 12176 // local retaining variable. 12177 if (getLangOpts().ObjC && 12178 var->hasLocalStorage()) { 12179 switch (var->getType().getObjCLifetime()) { 12180 case Qualifiers::OCL_None: 12181 case Qualifiers::OCL_ExplicitNone: 12182 case Qualifiers::OCL_Autoreleasing: 12183 break; 12184 12185 case Qualifiers::OCL_Weak: 12186 case Qualifiers::OCL_Strong: 12187 setFunctionHasBranchProtectedScope(); 12188 break; 12189 } 12190 } 12191 12192 if (var->hasLocalStorage() && 12193 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 12194 setFunctionHasBranchProtectedScope(); 12195 12196 // Warn about externally-visible variables being defined without a 12197 // prior declaration. We only want to do this for global 12198 // declarations, but we also specifically need to avoid doing it for 12199 // class members because the linkage of an anonymous class can 12200 // change if it's later given a typedef name. 12201 if (var->isThisDeclarationADefinition() && 12202 var->getDeclContext()->getRedeclContext()->isFileContext() && 12203 var->isExternallyVisible() && var->hasLinkage() && 12204 !var->isInline() && !var->getDescribedVarTemplate() && 12205 !isTemplateInstantiation(var->getTemplateSpecializationKind()) && 12206 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 12207 var->getLocation())) { 12208 // Find a previous declaration that's not a definition. 12209 VarDecl *prev = var->getPreviousDecl(); 12210 while (prev && prev->isThisDeclarationADefinition()) 12211 prev = prev->getPreviousDecl(); 12212 12213 if (!prev) { 12214 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 12215 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 12216 << /* variable */ 0; 12217 } 12218 } 12219 12220 // Cache the result of checking for constant initialization. 12221 Optional<bool> CacheHasConstInit; 12222 const Expr *CacheCulprit = nullptr; 12223 auto checkConstInit = [&]() mutable { 12224 if (!CacheHasConstInit) 12225 CacheHasConstInit = var->getInit()->isConstantInitializer( 12226 Context, var->getType()->isReferenceType(), &CacheCulprit); 12227 return *CacheHasConstInit; 12228 }; 12229 12230 if (var->getTLSKind() == VarDecl::TLS_Static) { 12231 if (var->getType().isDestructedType()) { 12232 // GNU C++98 edits for __thread, [basic.start.term]p3: 12233 // The type of an object with thread storage duration shall not 12234 // have a non-trivial destructor. 12235 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 12236 if (getLangOpts().CPlusPlus11) 12237 Diag(var->getLocation(), diag::note_use_thread_local); 12238 } else if (getLangOpts().CPlusPlus && var->hasInit()) { 12239 if (!checkConstInit()) { 12240 // GNU C++98 edits for __thread, [basic.start.init]p4: 12241 // An object of thread storage duration shall not require dynamic 12242 // initialization. 12243 // FIXME: Need strict checking here. 12244 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) 12245 << CacheCulprit->getSourceRange(); 12246 if (getLangOpts().CPlusPlus11) 12247 Diag(var->getLocation(), diag::note_use_thread_local); 12248 } 12249 } 12250 } 12251 12252 // Apply section attributes and pragmas to global variables. 12253 bool GlobalStorage = var->hasGlobalStorage(); 12254 if (GlobalStorage && var->isThisDeclarationADefinition() && 12255 !inTemplateInstantiation()) { 12256 PragmaStack<StringLiteral *> *Stack = nullptr; 12257 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read; 12258 if (var->getType().isConstQualified()) 12259 Stack = &ConstSegStack; 12260 else if (!var->getInit()) { 12261 Stack = &BSSSegStack; 12262 SectionFlags |= ASTContext::PSF_Write; 12263 } else { 12264 Stack = &DataSegStack; 12265 SectionFlags |= ASTContext::PSF_Write; 12266 } 12267 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) { 12268 var->addAttr(SectionAttr::CreateImplicit( 12269 Context, SectionAttr::Declspec_allocate, 12270 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation)); 12271 } 12272 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) 12273 if (UnifySection(SA->getName(), SectionFlags, var)) 12274 var->dropAttr<SectionAttr>(); 12275 12276 // Apply the init_seg attribute if this has an initializer. If the 12277 // initializer turns out to not be dynamic, we'll end up ignoring this 12278 // attribute. 12279 if (CurInitSeg && var->getInit()) 12280 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 12281 CurInitSegLoc)); 12282 } 12283 12284 // All the following checks are C++ only. 12285 if (!getLangOpts().CPlusPlus) { 12286 // If this variable must be emitted, add it as an initializer for the 12287 // current module. 12288 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12289 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12290 return; 12291 } 12292 12293 if (auto *DD = dyn_cast<DecompositionDecl>(var)) 12294 CheckCompleteDecompositionDeclaration(DD); 12295 12296 QualType type = var->getType(); 12297 if (type->isDependentType()) return; 12298 12299 if (var->hasAttr<BlocksAttr>()) 12300 getCurFunction()->addByrefBlockVar(var); 12301 12302 Expr *Init = var->getInit(); 12303 bool IsGlobal = GlobalStorage && !var->isStaticLocal(); 12304 QualType baseType = Context.getBaseElementType(type); 12305 12306 if (Init && !Init->isValueDependent()) { 12307 if (var->isConstexpr()) { 12308 SmallVector<PartialDiagnosticAt, 8> Notes; 12309 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 12310 SourceLocation DiagLoc = var->getLocation(); 12311 // If the note doesn't add any useful information other than a source 12312 // location, fold it into the primary diagnostic. 12313 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 12314 diag::note_invalid_subexpr_in_const_expr) { 12315 DiagLoc = Notes[0].first; 12316 Notes.clear(); 12317 } 12318 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 12319 << var << Init->getSourceRange(); 12320 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 12321 Diag(Notes[I].first, Notes[I].second); 12322 } 12323 } else if (var->mightBeUsableInConstantExpressions(Context)) { 12324 // Check whether the initializer of a const variable of integral or 12325 // enumeration type is an ICE now, since we can't tell whether it was 12326 // initialized by a constant expression if we check later. 12327 var->checkInitIsICE(); 12328 } 12329 12330 // Don't emit further diagnostics about constexpr globals since they 12331 // were just diagnosed. 12332 if (!var->isConstexpr() && GlobalStorage && 12333 var->hasAttr<RequireConstantInitAttr>()) { 12334 // FIXME: Need strict checking in C++03 here. 12335 bool DiagErr = getLangOpts().CPlusPlus11 12336 ? !var->checkInitIsICE() : !checkConstInit(); 12337 if (DiagErr) { 12338 auto attr = var->getAttr<RequireConstantInitAttr>(); 12339 Diag(var->getLocation(), diag::err_require_constant_init_failed) 12340 << Init->getSourceRange(); 12341 Diag(attr->getLocation(), diag::note_declared_required_constant_init_here) 12342 << attr->getRange(); 12343 if (getLangOpts().CPlusPlus11) { 12344 APValue Value; 12345 SmallVector<PartialDiagnosticAt, 8> Notes; 12346 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes); 12347 for (auto &it : Notes) 12348 Diag(it.first, it.second); 12349 } else { 12350 Diag(CacheCulprit->getExprLoc(), 12351 diag::note_invalid_subexpr_in_const_expr) 12352 << CacheCulprit->getSourceRange(); 12353 } 12354 } 12355 } 12356 else if (!var->isConstexpr() && IsGlobal && 12357 !getDiagnostics().isIgnored(diag::warn_global_constructor, 12358 var->getLocation())) { 12359 // Warn about globals which don't have a constant initializer. Don't 12360 // warn about globals with a non-trivial destructor because we already 12361 // warned about them. 12362 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 12363 if (!(RD && !RD->hasTrivialDestructor())) { 12364 if (!checkConstInit()) 12365 Diag(var->getLocation(), diag::warn_global_constructor) 12366 << Init->getSourceRange(); 12367 } 12368 } 12369 } 12370 12371 // Require the destructor. 12372 if (const RecordType *recordType = baseType->getAs<RecordType>()) 12373 FinalizeVarWithDestructor(var, recordType); 12374 12375 // If this variable must be emitted, add it as an initializer for the current 12376 // module. 12377 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12378 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12379 } 12380 12381 /// Determines if a variable's alignment is dependent. 12382 static bool hasDependentAlignment(VarDecl *VD) { 12383 if (VD->getType()->isDependentType()) 12384 return true; 12385 for (auto *I : VD->specific_attrs<AlignedAttr>()) 12386 if (I->isAlignmentDependent()) 12387 return true; 12388 return false; 12389 } 12390 12391 /// Check if VD needs to be dllexport/dllimport due to being in a 12392 /// dllexport/import function. 12393 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { 12394 assert(VD->isStaticLocal()); 12395 12396 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 12397 12398 // Find outermost function when VD is in lambda function. 12399 while (FD && !getDLLAttr(FD) && 12400 !FD->hasAttr<DLLExportStaticLocalAttr>() && 12401 !FD->hasAttr<DLLImportStaticLocalAttr>()) { 12402 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); 12403 } 12404 12405 if (!FD) 12406 return; 12407 12408 // Static locals inherit dll attributes from their function. 12409 if (Attr *A = getDLLAttr(FD)) { 12410 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 12411 NewAttr->setInherited(true); 12412 VD->addAttr(NewAttr); 12413 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { 12414 auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(), 12415 getASTContext(), 12416 A->getSpellingListIndex()); 12417 NewAttr->setInherited(true); 12418 VD->addAttr(NewAttr); 12419 12420 // Export this function to enforce exporting this static variable even 12421 // if it is not used in this compilation unit. 12422 if (!FD->hasAttr<DLLExportAttr>()) 12423 FD->addAttr(NewAttr); 12424 12425 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { 12426 auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(), 12427 getASTContext(), 12428 A->getSpellingListIndex()); 12429 NewAttr->setInherited(true); 12430 VD->addAttr(NewAttr); 12431 } 12432 } 12433 12434 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 12435 /// any semantic actions necessary after any initializer has been attached. 12436 void Sema::FinalizeDeclaration(Decl *ThisDecl) { 12437 // Note that we are no longer parsing the initializer for this declaration. 12438 ParsingInitForAutoVars.erase(ThisDecl); 12439 12440 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 12441 if (!VD) 12442 return; 12443 12444 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active 12445 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && 12446 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { 12447 if (PragmaClangBSSSection.Valid) 12448 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context, 12449 PragmaClangBSSSection.SectionName, 12450 PragmaClangBSSSection.PragmaLocation)); 12451 if (PragmaClangDataSection.Valid) 12452 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context, 12453 PragmaClangDataSection.SectionName, 12454 PragmaClangDataSection.PragmaLocation)); 12455 if (PragmaClangRodataSection.Valid) 12456 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context, 12457 PragmaClangRodataSection.SectionName, 12458 PragmaClangRodataSection.PragmaLocation)); 12459 } 12460 12461 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { 12462 for (auto *BD : DD->bindings()) { 12463 FinalizeDeclaration(BD); 12464 } 12465 } 12466 12467 checkAttributesAfterMerging(*this, *VD); 12468 12469 // Perform TLS alignment check here after attributes attached to the variable 12470 // which may affect the alignment have been processed. Only perform the check 12471 // if the target has a maximum TLS alignment (zero means no constraints). 12472 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { 12473 // Protect the check so that it's not performed on dependent types and 12474 // dependent alignments (we can't determine the alignment in that case). 12475 if (VD->getTLSKind() && !hasDependentAlignment(VD) && 12476 !VD->isInvalidDecl()) { 12477 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); 12478 if (Context.getDeclAlign(VD) > MaxAlignChars) { 12479 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 12480 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD 12481 << (unsigned)MaxAlignChars.getQuantity(); 12482 } 12483 } 12484 } 12485 12486 if (VD->isStaticLocal()) { 12487 CheckStaticLocalForDllExport(VD); 12488 12489 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { 12490 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__ 12491 // function, only __shared__ variables or variables without any device 12492 // memory qualifiers may be declared with static storage class. 12493 // Note: It is unclear how a function-scope non-const static variable 12494 // without device memory qualifier is implemented, therefore only static 12495 // const variable without device memory qualifier is allowed. 12496 [&]() { 12497 if (!getLangOpts().CUDA) 12498 return; 12499 if (VD->hasAttr<CUDASharedAttr>()) 12500 return; 12501 if (VD->getType().isConstQualified() && 12502 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) 12503 return; 12504 if (CUDADiagIfDeviceCode(VD->getLocation(), 12505 diag::err_device_static_local_var) 12506 << CurrentCUDATarget()) 12507 VD->setInvalidDecl(); 12508 }(); 12509 } 12510 } 12511 12512 // Perform check for initializers of device-side global variables. 12513 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA 12514 // 7.5). We must also apply the same checks to all __shared__ 12515 // variables whether they are local or not. CUDA also allows 12516 // constant initializers for __constant__ and __device__ variables. 12517 if (getLangOpts().CUDA) 12518 checkAllowedCUDAInitializer(VD); 12519 12520 // Grab the dllimport or dllexport attribute off of the VarDecl. 12521 const InheritableAttr *DLLAttr = getDLLAttr(VD); 12522 12523 // Imported static data members cannot be defined out-of-line. 12524 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 12525 if (VD->isStaticDataMember() && VD->isOutOfLine() && 12526 VD->isThisDeclarationADefinition()) { 12527 // We allow definitions of dllimport class template static data members 12528 // with a warning. 12529 CXXRecordDecl *Context = 12530 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 12531 bool IsClassTemplateMember = 12532 isa<ClassTemplatePartialSpecializationDecl>(Context) || 12533 Context->getDescribedClassTemplate(); 12534 12535 Diag(VD->getLocation(), 12536 IsClassTemplateMember 12537 ? diag::warn_attribute_dllimport_static_field_definition 12538 : diag::err_attribute_dllimport_static_field_definition); 12539 Diag(IA->getLocation(), diag::note_attribute); 12540 if (!IsClassTemplateMember) 12541 VD->setInvalidDecl(); 12542 } 12543 } 12544 12545 // dllimport/dllexport variables cannot be thread local, their TLS index 12546 // isn't exported with the variable. 12547 if (DLLAttr && VD->getTLSKind()) { 12548 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 12549 if (F && getDLLAttr(F)) { 12550 assert(VD->isStaticLocal()); 12551 // But if this is a static local in a dlimport/dllexport function, the 12552 // function will never be inlined, which means the var would never be 12553 // imported, so having it marked import/export is safe. 12554 } else { 12555 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 12556 << DLLAttr; 12557 VD->setInvalidDecl(); 12558 } 12559 } 12560 12561 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 12562 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 12563 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 12564 VD->dropAttr<UsedAttr>(); 12565 } 12566 } 12567 12568 const DeclContext *DC = VD->getDeclContext(); 12569 // If there's a #pragma GCC visibility in scope, and this isn't a class 12570 // member, set the visibility of this variable. 12571 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 12572 AddPushedVisibilityAttribute(VD); 12573 12574 // FIXME: Warn on unused var template partial specializations. 12575 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) 12576 MarkUnusedFileScopedDecl(VD); 12577 12578 // Now we have parsed the initializer and can update the table of magic 12579 // tag values. 12580 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 12581 !VD->getType()->isIntegralOrEnumerationType()) 12582 return; 12583 12584 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 12585 const Expr *MagicValueExpr = VD->getInit(); 12586 if (!MagicValueExpr) { 12587 continue; 12588 } 12589 llvm::APSInt MagicValueInt; 12590 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 12591 Diag(I->getRange().getBegin(), 12592 diag::err_type_tag_for_datatype_not_ice) 12593 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 12594 continue; 12595 } 12596 if (MagicValueInt.getActiveBits() > 64) { 12597 Diag(I->getRange().getBegin(), 12598 diag::err_type_tag_for_datatype_too_large) 12599 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 12600 continue; 12601 } 12602 uint64_t MagicValue = MagicValueInt.getZExtValue(); 12603 RegisterTypeTagForDatatype(I->getArgumentKind(), 12604 MagicValue, 12605 I->getMatchingCType(), 12606 I->getLayoutCompatible(), 12607 I->getMustBeNull()); 12608 } 12609 } 12610 12611 static bool hasDeducedAuto(DeclaratorDecl *DD) { 12612 auto *VD = dyn_cast<VarDecl>(DD); 12613 return VD && !VD->getType()->hasAutoForTrailingReturnType(); 12614 } 12615 12616 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 12617 ArrayRef<Decl *> Group) { 12618 SmallVector<Decl*, 8> Decls; 12619 12620 if (DS.isTypeSpecOwned()) 12621 Decls.push_back(DS.getRepAsDecl()); 12622 12623 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 12624 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; 12625 bool DiagnosedMultipleDecomps = false; 12626 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; 12627 bool DiagnosedNonDeducedAuto = false; 12628 12629 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 12630 if (Decl *D = Group[i]) { 12631 // For declarators, there are some additional syntactic-ish checks we need 12632 // to perform. 12633 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { 12634 if (!FirstDeclaratorInGroup) 12635 FirstDeclaratorInGroup = DD; 12636 if (!FirstDecompDeclaratorInGroup) 12637 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); 12638 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && 12639 !hasDeducedAuto(DD)) 12640 FirstNonDeducedAutoInGroup = DD; 12641 12642 if (FirstDeclaratorInGroup != DD) { 12643 // A decomposition declaration cannot be combined with any other 12644 // declaration in the same group. 12645 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { 12646 Diag(FirstDecompDeclaratorInGroup->getLocation(), 12647 diag::err_decomp_decl_not_alone) 12648 << FirstDeclaratorInGroup->getSourceRange() 12649 << DD->getSourceRange(); 12650 DiagnosedMultipleDecomps = true; 12651 } 12652 12653 // A declarator that uses 'auto' in any way other than to declare a 12654 // variable with a deduced type cannot be combined with any other 12655 // declarator in the same group. 12656 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { 12657 Diag(FirstNonDeducedAutoInGroup->getLocation(), 12658 diag::err_auto_non_deduced_not_alone) 12659 << FirstNonDeducedAutoInGroup->getType() 12660 ->hasAutoForTrailingReturnType() 12661 << FirstDeclaratorInGroup->getSourceRange() 12662 << DD->getSourceRange(); 12663 DiagnosedNonDeducedAuto = true; 12664 } 12665 } 12666 } 12667 12668 Decls.push_back(D); 12669 } 12670 } 12671 12672 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 12673 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 12674 handleTagNumbering(Tag, S); 12675 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && 12676 getLangOpts().CPlusPlus) 12677 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); 12678 } 12679 } 12680 12681 return BuildDeclaratorGroup(Decls); 12682 } 12683 12684 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 12685 /// group, performing any necessary semantic checking. 12686 Sema::DeclGroupPtrTy 12687 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { 12688 // C++14 [dcl.spec.auto]p7: (DR1347) 12689 // If the type that replaces the placeholder type is not the same in each 12690 // deduction, the program is ill-formed. 12691 if (Group.size() > 1) { 12692 QualType Deduced; 12693 VarDecl *DeducedDecl = nullptr; 12694 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 12695 VarDecl *D = dyn_cast<VarDecl>(Group[i]); 12696 if (!D || D->isInvalidDecl()) 12697 break; 12698 DeducedType *DT = D->getType()->getContainedDeducedType(); 12699 if (!DT || DT->getDeducedType().isNull()) 12700 continue; 12701 if (Deduced.isNull()) { 12702 Deduced = DT->getDeducedType(); 12703 DeducedDecl = D; 12704 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { 12705 auto *AT = dyn_cast<AutoType>(DT); 12706 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 12707 diag::err_auto_different_deductions) 12708 << (AT ? (unsigned)AT->getKeyword() : 3) 12709 << Deduced << DeducedDecl->getDeclName() 12710 << DT->getDeducedType() << D->getDeclName() 12711 << DeducedDecl->getInit()->getSourceRange() 12712 << D->getInit()->getSourceRange(); 12713 D->setInvalidDecl(); 12714 break; 12715 } 12716 } 12717 } 12718 12719 ActOnDocumentableDecls(Group); 12720 12721 return DeclGroupPtrTy::make( 12722 DeclGroupRef::Create(Context, Group.data(), Group.size())); 12723 } 12724 12725 void Sema::ActOnDocumentableDecl(Decl *D) { 12726 ActOnDocumentableDecls(D); 12727 } 12728 12729 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 12730 // Don't parse the comment if Doxygen diagnostics are ignored. 12731 if (Group.empty() || !Group[0]) 12732 return; 12733 12734 if (Diags.isIgnored(diag::warn_doc_param_not_found, 12735 Group[0]->getLocation()) && 12736 Diags.isIgnored(diag::warn_unknown_comment_command_name, 12737 Group[0]->getLocation())) 12738 return; 12739 12740 if (Group.size() >= 2) { 12741 // This is a decl group. Normally it will contain only declarations 12742 // produced from declarator list. But in case we have any definitions or 12743 // additional declaration references: 12744 // 'typedef struct S {} S;' 12745 // 'typedef struct S *S;' 12746 // 'struct S *pS;' 12747 // FinalizeDeclaratorGroup adds these as separate declarations. 12748 Decl *MaybeTagDecl = Group[0]; 12749 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 12750 Group = Group.slice(1); 12751 } 12752 } 12753 12754 // See if there are any new comments that are not attached to a decl. 12755 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments(); 12756 if (!Comments.empty() && 12757 !Comments.back()->isAttached()) { 12758 // There is at least one comment that not attached to a decl. 12759 // Maybe it should be attached to one of these decls? 12760 // 12761 // Note that this way we pick up not only comments that precede the 12762 // declaration, but also comments that *follow* the declaration -- thanks to 12763 // the lookahead in the lexer: we've consumed the semicolon and looked 12764 // ahead through comments. 12765 for (unsigned i = 0, e = Group.size(); i != e; ++i) 12766 Context.getCommentForDecl(Group[i], &PP); 12767 } 12768 } 12769 12770 /// Common checks for a parameter-declaration that should apply to both function 12771 /// parameters and non-type template parameters. 12772 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { 12773 // Check that there are no default arguments inside the type of this 12774 // parameter. 12775 if (getLangOpts().CPlusPlus) 12776 CheckExtraCXXDefaultArguments(D); 12777 12778 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 12779 if (D.getCXXScopeSpec().isSet()) { 12780 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 12781 << D.getCXXScopeSpec().getRange(); 12782 } 12783 12784 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a 12785 // simple identifier except [...irrelevant cases...]. 12786 switch (D.getName().getKind()) { 12787 case UnqualifiedIdKind::IK_Identifier: 12788 break; 12789 12790 case UnqualifiedIdKind::IK_OperatorFunctionId: 12791 case UnqualifiedIdKind::IK_ConversionFunctionId: 12792 case UnqualifiedIdKind::IK_LiteralOperatorId: 12793 case UnqualifiedIdKind::IK_ConstructorName: 12794 case UnqualifiedIdKind::IK_DestructorName: 12795 case UnqualifiedIdKind::IK_ImplicitSelfParam: 12796 case UnqualifiedIdKind::IK_DeductionGuideName: 12797 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 12798 << GetNameForDeclarator(D).getName(); 12799 break; 12800 12801 case UnqualifiedIdKind::IK_TemplateId: 12802 case UnqualifiedIdKind::IK_ConstructorTemplateId: 12803 // GetNameForDeclarator would not produce a useful name in this case. 12804 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); 12805 break; 12806 } 12807 } 12808 12809 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 12810 /// to introduce parameters into function prototype scope. 12811 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 12812 const DeclSpec &DS = D.getDeclSpec(); 12813 12814 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 12815 12816 // C++03 [dcl.stc]p2 also permits 'auto'. 12817 StorageClass SC = SC_None; 12818 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 12819 SC = SC_Register; 12820 // In C++11, the 'register' storage class specifier is deprecated. 12821 // In C++17, it is not allowed, but we tolerate it as an extension. 12822 if (getLangOpts().CPlusPlus11) { 12823 Diag(DS.getStorageClassSpecLoc(), 12824 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 12825 : diag::warn_deprecated_register) 12826 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 12827 } 12828 } else if (getLangOpts().CPlusPlus && 12829 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 12830 SC = SC_Auto; 12831 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 12832 Diag(DS.getStorageClassSpecLoc(), 12833 diag::err_invalid_storage_class_in_func_decl); 12834 D.getMutableDeclSpec().ClearStorageClassSpecs(); 12835 } 12836 12837 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 12838 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 12839 << DeclSpec::getSpecifierName(TSCS); 12840 if (DS.isInlineSpecified()) 12841 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 12842 << getLangOpts().CPlusPlus17; 12843 if (DS.hasConstexprSpecifier()) 12844 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 12845 << 0 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval); 12846 12847 DiagnoseFunctionSpecifiers(DS); 12848 12849 CheckFunctionOrTemplateParamDeclarator(S, D); 12850 12851 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 12852 QualType parmDeclType = TInfo->getType(); 12853 12854 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 12855 IdentifierInfo *II = D.getIdentifier(); 12856 if (II) { 12857 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 12858 ForVisibleRedeclaration); 12859 LookupName(R, S); 12860 if (R.isSingleResult()) { 12861 NamedDecl *PrevDecl = R.getFoundDecl(); 12862 if (PrevDecl->isTemplateParameter()) { 12863 // Maybe we will complain about the shadowed template parameter. 12864 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 12865 // Just pretend that we didn't see the previous declaration. 12866 PrevDecl = nullptr; 12867 } else if (S->isDeclScope(PrevDecl)) { 12868 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 12869 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 12870 12871 // Recover by removing the name 12872 II = nullptr; 12873 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 12874 D.setInvalidType(true); 12875 } 12876 } 12877 } 12878 12879 // Temporarily put parameter variables in the translation unit, not 12880 // the enclosing context. This prevents them from accidentally 12881 // looking like class members in C++. 12882 ParmVarDecl *New = 12883 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), 12884 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); 12885 12886 if (D.isInvalidType()) 12887 New->setInvalidDecl(); 12888 12889 assert(S->isFunctionPrototypeScope()); 12890 assert(S->getFunctionPrototypeDepth() >= 1); 12891 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 12892 S->getNextFunctionPrototypeIndex()); 12893 12894 // Add the parameter declaration into this scope. 12895 S->AddDecl(New); 12896 if (II) 12897 IdResolver.AddDecl(New); 12898 12899 ProcessDeclAttributes(S, New, D); 12900 12901 if (D.getDeclSpec().isModulePrivateSpecified()) 12902 Diag(New->getLocation(), diag::err_module_private_local) 12903 << 1 << New->getDeclName() 12904 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 12905 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 12906 12907 if (New->hasAttr<BlocksAttr>()) { 12908 Diag(New->getLocation(), diag::err_block_on_nonlocal); 12909 } 12910 return New; 12911 } 12912 12913 /// Synthesizes a variable for a parameter arising from a 12914 /// typedef. 12915 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 12916 SourceLocation Loc, 12917 QualType T) { 12918 /* FIXME: setting StartLoc == Loc. 12919 Would it be worth to modify callers so as to provide proper source 12920 location for the unnamed parameters, embedding the parameter's type? */ 12921 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 12922 T, Context.getTrivialTypeSourceInfo(T, Loc), 12923 SC_None, nullptr); 12924 Param->setImplicit(); 12925 return Param; 12926 } 12927 12928 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { 12929 // Don't diagnose unused-parameter errors in template instantiations; we 12930 // will already have done so in the template itself. 12931 if (inTemplateInstantiation()) 12932 return; 12933 12934 for (const ParmVarDecl *Parameter : Parameters) { 12935 if (!Parameter->isReferenced() && Parameter->getDeclName() && 12936 !Parameter->hasAttr<UnusedAttr>()) { 12937 Diag(Parameter->getLocation(), diag::warn_unused_parameter) 12938 << Parameter->getDeclName(); 12939 } 12940 } 12941 } 12942 12943 void Sema::DiagnoseSizeOfParametersAndReturnValue( 12944 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { 12945 if (LangOpts.NumLargeByValueCopy == 0) // No check. 12946 return; 12947 12948 // Warn if the return value is pass-by-value and larger than the specified 12949 // threshold. 12950 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 12951 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 12952 if (Size > LangOpts.NumLargeByValueCopy) 12953 Diag(D->getLocation(), diag::warn_return_value_size) 12954 << D->getDeclName() << Size; 12955 } 12956 12957 // Warn if any parameter is pass-by-value and larger than the specified 12958 // threshold. 12959 for (const ParmVarDecl *Parameter : Parameters) { 12960 QualType T = Parameter->getType(); 12961 if (T->isDependentType() || !T.isPODType(Context)) 12962 continue; 12963 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 12964 if (Size > LangOpts.NumLargeByValueCopy) 12965 Diag(Parameter->getLocation(), diag::warn_parameter_size) 12966 << Parameter->getDeclName() << Size; 12967 } 12968 } 12969 12970 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 12971 SourceLocation NameLoc, IdentifierInfo *Name, 12972 QualType T, TypeSourceInfo *TSInfo, 12973 StorageClass SC) { 12974 // In ARC, infer a lifetime qualifier for appropriate parameter types. 12975 if (getLangOpts().ObjCAutoRefCount && 12976 T.getObjCLifetime() == Qualifiers::OCL_None && 12977 T->isObjCLifetimeType()) { 12978 12979 Qualifiers::ObjCLifetime lifetime; 12980 12981 // Special cases for arrays: 12982 // - if it's const, use __unsafe_unretained 12983 // - otherwise, it's an error 12984 if (T->isArrayType()) { 12985 if (!T.isConstQualified()) { 12986 if (DelayedDiagnostics.shouldDelayDiagnostics()) 12987 DelayedDiagnostics.add( 12988 sema::DelayedDiagnostic::makeForbiddenType( 12989 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 12990 else 12991 Diag(NameLoc, diag::err_arc_array_param_no_ownership) 12992 << TSInfo->getTypeLoc().getSourceRange(); 12993 } 12994 lifetime = Qualifiers::OCL_ExplicitNone; 12995 } else { 12996 lifetime = T->getObjCARCImplicitLifetime(); 12997 } 12998 T = Context.getLifetimeQualifiedType(T, lifetime); 12999 } 13000 13001 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 13002 Context.getAdjustedParameterType(T), 13003 TSInfo, SC, nullptr); 13004 13005 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || 13006 New->getType().hasNonTrivialToPrimitiveCopyCUnion()) 13007 checkNonTrivialCUnion(New->getType(), New->getLocation(), 13008 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); 13009 13010 // Parameters can not be abstract class types. 13011 // For record types, this is done by the AbstractClassUsageDiagnoser once 13012 // the class has been completely parsed. 13013 if (!CurContext->isRecord() && 13014 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 13015 AbstractParamType)) 13016 New->setInvalidDecl(); 13017 13018 // Parameter declarators cannot be interface types. All ObjC objects are 13019 // passed by reference. 13020 if (T->isObjCObjectType()) { 13021 SourceLocation TypeEndLoc = 13022 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); 13023 Diag(NameLoc, 13024 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 13025 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 13026 T = Context.getObjCObjectPointerType(T); 13027 New->setType(T); 13028 } 13029 13030 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 13031 // duration shall not be qualified by an address-space qualifier." 13032 // Since all parameters have automatic store duration, they can not have 13033 // an address space. 13034 if (T.getAddressSpace() != LangAS::Default && 13035 // OpenCL allows function arguments declared to be an array of a type 13036 // to be qualified with an address space. 13037 !(getLangOpts().OpenCL && 13038 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { 13039 Diag(NameLoc, diag::err_arg_with_address_space); 13040 New->setInvalidDecl(); 13041 } 13042 13043 return New; 13044 } 13045 13046 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 13047 SourceLocation LocAfterDecls) { 13048 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 13049 13050 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 13051 // for a K&R function. 13052 if (!FTI.hasPrototype) { 13053 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 13054 --i; 13055 if (FTI.Params[i].Param == nullptr) { 13056 SmallString<256> Code; 13057 llvm::raw_svector_ostream(Code) 13058 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 13059 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 13060 << FTI.Params[i].Ident 13061 << FixItHint::CreateInsertion(LocAfterDecls, Code); 13062 13063 // Implicitly declare the argument as type 'int' for lack of a better 13064 // type. 13065 AttributeFactory attrs; 13066 DeclSpec DS(attrs); 13067 const char* PrevSpec; // unused 13068 unsigned DiagID; // unused 13069 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 13070 DiagID, Context.getPrintingPolicy()); 13071 // Use the identifier location for the type source range. 13072 DS.SetRangeStart(FTI.Params[i].IdentLoc); 13073 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 13074 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext); 13075 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 13076 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 13077 } 13078 } 13079 } 13080 } 13081 13082 Decl * 13083 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, 13084 MultiTemplateParamsArg TemplateParameterLists, 13085 SkipBodyInfo *SkipBody) { 13086 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 13087 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 13088 Scope *ParentScope = FnBodyScope->getParent(); 13089 13090 D.setFunctionDefinitionKind(FDK_Definition); 13091 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); 13092 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); 13093 } 13094 13095 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { 13096 Consumer.HandleInlineFunctionDefinition(D); 13097 } 13098 13099 static bool 13100 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 13101 const FunctionDecl *&PossiblePrototype) { 13102 // Don't warn about invalid declarations. 13103 if (FD->isInvalidDecl()) 13104 return false; 13105 13106 // Or declarations that aren't global. 13107 if (!FD->isGlobal()) 13108 return false; 13109 13110 // Don't warn about C++ member functions. 13111 if (isa<CXXMethodDecl>(FD)) 13112 return false; 13113 13114 // Don't warn about 'main'. 13115 if (FD->isMain()) 13116 return false; 13117 13118 // Don't warn about inline functions. 13119 if (FD->isInlined()) 13120 return false; 13121 13122 // Don't warn about function templates. 13123 if (FD->getDescribedFunctionTemplate()) 13124 return false; 13125 13126 // Don't warn about function template specializations. 13127 if (FD->isFunctionTemplateSpecialization()) 13128 return false; 13129 13130 // Don't warn for OpenCL kernels. 13131 if (FD->hasAttr<OpenCLKernelAttr>()) 13132 return false; 13133 13134 // Don't warn on explicitly deleted functions. 13135 if (FD->isDeleted()) 13136 return false; 13137 13138 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 13139 Prev; Prev = Prev->getPreviousDecl()) { 13140 // Ignore any declarations that occur in function or method 13141 // scope, because they aren't visible from the header. 13142 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 13143 continue; 13144 13145 PossiblePrototype = Prev; 13146 return Prev->getType()->isFunctionNoProtoType(); 13147 } 13148 13149 return true; 13150 } 13151 13152 void 13153 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 13154 const FunctionDecl *EffectiveDefinition, 13155 SkipBodyInfo *SkipBody) { 13156 const FunctionDecl *Definition = EffectiveDefinition; 13157 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) { 13158 // If this is a friend function defined in a class template, it does not 13159 // have a body until it is used, nevertheless it is a definition, see 13160 // [temp.inst]p2: 13161 // 13162 // ... for the purpose of determining whether an instantiated redeclaration 13163 // is valid according to [basic.def.odr] and [class.mem], a declaration that 13164 // corresponds to a definition in the template is considered to be a 13165 // definition. 13166 // 13167 // The following code must produce redefinition error: 13168 // 13169 // template<typename T> struct C20 { friend void func_20() {} }; 13170 // C20<int> c20i; 13171 // void func_20() {} 13172 // 13173 for (auto I : FD->redecls()) { 13174 if (I != FD && !I->isInvalidDecl() && 13175 I->getFriendObjectKind() != Decl::FOK_None) { 13176 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) { 13177 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { 13178 // A merged copy of the same function, instantiated as a member of 13179 // the same class, is OK. 13180 if (declaresSameEntity(OrigFD, Original) && 13181 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()), 13182 cast<Decl>(FD->getLexicalDeclContext()))) 13183 continue; 13184 } 13185 13186 if (Original->isThisDeclarationADefinition()) { 13187 Definition = I; 13188 break; 13189 } 13190 } 13191 } 13192 } 13193 } 13194 13195 if (!Definition) 13196 // Similar to friend functions a friend function template may be a 13197 // definition and do not have a body if it is instantiated in a class 13198 // template. 13199 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) { 13200 for (auto I : FTD->redecls()) { 13201 auto D = cast<FunctionTemplateDecl>(I); 13202 if (D != FTD) { 13203 assert(!D->isThisDeclarationADefinition() && 13204 "More than one definition in redeclaration chain"); 13205 if (D->getFriendObjectKind() != Decl::FOK_None) 13206 if (FunctionTemplateDecl *FT = 13207 D->getInstantiatedFromMemberTemplate()) { 13208 if (FT->isThisDeclarationADefinition()) { 13209 Definition = D->getTemplatedDecl(); 13210 break; 13211 } 13212 } 13213 } 13214 } 13215 } 13216 13217 if (!Definition) 13218 return; 13219 13220 if (canRedefineFunction(Definition, getLangOpts())) 13221 return; 13222 13223 // Don't emit an error when this is redefinition of a typo-corrected 13224 // definition. 13225 if (TypoCorrectedFunctionDefinitions.count(Definition)) 13226 return; 13227 13228 // If we don't have a visible definition of the function, and it's inline or 13229 // a template, skip the new definition. 13230 if (SkipBody && !hasVisibleDefinition(Definition) && 13231 (Definition->getFormalLinkage() == InternalLinkage || 13232 Definition->isInlined() || 13233 Definition->getDescribedFunctionTemplate() || 13234 Definition->getNumTemplateParameterLists())) { 13235 SkipBody->ShouldSkip = true; 13236 SkipBody->Previous = const_cast<FunctionDecl*>(Definition); 13237 if (auto *TD = Definition->getDescribedFunctionTemplate()) 13238 makeMergedDefinitionVisible(TD); 13239 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); 13240 return; 13241 } 13242 13243 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 13244 Definition->getStorageClass() == SC_Extern) 13245 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 13246 << FD->getDeclName() << getLangOpts().CPlusPlus; 13247 else 13248 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 13249 13250 Diag(Definition->getLocation(), diag::note_previous_definition); 13251 FD->setInvalidDecl(); 13252 } 13253 13254 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 13255 Sema &S) { 13256 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 13257 13258 LambdaScopeInfo *LSI = S.PushLambdaScope(); 13259 LSI->CallOperator = CallOperator; 13260 LSI->Lambda = LambdaClass; 13261 LSI->ReturnType = CallOperator->getReturnType(); 13262 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 13263 13264 if (LCD == LCD_None) 13265 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 13266 else if (LCD == LCD_ByCopy) 13267 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 13268 else if (LCD == LCD_ByRef) 13269 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 13270 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 13271 13272 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 13273 LSI->Mutable = !CallOperator->isConst(); 13274 13275 // Add the captures to the LSI so they can be noted as already 13276 // captured within tryCaptureVar. 13277 auto I = LambdaClass->field_begin(); 13278 for (const auto &C : LambdaClass->captures()) { 13279 if (C.capturesVariable()) { 13280 VarDecl *VD = C.getCapturedVar(); 13281 if (VD->isInitCapture()) 13282 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 13283 QualType CaptureType = VD->getType(); 13284 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 13285 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 13286 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 13287 /*EllipsisLoc*/C.isPackExpansion() 13288 ? C.getEllipsisLoc() : SourceLocation(), 13289 CaptureType, /*Invalid*/false); 13290 13291 } else if (C.capturesThis()) { 13292 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), 13293 C.getCaptureKind() == LCK_StarThis); 13294 } else { 13295 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), 13296 I->getType()); 13297 } 13298 ++I; 13299 } 13300 } 13301 13302 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, 13303 SkipBodyInfo *SkipBody) { 13304 if (!D) { 13305 // Parsing the function declaration failed in some way. Push on a fake scope 13306 // anyway so we can try to parse the function body. 13307 PushFunctionScope(); 13308 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 13309 return D; 13310 } 13311 13312 FunctionDecl *FD = nullptr; 13313 13314 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 13315 FD = FunTmpl->getTemplatedDecl(); 13316 else 13317 FD = cast<FunctionDecl>(D); 13318 13319 // Do not push if it is a lambda because one is already pushed when building 13320 // the lambda in ActOnStartOfLambdaDefinition(). 13321 if (!isLambdaCallOperator(FD)) 13322 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 13323 13324 // Check for defining attributes before the check for redefinition. 13325 if (const auto *Attr = FD->getAttr<AliasAttr>()) { 13326 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; 13327 FD->dropAttr<AliasAttr>(); 13328 FD->setInvalidDecl(); 13329 } 13330 if (const auto *Attr = FD->getAttr<IFuncAttr>()) { 13331 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; 13332 FD->dropAttr<IFuncAttr>(); 13333 FD->setInvalidDecl(); 13334 } 13335 13336 // See if this is a redefinition. If 'will have body' is already set, then 13337 // these checks were already performed when it was set. 13338 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) { 13339 CheckForFunctionRedefinition(FD, nullptr, SkipBody); 13340 13341 // If we're skipping the body, we're done. Don't enter the scope. 13342 if (SkipBody && SkipBody->ShouldSkip) 13343 return D; 13344 } 13345 13346 // Mark this function as "will have a body eventually". This lets users to 13347 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing 13348 // this function. 13349 FD->setWillHaveBody(); 13350 13351 // If we are instantiating a generic lambda call operator, push 13352 // a LambdaScopeInfo onto the function stack. But use the information 13353 // that's already been calculated (ActOnLambdaExpr) to prime the current 13354 // LambdaScopeInfo. 13355 // When the template operator is being specialized, the LambdaScopeInfo, 13356 // has to be properly restored so that tryCaptureVariable doesn't try 13357 // and capture any new variables. In addition when calculating potential 13358 // captures during transformation of nested lambdas, it is necessary to 13359 // have the LSI properly restored. 13360 if (isGenericLambdaCallOperatorSpecialization(FD)) { 13361 assert(inTemplateInstantiation() && 13362 "There should be an active template instantiation on the stack " 13363 "when instantiating a generic lambda!"); 13364 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 13365 } else { 13366 // Enter a new function scope 13367 PushFunctionScope(); 13368 } 13369 13370 // Builtin functions cannot be defined. 13371 if (unsigned BuiltinID = FD->getBuiltinID()) { 13372 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 13373 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 13374 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 13375 FD->setInvalidDecl(); 13376 } 13377 } 13378 13379 // The return type of a function definition must be complete 13380 // (C99 6.9.1p3, C++ [dcl.fct]p6). 13381 QualType ResultType = FD->getReturnType(); 13382 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 13383 !FD->isInvalidDecl() && 13384 RequireCompleteType(FD->getLocation(), ResultType, 13385 diag::err_func_def_incomplete_result)) 13386 FD->setInvalidDecl(); 13387 13388 if (FnBodyScope) 13389 PushDeclContext(FnBodyScope, FD); 13390 13391 // Check the validity of our function parameters 13392 CheckParmsForFunctionDef(FD->parameters(), 13393 /*CheckParameterNames=*/true); 13394 13395 // Add non-parameter declarations already in the function to the current 13396 // scope. 13397 if (FnBodyScope) { 13398 for (Decl *NPD : FD->decls()) { 13399 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); 13400 if (!NonParmDecl) 13401 continue; 13402 assert(!isa<ParmVarDecl>(NonParmDecl) && 13403 "parameters should not be in newly created FD yet"); 13404 13405 // If the decl has a name, make it accessible in the current scope. 13406 if (NonParmDecl->getDeclName()) 13407 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); 13408 13409 // Similarly, dive into enums and fish their constants out, making them 13410 // accessible in this scope. 13411 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { 13412 for (auto *EI : ED->enumerators()) 13413 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 13414 } 13415 } 13416 } 13417 13418 // Introduce our parameters into the function scope 13419 for (auto Param : FD->parameters()) { 13420 Param->setOwningFunction(FD); 13421 13422 // If this has an identifier, add it to the scope stack. 13423 if (Param->getIdentifier() && FnBodyScope) { 13424 CheckShadow(FnBodyScope, Param); 13425 13426 PushOnScopeChains(Param, FnBodyScope); 13427 } 13428 } 13429 13430 // Ensure that the function's exception specification is instantiated. 13431 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 13432 ResolveExceptionSpec(D->getLocation(), FPT); 13433 13434 // dllimport cannot be applied to non-inline function definitions. 13435 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 13436 !FD->isTemplateInstantiation()) { 13437 assert(!FD->hasAttr<DLLExportAttr>()); 13438 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 13439 FD->setInvalidDecl(); 13440 return D; 13441 } 13442 // We want to attach documentation to original Decl (which might be 13443 // a function template). 13444 ActOnDocumentableDecl(D); 13445 if (getCurLexicalContext()->isObjCContainer() && 13446 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 13447 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 13448 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 13449 13450 return D; 13451 } 13452 13453 /// Given the set of return statements within a function body, 13454 /// compute the variables that are subject to the named return value 13455 /// optimization. 13456 /// 13457 /// Each of the variables that is subject to the named return value 13458 /// optimization will be marked as NRVO variables in the AST, and any 13459 /// return statement that has a marked NRVO variable as its NRVO candidate can 13460 /// use the named return value optimization. 13461 /// 13462 /// This function applies a very simplistic algorithm for NRVO: if every return 13463 /// statement in the scope of a variable has the same NRVO candidate, that 13464 /// candidate is an NRVO variable. 13465 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 13466 ReturnStmt **Returns = Scope->Returns.data(); 13467 13468 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 13469 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 13470 if (!NRVOCandidate->isNRVOVariable()) 13471 Returns[I]->setNRVOCandidate(nullptr); 13472 } 13473 } 13474 } 13475 13476 bool Sema::canDelayFunctionBody(const Declarator &D) { 13477 // We can't delay parsing the body of a constexpr function template (yet). 13478 if (D.getDeclSpec().hasConstexprSpecifier()) 13479 return false; 13480 13481 // We can't delay parsing the body of a function template with a deduced 13482 // return type (yet). 13483 if (D.getDeclSpec().hasAutoTypeSpec()) { 13484 // If the placeholder introduces a non-deduced trailing return type, 13485 // we can still delay parsing it. 13486 if (D.getNumTypeObjects()) { 13487 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 13488 if (Outer.Kind == DeclaratorChunk::Function && 13489 Outer.Fun.hasTrailingReturnType()) { 13490 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 13491 return Ty.isNull() || !Ty->isUndeducedType(); 13492 } 13493 } 13494 return false; 13495 } 13496 13497 return true; 13498 } 13499 13500 bool Sema::canSkipFunctionBody(Decl *D) { 13501 // We cannot skip the body of a function (or function template) which is 13502 // constexpr, since we may need to evaluate its body in order to parse the 13503 // rest of the file. 13504 // We cannot skip the body of a function with an undeduced return type, 13505 // because any callers of that function need to know the type. 13506 if (const FunctionDecl *FD = D->getAsFunction()) { 13507 if (FD->isConstexpr()) 13508 return false; 13509 // We can't simply call Type::isUndeducedType here, because inside template 13510 // auto can be deduced to a dependent type, which is not considered 13511 // "undeduced". 13512 if (FD->getReturnType()->getContainedDeducedType()) 13513 return false; 13514 } 13515 return Consumer.shouldSkipFunctionBody(D); 13516 } 13517 13518 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 13519 if (!Decl) 13520 return nullptr; 13521 if (FunctionDecl *FD = Decl->getAsFunction()) 13522 FD->setHasSkippedBody(); 13523 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) 13524 MD->setHasSkippedBody(); 13525 return Decl; 13526 } 13527 13528 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 13529 return ActOnFinishFunctionBody(D, BodyArg, false); 13530 } 13531 13532 /// RAII object that pops an ExpressionEvaluationContext when exiting a function 13533 /// body. 13534 class ExitFunctionBodyRAII { 13535 public: 13536 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} 13537 ~ExitFunctionBodyRAII() { 13538 if (!IsLambda) 13539 S.PopExpressionEvaluationContext(); 13540 } 13541 13542 private: 13543 Sema &S; 13544 bool IsLambda = false; 13545 }; 13546 13547 static void diagnoseImplicitlyRetainedSelf(Sema &S) { 13548 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; 13549 13550 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { 13551 if (EscapeInfo.count(BD)) 13552 return EscapeInfo[BD]; 13553 13554 bool R = false; 13555 const BlockDecl *CurBD = BD; 13556 13557 do { 13558 R = !CurBD->doesNotEscape(); 13559 if (R) 13560 break; 13561 CurBD = CurBD->getParent()->getInnermostBlockDecl(); 13562 } while (CurBD); 13563 13564 return EscapeInfo[BD] = R; 13565 }; 13566 13567 // If the location where 'self' is implicitly retained is inside a escaping 13568 // block, emit a diagnostic. 13569 for (const std::pair<SourceLocation, const BlockDecl *> &P : 13570 S.ImplicitlyRetainedSelfLocs) 13571 if (IsOrNestedInEscapingBlock(P.second)) 13572 S.Diag(P.first, diag::warn_implicitly_retains_self) 13573 << FixItHint::CreateInsertion(P.first, "self->"); 13574 } 13575 13576 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 13577 bool IsInstantiation) { 13578 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 13579 13580 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 13581 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 13582 13583 if (getLangOpts().Coroutines && getCurFunction()->isCoroutine()) 13584 CheckCompletedCoroutineBody(FD, Body); 13585 13586 // Do not call PopExpressionEvaluationContext() if it is a lambda because one 13587 // is already popped when finishing the lambda in BuildLambdaExpr(). This is 13588 // meant to pop the context added in ActOnStartOfFunctionDef(). 13589 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); 13590 13591 if (FD) { 13592 FD->setBody(Body); 13593 FD->setWillHaveBody(false); 13594 13595 if (getLangOpts().CPlusPlus14) { 13596 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && 13597 FD->getReturnType()->isUndeducedType()) { 13598 // If the function has a deduced result type but contains no 'return' 13599 // statements, the result type as written must be exactly 'auto', and 13600 // the deduced result type is 'void'. 13601 if (!FD->getReturnType()->getAs<AutoType>()) { 13602 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 13603 << FD->getReturnType(); 13604 FD->setInvalidDecl(); 13605 } else { 13606 // Substitute 'void' for the 'auto' in the type. 13607 TypeLoc ResultType = getReturnTypeLoc(FD); 13608 Context.adjustDeducedFunctionResultType( 13609 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 13610 } 13611 } 13612 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { 13613 // In C++11, we don't use 'auto' deduction rules for lambda call 13614 // operators because we don't support return type deduction. 13615 auto *LSI = getCurLambda(); 13616 if (LSI->HasImplicitReturnType) { 13617 deduceClosureReturnType(*LSI); 13618 13619 // C++11 [expr.prim.lambda]p4: 13620 // [...] if there are no return statements in the compound-statement 13621 // [the deduced type is] the type void 13622 QualType RetType = 13623 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; 13624 13625 // Update the return type to the deduced type. 13626 const FunctionProtoType *Proto = 13627 FD->getType()->getAs<FunctionProtoType>(); 13628 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), 13629 Proto->getExtProtoInfo())); 13630 } 13631 } 13632 13633 // If the function implicitly returns zero (like 'main') or is naked, 13634 // don't complain about missing return statements. 13635 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 13636 WP.disableCheckFallThrough(); 13637 13638 // MSVC permits the use of pure specifier (=0) on function definition, 13639 // defined at class scope, warn about this non-standard construct. 13640 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) 13641 Diag(FD->getLocation(), diag::ext_pure_function_definition); 13642 13643 if (!FD->isInvalidDecl()) { 13644 // Don't diagnose unused parameters of defaulted or deleted functions. 13645 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) 13646 DiagnoseUnusedParameters(FD->parameters()); 13647 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), 13648 FD->getReturnType(), FD); 13649 13650 // If this is a structor, we need a vtable. 13651 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 13652 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 13653 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) 13654 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 13655 13656 // Try to apply the named return value optimization. We have to check 13657 // if we can do this here because lambdas keep return statements around 13658 // to deduce an implicit return type. 13659 if (FD->getReturnType()->isRecordType() && 13660 (!getLangOpts().CPlusPlus || !FD->isDependentContext())) 13661 computeNRVO(Body, getCurFunction()); 13662 } 13663 13664 // GNU warning -Wmissing-prototypes: 13665 // Warn if a global function is defined without a previous 13666 // prototype declaration. This warning is issued even if the 13667 // definition itself provides a prototype. The aim is to detect 13668 // global functions that fail to be declared in header files. 13669 const FunctionDecl *PossiblePrototype = nullptr; 13670 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { 13671 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 13672 13673 if (PossiblePrototype) { 13674 // We found a declaration that is not a prototype, 13675 // but that could be a zero-parameter prototype 13676 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { 13677 TypeLoc TL = TI->getTypeLoc(); 13678 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 13679 Diag(PossiblePrototype->getLocation(), 13680 diag::note_declaration_not_a_prototype) 13681 << (FD->getNumParams() != 0) 13682 << (FD->getNumParams() == 0 13683 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") 13684 : FixItHint{}); 13685 } 13686 } else { 13687 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 13688 << /* function */ 1 13689 << (FD->getStorageClass() == SC_None 13690 ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(), 13691 "static ") 13692 : FixItHint{}); 13693 } 13694 13695 // GNU warning -Wstrict-prototypes 13696 // Warn if K&R function is defined without a previous declaration. 13697 // This warning is issued only if the definition itself does not provide 13698 // a prototype. Only K&R definitions do not provide a prototype. 13699 // An empty list in a function declarator that is part of a definition 13700 // of that function specifies that the function has no parameters 13701 // (C99 6.7.5.3p14) 13702 if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 && 13703 !LangOpts.CPlusPlus) { 13704 TypeSourceInfo *TI = FD->getTypeSourceInfo(); 13705 TypeLoc TL = TI->getTypeLoc(); 13706 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); 13707 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; 13708 } 13709 } 13710 13711 // Warn on CPUDispatch with an actual body. 13712 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) 13713 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) 13714 if (!CmpndBody->body_empty()) 13715 Diag(CmpndBody->body_front()->getBeginLoc(), 13716 diag::warn_dispatch_body_ignored); 13717 13718 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 13719 const CXXMethodDecl *KeyFunction; 13720 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && 13721 MD->isVirtual() && 13722 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && 13723 MD == KeyFunction->getCanonicalDecl()) { 13724 // Update the key-function state if necessary for this ABI. 13725 if (FD->isInlined() && 13726 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 13727 Context.setNonKeyFunction(MD); 13728 13729 // If the newly-chosen key function is already defined, then we 13730 // need to mark the vtable as used retroactively. 13731 KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); 13732 const FunctionDecl *Definition; 13733 if (KeyFunction && KeyFunction->isDefined(Definition)) 13734 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); 13735 } else { 13736 // We just defined they key function; mark the vtable as used. 13737 MarkVTableUsed(FD->getLocation(), MD->getParent(), true); 13738 } 13739 } 13740 } 13741 13742 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 13743 "Function parsing confused"); 13744 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 13745 assert(MD == getCurMethodDecl() && "Method parsing confused"); 13746 MD->setBody(Body); 13747 if (!MD->isInvalidDecl()) { 13748 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), 13749 MD->getReturnType(), MD); 13750 13751 if (Body) 13752 computeNRVO(Body, getCurFunction()); 13753 } 13754 if (getCurFunction()->ObjCShouldCallSuper) { 13755 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) 13756 << MD->getSelector().getAsString(); 13757 getCurFunction()->ObjCShouldCallSuper = false; 13758 } 13759 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 13760 const ObjCMethodDecl *InitMethod = nullptr; 13761 bool isDesignated = 13762 MD->isDesignatedInitializerForTheInterface(&InitMethod); 13763 assert(isDesignated && InitMethod); 13764 (void)isDesignated; 13765 13766 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 13767 auto IFace = MD->getClassInterface(); 13768 if (!IFace) 13769 return false; 13770 auto SuperD = IFace->getSuperClass(); 13771 if (!SuperD) 13772 return false; 13773 return SuperD->getIdentifier() == 13774 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 13775 }; 13776 // Don't issue this warning for unavailable inits or direct subclasses 13777 // of NSObject. 13778 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 13779 Diag(MD->getLocation(), 13780 diag::warn_objc_designated_init_missing_super_call); 13781 Diag(InitMethod->getLocation(), 13782 diag::note_objc_designated_init_marked_here); 13783 } 13784 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 13785 } 13786 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 13787 // Don't issue this warning for unavaialable inits. 13788 if (!MD->isUnavailable()) 13789 Diag(MD->getLocation(), 13790 diag::warn_objc_secondary_init_missing_init_call); 13791 getCurFunction()->ObjCWarnForNoInitDelegation = false; 13792 } 13793 13794 diagnoseImplicitlyRetainedSelf(*this); 13795 } else { 13796 // Parsing the function declaration failed in some way. Pop the fake scope 13797 // we pushed on. 13798 PopFunctionScopeInfo(ActivePolicy, dcl); 13799 return nullptr; 13800 } 13801 13802 if (Body && getCurFunction()->HasPotentialAvailabilityViolations) 13803 DiagnoseUnguardedAvailabilityViolations(dcl); 13804 13805 assert(!getCurFunction()->ObjCShouldCallSuper && 13806 "This should only be set for ObjC methods, which should have been " 13807 "handled in the block above."); 13808 13809 // Verify and clean out per-function state. 13810 if (Body && (!FD || !FD->isDefaulted())) { 13811 // C++ constructors that have function-try-blocks can't have return 13812 // statements in the handlers of that block. (C++ [except.handle]p14) 13813 // Verify this. 13814 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 13815 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 13816 13817 // Verify that gotos and switch cases don't jump into scopes illegally. 13818 if (getCurFunction()->NeedsScopeChecking() && 13819 !PP.isCodeCompletionEnabled()) 13820 DiagnoseInvalidJumps(Body); 13821 13822 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 13823 if (!Destructor->getParent()->isDependentType()) 13824 CheckDestructor(Destructor); 13825 13826 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 13827 Destructor->getParent()); 13828 } 13829 13830 // If any errors have occurred, clear out any temporaries that may have 13831 // been leftover. This ensures that these temporaries won't be picked up for 13832 // deletion in some later function. 13833 if (getDiagnostics().hasErrorOccurred() || 13834 getDiagnostics().getSuppressAllDiagnostics()) { 13835 DiscardCleanupsInEvaluationContext(); 13836 } 13837 if (!getDiagnostics().hasUncompilableErrorOccurred() && 13838 !isa<FunctionTemplateDecl>(dcl)) { 13839 // Since the body is valid, issue any analysis-based warnings that are 13840 // enabled. 13841 ActivePolicy = &WP; 13842 } 13843 13844 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 13845 (!CheckConstexprFunctionDecl(FD) || 13846 !CheckConstexprFunctionBody(FD, Body))) 13847 FD->setInvalidDecl(); 13848 13849 if (FD && FD->hasAttr<NakedAttr>()) { 13850 for (const Stmt *S : Body->children()) { 13851 // Allow local register variables without initializer as they don't 13852 // require prologue. 13853 bool RegisterVariables = false; 13854 if (auto *DS = dyn_cast<DeclStmt>(S)) { 13855 for (const auto *Decl : DS->decls()) { 13856 if (const auto *Var = dyn_cast<VarDecl>(Decl)) { 13857 RegisterVariables = 13858 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); 13859 if (!RegisterVariables) 13860 break; 13861 } 13862 } 13863 } 13864 if (RegisterVariables) 13865 continue; 13866 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 13867 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); 13868 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 13869 FD->setInvalidDecl(); 13870 break; 13871 } 13872 } 13873 } 13874 13875 assert(ExprCleanupObjects.size() == 13876 ExprEvalContexts.back().NumCleanupObjects && 13877 "Leftover temporaries in function"); 13878 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); 13879 assert(MaybeODRUseExprs.empty() && 13880 "Leftover expressions for odr-use checking"); 13881 } 13882 13883 if (!IsInstantiation) 13884 PopDeclContext(); 13885 13886 PopFunctionScopeInfo(ActivePolicy, dcl); 13887 // If any errors have occurred, clear out any temporaries that may have 13888 // been leftover. This ensures that these temporaries won't be picked up for 13889 // deletion in some later function. 13890 if (getDiagnostics().hasErrorOccurred()) { 13891 DiscardCleanupsInEvaluationContext(); 13892 } 13893 13894 return dcl; 13895 } 13896 13897 /// When we finish delayed parsing of an attribute, we must attach it to the 13898 /// relevant Decl. 13899 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 13900 ParsedAttributes &Attrs) { 13901 // Always attach attributes to the underlying decl. 13902 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 13903 D = TD->getTemplatedDecl(); 13904 ProcessDeclAttributeList(S, D, Attrs); 13905 13906 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 13907 if (Method->isStatic()) 13908 checkThisInStaticMemberFunctionAttributes(Method); 13909 } 13910 13911 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 13912 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 13913 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 13914 IdentifierInfo &II, Scope *S) { 13915 // Find the scope in which the identifier is injected and the corresponding 13916 // DeclContext. 13917 // FIXME: C89 does not say what happens if there is no enclosing block scope. 13918 // In that case, we inject the declaration into the translation unit scope 13919 // instead. 13920 Scope *BlockScope = S; 13921 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) 13922 BlockScope = BlockScope->getParent(); 13923 13924 Scope *ContextScope = BlockScope; 13925 while (!ContextScope->getEntity()) 13926 ContextScope = ContextScope->getParent(); 13927 ContextRAII SavedContext(*this, ContextScope->getEntity()); 13928 13929 // Before we produce a declaration for an implicitly defined 13930 // function, see whether there was a locally-scoped declaration of 13931 // this name as a function or variable. If so, use that 13932 // (non-visible) declaration, and complain about it. 13933 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); 13934 if (ExternCPrev) { 13935 // We still need to inject the function into the enclosing block scope so 13936 // that later (non-call) uses can see it. 13937 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); 13938 13939 // C89 footnote 38: 13940 // If in fact it is not defined as having type "function returning int", 13941 // the behavior is undefined. 13942 if (!isa<FunctionDecl>(ExternCPrev) || 13943 !Context.typesAreCompatible( 13944 cast<FunctionDecl>(ExternCPrev)->getType(), 13945 Context.getFunctionNoProtoType(Context.IntTy))) { 13946 Diag(Loc, diag::ext_use_out_of_scope_declaration) 13947 << ExternCPrev << !getLangOpts().C99; 13948 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 13949 return ExternCPrev; 13950 } 13951 } 13952 13953 // Extension in C99. Legal in C90, but warn about it. 13954 unsigned diag_id; 13955 if (II.getName().startswith("__builtin_")) 13956 diag_id = diag::warn_builtin_unknown; 13957 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. 13958 else if (getLangOpts().OpenCL) 13959 diag_id = diag::err_opencl_implicit_function_decl; 13960 else if (getLangOpts().C99) 13961 diag_id = diag::ext_implicit_function_decl; 13962 else 13963 diag_id = diag::warn_implicit_function_decl; 13964 Diag(Loc, diag_id) << &II; 13965 13966 // If we found a prior declaration of this function, don't bother building 13967 // another one. We've already pushed that one into scope, so there's nothing 13968 // more to do. 13969 if (ExternCPrev) 13970 return ExternCPrev; 13971 13972 // Because typo correction is expensive, only do it if the implicit 13973 // function declaration is going to be treated as an error. 13974 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 13975 TypoCorrection Corrected; 13976 DeclFilterCCC<FunctionDecl> CCC{}; 13977 if (S && (Corrected = 13978 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, 13979 S, nullptr, CCC, CTK_NonError))) 13980 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 13981 /*ErrorRecovery*/false); 13982 } 13983 13984 // Set a Declarator for the implicit definition: int foo(); 13985 const char *Dummy; 13986 AttributeFactory attrFactory; 13987 DeclSpec DS(attrFactory); 13988 unsigned DiagID; 13989 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 13990 Context.getPrintingPolicy()); 13991 (void)Error; // Silence warning. 13992 assert(!Error && "Error setting up implicit decl!"); 13993 SourceLocation NoLoc; 13994 Declarator D(DS, DeclaratorContext::BlockContext); 13995 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 13996 /*IsAmbiguous=*/false, 13997 /*LParenLoc=*/NoLoc, 13998 /*Params=*/nullptr, 13999 /*NumParams=*/0, 14000 /*EllipsisLoc=*/NoLoc, 14001 /*RParenLoc=*/NoLoc, 14002 /*RefQualifierIsLvalueRef=*/true, 14003 /*RefQualifierLoc=*/NoLoc, 14004 /*MutableLoc=*/NoLoc, EST_None, 14005 /*ESpecRange=*/SourceRange(), 14006 /*Exceptions=*/nullptr, 14007 /*ExceptionRanges=*/nullptr, 14008 /*NumExceptions=*/0, 14009 /*NoexceptExpr=*/nullptr, 14010 /*ExceptionSpecTokens=*/nullptr, 14011 /*DeclsInPrototype=*/None, Loc, 14012 Loc, D), 14013 std::move(DS.getAttributes()), SourceLocation()); 14014 D.SetIdentifier(&II, Loc); 14015 14016 // Insert this function into the enclosing block scope. 14017 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); 14018 FD->setImplicit(); 14019 14020 AddKnownFunctionAttributes(FD); 14021 14022 return FD; 14023 } 14024 14025 /// Adds any function attributes that we know a priori based on 14026 /// the declaration of this function. 14027 /// 14028 /// These attributes can apply both to implicitly-declared builtins 14029 /// (like __builtin___printf_chk) or to library-declared functions 14030 /// like NSLog or printf. 14031 /// 14032 /// We need to check for duplicate attributes both here and where user-written 14033 /// attributes are applied to declarations. 14034 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 14035 if (FD->isInvalidDecl()) 14036 return; 14037 14038 // If this is a built-in function, map its builtin attributes to 14039 // actual attributes. 14040 if (unsigned BuiltinID = FD->getBuiltinID()) { 14041 // Handle printf-formatting attributes. 14042 unsigned FormatIdx; 14043 bool HasVAListArg; 14044 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 14045 if (!FD->hasAttr<FormatAttr>()) { 14046 const char *fmt = "printf"; 14047 unsigned int NumParams = FD->getNumParams(); 14048 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 14049 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 14050 fmt = "NSString"; 14051 FD->addAttr(FormatAttr::CreateImplicit(Context, 14052 &Context.Idents.get(fmt), 14053 FormatIdx+1, 14054 HasVAListArg ? 0 : FormatIdx+2, 14055 FD->getLocation())); 14056 } 14057 } 14058 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 14059 HasVAListArg)) { 14060 if (!FD->hasAttr<FormatAttr>()) 14061 FD->addAttr(FormatAttr::CreateImplicit(Context, 14062 &Context.Idents.get("scanf"), 14063 FormatIdx+1, 14064 HasVAListArg ? 0 : FormatIdx+2, 14065 FD->getLocation())); 14066 } 14067 14068 // Handle automatically recognized callbacks. 14069 SmallVector<int, 4> Encoding; 14070 if (!FD->hasAttr<CallbackAttr>() && 14071 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) 14072 FD->addAttr(CallbackAttr::CreateImplicit( 14073 Context, Encoding.data(), Encoding.size(), FD->getLocation())); 14074 14075 // Mark const if we don't care about errno and that is the only thing 14076 // preventing the function from being const. This allows IRgen to use LLVM 14077 // intrinsics for such functions. 14078 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && 14079 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) 14080 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14081 14082 // We make "fma" on some platforms const because we know it does not set 14083 // errno in those environments even though it could set errno based on the 14084 // C standard. 14085 const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); 14086 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && 14087 !FD->hasAttr<ConstAttr>()) { 14088 switch (BuiltinID) { 14089 case Builtin::BI__builtin_fma: 14090 case Builtin::BI__builtin_fmaf: 14091 case Builtin::BI__builtin_fmal: 14092 case Builtin::BIfma: 14093 case Builtin::BIfmaf: 14094 case Builtin::BIfmal: 14095 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14096 break; 14097 default: 14098 break; 14099 } 14100 } 14101 14102 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 14103 !FD->hasAttr<ReturnsTwiceAttr>()) 14104 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 14105 FD->getLocation())); 14106 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 14107 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14108 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) 14109 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); 14110 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 14111 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14112 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && 14113 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { 14114 // Add the appropriate attribute, depending on the CUDA compilation mode 14115 // and which target the builtin belongs to. For example, during host 14116 // compilation, aux builtins are __device__, while the rest are __host__. 14117 if (getLangOpts().CUDAIsDevice != 14118 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) 14119 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); 14120 else 14121 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); 14122 } 14123 } 14124 14125 // If C++ exceptions are enabled but we are told extern "C" functions cannot 14126 // throw, add an implicit nothrow attribute to any extern "C" function we come 14127 // across. 14128 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && 14129 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { 14130 const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); 14131 if (!FPT || FPT->getExceptionSpecType() == EST_None) 14132 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14133 } 14134 14135 IdentifierInfo *Name = FD->getIdentifier(); 14136 if (!Name) 14137 return; 14138 if ((!getLangOpts().CPlusPlus && 14139 FD->getDeclContext()->isTranslationUnit()) || 14140 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 14141 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 14142 LinkageSpecDecl::lang_c)) { 14143 // Okay: this could be a libc/libm/Objective-C function we know 14144 // about. 14145 } else 14146 return; 14147 14148 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 14149 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 14150 // target-specific builtins, perhaps? 14151 if (!FD->hasAttr<FormatAttr>()) 14152 FD->addAttr(FormatAttr::CreateImplicit(Context, 14153 &Context.Idents.get("printf"), 2, 14154 Name->isStr("vasprintf") ? 0 : 3, 14155 FD->getLocation())); 14156 } 14157 14158 if (Name->isStr("__CFStringMakeConstantString")) { 14159 // We already have a __builtin___CFStringMakeConstantString, 14160 // but builds that use -fno-constant-cfstrings don't go through that. 14161 if (!FD->hasAttr<FormatArgAttr>()) 14162 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), 14163 FD->getLocation())); 14164 } 14165 } 14166 14167 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 14168 TypeSourceInfo *TInfo) { 14169 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 14170 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 14171 14172 if (!TInfo) { 14173 assert(D.isInvalidType() && "no declarator info for valid type"); 14174 TInfo = Context.getTrivialTypeSourceInfo(T); 14175 } 14176 14177 // Scope manipulation handled by caller. 14178 TypedefDecl *NewTD = 14179 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), 14180 D.getIdentifierLoc(), D.getIdentifier(), TInfo); 14181 14182 // Bail out immediately if we have an invalid declaration. 14183 if (D.isInvalidType()) { 14184 NewTD->setInvalidDecl(); 14185 return NewTD; 14186 } 14187 14188 if (D.getDeclSpec().isModulePrivateSpecified()) { 14189 if (CurContext->isFunctionOrMethod()) 14190 Diag(NewTD->getLocation(), diag::err_module_private_local) 14191 << 2 << NewTD->getDeclName() 14192 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 14193 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 14194 else 14195 NewTD->setModulePrivate(); 14196 } 14197 14198 // C++ [dcl.typedef]p8: 14199 // If the typedef declaration defines an unnamed class (or 14200 // enum), the first typedef-name declared by the declaration 14201 // to be that class type (or enum type) is used to denote the 14202 // class type (or enum type) for linkage purposes only. 14203 // We need to check whether the type was declared in the declaration. 14204 switch (D.getDeclSpec().getTypeSpecType()) { 14205 case TST_enum: 14206 case TST_struct: 14207 case TST_interface: 14208 case TST_union: 14209 case TST_class: { 14210 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 14211 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); 14212 break; 14213 } 14214 14215 default: 14216 break; 14217 } 14218 14219 return NewTD; 14220 } 14221 14222 /// Check that this is a valid underlying type for an enum declaration. 14223 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 14224 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 14225 QualType T = TI->getType(); 14226 14227 if (T->isDependentType()) 14228 return false; 14229 14230 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 14231 if (BT->isInteger()) 14232 return false; 14233 14234 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 14235 return true; 14236 } 14237 14238 /// Check whether this is a valid redeclaration of a previous enumeration. 14239 /// \return true if the redeclaration was invalid. 14240 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 14241 QualType EnumUnderlyingTy, bool IsFixed, 14242 const EnumDecl *Prev) { 14243 if (IsScoped != Prev->isScoped()) { 14244 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 14245 << Prev->isScoped(); 14246 Diag(Prev->getLocation(), diag::note_previous_declaration); 14247 return true; 14248 } 14249 14250 if (IsFixed && Prev->isFixed()) { 14251 if (!EnumUnderlyingTy->isDependentType() && 14252 !Prev->getIntegerType()->isDependentType() && 14253 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 14254 Prev->getIntegerType())) { 14255 // TODO: Highlight the underlying type of the redeclaration. 14256 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 14257 << EnumUnderlyingTy << Prev->getIntegerType(); 14258 Diag(Prev->getLocation(), diag::note_previous_declaration) 14259 << Prev->getIntegerTypeRange(); 14260 return true; 14261 } 14262 } else if (IsFixed != Prev->isFixed()) { 14263 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 14264 << Prev->isFixed(); 14265 Diag(Prev->getLocation(), diag::note_previous_declaration); 14266 return true; 14267 } 14268 14269 return false; 14270 } 14271 14272 /// Get diagnostic %select index for tag kind for 14273 /// redeclaration diagnostic message. 14274 /// WARNING: Indexes apply to particular diagnostics only! 14275 /// 14276 /// \returns diagnostic %select index. 14277 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 14278 switch (Tag) { 14279 case TTK_Struct: return 0; 14280 case TTK_Interface: return 1; 14281 case TTK_Class: return 2; 14282 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 14283 } 14284 } 14285 14286 /// Determine if tag kind is a class-key compatible with 14287 /// class for redeclaration (class, struct, or __interface). 14288 /// 14289 /// \returns true iff the tag kind is compatible. 14290 static bool isClassCompatTagKind(TagTypeKind Tag) 14291 { 14292 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 14293 } 14294 14295 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, 14296 TagTypeKind TTK) { 14297 if (isa<TypedefDecl>(PrevDecl)) 14298 return NTK_Typedef; 14299 else if (isa<TypeAliasDecl>(PrevDecl)) 14300 return NTK_TypeAlias; 14301 else if (isa<ClassTemplateDecl>(PrevDecl)) 14302 return NTK_Template; 14303 else if (isa<TypeAliasTemplateDecl>(PrevDecl)) 14304 return NTK_TypeAliasTemplate; 14305 else if (isa<TemplateTemplateParmDecl>(PrevDecl)) 14306 return NTK_TemplateTemplateArgument; 14307 switch (TTK) { 14308 case TTK_Struct: 14309 case TTK_Interface: 14310 case TTK_Class: 14311 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; 14312 case TTK_Union: 14313 return NTK_NonUnion; 14314 case TTK_Enum: 14315 return NTK_NonEnum; 14316 } 14317 llvm_unreachable("invalid TTK"); 14318 } 14319 14320 /// Determine whether a tag with a given kind is acceptable 14321 /// as a redeclaration of the given tag declaration. 14322 /// 14323 /// \returns true if the new tag kind is acceptable, false otherwise. 14324 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 14325 TagTypeKind NewTag, bool isDefinition, 14326 SourceLocation NewTagLoc, 14327 const IdentifierInfo *Name) { 14328 // C++ [dcl.type.elab]p3: 14329 // The class-key or enum keyword present in the 14330 // elaborated-type-specifier shall agree in kind with the 14331 // declaration to which the name in the elaborated-type-specifier 14332 // refers. This rule also applies to the form of 14333 // elaborated-type-specifier that declares a class-name or 14334 // friend class since it can be construed as referring to the 14335 // definition of the class. Thus, in any 14336 // elaborated-type-specifier, the enum keyword shall be used to 14337 // refer to an enumeration (7.2), the union class-key shall be 14338 // used to refer to a union (clause 9), and either the class or 14339 // struct class-key shall be used to refer to a class (clause 9) 14340 // declared using the class or struct class-key. 14341 TagTypeKind OldTag = Previous->getTagKind(); 14342 if (OldTag != NewTag && 14343 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) 14344 return false; 14345 14346 // Tags are compatible, but we might still want to warn on mismatched tags. 14347 // Non-class tags can't be mismatched at this point. 14348 if (!isClassCompatTagKind(NewTag)) 14349 return true; 14350 14351 // Declarations for which -Wmismatched-tags is disabled are entirely ignored 14352 // by our warning analysis. We don't want to warn about mismatches with (eg) 14353 // declarations in system headers that are designed to be specialized, but if 14354 // a user asks us to warn, we should warn if their code contains mismatched 14355 // declarations. 14356 auto IsIgnoredLoc = [&](SourceLocation Loc) { 14357 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, 14358 Loc); 14359 }; 14360 if (IsIgnoredLoc(NewTagLoc)) 14361 return true; 14362 14363 auto IsIgnored = [&](const TagDecl *Tag) { 14364 return IsIgnoredLoc(Tag->getLocation()); 14365 }; 14366 while (IsIgnored(Previous)) { 14367 Previous = Previous->getPreviousDecl(); 14368 if (!Previous) 14369 return true; 14370 OldTag = Previous->getTagKind(); 14371 } 14372 14373 bool isTemplate = false; 14374 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 14375 isTemplate = Record->getDescribedClassTemplate(); 14376 14377 if (inTemplateInstantiation()) { 14378 if (OldTag != NewTag) { 14379 // In a template instantiation, do not offer fix-its for tag mismatches 14380 // since they usually mess up the template instead of fixing the problem. 14381 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 14382 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 14383 << getRedeclDiagFromTagKind(OldTag); 14384 // FIXME: Note previous location? 14385 } 14386 return true; 14387 } 14388 14389 if (isDefinition) { 14390 // On definitions, check all previous tags and issue a fix-it for each 14391 // one that doesn't match the current tag. 14392 if (Previous->getDefinition()) { 14393 // Don't suggest fix-its for redefinitions. 14394 return true; 14395 } 14396 14397 bool previousMismatch = false; 14398 for (const TagDecl *I : Previous->redecls()) { 14399 if (I->getTagKind() != NewTag) { 14400 // Ignore previous declarations for which the warning was disabled. 14401 if (IsIgnored(I)) 14402 continue; 14403 14404 if (!previousMismatch) { 14405 previousMismatch = true; 14406 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 14407 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 14408 << getRedeclDiagFromTagKind(I->getTagKind()); 14409 } 14410 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 14411 << getRedeclDiagFromTagKind(NewTag) 14412 << FixItHint::CreateReplacement(I->getInnerLocStart(), 14413 TypeWithKeyword::getTagTypeKindName(NewTag)); 14414 } 14415 } 14416 return true; 14417 } 14418 14419 // Identify the prevailing tag kind: this is the kind of the definition (if 14420 // there is a non-ignored definition), or otherwise the kind of the prior 14421 // (non-ignored) declaration. 14422 const TagDecl *PrevDef = Previous->getDefinition(); 14423 if (PrevDef && IsIgnored(PrevDef)) 14424 PrevDef = nullptr; 14425 const TagDecl *Redecl = PrevDef ? PrevDef : Previous; 14426 if (Redecl->getTagKind() != NewTag) { 14427 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 14428 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 14429 << getRedeclDiagFromTagKind(OldTag); 14430 Diag(Redecl->getLocation(), diag::note_previous_use); 14431 14432 // If there is a previous definition, suggest a fix-it. 14433 if (PrevDef) { 14434 Diag(NewTagLoc, diag::note_struct_class_suggestion) 14435 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 14436 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 14437 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 14438 } 14439 } 14440 14441 return true; 14442 } 14443 14444 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 14445 /// from an outer enclosing namespace or file scope inside a friend declaration. 14446 /// This should provide the commented out code in the following snippet: 14447 /// namespace N { 14448 /// struct X; 14449 /// namespace M { 14450 /// struct Y { friend struct /*N::*/ X; }; 14451 /// } 14452 /// } 14453 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 14454 SourceLocation NameLoc) { 14455 // While the decl is in a namespace, do repeated lookup of that name and see 14456 // if we get the same namespace back. If we do not, continue until 14457 // translation unit scope, at which point we have a fully qualified NNS. 14458 SmallVector<IdentifierInfo *, 4> Namespaces; 14459 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 14460 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 14461 // This tag should be declared in a namespace, which can only be enclosed by 14462 // other namespaces. Bail if there's an anonymous namespace in the chain. 14463 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 14464 if (!Namespace || Namespace->isAnonymousNamespace()) 14465 return FixItHint(); 14466 IdentifierInfo *II = Namespace->getIdentifier(); 14467 Namespaces.push_back(II); 14468 NamedDecl *Lookup = SemaRef.LookupSingleName( 14469 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 14470 if (Lookup == Namespace) 14471 break; 14472 } 14473 14474 // Once we have all the namespaces, reverse them to go outermost first, and 14475 // build an NNS. 14476 SmallString<64> Insertion; 14477 llvm::raw_svector_ostream OS(Insertion); 14478 if (DC->isTranslationUnit()) 14479 OS << "::"; 14480 std::reverse(Namespaces.begin(), Namespaces.end()); 14481 for (auto *II : Namespaces) 14482 OS << II->getName() << "::"; 14483 return FixItHint::CreateInsertion(NameLoc, Insertion); 14484 } 14485 14486 /// Determine whether a tag originally declared in context \p OldDC can 14487 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup 14488 /// found a declaration in \p OldDC as a previous decl, perhaps through a 14489 /// using-declaration). 14490 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, 14491 DeclContext *NewDC) { 14492 OldDC = OldDC->getRedeclContext(); 14493 NewDC = NewDC->getRedeclContext(); 14494 14495 if (OldDC->Equals(NewDC)) 14496 return true; 14497 14498 // In MSVC mode, we allow a redeclaration if the contexts are related (either 14499 // encloses the other). 14500 if (S.getLangOpts().MSVCCompat && 14501 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) 14502 return true; 14503 14504 return false; 14505 } 14506 14507 /// This is invoked when we see 'struct foo' or 'struct {'. In the 14508 /// former case, Name will be non-null. In the later case, Name will be null. 14509 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 14510 /// reference/declaration/definition of a tag. 14511 /// 14512 /// \param IsTypeSpecifier \c true if this is a type-specifier (or 14513 /// trailing-type-specifier) other than one in an alias-declaration. 14514 /// 14515 /// \param SkipBody If non-null, will be set to indicate if the caller should 14516 /// skip the definition of this tag and treat it as if it were a declaration. 14517 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 14518 SourceLocation KWLoc, CXXScopeSpec &SS, 14519 IdentifierInfo *Name, SourceLocation NameLoc, 14520 const ParsedAttributesView &Attrs, AccessSpecifier AS, 14521 SourceLocation ModulePrivateLoc, 14522 MultiTemplateParamsArg TemplateParameterLists, 14523 bool &OwnedDecl, bool &IsDependent, 14524 SourceLocation ScopedEnumKWLoc, 14525 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, 14526 bool IsTypeSpecifier, bool IsTemplateParamOrArg, 14527 SkipBodyInfo *SkipBody) { 14528 // If this is not a definition, it must have a name. 14529 IdentifierInfo *OrigName = Name; 14530 assert((Name != nullptr || TUK == TUK_Definition) && 14531 "Nameless record must be a definition!"); 14532 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 14533 14534 OwnedDecl = false; 14535 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 14536 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 14537 14538 // FIXME: Check member specializations more carefully. 14539 bool isMemberSpecialization = false; 14540 bool Invalid = false; 14541 14542 // We only need to do this matching if we have template parameters 14543 // or a scope specifier, which also conveniently avoids this work 14544 // for non-C++ cases. 14545 if (TemplateParameterLists.size() > 0 || 14546 (SS.isNotEmpty() && TUK != TUK_Reference)) { 14547 if (TemplateParameterList *TemplateParams = 14548 MatchTemplateParametersToScopeSpecifier( 14549 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 14550 TUK == TUK_Friend, isMemberSpecialization, Invalid)) { 14551 if (Kind == TTK_Enum) { 14552 Diag(KWLoc, diag::err_enum_template); 14553 return nullptr; 14554 } 14555 14556 if (TemplateParams->size() > 0) { 14557 // This is a declaration or definition of a class template (which may 14558 // be a member of another template). 14559 14560 if (Invalid) 14561 return nullptr; 14562 14563 OwnedDecl = false; 14564 DeclResult Result = CheckClassTemplate( 14565 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, 14566 AS, ModulePrivateLoc, 14567 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 14568 TemplateParameterLists.data(), SkipBody); 14569 return Result.get(); 14570 } else { 14571 // The "template<>" header is extraneous. 14572 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 14573 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 14574 isMemberSpecialization = true; 14575 } 14576 } 14577 } 14578 14579 // Figure out the underlying type if this a enum declaration. We need to do 14580 // this early, because it's needed to detect if this is an incompatible 14581 // redeclaration. 14582 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 14583 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; 14584 14585 if (Kind == TTK_Enum) { 14586 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { 14587 // No underlying type explicitly specified, or we failed to parse the 14588 // type, default to int. 14589 EnumUnderlying = Context.IntTy.getTypePtr(); 14590 } else if (UnderlyingType.get()) { 14591 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 14592 // integral type; any cv-qualification is ignored. 14593 TypeSourceInfo *TI = nullptr; 14594 GetTypeFromParser(UnderlyingType.get(), &TI); 14595 EnumUnderlying = TI; 14596 14597 if (CheckEnumUnderlyingType(TI)) 14598 // Recover by falling back to int. 14599 EnumUnderlying = Context.IntTy.getTypePtr(); 14600 14601 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 14602 UPPC_FixedUnderlyingType)) 14603 EnumUnderlying = Context.IntTy.getTypePtr(); 14604 14605 } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 14606 // For MSVC ABI compatibility, unfixed enums must use an underlying type 14607 // of 'int'. However, if this is an unfixed forward declaration, don't set 14608 // the underlying type unless the user enables -fms-compatibility. This 14609 // makes unfixed forward declared enums incomplete and is more conforming. 14610 if (TUK == TUK_Definition || getLangOpts().MSVCCompat) 14611 EnumUnderlying = Context.IntTy.getTypePtr(); 14612 } 14613 } 14614 14615 DeclContext *SearchDC = CurContext; 14616 DeclContext *DC = CurContext; 14617 bool isStdBadAlloc = false; 14618 bool isStdAlignValT = false; 14619 14620 RedeclarationKind Redecl = forRedeclarationInCurContext(); 14621 if (TUK == TUK_Friend || TUK == TUK_Reference) 14622 Redecl = NotForRedeclaration; 14623 14624 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C 14625 /// implemented asks for structural equivalence checking, the returned decl 14626 /// here is passed back to the parser, allowing the tag body to be parsed. 14627 auto createTagFromNewDecl = [&]() -> TagDecl * { 14628 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); 14629 // If there is an identifier, use the location of the identifier as the 14630 // location of the decl, otherwise use the location of the struct/union 14631 // keyword. 14632 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 14633 TagDecl *New = nullptr; 14634 14635 if (Kind == TTK_Enum) { 14636 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, 14637 ScopedEnum, ScopedEnumUsesClassTag, IsFixed); 14638 // If this is an undefined enum, bail. 14639 if (TUK != TUK_Definition && !Invalid) 14640 return nullptr; 14641 if (EnumUnderlying) { 14642 EnumDecl *ED = cast<EnumDecl>(New); 14643 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) 14644 ED->setIntegerTypeSourceInfo(TI); 14645 else 14646 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); 14647 ED->setPromotionType(ED->getIntegerType()); 14648 } 14649 } else { // struct/union 14650 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 14651 nullptr); 14652 } 14653 14654 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 14655 // Add alignment attributes if necessary; these attributes are checked 14656 // when the ASTContext lays out the structure. 14657 // 14658 // It is important for implementing the correct semantics that this 14659 // happen here (in ActOnTag). The #pragma pack stack is 14660 // maintained as a result of parser callbacks which can occur at 14661 // many points during the parsing of a struct declaration (because 14662 // the #pragma tokens are effectively skipped over during the 14663 // parsing of the struct). 14664 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 14665 AddAlignmentAttributesForRecord(RD); 14666 AddMsStructLayoutForRecord(RD); 14667 } 14668 } 14669 New->setLexicalDeclContext(CurContext); 14670 return New; 14671 }; 14672 14673 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 14674 if (Name && SS.isNotEmpty()) { 14675 // We have a nested-name tag ('struct foo::bar'). 14676 14677 // Check for invalid 'foo::'. 14678 if (SS.isInvalid()) { 14679 Name = nullptr; 14680 goto CreateNewDecl; 14681 } 14682 14683 // If this is a friend or a reference to a class in a dependent 14684 // context, don't try to make a decl for it. 14685 if (TUK == TUK_Friend || TUK == TUK_Reference) { 14686 DC = computeDeclContext(SS, false); 14687 if (!DC) { 14688 IsDependent = true; 14689 return nullptr; 14690 } 14691 } else { 14692 DC = computeDeclContext(SS, true); 14693 if (!DC) { 14694 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 14695 << SS.getRange(); 14696 return nullptr; 14697 } 14698 } 14699 14700 if (RequireCompleteDeclContext(SS, DC)) 14701 return nullptr; 14702 14703 SearchDC = DC; 14704 // Look-up name inside 'foo::'. 14705 LookupQualifiedName(Previous, DC); 14706 14707 if (Previous.isAmbiguous()) 14708 return nullptr; 14709 14710 if (Previous.empty()) { 14711 // Name lookup did not find anything. However, if the 14712 // nested-name-specifier refers to the current instantiation, 14713 // and that current instantiation has any dependent base 14714 // classes, we might find something at instantiation time: treat 14715 // this as a dependent elaborated-type-specifier. 14716 // But this only makes any sense for reference-like lookups. 14717 if (Previous.wasNotFoundInCurrentInstantiation() && 14718 (TUK == TUK_Reference || TUK == TUK_Friend)) { 14719 IsDependent = true; 14720 return nullptr; 14721 } 14722 14723 // A tag 'foo::bar' must already exist. 14724 Diag(NameLoc, diag::err_not_tag_in_scope) 14725 << Kind << Name << DC << SS.getRange(); 14726 Name = nullptr; 14727 Invalid = true; 14728 goto CreateNewDecl; 14729 } 14730 } else if (Name) { 14731 // C++14 [class.mem]p14: 14732 // If T is the name of a class, then each of the following shall have a 14733 // name different from T: 14734 // -- every member of class T that is itself a type 14735 if (TUK != TUK_Reference && TUK != TUK_Friend && 14736 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) 14737 return nullptr; 14738 14739 // If this is a named struct, check to see if there was a previous forward 14740 // declaration or definition. 14741 // FIXME: We're looking into outer scopes here, even when we 14742 // shouldn't be. Doing so can result in ambiguities that we 14743 // shouldn't be diagnosing. 14744 LookupName(Previous, S); 14745 14746 // When declaring or defining a tag, ignore ambiguities introduced 14747 // by types using'ed into this scope. 14748 if (Previous.isAmbiguous() && 14749 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 14750 LookupResult::Filter F = Previous.makeFilter(); 14751 while (F.hasNext()) { 14752 NamedDecl *ND = F.next(); 14753 if (!ND->getDeclContext()->getRedeclContext()->Equals( 14754 SearchDC->getRedeclContext())) 14755 F.erase(); 14756 } 14757 F.done(); 14758 } 14759 14760 // C++11 [namespace.memdef]p3: 14761 // If the name in a friend declaration is neither qualified nor 14762 // a template-id and the declaration is a function or an 14763 // elaborated-type-specifier, the lookup to determine whether 14764 // the entity has been previously declared shall not consider 14765 // any scopes outside the innermost enclosing namespace. 14766 // 14767 // MSVC doesn't implement the above rule for types, so a friend tag 14768 // declaration may be a redeclaration of a type declared in an enclosing 14769 // scope. They do implement this rule for friend functions. 14770 // 14771 // Does it matter that this should be by scope instead of by 14772 // semantic context? 14773 if (!Previous.empty() && TUK == TUK_Friend) { 14774 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 14775 LookupResult::Filter F = Previous.makeFilter(); 14776 bool FriendSawTagOutsideEnclosingNamespace = false; 14777 while (F.hasNext()) { 14778 NamedDecl *ND = F.next(); 14779 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 14780 if (DC->isFileContext() && 14781 !EnclosingNS->Encloses(ND->getDeclContext())) { 14782 if (getLangOpts().MSVCCompat) 14783 FriendSawTagOutsideEnclosingNamespace = true; 14784 else 14785 F.erase(); 14786 } 14787 } 14788 F.done(); 14789 14790 // Diagnose this MSVC extension in the easy case where lookup would have 14791 // unambiguously found something outside the enclosing namespace. 14792 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 14793 NamedDecl *ND = Previous.getFoundDecl(); 14794 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 14795 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 14796 } 14797 } 14798 14799 // Note: there used to be some attempt at recovery here. 14800 if (Previous.isAmbiguous()) 14801 return nullptr; 14802 14803 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 14804 // FIXME: This makes sure that we ignore the contexts associated 14805 // with C structs, unions, and enums when looking for a matching 14806 // tag declaration or definition. See the similar lookup tweak 14807 // in Sema::LookupName; is there a better way to deal with this? 14808 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 14809 SearchDC = SearchDC->getParent(); 14810 } 14811 } 14812 14813 if (Previous.isSingleResult() && 14814 Previous.getFoundDecl()->isTemplateParameter()) { 14815 // Maybe we will complain about the shadowed template parameter. 14816 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 14817 // Just pretend that we didn't see the previous declaration. 14818 Previous.clear(); 14819 } 14820 14821 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 14822 DC->Equals(getStdNamespace())) { 14823 if (Name->isStr("bad_alloc")) { 14824 // This is a declaration of or a reference to "std::bad_alloc". 14825 isStdBadAlloc = true; 14826 14827 // If std::bad_alloc has been implicitly declared (but made invisible to 14828 // name lookup), fill in this implicit declaration as the previous 14829 // declaration, so that the declarations get chained appropriately. 14830 if (Previous.empty() && StdBadAlloc) 14831 Previous.addDecl(getStdBadAlloc()); 14832 } else if (Name->isStr("align_val_t")) { 14833 isStdAlignValT = true; 14834 if (Previous.empty() && StdAlignValT) 14835 Previous.addDecl(getStdAlignValT()); 14836 } 14837 } 14838 14839 // If we didn't find a previous declaration, and this is a reference 14840 // (or friend reference), move to the correct scope. In C++, we 14841 // also need to do a redeclaration lookup there, just in case 14842 // there's a shadow friend decl. 14843 if (Name && Previous.empty() && 14844 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { 14845 if (Invalid) goto CreateNewDecl; 14846 assert(SS.isEmpty()); 14847 14848 if (TUK == TUK_Reference || IsTemplateParamOrArg) { 14849 // C++ [basic.scope.pdecl]p5: 14850 // -- for an elaborated-type-specifier of the form 14851 // 14852 // class-key identifier 14853 // 14854 // if the elaborated-type-specifier is used in the 14855 // decl-specifier-seq or parameter-declaration-clause of a 14856 // function defined in namespace scope, the identifier is 14857 // declared as a class-name in the namespace that contains 14858 // the declaration; otherwise, except as a friend 14859 // declaration, the identifier is declared in the smallest 14860 // non-class, non-function-prototype scope that contains the 14861 // declaration. 14862 // 14863 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 14864 // C structs and unions. 14865 // 14866 // It is an error in C++ to declare (rather than define) an enum 14867 // type, including via an elaborated type specifier. We'll 14868 // diagnose that later; for now, declare the enum in the same 14869 // scope as we would have picked for any other tag type. 14870 // 14871 // GNU C also supports this behavior as part of its incomplete 14872 // enum types extension, while GNU C++ does not. 14873 // 14874 // Find the context where we'll be declaring the tag. 14875 // FIXME: We would like to maintain the current DeclContext as the 14876 // lexical context, 14877 SearchDC = getTagInjectionContext(SearchDC); 14878 14879 // Find the scope where we'll be declaring the tag. 14880 S = getTagInjectionScope(S, getLangOpts()); 14881 } else { 14882 assert(TUK == TUK_Friend); 14883 // C++ [namespace.memdef]p3: 14884 // If a friend declaration in a non-local class first declares a 14885 // class or function, the friend class or function is a member of 14886 // the innermost enclosing namespace. 14887 SearchDC = SearchDC->getEnclosingNamespaceContext(); 14888 } 14889 14890 // In C++, we need to do a redeclaration lookup to properly 14891 // diagnose some problems. 14892 // FIXME: redeclaration lookup is also used (with and without C++) to find a 14893 // hidden declaration so that we don't get ambiguity errors when using a 14894 // type declared by an elaborated-type-specifier. In C that is not correct 14895 // and we should instead merge compatible types found by lookup. 14896 if (getLangOpts().CPlusPlus) { 14897 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 14898 LookupQualifiedName(Previous, SearchDC); 14899 } else { 14900 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 14901 LookupName(Previous, S); 14902 } 14903 } 14904 14905 // If we have a known previous declaration to use, then use it. 14906 if (Previous.empty() && SkipBody && SkipBody->Previous) 14907 Previous.addDecl(SkipBody->Previous); 14908 14909 if (!Previous.empty()) { 14910 NamedDecl *PrevDecl = Previous.getFoundDecl(); 14911 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); 14912 14913 // It's okay to have a tag decl in the same scope as a typedef 14914 // which hides a tag decl in the same scope. Finding this 14915 // insanity with a redeclaration lookup can only actually happen 14916 // in C++. 14917 // 14918 // This is also okay for elaborated-type-specifiers, which is 14919 // technically forbidden by the current standard but which is 14920 // okay according to the likely resolution of an open issue; 14921 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 14922 if (getLangOpts().CPlusPlus) { 14923 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 14924 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 14925 TagDecl *Tag = TT->getDecl(); 14926 if (Tag->getDeclName() == Name && 14927 Tag->getDeclContext()->getRedeclContext() 14928 ->Equals(TD->getDeclContext()->getRedeclContext())) { 14929 PrevDecl = Tag; 14930 Previous.clear(); 14931 Previous.addDecl(Tag); 14932 Previous.resolveKind(); 14933 } 14934 } 14935 } 14936 } 14937 14938 // If this is a redeclaration of a using shadow declaration, it must 14939 // declare a tag in the same context. In MSVC mode, we allow a 14940 // redefinition if either context is within the other. 14941 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { 14942 auto *OldTag = dyn_cast<TagDecl>(PrevDecl); 14943 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && 14944 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && 14945 !(OldTag && isAcceptableTagRedeclContext( 14946 *this, OldTag->getDeclContext(), SearchDC))) { 14947 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 14948 Diag(Shadow->getTargetDecl()->getLocation(), 14949 diag::note_using_decl_target); 14950 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) 14951 << 0; 14952 // Recover by ignoring the old declaration. 14953 Previous.clear(); 14954 goto CreateNewDecl; 14955 } 14956 } 14957 14958 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 14959 // If this is a use of a previous tag, or if the tag is already declared 14960 // in the same scope (so that the definition/declaration completes or 14961 // rementions the tag), reuse the decl. 14962 if (TUK == TUK_Reference || TUK == TUK_Friend || 14963 isDeclInScope(DirectPrevDecl, SearchDC, S, 14964 SS.isNotEmpty() || isMemberSpecialization)) { 14965 // Make sure that this wasn't declared as an enum and now used as a 14966 // struct or something similar. 14967 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 14968 TUK == TUK_Definition, KWLoc, 14969 Name)) { 14970 bool SafeToContinue 14971 = (PrevTagDecl->getTagKind() != TTK_Enum && 14972 Kind != TTK_Enum); 14973 if (SafeToContinue) 14974 Diag(KWLoc, diag::err_use_with_wrong_tag) 14975 << Name 14976 << FixItHint::CreateReplacement(SourceRange(KWLoc), 14977 PrevTagDecl->getKindName()); 14978 else 14979 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 14980 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 14981 14982 if (SafeToContinue) 14983 Kind = PrevTagDecl->getTagKind(); 14984 else { 14985 // Recover by making this an anonymous redefinition. 14986 Name = nullptr; 14987 Previous.clear(); 14988 Invalid = true; 14989 } 14990 } 14991 14992 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 14993 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 14994 14995 // If this is an elaborated-type-specifier for a scoped enumeration, 14996 // the 'class' keyword is not necessary and not permitted. 14997 if (TUK == TUK_Reference || TUK == TUK_Friend) { 14998 if (ScopedEnum) 14999 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference) 15000 << PrevEnum->isScoped() 15001 << FixItHint::CreateRemoval(ScopedEnumKWLoc); 15002 return PrevTagDecl; 15003 } 15004 15005 QualType EnumUnderlyingTy; 15006 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15007 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 15008 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 15009 EnumUnderlyingTy = QualType(T, 0); 15010 15011 // All conflicts with previous declarations are recovered by 15012 // returning the previous declaration, unless this is a definition, 15013 // in which case we want the caller to bail out. 15014 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 15015 ScopedEnum, EnumUnderlyingTy, 15016 IsFixed, PrevEnum)) 15017 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 15018 } 15019 15020 // C++11 [class.mem]p1: 15021 // A member shall not be declared twice in the member-specification, 15022 // except that a nested class or member class template can be declared 15023 // and then later defined. 15024 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 15025 S->isDeclScope(PrevDecl)) { 15026 Diag(NameLoc, diag::ext_member_redeclared); 15027 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 15028 } 15029 15030 if (!Invalid) { 15031 // If this is a use, just return the declaration we found, unless 15032 // we have attributes. 15033 if (TUK == TUK_Reference || TUK == TUK_Friend) { 15034 if (!Attrs.empty()) { 15035 // FIXME: Diagnose these attributes. For now, we create a new 15036 // declaration to hold them. 15037 } else if (TUK == TUK_Reference && 15038 (PrevTagDecl->getFriendObjectKind() == 15039 Decl::FOK_Undeclared || 15040 PrevDecl->getOwningModule() != getCurrentModule()) && 15041 SS.isEmpty()) { 15042 // This declaration is a reference to an existing entity, but 15043 // has different visibility from that entity: it either makes 15044 // a friend visible or it makes a type visible in a new module. 15045 // In either case, create a new declaration. We only do this if 15046 // the declaration would have meant the same thing if no prior 15047 // declaration were found, that is, if it was found in the same 15048 // scope where we would have injected a declaration. 15049 if (!getTagInjectionContext(CurContext)->getRedeclContext() 15050 ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) 15051 return PrevTagDecl; 15052 // This is in the injected scope, create a new declaration in 15053 // that scope. 15054 S = getTagInjectionScope(S, getLangOpts()); 15055 } else { 15056 return PrevTagDecl; 15057 } 15058 } 15059 15060 // Diagnose attempts to redefine a tag. 15061 if (TUK == TUK_Definition) { 15062 if (NamedDecl *Def = PrevTagDecl->getDefinition()) { 15063 // If we're defining a specialization and the previous definition 15064 // is from an implicit instantiation, don't emit an error 15065 // here; we'll catch this in the general case below. 15066 bool IsExplicitSpecializationAfterInstantiation = false; 15067 if (isMemberSpecialization) { 15068 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 15069 IsExplicitSpecializationAfterInstantiation = 15070 RD->getTemplateSpecializationKind() != 15071 TSK_ExplicitSpecialization; 15072 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 15073 IsExplicitSpecializationAfterInstantiation = 15074 ED->getTemplateSpecializationKind() != 15075 TSK_ExplicitSpecialization; 15076 } 15077 15078 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do 15079 // not keep more that one definition around (merge them). However, 15080 // ensure the decl passes the structural compatibility check in 15081 // C11 6.2.7/1 (or 6.1.2.6/1 in C89). 15082 NamedDecl *Hidden = nullptr; 15083 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 15084 // There is a definition of this tag, but it is not visible. We 15085 // explicitly make use of C++'s one definition rule here, and 15086 // assume that this definition is identical to the hidden one 15087 // we already have. Make the existing definition visible and 15088 // use it in place of this one. 15089 if (!getLangOpts().CPlusPlus) { 15090 // Postpone making the old definition visible until after we 15091 // complete parsing the new one and do the structural 15092 // comparison. 15093 SkipBody->CheckSameAsPrevious = true; 15094 SkipBody->New = createTagFromNewDecl(); 15095 SkipBody->Previous = Def; 15096 return Def; 15097 } else { 15098 SkipBody->ShouldSkip = true; 15099 SkipBody->Previous = Def; 15100 makeMergedDefinitionVisible(Hidden); 15101 // Carry on and handle it like a normal definition. We'll 15102 // skip starting the definitiion later. 15103 } 15104 } else if (!IsExplicitSpecializationAfterInstantiation) { 15105 // A redeclaration in function prototype scope in C isn't 15106 // visible elsewhere, so merely issue a warning. 15107 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 15108 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 15109 else 15110 Diag(NameLoc, diag::err_redefinition) << Name; 15111 notePreviousDefinition(Def, 15112 NameLoc.isValid() ? NameLoc : KWLoc); 15113 // If this is a redefinition, recover by making this 15114 // struct be anonymous, which will make any later 15115 // references get the previous definition. 15116 Name = nullptr; 15117 Previous.clear(); 15118 Invalid = true; 15119 } 15120 } else { 15121 // If the type is currently being defined, complain 15122 // about a nested redefinition. 15123 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 15124 if (TD->isBeingDefined()) { 15125 Diag(NameLoc, diag::err_nested_redefinition) << Name; 15126 Diag(PrevTagDecl->getLocation(), 15127 diag::note_previous_definition); 15128 Name = nullptr; 15129 Previous.clear(); 15130 Invalid = true; 15131 } 15132 } 15133 15134 // Okay, this is definition of a previously declared or referenced 15135 // tag. We're going to create a new Decl for it. 15136 } 15137 15138 // Okay, we're going to make a redeclaration. If this is some kind 15139 // of reference, make sure we build the redeclaration in the same DC 15140 // as the original, and ignore the current access specifier. 15141 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15142 SearchDC = PrevTagDecl->getDeclContext(); 15143 AS = AS_none; 15144 } 15145 } 15146 // If we get here we have (another) forward declaration or we 15147 // have a definition. Just create a new decl. 15148 15149 } else { 15150 // If we get here, this is a definition of a new tag type in a nested 15151 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 15152 // new decl/type. We set PrevDecl to NULL so that the entities 15153 // have distinct types. 15154 Previous.clear(); 15155 } 15156 // If we get here, we're going to create a new Decl. If PrevDecl 15157 // is non-NULL, it's a definition of the tag declared by 15158 // PrevDecl. If it's NULL, we have a new definition. 15159 15160 // Otherwise, PrevDecl is not a tag, but was found with tag 15161 // lookup. This is only actually possible in C++, where a few 15162 // things like templates still live in the tag namespace. 15163 } else { 15164 // Use a better diagnostic if an elaborated-type-specifier 15165 // found the wrong kind of type on the first 15166 // (non-redeclaration) lookup. 15167 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 15168 !Previous.isForRedeclaration()) { 15169 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15170 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK 15171 << Kind; 15172 Diag(PrevDecl->getLocation(), diag::note_declared_at); 15173 Invalid = true; 15174 15175 // Otherwise, only diagnose if the declaration is in scope. 15176 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, 15177 SS.isNotEmpty() || isMemberSpecialization)) { 15178 // do nothing 15179 15180 // Diagnose implicit declarations introduced by elaborated types. 15181 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 15182 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15183 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; 15184 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15185 Invalid = true; 15186 15187 // Otherwise it's a declaration. Call out a particularly common 15188 // case here. 15189 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15190 unsigned Kind = 0; 15191 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 15192 Diag(NameLoc, diag::err_tag_definition_of_typedef) 15193 << Name << Kind << TND->getUnderlyingType(); 15194 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15195 Invalid = true; 15196 15197 // Otherwise, diagnose. 15198 } else { 15199 // The tag name clashes with something else in the target scope, 15200 // issue an error and recover by making this tag be anonymous. 15201 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 15202 notePreviousDefinition(PrevDecl, NameLoc); 15203 Name = nullptr; 15204 Invalid = true; 15205 } 15206 15207 // The existing declaration isn't relevant to us; we're in a 15208 // new scope, so clear out the previous declaration. 15209 Previous.clear(); 15210 } 15211 } 15212 15213 CreateNewDecl: 15214 15215 TagDecl *PrevDecl = nullptr; 15216 if (Previous.isSingleResult()) 15217 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 15218 15219 // If there is an identifier, use the location of the identifier as the 15220 // location of the decl, otherwise use the location of the struct/union 15221 // keyword. 15222 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15223 15224 // Otherwise, create a new declaration. If there is a previous 15225 // declaration of the same entity, the two will be linked via 15226 // PrevDecl. 15227 TagDecl *New; 15228 15229 if (Kind == TTK_Enum) { 15230 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15231 // enum X { A, B, C } D; D should chain to X. 15232 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 15233 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 15234 ScopedEnumUsesClassTag, IsFixed); 15235 15236 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) 15237 StdAlignValT = cast<EnumDecl>(New); 15238 15239 // If this is an undefined enum, warn. 15240 if (TUK != TUK_Definition && !Invalid) { 15241 TagDecl *Def; 15242 if (IsFixed && cast<EnumDecl>(New)->isFixed()) { 15243 // C++0x: 7.2p2: opaque-enum-declaration. 15244 // Conflicts are diagnosed above. Do nothing. 15245 } 15246 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 15247 Diag(Loc, diag::ext_forward_ref_enum_def) 15248 << New; 15249 Diag(Def->getLocation(), diag::note_previous_definition); 15250 } else { 15251 unsigned DiagID = diag::ext_forward_ref_enum; 15252 if (getLangOpts().MSVCCompat) 15253 DiagID = diag::ext_ms_forward_ref_enum; 15254 else if (getLangOpts().CPlusPlus) 15255 DiagID = diag::err_forward_ref_enum; 15256 Diag(Loc, DiagID); 15257 } 15258 } 15259 15260 if (EnumUnderlying) { 15261 EnumDecl *ED = cast<EnumDecl>(New); 15262 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15263 ED->setIntegerTypeSourceInfo(TI); 15264 else 15265 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 15266 ED->setPromotionType(ED->getIntegerType()); 15267 assert(ED->isComplete() && "enum with type should be complete"); 15268 } 15269 } else { 15270 // struct/union/class 15271 15272 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15273 // struct X { int A; } D; D should chain to X. 15274 if (getLangOpts().CPlusPlus) { 15275 // FIXME: Look for a way to use RecordDecl for simple structs. 15276 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15277 cast_or_null<CXXRecordDecl>(PrevDecl)); 15278 15279 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 15280 StdBadAlloc = cast<CXXRecordDecl>(New); 15281 } else 15282 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15283 cast_or_null<RecordDecl>(PrevDecl)); 15284 } 15285 15286 // C++11 [dcl.type]p3: 15287 // A type-specifier-seq shall not define a class or enumeration [...]. 15288 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && 15289 TUK == TUK_Definition) { 15290 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 15291 << Context.getTagDeclType(New); 15292 Invalid = true; 15293 } 15294 15295 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && 15296 DC->getDeclKind() == Decl::Enum) { 15297 Diag(New->getLocation(), diag::err_type_defined_in_enum) 15298 << Context.getTagDeclType(New); 15299 Invalid = true; 15300 } 15301 15302 // Maybe add qualifier info. 15303 if (SS.isNotEmpty()) { 15304 if (SS.isSet()) { 15305 // If this is either a declaration or a definition, check the 15306 // nested-name-specifier against the current context. 15307 if ((TUK == TUK_Definition || TUK == TUK_Declaration) && 15308 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, 15309 isMemberSpecialization)) 15310 Invalid = true; 15311 15312 New->setQualifierInfo(SS.getWithLocInContext(Context)); 15313 if (TemplateParameterLists.size() > 0) { 15314 New->setTemplateParameterListsInfo(Context, TemplateParameterLists); 15315 } 15316 } 15317 else 15318 Invalid = true; 15319 } 15320 15321 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15322 // Add alignment attributes if necessary; these attributes are checked when 15323 // the ASTContext lays out the structure. 15324 // 15325 // It is important for implementing the correct semantics that this 15326 // happen here (in ActOnTag). The #pragma pack stack is 15327 // maintained as a result of parser callbacks which can occur at 15328 // many points during the parsing of a struct declaration (because 15329 // the #pragma tokens are effectively skipped over during the 15330 // parsing of the struct). 15331 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15332 AddAlignmentAttributesForRecord(RD); 15333 AddMsStructLayoutForRecord(RD); 15334 } 15335 } 15336 15337 if (ModulePrivateLoc.isValid()) { 15338 if (isMemberSpecialization) 15339 Diag(New->getLocation(), diag::err_module_private_specialization) 15340 << 2 15341 << FixItHint::CreateRemoval(ModulePrivateLoc); 15342 // __module_private__ does not apply to local classes. However, we only 15343 // diagnose this as an error when the declaration specifiers are 15344 // freestanding. Here, we just ignore the __module_private__. 15345 else if (!SearchDC->isFunctionOrMethod()) 15346 New->setModulePrivate(); 15347 } 15348 15349 // If this is a specialization of a member class (of a class template), 15350 // check the specialization. 15351 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) 15352 Invalid = true; 15353 15354 // If we're declaring or defining a tag in function prototype scope in C, 15355 // note that this type can only be used within the function and add it to 15356 // the list of decls to inject into the function definition scope. 15357 if ((Name || Kind == TTK_Enum) && 15358 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 15359 if (getLangOpts().CPlusPlus) { 15360 // C++ [dcl.fct]p6: 15361 // Types shall not be defined in return or parameter types. 15362 if (TUK == TUK_Definition && !IsTypeSpecifier) { 15363 Diag(Loc, diag::err_type_defined_in_param_type) 15364 << Name; 15365 Invalid = true; 15366 } 15367 } else if (!PrevDecl) { 15368 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 15369 } 15370 } 15371 15372 if (Invalid) 15373 New->setInvalidDecl(); 15374 15375 // Set the lexical context. If the tag has a C++ scope specifier, the 15376 // lexical context will be different from the semantic context. 15377 New->setLexicalDeclContext(CurContext); 15378 15379 // Mark this as a friend decl if applicable. 15380 // In Microsoft mode, a friend declaration also acts as a forward 15381 // declaration so we always pass true to setObjectOfFriendDecl to make 15382 // the tag name visible. 15383 if (TUK == TUK_Friend) 15384 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 15385 15386 // Set the access specifier. 15387 if (!Invalid && SearchDC->isRecord()) 15388 SetMemberAccessSpecifier(New, PrevDecl, AS); 15389 15390 if (PrevDecl) 15391 CheckRedeclarationModuleOwnership(New, PrevDecl); 15392 15393 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 15394 New->startDefinition(); 15395 15396 ProcessDeclAttributeList(S, New, Attrs); 15397 AddPragmaAttributes(S, New); 15398 15399 // If this has an identifier, add it to the scope stack. 15400 if (TUK == TUK_Friend) { 15401 // We might be replacing an existing declaration in the lookup tables; 15402 // if so, borrow its access specifier. 15403 if (PrevDecl) 15404 New->setAccess(PrevDecl->getAccess()); 15405 15406 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 15407 DC->makeDeclVisibleInContext(New); 15408 if (Name) // can be null along some error paths 15409 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 15410 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 15411 } else if (Name) { 15412 S = getNonFieldDeclScope(S); 15413 PushOnScopeChains(New, S, true); 15414 } else { 15415 CurContext->addDecl(New); 15416 } 15417 15418 // If this is the C FILE type, notify the AST context. 15419 if (IdentifierInfo *II = New->getIdentifier()) 15420 if (!New->isInvalidDecl() && 15421 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 15422 II->isStr("FILE")) 15423 Context.setFILEDecl(New); 15424 15425 if (PrevDecl) 15426 mergeDeclAttributes(New, PrevDecl); 15427 15428 // If there's a #pragma GCC visibility in scope, set the visibility of this 15429 // record. 15430 AddPushedVisibilityAttribute(New); 15431 15432 if (isMemberSpecialization && !New->isInvalidDecl()) 15433 CompleteMemberSpecialization(New, Previous); 15434 15435 OwnedDecl = true; 15436 // In C++, don't return an invalid declaration. We can't recover well from 15437 // the cases where we make the type anonymous. 15438 if (Invalid && getLangOpts().CPlusPlus) { 15439 if (New->isBeingDefined()) 15440 if (auto RD = dyn_cast<RecordDecl>(New)) 15441 RD->completeDefinition(); 15442 return nullptr; 15443 } else if (SkipBody && SkipBody->ShouldSkip) { 15444 return SkipBody->Previous; 15445 } else { 15446 return New; 15447 } 15448 } 15449 15450 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 15451 AdjustDeclIfTemplate(TagD); 15452 TagDecl *Tag = cast<TagDecl>(TagD); 15453 15454 // Enter the tag context. 15455 PushDeclContext(S, Tag); 15456 15457 ActOnDocumentableDecl(TagD); 15458 15459 // If there's a #pragma GCC visibility in scope, set the visibility of this 15460 // record. 15461 AddPushedVisibilityAttribute(Tag); 15462 } 15463 15464 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, 15465 SkipBodyInfo &SkipBody) { 15466 if (!hasStructuralCompatLayout(Prev, SkipBody.New)) 15467 return false; 15468 15469 // Make the previous decl visible. 15470 makeMergedDefinitionVisible(SkipBody.Previous); 15471 return true; 15472 } 15473 15474 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 15475 assert(isa<ObjCContainerDecl>(IDecl) && 15476 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 15477 DeclContext *OCD = cast<DeclContext>(IDecl); 15478 assert(getContainingDC(OCD) == CurContext && 15479 "The next DeclContext should be lexically contained in the current one."); 15480 CurContext = OCD; 15481 return IDecl; 15482 } 15483 15484 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 15485 SourceLocation FinalLoc, 15486 bool IsFinalSpelledSealed, 15487 SourceLocation LBraceLoc) { 15488 AdjustDeclIfTemplate(TagD); 15489 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 15490 15491 FieldCollector->StartClass(); 15492 15493 if (!Record->getIdentifier()) 15494 return; 15495 15496 if (FinalLoc.isValid()) 15497 Record->addAttr(new (Context) 15498 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed)); 15499 15500 // C++ [class]p2: 15501 // [...] The class-name is also inserted into the scope of the 15502 // class itself; this is known as the injected-class-name. For 15503 // purposes of access checking, the injected-class-name is treated 15504 // as if it were a public member name. 15505 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( 15506 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), 15507 Record->getLocation(), Record->getIdentifier(), 15508 /*PrevDecl=*/nullptr, 15509 /*DelayTypeCreation=*/true); 15510 Context.getTypeDeclType(InjectedClassName, Record); 15511 InjectedClassName->setImplicit(); 15512 InjectedClassName->setAccess(AS_public); 15513 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 15514 InjectedClassName->setDescribedClassTemplate(Template); 15515 PushOnScopeChains(InjectedClassName, S); 15516 assert(InjectedClassName->isInjectedClassName() && 15517 "Broken injected-class-name"); 15518 } 15519 15520 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 15521 SourceRange BraceRange) { 15522 AdjustDeclIfTemplate(TagD); 15523 TagDecl *Tag = cast<TagDecl>(TagD); 15524 Tag->setBraceRange(BraceRange); 15525 15526 // Make sure we "complete" the definition even it is invalid. 15527 if (Tag->isBeingDefined()) { 15528 assert(Tag->isInvalidDecl() && "We should already have completed it"); 15529 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 15530 RD->completeDefinition(); 15531 } 15532 15533 if (isa<CXXRecordDecl>(Tag)) { 15534 FieldCollector->FinishClass(); 15535 } 15536 15537 // Exit this scope of this tag's definition. 15538 PopDeclContext(); 15539 15540 if (getCurLexicalContext()->isObjCContainer() && 15541 Tag->getDeclContext()->isFileContext()) 15542 Tag->setTopLevelDeclInObjCContainer(); 15543 15544 // Notify the consumer that we've defined a tag. 15545 if (!Tag->isInvalidDecl()) 15546 Consumer.HandleTagDeclDefinition(Tag); 15547 } 15548 15549 void Sema::ActOnObjCContainerFinishDefinition() { 15550 // Exit this scope of this interface definition. 15551 PopDeclContext(); 15552 } 15553 15554 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 15555 assert(DC == CurContext && "Mismatch of container contexts"); 15556 OriginalLexicalContext = DC; 15557 ActOnObjCContainerFinishDefinition(); 15558 } 15559 15560 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 15561 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 15562 OriginalLexicalContext = nullptr; 15563 } 15564 15565 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 15566 AdjustDeclIfTemplate(TagD); 15567 TagDecl *Tag = cast<TagDecl>(TagD); 15568 Tag->setInvalidDecl(); 15569 15570 // Make sure we "complete" the definition even it is invalid. 15571 if (Tag->isBeingDefined()) { 15572 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 15573 RD->completeDefinition(); 15574 } 15575 15576 // We're undoing ActOnTagStartDefinition here, not 15577 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 15578 // the FieldCollector. 15579 15580 PopDeclContext(); 15581 } 15582 15583 // Note that FieldName may be null for anonymous bitfields. 15584 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 15585 IdentifierInfo *FieldName, 15586 QualType FieldTy, bool IsMsStruct, 15587 Expr *BitWidth, bool *ZeroWidth) { 15588 // Default to true; that shouldn't confuse checks for emptiness 15589 if (ZeroWidth) 15590 *ZeroWidth = true; 15591 15592 // C99 6.7.2.1p4 - verify the field type. 15593 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 15594 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 15595 // Handle incomplete types with specific error. 15596 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete)) 15597 return ExprError(); 15598 if (FieldName) 15599 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 15600 << FieldName << FieldTy << BitWidth->getSourceRange(); 15601 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 15602 << FieldTy << BitWidth->getSourceRange(); 15603 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 15604 UPPC_BitFieldWidth)) 15605 return ExprError(); 15606 15607 // If the bit-width is type- or value-dependent, don't try to check 15608 // it now. 15609 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 15610 return BitWidth; 15611 15612 llvm::APSInt Value; 15613 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 15614 if (ICE.isInvalid()) 15615 return ICE; 15616 BitWidth = ICE.get(); 15617 15618 if (Value != 0 && ZeroWidth) 15619 *ZeroWidth = false; 15620 15621 // Zero-width bitfield is ok for anonymous field. 15622 if (Value == 0 && FieldName) 15623 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 15624 15625 if (Value.isSigned() && Value.isNegative()) { 15626 if (FieldName) 15627 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 15628 << FieldName << Value.toString(10); 15629 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 15630 << Value.toString(10); 15631 } 15632 15633 if (!FieldTy->isDependentType()) { 15634 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); 15635 uint64_t TypeWidth = Context.getIntWidth(FieldTy); 15636 bool BitfieldIsOverwide = Value.ugt(TypeWidth); 15637 15638 // Over-wide bitfields are an error in C or when using the MSVC bitfield 15639 // ABI. 15640 bool CStdConstraintViolation = 15641 BitfieldIsOverwide && !getLangOpts().CPlusPlus; 15642 bool MSBitfieldViolation = 15643 Value.ugt(TypeStorageSize) && 15644 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); 15645 if (CStdConstraintViolation || MSBitfieldViolation) { 15646 unsigned DiagWidth = 15647 CStdConstraintViolation ? TypeWidth : TypeStorageSize; 15648 if (FieldName) 15649 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) 15650 << FieldName << (unsigned)Value.getZExtValue() 15651 << !CStdConstraintViolation << DiagWidth; 15652 15653 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) 15654 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation 15655 << DiagWidth; 15656 } 15657 15658 // Warn on types where the user might conceivably expect to get all 15659 // specified bits as value bits: that's all integral types other than 15660 // 'bool'. 15661 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) { 15662 if (FieldName) 15663 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) 15664 << FieldName << (unsigned)Value.getZExtValue() 15665 << (unsigned)TypeWidth; 15666 else 15667 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width) 15668 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth; 15669 } 15670 } 15671 15672 return BitWidth; 15673 } 15674 15675 /// ActOnField - Each field of a C struct/union is passed into this in order 15676 /// to create a FieldDecl object for it. 15677 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 15678 Declarator &D, Expr *BitfieldWidth) { 15679 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 15680 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 15681 /*InitStyle=*/ICIS_NoInit, AS_public); 15682 return Res; 15683 } 15684 15685 /// HandleField - Analyze a field of a C struct or a C++ data member. 15686 /// 15687 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 15688 SourceLocation DeclStart, 15689 Declarator &D, Expr *BitWidth, 15690 InClassInitStyle InitStyle, 15691 AccessSpecifier AS) { 15692 if (D.isDecompositionDeclarator()) { 15693 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 15694 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 15695 << Decomp.getSourceRange(); 15696 return nullptr; 15697 } 15698 15699 IdentifierInfo *II = D.getIdentifier(); 15700 SourceLocation Loc = DeclStart; 15701 if (II) Loc = D.getIdentifierLoc(); 15702 15703 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 15704 QualType T = TInfo->getType(); 15705 if (getLangOpts().CPlusPlus) { 15706 CheckExtraCXXDefaultArguments(D); 15707 15708 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 15709 UPPC_DataMemberType)) { 15710 D.setInvalidType(); 15711 T = Context.IntTy; 15712 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 15713 } 15714 } 15715 15716 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 15717 15718 if (D.getDeclSpec().isInlineSpecified()) 15719 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 15720 << getLangOpts().CPlusPlus17; 15721 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 15722 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 15723 diag::err_invalid_thread) 15724 << DeclSpec::getSpecifierName(TSCS); 15725 15726 // Check to see if this name was declared as a member previously 15727 NamedDecl *PrevDecl = nullptr; 15728 LookupResult Previous(*this, II, Loc, LookupMemberName, 15729 ForVisibleRedeclaration); 15730 LookupName(Previous, S); 15731 switch (Previous.getResultKind()) { 15732 case LookupResult::Found: 15733 case LookupResult::FoundUnresolvedValue: 15734 PrevDecl = Previous.getAsSingle<NamedDecl>(); 15735 break; 15736 15737 case LookupResult::FoundOverloaded: 15738 PrevDecl = Previous.getRepresentativeDecl(); 15739 break; 15740 15741 case LookupResult::NotFound: 15742 case LookupResult::NotFoundInCurrentInstantiation: 15743 case LookupResult::Ambiguous: 15744 break; 15745 } 15746 Previous.suppressDiagnostics(); 15747 15748 if (PrevDecl && PrevDecl->isTemplateParameter()) { 15749 // Maybe we will complain about the shadowed template parameter. 15750 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 15751 // Just pretend that we didn't see the previous declaration. 15752 PrevDecl = nullptr; 15753 } 15754 15755 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 15756 PrevDecl = nullptr; 15757 15758 bool Mutable 15759 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 15760 SourceLocation TSSL = D.getBeginLoc(); 15761 FieldDecl *NewFD 15762 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 15763 TSSL, AS, PrevDecl, &D); 15764 15765 if (NewFD->isInvalidDecl()) 15766 Record->setInvalidDecl(); 15767 15768 if (D.getDeclSpec().isModulePrivateSpecified()) 15769 NewFD->setModulePrivate(); 15770 15771 if (NewFD->isInvalidDecl() && PrevDecl) { 15772 // Don't introduce NewFD into scope; there's already something 15773 // with the same name in the same scope. 15774 } else if (II) { 15775 PushOnScopeChains(NewFD, S); 15776 } else 15777 Record->addDecl(NewFD); 15778 15779 return NewFD; 15780 } 15781 15782 /// Build a new FieldDecl and check its well-formedness. 15783 /// 15784 /// This routine builds a new FieldDecl given the fields name, type, 15785 /// record, etc. \p PrevDecl should refer to any previous declaration 15786 /// with the same name and in the same scope as the field to be 15787 /// created. 15788 /// 15789 /// \returns a new FieldDecl. 15790 /// 15791 /// \todo The Declarator argument is a hack. It will be removed once 15792 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 15793 TypeSourceInfo *TInfo, 15794 RecordDecl *Record, SourceLocation Loc, 15795 bool Mutable, Expr *BitWidth, 15796 InClassInitStyle InitStyle, 15797 SourceLocation TSSL, 15798 AccessSpecifier AS, NamedDecl *PrevDecl, 15799 Declarator *D) { 15800 IdentifierInfo *II = Name.getAsIdentifierInfo(); 15801 bool InvalidDecl = false; 15802 if (D) InvalidDecl = D->isInvalidType(); 15803 15804 // If we receive a broken type, recover by assuming 'int' and 15805 // marking this declaration as invalid. 15806 if (T.isNull()) { 15807 InvalidDecl = true; 15808 T = Context.IntTy; 15809 } 15810 15811 QualType EltTy = Context.getBaseElementType(T); 15812 if (!EltTy->isDependentType()) { 15813 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) { 15814 // Fields of incomplete type force their record to be invalid. 15815 Record->setInvalidDecl(); 15816 InvalidDecl = true; 15817 } else { 15818 NamedDecl *Def; 15819 EltTy->isIncompleteType(&Def); 15820 if (Def && Def->isInvalidDecl()) { 15821 Record->setInvalidDecl(); 15822 InvalidDecl = true; 15823 } 15824 } 15825 } 15826 15827 // TR 18037 does not allow fields to be declared with address space 15828 if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() || 15829 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { 15830 Diag(Loc, diag::err_field_with_address_space); 15831 Record->setInvalidDecl(); 15832 InvalidDecl = true; 15833 } 15834 15835 if (LangOpts.OpenCL) { 15836 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be 15837 // used as structure or union field: image, sampler, event or block types. 15838 if (T->isEventT() || T->isImageType() || T->isSamplerT() || 15839 T->isBlockPointerType()) { 15840 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; 15841 Record->setInvalidDecl(); 15842 InvalidDecl = true; 15843 } 15844 // OpenCL v1.2 s6.9.c: bitfields are not supported. 15845 if (BitWidth) { 15846 Diag(Loc, diag::err_opencl_bitfields); 15847 InvalidDecl = true; 15848 } 15849 } 15850 15851 // Anonymous bit-fields cannot be cv-qualified (CWG 2229). 15852 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && 15853 T.hasQualifiers()) { 15854 InvalidDecl = true; 15855 Diag(Loc, diag::err_anon_bitfield_qualifiers); 15856 } 15857 15858 // C99 6.7.2.1p8: A member of a structure or union may have any type other 15859 // than a variably modified type. 15860 if (!InvalidDecl && T->isVariablyModifiedType()) { 15861 bool SizeIsNegative; 15862 llvm::APSInt Oversized; 15863 15864 TypeSourceInfo *FixedTInfo = 15865 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 15866 SizeIsNegative, 15867 Oversized); 15868 if (FixedTInfo) { 15869 Diag(Loc, diag::warn_illegal_constant_array_size); 15870 TInfo = FixedTInfo; 15871 T = FixedTInfo->getType(); 15872 } else { 15873 if (SizeIsNegative) 15874 Diag(Loc, diag::err_typecheck_negative_array_size); 15875 else if (Oversized.getBoolValue()) 15876 Diag(Loc, diag::err_array_too_large) 15877 << Oversized.toString(10); 15878 else 15879 Diag(Loc, diag::err_typecheck_field_variable_size); 15880 InvalidDecl = true; 15881 } 15882 } 15883 15884 // Fields can not have abstract class types 15885 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 15886 diag::err_abstract_type_in_decl, 15887 AbstractFieldType)) 15888 InvalidDecl = true; 15889 15890 bool ZeroWidth = false; 15891 if (InvalidDecl) 15892 BitWidth = nullptr; 15893 // If this is declared as a bit-field, check the bit-field. 15894 if (BitWidth) { 15895 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 15896 &ZeroWidth).get(); 15897 if (!BitWidth) { 15898 InvalidDecl = true; 15899 BitWidth = nullptr; 15900 ZeroWidth = false; 15901 } 15902 } 15903 15904 // Check that 'mutable' is consistent with the type of the declaration. 15905 if (!InvalidDecl && Mutable) { 15906 unsigned DiagID = 0; 15907 if (T->isReferenceType()) 15908 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference 15909 : diag::err_mutable_reference; 15910 else if (T.isConstQualified()) 15911 DiagID = diag::err_mutable_const; 15912 15913 if (DiagID) { 15914 SourceLocation ErrLoc = Loc; 15915 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 15916 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 15917 Diag(ErrLoc, DiagID); 15918 if (DiagID != diag::ext_mutable_reference) { 15919 Mutable = false; 15920 InvalidDecl = true; 15921 } 15922 } 15923 } 15924 15925 // C++11 [class.union]p8 (DR1460): 15926 // At most one variant member of a union may have a 15927 // brace-or-equal-initializer. 15928 if (InitStyle != ICIS_NoInit) 15929 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 15930 15931 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 15932 BitWidth, Mutable, InitStyle); 15933 if (InvalidDecl) 15934 NewFD->setInvalidDecl(); 15935 15936 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 15937 Diag(Loc, diag::err_duplicate_member) << II; 15938 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 15939 NewFD->setInvalidDecl(); 15940 } 15941 15942 if (!InvalidDecl && getLangOpts().CPlusPlus) { 15943 if (Record->isUnion()) { 15944 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 15945 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 15946 if (RDecl->getDefinition()) { 15947 // C++ [class.union]p1: An object of a class with a non-trivial 15948 // constructor, a non-trivial copy constructor, a non-trivial 15949 // destructor, or a non-trivial copy assignment operator 15950 // cannot be a member of a union, nor can an array of such 15951 // objects. 15952 if (CheckNontrivialField(NewFD)) 15953 NewFD->setInvalidDecl(); 15954 } 15955 } 15956 15957 // C++ [class.union]p1: If a union contains a member of reference type, 15958 // the program is ill-formed, except when compiling with MSVC extensions 15959 // enabled. 15960 if (EltTy->isReferenceType()) { 15961 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 15962 diag::ext_union_member_of_reference_type : 15963 diag::err_union_member_of_reference_type) 15964 << NewFD->getDeclName() << EltTy; 15965 if (!getLangOpts().MicrosoftExt) 15966 NewFD->setInvalidDecl(); 15967 } 15968 } 15969 } 15970 15971 // FIXME: We need to pass in the attributes given an AST 15972 // representation, not a parser representation. 15973 if (D) { 15974 // FIXME: The current scope is almost... but not entirely... correct here. 15975 ProcessDeclAttributes(getCurScope(), NewFD, *D); 15976 15977 if (NewFD->hasAttrs()) 15978 CheckAlignasUnderalignment(NewFD); 15979 } 15980 15981 // In auto-retain/release, infer strong retension for fields of 15982 // retainable type. 15983 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 15984 NewFD->setInvalidDecl(); 15985 15986 if (T.isObjCGCWeak()) 15987 Diag(Loc, diag::warn_attribute_weak_on_field); 15988 15989 NewFD->setAccess(AS); 15990 return NewFD; 15991 } 15992 15993 bool Sema::CheckNontrivialField(FieldDecl *FD) { 15994 assert(FD); 15995 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 15996 15997 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 15998 return false; 15999 16000 QualType EltTy = Context.getBaseElementType(FD->getType()); 16001 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16002 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16003 if (RDecl->getDefinition()) { 16004 // We check for copy constructors before constructors 16005 // because otherwise we'll never get complaints about 16006 // copy constructors. 16007 16008 CXXSpecialMember member = CXXInvalid; 16009 // We're required to check for any non-trivial constructors. Since the 16010 // implicit default constructor is suppressed if there are any 16011 // user-declared constructors, we just need to check that there is a 16012 // trivial default constructor and a trivial copy constructor. (We don't 16013 // worry about move constructors here, since this is a C++98 check.) 16014 if (RDecl->hasNonTrivialCopyConstructor()) 16015 member = CXXCopyConstructor; 16016 else if (!RDecl->hasTrivialDefaultConstructor()) 16017 member = CXXDefaultConstructor; 16018 else if (RDecl->hasNonTrivialCopyAssignment()) 16019 member = CXXCopyAssignment; 16020 else if (RDecl->hasNonTrivialDestructor()) 16021 member = CXXDestructor; 16022 16023 if (member != CXXInvalid) { 16024 if (!getLangOpts().CPlusPlus11 && 16025 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 16026 // Objective-C++ ARC: it is an error to have a non-trivial field of 16027 // a union. However, system headers in Objective-C programs 16028 // occasionally have Objective-C lifetime objects within unions, 16029 // and rather than cause the program to fail, we make those 16030 // members unavailable. 16031 SourceLocation Loc = FD->getLocation(); 16032 if (getSourceManager().isInSystemHeader(Loc)) { 16033 if (!FD->hasAttr<UnavailableAttr>()) 16034 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", 16035 UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); 16036 return false; 16037 } 16038 } 16039 16040 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 16041 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 16042 diag::err_illegal_union_or_anon_struct_member) 16043 << FD->getParent()->isUnion() << FD->getDeclName() << member; 16044 DiagnoseNontrivial(RDecl, member); 16045 return !getLangOpts().CPlusPlus11; 16046 } 16047 } 16048 } 16049 16050 return false; 16051 } 16052 16053 /// TranslateIvarVisibility - Translate visibility from a token ID to an 16054 /// AST enum value. 16055 static ObjCIvarDecl::AccessControl 16056 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 16057 switch (ivarVisibility) { 16058 default: llvm_unreachable("Unknown visitibility kind"); 16059 case tok::objc_private: return ObjCIvarDecl::Private; 16060 case tok::objc_public: return ObjCIvarDecl::Public; 16061 case tok::objc_protected: return ObjCIvarDecl::Protected; 16062 case tok::objc_package: return ObjCIvarDecl::Package; 16063 } 16064 } 16065 16066 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 16067 /// in order to create an IvarDecl object for it. 16068 Decl *Sema::ActOnIvar(Scope *S, 16069 SourceLocation DeclStart, 16070 Declarator &D, Expr *BitfieldWidth, 16071 tok::ObjCKeywordKind Visibility) { 16072 16073 IdentifierInfo *II = D.getIdentifier(); 16074 Expr *BitWidth = (Expr*)BitfieldWidth; 16075 SourceLocation Loc = DeclStart; 16076 if (II) Loc = D.getIdentifierLoc(); 16077 16078 // FIXME: Unnamed fields can be handled in various different ways, for 16079 // example, unnamed unions inject all members into the struct namespace! 16080 16081 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16082 QualType T = TInfo->getType(); 16083 16084 if (BitWidth) { 16085 // 6.7.2.1p3, 6.7.2.1p4 16086 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 16087 if (!BitWidth) 16088 D.setInvalidType(); 16089 } else { 16090 // Not a bitfield. 16091 16092 // validate II. 16093 16094 } 16095 if (T->isReferenceType()) { 16096 Diag(Loc, diag::err_ivar_reference_type); 16097 D.setInvalidType(); 16098 } 16099 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16100 // than a variably modified type. 16101 else if (T->isVariablyModifiedType()) { 16102 Diag(Loc, diag::err_typecheck_ivar_variable_size); 16103 D.setInvalidType(); 16104 } 16105 16106 // Get the visibility (access control) for this ivar. 16107 ObjCIvarDecl::AccessControl ac = 16108 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 16109 : ObjCIvarDecl::None; 16110 // Must set ivar's DeclContext to its enclosing interface. 16111 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 16112 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 16113 return nullptr; 16114 ObjCContainerDecl *EnclosingContext; 16115 if (ObjCImplementationDecl *IMPDecl = 16116 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 16117 if (LangOpts.ObjCRuntime.isFragile()) { 16118 // Case of ivar declared in an implementation. Context is that of its class. 16119 EnclosingContext = IMPDecl->getClassInterface(); 16120 assert(EnclosingContext && "Implementation has no class interface!"); 16121 } 16122 else 16123 EnclosingContext = EnclosingDecl; 16124 } else { 16125 if (ObjCCategoryDecl *CDecl = 16126 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 16127 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 16128 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 16129 return nullptr; 16130 } 16131 } 16132 EnclosingContext = EnclosingDecl; 16133 } 16134 16135 // Construct the decl. 16136 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 16137 DeclStart, Loc, II, T, 16138 TInfo, ac, (Expr *)BitfieldWidth); 16139 16140 if (II) { 16141 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 16142 ForVisibleRedeclaration); 16143 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 16144 && !isa<TagDecl>(PrevDecl)) { 16145 Diag(Loc, diag::err_duplicate_member) << II; 16146 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16147 NewID->setInvalidDecl(); 16148 } 16149 } 16150 16151 // Process attributes attached to the ivar. 16152 ProcessDeclAttributes(S, NewID, D); 16153 16154 if (D.isInvalidType()) 16155 NewID->setInvalidDecl(); 16156 16157 // In ARC, infer 'retaining' for ivars of retainable type. 16158 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 16159 NewID->setInvalidDecl(); 16160 16161 if (D.getDeclSpec().isModulePrivateSpecified()) 16162 NewID->setModulePrivate(); 16163 16164 if (II) { 16165 // FIXME: When interfaces are DeclContexts, we'll need to add 16166 // these to the interface. 16167 S->AddDecl(NewID); 16168 IdResolver.AddDecl(NewID); 16169 } 16170 16171 if (LangOpts.ObjCRuntime.isNonFragile() && 16172 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 16173 Diag(Loc, diag::warn_ivars_in_interface); 16174 16175 return NewID; 16176 } 16177 16178 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 16179 /// class and class extensions. For every class \@interface and class 16180 /// extension \@interface, if the last ivar is a bitfield of any type, 16181 /// then add an implicit `char :0` ivar to the end of that interface. 16182 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 16183 SmallVectorImpl<Decl *> &AllIvarDecls) { 16184 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 16185 return; 16186 16187 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 16188 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 16189 16190 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) 16191 return; 16192 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 16193 if (!ID) { 16194 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 16195 if (!CD->IsClassExtension()) 16196 return; 16197 } 16198 // No need to add this to end of @implementation. 16199 else 16200 return; 16201 } 16202 // All conditions are met. Add a new bitfield to the tail end of ivars. 16203 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 16204 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 16205 16206 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 16207 DeclLoc, DeclLoc, nullptr, 16208 Context.CharTy, 16209 Context.getTrivialTypeSourceInfo(Context.CharTy, 16210 DeclLoc), 16211 ObjCIvarDecl::Private, BW, 16212 true); 16213 AllIvarDecls.push_back(Ivar); 16214 } 16215 16216 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 16217 ArrayRef<Decl *> Fields, SourceLocation LBrac, 16218 SourceLocation RBrac, 16219 const ParsedAttributesView &Attrs) { 16220 assert(EnclosingDecl && "missing record or interface decl"); 16221 16222 // If this is an Objective-C @implementation or category and we have 16223 // new fields here we should reset the layout of the interface since 16224 // it will now change. 16225 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 16226 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 16227 switch (DC->getKind()) { 16228 default: break; 16229 case Decl::ObjCCategory: 16230 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 16231 break; 16232 case Decl::ObjCImplementation: 16233 Context. 16234 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 16235 break; 16236 } 16237 } 16238 16239 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 16240 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); 16241 16242 // Start counting up the number of named members; make sure to include 16243 // members of anonymous structs and unions in the total. 16244 unsigned NumNamedMembers = 0; 16245 if (Record) { 16246 for (const auto *I : Record->decls()) { 16247 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 16248 if (IFD->getDeclName()) 16249 ++NumNamedMembers; 16250 } 16251 } 16252 16253 // Verify that all the fields are okay. 16254 SmallVector<FieldDecl*, 32> RecFields; 16255 16256 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 16257 i != end; ++i) { 16258 FieldDecl *FD = cast<FieldDecl>(*i); 16259 16260 // Get the type for the field. 16261 const Type *FDTy = FD->getType().getTypePtr(); 16262 16263 if (!FD->isAnonymousStructOrUnion()) { 16264 // Remember all fields written by the user. 16265 RecFields.push_back(FD); 16266 } 16267 16268 // If the field is already invalid for some reason, don't emit more 16269 // diagnostics about it. 16270 if (FD->isInvalidDecl()) { 16271 EnclosingDecl->setInvalidDecl(); 16272 continue; 16273 } 16274 16275 // C99 6.7.2.1p2: 16276 // A structure or union shall not contain a member with 16277 // incomplete or function type (hence, a structure shall not 16278 // contain an instance of itself, but may contain a pointer to 16279 // an instance of itself), except that the last member of a 16280 // structure with more than one named member may have incomplete 16281 // array type; such a structure (and any union containing, 16282 // possibly recursively, a member that is such a structure) 16283 // shall not be a member of a structure or an element of an 16284 // array. 16285 bool IsLastField = (i + 1 == Fields.end()); 16286 if (FDTy->isFunctionType()) { 16287 // Field declared as a function. 16288 Diag(FD->getLocation(), diag::err_field_declared_as_function) 16289 << FD->getDeclName(); 16290 FD->setInvalidDecl(); 16291 EnclosingDecl->setInvalidDecl(); 16292 continue; 16293 } else if (FDTy->isIncompleteArrayType() && 16294 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { 16295 if (Record) { 16296 // Flexible array member. 16297 // Microsoft and g++ is more permissive regarding flexible array. 16298 // It will accept flexible array in union and also 16299 // as the sole element of a struct/class. 16300 unsigned DiagID = 0; 16301 if (!Record->isUnion() && !IsLastField) { 16302 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) 16303 << FD->getDeclName() << FD->getType() << Record->getTagKind(); 16304 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); 16305 FD->setInvalidDecl(); 16306 EnclosingDecl->setInvalidDecl(); 16307 continue; 16308 } else if (Record->isUnion()) 16309 DiagID = getLangOpts().MicrosoftExt 16310 ? diag::ext_flexible_array_union_ms 16311 : getLangOpts().CPlusPlus 16312 ? diag::ext_flexible_array_union_gnu 16313 : diag::err_flexible_array_union; 16314 else if (NumNamedMembers < 1) 16315 DiagID = getLangOpts().MicrosoftExt 16316 ? diag::ext_flexible_array_empty_aggregate_ms 16317 : getLangOpts().CPlusPlus 16318 ? diag::ext_flexible_array_empty_aggregate_gnu 16319 : diag::err_flexible_array_empty_aggregate; 16320 16321 if (DiagID) 16322 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 16323 << Record->getTagKind(); 16324 // While the layout of types that contain virtual bases is not specified 16325 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 16326 // virtual bases after the derived members. This would make a flexible 16327 // array member declared at the end of an object not adjacent to the end 16328 // of the type. 16329 if (CXXRecord && CXXRecord->getNumVBases() != 0) 16330 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 16331 << FD->getDeclName() << Record->getTagKind(); 16332 if (!getLangOpts().C99) 16333 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 16334 << FD->getDeclName() << Record->getTagKind(); 16335 16336 // If the element type has a non-trivial destructor, we would not 16337 // implicitly destroy the elements, so disallow it for now. 16338 // 16339 // FIXME: GCC allows this. We should probably either implicitly delete 16340 // the destructor of the containing class, or just allow this. 16341 QualType BaseElem = Context.getBaseElementType(FD->getType()); 16342 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 16343 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 16344 << FD->getDeclName() << FD->getType(); 16345 FD->setInvalidDecl(); 16346 EnclosingDecl->setInvalidDecl(); 16347 continue; 16348 } 16349 // Okay, we have a legal flexible array member at the end of the struct. 16350 Record->setHasFlexibleArrayMember(true); 16351 } else { 16352 // In ObjCContainerDecl ivars with incomplete array type are accepted, 16353 // unless they are followed by another ivar. That check is done 16354 // elsewhere, after synthesized ivars are known. 16355 } 16356 } else if (!FDTy->isDependentType() && 16357 RequireCompleteType(FD->getLocation(), FD->getType(), 16358 diag::err_field_incomplete)) { 16359 // Incomplete type 16360 FD->setInvalidDecl(); 16361 EnclosingDecl->setInvalidDecl(); 16362 continue; 16363 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 16364 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 16365 // A type which contains a flexible array member is considered to be a 16366 // flexible array member. 16367 Record->setHasFlexibleArrayMember(true); 16368 if (!Record->isUnion()) { 16369 // If this is a struct/class and this is not the last element, reject 16370 // it. Note that GCC supports variable sized arrays in the middle of 16371 // structures. 16372 if (!IsLastField) 16373 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 16374 << FD->getDeclName() << FD->getType(); 16375 else { 16376 // We support flexible arrays at the end of structs in 16377 // other structs as an extension. 16378 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 16379 << FD->getDeclName(); 16380 } 16381 } 16382 } 16383 if (isa<ObjCContainerDecl>(EnclosingDecl) && 16384 RequireNonAbstractType(FD->getLocation(), FD->getType(), 16385 diag::err_abstract_type_in_decl, 16386 AbstractIvarType)) { 16387 // Ivars can not have abstract class types 16388 FD->setInvalidDecl(); 16389 } 16390 if (Record && FDTTy->getDecl()->hasObjectMember()) 16391 Record->setHasObjectMember(true); 16392 if (Record && FDTTy->getDecl()->hasVolatileMember()) 16393 Record->setHasVolatileMember(true); 16394 } else if (FDTy->isObjCObjectType()) { 16395 /// A field cannot be an Objective-c object 16396 Diag(FD->getLocation(), diag::err_statically_allocated_object) 16397 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 16398 QualType T = Context.getObjCObjectPointerType(FD->getType()); 16399 FD->setType(T); 16400 } else if (getLangOpts().ObjC && 16401 getLangOpts().getGC() != LangOptions::NonGC && 16402 Record && !Record->hasObjectMember()) { 16403 if (FD->getType()->isObjCObjectPointerType() || 16404 FD->getType().isObjCGCStrong()) 16405 Record->setHasObjectMember(true); 16406 else if (Context.getAsArrayType(FD->getType())) { 16407 QualType BaseType = Context.getBaseElementType(FD->getType()); 16408 if (BaseType->isRecordType() && 16409 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember()) 16410 Record->setHasObjectMember(true); 16411 else if (BaseType->isObjCObjectPointerType() || 16412 BaseType.isObjCGCStrong()) 16413 Record->setHasObjectMember(true); 16414 } 16415 } 16416 16417 if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) { 16418 QualType FT = FD->getType(); 16419 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { 16420 Record->setNonTrivialToPrimitiveDefaultInitialize(true); 16421 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 16422 Record->isUnion()) 16423 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); 16424 } 16425 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); 16426 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { 16427 Record->setNonTrivialToPrimitiveCopy(true); 16428 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) 16429 Record->setHasNonTrivialToPrimitiveCopyCUnion(true); 16430 } 16431 if (FT.isDestructedType()) { 16432 Record->setNonTrivialToPrimitiveDestroy(true); 16433 Record->setParamDestroyedInCallee(true); 16434 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) 16435 Record->setHasNonTrivialToPrimitiveDestructCUnion(true); 16436 } 16437 16438 if (const auto *RT = FT->getAs<RecordType>()) { 16439 if (RT->getDecl()->getArgPassingRestrictions() == 16440 RecordDecl::APK_CanNeverPassInRegs) 16441 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 16442 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) 16443 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 16444 } 16445 16446 if (Record && FD->getType().isVolatileQualified()) 16447 Record->setHasVolatileMember(true); 16448 // Keep track of the number of named members. 16449 if (FD->getIdentifier()) 16450 ++NumNamedMembers; 16451 } 16452 16453 // Okay, we successfully defined 'Record'. 16454 if (Record) { 16455 bool Completed = false; 16456 if (CXXRecord) { 16457 if (!CXXRecord->isInvalidDecl()) { 16458 // Set access bits correctly on the directly-declared conversions. 16459 for (CXXRecordDecl::conversion_iterator 16460 I = CXXRecord->conversion_begin(), 16461 E = CXXRecord->conversion_end(); I != E; ++I) 16462 I.setAccess((*I)->getAccess()); 16463 } 16464 16465 if (!CXXRecord->isDependentType()) { 16466 // Add any implicitly-declared members to this class. 16467 AddImplicitlyDeclaredMembersToClass(CXXRecord); 16468 16469 if (!CXXRecord->isInvalidDecl()) { 16470 // If we have virtual base classes, we may end up finding multiple 16471 // final overriders for a given virtual function. Check for this 16472 // problem now. 16473 if (CXXRecord->getNumVBases()) { 16474 CXXFinalOverriderMap FinalOverriders; 16475 CXXRecord->getFinalOverriders(FinalOverriders); 16476 16477 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 16478 MEnd = FinalOverriders.end(); 16479 M != MEnd; ++M) { 16480 for (OverridingMethods::iterator SO = M->second.begin(), 16481 SOEnd = M->second.end(); 16482 SO != SOEnd; ++SO) { 16483 assert(SO->second.size() > 0 && 16484 "Virtual function without overriding functions?"); 16485 if (SO->second.size() == 1) 16486 continue; 16487 16488 // C++ [class.virtual]p2: 16489 // In a derived class, if a virtual member function of a base 16490 // class subobject has more than one final overrider the 16491 // program is ill-formed. 16492 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 16493 << (const NamedDecl *)M->first << Record; 16494 Diag(M->first->getLocation(), 16495 diag::note_overridden_virtual_function); 16496 for (OverridingMethods::overriding_iterator 16497 OM = SO->second.begin(), 16498 OMEnd = SO->second.end(); 16499 OM != OMEnd; ++OM) 16500 Diag(OM->Method->getLocation(), diag::note_final_overrider) 16501 << (const NamedDecl *)M->first << OM->Method->getParent(); 16502 16503 Record->setInvalidDecl(); 16504 } 16505 } 16506 CXXRecord->completeDefinition(&FinalOverriders); 16507 Completed = true; 16508 } 16509 } 16510 } 16511 } 16512 16513 if (!Completed) 16514 Record->completeDefinition(); 16515 16516 // Handle attributes before checking the layout. 16517 ProcessDeclAttributeList(S, Record, Attrs); 16518 16519 // We may have deferred checking for a deleted destructor. Check now. 16520 if (CXXRecord) { 16521 auto *Dtor = CXXRecord->getDestructor(); 16522 if (Dtor && Dtor->isImplicit() && 16523 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { 16524 CXXRecord->setImplicitDestructorIsDeleted(); 16525 SetDeclDeleted(Dtor, CXXRecord->getLocation()); 16526 } 16527 } 16528 16529 if (Record->hasAttrs()) { 16530 CheckAlignasUnderalignment(Record); 16531 16532 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 16533 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 16534 IA->getRange(), IA->getBestCase(), 16535 IA->getSemanticSpelling()); 16536 } 16537 16538 // Check if the structure/union declaration is a type that can have zero 16539 // size in C. For C this is a language extension, for C++ it may cause 16540 // compatibility problems. 16541 bool CheckForZeroSize; 16542 if (!getLangOpts().CPlusPlus) { 16543 CheckForZeroSize = true; 16544 } else { 16545 // For C++ filter out types that cannot be referenced in C code. 16546 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 16547 CheckForZeroSize = 16548 CXXRecord->getLexicalDeclContext()->isExternCContext() && 16549 !CXXRecord->isDependentType() && 16550 CXXRecord->isCLike(); 16551 } 16552 if (CheckForZeroSize) { 16553 bool ZeroSize = true; 16554 bool IsEmpty = true; 16555 unsigned NonBitFields = 0; 16556 for (RecordDecl::field_iterator I = Record->field_begin(), 16557 E = Record->field_end(); 16558 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 16559 IsEmpty = false; 16560 if (I->isUnnamedBitfield()) { 16561 if (!I->isZeroLengthBitField(Context)) 16562 ZeroSize = false; 16563 } else { 16564 ++NonBitFields; 16565 QualType FieldType = I->getType(); 16566 if (FieldType->isIncompleteType() || 16567 !Context.getTypeSizeInChars(FieldType).isZero()) 16568 ZeroSize = false; 16569 } 16570 } 16571 16572 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 16573 // allowed in C++, but warn if its declaration is inside 16574 // extern "C" block. 16575 if (ZeroSize) { 16576 Diag(RecLoc, getLangOpts().CPlusPlus ? 16577 diag::warn_zero_size_struct_union_in_extern_c : 16578 diag::warn_zero_size_struct_union_compat) 16579 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 16580 } 16581 16582 // Structs without named members are extension in C (C99 6.7.2.1p7), 16583 // but are accepted by GCC. 16584 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 16585 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 16586 diag::ext_no_named_members_in_struct_union) 16587 << Record->isUnion(); 16588 } 16589 } 16590 } else { 16591 ObjCIvarDecl **ClsFields = 16592 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 16593 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 16594 ID->setEndOfDefinitionLoc(RBrac); 16595 // Add ivar's to class's DeclContext. 16596 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 16597 ClsFields[i]->setLexicalDeclContext(ID); 16598 ID->addDecl(ClsFields[i]); 16599 } 16600 // Must enforce the rule that ivars in the base classes may not be 16601 // duplicates. 16602 if (ID->getSuperClass()) 16603 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 16604 } else if (ObjCImplementationDecl *IMPDecl = 16605 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 16606 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 16607 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 16608 // Ivar declared in @implementation never belongs to the implementation. 16609 // Only it is in implementation's lexical context. 16610 ClsFields[I]->setLexicalDeclContext(IMPDecl); 16611 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 16612 IMPDecl->setIvarLBraceLoc(LBrac); 16613 IMPDecl->setIvarRBraceLoc(RBrac); 16614 } else if (ObjCCategoryDecl *CDecl = 16615 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 16616 // case of ivars in class extension; all other cases have been 16617 // reported as errors elsewhere. 16618 // FIXME. Class extension does not have a LocEnd field. 16619 // CDecl->setLocEnd(RBrac); 16620 // Add ivar's to class extension's DeclContext. 16621 // Diagnose redeclaration of private ivars. 16622 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 16623 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 16624 if (IDecl) { 16625 if (const ObjCIvarDecl *ClsIvar = 16626 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 16627 Diag(ClsFields[i]->getLocation(), 16628 diag::err_duplicate_ivar_declaration); 16629 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 16630 continue; 16631 } 16632 for (const auto *Ext : IDecl->known_extensions()) { 16633 if (const ObjCIvarDecl *ClsExtIvar 16634 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 16635 Diag(ClsFields[i]->getLocation(), 16636 diag::err_duplicate_ivar_declaration); 16637 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 16638 continue; 16639 } 16640 } 16641 } 16642 ClsFields[i]->setLexicalDeclContext(CDecl); 16643 CDecl->addDecl(ClsFields[i]); 16644 } 16645 CDecl->setIvarLBraceLoc(LBrac); 16646 CDecl->setIvarRBraceLoc(RBrac); 16647 } 16648 } 16649 } 16650 16651 /// Determine whether the given integral value is representable within 16652 /// the given type T. 16653 static bool isRepresentableIntegerValue(ASTContext &Context, 16654 llvm::APSInt &Value, 16655 QualType T) { 16656 assert((T->isIntegralType(Context) || T->isEnumeralType()) && 16657 "Integral type required!"); 16658 unsigned BitWidth = Context.getIntWidth(T); 16659 16660 if (Value.isUnsigned() || Value.isNonNegative()) { 16661 if (T->isSignedIntegerOrEnumerationType()) 16662 --BitWidth; 16663 return Value.getActiveBits() <= BitWidth; 16664 } 16665 return Value.getMinSignedBits() <= BitWidth; 16666 } 16667 16668 // Given an integral type, return the next larger integral type 16669 // (or a NULL type of no such type exists). 16670 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 16671 // FIXME: Int128/UInt128 support, which also needs to be introduced into 16672 // enum checking below. 16673 assert((T->isIntegralType(Context) || 16674 T->isEnumeralType()) && "Integral type required!"); 16675 const unsigned NumTypes = 4; 16676 QualType SignedIntegralTypes[NumTypes] = { 16677 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 16678 }; 16679 QualType UnsignedIntegralTypes[NumTypes] = { 16680 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 16681 Context.UnsignedLongLongTy 16682 }; 16683 16684 unsigned BitWidth = Context.getTypeSize(T); 16685 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 16686 : UnsignedIntegralTypes; 16687 for (unsigned I = 0; I != NumTypes; ++I) 16688 if (Context.getTypeSize(Types[I]) > BitWidth) 16689 return Types[I]; 16690 16691 return QualType(); 16692 } 16693 16694 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 16695 EnumConstantDecl *LastEnumConst, 16696 SourceLocation IdLoc, 16697 IdentifierInfo *Id, 16698 Expr *Val) { 16699 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 16700 llvm::APSInt EnumVal(IntWidth); 16701 QualType EltTy; 16702 16703 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 16704 Val = nullptr; 16705 16706 if (Val) 16707 Val = DefaultLvalueConversion(Val).get(); 16708 16709 if (Val) { 16710 if (Enum->isDependentType() || Val->isTypeDependent()) 16711 EltTy = Context.DependentTy; 16712 else { 16713 if (getLangOpts().CPlusPlus11 && Enum->isFixed() && 16714 !getLangOpts().MSVCCompat) { 16715 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 16716 // constant-expression in the enumerator-definition shall be a converted 16717 // constant expression of the underlying type. 16718 EltTy = Enum->getIntegerType(); 16719 ExprResult Converted = 16720 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 16721 CCEK_Enumerator); 16722 if (Converted.isInvalid()) 16723 Val = nullptr; 16724 else 16725 Val = Converted.get(); 16726 } else if (!Val->isValueDependent() && 16727 !(Val = VerifyIntegerConstantExpression(Val, 16728 &EnumVal).get())) { 16729 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 16730 } else { 16731 if (Enum->isComplete()) { 16732 EltTy = Enum->getIntegerType(); 16733 16734 // In Obj-C and Microsoft mode, require the enumeration value to be 16735 // representable in the underlying type of the enumeration. In C++11, 16736 // we perform a non-narrowing conversion as part of converted constant 16737 // expression checking. 16738 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 16739 if (getLangOpts().MSVCCompat) { 16740 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 16741 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get(); 16742 } else 16743 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 16744 } else 16745 Val = ImpCastExprToType(Val, EltTy, 16746 EltTy->isBooleanType() ? 16747 CK_IntegralToBoolean : CK_IntegralCast) 16748 .get(); 16749 } else if (getLangOpts().CPlusPlus) { 16750 // C++11 [dcl.enum]p5: 16751 // If the underlying type is not fixed, the type of each enumerator 16752 // is the type of its initializing value: 16753 // - If an initializer is specified for an enumerator, the 16754 // initializing value has the same type as the expression. 16755 EltTy = Val->getType(); 16756 } else { 16757 // C99 6.7.2.2p2: 16758 // The expression that defines the value of an enumeration constant 16759 // shall be an integer constant expression that has a value 16760 // representable as an int. 16761 16762 // Complain if the value is not representable in an int. 16763 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 16764 Diag(IdLoc, diag::ext_enum_value_not_int) 16765 << EnumVal.toString(10) << Val->getSourceRange() 16766 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 16767 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 16768 // Force the type of the expression to 'int'. 16769 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 16770 } 16771 EltTy = Val->getType(); 16772 } 16773 } 16774 } 16775 } 16776 16777 if (!Val) { 16778 if (Enum->isDependentType()) 16779 EltTy = Context.DependentTy; 16780 else if (!LastEnumConst) { 16781 // C++0x [dcl.enum]p5: 16782 // If the underlying type is not fixed, the type of each enumerator 16783 // is the type of its initializing value: 16784 // - If no initializer is specified for the first enumerator, the 16785 // initializing value has an unspecified integral type. 16786 // 16787 // GCC uses 'int' for its unspecified integral type, as does 16788 // C99 6.7.2.2p3. 16789 if (Enum->isFixed()) { 16790 EltTy = Enum->getIntegerType(); 16791 } 16792 else { 16793 EltTy = Context.IntTy; 16794 } 16795 } else { 16796 // Assign the last value + 1. 16797 EnumVal = LastEnumConst->getInitVal(); 16798 ++EnumVal; 16799 EltTy = LastEnumConst->getType(); 16800 16801 // Check for overflow on increment. 16802 if (EnumVal < LastEnumConst->getInitVal()) { 16803 // C++0x [dcl.enum]p5: 16804 // If the underlying type is not fixed, the type of each enumerator 16805 // is the type of its initializing value: 16806 // 16807 // - Otherwise the type of the initializing value is the same as 16808 // the type of the initializing value of the preceding enumerator 16809 // unless the incremented value is not representable in that type, 16810 // in which case the type is an unspecified integral type 16811 // sufficient to contain the incremented value. If no such type 16812 // exists, the program is ill-formed. 16813 QualType T = getNextLargerIntegralType(Context, EltTy); 16814 if (T.isNull() || Enum->isFixed()) { 16815 // There is no integral type larger enough to represent this 16816 // value. Complain, then allow the value to wrap around. 16817 EnumVal = LastEnumConst->getInitVal(); 16818 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 16819 ++EnumVal; 16820 if (Enum->isFixed()) 16821 // When the underlying type is fixed, this is ill-formed. 16822 Diag(IdLoc, diag::err_enumerator_wrapped) 16823 << EnumVal.toString(10) 16824 << EltTy; 16825 else 16826 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 16827 << EnumVal.toString(10); 16828 } else { 16829 EltTy = T; 16830 } 16831 16832 // Retrieve the last enumerator's value, extent that type to the 16833 // type that is supposed to be large enough to represent the incremented 16834 // value, then increment. 16835 EnumVal = LastEnumConst->getInitVal(); 16836 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 16837 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 16838 ++EnumVal; 16839 16840 // If we're not in C++, diagnose the overflow of enumerator values, 16841 // which in C99 means that the enumerator value is not representable in 16842 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 16843 // permits enumerator values that are representable in some larger 16844 // integral type. 16845 if (!getLangOpts().CPlusPlus && !T.isNull()) 16846 Diag(IdLoc, diag::warn_enum_value_overflow); 16847 } else if (!getLangOpts().CPlusPlus && 16848 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 16849 // Enforce C99 6.7.2.2p2 even when we compute the next value. 16850 Diag(IdLoc, diag::ext_enum_value_not_int) 16851 << EnumVal.toString(10) << 1; 16852 } 16853 } 16854 } 16855 16856 if (!EltTy->isDependentType()) { 16857 // Make the enumerator value match the signedness and size of the 16858 // enumerator's type. 16859 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 16860 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 16861 } 16862 16863 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 16864 Val, EnumVal); 16865 } 16866 16867 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, 16868 SourceLocation IILoc) { 16869 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || 16870 !getLangOpts().CPlusPlus) 16871 return SkipBodyInfo(); 16872 16873 // We have an anonymous enum definition. Look up the first enumerator to 16874 // determine if we should merge the definition with an existing one and 16875 // skip the body. 16876 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, 16877 forRedeclarationInCurContext()); 16878 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); 16879 if (!PrevECD) 16880 return SkipBodyInfo(); 16881 16882 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); 16883 NamedDecl *Hidden; 16884 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { 16885 SkipBodyInfo Skip; 16886 Skip.Previous = Hidden; 16887 return Skip; 16888 } 16889 16890 return SkipBodyInfo(); 16891 } 16892 16893 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 16894 SourceLocation IdLoc, IdentifierInfo *Id, 16895 const ParsedAttributesView &Attrs, 16896 SourceLocation EqualLoc, Expr *Val) { 16897 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 16898 EnumConstantDecl *LastEnumConst = 16899 cast_or_null<EnumConstantDecl>(lastEnumConst); 16900 16901 // The scope passed in may not be a decl scope. Zip up the scope tree until 16902 // we find one that is. 16903 S = getNonFieldDeclScope(S); 16904 16905 // Verify that there isn't already something declared with this name in this 16906 // scope. 16907 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); 16908 LookupName(R, S); 16909 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); 16910 16911 if (PrevDecl && PrevDecl->isTemplateParameter()) { 16912 // Maybe we will complain about the shadowed template parameter. 16913 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 16914 // Just pretend that we didn't see the previous declaration. 16915 PrevDecl = nullptr; 16916 } 16917 16918 // C++ [class.mem]p15: 16919 // If T is the name of a class, then each of the following shall have a name 16920 // different from T: 16921 // - every enumerator of every member of class T that is an unscoped 16922 // enumerated type 16923 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) 16924 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), 16925 DeclarationNameInfo(Id, IdLoc)); 16926 16927 EnumConstantDecl *New = 16928 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 16929 if (!New) 16930 return nullptr; 16931 16932 if (PrevDecl) { 16933 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { 16934 // Check for other kinds of shadowing not already handled. 16935 CheckShadow(New, PrevDecl, R); 16936 } 16937 16938 // When in C++, we may get a TagDecl with the same name; in this case the 16939 // enum constant will 'hide' the tag. 16940 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 16941 "Received TagDecl when not in C++!"); 16942 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 16943 if (isa<EnumConstantDecl>(PrevDecl)) 16944 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 16945 else 16946 Diag(IdLoc, diag::err_redefinition) << Id; 16947 notePreviousDefinition(PrevDecl, IdLoc); 16948 return nullptr; 16949 } 16950 } 16951 16952 // Process attributes. 16953 ProcessDeclAttributeList(S, New, Attrs); 16954 AddPragmaAttributes(S, New); 16955 16956 // Register this decl in the current scope stack. 16957 New->setAccess(TheEnumDecl->getAccess()); 16958 PushOnScopeChains(New, S); 16959 16960 ActOnDocumentableDecl(New); 16961 16962 return New; 16963 } 16964 16965 // Returns true when the enum initial expression does not trigger the 16966 // duplicate enum warning. A few common cases are exempted as follows: 16967 // Element2 = Element1 16968 // Element2 = Element1 + 1 16969 // Element2 = Element1 - 1 16970 // Where Element2 and Element1 are from the same enum. 16971 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 16972 Expr *InitExpr = ECD->getInitExpr(); 16973 if (!InitExpr) 16974 return true; 16975 InitExpr = InitExpr->IgnoreImpCasts(); 16976 16977 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 16978 if (!BO->isAdditiveOp()) 16979 return true; 16980 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 16981 if (!IL) 16982 return true; 16983 if (IL->getValue() != 1) 16984 return true; 16985 16986 InitExpr = BO->getLHS(); 16987 } 16988 16989 // This checks if the elements are from the same enum. 16990 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 16991 if (!DRE) 16992 return true; 16993 16994 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 16995 if (!EnumConstant) 16996 return true; 16997 16998 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 16999 Enum) 17000 return true; 17001 17002 return false; 17003 } 17004 17005 // Emits a warning when an element is implicitly set a value that 17006 // a previous element has already been set to. 17007 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 17008 EnumDecl *Enum, QualType EnumType) { 17009 // Avoid anonymous enums 17010 if (!Enum->getIdentifier()) 17011 return; 17012 17013 // Only check for small enums. 17014 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 17015 return; 17016 17017 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 17018 return; 17019 17020 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 17021 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; 17022 17023 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 17024 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; 17025 17026 // Use int64_t as a key to avoid needing special handling for DenseMap keys. 17027 auto EnumConstantToKey = [](const EnumConstantDecl *D) { 17028 llvm::APSInt Val = D->getInitVal(); 17029 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); 17030 }; 17031 17032 DuplicatesVector DupVector; 17033 ValueToVectorMap EnumMap; 17034 17035 // Populate the EnumMap with all values represented by enum constants without 17036 // an initializer. 17037 for (auto *Element : Elements) { 17038 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); 17039 17040 // Null EnumConstantDecl means a previous diagnostic has been emitted for 17041 // this constant. Skip this enum since it may be ill-formed. 17042 if (!ECD) { 17043 return; 17044 } 17045 17046 // Constants with initalizers are handled in the next loop. 17047 if (ECD->getInitExpr()) 17048 continue; 17049 17050 // Duplicate values are handled in the next loop. 17051 EnumMap.insert({EnumConstantToKey(ECD), ECD}); 17052 } 17053 17054 if (EnumMap.size() == 0) 17055 return; 17056 17057 // Create vectors for any values that has duplicates. 17058 for (auto *Element : Elements) { 17059 // The last loop returned if any constant was null. 17060 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); 17061 if (!ValidDuplicateEnum(ECD, Enum)) 17062 continue; 17063 17064 auto Iter = EnumMap.find(EnumConstantToKey(ECD)); 17065 if (Iter == EnumMap.end()) 17066 continue; 17067 17068 DeclOrVector& Entry = Iter->second; 17069 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 17070 // Ensure constants are different. 17071 if (D == ECD) 17072 continue; 17073 17074 // Create new vector and push values onto it. 17075 auto Vec = llvm::make_unique<ECDVector>(); 17076 Vec->push_back(D); 17077 Vec->push_back(ECD); 17078 17079 // Update entry to point to the duplicates vector. 17080 Entry = Vec.get(); 17081 17082 // Store the vector somewhere we can consult later for quick emission of 17083 // diagnostics. 17084 DupVector.emplace_back(std::move(Vec)); 17085 continue; 17086 } 17087 17088 ECDVector *Vec = Entry.get<ECDVector*>(); 17089 // Make sure constants are not added more than once. 17090 if (*Vec->begin() == ECD) 17091 continue; 17092 17093 Vec->push_back(ECD); 17094 } 17095 17096 // Emit diagnostics. 17097 for (const auto &Vec : DupVector) { 17098 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 17099 17100 // Emit warning for one enum constant. 17101 auto *FirstECD = Vec->front(); 17102 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) 17103 << FirstECD << FirstECD->getInitVal().toString(10) 17104 << FirstECD->getSourceRange(); 17105 17106 // Emit one note for each of the remaining enum constants with 17107 // the same value. 17108 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) 17109 S.Diag(ECD->getLocation(), diag::note_duplicate_element) 17110 << ECD << ECD->getInitVal().toString(10) 17111 << ECD->getSourceRange(); 17112 } 17113 } 17114 17115 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, 17116 bool AllowMask) const { 17117 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); 17118 assert(ED->isCompleteDefinition() && "expected enum definition"); 17119 17120 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); 17121 llvm::APInt &FlagBits = R.first->second; 17122 17123 if (R.second) { 17124 for (auto *E : ED->enumerators()) { 17125 const auto &EVal = E->getInitVal(); 17126 // Only single-bit enumerators introduce new flag values. 17127 if (EVal.isPowerOf2()) 17128 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; 17129 } 17130 } 17131 17132 // A value is in a flag enum if either its bits are a subset of the enum's 17133 // flag bits (the first condition) or we are allowing masks and the same is 17134 // true of its complement (the second condition). When masks are allowed, we 17135 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. 17136 // 17137 // While it's true that any value could be used as a mask, the assumption is 17138 // that a mask will have all of the insignificant bits set. Anything else is 17139 // likely a logic error. 17140 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); 17141 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); 17142 } 17143 17144 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, 17145 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, 17146 const ParsedAttributesView &Attrs) { 17147 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 17148 QualType EnumType = Context.getTypeDeclType(Enum); 17149 17150 ProcessDeclAttributeList(S, Enum, Attrs); 17151 17152 if (Enum->isDependentType()) { 17153 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17154 EnumConstantDecl *ECD = 17155 cast_or_null<EnumConstantDecl>(Elements[i]); 17156 if (!ECD) continue; 17157 17158 ECD->setType(EnumType); 17159 } 17160 17161 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 17162 return; 17163 } 17164 17165 // TODO: If the result value doesn't fit in an int, it must be a long or long 17166 // long value. ISO C does not support this, but GCC does as an extension, 17167 // emit a warning. 17168 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17169 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 17170 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 17171 17172 // Verify that all the values are okay, compute the size of the values, and 17173 // reverse the list. 17174 unsigned NumNegativeBits = 0; 17175 unsigned NumPositiveBits = 0; 17176 17177 // Keep track of whether all elements have type int. 17178 bool AllElementsInt = true; 17179 17180 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17181 EnumConstantDecl *ECD = 17182 cast_or_null<EnumConstantDecl>(Elements[i]); 17183 if (!ECD) continue; // Already issued a diagnostic. 17184 17185 const llvm::APSInt &InitVal = ECD->getInitVal(); 17186 17187 // Keep track of the size of positive and negative values. 17188 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 17189 NumPositiveBits = std::max(NumPositiveBits, 17190 (unsigned)InitVal.getActiveBits()); 17191 else 17192 NumNegativeBits = std::max(NumNegativeBits, 17193 (unsigned)InitVal.getMinSignedBits()); 17194 17195 // Keep track of whether every enum element has type int (very common). 17196 if (AllElementsInt) 17197 AllElementsInt = ECD->getType() == Context.IntTy; 17198 } 17199 17200 // Figure out the type that should be used for this enum. 17201 QualType BestType; 17202 unsigned BestWidth; 17203 17204 // C++0x N3000 [conv.prom]p3: 17205 // An rvalue of an unscoped enumeration type whose underlying 17206 // type is not fixed can be converted to an rvalue of the first 17207 // of the following types that can represent all the values of 17208 // the enumeration: int, unsigned int, long int, unsigned long 17209 // int, long long int, or unsigned long long int. 17210 // C99 6.4.4.3p2: 17211 // An identifier declared as an enumeration constant has type int. 17212 // The C99 rule is modified by a gcc extension 17213 QualType BestPromotionType; 17214 17215 bool Packed = Enum->hasAttr<PackedAttr>(); 17216 // -fshort-enums is the equivalent to specifying the packed attribute on all 17217 // enum definitions. 17218 if (LangOpts.ShortEnums) 17219 Packed = true; 17220 17221 // If the enum already has a type because it is fixed or dictated by the 17222 // target, promote that type instead of analyzing the enumerators. 17223 if (Enum->isComplete()) { 17224 BestType = Enum->getIntegerType(); 17225 if (BestType->isPromotableIntegerType()) 17226 BestPromotionType = Context.getPromotedIntegerType(BestType); 17227 else 17228 BestPromotionType = BestType; 17229 17230 BestWidth = Context.getIntWidth(BestType); 17231 } 17232 else if (NumNegativeBits) { 17233 // If there is a negative value, figure out the smallest integer type (of 17234 // int/long/longlong) that fits. 17235 // If it's packed, check also if it fits a char or a short. 17236 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 17237 BestType = Context.SignedCharTy; 17238 BestWidth = CharWidth; 17239 } else if (Packed && NumNegativeBits <= ShortWidth && 17240 NumPositiveBits < ShortWidth) { 17241 BestType = Context.ShortTy; 17242 BestWidth = ShortWidth; 17243 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 17244 BestType = Context.IntTy; 17245 BestWidth = IntWidth; 17246 } else { 17247 BestWidth = Context.getTargetInfo().getLongWidth(); 17248 17249 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 17250 BestType = Context.LongTy; 17251 } else { 17252 BestWidth = Context.getTargetInfo().getLongLongWidth(); 17253 17254 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 17255 Diag(Enum->getLocation(), diag::ext_enum_too_large); 17256 BestType = Context.LongLongTy; 17257 } 17258 } 17259 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 17260 } else { 17261 // If there is no negative value, figure out the smallest type that fits 17262 // all of the enumerator values. 17263 // If it's packed, check also if it fits a char or a short. 17264 if (Packed && NumPositiveBits <= CharWidth) { 17265 BestType = Context.UnsignedCharTy; 17266 BestPromotionType = Context.IntTy; 17267 BestWidth = CharWidth; 17268 } else if (Packed && NumPositiveBits <= ShortWidth) { 17269 BestType = Context.UnsignedShortTy; 17270 BestPromotionType = Context.IntTy; 17271 BestWidth = ShortWidth; 17272 } else if (NumPositiveBits <= IntWidth) { 17273 BestType = Context.UnsignedIntTy; 17274 BestWidth = IntWidth; 17275 BestPromotionType 17276 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17277 ? Context.UnsignedIntTy : Context.IntTy; 17278 } else if (NumPositiveBits <= 17279 (BestWidth = Context.getTargetInfo().getLongWidth())) { 17280 BestType = Context.UnsignedLongTy; 17281 BestPromotionType 17282 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17283 ? Context.UnsignedLongTy : Context.LongTy; 17284 } else { 17285 BestWidth = Context.getTargetInfo().getLongLongWidth(); 17286 assert(NumPositiveBits <= BestWidth && 17287 "How could an initializer get larger than ULL?"); 17288 BestType = Context.UnsignedLongLongTy; 17289 BestPromotionType 17290 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17291 ? Context.UnsignedLongLongTy : Context.LongLongTy; 17292 } 17293 } 17294 17295 // Loop over all of the enumerator constants, changing their types to match 17296 // the type of the enum if needed. 17297 for (auto *D : Elements) { 17298 auto *ECD = cast_or_null<EnumConstantDecl>(D); 17299 if (!ECD) continue; // Already issued a diagnostic. 17300 17301 // Standard C says the enumerators have int type, but we allow, as an 17302 // extension, the enumerators to be larger than int size. If each 17303 // enumerator value fits in an int, type it as an int, otherwise type it the 17304 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 17305 // that X has type 'int', not 'unsigned'. 17306 17307 // Determine whether the value fits into an int. 17308 llvm::APSInt InitVal = ECD->getInitVal(); 17309 17310 // If it fits into an integer type, force it. Otherwise force it to match 17311 // the enum decl type. 17312 QualType NewTy; 17313 unsigned NewWidth; 17314 bool NewSign; 17315 if (!getLangOpts().CPlusPlus && 17316 !Enum->isFixed() && 17317 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 17318 NewTy = Context.IntTy; 17319 NewWidth = IntWidth; 17320 NewSign = true; 17321 } else if (ECD->getType() == BestType) { 17322 // Already the right type! 17323 if (getLangOpts().CPlusPlus) 17324 // C++ [dcl.enum]p4: Following the closing brace of an 17325 // enum-specifier, each enumerator has the type of its 17326 // enumeration. 17327 ECD->setType(EnumType); 17328 continue; 17329 } else { 17330 NewTy = BestType; 17331 NewWidth = BestWidth; 17332 NewSign = BestType->isSignedIntegerOrEnumerationType(); 17333 } 17334 17335 // Adjust the APSInt value. 17336 InitVal = InitVal.extOrTrunc(NewWidth); 17337 InitVal.setIsSigned(NewSign); 17338 ECD->setInitVal(InitVal); 17339 17340 // Adjust the Expr initializer and type. 17341 if (ECD->getInitExpr() && 17342 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 17343 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 17344 CK_IntegralCast, 17345 ECD->getInitExpr(), 17346 /*base paths*/ nullptr, 17347 VK_RValue)); 17348 if (getLangOpts().CPlusPlus) 17349 // C++ [dcl.enum]p4: Following the closing brace of an 17350 // enum-specifier, each enumerator has the type of its 17351 // enumeration. 17352 ECD->setType(EnumType); 17353 else 17354 ECD->setType(NewTy); 17355 } 17356 17357 Enum->completeDefinition(BestType, BestPromotionType, 17358 NumPositiveBits, NumNegativeBits); 17359 17360 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 17361 17362 if (Enum->isClosedFlag()) { 17363 for (Decl *D : Elements) { 17364 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); 17365 if (!ECD) continue; // Already issued a diagnostic. 17366 17367 llvm::APSInt InitVal = ECD->getInitVal(); 17368 if (InitVal != 0 && !InitVal.isPowerOf2() && 17369 !IsValueInFlagEnum(Enum, InitVal, true)) 17370 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) 17371 << ECD << Enum; 17372 } 17373 } 17374 17375 // Now that the enum type is defined, ensure it's not been underaligned. 17376 if (Enum->hasAttrs()) 17377 CheckAlignasUnderalignment(Enum); 17378 } 17379 17380 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 17381 SourceLocation StartLoc, 17382 SourceLocation EndLoc) { 17383 StringLiteral *AsmString = cast<StringLiteral>(expr); 17384 17385 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 17386 AsmString, StartLoc, 17387 EndLoc); 17388 CurContext->addDecl(New); 17389 return New; 17390 } 17391 17392 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 17393 IdentifierInfo* AliasName, 17394 SourceLocation PragmaLoc, 17395 SourceLocation NameLoc, 17396 SourceLocation AliasNameLoc) { 17397 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 17398 LookupOrdinaryName); 17399 AsmLabelAttr *Attr = 17400 AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc); 17401 17402 // If a declaration that: 17403 // 1) declares a function or a variable 17404 // 2) has external linkage 17405 // already exists, add a label attribute to it. 17406 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 17407 if (isDeclExternC(PrevDecl)) 17408 PrevDecl->addAttr(Attr); 17409 else 17410 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) 17411 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; 17412 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. 17413 } else 17414 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); 17415 } 17416 17417 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 17418 SourceLocation PragmaLoc, 17419 SourceLocation NameLoc) { 17420 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 17421 17422 if (PrevDecl) { 17423 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); 17424 } else { 17425 (void)WeakUndeclaredIdentifiers.insert( 17426 std::pair<IdentifierInfo*,WeakInfo> 17427 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 17428 } 17429 } 17430 17431 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 17432 IdentifierInfo* AliasName, 17433 SourceLocation PragmaLoc, 17434 SourceLocation NameLoc, 17435 SourceLocation AliasNameLoc) { 17436 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 17437 LookupOrdinaryName); 17438 WeakInfo W = WeakInfo(Name, NameLoc); 17439 17440 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 17441 if (!PrevDecl->hasAttr<AliasAttr>()) 17442 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 17443 DeclApplyPragmaWeak(TUScope, ND, W); 17444 } else { 17445 (void)WeakUndeclaredIdentifiers.insert( 17446 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 17447 } 17448 } 17449 17450 Decl *Sema::getObjCDeclContext() const { 17451 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 17452 } 17453