1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/CommentDiagnostic.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NonTrivialTypeVisitor.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Sema/CXXFieldCollector.h" 37 #include "clang/Sema/DeclSpec.h" 38 #include "clang/Sema/DelayedDiagnostic.h" 39 #include "clang/Sema/Initialization.h" 40 #include "clang/Sema/Lookup.h" 41 #include "clang/Sema/ParsedTemplate.h" 42 #include "clang/Sema/Scope.h" 43 #include "clang/Sema/ScopeInfo.h" 44 #include "clang/Sema/SemaInternal.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 #include <unordered_map> 52 53 using namespace clang; 54 using namespace sema; 55 56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 57 if (OwnedType) { 58 Decl *Group[2] = { OwnedType, Ptr }; 59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 60 } 61 62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 63 } 64 65 namespace { 66 67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback { 68 public: 69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, 70 bool AllowTemplates = false, 71 bool AllowNonTemplates = true) 72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { 74 WantExpressionKeywords = false; 75 WantCXXNamedCasts = false; 76 WantRemainingKeywords = false; 77 } 78 79 bool ValidateCandidate(const TypoCorrection &candidate) override { 80 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 81 if (!AllowInvalidDecl && ND->isInvalidDecl()) 82 return false; 83 84 if (getAsTypeTemplateDecl(ND)) 85 return AllowTemplates; 86 87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 88 if (!IsType) 89 return false; 90 91 if (AllowNonTemplates) 92 return true; 93 94 // An injected-class-name of a class template (specialization) is valid 95 // as a template or as a non-template. 96 if (AllowTemplates) { 97 auto *RD = dyn_cast<CXXRecordDecl>(ND); 98 if (!RD || !RD->isInjectedClassName()) 99 return false; 100 RD = cast<CXXRecordDecl>(RD->getDeclContext()); 101 return RD->getDescribedClassTemplate() || 102 isa<ClassTemplateSpecializationDecl>(RD); 103 } 104 105 return false; 106 } 107 108 return !WantClassName && candidate.isKeyword(); 109 } 110 111 std::unique_ptr<CorrectionCandidateCallback> clone() override { 112 return std::make_unique<TypeNameValidatorCCC>(*this); 113 } 114 115 private: 116 bool AllowInvalidDecl; 117 bool WantClassName; 118 bool AllowTemplates; 119 bool AllowNonTemplates; 120 }; 121 122 } // end anonymous namespace 123 124 /// Determine whether the token kind starts a simple-type-specifier. 125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 126 switch (Kind) { 127 // FIXME: Take into account the current language when deciding whether a 128 // token kind is a valid type specifier 129 case tok::kw_short: 130 case tok::kw_long: 131 case tok::kw___int64: 132 case tok::kw___int128: 133 case tok::kw_signed: 134 case tok::kw_unsigned: 135 case tok::kw_void: 136 case tok::kw_char: 137 case tok::kw_int: 138 case tok::kw_half: 139 case tok::kw_float: 140 case tok::kw_double: 141 case tok::kw___bf16: 142 case tok::kw__Float16: 143 case tok::kw___float128: 144 case tok::kw___ibm128: 145 case tok::kw_wchar_t: 146 case tok::kw_bool: 147 case tok::kw___underlying_type: 148 case tok::kw___auto_type: 149 return true; 150 151 case tok::annot_typename: 152 case tok::kw_char16_t: 153 case tok::kw_char32_t: 154 case tok::kw_typeof: 155 case tok::annot_decltype: 156 case tok::kw_decltype: 157 return getLangOpts().CPlusPlus; 158 159 case tok::kw_char8_t: 160 return getLangOpts().Char8; 161 162 default: 163 break; 164 } 165 166 return false; 167 } 168 169 namespace { 170 enum class UnqualifiedTypeNameLookupResult { 171 NotFound, 172 FoundNonType, 173 FoundType 174 }; 175 } // end anonymous namespace 176 177 /// Tries to perform unqualified lookup of the type decls in bases for 178 /// dependent class. 179 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a 180 /// type decl, \a FoundType if only type decls are found. 181 static UnqualifiedTypeNameLookupResult 182 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, 183 SourceLocation NameLoc, 184 const CXXRecordDecl *RD) { 185 if (!RD->hasDefinition()) 186 return UnqualifiedTypeNameLookupResult::NotFound; 187 // Look for type decls in base classes. 188 UnqualifiedTypeNameLookupResult FoundTypeDecl = 189 UnqualifiedTypeNameLookupResult::NotFound; 190 for (const auto &Base : RD->bases()) { 191 const CXXRecordDecl *BaseRD = nullptr; 192 if (auto *BaseTT = Base.getType()->getAs<TagType>()) 193 BaseRD = BaseTT->getAsCXXRecordDecl(); 194 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { 195 // Look for type decls in dependent base classes that have known primary 196 // templates. 197 if (!TST || !TST->isDependentType()) 198 continue; 199 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 200 if (!TD) 201 continue; 202 if (auto *BasePrimaryTemplate = 203 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { 204 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) 205 BaseRD = BasePrimaryTemplate; 206 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { 207 if (const ClassTemplatePartialSpecializationDecl *PS = 208 CTD->findPartialSpecialization(Base.getType())) 209 if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) 210 BaseRD = PS; 211 } 212 } 213 } 214 if (BaseRD) { 215 for (NamedDecl *ND : BaseRD->lookup(&II)) { 216 if (!isa<TypeDecl>(ND)) 217 return UnqualifiedTypeNameLookupResult::FoundNonType; 218 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 219 } 220 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { 221 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { 222 case UnqualifiedTypeNameLookupResult::FoundNonType: 223 return UnqualifiedTypeNameLookupResult::FoundNonType; 224 case UnqualifiedTypeNameLookupResult::FoundType: 225 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 226 break; 227 case UnqualifiedTypeNameLookupResult::NotFound: 228 break; 229 } 230 } 231 } 232 } 233 234 return FoundTypeDecl; 235 } 236 237 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 238 const IdentifierInfo &II, 239 SourceLocation NameLoc) { 240 // Lookup in the parent class template context, if any. 241 const CXXRecordDecl *RD = nullptr; 242 UnqualifiedTypeNameLookupResult FoundTypeDecl = 243 UnqualifiedTypeNameLookupResult::NotFound; 244 for (DeclContext *DC = S.CurContext; 245 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; 246 DC = DC->getParent()) { 247 // Look for type decls in dependent base classes that have known primary 248 // templates. 249 RD = dyn_cast<CXXRecordDecl>(DC); 250 if (RD && RD->getDescribedClassTemplate()) 251 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); 252 } 253 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) 254 return nullptr; 255 256 // We found some types in dependent base classes. Recover as if the user 257 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 258 // lookup during template instantiation. 259 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; 260 261 ASTContext &Context = S.Context; 262 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 263 cast<Type>(Context.getRecordType(RD))); 264 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 265 266 CXXScopeSpec SS; 267 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 268 269 TypeLocBuilder Builder; 270 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 271 DepTL.setNameLoc(NameLoc); 272 DepTL.setElaboratedKeywordLoc(SourceLocation()); 273 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 274 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 275 } 276 277 /// If the identifier refers to a type name within this scope, 278 /// return the declaration of that type. 279 /// 280 /// This routine performs ordinary name lookup of the identifier II 281 /// within the given scope, with optional C++ scope specifier SS, to 282 /// determine whether the name refers to a type. If so, returns an 283 /// opaque pointer (actually a QualType) corresponding to that 284 /// type. Otherwise, returns NULL. 285 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 286 Scope *S, CXXScopeSpec *SS, 287 bool isClassName, bool HasTrailingDot, 288 ParsedType ObjectTypePtr, 289 bool IsCtorOrDtorName, 290 bool WantNontrivialTypeSourceInfo, 291 bool IsClassTemplateDeductionContext, 292 IdentifierInfo **CorrectedII) { 293 // FIXME: Consider allowing this outside C++1z mode as an extension. 294 bool AllowDeducedTemplate = IsClassTemplateDeductionContext && 295 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && 296 !isClassName && !HasTrailingDot; 297 298 // Determine where we will perform name lookup. 299 DeclContext *LookupCtx = nullptr; 300 if (ObjectTypePtr) { 301 QualType ObjectType = ObjectTypePtr.get(); 302 if (ObjectType->isRecordType()) 303 LookupCtx = computeDeclContext(ObjectType); 304 } else if (SS && SS->isNotEmpty()) { 305 LookupCtx = computeDeclContext(*SS, false); 306 307 if (!LookupCtx) { 308 if (isDependentScopeSpecifier(*SS)) { 309 // C++ [temp.res]p3: 310 // A qualified-id that refers to a type and in which the 311 // nested-name-specifier depends on a template-parameter (14.6.2) 312 // shall be prefixed by the keyword typename to indicate that the 313 // qualified-id denotes a type, forming an 314 // elaborated-type-specifier (7.1.5.3). 315 // 316 // We therefore do not perform any name lookup if the result would 317 // refer to a member of an unknown specialization. 318 if (!isClassName && !IsCtorOrDtorName) 319 return nullptr; 320 321 // We know from the grammar that this name refers to a type, 322 // so build a dependent node to describe the type. 323 if (WantNontrivialTypeSourceInfo) 324 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 325 326 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 327 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 328 II, NameLoc); 329 return ParsedType::make(T); 330 } 331 332 return nullptr; 333 } 334 335 if (!LookupCtx->isDependentContext() && 336 RequireCompleteDeclContext(*SS, LookupCtx)) 337 return nullptr; 338 } 339 340 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 341 // lookup for class-names. 342 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 343 LookupOrdinaryName; 344 LookupResult Result(*this, &II, NameLoc, Kind); 345 if (LookupCtx) { 346 // Perform "qualified" name lookup into the declaration context we 347 // computed, which is either the type of the base of a member access 348 // expression or the declaration context associated with a prior 349 // nested-name-specifier. 350 LookupQualifiedName(Result, LookupCtx); 351 352 if (ObjectTypePtr && Result.empty()) { 353 // C++ [basic.lookup.classref]p3: 354 // If the unqualified-id is ~type-name, the type-name is looked up 355 // in the context of the entire postfix-expression. If the type T of 356 // the object expression is of a class type C, the type-name is also 357 // looked up in the scope of class C. At least one of the lookups shall 358 // find a name that refers to (possibly cv-qualified) T. 359 LookupName(Result, S); 360 } 361 } else { 362 // Perform unqualified name lookup. 363 LookupName(Result, S); 364 365 // For unqualified lookup in a class template in MSVC mode, look into 366 // dependent base classes where the primary class template is known. 367 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 368 if (ParsedType TypeInBase = 369 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 370 return TypeInBase; 371 } 372 } 373 374 NamedDecl *IIDecl = nullptr; 375 switch (Result.getResultKind()) { 376 case LookupResult::NotFound: 377 case LookupResult::NotFoundInCurrentInstantiation: 378 if (CorrectedII) { 379 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, 380 AllowDeducedTemplate); 381 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, 382 S, SS, CCC, CTK_ErrorRecovery); 383 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 384 TemplateTy Template; 385 bool MemberOfUnknownSpecialization; 386 UnqualifiedId TemplateName; 387 TemplateName.setIdentifier(NewII, NameLoc); 388 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 389 CXXScopeSpec NewSS, *NewSSPtr = SS; 390 if (SS && NNS) { 391 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 392 NewSSPtr = &NewSS; 393 } 394 if (Correction && (NNS || NewII != &II) && 395 // Ignore a correction to a template type as the to-be-corrected 396 // identifier is not a template (typo correction for template names 397 // is handled elsewhere). 398 !(getLangOpts().CPlusPlus && NewSSPtr && 399 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, 400 Template, MemberOfUnknownSpecialization))) { 401 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 402 isClassName, HasTrailingDot, ObjectTypePtr, 403 IsCtorOrDtorName, 404 WantNontrivialTypeSourceInfo, 405 IsClassTemplateDeductionContext); 406 if (Ty) { 407 diagnoseTypo(Correction, 408 PDiag(diag::err_unknown_type_or_class_name_suggest) 409 << Result.getLookupName() << isClassName); 410 if (SS && NNS) 411 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 412 *CorrectedII = NewII; 413 return Ty; 414 } 415 } 416 } 417 // If typo correction failed or was not performed, fall through 418 LLVM_FALLTHROUGH; 419 case LookupResult::FoundOverloaded: 420 case LookupResult::FoundUnresolvedValue: 421 Result.suppressDiagnostics(); 422 return nullptr; 423 424 case LookupResult::Ambiguous: 425 // Recover from type-hiding ambiguities by hiding the type. We'll 426 // do the lookup again when looking for an object, and we can 427 // diagnose the error then. If we don't do this, then the error 428 // about hiding the type will be immediately followed by an error 429 // that only makes sense if the identifier was treated like a type. 430 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 431 Result.suppressDiagnostics(); 432 return nullptr; 433 } 434 435 // Look to see if we have a type anywhere in the list of results. 436 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 437 Res != ResEnd; ++Res) { 438 NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); 439 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( 440 RealRes) || 441 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { 442 if (!IIDecl || 443 // Make the selection of the recovery decl deterministic. 444 RealRes->getLocation() < IIDecl->getLocation()) 445 IIDecl = RealRes; 446 } 447 } 448 449 if (!IIDecl) { 450 // None of the entities we found is a type, so there is no way 451 // to even assume that the result is a type. In this case, don't 452 // complain about the ambiguity. The parser will either try to 453 // perform this lookup again (e.g., as an object name), which 454 // will produce the ambiguity, or will complain that it expected 455 // a type name. 456 Result.suppressDiagnostics(); 457 return nullptr; 458 } 459 460 // We found a type within the ambiguous lookup; diagnose the 461 // ambiguity and then return that type. This might be the right 462 // answer, or it might not be, but it suppresses any attempt to 463 // perform the name lookup again. 464 break; 465 466 case LookupResult::Found: 467 IIDecl = Result.getFoundDecl(); 468 break; 469 } 470 471 assert(IIDecl && "Didn't find decl"); 472 473 QualType T; 474 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 475 // C++ [class.qual]p2: A lookup that would find the injected-class-name 476 // instead names the constructors of the class, except when naming a class. 477 // This is ill-formed when we're not actually forming a ctor or dtor name. 478 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 479 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); 480 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && 481 FoundRD->isInjectedClassName() && 482 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 483 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) 484 << &II << /*Type*/1; 485 486 DiagnoseUseOfDecl(IIDecl, NameLoc); 487 488 T = Context.getTypeDeclType(TD); 489 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 490 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 491 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 492 if (!HasTrailingDot) 493 T = Context.getObjCInterfaceType(IDecl); 494 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { 495 (void)DiagnoseUseOfDecl(UD, NameLoc); 496 // Recover with 'int' 497 T = Context.IntTy; 498 } else if (AllowDeducedTemplate) { 499 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) 500 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), 501 QualType(), false); 502 } 503 504 if (T.isNull()) { 505 // If it's not plausibly a type, suppress diagnostics. 506 Result.suppressDiagnostics(); 507 return nullptr; 508 } 509 510 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 511 // constructor or destructor name (in such a case, the scope specifier 512 // will be attached to the enclosing Expr or Decl node). 513 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && 514 !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) { 515 if (WantNontrivialTypeSourceInfo) { 516 // Construct a type with type-source information. 517 TypeLocBuilder Builder; 518 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 519 520 T = getElaboratedType(ETK_None, *SS, T); 521 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 522 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 523 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 524 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 525 } else { 526 T = getElaboratedType(ETK_None, *SS, T); 527 } 528 } 529 530 return ParsedType::make(T); 531 } 532 533 // Builds a fake NNS for the given decl context. 534 static NestedNameSpecifier * 535 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 536 for (;; DC = DC->getLookupParent()) { 537 DC = DC->getPrimaryContext(); 538 auto *ND = dyn_cast<NamespaceDecl>(DC); 539 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 540 return NestedNameSpecifier::Create(Context, nullptr, ND); 541 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 542 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 543 RD->getTypeForDecl()); 544 else if (isa<TranslationUnitDecl>(DC)) 545 return NestedNameSpecifier::GlobalSpecifier(Context); 546 } 547 llvm_unreachable("something isn't in TU scope?"); 548 } 549 550 /// Find the parent class with dependent bases of the innermost enclosing method 551 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end 552 /// up allowing unqualified dependent type names at class-level, which MSVC 553 /// correctly rejects. 554 static const CXXRecordDecl * 555 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { 556 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { 557 DC = DC->getPrimaryContext(); 558 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) 559 if (MD->getParent()->hasAnyDependentBases()) 560 return MD->getParent(); 561 } 562 return nullptr; 563 } 564 565 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, 566 SourceLocation NameLoc, 567 bool IsTemplateTypeArg) { 568 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); 569 570 NestedNameSpecifier *NNS = nullptr; 571 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { 572 // If we weren't able to parse a default template argument, delay lookup 573 // until instantiation time by making a non-dependent DependentTypeName. We 574 // pretend we saw a NestedNameSpecifier referring to the current scope, and 575 // lookup is retried. 576 // FIXME: This hurts our diagnostic quality, since we get errors like "no 577 // type named 'Foo' in 'current_namespace'" when the user didn't write any 578 // name specifiers. 579 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); 580 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 581 } else if (const CXXRecordDecl *RD = 582 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { 583 // Build a DependentNameType that will perform lookup into RD at 584 // instantiation time. 585 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 586 RD->getTypeForDecl()); 587 588 // Diagnose that this identifier was undeclared, and retry the lookup during 589 // template instantiation. 590 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II 591 << RD; 592 } else { 593 // This is not a situation that we should recover from. 594 return ParsedType(); 595 } 596 597 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 598 599 // Build type location information. We synthesized the qualifier, so we have 600 // to build a fake NestedNameSpecifierLoc. 601 NestedNameSpecifierLocBuilder NNSLocBuilder; 602 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 603 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 604 605 TypeLocBuilder Builder; 606 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 607 DepTL.setNameLoc(NameLoc); 608 DepTL.setElaboratedKeywordLoc(SourceLocation()); 609 DepTL.setQualifierLoc(QualifierLoc); 610 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 611 } 612 613 /// isTagName() - This method is called *for error recovery purposes only* 614 /// to determine if the specified name is a valid tag name ("struct foo"). If 615 /// so, this returns the TST for the tag corresponding to it (TST_enum, 616 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 617 /// cases in C where the user forgot to specify the tag. 618 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 619 // Do a tag name lookup in this scope. 620 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 621 LookupName(R, S, false); 622 R.suppressDiagnostics(); 623 if (R.getResultKind() == LookupResult::Found) 624 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 625 switch (TD->getTagKind()) { 626 case TTK_Struct: return DeclSpec::TST_struct; 627 case TTK_Interface: return DeclSpec::TST_interface; 628 case TTK_Union: return DeclSpec::TST_union; 629 case TTK_Class: return DeclSpec::TST_class; 630 case TTK_Enum: return DeclSpec::TST_enum; 631 } 632 } 633 634 return DeclSpec::TST_unspecified; 635 } 636 637 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 638 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 639 /// then downgrade the missing typename error to a warning. 640 /// This is needed for MSVC compatibility; Example: 641 /// @code 642 /// template<class T> class A { 643 /// public: 644 /// typedef int TYPE; 645 /// }; 646 /// template<class T> class B : public A<T> { 647 /// public: 648 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 649 /// }; 650 /// @endcode 651 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 652 if (CurContext->isRecord()) { 653 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 654 return true; 655 656 const Type *Ty = SS->getScopeRep()->getAsType(); 657 658 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 659 for (const auto &Base : RD->bases()) 660 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 661 return true; 662 return S->isFunctionPrototypeScope(); 663 } 664 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 665 } 666 667 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 668 SourceLocation IILoc, 669 Scope *S, 670 CXXScopeSpec *SS, 671 ParsedType &SuggestedType, 672 bool IsTemplateName) { 673 // Don't report typename errors for editor placeholders. 674 if (II->isEditorPlaceholder()) 675 return; 676 // We don't have anything to suggest (yet). 677 SuggestedType = nullptr; 678 679 // There may have been a typo in the name of the type. Look up typo 680 // results, in case we have something that we can suggest. 681 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, 682 /*AllowTemplates=*/IsTemplateName, 683 /*AllowNonTemplates=*/!IsTemplateName); 684 if (TypoCorrection Corrected = 685 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 686 CCC, CTK_ErrorRecovery)) { 687 // FIXME: Support error recovery for the template-name case. 688 bool CanRecover = !IsTemplateName; 689 if (Corrected.isKeyword()) { 690 // We corrected to a keyword. 691 diagnoseTypo(Corrected, 692 PDiag(IsTemplateName ? diag::err_no_template_suggest 693 : diag::err_unknown_typename_suggest) 694 << II); 695 II = Corrected.getCorrectionAsIdentifierInfo(); 696 } else { 697 // We found a similarly-named type or interface; suggest that. 698 if (!SS || !SS->isSet()) { 699 diagnoseTypo(Corrected, 700 PDiag(IsTemplateName ? diag::err_no_template_suggest 701 : diag::err_unknown_typename_suggest) 702 << II, CanRecover); 703 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 704 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 705 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 706 II->getName().equals(CorrectedStr); 707 diagnoseTypo(Corrected, 708 PDiag(IsTemplateName 709 ? diag::err_no_member_template_suggest 710 : diag::err_unknown_nested_typename_suggest) 711 << II << DC << DroppedSpecifier << SS->getRange(), 712 CanRecover); 713 } else { 714 llvm_unreachable("could not have corrected a typo here"); 715 } 716 717 if (!CanRecover) 718 return; 719 720 CXXScopeSpec tmpSS; 721 if (Corrected.getCorrectionSpecifier()) 722 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 723 SourceRange(IILoc)); 724 // FIXME: Support class template argument deduction here. 725 SuggestedType = 726 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, 727 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, 728 /*IsCtorOrDtorName=*/false, 729 /*WantNontrivialTypeSourceInfo=*/true); 730 } 731 return; 732 } 733 734 if (getLangOpts().CPlusPlus && !IsTemplateName) { 735 // See if II is a class template that the user forgot to pass arguments to. 736 UnqualifiedId Name; 737 Name.setIdentifier(II, IILoc); 738 CXXScopeSpec EmptySS; 739 TemplateTy TemplateResult; 740 bool MemberOfUnknownSpecialization; 741 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 742 Name, nullptr, true, TemplateResult, 743 MemberOfUnknownSpecialization) == TNK_Type_template) { 744 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); 745 return; 746 } 747 } 748 749 // FIXME: Should we move the logic that tries to recover from a missing tag 750 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 751 752 if (!SS || (!SS->isSet() && !SS->isInvalid())) 753 Diag(IILoc, IsTemplateName ? diag::err_no_template 754 : diag::err_unknown_typename) 755 << II; 756 else if (DeclContext *DC = computeDeclContext(*SS, false)) 757 Diag(IILoc, IsTemplateName ? diag::err_no_member_template 758 : diag::err_typename_nested_not_found) 759 << II << DC << SS->getRange(); 760 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { 761 SuggestedType = 762 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); 763 } else if (isDependentScopeSpecifier(*SS)) { 764 unsigned DiagID = diag::err_typename_missing; 765 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 766 DiagID = diag::ext_typename_missing; 767 768 Diag(SS->getRange().getBegin(), DiagID) 769 << SS->getScopeRep() << II->getName() 770 << SourceRange(SS->getRange().getBegin(), IILoc) 771 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 772 SuggestedType = ActOnTypenameType(S, SourceLocation(), 773 *SS, *II, IILoc).get(); 774 } else { 775 assert(SS && SS->isInvalid() && 776 "Invalid scope specifier has already been diagnosed"); 777 } 778 } 779 780 /// Determine whether the given result set contains either a type name 781 /// or 782 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 783 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 784 NextToken.is(tok::less); 785 786 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 787 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 788 return true; 789 790 if (CheckTemplate && isa<TemplateDecl>(*I)) 791 return true; 792 } 793 794 return false; 795 } 796 797 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 798 Scope *S, CXXScopeSpec &SS, 799 IdentifierInfo *&Name, 800 SourceLocation NameLoc) { 801 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 802 SemaRef.LookupParsedName(R, S, &SS); 803 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 804 StringRef FixItTagName; 805 switch (Tag->getTagKind()) { 806 case TTK_Class: 807 FixItTagName = "class "; 808 break; 809 810 case TTK_Enum: 811 FixItTagName = "enum "; 812 break; 813 814 case TTK_Struct: 815 FixItTagName = "struct "; 816 break; 817 818 case TTK_Interface: 819 FixItTagName = "__interface "; 820 break; 821 822 case TTK_Union: 823 FixItTagName = "union "; 824 break; 825 } 826 827 StringRef TagName = FixItTagName.drop_back(); 828 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 829 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 830 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 831 832 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 833 I != IEnd; ++I) 834 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 835 << Name << TagName; 836 837 // Replace lookup results with just the tag decl. 838 Result.clear(Sema::LookupTagName); 839 SemaRef.LookupParsedName(Result, S, &SS); 840 return true; 841 } 842 843 return false; 844 } 845 846 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 847 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 848 QualType T, SourceLocation NameLoc) { 849 ASTContext &Context = S.Context; 850 851 TypeLocBuilder Builder; 852 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 853 854 T = S.getElaboratedType(ETK_None, SS, T); 855 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 856 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 857 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 858 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 859 } 860 861 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, 862 IdentifierInfo *&Name, 863 SourceLocation NameLoc, 864 const Token &NextToken, 865 CorrectionCandidateCallback *CCC) { 866 DeclarationNameInfo NameInfo(Name, NameLoc); 867 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 868 869 assert(NextToken.isNot(tok::coloncolon) && 870 "parse nested name specifiers before calling ClassifyName"); 871 if (getLangOpts().CPlusPlus && SS.isSet() && 872 isCurrentClassName(*Name, S, &SS)) { 873 // Per [class.qual]p2, this names the constructors of SS, not the 874 // injected-class-name. We don't have a classification for that. 875 // There's not much point caching this result, since the parser 876 // will reject it later. 877 return NameClassification::Unknown(); 878 } 879 880 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 881 LookupParsedName(Result, S, &SS, !CurMethod); 882 883 if (SS.isInvalid()) 884 return NameClassification::Error(); 885 886 // For unqualified lookup in a class template in MSVC mode, look into 887 // dependent base classes where the primary class template is known. 888 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 889 if (ParsedType TypeInBase = 890 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 891 return TypeInBase; 892 } 893 894 // Perform lookup for Objective-C instance variables (including automatically 895 // synthesized instance variables), if we're in an Objective-C method. 896 // FIXME: This lookup really, really needs to be folded in to the normal 897 // unqualified lookup mechanism. 898 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 899 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); 900 if (Ivar.isInvalid()) 901 return NameClassification::Error(); 902 if (Ivar.isUsable()) 903 return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); 904 905 // We defer builtin creation until after ivar lookup inside ObjC methods. 906 if (Result.empty()) 907 LookupBuiltin(Result); 908 } 909 910 bool SecondTry = false; 911 bool IsFilteredTemplateName = false; 912 913 Corrected: 914 switch (Result.getResultKind()) { 915 case LookupResult::NotFound: 916 // If an unqualified-id is followed by a '(', then we have a function 917 // call. 918 if (SS.isEmpty() && NextToken.is(tok::l_paren)) { 919 // In C++, this is an ADL-only call. 920 // FIXME: Reference? 921 if (getLangOpts().CPlusPlus) 922 return NameClassification::UndeclaredNonType(); 923 924 // C90 6.3.2.2: 925 // If the expression that precedes the parenthesized argument list in a 926 // function call consists solely of an identifier, and if no 927 // declaration is visible for this identifier, the identifier is 928 // implicitly declared exactly as if, in the innermost block containing 929 // the function call, the declaration 930 // 931 // extern int identifier (); 932 // 933 // appeared. 934 // 935 // We also allow this in C99 as an extension. 936 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) 937 return NameClassification::NonType(D); 938 } 939 940 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { 941 // In C++20 onwards, this could be an ADL-only call to a function 942 // template, and we're required to assume that this is a template name. 943 // 944 // FIXME: Find a way to still do typo correction in this case. 945 TemplateName Template = 946 Context.getAssumedTemplateName(NameInfo.getName()); 947 return NameClassification::UndeclaredTemplate(Template); 948 } 949 950 // In C, we first see whether there is a tag type by the same name, in 951 // which case it's likely that the user just forgot to write "enum", 952 // "struct", or "union". 953 if (!getLangOpts().CPlusPlus && !SecondTry && 954 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 955 break; 956 } 957 958 // Perform typo correction to determine if there is another name that is 959 // close to this name. 960 if (!SecondTry && CCC) { 961 SecondTry = true; 962 if (TypoCorrection Corrected = 963 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, 964 &SS, *CCC, CTK_ErrorRecovery)) { 965 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 966 unsigned QualifiedDiag = diag::err_no_member_suggest; 967 968 NamedDecl *FirstDecl = Corrected.getFoundDecl(); 969 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); 970 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 971 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 972 UnqualifiedDiag = diag::err_no_template_suggest; 973 QualifiedDiag = diag::err_no_member_template_suggest; 974 } else if (UnderlyingFirstDecl && 975 (isa<TypeDecl>(UnderlyingFirstDecl) || 976 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 977 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 978 UnqualifiedDiag = diag::err_unknown_typename_suggest; 979 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 980 } 981 982 if (SS.isEmpty()) { 983 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 984 } else {// FIXME: is this even reachable? Test it. 985 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 986 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 987 Name->getName().equals(CorrectedStr); 988 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 989 << Name << computeDeclContext(SS, false) 990 << DroppedSpecifier << SS.getRange()); 991 } 992 993 // Update the name, so that the caller has the new name. 994 Name = Corrected.getCorrectionAsIdentifierInfo(); 995 996 // Typo correction corrected to a keyword. 997 if (Corrected.isKeyword()) 998 return Name; 999 1000 // Also update the LookupResult... 1001 // FIXME: This should probably go away at some point 1002 Result.clear(); 1003 Result.setLookupName(Corrected.getCorrection()); 1004 if (FirstDecl) 1005 Result.addDecl(FirstDecl); 1006 1007 // If we found an Objective-C instance variable, let 1008 // LookupInObjCMethod build the appropriate expression to 1009 // reference the ivar. 1010 // FIXME: This is a gross hack. 1011 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 1012 DeclResult R = 1013 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); 1014 if (R.isInvalid()) 1015 return NameClassification::Error(); 1016 if (R.isUsable()) 1017 return NameClassification::NonType(Ivar); 1018 } 1019 1020 goto Corrected; 1021 } 1022 } 1023 1024 // We failed to correct; just fall through and let the parser deal with it. 1025 Result.suppressDiagnostics(); 1026 return NameClassification::Unknown(); 1027 1028 case LookupResult::NotFoundInCurrentInstantiation: { 1029 // We performed name lookup into the current instantiation, and there were 1030 // dependent bases, so we treat this result the same way as any other 1031 // dependent nested-name-specifier. 1032 1033 // C++ [temp.res]p2: 1034 // A name used in a template declaration or definition and that is 1035 // dependent on a template-parameter is assumed not to name a type 1036 // unless the applicable name lookup finds a type name or the name is 1037 // qualified by the keyword typename. 1038 // 1039 // FIXME: If the next token is '<', we might want to ask the parser to 1040 // perform some heroics to see if we actually have a 1041 // template-argument-list, which would indicate a missing 'template' 1042 // keyword here. 1043 return NameClassification::DependentNonType(); 1044 } 1045 1046 case LookupResult::Found: 1047 case LookupResult::FoundOverloaded: 1048 case LookupResult::FoundUnresolvedValue: 1049 break; 1050 1051 case LookupResult::Ambiguous: 1052 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1053 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, 1054 /*AllowDependent=*/false)) { 1055 // C++ [temp.local]p3: 1056 // A lookup that finds an injected-class-name (10.2) can result in an 1057 // ambiguity in certain cases (for example, if it is found in more than 1058 // one base class). If all of the injected-class-names that are found 1059 // refer to specializations of the same class template, and if the name 1060 // is followed by a template-argument-list, the reference refers to the 1061 // class template itself and not a specialization thereof, and is not 1062 // ambiguous. 1063 // 1064 // This filtering can make an ambiguous result into an unambiguous one, 1065 // so try again after filtering out template names. 1066 FilterAcceptableTemplateNames(Result); 1067 if (!Result.isAmbiguous()) { 1068 IsFilteredTemplateName = true; 1069 break; 1070 } 1071 } 1072 1073 // Diagnose the ambiguity and return an error. 1074 return NameClassification::Error(); 1075 } 1076 1077 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1078 (IsFilteredTemplateName || 1079 hasAnyAcceptableTemplateNames( 1080 Result, /*AllowFunctionTemplates=*/true, 1081 /*AllowDependent=*/false, 1082 /*AllowNonTemplateFunctions*/ SS.isEmpty() && 1083 getLangOpts().CPlusPlus20))) { 1084 // C++ [temp.names]p3: 1085 // After name lookup (3.4) finds that a name is a template-name or that 1086 // an operator-function-id or a literal- operator-id refers to a set of 1087 // overloaded functions any member of which is a function template if 1088 // this is followed by a <, the < is always taken as the delimiter of a 1089 // template-argument-list and never as the less-than operator. 1090 // C++2a [temp.names]p2: 1091 // A name is also considered to refer to a template if it is an 1092 // unqualified-id followed by a < and name lookup finds either one 1093 // or more functions or finds nothing. 1094 if (!IsFilteredTemplateName) 1095 FilterAcceptableTemplateNames(Result); 1096 1097 bool IsFunctionTemplate; 1098 bool IsVarTemplate; 1099 TemplateName Template; 1100 if (Result.end() - Result.begin() > 1) { 1101 IsFunctionTemplate = true; 1102 Template = Context.getOverloadedTemplateName(Result.begin(), 1103 Result.end()); 1104 } else if (!Result.empty()) { 1105 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( 1106 *Result.begin(), /*AllowFunctionTemplates=*/true, 1107 /*AllowDependent=*/false)); 1108 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 1109 IsVarTemplate = isa<VarTemplateDecl>(TD); 1110 1111 if (SS.isNotEmpty()) 1112 Template = 1113 Context.getQualifiedTemplateName(SS.getScopeRep(), 1114 /*TemplateKeyword=*/false, TD); 1115 else 1116 Template = TemplateName(TD); 1117 } else { 1118 // All results were non-template functions. This is a function template 1119 // name. 1120 IsFunctionTemplate = true; 1121 Template = Context.getAssumedTemplateName(NameInfo.getName()); 1122 } 1123 1124 if (IsFunctionTemplate) { 1125 // Function templates always go through overload resolution, at which 1126 // point we'll perform the various checks (e.g., accessibility) we need 1127 // to based on which function we selected. 1128 Result.suppressDiagnostics(); 1129 1130 return NameClassification::FunctionTemplate(Template); 1131 } 1132 1133 return IsVarTemplate ? NameClassification::VarTemplate(Template) 1134 : NameClassification::TypeTemplate(Template); 1135 } 1136 1137 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 1138 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 1139 DiagnoseUseOfDecl(Type, NameLoc); 1140 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 1141 QualType T = Context.getTypeDeclType(Type); 1142 if (SS.isNotEmpty()) 1143 return buildNestedType(*this, SS, T, NameLoc); 1144 return ParsedType::make(T); 1145 } 1146 1147 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 1148 if (!Class) { 1149 // FIXME: It's unfortunate that we don't have a Type node for handling this. 1150 if (ObjCCompatibleAliasDecl *Alias = 1151 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 1152 Class = Alias->getClassInterface(); 1153 } 1154 1155 if (Class) { 1156 DiagnoseUseOfDecl(Class, NameLoc); 1157 1158 if (NextToken.is(tok::period)) { 1159 // Interface. <something> is parsed as a property reference expression. 1160 // Just return "unknown" as a fall-through for now. 1161 Result.suppressDiagnostics(); 1162 return NameClassification::Unknown(); 1163 } 1164 1165 QualType T = Context.getObjCInterfaceType(Class); 1166 return ParsedType::make(T); 1167 } 1168 1169 if (isa<ConceptDecl>(FirstDecl)) 1170 return NameClassification::Concept( 1171 TemplateName(cast<TemplateDecl>(FirstDecl))); 1172 1173 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { 1174 (void)DiagnoseUseOfDecl(EmptyD, NameLoc); 1175 return NameClassification::Error(); 1176 } 1177 1178 // We can have a type template here if we're classifying a template argument. 1179 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && 1180 !isa<VarTemplateDecl>(FirstDecl)) 1181 return NameClassification::TypeTemplate( 1182 TemplateName(cast<TemplateDecl>(FirstDecl))); 1183 1184 // Check for a tag type hidden by a non-type decl in a few cases where it 1185 // seems likely a type is wanted instead of the non-type that was found. 1186 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); 1187 if ((NextToken.is(tok::identifier) || 1188 (NextIsOp && 1189 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 1190 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 1191 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 1192 DiagnoseUseOfDecl(Type, NameLoc); 1193 QualType T = Context.getTypeDeclType(Type); 1194 if (SS.isNotEmpty()) 1195 return buildNestedType(*this, SS, T, NameLoc); 1196 return ParsedType::make(T); 1197 } 1198 1199 // If we already know which single declaration is referenced, just annotate 1200 // that declaration directly. Defer resolving even non-overloaded class 1201 // member accesses, as we need to defer certain access checks until we know 1202 // the context. 1203 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1204 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember()) 1205 return NameClassification::NonType(Result.getRepresentativeDecl()); 1206 1207 // Otherwise, this is an overload set that we will need to resolve later. 1208 Result.suppressDiagnostics(); 1209 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( 1210 Context, Result.getNamingClass(), SS.getWithLocInContext(Context), 1211 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), 1212 Result.begin(), Result.end())); 1213 } 1214 1215 ExprResult 1216 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, 1217 SourceLocation NameLoc) { 1218 assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); 1219 CXXScopeSpec SS; 1220 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1221 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 1222 } 1223 1224 ExprResult 1225 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, 1226 IdentifierInfo *Name, 1227 SourceLocation NameLoc, 1228 bool IsAddressOfOperand) { 1229 DeclarationNameInfo NameInfo(Name, NameLoc); 1230 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 1231 NameInfo, IsAddressOfOperand, 1232 /*TemplateArgs=*/nullptr); 1233 } 1234 1235 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, 1236 NamedDecl *Found, 1237 SourceLocation NameLoc, 1238 const Token &NextToken) { 1239 if (getCurMethodDecl() && SS.isEmpty()) 1240 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) 1241 return BuildIvarRefExpr(S, NameLoc, Ivar); 1242 1243 // Reconstruct the lookup result. 1244 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); 1245 Result.addDecl(Found); 1246 Result.resolveKind(); 1247 1248 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1249 return BuildDeclarationNameExpr(SS, Result, ADL); 1250 } 1251 1252 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { 1253 // For an implicit class member access, transform the result into a member 1254 // access expression if necessary. 1255 auto *ULE = cast<UnresolvedLookupExpr>(E); 1256 if ((*ULE->decls_begin())->isCXXClassMember()) { 1257 CXXScopeSpec SS; 1258 SS.Adopt(ULE->getQualifierLoc()); 1259 1260 // Reconstruct the lookup result. 1261 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), 1262 LookupOrdinaryName); 1263 Result.setNamingClass(ULE->getNamingClass()); 1264 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) 1265 Result.addDecl(*I, I.getAccess()); 1266 Result.resolveKind(); 1267 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 1268 nullptr, S); 1269 } 1270 1271 // Otherwise, this is already in the form we needed, and no further checks 1272 // are necessary. 1273 return ULE; 1274 } 1275 1276 Sema::TemplateNameKindForDiagnostics 1277 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { 1278 auto *TD = Name.getAsTemplateDecl(); 1279 if (!TD) 1280 return TemplateNameKindForDiagnostics::DependentTemplate; 1281 if (isa<ClassTemplateDecl>(TD)) 1282 return TemplateNameKindForDiagnostics::ClassTemplate; 1283 if (isa<FunctionTemplateDecl>(TD)) 1284 return TemplateNameKindForDiagnostics::FunctionTemplate; 1285 if (isa<VarTemplateDecl>(TD)) 1286 return TemplateNameKindForDiagnostics::VarTemplate; 1287 if (isa<TypeAliasTemplateDecl>(TD)) 1288 return TemplateNameKindForDiagnostics::AliasTemplate; 1289 if (isa<TemplateTemplateParmDecl>(TD)) 1290 return TemplateNameKindForDiagnostics::TemplateTemplateParam; 1291 if (isa<ConceptDecl>(TD)) 1292 return TemplateNameKindForDiagnostics::Concept; 1293 return TemplateNameKindForDiagnostics::DependentTemplate; 1294 } 1295 1296 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1297 assert(DC->getLexicalParent() == CurContext && 1298 "The next DeclContext should be lexically contained in the current one."); 1299 CurContext = DC; 1300 S->setEntity(DC); 1301 } 1302 1303 void Sema::PopDeclContext() { 1304 assert(CurContext && "DeclContext imbalance!"); 1305 1306 CurContext = CurContext->getLexicalParent(); 1307 assert(CurContext && "Popped translation unit!"); 1308 } 1309 1310 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, 1311 Decl *D) { 1312 // Unlike PushDeclContext, the context to which we return is not necessarily 1313 // the containing DC of TD, because the new context will be some pre-existing 1314 // TagDecl definition instead of a fresh one. 1315 auto Result = static_cast<SkippedDefinitionContext>(CurContext); 1316 CurContext = cast<TagDecl>(D)->getDefinition(); 1317 assert(CurContext && "skipping definition of undefined tag"); 1318 // Start lookups from the parent of the current context; we don't want to look 1319 // into the pre-existing complete definition. 1320 S->setEntity(CurContext->getLookupParent()); 1321 return Result; 1322 } 1323 1324 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { 1325 CurContext = static_cast<decltype(CurContext)>(Context); 1326 } 1327 1328 /// EnterDeclaratorContext - Used when we must lookup names in the context 1329 /// of a declarator's nested name specifier. 1330 /// 1331 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1332 // C++0x [basic.lookup.unqual]p13: 1333 // A name used in the definition of a static data member of class 1334 // X (after the qualified-id of the static member) is looked up as 1335 // if the name was used in a member function of X. 1336 // C++0x [basic.lookup.unqual]p14: 1337 // If a variable member of a namespace is defined outside of the 1338 // scope of its namespace then any name used in the definition of 1339 // the variable member (after the declarator-id) is looked up as 1340 // if the definition of the variable member occurred in its 1341 // namespace. 1342 // Both of these imply that we should push a scope whose context 1343 // is the semantic context of the declaration. We can't use 1344 // PushDeclContext here because that context is not necessarily 1345 // lexically contained in the current context. Fortunately, 1346 // the containing scope should have the appropriate information. 1347 1348 assert(!S->getEntity() && "scope already has entity"); 1349 1350 #ifndef NDEBUG 1351 Scope *Ancestor = S->getParent(); 1352 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1353 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1354 #endif 1355 1356 CurContext = DC; 1357 S->setEntity(DC); 1358 1359 if (S->getParent()->isTemplateParamScope()) { 1360 // Also set the corresponding entities for all immediately-enclosing 1361 // template parameter scopes. 1362 EnterTemplatedContext(S->getParent(), DC); 1363 } 1364 } 1365 1366 void Sema::ExitDeclaratorContext(Scope *S) { 1367 assert(S->getEntity() == CurContext && "Context imbalance!"); 1368 1369 // Switch back to the lexical context. The safety of this is 1370 // enforced by an assert in EnterDeclaratorContext. 1371 Scope *Ancestor = S->getParent(); 1372 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1373 CurContext = Ancestor->getEntity(); 1374 1375 // We don't need to do anything with the scope, which is going to 1376 // disappear. 1377 } 1378 1379 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { 1380 assert(S->isTemplateParamScope() && 1381 "expected to be initializing a template parameter scope"); 1382 1383 // C++20 [temp.local]p7: 1384 // In the definition of a member of a class template that appears outside 1385 // of the class template definition, the name of a member of the class 1386 // template hides the name of a template-parameter of any enclosing class 1387 // templates (but not a template-parameter of the member if the member is a 1388 // class or function template). 1389 // C++20 [temp.local]p9: 1390 // In the definition of a class template or in the definition of a member 1391 // of such a template that appears outside of the template definition, for 1392 // each non-dependent base class (13.8.2.1), if the name of the base class 1393 // or the name of a member of the base class is the same as the name of a 1394 // template-parameter, the base class name or member name hides the 1395 // template-parameter name (6.4.10). 1396 // 1397 // This means that a template parameter scope should be searched immediately 1398 // after searching the DeclContext for which it is a template parameter 1399 // scope. For example, for 1400 // template<typename T> template<typename U> template<typename V> 1401 // void N::A<T>::B<U>::f(...) 1402 // we search V then B<U> (and base classes) then U then A<T> (and base 1403 // classes) then T then N then ::. 1404 unsigned ScopeDepth = getTemplateDepth(S); 1405 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { 1406 DeclContext *SearchDCAfterScope = DC; 1407 for (; DC; DC = DC->getLookupParent()) { 1408 if (const TemplateParameterList *TPL = 1409 cast<Decl>(DC)->getDescribedTemplateParams()) { 1410 unsigned DCDepth = TPL->getDepth() + 1; 1411 if (DCDepth > ScopeDepth) 1412 continue; 1413 if (ScopeDepth == DCDepth) 1414 SearchDCAfterScope = DC = DC->getLookupParent(); 1415 break; 1416 } 1417 } 1418 S->setLookupEntity(SearchDCAfterScope); 1419 } 1420 } 1421 1422 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1423 // We assume that the caller has already called 1424 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1425 FunctionDecl *FD = D->getAsFunction(); 1426 if (!FD) 1427 return; 1428 1429 // Same implementation as PushDeclContext, but enters the context 1430 // from the lexical parent, rather than the top-level class. 1431 assert(CurContext == FD->getLexicalParent() && 1432 "The next DeclContext should be lexically contained in the current one."); 1433 CurContext = FD; 1434 S->setEntity(CurContext); 1435 1436 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1437 ParmVarDecl *Param = FD->getParamDecl(P); 1438 // If the parameter has an identifier, then add it to the scope 1439 if (Param->getIdentifier()) { 1440 S->AddDecl(Param); 1441 IdResolver.AddDecl(Param); 1442 } 1443 } 1444 } 1445 1446 void Sema::ActOnExitFunctionContext() { 1447 // Same implementation as PopDeclContext, but returns to the lexical parent, 1448 // rather than the top-level class. 1449 assert(CurContext && "DeclContext imbalance!"); 1450 CurContext = CurContext->getLexicalParent(); 1451 assert(CurContext && "Popped translation unit!"); 1452 } 1453 1454 /// Determine whether we allow overloading of the function 1455 /// PrevDecl with another declaration. 1456 /// 1457 /// This routine determines whether overloading is possible, not 1458 /// whether some new function is actually an overload. It will return 1459 /// true in C++ (where we can always provide overloads) or, as an 1460 /// extension, in C when the previous function is already an 1461 /// overloaded function declaration or has the "overloadable" 1462 /// attribute. 1463 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1464 ASTContext &Context, 1465 const FunctionDecl *New) { 1466 if (Context.getLangOpts().CPlusPlus) 1467 return true; 1468 1469 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1470 return true; 1471 1472 return Previous.getResultKind() == LookupResult::Found && 1473 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || 1474 New->hasAttr<OverloadableAttr>()); 1475 } 1476 1477 /// Add this decl to the scope shadowed decl chains. 1478 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1479 // Move up the scope chain until we find the nearest enclosing 1480 // non-transparent context. The declaration will be introduced into this 1481 // scope. 1482 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1483 S = S->getParent(); 1484 1485 // Add scoped declarations into their context, so that they can be 1486 // found later. Declarations without a context won't be inserted 1487 // into any context. 1488 if (AddToContext) 1489 CurContext->addDecl(D); 1490 1491 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1492 // are function-local declarations. 1493 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) 1494 return; 1495 1496 // Template instantiations should also not be pushed into scope. 1497 if (isa<FunctionDecl>(D) && 1498 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1499 return; 1500 1501 // If this replaces anything in the current scope, 1502 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1503 IEnd = IdResolver.end(); 1504 for (; I != IEnd; ++I) { 1505 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1506 S->RemoveDecl(*I); 1507 IdResolver.RemoveDecl(*I); 1508 1509 // Should only need to replace one decl. 1510 break; 1511 } 1512 } 1513 1514 S->AddDecl(D); 1515 1516 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1517 // Implicitly-generated labels may end up getting generated in an order that 1518 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1519 // the label at the appropriate place in the identifier chain. 1520 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1521 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1522 if (IDC == CurContext) { 1523 if (!S->isDeclScope(*I)) 1524 continue; 1525 } else if (IDC->Encloses(CurContext)) 1526 break; 1527 } 1528 1529 IdResolver.InsertDeclAfter(I, D); 1530 } else { 1531 IdResolver.AddDecl(D); 1532 } 1533 warnOnReservedIdentifier(D); 1534 } 1535 1536 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1537 bool AllowInlineNamespace) { 1538 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1539 } 1540 1541 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1542 DeclContext *TargetDC = DC->getPrimaryContext(); 1543 do { 1544 if (DeclContext *ScopeDC = S->getEntity()) 1545 if (ScopeDC->getPrimaryContext() == TargetDC) 1546 return S; 1547 } while ((S = S->getParent())); 1548 1549 return nullptr; 1550 } 1551 1552 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1553 DeclContext*, 1554 ASTContext&); 1555 1556 /// Filters out lookup results that don't fall within the given scope 1557 /// as determined by isDeclInScope. 1558 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1559 bool ConsiderLinkage, 1560 bool AllowInlineNamespace) { 1561 LookupResult::Filter F = R.makeFilter(); 1562 while (F.hasNext()) { 1563 NamedDecl *D = F.next(); 1564 1565 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1566 continue; 1567 1568 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1569 continue; 1570 1571 F.erase(); 1572 } 1573 1574 F.done(); 1575 } 1576 1577 /// We've determined that \p New is a redeclaration of \p Old. Check that they 1578 /// have compatible owning modules. 1579 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { 1580 // FIXME: The Modules TS is not clear about how friend declarations are 1581 // to be treated. It's not meaningful to have different owning modules for 1582 // linkage in redeclarations of the same entity, so for now allow the 1583 // redeclaration and change the owning modules to match. 1584 if (New->getFriendObjectKind() && 1585 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { 1586 New->setLocalOwningModule(Old->getOwningModule()); 1587 makeMergedDefinitionVisible(New); 1588 return false; 1589 } 1590 1591 Module *NewM = New->getOwningModule(); 1592 Module *OldM = Old->getOwningModule(); 1593 1594 if (NewM && NewM->Kind == Module::PrivateModuleFragment) 1595 NewM = NewM->Parent; 1596 if (OldM && OldM->Kind == Module::PrivateModuleFragment) 1597 OldM = OldM->Parent; 1598 1599 if (NewM == OldM) 1600 return false; 1601 1602 bool NewIsModuleInterface = NewM && NewM->isModulePurview(); 1603 bool OldIsModuleInterface = OldM && OldM->isModulePurview(); 1604 if (NewIsModuleInterface || OldIsModuleInterface) { 1605 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: 1606 // if a declaration of D [...] appears in the purview of a module, all 1607 // other such declarations shall appear in the purview of the same module 1608 Diag(New->getLocation(), diag::err_mismatched_owning_module) 1609 << New 1610 << NewIsModuleInterface 1611 << (NewIsModuleInterface ? NewM->getFullModuleName() : "") 1612 << OldIsModuleInterface 1613 << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); 1614 Diag(Old->getLocation(), diag::note_previous_declaration); 1615 New->setInvalidDecl(); 1616 return true; 1617 } 1618 1619 return false; 1620 } 1621 1622 static bool isUsingDecl(NamedDecl *D) { 1623 return isa<UsingShadowDecl>(D) || 1624 isa<UnresolvedUsingTypenameDecl>(D) || 1625 isa<UnresolvedUsingValueDecl>(D); 1626 } 1627 1628 /// Removes using shadow declarations from the lookup results. 1629 static void RemoveUsingDecls(LookupResult &R) { 1630 LookupResult::Filter F = R.makeFilter(); 1631 while (F.hasNext()) 1632 if (isUsingDecl(F.next())) 1633 F.erase(); 1634 1635 F.done(); 1636 } 1637 1638 /// Check for this common pattern: 1639 /// @code 1640 /// class S { 1641 /// S(const S&); // DO NOT IMPLEMENT 1642 /// void operator=(const S&); // DO NOT IMPLEMENT 1643 /// }; 1644 /// @endcode 1645 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1646 // FIXME: Should check for private access too but access is set after we get 1647 // the decl here. 1648 if (D->doesThisDeclarationHaveABody()) 1649 return false; 1650 1651 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1652 return CD->isCopyConstructor(); 1653 return D->isCopyAssignmentOperator(); 1654 } 1655 1656 // We need this to handle 1657 // 1658 // typedef struct { 1659 // void *foo() { return 0; } 1660 // } A; 1661 // 1662 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1663 // for example. If 'A', foo will have external linkage. If we have '*A', 1664 // foo will have no linkage. Since we can't know until we get to the end 1665 // of the typedef, this function finds out if D might have non-external linkage. 1666 // Callers should verify at the end of the TU if it D has external linkage or 1667 // not. 1668 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1669 const DeclContext *DC = D->getDeclContext(); 1670 while (!DC->isTranslationUnit()) { 1671 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1672 if (!RD->hasNameForLinkage()) 1673 return true; 1674 } 1675 DC = DC->getParent(); 1676 } 1677 1678 return !D->isExternallyVisible(); 1679 } 1680 1681 // FIXME: This needs to be refactored; some other isInMainFile users want 1682 // these semantics. 1683 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1684 if (S.TUKind != TU_Complete) 1685 return false; 1686 return S.SourceMgr.isInMainFile(Loc); 1687 } 1688 1689 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1690 assert(D); 1691 1692 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1693 return false; 1694 1695 // Ignore all entities declared within templates, and out-of-line definitions 1696 // of members of class templates. 1697 if (D->getDeclContext()->isDependentContext() || 1698 D->getLexicalDeclContext()->isDependentContext()) 1699 return false; 1700 1701 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1702 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1703 return false; 1704 // A non-out-of-line declaration of a member specialization was implicitly 1705 // instantiated; it's the out-of-line declaration that we're interested in. 1706 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1707 FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) 1708 return false; 1709 1710 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1711 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1712 return false; 1713 } else { 1714 // 'static inline' functions are defined in headers; don't warn. 1715 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1716 return false; 1717 } 1718 1719 if (FD->doesThisDeclarationHaveABody() && 1720 Context.DeclMustBeEmitted(FD)) 1721 return false; 1722 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1723 // Constants and utility variables are defined in headers with internal 1724 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1725 // like "inline".) 1726 if (!isMainFileLoc(*this, VD->getLocation())) 1727 return false; 1728 1729 if (Context.DeclMustBeEmitted(VD)) 1730 return false; 1731 1732 if (VD->isStaticDataMember() && 1733 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1734 return false; 1735 if (VD->isStaticDataMember() && 1736 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1737 VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) 1738 return false; 1739 1740 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) 1741 return false; 1742 } else { 1743 return false; 1744 } 1745 1746 // Only warn for unused decls internal to the translation unit. 1747 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1748 // for inline functions defined in the main source file, for instance. 1749 return mightHaveNonExternalLinkage(D); 1750 } 1751 1752 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1753 if (!D) 1754 return; 1755 1756 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1757 const FunctionDecl *First = FD->getFirstDecl(); 1758 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1759 return; // First should already be in the vector. 1760 } 1761 1762 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1763 const VarDecl *First = VD->getFirstDecl(); 1764 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1765 return; // First should already be in the vector. 1766 } 1767 1768 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1769 UnusedFileScopedDecls.push_back(D); 1770 } 1771 1772 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1773 if (D->isInvalidDecl()) 1774 return false; 1775 1776 if (auto *DD = dyn_cast<DecompositionDecl>(D)) { 1777 // For a decomposition declaration, warn if none of the bindings are 1778 // referenced, instead of if the variable itself is referenced (which 1779 // it is, by the bindings' expressions). 1780 for (auto *BD : DD->bindings()) 1781 if (BD->isReferenced()) 1782 return false; 1783 } else if (!D->getDeclName()) { 1784 return false; 1785 } else if (D->isReferenced() || D->isUsed()) { 1786 return false; 1787 } 1788 1789 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) 1790 return false; 1791 1792 if (isa<LabelDecl>(D)) 1793 return true; 1794 1795 // Except for labels, we only care about unused decls that are local to 1796 // functions. 1797 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1798 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1799 // For dependent types, the diagnostic is deferred. 1800 WithinFunction = 1801 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1802 if (!WithinFunction) 1803 return false; 1804 1805 if (isa<TypedefNameDecl>(D)) 1806 return true; 1807 1808 // White-list anything that isn't a local variable. 1809 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1810 return false; 1811 1812 // Types of valid local variables should be complete, so this should succeed. 1813 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1814 1815 // White-list anything with an __attribute__((unused)) type. 1816 const auto *Ty = VD->getType().getTypePtr(); 1817 1818 // Only look at the outermost level of typedef. 1819 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1820 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1821 return false; 1822 } 1823 1824 // If we failed to complete the type for some reason, or if the type is 1825 // dependent, don't diagnose the variable. 1826 if (Ty->isIncompleteType() || Ty->isDependentType()) 1827 return false; 1828 1829 // Look at the element type to ensure that the warning behaviour is 1830 // consistent for both scalars and arrays. 1831 Ty = Ty->getBaseElementTypeUnsafe(); 1832 1833 if (const TagType *TT = Ty->getAs<TagType>()) { 1834 const TagDecl *Tag = TT->getDecl(); 1835 if (Tag->hasAttr<UnusedAttr>()) 1836 return false; 1837 1838 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1839 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1840 return false; 1841 1842 if (const Expr *Init = VD->getInit()) { 1843 if (const ExprWithCleanups *Cleanups = 1844 dyn_cast<ExprWithCleanups>(Init)) 1845 Init = Cleanups->getSubExpr(); 1846 const CXXConstructExpr *Construct = 1847 dyn_cast<CXXConstructExpr>(Init); 1848 if (Construct && !Construct->isElidable()) { 1849 CXXConstructorDecl *CD = Construct->getConstructor(); 1850 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && 1851 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 1852 return false; 1853 } 1854 1855 // Suppress the warning if we don't know how this is constructed, and 1856 // it could possibly be non-trivial constructor. 1857 if (Init->isTypeDependent()) 1858 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1859 if (!Ctor->isTrivial()) 1860 return false; 1861 } 1862 } 1863 } 1864 1865 // TODO: __attribute__((unused)) templates? 1866 } 1867 1868 return true; 1869 } 1870 1871 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1872 FixItHint &Hint) { 1873 if (isa<LabelDecl>(D)) { 1874 SourceLocation AfterColon = Lexer::findLocationAfterToken( 1875 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), 1876 true); 1877 if (AfterColon.isInvalid()) 1878 return; 1879 Hint = FixItHint::CreateRemoval( 1880 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); 1881 } 1882 } 1883 1884 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1885 if (D->getTypeForDecl()->isDependentType()) 1886 return; 1887 1888 for (auto *TmpD : D->decls()) { 1889 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1890 DiagnoseUnusedDecl(T); 1891 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1892 DiagnoseUnusedNestedTypedefs(R); 1893 } 1894 } 1895 1896 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1897 /// unless they are marked attr(unused). 1898 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1899 if (!ShouldDiagnoseUnusedDecl(D)) 1900 return; 1901 1902 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1903 // typedefs can be referenced later on, so the diagnostics are emitted 1904 // at end-of-translation-unit. 1905 UnusedLocalTypedefNameCandidates.insert(TD); 1906 return; 1907 } 1908 1909 FixItHint Hint; 1910 GenerateFixForUnusedDecl(D, Context, Hint); 1911 1912 unsigned DiagID; 1913 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1914 DiagID = diag::warn_unused_exception_param; 1915 else if (isa<LabelDecl>(D)) 1916 DiagID = diag::warn_unused_label; 1917 else 1918 DiagID = diag::warn_unused_variable; 1919 1920 Diag(D->getLocation(), DiagID) << D << Hint; 1921 } 1922 1923 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) { 1924 // If it's not referenced, it can't be set. If it has the Cleanup attribute, 1925 // it's not really unused. 1926 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() || 1927 VD->hasAttr<CleanupAttr>()) 1928 return; 1929 1930 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); 1931 1932 if (Ty->isReferenceType() || Ty->isDependentType()) 1933 return; 1934 1935 if (const TagType *TT = Ty->getAs<TagType>()) { 1936 const TagDecl *Tag = TT->getDecl(); 1937 if (Tag->hasAttr<UnusedAttr>()) 1938 return; 1939 // In C++, don't warn for record types that don't have WarnUnusedAttr, to 1940 // mimic gcc's behavior. 1941 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1942 if (!RD->hasAttr<WarnUnusedAttr>()) 1943 return; 1944 } 1945 } 1946 1947 // Don't warn about __block Objective-C pointer variables, as they might 1948 // be assigned in the block but not used elsewhere for the purpose of lifetime 1949 // extension. 1950 if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) 1951 return; 1952 1953 auto iter = RefsMinusAssignments.find(VD); 1954 if (iter == RefsMinusAssignments.end()) 1955 return; 1956 1957 assert(iter->getSecond() >= 0 && 1958 "Found a negative number of references to a VarDecl"); 1959 if (iter->getSecond() != 0) 1960 return; 1961 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter 1962 : diag::warn_unused_but_set_variable; 1963 Diag(VD->getLocation(), DiagID) << VD; 1964 } 1965 1966 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1967 // Verify that we have no forward references left. If so, there was a goto 1968 // or address of a label taken, but no definition of it. Label fwd 1969 // definitions are indicated with a null substmt which is also not a resolved 1970 // MS inline assembly label name. 1971 bool Diagnose = false; 1972 if (L->isMSAsmLabel()) 1973 Diagnose = !L->isResolvedMSAsmLabel(); 1974 else 1975 Diagnose = L->getStmt() == nullptr; 1976 if (Diagnose) 1977 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L; 1978 } 1979 1980 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1981 S->mergeNRVOIntoParent(); 1982 1983 if (S->decl_empty()) return; 1984 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1985 "Scope shouldn't contain decls!"); 1986 1987 for (auto *TmpD : S->decls()) { 1988 assert(TmpD && "This decl didn't get pushed??"); 1989 1990 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1991 NamedDecl *D = cast<NamedDecl>(TmpD); 1992 1993 // Diagnose unused variables in this scope. 1994 if (!S->hasUnrecoverableErrorOccurred()) { 1995 DiagnoseUnusedDecl(D); 1996 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1997 DiagnoseUnusedNestedTypedefs(RD); 1998 if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 1999 DiagnoseUnusedButSetDecl(VD); 2000 RefsMinusAssignments.erase(VD); 2001 } 2002 } 2003 2004 if (!D->getDeclName()) continue; 2005 2006 // If this was a forward reference to a label, verify it was defined. 2007 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 2008 CheckPoppedLabel(LD, *this); 2009 2010 // Remove this name from our lexical scope, and warn on it if we haven't 2011 // already. 2012 IdResolver.RemoveDecl(D); 2013 auto ShadowI = ShadowingDecls.find(D); 2014 if (ShadowI != ShadowingDecls.end()) { 2015 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { 2016 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) 2017 << D << FD << FD->getParent(); 2018 Diag(FD->getLocation(), diag::note_previous_declaration); 2019 } 2020 ShadowingDecls.erase(ShadowI); 2021 } 2022 } 2023 } 2024 2025 /// Look for an Objective-C class in the translation unit. 2026 /// 2027 /// \param Id The name of the Objective-C class we're looking for. If 2028 /// typo-correction fixes this name, the Id will be updated 2029 /// to the fixed name. 2030 /// 2031 /// \param IdLoc The location of the name in the translation unit. 2032 /// 2033 /// \param DoTypoCorrection If true, this routine will attempt typo correction 2034 /// if there is no class with the given name. 2035 /// 2036 /// \returns The declaration of the named Objective-C class, or NULL if the 2037 /// class could not be found. 2038 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 2039 SourceLocation IdLoc, 2040 bool DoTypoCorrection) { 2041 // The third "scope" argument is 0 since we aren't enabling lazy built-in 2042 // creation from this context. 2043 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 2044 2045 if (!IDecl && DoTypoCorrection) { 2046 // Perform typo correction at the given location, but only if we 2047 // find an Objective-C class name. 2048 DeclFilterCCC<ObjCInterfaceDecl> CCC{}; 2049 if (TypoCorrection C = 2050 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, 2051 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 2052 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 2053 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 2054 Id = IDecl->getIdentifier(); 2055 } 2056 } 2057 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 2058 // This routine must always return a class definition, if any. 2059 if (Def && Def->getDefinition()) 2060 Def = Def->getDefinition(); 2061 return Def; 2062 } 2063 2064 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 2065 /// from S, where a non-field would be declared. This routine copes 2066 /// with the difference between C and C++ scoping rules in structs and 2067 /// unions. For example, the following code is well-formed in C but 2068 /// ill-formed in C++: 2069 /// @code 2070 /// struct S6 { 2071 /// enum { BAR } e; 2072 /// }; 2073 /// 2074 /// void test_S6() { 2075 /// struct S6 a; 2076 /// a.e = BAR; 2077 /// } 2078 /// @endcode 2079 /// For the declaration of BAR, this routine will return a different 2080 /// scope. The scope S will be the scope of the unnamed enumeration 2081 /// within S6. In C++, this routine will return the scope associated 2082 /// with S6, because the enumeration's scope is a transparent 2083 /// context but structures can contain non-field names. In C, this 2084 /// routine will return the translation unit scope, since the 2085 /// enumeration's scope is a transparent context and structures cannot 2086 /// contain non-field names. 2087 Scope *Sema::getNonFieldDeclScope(Scope *S) { 2088 while (((S->getFlags() & Scope::DeclScope) == 0) || 2089 (S->getEntity() && S->getEntity()->isTransparentContext()) || 2090 (S->isClassScope() && !getLangOpts().CPlusPlus)) 2091 S = S->getParent(); 2092 return S; 2093 } 2094 2095 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, 2096 ASTContext::GetBuiltinTypeError Error) { 2097 switch (Error) { 2098 case ASTContext::GE_None: 2099 return ""; 2100 case ASTContext::GE_Missing_type: 2101 return BuiltinInfo.getHeaderName(ID); 2102 case ASTContext::GE_Missing_stdio: 2103 return "stdio.h"; 2104 case ASTContext::GE_Missing_setjmp: 2105 return "setjmp.h"; 2106 case ASTContext::GE_Missing_ucontext: 2107 return "ucontext.h"; 2108 } 2109 llvm_unreachable("unhandled error kind"); 2110 } 2111 2112 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, 2113 unsigned ID, SourceLocation Loc) { 2114 DeclContext *Parent = Context.getTranslationUnitDecl(); 2115 2116 if (getLangOpts().CPlusPlus) { 2117 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( 2118 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); 2119 CLinkageDecl->setImplicit(); 2120 Parent->addDecl(CLinkageDecl); 2121 Parent = CLinkageDecl; 2122 } 2123 2124 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, 2125 /*TInfo=*/nullptr, SC_Extern, 2126 getCurFPFeatures().isFPConstrained(), 2127 false, Type->isFunctionProtoType()); 2128 New->setImplicit(); 2129 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); 2130 2131 // Create Decl objects for each parameter, adding them to the 2132 // FunctionDecl. 2133 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { 2134 SmallVector<ParmVarDecl *, 16> Params; 2135 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2136 ParmVarDecl *parm = ParmVarDecl::Create( 2137 Context, New, SourceLocation(), SourceLocation(), nullptr, 2138 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); 2139 parm->setScopeInfo(0, i); 2140 Params.push_back(parm); 2141 } 2142 New->setParams(Params); 2143 } 2144 2145 AddKnownFunctionAttributes(New); 2146 return New; 2147 } 2148 2149 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 2150 /// file scope. lazily create a decl for it. ForRedeclaration is true 2151 /// if we're creating this built-in in anticipation of redeclaring the 2152 /// built-in. 2153 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 2154 Scope *S, bool ForRedeclaration, 2155 SourceLocation Loc) { 2156 LookupNecessaryTypesForBuiltin(S, ID); 2157 2158 ASTContext::GetBuiltinTypeError Error; 2159 QualType R = Context.GetBuiltinType(ID, Error); 2160 if (Error) { 2161 if (!ForRedeclaration) 2162 return nullptr; 2163 2164 // If we have a builtin without an associated type we should not emit a 2165 // warning when we were not able to find a type for it. 2166 if (Error == ASTContext::GE_Missing_type || 2167 Context.BuiltinInfo.allowTypeMismatch(ID)) 2168 return nullptr; 2169 2170 // If we could not find a type for setjmp it is because the jmp_buf type was 2171 // not defined prior to the setjmp declaration. 2172 if (Error == ASTContext::GE_Missing_setjmp) { 2173 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) 2174 << Context.BuiltinInfo.getName(ID); 2175 return nullptr; 2176 } 2177 2178 // Generally, we emit a warning that the declaration requires the 2179 // appropriate header. 2180 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 2181 << getHeaderName(Context.BuiltinInfo, ID, Error) 2182 << Context.BuiltinInfo.getName(ID); 2183 return nullptr; 2184 } 2185 2186 if (!ForRedeclaration && 2187 (Context.BuiltinInfo.isPredefinedLibFunction(ID) || 2188 Context.BuiltinInfo.isHeaderDependentFunction(ID))) { 2189 Diag(Loc, diag::ext_implicit_lib_function_decl) 2190 << Context.BuiltinInfo.getName(ID) << R; 2191 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) 2192 Diag(Loc, diag::note_include_header_or_declare) 2193 << Header << Context.BuiltinInfo.getName(ID); 2194 } 2195 2196 if (R.isNull()) 2197 return nullptr; 2198 2199 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); 2200 RegisterLocallyScopedExternCDecl(New, S); 2201 2202 // TUScope is the translation-unit scope to insert this function into. 2203 // FIXME: This is hideous. We need to teach PushOnScopeChains to 2204 // relate Scopes to DeclContexts, and probably eliminate CurContext 2205 // entirely, but we're not there yet. 2206 DeclContext *SavedContext = CurContext; 2207 CurContext = New->getDeclContext(); 2208 PushOnScopeChains(New, TUScope); 2209 CurContext = SavedContext; 2210 return New; 2211 } 2212 2213 /// Typedef declarations don't have linkage, but they still denote the same 2214 /// entity if their types are the same. 2215 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 2216 /// isSameEntity. 2217 static void filterNonConflictingPreviousTypedefDecls(Sema &S, 2218 TypedefNameDecl *Decl, 2219 LookupResult &Previous) { 2220 // This is only interesting when modules are enabled. 2221 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) 2222 return; 2223 2224 // Empty sets are uninteresting. 2225 if (Previous.empty()) 2226 return; 2227 2228 LookupResult::Filter Filter = Previous.makeFilter(); 2229 while (Filter.hasNext()) { 2230 NamedDecl *Old = Filter.next(); 2231 2232 // Non-hidden declarations are never ignored. 2233 if (S.isVisible(Old)) 2234 continue; 2235 2236 // Declarations of the same entity are not ignored, even if they have 2237 // different linkages. 2238 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2239 if (S.Context.hasSameType(OldTD->getUnderlyingType(), 2240 Decl->getUnderlyingType())) 2241 continue; 2242 2243 // If both declarations give a tag declaration a typedef name for linkage 2244 // purposes, then they declare the same entity. 2245 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && 2246 Decl->getAnonDeclWithTypedefName()) 2247 continue; 2248 } 2249 2250 Filter.erase(); 2251 } 2252 2253 Filter.done(); 2254 } 2255 2256 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 2257 QualType OldType; 2258 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 2259 OldType = OldTypedef->getUnderlyingType(); 2260 else 2261 OldType = Context.getTypeDeclType(Old); 2262 QualType NewType = New->getUnderlyingType(); 2263 2264 if (NewType->isVariablyModifiedType()) { 2265 // Must not redefine a typedef with a variably-modified type. 2266 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2267 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 2268 << Kind << NewType; 2269 if (Old->getLocation().isValid()) 2270 notePreviousDefinition(Old, New->getLocation()); 2271 New->setInvalidDecl(); 2272 return true; 2273 } 2274 2275 if (OldType != NewType && 2276 !OldType->isDependentType() && 2277 !NewType->isDependentType() && 2278 !Context.hasSameType(OldType, NewType)) { 2279 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2280 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 2281 << Kind << NewType << OldType; 2282 if (Old->getLocation().isValid()) 2283 notePreviousDefinition(Old, New->getLocation()); 2284 New->setInvalidDecl(); 2285 return true; 2286 } 2287 return false; 2288 } 2289 2290 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 2291 /// same name and scope as a previous declaration 'Old'. Figure out 2292 /// how to resolve this situation, merging decls or emitting 2293 /// diagnostics as appropriate. If there was an error, set New to be invalid. 2294 /// 2295 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, 2296 LookupResult &OldDecls) { 2297 // If the new decl is known invalid already, don't bother doing any 2298 // merging checks. 2299 if (New->isInvalidDecl()) return; 2300 2301 // Allow multiple definitions for ObjC built-in typedefs. 2302 // FIXME: Verify the underlying types are equivalent! 2303 if (getLangOpts().ObjC) { 2304 const IdentifierInfo *TypeID = New->getIdentifier(); 2305 switch (TypeID->getLength()) { 2306 default: break; 2307 case 2: 2308 { 2309 if (!TypeID->isStr("id")) 2310 break; 2311 QualType T = New->getUnderlyingType(); 2312 if (!T->isPointerType()) 2313 break; 2314 if (!T->isVoidPointerType()) { 2315 QualType PT = T->castAs<PointerType>()->getPointeeType(); 2316 if (!PT->isStructureType()) 2317 break; 2318 } 2319 Context.setObjCIdRedefinitionType(T); 2320 // Install the built-in type for 'id', ignoring the current definition. 2321 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 2322 return; 2323 } 2324 case 5: 2325 if (!TypeID->isStr("Class")) 2326 break; 2327 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 2328 // Install the built-in type for 'Class', ignoring the current definition. 2329 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 2330 return; 2331 case 3: 2332 if (!TypeID->isStr("SEL")) 2333 break; 2334 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 2335 // Install the built-in type for 'SEL', ignoring the current definition. 2336 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 2337 return; 2338 } 2339 // Fall through - the typedef name was not a builtin type. 2340 } 2341 2342 // Verify the old decl was also a type. 2343 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 2344 if (!Old) { 2345 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2346 << New->getDeclName(); 2347 2348 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 2349 if (OldD->getLocation().isValid()) 2350 notePreviousDefinition(OldD, New->getLocation()); 2351 2352 return New->setInvalidDecl(); 2353 } 2354 2355 // If the old declaration is invalid, just give up here. 2356 if (Old->isInvalidDecl()) 2357 return New->setInvalidDecl(); 2358 2359 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2360 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); 2361 auto *NewTag = New->getAnonDeclWithTypedefName(); 2362 NamedDecl *Hidden = nullptr; 2363 if (OldTag && NewTag && 2364 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && 2365 !hasVisibleDefinition(OldTag, &Hidden)) { 2366 // There is a definition of this tag, but it is not visible. Use it 2367 // instead of our tag. 2368 New->setTypeForDecl(OldTD->getTypeForDecl()); 2369 if (OldTD->isModed()) 2370 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), 2371 OldTD->getUnderlyingType()); 2372 else 2373 New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); 2374 2375 // Make the old tag definition visible. 2376 makeMergedDefinitionVisible(Hidden); 2377 2378 // If this was an unscoped enumeration, yank all of its enumerators 2379 // out of the scope. 2380 if (isa<EnumDecl>(NewTag)) { 2381 Scope *EnumScope = getNonFieldDeclScope(S); 2382 for (auto *D : NewTag->decls()) { 2383 auto *ED = cast<EnumConstantDecl>(D); 2384 assert(EnumScope->isDeclScope(ED)); 2385 EnumScope->RemoveDecl(ED); 2386 IdResolver.RemoveDecl(ED); 2387 ED->getLexicalDeclContext()->removeDecl(ED); 2388 } 2389 } 2390 } 2391 } 2392 2393 // If the typedef types are not identical, reject them in all languages and 2394 // with any extensions enabled. 2395 if (isIncompatibleTypedef(Old, New)) 2396 return; 2397 2398 // The types match. Link up the redeclaration chain and merge attributes if 2399 // the old declaration was a typedef. 2400 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 2401 New->setPreviousDecl(Typedef); 2402 mergeDeclAttributes(New, Old); 2403 } 2404 2405 if (getLangOpts().MicrosoftExt) 2406 return; 2407 2408 if (getLangOpts().CPlusPlus) { 2409 // C++ [dcl.typedef]p2: 2410 // In a given non-class scope, a typedef specifier can be used to 2411 // redefine the name of any type declared in that scope to refer 2412 // to the type to which it already refers. 2413 if (!isa<CXXRecordDecl>(CurContext)) 2414 return; 2415 2416 // C++0x [dcl.typedef]p4: 2417 // In a given class scope, a typedef specifier can be used to redefine 2418 // any class-name declared in that scope that is not also a typedef-name 2419 // to refer to the type to which it already refers. 2420 // 2421 // This wording came in via DR424, which was a correction to the 2422 // wording in DR56, which accidentally banned code like: 2423 // 2424 // struct S { 2425 // typedef struct A { } A; 2426 // }; 2427 // 2428 // in the C++03 standard. We implement the C++0x semantics, which 2429 // allow the above but disallow 2430 // 2431 // struct S { 2432 // typedef int I; 2433 // typedef int I; 2434 // }; 2435 // 2436 // since that was the intent of DR56. 2437 if (!isa<TypedefNameDecl>(Old)) 2438 return; 2439 2440 Diag(New->getLocation(), diag::err_redefinition) 2441 << New->getDeclName(); 2442 notePreviousDefinition(Old, New->getLocation()); 2443 return New->setInvalidDecl(); 2444 } 2445 2446 // Modules always permit redefinition of typedefs, as does C11. 2447 if (getLangOpts().Modules || getLangOpts().C11) 2448 return; 2449 2450 // If we have a redefinition of a typedef in C, emit a warning. This warning 2451 // is normally mapped to an error, but can be controlled with 2452 // -Wtypedef-redefinition. If either the original or the redefinition is 2453 // in a system header, don't emit this for compatibility with GCC. 2454 if (getDiagnostics().getSuppressSystemWarnings() && 2455 // Some standard types are defined implicitly in Clang (e.g. OpenCL). 2456 (Old->isImplicit() || 2457 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 2458 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 2459 return; 2460 2461 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 2462 << New->getDeclName(); 2463 notePreviousDefinition(Old, New->getLocation()); 2464 } 2465 2466 /// DeclhasAttr - returns true if decl Declaration already has the target 2467 /// attribute. 2468 static bool DeclHasAttr(const Decl *D, const Attr *A) { 2469 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 2470 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 2471 for (const auto *i : D->attrs()) 2472 if (i->getKind() == A->getKind()) { 2473 if (Ann) { 2474 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 2475 return true; 2476 continue; 2477 } 2478 // FIXME: Don't hardcode this check 2479 if (OA && isa<OwnershipAttr>(i)) 2480 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 2481 return true; 2482 } 2483 2484 return false; 2485 } 2486 2487 static bool isAttributeTargetADefinition(Decl *D) { 2488 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2489 return VD->isThisDeclarationADefinition(); 2490 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2491 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2492 return true; 2493 } 2494 2495 /// Merge alignment attributes from \p Old to \p New, taking into account the 2496 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2497 /// 2498 /// \return \c true if any attributes were added to \p New. 2499 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2500 // Look for alignas attributes on Old, and pick out whichever attribute 2501 // specifies the strictest alignment requirement. 2502 AlignedAttr *OldAlignasAttr = nullptr; 2503 AlignedAttr *OldStrictestAlignAttr = nullptr; 2504 unsigned OldAlign = 0; 2505 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2506 // FIXME: We have no way of representing inherited dependent alignments 2507 // in a case like: 2508 // template<int A, int B> struct alignas(A) X; 2509 // template<int A, int B> struct alignas(B) X {}; 2510 // For now, we just ignore any alignas attributes which are not on the 2511 // definition in such a case. 2512 if (I->isAlignmentDependent()) 2513 return false; 2514 2515 if (I->isAlignas()) 2516 OldAlignasAttr = I; 2517 2518 unsigned Align = I->getAlignment(S.Context); 2519 if (Align > OldAlign) { 2520 OldAlign = Align; 2521 OldStrictestAlignAttr = I; 2522 } 2523 } 2524 2525 // Look for alignas attributes on New. 2526 AlignedAttr *NewAlignasAttr = nullptr; 2527 unsigned NewAlign = 0; 2528 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2529 if (I->isAlignmentDependent()) 2530 return false; 2531 2532 if (I->isAlignas()) 2533 NewAlignasAttr = I; 2534 2535 unsigned Align = I->getAlignment(S.Context); 2536 if (Align > NewAlign) 2537 NewAlign = Align; 2538 } 2539 2540 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2541 // Both declarations have 'alignas' attributes. We require them to match. 2542 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2543 // fall short. (If two declarations both have alignas, they must both match 2544 // every definition, and so must match each other if there is a definition.) 2545 2546 // If either declaration only contains 'alignas(0)' specifiers, then it 2547 // specifies the natural alignment for the type. 2548 if (OldAlign == 0 || NewAlign == 0) { 2549 QualType Ty; 2550 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2551 Ty = VD->getType(); 2552 else 2553 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2554 2555 if (OldAlign == 0) 2556 OldAlign = S.Context.getTypeAlign(Ty); 2557 if (NewAlign == 0) 2558 NewAlign = S.Context.getTypeAlign(Ty); 2559 } 2560 2561 if (OldAlign != NewAlign) { 2562 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2563 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2564 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2565 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2566 } 2567 } 2568 2569 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2570 // C++11 [dcl.align]p6: 2571 // if any declaration of an entity has an alignment-specifier, 2572 // every defining declaration of that entity shall specify an 2573 // equivalent alignment. 2574 // C11 6.7.5/7: 2575 // If the definition of an object does not have an alignment 2576 // specifier, any other declaration of that object shall also 2577 // have no alignment specifier. 2578 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2579 << OldAlignasAttr; 2580 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2581 << OldAlignasAttr; 2582 } 2583 2584 bool AnyAdded = false; 2585 2586 // Ensure we have an attribute representing the strictest alignment. 2587 if (OldAlign > NewAlign) { 2588 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2589 Clone->setInherited(true); 2590 New->addAttr(Clone); 2591 AnyAdded = true; 2592 } 2593 2594 // Ensure we have an alignas attribute if the old declaration had one. 2595 if (OldAlignasAttr && !NewAlignasAttr && 2596 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2597 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2598 Clone->setInherited(true); 2599 New->addAttr(Clone); 2600 AnyAdded = true; 2601 } 2602 2603 return AnyAdded; 2604 } 2605 2606 #define WANT_DECL_MERGE_LOGIC 2607 #include "clang/Sema/AttrParsedAttrImpl.inc" 2608 #undef WANT_DECL_MERGE_LOGIC 2609 2610 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2611 const InheritableAttr *Attr, 2612 Sema::AvailabilityMergeKind AMK) { 2613 // Diagnose any mutual exclusions between the attribute that we want to add 2614 // and attributes that already exist on the declaration. 2615 if (!DiagnoseMutualExclusions(S, D, Attr)) 2616 return false; 2617 2618 // This function copies an attribute Attr from a previous declaration to the 2619 // new declaration D if the new declaration doesn't itself have that attribute 2620 // yet or if that attribute allows duplicates. 2621 // If you're adding a new attribute that requires logic different from 2622 // "use explicit attribute on decl if present, else use attribute from 2623 // previous decl", for example if the attribute needs to be consistent 2624 // between redeclarations, you need to call a custom merge function here. 2625 InheritableAttr *NewAttr = nullptr; 2626 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2627 NewAttr = S.mergeAvailabilityAttr( 2628 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), 2629 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), 2630 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, 2631 AA->getPriority()); 2632 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2633 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); 2634 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2635 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); 2636 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2637 NewAttr = S.mergeDLLImportAttr(D, *ImportA); 2638 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2639 NewAttr = S.mergeDLLExportAttr(D, *ExportA); 2640 else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) 2641 NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); 2642 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2643 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), 2644 FA->getFirstArg()); 2645 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2646 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); 2647 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) 2648 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); 2649 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2650 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), 2651 IA->getInheritanceModel()); 2652 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2653 NewAttr = S.mergeAlwaysInlineAttr(D, *AA, 2654 &S.Context.Idents.get(AA->getSpelling())); 2655 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && 2656 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || 2657 isa<CUDAGlobalAttr>(Attr))) { 2658 // CUDA target attributes are part of function signature for 2659 // overloading purposes and must not be merged. 2660 return false; 2661 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2662 NewAttr = S.mergeMinSizeAttr(D, *MA); 2663 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) 2664 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); 2665 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2666 NewAttr = S.mergeOptimizeNoneAttr(D, *OA); 2667 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) 2668 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); 2669 else if (isa<AlignedAttr>(Attr)) 2670 // AlignedAttrs are handled separately, because we need to handle all 2671 // such attributes on a declaration at the same time. 2672 NewAttr = nullptr; 2673 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && 2674 (AMK == Sema::AMK_Override || 2675 AMK == Sema::AMK_ProtocolImplementation || 2676 AMK == Sema::AMK_OptionalProtocolImplementation)) 2677 NewAttr = nullptr; 2678 else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) 2679 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); 2680 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) 2681 NewAttr = S.mergeImportModuleAttr(D, *IMA); 2682 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) 2683 NewAttr = S.mergeImportNameAttr(D, *INA); 2684 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) 2685 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); 2686 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) 2687 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); 2688 else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) 2689 NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); 2690 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) 2691 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2692 2693 if (NewAttr) { 2694 NewAttr->setInherited(true); 2695 D->addAttr(NewAttr); 2696 if (isa<MSInheritanceAttr>(NewAttr)) 2697 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 2698 return true; 2699 } 2700 2701 return false; 2702 } 2703 2704 static const NamedDecl *getDefinition(const Decl *D) { 2705 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2706 return TD->getDefinition(); 2707 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2708 const VarDecl *Def = VD->getDefinition(); 2709 if (Def) 2710 return Def; 2711 return VD->getActingDefinition(); 2712 } 2713 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2714 const FunctionDecl *Def = nullptr; 2715 if (FD->isDefined(Def, true)) 2716 return Def; 2717 } 2718 return nullptr; 2719 } 2720 2721 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2722 for (const auto *Attribute : D->attrs()) 2723 if (Attribute->getKind() == Kind) 2724 return true; 2725 return false; 2726 } 2727 2728 /// checkNewAttributesAfterDef - If we already have a definition, check that 2729 /// there are no new attributes in this declaration. 2730 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2731 if (!New->hasAttrs()) 2732 return; 2733 2734 const NamedDecl *Def = getDefinition(Old); 2735 if (!Def || Def == New) 2736 return; 2737 2738 AttrVec &NewAttributes = New->getAttrs(); 2739 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2740 const Attr *NewAttribute = NewAttributes[I]; 2741 2742 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { 2743 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { 2744 Sema::SkipBodyInfo SkipBody; 2745 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); 2746 2747 // If we're skipping this definition, drop the "alias" attribute. 2748 if (SkipBody.ShouldSkip) { 2749 NewAttributes.erase(NewAttributes.begin() + I); 2750 --E; 2751 continue; 2752 } 2753 } else { 2754 VarDecl *VD = cast<VarDecl>(New); 2755 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2756 VarDecl::TentativeDefinition 2757 ? diag::err_alias_after_tentative 2758 : diag::err_redefinition; 2759 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2760 if (Diag == diag::err_redefinition) 2761 S.notePreviousDefinition(Def, VD->getLocation()); 2762 else 2763 S.Diag(Def->getLocation(), diag::note_previous_definition); 2764 VD->setInvalidDecl(); 2765 } 2766 ++I; 2767 continue; 2768 } 2769 2770 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2771 // Tentative definitions are only interesting for the alias check above. 2772 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2773 ++I; 2774 continue; 2775 } 2776 } 2777 2778 if (hasAttribute(Def, NewAttribute->getKind())) { 2779 ++I; 2780 continue; // regular attr merging will take care of validating this. 2781 } 2782 2783 if (isa<C11NoReturnAttr>(NewAttribute)) { 2784 // C's _Noreturn is allowed to be added to a function after it is defined. 2785 ++I; 2786 continue; 2787 } else if (isa<UuidAttr>(NewAttribute)) { 2788 // msvc will allow a subsequent definition to add an uuid to a class 2789 ++I; 2790 continue; 2791 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2792 if (AA->isAlignas()) { 2793 // C++11 [dcl.align]p6: 2794 // if any declaration of an entity has an alignment-specifier, 2795 // every defining declaration of that entity shall specify an 2796 // equivalent alignment. 2797 // C11 6.7.5/7: 2798 // If the definition of an object does not have an alignment 2799 // specifier, any other declaration of that object shall also 2800 // have no alignment specifier. 2801 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2802 << AA; 2803 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2804 << AA; 2805 NewAttributes.erase(NewAttributes.begin() + I); 2806 --E; 2807 continue; 2808 } 2809 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { 2810 // If there is a C definition followed by a redeclaration with this 2811 // attribute then there are two different definitions. In C++, prefer the 2812 // standard diagnostics. 2813 if (!S.getLangOpts().CPlusPlus) { 2814 S.Diag(NewAttribute->getLocation(), 2815 diag::err_loader_uninitialized_redeclaration); 2816 S.Diag(Def->getLocation(), diag::note_previous_definition); 2817 NewAttributes.erase(NewAttributes.begin() + I); 2818 --E; 2819 continue; 2820 } 2821 } else if (isa<SelectAnyAttr>(NewAttribute) && 2822 cast<VarDecl>(New)->isInline() && 2823 !cast<VarDecl>(New)->isInlineSpecified()) { 2824 // Don't warn about applying selectany to implicitly inline variables. 2825 // Older compilers and language modes would require the use of selectany 2826 // to make such variables inline, and it would have no effect if we 2827 // honored it. 2828 ++I; 2829 continue; 2830 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { 2831 // We allow to add OMP[Begin]DeclareVariantAttr to be added to 2832 // declarations after defintions. 2833 ++I; 2834 continue; 2835 } 2836 2837 S.Diag(NewAttribute->getLocation(), 2838 diag::warn_attribute_precede_definition); 2839 S.Diag(Def->getLocation(), diag::note_previous_definition); 2840 NewAttributes.erase(NewAttributes.begin() + I); 2841 --E; 2842 } 2843 } 2844 2845 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, 2846 const ConstInitAttr *CIAttr, 2847 bool AttrBeforeInit) { 2848 SourceLocation InsertLoc = InitDecl->getInnerLocStart(); 2849 2850 // Figure out a good way to write this specifier on the old declaration. 2851 // FIXME: We should just use the spelling of CIAttr, but we don't preserve 2852 // enough of the attribute list spelling information to extract that without 2853 // heroics. 2854 std::string SuitableSpelling; 2855 if (S.getLangOpts().CPlusPlus20) 2856 SuitableSpelling = std::string( 2857 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); 2858 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2859 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2860 InsertLoc, {tok::l_square, tok::l_square, 2861 S.PP.getIdentifierInfo("clang"), tok::coloncolon, 2862 S.PP.getIdentifierInfo("require_constant_initialization"), 2863 tok::r_square, tok::r_square})); 2864 if (SuitableSpelling.empty()) 2865 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2866 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, 2867 S.PP.getIdentifierInfo("require_constant_initialization"), 2868 tok::r_paren, tok::r_paren})); 2869 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) 2870 SuitableSpelling = "constinit"; 2871 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2872 SuitableSpelling = "[[clang::require_constant_initialization]]"; 2873 if (SuitableSpelling.empty()) 2874 SuitableSpelling = "__attribute__((require_constant_initialization))"; 2875 SuitableSpelling += " "; 2876 2877 if (AttrBeforeInit) { 2878 // extern constinit int a; 2879 // int a = 0; // error (missing 'constinit'), accepted as extension 2880 assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); 2881 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) 2882 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2883 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); 2884 } else { 2885 // int a = 0; 2886 // constinit extern int a; // error (missing 'constinit') 2887 S.Diag(CIAttr->getLocation(), 2888 CIAttr->isConstinit() ? diag::err_constinit_added_too_late 2889 : diag::warn_require_const_init_added_too_late) 2890 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); 2891 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) 2892 << CIAttr->isConstinit() 2893 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2894 } 2895 } 2896 2897 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2898 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2899 AvailabilityMergeKind AMK) { 2900 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2901 UsedAttr *NewAttr = OldAttr->clone(Context); 2902 NewAttr->setInherited(true); 2903 New->addAttr(NewAttr); 2904 } 2905 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { 2906 RetainAttr *NewAttr = OldAttr->clone(Context); 2907 NewAttr->setInherited(true); 2908 New->addAttr(NewAttr); 2909 } 2910 2911 if (!Old->hasAttrs() && !New->hasAttrs()) 2912 return; 2913 2914 // [dcl.constinit]p1: 2915 // If the [constinit] specifier is applied to any declaration of a 2916 // variable, it shall be applied to the initializing declaration. 2917 const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); 2918 const auto *NewConstInit = New->getAttr<ConstInitAttr>(); 2919 if (bool(OldConstInit) != bool(NewConstInit)) { 2920 const auto *OldVD = cast<VarDecl>(Old); 2921 auto *NewVD = cast<VarDecl>(New); 2922 2923 // Find the initializing declaration. Note that we might not have linked 2924 // the new declaration into the redeclaration chain yet. 2925 const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); 2926 if (!InitDecl && 2927 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) 2928 InitDecl = NewVD; 2929 2930 if (InitDecl == NewVD) { 2931 // This is the initializing declaration. If it would inherit 'constinit', 2932 // that's ill-formed. (Note that we do not apply this to the attribute 2933 // form). 2934 if (OldConstInit && OldConstInit->isConstinit()) 2935 diagnoseMissingConstinit(*this, NewVD, OldConstInit, 2936 /*AttrBeforeInit=*/true); 2937 } else if (NewConstInit) { 2938 // This is the first time we've been told that this declaration should 2939 // have a constant initializer. If we already saw the initializing 2940 // declaration, this is too late. 2941 if (InitDecl && InitDecl != NewVD) { 2942 diagnoseMissingConstinit(*this, InitDecl, NewConstInit, 2943 /*AttrBeforeInit=*/false); 2944 NewVD->dropAttr<ConstInitAttr>(); 2945 } 2946 } 2947 } 2948 2949 // Attributes declared post-definition are currently ignored. 2950 checkNewAttributesAfterDef(*this, New, Old); 2951 2952 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { 2953 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { 2954 if (!OldA->isEquivalent(NewA)) { 2955 // This redeclaration changes __asm__ label. 2956 Diag(New->getLocation(), diag::err_different_asm_label); 2957 Diag(OldA->getLocation(), diag::note_previous_declaration); 2958 } 2959 } else if (Old->isUsed()) { 2960 // This redeclaration adds an __asm__ label to a declaration that has 2961 // already been ODR-used. 2962 Diag(New->getLocation(), diag::err_late_asm_label_name) 2963 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); 2964 } 2965 } 2966 2967 // Re-declaration cannot add abi_tag's. 2968 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { 2969 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { 2970 for (const auto &NewTag : NewAbiTagAttr->tags()) { 2971 if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { 2972 Diag(NewAbiTagAttr->getLocation(), 2973 diag::err_new_abi_tag_on_redeclaration) 2974 << NewTag; 2975 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); 2976 } 2977 } 2978 } else { 2979 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); 2980 Diag(Old->getLocation(), diag::note_previous_declaration); 2981 } 2982 } 2983 2984 // This redeclaration adds a section attribute. 2985 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { 2986 if (auto *VD = dyn_cast<VarDecl>(New)) { 2987 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { 2988 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); 2989 Diag(Old->getLocation(), diag::note_previous_declaration); 2990 } 2991 } 2992 } 2993 2994 // Redeclaration adds code-seg attribute. 2995 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 2996 if (NewCSA && !Old->hasAttr<CodeSegAttr>() && 2997 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { 2998 Diag(New->getLocation(), diag::warn_mismatched_section) 2999 << 0 /*codeseg*/; 3000 Diag(Old->getLocation(), diag::note_previous_declaration); 3001 } 3002 3003 if (!Old->hasAttrs()) 3004 return; 3005 3006 bool foundAny = New->hasAttrs(); 3007 3008 // Ensure that any moving of objects within the allocated map is done before 3009 // we process them. 3010 if (!foundAny) New->setAttrs(AttrVec()); 3011 3012 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 3013 // Ignore deprecated/unavailable/availability attributes if requested. 3014 AvailabilityMergeKind LocalAMK = AMK_None; 3015 if (isa<DeprecatedAttr>(I) || 3016 isa<UnavailableAttr>(I) || 3017 isa<AvailabilityAttr>(I)) { 3018 switch (AMK) { 3019 case AMK_None: 3020 continue; 3021 3022 case AMK_Redeclaration: 3023 case AMK_Override: 3024 case AMK_ProtocolImplementation: 3025 case AMK_OptionalProtocolImplementation: 3026 LocalAMK = AMK; 3027 break; 3028 } 3029 } 3030 3031 // Already handled. 3032 if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) 3033 continue; 3034 3035 if (mergeDeclAttribute(*this, New, I, LocalAMK)) 3036 foundAny = true; 3037 } 3038 3039 if (mergeAlignedAttrs(*this, New, Old)) 3040 foundAny = true; 3041 3042 if (!foundAny) New->dropAttrs(); 3043 } 3044 3045 /// mergeParamDeclAttributes - Copy attributes from the old parameter 3046 /// to the new one. 3047 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 3048 const ParmVarDecl *oldDecl, 3049 Sema &S) { 3050 // C++11 [dcl.attr.depend]p2: 3051 // The first declaration of a function shall specify the 3052 // carries_dependency attribute for its declarator-id if any declaration 3053 // of the function specifies the carries_dependency attribute. 3054 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 3055 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 3056 S.Diag(CDA->getLocation(), 3057 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 3058 // Find the first declaration of the parameter. 3059 // FIXME: Should we build redeclaration chains for function parameters? 3060 const FunctionDecl *FirstFD = 3061 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 3062 const ParmVarDecl *FirstVD = 3063 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 3064 S.Diag(FirstVD->getLocation(), 3065 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 3066 } 3067 3068 if (!oldDecl->hasAttrs()) 3069 return; 3070 3071 bool foundAny = newDecl->hasAttrs(); 3072 3073 // Ensure that any moving of objects within the allocated map is 3074 // done before we process them. 3075 if (!foundAny) newDecl->setAttrs(AttrVec()); 3076 3077 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 3078 if (!DeclHasAttr(newDecl, I)) { 3079 InheritableAttr *newAttr = 3080 cast<InheritableParamAttr>(I->clone(S.Context)); 3081 newAttr->setInherited(true); 3082 newDecl->addAttr(newAttr); 3083 foundAny = true; 3084 } 3085 } 3086 3087 if (!foundAny) newDecl->dropAttrs(); 3088 } 3089 3090 static void mergeParamDeclTypes(ParmVarDecl *NewParam, 3091 const ParmVarDecl *OldParam, 3092 Sema &S) { 3093 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { 3094 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { 3095 if (*Oldnullability != *Newnullability) { 3096 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) 3097 << DiagNullabilityKind( 3098 *Newnullability, 3099 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3100 != 0)) 3101 << DiagNullabilityKind( 3102 *Oldnullability, 3103 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3104 != 0)); 3105 S.Diag(OldParam->getLocation(), diag::note_previous_declaration); 3106 } 3107 } else { 3108 QualType NewT = NewParam->getType(); 3109 NewT = S.Context.getAttributedType( 3110 AttributedType::getNullabilityAttrKind(*Oldnullability), 3111 NewT, NewT); 3112 NewParam->setType(NewT); 3113 } 3114 } 3115 } 3116 3117 namespace { 3118 3119 /// Used in MergeFunctionDecl to keep track of function parameters in 3120 /// C. 3121 struct GNUCompatibleParamWarning { 3122 ParmVarDecl *OldParm; 3123 ParmVarDecl *NewParm; 3124 QualType PromotedType; 3125 }; 3126 3127 } // end anonymous namespace 3128 3129 // Determine whether the previous declaration was a definition, implicit 3130 // declaration, or a declaration. 3131 template <typename T> 3132 static std::pair<diag::kind, SourceLocation> 3133 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 3134 diag::kind PrevDiag; 3135 SourceLocation OldLocation = Old->getLocation(); 3136 if (Old->isThisDeclarationADefinition()) 3137 PrevDiag = diag::note_previous_definition; 3138 else if (Old->isImplicit()) { 3139 PrevDiag = diag::note_previous_implicit_declaration; 3140 if (OldLocation.isInvalid()) 3141 OldLocation = New->getLocation(); 3142 } else 3143 PrevDiag = diag::note_previous_declaration; 3144 return std::make_pair(PrevDiag, OldLocation); 3145 } 3146 3147 /// canRedefineFunction - checks if a function can be redefined. Currently, 3148 /// only extern inline functions can be redefined, and even then only in 3149 /// GNU89 mode. 3150 static bool canRedefineFunction(const FunctionDecl *FD, 3151 const LangOptions& LangOpts) { 3152 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 3153 !LangOpts.CPlusPlus && 3154 FD->isInlineSpecified() && 3155 FD->getStorageClass() == SC_Extern); 3156 } 3157 3158 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 3159 const AttributedType *AT = T->getAs<AttributedType>(); 3160 while (AT && !AT->isCallingConv()) 3161 AT = AT->getModifiedType()->getAs<AttributedType>(); 3162 return AT; 3163 } 3164 3165 template <typename T> 3166 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 3167 const DeclContext *DC = Old->getDeclContext(); 3168 if (DC->isRecord()) 3169 return false; 3170 3171 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 3172 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 3173 return true; 3174 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 3175 return true; 3176 return false; 3177 } 3178 3179 template<typename T> static bool isExternC(T *D) { return D->isExternC(); } 3180 static bool isExternC(VarTemplateDecl *) { return false; } 3181 static bool isExternC(FunctionTemplateDecl *) { return false; } 3182 3183 /// Check whether a redeclaration of an entity introduced by a 3184 /// using-declaration is valid, given that we know it's not an overload 3185 /// (nor a hidden tag declaration). 3186 template<typename ExpectedDecl> 3187 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, 3188 ExpectedDecl *New) { 3189 // C++11 [basic.scope.declarative]p4: 3190 // Given a set of declarations in a single declarative region, each of 3191 // which specifies the same unqualified name, 3192 // -- they shall all refer to the same entity, or all refer to functions 3193 // and function templates; or 3194 // -- exactly one declaration shall declare a class name or enumeration 3195 // name that is not a typedef name and the other declarations shall all 3196 // refer to the same variable or enumerator, or all refer to functions 3197 // and function templates; in this case the class name or enumeration 3198 // name is hidden (3.3.10). 3199 3200 // C++11 [namespace.udecl]p14: 3201 // If a function declaration in namespace scope or block scope has the 3202 // same name and the same parameter-type-list as a function introduced 3203 // by a using-declaration, and the declarations do not declare the same 3204 // function, the program is ill-formed. 3205 3206 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); 3207 if (Old && 3208 !Old->getDeclContext()->getRedeclContext()->Equals( 3209 New->getDeclContext()->getRedeclContext()) && 3210 !(isExternC(Old) && isExternC(New))) 3211 Old = nullptr; 3212 3213 if (!Old) { 3214 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 3215 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); 3216 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 3217 return true; 3218 } 3219 return false; 3220 } 3221 3222 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, 3223 const FunctionDecl *B) { 3224 assert(A->getNumParams() == B->getNumParams()); 3225 3226 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { 3227 const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); 3228 const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); 3229 if (AttrA == AttrB) 3230 return true; 3231 return AttrA && AttrB && AttrA->getType() == AttrB->getType() && 3232 AttrA->isDynamic() == AttrB->isDynamic(); 3233 }; 3234 3235 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); 3236 } 3237 3238 /// If necessary, adjust the semantic declaration context for a qualified 3239 /// declaration to name the correct inline namespace within the qualifier. 3240 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, 3241 DeclaratorDecl *OldD) { 3242 // The only case where we need to update the DeclContext is when 3243 // redeclaration lookup for a qualified name finds a declaration 3244 // in an inline namespace within the context named by the qualifier: 3245 // 3246 // inline namespace N { int f(); } 3247 // int ::f(); // Sema DC needs adjusting from :: to N::. 3248 // 3249 // For unqualified declarations, the semantic context *can* change 3250 // along the redeclaration chain (for local extern declarations, 3251 // extern "C" declarations, and friend declarations in particular). 3252 if (!NewD->getQualifier()) 3253 return; 3254 3255 // NewD is probably already in the right context. 3256 auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); 3257 auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); 3258 if (NamedDC->Equals(SemaDC)) 3259 return; 3260 3261 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || 3262 NewD->isInvalidDecl() || OldD->isInvalidDecl()) && 3263 "unexpected context for redeclaration"); 3264 3265 auto *LexDC = NewD->getLexicalDeclContext(); 3266 auto FixSemaDC = [=](NamedDecl *D) { 3267 if (!D) 3268 return; 3269 D->setDeclContext(SemaDC); 3270 D->setLexicalDeclContext(LexDC); 3271 }; 3272 3273 FixSemaDC(NewD); 3274 if (auto *FD = dyn_cast<FunctionDecl>(NewD)) 3275 FixSemaDC(FD->getDescribedFunctionTemplate()); 3276 else if (auto *VD = dyn_cast<VarDecl>(NewD)) 3277 FixSemaDC(VD->getDescribedVarTemplate()); 3278 } 3279 3280 /// MergeFunctionDecl - We just parsed a function 'New' from 3281 /// declarator D which has the same name and scope as a previous 3282 /// declaration 'Old'. Figure out how to resolve this situation, 3283 /// merging decls or emitting diagnostics as appropriate. 3284 /// 3285 /// In C++, New and Old must be declarations that are not 3286 /// overloaded. Use IsOverload to determine whether New and Old are 3287 /// overloaded, and to select the Old declaration that New should be 3288 /// merged with. 3289 /// 3290 /// Returns true if there was an error, false otherwise. 3291 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 3292 Scope *S, bool MergeTypeWithOld) { 3293 // Verify the old decl was also a function. 3294 FunctionDecl *Old = OldD->getAsFunction(); 3295 if (!Old) { 3296 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 3297 if (New->getFriendObjectKind()) { 3298 Diag(New->getLocation(), diag::err_using_decl_friend); 3299 Diag(Shadow->getTargetDecl()->getLocation(), 3300 diag::note_using_decl_target); 3301 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) 3302 << 0; 3303 return true; 3304 } 3305 3306 // Check whether the two declarations might declare the same function or 3307 // function template. 3308 if (FunctionTemplateDecl *NewTemplate = 3309 New->getDescribedFunctionTemplate()) { 3310 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, 3311 NewTemplate)) 3312 return true; 3313 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) 3314 ->getAsFunction(); 3315 } else { 3316 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) 3317 return true; 3318 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); 3319 } 3320 } else { 3321 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3322 << New->getDeclName(); 3323 notePreviousDefinition(OldD, New->getLocation()); 3324 return true; 3325 } 3326 } 3327 3328 // If the old declaration was found in an inline namespace and the new 3329 // declaration was qualified, update the DeclContext to match. 3330 adjustDeclContextForDeclaratorDecl(New, Old); 3331 3332 // If the old declaration is invalid, just give up here. 3333 if (Old->isInvalidDecl()) 3334 return true; 3335 3336 // Disallow redeclaration of some builtins. 3337 if (!getASTContext().canBuiltinBeRedeclared(Old)) { 3338 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); 3339 Diag(Old->getLocation(), diag::note_previous_builtin_declaration) 3340 << Old << Old->getType(); 3341 return true; 3342 } 3343 3344 diag::kind PrevDiag; 3345 SourceLocation OldLocation; 3346 std::tie(PrevDiag, OldLocation) = 3347 getNoteDiagForInvalidRedeclaration(Old, New); 3348 3349 // Don't complain about this if we're in GNU89 mode and the old function 3350 // is an extern inline function. 3351 // Don't complain about specializations. They are not supposed to have 3352 // storage classes. 3353 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 3354 New->getStorageClass() == SC_Static && 3355 Old->hasExternalFormalLinkage() && 3356 !New->getTemplateSpecializationInfo() && 3357 !canRedefineFunction(Old, getLangOpts())) { 3358 if (getLangOpts().MicrosoftExt) { 3359 Diag(New->getLocation(), diag::ext_static_non_static) << New; 3360 Diag(OldLocation, PrevDiag); 3361 } else { 3362 Diag(New->getLocation(), diag::err_static_non_static) << New; 3363 Diag(OldLocation, PrevDiag); 3364 return true; 3365 } 3366 } 3367 3368 if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) 3369 if (!Old->hasAttr<InternalLinkageAttr>()) { 3370 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) 3371 << ILA; 3372 Diag(Old->getLocation(), diag::note_previous_declaration); 3373 New->dropAttr<InternalLinkageAttr>(); 3374 } 3375 3376 if (auto *EA = New->getAttr<ErrorAttr>()) { 3377 if (!Old->hasAttr<ErrorAttr>()) { 3378 Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; 3379 Diag(Old->getLocation(), diag::note_previous_declaration); 3380 New->dropAttr<ErrorAttr>(); 3381 } 3382 } 3383 3384 if (CheckRedeclarationModuleOwnership(New, Old)) 3385 return true; 3386 3387 if (!getLangOpts().CPlusPlus) { 3388 bool OldOvl = Old->hasAttr<OverloadableAttr>(); 3389 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { 3390 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) 3391 << New << OldOvl; 3392 3393 // Try our best to find a decl that actually has the overloadable 3394 // attribute for the note. In most cases (e.g. programs with only one 3395 // broken declaration/definition), this won't matter. 3396 // 3397 // FIXME: We could do this if we juggled some extra state in 3398 // OverloadableAttr, rather than just removing it. 3399 const Decl *DiagOld = Old; 3400 if (OldOvl) { 3401 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { 3402 const auto *A = D->getAttr<OverloadableAttr>(); 3403 return A && !A->isImplicit(); 3404 }); 3405 // If we've implicitly added *all* of the overloadable attrs to this 3406 // chain, emitting a "previous redecl" note is pointless. 3407 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; 3408 } 3409 3410 if (DiagOld) 3411 Diag(DiagOld->getLocation(), 3412 diag::note_attribute_overloadable_prev_overload) 3413 << OldOvl; 3414 3415 if (OldOvl) 3416 New->addAttr(OverloadableAttr::CreateImplicit(Context)); 3417 else 3418 New->dropAttr<OverloadableAttr>(); 3419 } 3420 } 3421 3422 // If a function is first declared with a calling convention, but is later 3423 // declared or defined without one, all following decls assume the calling 3424 // convention of the first. 3425 // 3426 // It's OK if a function is first declared without a calling convention, 3427 // but is later declared or defined with the default calling convention. 3428 // 3429 // To test if either decl has an explicit calling convention, we look for 3430 // AttributedType sugar nodes on the type as written. If they are missing or 3431 // were canonicalized away, we assume the calling convention was implicit. 3432 // 3433 // Note also that we DO NOT return at this point, because we still have 3434 // other tests to run. 3435 QualType OldQType = Context.getCanonicalType(Old->getType()); 3436 QualType NewQType = Context.getCanonicalType(New->getType()); 3437 const FunctionType *OldType = cast<FunctionType>(OldQType); 3438 const FunctionType *NewType = cast<FunctionType>(NewQType); 3439 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 3440 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 3441 bool RequiresAdjustment = false; 3442 3443 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 3444 FunctionDecl *First = Old->getFirstDecl(); 3445 const FunctionType *FT = 3446 First->getType().getCanonicalType()->castAs<FunctionType>(); 3447 FunctionType::ExtInfo FI = FT->getExtInfo(); 3448 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 3449 if (!NewCCExplicit) { 3450 // Inherit the CC from the previous declaration if it was specified 3451 // there but not here. 3452 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3453 RequiresAdjustment = true; 3454 } else if (Old->getBuiltinID()) { 3455 // Builtin attribute isn't propagated to the new one yet at this point, 3456 // so we check if the old one is a builtin. 3457 3458 // Calling Conventions on a Builtin aren't really useful and setting a 3459 // default calling convention and cdecl'ing some builtin redeclarations is 3460 // common, so warn and ignore the calling convention on the redeclaration. 3461 Diag(New->getLocation(), diag::warn_cconv_unsupported) 3462 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3463 << (int)CallingConventionIgnoredReason::BuiltinFunction; 3464 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3465 RequiresAdjustment = true; 3466 } else { 3467 // Calling conventions aren't compatible, so complain. 3468 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 3469 Diag(New->getLocation(), diag::err_cconv_change) 3470 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3471 << !FirstCCExplicit 3472 << (!FirstCCExplicit ? "" : 3473 FunctionType::getNameForCallConv(FI.getCC())); 3474 3475 // Put the note on the first decl, since it is the one that matters. 3476 Diag(First->getLocation(), diag::note_previous_declaration); 3477 return true; 3478 } 3479 } 3480 3481 // FIXME: diagnose the other way around? 3482 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 3483 NewTypeInfo = NewTypeInfo.withNoReturn(true); 3484 RequiresAdjustment = true; 3485 } 3486 3487 // Merge regparm attribute. 3488 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 3489 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 3490 if (NewTypeInfo.getHasRegParm()) { 3491 Diag(New->getLocation(), diag::err_regparm_mismatch) 3492 << NewType->getRegParmType() 3493 << OldType->getRegParmType(); 3494 Diag(OldLocation, diag::note_previous_declaration); 3495 return true; 3496 } 3497 3498 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 3499 RequiresAdjustment = true; 3500 } 3501 3502 // Merge ns_returns_retained attribute. 3503 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 3504 if (NewTypeInfo.getProducesResult()) { 3505 Diag(New->getLocation(), diag::err_function_attribute_mismatch) 3506 << "'ns_returns_retained'"; 3507 Diag(OldLocation, diag::note_previous_declaration); 3508 return true; 3509 } 3510 3511 NewTypeInfo = NewTypeInfo.withProducesResult(true); 3512 RequiresAdjustment = true; 3513 } 3514 3515 if (OldTypeInfo.getNoCallerSavedRegs() != 3516 NewTypeInfo.getNoCallerSavedRegs()) { 3517 if (NewTypeInfo.getNoCallerSavedRegs()) { 3518 AnyX86NoCallerSavedRegistersAttr *Attr = 3519 New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); 3520 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; 3521 Diag(OldLocation, diag::note_previous_declaration); 3522 return true; 3523 } 3524 3525 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); 3526 RequiresAdjustment = true; 3527 } 3528 3529 if (RequiresAdjustment) { 3530 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 3531 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 3532 New->setType(QualType(AdjustedType, 0)); 3533 NewQType = Context.getCanonicalType(New->getType()); 3534 } 3535 3536 // If this redeclaration makes the function inline, we may need to add it to 3537 // UndefinedButUsed. 3538 if (!Old->isInlined() && New->isInlined() && 3539 !New->hasAttr<GNUInlineAttr>() && 3540 !getLangOpts().GNUInline && 3541 Old->isUsed(false) && 3542 !Old->isDefined() && !New->isThisDeclarationADefinition()) 3543 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 3544 SourceLocation())); 3545 3546 // If this redeclaration makes it newly gnu_inline, we don't want to warn 3547 // about it. 3548 if (New->hasAttr<GNUInlineAttr>() && 3549 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 3550 UndefinedButUsed.erase(Old->getCanonicalDecl()); 3551 } 3552 3553 // If pass_object_size params don't match up perfectly, this isn't a valid 3554 // redeclaration. 3555 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && 3556 !hasIdenticalPassObjectSizeAttrs(Old, New)) { 3557 Diag(New->getLocation(), diag::err_different_pass_object_size_params) 3558 << New->getDeclName(); 3559 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3560 return true; 3561 } 3562 3563 if (getLangOpts().CPlusPlus) { 3564 // C++1z [over.load]p2 3565 // Certain function declarations cannot be overloaded: 3566 // -- Function declarations that differ only in the return type, 3567 // the exception specification, or both cannot be overloaded. 3568 3569 // Check the exception specifications match. This may recompute the type of 3570 // both Old and New if it resolved exception specifications, so grab the 3571 // types again after this. Because this updates the type, we do this before 3572 // any of the other checks below, which may update the "de facto" NewQType 3573 // but do not necessarily update the type of New. 3574 if (CheckEquivalentExceptionSpec(Old, New)) 3575 return true; 3576 OldQType = Context.getCanonicalType(Old->getType()); 3577 NewQType = Context.getCanonicalType(New->getType()); 3578 3579 // Go back to the type source info to compare the declared return types, 3580 // per C++1y [dcl.type.auto]p13: 3581 // Redeclarations or specializations of a function or function template 3582 // with a declared return type that uses a placeholder type shall also 3583 // use that placeholder, not a deduced type. 3584 QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); 3585 QualType NewDeclaredReturnType = New->getDeclaredReturnType(); 3586 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 3587 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, 3588 OldDeclaredReturnType)) { 3589 QualType ResQT; 3590 if (NewDeclaredReturnType->isObjCObjectPointerType() && 3591 OldDeclaredReturnType->isObjCObjectPointerType()) 3592 // FIXME: This does the wrong thing for a deduced return type. 3593 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 3594 if (ResQT.isNull()) { 3595 if (New->isCXXClassMember() && New->isOutOfLine()) 3596 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 3597 << New << New->getReturnTypeSourceRange(); 3598 else 3599 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 3600 << New->getReturnTypeSourceRange(); 3601 Diag(OldLocation, PrevDiag) << Old << Old->getType() 3602 << Old->getReturnTypeSourceRange(); 3603 return true; 3604 } 3605 else 3606 NewQType = ResQT; 3607 } 3608 3609 QualType OldReturnType = OldType->getReturnType(); 3610 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 3611 if (OldReturnType != NewReturnType) { 3612 // If this function has a deduced return type and has already been 3613 // defined, copy the deduced value from the old declaration. 3614 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 3615 if (OldAT && OldAT->isDeduced()) { 3616 QualType DT = OldAT->getDeducedType(); 3617 if (DT.isNull()) { 3618 New->setType(SubstAutoTypeDependent(New->getType())); 3619 NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType)); 3620 } else { 3621 New->setType(SubstAutoType(New->getType(), DT)); 3622 NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT)); 3623 } 3624 } 3625 } 3626 3627 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 3628 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 3629 if (OldMethod && NewMethod) { 3630 // Preserve triviality. 3631 NewMethod->setTrivial(OldMethod->isTrivial()); 3632 3633 // MSVC allows explicit template specialization at class scope: 3634 // 2 CXXMethodDecls referring to the same function will be injected. 3635 // We don't want a redeclaration error. 3636 bool IsClassScopeExplicitSpecialization = 3637 OldMethod->isFunctionTemplateSpecialization() && 3638 NewMethod->isFunctionTemplateSpecialization(); 3639 bool isFriend = NewMethod->getFriendObjectKind(); 3640 3641 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 3642 !IsClassScopeExplicitSpecialization) { 3643 // -- Member function declarations with the same name and the 3644 // same parameter types cannot be overloaded if any of them 3645 // is a static member function declaration. 3646 if (OldMethod->isStatic() != NewMethod->isStatic()) { 3647 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 3648 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3649 return true; 3650 } 3651 3652 // C++ [class.mem]p1: 3653 // [...] A member shall not be declared twice in the 3654 // member-specification, except that a nested class or member 3655 // class template can be declared and then later defined. 3656 if (!inTemplateInstantiation()) { 3657 unsigned NewDiag; 3658 if (isa<CXXConstructorDecl>(OldMethod)) 3659 NewDiag = diag::err_constructor_redeclared; 3660 else if (isa<CXXDestructorDecl>(NewMethod)) 3661 NewDiag = diag::err_destructor_redeclared; 3662 else if (isa<CXXConversionDecl>(NewMethod)) 3663 NewDiag = diag::err_conv_function_redeclared; 3664 else 3665 NewDiag = diag::err_member_redeclared; 3666 3667 Diag(New->getLocation(), NewDiag); 3668 } else { 3669 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 3670 << New << New->getType(); 3671 } 3672 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3673 return true; 3674 3675 // Complain if this is an explicit declaration of a special 3676 // member that was initially declared implicitly. 3677 // 3678 // As an exception, it's okay to befriend such methods in order 3679 // to permit the implicit constructor/destructor/operator calls. 3680 } else if (OldMethod->isImplicit()) { 3681 if (isFriend) { 3682 NewMethod->setImplicit(); 3683 } else { 3684 Diag(NewMethod->getLocation(), 3685 diag::err_definition_of_implicitly_declared_member) 3686 << New << getSpecialMember(OldMethod); 3687 return true; 3688 } 3689 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { 3690 Diag(NewMethod->getLocation(), 3691 diag::err_definition_of_explicitly_defaulted_member) 3692 << getSpecialMember(OldMethod); 3693 return true; 3694 } 3695 } 3696 3697 // C++11 [dcl.attr.noreturn]p1: 3698 // The first declaration of a function shall specify the noreturn 3699 // attribute if any declaration of that function specifies the noreturn 3700 // attribute. 3701 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>()) 3702 if (!Old->hasAttr<CXX11NoReturnAttr>()) { 3703 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) 3704 << NRA; 3705 Diag(Old->getLocation(), diag::note_previous_declaration); 3706 } 3707 3708 // C++11 [dcl.attr.depend]p2: 3709 // The first declaration of a function shall specify the 3710 // carries_dependency attribute for its declarator-id if any declaration 3711 // of the function specifies the carries_dependency attribute. 3712 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 3713 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 3714 Diag(CDA->getLocation(), 3715 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 3716 Diag(Old->getFirstDecl()->getLocation(), 3717 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 3718 } 3719 3720 // (C++98 8.3.5p3): 3721 // All declarations for a function shall agree exactly in both the 3722 // return type and the parameter-type-list. 3723 // We also want to respect all the extended bits except noreturn. 3724 3725 // noreturn should now match unless the old type info didn't have it. 3726 QualType OldQTypeForComparison = OldQType; 3727 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 3728 auto *OldType = OldQType->castAs<FunctionProtoType>(); 3729 const FunctionType *OldTypeForComparison 3730 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 3731 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 3732 assert(OldQTypeForComparison.isCanonical()); 3733 } 3734 3735 if (haveIncompatibleLanguageLinkages(Old, New)) { 3736 // As a special case, retain the language linkage from previous 3737 // declarations of a friend function as an extension. 3738 // 3739 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 3740 // and is useful because there's otherwise no way to specify language 3741 // linkage within class scope. 3742 // 3743 // Check cautiously as the friend object kind isn't yet complete. 3744 if (New->getFriendObjectKind() != Decl::FOK_None) { 3745 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 3746 Diag(OldLocation, PrevDiag); 3747 } else { 3748 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3749 Diag(OldLocation, PrevDiag); 3750 return true; 3751 } 3752 } 3753 3754 // If the function types are compatible, merge the declarations. Ignore the 3755 // exception specifier because it was already checked above in 3756 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics 3757 // about incompatible types under -fms-compatibility. 3758 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, 3759 NewQType)) 3760 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3761 3762 // If the types are imprecise (due to dependent constructs in friends or 3763 // local extern declarations), it's OK if they differ. We'll check again 3764 // during instantiation. 3765 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) 3766 return false; 3767 3768 // Fall through for conflicting redeclarations and redefinitions. 3769 } 3770 3771 // C: Function types need to be compatible, not identical. This handles 3772 // duplicate function decls like "void f(int); void f(enum X);" properly. 3773 if (!getLangOpts().CPlusPlus && 3774 Context.typesAreCompatible(OldQType, NewQType)) { 3775 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 3776 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 3777 const FunctionProtoType *OldProto = nullptr; 3778 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 3779 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 3780 // The old declaration provided a function prototype, but the 3781 // new declaration does not. Merge in the prototype. 3782 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 3783 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 3784 NewQType = 3785 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 3786 OldProto->getExtProtoInfo()); 3787 New->setType(NewQType); 3788 New->setHasInheritedPrototype(); 3789 3790 // Synthesize parameters with the same types. 3791 SmallVector<ParmVarDecl*, 16> Params; 3792 for (const auto &ParamType : OldProto->param_types()) { 3793 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 3794 SourceLocation(), nullptr, 3795 ParamType, /*TInfo=*/nullptr, 3796 SC_None, nullptr); 3797 Param->setScopeInfo(0, Params.size()); 3798 Param->setImplicit(); 3799 Params.push_back(Param); 3800 } 3801 3802 New->setParams(Params); 3803 } 3804 3805 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3806 } 3807 3808 // Check if the function types are compatible when pointer size address 3809 // spaces are ignored. 3810 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) 3811 return false; 3812 3813 // GNU C permits a K&R definition to follow a prototype declaration 3814 // if the declared types of the parameters in the K&R definition 3815 // match the types in the prototype declaration, even when the 3816 // promoted types of the parameters from the K&R definition differ 3817 // from the types in the prototype. GCC then keeps the types from 3818 // the prototype. 3819 // 3820 // If a variadic prototype is followed by a non-variadic K&R definition, 3821 // the K&R definition becomes variadic. This is sort of an edge case, but 3822 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 3823 // C99 6.9.1p8. 3824 if (!getLangOpts().CPlusPlus && 3825 Old->hasPrototype() && !New->hasPrototype() && 3826 New->getType()->getAs<FunctionProtoType>() && 3827 Old->getNumParams() == New->getNumParams()) { 3828 SmallVector<QualType, 16> ArgTypes; 3829 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 3830 const FunctionProtoType *OldProto 3831 = Old->getType()->getAs<FunctionProtoType>(); 3832 const FunctionProtoType *NewProto 3833 = New->getType()->getAs<FunctionProtoType>(); 3834 3835 // Determine whether this is the GNU C extension. 3836 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 3837 NewProto->getReturnType()); 3838 bool LooseCompatible = !MergedReturn.isNull(); 3839 for (unsigned Idx = 0, End = Old->getNumParams(); 3840 LooseCompatible && Idx != End; ++Idx) { 3841 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 3842 ParmVarDecl *NewParm = New->getParamDecl(Idx); 3843 if (Context.typesAreCompatible(OldParm->getType(), 3844 NewProto->getParamType(Idx))) { 3845 ArgTypes.push_back(NewParm->getType()); 3846 } else if (Context.typesAreCompatible(OldParm->getType(), 3847 NewParm->getType(), 3848 /*CompareUnqualified=*/true)) { 3849 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 3850 NewProto->getParamType(Idx) }; 3851 Warnings.push_back(Warn); 3852 ArgTypes.push_back(NewParm->getType()); 3853 } else 3854 LooseCompatible = false; 3855 } 3856 3857 if (LooseCompatible) { 3858 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 3859 Diag(Warnings[Warn].NewParm->getLocation(), 3860 diag::ext_param_promoted_not_compatible_with_prototype) 3861 << Warnings[Warn].PromotedType 3862 << Warnings[Warn].OldParm->getType(); 3863 if (Warnings[Warn].OldParm->getLocation().isValid()) 3864 Diag(Warnings[Warn].OldParm->getLocation(), 3865 diag::note_previous_declaration); 3866 } 3867 3868 if (MergeTypeWithOld) 3869 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 3870 OldProto->getExtProtoInfo())); 3871 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3872 } 3873 3874 // Fall through to diagnose conflicting types. 3875 } 3876 3877 // A function that has already been declared has been redeclared or 3878 // defined with a different type; show an appropriate diagnostic. 3879 3880 // If the previous declaration was an implicitly-generated builtin 3881 // declaration, then at the very least we should use a specialized note. 3882 unsigned BuiltinID; 3883 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 3884 // If it's actually a library-defined builtin function like 'malloc' 3885 // or 'printf', just warn about the incompatible redeclaration. 3886 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 3887 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 3888 Diag(OldLocation, diag::note_previous_builtin_declaration) 3889 << Old << Old->getType(); 3890 return false; 3891 } 3892 3893 PrevDiag = diag::note_previous_builtin_declaration; 3894 } 3895 3896 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 3897 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3898 return true; 3899 } 3900 3901 /// Completes the merge of two function declarations that are 3902 /// known to be compatible. 3903 /// 3904 /// This routine handles the merging of attributes and other 3905 /// properties of function declarations from the old declaration to 3906 /// the new declaration, once we know that New is in fact a 3907 /// redeclaration of Old. 3908 /// 3909 /// \returns false 3910 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3911 Scope *S, bool MergeTypeWithOld) { 3912 // Merge the attributes 3913 mergeDeclAttributes(New, Old); 3914 3915 // Merge "pure" flag. 3916 if (Old->isPure()) 3917 New->setPure(); 3918 3919 // Merge "used" flag. 3920 if (Old->getMostRecentDecl()->isUsed(false)) 3921 New->setIsUsed(); 3922 3923 // Merge attributes from the parameters. These can mismatch with K&R 3924 // declarations. 3925 if (New->getNumParams() == Old->getNumParams()) 3926 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { 3927 ParmVarDecl *NewParam = New->getParamDecl(i); 3928 ParmVarDecl *OldParam = Old->getParamDecl(i); 3929 mergeParamDeclAttributes(NewParam, OldParam, *this); 3930 mergeParamDeclTypes(NewParam, OldParam, *this); 3931 } 3932 3933 if (getLangOpts().CPlusPlus) 3934 return MergeCXXFunctionDecl(New, Old, S); 3935 3936 // Merge the function types so the we get the composite types for the return 3937 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3938 // was visible. 3939 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3940 if (!Merged.isNull() && MergeTypeWithOld) 3941 New->setType(Merged); 3942 3943 return false; 3944 } 3945 3946 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3947 ObjCMethodDecl *oldMethod) { 3948 // Merge the attributes, including deprecated/unavailable 3949 AvailabilityMergeKind MergeKind = 3950 isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) 3951 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation 3952 : AMK_ProtocolImplementation) 3953 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3954 : AMK_Override; 3955 3956 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3957 3958 // Merge attributes from the parameters. 3959 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3960 oe = oldMethod->param_end(); 3961 for (ObjCMethodDecl::param_iterator 3962 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3963 ni != ne && oi != oe; ++ni, ++oi) 3964 mergeParamDeclAttributes(*ni, *oi, *this); 3965 3966 CheckObjCMethodOverride(newMethod, oldMethod); 3967 } 3968 3969 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { 3970 assert(!S.Context.hasSameType(New->getType(), Old->getType())); 3971 3972 S.Diag(New->getLocation(), New->isThisDeclarationADefinition() 3973 ? diag::err_redefinition_different_type 3974 : diag::err_redeclaration_different_type) 3975 << New->getDeclName() << New->getType() << Old->getType(); 3976 3977 diag::kind PrevDiag; 3978 SourceLocation OldLocation; 3979 std::tie(PrevDiag, OldLocation) 3980 = getNoteDiagForInvalidRedeclaration(Old, New); 3981 S.Diag(OldLocation, PrevDiag); 3982 New->setInvalidDecl(); 3983 } 3984 3985 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3986 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3987 /// emitting diagnostics as appropriate. 3988 /// 3989 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3990 /// to here in AddInitializerToDecl. We can't check them before the initializer 3991 /// is attached. 3992 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3993 bool MergeTypeWithOld) { 3994 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3995 return; 3996 3997 QualType MergedT; 3998 if (getLangOpts().CPlusPlus) { 3999 if (New->getType()->isUndeducedType()) { 4000 // We don't know what the new type is until the initializer is attached. 4001 return; 4002 } else if (Context.hasSameType(New->getType(), Old->getType())) { 4003 // These could still be something that needs exception specs checked. 4004 return MergeVarDeclExceptionSpecs(New, Old); 4005 } 4006 // C++ [basic.link]p10: 4007 // [...] the types specified by all declarations referring to a given 4008 // object or function shall be identical, except that declarations for an 4009 // array object can specify array types that differ by the presence or 4010 // absence of a major array bound (8.3.4). 4011 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { 4012 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 4013 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 4014 4015 // We are merging a variable declaration New into Old. If it has an array 4016 // bound, and that bound differs from Old's bound, we should diagnose the 4017 // mismatch. 4018 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { 4019 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; 4020 PrevVD = PrevVD->getPreviousDecl()) { 4021 QualType PrevVDTy = PrevVD->getType(); 4022 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) 4023 continue; 4024 4025 if (!Context.hasSameType(New->getType(), PrevVDTy)) 4026 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); 4027 } 4028 } 4029 4030 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { 4031 if (Context.hasSameType(OldArray->getElementType(), 4032 NewArray->getElementType())) 4033 MergedT = New->getType(); 4034 } 4035 // FIXME: Check visibility. New is hidden but has a complete type. If New 4036 // has no array bound, it should not inherit one from Old, if Old is not 4037 // visible. 4038 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { 4039 if (Context.hasSameType(OldArray->getElementType(), 4040 NewArray->getElementType())) 4041 MergedT = Old->getType(); 4042 } 4043 } 4044 else if (New->getType()->isObjCObjectPointerType() && 4045 Old->getType()->isObjCObjectPointerType()) { 4046 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 4047 Old->getType()); 4048 } 4049 } else { 4050 // C 6.2.7p2: 4051 // All declarations that refer to the same object or function shall have 4052 // compatible type. 4053 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 4054 } 4055 if (MergedT.isNull()) { 4056 // It's OK if we couldn't merge types if either type is dependent, for a 4057 // block-scope variable. In other cases (static data members of class 4058 // templates, variable templates, ...), we require the types to be 4059 // equivalent. 4060 // FIXME: The C++ standard doesn't say anything about this. 4061 if ((New->getType()->isDependentType() || 4062 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 4063 // If the old type was dependent, we can't merge with it, so the new type 4064 // becomes dependent for now. We'll reproduce the original type when we 4065 // instantiate the TypeSourceInfo for the variable. 4066 if (!New->getType()->isDependentType() && MergeTypeWithOld) 4067 New->setType(Context.DependentTy); 4068 return; 4069 } 4070 return diagnoseVarDeclTypeMismatch(*this, New, Old); 4071 } 4072 4073 // Don't actually update the type on the new declaration if the old 4074 // declaration was an extern declaration in a different scope. 4075 if (MergeTypeWithOld) 4076 New->setType(MergedT); 4077 } 4078 4079 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 4080 LookupResult &Previous) { 4081 // C11 6.2.7p4: 4082 // For an identifier with internal or external linkage declared 4083 // in a scope in which a prior declaration of that identifier is 4084 // visible, if the prior declaration specifies internal or 4085 // external linkage, the type of the identifier at the later 4086 // declaration becomes the composite type. 4087 // 4088 // If the variable isn't visible, we do not merge with its type. 4089 if (Previous.isShadowed()) 4090 return false; 4091 4092 if (S.getLangOpts().CPlusPlus) { 4093 // C++11 [dcl.array]p3: 4094 // If there is a preceding declaration of the entity in the same 4095 // scope in which the bound was specified, an omitted array bound 4096 // is taken to be the same as in that earlier declaration. 4097 return NewVD->isPreviousDeclInSameBlockScope() || 4098 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 4099 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 4100 } else { 4101 // If the old declaration was function-local, don't merge with its 4102 // type unless we're in the same function. 4103 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 4104 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 4105 } 4106 } 4107 4108 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 4109 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 4110 /// situation, merging decls or emitting diagnostics as appropriate. 4111 /// 4112 /// Tentative definition rules (C99 6.9.2p2) are checked by 4113 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 4114 /// definitions here, since the initializer hasn't been attached. 4115 /// 4116 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 4117 // If the new decl is already invalid, don't do any other checking. 4118 if (New->isInvalidDecl()) 4119 return; 4120 4121 if (!shouldLinkPossiblyHiddenDecl(Previous, New)) 4122 return; 4123 4124 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 4125 4126 // Verify the old decl was also a variable or variable template. 4127 VarDecl *Old = nullptr; 4128 VarTemplateDecl *OldTemplate = nullptr; 4129 if (Previous.isSingleResult()) { 4130 if (NewTemplate) { 4131 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 4132 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 4133 4134 if (auto *Shadow = 4135 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4136 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) 4137 return New->setInvalidDecl(); 4138 } else { 4139 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 4140 4141 if (auto *Shadow = 4142 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4143 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) 4144 return New->setInvalidDecl(); 4145 } 4146 } 4147 if (!Old) { 4148 Diag(New->getLocation(), diag::err_redefinition_different_kind) 4149 << New->getDeclName(); 4150 notePreviousDefinition(Previous.getRepresentativeDecl(), 4151 New->getLocation()); 4152 return New->setInvalidDecl(); 4153 } 4154 4155 // If the old declaration was found in an inline namespace and the new 4156 // declaration was qualified, update the DeclContext to match. 4157 adjustDeclContextForDeclaratorDecl(New, Old); 4158 4159 // Ensure the template parameters are compatible. 4160 if (NewTemplate && 4161 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 4162 OldTemplate->getTemplateParameters(), 4163 /*Complain=*/true, TPL_TemplateMatch)) 4164 return New->setInvalidDecl(); 4165 4166 // C++ [class.mem]p1: 4167 // A member shall not be declared twice in the member-specification [...] 4168 // 4169 // Here, we need only consider static data members. 4170 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 4171 Diag(New->getLocation(), diag::err_duplicate_member) 4172 << New->getIdentifier(); 4173 Diag(Old->getLocation(), diag::note_previous_declaration); 4174 New->setInvalidDecl(); 4175 } 4176 4177 mergeDeclAttributes(New, Old); 4178 // Warn if an already-declared variable is made a weak_import in a subsequent 4179 // declaration 4180 if (New->hasAttr<WeakImportAttr>() && 4181 Old->getStorageClass() == SC_None && 4182 !Old->hasAttr<WeakImportAttr>()) { 4183 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 4184 Diag(Old->getLocation(), diag::note_previous_declaration); 4185 // Remove weak_import attribute on new declaration. 4186 New->dropAttr<WeakImportAttr>(); 4187 } 4188 4189 if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) 4190 if (!Old->hasAttr<InternalLinkageAttr>()) { 4191 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) 4192 << ILA; 4193 Diag(Old->getLocation(), diag::note_previous_declaration); 4194 New->dropAttr<InternalLinkageAttr>(); 4195 } 4196 4197 // Merge the types. 4198 VarDecl *MostRecent = Old->getMostRecentDecl(); 4199 if (MostRecent != Old) { 4200 MergeVarDeclTypes(New, MostRecent, 4201 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 4202 if (New->isInvalidDecl()) 4203 return; 4204 } 4205 4206 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 4207 if (New->isInvalidDecl()) 4208 return; 4209 4210 diag::kind PrevDiag; 4211 SourceLocation OldLocation; 4212 std::tie(PrevDiag, OldLocation) = 4213 getNoteDiagForInvalidRedeclaration(Old, New); 4214 4215 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 4216 if (New->getStorageClass() == SC_Static && 4217 !New->isStaticDataMember() && 4218 Old->hasExternalFormalLinkage()) { 4219 if (getLangOpts().MicrosoftExt) { 4220 Diag(New->getLocation(), diag::ext_static_non_static) 4221 << New->getDeclName(); 4222 Diag(OldLocation, PrevDiag); 4223 } else { 4224 Diag(New->getLocation(), diag::err_static_non_static) 4225 << New->getDeclName(); 4226 Diag(OldLocation, PrevDiag); 4227 return New->setInvalidDecl(); 4228 } 4229 } 4230 // C99 6.2.2p4: 4231 // For an identifier declared with the storage-class specifier 4232 // extern in a scope in which a prior declaration of that 4233 // identifier is visible,23) if the prior declaration specifies 4234 // internal or external linkage, the linkage of the identifier at 4235 // the later declaration is the same as the linkage specified at 4236 // the prior declaration. If no prior declaration is visible, or 4237 // if the prior declaration specifies no linkage, then the 4238 // identifier has external linkage. 4239 if (New->hasExternalStorage() && Old->hasLinkage()) 4240 /* Okay */; 4241 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 4242 !New->isStaticDataMember() && 4243 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 4244 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 4245 Diag(OldLocation, PrevDiag); 4246 return New->setInvalidDecl(); 4247 } 4248 4249 // Check if extern is followed by non-extern and vice-versa. 4250 if (New->hasExternalStorage() && 4251 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 4252 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 4253 Diag(OldLocation, PrevDiag); 4254 return New->setInvalidDecl(); 4255 } 4256 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 4257 !New->hasExternalStorage()) { 4258 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 4259 Diag(OldLocation, PrevDiag); 4260 return New->setInvalidDecl(); 4261 } 4262 4263 if (CheckRedeclarationModuleOwnership(New, Old)) 4264 return; 4265 4266 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 4267 4268 // FIXME: The test for external storage here seems wrong? We still 4269 // need to check for mismatches. 4270 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 4271 // Don't complain about out-of-line definitions of static members. 4272 !(Old->getLexicalDeclContext()->isRecord() && 4273 !New->getLexicalDeclContext()->isRecord())) { 4274 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 4275 Diag(OldLocation, PrevDiag); 4276 return New->setInvalidDecl(); 4277 } 4278 4279 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { 4280 if (VarDecl *Def = Old->getDefinition()) { 4281 // C++1z [dcl.fcn.spec]p4: 4282 // If the definition of a variable appears in a translation unit before 4283 // its first declaration as inline, the program is ill-formed. 4284 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 4285 Diag(Def->getLocation(), diag::note_previous_definition); 4286 } 4287 } 4288 4289 // If this redeclaration makes the variable inline, we may need to add it to 4290 // UndefinedButUsed. 4291 if (!Old->isInline() && New->isInline() && Old->isUsed(false) && 4292 !Old->getDefinition() && !New->isThisDeclarationADefinition()) 4293 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 4294 SourceLocation())); 4295 4296 if (New->getTLSKind() != Old->getTLSKind()) { 4297 if (!Old->getTLSKind()) { 4298 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 4299 Diag(OldLocation, PrevDiag); 4300 } else if (!New->getTLSKind()) { 4301 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 4302 Diag(OldLocation, PrevDiag); 4303 } else { 4304 // Do not allow redeclaration to change the variable between requiring 4305 // static and dynamic initialization. 4306 // FIXME: GCC allows this, but uses the TLS keyword on the first 4307 // declaration to determine the kind. Do we need to be compatible here? 4308 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 4309 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 4310 Diag(OldLocation, PrevDiag); 4311 } 4312 } 4313 4314 // C++ doesn't have tentative definitions, so go right ahead and check here. 4315 if (getLangOpts().CPlusPlus && 4316 New->isThisDeclarationADefinition() == VarDecl::Definition) { 4317 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && 4318 Old->getCanonicalDecl()->isConstexpr()) { 4319 // This definition won't be a definition any more once it's been merged. 4320 Diag(New->getLocation(), 4321 diag::warn_deprecated_redundant_constexpr_static_def); 4322 } else if (VarDecl *Def = Old->getDefinition()) { 4323 if (checkVarDeclRedefinition(Def, New)) 4324 return; 4325 } 4326 } 4327 4328 if (haveIncompatibleLanguageLinkages(Old, New)) { 4329 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 4330 Diag(OldLocation, PrevDiag); 4331 New->setInvalidDecl(); 4332 return; 4333 } 4334 4335 // Merge "used" flag. 4336 if (Old->getMostRecentDecl()->isUsed(false)) 4337 New->setIsUsed(); 4338 4339 // Keep a chain of previous declarations. 4340 New->setPreviousDecl(Old); 4341 if (NewTemplate) 4342 NewTemplate->setPreviousDecl(OldTemplate); 4343 4344 // Inherit access appropriately. 4345 New->setAccess(Old->getAccess()); 4346 if (NewTemplate) 4347 NewTemplate->setAccess(New->getAccess()); 4348 4349 if (Old->isInline()) 4350 New->setImplicitlyInline(); 4351 } 4352 4353 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { 4354 SourceManager &SrcMgr = getSourceManager(); 4355 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); 4356 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); 4357 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); 4358 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); 4359 auto &HSI = PP.getHeaderSearchInfo(); 4360 StringRef HdrFilename = 4361 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); 4362 4363 auto noteFromModuleOrInclude = [&](Module *Mod, 4364 SourceLocation IncLoc) -> bool { 4365 // Redefinition errors with modules are common with non modular mapped 4366 // headers, example: a non-modular header H in module A that also gets 4367 // included directly in a TU. Pointing twice to the same header/definition 4368 // is confusing, try to get better diagnostics when modules is on. 4369 if (IncLoc.isValid()) { 4370 if (Mod) { 4371 Diag(IncLoc, diag::note_redefinition_modules_same_file) 4372 << HdrFilename.str() << Mod->getFullModuleName(); 4373 if (!Mod->DefinitionLoc.isInvalid()) 4374 Diag(Mod->DefinitionLoc, diag::note_defined_here) 4375 << Mod->getFullModuleName(); 4376 } else { 4377 Diag(IncLoc, diag::note_redefinition_include_same_file) 4378 << HdrFilename.str(); 4379 } 4380 return true; 4381 } 4382 4383 return false; 4384 }; 4385 4386 // Is it the same file and same offset? Provide more information on why 4387 // this leads to a redefinition error. 4388 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { 4389 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); 4390 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); 4391 bool EmittedDiag = 4392 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); 4393 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); 4394 4395 // If the header has no guards, emit a note suggesting one. 4396 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) 4397 Diag(Old->getLocation(), diag::note_use_ifdef_guards); 4398 4399 if (EmittedDiag) 4400 return; 4401 } 4402 4403 // Redefinition coming from different files or couldn't do better above. 4404 if (Old->getLocation().isValid()) 4405 Diag(Old->getLocation(), diag::note_previous_definition); 4406 } 4407 4408 /// We've just determined that \p Old and \p New both appear to be definitions 4409 /// of the same variable. Either diagnose or fix the problem. 4410 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { 4411 if (!hasVisibleDefinition(Old) && 4412 (New->getFormalLinkage() == InternalLinkage || 4413 New->isInline() || 4414 New->getDescribedVarTemplate() || 4415 New->getNumTemplateParameterLists() || 4416 New->getDeclContext()->isDependentContext())) { 4417 // The previous definition is hidden, and multiple definitions are 4418 // permitted (in separate TUs). Demote this to a declaration. 4419 New->demoteThisDefinitionToDeclaration(); 4420 4421 // Make the canonical definition visible. 4422 if (auto *OldTD = Old->getDescribedVarTemplate()) 4423 makeMergedDefinitionVisible(OldTD); 4424 makeMergedDefinitionVisible(Old); 4425 return false; 4426 } else { 4427 Diag(New->getLocation(), diag::err_redefinition) << New; 4428 notePreviousDefinition(Old, New->getLocation()); 4429 New->setInvalidDecl(); 4430 return true; 4431 } 4432 } 4433 4434 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4435 /// no declarator (e.g. "struct foo;") is parsed. 4436 Decl * 4437 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4438 RecordDecl *&AnonRecord) { 4439 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, 4440 AnonRecord); 4441 } 4442 4443 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to 4444 // disambiguate entities defined in different scopes. 4445 // While the VS2015 ABI fixes potential miscompiles, it is also breaks 4446 // compatibility. 4447 // We will pick our mangling number depending on which version of MSVC is being 4448 // targeted. 4449 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { 4450 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) 4451 ? S->getMSCurManglingNumber() 4452 : S->getMSLastManglingNumber(); 4453 } 4454 4455 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { 4456 if (!Context.getLangOpts().CPlusPlus) 4457 return; 4458 4459 if (isa<CXXRecordDecl>(Tag->getParent())) { 4460 // If this tag is the direct child of a class, number it if 4461 // it is anonymous. 4462 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 4463 return; 4464 MangleNumberingContext &MCtx = 4465 Context.getManglingNumberContext(Tag->getParent()); 4466 Context.setManglingNumber( 4467 Tag, MCtx.getManglingNumber( 4468 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4469 return; 4470 } 4471 4472 // If this tag isn't a direct child of a class, number it if it is local. 4473 MangleNumberingContext *MCtx; 4474 Decl *ManglingContextDecl; 4475 std::tie(MCtx, ManglingContextDecl) = 4476 getCurrentMangleNumberContext(Tag->getDeclContext()); 4477 if (MCtx) { 4478 Context.setManglingNumber( 4479 Tag, MCtx->getManglingNumber( 4480 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4481 } 4482 } 4483 4484 namespace { 4485 struct NonCLikeKind { 4486 enum { 4487 None, 4488 BaseClass, 4489 DefaultMemberInit, 4490 Lambda, 4491 Friend, 4492 OtherMember, 4493 Invalid, 4494 } Kind = None; 4495 SourceRange Range; 4496 4497 explicit operator bool() { return Kind != None; } 4498 }; 4499 } 4500 4501 /// Determine whether a class is C-like, according to the rules of C++ 4502 /// [dcl.typedef] for anonymous classes with typedef names for linkage. 4503 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { 4504 if (RD->isInvalidDecl()) 4505 return {NonCLikeKind::Invalid, {}}; 4506 4507 // C++ [dcl.typedef]p9: [P1766R1] 4508 // An unnamed class with a typedef name for linkage purposes shall not 4509 // 4510 // -- have any base classes 4511 if (RD->getNumBases()) 4512 return {NonCLikeKind::BaseClass, 4513 SourceRange(RD->bases_begin()->getBeginLoc(), 4514 RD->bases_end()[-1].getEndLoc())}; 4515 bool Invalid = false; 4516 for (Decl *D : RD->decls()) { 4517 // Don't complain about things we already diagnosed. 4518 if (D->isInvalidDecl()) { 4519 Invalid = true; 4520 continue; 4521 } 4522 4523 // -- have any [...] default member initializers 4524 if (auto *FD = dyn_cast<FieldDecl>(D)) { 4525 if (FD->hasInClassInitializer()) { 4526 auto *Init = FD->getInClassInitializer(); 4527 return {NonCLikeKind::DefaultMemberInit, 4528 Init ? Init->getSourceRange() : D->getSourceRange()}; 4529 } 4530 continue; 4531 } 4532 4533 // FIXME: We don't allow friend declarations. This violates the wording of 4534 // P1766, but not the intent. 4535 if (isa<FriendDecl>(D)) 4536 return {NonCLikeKind::Friend, D->getSourceRange()}; 4537 4538 // -- declare any members other than non-static data members, member 4539 // enumerations, or member classes, 4540 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || 4541 isa<EnumDecl>(D)) 4542 continue; 4543 auto *MemberRD = dyn_cast<CXXRecordDecl>(D); 4544 if (!MemberRD) { 4545 if (D->isImplicit()) 4546 continue; 4547 return {NonCLikeKind::OtherMember, D->getSourceRange()}; 4548 } 4549 4550 // -- contain a lambda-expression, 4551 if (MemberRD->isLambda()) 4552 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; 4553 4554 // and all member classes shall also satisfy these requirements 4555 // (recursively). 4556 if (MemberRD->isThisDeclarationADefinition()) { 4557 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) 4558 return Kind; 4559 } 4560 } 4561 4562 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; 4563 } 4564 4565 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, 4566 TypedefNameDecl *NewTD) { 4567 if (TagFromDeclSpec->isInvalidDecl()) 4568 return; 4569 4570 // Do nothing if the tag already has a name for linkage purposes. 4571 if (TagFromDeclSpec->hasNameForLinkage()) 4572 return; 4573 4574 // A well-formed anonymous tag must always be a TUK_Definition. 4575 assert(TagFromDeclSpec->isThisDeclarationADefinition()); 4576 4577 // The type must match the tag exactly; no qualifiers allowed. 4578 if (!Context.hasSameType(NewTD->getUnderlyingType(), 4579 Context.getTagDeclType(TagFromDeclSpec))) { 4580 if (getLangOpts().CPlusPlus) 4581 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); 4582 return; 4583 } 4584 4585 // C++ [dcl.typedef]p9: [P1766R1, applied as DR] 4586 // An unnamed class with a typedef name for linkage purposes shall [be 4587 // C-like]. 4588 // 4589 // FIXME: Also diagnose if we've already computed the linkage. That ideally 4590 // shouldn't happen, but there are constructs that the language rule doesn't 4591 // disallow for which we can't reasonably avoid computing linkage early. 4592 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); 4593 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) 4594 : NonCLikeKind(); 4595 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); 4596 if (NonCLike || ChangesLinkage) { 4597 if (NonCLike.Kind == NonCLikeKind::Invalid) 4598 return; 4599 4600 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; 4601 if (ChangesLinkage) { 4602 // If the linkage changes, we can't accept this as an extension. 4603 if (NonCLike.Kind == NonCLikeKind::None) 4604 DiagID = diag::err_typedef_changes_linkage; 4605 else 4606 DiagID = diag::err_non_c_like_anon_struct_in_typedef; 4607 } 4608 4609 SourceLocation FixitLoc = 4610 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); 4611 llvm::SmallString<40> TextToInsert; 4612 TextToInsert += ' '; 4613 TextToInsert += NewTD->getIdentifier()->getName(); 4614 4615 Diag(FixitLoc, DiagID) 4616 << isa<TypeAliasDecl>(NewTD) 4617 << FixItHint::CreateInsertion(FixitLoc, TextToInsert); 4618 if (NonCLike.Kind != NonCLikeKind::None) { 4619 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) 4620 << NonCLike.Kind - 1 << NonCLike.Range; 4621 } 4622 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) 4623 << NewTD << isa<TypeAliasDecl>(NewTD); 4624 4625 if (ChangesLinkage) 4626 return; 4627 } 4628 4629 // Otherwise, set this as the anon-decl typedef for the tag. 4630 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 4631 } 4632 4633 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { 4634 switch (T) { 4635 case DeclSpec::TST_class: 4636 return 0; 4637 case DeclSpec::TST_struct: 4638 return 1; 4639 case DeclSpec::TST_interface: 4640 return 2; 4641 case DeclSpec::TST_union: 4642 return 3; 4643 case DeclSpec::TST_enum: 4644 return 4; 4645 default: 4646 llvm_unreachable("unexpected type specifier"); 4647 } 4648 } 4649 4650 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4651 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 4652 /// parameters to cope with template friend declarations. 4653 Decl * 4654 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4655 MultiTemplateParamsArg TemplateParams, 4656 bool IsExplicitInstantiation, 4657 RecordDecl *&AnonRecord) { 4658 Decl *TagD = nullptr; 4659 TagDecl *Tag = nullptr; 4660 if (DS.getTypeSpecType() == DeclSpec::TST_class || 4661 DS.getTypeSpecType() == DeclSpec::TST_struct || 4662 DS.getTypeSpecType() == DeclSpec::TST_interface || 4663 DS.getTypeSpecType() == DeclSpec::TST_union || 4664 DS.getTypeSpecType() == DeclSpec::TST_enum) { 4665 TagD = DS.getRepAsDecl(); 4666 4667 if (!TagD) // We probably had an error 4668 return nullptr; 4669 4670 // Note that the above type specs guarantee that the 4671 // type rep is a Decl, whereas in many of the others 4672 // it's a Type. 4673 if (isa<TagDecl>(TagD)) 4674 Tag = cast<TagDecl>(TagD); 4675 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 4676 Tag = CTD->getTemplatedDecl(); 4677 } 4678 4679 if (Tag) { 4680 handleTagNumbering(Tag, S); 4681 Tag->setFreeStanding(); 4682 if (Tag->isInvalidDecl()) 4683 return Tag; 4684 } 4685 4686 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 4687 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 4688 // or incomplete types shall not be restrict-qualified." 4689 if (TypeQuals & DeclSpec::TQ_restrict) 4690 Diag(DS.getRestrictSpecLoc(), 4691 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 4692 << DS.getSourceRange(); 4693 } 4694 4695 if (DS.isInlineSpecified()) 4696 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 4697 << getLangOpts().CPlusPlus17; 4698 4699 if (DS.hasConstexprSpecifier()) { 4700 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 4701 // and definitions of functions and variables. 4702 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to 4703 // the declaration of a function or function template 4704 if (Tag) 4705 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 4706 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) 4707 << static_cast<int>(DS.getConstexprSpecifier()); 4708 else 4709 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) 4710 << static_cast<int>(DS.getConstexprSpecifier()); 4711 // Don't emit warnings after this error. 4712 return TagD; 4713 } 4714 4715 DiagnoseFunctionSpecifiers(DS); 4716 4717 if (DS.isFriendSpecified()) { 4718 // If we're dealing with a decl but not a TagDecl, assume that 4719 // whatever routines created it handled the friendship aspect. 4720 if (TagD && !Tag) 4721 return nullptr; 4722 return ActOnFriendTypeDecl(S, DS, TemplateParams); 4723 } 4724 4725 const CXXScopeSpec &SS = DS.getTypeSpecScope(); 4726 bool IsExplicitSpecialization = 4727 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 4728 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 4729 !IsExplicitInstantiation && !IsExplicitSpecialization && 4730 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { 4731 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 4732 // nested-name-specifier unless it is an explicit instantiation 4733 // or an explicit specialization. 4734 // 4735 // FIXME: We allow class template partial specializations here too, per the 4736 // obvious intent of DR1819. 4737 // 4738 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 4739 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 4740 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); 4741 return nullptr; 4742 } 4743 4744 // Track whether this decl-specifier declares anything. 4745 bool DeclaresAnything = true; 4746 4747 // Handle anonymous struct definitions. 4748 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 4749 if (!Record->getDeclName() && Record->isCompleteDefinition() && 4750 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 4751 if (getLangOpts().CPlusPlus || 4752 Record->getDeclContext()->isRecord()) { 4753 // If CurContext is a DeclContext that can contain statements, 4754 // RecursiveASTVisitor won't visit the decls that 4755 // BuildAnonymousStructOrUnion() will put into CurContext. 4756 // Also store them here so that they can be part of the 4757 // DeclStmt that gets created in this case. 4758 // FIXME: Also return the IndirectFieldDecls created by 4759 // BuildAnonymousStructOr union, for the same reason? 4760 if (CurContext->isFunctionOrMethod()) 4761 AnonRecord = Record; 4762 return BuildAnonymousStructOrUnion(S, DS, AS, Record, 4763 Context.getPrintingPolicy()); 4764 } 4765 4766 DeclaresAnything = false; 4767 } 4768 } 4769 4770 // C11 6.7.2.1p2: 4771 // A struct-declaration that does not declare an anonymous structure or 4772 // anonymous union shall contain a struct-declarator-list. 4773 // 4774 // This rule also existed in C89 and C99; the grammar for struct-declaration 4775 // did not permit a struct-declaration without a struct-declarator-list. 4776 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 4777 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 4778 // Check for Microsoft C extension: anonymous struct/union member. 4779 // Handle 2 kinds of anonymous struct/union: 4780 // struct STRUCT; 4781 // union UNION; 4782 // and 4783 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 4784 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 4785 if ((Tag && Tag->getDeclName()) || 4786 DS.getTypeSpecType() == DeclSpec::TST_typename) { 4787 RecordDecl *Record = nullptr; 4788 if (Tag) 4789 Record = dyn_cast<RecordDecl>(Tag); 4790 else if (const RecordType *RT = 4791 DS.getRepAsType().get()->getAsStructureType()) 4792 Record = RT->getDecl(); 4793 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 4794 Record = UT->getDecl(); 4795 4796 if (Record && getLangOpts().MicrosoftExt) { 4797 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) 4798 << Record->isUnion() << DS.getSourceRange(); 4799 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 4800 } 4801 4802 DeclaresAnything = false; 4803 } 4804 } 4805 4806 // Skip all the checks below if we have a type error. 4807 if (DS.getTypeSpecType() == DeclSpec::TST_error || 4808 (TagD && TagD->isInvalidDecl())) 4809 return TagD; 4810 4811 if (getLangOpts().CPlusPlus && 4812 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 4813 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 4814 if (Enum->enumerator_begin() == Enum->enumerator_end() && 4815 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 4816 DeclaresAnything = false; 4817 4818 if (!DS.isMissingDeclaratorOk()) { 4819 // Customize diagnostic for a typedef missing a name. 4820 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 4821 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) 4822 << DS.getSourceRange(); 4823 else 4824 DeclaresAnything = false; 4825 } 4826 4827 if (DS.isModulePrivateSpecified() && 4828 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 4829 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 4830 << Tag->getTagKind() 4831 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 4832 4833 ActOnDocumentableDecl(TagD); 4834 4835 // C 6.7/2: 4836 // A declaration [...] shall declare at least a declarator [...], a tag, 4837 // or the members of an enumeration. 4838 // C++ [dcl.dcl]p3: 4839 // [If there are no declarators], and except for the declaration of an 4840 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4841 // names into the program, or shall redeclare a name introduced by a 4842 // previous declaration. 4843 if (!DeclaresAnything) { 4844 // In C, we allow this as a (popular) extension / bug. Don't bother 4845 // producing further diagnostics for redundant qualifiers after this. 4846 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) 4847 ? diag::err_no_declarators 4848 : diag::ext_no_declarators) 4849 << DS.getSourceRange(); 4850 return TagD; 4851 } 4852 4853 // C++ [dcl.stc]p1: 4854 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 4855 // init-declarator-list of the declaration shall not be empty. 4856 // C++ [dcl.fct.spec]p1: 4857 // If a cv-qualifier appears in a decl-specifier-seq, the 4858 // init-declarator-list of the declaration shall not be empty. 4859 // 4860 // Spurious qualifiers here appear to be valid in C. 4861 unsigned DiagID = diag::warn_standalone_specifier; 4862 if (getLangOpts().CPlusPlus) 4863 DiagID = diag::ext_standalone_specifier; 4864 4865 // Note that a linkage-specification sets a storage class, but 4866 // 'extern "C" struct foo;' is actually valid and not theoretically 4867 // useless. 4868 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 4869 if (SCS == DeclSpec::SCS_mutable) 4870 // Since mutable is not a viable storage class specifier in C, there is 4871 // no reason to treat it as an extension. Instead, diagnose as an error. 4872 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 4873 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 4874 Diag(DS.getStorageClassSpecLoc(), DiagID) 4875 << DeclSpec::getSpecifierName(SCS); 4876 } 4877 4878 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 4879 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 4880 << DeclSpec::getSpecifierName(TSCS); 4881 if (DS.getTypeQualifiers()) { 4882 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4883 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 4884 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4885 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 4886 // Restrict is covered above. 4887 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4888 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 4889 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4890 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; 4891 } 4892 4893 // Warn about ignored type attributes, for example: 4894 // __attribute__((aligned)) struct A; 4895 // Attributes should be placed after tag to apply to type declaration. 4896 if (!DS.getAttributes().empty()) { 4897 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 4898 if (TypeSpecType == DeclSpec::TST_class || 4899 TypeSpecType == DeclSpec::TST_struct || 4900 TypeSpecType == DeclSpec::TST_interface || 4901 TypeSpecType == DeclSpec::TST_union || 4902 TypeSpecType == DeclSpec::TST_enum) { 4903 for (const ParsedAttr &AL : DS.getAttributes()) 4904 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) 4905 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); 4906 } 4907 } 4908 4909 return TagD; 4910 } 4911 4912 /// We are trying to inject an anonymous member into the given scope; 4913 /// check if there's an existing declaration that can't be overloaded. 4914 /// 4915 /// \return true if this is a forbidden redeclaration 4916 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 4917 Scope *S, 4918 DeclContext *Owner, 4919 DeclarationName Name, 4920 SourceLocation NameLoc, 4921 bool IsUnion) { 4922 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 4923 Sema::ForVisibleRedeclaration); 4924 if (!SemaRef.LookupName(R, S)) return false; 4925 4926 // Pick a representative declaration. 4927 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 4928 assert(PrevDecl && "Expected a non-null Decl"); 4929 4930 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 4931 return false; 4932 4933 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) 4934 << IsUnion << Name; 4935 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 4936 4937 return true; 4938 } 4939 4940 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 4941 /// anonymous struct or union AnonRecord into the owning context Owner 4942 /// and scope S. This routine will be invoked just after we realize 4943 /// that an unnamed union or struct is actually an anonymous union or 4944 /// struct, e.g., 4945 /// 4946 /// @code 4947 /// union { 4948 /// int i; 4949 /// float f; 4950 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 4951 /// // f into the surrounding scope.x 4952 /// @endcode 4953 /// 4954 /// This routine is recursive, injecting the names of nested anonymous 4955 /// structs/unions into the owning context and scope as well. 4956 static bool 4957 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, 4958 RecordDecl *AnonRecord, AccessSpecifier AS, 4959 SmallVectorImpl<NamedDecl *> &Chaining) { 4960 bool Invalid = false; 4961 4962 // Look every FieldDecl and IndirectFieldDecl with a name. 4963 for (auto *D : AnonRecord->decls()) { 4964 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 4965 cast<NamedDecl>(D)->getDeclName()) { 4966 ValueDecl *VD = cast<ValueDecl>(D); 4967 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 4968 VD->getLocation(), 4969 AnonRecord->isUnion())) { 4970 // C++ [class.union]p2: 4971 // The names of the members of an anonymous union shall be 4972 // distinct from the names of any other entity in the 4973 // scope in which the anonymous union is declared. 4974 Invalid = true; 4975 } else { 4976 // C++ [class.union]p2: 4977 // For the purpose of name lookup, after the anonymous union 4978 // definition, the members of the anonymous union are 4979 // considered to have been defined in the scope in which the 4980 // anonymous union is declared. 4981 unsigned OldChainingSize = Chaining.size(); 4982 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 4983 Chaining.append(IF->chain_begin(), IF->chain_end()); 4984 else 4985 Chaining.push_back(VD); 4986 4987 assert(Chaining.size() >= 2); 4988 NamedDecl **NamedChain = 4989 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 4990 for (unsigned i = 0; i < Chaining.size(); i++) 4991 NamedChain[i] = Chaining[i]; 4992 4993 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 4994 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 4995 VD->getType(), {NamedChain, Chaining.size()}); 4996 4997 for (const auto *Attr : VD->attrs()) 4998 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 4999 5000 IndirectField->setAccess(AS); 5001 IndirectField->setImplicit(); 5002 SemaRef.PushOnScopeChains(IndirectField, S); 5003 5004 // That includes picking up the appropriate access specifier. 5005 if (AS != AS_none) IndirectField->setAccess(AS); 5006 5007 Chaining.resize(OldChainingSize); 5008 } 5009 } 5010 } 5011 5012 return Invalid; 5013 } 5014 5015 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 5016 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 5017 /// illegal input values are mapped to SC_None. 5018 static StorageClass 5019 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 5020 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 5021 assert(StorageClassSpec != DeclSpec::SCS_typedef && 5022 "Parser allowed 'typedef' as storage class VarDecl."); 5023 switch (StorageClassSpec) { 5024 case DeclSpec::SCS_unspecified: return SC_None; 5025 case DeclSpec::SCS_extern: 5026 if (DS.isExternInLinkageSpec()) 5027 return SC_None; 5028 return SC_Extern; 5029 case DeclSpec::SCS_static: return SC_Static; 5030 case DeclSpec::SCS_auto: return SC_Auto; 5031 case DeclSpec::SCS_register: return SC_Register; 5032 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 5033 // Illegal SCSs map to None: error reporting is up to the caller. 5034 case DeclSpec::SCS_mutable: // Fall through. 5035 case DeclSpec::SCS_typedef: return SC_None; 5036 } 5037 llvm_unreachable("unknown storage class specifier"); 5038 } 5039 5040 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 5041 assert(Record->hasInClassInitializer()); 5042 5043 for (const auto *I : Record->decls()) { 5044 const auto *FD = dyn_cast<FieldDecl>(I); 5045 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 5046 FD = IFD->getAnonField(); 5047 if (FD && FD->hasInClassInitializer()) 5048 return FD->getLocation(); 5049 } 5050 5051 llvm_unreachable("couldn't find in-class initializer"); 5052 } 5053 5054 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 5055 SourceLocation DefaultInitLoc) { 5056 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 5057 return; 5058 5059 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 5060 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 5061 } 5062 5063 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 5064 CXXRecordDecl *AnonUnion) { 5065 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 5066 return; 5067 5068 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 5069 } 5070 5071 /// BuildAnonymousStructOrUnion - Handle the declaration of an 5072 /// anonymous structure or union. Anonymous unions are a C++ feature 5073 /// (C++ [class.union]) and a C11 feature; anonymous structures 5074 /// are a C11 feature and GNU C++ extension. 5075 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 5076 AccessSpecifier AS, 5077 RecordDecl *Record, 5078 const PrintingPolicy &Policy) { 5079 DeclContext *Owner = Record->getDeclContext(); 5080 5081 // Diagnose whether this anonymous struct/union is an extension. 5082 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 5083 Diag(Record->getLocation(), diag::ext_anonymous_union); 5084 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 5085 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 5086 else if (!Record->isUnion() && !getLangOpts().C11) 5087 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 5088 5089 // C and C++ require different kinds of checks for anonymous 5090 // structs/unions. 5091 bool Invalid = false; 5092 if (getLangOpts().CPlusPlus) { 5093 const char *PrevSpec = nullptr; 5094 if (Record->isUnion()) { 5095 // C++ [class.union]p6: 5096 // C++17 [class.union.anon]p2: 5097 // Anonymous unions declared in a named namespace or in the 5098 // global namespace shall be declared static. 5099 unsigned DiagID; 5100 DeclContext *OwnerScope = Owner->getRedeclContext(); 5101 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 5102 (OwnerScope->isTranslationUnit() || 5103 (OwnerScope->isNamespace() && 5104 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { 5105 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 5106 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 5107 5108 // Recover by adding 'static'. 5109 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 5110 PrevSpec, DiagID, Policy); 5111 } 5112 // C++ [class.union]p6: 5113 // A storage class is not allowed in a declaration of an 5114 // anonymous union in a class scope. 5115 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 5116 isa<RecordDecl>(Owner)) { 5117 Diag(DS.getStorageClassSpecLoc(), 5118 diag::err_anonymous_union_with_storage_spec) 5119 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 5120 5121 // Recover by removing the storage specifier. 5122 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 5123 SourceLocation(), 5124 PrevSpec, DiagID, Context.getPrintingPolicy()); 5125 } 5126 } 5127 5128 // Ignore const/volatile/restrict qualifiers. 5129 if (DS.getTypeQualifiers()) { 5130 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5131 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 5132 << Record->isUnion() << "const" 5133 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 5134 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5135 Diag(DS.getVolatileSpecLoc(), 5136 diag::ext_anonymous_struct_union_qualified) 5137 << Record->isUnion() << "volatile" 5138 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 5139 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 5140 Diag(DS.getRestrictSpecLoc(), 5141 diag::ext_anonymous_struct_union_qualified) 5142 << Record->isUnion() << "restrict" 5143 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 5144 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5145 Diag(DS.getAtomicSpecLoc(), 5146 diag::ext_anonymous_struct_union_qualified) 5147 << Record->isUnion() << "_Atomic" 5148 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 5149 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 5150 Diag(DS.getUnalignedSpecLoc(), 5151 diag::ext_anonymous_struct_union_qualified) 5152 << Record->isUnion() << "__unaligned" 5153 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); 5154 5155 DS.ClearTypeQualifiers(); 5156 } 5157 5158 // C++ [class.union]p2: 5159 // The member-specification of an anonymous union shall only 5160 // define non-static data members. [Note: nested types and 5161 // functions cannot be declared within an anonymous union. ] 5162 for (auto *Mem : Record->decls()) { 5163 // Ignore invalid declarations; we already diagnosed them. 5164 if (Mem->isInvalidDecl()) 5165 continue; 5166 5167 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 5168 // C++ [class.union]p3: 5169 // An anonymous union shall not have private or protected 5170 // members (clause 11). 5171 assert(FD->getAccess() != AS_none); 5172 if (FD->getAccess() != AS_public) { 5173 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 5174 << Record->isUnion() << (FD->getAccess() == AS_protected); 5175 Invalid = true; 5176 } 5177 5178 // C++ [class.union]p1 5179 // An object of a class with a non-trivial constructor, a non-trivial 5180 // copy constructor, a non-trivial destructor, or a non-trivial copy 5181 // assignment operator cannot be a member of a union, nor can an 5182 // array of such objects. 5183 if (CheckNontrivialField(FD)) 5184 Invalid = true; 5185 } else if (Mem->isImplicit()) { 5186 // Any implicit members are fine. 5187 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 5188 // This is a type that showed up in an 5189 // elaborated-type-specifier inside the anonymous struct or 5190 // union, but which actually declares a type outside of the 5191 // anonymous struct or union. It's okay. 5192 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 5193 if (!MemRecord->isAnonymousStructOrUnion() && 5194 MemRecord->getDeclName()) { 5195 // Visual C++ allows type definition in anonymous struct or union. 5196 if (getLangOpts().MicrosoftExt) 5197 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 5198 << Record->isUnion(); 5199 else { 5200 // This is a nested type declaration. 5201 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 5202 << Record->isUnion(); 5203 Invalid = true; 5204 } 5205 } else { 5206 // This is an anonymous type definition within another anonymous type. 5207 // This is a popular extension, provided by Plan9, MSVC and GCC, but 5208 // not part of standard C++. 5209 Diag(MemRecord->getLocation(), 5210 diag::ext_anonymous_record_with_anonymous_type) 5211 << Record->isUnion(); 5212 } 5213 } else if (isa<AccessSpecDecl>(Mem)) { 5214 // Any access specifier is fine. 5215 } else if (isa<StaticAssertDecl>(Mem)) { 5216 // In C++1z, static_assert declarations are also fine. 5217 } else { 5218 // We have something that isn't a non-static data 5219 // member. Complain about it. 5220 unsigned DK = diag::err_anonymous_record_bad_member; 5221 if (isa<TypeDecl>(Mem)) 5222 DK = diag::err_anonymous_record_with_type; 5223 else if (isa<FunctionDecl>(Mem)) 5224 DK = diag::err_anonymous_record_with_function; 5225 else if (isa<VarDecl>(Mem)) 5226 DK = diag::err_anonymous_record_with_static; 5227 5228 // Visual C++ allows type definition in anonymous struct or union. 5229 if (getLangOpts().MicrosoftExt && 5230 DK == diag::err_anonymous_record_with_type) 5231 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 5232 << Record->isUnion(); 5233 else { 5234 Diag(Mem->getLocation(), DK) << Record->isUnion(); 5235 Invalid = true; 5236 } 5237 } 5238 } 5239 5240 // C++11 [class.union]p8 (DR1460): 5241 // At most one variant member of a union may have a 5242 // brace-or-equal-initializer. 5243 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 5244 Owner->isRecord()) 5245 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 5246 cast<CXXRecordDecl>(Record)); 5247 } 5248 5249 if (!Record->isUnion() && !Owner->isRecord()) { 5250 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 5251 << getLangOpts().CPlusPlus; 5252 Invalid = true; 5253 } 5254 5255 // C++ [dcl.dcl]p3: 5256 // [If there are no declarators], and except for the declaration of an 5257 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 5258 // names into the program 5259 // C++ [class.mem]p2: 5260 // each such member-declaration shall either declare at least one member 5261 // name of the class or declare at least one unnamed bit-field 5262 // 5263 // For C this is an error even for a named struct, and is diagnosed elsewhere. 5264 if (getLangOpts().CPlusPlus && Record->field_empty()) 5265 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 5266 5267 // Mock up a declarator. 5268 Declarator Dc(DS, DeclaratorContext::Member); 5269 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5270 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 5271 5272 // Create a declaration for this anonymous struct/union. 5273 NamedDecl *Anon = nullptr; 5274 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 5275 Anon = FieldDecl::Create( 5276 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), 5277 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, 5278 /*BitWidth=*/nullptr, /*Mutable=*/false, 5279 /*InitStyle=*/ICIS_NoInit); 5280 Anon->setAccess(AS); 5281 ProcessDeclAttributes(S, Anon, Dc); 5282 5283 if (getLangOpts().CPlusPlus) 5284 FieldCollector->Add(cast<FieldDecl>(Anon)); 5285 } else { 5286 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 5287 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 5288 if (SCSpec == DeclSpec::SCS_mutable) { 5289 // mutable can only appear on non-static class members, so it's always 5290 // an error here 5291 Diag(Record->getLocation(), diag::err_mutable_nonmember); 5292 Invalid = true; 5293 SC = SC_None; 5294 } 5295 5296 assert(DS.getAttributes().empty() && "No attribute expected"); 5297 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), 5298 Record->getLocation(), /*IdentifierInfo=*/nullptr, 5299 Context.getTypeDeclType(Record), TInfo, SC); 5300 5301 // Default-initialize the implicit variable. This initialization will be 5302 // trivial in almost all cases, except if a union member has an in-class 5303 // initializer: 5304 // union { int n = 0; }; 5305 ActOnUninitializedDecl(Anon); 5306 } 5307 Anon->setImplicit(); 5308 5309 // Mark this as an anonymous struct/union type. 5310 Record->setAnonymousStructOrUnion(true); 5311 5312 // Add the anonymous struct/union object to the current 5313 // context. We'll be referencing this object when we refer to one of 5314 // its members. 5315 Owner->addDecl(Anon); 5316 5317 // Inject the members of the anonymous struct/union into the owning 5318 // context and into the identifier resolver chain for name lookup 5319 // purposes. 5320 SmallVector<NamedDecl*, 2> Chain; 5321 Chain.push_back(Anon); 5322 5323 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) 5324 Invalid = true; 5325 5326 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 5327 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5328 MangleNumberingContext *MCtx; 5329 Decl *ManglingContextDecl; 5330 std::tie(MCtx, ManglingContextDecl) = 5331 getCurrentMangleNumberContext(NewVD->getDeclContext()); 5332 if (MCtx) { 5333 Context.setManglingNumber( 5334 NewVD, MCtx->getManglingNumber( 5335 NewVD, getMSManglingNumber(getLangOpts(), S))); 5336 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5337 } 5338 } 5339 } 5340 5341 if (Invalid) 5342 Anon->setInvalidDecl(); 5343 5344 return Anon; 5345 } 5346 5347 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 5348 /// Microsoft C anonymous structure. 5349 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 5350 /// Example: 5351 /// 5352 /// struct A { int a; }; 5353 /// struct B { struct A; int b; }; 5354 /// 5355 /// void foo() { 5356 /// B var; 5357 /// var.a = 3; 5358 /// } 5359 /// 5360 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 5361 RecordDecl *Record) { 5362 assert(Record && "expected a record!"); 5363 5364 // Mock up a declarator. 5365 Declarator Dc(DS, DeclaratorContext::TypeName); 5366 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5367 assert(TInfo && "couldn't build declarator info for anonymous struct"); 5368 5369 auto *ParentDecl = cast<RecordDecl>(CurContext); 5370 QualType RecTy = Context.getTypeDeclType(Record); 5371 5372 // Create a declaration for this anonymous struct. 5373 NamedDecl *Anon = 5374 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), 5375 /*IdentifierInfo=*/nullptr, RecTy, TInfo, 5376 /*BitWidth=*/nullptr, /*Mutable=*/false, 5377 /*InitStyle=*/ICIS_NoInit); 5378 Anon->setImplicit(); 5379 5380 // Add the anonymous struct object to the current context. 5381 CurContext->addDecl(Anon); 5382 5383 // Inject the members of the anonymous struct into the current 5384 // context and into the identifier resolver chain for name lookup 5385 // purposes. 5386 SmallVector<NamedDecl*, 2> Chain; 5387 Chain.push_back(Anon); 5388 5389 RecordDecl *RecordDef = Record->getDefinition(); 5390 if (RequireCompleteSizedType(Anon->getLocation(), RecTy, 5391 diag::err_field_incomplete_or_sizeless) || 5392 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 5393 AS_none, Chain)) { 5394 Anon->setInvalidDecl(); 5395 ParentDecl->setInvalidDecl(); 5396 } 5397 5398 return Anon; 5399 } 5400 5401 /// GetNameForDeclarator - Determine the full declaration name for the 5402 /// given Declarator. 5403 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 5404 return GetNameFromUnqualifiedId(D.getName()); 5405 } 5406 5407 /// Retrieves the declaration name from a parsed unqualified-id. 5408 DeclarationNameInfo 5409 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 5410 DeclarationNameInfo NameInfo; 5411 NameInfo.setLoc(Name.StartLocation); 5412 5413 switch (Name.getKind()) { 5414 5415 case UnqualifiedIdKind::IK_ImplicitSelfParam: 5416 case UnqualifiedIdKind::IK_Identifier: 5417 NameInfo.setName(Name.Identifier); 5418 return NameInfo; 5419 5420 case UnqualifiedIdKind::IK_DeductionGuideName: { 5421 // C++ [temp.deduct.guide]p3: 5422 // The simple-template-id shall name a class template specialization. 5423 // The template-name shall be the same identifier as the template-name 5424 // of the simple-template-id. 5425 // These together intend to imply that the template-name shall name a 5426 // class template. 5427 // FIXME: template<typename T> struct X {}; 5428 // template<typename T> using Y = X<T>; 5429 // Y(int) -> Y<int>; 5430 // satisfies these rules but does not name a class template. 5431 TemplateName TN = Name.TemplateName.get().get(); 5432 auto *Template = TN.getAsTemplateDecl(); 5433 if (!Template || !isa<ClassTemplateDecl>(Template)) { 5434 Diag(Name.StartLocation, 5435 diag::err_deduction_guide_name_not_class_template) 5436 << (int)getTemplateNameKindForDiagnostics(TN) << TN; 5437 if (Template) 5438 Diag(Template->getLocation(), diag::note_template_decl_here); 5439 return DeclarationNameInfo(); 5440 } 5441 5442 NameInfo.setName( 5443 Context.DeclarationNames.getCXXDeductionGuideName(Template)); 5444 return NameInfo; 5445 } 5446 5447 case UnqualifiedIdKind::IK_OperatorFunctionId: 5448 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 5449 Name.OperatorFunctionId.Operator)); 5450 NameInfo.setCXXOperatorNameRange(SourceRange( 5451 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); 5452 return NameInfo; 5453 5454 case UnqualifiedIdKind::IK_LiteralOperatorId: 5455 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 5456 Name.Identifier)); 5457 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 5458 return NameInfo; 5459 5460 case UnqualifiedIdKind::IK_ConversionFunctionId: { 5461 TypeSourceInfo *TInfo; 5462 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 5463 if (Ty.isNull()) 5464 return DeclarationNameInfo(); 5465 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 5466 Context.getCanonicalType(Ty))); 5467 NameInfo.setNamedTypeInfo(TInfo); 5468 return NameInfo; 5469 } 5470 5471 case UnqualifiedIdKind::IK_ConstructorName: { 5472 TypeSourceInfo *TInfo; 5473 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 5474 if (Ty.isNull()) 5475 return DeclarationNameInfo(); 5476 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5477 Context.getCanonicalType(Ty))); 5478 NameInfo.setNamedTypeInfo(TInfo); 5479 return NameInfo; 5480 } 5481 5482 case UnqualifiedIdKind::IK_ConstructorTemplateId: { 5483 // In well-formed code, we can only have a constructor 5484 // template-id that refers to the current context, so go there 5485 // to find the actual type being constructed. 5486 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 5487 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 5488 return DeclarationNameInfo(); 5489 5490 // Determine the type of the class being constructed. 5491 QualType CurClassType = Context.getTypeDeclType(CurClass); 5492 5493 // FIXME: Check two things: that the template-id names the same type as 5494 // CurClassType, and that the template-id does not occur when the name 5495 // was qualified. 5496 5497 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5498 Context.getCanonicalType(CurClassType))); 5499 // FIXME: should we retrieve TypeSourceInfo? 5500 NameInfo.setNamedTypeInfo(nullptr); 5501 return NameInfo; 5502 } 5503 5504 case UnqualifiedIdKind::IK_DestructorName: { 5505 TypeSourceInfo *TInfo; 5506 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 5507 if (Ty.isNull()) 5508 return DeclarationNameInfo(); 5509 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 5510 Context.getCanonicalType(Ty))); 5511 NameInfo.setNamedTypeInfo(TInfo); 5512 return NameInfo; 5513 } 5514 5515 case UnqualifiedIdKind::IK_TemplateId: { 5516 TemplateName TName = Name.TemplateId->Template.get(); 5517 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 5518 return Context.getNameForTemplate(TName, TNameLoc); 5519 } 5520 5521 } // switch (Name.getKind()) 5522 5523 llvm_unreachable("Unknown name kind"); 5524 } 5525 5526 static QualType getCoreType(QualType Ty) { 5527 do { 5528 if (Ty->isPointerType() || Ty->isReferenceType()) 5529 Ty = Ty->getPointeeType(); 5530 else if (Ty->isArrayType()) 5531 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 5532 else 5533 return Ty.withoutLocalFastQualifiers(); 5534 } while (true); 5535 } 5536 5537 /// hasSimilarParameters - Determine whether the C++ functions Declaration 5538 /// and Definition have "nearly" matching parameters. This heuristic is 5539 /// used to improve diagnostics in the case where an out-of-line function 5540 /// definition doesn't match any declaration within the class or namespace. 5541 /// Also sets Params to the list of indices to the parameters that differ 5542 /// between the declaration and the definition. If hasSimilarParameters 5543 /// returns true and Params is empty, then all of the parameters match. 5544 static bool hasSimilarParameters(ASTContext &Context, 5545 FunctionDecl *Declaration, 5546 FunctionDecl *Definition, 5547 SmallVectorImpl<unsigned> &Params) { 5548 Params.clear(); 5549 if (Declaration->param_size() != Definition->param_size()) 5550 return false; 5551 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 5552 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 5553 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 5554 5555 // The parameter types are identical 5556 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) 5557 continue; 5558 5559 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 5560 QualType DefParamBaseTy = getCoreType(DefParamTy); 5561 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 5562 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 5563 5564 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 5565 (DeclTyName && DeclTyName == DefTyName)) 5566 Params.push_back(Idx); 5567 else // The two parameters aren't even close 5568 return false; 5569 } 5570 5571 return true; 5572 } 5573 5574 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 5575 /// declarator needs to be rebuilt in the current instantiation. 5576 /// Any bits of declarator which appear before the name are valid for 5577 /// consideration here. That's specifically the type in the decl spec 5578 /// and the base type in any member-pointer chunks. 5579 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 5580 DeclarationName Name) { 5581 // The types we specifically need to rebuild are: 5582 // - typenames, typeofs, and decltypes 5583 // - types which will become injected class names 5584 // Of course, we also need to rebuild any type referencing such a 5585 // type. It's safest to just say "dependent", but we call out a 5586 // few cases here. 5587 5588 DeclSpec &DS = D.getMutableDeclSpec(); 5589 switch (DS.getTypeSpecType()) { 5590 case DeclSpec::TST_typename: 5591 case DeclSpec::TST_typeofType: 5592 case DeclSpec::TST_underlyingType: 5593 case DeclSpec::TST_atomic: { 5594 // Grab the type from the parser. 5595 TypeSourceInfo *TSI = nullptr; 5596 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 5597 if (T.isNull() || !T->isInstantiationDependentType()) break; 5598 5599 // Make sure there's a type source info. This isn't really much 5600 // of a waste; most dependent types should have type source info 5601 // attached already. 5602 if (!TSI) 5603 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 5604 5605 // Rebuild the type in the current instantiation. 5606 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 5607 if (!TSI) return true; 5608 5609 // Store the new type back in the decl spec. 5610 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 5611 DS.UpdateTypeRep(LocType); 5612 break; 5613 } 5614 5615 case DeclSpec::TST_decltype: 5616 case DeclSpec::TST_typeofExpr: { 5617 Expr *E = DS.getRepAsExpr(); 5618 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 5619 if (Result.isInvalid()) return true; 5620 DS.UpdateExprRep(Result.get()); 5621 break; 5622 } 5623 5624 default: 5625 // Nothing to do for these decl specs. 5626 break; 5627 } 5628 5629 // It doesn't matter what order we do this in. 5630 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 5631 DeclaratorChunk &Chunk = D.getTypeObject(I); 5632 5633 // The only type information in the declarator which can come 5634 // before the declaration name is the base type of a member 5635 // pointer. 5636 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 5637 continue; 5638 5639 // Rebuild the scope specifier in-place. 5640 CXXScopeSpec &SS = Chunk.Mem.Scope(); 5641 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 5642 return true; 5643 } 5644 5645 return false; 5646 } 5647 5648 void Sema::warnOnReservedIdentifier(const NamedDecl *D) { 5649 // Avoid warning twice on the same identifier, and don't warn on redeclaration 5650 // of system decl. 5651 if (D->getPreviousDecl() || D->isImplicit()) 5652 return; 5653 ReservedIdentifierStatus Status = D->isReserved(getLangOpts()); 5654 if (Status != ReservedIdentifierStatus::NotReserved && 5655 !Context.getSourceManager().isInSystemHeader(D->getLocation())) 5656 Diag(D->getLocation(), diag::warn_reserved_extern_symbol) 5657 << D << static_cast<int>(Status); 5658 } 5659 5660 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 5661 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); 5662 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 5663 5664 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 5665 Dcl && Dcl->getDeclContext()->isFileContext()) 5666 Dcl->setTopLevelDeclInObjCContainer(); 5667 5668 return Dcl; 5669 } 5670 5671 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 5672 /// If T is the name of a class, then each of the following shall have a 5673 /// name different from T: 5674 /// - every static data member of class T; 5675 /// - every member function of class T 5676 /// - every member of class T that is itself a type; 5677 /// \returns true if the declaration name violates these rules. 5678 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 5679 DeclarationNameInfo NameInfo) { 5680 DeclarationName Name = NameInfo.getName(); 5681 5682 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); 5683 while (Record && Record->isAnonymousStructOrUnion()) 5684 Record = dyn_cast<CXXRecordDecl>(Record->getParent()); 5685 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { 5686 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 5687 return true; 5688 } 5689 5690 return false; 5691 } 5692 5693 /// Diagnose a declaration whose declarator-id has the given 5694 /// nested-name-specifier. 5695 /// 5696 /// \param SS The nested-name-specifier of the declarator-id. 5697 /// 5698 /// \param DC The declaration context to which the nested-name-specifier 5699 /// resolves. 5700 /// 5701 /// \param Name The name of the entity being declared. 5702 /// 5703 /// \param Loc The location of the name of the entity being declared. 5704 /// 5705 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus 5706 /// we're declaring an explicit / partial specialization / instantiation. 5707 /// 5708 /// \returns true if we cannot safely recover from this error, false otherwise. 5709 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 5710 DeclarationName Name, 5711 SourceLocation Loc, bool IsTemplateId) { 5712 DeclContext *Cur = CurContext; 5713 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 5714 Cur = Cur->getParent(); 5715 5716 // If the user provided a superfluous scope specifier that refers back to the 5717 // class in which the entity is already declared, diagnose and ignore it. 5718 // 5719 // class X { 5720 // void X::f(); 5721 // }; 5722 // 5723 // Note, it was once ill-formed to give redundant qualification in all 5724 // contexts, but that rule was removed by DR482. 5725 if (Cur->Equals(DC)) { 5726 if (Cur->isRecord()) { 5727 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 5728 : diag::err_member_extra_qualification) 5729 << Name << FixItHint::CreateRemoval(SS.getRange()); 5730 SS.clear(); 5731 } else { 5732 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 5733 } 5734 return false; 5735 } 5736 5737 // Check whether the qualifying scope encloses the scope of the original 5738 // declaration. For a template-id, we perform the checks in 5739 // CheckTemplateSpecializationScope. 5740 if (!Cur->Encloses(DC) && !IsTemplateId) { 5741 if (Cur->isRecord()) 5742 Diag(Loc, diag::err_member_qualification) 5743 << Name << SS.getRange(); 5744 else if (isa<TranslationUnitDecl>(DC)) 5745 Diag(Loc, diag::err_invalid_declarator_global_scope) 5746 << Name << SS.getRange(); 5747 else if (isa<FunctionDecl>(Cur)) 5748 Diag(Loc, diag::err_invalid_declarator_in_function) 5749 << Name << SS.getRange(); 5750 else if (isa<BlockDecl>(Cur)) 5751 Diag(Loc, diag::err_invalid_declarator_in_block) 5752 << Name << SS.getRange(); 5753 else 5754 Diag(Loc, diag::err_invalid_declarator_scope) 5755 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 5756 5757 return true; 5758 } 5759 5760 if (Cur->isRecord()) { 5761 // Cannot qualify members within a class. 5762 Diag(Loc, diag::err_member_qualification) 5763 << Name << SS.getRange(); 5764 SS.clear(); 5765 5766 // C++ constructors and destructors with incorrect scopes can break 5767 // our AST invariants by having the wrong underlying types. If 5768 // that's the case, then drop this declaration entirely. 5769 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 5770 Name.getNameKind() == DeclarationName::CXXDestructorName) && 5771 !Context.hasSameType(Name.getCXXNameType(), 5772 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 5773 return true; 5774 5775 return false; 5776 } 5777 5778 // C++11 [dcl.meaning]p1: 5779 // [...] "The nested-name-specifier of the qualified declarator-id shall 5780 // not begin with a decltype-specifer" 5781 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 5782 while (SpecLoc.getPrefix()) 5783 SpecLoc = SpecLoc.getPrefix(); 5784 if (isa_and_nonnull<DecltypeType>( 5785 SpecLoc.getNestedNameSpecifier()->getAsType())) 5786 Diag(Loc, diag::err_decltype_in_declarator) 5787 << SpecLoc.getTypeLoc().getSourceRange(); 5788 5789 return false; 5790 } 5791 5792 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 5793 MultiTemplateParamsArg TemplateParamLists) { 5794 // TODO: consider using NameInfo for diagnostic. 5795 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5796 DeclarationName Name = NameInfo.getName(); 5797 5798 // All of these full declarators require an identifier. If it doesn't have 5799 // one, the ParsedFreeStandingDeclSpec action should be used. 5800 if (D.isDecompositionDeclarator()) { 5801 return ActOnDecompositionDeclarator(S, D, TemplateParamLists); 5802 } else if (!Name) { 5803 if (!D.isInvalidType()) // Reject this if we think it is valid. 5804 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) 5805 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 5806 return nullptr; 5807 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 5808 return nullptr; 5809 5810 // The scope passed in may not be a decl scope. Zip up the scope tree until 5811 // we find one that is. 5812 while ((S->getFlags() & Scope::DeclScope) == 0 || 5813 (S->getFlags() & Scope::TemplateParamScope) != 0) 5814 S = S->getParent(); 5815 5816 DeclContext *DC = CurContext; 5817 if (D.getCXXScopeSpec().isInvalid()) 5818 D.setInvalidType(); 5819 else if (D.getCXXScopeSpec().isSet()) { 5820 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 5821 UPPC_DeclarationQualifier)) 5822 return nullptr; 5823 5824 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 5825 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 5826 if (!DC || isa<EnumDecl>(DC)) { 5827 // If we could not compute the declaration context, it's because the 5828 // declaration context is dependent but does not refer to a class, 5829 // class template, or class template partial specialization. Complain 5830 // and return early, to avoid the coming semantic disaster. 5831 Diag(D.getIdentifierLoc(), 5832 diag::err_template_qualified_declarator_no_match) 5833 << D.getCXXScopeSpec().getScopeRep() 5834 << D.getCXXScopeSpec().getRange(); 5835 return nullptr; 5836 } 5837 bool IsDependentContext = DC->isDependentContext(); 5838 5839 if (!IsDependentContext && 5840 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 5841 return nullptr; 5842 5843 // If a class is incomplete, do not parse entities inside it. 5844 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 5845 Diag(D.getIdentifierLoc(), 5846 diag::err_member_def_undefined_record) 5847 << Name << DC << D.getCXXScopeSpec().getRange(); 5848 return nullptr; 5849 } 5850 if (!D.getDeclSpec().isFriendSpecified()) { 5851 if (diagnoseQualifiedDeclaration( 5852 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), 5853 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { 5854 if (DC->isRecord()) 5855 return nullptr; 5856 5857 D.setInvalidType(); 5858 } 5859 } 5860 5861 // Check whether we need to rebuild the type of the given 5862 // declaration in the current instantiation. 5863 if (EnteringContext && IsDependentContext && 5864 TemplateParamLists.size() != 0) { 5865 ContextRAII SavedContext(*this, DC); 5866 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 5867 D.setInvalidType(); 5868 } 5869 } 5870 5871 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5872 QualType R = TInfo->getType(); 5873 5874 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 5875 UPPC_DeclarationType)) 5876 D.setInvalidType(); 5877 5878 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 5879 forRedeclarationInCurContext()); 5880 5881 // See if this is a redefinition of a variable in the same scope. 5882 if (!D.getCXXScopeSpec().isSet()) { 5883 bool IsLinkageLookup = false; 5884 bool CreateBuiltins = false; 5885 5886 // If the declaration we're planning to build will be a function 5887 // or object with linkage, then look for another declaration with 5888 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 5889 // 5890 // If the declaration we're planning to build will be declared with 5891 // external linkage in the translation unit, create any builtin with 5892 // the same name. 5893 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 5894 /* Do nothing*/; 5895 else if (CurContext->isFunctionOrMethod() && 5896 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 5897 R->isFunctionType())) { 5898 IsLinkageLookup = true; 5899 CreateBuiltins = 5900 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 5901 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 5902 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 5903 CreateBuiltins = true; 5904 5905 if (IsLinkageLookup) { 5906 Previous.clear(LookupRedeclarationWithLinkage); 5907 Previous.setRedeclarationKind(ForExternalRedeclaration); 5908 } 5909 5910 LookupName(Previous, S, CreateBuiltins); 5911 } else { // Something like "int foo::x;" 5912 LookupQualifiedName(Previous, DC); 5913 5914 // C++ [dcl.meaning]p1: 5915 // When the declarator-id is qualified, the declaration shall refer to a 5916 // previously declared member of the class or namespace to which the 5917 // qualifier refers (or, in the case of a namespace, of an element of the 5918 // inline namespace set of that namespace (7.3.1)) or to a specialization 5919 // thereof; [...] 5920 // 5921 // Note that we already checked the context above, and that we do not have 5922 // enough information to make sure that Previous contains the declaration 5923 // we want to match. For example, given: 5924 // 5925 // class X { 5926 // void f(); 5927 // void f(float); 5928 // }; 5929 // 5930 // void X::f(int) { } // ill-formed 5931 // 5932 // In this case, Previous will point to the overload set 5933 // containing the two f's declared in X, but neither of them 5934 // matches. 5935 5936 // C++ [dcl.meaning]p1: 5937 // [...] the member shall not merely have been introduced by a 5938 // using-declaration in the scope of the class or namespace nominated by 5939 // the nested-name-specifier of the declarator-id. 5940 RemoveUsingDecls(Previous); 5941 } 5942 5943 if (Previous.isSingleResult() && 5944 Previous.getFoundDecl()->isTemplateParameter()) { 5945 // Maybe we will complain about the shadowed template parameter. 5946 if (!D.isInvalidType()) 5947 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 5948 Previous.getFoundDecl()); 5949 5950 // Just pretend that we didn't see the previous declaration. 5951 Previous.clear(); 5952 } 5953 5954 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) 5955 // Forget that the previous declaration is the injected-class-name. 5956 Previous.clear(); 5957 5958 // In C++, the previous declaration we find might be a tag type 5959 // (class or enum). In this case, the new declaration will hide the 5960 // tag type. Note that this applies to functions, function templates, and 5961 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. 5962 if (Previous.isSingleTagDecl() && 5963 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 5964 (TemplateParamLists.size() == 0 || R->isFunctionType())) 5965 Previous.clear(); 5966 5967 // Check that there are no default arguments other than in the parameters 5968 // of a function declaration (C++ only). 5969 if (getLangOpts().CPlusPlus) 5970 CheckExtraCXXDefaultArguments(D); 5971 5972 NamedDecl *New; 5973 5974 bool AddToScope = true; 5975 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5976 if (TemplateParamLists.size()) { 5977 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 5978 return nullptr; 5979 } 5980 5981 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 5982 } else if (R->isFunctionType()) { 5983 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 5984 TemplateParamLists, 5985 AddToScope); 5986 } else { 5987 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 5988 AddToScope); 5989 } 5990 5991 if (!New) 5992 return nullptr; 5993 5994 // If this has an identifier and is not a function template specialization, 5995 // add it to the scope stack. 5996 if (New->getDeclName() && AddToScope) 5997 PushOnScopeChains(New, S); 5998 5999 if (isInOpenMPDeclareTargetContext()) 6000 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 6001 6002 return New; 6003 } 6004 6005 /// Helper method to turn variable array types into constant array 6006 /// types in certain situations which would otherwise be errors (for 6007 /// GCC compatibility). 6008 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 6009 ASTContext &Context, 6010 bool &SizeIsNegative, 6011 llvm::APSInt &Oversized) { 6012 // This method tries to turn a variable array into a constant 6013 // array even when the size isn't an ICE. This is necessary 6014 // for compatibility with code that depends on gcc's buggy 6015 // constant expression folding, like struct {char x[(int)(char*)2];} 6016 SizeIsNegative = false; 6017 Oversized = 0; 6018 6019 if (T->isDependentType()) 6020 return QualType(); 6021 6022 QualifierCollector Qs; 6023 const Type *Ty = Qs.strip(T); 6024 6025 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 6026 QualType Pointee = PTy->getPointeeType(); 6027 QualType FixedType = 6028 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 6029 Oversized); 6030 if (FixedType.isNull()) return FixedType; 6031 FixedType = Context.getPointerType(FixedType); 6032 return Qs.apply(Context, FixedType); 6033 } 6034 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 6035 QualType Inner = PTy->getInnerType(); 6036 QualType FixedType = 6037 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 6038 Oversized); 6039 if (FixedType.isNull()) return FixedType; 6040 FixedType = Context.getParenType(FixedType); 6041 return Qs.apply(Context, FixedType); 6042 } 6043 6044 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 6045 if (!VLATy) 6046 return QualType(); 6047 6048 QualType ElemTy = VLATy->getElementType(); 6049 if (ElemTy->isVariablyModifiedType()) { 6050 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context, 6051 SizeIsNegative, Oversized); 6052 if (ElemTy.isNull()) 6053 return QualType(); 6054 } 6055 6056 Expr::EvalResult Result; 6057 if (!VLATy->getSizeExpr() || 6058 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) 6059 return QualType(); 6060 6061 llvm::APSInt Res = Result.Val.getInt(); 6062 6063 // Check whether the array size is negative. 6064 if (Res.isSigned() && Res.isNegative()) { 6065 SizeIsNegative = true; 6066 return QualType(); 6067 } 6068 6069 // Check whether the array is too large to be addressed. 6070 unsigned ActiveSizeBits = 6071 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && 6072 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) 6073 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res) 6074 : Res.getActiveBits(); 6075 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 6076 Oversized = Res; 6077 return QualType(); 6078 } 6079 6080 QualType FoldedArrayType = Context.getConstantArrayType( 6081 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0); 6082 return Qs.apply(Context, FoldedArrayType); 6083 } 6084 6085 static void 6086 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 6087 SrcTL = SrcTL.getUnqualifiedLoc(); 6088 DstTL = DstTL.getUnqualifiedLoc(); 6089 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 6090 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 6091 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 6092 DstPTL.getPointeeLoc()); 6093 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 6094 return; 6095 } 6096 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 6097 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 6098 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 6099 DstPTL.getInnerLoc()); 6100 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 6101 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 6102 return; 6103 } 6104 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 6105 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 6106 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 6107 TypeLoc DstElemTL = DstATL.getElementLoc(); 6108 if (VariableArrayTypeLoc SrcElemATL = 6109 SrcElemTL.getAs<VariableArrayTypeLoc>()) { 6110 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); 6111 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); 6112 } else { 6113 DstElemTL.initializeFullCopy(SrcElemTL); 6114 } 6115 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 6116 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 6117 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 6118 } 6119 6120 /// Helper method to turn variable array types into constant array 6121 /// types in certain situations which would otherwise be errors (for 6122 /// GCC compatibility). 6123 static TypeSourceInfo* 6124 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 6125 ASTContext &Context, 6126 bool &SizeIsNegative, 6127 llvm::APSInt &Oversized) { 6128 QualType FixedTy 6129 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 6130 SizeIsNegative, Oversized); 6131 if (FixedTy.isNull()) 6132 return nullptr; 6133 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 6134 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 6135 FixedTInfo->getTypeLoc()); 6136 return FixedTInfo; 6137 } 6138 6139 /// Attempt to fold a variable-sized type to a constant-sized type, returning 6140 /// true if we were successful. 6141 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, 6142 QualType &T, SourceLocation Loc, 6143 unsigned FailedFoldDiagID) { 6144 bool SizeIsNegative; 6145 llvm::APSInt Oversized; 6146 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 6147 TInfo, Context, SizeIsNegative, Oversized); 6148 if (FixedTInfo) { 6149 Diag(Loc, diag::ext_vla_folded_to_constant); 6150 TInfo = FixedTInfo; 6151 T = FixedTInfo->getType(); 6152 return true; 6153 } 6154 6155 if (SizeIsNegative) 6156 Diag(Loc, diag::err_typecheck_negative_array_size); 6157 else if (Oversized.getBoolValue()) 6158 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10); 6159 else if (FailedFoldDiagID) 6160 Diag(Loc, FailedFoldDiagID); 6161 return false; 6162 } 6163 6164 /// Register the given locally-scoped extern "C" declaration so 6165 /// that it can be found later for redeclarations. We include any extern "C" 6166 /// declaration that is not visible in the translation unit here, not just 6167 /// function-scope declarations. 6168 void 6169 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 6170 if (!getLangOpts().CPlusPlus && 6171 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 6172 // Don't need to track declarations in the TU in C. 6173 return; 6174 6175 // Note that we have a locally-scoped external with this name. 6176 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); 6177 } 6178 6179 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 6180 // FIXME: We can have multiple results via __attribute__((overloadable)). 6181 auto Result = Context.getExternCContextDecl()->lookup(Name); 6182 return Result.empty() ? nullptr : *Result.begin(); 6183 } 6184 6185 /// Diagnose function specifiers on a declaration of an identifier that 6186 /// does not identify a function. 6187 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 6188 // FIXME: We should probably indicate the identifier in question to avoid 6189 // confusion for constructs like "virtual int a(), b;" 6190 if (DS.isVirtualSpecified()) 6191 Diag(DS.getVirtualSpecLoc(), 6192 diag::err_virtual_non_function); 6193 6194 if (DS.hasExplicitSpecifier()) 6195 Diag(DS.getExplicitSpecLoc(), 6196 diag::err_explicit_non_function); 6197 6198 if (DS.isNoreturnSpecified()) 6199 Diag(DS.getNoreturnSpecLoc(), 6200 diag::err_noreturn_non_function); 6201 } 6202 6203 NamedDecl* 6204 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 6205 TypeSourceInfo *TInfo, LookupResult &Previous) { 6206 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 6207 if (D.getCXXScopeSpec().isSet()) { 6208 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 6209 << D.getCXXScopeSpec().getRange(); 6210 D.setInvalidType(); 6211 // Pretend we didn't see the scope specifier. 6212 DC = CurContext; 6213 Previous.clear(); 6214 } 6215 6216 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6217 6218 if (D.getDeclSpec().isInlineSpecified()) 6219 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 6220 << getLangOpts().CPlusPlus17; 6221 if (D.getDeclSpec().hasConstexprSpecifier()) 6222 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 6223 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 6224 6225 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { 6226 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) 6227 Diag(D.getName().StartLocation, 6228 diag::err_deduction_guide_invalid_specifier) 6229 << "typedef"; 6230 else 6231 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 6232 << D.getName().getSourceRange(); 6233 return nullptr; 6234 } 6235 6236 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 6237 if (!NewTD) return nullptr; 6238 6239 // Handle attributes prior to checking for duplicates in MergeVarDecl 6240 ProcessDeclAttributes(S, NewTD, D); 6241 6242 CheckTypedefForVariablyModifiedType(S, NewTD); 6243 6244 bool Redeclaration = D.isRedeclaration(); 6245 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 6246 D.setRedeclaration(Redeclaration); 6247 return ND; 6248 } 6249 6250 void 6251 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 6252 // C99 6.7.7p2: If a typedef name specifies a variably modified type 6253 // then it shall have block scope. 6254 // Note that variably modified types must be fixed before merging the decl so 6255 // that redeclarations will match. 6256 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 6257 QualType T = TInfo->getType(); 6258 if (T->isVariablyModifiedType()) { 6259 setFunctionHasBranchProtectedScope(); 6260 6261 if (S->getFnParent() == nullptr) { 6262 bool SizeIsNegative; 6263 llvm::APSInt Oversized; 6264 TypeSourceInfo *FixedTInfo = 6265 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6266 SizeIsNegative, 6267 Oversized); 6268 if (FixedTInfo) { 6269 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); 6270 NewTD->setTypeSourceInfo(FixedTInfo); 6271 } else { 6272 if (SizeIsNegative) 6273 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 6274 else if (T->isVariableArrayType()) 6275 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 6276 else if (Oversized.getBoolValue()) 6277 Diag(NewTD->getLocation(), diag::err_array_too_large) 6278 << toString(Oversized, 10); 6279 else 6280 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 6281 NewTD->setInvalidDecl(); 6282 } 6283 } 6284 } 6285 } 6286 6287 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 6288 /// declares a typedef-name, either using the 'typedef' type specifier or via 6289 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 6290 NamedDecl* 6291 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 6292 LookupResult &Previous, bool &Redeclaration) { 6293 6294 // Find the shadowed declaration before filtering for scope. 6295 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); 6296 6297 // Merge the decl with the existing one if appropriate. If the decl is 6298 // in an outer scope, it isn't the same thing. 6299 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 6300 /*AllowInlineNamespace*/false); 6301 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); 6302 if (!Previous.empty()) { 6303 Redeclaration = true; 6304 MergeTypedefNameDecl(S, NewTD, Previous); 6305 } else { 6306 inferGslPointerAttribute(NewTD); 6307 } 6308 6309 if (ShadowedDecl && !Redeclaration) 6310 CheckShadow(NewTD, ShadowedDecl, Previous); 6311 6312 // If this is the C FILE type, notify the AST context. 6313 if (IdentifierInfo *II = NewTD->getIdentifier()) 6314 if (!NewTD->isInvalidDecl() && 6315 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 6316 if (II->isStr("FILE")) 6317 Context.setFILEDecl(NewTD); 6318 else if (II->isStr("jmp_buf")) 6319 Context.setjmp_bufDecl(NewTD); 6320 else if (II->isStr("sigjmp_buf")) 6321 Context.setsigjmp_bufDecl(NewTD); 6322 else if (II->isStr("ucontext_t")) 6323 Context.setucontext_tDecl(NewTD); 6324 } 6325 6326 return NewTD; 6327 } 6328 6329 /// Determines whether the given declaration is an out-of-scope 6330 /// previous declaration. 6331 /// 6332 /// This routine should be invoked when name lookup has found a 6333 /// previous declaration (PrevDecl) that is not in the scope where a 6334 /// new declaration by the same name is being introduced. If the new 6335 /// declaration occurs in a local scope, previous declarations with 6336 /// linkage may still be considered previous declarations (C99 6337 /// 6.2.2p4-5, C++ [basic.link]p6). 6338 /// 6339 /// \param PrevDecl the previous declaration found by name 6340 /// lookup 6341 /// 6342 /// \param DC the context in which the new declaration is being 6343 /// declared. 6344 /// 6345 /// \returns true if PrevDecl is an out-of-scope previous declaration 6346 /// for a new delcaration with the same name. 6347 static bool 6348 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 6349 ASTContext &Context) { 6350 if (!PrevDecl) 6351 return false; 6352 6353 if (!PrevDecl->hasLinkage()) 6354 return false; 6355 6356 if (Context.getLangOpts().CPlusPlus) { 6357 // C++ [basic.link]p6: 6358 // If there is a visible declaration of an entity with linkage 6359 // having the same name and type, ignoring entities declared 6360 // outside the innermost enclosing namespace scope, the block 6361 // scope declaration declares that same entity and receives the 6362 // linkage of the previous declaration. 6363 DeclContext *OuterContext = DC->getRedeclContext(); 6364 if (!OuterContext->isFunctionOrMethod()) 6365 // This rule only applies to block-scope declarations. 6366 return false; 6367 6368 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 6369 if (PrevOuterContext->isRecord()) 6370 // We found a member function: ignore it. 6371 return false; 6372 6373 // Find the innermost enclosing namespace for the new and 6374 // previous declarations. 6375 OuterContext = OuterContext->getEnclosingNamespaceContext(); 6376 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 6377 6378 // The previous declaration is in a different namespace, so it 6379 // isn't the same function. 6380 if (!OuterContext->Equals(PrevOuterContext)) 6381 return false; 6382 } 6383 6384 return true; 6385 } 6386 6387 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { 6388 CXXScopeSpec &SS = D.getCXXScopeSpec(); 6389 if (!SS.isSet()) return; 6390 DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); 6391 } 6392 6393 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 6394 QualType type = decl->getType(); 6395 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 6396 if (lifetime == Qualifiers::OCL_Autoreleasing) { 6397 // Various kinds of declaration aren't allowed to be __autoreleasing. 6398 unsigned kind = -1U; 6399 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6400 if (var->hasAttr<BlocksAttr>()) 6401 kind = 0; // __block 6402 else if (!var->hasLocalStorage()) 6403 kind = 1; // global 6404 } else if (isa<ObjCIvarDecl>(decl)) { 6405 kind = 3; // ivar 6406 } else if (isa<FieldDecl>(decl)) { 6407 kind = 2; // field 6408 } 6409 6410 if (kind != -1U) { 6411 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 6412 << kind; 6413 } 6414 } else if (lifetime == Qualifiers::OCL_None) { 6415 // Try to infer lifetime. 6416 if (!type->isObjCLifetimeType()) 6417 return false; 6418 6419 lifetime = type->getObjCARCImplicitLifetime(); 6420 type = Context.getLifetimeQualifiedType(type, lifetime); 6421 decl->setType(type); 6422 } 6423 6424 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6425 // Thread-local variables cannot have lifetime. 6426 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 6427 var->getTLSKind()) { 6428 Diag(var->getLocation(), diag::err_arc_thread_ownership) 6429 << var->getType(); 6430 return true; 6431 } 6432 } 6433 6434 return false; 6435 } 6436 6437 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { 6438 if (Decl->getType().hasAddressSpace()) 6439 return; 6440 if (Decl->getType()->isDependentType()) 6441 return; 6442 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { 6443 QualType Type = Var->getType(); 6444 if (Type->isSamplerT() || Type->isVoidType()) 6445 return; 6446 LangAS ImplAS = LangAS::opencl_private; 6447 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the 6448 // __opencl_c_program_scope_global_variables feature, the address space 6449 // for a variable at program scope or a static or extern variable inside 6450 // a function are inferred to be __global. 6451 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) && 6452 Var->hasGlobalStorage()) 6453 ImplAS = LangAS::opencl_global; 6454 // If the original type from a decayed type is an array type and that array 6455 // type has no address space yet, deduce it now. 6456 if (auto DT = dyn_cast<DecayedType>(Type)) { 6457 auto OrigTy = DT->getOriginalType(); 6458 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { 6459 // Add the address space to the original array type and then propagate 6460 // that to the element type through `getAsArrayType`. 6461 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); 6462 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); 6463 // Re-generate the decayed type. 6464 Type = Context.getDecayedType(OrigTy); 6465 } 6466 } 6467 Type = Context.getAddrSpaceQualType(Type, ImplAS); 6468 // Apply any qualifiers (including address space) from the array type to 6469 // the element type. This implements C99 6.7.3p8: "If the specification of 6470 // an array type includes any type qualifiers, the element type is so 6471 // qualified, not the array type." 6472 if (Type->isArrayType()) 6473 Type = QualType(Context.getAsArrayType(Type), 0); 6474 Decl->setType(Type); 6475 } 6476 } 6477 6478 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 6479 // Ensure that an auto decl is deduced otherwise the checks below might cache 6480 // the wrong linkage. 6481 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 6482 6483 // 'weak' only applies to declarations with external linkage. 6484 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 6485 if (!ND.isExternallyVisible()) { 6486 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 6487 ND.dropAttr<WeakAttr>(); 6488 } 6489 } 6490 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 6491 if (ND.isExternallyVisible()) { 6492 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 6493 ND.dropAttr<WeakRefAttr>(); 6494 ND.dropAttr<AliasAttr>(); 6495 } 6496 } 6497 6498 if (auto *VD = dyn_cast<VarDecl>(&ND)) { 6499 if (VD->hasInit()) { 6500 if (const auto *Attr = VD->getAttr<AliasAttr>()) { 6501 assert(VD->isThisDeclarationADefinition() && 6502 !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); 6503 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; 6504 VD->dropAttr<AliasAttr>(); 6505 } 6506 } 6507 } 6508 6509 // 'selectany' only applies to externally visible variable declarations. 6510 // It does not apply to functions. 6511 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 6512 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 6513 S.Diag(Attr->getLocation(), 6514 diag::err_attribute_selectany_non_extern_data); 6515 ND.dropAttr<SelectAnyAttr>(); 6516 } 6517 } 6518 6519 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 6520 auto *VD = dyn_cast<VarDecl>(&ND); 6521 bool IsAnonymousNS = false; 6522 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6523 if (VD) { 6524 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); 6525 while (NS && !IsAnonymousNS) { 6526 IsAnonymousNS = NS->isAnonymousNamespace(); 6527 NS = dyn_cast<NamespaceDecl>(NS->getParent()); 6528 } 6529 } 6530 // dll attributes require external linkage. Static locals may have external 6531 // linkage but still cannot be explicitly imported or exported. 6532 // In Microsoft mode, a variable defined in anonymous namespace must have 6533 // external linkage in order to be exported. 6534 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; 6535 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || 6536 (!AnonNSInMicrosoftMode && 6537 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { 6538 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 6539 << &ND << Attr; 6540 ND.setInvalidDecl(); 6541 } 6542 } 6543 6544 // Check the attributes on the function type, if any. 6545 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { 6546 // Don't declare this variable in the second operand of the for-statement; 6547 // GCC miscompiles that by ending its lifetime before evaluating the 6548 // third operand. See gcc.gnu.org/PR86769. 6549 AttributedTypeLoc ATL; 6550 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); 6551 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6552 TL = ATL.getModifiedLoc()) { 6553 // The [[lifetimebound]] attribute can be applied to the implicit object 6554 // parameter of a non-static member function (other than a ctor or dtor) 6555 // by applying it to the function type. 6556 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { 6557 const auto *MD = dyn_cast<CXXMethodDecl>(FD); 6558 if (!MD || MD->isStatic()) { 6559 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) 6560 << !MD << A->getRange(); 6561 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { 6562 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) 6563 << isa<CXXDestructorDecl>(MD) << A->getRange(); 6564 } 6565 } 6566 } 6567 } 6568 } 6569 6570 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 6571 NamedDecl *NewDecl, 6572 bool IsSpecialization, 6573 bool IsDefinition) { 6574 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) 6575 return; 6576 6577 bool IsTemplate = false; 6578 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { 6579 OldDecl = OldTD->getTemplatedDecl(); 6580 IsTemplate = true; 6581 if (!IsSpecialization) 6582 IsDefinition = false; 6583 } 6584 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { 6585 NewDecl = NewTD->getTemplatedDecl(); 6586 IsTemplate = true; 6587 } 6588 6589 if (!OldDecl || !NewDecl) 6590 return; 6591 6592 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 6593 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 6594 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 6595 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 6596 6597 // dllimport and dllexport are inheritable attributes so we have to exclude 6598 // inherited attribute instances. 6599 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 6600 (NewExportAttr && !NewExportAttr->isInherited()); 6601 6602 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 6603 // the only exception being explicit specializations. 6604 // Implicitly generated declarations are also excluded for now because there 6605 // is no other way to switch these to use dllimport or dllexport. 6606 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 6607 6608 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 6609 // Allow with a warning for free functions and global variables. 6610 bool JustWarn = false; 6611 if (!OldDecl->isCXXClassMember()) { 6612 auto *VD = dyn_cast<VarDecl>(OldDecl); 6613 if (VD && !VD->getDescribedVarTemplate()) 6614 JustWarn = true; 6615 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 6616 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 6617 JustWarn = true; 6618 } 6619 6620 // We cannot change a declaration that's been used because IR has already 6621 // been emitted. Dllimported functions will still work though (modulo 6622 // address equality) as they can use the thunk. 6623 if (OldDecl->isUsed()) 6624 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) 6625 JustWarn = false; 6626 6627 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 6628 : diag::err_attribute_dll_redeclaration; 6629 S.Diag(NewDecl->getLocation(), DiagID) 6630 << NewDecl 6631 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 6632 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6633 if (!JustWarn) { 6634 NewDecl->setInvalidDecl(); 6635 return; 6636 } 6637 } 6638 6639 // A redeclaration is not allowed to drop a dllimport attribute, the only 6640 // exceptions being inline function definitions (except for function 6641 // templates), local extern declarations, qualified friend declarations or 6642 // special MSVC extension: in the last case, the declaration is treated as if 6643 // it were marked dllexport. 6644 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 6645 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); 6646 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { 6647 // Ignore static data because out-of-line definitions are diagnosed 6648 // separately. 6649 IsStaticDataMember = VD->isStaticDataMember(); 6650 IsDefinition = VD->isThisDeclarationADefinition(S.Context) != 6651 VarDecl::DeclarationOnly; 6652 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 6653 IsInline = FD->isInlined(); 6654 IsQualifiedFriend = FD->getQualifier() && 6655 FD->getFriendObjectKind() == Decl::FOK_Declared; 6656 } 6657 6658 if (OldImportAttr && !HasNewAttr && 6659 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && 6660 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 6661 if (IsMicrosoftABI && IsDefinition) { 6662 S.Diag(NewDecl->getLocation(), 6663 diag::warn_redeclaration_without_import_attribute) 6664 << NewDecl; 6665 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6666 NewDecl->dropAttr<DLLImportAttr>(); 6667 NewDecl->addAttr( 6668 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange())); 6669 } else { 6670 S.Diag(NewDecl->getLocation(), 6671 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 6672 << NewDecl << OldImportAttr; 6673 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6674 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 6675 OldDecl->dropAttr<DLLImportAttr>(); 6676 NewDecl->dropAttr<DLLImportAttr>(); 6677 } 6678 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) { 6679 // In MinGW, seeing a function declared inline drops the dllimport 6680 // attribute. 6681 OldDecl->dropAttr<DLLImportAttr>(); 6682 NewDecl->dropAttr<DLLImportAttr>(); 6683 S.Diag(NewDecl->getLocation(), 6684 diag::warn_dllimport_dropped_from_inline_function) 6685 << NewDecl << OldImportAttr; 6686 } 6687 6688 // A specialization of a class template member function is processed here 6689 // since it's a redeclaration. If the parent class is dllexport, the 6690 // specialization inherits that attribute. This doesn't happen automatically 6691 // since the parent class isn't instantiated until later. 6692 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { 6693 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && 6694 !NewImportAttr && !NewExportAttr) { 6695 if (const DLLExportAttr *ParentExportAttr = 6696 MD->getParent()->getAttr<DLLExportAttr>()) { 6697 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); 6698 NewAttr->setInherited(true); 6699 NewDecl->addAttr(NewAttr); 6700 } 6701 } 6702 } 6703 } 6704 6705 /// Given that we are within the definition of the given function, 6706 /// will that definition behave like C99's 'inline', where the 6707 /// definition is discarded except for optimization purposes? 6708 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 6709 // Try to avoid calling GetGVALinkageForFunction. 6710 6711 // All cases of this require the 'inline' keyword. 6712 if (!FD->isInlined()) return false; 6713 6714 // This is only possible in C++ with the gnu_inline attribute. 6715 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 6716 return false; 6717 6718 // Okay, go ahead and call the relatively-more-expensive function. 6719 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 6720 } 6721 6722 /// Determine whether a variable is extern "C" prior to attaching 6723 /// an initializer. We can't just call isExternC() here, because that 6724 /// will also compute and cache whether the declaration is externally 6725 /// visible, which might change when we attach the initializer. 6726 /// 6727 /// This can only be used if the declaration is known to not be a 6728 /// redeclaration of an internal linkage declaration. 6729 /// 6730 /// For instance: 6731 /// 6732 /// auto x = []{}; 6733 /// 6734 /// Attaching the initializer here makes this declaration not externally 6735 /// visible, because its type has internal linkage. 6736 /// 6737 /// FIXME: This is a hack. 6738 template<typename T> 6739 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 6740 if (S.getLangOpts().CPlusPlus) { 6741 // In C++, the overloadable attribute negates the effects of extern "C". 6742 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 6743 return false; 6744 6745 // So do CUDA's host/device attributes. 6746 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || 6747 D->template hasAttr<CUDAHostAttr>())) 6748 return false; 6749 } 6750 return D->isExternC(); 6751 } 6752 6753 static bool shouldConsiderLinkage(const VarDecl *VD) { 6754 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 6755 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || 6756 isa<OMPDeclareMapperDecl>(DC)) 6757 return VD->hasExternalStorage(); 6758 if (DC->isFileContext()) 6759 return true; 6760 if (DC->isRecord()) 6761 return false; 6762 if (isa<RequiresExprBodyDecl>(DC)) 6763 return false; 6764 llvm_unreachable("Unexpected context"); 6765 } 6766 6767 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 6768 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 6769 if (DC->isFileContext() || DC->isFunctionOrMethod() || 6770 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) 6771 return true; 6772 if (DC->isRecord()) 6773 return false; 6774 llvm_unreachable("Unexpected context"); 6775 } 6776 6777 static bool hasParsedAttr(Scope *S, const Declarator &PD, 6778 ParsedAttr::Kind Kind) { 6779 // Check decl attributes on the DeclSpec. 6780 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) 6781 return true; 6782 6783 // Walk the declarator structure, checking decl attributes that were in a type 6784 // position to the decl itself. 6785 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 6786 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) 6787 return true; 6788 } 6789 6790 // Finally, check attributes on the decl itself. 6791 return PD.getAttributes().hasAttribute(Kind); 6792 } 6793 6794 /// Adjust the \c DeclContext for a function or variable that might be a 6795 /// function-local external declaration. 6796 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 6797 if (!DC->isFunctionOrMethod()) 6798 return false; 6799 6800 // If this is a local extern function or variable declared within a function 6801 // template, don't add it into the enclosing namespace scope until it is 6802 // instantiated; it might have a dependent type right now. 6803 if (DC->isDependentContext()) 6804 return true; 6805 6806 // C++11 [basic.link]p7: 6807 // When a block scope declaration of an entity with linkage is not found to 6808 // refer to some other declaration, then that entity is a member of the 6809 // innermost enclosing namespace. 6810 // 6811 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 6812 // semantically-enclosing namespace, not a lexically-enclosing one. 6813 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 6814 DC = DC->getParent(); 6815 return true; 6816 } 6817 6818 /// Returns true if given declaration has external C language linkage. 6819 static bool isDeclExternC(const Decl *D) { 6820 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 6821 return FD->isExternC(); 6822 if (const auto *VD = dyn_cast<VarDecl>(D)) 6823 return VD->isExternC(); 6824 6825 llvm_unreachable("Unknown type of decl!"); 6826 } 6827 6828 /// Returns true if there hasn't been any invalid type diagnosed. 6829 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) { 6830 DeclContext *DC = NewVD->getDeclContext(); 6831 QualType R = NewVD->getType(); 6832 6833 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. 6834 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function 6835 // argument. 6836 if (R->isImageType() || R->isPipeType()) { 6837 Se.Diag(NewVD->getLocation(), 6838 diag::err_opencl_type_can_only_be_used_as_function_parameter) 6839 << R; 6840 NewVD->setInvalidDecl(); 6841 return false; 6842 } 6843 6844 // OpenCL v1.2 s6.9.r: 6845 // The event type cannot be used to declare a program scope variable. 6846 // OpenCL v2.0 s6.9.q: 6847 // The clk_event_t and reserve_id_t types cannot be declared in program 6848 // scope. 6849 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) { 6850 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { 6851 Se.Diag(NewVD->getLocation(), 6852 diag::err_invalid_type_for_program_scope_var) 6853 << R; 6854 NewVD->setInvalidDecl(); 6855 return false; 6856 } 6857 } 6858 6859 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 6860 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", 6861 Se.getLangOpts())) { 6862 QualType NR = R.getCanonicalType(); 6863 while (NR->isPointerType() || NR->isMemberFunctionPointerType() || 6864 NR->isReferenceType()) { 6865 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() || 6866 NR->isFunctionReferenceType()) { 6867 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer) 6868 << NR->isReferenceType(); 6869 NewVD->setInvalidDecl(); 6870 return false; 6871 } 6872 NR = NR->getPointeeType(); 6873 } 6874 } 6875 6876 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16", 6877 Se.getLangOpts())) { 6878 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 6879 // half array type (unless the cl_khr_fp16 extension is enabled). 6880 if (Se.Context.getBaseElementType(R)->isHalfType()) { 6881 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R; 6882 NewVD->setInvalidDecl(); 6883 return false; 6884 } 6885 } 6886 6887 // OpenCL v1.2 s6.9.r: 6888 // The event type cannot be used with the __local, __constant and __global 6889 // address space qualifiers. 6890 if (R->isEventT()) { 6891 if (R.getAddressSpace() != LangAS::opencl_private) { 6892 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual); 6893 NewVD->setInvalidDecl(); 6894 return false; 6895 } 6896 } 6897 6898 if (R->isSamplerT()) { 6899 // OpenCL v1.2 s6.9.b p4: 6900 // The sampler type cannot be used with the __local and __global address 6901 // space qualifiers. 6902 if (R.getAddressSpace() == LangAS::opencl_local || 6903 R.getAddressSpace() == LangAS::opencl_global) { 6904 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace); 6905 NewVD->setInvalidDecl(); 6906 } 6907 6908 // OpenCL v1.2 s6.12.14.1: 6909 // A global sampler must be declared with either the constant address 6910 // space qualifier or with the const qualifier. 6911 if (DC->isTranslationUnit() && 6912 !(R.getAddressSpace() == LangAS::opencl_constant || 6913 R.isConstQualified())) { 6914 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler); 6915 NewVD->setInvalidDecl(); 6916 } 6917 if (NewVD->isInvalidDecl()) 6918 return false; 6919 } 6920 6921 return true; 6922 } 6923 6924 template <typename AttrTy> 6925 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) { 6926 const TypedefNameDecl *TND = TT->getDecl(); 6927 if (const auto *Attribute = TND->getAttr<AttrTy>()) { 6928 AttrTy *Clone = Attribute->clone(S.Context); 6929 Clone->setInherited(true); 6930 D->addAttr(Clone); 6931 } 6932 } 6933 6934 NamedDecl *Sema::ActOnVariableDeclarator( 6935 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, 6936 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, 6937 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { 6938 QualType R = TInfo->getType(); 6939 DeclarationName Name = GetNameForDeclarator(D).getName(); 6940 6941 IdentifierInfo *II = Name.getAsIdentifierInfo(); 6942 6943 if (D.isDecompositionDeclarator()) { 6944 // Take the name of the first declarator as our name for diagnostic 6945 // purposes. 6946 auto &Decomp = D.getDecompositionDeclarator(); 6947 if (!Decomp.bindings().empty()) { 6948 II = Decomp.bindings()[0].Name; 6949 Name = II; 6950 } 6951 } else if (!II) { 6952 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; 6953 return nullptr; 6954 } 6955 6956 6957 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 6958 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 6959 6960 // dllimport globals without explicit storage class are treated as extern. We 6961 // have to change the storage class this early to get the right DeclContext. 6962 if (SC == SC_None && !DC->isRecord() && 6963 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && 6964 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) 6965 SC = SC_Extern; 6966 6967 DeclContext *OriginalDC = DC; 6968 bool IsLocalExternDecl = SC == SC_Extern && 6969 adjustContextForLocalExternDecl(DC); 6970 6971 if (SCSpec == DeclSpec::SCS_mutable) { 6972 // mutable can only appear on non-static class members, so it's always 6973 // an error here 6974 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 6975 D.setInvalidType(); 6976 SC = SC_None; 6977 } 6978 6979 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 6980 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 6981 D.getDeclSpec().getStorageClassSpecLoc())) { 6982 // In C++11, the 'register' storage class specifier is deprecated. 6983 // Suppress the warning in system macros, it's used in macros in some 6984 // popular C system headers, such as in glibc's htonl() macro. 6985 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6986 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 6987 : diag::warn_deprecated_register) 6988 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6989 } 6990 6991 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6992 6993 if (!DC->isRecord() && S->getFnParent() == nullptr) { 6994 // C99 6.9p2: The storage-class specifiers auto and register shall not 6995 // appear in the declaration specifiers in an external declaration. 6996 // Global Register+Asm is a GNU extension we support. 6997 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 6998 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 6999 D.setInvalidType(); 7000 } 7001 } 7002 7003 // If this variable has a VLA type and an initializer, try to 7004 // fold to a constant-sized type. This is otherwise invalid. 7005 if (D.hasInitializer() && R->isVariableArrayType()) 7006 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(), 7007 /*DiagID=*/0); 7008 7009 bool IsMemberSpecialization = false; 7010 bool IsVariableTemplateSpecialization = false; 7011 bool IsPartialSpecialization = false; 7012 bool IsVariableTemplate = false; 7013 VarDecl *NewVD = nullptr; 7014 VarTemplateDecl *NewTemplate = nullptr; 7015 TemplateParameterList *TemplateParams = nullptr; 7016 if (!getLangOpts().CPlusPlus) { 7017 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), 7018 II, R, TInfo, SC); 7019 7020 if (R->getContainedDeducedType()) 7021 ParsingInitForAutoVars.insert(NewVD); 7022 7023 if (D.isInvalidType()) 7024 NewVD->setInvalidDecl(); 7025 7026 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && 7027 NewVD->hasLocalStorage()) 7028 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), 7029 NTCUC_AutoVar, NTCUK_Destruct); 7030 } else { 7031 bool Invalid = false; 7032 7033 if (DC->isRecord() && !CurContext->isRecord()) { 7034 // This is an out-of-line definition of a static data member. 7035 switch (SC) { 7036 case SC_None: 7037 break; 7038 case SC_Static: 7039 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7040 diag::err_static_out_of_line) 7041 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7042 break; 7043 case SC_Auto: 7044 case SC_Register: 7045 case SC_Extern: 7046 // [dcl.stc] p2: The auto or register specifiers shall be applied only 7047 // to names of variables declared in a block or to function parameters. 7048 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 7049 // of class members 7050 7051 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7052 diag::err_storage_class_for_static_member) 7053 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7054 break; 7055 case SC_PrivateExtern: 7056 llvm_unreachable("C storage class in c++!"); 7057 } 7058 } 7059 7060 if (SC == SC_Static && CurContext->isRecord()) { 7061 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 7062 // Walk up the enclosing DeclContexts to check for any that are 7063 // incompatible with static data members. 7064 const DeclContext *FunctionOrMethod = nullptr; 7065 const CXXRecordDecl *AnonStruct = nullptr; 7066 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { 7067 if (Ctxt->isFunctionOrMethod()) { 7068 FunctionOrMethod = Ctxt; 7069 break; 7070 } 7071 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); 7072 if (ParentDecl && !ParentDecl->getDeclName()) { 7073 AnonStruct = ParentDecl; 7074 break; 7075 } 7076 } 7077 if (FunctionOrMethod) { 7078 // C++ [class.static.data]p5: A local class shall not have static data 7079 // members. 7080 Diag(D.getIdentifierLoc(), 7081 diag::err_static_data_member_not_allowed_in_local_class) 7082 << Name << RD->getDeclName() << RD->getTagKind(); 7083 } else if (AnonStruct) { 7084 // C++ [class.static.data]p4: Unnamed classes and classes contained 7085 // directly or indirectly within unnamed classes shall not contain 7086 // static data members. 7087 Diag(D.getIdentifierLoc(), 7088 diag::err_static_data_member_not_allowed_in_anon_struct) 7089 << Name << AnonStruct->getTagKind(); 7090 Invalid = true; 7091 } else if (RD->isUnion()) { 7092 // C++98 [class.union]p1: If a union contains a static data member, 7093 // the program is ill-formed. C++11 drops this restriction. 7094 Diag(D.getIdentifierLoc(), 7095 getLangOpts().CPlusPlus11 7096 ? diag::warn_cxx98_compat_static_data_member_in_union 7097 : diag::ext_static_data_member_in_union) << Name; 7098 } 7099 } 7100 } 7101 7102 // Match up the template parameter lists with the scope specifier, then 7103 // determine whether we have a template or a template specialization. 7104 bool InvalidScope = false; 7105 TemplateParams = MatchTemplateParametersToScopeSpecifier( 7106 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 7107 D.getCXXScopeSpec(), 7108 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 7109 ? D.getName().TemplateId 7110 : nullptr, 7111 TemplateParamLists, 7112 /*never a friend*/ false, IsMemberSpecialization, InvalidScope); 7113 Invalid |= InvalidScope; 7114 7115 if (TemplateParams) { 7116 if (!TemplateParams->size() && 7117 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 7118 // There is an extraneous 'template<>' for this variable. Complain 7119 // about it, but allow the declaration of the variable. 7120 Diag(TemplateParams->getTemplateLoc(), 7121 diag::err_template_variable_noparams) 7122 << II 7123 << SourceRange(TemplateParams->getTemplateLoc(), 7124 TemplateParams->getRAngleLoc()); 7125 TemplateParams = nullptr; 7126 } else { 7127 // Check that we can declare a template here. 7128 if (CheckTemplateDeclScope(S, TemplateParams)) 7129 return nullptr; 7130 7131 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 7132 // This is an explicit specialization or a partial specialization. 7133 IsVariableTemplateSpecialization = true; 7134 IsPartialSpecialization = TemplateParams->size() > 0; 7135 } else { // if (TemplateParams->size() > 0) 7136 // This is a template declaration. 7137 IsVariableTemplate = true; 7138 7139 // Only C++1y supports variable templates (N3651). 7140 Diag(D.getIdentifierLoc(), 7141 getLangOpts().CPlusPlus14 7142 ? diag::warn_cxx11_compat_variable_template 7143 : diag::ext_variable_template); 7144 } 7145 } 7146 } else { 7147 // Check that we can declare a member specialization here. 7148 if (!TemplateParamLists.empty() && IsMemberSpecialization && 7149 CheckTemplateDeclScope(S, TemplateParamLists.back())) 7150 return nullptr; 7151 assert((Invalid || 7152 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && 7153 "should have a 'template<>' for this decl"); 7154 } 7155 7156 if (IsVariableTemplateSpecialization) { 7157 SourceLocation TemplateKWLoc = 7158 TemplateParamLists.size() > 0 7159 ? TemplateParamLists[0]->getTemplateLoc() 7160 : SourceLocation(); 7161 DeclResult Res = ActOnVarTemplateSpecialization( 7162 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 7163 IsPartialSpecialization); 7164 if (Res.isInvalid()) 7165 return nullptr; 7166 NewVD = cast<VarDecl>(Res.get()); 7167 AddToScope = false; 7168 } else if (D.isDecompositionDeclarator()) { 7169 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), 7170 D.getIdentifierLoc(), R, TInfo, SC, 7171 Bindings); 7172 } else 7173 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), 7174 D.getIdentifierLoc(), II, R, TInfo, SC); 7175 7176 // If this is supposed to be a variable template, create it as such. 7177 if (IsVariableTemplate) { 7178 NewTemplate = 7179 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 7180 TemplateParams, NewVD); 7181 NewVD->setDescribedVarTemplate(NewTemplate); 7182 } 7183 7184 // If this decl has an auto type in need of deduction, make a note of the 7185 // Decl so we can diagnose uses of it in its own initializer. 7186 if (R->getContainedDeducedType()) 7187 ParsingInitForAutoVars.insert(NewVD); 7188 7189 if (D.isInvalidType() || Invalid) { 7190 NewVD->setInvalidDecl(); 7191 if (NewTemplate) 7192 NewTemplate->setInvalidDecl(); 7193 } 7194 7195 SetNestedNameSpecifier(*this, NewVD, D); 7196 7197 // If we have any template parameter lists that don't directly belong to 7198 // the variable (matching the scope specifier), store them. 7199 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 7200 if (TemplateParamLists.size() > VDTemplateParamLists) 7201 NewVD->setTemplateParameterListsInfo( 7202 Context, TemplateParamLists.drop_back(VDTemplateParamLists)); 7203 } 7204 7205 if (D.getDeclSpec().isInlineSpecified()) { 7206 if (!getLangOpts().CPlusPlus) { 7207 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 7208 << 0; 7209 } else if (CurContext->isFunctionOrMethod()) { 7210 // 'inline' is not allowed on block scope variable declaration. 7211 Diag(D.getDeclSpec().getInlineSpecLoc(), 7212 diag::err_inline_declaration_block_scope) << Name 7213 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7214 } else { 7215 Diag(D.getDeclSpec().getInlineSpecLoc(), 7216 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable 7217 : diag::ext_inline_variable); 7218 NewVD->setInlineSpecified(); 7219 } 7220 } 7221 7222 // Set the lexical context. If the declarator has a C++ scope specifier, the 7223 // lexical context will be different from the semantic context. 7224 NewVD->setLexicalDeclContext(CurContext); 7225 if (NewTemplate) 7226 NewTemplate->setLexicalDeclContext(CurContext); 7227 7228 if (IsLocalExternDecl) { 7229 if (D.isDecompositionDeclarator()) 7230 for (auto *B : Bindings) 7231 B->setLocalExternDecl(); 7232 else 7233 NewVD->setLocalExternDecl(); 7234 } 7235 7236 bool EmitTLSUnsupportedError = false; 7237 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 7238 // C++11 [dcl.stc]p4: 7239 // When thread_local is applied to a variable of block scope the 7240 // storage-class-specifier static is implied if it does not appear 7241 // explicitly. 7242 // Core issue: 'static' is not implied if the variable is declared 7243 // 'extern'. 7244 if (NewVD->hasLocalStorage() && 7245 (SCSpec != DeclSpec::SCS_unspecified || 7246 TSCS != DeclSpec::TSCS_thread_local || 7247 !DC->isFunctionOrMethod())) 7248 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7249 diag::err_thread_non_global) 7250 << DeclSpec::getSpecifierName(TSCS); 7251 else if (!Context.getTargetInfo().isTLSSupported()) { 7252 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7253 getLangOpts().SYCLIsDevice) { 7254 // Postpone error emission until we've collected attributes required to 7255 // figure out whether it's a host or device variable and whether the 7256 // error should be ignored. 7257 EmitTLSUnsupportedError = true; 7258 // We still need to mark the variable as TLS so it shows up in AST with 7259 // proper storage class for other tools to use even if we're not going 7260 // to emit any code for it. 7261 NewVD->setTSCSpec(TSCS); 7262 } else 7263 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7264 diag::err_thread_unsupported); 7265 } else 7266 NewVD->setTSCSpec(TSCS); 7267 } 7268 7269 switch (D.getDeclSpec().getConstexprSpecifier()) { 7270 case ConstexprSpecKind::Unspecified: 7271 break; 7272 7273 case ConstexprSpecKind::Consteval: 7274 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7275 diag::err_constexpr_wrong_decl_kind) 7276 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 7277 LLVM_FALLTHROUGH; 7278 7279 case ConstexprSpecKind::Constexpr: 7280 NewVD->setConstexpr(true); 7281 // C++1z [dcl.spec.constexpr]p1: 7282 // A static data member declared with the constexpr specifier is 7283 // implicitly an inline variable. 7284 if (NewVD->isStaticDataMember() && 7285 (getLangOpts().CPlusPlus17 || 7286 Context.getTargetInfo().getCXXABI().isMicrosoft())) 7287 NewVD->setImplicitlyInline(); 7288 break; 7289 7290 case ConstexprSpecKind::Constinit: 7291 if (!NewVD->hasGlobalStorage()) 7292 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7293 diag::err_constinit_local_variable); 7294 else 7295 NewVD->addAttr(ConstInitAttr::Create( 7296 Context, D.getDeclSpec().getConstexprSpecLoc(), 7297 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit)); 7298 break; 7299 } 7300 7301 // C99 6.7.4p3 7302 // An inline definition of a function with external linkage shall 7303 // not contain a definition of a modifiable object with static or 7304 // thread storage duration... 7305 // We only apply this when the function is required to be defined 7306 // elsewhere, i.e. when the function is not 'extern inline'. Note 7307 // that a local variable with thread storage duration still has to 7308 // be marked 'static'. Also note that it's possible to get these 7309 // semantics in C++ using __attribute__((gnu_inline)). 7310 if (SC == SC_Static && S->getFnParent() != nullptr && 7311 !NewVD->getType().isConstQualified()) { 7312 FunctionDecl *CurFD = getCurFunctionDecl(); 7313 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 7314 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7315 diag::warn_static_local_in_extern_inline); 7316 MaybeSuggestAddingStaticToDecl(CurFD); 7317 } 7318 } 7319 7320 if (D.getDeclSpec().isModulePrivateSpecified()) { 7321 if (IsVariableTemplateSpecialization) 7322 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7323 << (IsPartialSpecialization ? 1 : 0) 7324 << FixItHint::CreateRemoval( 7325 D.getDeclSpec().getModulePrivateSpecLoc()); 7326 else if (IsMemberSpecialization) 7327 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7328 << 2 7329 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7330 else if (NewVD->hasLocalStorage()) 7331 Diag(NewVD->getLocation(), diag::err_module_private_local) 7332 << 0 << NewVD 7333 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 7334 << FixItHint::CreateRemoval( 7335 D.getDeclSpec().getModulePrivateSpecLoc()); 7336 else { 7337 NewVD->setModulePrivate(); 7338 if (NewTemplate) 7339 NewTemplate->setModulePrivate(); 7340 for (auto *B : Bindings) 7341 B->setModulePrivate(); 7342 } 7343 } 7344 7345 if (getLangOpts().OpenCL) { 7346 deduceOpenCLAddressSpace(NewVD); 7347 7348 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); 7349 if (TSC != TSCS_unspecified) { 7350 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7351 diag::err_opencl_unknown_type_specifier) 7352 << getLangOpts().getOpenCLVersionString() 7353 << DeclSpec::getSpecifierName(TSC) << 1; 7354 NewVD->setInvalidDecl(); 7355 } 7356 } 7357 7358 // Handle attributes prior to checking for duplicates in MergeVarDecl 7359 ProcessDeclAttributes(S, NewVD, D); 7360 7361 // FIXME: This is probably the wrong location to be doing this and we should 7362 // probably be doing this for more attributes (especially for function 7363 // pointer attributes such as format, warn_unused_result, etc.). Ideally 7364 // the code to copy attributes would be generated by TableGen. 7365 if (R->isFunctionPointerType()) 7366 if (const auto *TT = R->getAs<TypedefType>()) 7367 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT); 7368 7369 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7370 getLangOpts().SYCLIsDevice) { 7371 if (EmitTLSUnsupportedError && 7372 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || 7373 (getLangOpts().OpenMPIsDevice && 7374 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) 7375 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7376 diag::err_thread_unsupported); 7377 7378 if (EmitTLSUnsupportedError && 7379 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))) 7380 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); 7381 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 7382 // storage [duration]." 7383 if (SC == SC_None && S->getFnParent() != nullptr && 7384 (NewVD->hasAttr<CUDASharedAttr>() || 7385 NewVD->hasAttr<CUDAConstantAttr>())) { 7386 NewVD->setStorageClass(SC_Static); 7387 } 7388 } 7389 7390 // Ensure that dllimport globals without explicit storage class are treated as 7391 // extern. The storage class is set above using parsed attributes. Now we can 7392 // check the VarDecl itself. 7393 assert(!NewVD->hasAttr<DLLImportAttr>() || 7394 NewVD->getAttr<DLLImportAttr>()->isInherited() || 7395 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 7396 7397 // In auto-retain/release, infer strong retension for variables of 7398 // retainable type. 7399 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 7400 NewVD->setInvalidDecl(); 7401 7402 // Handle GNU asm-label extension (encoded as an attribute). 7403 if (Expr *E = (Expr*)D.getAsmLabel()) { 7404 // The parser guarantees this is a string. 7405 StringLiteral *SE = cast<StringLiteral>(E); 7406 StringRef Label = SE->getString(); 7407 if (S->getFnParent() != nullptr) { 7408 switch (SC) { 7409 case SC_None: 7410 case SC_Auto: 7411 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 7412 break; 7413 case SC_Register: 7414 // Local Named register 7415 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && 7416 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) 7417 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7418 break; 7419 case SC_Static: 7420 case SC_Extern: 7421 case SC_PrivateExtern: 7422 break; 7423 } 7424 } else if (SC == SC_Register) { 7425 // Global Named register 7426 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { 7427 const auto &TI = Context.getTargetInfo(); 7428 bool HasSizeMismatch; 7429 7430 if (!TI.isValidGCCRegisterName(Label)) 7431 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7432 else if (!TI.validateGlobalRegisterVariable(Label, 7433 Context.getTypeSize(R), 7434 HasSizeMismatch)) 7435 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; 7436 else if (HasSizeMismatch) 7437 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; 7438 } 7439 7440 if (!R->isIntegralType(Context) && !R->isPointerType()) { 7441 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); 7442 NewVD->setInvalidDecl(true); 7443 } 7444 } 7445 7446 NewVD->addAttr(AsmLabelAttr::Create(Context, Label, 7447 /*IsLiteralLabel=*/true, 7448 SE->getStrTokenLoc(0))); 7449 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7450 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7451 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 7452 if (I != ExtnameUndeclaredIdentifiers.end()) { 7453 if (isDeclExternC(NewVD)) { 7454 NewVD->addAttr(I->second); 7455 ExtnameUndeclaredIdentifiers.erase(I); 7456 } else 7457 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) 7458 << /*Variable*/1 << NewVD; 7459 } 7460 } 7461 7462 // Find the shadowed declaration before filtering for scope. 7463 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 7464 ? getShadowedDeclaration(NewVD, Previous) 7465 : nullptr; 7466 7467 // Don't consider existing declarations that are in a different 7468 // scope and are out-of-semantic-context declarations (if the new 7469 // declaration has linkage). 7470 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 7471 D.getCXXScopeSpec().isNotEmpty() || 7472 IsMemberSpecialization || 7473 IsVariableTemplateSpecialization); 7474 7475 // Check whether the previous declaration is in the same block scope. This 7476 // affects whether we merge types with it, per C++11 [dcl.array]p3. 7477 if (getLangOpts().CPlusPlus && 7478 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 7479 NewVD->setPreviousDeclInSameBlockScope( 7480 Previous.isSingleResult() && !Previous.isShadowed() && 7481 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 7482 7483 if (!getLangOpts().CPlusPlus) { 7484 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7485 } else { 7486 // If this is an explicit specialization of a static data member, check it. 7487 if (IsMemberSpecialization && !NewVD->isInvalidDecl() && 7488 CheckMemberSpecialization(NewVD, Previous)) 7489 NewVD->setInvalidDecl(); 7490 7491 // Merge the decl with the existing one if appropriate. 7492 if (!Previous.empty()) { 7493 if (Previous.isSingleResult() && 7494 isa<FieldDecl>(Previous.getFoundDecl()) && 7495 D.getCXXScopeSpec().isSet()) { 7496 // The user tried to define a non-static data member 7497 // out-of-line (C++ [dcl.meaning]p1). 7498 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 7499 << D.getCXXScopeSpec().getRange(); 7500 Previous.clear(); 7501 NewVD->setInvalidDecl(); 7502 } 7503 } else if (D.getCXXScopeSpec().isSet()) { 7504 // No previous declaration in the qualifying scope. 7505 Diag(D.getIdentifierLoc(), diag::err_no_member) 7506 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 7507 << D.getCXXScopeSpec().getRange(); 7508 NewVD->setInvalidDecl(); 7509 } 7510 7511 if (!IsVariableTemplateSpecialization) 7512 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7513 7514 if (NewTemplate) { 7515 VarTemplateDecl *PrevVarTemplate = 7516 NewVD->getPreviousDecl() 7517 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 7518 : nullptr; 7519 7520 // Check the template parameter list of this declaration, possibly 7521 // merging in the template parameter list from the previous variable 7522 // template declaration. 7523 if (CheckTemplateParameterList( 7524 TemplateParams, 7525 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 7526 : nullptr, 7527 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 7528 DC->isDependentContext()) 7529 ? TPC_ClassTemplateMember 7530 : TPC_VarTemplate)) 7531 NewVD->setInvalidDecl(); 7532 7533 // If we are providing an explicit specialization of a static variable 7534 // template, make a note of that. 7535 if (PrevVarTemplate && 7536 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 7537 PrevVarTemplate->setMemberSpecialization(); 7538 } 7539 } 7540 7541 // Diagnose shadowed variables iff this isn't a redeclaration. 7542 if (ShadowedDecl && !D.isRedeclaration()) 7543 CheckShadow(NewVD, ShadowedDecl, Previous); 7544 7545 ProcessPragmaWeak(S, NewVD); 7546 7547 // If this is the first declaration of an extern C variable, update 7548 // the map of such variables. 7549 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 7550 isIncompleteDeclExternC(*this, NewVD)) 7551 RegisterLocallyScopedExternCDecl(NewVD, S); 7552 7553 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 7554 MangleNumberingContext *MCtx; 7555 Decl *ManglingContextDecl; 7556 std::tie(MCtx, ManglingContextDecl) = 7557 getCurrentMangleNumberContext(NewVD->getDeclContext()); 7558 if (MCtx) { 7559 Context.setManglingNumber( 7560 NewVD, MCtx->getManglingNumber( 7561 NewVD, getMSManglingNumber(getLangOpts(), S))); 7562 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 7563 } 7564 } 7565 7566 // Special handling of variable named 'main'. 7567 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && 7568 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && 7569 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { 7570 7571 // C++ [basic.start.main]p3 7572 // A program that declares a variable main at global scope is ill-formed. 7573 if (getLangOpts().CPlusPlus) 7574 Diag(D.getBeginLoc(), diag::err_main_global_variable); 7575 7576 // In C, and external-linkage variable named main results in undefined 7577 // behavior. 7578 else if (NewVD->hasExternalFormalLinkage()) 7579 Diag(D.getBeginLoc(), diag::warn_main_redefined); 7580 } 7581 7582 if (D.isRedeclaration() && !Previous.empty()) { 7583 NamedDecl *Prev = Previous.getRepresentativeDecl(); 7584 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, 7585 D.isFunctionDefinition()); 7586 } 7587 7588 if (NewTemplate) { 7589 if (NewVD->isInvalidDecl()) 7590 NewTemplate->setInvalidDecl(); 7591 ActOnDocumentableDecl(NewTemplate); 7592 return NewTemplate; 7593 } 7594 7595 if (IsMemberSpecialization && !NewVD->isInvalidDecl()) 7596 CompleteMemberSpecialization(NewVD, Previous); 7597 7598 return NewVD; 7599 } 7600 7601 /// Enum describing the %select options in diag::warn_decl_shadow. 7602 enum ShadowedDeclKind { 7603 SDK_Local, 7604 SDK_Global, 7605 SDK_StaticMember, 7606 SDK_Field, 7607 SDK_Typedef, 7608 SDK_Using, 7609 SDK_StructuredBinding 7610 }; 7611 7612 /// Determine what kind of declaration we're shadowing. 7613 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, 7614 const DeclContext *OldDC) { 7615 if (isa<TypeAliasDecl>(ShadowedDecl)) 7616 return SDK_Using; 7617 else if (isa<TypedefDecl>(ShadowedDecl)) 7618 return SDK_Typedef; 7619 else if (isa<BindingDecl>(ShadowedDecl)) 7620 return SDK_StructuredBinding; 7621 else if (isa<RecordDecl>(OldDC)) 7622 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; 7623 7624 return OldDC->isFileContext() ? SDK_Global : SDK_Local; 7625 } 7626 7627 /// Return the location of the capture if the given lambda captures the given 7628 /// variable \p VD, or an invalid source location otherwise. 7629 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, 7630 const VarDecl *VD) { 7631 for (const Capture &Capture : LSI->Captures) { 7632 if (Capture.isVariableCapture() && Capture.getVariable() == VD) 7633 return Capture.getLocation(); 7634 } 7635 return SourceLocation(); 7636 } 7637 7638 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, 7639 const LookupResult &R) { 7640 // Only diagnose if we're shadowing an unambiguous field or variable. 7641 if (R.getResultKind() != LookupResult::Found) 7642 return false; 7643 7644 // Return false if warning is ignored. 7645 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); 7646 } 7647 7648 /// Return the declaration shadowed by the given variable \p D, or null 7649 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7650 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, 7651 const LookupResult &R) { 7652 if (!shouldWarnIfShadowedDecl(Diags, R)) 7653 return nullptr; 7654 7655 // Don't diagnose declarations at file scope. 7656 if (D->hasGlobalStorage()) 7657 return nullptr; 7658 7659 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7660 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl 7661 : nullptr; 7662 } 7663 7664 /// Return the declaration shadowed by the given typedef \p D, or null 7665 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7666 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, 7667 const LookupResult &R) { 7668 // Don't warn if typedef declaration is part of a class 7669 if (D->getDeclContext()->isRecord()) 7670 return nullptr; 7671 7672 if (!shouldWarnIfShadowedDecl(Diags, R)) 7673 return nullptr; 7674 7675 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7676 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; 7677 } 7678 7679 /// Return the declaration shadowed by the given variable \p D, or null 7680 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7681 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D, 7682 const LookupResult &R) { 7683 if (!shouldWarnIfShadowedDecl(Diags, R)) 7684 return nullptr; 7685 7686 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7687 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl 7688 : nullptr; 7689 } 7690 7691 /// Diagnose variable or built-in function shadowing. Implements 7692 /// -Wshadow. 7693 /// 7694 /// This method is called whenever a VarDecl is added to a "useful" 7695 /// scope. 7696 /// 7697 /// \param ShadowedDecl the declaration that is shadowed by the given variable 7698 /// \param R the lookup of the name 7699 /// 7700 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, 7701 const LookupResult &R) { 7702 DeclContext *NewDC = D->getDeclContext(); 7703 7704 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { 7705 // Fields are not shadowed by variables in C++ static methods. 7706 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 7707 if (MD->isStatic()) 7708 return; 7709 7710 // Fields shadowed by constructor parameters are a special case. Usually 7711 // the constructor initializes the field with the parameter. 7712 if (isa<CXXConstructorDecl>(NewDC)) 7713 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { 7714 // Remember that this was shadowed so we can either warn about its 7715 // modification or its existence depending on warning settings. 7716 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); 7717 return; 7718 } 7719 } 7720 7721 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 7722 if (shadowedVar->isExternC()) { 7723 // For shadowing external vars, make sure that we point to the global 7724 // declaration, not a locally scoped extern declaration. 7725 for (auto I : shadowedVar->redecls()) 7726 if (I->isFileVarDecl()) { 7727 ShadowedDecl = I; 7728 break; 7729 } 7730 } 7731 7732 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); 7733 7734 unsigned WarningDiag = diag::warn_decl_shadow; 7735 SourceLocation CaptureLoc; 7736 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && 7737 isa<CXXMethodDecl>(NewDC)) { 7738 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { 7739 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { 7740 if (RD->getLambdaCaptureDefault() == LCD_None) { 7741 // Try to avoid warnings for lambdas with an explicit capture list. 7742 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); 7743 // Warn only when the lambda captures the shadowed decl explicitly. 7744 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); 7745 if (CaptureLoc.isInvalid()) 7746 WarningDiag = diag::warn_decl_shadow_uncaptured_local; 7747 } else { 7748 // Remember that this was shadowed so we can avoid the warning if the 7749 // shadowed decl isn't captured and the warning settings allow it. 7750 cast<LambdaScopeInfo>(getCurFunction()) 7751 ->ShadowingDecls.push_back( 7752 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); 7753 return; 7754 } 7755 } 7756 7757 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { 7758 // A variable can't shadow a local variable in an enclosing scope, if 7759 // they are separated by a non-capturing declaration context. 7760 for (DeclContext *ParentDC = NewDC; 7761 ParentDC && !ParentDC->Equals(OldDC); 7762 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { 7763 // Only block literals, captured statements, and lambda expressions 7764 // can capture; other scopes don't. 7765 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && 7766 !isLambdaCallOperator(ParentDC)) { 7767 return; 7768 } 7769 } 7770 } 7771 } 7772 } 7773 7774 // Only warn about certain kinds of shadowing for class members. 7775 if (NewDC && NewDC->isRecord()) { 7776 // In particular, don't warn about shadowing non-class members. 7777 if (!OldDC->isRecord()) 7778 return; 7779 7780 // TODO: should we warn about static data members shadowing 7781 // static data members from base classes? 7782 7783 // TODO: don't diagnose for inaccessible shadowed members. 7784 // This is hard to do perfectly because we might friend the 7785 // shadowing context, but that's just a false negative. 7786 } 7787 7788 7789 DeclarationName Name = R.getLookupName(); 7790 7791 // Emit warning and note. 7792 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 7793 return; 7794 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); 7795 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; 7796 if (!CaptureLoc.isInvalid()) 7797 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7798 << Name << /*explicitly*/ 1; 7799 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7800 } 7801 7802 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD 7803 /// when these variables are captured by the lambda. 7804 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { 7805 for (const auto &Shadow : LSI->ShadowingDecls) { 7806 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; 7807 // Try to avoid the warning when the shadowed decl isn't captured. 7808 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); 7809 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7810 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() 7811 ? diag::warn_decl_shadow_uncaptured_local 7812 : diag::warn_decl_shadow) 7813 << Shadow.VD->getDeclName() 7814 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; 7815 if (!CaptureLoc.isInvalid()) 7816 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7817 << Shadow.VD->getDeclName() << /*explicitly*/ 0; 7818 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7819 } 7820 } 7821 7822 /// Check -Wshadow without the advantage of a previous lookup. 7823 void Sema::CheckShadow(Scope *S, VarDecl *D) { 7824 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 7825 return; 7826 7827 LookupResult R(*this, D->getDeclName(), D->getLocation(), 7828 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 7829 LookupName(R, S); 7830 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) 7831 CheckShadow(D, ShadowedDecl, R); 7832 } 7833 7834 /// Check if 'E', which is an expression that is about to be modified, refers 7835 /// to a constructor parameter that shadows a field. 7836 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { 7837 // Quickly ignore expressions that can't be shadowing ctor parameters. 7838 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) 7839 return; 7840 E = E->IgnoreParenImpCasts(); 7841 auto *DRE = dyn_cast<DeclRefExpr>(E); 7842 if (!DRE) 7843 return; 7844 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 7845 auto I = ShadowingDecls.find(D); 7846 if (I == ShadowingDecls.end()) 7847 return; 7848 const NamedDecl *ShadowedDecl = I->second; 7849 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7850 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; 7851 Diag(D->getLocation(), diag::note_var_declared_here) << D; 7852 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7853 7854 // Avoid issuing multiple warnings about the same decl. 7855 ShadowingDecls.erase(I); 7856 } 7857 7858 /// Check for conflict between this global or extern "C" declaration and 7859 /// previous global or extern "C" declarations. This is only used in C++. 7860 template<typename T> 7861 static bool checkGlobalOrExternCConflict( 7862 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 7863 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 7864 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 7865 7866 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 7867 // The common case: this global doesn't conflict with any extern "C" 7868 // declaration. 7869 return false; 7870 } 7871 7872 if (Prev) { 7873 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 7874 // Both the old and new declarations have C language linkage. This is a 7875 // redeclaration. 7876 Previous.clear(); 7877 Previous.addDecl(Prev); 7878 return true; 7879 } 7880 7881 // This is a global, non-extern "C" declaration, and there is a previous 7882 // non-global extern "C" declaration. Diagnose if this is a variable 7883 // declaration. 7884 if (!isa<VarDecl>(ND)) 7885 return false; 7886 } else { 7887 // The declaration is extern "C". Check for any declaration in the 7888 // translation unit which might conflict. 7889 if (IsGlobal) { 7890 // We have already performed the lookup into the translation unit. 7891 IsGlobal = false; 7892 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7893 I != E; ++I) { 7894 if (isa<VarDecl>(*I)) { 7895 Prev = *I; 7896 break; 7897 } 7898 } 7899 } else { 7900 DeclContext::lookup_result R = 7901 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 7902 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 7903 I != E; ++I) { 7904 if (isa<VarDecl>(*I)) { 7905 Prev = *I; 7906 break; 7907 } 7908 // FIXME: If we have any other entity with this name in global scope, 7909 // the declaration is ill-formed, but that is a defect: it breaks the 7910 // 'stat' hack, for instance. Only variables can have mangled name 7911 // clashes with extern "C" declarations, so only they deserve a 7912 // diagnostic. 7913 } 7914 } 7915 7916 if (!Prev) 7917 return false; 7918 } 7919 7920 // Use the first declaration's location to ensure we point at something which 7921 // is lexically inside an extern "C" linkage-spec. 7922 assert(Prev && "should have found a previous declaration to diagnose"); 7923 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 7924 Prev = FD->getFirstDecl(); 7925 else 7926 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 7927 7928 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 7929 << IsGlobal << ND; 7930 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 7931 << IsGlobal; 7932 return false; 7933 } 7934 7935 /// Apply special rules for handling extern "C" declarations. Returns \c true 7936 /// if we have found that this is a redeclaration of some prior entity. 7937 /// 7938 /// Per C++ [dcl.link]p6: 7939 /// Two declarations [for a function or variable] with C language linkage 7940 /// with the same name that appear in different scopes refer to the same 7941 /// [entity]. An entity with C language linkage shall not be declared with 7942 /// the same name as an entity in global scope. 7943 template<typename T> 7944 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 7945 LookupResult &Previous) { 7946 if (!S.getLangOpts().CPlusPlus) { 7947 // In C, when declaring a global variable, look for a corresponding 'extern' 7948 // variable declared in function scope. We don't need this in C++, because 7949 // we find local extern decls in the surrounding file-scope DeclContext. 7950 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7951 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 7952 Previous.clear(); 7953 Previous.addDecl(Prev); 7954 return true; 7955 } 7956 } 7957 return false; 7958 } 7959 7960 // A declaration in the translation unit can conflict with an extern "C" 7961 // declaration. 7962 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 7963 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 7964 7965 // An extern "C" declaration can conflict with a declaration in the 7966 // translation unit or can be a redeclaration of an extern "C" declaration 7967 // in another scope. 7968 if (isIncompleteDeclExternC(S,ND)) 7969 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 7970 7971 // Neither global nor extern "C": nothing to do. 7972 return false; 7973 } 7974 7975 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 7976 // If the decl is already known invalid, don't check it. 7977 if (NewVD->isInvalidDecl()) 7978 return; 7979 7980 QualType T = NewVD->getType(); 7981 7982 // Defer checking an 'auto' type until its initializer is attached. 7983 if (T->isUndeducedType()) 7984 return; 7985 7986 if (NewVD->hasAttrs()) 7987 CheckAlignasUnderalignment(NewVD); 7988 7989 if (T->isObjCObjectType()) { 7990 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 7991 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 7992 T = Context.getObjCObjectPointerType(T); 7993 NewVD->setType(T); 7994 } 7995 7996 // Emit an error if an address space was applied to decl with local storage. 7997 // This includes arrays of objects with address space qualifiers, but not 7998 // automatic variables that point to other address spaces. 7999 // ISO/IEC TR 18037 S5.1.2 8000 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && 8001 T.getAddressSpace() != LangAS::Default) { 8002 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; 8003 NewVD->setInvalidDecl(); 8004 return; 8005 } 8006 8007 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program 8008 // scope. 8009 if (getLangOpts().OpenCLVersion == 120 && 8010 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers", 8011 getLangOpts()) && 8012 NewVD->isStaticLocal()) { 8013 Diag(NewVD->getLocation(), diag::err_static_function_scope); 8014 NewVD->setInvalidDecl(); 8015 return; 8016 } 8017 8018 if (getLangOpts().OpenCL) { 8019 if (!diagnoseOpenCLTypes(*this, NewVD)) 8020 return; 8021 8022 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. 8023 if (NewVD->hasAttr<BlocksAttr>()) { 8024 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); 8025 return; 8026 } 8027 8028 if (T->isBlockPointerType()) { 8029 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and 8030 // can't use 'extern' storage class. 8031 if (!T.isConstQualified()) { 8032 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) 8033 << 0 /*const*/; 8034 NewVD->setInvalidDecl(); 8035 return; 8036 } 8037 if (NewVD->hasExternalStorage()) { 8038 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); 8039 NewVD->setInvalidDecl(); 8040 return; 8041 } 8042 } 8043 8044 // FIXME: Adding local AS in C++ for OpenCL might make sense. 8045 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || 8046 NewVD->hasExternalStorage()) { 8047 if (!T->isSamplerT() && !T->isDependentType() && 8048 !(T.getAddressSpace() == LangAS::opencl_constant || 8049 (T.getAddressSpace() == LangAS::opencl_global && 8050 getOpenCLOptions().areProgramScopeVariablesSupported( 8051 getLangOpts())))) { 8052 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; 8053 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts())) 8054 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 8055 << Scope << "global or constant"; 8056 else 8057 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 8058 << Scope << "constant"; 8059 NewVD->setInvalidDecl(); 8060 return; 8061 } 8062 } else { 8063 if (T.getAddressSpace() == LangAS::opencl_global) { 8064 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8065 << 1 /*is any function*/ << "global"; 8066 NewVD->setInvalidDecl(); 8067 return; 8068 } 8069 if (T.getAddressSpace() == LangAS::opencl_constant || 8070 T.getAddressSpace() == LangAS::opencl_local) { 8071 FunctionDecl *FD = getCurFunctionDecl(); 8072 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables 8073 // in functions. 8074 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { 8075 if (T.getAddressSpace() == LangAS::opencl_constant) 8076 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8077 << 0 /*non-kernel only*/ << "constant"; 8078 else 8079 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8080 << 0 /*non-kernel only*/ << "local"; 8081 NewVD->setInvalidDecl(); 8082 return; 8083 } 8084 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be 8085 // in the outermost scope of a kernel function. 8086 if (FD && FD->hasAttr<OpenCLKernelAttr>()) { 8087 if (!getCurScope()->isFunctionScope()) { 8088 if (T.getAddressSpace() == LangAS::opencl_constant) 8089 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 8090 << "constant"; 8091 else 8092 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 8093 << "local"; 8094 NewVD->setInvalidDecl(); 8095 return; 8096 } 8097 } 8098 } else if (T.getAddressSpace() != LangAS::opencl_private && 8099 // If we are parsing a template we didn't deduce an addr 8100 // space yet. 8101 T.getAddressSpace() != LangAS::Default) { 8102 // Do not allow other address spaces on automatic variable. 8103 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; 8104 NewVD->setInvalidDecl(); 8105 return; 8106 } 8107 } 8108 } 8109 8110 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 8111 && !NewVD->hasAttr<BlocksAttr>()) { 8112 if (getLangOpts().getGC() != LangOptions::NonGC) 8113 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 8114 else { 8115 assert(!getLangOpts().ObjCAutoRefCount); 8116 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 8117 } 8118 } 8119 8120 bool isVM = T->isVariablyModifiedType(); 8121 if (isVM || NewVD->hasAttr<CleanupAttr>() || 8122 NewVD->hasAttr<BlocksAttr>()) 8123 setFunctionHasBranchProtectedScope(); 8124 8125 if ((isVM && NewVD->hasLinkage()) || 8126 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 8127 bool SizeIsNegative; 8128 llvm::APSInt Oversized; 8129 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 8130 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); 8131 QualType FixedT; 8132 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) 8133 FixedT = FixedTInfo->getType(); 8134 else if (FixedTInfo) { 8135 // Type and type-as-written are canonically different. We need to fix up 8136 // both types separately. 8137 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, 8138 Oversized); 8139 } 8140 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { 8141 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 8142 // FIXME: This won't give the correct result for 8143 // int a[10][n]; 8144 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 8145 8146 if (NewVD->isFileVarDecl()) 8147 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 8148 << SizeRange; 8149 else if (NewVD->isStaticLocal()) 8150 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 8151 << SizeRange; 8152 else 8153 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 8154 << SizeRange; 8155 NewVD->setInvalidDecl(); 8156 return; 8157 } 8158 8159 if (!FixedTInfo) { 8160 if (NewVD->isFileVarDecl()) 8161 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 8162 else 8163 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 8164 NewVD->setInvalidDecl(); 8165 return; 8166 } 8167 8168 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); 8169 NewVD->setType(FixedT); 8170 NewVD->setTypeSourceInfo(FixedTInfo); 8171 } 8172 8173 if (T->isVoidType()) { 8174 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 8175 // of objects and functions. 8176 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 8177 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 8178 << T; 8179 NewVD->setInvalidDecl(); 8180 return; 8181 } 8182 } 8183 8184 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 8185 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 8186 NewVD->setInvalidDecl(); 8187 return; 8188 } 8189 8190 if (!NewVD->hasLocalStorage() && T->isSizelessType()) { 8191 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; 8192 NewVD->setInvalidDecl(); 8193 return; 8194 } 8195 8196 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 8197 Diag(NewVD->getLocation(), diag::err_block_on_vm); 8198 NewVD->setInvalidDecl(); 8199 return; 8200 } 8201 8202 if (NewVD->isConstexpr() && !T->isDependentType() && 8203 RequireLiteralType(NewVD->getLocation(), T, 8204 diag::err_constexpr_var_non_literal)) { 8205 NewVD->setInvalidDecl(); 8206 return; 8207 } 8208 8209 // PPC MMA non-pointer types are not allowed as non-local variable types. 8210 if (Context.getTargetInfo().getTriple().isPPC64() && 8211 !NewVD->isLocalVarDecl() && 8212 CheckPPCMMAType(T, NewVD->getLocation())) { 8213 NewVD->setInvalidDecl(); 8214 return; 8215 } 8216 } 8217 8218 /// Perform semantic checking on a newly-created variable 8219 /// declaration. 8220 /// 8221 /// This routine performs all of the type-checking required for a 8222 /// variable declaration once it has been built. It is used both to 8223 /// check variables after they have been parsed and their declarators 8224 /// have been translated into a declaration, and to check variables 8225 /// that have been instantiated from a template. 8226 /// 8227 /// Sets NewVD->isInvalidDecl() if an error was encountered. 8228 /// 8229 /// Returns true if the variable declaration is a redeclaration. 8230 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 8231 CheckVariableDeclarationType(NewVD); 8232 8233 // If the decl is already known invalid, don't check it. 8234 if (NewVD->isInvalidDecl()) 8235 return false; 8236 8237 // If we did not find anything by this name, look for a non-visible 8238 // extern "C" declaration with the same name. 8239 if (Previous.empty() && 8240 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 8241 Previous.setShadowed(); 8242 8243 if (!Previous.empty()) { 8244 MergeVarDecl(NewVD, Previous); 8245 return true; 8246 } 8247 return false; 8248 } 8249 8250 /// AddOverriddenMethods - See if a method overrides any in the base classes, 8251 /// and if so, check that it's a valid override and remember it. 8252 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 8253 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden; 8254 8255 // Look for methods in base classes that this method might override. 8256 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 8257 /*DetectVirtual=*/false); 8258 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 8259 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 8260 DeclarationName Name = MD->getDeclName(); 8261 8262 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8263 // We really want to find the base class destructor here. 8264 QualType T = Context.getTypeDeclType(BaseRecord); 8265 CanQualType CT = Context.getCanonicalType(T); 8266 Name = Context.DeclarationNames.getCXXDestructorName(CT); 8267 } 8268 8269 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) { 8270 CXXMethodDecl *BaseMD = 8271 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl()); 8272 if (!BaseMD || !BaseMD->isVirtual() || 8273 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false, 8274 /*ConsiderCudaAttrs=*/true, 8275 // C++2a [class.virtual]p2 does not consider requires 8276 // clauses when overriding. 8277 /*ConsiderRequiresClauses=*/false)) 8278 continue; 8279 8280 if (Overridden.insert(BaseMD).second) { 8281 MD->addOverriddenMethod(BaseMD); 8282 CheckOverridingFunctionReturnType(MD, BaseMD); 8283 CheckOverridingFunctionAttributes(MD, BaseMD); 8284 CheckOverridingFunctionExceptionSpec(MD, BaseMD); 8285 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD); 8286 } 8287 8288 // A method can only override one function from each base class. We 8289 // don't track indirectly overridden methods from bases of bases. 8290 return true; 8291 } 8292 8293 return false; 8294 }; 8295 8296 DC->lookupInBases(VisitBase, Paths); 8297 return !Overridden.empty(); 8298 } 8299 8300 namespace { 8301 // Struct for holding all of the extra arguments needed by 8302 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 8303 struct ActOnFDArgs { 8304 Scope *S; 8305 Declarator &D; 8306 MultiTemplateParamsArg TemplateParamLists; 8307 bool AddToScope; 8308 }; 8309 } // end anonymous namespace 8310 8311 namespace { 8312 8313 // Callback to only accept typo corrections that have a non-zero edit distance. 8314 // Also only accept corrections that have the same parent decl. 8315 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { 8316 public: 8317 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 8318 CXXRecordDecl *Parent) 8319 : Context(Context), OriginalFD(TypoFD), 8320 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 8321 8322 bool ValidateCandidate(const TypoCorrection &candidate) override { 8323 if (candidate.getEditDistance() == 0) 8324 return false; 8325 8326 SmallVector<unsigned, 1> MismatchedParams; 8327 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 8328 CDeclEnd = candidate.end(); 8329 CDecl != CDeclEnd; ++CDecl) { 8330 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8331 8332 if (FD && !FD->hasBody() && 8333 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 8334 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8335 CXXRecordDecl *Parent = MD->getParent(); 8336 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 8337 return true; 8338 } else if (!ExpectedParent) { 8339 return true; 8340 } 8341 } 8342 } 8343 8344 return false; 8345 } 8346 8347 std::unique_ptr<CorrectionCandidateCallback> clone() override { 8348 return std::make_unique<DifferentNameValidatorCCC>(*this); 8349 } 8350 8351 private: 8352 ASTContext &Context; 8353 FunctionDecl *OriginalFD; 8354 CXXRecordDecl *ExpectedParent; 8355 }; 8356 8357 } // end anonymous namespace 8358 8359 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { 8360 TypoCorrectedFunctionDefinitions.insert(F); 8361 } 8362 8363 /// Generate diagnostics for an invalid function redeclaration. 8364 /// 8365 /// This routine handles generating the diagnostic messages for an invalid 8366 /// function redeclaration, including finding possible similar declarations 8367 /// or performing typo correction if there are no previous declarations with 8368 /// the same name. 8369 /// 8370 /// Returns a NamedDecl iff typo correction was performed and substituting in 8371 /// the new declaration name does not cause new errors. 8372 static NamedDecl *DiagnoseInvalidRedeclaration( 8373 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 8374 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 8375 DeclarationName Name = NewFD->getDeclName(); 8376 DeclContext *NewDC = NewFD->getDeclContext(); 8377 SmallVector<unsigned, 1> MismatchedParams; 8378 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 8379 TypoCorrection Correction; 8380 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 8381 unsigned DiagMsg = 8382 IsLocalFriend ? diag::err_no_matching_local_friend : 8383 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : 8384 diag::err_member_decl_does_not_match; 8385 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 8386 IsLocalFriend ? Sema::LookupLocalFriendName 8387 : Sema::LookupOrdinaryName, 8388 Sema::ForVisibleRedeclaration); 8389 8390 NewFD->setInvalidDecl(); 8391 if (IsLocalFriend) 8392 SemaRef.LookupName(Prev, S); 8393 else 8394 SemaRef.LookupQualifiedName(Prev, NewDC); 8395 assert(!Prev.isAmbiguous() && 8396 "Cannot have an ambiguity in previous-declaration lookup"); 8397 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 8398 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, 8399 MD ? MD->getParent() : nullptr); 8400 if (!Prev.empty()) { 8401 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 8402 Func != FuncEnd; ++Func) { 8403 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 8404 if (FD && 8405 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8406 // Add 1 to the index so that 0 can mean the mismatch didn't 8407 // involve a parameter 8408 unsigned ParamNum = 8409 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 8410 NearMatches.push_back(std::make_pair(FD, ParamNum)); 8411 } 8412 } 8413 // If the qualified name lookup yielded nothing, try typo correction 8414 } else if ((Correction = SemaRef.CorrectTypo( 8415 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 8416 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, 8417 IsLocalFriend ? nullptr : NewDC))) { 8418 // Set up everything for the call to ActOnFunctionDeclarator 8419 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 8420 ExtraArgs.D.getIdentifierLoc()); 8421 Previous.clear(); 8422 Previous.setLookupName(Correction.getCorrection()); 8423 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 8424 CDeclEnd = Correction.end(); 8425 CDecl != CDeclEnd; ++CDecl) { 8426 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8427 if (FD && !FD->hasBody() && 8428 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8429 Previous.addDecl(FD); 8430 } 8431 } 8432 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 8433 8434 NamedDecl *Result; 8435 // Retry building the function declaration with the new previous 8436 // declarations, and with errors suppressed. 8437 { 8438 // Trap errors. 8439 Sema::SFINAETrap Trap(SemaRef); 8440 8441 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 8442 // pieces need to verify the typo-corrected C++ declaration and hopefully 8443 // eliminate the need for the parameter pack ExtraArgs. 8444 Result = SemaRef.ActOnFunctionDeclarator( 8445 ExtraArgs.S, ExtraArgs.D, 8446 Correction.getCorrectionDecl()->getDeclContext(), 8447 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 8448 ExtraArgs.AddToScope); 8449 8450 if (Trap.hasErrorOccurred()) 8451 Result = nullptr; 8452 } 8453 8454 if (Result) { 8455 // Determine which correction we picked. 8456 Decl *Canonical = Result->getCanonicalDecl(); 8457 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8458 I != E; ++I) 8459 if ((*I)->getCanonicalDecl() == Canonical) 8460 Correction.setCorrectionDecl(*I); 8461 8462 // Let Sema know about the correction. 8463 SemaRef.MarkTypoCorrectedFunctionDefinition(Result); 8464 SemaRef.diagnoseTypo( 8465 Correction, 8466 SemaRef.PDiag(IsLocalFriend 8467 ? diag::err_no_matching_local_friend_suggest 8468 : diag::err_member_decl_does_not_match_suggest) 8469 << Name << NewDC << IsDefinition); 8470 return Result; 8471 } 8472 8473 // Pretend the typo correction never occurred 8474 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 8475 ExtraArgs.D.getIdentifierLoc()); 8476 ExtraArgs.D.setRedeclaration(wasRedeclaration); 8477 Previous.clear(); 8478 Previous.setLookupName(Name); 8479 } 8480 8481 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 8482 << Name << NewDC << IsDefinition << NewFD->getLocation(); 8483 8484 bool NewFDisConst = false; 8485 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 8486 NewFDisConst = NewMD->isConst(); 8487 8488 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 8489 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 8490 NearMatch != NearMatchEnd; ++NearMatch) { 8491 FunctionDecl *FD = NearMatch->first; 8492 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8493 bool FDisConst = MD && MD->isConst(); 8494 bool IsMember = MD || !IsLocalFriend; 8495 8496 // FIXME: These notes are poorly worded for the local friend case. 8497 if (unsigned Idx = NearMatch->second) { 8498 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 8499 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 8500 if (Loc.isInvalid()) Loc = FD->getLocation(); 8501 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 8502 : diag::note_local_decl_close_param_match) 8503 << Idx << FDParam->getType() 8504 << NewFD->getParamDecl(Idx - 1)->getType(); 8505 } else if (FDisConst != NewFDisConst) { 8506 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 8507 << NewFDisConst << FD->getSourceRange().getEnd(); 8508 } else 8509 SemaRef.Diag(FD->getLocation(), 8510 IsMember ? diag::note_member_def_close_match 8511 : diag::note_local_decl_close_match); 8512 } 8513 return nullptr; 8514 } 8515 8516 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 8517 switch (D.getDeclSpec().getStorageClassSpec()) { 8518 default: llvm_unreachable("Unknown storage class!"); 8519 case DeclSpec::SCS_auto: 8520 case DeclSpec::SCS_register: 8521 case DeclSpec::SCS_mutable: 8522 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8523 diag::err_typecheck_sclass_func); 8524 D.getMutableDeclSpec().ClearStorageClassSpecs(); 8525 D.setInvalidType(); 8526 break; 8527 case DeclSpec::SCS_unspecified: break; 8528 case DeclSpec::SCS_extern: 8529 if (D.getDeclSpec().isExternInLinkageSpec()) 8530 return SC_None; 8531 return SC_Extern; 8532 case DeclSpec::SCS_static: { 8533 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8534 // C99 6.7.1p5: 8535 // The declaration of an identifier for a function that has 8536 // block scope shall have no explicit storage-class specifier 8537 // other than extern 8538 // See also (C++ [dcl.stc]p4). 8539 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8540 diag::err_static_block_func); 8541 break; 8542 } else 8543 return SC_Static; 8544 } 8545 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 8546 } 8547 8548 // No explicit storage class has already been returned 8549 return SC_None; 8550 } 8551 8552 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 8553 DeclContext *DC, QualType &R, 8554 TypeSourceInfo *TInfo, 8555 StorageClass SC, 8556 bool &IsVirtualOkay) { 8557 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 8558 DeclarationName Name = NameInfo.getName(); 8559 8560 FunctionDecl *NewFD = nullptr; 8561 bool isInline = D.getDeclSpec().isInlineSpecified(); 8562 8563 if (!SemaRef.getLangOpts().CPlusPlus) { 8564 // Determine whether the function was written with a 8565 // prototype. This true when: 8566 // - there is a prototype in the declarator, or 8567 // - the type R of the function is some kind of typedef or other non- 8568 // attributed reference to a type name (which eventually refers to a 8569 // function type). 8570 bool HasPrototype = 8571 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 8572 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); 8573 8574 NewFD = FunctionDecl::Create( 8575 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, 8576 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype, 8577 ConstexprSpecKind::Unspecified, 8578 /*TrailingRequiresClause=*/nullptr); 8579 if (D.isInvalidType()) 8580 NewFD->setInvalidDecl(); 8581 8582 return NewFD; 8583 } 8584 8585 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); 8586 8587 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8588 if (ConstexprKind == ConstexprSpecKind::Constinit) { 8589 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), 8590 diag::err_constexpr_wrong_decl_kind) 8591 << static_cast<int>(ConstexprKind); 8592 ConstexprKind = ConstexprSpecKind::Unspecified; 8593 D.getMutableDeclSpec().ClearConstexprSpec(); 8594 } 8595 Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); 8596 8597 // Check that the return type is not an abstract class type. 8598 // For record types, this is done by the AbstractClassUsageDiagnoser once 8599 // the class has been completely parsed. 8600 if (!DC->isRecord() && 8601 SemaRef.RequireNonAbstractType( 8602 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), 8603 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 8604 D.setInvalidType(); 8605 8606 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 8607 // This is a C++ constructor declaration. 8608 assert(DC->isRecord() && 8609 "Constructors can only be declared in a member context"); 8610 8611 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 8612 return CXXConstructorDecl::Create( 8613 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8614 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(), 8615 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, 8616 InheritedConstructor(), TrailingRequiresClause); 8617 8618 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8619 // This is a C++ destructor declaration. 8620 if (DC->isRecord()) { 8621 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 8622 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 8623 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 8624 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, 8625 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8626 /*isImplicitlyDeclared=*/false, ConstexprKind, 8627 TrailingRequiresClause); 8628 8629 // If the destructor needs an implicit exception specification, set it 8630 // now. FIXME: It'd be nice to be able to create the right type to start 8631 // with, but the type needs to reference the destructor declaration. 8632 if (SemaRef.getLangOpts().CPlusPlus11) 8633 SemaRef.AdjustDestructorExceptionSpec(NewDD); 8634 8635 IsVirtualOkay = true; 8636 return NewDD; 8637 8638 } else { 8639 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 8640 D.setInvalidType(); 8641 8642 // Create a FunctionDecl to satisfy the function definition parsing 8643 // code path. 8644 return FunctionDecl::Create( 8645 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R, 8646 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8647 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause); 8648 } 8649 8650 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 8651 if (!DC->isRecord()) { 8652 SemaRef.Diag(D.getIdentifierLoc(), 8653 diag::err_conv_function_not_member); 8654 return nullptr; 8655 } 8656 8657 SemaRef.CheckConversionDeclarator(D, R, SC); 8658 if (D.isInvalidType()) 8659 return nullptr; 8660 8661 IsVirtualOkay = true; 8662 return CXXConversionDecl::Create( 8663 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8664 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8665 ExplicitSpecifier, ConstexprKind, SourceLocation(), 8666 TrailingRequiresClause); 8667 8668 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 8669 if (TrailingRequiresClause) 8670 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), 8671 diag::err_trailing_requires_clause_on_deduction_guide) 8672 << TrailingRequiresClause->getSourceRange(); 8673 SemaRef.CheckDeductionGuideDeclarator(D, R, SC); 8674 8675 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8676 ExplicitSpecifier, NameInfo, R, TInfo, 8677 D.getEndLoc()); 8678 } else if (DC->isRecord()) { 8679 // If the name of the function is the same as the name of the record, 8680 // then this must be an invalid constructor that has a return type. 8681 // (The parser checks for a return type and makes the declarator a 8682 // constructor if it has no return type). 8683 if (Name.getAsIdentifierInfo() && 8684 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 8685 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 8686 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8687 << SourceRange(D.getIdentifierLoc()); 8688 return nullptr; 8689 } 8690 8691 // This is a C++ method declaration. 8692 CXXMethodDecl *Ret = CXXMethodDecl::Create( 8693 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8694 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8695 ConstexprKind, SourceLocation(), TrailingRequiresClause); 8696 IsVirtualOkay = !Ret->isStatic(); 8697 return Ret; 8698 } else { 8699 bool isFriend = 8700 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 8701 if (!isFriend && SemaRef.CurContext->isRecord()) 8702 return nullptr; 8703 8704 // Determine whether the function was written with a 8705 // prototype. This true when: 8706 // - we're in C++ (where every function has a prototype), 8707 return FunctionDecl::Create( 8708 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, 8709 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8710 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause); 8711 } 8712 } 8713 8714 enum OpenCLParamType { 8715 ValidKernelParam, 8716 PtrPtrKernelParam, 8717 PtrKernelParam, 8718 InvalidAddrSpacePtrKernelParam, 8719 InvalidKernelParam, 8720 RecordKernelParam 8721 }; 8722 8723 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { 8724 // Size dependent types are just typedefs to normal integer types 8725 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to 8726 // integers other than by their names. 8727 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; 8728 8729 // Remove typedefs one by one until we reach a typedef 8730 // for a size dependent type. 8731 QualType DesugaredTy = Ty; 8732 do { 8733 ArrayRef<StringRef> Names(SizeTypeNames); 8734 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); 8735 if (Names.end() != Match) 8736 return true; 8737 8738 Ty = DesugaredTy; 8739 DesugaredTy = Ty.getSingleStepDesugaredType(C); 8740 } while (DesugaredTy != Ty); 8741 8742 return false; 8743 } 8744 8745 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { 8746 if (PT->isDependentType()) 8747 return InvalidKernelParam; 8748 8749 if (PT->isPointerType() || PT->isReferenceType()) { 8750 QualType PointeeType = PT->getPointeeType(); 8751 if (PointeeType.getAddressSpace() == LangAS::opencl_generic || 8752 PointeeType.getAddressSpace() == LangAS::opencl_private || 8753 PointeeType.getAddressSpace() == LangAS::Default) 8754 return InvalidAddrSpacePtrKernelParam; 8755 8756 if (PointeeType->isPointerType()) { 8757 // This is a pointer to pointer parameter. 8758 // Recursively check inner type. 8759 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType); 8760 if (ParamKind == InvalidAddrSpacePtrKernelParam || 8761 ParamKind == InvalidKernelParam) 8762 return ParamKind; 8763 8764 return PtrPtrKernelParam; 8765 } 8766 8767 // C++ for OpenCL v1.0 s2.4: 8768 // Moreover the types used in parameters of the kernel functions must be: 8769 // Standard layout types for pointer parameters. The same applies to 8770 // reference if an implementation supports them in kernel parameters. 8771 if (S.getLangOpts().OpenCLCPlusPlus && 8772 !S.getOpenCLOptions().isAvailableOption( 8773 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && 8774 !PointeeType->isAtomicType() && !PointeeType->isVoidType() && 8775 !PointeeType->isStandardLayoutType()) 8776 return InvalidKernelParam; 8777 8778 return PtrKernelParam; 8779 } 8780 8781 // OpenCL v1.2 s6.9.k: 8782 // Arguments to kernel functions in a program cannot be declared with the 8783 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8784 // uintptr_t or a struct and/or union that contain fields declared to be one 8785 // of these built-in scalar types. 8786 if (isOpenCLSizeDependentType(S.getASTContext(), PT)) 8787 return InvalidKernelParam; 8788 8789 if (PT->isImageType()) 8790 return PtrKernelParam; 8791 8792 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) 8793 return InvalidKernelParam; 8794 8795 // OpenCL extension spec v1.2 s9.5: 8796 // This extension adds support for half scalar and vector types as built-in 8797 // types that can be used for arithmetic operations, conversions etc. 8798 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) && 8799 PT->isHalfType()) 8800 return InvalidKernelParam; 8801 8802 // Look into an array argument to check if it has a forbidden type. 8803 if (PT->isArrayType()) { 8804 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); 8805 // Call ourself to check an underlying type of an array. Since the 8806 // getPointeeOrArrayElementType returns an innermost type which is not an 8807 // array, this recursive call only happens once. 8808 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); 8809 } 8810 8811 // C++ for OpenCL v1.0 s2.4: 8812 // Moreover the types used in parameters of the kernel functions must be: 8813 // Trivial and standard-layout types C++17 [basic.types] (plain old data 8814 // types) for parameters passed by value; 8815 if (S.getLangOpts().OpenCLCPlusPlus && 8816 !S.getOpenCLOptions().isAvailableOption( 8817 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && 8818 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context)) 8819 return InvalidKernelParam; 8820 8821 if (PT->isRecordType()) 8822 return RecordKernelParam; 8823 8824 return ValidKernelParam; 8825 } 8826 8827 static void checkIsValidOpenCLKernelParameter( 8828 Sema &S, 8829 Declarator &D, 8830 ParmVarDecl *Param, 8831 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 8832 QualType PT = Param->getType(); 8833 8834 // Cache the valid types we encounter to avoid rechecking structs that are 8835 // used again 8836 if (ValidTypes.count(PT.getTypePtr())) 8837 return; 8838 8839 switch (getOpenCLKernelParameterType(S, PT)) { 8840 case PtrPtrKernelParam: 8841 // OpenCL v3.0 s6.11.a: 8842 // A kernel function argument cannot be declared as a pointer to a pointer 8843 // type. [...] This restriction only applies to OpenCL C 1.2 or below. 8844 if (S.getLangOpts().getOpenCLCompatibleVersion() <= 120) { 8845 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 8846 D.setInvalidType(); 8847 return; 8848 } 8849 8850 ValidTypes.insert(PT.getTypePtr()); 8851 return; 8852 8853 case InvalidAddrSpacePtrKernelParam: 8854 // OpenCL v1.0 s6.5: 8855 // __kernel function arguments declared to be a pointer of a type can point 8856 // to one of the following address spaces only : __global, __local or 8857 // __constant. 8858 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); 8859 D.setInvalidType(); 8860 return; 8861 8862 // OpenCL v1.2 s6.9.k: 8863 // Arguments to kernel functions in a program cannot be declared with the 8864 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8865 // uintptr_t or a struct and/or union that contain fields declared to be 8866 // one of these built-in scalar types. 8867 8868 case InvalidKernelParam: 8869 // OpenCL v1.2 s6.8 n: 8870 // A kernel function argument cannot be declared 8871 // of event_t type. 8872 // Do not diagnose half type since it is diagnosed as invalid argument 8873 // type for any function elsewhere. 8874 if (!PT->isHalfType()) { 8875 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8876 8877 // Explain what typedefs are involved. 8878 const TypedefType *Typedef = nullptr; 8879 while ((Typedef = PT->getAs<TypedefType>())) { 8880 SourceLocation Loc = Typedef->getDecl()->getLocation(); 8881 // SourceLocation may be invalid for a built-in type. 8882 if (Loc.isValid()) 8883 S.Diag(Loc, diag::note_entity_declared_at) << PT; 8884 PT = Typedef->desugar(); 8885 } 8886 } 8887 8888 D.setInvalidType(); 8889 return; 8890 8891 case PtrKernelParam: 8892 case ValidKernelParam: 8893 ValidTypes.insert(PT.getTypePtr()); 8894 return; 8895 8896 case RecordKernelParam: 8897 break; 8898 } 8899 8900 // Track nested structs we will inspect 8901 SmallVector<const Decl *, 4> VisitStack; 8902 8903 // Track where we are in the nested structs. Items will migrate from 8904 // VisitStack to HistoryStack as we do the DFS for bad field. 8905 SmallVector<const FieldDecl *, 4> HistoryStack; 8906 HistoryStack.push_back(nullptr); 8907 8908 // At this point we already handled everything except of a RecordType or 8909 // an ArrayType of a RecordType. 8910 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); 8911 const RecordType *RecTy = 8912 PT->getPointeeOrArrayElementType()->getAs<RecordType>(); 8913 const RecordDecl *OrigRecDecl = RecTy->getDecl(); 8914 8915 VisitStack.push_back(RecTy->getDecl()); 8916 assert(VisitStack.back() && "First decl null?"); 8917 8918 do { 8919 const Decl *Next = VisitStack.pop_back_val(); 8920 if (!Next) { 8921 assert(!HistoryStack.empty()); 8922 // Found a marker, we have gone up a level 8923 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 8924 ValidTypes.insert(Hist->getType().getTypePtr()); 8925 8926 continue; 8927 } 8928 8929 // Adds everything except the original parameter declaration (which is not a 8930 // field itself) to the history stack. 8931 const RecordDecl *RD; 8932 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 8933 HistoryStack.push_back(Field); 8934 8935 QualType FieldTy = Field->getType(); 8936 // Other field types (known to be valid or invalid) are handled while we 8937 // walk around RecordDecl::fields(). 8938 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && 8939 "Unexpected type."); 8940 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); 8941 8942 RD = FieldRecTy->castAs<RecordType>()->getDecl(); 8943 } else { 8944 RD = cast<RecordDecl>(Next); 8945 } 8946 8947 // Add a null marker so we know when we've gone back up a level 8948 VisitStack.push_back(nullptr); 8949 8950 for (const auto *FD : RD->fields()) { 8951 QualType QT = FD->getType(); 8952 8953 if (ValidTypes.count(QT.getTypePtr())) 8954 continue; 8955 8956 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); 8957 if (ParamType == ValidKernelParam) 8958 continue; 8959 8960 if (ParamType == RecordKernelParam) { 8961 VisitStack.push_back(FD); 8962 continue; 8963 } 8964 8965 // OpenCL v1.2 s6.9.p: 8966 // Arguments to kernel functions that are declared to be a struct or union 8967 // do not allow OpenCL objects to be passed as elements of the struct or 8968 // union. 8969 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 8970 ParamType == InvalidAddrSpacePtrKernelParam) { 8971 S.Diag(Param->getLocation(), 8972 diag::err_record_with_pointers_kernel_param) 8973 << PT->isUnionType() 8974 << PT; 8975 } else { 8976 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8977 } 8978 8979 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) 8980 << OrigRecDecl->getDeclName(); 8981 8982 // We have an error, now let's go back up through history and show where 8983 // the offending field came from 8984 for (ArrayRef<const FieldDecl *>::const_iterator 8985 I = HistoryStack.begin() + 1, 8986 E = HistoryStack.end(); 8987 I != E; ++I) { 8988 const FieldDecl *OuterField = *I; 8989 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 8990 << OuterField->getType(); 8991 } 8992 8993 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 8994 << QT->isPointerType() 8995 << QT; 8996 D.setInvalidType(); 8997 return; 8998 } 8999 } while (!VisitStack.empty()); 9000 } 9001 9002 /// Find the DeclContext in which a tag is implicitly declared if we see an 9003 /// elaborated type specifier in the specified context, and lookup finds 9004 /// nothing. 9005 static DeclContext *getTagInjectionContext(DeclContext *DC) { 9006 while (!DC->isFileContext() && !DC->isFunctionOrMethod()) 9007 DC = DC->getParent(); 9008 return DC; 9009 } 9010 9011 /// Find the Scope in which a tag is implicitly declared if we see an 9012 /// elaborated type specifier in the specified context, and lookup finds 9013 /// nothing. 9014 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { 9015 while (S->isClassScope() || 9016 (LangOpts.CPlusPlus && 9017 S->isFunctionPrototypeScope()) || 9018 ((S->getFlags() & Scope::DeclScope) == 0) || 9019 (S->getEntity() && S->getEntity()->isTransparentContext())) 9020 S = S->getParent(); 9021 return S; 9022 } 9023 9024 NamedDecl* 9025 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 9026 TypeSourceInfo *TInfo, LookupResult &Previous, 9027 MultiTemplateParamsArg TemplateParamListsRef, 9028 bool &AddToScope) { 9029 QualType R = TInfo->getType(); 9030 9031 assert(R->isFunctionType()); 9032 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) 9033 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); 9034 9035 SmallVector<TemplateParameterList *, 4> TemplateParamLists; 9036 for (TemplateParameterList *TPL : TemplateParamListsRef) 9037 TemplateParamLists.push_back(TPL); 9038 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { 9039 if (!TemplateParamLists.empty() && 9040 Invented->getDepth() == TemplateParamLists.back()->getDepth()) 9041 TemplateParamLists.back() = Invented; 9042 else 9043 TemplateParamLists.push_back(Invented); 9044 } 9045 9046 // TODO: consider using NameInfo for diagnostic. 9047 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9048 DeclarationName Name = NameInfo.getName(); 9049 StorageClass SC = getFunctionStorageClass(*this, D); 9050 9051 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 9052 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 9053 diag::err_invalid_thread) 9054 << DeclSpec::getSpecifierName(TSCS); 9055 9056 if (D.isFirstDeclarationOfMember()) 9057 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), 9058 D.getIdentifierLoc()); 9059 9060 bool isFriend = false; 9061 FunctionTemplateDecl *FunctionTemplate = nullptr; 9062 bool isMemberSpecialization = false; 9063 bool isFunctionTemplateSpecialization = false; 9064 9065 bool isDependentClassScopeExplicitSpecialization = false; 9066 bool HasExplicitTemplateArgs = false; 9067 TemplateArgumentListInfo TemplateArgs; 9068 9069 bool isVirtualOkay = false; 9070 9071 DeclContext *OriginalDC = DC; 9072 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 9073 9074 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 9075 isVirtualOkay); 9076 if (!NewFD) return nullptr; 9077 9078 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 9079 NewFD->setTopLevelDeclInObjCContainer(); 9080 9081 // Set the lexical context. If this is a function-scope declaration, or has a 9082 // C++ scope specifier, or is the object of a friend declaration, the lexical 9083 // context will be different from the semantic context. 9084 NewFD->setLexicalDeclContext(CurContext); 9085 9086 if (IsLocalExternDecl) 9087 NewFD->setLocalExternDecl(); 9088 9089 if (getLangOpts().CPlusPlus) { 9090 bool isInline = D.getDeclSpec().isInlineSpecified(); 9091 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 9092 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); 9093 isFriend = D.getDeclSpec().isFriendSpecified(); 9094 if (isFriend && !isInline && D.isFunctionDefinition()) { 9095 // C++ [class.friend]p5 9096 // A function can be defined in a friend declaration of a 9097 // class . . . . Such a function is implicitly inline. 9098 NewFD->setImplicitlyInline(); 9099 } 9100 9101 // If this is a method defined in an __interface, and is not a constructor 9102 // or an overloaded operator, then set the pure flag (isVirtual will already 9103 // return true). 9104 if (const CXXRecordDecl *Parent = 9105 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 9106 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 9107 NewFD->setPure(true); 9108 9109 // C++ [class.union]p2 9110 // A union can have member functions, but not virtual functions. 9111 if (isVirtual && Parent->isUnion()) { 9112 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); 9113 NewFD->setInvalidDecl(); 9114 } 9115 } 9116 9117 SetNestedNameSpecifier(*this, NewFD, D); 9118 isMemberSpecialization = false; 9119 isFunctionTemplateSpecialization = false; 9120 if (D.isInvalidType()) 9121 NewFD->setInvalidDecl(); 9122 9123 // Match up the template parameter lists with the scope specifier, then 9124 // determine whether we have a template or a template specialization. 9125 bool Invalid = false; 9126 TemplateParameterList *TemplateParams = 9127 MatchTemplateParametersToScopeSpecifier( 9128 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 9129 D.getCXXScopeSpec(), 9130 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 9131 ? D.getName().TemplateId 9132 : nullptr, 9133 TemplateParamLists, isFriend, isMemberSpecialization, 9134 Invalid); 9135 if (TemplateParams) { 9136 // Check that we can declare a template here. 9137 if (CheckTemplateDeclScope(S, TemplateParams)) 9138 NewFD->setInvalidDecl(); 9139 9140 if (TemplateParams->size() > 0) { 9141 // This is a function template 9142 9143 // A destructor cannot be a template. 9144 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 9145 Diag(NewFD->getLocation(), diag::err_destructor_template); 9146 NewFD->setInvalidDecl(); 9147 } 9148 9149 // If we're adding a template to a dependent context, we may need to 9150 // rebuilding some of the types used within the template parameter list, 9151 // now that we know what the current instantiation is. 9152 if (DC->isDependentContext()) { 9153 ContextRAII SavedContext(*this, DC); 9154 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 9155 Invalid = true; 9156 } 9157 9158 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 9159 NewFD->getLocation(), 9160 Name, TemplateParams, 9161 NewFD); 9162 FunctionTemplate->setLexicalDeclContext(CurContext); 9163 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 9164 9165 // For source fidelity, store the other template param lists. 9166 if (TemplateParamLists.size() > 1) { 9167 NewFD->setTemplateParameterListsInfo(Context, 9168 ArrayRef<TemplateParameterList *>(TemplateParamLists) 9169 .drop_back(1)); 9170 } 9171 } else { 9172 // This is a function template specialization. 9173 isFunctionTemplateSpecialization = true; 9174 // For source fidelity, store all the template param lists. 9175 if (TemplateParamLists.size() > 0) 9176 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 9177 9178 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 9179 if (isFriend) { 9180 // We want to remove the "template<>", found here. 9181 SourceRange RemoveRange = TemplateParams->getSourceRange(); 9182 9183 // If we remove the template<> and the name is not a 9184 // template-id, we're actually silently creating a problem: 9185 // the friend declaration will refer to an untemplated decl, 9186 // and clearly the user wants a template specialization. So 9187 // we need to insert '<>' after the name. 9188 SourceLocation InsertLoc; 9189 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 9190 InsertLoc = D.getName().getSourceRange().getEnd(); 9191 InsertLoc = getLocForEndOfToken(InsertLoc); 9192 } 9193 9194 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 9195 << Name << RemoveRange 9196 << FixItHint::CreateRemoval(RemoveRange) 9197 << FixItHint::CreateInsertion(InsertLoc, "<>"); 9198 } 9199 } 9200 } else { 9201 // Check that we can declare a template here. 9202 if (!TemplateParamLists.empty() && isMemberSpecialization && 9203 CheckTemplateDeclScope(S, TemplateParamLists.back())) 9204 NewFD->setInvalidDecl(); 9205 9206 // All template param lists were matched against the scope specifier: 9207 // this is NOT (an explicit specialization of) a template. 9208 if (TemplateParamLists.size() > 0) 9209 // For source fidelity, store all the template param lists. 9210 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 9211 } 9212 9213 if (Invalid) { 9214 NewFD->setInvalidDecl(); 9215 if (FunctionTemplate) 9216 FunctionTemplate->setInvalidDecl(); 9217 } 9218 9219 // C++ [dcl.fct.spec]p5: 9220 // The virtual specifier shall only be used in declarations of 9221 // nonstatic class member functions that appear within a 9222 // member-specification of a class declaration; see 10.3. 9223 // 9224 if (isVirtual && !NewFD->isInvalidDecl()) { 9225 if (!isVirtualOkay) { 9226 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9227 diag::err_virtual_non_function); 9228 } else if (!CurContext->isRecord()) { 9229 // 'virtual' was specified outside of the class. 9230 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9231 diag::err_virtual_out_of_class) 9232 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9233 } else if (NewFD->getDescribedFunctionTemplate()) { 9234 // C++ [temp.mem]p3: 9235 // A member function template shall not be virtual. 9236 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9237 diag::err_virtual_member_function_template) 9238 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9239 } else { 9240 // Okay: Add virtual to the method. 9241 NewFD->setVirtualAsWritten(true); 9242 } 9243 9244 if (getLangOpts().CPlusPlus14 && 9245 NewFD->getReturnType()->isUndeducedType()) 9246 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 9247 } 9248 9249 if (getLangOpts().CPlusPlus14 && 9250 (NewFD->isDependentContext() || 9251 (isFriend && CurContext->isDependentContext())) && 9252 NewFD->getReturnType()->isUndeducedType()) { 9253 // If the function template is referenced directly (for instance, as a 9254 // member of the current instantiation), pretend it has a dependent type. 9255 // This is not really justified by the standard, but is the only sane 9256 // thing to do. 9257 // FIXME: For a friend function, we have not marked the function as being 9258 // a friend yet, so 'isDependentContext' on the FD doesn't work. 9259 const FunctionProtoType *FPT = 9260 NewFD->getType()->castAs<FunctionProtoType>(); 9261 QualType Result = SubstAutoTypeDependent(FPT->getReturnType()); 9262 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 9263 FPT->getExtProtoInfo())); 9264 } 9265 9266 // C++ [dcl.fct.spec]p3: 9267 // The inline specifier shall not appear on a block scope function 9268 // declaration. 9269 if (isInline && !NewFD->isInvalidDecl()) { 9270 if (CurContext->isFunctionOrMethod()) { 9271 // 'inline' is not allowed on block scope function declaration. 9272 Diag(D.getDeclSpec().getInlineSpecLoc(), 9273 diag::err_inline_declaration_block_scope) << Name 9274 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9275 } 9276 } 9277 9278 // C++ [dcl.fct.spec]p6: 9279 // The explicit specifier shall be used only in the declaration of a 9280 // constructor or conversion function within its class definition; 9281 // see 12.3.1 and 12.3.2. 9282 if (hasExplicit && !NewFD->isInvalidDecl() && 9283 !isa<CXXDeductionGuideDecl>(NewFD)) { 9284 if (!CurContext->isRecord()) { 9285 // 'explicit' was specified outside of the class. 9286 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9287 diag::err_explicit_out_of_class) 9288 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9289 } else if (!isa<CXXConstructorDecl>(NewFD) && 9290 !isa<CXXConversionDecl>(NewFD)) { 9291 // 'explicit' was specified on a function that wasn't a constructor 9292 // or conversion function. 9293 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9294 diag::err_explicit_non_ctor_or_conv_function) 9295 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9296 } 9297 } 9298 9299 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 9300 if (ConstexprKind != ConstexprSpecKind::Unspecified) { 9301 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 9302 // are implicitly inline. 9303 NewFD->setImplicitlyInline(); 9304 9305 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 9306 // be either constructors or to return a literal type. Therefore, 9307 // destructors cannot be declared constexpr. 9308 if (isa<CXXDestructorDecl>(NewFD) && 9309 (!getLangOpts().CPlusPlus20 || 9310 ConstexprKind == ConstexprSpecKind::Consteval)) { 9311 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) 9312 << static_cast<int>(ConstexprKind); 9313 NewFD->setConstexprKind(getLangOpts().CPlusPlus20 9314 ? ConstexprSpecKind::Unspecified 9315 : ConstexprSpecKind::Constexpr); 9316 } 9317 // C++20 [dcl.constexpr]p2: An allocation function, or a 9318 // deallocation function shall not be declared with the consteval 9319 // specifier. 9320 if (ConstexprKind == ConstexprSpecKind::Consteval && 9321 (NewFD->getOverloadedOperator() == OO_New || 9322 NewFD->getOverloadedOperator() == OO_Array_New || 9323 NewFD->getOverloadedOperator() == OO_Delete || 9324 NewFD->getOverloadedOperator() == OO_Array_Delete)) { 9325 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9326 diag::err_invalid_consteval_decl_kind) 9327 << NewFD; 9328 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); 9329 } 9330 } 9331 9332 // If __module_private__ was specified, mark the function accordingly. 9333 if (D.getDeclSpec().isModulePrivateSpecified()) { 9334 if (isFunctionTemplateSpecialization) { 9335 SourceLocation ModulePrivateLoc 9336 = D.getDeclSpec().getModulePrivateSpecLoc(); 9337 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 9338 << 0 9339 << FixItHint::CreateRemoval(ModulePrivateLoc); 9340 } else { 9341 NewFD->setModulePrivate(); 9342 if (FunctionTemplate) 9343 FunctionTemplate->setModulePrivate(); 9344 } 9345 } 9346 9347 if (isFriend) { 9348 if (FunctionTemplate) { 9349 FunctionTemplate->setObjectOfFriendDecl(); 9350 FunctionTemplate->setAccess(AS_public); 9351 } 9352 NewFD->setObjectOfFriendDecl(); 9353 NewFD->setAccess(AS_public); 9354 } 9355 9356 // If a function is defined as defaulted or deleted, mark it as such now. 9357 // We'll do the relevant checks on defaulted / deleted functions later. 9358 switch (D.getFunctionDefinitionKind()) { 9359 case FunctionDefinitionKind::Declaration: 9360 case FunctionDefinitionKind::Definition: 9361 break; 9362 9363 case FunctionDefinitionKind::Defaulted: 9364 NewFD->setDefaulted(); 9365 break; 9366 9367 case FunctionDefinitionKind::Deleted: 9368 NewFD->setDeletedAsWritten(); 9369 break; 9370 } 9371 9372 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 9373 D.isFunctionDefinition()) { 9374 // C++ [class.mfct]p2: 9375 // A member function may be defined (8.4) in its class definition, in 9376 // which case it is an inline member function (7.1.2) 9377 NewFD->setImplicitlyInline(); 9378 } 9379 9380 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 9381 !CurContext->isRecord()) { 9382 // C++ [class.static]p1: 9383 // A data or function member of a class may be declared static 9384 // in a class definition, in which case it is a static member of 9385 // the class. 9386 9387 // Complain about the 'static' specifier if it's on an out-of-line 9388 // member function definition. 9389 9390 // MSVC permits the use of a 'static' storage specifier on an out-of-line 9391 // member function template declaration and class member template 9392 // declaration (MSVC versions before 2015), warn about this. 9393 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 9394 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 9395 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || 9396 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) 9397 ? diag::ext_static_out_of_line : diag::err_static_out_of_line) 9398 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9399 } 9400 9401 // C++11 [except.spec]p15: 9402 // A deallocation function with no exception-specification is treated 9403 // as if it were specified with noexcept(true). 9404 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 9405 if ((Name.getCXXOverloadedOperator() == OO_Delete || 9406 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 9407 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 9408 NewFD->setType(Context.getFunctionType( 9409 FPT->getReturnType(), FPT->getParamTypes(), 9410 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 9411 } 9412 9413 // Filter out previous declarations that don't match the scope. 9414 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 9415 D.getCXXScopeSpec().isNotEmpty() || 9416 isMemberSpecialization || 9417 isFunctionTemplateSpecialization); 9418 9419 // Handle GNU asm-label extension (encoded as an attribute). 9420 if (Expr *E = (Expr*) D.getAsmLabel()) { 9421 // The parser guarantees this is a string. 9422 StringLiteral *SE = cast<StringLiteral>(E); 9423 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), 9424 /*IsLiteralLabel=*/true, 9425 SE->getStrTokenLoc(0))); 9426 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 9427 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 9428 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 9429 if (I != ExtnameUndeclaredIdentifiers.end()) { 9430 if (isDeclExternC(NewFD)) { 9431 NewFD->addAttr(I->second); 9432 ExtnameUndeclaredIdentifiers.erase(I); 9433 } else 9434 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) 9435 << /*Variable*/0 << NewFD; 9436 } 9437 } 9438 9439 // Copy the parameter declarations from the declarator D to the function 9440 // declaration NewFD, if they are available. First scavenge them into Params. 9441 SmallVector<ParmVarDecl*, 16> Params; 9442 unsigned FTIIdx; 9443 if (D.isFunctionDeclarator(FTIIdx)) { 9444 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; 9445 9446 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 9447 // function that takes no arguments, not a function that takes a 9448 // single void argument. 9449 // We let through "const void" here because Sema::GetTypeForDeclarator 9450 // already checks for that case. 9451 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 9452 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 9453 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 9454 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 9455 Param->setDeclContext(NewFD); 9456 Params.push_back(Param); 9457 9458 if (Param->isInvalidDecl()) 9459 NewFD->setInvalidDecl(); 9460 } 9461 } 9462 9463 if (!getLangOpts().CPlusPlus) { 9464 // In C, find all the tag declarations from the prototype and move them 9465 // into the function DeclContext. Remove them from the surrounding tag 9466 // injection context of the function, which is typically but not always 9467 // the TU. 9468 DeclContext *PrototypeTagContext = 9469 getTagInjectionContext(NewFD->getLexicalDeclContext()); 9470 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { 9471 auto *TD = dyn_cast<TagDecl>(NonParmDecl); 9472 9473 // We don't want to reparent enumerators. Look at their parent enum 9474 // instead. 9475 if (!TD) { 9476 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) 9477 TD = cast<EnumDecl>(ECD->getDeclContext()); 9478 } 9479 if (!TD) 9480 continue; 9481 DeclContext *TagDC = TD->getLexicalDeclContext(); 9482 if (!TagDC->containsDecl(TD)) 9483 continue; 9484 TagDC->removeDecl(TD); 9485 TD->setDeclContext(NewFD); 9486 NewFD->addDecl(TD); 9487 9488 // Preserve the lexical DeclContext if it is not the surrounding tag 9489 // injection context of the FD. In this example, the semantic context of 9490 // E will be f and the lexical context will be S, while both the 9491 // semantic and lexical contexts of S will be f: 9492 // void f(struct S { enum E { a } f; } s); 9493 if (TagDC != PrototypeTagContext) 9494 TD->setLexicalDeclContext(TagDC); 9495 } 9496 } 9497 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 9498 // When we're declaring a function with a typedef, typeof, etc as in the 9499 // following example, we'll need to synthesize (unnamed) 9500 // parameters for use in the declaration. 9501 // 9502 // @code 9503 // typedef void fn(int); 9504 // fn f; 9505 // @endcode 9506 9507 // Synthesize a parameter for each argument type. 9508 for (const auto &AI : FT->param_types()) { 9509 ParmVarDecl *Param = 9510 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 9511 Param->setScopeInfo(0, Params.size()); 9512 Params.push_back(Param); 9513 } 9514 } else { 9515 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 9516 "Should not need args for typedef of non-prototype fn"); 9517 } 9518 9519 // Finally, we know we have the right number of parameters, install them. 9520 NewFD->setParams(Params); 9521 9522 if (D.getDeclSpec().isNoreturnSpecified()) 9523 NewFD->addAttr(C11NoReturnAttr::Create(Context, 9524 D.getDeclSpec().getNoreturnSpecLoc(), 9525 AttributeCommonInfo::AS_Keyword)); 9526 9527 // Functions returning a variably modified type violate C99 6.7.5.2p2 9528 // because all functions have linkage. 9529 if (!NewFD->isInvalidDecl() && 9530 NewFD->getReturnType()->isVariablyModifiedType()) { 9531 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 9532 NewFD->setInvalidDecl(); 9533 } 9534 9535 // Apply an implicit SectionAttr if '#pragma clang section text' is active 9536 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && 9537 !NewFD->hasAttr<SectionAttr>()) 9538 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( 9539 Context, PragmaClangTextSection.SectionName, 9540 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma)); 9541 9542 // Apply an implicit SectionAttr if #pragma code_seg is active. 9543 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && 9544 !NewFD->hasAttr<SectionAttr>()) { 9545 NewFD->addAttr(SectionAttr::CreateImplicit( 9546 Context, CodeSegStack.CurrentValue->getString(), 9547 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9548 SectionAttr::Declspec_allocate)); 9549 if (UnifySection(CodeSegStack.CurrentValue->getString(), 9550 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 9551 ASTContext::PSF_Read, 9552 NewFD)) 9553 NewFD->dropAttr<SectionAttr>(); 9554 } 9555 9556 // Apply an implicit CodeSegAttr from class declspec or 9557 // apply an implicit SectionAttr from #pragma code_seg if active. 9558 if (!NewFD->hasAttr<CodeSegAttr>()) { 9559 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, 9560 D.isFunctionDefinition())) { 9561 NewFD->addAttr(SAttr); 9562 } 9563 } 9564 9565 // Handle attributes. 9566 ProcessDeclAttributes(S, NewFD, D); 9567 9568 if (getLangOpts().OpenCL) { 9569 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 9570 // type declaration will generate a compilation error. 9571 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); 9572 if (AddressSpace != LangAS::Default) { 9573 Diag(NewFD->getLocation(), 9574 diag::err_opencl_return_value_with_address_space); 9575 NewFD->setInvalidDecl(); 9576 } 9577 } 9578 9579 if (!getLangOpts().CPlusPlus) { 9580 // Perform semantic checking on the function declaration. 9581 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9582 CheckMain(NewFD, D.getDeclSpec()); 9583 9584 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9585 CheckMSVCRTEntryPoint(NewFD); 9586 9587 if (!NewFD->isInvalidDecl()) 9588 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9589 isMemberSpecialization)); 9590 else if (!Previous.empty()) 9591 // Recover gracefully from an invalid redeclaration. 9592 D.setRedeclaration(true); 9593 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9594 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9595 "previous declaration set still overloaded"); 9596 9597 // Diagnose no-prototype function declarations with calling conventions that 9598 // don't support variadic calls. Only do this in C and do it after merging 9599 // possibly prototyped redeclarations. 9600 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 9601 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 9602 CallingConv CC = FT->getExtInfo().getCC(); 9603 if (!supportsVariadicCall(CC)) { 9604 // Windows system headers sometimes accidentally use stdcall without 9605 // (void) parameters, so we relax this to a warning. 9606 int DiagID = 9607 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 9608 Diag(NewFD->getLocation(), DiagID) 9609 << FunctionType::getNameForCallConv(CC); 9610 } 9611 } 9612 9613 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || 9614 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) 9615 checkNonTrivialCUnion(NewFD->getReturnType(), 9616 NewFD->getReturnTypeSourceRange().getBegin(), 9617 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); 9618 } else { 9619 // C++11 [replacement.functions]p3: 9620 // The program's definitions shall not be specified as inline. 9621 // 9622 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 9623 // 9624 // Suppress the diagnostic if the function is __attribute__((used)), since 9625 // that forces an external definition to be emitted. 9626 if (D.getDeclSpec().isInlineSpecified() && 9627 NewFD->isReplaceableGlobalAllocationFunction() && 9628 !NewFD->hasAttr<UsedAttr>()) 9629 Diag(D.getDeclSpec().getInlineSpecLoc(), 9630 diag::ext_operator_new_delete_declared_inline) 9631 << NewFD->getDeclName(); 9632 9633 // If the declarator is a template-id, translate the parser's template 9634 // argument list into our AST format. 9635 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9636 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 9637 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 9638 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 9639 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 9640 TemplateId->NumArgs); 9641 translateTemplateArguments(TemplateArgsPtr, 9642 TemplateArgs); 9643 9644 HasExplicitTemplateArgs = true; 9645 9646 if (NewFD->isInvalidDecl()) { 9647 HasExplicitTemplateArgs = false; 9648 } else if (FunctionTemplate) { 9649 // Function template with explicit template arguments. 9650 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 9651 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 9652 9653 HasExplicitTemplateArgs = false; 9654 } else { 9655 assert((isFunctionTemplateSpecialization || 9656 D.getDeclSpec().isFriendSpecified()) && 9657 "should have a 'template<>' for this decl"); 9658 // "friend void foo<>(int);" is an implicit specialization decl. 9659 isFunctionTemplateSpecialization = true; 9660 } 9661 } else if (isFriend && isFunctionTemplateSpecialization) { 9662 // This combination is only possible in a recovery case; the user 9663 // wrote something like: 9664 // template <> friend void foo(int); 9665 // which we're recovering from as if the user had written: 9666 // friend void foo<>(int); 9667 // Go ahead and fake up a template id. 9668 HasExplicitTemplateArgs = true; 9669 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 9670 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 9671 } 9672 9673 // We do not add HD attributes to specializations here because 9674 // they may have different constexpr-ness compared to their 9675 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, 9676 // may end up with different effective targets. Instead, a 9677 // specialization inherits its target attributes from its template 9678 // in the CheckFunctionTemplateSpecialization() call below. 9679 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) 9680 maybeAddCUDAHostDeviceAttrs(NewFD, Previous); 9681 9682 // If it's a friend (and only if it's a friend), it's possible 9683 // that either the specialized function type or the specialized 9684 // template is dependent, and therefore matching will fail. In 9685 // this case, don't check the specialization yet. 9686 if (isFunctionTemplateSpecialization && isFriend && 9687 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 9688 TemplateSpecializationType::anyInstantiationDependentTemplateArguments( 9689 TemplateArgs.arguments()))) { 9690 assert(HasExplicitTemplateArgs && 9691 "friend function specialization without template args"); 9692 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 9693 Previous)) 9694 NewFD->setInvalidDecl(); 9695 } else if (isFunctionTemplateSpecialization) { 9696 if (CurContext->isDependentContext() && CurContext->isRecord() 9697 && !isFriend) { 9698 isDependentClassScopeExplicitSpecialization = true; 9699 } else if (!NewFD->isInvalidDecl() && 9700 CheckFunctionTemplateSpecialization( 9701 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), 9702 Previous)) 9703 NewFD->setInvalidDecl(); 9704 9705 // C++ [dcl.stc]p1: 9706 // A storage-class-specifier shall not be specified in an explicit 9707 // specialization (14.7.3) 9708 FunctionTemplateSpecializationInfo *Info = 9709 NewFD->getTemplateSpecializationInfo(); 9710 if (Info && SC != SC_None) { 9711 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 9712 Diag(NewFD->getLocation(), 9713 diag::err_explicit_specialization_inconsistent_storage_class) 9714 << SC 9715 << FixItHint::CreateRemoval( 9716 D.getDeclSpec().getStorageClassSpecLoc()); 9717 9718 else 9719 Diag(NewFD->getLocation(), 9720 diag::ext_explicit_specialization_storage_class) 9721 << FixItHint::CreateRemoval( 9722 D.getDeclSpec().getStorageClassSpecLoc()); 9723 } 9724 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { 9725 if (CheckMemberSpecialization(NewFD, Previous)) 9726 NewFD->setInvalidDecl(); 9727 } 9728 9729 // Perform semantic checking on the function declaration. 9730 if (!isDependentClassScopeExplicitSpecialization) { 9731 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9732 CheckMain(NewFD, D.getDeclSpec()); 9733 9734 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9735 CheckMSVCRTEntryPoint(NewFD); 9736 9737 if (!NewFD->isInvalidDecl()) 9738 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9739 isMemberSpecialization)); 9740 else if (!Previous.empty()) 9741 // Recover gracefully from an invalid redeclaration. 9742 D.setRedeclaration(true); 9743 } 9744 9745 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9746 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9747 "previous declaration set still overloaded"); 9748 9749 NamedDecl *PrincipalDecl = (FunctionTemplate 9750 ? cast<NamedDecl>(FunctionTemplate) 9751 : NewFD); 9752 9753 if (isFriend && NewFD->getPreviousDecl()) { 9754 AccessSpecifier Access = AS_public; 9755 if (!NewFD->isInvalidDecl()) 9756 Access = NewFD->getPreviousDecl()->getAccess(); 9757 9758 NewFD->setAccess(Access); 9759 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 9760 } 9761 9762 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 9763 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 9764 PrincipalDecl->setNonMemberOperator(); 9765 9766 // If we have a function template, check the template parameter 9767 // list. This will check and merge default template arguments. 9768 if (FunctionTemplate) { 9769 FunctionTemplateDecl *PrevTemplate = 9770 FunctionTemplate->getPreviousDecl(); 9771 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 9772 PrevTemplate ? PrevTemplate->getTemplateParameters() 9773 : nullptr, 9774 D.getDeclSpec().isFriendSpecified() 9775 ? (D.isFunctionDefinition() 9776 ? TPC_FriendFunctionTemplateDefinition 9777 : TPC_FriendFunctionTemplate) 9778 : (D.getCXXScopeSpec().isSet() && 9779 DC && DC->isRecord() && 9780 DC->isDependentContext()) 9781 ? TPC_ClassTemplateMember 9782 : TPC_FunctionTemplate); 9783 } 9784 9785 if (NewFD->isInvalidDecl()) { 9786 // Ignore all the rest of this. 9787 } else if (!D.isRedeclaration()) { 9788 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 9789 AddToScope }; 9790 // Fake up an access specifier if it's supposed to be a class member. 9791 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 9792 NewFD->setAccess(AS_public); 9793 9794 // Qualified decls generally require a previous declaration. 9795 if (D.getCXXScopeSpec().isSet()) { 9796 // ...with the major exception of templated-scope or 9797 // dependent-scope friend declarations. 9798 9799 // TODO: we currently also suppress this check in dependent 9800 // contexts because (1) the parameter depth will be off when 9801 // matching friend templates and (2) we might actually be 9802 // selecting a friend based on a dependent factor. But there 9803 // are situations where these conditions don't apply and we 9804 // can actually do this check immediately. 9805 // 9806 // Unless the scope is dependent, it's always an error if qualified 9807 // redeclaration lookup found nothing at all. Diagnose that now; 9808 // nothing will diagnose that error later. 9809 if (isFriend && 9810 (D.getCXXScopeSpec().getScopeRep()->isDependent() || 9811 (!Previous.empty() && CurContext->isDependentContext()))) { 9812 // ignore these 9813 } else if (NewFD->isCPUDispatchMultiVersion() || 9814 NewFD->isCPUSpecificMultiVersion()) { 9815 // ignore this, we allow the redeclaration behavior here to create new 9816 // versions of the function. 9817 } else { 9818 // The user tried to provide an out-of-line definition for a 9819 // function that is a member of a class or namespace, but there 9820 // was no such member function declared (C++ [class.mfct]p2, 9821 // C++ [namespace.memdef]p2). For example: 9822 // 9823 // class X { 9824 // void f() const; 9825 // }; 9826 // 9827 // void X::f() { } // ill-formed 9828 // 9829 // Complain about this problem, and attempt to suggest close 9830 // matches (e.g., those that differ only in cv-qualifiers and 9831 // whether the parameter types are references). 9832 9833 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9834 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 9835 AddToScope = ExtraArgs.AddToScope; 9836 return Result; 9837 } 9838 } 9839 9840 // Unqualified local friend declarations are required to resolve 9841 // to something. 9842 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 9843 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9844 *this, Previous, NewFD, ExtraArgs, true, S)) { 9845 AddToScope = ExtraArgs.AddToScope; 9846 return Result; 9847 } 9848 } 9849 } else if (!D.isFunctionDefinition() && 9850 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 9851 !isFriend && !isFunctionTemplateSpecialization && 9852 !isMemberSpecialization) { 9853 // An out-of-line member function declaration must also be a 9854 // definition (C++ [class.mfct]p2). 9855 // Note that this is not the case for explicit specializations of 9856 // function templates or member functions of class templates, per 9857 // C++ [temp.expl.spec]p2. We also allow these declarations as an 9858 // extension for compatibility with old SWIG code which likes to 9859 // generate them. 9860 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 9861 << D.getCXXScopeSpec().getRange(); 9862 } 9863 } 9864 9865 // If this is the first declaration of a library builtin function, add 9866 // attributes as appropriate. 9867 if (!D.isRedeclaration() && 9868 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { 9869 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { 9870 if (unsigned BuiltinID = II->getBuiltinID()) { 9871 if (NewFD->getLanguageLinkage() == CLanguageLinkage) { 9872 // Validate the type matches unless this builtin is specified as 9873 // matching regardless of its declared type. 9874 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) { 9875 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9876 } else { 9877 ASTContext::GetBuiltinTypeError Error; 9878 LookupNecessaryTypesForBuiltin(S, BuiltinID); 9879 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); 9880 9881 if (!Error && !BuiltinType.isNull() && 9882 Context.hasSameFunctionTypeIgnoringExceptionSpec( 9883 NewFD->getType(), BuiltinType)) 9884 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9885 } 9886 } else if (BuiltinID == Builtin::BI__GetExceptionInfo && 9887 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9888 // FIXME: We should consider this a builtin only in the std namespace. 9889 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9890 } 9891 } 9892 } 9893 } 9894 9895 ProcessPragmaWeak(S, NewFD); 9896 checkAttributesAfterMerging(*this, *NewFD); 9897 9898 AddKnownFunctionAttributes(NewFD); 9899 9900 if (NewFD->hasAttr<OverloadableAttr>() && 9901 !NewFD->getType()->getAs<FunctionProtoType>()) { 9902 Diag(NewFD->getLocation(), 9903 diag::err_attribute_overloadable_no_prototype) 9904 << NewFD; 9905 9906 // Turn this into a variadic function with no parameters. 9907 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 9908 FunctionProtoType::ExtProtoInfo EPI( 9909 Context.getDefaultCallingConvention(true, false)); 9910 EPI.Variadic = true; 9911 EPI.ExtInfo = FT->getExtInfo(); 9912 9913 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 9914 NewFD->setType(R); 9915 } 9916 9917 // If there's a #pragma GCC visibility in scope, and this isn't a class 9918 // member, set the visibility of this function. 9919 if (!DC->isRecord() && NewFD->isExternallyVisible()) 9920 AddPushedVisibilityAttribute(NewFD); 9921 9922 // If there's a #pragma clang arc_cf_code_audited in scope, consider 9923 // marking the function. 9924 AddCFAuditedAttribute(NewFD); 9925 9926 // If this is a function definition, check if we have to apply optnone due to 9927 // a pragma. 9928 if(D.isFunctionDefinition()) 9929 AddRangeBasedOptnone(NewFD); 9930 9931 // If this is the first declaration of an extern C variable, update 9932 // the map of such variables. 9933 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 9934 isIncompleteDeclExternC(*this, NewFD)) 9935 RegisterLocallyScopedExternCDecl(NewFD, S); 9936 9937 // Set this FunctionDecl's range up to the right paren. 9938 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 9939 9940 if (D.isRedeclaration() && !Previous.empty()) { 9941 NamedDecl *Prev = Previous.getRepresentativeDecl(); 9942 checkDLLAttributeRedeclaration(*this, Prev, NewFD, 9943 isMemberSpecialization || 9944 isFunctionTemplateSpecialization, 9945 D.isFunctionDefinition()); 9946 } 9947 9948 if (getLangOpts().CUDA) { 9949 IdentifierInfo *II = NewFD->getIdentifier(); 9950 if (II && II->isStr(getCudaConfigureFuncName()) && 9951 !NewFD->isInvalidDecl() && 9952 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 9953 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType()) 9954 Diag(NewFD->getLocation(), diag::err_config_scalar_return) 9955 << getCudaConfigureFuncName(); 9956 Context.setcudaConfigureCallDecl(NewFD); 9957 } 9958 9959 // Variadic functions, other than a *declaration* of printf, are not allowed 9960 // in device-side CUDA code, unless someone passed 9961 // -fcuda-allow-variadic-functions. 9962 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && 9963 (NewFD->hasAttr<CUDADeviceAttr>() || 9964 NewFD->hasAttr<CUDAGlobalAttr>()) && 9965 !(II && II->isStr("printf") && NewFD->isExternC() && 9966 !D.isFunctionDefinition())) { 9967 Diag(NewFD->getLocation(), diag::err_variadic_device_fn); 9968 } 9969 } 9970 9971 MarkUnusedFileScopedDecl(NewFD); 9972 9973 9974 9975 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { 9976 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 9977 if (SC == SC_Static) { 9978 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 9979 D.setInvalidType(); 9980 } 9981 9982 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 9983 if (!NewFD->getReturnType()->isVoidType()) { 9984 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 9985 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 9986 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 9987 : FixItHint()); 9988 D.setInvalidType(); 9989 } 9990 9991 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 9992 for (auto Param : NewFD->parameters()) 9993 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 9994 9995 if (getLangOpts().OpenCLCPlusPlus) { 9996 if (DC->isRecord()) { 9997 Diag(D.getIdentifierLoc(), diag::err_method_kernel); 9998 D.setInvalidType(); 9999 } 10000 if (FunctionTemplate) { 10001 Diag(D.getIdentifierLoc(), diag::err_template_kernel); 10002 D.setInvalidType(); 10003 } 10004 } 10005 } 10006 10007 if (getLangOpts().CPlusPlus) { 10008 if (FunctionTemplate) { 10009 if (NewFD->isInvalidDecl()) 10010 FunctionTemplate->setInvalidDecl(); 10011 return FunctionTemplate; 10012 } 10013 10014 if (isMemberSpecialization && !NewFD->isInvalidDecl()) 10015 CompleteMemberSpecialization(NewFD, Previous); 10016 } 10017 10018 for (const ParmVarDecl *Param : NewFD->parameters()) { 10019 QualType PT = Param->getType(); 10020 10021 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value 10022 // types. 10023 if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { 10024 if(const PipeType *PipeTy = PT->getAs<PipeType>()) { 10025 QualType ElemTy = PipeTy->getElementType(); 10026 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { 10027 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); 10028 D.setInvalidType(); 10029 } 10030 } 10031 } 10032 } 10033 10034 // Here we have an function template explicit specialization at class scope. 10035 // The actual specialization will be postponed to template instatiation 10036 // time via the ClassScopeFunctionSpecializationDecl node. 10037 if (isDependentClassScopeExplicitSpecialization) { 10038 ClassScopeFunctionSpecializationDecl *NewSpec = 10039 ClassScopeFunctionSpecializationDecl::Create( 10040 Context, CurContext, NewFD->getLocation(), 10041 cast<CXXMethodDecl>(NewFD), 10042 HasExplicitTemplateArgs, TemplateArgs); 10043 CurContext->addDecl(NewSpec); 10044 AddToScope = false; 10045 } 10046 10047 // Diagnose availability attributes. Availability cannot be used on functions 10048 // that are run during load/unload. 10049 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { 10050 if (NewFD->hasAttr<ConstructorAttr>()) { 10051 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 10052 << 1; 10053 NewFD->dropAttr<AvailabilityAttr>(); 10054 } 10055 if (NewFD->hasAttr<DestructorAttr>()) { 10056 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 10057 << 2; 10058 NewFD->dropAttr<AvailabilityAttr>(); 10059 } 10060 } 10061 10062 // Diagnose no_builtin attribute on function declaration that are not a 10063 // definition. 10064 // FIXME: We should really be doing this in 10065 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to 10066 // the FunctionDecl and at this point of the code 10067 // FunctionDecl::isThisDeclarationADefinition() which always returns `false` 10068 // because Sema::ActOnStartOfFunctionDef has not been called yet. 10069 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) 10070 switch (D.getFunctionDefinitionKind()) { 10071 case FunctionDefinitionKind::Defaulted: 10072 case FunctionDefinitionKind::Deleted: 10073 Diag(NBA->getLocation(), 10074 diag::err_attribute_no_builtin_on_defaulted_deleted_function) 10075 << NBA->getSpelling(); 10076 break; 10077 case FunctionDefinitionKind::Declaration: 10078 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) 10079 << NBA->getSpelling(); 10080 break; 10081 case FunctionDefinitionKind::Definition: 10082 break; 10083 } 10084 10085 return NewFD; 10086 } 10087 10088 /// Return a CodeSegAttr from a containing class. The Microsoft docs say 10089 /// when __declspec(code_seg) "is applied to a class, all member functions of 10090 /// the class and nested classes -- this includes compiler-generated special 10091 /// member functions -- are put in the specified segment." 10092 /// The actual behavior is a little more complicated. The Microsoft compiler 10093 /// won't check outer classes if there is an active value from #pragma code_seg. 10094 /// The CodeSeg is always applied from the direct parent but only from outer 10095 /// classes when the #pragma code_seg stack is empty. See: 10096 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer 10097 /// available since MS has removed the page. 10098 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { 10099 const auto *Method = dyn_cast<CXXMethodDecl>(FD); 10100 if (!Method) 10101 return nullptr; 10102 const CXXRecordDecl *Parent = Method->getParent(); 10103 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 10104 Attr *NewAttr = SAttr->clone(S.getASTContext()); 10105 NewAttr->setImplicit(true); 10106 return NewAttr; 10107 } 10108 10109 // The Microsoft compiler won't check outer classes for the CodeSeg 10110 // when the #pragma code_seg stack is active. 10111 if (S.CodeSegStack.CurrentValue) 10112 return nullptr; 10113 10114 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { 10115 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 10116 Attr *NewAttr = SAttr->clone(S.getASTContext()); 10117 NewAttr->setImplicit(true); 10118 return NewAttr; 10119 } 10120 } 10121 return nullptr; 10122 } 10123 10124 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a 10125 /// containing class. Otherwise it will return implicit SectionAttr if the 10126 /// function is a definition and there is an active value on CodeSegStack 10127 /// (from the current #pragma code-seg value). 10128 /// 10129 /// \param FD Function being declared. 10130 /// \param IsDefinition Whether it is a definition or just a declarartion. 10131 /// \returns A CodeSegAttr or SectionAttr to apply to the function or 10132 /// nullptr if no attribute should be added. 10133 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, 10134 bool IsDefinition) { 10135 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) 10136 return A; 10137 if (!FD->hasAttr<SectionAttr>() && IsDefinition && 10138 CodeSegStack.CurrentValue) 10139 return SectionAttr::CreateImplicit( 10140 getASTContext(), CodeSegStack.CurrentValue->getString(), 10141 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 10142 SectionAttr::Declspec_allocate); 10143 return nullptr; 10144 } 10145 10146 /// Determines if we can perform a correct type check for \p D as a 10147 /// redeclaration of \p PrevDecl. If not, we can generally still perform a 10148 /// best-effort check. 10149 /// 10150 /// \param NewD The new declaration. 10151 /// \param OldD The old declaration. 10152 /// \param NewT The portion of the type of the new declaration to check. 10153 /// \param OldT The portion of the type of the old declaration to check. 10154 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, 10155 QualType NewT, QualType OldT) { 10156 if (!NewD->getLexicalDeclContext()->isDependentContext()) 10157 return true; 10158 10159 // For dependently-typed local extern declarations and friends, we can't 10160 // perform a correct type check in general until instantiation: 10161 // 10162 // int f(); 10163 // template<typename T> void g() { T f(); } 10164 // 10165 // (valid if g() is only instantiated with T = int). 10166 if (NewT->isDependentType() && 10167 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) 10168 return false; 10169 10170 // Similarly, if the previous declaration was a dependent local extern 10171 // declaration, we don't really know its type yet. 10172 if (OldT->isDependentType() && OldD->isLocalExternDecl()) 10173 return false; 10174 10175 return true; 10176 } 10177 10178 /// Checks if the new declaration declared in dependent context must be 10179 /// put in the same redeclaration chain as the specified declaration. 10180 /// 10181 /// \param D Declaration that is checked. 10182 /// \param PrevDecl Previous declaration found with proper lookup method for the 10183 /// same declaration name. 10184 /// \returns True if D must be added to the redeclaration chain which PrevDecl 10185 /// belongs to. 10186 /// 10187 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { 10188 if (!D->getLexicalDeclContext()->isDependentContext()) 10189 return true; 10190 10191 // Don't chain dependent friend function definitions until instantiation, to 10192 // permit cases like 10193 // 10194 // void func(); 10195 // template<typename T> class C1 { friend void func() {} }; 10196 // template<typename T> class C2 { friend void func() {} }; 10197 // 10198 // ... which is valid if only one of C1 and C2 is ever instantiated. 10199 // 10200 // FIXME: This need only apply to function definitions. For now, we proxy 10201 // this by checking for a file-scope function. We do not want this to apply 10202 // to friend declarations nominating member functions, because that gets in 10203 // the way of access checks. 10204 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) 10205 return false; 10206 10207 auto *VD = dyn_cast<ValueDecl>(D); 10208 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); 10209 return !VD || !PrevVD || 10210 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), 10211 PrevVD->getType()); 10212 } 10213 10214 /// Check the target attribute of the function for MultiVersion 10215 /// validity. 10216 /// 10217 /// Returns true if there was an error, false otherwise. 10218 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { 10219 const auto *TA = FD->getAttr<TargetAttr>(); 10220 assert(TA && "MultiVersion Candidate requires a target attribute"); 10221 ParsedTargetAttr ParseInfo = TA->parse(); 10222 const TargetInfo &TargetInfo = S.Context.getTargetInfo(); 10223 enum ErrType { Feature = 0, Architecture = 1 }; 10224 10225 if (!ParseInfo.Architecture.empty() && 10226 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { 10227 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10228 << Architecture << ParseInfo.Architecture; 10229 return true; 10230 } 10231 10232 for (const auto &Feat : ParseInfo.Features) { 10233 auto BareFeat = StringRef{Feat}.substr(1); 10234 if (Feat[0] == '-') { 10235 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10236 << Feature << ("no-" + BareFeat).str(); 10237 return true; 10238 } 10239 10240 if (!TargetInfo.validateCpuSupports(BareFeat) || 10241 !TargetInfo.isValidFeatureName(BareFeat)) { 10242 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10243 << Feature << BareFeat; 10244 return true; 10245 } 10246 } 10247 return false; 10248 } 10249 10250 // Provide a white-list of attributes that are allowed to be combined with 10251 // multiversion functions. 10252 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, 10253 MultiVersionKind MVType) { 10254 // Note: this list/diagnosis must match the list in 10255 // checkMultiversionAttributesAllSame. 10256 switch (Kind) { 10257 default: 10258 return false; 10259 case attr::Used: 10260 return MVType == MultiVersionKind::Target; 10261 case attr::NonNull: 10262 case attr::NoThrow: 10263 return true; 10264 } 10265 } 10266 10267 static bool checkNonMultiVersionCompatAttributes(Sema &S, 10268 const FunctionDecl *FD, 10269 const FunctionDecl *CausedFD, 10270 MultiVersionKind MVType) { 10271 const auto Diagnose = [FD, CausedFD, MVType](Sema &S, const Attr *A) { 10272 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) 10273 << static_cast<unsigned>(MVType) << A; 10274 if (CausedFD) 10275 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); 10276 return true; 10277 }; 10278 10279 for (const Attr *A : FD->attrs()) { 10280 switch (A->getKind()) { 10281 case attr::CPUDispatch: 10282 case attr::CPUSpecific: 10283 if (MVType != MultiVersionKind::CPUDispatch && 10284 MVType != MultiVersionKind::CPUSpecific) 10285 return Diagnose(S, A); 10286 break; 10287 case attr::Target: 10288 if (MVType != MultiVersionKind::Target) 10289 return Diagnose(S, A); 10290 break; 10291 case attr::TargetClones: 10292 if (MVType != MultiVersionKind::TargetClones) 10293 return Diagnose(S, A); 10294 break; 10295 default: 10296 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType)) 10297 return Diagnose(S, A); 10298 break; 10299 } 10300 } 10301 return false; 10302 } 10303 10304 bool Sema::areMultiversionVariantFunctionsCompatible( 10305 const FunctionDecl *OldFD, const FunctionDecl *NewFD, 10306 const PartialDiagnostic &NoProtoDiagID, 10307 const PartialDiagnosticAt &NoteCausedDiagIDAt, 10308 const PartialDiagnosticAt &NoSupportDiagIDAt, 10309 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, 10310 bool ConstexprSupported, bool CLinkageMayDiffer) { 10311 enum DoesntSupport { 10312 FuncTemplates = 0, 10313 VirtFuncs = 1, 10314 DeducedReturn = 2, 10315 Constructors = 3, 10316 Destructors = 4, 10317 DeletedFuncs = 5, 10318 DefaultedFuncs = 6, 10319 ConstexprFuncs = 7, 10320 ConstevalFuncs = 8, 10321 Lambda = 9, 10322 }; 10323 enum Different { 10324 CallingConv = 0, 10325 ReturnType = 1, 10326 ConstexprSpec = 2, 10327 InlineSpec = 3, 10328 Linkage = 4, 10329 LanguageLinkage = 5, 10330 }; 10331 10332 if (NoProtoDiagID.getDiagID() != 0 && OldFD && 10333 !OldFD->getType()->getAs<FunctionProtoType>()) { 10334 Diag(OldFD->getLocation(), NoProtoDiagID); 10335 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); 10336 return true; 10337 } 10338 10339 if (NoProtoDiagID.getDiagID() != 0 && 10340 !NewFD->getType()->getAs<FunctionProtoType>()) 10341 return Diag(NewFD->getLocation(), NoProtoDiagID); 10342 10343 if (!TemplatesSupported && 10344 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10345 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10346 << FuncTemplates; 10347 10348 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { 10349 if (NewCXXFD->isVirtual()) 10350 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10351 << VirtFuncs; 10352 10353 if (isa<CXXConstructorDecl>(NewCXXFD)) 10354 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10355 << Constructors; 10356 10357 if (isa<CXXDestructorDecl>(NewCXXFD)) 10358 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10359 << Destructors; 10360 } 10361 10362 if (NewFD->isDeleted()) 10363 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10364 << DeletedFuncs; 10365 10366 if (NewFD->isDefaulted()) 10367 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10368 << DefaultedFuncs; 10369 10370 if (!ConstexprSupported && NewFD->isConstexpr()) 10371 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10372 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); 10373 10374 QualType NewQType = Context.getCanonicalType(NewFD->getType()); 10375 const auto *NewType = cast<FunctionType>(NewQType); 10376 QualType NewReturnType = NewType->getReturnType(); 10377 10378 if (NewReturnType->isUndeducedType()) 10379 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10380 << DeducedReturn; 10381 10382 // Ensure the return type is identical. 10383 if (OldFD) { 10384 QualType OldQType = Context.getCanonicalType(OldFD->getType()); 10385 const auto *OldType = cast<FunctionType>(OldQType); 10386 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 10387 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 10388 10389 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) 10390 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; 10391 10392 QualType OldReturnType = OldType->getReturnType(); 10393 10394 if (OldReturnType != NewReturnType) 10395 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; 10396 10397 if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) 10398 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; 10399 10400 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) 10401 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; 10402 10403 if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage()) 10404 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; 10405 10406 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) 10407 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage; 10408 10409 if (CheckEquivalentExceptionSpec( 10410 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), 10411 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) 10412 return true; 10413 } 10414 return false; 10415 } 10416 10417 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, 10418 const FunctionDecl *NewFD, 10419 bool CausesMV, 10420 MultiVersionKind MVType) { 10421 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10422 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10423 if (OldFD) 10424 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10425 return true; 10426 } 10427 10428 bool IsCPUSpecificCPUDispatchMVType = 10429 MVType == MultiVersionKind::CPUDispatch || 10430 MVType == MultiVersionKind::CPUSpecific; 10431 10432 if (CausesMV && OldFD && 10433 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType)) 10434 return true; 10435 10436 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType)) 10437 return true; 10438 10439 // Only allow transition to MultiVersion if it hasn't been used. 10440 if (OldFD && CausesMV && OldFD->isUsed(false)) 10441 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 10442 10443 return S.areMultiversionVariantFunctionsCompatible( 10444 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), 10445 PartialDiagnosticAt(NewFD->getLocation(), 10446 S.PDiag(diag::note_multiversioning_caused_here)), 10447 PartialDiagnosticAt(NewFD->getLocation(), 10448 S.PDiag(diag::err_multiversion_doesnt_support) 10449 << static_cast<unsigned>(MVType)), 10450 PartialDiagnosticAt(NewFD->getLocation(), 10451 S.PDiag(diag::err_multiversion_diff)), 10452 /*TemplatesSupported=*/false, 10453 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType, 10454 /*CLinkageMayDiffer=*/false); 10455 } 10456 10457 /// Check the validity of a multiversion function declaration that is the 10458 /// first of its kind. Also sets the multiversion'ness' of the function itself. 10459 /// 10460 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10461 /// 10462 /// Returns true if there was an error, false otherwise. 10463 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, 10464 MultiVersionKind MVType, 10465 const TargetAttr *TA) { 10466 assert(MVType != MultiVersionKind::None && 10467 "Function lacks multiversion attribute"); 10468 10469 // Target only causes MV if it is default, otherwise this is a normal 10470 // function. 10471 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) 10472 return false; 10473 10474 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { 10475 FD->setInvalidDecl(); 10476 return true; 10477 } 10478 10479 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { 10480 FD->setInvalidDecl(); 10481 return true; 10482 } 10483 10484 FD->setIsMultiVersion(); 10485 return false; 10486 } 10487 10488 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { 10489 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { 10490 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) 10491 return true; 10492 } 10493 10494 return false; 10495 } 10496 10497 static bool CheckTargetCausesMultiVersioning( 10498 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, 10499 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10500 LookupResult &Previous) { 10501 const auto *OldTA = OldFD->getAttr<TargetAttr>(); 10502 ParsedTargetAttr NewParsed = NewTA->parse(); 10503 // Sort order doesn't matter, it just needs to be consistent. 10504 llvm::sort(NewParsed.Features); 10505 10506 // If the old decl is NOT MultiVersioned yet, and we don't cause that 10507 // to change, this is a simple redeclaration. 10508 if (!NewTA->isDefaultVersion() && 10509 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) 10510 return false; 10511 10512 // Otherwise, this decl causes MultiVersioning. 10513 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10514 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10515 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10516 NewFD->setInvalidDecl(); 10517 return true; 10518 } 10519 10520 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, 10521 MultiVersionKind::Target)) { 10522 NewFD->setInvalidDecl(); 10523 return true; 10524 } 10525 10526 if (CheckMultiVersionValue(S, NewFD)) { 10527 NewFD->setInvalidDecl(); 10528 return true; 10529 } 10530 10531 // If this is 'default', permit the forward declaration. 10532 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { 10533 Redeclaration = true; 10534 OldDecl = OldFD; 10535 OldFD->setIsMultiVersion(); 10536 NewFD->setIsMultiVersion(); 10537 return false; 10538 } 10539 10540 if (CheckMultiVersionValue(S, OldFD)) { 10541 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10542 NewFD->setInvalidDecl(); 10543 return true; 10544 } 10545 10546 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>()); 10547 10548 if (OldParsed == NewParsed) { 10549 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10550 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10551 NewFD->setInvalidDecl(); 10552 return true; 10553 } 10554 10555 for (const auto *FD : OldFD->redecls()) { 10556 const auto *CurTA = FD->getAttr<TargetAttr>(); 10557 // We allow forward declarations before ANY multiversioning attributes, but 10558 // nothing after the fact. 10559 if (PreviousDeclsHaveMultiVersionAttribute(FD) && 10560 (!CurTA || CurTA->isInherited())) { 10561 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) 10562 << 0; 10563 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10564 NewFD->setInvalidDecl(); 10565 return true; 10566 } 10567 } 10568 10569 OldFD->setIsMultiVersion(); 10570 NewFD->setIsMultiVersion(); 10571 Redeclaration = false; 10572 MergeTypeWithPrevious = false; 10573 OldDecl = nullptr; 10574 Previous.clear(); 10575 return false; 10576 } 10577 10578 static bool MultiVersionTypesCompatible(MultiVersionKind Old, 10579 MultiVersionKind New) { 10580 if (Old == New || Old == MultiVersionKind::None || 10581 New == MultiVersionKind::None) 10582 return true; 10583 10584 return (Old == MultiVersionKind::CPUDispatch && 10585 New == MultiVersionKind::CPUSpecific) || 10586 (Old == MultiVersionKind::CPUSpecific && 10587 New == MultiVersionKind::CPUDispatch); 10588 } 10589 10590 /// Check the validity of a new function declaration being added to an existing 10591 /// multiversioned declaration collection. 10592 static bool CheckMultiVersionAdditionalDecl( 10593 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, 10594 MultiVersionKind NewMVType, const TargetAttr *NewTA, 10595 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, 10596 const TargetClonesAttr *NewClones, bool &Redeclaration, NamedDecl *&OldDecl, 10597 bool &MergeTypeWithPrevious, LookupResult &Previous) { 10598 10599 MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); 10600 // Disallow mixing of multiversioning types. 10601 if (!MultiVersionTypesCompatible(OldMVType, NewMVType)) { 10602 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10603 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10604 NewFD->setInvalidDecl(); 10605 return true; 10606 } 10607 10608 ParsedTargetAttr NewParsed; 10609 if (NewTA) { 10610 NewParsed = NewTA->parse(); 10611 llvm::sort(NewParsed.Features); 10612 } 10613 10614 bool UseMemberUsingDeclRules = 10615 S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); 10616 10617 // Next, check ALL non-overloads to see if this is a redeclaration of a 10618 // previous member of the MultiVersion set. 10619 for (NamedDecl *ND : Previous) { 10620 FunctionDecl *CurFD = ND->getAsFunction(); 10621 if (!CurFD) 10622 continue; 10623 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) 10624 continue; 10625 10626 switch (NewMVType) { 10627 case MultiVersionKind::None: 10628 assert(OldMVType == MultiVersionKind::TargetClones && 10629 "Only target_clones can be omitted in subsequent declarations"); 10630 break; 10631 case MultiVersionKind::Target: { 10632 const auto *CurTA = CurFD->getAttr<TargetAttr>(); 10633 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { 10634 NewFD->setIsMultiVersion(); 10635 Redeclaration = true; 10636 OldDecl = ND; 10637 return false; 10638 } 10639 10640 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>()); 10641 if (CurParsed == NewParsed) { 10642 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10643 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10644 NewFD->setInvalidDecl(); 10645 return true; 10646 } 10647 break; 10648 } 10649 case MultiVersionKind::TargetClones: { 10650 const auto *CurClones = CurFD->getAttr<TargetClonesAttr>(); 10651 Redeclaration = true; 10652 OldDecl = CurFD; 10653 MergeTypeWithPrevious = true; 10654 NewFD->setIsMultiVersion(); 10655 10656 if (CurClones && NewClones && 10657 (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() || 10658 !std::equal(CurClones->featuresStrs_begin(), 10659 CurClones->featuresStrs_end(), 10660 NewClones->featuresStrs_begin()))) { 10661 S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match); 10662 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10663 NewFD->setInvalidDecl(); 10664 return true; 10665 } 10666 10667 return false; 10668 } 10669 case MultiVersionKind::CPUSpecific: 10670 case MultiVersionKind::CPUDispatch: { 10671 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); 10672 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); 10673 // Handle CPUDispatch/CPUSpecific versions. 10674 // Only 1 CPUDispatch function is allowed, this will make it go through 10675 // the redeclaration errors. 10676 if (NewMVType == MultiVersionKind::CPUDispatch && 10677 CurFD->hasAttr<CPUDispatchAttr>()) { 10678 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && 10679 std::equal( 10680 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), 10681 NewCPUDisp->cpus_begin(), 10682 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10683 return Cur->getName() == New->getName(); 10684 })) { 10685 NewFD->setIsMultiVersion(); 10686 Redeclaration = true; 10687 OldDecl = ND; 10688 return false; 10689 } 10690 10691 // If the declarations don't match, this is an error condition. 10692 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); 10693 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10694 NewFD->setInvalidDecl(); 10695 return true; 10696 } 10697 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { 10698 10699 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && 10700 std::equal( 10701 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), 10702 NewCPUSpec->cpus_begin(), 10703 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10704 return Cur->getName() == New->getName(); 10705 })) { 10706 NewFD->setIsMultiVersion(); 10707 Redeclaration = true; 10708 OldDecl = ND; 10709 return false; 10710 } 10711 10712 // Only 1 version of CPUSpecific is allowed for each CPU. 10713 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { 10714 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { 10715 if (CurII == NewII) { 10716 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) 10717 << NewII; 10718 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10719 NewFD->setInvalidDecl(); 10720 return true; 10721 } 10722 } 10723 } 10724 } 10725 break; 10726 } 10727 } 10728 } 10729 10730 // Else, this is simply a non-redecl case. Checking the 'value' is only 10731 // necessary in the Target case, since The CPUSpecific/Dispatch cases are 10732 // handled in the attribute adding step. 10733 if (NewMVType == MultiVersionKind::Target && 10734 CheckMultiVersionValue(S, NewFD)) { 10735 NewFD->setInvalidDecl(); 10736 return true; 10737 } 10738 10739 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, 10740 !OldFD->isMultiVersion(), NewMVType)) { 10741 NewFD->setInvalidDecl(); 10742 return true; 10743 } 10744 10745 // Permit forward declarations in the case where these two are compatible. 10746 if (!OldFD->isMultiVersion()) { 10747 OldFD->setIsMultiVersion(); 10748 NewFD->setIsMultiVersion(); 10749 Redeclaration = true; 10750 OldDecl = OldFD; 10751 return false; 10752 } 10753 10754 NewFD->setIsMultiVersion(); 10755 Redeclaration = false; 10756 MergeTypeWithPrevious = false; 10757 OldDecl = nullptr; 10758 Previous.clear(); 10759 return false; 10760 } 10761 10762 /// Check the validity of a mulitversion function declaration. 10763 /// Also sets the multiversion'ness' of the function itself. 10764 /// 10765 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10766 /// 10767 /// Returns true if there was an error, false otherwise. 10768 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, 10769 bool &Redeclaration, NamedDecl *&OldDecl, 10770 bool &MergeTypeWithPrevious, 10771 LookupResult &Previous) { 10772 const auto *NewTA = NewFD->getAttr<TargetAttr>(); 10773 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); 10774 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); 10775 const auto *NewClones = NewFD->getAttr<TargetClonesAttr>(); 10776 MultiVersionKind MVType = NewFD->getMultiVersionKind(); 10777 10778 // Main isn't allowed to become a multiversion function, however it IS 10779 // permitted to have 'main' be marked with the 'target' optimization hint. 10780 if (NewFD->isMain()) { 10781 if (MVType != MultiVersionKind::None && 10782 !(MVType == MultiVersionKind::Target && !NewTA->isDefaultVersion())) { 10783 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); 10784 NewFD->setInvalidDecl(); 10785 return true; 10786 } 10787 return false; 10788 } 10789 10790 if (!OldDecl || !OldDecl->getAsFunction() || 10791 OldDecl->getDeclContext()->getRedeclContext() != 10792 NewFD->getDeclContext()->getRedeclContext()) { 10793 // If there's no previous declaration, AND this isn't attempting to cause 10794 // multiversioning, this isn't an error condition. 10795 if (MVType == MultiVersionKind::None) 10796 return false; 10797 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); 10798 } 10799 10800 FunctionDecl *OldFD = OldDecl->getAsFunction(); 10801 10802 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) 10803 return false; 10804 10805 // Multiversioned redeclarations aren't allowed to omit the attribute, except 10806 // for target_clones. 10807 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None && 10808 OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones) { 10809 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) 10810 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); 10811 NewFD->setInvalidDecl(); 10812 return true; 10813 } 10814 10815 if (!OldFD->isMultiVersion()) { 10816 switch (MVType) { 10817 case MultiVersionKind::Target: 10818 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10819 Redeclaration, OldDecl, 10820 MergeTypeWithPrevious, Previous); 10821 case MultiVersionKind::TargetClones: 10822 if (OldFD->isUsed(false)) { 10823 NewFD->setInvalidDecl(); 10824 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 10825 } 10826 OldFD->setIsMultiVersion(); 10827 break; 10828 case MultiVersionKind::CPUDispatch: 10829 case MultiVersionKind::CPUSpecific: 10830 case MultiVersionKind::None: 10831 break; 10832 } 10833 } 10834 // Handle the target potentially causes multiversioning case. 10835 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) 10836 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10837 Redeclaration, OldDecl, 10838 MergeTypeWithPrevious, Previous); 10839 10840 // At this point, we have a multiversion function decl (in OldFD) AND an 10841 // appropriate attribute in the current function decl. Resolve that these are 10842 // still compatible with previous declarations. 10843 return CheckMultiVersionAdditionalDecl( 10844 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, NewClones, 10845 Redeclaration, OldDecl, MergeTypeWithPrevious, Previous); 10846 } 10847 10848 /// Perform semantic checking of a new function declaration. 10849 /// 10850 /// Performs semantic analysis of the new function declaration 10851 /// NewFD. This routine performs all semantic checking that does not 10852 /// require the actual declarator involved in the declaration, and is 10853 /// used both for the declaration of functions as they are parsed 10854 /// (called via ActOnDeclarator) and for the declaration of functions 10855 /// that have been instantiated via C++ template instantiation (called 10856 /// via InstantiateDecl). 10857 /// 10858 /// \param IsMemberSpecialization whether this new function declaration is 10859 /// a member specialization (that replaces any definition provided by the 10860 /// previous declaration). 10861 /// 10862 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10863 /// 10864 /// \returns true if the function declaration is a redeclaration. 10865 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 10866 LookupResult &Previous, 10867 bool IsMemberSpecialization) { 10868 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 10869 "Variably modified return types are not handled here"); 10870 10871 // Determine whether the type of this function should be merged with 10872 // a previous visible declaration. This never happens for functions in C++, 10873 // and always happens in C if the previous declaration was visible. 10874 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 10875 !Previous.isShadowed(); 10876 10877 bool Redeclaration = false; 10878 NamedDecl *OldDecl = nullptr; 10879 bool MayNeedOverloadableChecks = false; 10880 10881 // Merge or overload the declaration with an existing declaration of 10882 // the same name, if appropriate. 10883 if (!Previous.empty()) { 10884 // Determine whether NewFD is an overload of PrevDecl or 10885 // a declaration that requires merging. If it's an overload, 10886 // there's no more work to do here; we'll just add the new 10887 // function to the scope. 10888 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { 10889 NamedDecl *Candidate = Previous.getRepresentativeDecl(); 10890 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 10891 Redeclaration = true; 10892 OldDecl = Candidate; 10893 } 10894 } else { 10895 MayNeedOverloadableChecks = true; 10896 switch (CheckOverload(S, NewFD, Previous, OldDecl, 10897 /*NewIsUsingDecl*/ false)) { 10898 case Ovl_Match: 10899 Redeclaration = true; 10900 break; 10901 10902 case Ovl_NonFunction: 10903 Redeclaration = true; 10904 break; 10905 10906 case Ovl_Overload: 10907 Redeclaration = false; 10908 break; 10909 } 10910 } 10911 } 10912 10913 // Check for a previous extern "C" declaration with this name. 10914 if (!Redeclaration && 10915 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 10916 if (!Previous.empty()) { 10917 // This is an extern "C" declaration with the same name as a previous 10918 // declaration, and thus redeclares that entity... 10919 Redeclaration = true; 10920 OldDecl = Previous.getFoundDecl(); 10921 MergeTypeWithPrevious = false; 10922 10923 // ... except in the presence of __attribute__((overloadable)). 10924 if (OldDecl->hasAttr<OverloadableAttr>() || 10925 NewFD->hasAttr<OverloadableAttr>()) { 10926 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 10927 MayNeedOverloadableChecks = true; 10928 Redeclaration = false; 10929 OldDecl = nullptr; 10930 } 10931 } 10932 } 10933 } 10934 10935 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, 10936 MergeTypeWithPrevious, Previous)) 10937 return Redeclaration; 10938 10939 // PPC MMA non-pointer types are not allowed as function return types. 10940 if (Context.getTargetInfo().getTriple().isPPC64() && 10941 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) { 10942 NewFD->setInvalidDecl(); 10943 } 10944 10945 // C++11 [dcl.constexpr]p8: 10946 // A constexpr specifier for a non-static member function that is not 10947 // a constructor declares that member function to be const. 10948 // 10949 // This needs to be delayed until we know whether this is an out-of-line 10950 // definition of a static member function. 10951 // 10952 // This rule is not present in C++1y, so we produce a backwards 10953 // compatibility warning whenever it happens in C++11. 10954 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 10955 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 10956 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 10957 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { 10958 CXXMethodDecl *OldMD = nullptr; 10959 if (OldDecl) 10960 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 10961 if (!OldMD || !OldMD->isStatic()) { 10962 const FunctionProtoType *FPT = 10963 MD->getType()->castAs<FunctionProtoType>(); 10964 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10965 EPI.TypeQuals.addConst(); 10966 MD->setType(Context.getFunctionType(FPT->getReturnType(), 10967 FPT->getParamTypes(), EPI)); 10968 10969 // Warn that we did this, if we're not performing template instantiation. 10970 // In that case, we'll have warned already when the template was defined. 10971 if (!inTemplateInstantiation()) { 10972 SourceLocation AddConstLoc; 10973 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 10974 .IgnoreParens().getAs<FunctionTypeLoc>()) 10975 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 10976 10977 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 10978 << FixItHint::CreateInsertion(AddConstLoc, " const"); 10979 } 10980 } 10981 } 10982 10983 if (Redeclaration) { 10984 // NewFD and OldDecl represent declarations that need to be 10985 // merged. 10986 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 10987 NewFD->setInvalidDecl(); 10988 return Redeclaration; 10989 } 10990 10991 Previous.clear(); 10992 Previous.addDecl(OldDecl); 10993 10994 if (FunctionTemplateDecl *OldTemplateDecl = 10995 dyn_cast<FunctionTemplateDecl>(OldDecl)) { 10996 auto *OldFD = OldTemplateDecl->getTemplatedDecl(); 10997 FunctionTemplateDecl *NewTemplateDecl 10998 = NewFD->getDescribedFunctionTemplate(); 10999 assert(NewTemplateDecl && "Template/non-template mismatch"); 11000 11001 // The call to MergeFunctionDecl above may have created some state in 11002 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we 11003 // can add it as a redeclaration. 11004 NewTemplateDecl->mergePrevDecl(OldTemplateDecl); 11005 11006 NewFD->setPreviousDeclaration(OldFD); 11007 if (NewFD->isCXXClassMember()) { 11008 NewFD->setAccess(OldTemplateDecl->getAccess()); 11009 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 11010 } 11011 11012 // If this is an explicit specialization of a member that is a function 11013 // template, mark it as a member specialization. 11014 if (IsMemberSpecialization && 11015 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 11016 NewTemplateDecl->setMemberSpecialization(); 11017 assert(OldTemplateDecl->isMemberSpecialization()); 11018 // Explicit specializations of a member template do not inherit deleted 11019 // status from the parent member template that they are specializing. 11020 if (OldFD->isDeleted()) { 11021 // FIXME: This assert will not hold in the presence of modules. 11022 assert(OldFD->getCanonicalDecl() == OldFD); 11023 // FIXME: We need an update record for this AST mutation. 11024 OldFD->setDeletedAsWritten(false); 11025 } 11026 } 11027 11028 } else { 11029 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { 11030 auto *OldFD = cast<FunctionDecl>(OldDecl); 11031 // This needs to happen first so that 'inline' propagates. 11032 NewFD->setPreviousDeclaration(OldFD); 11033 if (NewFD->isCXXClassMember()) 11034 NewFD->setAccess(OldFD->getAccess()); 11035 } 11036 } 11037 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && 11038 !NewFD->getAttr<OverloadableAttr>()) { 11039 assert((Previous.empty() || 11040 llvm::any_of(Previous, 11041 [](const NamedDecl *ND) { 11042 return ND->hasAttr<OverloadableAttr>(); 11043 })) && 11044 "Non-redecls shouldn't happen without overloadable present"); 11045 11046 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { 11047 const auto *FD = dyn_cast<FunctionDecl>(ND); 11048 return FD && !FD->hasAttr<OverloadableAttr>(); 11049 }); 11050 11051 if (OtherUnmarkedIter != Previous.end()) { 11052 Diag(NewFD->getLocation(), 11053 diag::err_attribute_overloadable_multiple_unmarked_overloads); 11054 Diag((*OtherUnmarkedIter)->getLocation(), 11055 diag::note_attribute_overloadable_prev_overload) 11056 << false; 11057 11058 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 11059 } 11060 } 11061 11062 if (LangOpts.OpenMP) 11063 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD); 11064 11065 // Semantic checking for this function declaration (in isolation). 11066 11067 if (getLangOpts().CPlusPlus) { 11068 // C++-specific checks. 11069 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 11070 CheckConstructor(Constructor); 11071 } else if (CXXDestructorDecl *Destructor = 11072 dyn_cast<CXXDestructorDecl>(NewFD)) { 11073 CXXRecordDecl *Record = Destructor->getParent(); 11074 QualType ClassType = Context.getTypeDeclType(Record); 11075 11076 // FIXME: Shouldn't we be able to perform this check even when the class 11077 // type is dependent? Both gcc and edg can handle that. 11078 if (!ClassType->isDependentType()) { 11079 DeclarationName Name 11080 = Context.DeclarationNames.getCXXDestructorName( 11081 Context.getCanonicalType(ClassType)); 11082 if (NewFD->getDeclName() != Name) { 11083 Diag(NewFD->getLocation(), diag::err_destructor_name); 11084 NewFD->setInvalidDecl(); 11085 return Redeclaration; 11086 } 11087 } 11088 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { 11089 if (auto *TD = Guide->getDescribedFunctionTemplate()) 11090 CheckDeductionGuideTemplate(TD); 11091 11092 // A deduction guide is not on the list of entities that can be 11093 // explicitly specialized. 11094 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 11095 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) 11096 << /*explicit specialization*/ 1; 11097 } 11098 11099 // Find any virtual functions that this function overrides. 11100 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 11101 if (!Method->isFunctionTemplateSpecialization() && 11102 !Method->getDescribedFunctionTemplate() && 11103 Method->isCanonicalDecl()) { 11104 AddOverriddenMethods(Method->getParent(), Method); 11105 } 11106 if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) 11107 // C++2a [class.virtual]p6 11108 // A virtual method shall not have a requires-clause. 11109 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), 11110 diag::err_constrained_virtual_method); 11111 11112 if (Method->isStatic()) 11113 checkThisInStaticMemberFunctionType(Method); 11114 } 11115 11116 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) 11117 ActOnConversionDeclarator(Conversion); 11118 11119 // Extra checking for C++ overloaded operators (C++ [over.oper]). 11120 if (NewFD->isOverloadedOperator() && 11121 CheckOverloadedOperatorDeclaration(NewFD)) { 11122 NewFD->setInvalidDecl(); 11123 return Redeclaration; 11124 } 11125 11126 // Extra checking for C++0x literal operators (C++0x [over.literal]). 11127 if (NewFD->getLiteralIdentifier() && 11128 CheckLiteralOperatorDeclaration(NewFD)) { 11129 NewFD->setInvalidDecl(); 11130 return Redeclaration; 11131 } 11132 11133 // In C++, check default arguments now that we have merged decls. Unless 11134 // the lexical context is the class, because in this case this is done 11135 // during delayed parsing anyway. 11136 if (!CurContext->isRecord()) 11137 CheckCXXDefaultArguments(NewFD); 11138 11139 // If this function is declared as being extern "C", then check to see if 11140 // the function returns a UDT (class, struct, or union type) that is not C 11141 // compatible, and if it does, warn the user. 11142 // But, issue any diagnostic on the first declaration only. 11143 if (Previous.empty() && NewFD->isExternC()) { 11144 QualType R = NewFD->getReturnType(); 11145 if (R->isIncompleteType() && !R->isVoidType()) 11146 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 11147 << NewFD << R; 11148 else if (!R.isPODType(Context) && !R->isVoidType() && 11149 !R->isObjCObjectPointerType()) 11150 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 11151 } 11152 11153 // C++1z [dcl.fct]p6: 11154 // [...] whether the function has a non-throwing exception-specification 11155 // [is] part of the function type 11156 // 11157 // This results in an ABI break between C++14 and C++17 for functions whose 11158 // declared type includes an exception-specification in a parameter or 11159 // return type. (Exception specifications on the function itself are OK in 11160 // most cases, and exception specifications are not permitted in most other 11161 // contexts where they could make it into a mangling.) 11162 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { 11163 auto HasNoexcept = [&](QualType T) -> bool { 11164 // Strip off declarator chunks that could be between us and a function 11165 // type. We don't need to look far, exception specifications are very 11166 // restricted prior to C++17. 11167 if (auto *RT = T->getAs<ReferenceType>()) 11168 T = RT->getPointeeType(); 11169 else if (T->isAnyPointerType()) 11170 T = T->getPointeeType(); 11171 else if (auto *MPT = T->getAs<MemberPointerType>()) 11172 T = MPT->getPointeeType(); 11173 if (auto *FPT = T->getAs<FunctionProtoType>()) 11174 if (FPT->isNothrow()) 11175 return true; 11176 return false; 11177 }; 11178 11179 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); 11180 bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); 11181 for (QualType T : FPT->param_types()) 11182 AnyNoexcept |= HasNoexcept(T); 11183 if (AnyNoexcept) 11184 Diag(NewFD->getLocation(), 11185 diag::warn_cxx17_compat_exception_spec_in_signature) 11186 << NewFD; 11187 } 11188 11189 if (!Redeclaration && LangOpts.CUDA) 11190 checkCUDATargetOverload(NewFD, Previous); 11191 } 11192 return Redeclaration; 11193 } 11194 11195 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 11196 // C++11 [basic.start.main]p3: 11197 // A program that [...] declares main to be inline, static or 11198 // constexpr is ill-formed. 11199 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 11200 // appear in a declaration of main. 11201 // static main is not an error under C99, but we should warn about it. 11202 // We accept _Noreturn main as an extension. 11203 if (FD->getStorageClass() == SC_Static) 11204 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 11205 ? diag::err_static_main : diag::warn_static_main) 11206 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 11207 if (FD->isInlineSpecified()) 11208 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 11209 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 11210 if (DS.isNoreturnSpecified()) { 11211 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 11212 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 11213 Diag(NoreturnLoc, diag::ext_noreturn_main); 11214 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 11215 << FixItHint::CreateRemoval(NoreturnRange); 11216 } 11217 if (FD->isConstexpr()) { 11218 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 11219 << FD->isConsteval() 11220 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 11221 FD->setConstexprKind(ConstexprSpecKind::Unspecified); 11222 } 11223 11224 if (getLangOpts().OpenCL) { 11225 Diag(FD->getLocation(), diag::err_opencl_no_main) 11226 << FD->hasAttr<OpenCLKernelAttr>(); 11227 FD->setInvalidDecl(); 11228 return; 11229 } 11230 11231 QualType T = FD->getType(); 11232 assert(T->isFunctionType() && "function decl is not of function type"); 11233 const FunctionType* FT = T->castAs<FunctionType>(); 11234 11235 // Set default calling convention for main() 11236 if (FT->getCallConv() != CC_C) { 11237 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); 11238 FD->setType(QualType(FT, 0)); 11239 T = Context.getCanonicalType(FD->getType()); 11240 } 11241 11242 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 11243 // In C with GNU extensions we allow main() to have non-integer return 11244 // type, but we should warn about the extension, and we disable the 11245 // implicit-return-zero rule. 11246 11247 // GCC in C mode accepts qualified 'int'. 11248 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 11249 FD->setHasImplicitReturnZero(true); 11250 else { 11251 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 11252 SourceRange RTRange = FD->getReturnTypeSourceRange(); 11253 if (RTRange.isValid()) 11254 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 11255 << FixItHint::CreateReplacement(RTRange, "int"); 11256 } 11257 } else { 11258 // In C and C++, main magically returns 0 if you fall off the end; 11259 // set the flag which tells us that. 11260 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 11261 11262 // All the standards say that main() should return 'int'. 11263 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 11264 FD->setHasImplicitReturnZero(true); 11265 else { 11266 // Otherwise, this is just a flat-out error. 11267 SourceRange RTRange = FD->getReturnTypeSourceRange(); 11268 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 11269 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 11270 : FixItHint()); 11271 FD->setInvalidDecl(true); 11272 } 11273 } 11274 11275 // Treat protoless main() as nullary. 11276 if (isa<FunctionNoProtoType>(FT)) return; 11277 11278 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 11279 unsigned nparams = FTP->getNumParams(); 11280 assert(FD->getNumParams() == nparams); 11281 11282 bool HasExtraParameters = (nparams > 3); 11283 11284 if (FTP->isVariadic()) { 11285 Diag(FD->getLocation(), diag::ext_variadic_main); 11286 // FIXME: if we had information about the location of the ellipsis, we 11287 // could add a FixIt hint to remove it as a parameter. 11288 } 11289 11290 // Darwin passes an undocumented fourth argument of type char**. If 11291 // other platforms start sprouting these, the logic below will start 11292 // getting shifty. 11293 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 11294 HasExtraParameters = false; 11295 11296 if (HasExtraParameters) { 11297 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 11298 FD->setInvalidDecl(true); 11299 nparams = 3; 11300 } 11301 11302 // FIXME: a lot of the following diagnostics would be improved 11303 // if we had some location information about types. 11304 11305 QualType CharPP = 11306 Context.getPointerType(Context.getPointerType(Context.CharTy)); 11307 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 11308 11309 for (unsigned i = 0; i < nparams; ++i) { 11310 QualType AT = FTP->getParamType(i); 11311 11312 bool mismatch = true; 11313 11314 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 11315 mismatch = false; 11316 else if (Expected[i] == CharPP) { 11317 // As an extension, the following forms are okay: 11318 // char const ** 11319 // char const * const * 11320 // char * const * 11321 11322 QualifierCollector qs; 11323 const PointerType* PT; 11324 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 11325 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 11326 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 11327 Context.CharTy)) { 11328 qs.removeConst(); 11329 mismatch = !qs.empty(); 11330 } 11331 } 11332 11333 if (mismatch) { 11334 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 11335 // TODO: suggest replacing given type with expected type 11336 FD->setInvalidDecl(true); 11337 } 11338 } 11339 11340 if (nparams == 1 && !FD->isInvalidDecl()) { 11341 Diag(FD->getLocation(), diag::warn_main_one_arg); 11342 } 11343 11344 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11345 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11346 FD->setInvalidDecl(); 11347 } 11348 } 11349 11350 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) { 11351 11352 // Default calling convention for main and wmain is __cdecl 11353 if (FD->getName() == "main" || FD->getName() == "wmain") 11354 return false; 11355 11356 // Default calling convention for MinGW is __cdecl 11357 const llvm::Triple &T = S.Context.getTargetInfo().getTriple(); 11358 if (T.isWindowsGNUEnvironment()) 11359 return false; 11360 11361 // Default calling convention for WinMain, wWinMain and DllMain 11362 // is __stdcall on 32 bit Windows 11363 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86) 11364 return true; 11365 11366 return false; 11367 } 11368 11369 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 11370 QualType T = FD->getType(); 11371 assert(T->isFunctionType() && "function decl is not of function type"); 11372 const FunctionType *FT = T->castAs<FunctionType>(); 11373 11374 // Set an implicit return of 'zero' if the function can return some integral, 11375 // enumeration, pointer or nullptr type. 11376 if (FT->getReturnType()->isIntegralOrEnumerationType() || 11377 FT->getReturnType()->isAnyPointerType() || 11378 FT->getReturnType()->isNullPtrType()) 11379 // DllMain is exempt because a return value of zero means it failed. 11380 if (FD->getName() != "DllMain") 11381 FD->setHasImplicitReturnZero(true); 11382 11383 // Explicity specified calling conventions are applied to MSVC entry points 11384 if (!hasExplicitCallingConv(T)) { 11385 if (isDefaultStdCall(FD, *this)) { 11386 if (FT->getCallConv() != CC_X86StdCall) { 11387 FT = Context.adjustFunctionType( 11388 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall)); 11389 FD->setType(QualType(FT, 0)); 11390 } 11391 } else if (FT->getCallConv() != CC_C) { 11392 FT = Context.adjustFunctionType(FT, 11393 FT->getExtInfo().withCallingConv(CC_C)); 11394 FD->setType(QualType(FT, 0)); 11395 } 11396 } 11397 11398 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11399 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11400 FD->setInvalidDecl(); 11401 } 11402 } 11403 11404 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 11405 // FIXME: Need strict checking. In C89, we need to check for 11406 // any assignment, increment, decrement, function-calls, or 11407 // commas outside of a sizeof. In C99, it's the same list, 11408 // except that the aforementioned are allowed in unevaluated 11409 // expressions. Everything else falls under the 11410 // "may accept other forms of constant expressions" exception. 11411 // 11412 // Regular C++ code will not end up here (exceptions: language extensions, 11413 // OpenCL C++ etc), so the constant expression rules there don't matter. 11414 if (Init->isValueDependent()) { 11415 assert(Init->containsErrors() && 11416 "Dependent code should only occur in error-recovery path."); 11417 return true; 11418 } 11419 const Expr *Culprit; 11420 if (Init->isConstantInitializer(Context, false, &Culprit)) 11421 return false; 11422 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 11423 << Culprit->getSourceRange(); 11424 return true; 11425 } 11426 11427 namespace { 11428 // Visits an initialization expression to see if OrigDecl is evaluated in 11429 // its own initialization and throws a warning if it does. 11430 class SelfReferenceChecker 11431 : public EvaluatedExprVisitor<SelfReferenceChecker> { 11432 Sema &S; 11433 Decl *OrigDecl; 11434 bool isRecordType; 11435 bool isPODType; 11436 bool isReferenceType; 11437 11438 bool isInitList; 11439 llvm::SmallVector<unsigned, 4> InitFieldIndex; 11440 11441 public: 11442 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 11443 11444 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 11445 S(S), OrigDecl(OrigDecl) { 11446 isPODType = false; 11447 isRecordType = false; 11448 isReferenceType = false; 11449 isInitList = false; 11450 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 11451 isPODType = VD->getType().isPODType(S.Context); 11452 isRecordType = VD->getType()->isRecordType(); 11453 isReferenceType = VD->getType()->isReferenceType(); 11454 } 11455 } 11456 11457 // For most expressions, just call the visitor. For initializer lists, 11458 // track the index of the field being initialized since fields are 11459 // initialized in order allowing use of previously initialized fields. 11460 void CheckExpr(Expr *E) { 11461 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 11462 if (!InitList) { 11463 Visit(E); 11464 return; 11465 } 11466 11467 // Track and increment the index here. 11468 isInitList = true; 11469 InitFieldIndex.push_back(0); 11470 for (auto Child : InitList->children()) { 11471 CheckExpr(cast<Expr>(Child)); 11472 ++InitFieldIndex.back(); 11473 } 11474 InitFieldIndex.pop_back(); 11475 } 11476 11477 // Returns true if MemberExpr is checked and no further checking is needed. 11478 // Returns false if additional checking is required. 11479 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 11480 llvm::SmallVector<FieldDecl*, 4> Fields; 11481 Expr *Base = E; 11482 bool ReferenceField = false; 11483 11484 // Get the field members used. 11485 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11486 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 11487 if (!FD) 11488 return false; 11489 Fields.push_back(FD); 11490 if (FD->getType()->isReferenceType()) 11491 ReferenceField = true; 11492 Base = ME->getBase()->IgnoreParenImpCasts(); 11493 } 11494 11495 // Keep checking only if the base Decl is the same. 11496 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 11497 if (!DRE || DRE->getDecl() != OrigDecl) 11498 return false; 11499 11500 // A reference field can be bound to an unininitialized field. 11501 if (CheckReference && !ReferenceField) 11502 return true; 11503 11504 // Convert FieldDecls to their index number. 11505 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 11506 for (const FieldDecl *I : llvm::reverse(Fields)) 11507 UsedFieldIndex.push_back(I->getFieldIndex()); 11508 11509 // See if a warning is needed by checking the first difference in index 11510 // numbers. If field being used has index less than the field being 11511 // initialized, then the use is safe. 11512 for (auto UsedIter = UsedFieldIndex.begin(), 11513 UsedEnd = UsedFieldIndex.end(), 11514 OrigIter = InitFieldIndex.begin(), 11515 OrigEnd = InitFieldIndex.end(); 11516 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 11517 if (*UsedIter < *OrigIter) 11518 return true; 11519 if (*UsedIter > *OrigIter) 11520 break; 11521 } 11522 11523 // TODO: Add a different warning which will print the field names. 11524 HandleDeclRefExpr(DRE); 11525 return true; 11526 } 11527 11528 // For most expressions, the cast is directly above the DeclRefExpr. 11529 // For conditional operators, the cast can be outside the conditional 11530 // operator if both expressions are DeclRefExpr's. 11531 void HandleValue(Expr *E) { 11532 E = E->IgnoreParens(); 11533 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 11534 HandleDeclRefExpr(DRE); 11535 return; 11536 } 11537 11538 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 11539 Visit(CO->getCond()); 11540 HandleValue(CO->getTrueExpr()); 11541 HandleValue(CO->getFalseExpr()); 11542 return; 11543 } 11544 11545 if (BinaryConditionalOperator *BCO = 11546 dyn_cast<BinaryConditionalOperator>(E)) { 11547 Visit(BCO->getCond()); 11548 HandleValue(BCO->getFalseExpr()); 11549 return; 11550 } 11551 11552 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 11553 HandleValue(OVE->getSourceExpr()); 11554 return; 11555 } 11556 11557 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11558 if (BO->getOpcode() == BO_Comma) { 11559 Visit(BO->getLHS()); 11560 HandleValue(BO->getRHS()); 11561 return; 11562 } 11563 } 11564 11565 if (isa<MemberExpr>(E)) { 11566 if (isInitList) { 11567 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 11568 false /*CheckReference*/)) 11569 return; 11570 } 11571 11572 Expr *Base = E->IgnoreParenImpCasts(); 11573 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11574 // Check for static member variables and don't warn on them. 11575 if (!isa<FieldDecl>(ME->getMemberDecl())) 11576 return; 11577 Base = ME->getBase()->IgnoreParenImpCasts(); 11578 } 11579 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 11580 HandleDeclRefExpr(DRE); 11581 return; 11582 } 11583 11584 Visit(E); 11585 } 11586 11587 // Reference types not handled in HandleValue are handled here since all 11588 // uses of references are bad, not just r-value uses. 11589 void VisitDeclRefExpr(DeclRefExpr *E) { 11590 if (isReferenceType) 11591 HandleDeclRefExpr(E); 11592 } 11593 11594 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 11595 if (E->getCastKind() == CK_LValueToRValue) { 11596 HandleValue(E->getSubExpr()); 11597 return; 11598 } 11599 11600 Inherited::VisitImplicitCastExpr(E); 11601 } 11602 11603 void VisitMemberExpr(MemberExpr *E) { 11604 if (isInitList) { 11605 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 11606 return; 11607 } 11608 11609 // Don't warn on arrays since they can be treated as pointers. 11610 if (E->getType()->canDecayToPointerType()) return; 11611 11612 // Warn when a non-static method call is followed by non-static member 11613 // field accesses, which is followed by a DeclRefExpr. 11614 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 11615 bool Warn = (MD && !MD->isStatic()); 11616 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 11617 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11618 if (!isa<FieldDecl>(ME->getMemberDecl())) 11619 Warn = false; 11620 Base = ME->getBase()->IgnoreParenImpCasts(); 11621 } 11622 11623 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 11624 if (Warn) 11625 HandleDeclRefExpr(DRE); 11626 return; 11627 } 11628 11629 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 11630 // Visit that expression. 11631 Visit(Base); 11632 } 11633 11634 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 11635 Expr *Callee = E->getCallee(); 11636 11637 if (isa<UnresolvedLookupExpr>(Callee)) 11638 return Inherited::VisitCXXOperatorCallExpr(E); 11639 11640 Visit(Callee); 11641 for (auto Arg: E->arguments()) 11642 HandleValue(Arg->IgnoreParenImpCasts()); 11643 } 11644 11645 void VisitUnaryOperator(UnaryOperator *E) { 11646 // For POD record types, addresses of its own members are well-defined. 11647 if (E->getOpcode() == UO_AddrOf && isRecordType && 11648 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 11649 if (!isPODType) 11650 HandleValue(E->getSubExpr()); 11651 return; 11652 } 11653 11654 if (E->isIncrementDecrementOp()) { 11655 HandleValue(E->getSubExpr()); 11656 return; 11657 } 11658 11659 Inherited::VisitUnaryOperator(E); 11660 } 11661 11662 void VisitObjCMessageExpr(ObjCMessageExpr *E) {} 11663 11664 void VisitCXXConstructExpr(CXXConstructExpr *E) { 11665 if (E->getConstructor()->isCopyConstructor()) { 11666 Expr *ArgExpr = E->getArg(0); 11667 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 11668 if (ILE->getNumInits() == 1) 11669 ArgExpr = ILE->getInit(0); 11670 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 11671 if (ICE->getCastKind() == CK_NoOp) 11672 ArgExpr = ICE->getSubExpr(); 11673 HandleValue(ArgExpr); 11674 return; 11675 } 11676 Inherited::VisitCXXConstructExpr(E); 11677 } 11678 11679 void VisitCallExpr(CallExpr *E) { 11680 // Treat std::move as a use. 11681 if (E->isCallToStdMove()) { 11682 HandleValue(E->getArg(0)); 11683 return; 11684 } 11685 11686 Inherited::VisitCallExpr(E); 11687 } 11688 11689 void VisitBinaryOperator(BinaryOperator *E) { 11690 if (E->isCompoundAssignmentOp()) { 11691 HandleValue(E->getLHS()); 11692 Visit(E->getRHS()); 11693 return; 11694 } 11695 11696 Inherited::VisitBinaryOperator(E); 11697 } 11698 11699 // A custom visitor for BinaryConditionalOperator is needed because the 11700 // regular visitor would check the condition and true expression separately 11701 // but both point to the same place giving duplicate diagnostics. 11702 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 11703 Visit(E->getCond()); 11704 Visit(E->getFalseExpr()); 11705 } 11706 11707 void HandleDeclRefExpr(DeclRefExpr *DRE) { 11708 Decl* ReferenceDecl = DRE->getDecl(); 11709 if (OrigDecl != ReferenceDecl) return; 11710 unsigned diag; 11711 if (isReferenceType) { 11712 diag = diag::warn_uninit_self_reference_in_reference_init; 11713 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 11714 diag = diag::warn_static_self_reference_in_init; 11715 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || 11716 isa<NamespaceDecl>(OrigDecl->getDeclContext()) || 11717 DRE->getDecl()->getType()->isRecordType()) { 11718 diag = diag::warn_uninit_self_reference_in_init; 11719 } else { 11720 // Local variables will be handled by the CFG analysis. 11721 return; 11722 } 11723 11724 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, 11725 S.PDiag(diag) 11726 << DRE->getDecl() << OrigDecl->getLocation() 11727 << DRE->getSourceRange()); 11728 } 11729 }; 11730 11731 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 11732 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 11733 bool DirectInit) { 11734 // Parameters arguments are occassionially constructed with itself, 11735 // for instance, in recursive functions. Skip them. 11736 if (isa<ParmVarDecl>(OrigDecl)) 11737 return; 11738 11739 E = E->IgnoreParens(); 11740 11741 // Skip checking T a = a where T is not a record or reference type. 11742 // Doing so is a way to silence uninitialized warnings. 11743 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 11744 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 11745 if (ICE->getCastKind() == CK_LValueToRValue) 11746 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 11747 if (DRE->getDecl() == OrigDecl) 11748 return; 11749 11750 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 11751 } 11752 } // end anonymous namespace 11753 11754 namespace { 11755 // Simple wrapper to add the name of a variable or (if no variable is 11756 // available) a DeclarationName into a diagnostic. 11757 struct VarDeclOrName { 11758 VarDecl *VDecl; 11759 DeclarationName Name; 11760 11761 friend const Sema::SemaDiagnosticBuilder & 11762 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { 11763 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; 11764 } 11765 }; 11766 } // end anonymous namespace 11767 11768 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, 11769 DeclarationName Name, QualType Type, 11770 TypeSourceInfo *TSI, 11771 SourceRange Range, bool DirectInit, 11772 Expr *Init) { 11773 bool IsInitCapture = !VDecl; 11774 assert((!VDecl || !VDecl->isInitCapture()) && 11775 "init captures are expected to be deduced prior to initialization"); 11776 11777 VarDeclOrName VN{VDecl, Name}; 11778 11779 DeducedType *Deduced = Type->getContainedDeducedType(); 11780 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); 11781 11782 // C++11 [dcl.spec.auto]p3 11783 if (!Init) { 11784 assert(VDecl && "no init for init capture deduction?"); 11785 11786 // Except for class argument deduction, and then for an initializing 11787 // declaration only, i.e. no static at class scope or extern. 11788 if (!isa<DeducedTemplateSpecializationType>(Deduced) || 11789 VDecl->hasExternalStorage() || 11790 VDecl->isStaticDataMember()) { 11791 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) 11792 << VDecl->getDeclName() << Type; 11793 return QualType(); 11794 } 11795 } 11796 11797 ArrayRef<Expr*> DeduceInits; 11798 if (Init) 11799 DeduceInits = Init; 11800 11801 if (DirectInit) { 11802 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) 11803 DeduceInits = PL->exprs(); 11804 } 11805 11806 if (isa<DeducedTemplateSpecializationType>(Deduced)) { 11807 assert(VDecl && "non-auto type for init capture deduction?"); 11808 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11809 InitializationKind Kind = InitializationKind::CreateForInit( 11810 VDecl->getLocation(), DirectInit, Init); 11811 // FIXME: Initialization should not be taking a mutable list of inits. 11812 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); 11813 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, 11814 InitsCopy); 11815 } 11816 11817 if (DirectInit) { 11818 if (auto *IL = dyn_cast<InitListExpr>(Init)) 11819 DeduceInits = IL->inits(); 11820 } 11821 11822 // Deduction only works if we have exactly one source expression. 11823 if (DeduceInits.empty()) { 11824 // It isn't possible to write this directly, but it is possible to 11825 // end up in this situation with "auto x(some_pack...);" 11826 Diag(Init->getBeginLoc(), IsInitCapture 11827 ? diag::err_init_capture_no_expression 11828 : diag::err_auto_var_init_no_expression) 11829 << VN << Type << Range; 11830 return QualType(); 11831 } 11832 11833 if (DeduceInits.size() > 1) { 11834 Diag(DeduceInits[1]->getBeginLoc(), 11835 IsInitCapture ? diag::err_init_capture_multiple_expressions 11836 : diag::err_auto_var_init_multiple_expressions) 11837 << VN << Type << Range; 11838 return QualType(); 11839 } 11840 11841 Expr *DeduceInit = DeduceInits[0]; 11842 if (DirectInit && isa<InitListExpr>(DeduceInit)) { 11843 Diag(Init->getBeginLoc(), IsInitCapture 11844 ? diag::err_init_capture_paren_braces 11845 : diag::err_auto_var_init_paren_braces) 11846 << isa<InitListExpr>(Init) << VN << Type << Range; 11847 return QualType(); 11848 } 11849 11850 // Expressions default to 'id' when we're in a debugger. 11851 bool DefaultedAnyToId = false; 11852 if (getLangOpts().DebuggerCastResultToId && 11853 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { 11854 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11855 if (Result.isInvalid()) { 11856 return QualType(); 11857 } 11858 Init = Result.get(); 11859 DefaultedAnyToId = true; 11860 } 11861 11862 // C++ [dcl.decomp]p1: 11863 // If the assignment-expression [...] has array type A and no ref-qualifier 11864 // is present, e has type cv A 11865 if (VDecl && isa<DecompositionDecl>(VDecl) && 11866 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && 11867 DeduceInit->getType()->isConstantArrayType()) 11868 return Context.getQualifiedType(DeduceInit->getType(), 11869 Type.getQualifiers()); 11870 11871 QualType DeducedType; 11872 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 11873 if (!IsInitCapture) 11874 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 11875 else if (isa<InitListExpr>(Init)) 11876 Diag(Range.getBegin(), 11877 diag::err_init_capture_deduction_failure_from_init_list) 11878 << VN 11879 << (DeduceInit->getType().isNull() ? TSI->getType() 11880 : DeduceInit->getType()) 11881 << DeduceInit->getSourceRange(); 11882 else 11883 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) 11884 << VN << TSI->getType() 11885 << (DeduceInit->getType().isNull() ? TSI->getType() 11886 : DeduceInit->getType()) 11887 << DeduceInit->getSourceRange(); 11888 } 11889 11890 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 11891 // 'id' instead of a specific object type prevents most of our usual 11892 // checks. 11893 // We only want to warn outside of template instantiations, though: 11894 // inside a template, the 'id' could have come from a parameter. 11895 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && 11896 !DeducedType.isNull() && DeducedType->isObjCIdType()) { 11897 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); 11898 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; 11899 } 11900 11901 return DeducedType; 11902 } 11903 11904 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, 11905 Expr *Init) { 11906 assert(!Init || !Init->containsErrors()); 11907 QualType DeducedType = deduceVarTypeFromInitializer( 11908 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), 11909 VDecl->getSourceRange(), DirectInit, Init); 11910 if (DeducedType.isNull()) { 11911 VDecl->setInvalidDecl(); 11912 return true; 11913 } 11914 11915 VDecl->setType(DeducedType); 11916 assert(VDecl->isLinkageValid()); 11917 11918 // In ARC, infer lifetime. 11919 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 11920 VDecl->setInvalidDecl(); 11921 11922 if (getLangOpts().OpenCL) 11923 deduceOpenCLAddressSpace(VDecl); 11924 11925 // If this is a redeclaration, check that the type we just deduced matches 11926 // the previously declared type. 11927 if (VarDecl *Old = VDecl->getPreviousDecl()) { 11928 // We never need to merge the type, because we cannot form an incomplete 11929 // array of auto, nor deduce such a type. 11930 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); 11931 } 11932 11933 // Check the deduced type is valid for a variable declaration. 11934 CheckVariableDeclarationType(VDecl); 11935 return VDecl->isInvalidDecl(); 11936 } 11937 11938 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, 11939 SourceLocation Loc) { 11940 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) 11941 Init = EWC->getSubExpr(); 11942 11943 if (auto *CE = dyn_cast<ConstantExpr>(Init)) 11944 Init = CE->getSubExpr(); 11945 11946 QualType InitType = Init->getType(); 11947 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11948 InitType.hasNonTrivialToPrimitiveCopyCUnion()) && 11949 "shouldn't be called if type doesn't have a non-trivial C struct"); 11950 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 11951 for (auto I : ILE->inits()) { 11952 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && 11953 !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) 11954 continue; 11955 SourceLocation SL = I->getExprLoc(); 11956 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); 11957 } 11958 return; 11959 } 11960 11961 if (isa<ImplicitValueInitExpr>(Init)) { 11962 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11963 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, 11964 NTCUK_Init); 11965 } else { 11966 // Assume all other explicit initializers involving copying some existing 11967 // object. 11968 // TODO: ignore any explicit initializers where we can guarantee 11969 // copy-elision. 11970 if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) 11971 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); 11972 } 11973 } 11974 11975 namespace { 11976 11977 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { 11978 // Ignore unavailable fields. A field can be marked as unavailable explicitly 11979 // in the source code or implicitly by the compiler if it is in a union 11980 // defined in a system header and has non-trivial ObjC ownership 11981 // qualifications. We don't want those fields to participate in determining 11982 // whether the containing union is non-trivial. 11983 return FD->hasAttr<UnavailableAttr>(); 11984 } 11985 11986 struct DiagNonTrivalCUnionDefaultInitializeVisitor 11987 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11988 void> { 11989 using Super = 11990 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11991 void>; 11992 11993 DiagNonTrivalCUnionDefaultInitializeVisitor( 11994 QualType OrigTy, SourceLocation OrigLoc, 11995 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11996 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11997 11998 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, 11999 const FieldDecl *FD, bool InNonTrivialUnion) { 12000 if (const auto *AT = S.Context.getAsArrayType(QT)) 12001 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 12002 InNonTrivialUnion); 12003 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); 12004 } 12005 12006 void visitARCStrong(QualType QT, const FieldDecl *FD, 12007 bool InNonTrivialUnion) { 12008 if (InNonTrivialUnion) 12009 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12010 << 1 << 0 << QT << FD->getName(); 12011 } 12012 12013 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12014 if (InNonTrivialUnion) 12015 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12016 << 1 << 0 << QT << FD->getName(); 12017 } 12018 12019 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12020 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 12021 if (RD->isUnion()) { 12022 if (OrigLoc.isValid()) { 12023 bool IsUnion = false; 12024 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 12025 IsUnion = OrigRD->isUnion(); 12026 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 12027 << 0 << OrigTy << IsUnion << UseContext; 12028 // Reset OrigLoc so that this diagnostic is emitted only once. 12029 OrigLoc = SourceLocation(); 12030 } 12031 InNonTrivialUnion = true; 12032 } 12033 12034 if (InNonTrivialUnion) 12035 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 12036 << 0 << 0 << QT.getUnqualifiedType() << ""; 12037 12038 for (const FieldDecl *FD : RD->fields()) 12039 if (!shouldIgnoreForRecordTriviality(FD)) 12040 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 12041 } 12042 12043 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 12044 12045 // The non-trivial C union type or the struct/union type that contains a 12046 // non-trivial C union. 12047 QualType OrigTy; 12048 SourceLocation OrigLoc; 12049 Sema::NonTrivialCUnionContext UseContext; 12050 Sema &S; 12051 }; 12052 12053 struct DiagNonTrivalCUnionDestructedTypeVisitor 12054 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { 12055 using Super = 12056 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; 12057 12058 DiagNonTrivalCUnionDestructedTypeVisitor( 12059 QualType OrigTy, SourceLocation OrigLoc, 12060 Sema::NonTrivialCUnionContext UseContext, Sema &S) 12061 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 12062 12063 void visitWithKind(QualType::DestructionKind DK, QualType QT, 12064 const FieldDecl *FD, bool InNonTrivialUnion) { 12065 if (const auto *AT = S.Context.getAsArrayType(QT)) 12066 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 12067 InNonTrivialUnion); 12068 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); 12069 } 12070 12071 void visitARCStrong(QualType QT, const FieldDecl *FD, 12072 bool InNonTrivialUnion) { 12073 if (InNonTrivialUnion) 12074 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12075 << 1 << 1 << QT << FD->getName(); 12076 } 12077 12078 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12079 if (InNonTrivialUnion) 12080 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12081 << 1 << 1 << QT << FD->getName(); 12082 } 12083 12084 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12085 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 12086 if (RD->isUnion()) { 12087 if (OrigLoc.isValid()) { 12088 bool IsUnion = false; 12089 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 12090 IsUnion = OrigRD->isUnion(); 12091 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 12092 << 1 << OrigTy << IsUnion << UseContext; 12093 // Reset OrigLoc so that this diagnostic is emitted only once. 12094 OrigLoc = SourceLocation(); 12095 } 12096 InNonTrivialUnion = true; 12097 } 12098 12099 if (InNonTrivialUnion) 12100 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 12101 << 0 << 1 << QT.getUnqualifiedType() << ""; 12102 12103 for (const FieldDecl *FD : RD->fields()) 12104 if (!shouldIgnoreForRecordTriviality(FD)) 12105 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 12106 } 12107 12108 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 12109 void visitCXXDestructor(QualType QT, const FieldDecl *FD, 12110 bool InNonTrivialUnion) {} 12111 12112 // The non-trivial C union type or the struct/union type that contains a 12113 // non-trivial C union. 12114 QualType OrigTy; 12115 SourceLocation OrigLoc; 12116 Sema::NonTrivialCUnionContext UseContext; 12117 Sema &S; 12118 }; 12119 12120 struct DiagNonTrivalCUnionCopyVisitor 12121 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { 12122 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; 12123 12124 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, 12125 Sema::NonTrivialCUnionContext UseContext, 12126 Sema &S) 12127 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 12128 12129 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, 12130 const FieldDecl *FD, bool InNonTrivialUnion) { 12131 if (const auto *AT = S.Context.getAsArrayType(QT)) 12132 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 12133 InNonTrivialUnion); 12134 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); 12135 } 12136 12137 void visitARCStrong(QualType QT, const FieldDecl *FD, 12138 bool InNonTrivialUnion) { 12139 if (InNonTrivialUnion) 12140 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12141 << 1 << 2 << QT << FD->getName(); 12142 } 12143 12144 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12145 if (InNonTrivialUnion) 12146 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12147 << 1 << 2 << QT << FD->getName(); 12148 } 12149 12150 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12151 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 12152 if (RD->isUnion()) { 12153 if (OrigLoc.isValid()) { 12154 bool IsUnion = false; 12155 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 12156 IsUnion = OrigRD->isUnion(); 12157 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 12158 << 2 << OrigTy << IsUnion << UseContext; 12159 // Reset OrigLoc so that this diagnostic is emitted only once. 12160 OrigLoc = SourceLocation(); 12161 } 12162 InNonTrivialUnion = true; 12163 } 12164 12165 if (InNonTrivialUnion) 12166 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 12167 << 0 << 2 << QT.getUnqualifiedType() << ""; 12168 12169 for (const FieldDecl *FD : RD->fields()) 12170 if (!shouldIgnoreForRecordTriviality(FD)) 12171 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 12172 } 12173 12174 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, 12175 const FieldDecl *FD, bool InNonTrivialUnion) {} 12176 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 12177 void visitVolatileTrivial(QualType QT, const FieldDecl *FD, 12178 bool InNonTrivialUnion) {} 12179 12180 // The non-trivial C union type or the struct/union type that contains a 12181 // non-trivial C union. 12182 QualType OrigTy; 12183 SourceLocation OrigLoc; 12184 Sema::NonTrivialCUnionContext UseContext; 12185 Sema &S; 12186 }; 12187 12188 } // namespace 12189 12190 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, 12191 NonTrivialCUnionContext UseContext, 12192 unsigned NonTrivialKind) { 12193 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12194 QT.hasNonTrivialToPrimitiveDestructCUnion() || 12195 QT.hasNonTrivialToPrimitiveCopyCUnion()) && 12196 "shouldn't be called if type doesn't have a non-trivial C union"); 12197 12198 if ((NonTrivialKind & NTCUK_Init) && 12199 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12200 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) 12201 .visit(QT, nullptr, false); 12202 if ((NonTrivialKind & NTCUK_Destruct) && 12203 QT.hasNonTrivialToPrimitiveDestructCUnion()) 12204 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) 12205 .visit(QT, nullptr, false); 12206 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) 12207 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) 12208 .visit(QT, nullptr, false); 12209 } 12210 12211 /// AddInitializerToDecl - Adds the initializer Init to the 12212 /// declaration dcl. If DirectInit is true, this is C++ direct 12213 /// initialization rather than copy initialization. 12214 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { 12215 // If there is no declaration, there was an error parsing it. Just ignore 12216 // the initializer. 12217 if (!RealDecl || RealDecl->isInvalidDecl()) { 12218 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); 12219 return; 12220 } 12221 12222 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 12223 // Pure-specifiers are handled in ActOnPureSpecifier. 12224 Diag(Method->getLocation(), diag::err_member_function_initialization) 12225 << Method->getDeclName() << Init->getSourceRange(); 12226 Method->setInvalidDecl(); 12227 return; 12228 } 12229 12230 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 12231 if (!VDecl) { 12232 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 12233 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 12234 RealDecl->setInvalidDecl(); 12235 return; 12236 } 12237 12238 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 12239 if (VDecl->getType()->isUndeducedType()) { 12240 // Attempt typo correction early so that the type of the init expression can 12241 // be deduced based on the chosen correction if the original init contains a 12242 // TypoExpr. 12243 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); 12244 if (!Res.isUsable()) { 12245 // There are unresolved typos in Init, just drop them. 12246 // FIXME: improve the recovery strategy to preserve the Init. 12247 RealDecl->setInvalidDecl(); 12248 return; 12249 } 12250 if (Res.get()->containsErrors()) { 12251 // Invalidate the decl as we don't know the type for recovery-expr yet. 12252 RealDecl->setInvalidDecl(); 12253 VDecl->setInit(Res.get()); 12254 return; 12255 } 12256 Init = Res.get(); 12257 12258 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) 12259 return; 12260 } 12261 12262 // dllimport cannot be used on variable definitions. 12263 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 12264 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 12265 VDecl->setInvalidDecl(); 12266 return; 12267 } 12268 12269 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 12270 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 12271 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 12272 VDecl->setInvalidDecl(); 12273 return; 12274 } 12275 12276 if (!VDecl->getType()->isDependentType()) { 12277 // A definition must end up with a complete type, which means it must be 12278 // complete with the restriction that an array type might be completed by 12279 // the initializer; note that later code assumes this restriction. 12280 QualType BaseDeclType = VDecl->getType(); 12281 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 12282 BaseDeclType = Array->getElementType(); 12283 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 12284 diag::err_typecheck_decl_incomplete_type)) { 12285 RealDecl->setInvalidDecl(); 12286 return; 12287 } 12288 12289 // The variable can not have an abstract class type. 12290 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 12291 diag::err_abstract_type_in_decl, 12292 AbstractVariableType)) 12293 VDecl->setInvalidDecl(); 12294 } 12295 12296 // If adding the initializer will turn this declaration into a definition, 12297 // and we already have a definition for this variable, diagnose or otherwise 12298 // handle the situation. 12299 if (VarDecl *Def = VDecl->getDefinition()) 12300 if (Def != VDecl && 12301 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && 12302 !VDecl->isThisDeclarationADemotedDefinition() && 12303 checkVarDeclRedefinition(Def, VDecl)) 12304 return; 12305 12306 if (getLangOpts().CPlusPlus) { 12307 // C++ [class.static.data]p4 12308 // If a static data member is of const integral or const 12309 // enumeration type, its declaration in the class definition can 12310 // specify a constant-initializer which shall be an integral 12311 // constant expression (5.19). In that case, the member can appear 12312 // in integral constant expressions. The member shall still be 12313 // defined in a namespace scope if it is used in the program and the 12314 // namespace scope definition shall not contain an initializer. 12315 // 12316 // We already performed a redefinition check above, but for static 12317 // data members we also need to check whether there was an in-class 12318 // declaration with an initializer. 12319 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { 12320 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 12321 << VDecl->getDeclName(); 12322 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), 12323 diag::note_previous_initializer) 12324 << 0; 12325 return; 12326 } 12327 12328 if (VDecl->hasLocalStorage()) 12329 setFunctionHasBranchProtectedScope(); 12330 12331 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 12332 VDecl->setInvalidDecl(); 12333 return; 12334 } 12335 } 12336 12337 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 12338 // a kernel function cannot be initialized." 12339 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { 12340 Diag(VDecl->getLocation(), diag::err_local_cant_init); 12341 VDecl->setInvalidDecl(); 12342 return; 12343 } 12344 12345 // The LoaderUninitialized attribute acts as a definition (of undef). 12346 if (VDecl->hasAttr<LoaderUninitializedAttr>()) { 12347 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); 12348 VDecl->setInvalidDecl(); 12349 return; 12350 } 12351 12352 // Get the decls type and save a reference for later, since 12353 // CheckInitializerTypes may change it. 12354 QualType DclT = VDecl->getType(), SavT = DclT; 12355 12356 // Expressions default to 'id' when we're in a debugger 12357 // and we are assigning it to a variable of Objective-C pointer type. 12358 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 12359 Init->getType() == Context.UnknownAnyTy) { 12360 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 12361 if (Result.isInvalid()) { 12362 VDecl->setInvalidDecl(); 12363 return; 12364 } 12365 Init = Result.get(); 12366 } 12367 12368 // Perform the initialization. 12369 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 12370 if (!VDecl->isInvalidDecl()) { 12371 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 12372 InitializationKind Kind = InitializationKind::CreateForInit( 12373 VDecl->getLocation(), DirectInit, Init); 12374 12375 MultiExprArg Args = Init; 12376 if (CXXDirectInit) 12377 Args = MultiExprArg(CXXDirectInit->getExprs(), 12378 CXXDirectInit->getNumExprs()); 12379 12380 // Try to correct any TypoExprs in the initialization arguments. 12381 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 12382 ExprResult Res = CorrectDelayedTyposInExpr( 12383 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, 12384 [this, Entity, Kind](Expr *E) { 12385 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 12386 return Init.Failed() ? ExprError() : E; 12387 }); 12388 if (Res.isInvalid()) { 12389 VDecl->setInvalidDecl(); 12390 } else if (Res.get() != Args[Idx]) { 12391 Args[Idx] = Res.get(); 12392 } 12393 } 12394 if (VDecl->isInvalidDecl()) 12395 return; 12396 12397 InitializationSequence InitSeq(*this, Entity, Kind, Args, 12398 /*TopLevelOfInitList=*/false, 12399 /*TreatUnavailableAsInvalid=*/false); 12400 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 12401 if (Result.isInvalid()) { 12402 // If the provided initializer fails to initialize the var decl, 12403 // we attach a recovery expr for better recovery. 12404 auto RecoveryExpr = 12405 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); 12406 if (RecoveryExpr.get()) 12407 VDecl->setInit(RecoveryExpr.get()); 12408 return; 12409 } 12410 12411 Init = Result.getAs<Expr>(); 12412 } 12413 12414 // Check for self-references within variable initializers. 12415 // Variables declared within a function/method body (except for references) 12416 // are handled by a dataflow analysis. 12417 // This is undefined behavior in C++, but valid in C. 12418 if (getLangOpts().CPlusPlus) 12419 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 12420 VDecl->getType()->isReferenceType()) 12421 CheckSelfReference(*this, RealDecl, Init, DirectInit); 12422 12423 // If the type changed, it means we had an incomplete type that was 12424 // completed by the initializer. For example: 12425 // int ary[] = { 1, 3, 5 }; 12426 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 12427 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 12428 VDecl->setType(DclT); 12429 12430 if (!VDecl->isInvalidDecl()) { 12431 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 12432 12433 if (VDecl->hasAttr<BlocksAttr>()) 12434 checkRetainCycles(VDecl, Init); 12435 12436 // It is safe to assign a weak reference into a strong variable. 12437 // Although this code can still have problems: 12438 // id x = self.weakProp; 12439 // id y = self.weakProp; 12440 // we do not warn to warn spuriously when 'x' and 'y' are on separate 12441 // paths through the function. This should be revisited if 12442 // -Wrepeated-use-of-weak is made flow-sensitive. 12443 if (FunctionScopeInfo *FSI = getCurFunction()) 12444 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 12445 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && 12446 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 12447 Init->getBeginLoc())) 12448 FSI->markSafeWeakUse(Init); 12449 } 12450 12451 // The initialization is usually a full-expression. 12452 // 12453 // FIXME: If this is a braced initialization of an aggregate, it is not 12454 // an expression, and each individual field initializer is a separate 12455 // full-expression. For instance, in: 12456 // 12457 // struct Temp { ~Temp(); }; 12458 // struct S { S(Temp); }; 12459 // struct T { S a, b; } t = { Temp(), Temp() } 12460 // 12461 // we should destroy the first Temp before constructing the second. 12462 ExprResult Result = 12463 ActOnFinishFullExpr(Init, VDecl->getLocation(), 12464 /*DiscardedValue*/ false, VDecl->isConstexpr()); 12465 if (Result.isInvalid()) { 12466 VDecl->setInvalidDecl(); 12467 return; 12468 } 12469 Init = Result.get(); 12470 12471 // Attach the initializer to the decl. 12472 VDecl->setInit(Init); 12473 12474 if (VDecl->isLocalVarDecl()) { 12475 // Don't check the initializer if the declaration is malformed. 12476 if (VDecl->isInvalidDecl()) { 12477 // do nothing 12478 12479 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. 12480 // This is true even in C++ for OpenCL. 12481 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { 12482 CheckForConstantInitializer(Init, DclT); 12483 12484 // Otherwise, C++ does not restrict the initializer. 12485 } else if (getLangOpts().CPlusPlus) { 12486 // do nothing 12487 12488 // C99 6.7.8p4: All the expressions in an initializer for an object that has 12489 // static storage duration shall be constant expressions or string literals. 12490 } else if (VDecl->getStorageClass() == SC_Static) { 12491 CheckForConstantInitializer(Init, DclT); 12492 12493 // C89 is stricter than C99 for aggregate initializers. 12494 // C89 6.5.7p3: All the expressions [...] in an initializer list 12495 // for an object that has aggregate or union type shall be 12496 // constant expressions. 12497 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 12498 isa<InitListExpr>(Init)) { 12499 const Expr *Culprit; 12500 if (!Init->isConstantInitializer(Context, false, &Culprit)) { 12501 Diag(Culprit->getExprLoc(), 12502 diag::ext_aggregate_init_not_constant) 12503 << Culprit->getSourceRange(); 12504 } 12505 } 12506 12507 if (auto *E = dyn_cast<ExprWithCleanups>(Init)) 12508 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) 12509 if (VDecl->hasLocalStorage()) 12510 BE->getBlockDecl()->setCanAvoidCopyToHeap(); 12511 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && 12512 VDecl->getLexicalDeclContext()->isRecord()) { 12513 // This is an in-class initialization for a static data member, e.g., 12514 // 12515 // struct S { 12516 // static const int value = 17; 12517 // }; 12518 12519 // C++ [class.mem]p4: 12520 // A member-declarator can contain a constant-initializer only 12521 // if it declares a static member (9.4) of const integral or 12522 // const enumeration type, see 9.4.2. 12523 // 12524 // C++11 [class.static.data]p3: 12525 // If a non-volatile non-inline const static data member is of integral 12526 // or enumeration type, its declaration in the class definition can 12527 // specify a brace-or-equal-initializer in which every initializer-clause 12528 // that is an assignment-expression is a constant expression. A static 12529 // data member of literal type can be declared in the class definition 12530 // with the constexpr specifier; if so, its declaration shall specify a 12531 // brace-or-equal-initializer in which every initializer-clause that is 12532 // an assignment-expression is a constant expression. 12533 12534 // Do nothing on dependent types. 12535 if (DclT->isDependentType()) { 12536 12537 // Allow any 'static constexpr' members, whether or not they are of literal 12538 // type. We separately check that every constexpr variable is of literal 12539 // type. 12540 } else if (VDecl->isConstexpr()) { 12541 12542 // Require constness. 12543 } else if (!DclT.isConstQualified()) { 12544 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 12545 << Init->getSourceRange(); 12546 VDecl->setInvalidDecl(); 12547 12548 // We allow integer constant expressions in all cases. 12549 } else if (DclT->isIntegralOrEnumerationType()) { 12550 // Check whether the expression is a constant expression. 12551 SourceLocation Loc; 12552 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 12553 // In C++11, a non-constexpr const static data member with an 12554 // in-class initializer cannot be volatile. 12555 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 12556 else if (Init->isValueDependent()) 12557 ; // Nothing to check. 12558 else if (Init->isIntegerConstantExpr(Context, &Loc)) 12559 ; // Ok, it's an ICE! 12560 else if (Init->getType()->isScopedEnumeralType() && 12561 Init->isCXX11ConstantExpr(Context)) 12562 ; // Ok, it is a scoped-enum constant expression. 12563 else if (Init->isEvaluatable(Context)) { 12564 // If we can constant fold the initializer through heroics, accept it, 12565 // but report this as a use of an extension for -pedantic. 12566 Diag(Loc, diag::ext_in_class_initializer_non_constant) 12567 << Init->getSourceRange(); 12568 } else { 12569 // Otherwise, this is some crazy unknown case. Report the issue at the 12570 // location provided by the isIntegerConstantExpr failed check. 12571 Diag(Loc, diag::err_in_class_initializer_non_constant) 12572 << Init->getSourceRange(); 12573 VDecl->setInvalidDecl(); 12574 } 12575 12576 // We allow foldable floating-point constants as an extension. 12577 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 12578 // In C++98, this is a GNU extension. In C++11, it is not, but we support 12579 // it anyway and provide a fixit to add the 'constexpr'. 12580 if (getLangOpts().CPlusPlus11) { 12581 Diag(VDecl->getLocation(), 12582 diag::ext_in_class_initializer_float_type_cxx11) 12583 << DclT << Init->getSourceRange(); 12584 Diag(VDecl->getBeginLoc(), 12585 diag::note_in_class_initializer_float_type_cxx11) 12586 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12587 } else { 12588 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 12589 << DclT << Init->getSourceRange(); 12590 12591 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 12592 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 12593 << Init->getSourceRange(); 12594 VDecl->setInvalidDecl(); 12595 } 12596 } 12597 12598 // Suggest adding 'constexpr' in C++11 for literal types. 12599 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 12600 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 12601 << DclT << Init->getSourceRange() 12602 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12603 VDecl->setConstexpr(true); 12604 12605 } else { 12606 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 12607 << DclT << Init->getSourceRange(); 12608 VDecl->setInvalidDecl(); 12609 } 12610 } else if (VDecl->isFileVarDecl()) { 12611 // In C, extern is typically used to avoid tentative definitions when 12612 // declaring variables in headers, but adding an intializer makes it a 12613 // definition. This is somewhat confusing, so GCC and Clang both warn on it. 12614 // In C++, extern is often used to give implictly static const variables 12615 // external linkage, so don't warn in that case. If selectany is present, 12616 // this might be header code intended for C and C++ inclusion, so apply the 12617 // C++ rules. 12618 if (VDecl->getStorageClass() == SC_Extern && 12619 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || 12620 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && 12621 !(getLangOpts().CPlusPlus && VDecl->isExternC()) && 12622 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 12623 Diag(VDecl->getLocation(), diag::warn_extern_init); 12624 12625 // In Microsoft C++ mode, a const variable defined in namespace scope has 12626 // external linkage by default if the variable is declared with 12627 // __declspec(dllexport). 12628 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 12629 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && 12630 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) 12631 VDecl->setStorageClass(SC_Extern); 12632 12633 // C99 6.7.8p4. All file scoped initializers need to be constant. 12634 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 12635 CheckForConstantInitializer(Init, DclT); 12636 } 12637 12638 QualType InitType = Init->getType(); 12639 if (!InitType.isNull() && 12640 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12641 InitType.hasNonTrivialToPrimitiveCopyCUnion())) 12642 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); 12643 12644 // We will represent direct-initialization similarly to copy-initialization: 12645 // int x(1); -as-> int x = 1; 12646 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 12647 // 12648 // Clients that want to distinguish between the two forms, can check for 12649 // direct initializer using VarDecl::getInitStyle(). 12650 // A major benefit is that clients that don't particularly care about which 12651 // exactly form was it (like the CodeGen) can handle both cases without 12652 // special case code. 12653 12654 // C++ 8.5p11: 12655 // The form of initialization (using parentheses or '=') is generally 12656 // insignificant, but does matter when the entity being initialized has a 12657 // class type. 12658 if (CXXDirectInit) { 12659 assert(DirectInit && "Call-style initializer must be direct init."); 12660 VDecl->setInitStyle(VarDecl::CallInit); 12661 } else if (DirectInit) { 12662 // This must be list-initialization. No other way is direct-initialization. 12663 VDecl->setInitStyle(VarDecl::ListInit); 12664 } 12665 12666 if (LangOpts.OpenMP && 12667 (LangOpts.OpenMPIsDevice || !LangOpts.OMPTargetTriples.empty()) && 12668 VDecl->isFileVarDecl()) 12669 DeclsToCheckForDeferredDiags.insert(VDecl); 12670 CheckCompleteVariableDeclaration(VDecl); 12671 } 12672 12673 /// ActOnInitializerError - Given that there was an error parsing an 12674 /// initializer for the given declaration, try to at least re-establish 12675 /// invariants such as whether a variable's type is either dependent or 12676 /// complete. 12677 void Sema::ActOnInitializerError(Decl *D) { 12678 // Our main concern here is re-establishing invariants like "a 12679 // variable's type is either dependent or complete". 12680 if (!D || D->isInvalidDecl()) return; 12681 12682 VarDecl *VD = dyn_cast<VarDecl>(D); 12683 if (!VD) return; 12684 12685 // Bindings are not usable if we can't make sense of the initializer. 12686 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 12687 for (auto *BD : DD->bindings()) 12688 BD->setInvalidDecl(); 12689 12690 // Auto types are meaningless if we can't make sense of the initializer. 12691 if (VD->getType()->isUndeducedType()) { 12692 D->setInvalidDecl(); 12693 return; 12694 } 12695 12696 QualType Ty = VD->getType(); 12697 if (Ty->isDependentType()) return; 12698 12699 // Require a complete type. 12700 if (RequireCompleteType(VD->getLocation(), 12701 Context.getBaseElementType(Ty), 12702 diag::err_typecheck_decl_incomplete_type)) { 12703 VD->setInvalidDecl(); 12704 return; 12705 } 12706 12707 // Require a non-abstract type. 12708 if (RequireNonAbstractType(VD->getLocation(), Ty, 12709 diag::err_abstract_type_in_decl, 12710 AbstractVariableType)) { 12711 VD->setInvalidDecl(); 12712 return; 12713 } 12714 12715 // Don't bother complaining about constructors or destructors, 12716 // though. 12717 } 12718 12719 void Sema::ActOnUninitializedDecl(Decl *RealDecl) { 12720 // If there is no declaration, there was an error parsing it. Just ignore it. 12721 if (!RealDecl) 12722 return; 12723 12724 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 12725 QualType Type = Var->getType(); 12726 12727 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. 12728 if (isa<DecompositionDecl>(RealDecl)) { 12729 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; 12730 Var->setInvalidDecl(); 12731 return; 12732 } 12733 12734 if (Type->isUndeducedType() && 12735 DeduceVariableDeclarationType(Var, false, nullptr)) 12736 return; 12737 12738 // C++11 [class.static.data]p3: A static data member can be declared with 12739 // the constexpr specifier; if so, its declaration shall specify 12740 // a brace-or-equal-initializer. 12741 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 12742 // the definition of a variable [...] or the declaration of a static data 12743 // member. 12744 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && 12745 !Var->isThisDeclarationADemotedDefinition()) { 12746 if (Var->isStaticDataMember()) { 12747 // C++1z removes the relevant rule; the in-class declaration is always 12748 // a definition there. 12749 if (!getLangOpts().CPlusPlus17 && 12750 !Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12751 Diag(Var->getLocation(), 12752 diag::err_constexpr_static_mem_var_requires_init) 12753 << Var; 12754 Var->setInvalidDecl(); 12755 return; 12756 } 12757 } else { 12758 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 12759 Var->setInvalidDecl(); 12760 return; 12761 } 12762 } 12763 12764 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 12765 // be initialized. 12766 if (!Var->isInvalidDecl() && 12767 Var->getType().getAddressSpace() == LangAS::opencl_constant && 12768 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 12769 bool HasConstExprDefaultConstructor = false; 12770 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12771 for (auto *Ctor : RD->ctors()) { 12772 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 && 12773 Ctor->getMethodQualifiers().getAddressSpace() == 12774 LangAS::opencl_constant) { 12775 HasConstExprDefaultConstructor = true; 12776 } 12777 } 12778 } 12779 if (!HasConstExprDefaultConstructor) { 12780 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 12781 Var->setInvalidDecl(); 12782 return; 12783 } 12784 } 12785 12786 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { 12787 if (Var->getStorageClass() == SC_Extern) { 12788 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) 12789 << Var; 12790 Var->setInvalidDecl(); 12791 return; 12792 } 12793 if (RequireCompleteType(Var->getLocation(), Var->getType(), 12794 diag::err_typecheck_decl_incomplete_type)) { 12795 Var->setInvalidDecl(); 12796 return; 12797 } 12798 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12799 if (!RD->hasTrivialDefaultConstructor()) { 12800 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); 12801 Var->setInvalidDecl(); 12802 return; 12803 } 12804 } 12805 // The declaration is unitialized, no need for further checks. 12806 return; 12807 } 12808 12809 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); 12810 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && 12811 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12812 checkNonTrivialCUnion(Var->getType(), Var->getLocation(), 12813 NTCUC_DefaultInitializedObject, NTCUK_Init); 12814 12815 12816 switch (DefKind) { 12817 case VarDecl::Definition: 12818 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 12819 break; 12820 12821 // We have an out-of-line definition of a static data member 12822 // that has an in-class initializer, so we type-check this like 12823 // a declaration. 12824 // 12825 LLVM_FALLTHROUGH; 12826 12827 case VarDecl::DeclarationOnly: 12828 // It's only a declaration. 12829 12830 // Block scope. C99 6.7p7: If an identifier for an object is 12831 // declared with no linkage (C99 6.2.2p6), the type for the 12832 // object shall be complete. 12833 if (!Type->isDependentType() && Var->isLocalVarDecl() && 12834 !Var->hasLinkage() && !Var->isInvalidDecl() && 12835 RequireCompleteType(Var->getLocation(), Type, 12836 diag::err_typecheck_decl_incomplete_type)) 12837 Var->setInvalidDecl(); 12838 12839 // Make sure that the type is not abstract. 12840 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12841 RequireNonAbstractType(Var->getLocation(), Type, 12842 diag::err_abstract_type_in_decl, 12843 AbstractVariableType)) 12844 Var->setInvalidDecl(); 12845 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12846 Var->getStorageClass() == SC_PrivateExtern) { 12847 Diag(Var->getLocation(), diag::warn_private_extern); 12848 Diag(Var->getLocation(), diag::note_private_extern); 12849 } 12850 12851 if (Context.getTargetInfo().allowDebugInfoForExternalRef() && 12852 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus) 12853 ExternalDeclarations.push_back(Var); 12854 12855 return; 12856 12857 case VarDecl::TentativeDefinition: 12858 // File scope. C99 6.9.2p2: A declaration of an identifier for an 12859 // object that has file scope without an initializer, and without a 12860 // storage-class specifier or with the storage-class specifier "static", 12861 // constitutes a tentative definition. Note: A tentative definition with 12862 // external linkage is valid (C99 6.2.2p5). 12863 if (!Var->isInvalidDecl()) { 12864 if (const IncompleteArrayType *ArrayT 12865 = Context.getAsIncompleteArrayType(Type)) { 12866 if (RequireCompleteSizedType( 12867 Var->getLocation(), ArrayT->getElementType(), 12868 diag::err_array_incomplete_or_sizeless_type)) 12869 Var->setInvalidDecl(); 12870 } else if (Var->getStorageClass() == SC_Static) { 12871 // C99 6.9.2p3: If the declaration of an identifier for an object is 12872 // a tentative definition and has internal linkage (C99 6.2.2p3), the 12873 // declared type shall not be an incomplete type. 12874 // NOTE: code such as the following 12875 // static struct s; 12876 // struct s { int a; }; 12877 // is accepted by gcc. Hence here we issue a warning instead of 12878 // an error and we do not invalidate the static declaration. 12879 // NOTE: to avoid multiple warnings, only check the first declaration. 12880 if (Var->isFirstDecl()) 12881 RequireCompleteType(Var->getLocation(), Type, 12882 diag::ext_typecheck_decl_incomplete_type); 12883 } 12884 } 12885 12886 // Record the tentative definition; we're done. 12887 if (!Var->isInvalidDecl()) 12888 TentativeDefinitions.push_back(Var); 12889 return; 12890 } 12891 12892 // Provide a specific diagnostic for uninitialized variable 12893 // definitions with incomplete array type. 12894 if (Type->isIncompleteArrayType()) { 12895 Diag(Var->getLocation(), 12896 diag::err_typecheck_incomplete_array_needs_initializer); 12897 Var->setInvalidDecl(); 12898 return; 12899 } 12900 12901 // Provide a specific diagnostic for uninitialized variable 12902 // definitions with reference type. 12903 if (Type->isReferenceType()) { 12904 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 12905 << Var << SourceRange(Var->getLocation(), Var->getLocation()); 12906 Var->setInvalidDecl(); 12907 return; 12908 } 12909 12910 // Do not attempt to type-check the default initializer for a 12911 // variable with dependent type. 12912 if (Type->isDependentType()) 12913 return; 12914 12915 if (Var->isInvalidDecl()) 12916 return; 12917 12918 if (!Var->hasAttr<AliasAttr>()) { 12919 if (RequireCompleteType(Var->getLocation(), 12920 Context.getBaseElementType(Type), 12921 diag::err_typecheck_decl_incomplete_type)) { 12922 Var->setInvalidDecl(); 12923 return; 12924 } 12925 } else { 12926 return; 12927 } 12928 12929 // The variable can not have an abstract class type. 12930 if (RequireNonAbstractType(Var->getLocation(), Type, 12931 diag::err_abstract_type_in_decl, 12932 AbstractVariableType)) { 12933 Var->setInvalidDecl(); 12934 return; 12935 } 12936 12937 // Check for jumps past the implicit initializer. C++0x 12938 // clarifies that this applies to a "variable with automatic 12939 // storage duration", not a "local variable". 12940 // C++11 [stmt.dcl]p3 12941 // A program that jumps from a point where a variable with automatic 12942 // storage duration is not in scope to a point where it is in scope is 12943 // ill-formed unless the variable has scalar type, class type with a 12944 // trivial default constructor and a trivial destructor, a cv-qualified 12945 // version of one of these types, or an array of one of the preceding 12946 // types and is declared without an initializer. 12947 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 12948 if (const RecordType *Record 12949 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 12950 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 12951 // Mark the function (if we're in one) for further checking even if the 12952 // looser rules of C++11 do not require such checks, so that we can 12953 // diagnose incompatibilities with C++98. 12954 if (!CXXRecord->isPOD()) 12955 setFunctionHasBranchProtectedScope(); 12956 } 12957 } 12958 // In OpenCL, we can't initialize objects in the __local address space, 12959 // even implicitly, so don't synthesize an implicit initializer. 12960 if (getLangOpts().OpenCL && 12961 Var->getType().getAddressSpace() == LangAS::opencl_local) 12962 return; 12963 // C++03 [dcl.init]p9: 12964 // If no initializer is specified for an object, and the 12965 // object is of (possibly cv-qualified) non-POD class type (or 12966 // array thereof), the object shall be default-initialized; if 12967 // the object is of const-qualified type, the underlying class 12968 // type shall have a user-declared default 12969 // constructor. Otherwise, if no initializer is specified for 12970 // a non- static object, the object and its subobjects, if 12971 // any, have an indeterminate initial value); if the object 12972 // or any of its subobjects are of const-qualified type, the 12973 // program is ill-formed. 12974 // C++0x [dcl.init]p11: 12975 // If no initializer is specified for an object, the object is 12976 // default-initialized; [...]. 12977 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 12978 InitializationKind Kind 12979 = InitializationKind::CreateDefault(Var->getLocation()); 12980 12981 InitializationSequence InitSeq(*this, Entity, Kind, None); 12982 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 12983 12984 if (Init.get()) { 12985 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 12986 // This is important for template substitution. 12987 Var->setInitStyle(VarDecl::CallInit); 12988 } else if (Init.isInvalid()) { 12989 // If default-init fails, attach a recovery-expr initializer to track 12990 // that initialization was attempted and failed. 12991 auto RecoveryExpr = 12992 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); 12993 if (RecoveryExpr.get()) 12994 Var->setInit(RecoveryExpr.get()); 12995 } 12996 12997 CheckCompleteVariableDeclaration(Var); 12998 } 12999 } 13000 13001 void Sema::ActOnCXXForRangeDecl(Decl *D) { 13002 // If there is no declaration, there was an error parsing it. Ignore it. 13003 if (!D) 13004 return; 13005 13006 VarDecl *VD = dyn_cast<VarDecl>(D); 13007 if (!VD) { 13008 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 13009 D->setInvalidDecl(); 13010 return; 13011 } 13012 13013 VD->setCXXForRangeDecl(true); 13014 13015 // for-range-declaration cannot be given a storage class specifier. 13016 int Error = -1; 13017 switch (VD->getStorageClass()) { 13018 case SC_None: 13019 break; 13020 case SC_Extern: 13021 Error = 0; 13022 break; 13023 case SC_Static: 13024 Error = 1; 13025 break; 13026 case SC_PrivateExtern: 13027 Error = 2; 13028 break; 13029 case SC_Auto: 13030 Error = 3; 13031 break; 13032 case SC_Register: 13033 Error = 4; 13034 break; 13035 } 13036 13037 // for-range-declaration cannot be given a storage class specifier con't. 13038 switch (VD->getTSCSpec()) { 13039 case TSCS_thread_local: 13040 Error = 6; 13041 break; 13042 case TSCS___thread: 13043 case TSCS__Thread_local: 13044 case TSCS_unspecified: 13045 break; 13046 } 13047 13048 if (Error != -1) { 13049 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 13050 << VD << Error; 13051 D->setInvalidDecl(); 13052 } 13053 } 13054 13055 StmtResult 13056 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 13057 IdentifierInfo *Ident, 13058 ParsedAttributes &Attrs, 13059 SourceLocation AttrEnd) { 13060 // C++1y [stmt.iter]p1: 13061 // A range-based for statement of the form 13062 // for ( for-range-identifier : for-range-initializer ) statement 13063 // is equivalent to 13064 // for ( auto&& for-range-identifier : for-range-initializer ) statement 13065 DeclSpec DS(Attrs.getPool().getFactory()); 13066 13067 const char *PrevSpec; 13068 unsigned DiagID; 13069 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 13070 getPrintingPolicy()); 13071 13072 Declarator D(DS, DeclaratorContext::ForInit); 13073 D.SetIdentifier(Ident, IdentLoc); 13074 D.takeAttributes(Attrs, AttrEnd); 13075 13076 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), 13077 IdentLoc); 13078 Decl *Var = ActOnDeclarator(S, D); 13079 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 13080 FinalizeDeclaration(Var); 13081 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 13082 AttrEnd.isValid() ? AttrEnd : IdentLoc); 13083 } 13084 13085 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 13086 if (var->isInvalidDecl()) return; 13087 13088 MaybeAddCUDAConstantAttr(var); 13089 13090 if (getLangOpts().OpenCL) { 13091 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an 13092 // initialiser 13093 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && 13094 !var->hasInit()) { 13095 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) 13096 << 1 /*Init*/; 13097 var->setInvalidDecl(); 13098 return; 13099 } 13100 } 13101 13102 // In Objective-C, don't allow jumps past the implicit initialization of a 13103 // local retaining variable. 13104 if (getLangOpts().ObjC && 13105 var->hasLocalStorage()) { 13106 switch (var->getType().getObjCLifetime()) { 13107 case Qualifiers::OCL_None: 13108 case Qualifiers::OCL_ExplicitNone: 13109 case Qualifiers::OCL_Autoreleasing: 13110 break; 13111 13112 case Qualifiers::OCL_Weak: 13113 case Qualifiers::OCL_Strong: 13114 setFunctionHasBranchProtectedScope(); 13115 break; 13116 } 13117 } 13118 13119 if (var->hasLocalStorage() && 13120 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 13121 setFunctionHasBranchProtectedScope(); 13122 13123 // Warn about externally-visible variables being defined without a 13124 // prior declaration. We only want to do this for global 13125 // declarations, but we also specifically need to avoid doing it for 13126 // class members because the linkage of an anonymous class can 13127 // change if it's later given a typedef name. 13128 if (var->isThisDeclarationADefinition() && 13129 var->getDeclContext()->getRedeclContext()->isFileContext() && 13130 var->isExternallyVisible() && var->hasLinkage() && 13131 !var->isInline() && !var->getDescribedVarTemplate() && 13132 !isa<VarTemplatePartialSpecializationDecl>(var) && 13133 !isTemplateInstantiation(var->getTemplateSpecializationKind()) && 13134 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 13135 var->getLocation())) { 13136 // Find a previous declaration that's not a definition. 13137 VarDecl *prev = var->getPreviousDecl(); 13138 while (prev && prev->isThisDeclarationADefinition()) 13139 prev = prev->getPreviousDecl(); 13140 13141 if (!prev) { 13142 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 13143 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 13144 << /* variable */ 0; 13145 } 13146 } 13147 13148 // Cache the result of checking for constant initialization. 13149 Optional<bool> CacheHasConstInit; 13150 const Expr *CacheCulprit = nullptr; 13151 auto checkConstInit = [&]() mutable { 13152 if (!CacheHasConstInit) 13153 CacheHasConstInit = var->getInit()->isConstantInitializer( 13154 Context, var->getType()->isReferenceType(), &CacheCulprit); 13155 return *CacheHasConstInit; 13156 }; 13157 13158 if (var->getTLSKind() == VarDecl::TLS_Static) { 13159 if (var->getType().isDestructedType()) { 13160 // GNU C++98 edits for __thread, [basic.start.term]p3: 13161 // The type of an object with thread storage duration shall not 13162 // have a non-trivial destructor. 13163 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 13164 if (getLangOpts().CPlusPlus11) 13165 Diag(var->getLocation(), diag::note_use_thread_local); 13166 } else if (getLangOpts().CPlusPlus && var->hasInit()) { 13167 if (!checkConstInit()) { 13168 // GNU C++98 edits for __thread, [basic.start.init]p4: 13169 // An object of thread storage duration shall not require dynamic 13170 // initialization. 13171 // FIXME: Need strict checking here. 13172 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) 13173 << CacheCulprit->getSourceRange(); 13174 if (getLangOpts().CPlusPlus11) 13175 Diag(var->getLocation(), diag::note_use_thread_local); 13176 } 13177 } 13178 } 13179 13180 13181 if (!var->getType()->isStructureType() && var->hasInit() && 13182 isa<InitListExpr>(var->getInit())) { 13183 const auto *ILE = cast<InitListExpr>(var->getInit()); 13184 unsigned NumInits = ILE->getNumInits(); 13185 if (NumInits > 2) 13186 for (unsigned I = 0; I < NumInits; ++I) { 13187 const auto *Init = ILE->getInit(I); 13188 if (!Init) 13189 break; 13190 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); 13191 if (!SL) 13192 break; 13193 13194 unsigned NumConcat = SL->getNumConcatenated(); 13195 // Diagnose missing comma in string array initialization. 13196 // Do not warn when all the elements in the initializer are concatenated 13197 // together. Do not warn for macros too. 13198 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { 13199 bool OnlyOneMissingComma = true; 13200 for (unsigned J = I + 1; J < NumInits; ++J) { 13201 const auto *Init = ILE->getInit(J); 13202 if (!Init) 13203 break; 13204 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); 13205 if (!SLJ || SLJ->getNumConcatenated() > 1) { 13206 OnlyOneMissingComma = false; 13207 break; 13208 } 13209 } 13210 13211 if (OnlyOneMissingComma) { 13212 SmallVector<FixItHint, 1> Hints; 13213 for (unsigned i = 0; i < NumConcat - 1; ++i) 13214 Hints.push_back(FixItHint::CreateInsertion( 13215 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ",")); 13216 13217 Diag(SL->getStrTokenLoc(1), 13218 diag::warn_concatenated_literal_array_init) 13219 << Hints; 13220 Diag(SL->getBeginLoc(), 13221 diag::note_concatenated_string_literal_silence); 13222 } 13223 // In any case, stop now. 13224 break; 13225 } 13226 } 13227 } 13228 13229 13230 QualType type = var->getType(); 13231 13232 if (var->hasAttr<BlocksAttr>()) 13233 getCurFunction()->addByrefBlockVar(var); 13234 13235 Expr *Init = var->getInit(); 13236 bool GlobalStorage = var->hasGlobalStorage(); 13237 bool IsGlobal = GlobalStorage && !var->isStaticLocal(); 13238 QualType baseType = Context.getBaseElementType(type); 13239 bool HasConstInit = true; 13240 13241 // Check whether the initializer is sufficiently constant. 13242 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init && 13243 !Init->isValueDependent() && 13244 (GlobalStorage || var->isConstexpr() || 13245 var->mightBeUsableInConstantExpressions(Context))) { 13246 // If this variable might have a constant initializer or might be usable in 13247 // constant expressions, check whether or not it actually is now. We can't 13248 // do this lazily, because the result might depend on things that change 13249 // later, such as which constexpr functions happen to be defined. 13250 SmallVector<PartialDiagnosticAt, 8> Notes; 13251 if (!getLangOpts().CPlusPlus11) { 13252 // Prior to C++11, in contexts where a constant initializer is required, 13253 // the set of valid constant initializers is described by syntactic rules 13254 // in [expr.const]p2-6. 13255 // FIXME: Stricter checking for these rules would be useful for constinit / 13256 // -Wglobal-constructors. 13257 HasConstInit = checkConstInit(); 13258 13259 // Compute and cache the constant value, and remember that we have a 13260 // constant initializer. 13261 if (HasConstInit) { 13262 (void)var->checkForConstantInitialization(Notes); 13263 Notes.clear(); 13264 } else if (CacheCulprit) { 13265 Notes.emplace_back(CacheCulprit->getExprLoc(), 13266 PDiag(diag::note_invalid_subexpr_in_const_expr)); 13267 Notes.back().second << CacheCulprit->getSourceRange(); 13268 } 13269 } else { 13270 // Evaluate the initializer to see if it's a constant initializer. 13271 HasConstInit = var->checkForConstantInitialization(Notes); 13272 } 13273 13274 if (HasConstInit) { 13275 // FIXME: Consider replacing the initializer with a ConstantExpr. 13276 } else if (var->isConstexpr()) { 13277 SourceLocation DiagLoc = var->getLocation(); 13278 // If the note doesn't add any useful information other than a source 13279 // location, fold it into the primary diagnostic. 13280 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 13281 diag::note_invalid_subexpr_in_const_expr) { 13282 DiagLoc = Notes[0].first; 13283 Notes.clear(); 13284 } 13285 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 13286 << var << Init->getSourceRange(); 13287 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 13288 Diag(Notes[I].first, Notes[I].second); 13289 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { 13290 auto *Attr = var->getAttr<ConstInitAttr>(); 13291 Diag(var->getLocation(), diag::err_require_constant_init_failed) 13292 << Init->getSourceRange(); 13293 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) 13294 << Attr->getRange() << Attr->isConstinit(); 13295 for (auto &it : Notes) 13296 Diag(it.first, it.second); 13297 } else if (IsGlobal && 13298 !getDiagnostics().isIgnored(diag::warn_global_constructor, 13299 var->getLocation())) { 13300 // Warn about globals which don't have a constant initializer. Don't 13301 // warn about globals with a non-trivial destructor because we already 13302 // warned about them. 13303 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 13304 if (!(RD && !RD->hasTrivialDestructor())) { 13305 // checkConstInit() here permits trivial default initialization even in 13306 // C++11 onwards, where such an initializer is not a constant initializer 13307 // but nonetheless doesn't require a global constructor. 13308 if (!checkConstInit()) 13309 Diag(var->getLocation(), diag::warn_global_constructor) 13310 << Init->getSourceRange(); 13311 } 13312 } 13313 } 13314 13315 // Apply section attributes and pragmas to global variables. 13316 if (GlobalStorage && var->isThisDeclarationADefinition() && 13317 !inTemplateInstantiation()) { 13318 PragmaStack<StringLiteral *> *Stack = nullptr; 13319 int SectionFlags = ASTContext::PSF_Read; 13320 if (var->getType().isConstQualified()) { 13321 if (HasConstInit) 13322 Stack = &ConstSegStack; 13323 else { 13324 Stack = &BSSSegStack; 13325 SectionFlags |= ASTContext::PSF_Write; 13326 } 13327 } else if (var->hasInit() && HasConstInit) { 13328 Stack = &DataSegStack; 13329 SectionFlags |= ASTContext::PSF_Write; 13330 } else { 13331 Stack = &BSSSegStack; 13332 SectionFlags |= ASTContext::PSF_Write; 13333 } 13334 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { 13335 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) 13336 SectionFlags |= ASTContext::PSF_Implicit; 13337 UnifySection(SA->getName(), SectionFlags, var); 13338 } else if (Stack->CurrentValue) { 13339 SectionFlags |= ASTContext::PSF_Implicit; 13340 auto SectionName = Stack->CurrentValue->getString(); 13341 var->addAttr(SectionAttr::CreateImplicit( 13342 Context, SectionName, Stack->CurrentPragmaLocation, 13343 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate)); 13344 if (UnifySection(SectionName, SectionFlags, var)) 13345 var->dropAttr<SectionAttr>(); 13346 } 13347 13348 // Apply the init_seg attribute if this has an initializer. If the 13349 // initializer turns out to not be dynamic, we'll end up ignoring this 13350 // attribute. 13351 if (CurInitSeg && var->getInit()) 13352 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 13353 CurInitSegLoc, 13354 AttributeCommonInfo::AS_Pragma)); 13355 } 13356 13357 // All the following checks are C++ only. 13358 if (!getLangOpts().CPlusPlus) { 13359 // If this variable must be emitted, add it as an initializer for the 13360 // current module. 13361 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 13362 Context.addModuleInitializer(ModuleScopes.back().Module, var); 13363 return; 13364 } 13365 13366 // Require the destructor. 13367 if (!type->isDependentType()) 13368 if (const RecordType *recordType = baseType->getAs<RecordType>()) 13369 FinalizeVarWithDestructor(var, recordType); 13370 13371 // If this variable must be emitted, add it as an initializer for the current 13372 // module. 13373 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 13374 Context.addModuleInitializer(ModuleScopes.back().Module, var); 13375 13376 // Build the bindings if this is a structured binding declaration. 13377 if (auto *DD = dyn_cast<DecompositionDecl>(var)) 13378 CheckCompleteDecompositionDeclaration(DD); 13379 } 13380 13381 /// Check if VD needs to be dllexport/dllimport due to being in a 13382 /// dllexport/import function. 13383 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { 13384 assert(VD->isStaticLocal()); 13385 13386 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13387 13388 // Find outermost function when VD is in lambda function. 13389 while (FD && !getDLLAttr(FD) && 13390 !FD->hasAttr<DLLExportStaticLocalAttr>() && 13391 !FD->hasAttr<DLLImportStaticLocalAttr>()) { 13392 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); 13393 } 13394 13395 if (!FD) 13396 return; 13397 13398 // Static locals inherit dll attributes from their function. 13399 if (Attr *A = getDLLAttr(FD)) { 13400 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 13401 NewAttr->setInherited(true); 13402 VD->addAttr(NewAttr); 13403 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { 13404 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); 13405 NewAttr->setInherited(true); 13406 VD->addAttr(NewAttr); 13407 13408 // Export this function to enforce exporting this static variable even 13409 // if it is not used in this compilation unit. 13410 if (!FD->hasAttr<DLLExportAttr>()) 13411 FD->addAttr(NewAttr); 13412 13413 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { 13414 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); 13415 NewAttr->setInherited(true); 13416 VD->addAttr(NewAttr); 13417 } 13418 } 13419 13420 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 13421 /// any semantic actions necessary after any initializer has been attached. 13422 void Sema::FinalizeDeclaration(Decl *ThisDecl) { 13423 // Note that we are no longer parsing the initializer for this declaration. 13424 ParsingInitForAutoVars.erase(ThisDecl); 13425 13426 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 13427 if (!VD) 13428 return; 13429 13430 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active 13431 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && 13432 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { 13433 if (PragmaClangBSSSection.Valid) 13434 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( 13435 Context, PragmaClangBSSSection.SectionName, 13436 PragmaClangBSSSection.PragmaLocation, 13437 AttributeCommonInfo::AS_Pragma)); 13438 if (PragmaClangDataSection.Valid) 13439 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( 13440 Context, PragmaClangDataSection.SectionName, 13441 PragmaClangDataSection.PragmaLocation, 13442 AttributeCommonInfo::AS_Pragma)); 13443 if (PragmaClangRodataSection.Valid) 13444 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( 13445 Context, PragmaClangRodataSection.SectionName, 13446 PragmaClangRodataSection.PragmaLocation, 13447 AttributeCommonInfo::AS_Pragma)); 13448 if (PragmaClangRelroSection.Valid) 13449 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( 13450 Context, PragmaClangRelroSection.SectionName, 13451 PragmaClangRelroSection.PragmaLocation, 13452 AttributeCommonInfo::AS_Pragma)); 13453 } 13454 13455 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { 13456 for (auto *BD : DD->bindings()) { 13457 FinalizeDeclaration(BD); 13458 } 13459 } 13460 13461 checkAttributesAfterMerging(*this, *VD); 13462 13463 // Perform TLS alignment check here after attributes attached to the variable 13464 // which may affect the alignment have been processed. Only perform the check 13465 // if the target has a maximum TLS alignment (zero means no constraints). 13466 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { 13467 // Protect the check so that it's not performed on dependent types and 13468 // dependent alignments (we can't determine the alignment in that case). 13469 if (VD->getTLSKind() && !VD->hasDependentAlignment()) { 13470 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); 13471 if (Context.getDeclAlign(VD) > MaxAlignChars) { 13472 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 13473 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD 13474 << (unsigned)MaxAlignChars.getQuantity(); 13475 } 13476 } 13477 } 13478 13479 if (VD->isStaticLocal()) 13480 CheckStaticLocalForDllExport(VD); 13481 13482 // Perform check for initializers of device-side global variables. 13483 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA 13484 // 7.5). We must also apply the same checks to all __shared__ 13485 // variables whether they are local or not. CUDA also allows 13486 // constant initializers for __constant__ and __device__ variables. 13487 if (getLangOpts().CUDA) 13488 checkAllowedCUDAInitializer(VD); 13489 13490 // Grab the dllimport or dllexport attribute off of the VarDecl. 13491 const InheritableAttr *DLLAttr = getDLLAttr(VD); 13492 13493 // Imported static data members cannot be defined out-of-line. 13494 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 13495 if (VD->isStaticDataMember() && VD->isOutOfLine() && 13496 VD->isThisDeclarationADefinition()) { 13497 // We allow definitions of dllimport class template static data members 13498 // with a warning. 13499 CXXRecordDecl *Context = 13500 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 13501 bool IsClassTemplateMember = 13502 isa<ClassTemplatePartialSpecializationDecl>(Context) || 13503 Context->getDescribedClassTemplate(); 13504 13505 Diag(VD->getLocation(), 13506 IsClassTemplateMember 13507 ? diag::warn_attribute_dllimport_static_field_definition 13508 : diag::err_attribute_dllimport_static_field_definition); 13509 Diag(IA->getLocation(), diag::note_attribute); 13510 if (!IsClassTemplateMember) 13511 VD->setInvalidDecl(); 13512 } 13513 } 13514 13515 // dllimport/dllexport variables cannot be thread local, their TLS index 13516 // isn't exported with the variable. 13517 if (DLLAttr && VD->getTLSKind()) { 13518 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13519 if (F && getDLLAttr(F)) { 13520 assert(VD->isStaticLocal()); 13521 // But if this is a static local in a dlimport/dllexport function, the 13522 // function will never be inlined, which means the var would never be 13523 // imported, so having it marked import/export is safe. 13524 } else { 13525 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 13526 << DLLAttr; 13527 VD->setInvalidDecl(); 13528 } 13529 } 13530 13531 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 13532 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13533 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) 13534 << Attr; 13535 VD->dropAttr<UsedAttr>(); 13536 } 13537 } 13538 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) { 13539 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13540 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) 13541 << Attr; 13542 VD->dropAttr<RetainAttr>(); 13543 } 13544 } 13545 13546 const DeclContext *DC = VD->getDeclContext(); 13547 // If there's a #pragma GCC visibility in scope, and this isn't a class 13548 // member, set the visibility of this variable. 13549 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 13550 AddPushedVisibilityAttribute(VD); 13551 13552 // FIXME: Warn on unused var template partial specializations. 13553 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) 13554 MarkUnusedFileScopedDecl(VD); 13555 13556 // Now we have parsed the initializer and can update the table of magic 13557 // tag values. 13558 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 13559 !VD->getType()->isIntegralOrEnumerationType()) 13560 return; 13561 13562 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 13563 const Expr *MagicValueExpr = VD->getInit(); 13564 if (!MagicValueExpr) { 13565 continue; 13566 } 13567 Optional<llvm::APSInt> MagicValueInt; 13568 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { 13569 Diag(I->getRange().getBegin(), 13570 diag::err_type_tag_for_datatype_not_ice) 13571 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13572 continue; 13573 } 13574 if (MagicValueInt->getActiveBits() > 64) { 13575 Diag(I->getRange().getBegin(), 13576 diag::err_type_tag_for_datatype_too_large) 13577 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13578 continue; 13579 } 13580 uint64_t MagicValue = MagicValueInt->getZExtValue(); 13581 RegisterTypeTagForDatatype(I->getArgumentKind(), 13582 MagicValue, 13583 I->getMatchingCType(), 13584 I->getLayoutCompatible(), 13585 I->getMustBeNull()); 13586 } 13587 } 13588 13589 static bool hasDeducedAuto(DeclaratorDecl *DD) { 13590 auto *VD = dyn_cast<VarDecl>(DD); 13591 return VD && !VD->getType()->hasAutoForTrailingReturnType(); 13592 } 13593 13594 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 13595 ArrayRef<Decl *> Group) { 13596 SmallVector<Decl*, 8> Decls; 13597 13598 if (DS.isTypeSpecOwned()) 13599 Decls.push_back(DS.getRepAsDecl()); 13600 13601 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 13602 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; 13603 bool DiagnosedMultipleDecomps = false; 13604 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; 13605 bool DiagnosedNonDeducedAuto = false; 13606 13607 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13608 if (Decl *D = Group[i]) { 13609 // For declarators, there are some additional syntactic-ish checks we need 13610 // to perform. 13611 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { 13612 if (!FirstDeclaratorInGroup) 13613 FirstDeclaratorInGroup = DD; 13614 if (!FirstDecompDeclaratorInGroup) 13615 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); 13616 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && 13617 !hasDeducedAuto(DD)) 13618 FirstNonDeducedAutoInGroup = DD; 13619 13620 if (FirstDeclaratorInGroup != DD) { 13621 // A decomposition declaration cannot be combined with any other 13622 // declaration in the same group. 13623 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { 13624 Diag(FirstDecompDeclaratorInGroup->getLocation(), 13625 diag::err_decomp_decl_not_alone) 13626 << FirstDeclaratorInGroup->getSourceRange() 13627 << DD->getSourceRange(); 13628 DiagnosedMultipleDecomps = true; 13629 } 13630 13631 // A declarator that uses 'auto' in any way other than to declare a 13632 // variable with a deduced type cannot be combined with any other 13633 // declarator in the same group. 13634 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { 13635 Diag(FirstNonDeducedAutoInGroup->getLocation(), 13636 diag::err_auto_non_deduced_not_alone) 13637 << FirstNonDeducedAutoInGroup->getType() 13638 ->hasAutoForTrailingReturnType() 13639 << FirstDeclaratorInGroup->getSourceRange() 13640 << DD->getSourceRange(); 13641 DiagnosedNonDeducedAuto = true; 13642 } 13643 } 13644 } 13645 13646 Decls.push_back(D); 13647 } 13648 } 13649 13650 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 13651 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 13652 handleTagNumbering(Tag, S); 13653 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && 13654 getLangOpts().CPlusPlus) 13655 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); 13656 } 13657 } 13658 13659 return BuildDeclaratorGroup(Decls); 13660 } 13661 13662 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 13663 /// group, performing any necessary semantic checking. 13664 Sema::DeclGroupPtrTy 13665 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { 13666 // C++14 [dcl.spec.auto]p7: (DR1347) 13667 // If the type that replaces the placeholder type is not the same in each 13668 // deduction, the program is ill-formed. 13669 if (Group.size() > 1) { 13670 QualType Deduced; 13671 VarDecl *DeducedDecl = nullptr; 13672 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13673 VarDecl *D = dyn_cast<VarDecl>(Group[i]); 13674 if (!D || D->isInvalidDecl()) 13675 break; 13676 DeducedType *DT = D->getType()->getContainedDeducedType(); 13677 if (!DT || DT->getDeducedType().isNull()) 13678 continue; 13679 if (Deduced.isNull()) { 13680 Deduced = DT->getDeducedType(); 13681 DeducedDecl = D; 13682 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { 13683 auto *AT = dyn_cast<AutoType>(DT); 13684 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 13685 diag::err_auto_different_deductions) 13686 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced 13687 << DeducedDecl->getDeclName() << DT->getDeducedType() 13688 << D->getDeclName(); 13689 if (DeducedDecl->hasInit()) 13690 Dia << DeducedDecl->getInit()->getSourceRange(); 13691 if (D->getInit()) 13692 Dia << D->getInit()->getSourceRange(); 13693 D->setInvalidDecl(); 13694 break; 13695 } 13696 } 13697 } 13698 13699 ActOnDocumentableDecls(Group); 13700 13701 return DeclGroupPtrTy::make( 13702 DeclGroupRef::Create(Context, Group.data(), Group.size())); 13703 } 13704 13705 void Sema::ActOnDocumentableDecl(Decl *D) { 13706 ActOnDocumentableDecls(D); 13707 } 13708 13709 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 13710 // Don't parse the comment if Doxygen diagnostics are ignored. 13711 if (Group.empty() || !Group[0]) 13712 return; 13713 13714 if (Diags.isIgnored(diag::warn_doc_param_not_found, 13715 Group[0]->getLocation()) && 13716 Diags.isIgnored(diag::warn_unknown_comment_command_name, 13717 Group[0]->getLocation())) 13718 return; 13719 13720 if (Group.size() >= 2) { 13721 // This is a decl group. Normally it will contain only declarations 13722 // produced from declarator list. But in case we have any definitions or 13723 // additional declaration references: 13724 // 'typedef struct S {} S;' 13725 // 'typedef struct S *S;' 13726 // 'struct S *pS;' 13727 // FinalizeDeclaratorGroup adds these as separate declarations. 13728 Decl *MaybeTagDecl = Group[0]; 13729 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 13730 Group = Group.slice(1); 13731 } 13732 } 13733 13734 // FIMXE: We assume every Decl in the group is in the same file. 13735 // This is false when preprocessor constructs the group from decls in 13736 // different files (e. g. macros or #include). 13737 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); 13738 } 13739 13740 /// Common checks for a parameter-declaration that should apply to both function 13741 /// parameters and non-type template parameters. 13742 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { 13743 // Check that there are no default arguments inside the type of this 13744 // parameter. 13745 if (getLangOpts().CPlusPlus) 13746 CheckExtraCXXDefaultArguments(D); 13747 13748 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 13749 if (D.getCXXScopeSpec().isSet()) { 13750 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 13751 << D.getCXXScopeSpec().getRange(); 13752 } 13753 13754 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a 13755 // simple identifier except [...irrelevant cases...]. 13756 switch (D.getName().getKind()) { 13757 case UnqualifiedIdKind::IK_Identifier: 13758 break; 13759 13760 case UnqualifiedIdKind::IK_OperatorFunctionId: 13761 case UnqualifiedIdKind::IK_ConversionFunctionId: 13762 case UnqualifiedIdKind::IK_LiteralOperatorId: 13763 case UnqualifiedIdKind::IK_ConstructorName: 13764 case UnqualifiedIdKind::IK_DestructorName: 13765 case UnqualifiedIdKind::IK_ImplicitSelfParam: 13766 case UnqualifiedIdKind::IK_DeductionGuideName: 13767 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 13768 << GetNameForDeclarator(D).getName(); 13769 break; 13770 13771 case UnqualifiedIdKind::IK_TemplateId: 13772 case UnqualifiedIdKind::IK_ConstructorTemplateId: 13773 // GetNameForDeclarator would not produce a useful name in this case. 13774 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); 13775 break; 13776 } 13777 } 13778 13779 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 13780 /// to introduce parameters into function prototype scope. 13781 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 13782 const DeclSpec &DS = D.getDeclSpec(); 13783 13784 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 13785 13786 // C++03 [dcl.stc]p2 also permits 'auto'. 13787 StorageClass SC = SC_None; 13788 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 13789 SC = SC_Register; 13790 // In C++11, the 'register' storage class specifier is deprecated. 13791 // In C++17, it is not allowed, but we tolerate it as an extension. 13792 if (getLangOpts().CPlusPlus11) { 13793 Diag(DS.getStorageClassSpecLoc(), 13794 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 13795 : diag::warn_deprecated_register) 13796 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 13797 } 13798 } else if (getLangOpts().CPlusPlus && 13799 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 13800 SC = SC_Auto; 13801 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 13802 Diag(DS.getStorageClassSpecLoc(), 13803 diag::err_invalid_storage_class_in_func_decl); 13804 D.getMutableDeclSpec().ClearStorageClassSpecs(); 13805 } 13806 13807 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 13808 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 13809 << DeclSpec::getSpecifierName(TSCS); 13810 if (DS.isInlineSpecified()) 13811 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 13812 << getLangOpts().CPlusPlus17; 13813 if (DS.hasConstexprSpecifier()) 13814 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 13815 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 13816 13817 DiagnoseFunctionSpecifiers(DS); 13818 13819 CheckFunctionOrTemplateParamDeclarator(S, D); 13820 13821 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 13822 QualType parmDeclType = TInfo->getType(); 13823 13824 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 13825 IdentifierInfo *II = D.getIdentifier(); 13826 if (II) { 13827 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 13828 ForVisibleRedeclaration); 13829 LookupName(R, S); 13830 if (R.isSingleResult()) { 13831 NamedDecl *PrevDecl = R.getFoundDecl(); 13832 if (PrevDecl->isTemplateParameter()) { 13833 // Maybe we will complain about the shadowed template parameter. 13834 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 13835 // Just pretend that we didn't see the previous declaration. 13836 PrevDecl = nullptr; 13837 } else if (S->isDeclScope(PrevDecl)) { 13838 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 13839 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 13840 13841 // Recover by removing the name 13842 II = nullptr; 13843 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 13844 D.setInvalidType(true); 13845 } 13846 } 13847 } 13848 13849 // Temporarily put parameter variables in the translation unit, not 13850 // the enclosing context. This prevents them from accidentally 13851 // looking like class members in C++. 13852 ParmVarDecl *New = 13853 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), 13854 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); 13855 13856 if (D.isInvalidType()) 13857 New->setInvalidDecl(); 13858 13859 assert(S->isFunctionPrototypeScope()); 13860 assert(S->getFunctionPrototypeDepth() >= 1); 13861 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 13862 S->getNextFunctionPrototypeIndex()); 13863 13864 // Add the parameter declaration into this scope. 13865 S->AddDecl(New); 13866 if (II) 13867 IdResolver.AddDecl(New); 13868 13869 ProcessDeclAttributes(S, New, D); 13870 13871 if (D.getDeclSpec().isModulePrivateSpecified()) 13872 Diag(New->getLocation(), diag::err_module_private_local) 13873 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 13874 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 13875 13876 if (New->hasAttr<BlocksAttr>()) { 13877 Diag(New->getLocation(), diag::err_block_on_nonlocal); 13878 } 13879 13880 if (getLangOpts().OpenCL) 13881 deduceOpenCLAddressSpace(New); 13882 13883 return New; 13884 } 13885 13886 /// Synthesizes a variable for a parameter arising from a 13887 /// typedef. 13888 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 13889 SourceLocation Loc, 13890 QualType T) { 13891 /* FIXME: setting StartLoc == Loc. 13892 Would it be worth to modify callers so as to provide proper source 13893 location for the unnamed parameters, embedding the parameter's type? */ 13894 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 13895 T, Context.getTrivialTypeSourceInfo(T, Loc), 13896 SC_None, nullptr); 13897 Param->setImplicit(); 13898 return Param; 13899 } 13900 13901 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { 13902 // Don't diagnose unused-parameter errors in template instantiations; we 13903 // will already have done so in the template itself. 13904 if (inTemplateInstantiation()) 13905 return; 13906 13907 for (const ParmVarDecl *Parameter : Parameters) { 13908 if (!Parameter->isReferenced() && Parameter->getDeclName() && 13909 !Parameter->hasAttr<UnusedAttr>()) { 13910 Diag(Parameter->getLocation(), diag::warn_unused_parameter) 13911 << Parameter->getDeclName(); 13912 } 13913 } 13914 } 13915 13916 void Sema::DiagnoseSizeOfParametersAndReturnValue( 13917 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { 13918 if (LangOpts.NumLargeByValueCopy == 0) // No check. 13919 return; 13920 13921 // Warn if the return value is pass-by-value and larger than the specified 13922 // threshold. 13923 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 13924 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 13925 if (Size > LangOpts.NumLargeByValueCopy) 13926 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; 13927 } 13928 13929 // Warn if any parameter is pass-by-value and larger than the specified 13930 // threshold. 13931 for (const ParmVarDecl *Parameter : Parameters) { 13932 QualType T = Parameter->getType(); 13933 if (T->isDependentType() || !T.isPODType(Context)) 13934 continue; 13935 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 13936 if (Size > LangOpts.NumLargeByValueCopy) 13937 Diag(Parameter->getLocation(), diag::warn_parameter_size) 13938 << Parameter << Size; 13939 } 13940 } 13941 13942 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 13943 SourceLocation NameLoc, IdentifierInfo *Name, 13944 QualType T, TypeSourceInfo *TSInfo, 13945 StorageClass SC) { 13946 // In ARC, infer a lifetime qualifier for appropriate parameter types. 13947 if (getLangOpts().ObjCAutoRefCount && 13948 T.getObjCLifetime() == Qualifiers::OCL_None && 13949 T->isObjCLifetimeType()) { 13950 13951 Qualifiers::ObjCLifetime lifetime; 13952 13953 // Special cases for arrays: 13954 // - if it's const, use __unsafe_unretained 13955 // - otherwise, it's an error 13956 if (T->isArrayType()) { 13957 if (!T.isConstQualified()) { 13958 if (DelayedDiagnostics.shouldDelayDiagnostics()) 13959 DelayedDiagnostics.add( 13960 sema::DelayedDiagnostic::makeForbiddenType( 13961 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 13962 else 13963 Diag(NameLoc, diag::err_arc_array_param_no_ownership) 13964 << TSInfo->getTypeLoc().getSourceRange(); 13965 } 13966 lifetime = Qualifiers::OCL_ExplicitNone; 13967 } else { 13968 lifetime = T->getObjCARCImplicitLifetime(); 13969 } 13970 T = Context.getLifetimeQualifiedType(T, lifetime); 13971 } 13972 13973 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 13974 Context.getAdjustedParameterType(T), 13975 TSInfo, SC, nullptr); 13976 13977 // Make a note if we created a new pack in the scope of a lambda, so that 13978 // we know that references to that pack must also be expanded within the 13979 // lambda scope. 13980 if (New->isParameterPack()) 13981 if (auto *LSI = getEnclosingLambda()) 13982 LSI->LocalPacks.push_back(New); 13983 13984 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || 13985 New->getType().hasNonTrivialToPrimitiveCopyCUnion()) 13986 checkNonTrivialCUnion(New->getType(), New->getLocation(), 13987 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); 13988 13989 // Parameters can not be abstract class types. 13990 // For record types, this is done by the AbstractClassUsageDiagnoser once 13991 // the class has been completely parsed. 13992 if (!CurContext->isRecord() && 13993 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 13994 AbstractParamType)) 13995 New->setInvalidDecl(); 13996 13997 // Parameter declarators cannot be interface types. All ObjC objects are 13998 // passed by reference. 13999 if (T->isObjCObjectType()) { 14000 SourceLocation TypeEndLoc = 14001 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); 14002 Diag(NameLoc, 14003 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 14004 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 14005 T = Context.getObjCObjectPointerType(T); 14006 New->setType(T); 14007 } 14008 14009 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 14010 // duration shall not be qualified by an address-space qualifier." 14011 // Since all parameters have automatic store duration, they can not have 14012 // an address space. 14013 if (T.getAddressSpace() != LangAS::Default && 14014 // OpenCL allows function arguments declared to be an array of a type 14015 // to be qualified with an address space. 14016 !(getLangOpts().OpenCL && 14017 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { 14018 Diag(NameLoc, diag::err_arg_with_address_space); 14019 New->setInvalidDecl(); 14020 } 14021 14022 // PPC MMA non-pointer types are not allowed as function argument types. 14023 if (Context.getTargetInfo().getTriple().isPPC64() && 14024 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) { 14025 New->setInvalidDecl(); 14026 } 14027 14028 return New; 14029 } 14030 14031 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 14032 SourceLocation LocAfterDecls) { 14033 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 14034 14035 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 14036 // for a K&R function. 14037 if (!FTI.hasPrototype) { 14038 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 14039 --i; 14040 if (FTI.Params[i].Param == nullptr) { 14041 SmallString<256> Code; 14042 llvm::raw_svector_ostream(Code) 14043 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 14044 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 14045 << FTI.Params[i].Ident 14046 << FixItHint::CreateInsertion(LocAfterDecls, Code); 14047 14048 // Implicitly declare the argument as type 'int' for lack of a better 14049 // type. 14050 AttributeFactory attrs; 14051 DeclSpec DS(attrs); 14052 const char* PrevSpec; // unused 14053 unsigned DiagID; // unused 14054 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 14055 DiagID, Context.getPrintingPolicy()); 14056 // Use the identifier location for the type source range. 14057 DS.SetRangeStart(FTI.Params[i].IdentLoc); 14058 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 14059 Declarator ParamD(DS, DeclaratorContext::KNRTypeList); 14060 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 14061 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 14062 } 14063 } 14064 } 14065 } 14066 14067 Decl * 14068 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, 14069 MultiTemplateParamsArg TemplateParameterLists, 14070 SkipBodyInfo *SkipBody) { 14071 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 14072 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 14073 Scope *ParentScope = FnBodyScope->getParent(); 14074 14075 // Check if we are in an `omp begin/end declare variant` scope. If we are, and 14076 // we define a non-templated function definition, we will create a declaration 14077 // instead (=BaseFD), and emit the definition with a mangled name afterwards. 14078 // The base function declaration will have the equivalent of an `omp declare 14079 // variant` annotation which specifies the mangled definition as a 14080 // specialization function under the OpenMP context defined as part of the 14081 // `omp begin declare variant`. 14082 SmallVector<FunctionDecl *, 4> Bases; 14083 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) 14084 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( 14085 ParentScope, D, TemplateParameterLists, Bases); 14086 14087 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 14088 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); 14089 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); 14090 14091 if (!Bases.empty()) 14092 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); 14093 14094 return Dcl; 14095 } 14096 14097 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { 14098 Consumer.HandleInlineFunctionDefinition(D); 14099 } 14100 14101 static bool 14102 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 14103 const FunctionDecl *&PossiblePrototype) { 14104 // Don't warn about invalid declarations. 14105 if (FD->isInvalidDecl()) 14106 return false; 14107 14108 // Or declarations that aren't global. 14109 if (!FD->isGlobal()) 14110 return false; 14111 14112 // Don't warn about C++ member functions. 14113 if (isa<CXXMethodDecl>(FD)) 14114 return false; 14115 14116 // Don't warn about 'main'. 14117 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) 14118 if (IdentifierInfo *II = FD->getIdentifier()) 14119 if (II->isStr("main") || II->isStr("efi_main")) 14120 return false; 14121 14122 // Don't warn about inline functions. 14123 if (FD->isInlined()) 14124 return false; 14125 14126 // Don't warn about function templates. 14127 if (FD->getDescribedFunctionTemplate()) 14128 return false; 14129 14130 // Don't warn about function template specializations. 14131 if (FD->isFunctionTemplateSpecialization()) 14132 return false; 14133 14134 // Don't warn for OpenCL kernels. 14135 if (FD->hasAttr<OpenCLKernelAttr>()) 14136 return false; 14137 14138 // Don't warn on explicitly deleted functions. 14139 if (FD->isDeleted()) 14140 return false; 14141 14142 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 14143 Prev; Prev = Prev->getPreviousDecl()) { 14144 // Ignore any declarations that occur in function or method 14145 // scope, because they aren't visible from the header. 14146 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 14147 continue; 14148 14149 PossiblePrototype = Prev; 14150 return Prev->getType()->isFunctionNoProtoType(); 14151 } 14152 14153 return true; 14154 } 14155 14156 void 14157 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 14158 const FunctionDecl *EffectiveDefinition, 14159 SkipBodyInfo *SkipBody) { 14160 const FunctionDecl *Definition = EffectiveDefinition; 14161 if (!Definition && 14162 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) 14163 return; 14164 14165 if (Definition->getFriendObjectKind() != Decl::FOK_None) { 14166 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { 14167 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { 14168 // A merged copy of the same function, instantiated as a member of 14169 // the same class, is OK. 14170 if (declaresSameEntity(OrigFD, OrigDef) && 14171 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), 14172 cast<Decl>(FD->getLexicalDeclContext()))) 14173 return; 14174 } 14175 } 14176 } 14177 14178 if (canRedefineFunction(Definition, getLangOpts())) 14179 return; 14180 14181 // Don't emit an error when this is redefinition of a typo-corrected 14182 // definition. 14183 if (TypoCorrectedFunctionDefinitions.count(Definition)) 14184 return; 14185 14186 // If we don't have a visible definition of the function, and it's inline or 14187 // a template, skip the new definition. 14188 if (SkipBody && !hasVisibleDefinition(Definition) && 14189 (Definition->getFormalLinkage() == InternalLinkage || 14190 Definition->isInlined() || 14191 Definition->getDescribedFunctionTemplate() || 14192 Definition->getNumTemplateParameterLists())) { 14193 SkipBody->ShouldSkip = true; 14194 SkipBody->Previous = const_cast<FunctionDecl*>(Definition); 14195 if (auto *TD = Definition->getDescribedFunctionTemplate()) 14196 makeMergedDefinitionVisible(TD); 14197 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); 14198 return; 14199 } 14200 14201 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 14202 Definition->getStorageClass() == SC_Extern) 14203 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 14204 << FD << getLangOpts().CPlusPlus; 14205 else 14206 Diag(FD->getLocation(), diag::err_redefinition) << FD; 14207 14208 Diag(Definition->getLocation(), diag::note_previous_definition); 14209 FD->setInvalidDecl(); 14210 } 14211 14212 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 14213 Sema &S) { 14214 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 14215 14216 LambdaScopeInfo *LSI = S.PushLambdaScope(); 14217 LSI->CallOperator = CallOperator; 14218 LSI->Lambda = LambdaClass; 14219 LSI->ReturnType = CallOperator->getReturnType(); 14220 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 14221 14222 if (LCD == LCD_None) 14223 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 14224 else if (LCD == LCD_ByCopy) 14225 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 14226 else if (LCD == LCD_ByRef) 14227 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 14228 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 14229 14230 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 14231 LSI->Mutable = !CallOperator->isConst(); 14232 14233 // Add the captures to the LSI so they can be noted as already 14234 // captured within tryCaptureVar. 14235 auto I = LambdaClass->field_begin(); 14236 for (const auto &C : LambdaClass->captures()) { 14237 if (C.capturesVariable()) { 14238 VarDecl *VD = C.getCapturedVar(); 14239 if (VD->isInitCapture()) 14240 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 14241 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 14242 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 14243 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 14244 /*EllipsisLoc*/C.isPackExpansion() 14245 ? C.getEllipsisLoc() : SourceLocation(), 14246 I->getType(), /*Invalid*/false); 14247 14248 } else if (C.capturesThis()) { 14249 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), 14250 C.getCaptureKind() == LCK_StarThis); 14251 } else { 14252 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), 14253 I->getType()); 14254 } 14255 ++I; 14256 } 14257 } 14258 14259 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, 14260 SkipBodyInfo *SkipBody) { 14261 if (!D) { 14262 // Parsing the function declaration failed in some way. Push on a fake scope 14263 // anyway so we can try to parse the function body. 14264 PushFunctionScope(); 14265 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 14266 return D; 14267 } 14268 14269 FunctionDecl *FD = nullptr; 14270 14271 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 14272 FD = FunTmpl->getTemplatedDecl(); 14273 else 14274 FD = cast<FunctionDecl>(D); 14275 14276 // Do not push if it is a lambda because one is already pushed when building 14277 // the lambda in ActOnStartOfLambdaDefinition(). 14278 if (!isLambdaCallOperator(FD)) 14279 PushExpressionEvaluationContext( 14280 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated 14281 : ExprEvalContexts.back().Context); 14282 14283 // Check for defining attributes before the check for redefinition. 14284 if (const auto *Attr = FD->getAttr<AliasAttr>()) { 14285 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; 14286 FD->dropAttr<AliasAttr>(); 14287 FD->setInvalidDecl(); 14288 } 14289 if (const auto *Attr = FD->getAttr<IFuncAttr>()) { 14290 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; 14291 FD->dropAttr<IFuncAttr>(); 14292 FD->setInvalidDecl(); 14293 } 14294 14295 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 14296 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 14297 Ctor->isDefaultConstructor() && 14298 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 14299 // If this is an MS ABI dllexport default constructor, instantiate any 14300 // default arguments. 14301 InstantiateDefaultCtorDefaultArgs(Ctor); 14302 } 14303 } 14304 14305 // See if this is a redefinition. If 'will have body' (or similar) is already 14306 // set, then these checks were already performed when it was set. 14307 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && 14308 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 14309 CheckForFunctionRedefinition(FD, nullptr, SkipBody); 14310 14311 // If we're skipping the body, we're done. Don't enter the scope. 14312 if (SkipBody && SkipBody->ShouldSkip) 14313 return D; 14314 } 14315 14316 // Mark this function as "will have a body eventually". This lets users to 14317 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing 14318 // this function. 14319 FD->setWillHaveBody(); 14320 14321 // If we are instantiating a generic lambda call operator, push 14322 // a LambdaScopeInfo onto the function stack. But use the information 14323 // that's already been calculated (ActOnLambdaExpr) to prime the current 14324 // LambdaScopeInfo. 14325 // When the template operator is being specialized, the LambdaScopeInfo, 14326 // has to be properly restored so that tryCaptureVariable doesn't try 14327 // and capture any new variables. In addition when calculating potential 14328 // captures during transformation of nested lambdas, it is necessary to 14329 // have the LSI properly restored. 14330 if (isGenericLambdaCallOperatorSpecialization(FD)) { 14331 assert(inTemplateInstantiation() && 14332 "There should be an active template instantiation on the stack " 14333 "when instantiating a generic lambda!"); 14334 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 14335 } else { 14336 // Enter a new function scope 14337 PushFunctionScope(); 14338 } 14339 14340 // Builtin functions cannot be defined. 14341 if (unsigned BuiltinID = FD->getBuiltinID()) { 14342 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 14343 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 14344 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 14345 FD->setInvalidDecl(); 14346 } 14347 } 14348 14349 // The return type of a function definition must be complete 14350 // (C99 6.9.1p3, C++ [dcl.fct]p6). 14351 QualType ResultType = FD->getReturnType(); 14352 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 14353 !FD->isInvalidDecl() && 14354 RequireCompleteType(FD->getLocation(), ResultType, 14355 diag::err_func_def_incomplete_result)) 14356 FD->setInvalidDecl(); 14357 14358 if (FnBodyScope) 14359 PushDeclContext(FnBodyScope, FD); 14360 14361 // Check the validity of our function parameters 14362 CheckParmsForFunctionDef(FD->parameters(), 14363 /*CheckParameterNames=*/true); 14364 14365 // Add non-parameter declarations already in the function to the current 14366 // scope. 14367 if (FnBodyScope) { 14368 for (Decl *NPD : FD->decls()) { 14369 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); 14370 if (!NonParmDecl) 14371 continue; 14372 assert(!isa<ParmVarDecl>(NonParmDecl) && 14373 "parameters should not be in newly created FD yet"); 14374 14375 // If the decl has a name, make it accessible in the current scope. 14376 if (NonParmDecl->getDeclName()) 14377 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); 14378 14379 // Similarly, dive into enums and fish their constants out, making them 14380 // accessible in this scope. 14381 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { 14382 for (auto *EI : ED->enumerators()) 14383 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 14384 } 14385 } 14386 } 14387 14388 // Introduce our parameters into the function scope 14389 for (auto Param : FD->parameters()) { 14390 Param->setOwningFunction(FD); 14391 14392 // If this has an identifier, add it to the scope stack. 14393 if (Param->getIdentifier() && FnBodyScope) { 14394 CheckShadow(FnBodyScope, Param); 14395 14396 PushOnScopeChains(Param, FnBodyScope); 14397 } 14398 } 14399 14400 // Ensure that the function's exception specification is instantiated. 14401 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 14402 ResolveExceptionSpec(D->getLocation(), FPT); 14403 14404 // dllimport cannot be applied to non-inline function definitions. 14405 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 14406 !FD->isTemplateInstantiation()) { 14407 assert(!FD->hasAttr<DLLExportAttr>()); 14408 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 14409 FD->setInvalidDecl(); 14410 return D; 14411 } 14412 // We want to attach documentation to original Decl (which might be 14413 // a function template). 14414 ActOnDocumentableDecl(D); 14415 if (getCurLexicalContext()->isObjCContainer() && 14416 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 14417 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 14418 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 14419 14420 return D; 14421 } 14422 14423 /// Given the set of return statements within a function body, 14424 /// compute the variables that are subject to the named return value 14425 /// optimization. 14426 /// 14427 /// Each of the variables that is subject to the named return value 14428 /// optimization will be marked as NRVO variables in the AST, and any 14429 /// return statement that has a marked NRVO variable as its NRVO candidate can 14430 /// use the named return value optimization. 14431 /// 14432 /// This function applies a very simplistic algorithm for NRVO: if every return 14433 /// statement in the scope of a variable has the same NRVO candidate, that 14434 /// candidate is an NRVO variable. 14435 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 14436 ReturnStmt **Returns = Scope->Returns.data(); 14437 14438 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 14439 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 14440 if (!NRVOCandidate->isNRVOVariable()) 14441 Returns[I]->setNRVOCandidate(nullptr); 14442 } 14443 } 14444 } 14445 14446 bool Sema::canDelayFunctionBody(const Declarator &D) { 14447 // We can't delay parsing the body of a constexpr function template (yet). 14448 if (D.getDeclSpec().hasConstexprSpecifier()) 14449 return false; 14450 14451 // We can't delay parsing the body of a function template with a deduced 14452 // return type (yet). 14453 if (D.getDeclSpec().hasAutoTypeSpec()) { 14454 // If the placeholder introduces a non-deduced trailing return type, 14455 // we can still delay parsing it. 14456 if (D.getNumTypeObjects()) { 14457 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 14458 if (Outer.Kind == DeclaratorChunk::Function && 14459 Outer.Fun.hasTrailingReturnType()) { 14460 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 14461 return Ty.isNull() || !Ty->isUndeducedType(); 14462 } 14463 } 14464 return false; 14465 } 14466 14467 return true; 14468 } 14469 14470 bool Sema::canSkipFunctionBody(Decl *D) { 14471 // We cannot skip the body of a function (or function template) which is 14472 // constexpr, since we may need to evaluate its body in order to parse the 14473 // rest of the file. 14474 // We cannot skip the body of a function with an undeduced return type, 14475 // because any callers of that function need to know the type. 14476 if (const FunctionDecl *FD = D->getAsFunction()) { 14477 if (FD->isConstexpr()) 14478 return false; 14479 // We can't simply call Type::isUndeducedType here, because inside template 14480 // auto can be deduced to a dependent type, which is not considered 14481 // "undeduced". 14482 if (FD->getReturnType()->getContainedDeducedType()) 14483 return false; 14484 } 14485 return Consumer.shouldSkipFunctionBody(D); 14486 } 14487 14488 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 14489 if (!Decl) 14490 return nullptr; 14491 if (FunctionDecl *FD = Decl->getAsFunction()) 14492 FD->setHasSkippedBody(); 14493 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) 14494 MD->setHasSkippedBody(); 14495 return Decl; 14496 } 14497 14498 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 14499 return ActOnFinishFunctionBody(D, BodyArg, false); 14500 } 14501 14502 /// RAII object that pops an ExpressionEvaluationContext when exiting a function 14503 /// body. 14504 class ExitFunctionBodyRAII { 14505 public: 14506 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} 14507 ~ExitFunctionBodyRAII() { 14508 if (!IsLambda) 14509 S.PopExpressionEvaluationContext(); 14510 } 14511 14512 private: 14513 Sema &S; 14514 bool IsLambda = false; 14515 }; 14516 14517 static void diagnoseImplicitlyRetainedSelf(Sema &S) { 14518 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; 14519 14520 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { 14521 if (EscapeInfo.count(BD)) 14522 return EscapeInfo[BD]; 14523 14524 bool R = false; 14525 const BlockDecl *CurBD = BD; 14526 14527 do { 14528 R = !CurBD->doesNotEscape(); 14529 if (R) 14530 break; 14531 CurBD = CurBD->getParent()->getInnermostBlockDecl(); 14532 } while (CurBD); 14533 14534 return EscapeInfo[BD] = R; 14535 }; 14536 14537 // If the location where 'self' is implicitly retained is inside a escaping 14538 // block, emit a diagnostic. 14539 for (const std::pair<SourceLocation, const BlockDecl *> &P : 14540 S.ImplicitlyRetainedSelfLocs) 14541 if (IsOrNestedInEscapingBlock(P.second)) 14542 S.Diag(P.first, diag::warn_implicitly_retains_self) 14543 << FixItHint::CreateInsertion(P.first, "self->"); 14544 } 14545 14546 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 14547 bool IsInstantiation) { 14548 FunctionScopeInfo *FSI = getCurFunction(); 14549 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 14550 14551 if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>()) 14552 FD->addAttr(StrictFPAttr::CreateImplicit(Context)); 14553 14554 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 14555 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 14556 14557 if (getLangOpts().Coroutines && FSI->isCoroutine()) 14558 CheckCompletedCoroutineBody(FD, Body); 14559 14560 { 14561 // Do not call PopExpressionEvaluationContext() if it is a lambda because 14562 // one is already popped when finishing the lambda in BuildLambdaExpr(). 14563 // This is meant to pop the context added in ActOnStartOfFunctionDef(). 14564 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); 14565 14566 if (FD) { 14567 FD->setBody(Body); 14568 FD->setWillHaveBody(false); 14569 14570 if (getLangOpts().CPlusPlus14) { 14571 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && 14572 FD->getReturnType()->isUndeducedType()) { 14573 // If the function has a deduced result type but contains no 'return' 14574 // statements, the result type as written must be exactly 'auto', and 14575 // the deduced result type is 'void'. 14576 if (!FD->getReturnType()->getAs<AutoType>()) { 14577 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 14578 << FD->getReturnType(); 14579 FD->setInvalidDecl(); 14580 } else { 14581 // Substitute 'void' for the 'auto' in the type. 14582 TypeLoc ResultType = getReturnTypeLoc(FD); 14583 Context.adjustDeducedFunctionResultType( 14584 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 14585 } 14586 } 14587 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { 14588 // In C++11, we don't use 'auto' deduction rules for lambda call 14589 // operators because we don't support return type deduction. 14590 auto *LSI = getCurLambda(); 14591 if (LSI->HasImplicitReturnType) { 14592 deduceClosureReturnType(*LSI); 14593 14594 // C++11 [expr.prim.lambda]p4: 14595 // [...] if there are no return statements in the compound-statement 14596 // [the deduced type is] the type void 14597 QualType RetType = 14598 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; 14599 14600 // Update the return type to the deduced type. 14601 const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); 14602 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), 14603 Proto->getExtProtoInfo())); 14604 } 14605 } 14606 14607 // If the function implicitly returns zero (like 'main') or is naked, 14608 // don't complain about missing return statements. 14609 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 14610 WP.disableCheckFallThrough(); 14611 14612 // MSVC permits the use of pure specifier (=0) on function definition, 14613 // defined at class scope, warn about this non-standard construct. 14614 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) 14615 Diag(FD->getLocation(), diag::ext_pure_function_definition); 14616 14617 if (!FD->isInvalidDecl()) { 14618 // Don't diagnose unused parameters of defaulted or deleted functions. 14619 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) 14620 DiagnoseUnusedParameters(FD->parameters()); 14621 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), 14622 FD->getReturnType(), FD); 14623 14624 // If this is a structor, we need a vtable. 14625 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 14626 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 14627 else if (CXXDestructorDecl *Destructor = 14628 dyn_cast<CXXDestructorDecl>(FD)) 14629 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 14630 14631 // Try to apply the named return value optimization. We have to check 14632 // if we can do this here because lambdas keep return statements around 14633 // to deduce an implicit return type. 14634 if (FD->getReturnType()->isRecordType() && 14635 (!getLangOpts().CPlusPlus || !FD->isDependentContext())) 14636 computeNRVO(Body, FSI); 14637 } 14638 14639 // GNU warning -Wmissing-prototypes: 14640 // Warn if a global function is defined without a previous 14641 // prototype declaration. This warning is issued even if the 14642 // definition itself provides a prototype. The aim is to detect 14643 // global functions that fail to be declared in header files. 14644 const FunctionDecl *PossiblePrototype = nullptr; 14645 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { 14646 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 14647 14648 if (PossiblePrototype) { 14649 // We found a declaration that is not a prototype, 14650 // but that could be a zero-parameter prototype 14651 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { 14652 TypeLoc TL = TI->getTypeLoc(); 14653 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 14654 Diag(PossiblePrototype->getLocation(), 14655 diag::note_declaration_not_a_prototype) 14656 << (FD->getNumParams() != 0) 14657 << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion( 14658 FTL.getRParenLoc(), "void") 14659 : FixItHint{}); 14660 } 14661 } else { 14662 // Returns true if the token beginning at this Loc is `const`. 14663 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, 14664 const LangOptions &LangOpts) { 14665 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 14666 if (LocInfo.first.isInvalid()) 14667 return false; 14668 14669 bool Invalid = false; 14670 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 14671 if (Invalid) 14672 return false; 14673 14674 if (LocInfo.second > Buffer.size()) 14675 return false; 14676 14677 const char *LexStart = Buffer.data() + LocInfo.second; 14678 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); 14679 14680 return StartTok.consume_front("const") && 14681 (StartTok.empty() || isWhitespace(StartTok[0]) || 14682 StartTok.startswith("/*") || StartTok.startswith("//")); 14683 }; 14684 14685 auto findBeginLoc = [&]() { 14686 // If the return type has `const` qualifier, we want to insert 14687 // `static` before `const` (and not before the typename). 14688 if ((FD->getReturnType()->isAnyPointerType() && 14689 FD->getReturnType()->getPointeeType().isConstQualified()) || 14690 FD->getReturnType().isConstQualified()) { 14691 // But only do this if we can determine where the `const` is. 14692 14693 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), 14694 getLangOpts())) 14695 14696 return FD->getBeginLoc(); 14697 } 14698 return FD->getTypeSpecStartLoc(); 14699 }; 14700 Diag(FD->getTypeSpecStartLoc(), 14701 diag::note_static_for_internal_linkage) 14702 << /* function */ 1 14703 << (FD->getStorageClass() == SC_None 14704 ? FixItHint::CreateInsertion(findBeginLoc(), "static ") 14705 : FixItHint{}); 14706 } 14707 14708 // GNU warning -Wstrict-prototypes 14709 // Warn if K&R function is defined without a previous declaration. 14710 // This warning is issued only if the definition itself does not 14711 // provide a prototype. Only K&R definitions do not provide a 14712 // prototype. 14713 if (!FD->hasWrittenPrototype()) { 14714 TypeSourceInfo *TI = FD->getTypeSourceInfo(); 14715 TypeLoc TL = TI->getTypeLoc(); 14716 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); 14717 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; 14718 } 14719 } 14720 14721 // Warn on CPUDispatch with an actual body. 14722 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) 14723 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) 14724 if (!CmpndBody->body_empty()) 14725 Diag(CmpndBody->body_front()->getBeginLoc(), 14726 diag::warn_dispatch_body_ignored); 14727 14728 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 14729 const CXXMethodDecl *KeyFunction; 14730 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && 14731 MD->isVirtual() && 14732 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && 14733 MD == KeyFunction->getCanonicalDecl()) { 14734 // Update the key-function state if necessary for this ABI. 14735 if (FD->isInlined() && 14736 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 14737 Context.setNonKeyFunction(MD); 14738 14739 // If the newly-chosen key function is already defined, then we 14740 // need to mark the vtable as used retroactively. 14741 KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); 14742 const FunctionDecl *Definition; 14743 if (KeyFunction && KeyFunction->isDefined(Definition)) 14744 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); 14745 } else { 14746 // We just defined they key function; mark the vtable as used. 14747 MarkVTableUsed(FD->getLocation(), MD->getParent(), true); 14748 } 14749 } 14750 } 14751 14752 assert( 14753 (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 14754 "Function parsing confused"); 14755 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 14756 assert(MD == getCurMethodDecl() && "Method parsing confused"); 14757 MD->setBody(Body); 14758 if (!MD->isInvalidDecl()) { 14759 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), 14760 MD->getReturnType(), MD); 14761 14762 if (Body) 14763 computeNRVO(Body, FSI); 14764 } 14765 if (FSI->ObjCShouldCallSuper) { 14766 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) 14767 << MD->getSelector().getAsString(); 14768 FSI->ObjCShouldCallSuper = false; 14769 } 14770 if (FSI->ObjCWarnForNoDesignatedInitChain) { 14771 const ObjCMethodDecl *InitMethod = nullptr; 14772 bool isDesignated = 14773 MD->isDesignatedInitializerForTheInterface(&InitMethod); 14774 assert(isDesignated && InitMethod); 14775 (void)isDesignated; 14776 14777 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 14778 auto IFace = MD->getClassInterface(); 14779 if (!IFace) 14780 return false; 14781 auto SuperD = IFace->getSuperClass(); 14782 if (!SuperD) 14783 return false; 14784 return SuperD->getIdentifier() == 14785 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 14786 }; 14787 // Don't issue this warning for unavailable inits or direct subclasses 14788 // of NSObject. 14789 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 14790 Diag(MD->getLocation(), 14791 diag::warn_objc_designated_init_missing_super_call); 14792 Diag(InitMethod->getLocation(), 14793 diag::note_objc_designated_init_marked_here); 14794 } 14795 FSI->ObjCWarnForNoDesignatedInitChain = false; 14796 } 14797 if (FSI->ObjCWarnForNoInitDelegation) { 14798 // Don't issue this warning for unavaialable inits. 14799 if (!MD->isUnavailable()) 14800 Diag(MD->getLocation(), 14801 diag::warn_objc_secondary_init_missing_init_call); 14802 FSI->ObjCWarnForNoInitDelegation = false; 14803 } 14804 14805 diagnoseImplicitlyRetainedSelf(*this); 14806 } else { 14807 // Parsing the function declaration failed in some way. Pop the fake scope 14808 // we pushed on. 14809 PopFunctionScopeInfo(ActivePolicy, dcl); 14810 return nullptr; 14811 } 14812 14813 if (Body && FSI->HasPotentialAvailabilityViolations) 14814 DiagnoseUnguardedAvailabilityViolations(dcl); 14815 14816 assert(!FSI->ObjCShouldCallSuper && 14817 "This should only be set for ObjC methods, which should have been " 14818 "handled in the block above."); 14819 14820 // Verify and clean out per-function state. 14821 if (Body && (!FD || !FD->isDefaulted())) { 14822 // C++ constructors that have function-try-blocks can't have return 14823 // statements in the handlers of that block. (C++ [except.handle]p14) 14824 // Verify this. 14825 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 14826 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 14827 14828 // Verify that gotos and switch cases don't jump into scopes illegally. 14829 if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled()) 14830 DiagnoseInvalidJumps(Body); 14831 14832 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 14833 if (!Destructor->getParent()->isDependentType()) 14834 CheckDestructor(Destructor); 14835 14836 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14837 Destructor->getParent()); 14838 } 14839 14840 // If any errors have occurred, clear out any temporaries that may have 14841 // been leftover. This ensures that these temporaries won't be picked up 14842 // for deletion in some later function. 14843 if (hasUncompilableErrorOccurred() || 14844 getDiagnostics().getSuppressAllDiagnostics()) { 14845 DiscardCleanupsInEvaluationContext(); 14846 } 14847 if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) { 14848 // Since the body is valid, issue any analysis-based warnings that are 14849 // enabled. 14850 ActivePolicy = &WP; 14851 } 14852 14853 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 14854 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) 14855 FD->setInvalidDecl(); 14856 14857 if (FD && FD->hasAttr<NakedAttr>()) { 14858 for (const Stmt *S : Body->children()) { 14859 // Allow local register variables without initializer as they don't 14860 // require prologue. 14861 bool RegisterVariables = false; 14862 if (auto *DS = dyn_cast<DeclStmt>(S)) { 14863 for (const auto *Decl : DS->decls()) { 14864 if (const auto *Var = dyn_cast<VarDecl>(Decl)) { 14865 RegisterVariables = 14866 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); 14867 if (!RegisterVariables) 14868 break; 14869 } 14870 } 14871 } 14872 if (RegisterVariables) 14873 continue; 14874 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 14875 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); 14876 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 14877 FD->setInvalidDecl(); 14878 break; 14879 } 14880 } 14881 } 14882 14883 assert(ExprCleanupObjects.size() == 14884 ExprEvalContexts.back().NumCleanupObjects && 14885 "Leftover temporaries in function"); 14886 assert(!Cleanup.exprNeedsCleanups() && 14887 "Unaccounted cleanups in function"); 14888 assert(MaybeODRUseExprs.empty() && 14889 "Leftover expressions for odr-use checking"); 14890 } 14891 } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop 14892 // the declaration context below. Otherwise, we're unable to transform 14893 // 'this' expressions when transforming immediate context functions. 14894 14895 if (!IsInstantiation) 14896 PopDeclContext(); 14897 14898 PopFunctionScopeInfo(ActivePolicy, dcl); 14899 // If any errors have occurred, clear out any temporaries that may have 14900 // been leftover. This ensures that these temporaries won't be picked up for 14901 // deletion in some later function. 14902 if (hasUncompilableErrorOccurred()) { 14903 DiscardCleanupsInEvaluationContext(); 14904 } 14905 14906 if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsDevice || 14907 !LangOpts.OMPTargetTriples.empty())) || 14908 LangOpts.CUDA || LangOpts.SYCLIsDevice)) { 14909 auto ES = getEmissionStatus(FD); 14910 if (ES == Sema::FunctionEmissionStatus::Emitted || 14911 ES == Sema::FunctionEmissionStatus::Unknown) 14912 DeclsToCheckForDeferredDiags.insert(FD); 14913 } 14914 14915 if (FD && !FD->isDeleted()) 14916 checkTypeSupport(FD->getType(), FD->getLocation(), FD); 14917 14918 return dcl; 14919 } 14920 14921 /// When we finish delayed parsing of an attribute, we must attach it to the 14922 /// relevant Decl. 14923 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 14924 ParsedAttributes &Attrs) { 14925 // Always attach attributes to the underlying decl. 14926 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 14927 D = TD->getTemplatedDecl(); 14928 ProcessDeclAttributeList(S, D, Attrs); 14929 14930 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 14931 if (Method->isStatic()) 14932 checkThisInStaticMemberFunctionAttributes(Method); 14933 } 14934 14935 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 14936 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 14937 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 14938 IdentifierInfo &II, Scope *S) { 14939 // Find the scope in which the identifier is injected and the corresponding 14940 // DeclContext. 14941 // FIXME: C89 does not say what happens if there is no enclosing block scope. 14942 // In that case, we inject the declaration into the translation unit scope 14943 // instead. 14944 Scope *BlockScope = S; 14945 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) 14946 BlockScope = BlockScope->getParent(); 14947 14948 Scope *ContextScope = BlockScope; 14949 while (!ContextScope->getEntity()) 14950 ContextScope = ContextScope->getParent(); 14951 ContextRAII SavedContext(*this, ContextScope->getEntity()); 14952 14953 // Before we produce a declaration for an implicitly defined 14954 // function, see whether there was a locally-scoped declaration of 14955 // this name as a function or variable. If so, use that 14956 // (non-visible) declaration, and complain about it. 14957 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); 14958 if (ExternCPrev) { 14959 // We still need to inject the function into the enclosing block scope so 14960 // that later (non-call) uses can see it. 14961 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); 14962 14963 // C89 footnote 38: 14964 // If in fact it is not defined as having type "function returning int", 14965 // the behavior is undefined. 14966 if (!isa<FunctionDecl>(ExternCPrev) || 14967 !Context.typesAreCompatible( 14968 cast<FunctionDecl>(ExternCPrev)->getType(), 14969 Context.getFunctionNoProtoType(Context.IntTy))) { 14970 Diag(Loc, diag::ext_use_out_of_scope_declaration) 14971 << ExternCPrev << !getLangOpts().C99; 14972 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 14973 return ExternCPrev; 14974 } 14975 } 14976 14977 // Extension in C99. Legal in C90, but warn about it. 14978 unsigned diag_id; 14979 if (II.getName().startswith("__builtin_")) 14980 diag_id = diag::warn_builtin_unknown; 14981 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. 14982 else if (getLangOpts().OpenCL) 14983 diag_id = diag::err_opencl_implicit_function_decl; 14984 else if (getLangOpts().C99) 14985 diag_id = diag::ext_implicit_function_decl; 14986 else 14987 diag_id = diag::warn_implicit_function_decl; 14988 Diag(Loc, diag_id) << &II; 14989 14990 // If we found a prior declaration of this function, don't bother building 14991 // another one. We've already pushed that one into scope, so there's nothing 14992 // more to do. 14993 if (ExternCPrev) 14994 return ExternCPrev; 14995 14996 // Because typo correction is expensive, only do it if the implicit 14997 // function declaration is going to be treated as an error. 14998 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 14999 TypoCorrection Corrected; 15000 DeclFilterCCC<FunctionDecl> CCC{}; 15001 if (S && (Corrected = 15002 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, 15003 S, nullptr, CCC, CTK_NonError))) 15004 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 15005 /*ErrorRecovery*/false); 15006 } 15007 15008 // Set a Declarator for the implicit definition: int foo(); 15009 const char *Dummy; 15010 AttributeFactory attrFactory; 15011 DeclSpec DS(attrFactory); 15012 unsigned DiagID; 15013 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 15014 Context.getPrintingPolicy()); 15015 (void)Error; // Silence warning. 15016 assert(!Error && "Error setting up implicit decl!"); 15017 SourceLocation NoLoc; 15018 Declarator D(DS, DeclaratorContext::Block); 15019 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 15020 /*IsAmbiguous=*/false, 15021 /*LParenLoc=*/NoLoc, 15022 /*Params=*/nullptr, 15023 /*NumParams=*/0, 15024 /*EllipsisLoc=*/NoLoc, 15025 /*RParenLoc=*/NoLoc, 15026 /*RefQualifierIsLvalueRef=*/true, 15027 /*RefQualifierLoc=*/NoLoc, 15028 /*MutableLoc=*/NoLoc, EST_None, 15029 /*ESpecRange=*/SourceRange(), 15030 /*Exceptions=*/nullptr, 15031 /*ExceptionRanges=*/nullptr, 15032 /*NumExceptions=*/0, 15033 /*NoexceptExpr=*/nullptr, 15034 /*ExceptionSpecTokens=*/nullptr, 15035 /*DeclsInPrototype=*/None, Loc, 15036 Loc, D), 15037 std::move(DS.getAttributes()), SourceLocation()); 15038 D.SetIdentifier(&II, Loc); 15039 15040 // Insert this function into the enclosing block scope. 15041 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); 15042 FD->setImplicit(); 15043 15044 AddKnownFunctionAttributes(FD); 15045 15046 return FD; 15047 } 15048 15049 /// If this function is a C++ replaceable global allocation function 15050 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), 15051 /// adds any function attributes that we know a priori based on the standard. 15052 /// 15053 /// We need to check for duplicate attributes both here and where user-written 15054 /// attributes are applied to declarations. 15055 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( 15056 FunctionDecl *FD) { 15057 if (FD->isInvalidDecl()) 15058 return; 15059 15060 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && 15061 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) 15062 return; 15063 15064 Optional<unsigned> AlignmentParam; 15065 bool IsNothrow = false; 15066 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) 15067 return; 15068 15069 // C++2a [basic.stc.dynamic.allocation]p4: 15070 // An allocation function that has a non-throwing exception specification 15071 // indicates failure by returning a null pointer value. Any other allocation 15072 // function never returns a null pointer value and indicates failure only by 15073 // throwing an exception [...] 15074 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) 15075 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); 15076 15077 // C++2a [basic.stc.dynamic.allocation]p2: 15078 // An allocation function attempts to allocate the requested amount of 15079 // storage. [...] If the request succeeds, the value returned by a 15080 // replaceable allocation function is a [...] pointer value p0 different 15081 // from any previously returned value p1 [...] 15082 // 15083 // However, this particular information is being added in codegen, 15084 // because there is an opt-out switch for it (-fno-assume-sane-operator-new) 15085 15086 // C++2a [basic.stc.dynamic.allocation]p2: 15087 // An allocation function attempts to allocate the requested amount of 15088 // storage. If it is successful, it returns the address of the start of a 15089 // block of storage whose length in bytes is at least as large as the 15090 // requested size. 15091 if (!FD->hasAttr<AllocSizeAttr>()) { 15092 FD->addAttr(AllocSizeAttr::CreateImplicit( 15093 Context, /*ElemSizeParam=*/ParamIdx(1, FD), 15094 /*NumElemsParam=*/ParamIdx(), FD->getLocation())); 15095 } 15096 15097 // C++2a [basic.stc.dynamic.allocation]p3: 15098 // For an allocation function [...], the pointer returned on a successful 15099 // call shall represent the address of storage that is aligned as follows: 15100 // (3.1) If the allocation function takes an argument of type 15101 // std::align_val_t, the storage will have the alignment 15102 // specified by the value of this argument. 15103 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) { 15104 FD->addAttr(AllocAlignAttr::CreateImplicit( 15105 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation())); 15106 } 15107 15108 // FIXME: 15109 // C++2a [basic.stc.dynamic.allocation]p3: 15110 // For an allocation function [...], the pointer returned on a successful 15111 // call shall represent the address of storage that is aligned as follows: 15112 // (3.2) Otherwise, if the allocation function is named operator new[], 15113 // the storage is aligned for any object that does not have 15114 // new-extended alignment ([basic.align]) and is no larger than the 15115 // requested size. 15116 // (3.3) Otherwise, the storage is aligned for any object that does not 15117 // have new-extended alignment and is of the requested size. 15118 } 15119 15120 /// Adds any function attributes that we know a priori based on 15121 /// the declaration of this function. 15122 /// 15123 /// These attributes can apply both to implicitly-declared builtins 15124 /// (like __builtin___printf_chk) or to library-declared functions 15125 /// like NSLog or printf. 15126 /// 15127 /// We need to check for duplicate attributes both here and where user-written 15128 /// attributes are applied to declarations. 15129 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 15130 if (FD->isInvalidDecl()) 15131 return; 15132 15133 // If this is a built-in function, map its builtin attributes to 15134 // actual attributes. 15135 if (unsigned BuiltinID = FD->getBuiltinID()) { 15136 // Handle printf-formatting attributes. 15137 unsigned FormatIdx; 15138 bool HasVAListArg; 15139 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 15140 if (!FD->hasAttr<FormatAttr>()) { 15141 const char *fmt = "printf"; 15142 unsigned int NumParams = FD->getNumParams(); 15143 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 15144 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 15145 fmt = "NSString"; 15146 FD->addAttr(FormatAttr::CreateImplicit(Context, 15147 &Context.Idents.get(fmt), 15148 FormatIdx+1, 15149 HasVAListArg ? 0 : FormatIdx+2, 15150 FD->getLocation())); 15151 } 15152 } 15153 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 15154 HasVAListArg)) { 15155 if (!FD->hasAttr<FormatAttr>()) 15156 FD->addAttr(FormatAttr::CreateImplicit(Context, 15157 &Context.Idents.get("scanf"), 15158 FormatIdx+1, 15159 HasVAListArg ? 0 : FormatIdx+2, 15160 FD->getLocation())); 15161 } 15162 15163 // Handle automatically recognized callbacks. 15164 SmallVector<int, 4> Encoding; 15165 if (!FD->hasAttr<CallbackAttr>() && 15166 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) 15167 FD->addAttr(CallbackAttr::CreateImplicit( 15168 Context, Encoding.data(), Encoding.size(), FD->getLocation())); 15169 15170 // Mark const if we don't care about errno and that is the only thing 15171 // preventing the function from being const. This allows IRgen to use LLVM 15172 // intrinsics for such functions. 15173 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && 15174 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) 15175 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15176 15177 // We make "fma" on some platforms const because we know it does not set 15178 // errno in those environments even though it could set errno based on the 15179 // C standard. 15180 const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); 15181 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && 15182 !FD->hasAttr<ConstAttr>()) { 15183 switch (BuiltinID) { 15184 case Builtin::BI__builtin_fma: 15185 case Builtin::BI__builtin_fmaf: 15186 case Builtin::BI__builtin_fmal: 15187 case Builtin::BIfma: 15188 case Builtin::BIfmaf: 15189 case Builtin::BIfmal: 15190 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15191 break; 15192 default: 15193 break; 15194 } 15195 } 15196 15197 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 15198 !FD->hasAttr<ReturnsTwiceAttr>()) 15199 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 15200 FD->getLocation())); 15201 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 15202 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 15203 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) 15204 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); 15205 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 15206 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15207 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && 15208 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { 15209 // Add the appropriate attribute, depending on the CUDA compilation mode 15210 // and which target the builtin belongs to. For example, during host 15211 // compilation, aux builtins are __device__, while the rest are __host__. 15212 if (getLangOpts().CUDAIsDevice != 15213 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) 15214 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); 15215 else 15216 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); 15217 } 15218 15219 // Add known guaranteed alignment for allocation functions. 15220 switch (BuiltinID) { 15221 case Builtin::BIaligned_alloc: 15222 if (!FD->hasAttr<AllocAlignAttr>()) 15223 FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD), 15224 FD->getLocation())); 15225 LLVM_FALLTHROUGH; 15226 case Builtin::BIcalloc: 15227 case Builtin::BImalloc: 15228 case Builtin::BImemalign: 15229 case Builtin::BIrealloc: 15230 case Builtin::BIstrdup: 15231 case Builtin::BIstrndup: { 15232 if (!FD->hasAttr<AssumeAlignedAttr>()) { 15233 unsigned NewAlign = Context.getTargetInfo().getNewAlign() / 15234 Context.getTargetInfo().getCharWidth(); 15235 IntegerLiteral *Alignment = IntegerLiteral::Create( 15236 Context, Context.MakeIntValue(NewAlign, Context.UnsignedIntTy), 15237 Context.UnsignedIntTy, FD->getLocation()); 15238 FD->addAttr(AssumeAlignedAttr::CreateImplicit( 15239 Context, Alignment, /*Offset=*/nullptr, FD->getLocation())); 15240 } 15241 break; 15242 } 15243 default: 15244 break; 15245 } 15246 } 15247 15248 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); 15249 15250 // If C++ exceptions are enabled but we are told extern "C" functions cannot 15251 // throw, add an implicit nothrow attribute to any extern "C" function we come 15252 // across. 15253 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && 15254 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { 15255 const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); 15256 if (!FPT || FPT->getExceptionSpecType() == EST_None) 15257 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 15258 } 15259 15260 IdentifierInfo *Name = FD->getIdentifier(); 15261 if (!Name) 15262 return; 15263 if ((!getLangOpts().CPlusPlus && 15264 FD->getDeclContext()->isTranslationUnit()) || 15265 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 15266 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 15267 LinkageSpecDecl::lang_c)) { 15268 // Okay: this could be a libc/libm/Objective-C function we know 15269 // about. 15270 } else 15271 return; 15272 15273 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 15274 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 15275 // target-specific builtins, perhaps? 15276 if (!FD->hasAttr<FormatAttr>()) 15277 FD->addAttr(FormatAttr::CreateImplicit(Context, 15278 &Context.Idents.get("printf"), 2, 15279 Name->isStr("vasprintf") ? 0 : 3, 15280 FD->getLocation())); 15281 } 15282 15283 if (Name->isStr("__CFStringMakeConstantString")) { 15284 // We already have a __builtin___CFStringMakeConstantString, 15285 // but builds that use -fno-constant-cfstrings don't go through that. 15286 if (!FD->hasAttr<FormatArgAttr>()) 15287 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), 15288 FD->getLocation())); 15289 } 15290 } 15291 15292 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 15293 TypeSourceInfo *TInfo) { 15294 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 15295 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 15296 15297 if (!TInfo) { 15298 assert(D.isInvalidType() && "no declarator info for valid type"); 15299 TInfo = Context.getTrivialTypeSourceInfo(T); 15300 } 15301 15302 // Scope manipulation handled by caller. 15303 TypedefDecl *NewTD = 15304 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), 15305 D.getIdentifierLoc(), D.getIdentifier(), TInfo); 15306 15307 // Bail out immediately if we have an invalid declaration. 15308 if (D.isInvalidType()) { 15309 NewTD->setInvalidDecl(); 15310 return NewTD; 15311 } 15312 15313 if (D.getDeclSpec().isModulePrivateSpecified()) { 15314 if (CurContext->isFunctionOrMethod()) 15315 Diag(NewTD->getLocation(), diag::err_module_private_local) 15316 << 2 << NewTD 15317 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 15318 << FixItHint::CreateRemoval( 15319 D.getDeclSpec().getModulePrivateSpecLoc()); 15320 else 15321 NewTD->setModulePrivate(); 15322 } 15323 15324 // C++ [dcl.typedef]p8: 15325 // If the typedef declaration defines an unnamed class (or 15326 // enum), the first typedef-name declared by the declaration 15327 // to be that class type (or enum type) is used to denote the 15328 // class type (or enum type) for linkage purposes only. 15329 // We need to check whether the type was declared in the declaration. 15330 switch (D.getDeclSpec().getTypeSpecType()) { 15331 case TST_enum: 15332 case TST_struct: 15333 case TST_interface: 15334 case TST_union: 15335 case TST_class: { 15336 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 15337 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); 15338 break; 15339 } 15340 15341 default: 15342 break; 15343 } 15344 15345 return NewTD; 15346 } 15347 15348 /// Check that this is a valid underlying type for an enum declaration. 15349 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 15350 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 15351 QualType T = TI->getType(); 15352 15353 if (T->isDependentType()) 15354 return false; 15355 15356 // This doesn't use 'isIntegralType' despite the error message mentioning 15357 // integral type because isIntegralType would also allow enum types in C. 15358 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 15359 if (BT->isInteger()) 15360 return false; 15361 15362 if (T->isExtIntType()) 15363 return false; 15364 15365 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 15366 } 15367 15368 /// Check whether this is a valid redeclaration of a previous enumeration. 15369 /// \return true if the redeclaration was invalid. 15370 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 15371 QualType EnumUnderlyingTy, bool IsFixed, 15372 const EnumDecl *Prev) { 15373 if (IsScoped != Prev->isScoped()) { 15374 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 15375 << Prev->isScoped(); 15376 Diag(Prev->getLocation(), diag::note_previous_declaration); 15377 return true; 15378 } 15379 15380 if (IsFixed && Prev->isFixed()) { 15381 if (!EnumUnderlyingTy->isDependentType() && 15382 !Prev->getIntegerType()->isDependentType() && 15383 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 15384 Prev->getIntegerType())) { 15385 // TODO: Highlight the underlying type of the redeclaration. 15386 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 15387 << EnumUnderlyingTy << Prev->getIntegerType(); 15388 Diag(Prev->getLocation(), diag::note_previous_declaration) 15389 << Prev->getIntegerTypeRange(); 15390 return true; 15391 } 15392 } else if (IsFixed != Prev->isFixed()) { 15393 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 15394 << Prev->isFixed(); 15395 Diag(Prev->getLocation(), diag::note_previous_declaration); 15396 return true; 15397 } 15398 15399 return false; 15400 } 15401 15402 /// Get diagnostic %select index for tag kind for 15403 /// redeclaration diagnostic message. 15404 /// WARNING: Indexes apply to particular diagnostics only! 15405 /// 15406 /// \returns diagnostic %select index. 15407 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 15408 switch (Tag) { 15409 case TTK_Struct: return 0; 15410 case TTK_Interface: return 1; 15411 case TTK_Class: return 2; 15412 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 15413 } 15414 } 15415 15416 /// Determine if tag kind is a class-key compatible with 15417 /// class for redeclaration (class, struct, or __interface). 15418 /// 15419 /// \returns true iff the tag kind is compatible. 15420 static bool isClassCompatTagKind(TagTypeKind Tag) 15421 { 15422 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 15423 } 15424 15425 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, 15426 TagTypeKind TTK) { 15427 if (isa<TypedefDecl>(PrevDecl)) 15428 return NTK_Typedef; 15429 else if (isa<TypeAliasDecl>(PrevDecl)) 15430 return NTK_TypeAlias; 15431 else if (isa<ClassTemplateDecl>(PrevDecl)) 15432 return NTK_Template; 15433 else if (isa<TypeAliasTemplateDecl>(PrevDecl)) 15434 return NTK_TypeAliasTemplate; 15435 else if (isa<TemplateTemplateParmDecl>(PrevDecl)) 15436 return NTK_TemplateTemplateArgument; 15437 switch (TTK) { 15438 case TTK_Struct: 15439 case TTK_Interface: 15440 case TTK_Class: 15441 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; 15442 case TTK_Union: 15443 return NTK_NonUnion; 15444 case TTK_Enum: 15445 return NTK_NonEnum; 15446 } 15447 llvm_unreachable("invalid TTK"); 15448 } 15449 15450 /// Determine whether a tag with a given kind is acceptable 15451 /// as a redeclaration of the given tag declaration. 15452 /// 15453 /// \returns true if the new tag kind is acceptable, false otherwise. 15454 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 15455 TagTypeKind NewTag, bool isDefinition, 15456 SourceLocation NewTagLoc, 15457 const IdentifierInfo *Name) { 15458 // C++ [dcl.type.elab]p3: 15459 // The class-key or enum keyword present in the 15460 // elaborated-type-specifier shall agree in kind with the 15461 // declaration to which the name in the elaborated-type-specifier 15462 // refers. This rule also applies to the form of 15463 // elaborated-type-specifier that declares a class-name or 15464 // friend class since it can be construed as referring to the 15465 // definition of the class. Thus, in any 15466 // elaborated-type-specifier, the enum keyword shall be used to 15467 // refer to an enumeration (7.2), the union class-key shall be 15468 // used to refer to a union (clause 9), and either the class or 15469 // struct class-key shall be used to refer to a class (clause 9) 15470 // declared using the class or struct class-key. 15471 TagTypeKind OldTag = Previous->getTagKind(); 15472 if (OldTag != NewTag && 15473 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) 15474 return false; 15475 15476 // Tags are compatible, but we might still want to warn on mismatched tags. 15477 // Non-class tags can't be mismatched at this point. 15478 if (!isClassCompatTagKind(NewTag)) 15479 return true; 15480 15481 // Declarations for which -Wmismatched-tags is disabled are entirely ignored 15482 // by our warning analysis. We don't want to warn about mismatches with (eg) 15483 // declarations in system headers that are designed to be specialized, but if 15484 // a user asks us to warn, we should warn if their code contains mismatched 15485 // declarations. 15486 auto IsIgnoredLoc = [&](SourceLocation Loc) { 15487 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, 15488 Loc); 15489 }; 15490 if (IsIgnoredLoc(NewTagLoc)) 15491 return true; 15492 15493 auto IsIgnored = [&](const TagDecl *Tag) { 15494 return IsIgnoredLoc(Tag->getLocation()); 15495 }; 15496 while (IsIgnored(Previous)) { 15497 Previous = Previous->getPreviousDecl(); 15498 if (!Previous) 15499 return true; 15500 OldTag = Previous->getTagKind(); 15501 } 15502 15503 bool isTemplate = false; 15504 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 15505 isTemplate = Record->getDescribedClassTemplate(); 15506 15507 if (inTemplateInstantiation()) { 15508 if (OldTag != NewTag) { 15509 // In a template instantiation, do not offer fix-its for tag mismatches 15510 // since they usually mess up the template instead of fixing the problem. 15511 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15512 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15513 << getRedeclDiagFromTagKind(OldTag); 15514 // FIXME: Note previous location? 15515 } 15516 return true; 15517 } 15518 15519 if (isDefinition) { 15520 // On definitions, check all previous tags and issue a fix-it for each 15521 // one that doesn't match the current tag. 15522 if (Previous->getDefinition()) { 15523 // Don't suggest fix-its for redefinitions. 15524 return true; 15525 } 15526 15527 bool previousMismatch = false; 15528 for (const TagDecl *I : Previous->redecls()) { 15529 if (I->getTagKind() != NewTag) { 15530 // Ignore previous declarations for which the warning was disabled. 15531 if (IsIgnored(I)) 15532 continue; 15533 15534 if (!previousMismatch) { 15535 previousMismatch = true; 15536 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 15537 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15538 << getRedeclDiagFromTagKind(I->getTagKind()); 15539 } 15540 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 15541 << getRedeclDiagFromTagKind(NewTag) 15542 << FixItHint::CreateReplacement(I->getInnerLocStart(), 15543 TypeWithKeyword::getTagTypeKindName(NewTag)); 15544 } 15545 } 15546 return true; 15547 } 15548 15549 // Identify the prevailing tag kind: this is the kind of the definition (if 15550 // there is a non-ignored definition), or otherwise the kind of the prior 15551 // (non-ignored) declaration. 15552 const TagDecl *PrevDef = Previous->getDefinition(); 15553 if (PrevDef && IsIgnored(PrevDef)) 15554 PrevDef = nullptr; 15555 const TagDecl *Redecl = PrevDef ? PrevDef : Previous; 15556 if (Redecl->getTagKind() != NewTag) { 15557 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15558 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15559 << getRedeclDiagFromTagKind(OldTag); 15560 Diag(Redecl->getLocation(), diag::note_previous_use); 15561 15562 // If there is a previous definition, suggest a fix-it. 15563 if (PrevDef) { 15564 Diag(NewTagLoc, diag::note_struct_class_suggestion) 15565 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 15566 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 15567 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 15568 } 15569 } 15570 15571 return true; 15572 } 15573 15574 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 15575 /// from an outer enclosing namespace or file scope inside a friend declaration. 15576 /// This should provide the commented out code in the following snippet: 15577 /// namespace N { 15578 /// struct X; 15579 /// namespace M { 15580 /// struct Y { friend struct /*N::*/ X; }; 15581 /// } 15582 /// } 15583 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 15584 SourceLocation NameLoc) { 15585 // While the decl is in a namespace, do repeated lookup of that name and see 15586 // if we get the same namespace back. If we do not, continue until 15587 // translation unit scope, at which point we have a fully qualified NNS. 15588 SmallVector<IdentifierInfo *, 4> Namespaces; 15589 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15590 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 15591 // This tag should be declared in a namespace, which can only be enclosed by 15592 // other namespaces. Bail if there's an anonymous namespace in the chain. 15593 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 15594 if (!Namespace || Namespace->isAnonymousNamespace()) 15595 return FixItHint(); 15596 IdentifierInfo *II = Namespace->getIdentifier(); 15597 Namespaces.push_back(II); 15598 NamedDecl *Lookup = SemaRef.LookupSingleName( 15599 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 15600 if (Lookup == Namespace) 15601 break; 15602 } 15603 15604 // Once we have all the namespaces, reverse them to go outermost first, and 15605 // build an NNS. 15606 SmallString<64> Insertion; 15607 llvm::raw_svector_ostream OS(Insertion); 15608 if (DC->isTranslationUnit()) 15609 OS << "::"; 15610 std::reverse(Namespaces.begin(), Namespaces.end()); 15611 for (auto *II : Namespaces) 15612 OS << II->getName() << "::"; 15613 return FixItHint::CreateInsertion(NameLoc, Insertion); 15614 } 15615 15616 /// Determine whether a tag originally declared in context \p OldDC can 15617 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup 15618 /// found a declaration in \p OldDC as a previous decl, perhaps through a 15619 /// using-declaration). 15620 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, 15621 DeclContext *NewDC) { 15622 OldDC = OldDC->getRedeclContext(); 15623 NewDC = NewDC->getRedeclContext(); 15624 15625 if (OldDC->Equals(NewDC)) 15626 return true; 15627 15628 // In MSVC mode, we allow a redeclaration if the contexts are related (either 15629 // encloses the other). 15630 if (S.getLangOpts().MSVCCompat && 15631 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) 15632 return true; 15633 15634 return false; 15635 } 15636 15637 /// This is invoked when we see 'struct foo' or 'struct {'. In the 15638 /// former case, Name will be non-null. In the later case, Name will be null. 15639 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 15640 /// reference/declaration/definition of a tag. 15641 /// 15642 /// \param IsTypeSpecifier \c true if this is a type-specifier (or 15643 /// trailing-type-specifier) other than one in an alias-declaration. 15644 /// 15645 /// \param SkipBody If non-null, will be set to indicate if the caller should 15646 /// skip the definition of this tag and treat it as if it were a declaration. 15647 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 15648 SourceLocation KWLoc, CXXScopeSpec &SS, 15649 IdentifierInfo *Name, SourceLocation NameLoc, 15650 const ParsedAttributesView &Attrs, AccessSpecifier AS, 15651 SourceLocation ModulePrivateLoc, 15652 MultiTemplateParamsArg TemplateParameterLists, 15653 bool &OwnedDecl, bool &IsDependent, 15654 SourceLocation ScopedEnumKWLoc, 15655 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, 15656 bool IsTypeSpecifier, bool IsTemplateParamOrArg, 15657 SkipBodyInfo *SkipBody) { 15658 // If this is not a definition, it must have a name. 15659 IdentifierInfo *OrigName = Name; 15660 assert((Name != nullptr || TUK == TUK_Definition) && 15661 "Nameless record must be a definition!"); 15662 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 15663 15664 OwnedDecl = false; 15665 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 15666 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 15667 15668 // FIXME: Check member specializations more carefully. 15669 bool isMemberSpecialization = false; 15670 bool Invalid = false; 15671 15672 // We only need to do this matching if we have template parameters 15673 // or a scope specifier, which also conveniently avoids this work 15674 // for non-C++ cases. 15675 if (TemplateParameterLists.size() > 0 || 15676 (SS.isNotEmpty() && TUK != TUK_Reference)) { 15677 if (TemplateParameterList *TemplateParams = 15678 MatchTemplateParametersToScopeSpecifier( 15679 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 15680 TUK == TUK_Friend, isMemberSpecialization, Invalid)) { 15681 if (Kind == TTK_Enum) { 15682 Diag(KWLoc, diag::err_enum_template); 15683 return nullptr; 15684 } 15685 15686 if (TemplateParams->size() > 0) { 15687 // This is a declaration or definition of a class template (which may 15688 // be a member of another template). 15689 15690 if (Invalid) 15691 return nullptr; 15692 15693 OwnedDecl = false; 15694 DeclResult Result = CheckClassTemplate( 15695 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, 15696 AS, ModulePrivateLoc, 15697 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 15698 TemplateParameterLists.data(), SkipBody); 15699 return Result.get(); 15700 } else { 15701 // The "template<>" header is extraneous. 15702 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 15703 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 15704 isMemberSpecialization = true; 15705 } 15706 } 15707 15708 if (!TemplateParameterLists.empty() && isMemberSpecialization && 15709 CheckTemplateDeclScope(S, TemplateParameterLists.back())) 15710 return nullptr; 15711 } 15712 15713 // Figure out the underlying type if this a enum declaration. We need to do 15714 // this early, because it's needed to detect if this is an incompatible 15715 // redeclaration. 15716 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 15717 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; 15718 15719 if (Kind == TTK_Enum) { 15720 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { 15721 // No underlying type explicitly specified, or we failed to parse the 15722 // type, default to int. 15723 EnumUnderlying = Context.IntTy.getTypePtr(); 15724 } else if (UnderlyingType.get()) { 15725 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 15726 // integral type; any cv-qualification is ignored. 15727 TypeSourceInfo *TI = nullptr; 15728 GetTypeFromParser(UnderlyingType.get(), &TI); 15729 EnumUnderlying = TI; 15730 15731 if (CheckEnumUnderlyingType(TI)) 15732 // Recover by falling back to int. 15733 EnumUnderlying = Context.IntTy.getTypePtr(); 15734 15735 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 15736 UPPC_FixedUnderlyingType)) 15737 EnumUnderlying = Context.IntTy.getTypePtr(); 15738 15739 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { 15740 // For MSVC ABI compatibility, unfixed enums must use an underlying type 15741 // of 'int'. However, if this is an unfixed forward declaration, don't set 15742 // the underlying type unless the user enables -fms-compatibility. This 15743 // makes unfixed forward declared enums incomplete and is more conforming. 15744 if (TUK == TUK_Definition || getLangOpts().MSVCCompat) 15745 EnumUnderlying = Context.IntTy.getTypePtr(); 15746 } 15747 } 15748 15749 DeclContext *SearchDC = CurContext; 15750 DeclContext *DC = CurContext; 15751 bool isStdBadAlloc = false; 15752 bool isStdAlignValT = false; 15753 15754 RedeclarationKind Redecl = forRedeclarationInCurContext(); 15755 if (TUK == TUK_Friend || TUK == TUK_Reference) 15756 Redecl = NotForRedeclaration; 15757 15758 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C 15759 /// implemented asks for structural equivalence checking, the returned decl 15760 /// here is passed back to the parser, allowing the tag body to be parsed. 15761 auto createTagFromNewDecl = [&]() -> TagDecl * { 15762 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); 15763 // If there is an identifier, use the location of the identifier as the 15764 // location of the decl, otherwise use the location of the struct/union 15765 // keyword. 15766 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15767 TagDecl *New = nullptr; 15768 15769 if (Kind == TTK_Enum) { 15770 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, 15771 ScopedEnum, ScopedEnumUsesClassTag, IsFixed); 15772 // If this is an undefined enum, bail. 15773 if (TUK != TUK_Definition && !Invalid) 15774 return nullptr; 15775 if (EnumUnderlying) { 15776 EnumDecl *ED = cast<EnumDecl>(New); 15777 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) 15778 ED->setIntegerTypeSourceInfo(TI); 15779 else 15780 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); 15781 ED->setPromotionType(ED->getIntegerType()); 15782 } 15783 } else { // struct/union 15784 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15785 nullptr); 15786 } 15787 15788 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15789 // Add alignment attributes if necessary; these attributes are checked 15790 // when the ASTContext lays out the structure. 15791 // 15792 // It is important for implementing the correct semantics that this 15793 // happen here (in ActOnTag). The #pragma pack stack is 15794 // maintained as a result of parser callbacks which can occur at 15795 // many points during the parsing of a struct declaration (because 15796 // the #pragma tokens are effectively skipped over during the 15797 // parsing of the struct). 15798 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15799 AddAlignmentAttributesForRecord(RD); 15800 AddMsStructLayoutForRecord(RD); 15801 } 15802 } 15803 New->setLexicalDeclContext(CurContext); 15804 return New; 15805 }; 15806 15807 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 15808 if (Name && SS.isNotEmpty()) { 15809 // We have a nested-name tag ('struct foo::bar'). 15810 15811 // Check for invalid 'foo::'. 15812 if (SS.isInvalid()) { 15813 Name = nullptr; 15814 goto CreateNewDecl; 15815 } 15816 15817 // If this is a friend or a reference to a class in a dependent 15818 // context, don't try to make a decl for it. 15819 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15820 DC = computeDeclContext(SS, false); 15821 if (!DC) { 15822 IsDependent = true; 15823 return nullptr; 15824 } 15825 } else { 15826 DC = computeDeclContext(SS, true); 15827 if (!DC) { 15828 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 15829 << SS.getRange(); 15830 return nullptr; 15831 } 15832 } 15833 15834 if (RequireCompleteDeclContext(SS, DC)) 15835 return nullptr; 15836 15837 SearchDC = DC; 15838 // Look-up name inside 'foo::'. 15839 LookupQualifiedName(Previous, DC); 15840 15841 if (Previous.isAmbiguous()) 15842 return nullptr; 15843 15844 if (Previous.empty()) { 15845 // Name lookup did not find anything. However, if the 15846 // nested-name-specifier refers to the current instantiation, 15847 // and that current instantiation has any dependent base 15848 // classes, we might find something at instantiation time: treat 15849 // this as a dependent elaborated-type-specifier. 15850 // But this only makes any sense for reference-like lookups. 15851 if (Previous.wasNotFoundInCurrentInstantiation() && 15852 (TUK == TUK_Reference || TUK == TUK_Friend)) { 15853 IsDependent = true; 15854 return nullptr; 15855 } 15856 15857 // A tag 'foo::bar' must already exist. 15858 Diag(NameLoc, diag::err_not_tag_in_scope) 15859 << Kind << Name << DC << SS.getRange(); 15860 Name = nullptr; 15861 Invalid = true; 15862 goto CreateNewDecl; 15863 } 15864 } else if (Name) { 15865 // C++14 [class.mem]p14: 15866 // If T is the name of a class, then each of the following shall have a 15867 // name different from T: 15868 // -- every member of class T that is itself a type 15869 if (TUK != TUK_Reference && TUK != TUK_Friend && 15870 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) 15871 return nullptr; 15872 15873 // If this is a named struct, check to see if there was a previous forward 15874 // declaration or definition. 15875 // FIXME: We're looking into outer scopes here, even when we 15876 // shouldn't be. Doing so can result in ambiguities that we 15877 // shouldn't be diagnosing. 15878 LookupName(Previous, S); 15879 15880 // When declaring or defining a tag, ignore ambiguities introduced 15881 // by types using'ed into this scope. 15882 if (Previous.isAmbiguous() && 15883 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 15884 LookupResult::Filter F = Previous.makeFilter(); 15885 while (F.hasNext()) { 15886 NamedDecl *ND = F.next(); 15887 if (!ND->getDeclContext()->getRedeclContext()->Equals( 15888 SearchDC->getRedeclContext())) 15889 F.erase(); 15890 } 15891 F.done(); 15892 } 15893 15894 // C++11 [namespace.memdef]p3: 15895 // If the name in a friend declaration is neither qualified nor 15896 // a template-id and the declaration is a function or an 15897 // elaborated-type-specifier, the lookup to determine whether 15898 // the entity has been previously declared shall not consider 15899 // any scopes outside the innermost enclosing namespace. 15900 // 15901 // MSVC doesn't implement the above rule for types, so a friend tag 15902 // declaration may be a redeclaration of a type declared in an enclosing 15903 // scope. They do implement this rule for friend functions. 15904 // 15905 // Does it matter that this should be by scope instead of by 15906 // semantic context? 15907 if (!Previous.empty() && TUK == TUK_Friend) { 15908 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 15909 LookupResult::Filter F = Previous.makeFilter(); 15910 bool FriendSawTagOutsideEnclosingNamespace = false; 15911 while (F.hasNext()) { 15912 NamedDecl *ND = F.next(); 15913 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15914 if (DC->isFileContext() && 15915 !EnclosingNS->Encloses(ND->getDeclContext())) { 15916 if (getLangOpts().MSVCCompat) 15917 FriendSawTagOutsideEnclosingNamespace = true; 15918 else 15919 F.erase(); 15920 } 15921 } 15922 F.done(); 15923 15924 // Diagnose this MSVC extension in the easy case where lookup would have 15925 // unambiguously found something outside the enclosing namespace. 15926 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 15927 NamedDecl *ND = Previous.getFoundDecl(); 15928 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 15929 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 15930 } 15931 } 15932 15933 // Note: there used to be some attempt at recovery here. 15934 if (Previous.isAmbiguous()) 15935 return nullptr; 15936 15937 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 15938 // FIXME: This makes sure that we ignore the contexts associated 15939 // with C structs, unions, and enums when looking for a matching 15940 // tag declaration or definition. See the similar lookup tweak 15941 // in Sema::LookupName; is there a better way to deal with this? 15942 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 15943 SearchDC = SearchDC->getParent(); 15944 } 15945 } 15946 15947 if (Previous.isSingleResult() && 15948 Previous.getFoundDecl()->isTemplateParameter()) { 15949 // Maybe we will complain about the shadowed template parameter. 15950 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 15951 // Just pretend that we didn't see the previous declaration. 15952 Previous.clear(); 15953 } 15954 15955 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 15956 DC->Equals(getStdNamespace())) { 15957 if (Name->isStr("bad_alloc")) { 15958 // This is a declaration of or a reference to "std::bad_alloc". 15959 isStdBadAlloc = true; 15960 15961 // If std::bad_alloc has been implicitly declared (but made invisible to 15962 // name lookup), fill in this implicit declaration as the previous 15963 // declaration, so that the declarations get chained appropriately. 15964 if (Previous.empty() && StdBadAlloc) 15965 Previous.addDecl(getStdBadAlloc()); 15966 } else if (Name->isStr("align_val_t")) { 15967 isStdAlignValT = true; 15968 if (Previous.empty() && StdAlignValT) 15969 Previous.addDecl(getStdAlignValT()); 15970 } 15971 } 15972 15973 // If we didn't find a previous declaration, and this is a reference 15974 // (or friend reference), move to the correct scope. In C++, we 15975 // also need to do a redeclaration lookup there, just in case 15976 // there's a shadow friend decl. 15977 if (Name && Previous.empty() && 15978 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { 15979 if (Invalid) goto CreateNewDecl; 15980 assert(SS.isEmpty()); 15981 15982 if (TUK == TUK_Reference || IsTemplateParamOrArg) { 15983 // C++ [basic.scope.pdecl]p5: 15984 // -- for an elaborated-type-specifier of the form 15985 // 15986 // class-key identifier 15987 // 15988 // if the elaborated-type-specifier is used in the 15989 // decl-specifier-seq or parameter-declaration-clause of a 15990 // function defined in namespace scope, the identifier is 15991 // declared as a class-name in the namespace that contains 15992 // the declaration; otherwise, except as a friend 15993 // declaration, the identifier is declared in the smallest 15994 // non-class, non-function-prototype scope that contains the 15995 // declaration. 15996 // 15997 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 15998 // C structs and unions. 15999 // 16000 // It is an error in C++ to declare (rather than define) an enum 16001 // type, including via an elaborated type specifier. We'll 16002 // diagnose that later; for now, declare the enum in the same 16003 // scope as we would have picked for any other tag type. 16004 // 16005 // GNU C also supports this behavior as part of its incomplete 16006 // enum types extension, while GNU C++ does not. 16007 // 16008 // Find the context where we'll be declaring the tag. 16009 // FIXME: We would like to maintain the current DeclContext as the 16010 // lexical context, 16011 SearchDC = getTagInjectionContext(SearchDC); 16012 16013 // Find the scope where we'll be declaring the tag. 16014 S = getTagInjectionScope(S, getLangOpts()); 16015 } else { 16016 assert(TUK == TUK_Friend); 16017 // C++ [namespace.memdef]p3: 16018 // If a friend declaration in a non-local class first declares a 16019 // class or function, the friend class or function is a member of 16020 // the innermost enclosing namespace. 16021 SearchDC = SearchDC->getEnclosingNamespaceContext(); 16022 } 16023 16024 // In C++, we need to do a redeclaration lookup to properly 16025 // diagnose some problems. 16026 // FIXME: redeclaration lookup is also used (with and without C++) to find a 16027 // hidden declaration so that we don't get ambiguity errors when using a 16028 // type declared by an elaborated-type-specifier. In C that is not correct 16029 // and we should instead merge compatible types found by lookup. 16030 if (getLangOpts().CPlusPlus) { 16031 // FIXME: This can perform qualified lookups into function contexts, 16032 // which are meaningless. 16033 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 16034 LookupQualifiedName(Previous, SearchDC); 16035 } else { 16036 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 16037 LookupName(Previous, S); 16038 } 16039 } 16040 16041 // If we have a known previous declaration to use, then use it. 16042 if (Previous.empty() && SkipBody && SkipBody->Previous) 16043 Previous.addDecl(SkipBody->Previous); 16044 16045 if (!Previous.empty()) { 16046 NamedDecl *PrevDecl = Previous.getFoundDecl(); 16047 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); 16048 16049 // It's okay to have a tag decl in the same scope as a typedef 16050 // which hides a tag decl in the same scope. Finding this 16051 // with a redeclaration lookup can only actually happen in C++. 16052 // 16053 // This is also okay for elaborated-type-specifiers, which is 16054 // technically forbidden by the current standard but which is 16055 // okay according to the likely resolution of an open issue; 16056 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 16057 if (getLangOpts().CPlusPlus) { 16058 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 16059 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 16060 TagDecl *Tag = TT->getDecl(); 16061 if (Tag->getDeclName() == Name && 16062 Tag->getDeclContext()->getRedeclContext() 16063 ->Equals(TD->getDeclContext()->getRedeclContext())) { 16064 PrevDecl = Tag; 16065 Previous.clear(); 16066 Previous.addDecl(Tag); 16067 Previous.resolveKind(); 16068 } 16069 } 16070 } 16071 } 16072 16073 // If this is a redeclaration of a using shadow declaration, it must 16074 // declare a tag in the same context. In MSVC mode, we allow a 16075 // redefinition if either context is within the other. 16076 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { 16077 auto *OldTag = dyn_cast<TagDecl>(PrevDecl); 16078 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && 16079 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && 16080 !(OldTag && isAcceptableTagRedeclContext( 16081 *this, OldTag->getDeclContext(), SearchDC))) { 16082 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 16083 Diag(Shadow->getTargetDecl()->getLocation(), 16084 diag::note_using_decl_target); 16085 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) 16086 << 0; 16087 // Recover by ignoring the old declaration. 16088 Previous.clear(); 16089 goto CreateNewDecl; 16090 } 16091 } 16092 16093 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 16094 // If this is a use of a previous tag, or if the tag is already declared 16095 // in the same scope (so that the definition/declaration completes or 16096 // rementions the tag), reuse the decl. 16097 if (TUK == TUK_Reference || TUK == TUK_Friend || 16098 isDeclInScope(DirectPrevDecl, SearchDC, S, 16099 SS.isNotEmpty() || isMemberSpecialization)) { 16100 // Make sure that this wasn't declared as an enum and now used as a 16101 // struct or something similar. 16102 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 16103 TUK == TUK_Definition, KWLoc, 16104 Name)) { 16105 bool SafeToContinue 16106 = (PrevTagDecl->getTagKind() != TTK_Enum && 16107 Kind != TTK_Enum); 16108 if (SafeToContinue) 16109 Diag(KWLoc, diag::err_use_with_wrong_tag) 16110 << Name 16111 << FixItHint::CreateReplacement(SourceRange(KWLoc), 16112 PrevTagDecl->getKindName()); 16113 else 16114 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 16115 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 16116 16117 if (SafeToContinue) 16118 Kind = PrevTagDecl->getTagKind(); 16119 else { 16120 // Recover by making this an anonymous redefinition. 16121 Name = nullptr; 16122 Previous.clear(); 16123 Invalid = true; 16124 } 16125 } 16126 16127 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 16128 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 16129 if (TUK == TUK_Reference || TUK == TUK_Friend) 16130 return PrevTagDecl; 16131 16132 QualType EnumUnderlyingTy; 16133 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 16134 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 16135 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 16136 EnumUnderlyingTy = QualType(T, 0); 16137 16138 // All conflicts with previous declarations are recovered by 16139 // returning the previous declaration, unless this is a definition, 16140 // in which case we want the caller to bail out. 16141 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 16142 ScopedEnum, EnumUnderlyingTy, 16143 IsFixed, PrevEnum)) 16144 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 16145 } 16146 16147 // C++11 [class.mem]p1: 16148 // A member shall not be declared twice in the member-specification, 16149 // except that a nested class or member class template can be declared 16150 // and then later defined. 16151 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 16152 S->isDeclScope(PrevDecl)) { 16153 Diag(NameLoc, diag::ext_member_redeclared); 16154 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 16155 } 16156 16157 if (!Invalid) { 16158 // If this is a use, just return the declaration we found, unless 16159 // we have attributes. 16160 if (TUK == TUK_Reference || TUK == TUK_Friend) { 16161 if (!Attrs.empty()) { 16162 // FIXME: Diagnose these attributes. For now, we create a new 16163 // declaration to hold them. 16164 } else if (TUK == TUK_Reference && 16165 (PrevTagDecl->getFriendObjectKind() == 16166 Decl::FOK_Undeclared || 16167 PrevDecl->getOwningModule() != getCurrentModule()) && 16168 SS.isEmpty()) { 16169 // This declaration is a reference to an existing entity, but 16170 // has different visibility from that entity: it either makes 16171 // a friend visible or it makes a type visible in a new module. 16172 // In either case, create a new declaration. We only do this if 16173 // the declaration would have meant the same thing if no prior 16174 // declaration were found, that is, if it was found in the same 16175 // scope where we would have injected a declaration. 16176 if (!getTagInjectionContext(CurContext)->getRedeclContext() 16177 ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) 16178 return PrevTagDecl; 16179 // This is in the injected scope, create a new declaration in 16180 // that scope. 16181 S = getTagInjectionScope(S, getLangOpts()); 16182 } else { 16183 return PrevTagDecl; 16184 } 16185 } 16186 16187 // Diagnose attempts to redefine a tag. 16188 if (TUK == TUK_Definition) { 16189 if (NamedDecl *Def = PrevTagDecl->getDefinition()) { 16190 // If we're defining a specialization and the previous definition 16191 // is from an implicit instantiation, don't emit an error 16192 // here; we'll catch this in the general case below. 16193 bool IsExplicitSpecializationAfterInstantiation = false; 16194 if (isMemberSpecialization) { 16195 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 16196 IsExplicitSpecializationAfterInstantiation = 16197 RD->getTemplateSpecializationKind() != 16198 TSK_ExplicitSpecialization; 16199 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 16200 IsExplicitSpecializationAfterInstantiation = 16201 ED->getTemplateSpecializationKind() != 16202 TSK_ExplicitSpecialization; 16203 } 16204 16205 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do 16206 // not keep more that one definition around (merge them). However, 16207 // ensure the decl passes the structural compatibility check in 16208 // C11 6.2.7/1 (or 6.1.2.6/1 in C89). 16209 NamedDecl *Hidden = nullptr; 16210 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 16211 // There is a definition of this tag, but it is not visible. We 16212 // explicitly make use of C++'s one definition rule here, and 16213 // assume that this definition is identical to the hidden one 16214 // we already have. Make the existing definition visible and 16215 // use it in place of this one. 16216 if (!getLangOpts().CPlusPlus) { 16217 // Postpone making the old definition visible until after we 16218 // complete parsing the new one and do the structural 16219 // comparison. 16220 SkipBody->CheckSameAsPrevious = true; 16221 SkipBody->New = createTagFromNewDecl(); 16222 SkipBody->Previous = Def; 16223 return Def; 16224 } else { 16225 SkipBody->ShouldSkip = true; 16226 SkipBody->Previous = Def; 16227 makeMergedDefinitionVisible(Hidden); 16228 // Carry on and handle it like a normal definition. We'll 16229 // skip starting the definitiion later. 16230 } 16231 } else if (!IsExplicitSpecializationAfterInstantiation) { 16232 // A redeclaration in function prototype scope in C isn't 16233 // visible elsewhere, so merely issue a warning. 16234 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 16235 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 16236 else 16237 Diag(NameLoc, diag::err_redefinition) << Name; 16238 notePreviousDefinition(Def, 16239 NameLoc.isValid() ? NameLoc : KWLoc); 16240 // If this is a redefinition, recover by making this 16241 // struct be anonymous, which will make any later 16242 // references get the previous definition. 16243 Name = nullptr; 16244 Previous.clear(); 16245 Invalid = true; 16246 } 16247 } else { 16248 // If the type is currently being defined, complain 16249 // about a nested redefinition. 16250 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 16251 if (TD->isBeingDefined()) { 16252 Diag(NameLoc, diag::err_nested_redefinition) << Name; 16253 Diag(PrevTagDecl->getLocation(), 16254 diag::note_previous_definition); 16255 Name = nullptr; 16256 Previous.clear(); 16257 Invalid = true; 16258 } 16259 } 16260 16261 // Okay, this is definition of a previously declared or referenced 16262 // tag. We're going to create a new Decl for it. 16263 } 16264 16265 // Okay, we're going to make a redeclaration. If this is some kind 16266 // of reference, make sure we build the redeclaration in the same DC 16267 // as the original, and ignore the current access specifier. 16268 if (TUK == TUK_Friend || TUK == TUK_Reference) { 16269 SearchDC = PrevTagDecl->getDeclContext(); 16270 AS = AS_none; 16271 } 16272 } 16273 // If we get here we have (another) forward declaration or we 16274 // have a definition. Just create a new decl. 16275 16276 } else { 16277 // If we get here, this is a definition of a new tag type in a nested 16278 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 16279 // new decl/type. We set PrevDecl to NULL so that the entities 16280 // have distinct types. 16281 Previous.clear(); 16282 } 16283 // If we get here, we're going to create a new Decl. If PrevDecl 16284 // is non-NULL, it's a definition of the tag declared by 16285 // PrevDecl. If it's NULL, we have a new definition. 16286 16287 // Otherwise, PrevDecl is not a tag, but was found with tag 16288 // lookup. This is only actually possible in C++, where a few 16289 // things like templates still live in the tag namespace. 16290 } else { 16291 // Use a better diagnostic if an elaborated-type-specifier 16292 // found the wrong kind of type on the first 16293 // (non-redeclaration) lookup. 16294 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 16295 !Previous.isForRedeclaration()) { 16296 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 16297 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK 16298 << Kind; 16299 Diag(PrevDecl->getLocation(), diag::note_declared_at); 16300 Invalid = true; 16301 16302 // Otherwise, only diagnose if the declaration is in scope. 16303 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, 16304 SS.isNotEmpty() || isMemberSpecialization)) { 16305 // do nothing 16306 16307 // Diagnose implicit declarations introduced by elaborated types. 16308 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 16309 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 16310 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; 16311 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 16312 Invalid = true; 16313 16314 // Otherwise it's a declaration. Call out a particularly common 16315 // case here. 16316 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 16317 unsigned Kind = 0; 16318 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 16319 Diag(NameLoc, diag::err_tag_definition_of_typedef) 16320 << Name << Kind << TND->getUnderlyingType(); 16321 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 16322 Invalid = true; 16323 16324 // Otherwise, diagnose. 16325 } else { 16326 // The tag name clashes with something else in the target scope, 16327 // issue an error and recover by making this tag be anonymous. 16328 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 16329 notePreviousDefinition(PrevDecl, NameLoc); 16330 Name = nullptr; 16331 Invalid = true; 16332 } 16333 16334 // The existing declaration isn't relevant to us; we're in a 16335 // new scope, so clear out the previous declaration. 16336 Previous.clear(); 16337 } 16338 } 16339 16340 CreateNewDecl: 16341 16342 TagDecl *PrevDecl = nullptr; 16343 if (Previous.isSingleResult()) 16344 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 16345 16346 // If there is an identifier, use the location of the identifier as the 16347 // location of the decl, otherwise use the location of the struct/union 16348 // keyword. 16349 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 16350 16351 // Otherwise, create a new declaration. If there is a previous 16352 // declaration of the same entity, the two will be linked via 16353 // PrevDecl. 16354 TagDecl *New; 16355 16356 if (Kind == TTK_Enum) { 16357 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 16358 // enum X { A, B, C } D; D should chain to X. 16359 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 16360 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 16361 ScopedEnumUsesClassTag, IsFixed); 16362 16363 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) 16364 StdAlignValT = cast<EnumDecl>(New); 16365 16366 // If this is an undefined enum, warn. 16367 if (TUK != TUK_Definition && !Invalid) { 16368 TagDecl *Def; 16369 if (IsFixed && cast<EnumDecl>(New)->isFixed()) { 16370 // C++0x: 7.2p2: opaque-enum-declaration. 16371 // Conflicts are diagnosed above. Do nothing. 16372 } 16373 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 16374 Diag(Loc, diag::ext_forward_ref_enum_def) 16375 << New; 16376 Diag(Def->getLocation(), diag::note_previous_definition); 16377 } else { 16378 unsigned DiagID = diag::ext_forward_ref_enum; 16379 if (getLangOpts().MSVCCompat) 16380 DiagID = diag::ext_ms_forward_ref_enum; 16381 else if (getLangOpts().CPlusPlus) 16382 DiagID = diag::err_forward_ref_enum; 16383 Diag(Loc, DiagID); 16384 } 16385 } 16386 16387 if (EnumUnderlying) { 16388 EnumDecl *ED = cast<EnumDecl>(New); 16389 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 16390 ED->setIntegerTypeSourceInfo(TI); 16391 else 16392 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 16393 ED->setPromotionType(ED->getIntegerType()); 16394 assert(ED->isComplete() && "enum with type should be complete"); 16395 } 16396 } else { 16397 // struct/union/class 16398 16399 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 16400 // struct X { int A; } D; D should chain to X. 16401 if (getLangOpts().CPlusPlus) { 16402 // FIXME: Look for a way to use RecordDecl for simple structs. 16403 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 16404 cast_or_null<CXXRecordDecl>(PrevDecl)); 16405 16406 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 16407 StdBadAlloc = cast<CXXRecordDecl>(New); 16408 } else 16409 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 16410 cast_or_null<RecordDecl>(PrevDecl)); 16411 } 16412 16413 // C++11 [dcl.type]p3: 16414 // A type-specifier-seq shall not define a class or enumeration [...]. 16415 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && 16416 TUK == TUK_Definition) { 16417 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 16418 << Context.getTagDeclType(New); 16419 Invalid = true; 16420 } 16421 16422 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && 16423 DC->getDeclKind() == Decl::Enum) { 16424 Diag(New->getLocation(), diag::err_type_defined_in_enum) 16425 << Context.getTagDeclType(New); 16426 Invalid = true; 16427 } 16428 16429 // Maybe add qualifier info. 16430 if (SS.isNotEmpty()) { 16431 if (SS.isSet()) { 16432 // If this is either a declaration or a definition, check the 16433 // nested-name-specifier against the current context. 16434 if ((TUK == TUK_Definition || TUK == TUK_Declaration) && 16435 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, 16436 isMemberSpecialization)) 16437 Invalid = true; 16438 16439 New->setQualifierInfo(SS.getWithLocInContext(Context)); 16440 if (TemplateParameterLists.size() > 0) { 16441 New->setTemplateParameterListsInfo(Context, TemplateParameterLists); 16442 } 16443 } 16444 else 16445 Invalid = true; 16446 } 16447 16448 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 16449 // Add alignment attributes if necessary; these attributes are checked when 16450 // the ASTContext lays out the structure. 16451 // 16452 // It is important for implementing the correct semantics that this 16453 // happen here (in ActOnTag). The #pragma pack stack is 16454 // maintained as a result of parser callbacks which can occur at 16455 // many points during the parsing of a struct declaration (because 16456 // the #pragma tokens are effectively skipped over during the 16457 // parsing of the struct). 16458 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 16459 AddAlignmentAttributesForRecord(RD); 16460 AddMsStructLayoutForRecord(RD); 16461 } 16462 } 16463 16464 if (ModulePrivateLoc.isValid()) { 16465 if (isMemberSpecialization) 16466 Diag(New->getLocation(), diag::err_module_private_specialization) 16467 << 2 16468 << FixItHint::CreateRemoval(ModulePrivateLoc); 16469 // __module_private__ does not apply to local classes. However, we only 16470 // diagnose this as an error when the declaration specifiers are 16471 // freestanding. Here, we just ignore the __module_private__. 16472 else if (!SearchDC->isFunctionOrMethod()) 16473 New->setModulePrivate(); 16474 } 16475 16476 // If this is a specialization of a member class (of a class template), 16477 // check the specialization. 16478 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) 16479 Invalid = true; 16480 16481 // If we're declaring or defining a tag in function prototype scope in C, 16482 // note that this type can only be used within the function and add it to 16483 // the list of decls to inject into the function definition scope. 16484 if ((Name || Kind == TTK_Enum) && 16485 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 16486 if (getLangOpts().CPlusPlus) { 16487 // C++ [dcl.fct]p6: 16488 // Types shall not be defined in return or parameter types. 16489 if (TUK == TUK_Definition && !IsTypeSpecifier) { 16490 Diag(Loc, diag::err_type_defined_in_param_type) 16491 << Name; 16492 Invalid = true; 16493 } 16494 } else if (!PrevDecl) { 16495 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 16496 } 16497 } 16498 16499 if (Invalid) 16500 New->setInvalidDecl(); 16501 16502 // Set the lexical context. If the tag has a C++ scope specifier, the 16503 // lexical context will be different from the semantic context. 16504 New->setLexicalDeclContext(CurContext); 16505 16506 // Mark this as a friend decl if applicable. 16507 // In Microsoft mode, a friend declaration also acts as a forward 16508 // declaration so we always pass true to setObjectOfFriendDecl to make 16509 // the tag name visible. 16510 if (TUK == TUK_Friend) 16511 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 16512 16513 // Set the access specifier. 16514 if (!Invalid && SearchDC->isRecord()) 16515 SetMemberAccessSpecifier(New, PrevDecl, AS); 16516 16517 if (PrevDecl) 16518 CheckRedeclarationModuleOwnership(New, PrevDecl); 16519 16520 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 16521 New->startDefinition(); 16522 16523 ProcessDeclAttributeList(S, New, Attrs); 16524 AddPragmaAttributes(S, New); 16525 16526 // If this has an identifier, add it to the scope stack. 16527 if (TUK == TUK_Friend) { 16528 // We might be replacing an existing declaration in the lookup tables; 16529 // if so, borrow its access specifier. 16530 if (PrevDecl) 16531 New->setAccess(PrevDecl->getAccess()); 16532 16533 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 16534 DC->makeDeclVisibleInContext(New); 16535 if (Name) // can be null along some error paths 16536 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16537 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 16538 } else if (Name) { 16539 S = getNonFieldDeclScope(S); 16540 PushOnScopeChains(New, S, true); 16541 } else { 16542 CurContext->addDecl(New); 16543 } 16544 16545 // If this is the C FILE type, notify the AST context. 16546 if (IdentifierInfo *II = New->getIdentifier()) 16547 if (!New->isInvalidDecl() && 16548 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 16549 II->isStr("FILE")) 16550 Context.setFILEDecl(New); 16551 16552 if (PrevDecl) 16553 mergeDeclAttributes(New, PrevDecl); 16554 16555 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) 16556 inferGslOwnerPointerAttribute(CXXRD); 16557 16558 // If there's a #pragma GCC visibility in scope, set the visibility of this 16559 // record. 16560 AddPushedVisibilityAttribute(New); 16561 16562 if (isMemberSpecialization && !New->isInvalidDecl()) 16563 CompleteMemberSpecialization(New, Previous); 16564 16565 OwnedDecl = true; 16566 // In C++, don't return an invalid declaration. We can't recover well from 16567 // the cases where we make the type anonymous. 16568 if (Invalid && getLangOpts().CPlusPlus) { 16569 if (New->isBeingDefined()) 16570 if (auto RD = dyn_cast<RecordDecl>(New)) 16571 RD->completeDefinition(); 16572 return nullptr; 16573 } else if (SkipBody && SkipBody->ShouldSkip) { 16574 return SkipBody->Previous; 16575 } else { 16576 return New; 16577 } 16578 } 16579 16580 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 16581 AdjustDeclIfTemplate(TagD); 16582 TagDecl *Tag = cast<TagDecl>(TagD); 16583 16584 // Enter the tag context. 16585 PushDeclContext(S, Tag); 16586 16587 ActOnDocumentableDecl(TagD); 16588 16589 // If there's a #pragma GCC visibility in scope, set the visibility of this 16590 // record. 16591 AddPushedVisibilityAttribute(Tag); 16592 } 16593 16594 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, 16595 SkipBodyInfo &SkipBody) { 16596 if (!hasStructuralCompatLayout(Prev, SkipBody.New)) 16597 return false; 16598 16599 // Make the previous decl visible. 16600 makeMergedDefinitionVisible(SkipBody.Previous); 16601 return true; 16602 } 16603 16604 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 16605 assert(isa<ObjCContainerDecl>(IDecl) && 16606 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 16607 DeclContext *OCD = cast<DeclContext>(IDecl); 16608 assert(OCD->getLexicalParent() == CurContext && 16609 "The next DeclContext should be lexically contained in the current one."); 16610 CurContext = OCD; 16611 return IDecl; 16612 } 16613 16614 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 16615 SourceLocation FinalLoc, 16616 bool IsFinalSpelledSealed, 16617 bool IsAbstract, 16618 SourceLocation LBraceLoc) { 16619 AdjustDeclIfTemplate(TagD); 16620 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 16621 16622 FieldCollector->StartClass(); 16623 16624 if (!Record->getIdentifier()) 16625 return; 16626 16627 if (IsAbstract) 16628 Record->markAbstract(); 16629 16630 if (FinalLoc.isValid()) { 16631 Record->addAttr(FinalAttr::Create( 16632 Context, FinalLoc, AttributeCommonInfo::AS_Keyword, 16633 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed))); 16634 } 16635 // C++ [class]p2: 16636 // [...] The class-name is also inserted into the scope of the 16637 // class itself; this is known as the injected-class-name. For 16638 // purposes of access checking, the injected-class-name is treated 16639 // as if it were a public member name. 16640 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( 16641 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), 16642 Record->getLocation(), Record->getIdentifier(), 16643 /*PrevDecl=*/nullptr, 16644 /*DelayTypeCreation=*/true); 16645 Context.getTypeDeclType(InjectedClassName, Record); 16646 InjectedClassName->setImplicit(); 16647 InjectedClassName->setAccess(AS_public); 16648 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 16649 InjectedClassName->setDescribedClassTemplate(Template); 16650 PushOnScopeChains(InjectedClassName, S); 16651 assert(InjectedClassName->isInjectedClassName() && 16652 "Broken injected-class-name"); 16653 } 16654 16655 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 16656 SourceRange BraceRange) { 16657 AdjustDeclIfTemplate(TagD); 16658 TagDecl *Tag = cast<TagDecl>(TagD); 16659 Tag->setBraceRange(BraceRange); 16660 16661 // Make sure we "complete" the definition even it is invalid. 16662 if (Tag->isBeingDefined()) { 16663 assert(Tag->isInvalidDecl() && "We should already have completed it"); 16664 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16665 RD->completeDefinition(); 16666 } 16667 16668 if (isa<CXXRecordDecl>(Tag)) { 16669 FieldCollector->FinishClass(); 16670 } 16671 16672 // Exit this scope of this tag's definition. 16673 PopDeclContext(); 16674 16675 if (getCurLexicalContext()->isObjCContainer() && 16676 Tag->getDeclContext()->isFileContext()) 16677 Tag->setTopLevelDeclInObjCContainer(); 16678 16679 // Notify the consumer that we've defined a tag. 16680 if (!Tag->isInvalidDecl()) 16681 Consumer.HandleTagDeclDefinition(Tag); 16682 16683 // Clangs implementation of #pragma align(packed) differs in bitfield layout 16684 // from XLs and instead matches the XL #pragma pack(1) behavior. 16685 if (Context.getTargetInfo().getTriple().isOSAIX() && 16686 AlignPackStack.hasValue()) { 16687 AlignPackInfo APInfo = AlignPackStack.CurrentValue; 16688 // Only diagnose #pragma align(packed). 16689 if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed) 16690 return; 16691 const RecordDecl *RD = dyn_cast<RecordDecl>(Tag); 16692 if (!RD) 16693 return; 16694 // Only warn if there is at least 1 bitfield member. 16695 if (llvm::any_of(RD->fields(), 16696 [](const FieldDecl *FD) { return FD->isBitField(); })) 16697 Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible); 16698 } 16699 } 16700 16701 void Sema::ActOnObjCContainerFinishDefinition() { 16702 // Exit this scope of this interface definition. 16703 PopDeclContext(); 16704 } 16705 16706 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 16707 assert(DC == CurContext && "Mismatch of container contexts"); 16708 OriginalLexicalContext = DC; 16709 ActOnObjCContainerFinishDefinition(); 16710 } 16711 16712 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 16713 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 16714 OriginalLexicalContext = nullptr; 16715 } 16716 16717 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 16718 AdjustDeclIfTemplate(TagD); 16719 TagDecl *Tag = cast<TagDecl>(TagD); 16720 Tag->setInvalidDecl(); 16721 16722 // Make sure we "complete" the definition even it is invalid. 16723 if (Tag->isBeingDefined()) { 16724 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16725 RD->completeDefinition(); 16726 } 16727 16728 // We're undoing ActOnTagStartDefinition here, not 16729 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 16730 // the FieldCollector. 16731 16732 PopDeclContext(); 16733 } 16734 16735 // Note that FieldName may be null for anonymous bitfields. 16736 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 16737 IdentifierInfo *FieldName, 16738 QualType FieldTy, bool IsMsStruct, 16739 Expr *BitWidth, bool *ZeroWidth) { 16740 assert(BitWidth); 16741 if (BitWidth->containsErrors()) 16742 return ExprError(); 16743 16744 // Default to true; that shouldn't confuse checks for emptiness 16745 if (ZeroWidth) 16746 *ZeroWidth = true; 16747 16748 // C99 6.7.2.1p4 - verify the field type. 16749 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 16750 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 16751 // Handle incomplete and sizeless types with a specific error. 16752 if (RequireCompleteSizedType(FieldLoc, FieldTy, 16753 diag::err_field_incomplete_or_sizeless)) 16754 return ExprError(); 16755 if (FieldName) 16756 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 16757 << FieldName << FieldTy << BitWidth->getSourceRange(); 16758 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 16759 << FieldTy << BitWidth->getSourceRange(); 16760 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 16761 UPPC_BitFieldWidth)) 16762 return ExprError(); 16763 16764 // If the bit-width is type- or value-dependent, don't try to check 16765 // it now. 16766 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 16767 return BitWidth; 16768 16769 llvm::APSInt Value; 16770 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold); 16771 if (ICE.isInvalid()) 16772 return ICE; 16773 BitWidth = ICE.get(); 16774 16775 if (Value != 0 && ZeroWidth) 16776 *ZeroWidth = false; 16777 16778 // Zero-width bitfield is ok for anonymous field. 16779 if (Value == 0 && FieldName) 16780 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 16781 16782 if (Value.isSigned() && Value.isNegative()) { 16783 if (FieldName) 16784 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 16785 << FieldName << toString(Value, 10); 16786 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 16787 << toString(Value, 10); 16788 } 16789 16790 // The size of the bit-field must not exceed our maximum permitted object 16791 // size. 16792 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { 16793 return Diag(FieldLoc, diag::err_bitfield_too_wide) 16794 << !FieldName << FieldName << toString(Value, 10); 16795 } 16796 16797 if (!FieldTy->isDependentType()) { 16798 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); 16799 uint64_t TypeWidth = Context.getIntWidth(FieldTy); 16800 bool BitfieldIsOverwide = Value.ugt(TypeWidth); 16801 16802 // Over-wide bitfields are an error in C or when using the MSVC bitfield 16803 // ABI. 16804 bool CStdConstraintViolation = 16805 BitfieldIsOverwide && !getLangOpts().CPlusPlus; 16806 bool MSBitfieldViolation = 16807 Value.ugt(TypeStorageSize) && 16808 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); 16809 if (CStdConstraintViolation || MSBitfieldViolation) { 16810 unsigned DiagWidth = 16811 CStdConstraintViolation ? TypeWidth : TypeStorageSize; 16812 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) 16813 << (bool)FieldName << FieldName << toString(Value, 10) 16814 << !CStdConstraintViolation << DiagWidth; 16815 } 16816 16817 // Warn on types where the user might conceivably expect to get all 16818 // specified bits as value bits: that's all integral types other than 16819 // 'bool'. 16820 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { 16821 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) 16822 << FieldName << toString(Value, 10) 16823 << (unsigned)TypeWidth; 16824 } 16825 } 16826 16827 return BitWidth; 16828 } 16829 16830 /// ActOnField - Each field of a C struct/union is passed into this in order 16831 /// to create a FieldDecl object for it. 16832 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 16833 Declarator &D, Expr *BitfieldWidth) { 16834 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 16835 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 16836 /*InitStyle=*/ICIS_NoInit, AS_public); 16837 return Res; 16838 } 16839 16840 /// HandleField - Analyze a field of a C struct or a C++ data member. 16841 /// 16842 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 16843 SourceLocation DeclStart, 16844 Declarator &D, Expr *BitWidth, 16845 InClassInitStyle InitStyle, 16846 AccessSpecifier AS) { 16847 if (D.isDecompositionDeclarator()) { 16848 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 16849 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 16850 << Decomp.getSourceRange(); 16851 return nullptr; 16852 } 16853 16854 IdentifierInfo *II = D.getIdentifier(); 16855 SourceLocation Loc = DeclStart; 16856 if (II) Loc = D.getIdentifierLoc(); 16857 16858 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16859 QualType T = TInfo->getType(); 16860 if (getLangOpts().CPlusPlus) { 16861 CheckExtraCXXDefaultArguments(D); 16862 16863 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16864 UPPC_DataMemberType)) { 16865 D.setInvalidType(); 16866 T = Context.IntTy; 16867 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 16868 } 16869 } 16870 16871 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 16872 16873 if (D.getDeclSpec().isInlineSpecified()) 16874 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 16875 << getLangOpts().CPlusPlus17; 16876 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 16877 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 16878 diag::err_invalid_thread) 16879 << DeclSpec::getSpecifierName(TSCS); 16880 16881 // Check to see if this name was declared as a member previously 16882 NamedDecl *PrevDecl = nullptr; 16883 LookupResult Previous(*this, II, Loc, LookupMemberName, 16884 ForVisibleRedeclaration); 16885 LookupName(Previous, S); 16886 switch (Previous.getResultKind()) { 16887 case LookupResult::Found: 16888 case LookupResult::FoundUnresolvedValue: 16889 PrevDecl = Previous.getAsSingle<NamedDecl>(); 16890 break; 16891 16892 case LookupResult::FoundOverloaded: 16893 PrevDecl = Previous.getRepresentativeDecl(); 16894 break; 16895 16896 case LookupResult::NotFound: 16897 case LookupResult::NotFoundInCurrentInstantiation: 16898 case LookupResult::Ambiguous: 16899 break; 16900 } 16901 Previous.suppressDiagnostics(); 16902 16903 if (PrevDecl && PrevDecl->isTemplateParameter()) { 16904 // Maybe we will complain about the shadowed template parameter. 16905 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16906 // Just pretend that we didn't see the previous declaration. 16907 PrevDecl = nullptr; 16908 } 16909 16910 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 16911 PrevDecl = nullptr; 16912 16913 bool Mutable 16914 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 16915 SourceLocation TSSL = D.getBeginLoc(); 16916 FieldDecl *NewFD 16917 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 16918 TSSL, AS, PrevDecl, &D); 16919 16920 if (NewFD->isInvalidDecl()) 16921 Record->setInvalidDecl(); 16922 16923 if (D.getDeclSpec().isModulePrivateSpecified()) 16924 NewFD->setModulePrivate(); 16925 16926 if (NewFD->isInvalidDecl() && PrevDecl) { 16927 // Don't introduce NewFD into scope; there's already something 16928 // with the same name in the same scope. 16929 } else if (II) { 16930 PushOnScopeChains(NewFD, S); 16931 } else 16932 Record->addDecl(NewFD); 16933 16934 return NewFD; 16935 } 16936 16937 /// Build a new FieldDecl and check its well-formedness. 16938 /// 16939 /// This routine builds a new FieldDecl given the fields name, type, 16940 /// record, etc. \p PrevDecl should refer to any previous declaration 16941 /// with the same name and in the same scope as the field to be 16942 /// created. 16943 /// 16944 /// \returns a new FieldDecl. 16945 /// 16946 /// \todo The Declarator argument is a hack. It will be removed once 16947 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 16948 TypeSourceInfo *TInfo, 16949 RecordDecl *Record, SourceLocation Loc, 16950 bool Mutable, Expr *BitWidth, 16951 InClassInitStyle InitStyle, 16952 SourceLocation TSSL, 16953 AccessSpecifier AS, NamedDecl *PrevDecl, 16954 Declarator *D) { 16955 IdentifierInfo *II = Name.getAsIdentifierInfo(); 16956 bool InvalidDecl = false; 16957 if (D) InvalidDecl = D->isInvalidType(); 16958 16959 // If we receive a broken type, recover by assuming 'int' and 16960 // marking this declaration as invalid. 16961 if (T.isNull() || T->containsErrors()) { 16962 InvalidDecl = true; 16963 T = Context.IntTy; 16964 } 16965 16966 QualType EltTy = Context.getBaseElementType(T); 16967 if (!EltTy->isDependentType() && !EltTy->containsErrors()) { 16968 if (RequireCompleteSizedType(Loc, EltTy, 16969 diag::err_field_incomplete_or_sizeless)) { 16970 // Fields of incomplete type force their record to be invalid. 16971 Record->setInvalidDecl(); 16972 InvalidDecl = true; 16973 } else { 16974 NamedDecl *Def; 16975 EltTy->isIncompleteType(&Def); 16976 if (Def && Def->isInvalidDecl()) { 16977 Record->setInvalidDecl(); 16978 InvalidDecl = true; 16979 } 16980 } 16981 } 16982 16983 // TR 18037 does not allow fields to be declared with address space 16984 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || 16985 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { 16986 Diag(Loc, diag::err_field_with_address_space); 16987 Record->setInvalidDecl(); 16988 InvalidDecl = true; 16989 } 16990 16991 if (LangOpts.OpenCL) { 16992 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be 16993 // used as structure or union field: image, sampler, event or block types. 16994 if (T->isEventT() || T->isImageType() || T->isSamplerT() || 16995 T->isBlockPointerType()) { 16996 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; 16997 Record->setInvalidDecl(); 16998 InvalidDecl = true; 16999 } 17000 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension 17001 // is enabled. 17002 if (BitWidth && !getOpenCLOptions().isAvailableOption( 17003 "__cl_clang_bitfields", LangOpts)) { 17004 Diag(Loc, diag::err_opencl_bitfields); 17005 InvalidDecl = true; 17006 } 17007 } 17008 17009 // Anonymous bit-fields cannot be cv-qualified (CWG 2229). 17010 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && 17011 T.hasQualifiers()) { 17012 InvalidDecl = true; 17013 Diag(Loc, diag::err_anon_bitfield_qualifiers); 17014 } 17015 17016 // C99 6.7.2.1p8: A member of a structure or union may have any type other 17017 // than a variably modified type. 17018 if (!InvalidDecl && T->isVariablyModifiedType()) { 17019 if (!tryToFixVariablyModifiedVarType( 17020 TInfo, T, Loc, diag::err_typecheck_field_variable_size)) 17021 InvalidDecl = true; 17022 } 17023 17024 // Fields can not have abstract class types 17025 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 17026 diag::err_abstract_type_in_decl, 17027 AbstractFieldType)) 17028 InvalidDecl = true; 17029 17030 bool ZeroWidth = false; 17031 if (InvalidDecl) 17032 BitWidth = nullptr; 17033 // If this is declared as a bit-field, check the bit-field. 17034 if (BitWidth) { 17035 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 17036 &ZeroWidth).get(); 17037 if (!BitWidth) { 17038 InvalidDecl = true; 17039 BitWidth = nullptr; 17040 ZeroWidth = false; 17041 } 17042 } 17043 17044 // Check that 'mutable' is consistent with the type of the declaration. 17045 if (!InvalidDecl && Mutable) { 17046 unsigned DiagID = 0; 17047 if (T->isReferenceType()) 17048 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference 17049 : diag::err_mutable_reference; 17050 else if (T.isConstQualified()) 17051 DiagID = diag::err_mutable_const; 17052 17053 if (DiagID) { 17054 SourceLocation ErrLoc = Loc; 17055 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 17056 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 17057 Diag(ErrLoc, DiagID); 17058 if (DiagID != diag::ext_mutable_reference) { 17059 Mutable = false; 17060 InvalidDecl = true; 17061 } 17062 } 17063 } 17064 17065 // C++11 [class.union]p8 (DR1460): 17066 // At most one variant member of a union may have a 17067 // brace-or-equal-initializer. 17068 if (InitStyle != ICIS_NoInit) 17069 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 17070 17071 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 17072 BitWidth, Mutable, InitStyle); 17073 if (InvalidDecl) 17074 NewFD->setInvalidDecl(); 17075 17076 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 17077 Diag(Loc, diag::err_duplicate_member) << II; 17078 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 17079 NewFD->setInvalidDecl(); 17080 } 17081 17082 if (!InvalidDecl && getLangOpts().CPlusPlus) { 17083 if (Record->isUnion()) { 17084 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 17085 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 17086 if (RDecl->getDefinition()) { 17087 // C++ [class.union]p1: An object of a class with a non-trivial 17088 // constructor, a non-trivial copy constructor, a non-trivial 17089 // destructor, or a non-trivial copy assignment operator 17090 // cannot be a member of a union, nor can an array of such 17091 // objects. 17092 if (CheckNontrivialField(NewFD)) 17093 NewFD->setInvalidDecl(); 17094 } 17095 } 17096 17097 // C++ [class.union]p1: If a union contains a member of reference type, 17098 // the program is ill-formed, except when compiling with MSVC extensions 17099 // enabled. 17100 if (EltTy->isReferenceType()) { 17101 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 17102 diag::ext_union_member_of_reference_type : 17103 diag::err_union_member_of_reference_type) 17104 << NewFD->getDeclName() << EltTy; 17105 if (!getLangOpts().MicrosoftExt) 17106 NewFD->setInvalidDecl(); 17107 } 17108 } 17109 } 17110 17111 // FIXME: We need to pass in the attributes given an AST 17112 // representation, not a parser representation. 17113 if (D) { 17114 // FIXME: The current scope is almost... but not entirely... correct here. 17115 ProcessDeclAttributes(getCurScope(), NewFD, *D); 17116 17117 if (NewFD->hasAttrs()) 17118 CheckAlignasUnderalignment(NewFD); 17119 } 17120 17121 // In auto-retain/release, infer strong retension for fields of 17122 // retainable type. 17123 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 17124 NewFD->setInvalidDecl(); 17125 17126 if (T.isObjCGCWeak()) 17127 Diag(Loc, diag::warn_attribute_weak_on_field); 17128 17129 // PPC MMA non-pointer types are not allowed as field types. 17130 if (Context.getTargetInfo().getTriple().isPPC64() && 17131 CheckPPCMMAType(T, NewFD->getLocation())) 17132 NewFD->setInvalidDecl(); 17133 17134 NewFD->setAccess(AS); 17135 return NewFD; 17136 } 17137 17138 bool Sema::CheckNontrivialField(FieldDecl *FD) { 17139 assert(FD); 17140 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 17141 17142 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 17143 return false; 17144 17145 QualType EltTy = Context.getBaseElementType(FD->getType()); 17146 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 17147 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 17148 if (RDecl->getDefinition()) { 17149 // We check for copy constructors before constructors 17150 // because otherwise we'll never get complaints about 17151 // copy constructors. 17152 17153 CXXSpecialMember member = CXXInvalid; 17154 // We're required to check for any non-trivial constructors. Since the 17155 // implicit default constructor is suppressed if there are any 17156 // user-declared constructors, we just need to check that there is a 17157 // trivial default constructor and a trivial copy constructor. (We don't 17158 // worry about move constructors here, since this is a C++98 check.) 17159 if (RDecl->hasNonTrivialCopyConstructor()) 17160 member = CXXCopyConstructor; 17161 else if (!RDecl->hasTrivialDefaultConstructor()) 17162 member = CXXDefaultConstructor; 17163 else if (RDecl->hasNonTrivialCopyAssignment()) 17164 member = CXXCopyAssignment; 17165 else if (RDecl->hasNonTrivialDestructor()) 17166 member = CXXDestructor; 17167 17168 if (member != CXXInvalid) { 17169 if (!getLangOpts().CPlusPlus11 && 17170 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 17171 // Objective-C++ ARC: it is an error to have a non-trivial field of 17172 // a union. However, system headers in Objective-C programs 17173 // occasionally have Objective-C lifetime objects within unions, 17174 // and rather than cause the program to fail, we make those 17175 // members unavailable. 17176 SourceLocation Loc = FD->getLocation(); 17177 if (getSourceManager().isInSystemHeader(Loc)) { 17178 if (!FD->hasAttr<UnavailableAttr>()) 17179 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", 17180 UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); 17181 return false; 17182 } 17183 } 17184 17185 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 17186 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 17187 diag::err_illegal_union_or_anon_struct_member) 17188 << FD->getParent()->isUnion() << FD->getDeclName() << member; 17189 DiagnoseNontrivial(RDecl, member); 17190 return !getLangOpts().CPlusPlus11; 17191 } 17192 } 17193 } 17194 17195 return false; 17196 } 17197 17198 /// TranslateIvarVisibility - Translate visibility from a token ID to an 17199 /// AST enum value. 17200 static ObjCIvarDecl::AccessControl 17201 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 17202 switch (ivarVisibility) { 17203 default: llvm_unreachable("Unknown visitibility kind"); 17204 case tok::objc_private: return ObjCIvarDecl::Private; 17205 case tok::objc_public: return ObjCIvarDecl::Public; 17206 case tok::objc_protected: return ObjCIvarDecl::Protected; 17207 case tok::objc_package: return ObjCIvarDecl::Package; 17208 } 17209 } 17210 17211 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 17212 /// in order to create an IvarDecl object for it. 17213 Decl *Sema::ActOnIvar(Scope *S, 17214 SourceLocation DeclStart, 17215 Declarator &D, Expr *BitfieldWidth, 17216 tok::ObjCKeywordKind Visibility) { 17217 17218 IdentifierInfo *II = D.getIdentifier(); 17219 Expr *BitWidth = (Expr*)BitfieldWidth; 17220 SourceLocation Loc = DeclStart; 17221 if (II) Loc = D.getIdentifierLoc(); 17222 17223 // FIXME: Unnamed fields can be handled in various different ways, for 17224 // example, unnamed unions inject all members into the struct namespace! 17225 17226 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17227 QualType T = TInfo->getType(); 17228 17229 if (BitWidth) { 17230 // 6.7.2.1p3, 6.7.2.1p4 17231 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 17232 if (!BitWidth) 17233 D.setInvalidType(); 17234 } else { 17235 // Not a bitfield. 17236 17237 // validate II. 17238 17239 } 17240 if (T->isReferenceType()) { 17241 Diag(Loc, diag::err_ivar_reference_type); 17242 D.setInvalidType(); 17243 } 17244 // C99 6.7.2.1p8: A member of a structure or union may have any type other 17245 // than a variably modified type. 17246 else if (T->isVariablyModifiedType()) { 17247 if (!tryToFixVariablyModifiedVarType( 17248 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size)) 17249 D.setInvalidType(); 17250 } 17251 17252 // Get the visibility (access control) for this ivar. 17253 ObjCIvarDecl::AccessControl ac = 17254 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 17255 : ObjCIvarDecl::None; 17256 // Must set ivar's DeclContext to its enclosing interface. 17257 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 17258 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 17259 return nullptr; 17260 ObjCContainerDecl *EnclosingContext; 17261 if (ObjCImplementationDecl *IMPDecl = 17262 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17263 if (LangOpts.ObjCRuntime.isFragile()) { 17264 // Case of ivar declared in an implementation. Context is that of its class. 17265 EnclosingContext = IMPDecl->getClassInterface(); 17266 assert(EnclosingContext && "Implementation has no class interface!"); 17267 } 17268 else 17269 EnclosingContext = EnclosingDecl; 17270 } else { 17271 if (ObjCCategoryDecl *CDecl = 17272 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17273 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 17274 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 17275 return nullptr; 17276 } 17277 } 17278 EnclosingContext = EnclosingDecl; 17279 } 17280 17281 // Construct the decl. 17282 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 17283 DeclStart, Loc, II, T, 17284 TInfo, ac, (Expr *)BitfieldWidth); 17285 17286 if (II) { 17287 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 17288 ForVisibleRedeclaration); 17289 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 17290 && !isa<TagDecl>(PrevDecl)) { 17291 Diag(Loc, diag::err_duplicate_member) << II; 17292 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 17293 NewID->setInvalidDecl(); 17294 } 17295 } 17296 17297 // Process attributes attached to the ivar. 17298 ProcessDeclAttributes(S, NewID, D); 17299 17300 if (D.isInvalidType()) 17301 NewID->setInvalidDecl(); 17302 17303 // In ARC, infer 'retaining' for ivars of retainable type. 17304 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 17305 NewID->setInvalidDecl(); 17306 17307 if (D.getDeclSpec().isModulePrivateSpecified()) 17308 NewID->setModulePrivate(); 17309 17310 if (II) { 17311 // FIXME: When interfaces are DeclContexts, we'll need to add 17312 // these to the interface. 17313 S->AddDecl(NewID); 17314 IdResolver.AddDecl(NewID); 17315 } 17316 17317 if (LangOpts.ObjCRuntime.isNonFragile() && 17318 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 17319 Diag(Loc, diag::warn_ivars_in_interface); 17320 17321 return NewID; 17322 } 17323 17324 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 17325 /// class and class extensions. For every class \@interface and class 17326 /// extension \@interface, if the last ivar is a bitfield of any type, 17327 /// then add an implicit `char :0` ivar to the end of that interface. 17328 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 17329 SmallVectorImpl<Decl *> &AllIvarDecls) { 17330 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 17331 return; 17332 17333 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 17334 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 17335 17336 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) 17337 return; 17338 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 17339 if (!ID) { 17340 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 17341 if (!CD->IsClassExtension()) 17342 return; 17343 } 17344 // No need to add this to end of @implementation. 17345 else 17346 return; 17347 } 17348 // All conditions are met. Add a new bitfield to the tail end of ivars. 17349 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 17350 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 17351 17352 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 17353 DeclLoc, DeclLoc, nullptr, 17354 Context.CharTy, 17355 Context.getTrivialTypeSourceInfo(Context.CharTy, 17356 DeclLoc), 17357 ObjCIvarDecl::Private, BW, 17358 true); 17359 AllIvarDecls.push_back(Ivar); 17360 } 17361 17362 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 17363 ArrayRef<Decl *> Fields, SourceLocation LBrac, 17364 SourceLocation RBrac, 17365 const ParsedAttributesView &Attrs) { 17366 assert(EnclosingDecl && "missing record or interface decl"); 17367 17368 // If this is an Objective-C @implementation or category and we have 17369 // new fields here we should reset the layout of the interface since 17370 // it will now change. 17371 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 17372 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 17373 switch (DC->getKind()) { 17374 default: break; 17375 case Decl::ObjCCategory: 17376 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 17377 break; 17378 case Decl::ObjCImplementation: 17379 Context. 17380 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 17381 break; 17382 } 17383 } 17384 17385 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 17386 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); 17387 17388 // Start counting up the number of named members; make sure to include 17389 // members of anonymous structs and unions in the total. 17390 unsigned NumNamedMembers = 0; 17391 if (Record) { 17392 for (const auto *I : Record->decls()) { 17393 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 17394 if (IFD->getDeclName()) 17395 ++NumNamedMembers; 17396 } 17397 } 17398 17399 // Verify that all the fields are okay. 17400 SmallVector<FieldDecl*, 32> RecFields; 17401 17402 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 17403 i != end; ++i) { 17404 FieldDecl *FD = cast<FieldDecl>(*i); 17405 17406 // Get the type for the field. 17407 const Type *FDTy = FD->getType().getTypePtr(); 17408 17409 if (!FD->isAnonymousStructOrUnion()) { 17410 // Remember all fields written by the user. 17411 RecFields.push_back(FD); 17412 } 17413 17414 // If the field is already invalid for some reason, don't emit more 17415 // diagnostics about it. 17416 if (FD->isInvalidDecl()) { 17417 EnclosingDecl->setInvalidDecl(); 17418 continue; 17419 } 17420 17421 // C99 6.7.2.1p2: 17422 // A structure or union shall not contain a member with 17423 // incomplete or function type (hence, a structure shall not 17424 // contain an instance of itself, but may contain a pointer to 17425 // an instance of itself), except that the last member of a 17426 // structure with more than one named member may have incomplete 17427 // array type; such a structure (and any union containing, 17428 // possibly recursively, a member that is such a structure) 17429 // shall not be a member of a structure or an element of an 17430 // array. 17431 bool IsLastField = (i + 1 == Fields.end()); 17432 if (FDTy->isFunctionType()) { 17433 // Field declared as a function. 17434 Diag(FD->getLocation(), diag::err_field_declared_as_function) 17435 << FD->getDeclName(); 17436 FD->setInvalidDecl(); 17437 EnclosingDecl->setInvalidDecl(); 17438 continue; 17439 } else if (FDTy->isIncompleteArrayType() && 17440 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { 17441 if (Record) { 17442 // Flexible array member. 17443 // Microsoft and g++ is more permissive regarding flexible array. 17444 // It will accept flexible array in union and also 17445 // as the sole element of a struct/class. 17446 unsigned DiagID = 0; 17447 if (!Record->isUnion() && !IsLastField) { 17448 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) 17449 << FD->getDeclName() << FD->getType() << Record->getTagKind(); 17450 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); 17451 FD->setInvalidDecl(); 17452 EnclosingDecl->setInvalidDecl(); 17453 continue; 17454 } else if (Record->isUnion()) 17455 DiagID = getLangOpts().MicrosoftExt 17456 ? diag::ext_flexible_array_union_ms 17457 : getLangOpts().CPlusPlus 17458 ? diag::ext_flexible_array_union_gnu 17459 : diag::err_flexible_array_union; 17460 else if (NumNamedMembers < 1) 17461 DiagID = getLangOpts().MicrosoftExt 17462 ? diag::ext_flexible_array_empty_aggregate_ms 17463 : getLangOpts().CPlusPlus 17464 ? diag::ext_flexible_array_empty_aggregate_gnu 17465 : diag::err_flexible_array_empty_aggregate; 17466 17467 if (DiagID) 17468 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 17469 << Record->getTagKind(); 17470 // While the layout of types that contain virtual bases is not specified 17471 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 17472 // virtual bases after the derived members. This would make a flexible 17473 // array member declared at the end of an object not adjacent to the end 17474 // of the type. 17475 if (CXXRecord && CXXRecord->getNumVBases() != 0) 17476 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 17477 << FD->getDeclName() << Record->getTagKind(); 17478 if (!getLangOpts().C99) 17479 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 17480 << FD->getDeclName() << Record->getTagKind(); 17481 17482 // If the element type has a non-trivial destructor, we would not 17483 // implicitly destroy the elements, so disallow it for now. 17484 // 17485 // FIXME: GCC allows this. We should probably either implicitly delete 17486 // the destructor of the containing class, or just allow this. 17487 QualType BaseElem = Context.getBaseElementType(FD->getType()); 17488 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 17489 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 17490 << FD->getDeclName() << FD->getType(); 17491 FD->setInvalidDecl(); 17492 EnclosingDecl->setInvalidDecl(); 17493 continue; 17494 } 17495 // Okay, we have a legal flexible array member at the end of the struct. 17496 Record->setHasFlexibleArrayMember(true); 17497 } else { 17498 // In ObjCContainerDecl ivars with incomplete array type are accepted, 17499 // unless they are followed by another ivar. That check is done 17500 // elsewhere, after synthesized ivars are known. 17501 } 17502 } else if (!FDTy->isDependentType() && 17503 RequireCompleteSizedType( 17504 FD->getLocation(), FD->getType(), 17505 diag::err_field_incomplete_or_sizeless)) { 17506 // Incomplete type 17507 FD->setInvalidDecl(); 17508 EnclosingDecl->setInvalidDecl(); 17509 continue; 17510 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 17511 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 17512 // A type which contains a flexible array member is considered to be a 17513 // flexible array member. 17514 Record->setHasFlexibleArrayMember(true); 17515 if (!Record->isUnion()) { 17516 // If this is a struct/class and this is not the last element, reject 17517 // it. Note that GCC supports variable sized arrays in the middle of 17518 // structures. 17519 if (!IsLastField) 17520 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 17521 << FD->getDeclName() << FD->getType(); 17522 else { 17523 // We support flexible arrays at the end of structs in 17524 // other structs as an extension. 17525 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 17526 << FD->getDeclName(); 17527 } 17528 } 17529 } 17530 if (isa<ObjCContainerDecl>(EnclosingDecl) && 17531 RequireNonAbstractType(FD->getLocation(), FD->getType(), 17532 diag::err_abstract_type_in_decl, 17533 AbstractIvarType)) { 17534 // Ivars can not have abstract class types 17535 FD->setInvalidDecl(); 17536 } 17537 if (Record && FDTTy->getDecl()->hasObjectMember()) 17538 Record->setHasObjectMember(true); 17539 if (Record && FDTTy->getDecl()->hasVolatileMember()) 17540 Record->setHasVolatileMember(true); 17541 } else if (FDTy->isObjCObjectType()) { 17542 /// A field cannot be an Objective-c object 17543 Diag(FD->getLocation(), diag::err_statically_allocated_object) 17544 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 17545 QualType T = Context.getObjCObjectPointerType(FD->getType()); 17546 FD->setType(T); 17547 } else if (Record && Record->isUnion() && 17548 FD->getType().hasNonTrivialObjCLifetime() && 17549 getSourceManager().isInSystemHeader(FD->getLocation()) && 17550 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && 17551 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || 17552 !Context.hasDirectOwnershipQualifier(FD->getType()))) { 17553 // For backward compatibility, fields of C unions declared in system 17554 // headers that have non-trivial ObjC ownership qualifications are marked 17555 // as unavailable unless the qualifier is explicit and __strong. This can 17556 // break ABI compatibility between programs compiled with ARC and MRR, but 17557 // is a better option than rejecting programs using those unions under 17558 // ARC. 17559 FD->addAttr(UnavailableAttr::CreateImplicit( 17560 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, 17561 FD->getLocation())); 17562 } else if (getLangOpts().ObjC && 17563 getLangOpts().getGC() != LangOptions::NonGC && Record && 17564 !Record->hasObjectMember()) { 17565 if (FD->getType()->isObjCObjectPointerType() || 17566 FD->getType().isObjCGCStrong()) 17567 Record->setHasObjectMember(true); 17568 else if (Context.getAsArrayType(FD->getType())) { 17569 QualType BaseType = Context.getBaseElementType(FD->getType()); 17570 if (BaseType->isRecordType() && 17571 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) 17572 Record->setHasObjectMember(true); 17573 else if (BaseType->isObjCObjectPointerType() || 17574 BaseType.isObjCGCStrong()) 17575 Record->setHasObjectMember(true); 17576 } 17577 } 17578 17579 if (Record && !getLangOpts().CPlusPlus && 17580 !shouldIgnoreForRecordTriviality(FD)) { 17581 QualType FT = FD->getType(); 17582 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { 17583 Record->setNonTrivialToPrimitiveDefaultInitialize(true); 17584 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 17585 Record->isUnion()) 17586 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); 17587 } 17588 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); 17589 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { 17590 Record->setNonTrivialToPrimitiveCopy(true); 17591 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) 17592 Record->setHasNonTrivialToPrimitiveCopyCUnion(true); 17593 } 17594 if (FT.isDestructedType()) { 17595 Record->setNonTrivialToPrimitiveDestroy(true); 17596 Record->setParamDestroyedInCallee(true); 17597 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) 17598 Record->setHasNonTrivialToPrimitiveDestructCUnion(true); 17599 } 17600 17601 if (const auto *RT = FT->getAs<RecordType>()) { 17602 if (RT->getDecl()->getArgPassingRestrictions() == 17603 RecordDecl::APK_CanNeverPassInRegs) 17604 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17605 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) 17606 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17607 } 17608 17609 if (Record && FD->getType().isVolatileQualified()) 17610 Record->setHasVolatileMember(true); 17611 // Keep track of the number of named members. 17612 if (FD->getIdentifier()) 17613 ++NumNamedMembers; 17614 } 17615 17616 // Okay, we successfully defined 'Record'. 17617 if (Record) { 17618 bool Completed = false; 17619 if (CXXRecord) { 17620 if (!CXXRecord->isInvalidDecl()) { 17621 // Set access bits correctly on the directly-declared conversions. 17622 for (CXXRecordDecl::conversion_iterator 17623 I = CXXRecord->conversion_begin(), 17624 E = CXXRecord->conversion_end(); I != E; ++I) 17625 I.setAccess((*I)->getAccess()); 17626 } 17627 17628 // Add any implicitly-declared members to this class. 17629 AddImplicitlyDeclaredMembersToClass(CXXRecord); 17630 17631 if (!CXXRecord->isDependentType()) { 17632 if (!CXXRecord->isInvalidDecl()) { 17633 // If we have virtual base classes, we may end up finding multiple 17634 // final overriders for a given virtual function. Check for this 17635 // problem now. 17636 if (CXXRecord->getNumVBases()) { 17637 CXXFinalOverriderMap FinalOverriders; 17638 CXXRecord->getFinalOverriders(FinalOverriders); 17639 17640 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 17641 MEnd = FinalOverriders.end(); 17642 M != MEnd; ++M) { 17643 for (OverridingMethods::iterator SO = M->second.begin(), 17644 SOEnd = M->second.end(); 17645 SO != SOEnd; ++SO) { 17646 assert(SO->second.size() > 0 && 17647 "Virtual function without overriding functions?"); 17648 if (SO->second.size() == 1) 17649 continue; 17650 17651 // C++ [class.virtual]p2: 17652 // In a derived class, if a virtual member function of a base 17653 // class subobject has more than one final overrider the 17654 // program is ill-formed. 17655 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 17656 << (const NamedDecl *)M->first << Record; 17657 Diag(M->first->getLocation(), 17658 diag::note_overridden_virtual_function); 17659 for (OverridingMethods::overriding_iterator 17660 OM = SO->second.begin(), 17661 OMEnd = SO->second.end(); 17662 OM != OMEnd; ++OM) 17663 Diag(OM->Method->getLocation(), diag::note_final_overrider) 17664 << (const NamedDecl *)M->first << OM->Method->getParent(); 17665 17666 Record->setInvalidDecl(); 17667 } 17668 } 17669 CXXRecord->completeDefinition(&FinalOverriders); 17670 Completed = true; 17671 } 17672 } 17673 } 17674 } 17675 17676 if (!Completed) 17677 Record->completeDefinition(); 17678 17679 // Handle attributes before checking the layout. 17680 ProcessDeclAttributeList(S, Record, Attrs); 17681 17682 // We may have deferred checking for a deleted destructor. Check now. 17683 if (CXXRecord) { 17684 auto *Dtor = CXXRecord->getDestructor(); 17685 if (Dtor && Dtor->isImplicit() && 17686 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { 17687 CXXRecord->setImplicitDestructorIsDeleted(); 17688 SetDeclDeleted(Dtor, CXXRecord->getLocation()); 17689 } 17690 } 17691 17692 if (Record->hasAttrs()) { 17693 CheckAlignasUnderalignment(Record); 17694 17695 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 17696 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 17697 IA->getRange(), IA->getBestCase(), 17698 IA->getInheritanceModel()); 17699 } 17700 17701 // Check if the structure/union declaration is a type that can have zero 17702 // size in C. For C this is a language extension, for C++ it may cause 17703 // compatibility problems. 17704 bool CheckForZeroSize; 17705 if (!getLangOpts().CPlusPlus) { 17706 CheckForZeroSize = true; 17707 } else { 17708 // For C++ filter out types that cannot be referenced in C code. 17709 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 17710 CheckForZeroSize = 17711 CXXRecord->getLexicalDeclContext()->isExternCContext() && 17712 !CXXRecord->isDependentType() && !inTemplateInstantiation() && 17713 CXXRecord->isCLike(); 17714 } 17715 if (CheckForZeroSize) { 17716 bool ZeroSize = true; 17717 bool IsEmpty = true; 17718 unsigned NonBitFields = 0; 17719 for (RecordDecl::field_iterator I = Record->field_begin(), 17720 E = Record->field_end(); 17721 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 17722 IsEmpty = false; 17723 if (I->isUnnamedBitfield()) { 17724 if (!I->isZeroLengthBitField(Context)) 17725 ZeroSize = false; 17726 } else { 17727 ++NonBitFields; 17728 QualType FieldType = I->getType(); 17729 if (FieldType->isIncompleteType() || 17730 !Context.getTypeSizeInChars(FieldType).isZero()) 17731 ZeroSize = false; 17732 } 17733 } 17734 17735 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 17736 // allowed in C++, but warn if its declaration is inside 17737 // extern "C" block. 17738 if (ZeroSize) { 17739 Diag(RecLoc, getLangOpts().CPlusPlus ? 17740 diag::warn_zero_size_struct_union_in_extern_c : 17741 diag::warn_zero_size_struct_union_compat) 17742 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 17743 } 17744 17745 // Structs without named members are extension in C (C99 6.7.2.1p7), 17746 // but are accepted by GCC. 17747 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 17748 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 17749 diag::ext_no_named_members_in_struct_union) 17750 << Record->isUnion(); 17751 } 17752 } 17753 } else { 17754 ObjCIvarDecl **ClsFields = 17755 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 17756 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 17757 ID->setEndOfDefinitionLoc(RBrac); 17758 // Add ivar's to class's DeclContext. 17759 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17760 ClsFields[i]->setLexicalDeclContext(ID); 17761 ID->addDecl(ClsFields[i]); 17762 } 17763 // Must enforce the rule that ivars in the base classes may not be 17764 // duplicates. 17765 if (ID->getSuperClass()) 17766 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 17767 } else if (ObjCImplementationDecl *IMPDecl = 17768 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17769 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 17770 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 17771 // Ivar declared in @implementation never belongs to the implementation. 17772 // Only it is in implementation's lexical context. 17773 ClsFields[I]->setLexicalDeclContext(IMPDecl); 17774 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 17775 IMPDecl->setIvarLBraceLoc(LBrac); 17776 IMPDecl->setIvarRBraceLoc(RBrac); 17777 } else if (ObjCCategoryDecl *CDecl = 17778 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17779 // case of ivars in class extension; all other cases have been 17780 // reported as errors elsewhere. 17781 // FIXME. Class extension does not have a LocEnd field. 17782 // CDecl->setLocEnd(RBrac); 17783 // Add ivar's to class extension's DeclContext. 17784 // Diagnose redeclaration of private ivars. 17785 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 17786 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17787 if (IDecl) { 17788 if (const ObjCIvarDecl *ClsIvar = 17789 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 17790 Diag(ClsFields[i]->getLocation(), 17791 diag::err_duplicate_ivar_declaration); 17792 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 17793 continue; 17794 } 17795 for (const auto *Ext : IDecl->known_extensions()) { 17796 if (const ObjCIvarDecl *ClsExtIvar 17797 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 17798 Diag(ClsFields[i]->getLocation(), 17799 diag::err_duplicate_ivar_declaration); 17800 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 17801 continue; 17802 } 17803 } 17804 } 17805 ClsFields[i]->setLexicalDeclContext(CDecl); 17806 CDecl->addDecl(ClsFields[i]); 17807 } 17808 CDecl->setIvarLBraceLoc(LBrac); 17809 CDecl->setIvarRBraceLoc(RBrac); 17810 } 17811 } 17812 } 17813 17814 /// Determine whether the given integral value is representable within 17815 /// the given type T. 17816 static bool isRepresentableIntegerValue(ASTContext &Context, 17817 llvm::APSInt &Value, 17818 QualType T) { 17819 assert((T->isIntegralType(Context) || T->isEnumeralType()) && 17820 "Integral type required!"); 17821 unsigned BitWidth = Context.getIntWidth(T); 17822 17823 if (Value.isUnsigned() || Value.isNonNegative()) { 17824 if (T->isSignedIntegerOrEnumerationType()) 17825 --BitWidth; 17826 return Value.getActiveBits() <= BitWidth; 17827 } 17828 return Value.getMinSignedBits() <= BitWidth; 17829 } 17830 17831 // Given an integral type, return the next larger integral type 17832 // (or a NULL type of no such type exists). 17833 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 17834 // FIXME: Int128/UInt128 support, which also needs to be introduced into 17835 // enum checking below. 17836 assert((T->isIntegralType(Context) || 17837 T->isEnumeralType()) && "Integral type required!"); 17838 const unsigned NumTypes = 4; 17839 QualType SignedIntegralTypes[NumTypes] = { 17840 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 17841 }; 17842 QualType UnsignedIntegralTypes[NumTypes] = { 17843 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 17844 Context.UnsignedLongLongTy 17845 }; 17846 17847 unsigned BitWidth = Context.getTypeSize(T); 17848 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 17849 : UnsignedIntegralTypes; 17850 for (unsigned I = 0; I != NumTypes; ++I) 17851 if (Context.getTypeSize(Types[I]) > BitWidth) 17852 return Types[I]; 17853 17854 return QualType(); 17855 } 17856 17857 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 17858 EnumConstantDecl *LastEnumConst, 17859 SourceLocation IdLoc, 17860 IdentifierInfo *Id, 17861 Expr *Val) { 17862 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17863 llvm::APSInt EnumVal(IntWidth); 17864 QualType EltTy; 17865 17866 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 17867 Val = nullptr; 17868 17869 if (Val) 17870 Val = DefaultLvalueConversion(Val).get(); 17871 17872 if (Val) { 17873 if (Enum->isDependentType() || Val->isTypeDependent() || 17874 Val->containsErrors()) 17875 EltTy = Context.DependentTy; 17876 else { 17877 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed 17878 // underlying type, but do allow it in all other contexts. 17879 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { 17880 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 17881 // constant-expression in the enumerator-definition shall be a converted 17882 // constant expression of the underlying type. 17883 EltTy = Enum->getIntegerType(); 17884 ExprResult Converted = 17885 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 17886 CCEK_Enumerator); 17887 if (Converted.isInvalid()) 17888 Val = nullptr; 17889 else 17890 Val = Converted.get(); 17891 } else if (!Val->isValueDependent() && 17892 !(Val = 17893 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold) 17894 .get())) { 17895 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 17896 } else { 17897 if (Enum->isComplete()) { 17898 EltTy = Enum->getIntegerType(); 17899 17900 // In Obj-C and Microsoft mode, require the enumeration value to be 17901 // representable in the underlying type of the enumeration. In C++11, 17902 // we perform a non-narrowing conversion as part of converted constant 17903 // expression checking. 17904 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17905 if (Context.getTargetInfo() 17906 .getTriple() 17907 .isWindowsMSVCEnvironment()) { 17908 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 17909 } else { 17910 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 17911 } 17912 } 17913 17914 // Cast to the underlying type. 17915 Val = ImpCastExprToType(Val, EltTy, 17916 EltTy->isBooleanType() ? CK_IntegralToBoolean 17917 : CK_IntegralCast) 17918 .get(); 17919 } else if (getLangOpts().CPlusPlus) { 17920 // C++11 [dcl.enum]p5: 17921 // If the underlying type is not fixed, the type of each enumerator 17922 // is the type of its initializing value: 17923 // - If an initializer is specified for an enumerator, the 17924 // initializing value has the same type as the expression. 17925 EltTy = Val->getType(); 17926 } else { 17927 // C99 6.7.2.2p2: 17928 // The expression that defines the value of an enumeration constant 17929 // shall be an integer constant expression that has a value 17930 // representable as an int. 17931 17932 // Complain if the value is not representable in an int. 17933 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 17934 Diag(IdLoc, diag::ext_enum_value_not_int) 17935 << toString(EnumVal, 10) << Val->getSourceRange() 17936 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 17937 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 17938 // Force the type of the expression to 'int'. 17939 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 17940 } 17941 EltTy = Val->getType(); 17942 } 17943 } 17944 } 17945 } 17946 17947 if (!Val) { 17948 if (Enum->isDependentType()) 17949 EltTy = Context.DependentTy; 17950 else if (!LastEnumConst) { 17951 // C++0x [dcl.enum]p5: 17952 // If the underlying type is not fixed, the type of each enumerator 17953 // is the type of its initializing value: 17954 // - If no initializer is specified for the first enumerator, the 17955 // initializing value has an unspecified integral type. 17956 // 17957 // GCC uses 'int' for its unspecified integral type, as does 17958 // C99 6.7.2.2p3. 17959 if (Enum->isFixed()) { 17960 EltTy = Enum->getIntegerType(); 17961 } 17962 else { 17963 EltTy = Context.IntTy; 17964 } 17965 } else { 17966 // Assign the last value + 1. 17967 EnumVal = LastEnumConst->getInitVal(); 17968 ++EnumVal; 17969 EltTy = LastEnumConst->getType(); 17970 17971 // Check for overflow on increment. 17972 if (EnumVal < LastEnumConst->getInitVal()) { 17973 // C++0x [dcl.enum]p5: 17974 // If the underlying type is not fixed, the type of each enumerator 17975 // is the type of its initializing value: 17976 // 17977 // - Otherwise the type of the initializing value is the same as 17978 // the type of the initializing value of the preceding enumerator 17979 // unless the incremented value is not representable in that type, 17980 // in which case the type is an unspecified integral type 17981 // sufficient to contain the incremented value. If no such type 17982 // exists, the program is ill-formed. 17983 QualType T = getNextLargerIntegralType(Context, EltTy); 17984 if (T.isNull() || Enum->isFixed()) { 17985 // There is no integral type larger enough to represent this 17986 // value. Complain, then allow the value to wrap around. 17987 EnumVal = LastEnumConst->getInitVal(); 17988 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 17989 ++EnumVal; 17990 if (Enum->isFixed()) 17991 // When the underlying type is fixed, this is ill-formed. 17992 Diag(IdLoc, diag::err_enumerator_wrapped) 17993 << toString(EnumVal, 10) 17994 << EltTy; 17995 else 17996 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 17997 << toString(EnumVal, 10); 17998 } else { 17999 EltTy = T; 18000 } 18001 18002 // Retrieve the last enumerator's value, extent that type to the 18003 // type that is supposed to be large enough to represent the incremented 18004 // value, then increment. 18005 EnumVal = LastEnumConst->getInitVal(); 18006 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 18007 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 18008 ++EnumVal; 18009 18010 // If we're not in C++, diagnose the overflow of enumerator values, 18011 // which in C99 means that the enumerator value is not representable in 18012 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 18013 // permits enumerator values that are representable in some larger 18014 // integral type. 18015 if (!getLangOpts().CPlusPlus && !T.isNull()) 18016 Diag(IdLoc, diag::warn_enum_value_overflow); 18017 } else if (!getLangOpts().CPlusPlus && 18018 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 18019 // Enforce C99 6.7.2.2p2 even when we compute the next value. 18020 Diag(IdLoc, diag::ext_enum_value_not_int) 18021 << toString(EnumVal, 10) << 1; 18022 } 18023 } 18024 } 18025 18026 if (!EltTy->isDependentType()) { 18027 // Make the enumerator value match the signedness and size of the 18028 // enumerator's type. 18029 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 18030 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 18031 } 18032 18033 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 18034 Val, EnumVal); 18035 } 18036 18037 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, 18038 SourceLocation IILoc) { 18039 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || 18040 !getLangOpts().CPlusPlus) 18041 return SkipBodyInfo(); 18042 18043 // We have an anonymous enum definition. Look up the first enumerator to 18044 // determine if we should merge the definition with an existing one and 18045 // skip the body. 18046 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, 18047 forRedeclarationInCurContext()); 18048 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); 18049 if (!PrevECD) 18050 return SkipBodyInfo(); 18051 18052 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); 18053 NamedDecl *Hidden; 18054 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { 18055 SkipBodyInfo Skip; 18056 Skip.Previous = Hidden; 18057 return Skip; 18058 } 18059 18060 return SkipBodyInfo(); 18061 } 18062 18063 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 18064 SourceLocation IdLoc, IdentifierInfo *Id, 18065 const ParsedAttributesView &Attrs, 18066 SourceLocation EqualLoc, Expr *Val) { 18067 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 18068 EnumConstantDecl *LastEnumConst = 18069 cast_or_null<EnumConstantDecl>(lastEnumConst); 18070 18071 // The scope passed in may not be a decl scope. Zip up the scope tree until 18072 // we find one that is. 18073 S = getNonFieldDeclScope(S); 18074 18075 // Verify that there isn't already something declared with this name in this 18076 // scope. 18077 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); 18078 LookupName(R, S); 18079 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); 18080 18081 if (PrevDecl && PrevDecl->isTemplateParameter()) { 18082 // Maybe we will complain about the shadowed template parameter. 18083 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 18084 // Just pretend that we didn't see the previous declaration. 18085 PrevDecl = nullptr; 18086 } 18087 18088 // C++ [class.mem]p15: 18089 // If T is the name of a class, then each of the following shall have a name 18090 // different from T: 18091 // - every enumerator of every member of class T that is an unscoped 18092 // enumerated type 18093 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) 18094 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), 18095 DeclarationNameInfo(Id, IdLoc)); 18096 18097 EnumConstantDecl *New = 18098 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 18099 if (!New) 18100 return nullptr; 18101 18102 if (PrevDecl) { 18103 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { 18104 // Check for other kinds of shadowing not already handled. 18105 CheckShadow(New, PrevDecl, R); 18106 } 18107 18108 // When in C++, we may get a TagDecl with the same name; in this case the 18109 // enum constant will 'hide' the tag. 18110 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 18111 "Received TagDecl when not in C++!"); 18112 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 18113 if (isa<EnumConstantDecl>(PrevDecl)) 18114 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 18115 else 18116 Diag(IdLoc, diag::err_redefinition) << Id; 18117 notePreviousDefinition(PrevDecl, IdLoc); 18118 return nullptr; 18119 } 18120 } 18121 18122 // Process attributes. 18123 ProcessDeclAttributeList(S, New, Attrs); 18124 AddPragmaAttributes(S, New); 18125 18126 // Register this decl in the current scope stack. 18127 New->setAccess(TheEnumDecl->getAccess()); 18128 PushOnScopeChains(New, S); 18129 18130 ActOnDocumentableDecl(New); 18131 18132 return New; 18133 } 18134 18135 // Returns true when the enum initial expression does not trigger the 18136 // duplicate enum warning. A few common cases are exempted as follows: 18137 // Element2 = Element1 18138 // Element2 = Element1 + 1 18139 // Element2 = Element1 - 1 18140 // Where Element2 and Element1 are from the same enum. 18141 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 18142 Expr *InitExpr = ECD->getInitExpr(); 18143 if (!InitExpr) 18144 return true; 18145 InitExpr = InitExpr->IgnoreImpCasts(); 18146 18147 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 18148 if (!BO->isAdditiveOp()) 18149 return true; 18150 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 18151 if (!IL) 18152 return true; 18153 if (IL->getValue() != 1) 18154 return true; 18155 18156 InitExpr = BO->getLHS(); 18157 } 18158 18159 // This checks if the elements are from the same enum. 18160 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 18161 if (!DRE) 18162 return true; 18163 18164 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 18165 if (!EnumConstant) 18166 return true; 18167 18168 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 18169 Enum) 18170 return true; 18171 18172 return false; 18173 } 18174 18175 // Emits a warning when an element is implicitly set a value that 18176 // a previous element has already been set to. 18177 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 18178 EnumDecl *Enum, QualType EnumType) { 18179 // Avoid anonymous enums 18180 if (!Enum->getIdentifier()) 18181 return; 18182 18183 // Only check for small enums. 18184 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 18185 return; 18186 18187 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 18188 return; 18189 18190 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 18191 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; 18192 18193 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 18194 18195 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. 18196 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; 18197 18198 // Use int64_t as a key to avoid needing special handling for map keys. 18199 auto EnumConstantToKey = [](const EnumConstantDecl *D) { 18200 llvm::APSInt Val = D->getInitVal(); 18201 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); 18202 }; 18203 18204 DuplicatesVector DupVector; 18205 ValueToVectorMap EnumMap; 18206 18207 // Populate the EnumMap with all values represented by enum constants without 18208 // an initializer. 18209 for (auto *Element : Elements) { 18210 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); 18211 18212 // Null EnumConstantDecl means a previous diagnostic has been emitted for 18213 // this constant. Skip this enum since it may be ill-formed. 18214 if (!ECD) { 18215 return; 18216 } 18217 18218 // Constants with initalizers are handled in the next loop. 18219 if (ECD->getInitExpr()) 18220 continue; 18221 18222 // Duplicate values are handled in the next loop. 18223 EnumMap.insert({EnumConstantToKey(ECD), ECD}); 18224 } 18225 18226 if (EnumMap.size() == 0) 18227 return; 18228 18229 // Create vectors for any values that has duplicates. 18230 for (auto *Element : Elements) { 18231 // The last loop returned if any constant was null. 18232 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); 18233 if (!ValidDuplicateEnum(ECD, Enum)) 18234 continue; 18235 18236 auto Iter = EnumMap.find(EnumConstantToKey(ECD)); 18237 if (Iter == EnumMap.end()) 18238 continue; 18239 18240 DeclOrVector& Entry = Iter->second; 18241 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 18242 // Ensure constants are different. 18243 if (D == ECD) 18244 continue; 18245 18246 // Create new vector and push values onto it. 18247 auto Vec = std::make_unique<ECDVector>(); 18248 Vec->push_back(D); 18249 Vec->push_back(ECD); 18250 18251 // Update entry to point to the duplicates vector. 18252 Entry = Vec.get(); 18253 18254 // Store the vector somewhere we can consult later for quick emission of 18255 // diagnostics. 18256 DupVector.emplace_back(std::move(Vec)); 18257 continue; 18258 } 18259 18260 ECDVector *Vec = Entry.get<ECDVector*>(); 18261 // Make sure constants are not added more than once. 18262 if (*Vec->begin() == ECD) 18263 continue; 18264 18265 Vec->push_back(ECD); 18266 } 18267 18268 // Emit diagnostics. 18269 for (const auto &Vec : DupVector) { 18270 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 18271 18272 // Emit warning for one enum constant. 18273 auto *FirstECD = Vec->front(); 18274 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) 18275 << FirstECD << toString(FirstECD->getInitVal(), 10) 18276 << FirstECD->getSourceRange(); 18277 18278 // Emit one note for each of the remaining enum constants with 18279 // the same value. 18280 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) 18281 S.Diag(ECD->getLocation(), diag::note_duplicate_element) 18282 << ECD << toString(ECD->getInitVal(), 10) 18283 << ECD->getSourceRange(); 18284 } 18285 } 18286 18287 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, 18288 bool AllowMask) const { 18289 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); 18290 assert(ED->isCompleteDefinition() && "expected enum definition"); 18291 18292 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); 18293 llvm::APInt &FlagBits = R.first->second; 18294 18295 if (R.second) { 18296 for (auto *E : ED->enumerators()) { 18297 const auto &EVal = E->getInitVal(); 18298 // Only single-bit enumerators introduce new flag values. 18299 if (EVal.isPowerOf2()) 18300 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; 18301 } 18302 } 18303 18304 // A value is in a flag enum if either its bits are a subset of the enum's 18305 // flag bits (the first condition) or we are allowing masks and the same is 18306 // true of its complement (the second condition). When masks are allowed, we 18307 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. 18308 // 18309 // While it's true that any value could be used as a mask, the assumption is 18310 // that a mask will have all of the insignificant bits set. Anything else is 18311 // likely a logic error. 18312 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); 18313 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); 18314 } 18315 18316 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, 18317 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, 18318 const ParsedAttributesView &Attrs) { 18319 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 18320 QualType EnumType = Context.getTypeDeclType(Enum); 18321 18322 ProcessDeclAttributeList(S, Enum, Attrs); 18323 18324 if (Enum->isDependentType()) { 18325 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 18326 EnumConstantDecl *ECD = 18327 cast_or_null<EnumConstantDecl>(Elements[i]); 18328 if (!ECD) continue; 18329 18330 ECD->setType(EnumType); 18331 } 18332 18333 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 18334 return; 18335 } 18336 18337 // TODO: If the result value doesn't fit in an int, it must be a long or long 18338 // long value. ISO C does not support this, but GCC does as an extension, 18339 // emit a warning. 18340 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 18341 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 18342 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 18343 18344 // Verify that all the values are okay, compute the size of the values, and 18345 // reverse the list. 18346 unsigned NumNegativeBits = 0; 18347 unsigned NumPositiveBits = 0; 18348 18349 // Keep track of whether all elements have type int. 18350 bool AllElementsInt = true; 18351 18352 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 18353 EnumConstantDecl *ECD = 18354 cast_or_null<EnumConstantDecl>(Elements[i]); 18355 if (!ECD) continue; // Already issued a diagnostic. 18356 18357 const llvm::APSInt &InitVal = ECD->getInitVal(); 18358 18359 // Keep track of the size of positive and negative values. 18360 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 18361 NumPositiveBits = std::max(NumPositiveBits, 18362 (unsigned)InitVal.getActiveBits()); 18363 else 18364 NumNegativeBits = std::max(NumNegativeBits, 18365 (unsigned)InitVal.getMinSignedBits()); 18366 18367 // Keep track of whether every enum element has type int (very common). 18368 if (AllElementsInt) 18369 AllElementsInt = ECD->getType() == Context.IntTy; 18370 } 18371 18372 // Figure out the type that should be used for this enum. 18373 QualType BestType; 18374 unsigned BestWidth; 18375 18376 // C++0x N3000 [conv.prom]p3: 18377 // An rvalue of an unscoped enumeration type whose underlying 18378 // type is not fixed can be converted to an rvalue of the first 18379 // of the following types that can represent all the values of 18380 // the enumeration: int, unsigned int, long int, unsigned long 18381 // int, long long int, or unsigned long long int. 18382 // C99 6.4.4.3p2: 18383 // An identifier declared as an enumeration constant has type int. 18384 // The C99 rule is modified by a gcc extension 18385 QualType BestPromotionType; 18386 18387 bool Packed = Enum->hasAttr<PackedAttr>(); 18388 // -fshort-enums is the equivalent to specifying the packed attribute on all 18389 // enum definitions. 18390 if (LangOpts.ShortEnums) 18391 Packed = true; 18392 18393 // If the enum already has a type because it is fixed or dictated by the 18394 // target, promote that type instead of analyzing the enumerators. 18395 if (Enum->isComplete()) { 18396 BestType = Enum->getIntegerType(); 18397 if (BestType->isPromotableIntegerType()) 18398 BestPromotionType = Context.getPromotedIntegerType(BestType); 18399 else 18400 BestPromotionType = BestType; 18401 18402 BestWidth = Context.getIntWidth(BestType); 18403 } 18404 else if (NumNegativeBits) { 18405 // If there is a negative value, figure out the smallest integer type (of 18406 // int/long/longlong) that fits. 18407 // If it's packed, check also if it fits a char or a short. 18408 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 18409 BestType = Context.SignedCharTy; 18410 BestWidth = CharWidth; 18411 } else if (Packed && NumNegativeBits <= ShortWidth && 18412 NumPositiveBits < ShortWidth) { 18413 BestType = Context.ShortTy; 18414 BestWidth = ShortWidth; 18415 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 18416 BestType = Context.IntTy; 18417 BestWidth = IntWidth; 18418 } else { 18419 BestWidth = Context.getTargetInfo().getLongWidth(); 18420 18421 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 18422 BestType = Context.LongTy; 18423 } else { 18424 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18425 18426 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 18427 Diag(Enum->getLocation(), diag::ext_enum_too_large); 18428 BestType = Context.LongLongTy; 18429 } 18430 } 18431 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 18432 } else { 18433 // If there is no negative value, figure out the smallest type that fits 18434 // all of the enumerator values. 18435 // If it's packed, check also if it fits a char or a short. 18436 if (Packed && NumPositiveBits <= CharWidth) { 18437 BestType = Context.UnsignedCharTy; 18438 BestPromotionType = Context.IntTy; 18439 BestWidth = CharWidth; 18440 } else if (Packed && NumPositiveBits <= ShortWidth) { 18441 BestType = Context.UnsignedShortTy; 18442 BestPromotionType = Context.IntTy; 18443 BestWidth = ShortWidth; 18444 } else if (NumPositiveBits <= IntWidth) { 18445 BestType = Context.UnsignedIntTy; 18446 BestWidth = IntWidth; 18447 BestPromotionType 18448 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18449 ? Context.UnsignedIntTy : Context.IntTy; 18450 } else if (NumPositiveBits <= 18451 (BestWidth = Context.getTargetInfo().getLongWidth())) { 18452 BestType = Context.UnsignedLongTy; 18453 BestPromotionType 18454 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18455 ? Context.UnsignedLongTy : Context.LongTy; 18456 } else { 18457 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18458 assert(NumPositiveBits <= BestWidth && 18459 "How could an initializer get larger than ULL?"); 18460 BestType = Context.UnsignedLongLongTy; 18461 BestPromotionType 18462 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18463 ? Context.UnsignedLongLongTy : Context.LongLongTy; 18464 } 18465 } 18466 18467 // Loop over all of the enumerator constants, changing their types to match 18468 // the type of the enum if needed. 18469 for (auto *D : Elements) { 18470 auto *ECD = cast_or_null<EnumConstantDecl>(D); 18471 if (!ECD) continue; // Already issued a diagnostic. 18472 18473 // Standard C says the enumerators have int type, but we allow, as an 18474 // extension, the enumerators to be larger than int size. If each 18475 // enumerator value fits in an int, type it as an int, otherwise type it the 18476 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 18477 // that X has type 'int', not 'unsigned'. 18478 18479 // Determine whether the value fits into an int. 18480 llvm::APSInt InitVal = ECD->getInitVal(); 18481 18482 // If it fits into an integer type, force it. Otherwise force it to match 18483 // the enum decl type. 18484 QualType NewTy; 18485 unsigned NewWidth; 18486 bool NewSign; 18487 if (!getLangOpts().CPlusPlus && 18488 !Enum->isFixed() && 18489 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 18490 NewTy = Context.IntTy; 18491 NewWidth = IntWidth; 18492 NewSign = true; 18493 } else if (ECD->getType() == BestType) { 18494 // Already the right type! 18495 if (getLangOpts().CPlusPlus) 18496 // C++ [dcl.enum]p4: Following the closing brace of an 18497 // enum-specifier, each enumerator has the type of its 18498 // enumeration. 18499 ECD->setType(EnumType); 18500 continue; 18501 } else { 18502 NewTy = BestType; 18503 NewWidth = BestWidth; 18504 NewSign = BestType->isSignedIntegerOrEnumerationType(); 18505 } 18506 18507 // Adjust the APSInt value. 18508 InitVal = InitVal.extOrTrunc(NewWidth); 18509 InitVal.setIsSigned(NewSign); 18510 ECD->setInitVal(InitVal); 18511 18512 // Adjust the Expr initializer and type. 18513 if (ECD->getInitExpr() && 18514 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 18515 ECD->setInitExpr(ImplicitCastExpr::Create( 18516 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(), 18517 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride())); 18518 if (getLangOpts().CPlusPlus) 18519 // C++ [dcl.enum]p4: Following the closing brace of an 18520 // enum-specifier, each enumerator has the type of its 18521 // enumeration. 18522 ECD->setType(EnumType); 18523 else 18524 ECD->setType(NewTy); 18525 } 18526 18527 Enum->completeDefinition(BestType, BestPromotionType, 18528 NumPositiveBits, NumNegativeBits); 18529 18530 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 18531 18532 if (Enum->isClosedFlag()) { 18533 for (Decl *D : Elements) { 18534 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); 18535 if (!ECD) continue; // Already issued a diagnostic. 18536 18537 llvm::APSInt InitVal = ECD->getInitVal(); 18538 if (InitVal != 0 && !InitVal.isPowerOf2() && 18539 !IsValueInFlagEnum(Enum, InitVal, true)) 18540 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) 18541 << ECD << Enum; 18542 } 18543 } 18544 18545 // Now that the enum type is defined, ensure it's not been underaligned. 18546 if (Enum->hasAttrs()) 18547 CheckAlignasUnderalignment(Enum); 18548 } 18549 18550 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 18551 SourceLocation StartLoc, 18552 SourceLocation EndLoc) { 18553 StringLiteral *AsmString = cast<StringLiteral>(expr); 18554 18555 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 18556 AsmString, StartLoc, 18557 EndLoc); 18558 CurContext->addDecl(New); 18559 return New; 18560 } 18561 18562 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 18563 IdentifierInfo* AliasName, 18564 SourceLocation PragmaLoc, 18565 SourceLocation NameLoc, 18566 SourceLocation AliasNameLoc) { 18567 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 18568 LookupOrdinaryName); 18569 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), 18570 AttributeCommonInfo::AS_Pragma); 18571 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( 18572 Context, AliasName->getName(), /*LiteralLabel=*/true, Info); 18573 18574 // If a declaration that: 18575 // 1) declares a function or a variable 18576 // 2) has external linkage 18577 // already exists, add a label attribute to it. 18578 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18579 if (isDeclExternC(PrevDecl)) 18580 PrevDecl->addAttr(Attr); 18581 else 18582 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) 18583 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; 18584 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. 18585 } else 18586 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); 18587 } 18588 18589 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 18590 SourceLocation PragmaLoc, 18591 SourceLocation NameLoc) { 18592 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 18593 18594 if (PrevDecl) { 18595 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma)); 18596 } else { 18597 (void)WeakUndeclaredIdentifiers.insert( 18598 std::pair<IdentifierInfo*,WeakInfo> 18599 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 18600 } 18601 } 18602 18603 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 18604 IdentifierInfo* AliasName, 18605 SourceLocation PragmaLoc, 18606 SourceLocation NameLoc, 18607 SourceLocation AliasNameLoc) { 18608 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 18609 LookupOrdinaryName); 18610 WeakInfo W = WeakInfo(Name, NameLoc); 18611 18612 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18613 if (!PrevDecl->hasAttr<AliasAttr>()) 18614 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 18615 DeclApplyPragmaWeak(TUScope, ND, W); 18616 } else { 18617 (void)WeakUndeclaredIdentifiers.insert( 18618 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 18619 } 18620 } 18621 18622 Decl *Sema::getObjCDeclContext() const { 18623 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 18624 } 18625 18626 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD, 18627 bool Final) { 18628 assert(FD && "Expected non-null FunctionDecl"); 18629 18630 // SYCL functions can be template, so we check if they have appropriate 18631 // attribute prior to checking if it is a template. 18632 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) 18633 return FunctionEmissionStatus::Emitted; 18634 18635 // Templates are emitted when they're instantiated. 18636 if (FD->isDependentContext()) 18637 return FunctionEmissionStatus::TemplateDiscarded; 18638 18639 // Check whether this function is an externally visible definition. 18640 auto IsEmittedForExternalSymbol = [this, FD]() { 18641 // We have to check the GVA linkage of the function's *definition* -- if we 18642 // only have a declaration, we don't know whether or not the function will 18643 // be emitted, because (say) the definition could include "inline". 18644 FunctionDecl *Def = FD->getDefinition(); 18645 18646 return Def && !isDiscardableGVALinkage( 18647 getASTContext().GetGVALinkageForFunction(Def)); 18648 }; 18649 18650 if (LangOpts.OpenMPIsDevice) { 18651 // In OpenMP device mode we will not emit host only functions, or functions 18652 // we don't need due to their linkage. 18653 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18654 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18655 // DevTy may be changed later by 18656 // #pragma omp declare target to(*) device_type(*). 18657 // Therefore DevTy having no value does not imply host. The emission status 18658 // will be checked again at the end of compilation unit with Final = true. 18659 if (DevTy.hasValue()) 18660 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) 18661 return FunctionEmissionStatus::OMPDiscarded; 18662 // If we have an explicit value for the device type, or we are in a target 18663 // declare context, we need to emit all extern and used symbols. 18664 if (isInOpenMPDeclareTargetContext() || DevTy.hasValue()) 18665 if (IsEmittedForExternalSymbol()) 18666 return FunctionEmissionStatus::Emitted; 18667 // Device mode only emits what it must, if it wasn't tagged yet and needed, 18668 // we'll omit it. 18669 if (Final) 18670 return FunctionEmissionStatus::OMPDiscarded; 18671 } else if (LangOpts.OpenMP > 45) { 18672 // In OpenMP host compilation prior to 5.0 everything was an emitted host 18673 // function. In 5.0, no_host was introduced which might cause a function to 18674 // be ommitted. 18675 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18676 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18677 if (DevTy.hasValue()) 18678 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) 18679 return FunctionEmissionStatus::OMPDiscarded; 18680 } 18681 18682 if (Final && LangOpts.OpenMP && !LangOpts.CUDA) 18683 return FunctionEmissionStatus::Emitted; 18684 18685 if (LangOpts.CUDA) { 18686 // When compiling for device, host functions are never emitted. Similarly, 18687 // when compiling for host, device and global functions are never emitted. 18688 // (Technically, we do emit a host-side stub for global functions, but this 18689 // doesn't count for our purposes here.) 18690 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); 18691 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) 18692 return FunctionEmissionStatus::CUDADiscarded; 18693 if (!LangOpts.CUDAIsDevice && 18694 (T == Sema::CFT_Device || T == Sema::CFT_Global)) 18695 return FunctionEmissionStatus::CUDADiscarded; 18696 18697 if (IsEmittedForExternalSymbol()) 18698 return FunctionEmissionStatus::Emitted; 18699 } 18700 18701 // Otherwise, the function is known-emitted if it's in our set of 18702 // known-emitted functions. 18703 return FunctionEmissionStatus::Unknown; 18704 } 18705 18706 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { 18707 // Host-side references to a __global__ function refer to the stub, so the 18708 // function itself is never emitted and therefore should not be marked. 18709 // If we have host fn calls kernel fn calls host+device, the HD function 18710 // does not get instantiated on the host. We model this by omitting at the 18711 // call to the kernel from the callgraph. This ensures that, when compiling 18712 // for host, only HD functions actually called from the host get marked as 18713 // known-emitted. 18714 return LangOpts.CUDA && !LangOpts.CUDAIsDevice && 18715 IdentifyCUDATarget(Callee) == CFT_Global; 18716 } 18717