xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaDecl.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/NonTrivialTypeVisitor.h"
28 #include "clang/AST/Randstruct.h"
29 #include "clang/AST/StmtCXX.h"
30 #include "clang/AST/Type.h"
31 #include "clang/Basic/Builtins.h"
32 #include "clang/Basic/HLSLRuntime.h"
33 #include "clang/Basic/PartialDiagnostic.h"
34 #include "clang/Basic/SourceManager.h"
35 #include "clang/Basic/TargetInfo.h"
36 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
37 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
38 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
39 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
40 #include "clang/Sema/CXXFieldCollector.h"
41 #include "clang/Sema/DeclSpec.h"
42 #include "clang/Sema/DelayedDiagnostic.h"
43 #include "clang/Sema/Initialization.h"
44 #include "clang/Sema/Lookup.h"
45 #include "clang/Sema/ParsedTemplate.h"
46 #include "clang/Sema/Scope.h"
47 #include "clang/Sema/ScopeInfo.h"
48 #include "clang/Sema/SemaInternal.h"
49 #include "clang/Sema/Template.h"
50 #include "llvm/ADT/SmallString.h"
51 #include "llvm/ADT/StringExtras.h"
52 #include "llvm/TargetParser/Triple.h"
53 #include <algorithm>
54 #include <cstring>
55 #include <functional>
56 #include <optional>
57 #include <unordered_map>
58 
59 using namespace clang;
60 using namespace sema;
61 
62 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
63   if (OwnedType) {
64     Decl *Group[2] = { OwnedType, Ptr };
65     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
66   }
67 
68   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
69 }
70 
71 namespace {
72 
73 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
74  public:
75    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
76                         bool AllowTemplates = false,
77                         bool AllowNonTemplates = true)
78        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
79          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
80      WantExpressionKeywords = false;
81      WantCXXNamedCasts = false;
82      WantRemainingKeywords = false;
83   }
84 
85   bool ValidateCandidate(const TypoCorrection &candidate) override {
86     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
87       if (!AllowInvalidDecl && ND->isInvalidDecl())
88         return false;
89 
90       if (getAsTypeTemplateDecl(ND))
91         return AllowTemplates;
92 
93       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
94       if (!IsType)
95         return false;
96 
97       if (AllowNonTemplates)
98         return true;
99 
100       // An injected-class-name of a class template (specialization) is valid
101       // as a template or as a non-template.
102       if (AllowTemplates) {
103         auto *RD = dyn_cast<CXXRecordDecl>(ND);
104         if (!RD || !RD->isInjectedClassName())
105           return false;
106         RD = cast<CXXRecordDecl>(RD->getDeclContext());
107         return RD->getDescribedClassTemplate() ||
108                isa<ClassTemplateSpecializationDecl>(RD);
109       }
110 
111       return false;
112     }
113 
114     return !WantClassName && candidate.isKeyword();
115   }
116 
117   std::unique_ptr<CorrectionCandidateCallback> clone() override {
118     return std::make_unique<TypeNameValidatorCCC>(*this);
119   }
120 
121  private:
122   bool AllowInvalidDecl;
123   bool WantClassName;
124   bool AllowTemplates;
125   bool AllowNonTemplates;
126 };
127 
128 } // end anonymous namespace
129 
130 /// Determine whether the token kind starts a simple-type-specifier.
131 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
132   switch (Kind) {
133   // FIXME: Take into account the current language when deciding whether a
134   // token kind is a valid type specifier
135   case tok::kw_short:
136   case tok::kw_long:
137   case tok::kw___int64:
138   case tok::kw___int128:
139   case tok::kw_signed:
140   case tok::kw_unsigned:
141   case tok::kw_void:
142   case tok::kw_char:
143   case tok::kw_int:
144   case tok::kw_half:
145   case tok::kw_float:
146   case tok::kw_double:
147   case tok::kw___bf16:
148   case tok::kw__Float16:
149   case tok::kw___float128:
150   case tok::kw___ibm128:
151   case tok::kw_wchar_t:
152   case tok::kw_bool:
153   case tok::kw__Accum:
154   case tok::kw__Fract:
155   case tok::kw__Sat:
156 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
157 #include "clang/Basic/TransformTypeTraits.def"
158   case tok::kw___auto_type:
159     return true;
160 
161   case tok::annot_typename:
162   case tok::kw_char16_t:
163   case tok::kw_char32_t:
164   case tok::kw_typeof:
165   case tok::annot_decltype:
166   case tok::kw_decltype:
167     return getLangOpts().CPlusPlus;
168 
169   case tok::kw_char8_t:
170     return getLangOpts().Char8;
171 
172   default:
173     break;
174   }
175 
176   return false;
177 }
178 
179 namespace {
180 enum class UnqualifiedTypeNameLookupResult {
181   NotFound,
182   FoundNonType,
183   FoundType
184 };
185 } // end anonymous namespace
186 
187 /// Tries to perform unqualified lookup of the type decls in bases for
188 /// dependent class.
189 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
190 /// type decl, \a FoundType if only type decls are found.
191 static UnqualifiedTypeNameLookupResult
192 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
193                                 SourceLocation NameLoc,
194                                 const CXXRecordDecl *RD) {
195   if (!RD->hasDefinition())
196     return UnqualifiedTypeNameLookupResult::NotFound;
197   // Look for type decls in base classes.
198   UnqualifiedTypeNameLookupResult FoundTypeDecl =
199       UnqualifiedTypeNameLookupResult::NotFound;
200   for (const auto &Base : RD->bases()) {
201     const CXXRecordDecl *BaseRD = nullptr;
202     if (auto *BaseTT = Base.getType()->getAs<TagType>())
203       BaseRD = BaseTT->getAsCXXRecordDecl();
204     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
205       // Look for type decls in dependent base classes that have known primary
206       // templates.
207       if (!TST || !TST->isDependentType())
208         continue;
209       auto *TD = TST->getTemplateName().getAsTemplateDecl();
210       if (!TD)
211         continue;
212       if (auto *BasePrimaryTemplate =
213           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
214         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
215           BaseRD = BasePrimaryTemplate;
216         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
217           if (const ClassTemplatePartialSpecializationDecl *PS =
218                   CTD->findPartialSpecialization(Base.getType()))
219             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
220               BaseRD = PS;
221         }
222       }
223     }
224     if (BaseRD) {
225       for (NamedDecl *ND : BaseRD->lookup(&II)) {
226         if (!isa<TypeDecl>(ND))
227           return UnqualifiedTypeNameLookupResult::FoundNonType;
228         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
229       }
230       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
231         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
232         case UnqualifiedTypeNameLookupResult::FoundNonType:
233           return UnqualifiedTypeNameLookupResult::FoundNonType;
234         case UnqualifiedTypeNameLookupResult::FoundType:
235           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
236           break;
237         case UnqualifiedTypeNameLookupResult::NotFound:
238           break;
239         }
240       }
241     }
242   }
243 
244   return FoundTypeDecl;
245 }
246 
247 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
248                                                       const IdentifierInfo &II,
249                                                       SourceLocation NameLoc) {
250   // Lookup in the parent class template context, if any.
251   const CXXRecordDecl *RD = nullptr;
252   UnqualifiedTypeNameLookupResult FoundTypeDecl =
253       UnqualifiedTypeNameLookupResult::NotFound;
254   for (DeclContext *DC = S.CurContext;
255        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
256        DC = DC->getParent()) {
257     // Look for type decls in dependent base classes that have known primary
258     // templates.
259     RD = dyn_cast<CXXRecordDecl>(DC);
260     if (RD && RD->getDescribedClassTemplate())
261       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
262   }
263   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
264     return nullptr;
265 
266   // We found some types in dependent base classes.  Recover as if the user
267   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
268   // lookup during template instantiation.
269   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
270 
271   ASTContext &Context = S.Context;
272   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
273                                           cast<Type>(Context.getRecordType(RD)));
274   QualType T =
275       Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II);
276 
277   CXXScopeSpec SS;
278   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
279 
280   TypeLocBuilder Builder;
281   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
282   DepTL.setNameLoc(NameLoc);
283   DepTL.setElaboratedKeywordLoc(SourceLocation());
284   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
285   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
286 }
287 
288 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
289 static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T,
290                                  SourceLocation NameLoc,
291                                  bool WantNontrivialTypeSourceInfo = true) {
292   switch (T->getTypeClass()) {
293   case Type::DeducedTemplateSpecialization:
294   case Type::Enum:
295   case Type::InjectedClassName:
296   case Type::Record:
297   case Type::Typedef:
298   case Type::UnresolvedUsing:
299   case Type::Using:
300     break;
301   // These can never be qualified so an ElaboratedType node
302   // would carry no additional meaning.
303   case Type::ObjCInterface:
304   case Type::ObjCTypeParam:
305   case Type::TemplateTypeParm:
306     return ParsedType::make(T);
307   default:
308     llvm_unreachable("Unexpected Type Class");
309   }
310 
311   if (!SS || SS->isEmpty())
312     return ParsedType::make(S.Context.getElaboratedType(
313         ElaboratedTypeKeyword::None, nullptr, T, nullptr));
314 
315   QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T);
316   if (!WantNontrivialTypeSourceInfo)
317     return ParsedType::make(ElTy);
318 
319   TypeLocBuilder Builder;
320   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
321   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy);
322   ElabTL.setElaboratedKeywordLoc(SourceLocation());
323   ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context));
324   return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy));
325 }
326 
327 /// If the identifier refers to a type name within this scope,
328 /// return the declaration of that type.
329 ///
330 /// This routine performs ordinary name lookup of the identifier II
331 /// within the given scope, with optional C++ scope specifier SS, to
332 /// determine whether the name refers to a type. If so, returns an
333 /// opaque pointer (actually a QualType) corresponding to that
334 /// type. Otherwise, returns NULL.
335 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
336                              Scope *S, CXXScopeSpec *SS, bool isClassName,
337                              bool HasTrailingDot, ParsedType ObjectTypePtr,
338                              bool IsCtorOrDtorName,
339                              bool WantNontrivialTypeSourceInfo,
340                              bool IsClassTemplateDeductionContext,
341                              ImplicitTypenameContext AllowImplicitTypename,
342                              IdentifierInfo **CorrectedII) {
343   // FIXME: Consider allowing this outside C++1z mode as an extension.
344   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
345                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
346                               !isClassName && !HasTrailingDot;
347 
348   // Determine where we will perform name lookup.
349   DeclContext *LookupCtx = nullptr;
350   if (ObjectTypePtr) {
351     QualType ObjectType = ObjectTypePtr.get();
352     if (ObjectType->isRecordType())
353       LookupCtx = computeDeclContext(ObjectType);
354   } else if (SS && SS->isNotEmpty()) {
355     LookupCtx = computeDeclContext(*SS, false);
356 
357     if (!LookupCtx) {
358       if (isDependentScopeSpecifier(*SS)) {
359         // C++ [temp.res]p3:
360         //   A qualified-id that refers to a type and in which the
361         //   nested-name-specifier depends on a template-parameter (14.6.2)
362         //   shall be prefixed by the keyword typename to indicate that the
363         //   qualified-id denotes a type, forming an
364         //   elaborated-type-specifier (7.1.5.3).
365         //
366         // We therefore do not perform any name lookup if the result would
367         // refer to a member of an unknown specialization.
368         // In C++2a, in several contexts a 'typename' is not required. Also
369         // allow this as an extension.
370         if (AllowImplicitTypename == ImplicitTypenameContext::No &&
371             !isClassName && !IsCtorOrDtorName)
372           return nullptr;
373         bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName;
374         if (IsImplicitTypename) {
375           SourceLocation QualifiedLoc = SS->getRange().getBegin();
376           if (getLangOpts().CPlusPlus20)
377             Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename);
378           else
379             Diag(QualifiedLoc, diag::ext_implicit_typename)
380                 << SS->getScopeRep() << II.getName()
381                 << FixItHint::CreateInsertion(QualifiedLoc, "typename ");
382         }
383 
384         // We know from the grammar that this name refers to a type,
385         // so build a dependent node to describe the type.
386         if (WantNontrivialTypeSourceInfo)
387           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc,
388                                    (ImplicitTypenameContext)IsImplicitTypename)
389               .get();
390 
391         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
392         QualType T = CheckTypenameType(
393             IsImplicitTypename ? ElaboratedTypeKeyword::Typename
394                                : ElaboratedTypeKeyword::None,
395             SourceLocation(), QualifierLoc, II, NameLoc);
396         return ParsedType::make(T);
397       }
398 
399       return nullptr;
400     }
401 
402     if (!LookupCtx->isDependentContext() &&
403         RequireCompleteDeclContext(*SS, LookupCtx))
404       return nullptr;
405   }
406 
407   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
408   // lookup for class-names.
409   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
410                                       LookupOrdinaryName;
411   LookupResult Result(*this, &II, NameLoc, Kind);
412   if (LookupCtx) {
413     // Perform "qualified" name lookup into the declaration context we
414     // computed, which is either the type of the base of a member access
415     // expression or the declaration context associated with a prior
416     // nested-name-specifier.
417     LookupQualifiedName(Result, LookupCtx);
418 
419     if (ObjectTypePtr && Result.empty()) {
420       // C++ [basic.lookup.classref]p3:
421       //   If the unqualified-id is ~type-name, the type-name is looked up
422       //   in the context of the entire postfix-expression. If the type T of
423       //   the object expression is of a class type C, the type-name is also
424       //   looked up in the scope of class C. At least one of the lookups shall
425       //   find a name that refers to (possibly cv-qualified) T.
426       LookupName(Result, S);
427     }
428   } else {
429     // Perform unqualified name lookup.
430     LookupName(Result, S);
431 
432     // For unqualified lookup in a class template in MSVC mode, look into
433     // dependent base classes where the primary class template is known.
434     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
435       if (ParsedType TypeInBase =
436               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
437         return TypeInBase;
438     }
439   }
440 
441   NamedDecl *IIDecl = nullptr;
442   UsingShadowDecl *FoundUsingShadow = nullptr;
443   switch (Result.getResultKind()) {
444   case LookupResult::NotFound:
445     if (CorrectedII) {
446       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
447                                AllowDeducedTemplate);
448       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
449                                               S, SS, CCC, CTK_ErrorRecovery);
450       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
451       TemplateTy Template;
452       bool MemberOfUnknownSpecialization;
453       UnqualifiedId TemplateName;
454       TemplateName.setIdentifier(NewII, NameLoc);
455       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
456       CXXScopeSpec NewSS, *NewSSPtr = SS;
457       if (SS && NNS) {
458         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
459         NewSSPtr = &NewSS;
460       }
461       if (Correction && (NNS || NewII != &II) &&
462           // Ignore a correction to a template type as the to-be-corrected
463           // identifier is not a template (typo correction for template names
464           // is handled elsewhere).
465           !(getLangOpts().CPlusPlus && NewSSPtr &&
466             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
467                            Template, MemberOfUnknownSpecialization))) {
468         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
469                                     isClassName, HasTrailingDot, ObjectTypePtr,
470                                     IsCtorOrDtorName,
471                                     WantNontrivialTypeSourceInfo,
472                                     IsClassTemplateDeductionContext);
473         if (Ty) {
474           diagnoseTypo(Correction,
475                        PDiag(diag::err_unknown_type_or_class_name_suggest)
476                          << Result.getLookupName() << isClassName);
477           if (SS && NNS)
478             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
479           *CorrectedII = NewII;
480           return Ty;
481         }
482       }
483     }
484     Result.suppressDiagnostics();
485     return nullptr;
486   case LookupResult::NotFoundInCurrentInstantiation:
487     if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
488       QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None,
489                                                 SS->getScopeRep(), &II);
490       TypeLocBuilder TLB;
491       DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T);
492       TL.setElaboratedKeywordLoc(SourceLocation());
493       TL.setQualifierLoc(SS->getWithLocInContext(Context));
494       TL.setNameLoc(NameLoc);
495       return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
496     }
497     [[fallthrough]];
498   case LookupResult::FoundOverloaded:
499   case LookupResult::FoundUnresolvedValue:
500     Result.suppressDiagnostics();
501     return nullptr;
502 
503   case LookupResult::Ambiguous:
504     // Recover from type-hiding ambiguities by hiding the type.  We'll
505     // do the lookup again when looking for an object, and we can
506     // diagnose the error then.  If we don't do this, then the error
507     // about hiding the type will be immediately followed by an error
508     // that only makes sense if the identifier was treated like a type.
509     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
510       Result.suppressDiagnostics();
511       return nullptr;
512     }
513 
514     // Look to see if we have a type anywhere in the list of results.
515     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
516          Res != ResEnd; ++Res) {
517       NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
518       if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
519               RealRes) ||
520           (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
521         if (!IIDecl ||
522             // Make the selection of the recovery decl deterministic.
523             RealRes->getLocation() < IIDecl->getLocation()) {
524           IIDecl = RealRes;
525           FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res);
526         }
527       }
528     }
529 
530     if (!IIDecl) {
531       // None of the entities we found is a type, so there is no way
532       // to even assume that the result is a type. In this case, don't
533       // complain about the ambiguity. The parser will either try to
534       // perform this lookup again (e.g., as an object name), which
535       // will produce the ambiguity, or will complain that it expected
536       // a type name.
537       Result.suppressDiagnostics();
538       return nullptr;
539     }
540 
541     // We found a type within the ambiguous lookup; diagnose the
542     // ambiguity and then return that type. This might be the right
543     // answer, or it might not be, but it suppresses any attempt to
544     // perform the name lookup again.
545     break;
546 
547   case LookupResult::Found:
548     IIDecl = Result.getFoundDecl();
549     FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin());
550     break;
551   }
552 
553   assert(IIDecl && "Didn't find decl");
554 
555   QualType T;
556   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
557     // C++ [class.qual]p2: A lookup that would find the injected-class-name
558     // instead names the constructors of the class, except when naming a class.
559     // This is ill-formed when we're not actually forming a ctor or dtor name.
560     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
561     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
562     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
563         FoundRD->isInjectedClassName() &&
564         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
565       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
566           << &II << /*Type*/1;
567 
568     DiagnoseUseOfDecl(IIDecl, NameLoc);
569 
570     T = Context.getTypeDeclType(TD);
571     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
572   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
573     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
574     if (!HasTrailingDot)
575       T = Context.getObjCInterfaceType(IDecl);
576     FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl.
577   } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
578     (void)DiagnoseUseOfDecl(UD, NameLoc);
579     // Recover with 'int'
580     return ParsedType::make(Context.IntTy);
581   } else if (AllowDeducedTemplate) {
582     if (auto *TD = getAsTypeTemplateDecl(IIDecl)) {
583       assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
584       TemplateName Template =
585           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
586       T = Context.getDeducedTemplateSpecializationType(Template, QualType(),
587                                                        false);
588       // Don't wrap in a further UsingType.
589       FoundUsingShadow = nullptr;
590     }
591   }
592 
593   if (T.isNull()) {
594     // If it's not plausibly a type, suppress diagnostics.
595     Result.suppressDiagnostics();
596     return nullptr;
597   }
598 
599   if (FoundUsingShadow)
600     T = Context.getUsingType(FoundUsingShadow, T);
601 
602   return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo);
603 }
604 
605 // Builds a fake NNS for the given decl context.
606 static NestedNameSpecifier *
607 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
608   for (;; DC = DC->getLookupParent()) {
609     DC = DC->getPrimaryContext();
610     auto *ND = dyn_cast<NamespaceDecl>(DC);
611     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
612       return NestedNameSpecifier::Create(Context, nullptr, ND);
613     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
614       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
615                                          RD->getTypeForDecl());
616     else if (isa<TranslationUnitDecl>(DC))
617       return NestedNameSpecifier::GlobalSpecifier(Context);
618   }
619   llvm_unreachable("something isn't in TU scope?");
620 }
621 
622 /// Find the parent class with dependent bases of the innermost enclosing method
623 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
624 /// up allowing unqualified dependent type names at class-level, which MSVC
625 /// correctly rejects.
626 static const CXXRecordDecl *
627 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
628   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
629     DC = DC->getPrimaryContext();
630     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
631       if (MD->getParent()->hasAnyDependentBases())
632         return MD->getParent();
633   }
634   return nullptr;
635 }
636 
637 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
638                                           SourceLocation NameLoc,
639                                           bool IsTemplateTypeArg) {
640   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
641 
642   NestedNameSpecifier *NNS = nullptr;
643   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
644     // If we weren't able to parse a default template argument, delay lookup
645     // until instantiation time by making a non-dependent DependentTypeName. We
646     // pretend we saw a NestedNameSpecifier referring to the current scope, and
647     // lookup is retried.
648     // FIXME: This hurts our diagnostic quality, since we get errors like "no
649     // type named 'Foo' in 'current_namespace'" when the user didn't write any
650     // name specifiers.
651     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
652     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
653   } else if (const CXXRecordDecl *RD =
654                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
655     // Build a DependentNameType that will perform lookup into RD at
656     // instantiation time.
657     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
658                                       RD->getTypeForDecl());
659 
660     // Diagnose that this identifier was undeclared, and retry the lookup during
661     // template instantiation.
662     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
663                                                                       << RD;
664   } else {
665     // This is not a situation that we should recover from.
666     return ParsedType();
667   }
668 
669   QualType T =
670       Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II);
671 
672   // Build type location information.  We synthesized the qualifier, so we have
673   // to build a fake NestedNameSpecifierLoc.
674   NestedNameSpecifierLocBuilder NNSLocBuilder;
675   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
676   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
677 
678   TypeLocBuilder Builder;
679   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
680   DepTL.setNameLoc(NameLoc);
681   DepTL.setElaboratedKeywordLoc(SourceLocation());
682   DepTL.setQualifierLoc(QualifierLoc);
683   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
684 }
685 
686 /// isTagName() - This method is called *for error recovery purposes only*
687 /// to determine if the specified name is a valid tag name ("struct foo").  If
688 /// so, this returns the TST for the tag corresponding to it (TST_enum,
689 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
690 /// cases in C where the user forgot to specify the tag.
691 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
692   // Do a tag name lookup in this scope.
693   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
694   LookupName(R, S, false);
695   R.suppressDiagnostics();
696   if (R.getResultKind() == LookupResult::Found)
697     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
698       switch (TD->getTagKind()) {
699       case TagTypeKind::Struct:
700         return DeclSpec::TST_struct;
701       case TagTypeKind::Interface:
702         return DeclSpec::TST_interface;
703       case TagTypeKind::Union:
704         return DeclSpec::TST_union;
705       case TagTypeKind::Class:
706         return DeclSpec::TST_class;
707       case TagTypeKind::Enum:
708         return DeclSpec::TST_enum;
709       }
710     }
711 
712   return DeclSpec::TST_unspecified;
713 }
714 
715 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
716 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
717 /// then downgrade the missing typename error to a warning.
718 /// This is needed for MSVC compatibility; Example:
719 /// @code
720 /// template<class T> class A {
721 /// public:
722 ///   typedef int TYPE;
723 /// };
724 /// template<class T> class B : public A<T> {
725 /// public:
726 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
727 /// };
728 /// @endcode
729 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
730   if (CurContext->isRecord()) {
731     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
732       return true;
733 
734     const Type *Ty = SS->getScopeRep()->getAsType();
735 
736     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
737     for (const auto &Base : RD->bases())
738       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
739         return true;
740     return S->isFunctionPrototypeScope();
741   }
742   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
743 }
744 
745 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
746                                    SourceLocation IILoc,
747                                    Scope *S,
748                                    CXXScopeSpec *SS,
749                                    ParsedType &SuggestedType,
750                                    bool IsTemplateName) {
751   // Don't report typename errors for editor placeholders.
752   if (II->isEditorPlaceholder())
753     return;
754   // We don't have anything to suggest (yet).
755   SuggestedType = nullptr;
756 
757   // There may have been a typo in the name of the type. Look up typo
758   // results, in case we have something that we can suggest.
759   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
760                            /*AllowTemplates=*/IsTemplateName,
761                            /*AllowNonTemplates=*/!IsTemplateName);
762   if (TypoCorrection Corrected =
763           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
764                       CCC, CTK_ErrorRecovery)) {
765     // FIXME: Support error recovery for the template-name case.
766     bool CanRecover = !IsTemplateName;
767     if (Corrected.isKeyword()) {
768       // We corrected to a keyword.
769       diagnoseTypo(Corrected,
770                    PDiag(IsTemplateName ? diag::err_no_template_suggest
771                                         : diag::err_unknown_typename_suggest)
772                        << II);
773       II = Corrected.getCorrectionAsIdentifierInfo();
774     } else {
775       // We found a similarly-named type or interface; suggest that.
776       if (!SS || !SS->isSet()) {
777         diagnoseTypo(Corrected,
778                      PDiag(IsTemplateName ? diag::err_no_template_suggest
779                                           : diag::err_unknown_typename_suggest)
780                          << II, CanRecover);
781       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
782         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
783         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
784                                 II->getName().equals(CorrectedStr);
785         diagnoseTypo(Corrected,
786                      PDiag(IsTemplateName
787                                ? diag::err_no_member_template_suggest
788                                : diag::err_unknown_nested_typename_suggest)
789                          << II << DC << DroppedSpecifier << SS->getRange(),
790                      CanRecover);
791       } else {
792         llvm_unreachable("could not have corrected a typo here");
793       }
794 
795       if (!CanRecover)
796         return;
797 
798       CXXScopeSpec tmpSS;
799       if (Corrected.getCorrectionSpecifier())
800         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
801                           SourceRange(IILoc));
802       // FIXME: Support class template argument deduction here.
803       SuggestedType =
804           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
805                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
806                       /*IsCtorOrDtorName=*/false,
807                       /*WantNontrivialTypeSourceInfo=*/true);
808     }
809     return;
810   }
811 
812   if (getLangOpts().CPlusPlus && !IsTemplateName) {
813     // See if II is a class template that the user forgot to pass arguments to.
814     UnqualifiedId Name;
815     Name.setIdentifier(II, IILoc);
816     CXXScopeSpec EmptySS;
817     TemplateTy TemplateResult;
818     bool MemberOfUnknownSpecialization;
819     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
820                        Name, nullptr, true, TemplateResult,
821                        MemberOfUnknownSpecialization) == TNK_Type_template) {
822       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
823       return;
824     }
825   }
826 
827   // FIXME: Should we move the logic that tries to recover from a missing tag
828   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
829 
830   if (!SS || (!SS->isSet() && !SS->isInvalid()))
831     Diag(IILoc, IsTemplateName ? diag::err_no_template
832                                : diag::err_unknown_typename)
833         << II;
834   else if (DeclContext *DC = computeDeclContext(*SS, false))
835     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
836                                : diag::err_typename_nested_not_found)
837         << II << DC << SS->getRange();
838   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
839     SuggestedType =
840         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
841   } else if (isDependentScopeSpecifier(*SS)) {
842     unsigned DiagID = diag::err_typename_missing;
843     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
844       DiagID = diag::ext_typename_missing;
845 
846     Diag(SS->getRange().getBegin(), DiagID)
847       << SS->getScopeRep() << II->getName()
848       << SourceRange(SS->getRange().getBegin(), IILoc)
849       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
850     SuggestedType = ActOnTypenameType(S, SourceLocation(),
851                                       *SS, *II, IILoc).get();
852   } else {
853     assert(SS && SS->isInvalid() &&
854            "Invalid scope specifier has already been diagnosed");
855   }
856 }
857 
858 /// Determine whether the given result set contains either a type name
859 /// or
860 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
861   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
862                        NextToken.is(tok::less);
863 
864   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
865     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
866       return true;
867 
868     if (CheckTemplate && isa<TemplateDecl>(*I))
869       return true;
870   }
871 
872   return false;
873 }
874 
875 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
876                                     Scope *S, CXXScopeSpec &SS,
877                                     IdentifierInfo *&Name,
878                                     SourceLocation NameLoc) {
879   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
880   SemaRef.LookupParsedName(R, S, &SS);
881   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
882     StringRef FixItTagName;
883     switch (Tag->getTagKind()) {
884     case TagTypeKind::Class:
885       FixItTagName = "class ";
886       break;
887 
888     case TagTypeKind::Enum:
889       FixItTagName = "enum ";
890       break;
891 
892     case TagTypeKind::Struct:
893       FixItTagName = "struct ";
894       break;
895 
896     case TagTypeKind::Interface:
897       FixItTagName = "__interface ";
898       break;
899 
900     case TagTypeKind::Union:
901       FixItTagName = "union ";
902       break;
903     }
904 
905     StringRef TagName = FixItTagName.drop_back();
906     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
907       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
908       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
909 
910     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
911          I != IEnd; ++I)
912       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
913         << Name << TagName;
914 
915     // Replace lookup results with just the tag decl.
916     Result.clear(Sema::LookupTagName);
917     SemaRef.LookupParsedName(Result, S, &SS);
918     return true;
919   }
920 
921   return false;
922 }
923 
924 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
925                                             IdentifierInfo *&Name,
926                                             SourceLocation NameLoc,
927                                             const Token &NextToken,
928                                             CorrectionCandidateCallback *CCC) {
929   DeclarationNameInfo NameInfo(Name, NameLoc);
930   ObjCMethodDecl *CurMethod = getCurMethodDecl();
931 
932   assert(NextToken.isNot(tok::coloncolon) &&
933          "parse nested name specifiers before calling ClassifyName");
934   if (getLangOpts().CPlusPlus && SS.isSet() &&
935       isCurrentClassName(*Name, S, &SS)) {
936     // Per [class.qual]p2, this names the constructors of SS, not the
937     // injected-class-name. We don't have a classification for that.
938     // There's not much point caching this result, since the parser
939     // will reject it later.
940     return NameClassification::Unknown();
941   }
942 
943   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
944   LookupParsedName(Result, S, &SS, !CurMethod);
945 
946   if (SS.isInvalid())
947     return NameClassification::Error();
948 
949   // For unqualified lookup in a class template in MSVC mode, look into
950   // dependent base classes where the primary class template is known.
951   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
952     if (ParsedType TypeInBase =
953             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
954       return TypeInBase;
955   }
956 
957   // Perform lookup for Objective-C instance variables (including automatically
958   // synthesized instance variables), if we're in an Objective-C method.
959   // FIXME: This lookup really, really needs to be folded in to the normal
960   // unqualified lookup mechanism.
961   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
962     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
963     if (Ivar.isInvalid())
964       return NameClassification::Error();
965     if (Ivar.isUsable())
966       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
967 
968     // We defer builtin creation until after ivar lookup inside ObjC methods.
969     if (Result.empty())
970       LookupBuiltin(Result);
971   }
972 
973   bool SecondTry = false;
974   bool IsFilteredTemplateName = false;
975 
976 Corrected:
977   switch (Result.getResultKind()) {
978   case LookupResult::NotFound:
979     // If an unqualified-id is followed by a '(', then we have a function
980     // call.
981     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
982       // In C++, this is an ADL-only call.
983       // FIXME: Reference?
984       if (getLangOpts().CPlusPlus)
985         return NameClassification::UndeclaredNonType();
986 
987       // C90 6.3.2.2:
988       //   If the expression that precedes the parenthesized argument list in a
989       //   function call consists solely of an identifier, and if no
990       //   declaration is visible for this identifier, the identifier is
991       //   implicitly declared exactly as if, in the innermost block containing
992       //   the function call, the declaration
993       //
994       //     extern int identifier ();
995       //
996       //   appeared.
997       //
998       // We also allow this in C99 as an extension. However, this is not
999       // allowed in all language modes as functions without prototypes may not
1000       // be supported.
1001       if (getLangOpts().implicitFunctionsAllowed()) {
1002         if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
1003           return NameClassification::NonType(D);
1004       }
1005     }
1006 
1007     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
1008       // In C++20 onwards, this could be an ADL-only call to a function
1009       // template, and we're required to assume that this is a template name.
1010       //
1011       // FIXME: Find a way to still do typo correction in this case.
1012       TemplateName Template =
1013           Context.getAssumedTemplateName(NameInfo.getName());
1014       return NameClassification::UndeclaredTemplate(Template);
1015     }
1016 
1017     // In C, we first see whether there is a tag type by the same name, in
1018     // which case it's likely that the user just forgot to write "enum",
1019     // "struct", or "union".
1020     if (!getLangOpts().CPlusPlus && !SecondTry &&
1021         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1022       break;
1023     }
1024 
1025     // Perform typo correction to determine if there is another name that is
1026     // close to this name.
1027     if (!SecondTry && CCC) {
1028       SecondTry = true;
1029       if (TypoCorrection Corrected =
1030               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
1031                           &SS, *CCC, CTK_ErrorRecovery)) {
1032         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
1033         unsigned QualifiedDiag = diag::err_no_member_suggest;
1034 
1035         NamedDecl *FirstDecl = Corrected.getFoundDecl();
1036         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
1037         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1038             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
1039           UnqualifiedDiag = diag::err_no_template_suggest;
1040           QualifiedDiag = diag::err_no_member_template_suggest;
1041         } else if (UnderlyingFirstDecl &&
1042                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
1043                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
1044                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
1045           UnqualifiedDiag = diag::err_unknown_typename_suggest;
1046           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
1047         }
1048 
1049         if (SS.isEmpty()) {
1050           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
1051         } else {// FIXME: is this even reachable? Test it.
1052           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
1053           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
1054                                   Name->getName().equals(CorrectedStr);
1055           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
1056                                     << Name << computeDeclContext(SS, false)
1057                                     << DroppedSpecifier << SS.getRange());
1058         }
1059 
1060         // Update the name, so that the caller has the new name.
1061         Name = Corrected.getCorrectionAsIdentifierInfo();
1062 
1063         // Typo correction corrected to a keyword.
1064         if (Corrected.isKeyword())
1065           return Name;
1066 
1067         // Also update the LookupResult...
1068         // FIXME: This should probably go away at some point
1069         Result.clear();
1070         Result.setLookupName(Corrected.getCorrection());
1071         if (FirstDecl)
1072           Result.addDecl(FirstDecl);
1073 
1074         // If we found an Objective-C instance variable, let
1075         // LookupInObjCMethod build the appropriate expression to
1076         // reference the ivar.
1077         // FIXME: This is a gross hack.
1078         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1079           DeclResult R =
1080               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1081           if (R.isInvalid())
1082             return NameClassification::Error();
1083           if (R.isUsable())
1084             return NameClassification::NonType(Ivar);
1085         }
1086 
1087         goto Corrected;
1088       }
1089     }
1090 
1091     // We failed to correct; just fall through and let the parser deal with it.
1092     Result.suppressDiagnostics();
1093     return NameClassification::Unknown();
1094 
1095   case LookupResult::NotFoundInCurrentInstantiation: {
1096     // We performed name lookup into the current instantiation, and there were
1097     // dependent bases, so we treat this result the same way as any other
1098     // dependent nested-name-specifier.
1099 
1100     // C++ [temp.res]p2:
1101     //   A name used in a template declaration or definition and that is
1102     //   dependent on a template-parameter is assumed not to name a type
1103     //   unless the applicable name lookup finds a type name or the name is
1104     //   qualified by the keyword typename.
1105     //
1106     // FIXME: If the next token is '<', we might want to ask the parser to
1107     // perform some heroics to see if we actually have a
1108     // template-argument-list, which would indicate a missing 'template'
1109     // keyword here.
1110     return NameClassification::DependentNonType();
1111   }
1112 
1113   case LookupResult::Found:
1114   case LookupResult::FoundOverloaded:
1115   case LookupResult::FoundUnresolvedValue:
1116     break;
1117 
1118   case LookupResult::Ambiguous:
1119     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1120         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1121                                       /*AllowDependent=*/false)) {
1122       // C++ [temp.local]p3:
1123       //   A lookup that finds an injected-class-name (10.2) can result in an
1124       //   ambiguity in certain cases (for example, if it is found in more than
1125       //   one base class). If all of the injected-class-names that are found
1126       //   refer to specializations of the same class template, and if the name
1127       //   is followed by a template-argument-list, the reference refers to the
1128       //   class template itself and not a specialization thereof, and is not
1129       //   ambiguous.
1130       //
1131       // This filtering can make an ambiguous result into an unambiguous one,
1132       // so try again after filtering out template names.
1133       FilterAcceptableTemplateNames(Result);
1134       if (!Result.isAmbiguous()) {
1135         IsFilteredTemplateName = true;
1136         break;
1137       }
1138     }
1139 
1140     // Diagnose the ambiguity and return an error.
1141     return NameClassification::Error();
1142   }
1143 
1144   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1145       (IsFilteredTemplateName ||
1146        hasAnyAcceptableTemplateNames(
1147            Result, /*AllowFunctionTemplates=*/true,
1148            /*AllowDependent=*/false,
1149            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1150                getLangOpts().CPlusPlus20))) {
1151     // C++ [temp.names]p3:
1152     //   After name lookup (3.4) finds that a name is a template-name or that
1153     //   an operator-function-id or a literal- operator-id refers to a set of
1154     //   overloaded functions any member of which is a function template if
1155     //   this is followed by a <, the < is always taken as the delimiter of a
1156     //   template-argument-list and never as the less-than operator.
1157     // C++2a [temp.names]p2:
1158     //   A name is also considered to refer to a template if it is an
1159     //   unqualified-id followed by a < and name lookup finds either one
1160     //   or more functions or finds nothing.
1161     if (!IsFilteredTemplateName)
1162       FilterAcceptableTemplateNames(Result);
1163 
1164     bool IsFunctionTemplate;
1165     bool IsVarTemplate;
1166     TemplateName Template;
1167     if (Result.end() - Result.begin() > 1) {
1168       IsFunctionTemplate = true;
1169       Template = Context.getOverloadedTemplateName(Result.begin(),
1170                                                    Result.end());
1171     } else if (!Result.empty()) {
1172       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1173           *Result.begin(), /*AllowFunctionTemplates=*/true,
1174           /*AllowDependent=*/false));
1175       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1176       IsVarTemplate = isa<VarTemplateDecl>(TD);
1177 
1178       UsingShadowDecl *FoundUsingShadow =
1179           dyn_cast<UsingShadowDecl>(*Result.begin());
1180       assert(!FoundUsingShadow ||
1181              TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl()));
1182       Template =
1183           FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
1184       if (SS.isNotEmpty())
1185         Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1186                                                     /*TemplateKeyword=*/false,
1187                                                     Template);
1188     } else {
1189       // All results were non-template functions. This is a function template
1190       // name.
1191       IsFunctionTemplate = true;
1192       Template = Context.getAssumedTemplateName(NameInfo.getName());
1193     }
1194 
1195     if (IsFunctionTemplate) {
1196       // Function templates always go through overload resolution, at which
1197       // point we'll perform the various checks (e.g., accessibility) we need
1198       // to based on which function we selected.
1199       Result.suppressDiagnostics();
1200 
1201       return NameClassification::FunctionTemplate(Template);
1202     }
1203 
1204     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1205                          : NameClassification::TypeTemplate(Template);
1206   }
1207 
1208   auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) {
1209     QualType T = Context.getTypeDeclType(Type);
1210     if (const auto *USD = dyn_cast<UsingShadowDecl>(Found))
1211       T = Context.getUsingType(USD, T);
1212     return buildNamedType(*this, &SS, T, NameLoc);
1213   };
1214 
1215   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1216   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1217     DiagnoseUseOfDecl(Type, NameLoc);
1218     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1219     return BuildTypeFor(Type, *Result.begin());
1220   }
1221 
1222   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1223   if (!Class) {
1224     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1225     if (ObjCCompatibleAliasDecl *Alias =
1226             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1227       Class = Alias->getClassInterface();
1228   }
1229 
1230   if (Class) {
1231     DiagnoseUseOfDecl(Class, NameLoc);
1232 
1233     if (NextToken.is(tok::period)) {
1234       // Interface. <something> is parsed as a property reference expression.
1235       // Just return "unknown" as a fall-through for now.
1236       Result.suppressDiagnostics();
1237       return NameClassification::Unknown();
1238     }
1239 
1240     QualType T = Context.getObjCInterfaceType(Class);
1241     return ParsedType::make(T);
1242   }
1243 
1244   if (isa<ConceptDecl>(FirstDecl))
1245     return NameClassification::Concept(
1246         TemplateName(cast<TemplateDecl>(FirstDecl)));
1247 
1248   if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1249     (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1250     return NameClassification::Error();
1251   }
1252 
1253   // We can have a type template here if we're classifying a template argument.
1254   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1255       !isa<VarTemplateDecl>(FirstDecl))
1256     return NameClassification::TypeTemplate(
1257         TemplateName(cast<TemplateDecl>(FirstDecl)));
1258 
1259   // Check for a tag type hidden by a non-type decl in a few cases where it
1260   // seems likely a type is wanted instead of the non-type that was found.
1261   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1262   if ((NextToken.is(tok::identifier) ||
1263        (NextIsOp &&
1264         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1265       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1266     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1267     DiagnoseUseOfDecl(Type, NameLoc);
1268     return BuildTypeFor(Type, *Result.begin());
1269   }
1270 
1271   // If we already know which single declaration is referenced, just annotate
1272   // that declaration directly. Defer resolving even non-overloaded class
1273   // member accesses, as we need to defer certain access checks until we know
1274   // the context.
1275   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1276   if (Result.isSingleResult() && !ADL &&
1277       (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl)))
1278     return NameClassification::NonType(Result.getRepresentativeDecl());
1279 
1280   // Otherwise, this is an overload set that we will need to resolve later.
1281   Result.suppressDiagnostics();
1282   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1283       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1284       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1285       Result.begin(), Result.end()));
1286 }
1287 
1288 ExprResult
1289 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1290                                              SourceLocation NameLoc) {
1291   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1292   CXXScopeSpec SS;
1293   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1294   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1295 }
1296 
1297 ExprResult
1298 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1299                                             IdentifierInfo *Name,
1300                                             SourceLocation NameLoc,
1301                                             bool IsAddressOfOperand) {
1302   DeclarationNameInfo NameInfo(Name, NameLoc);
1303   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1304                                     NameInfo, IsAddressOfOperand,
1305                                     /*TemplateArgs=*/nullptr);
1306 }
1307 
1308 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1309                                               NamedDecl *Found,
1310                                               SourceLocation NameLoc,
1311                                               const Token &NextToken) {
1312   if (getCurMethodDecl() && SS.isEmpty())
1313     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1314       return BuildIvarRefExpr(S, NameLoc, Ivar);
1315 
1316   // Reconstruct the lookup result.
1317   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1318   Result.addDecl(Found);
1319   Result.resolveKind();
1320 
1321   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1322   return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true);
1323 }
1324 
1325 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1326   // For an implicit class member access, transform the result into a member
1327   // access expression if necessary.
1328   auto *ULE = cast<UnresolvedLookupExpr>(E);
1329   if ((*ULE->decls_begin())->isCXXClassMember()) {
1330     CXXScopeSpec SS;
1331     SS.Adopt(ULE->getQualifierLoc());
1332 
1333     // Reconstruct the lookup result.
1334     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1335                         LookupOrdinaryName);
1336     Result.setNamingClass(ULE->getNamingClass());
1337     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1338       Result.addDecl(*I, I.getAccess());
1339     Result.resolveKind();
1340     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1341                                            nullptr, S);
1342   }
1343 
1344   // Otherwise, this is already in the form we needed, and no further checks
1345   // are necessary.
1346   return ULE;
1347 }
1348 
1349 Sema::TemplateNameKindForDiagnostics
1350 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1351   auto *TD = Name.getAsTemplateDecl();
1352   if (!TD)
1353     return TemplateNameKindForDiagnostics::DependentTemplate;
1354   if (isa<ClassTemplateDecl>(TD))
1355     return TemplateNameKindForDiagnostics::ClassTemplate;
1356   if (isa<FunctionTemplateDecl>(TD))
1357     return TemplateNameKindForDiagnostics::FunctionTemplate;
1358   if (isa<VarTemplateDecl>(TD))
1359     return TemplateNameKindForDiagnostics::VarTemplate;
1360   if (isa<TypeAliasTemplateDecl>(TD))
1361     return TemplateNameKindForDiagnostics::AliasTemplate;
1362   if (isa<TemplateTemplateParmDecl>(TD))
1363     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1364   if (isa<ConceptDecl>(TD))
1365     return TemplateNameKindForDiagnostics::Concept;
1366   return TemplateNameKindForDiagnostics::DependentTemplate;
1367 }
1368 
1369 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1370   assert(DC->getLexicalParent() == CurContext &&
1371       "The next DeclContext should be lexically contained in the current one.");
1372   CurContext = DC;
1373   S->setEntity(DC);
1374 }
1375 
1376 void Sema::PopDeclContext() {
1377   assert(CurContext && "DeclContext imbalance!");
1378 
1379   CurContext = CurContext->getLexicalParent();
1380   assert(CurContext && "Popped translation unit!");
1381 }
1382 
1383 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1384                                                                     Decl *D) {
1385   // Unlike PushDeclContext, the context to which we return is not necessarily
1386   // the containing DC of TD, because the new context will be some pre-existing
1387   // TagDecl definition instead of a fresh one.
1388   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1389   CurContext = cast<TagDecl>(D)->getDefinition();
1390   assert(CurContext && "skipping definition of undefined tag");
1391   // Start lookups from the parent of the current context; we don't want to look
1392   // into the pre-existing complete definition.
1393   S->setEntity(CurContext->getLookupParent());
1394   return Result;
1395 }
1396 
1397 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1398   CurContext = static_cast<decltype(CurContext)>(Context);
1399 }
1400 
1401 /// EnterDeclaratorContext - Used when we must lookup names in the context
1402 /// of a declarator's nested name specifier.
1403 ///
1404 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1405   // C++0x [basic.lookup.unqual]p13:
1406   //   A name used in the definition of a static data member of class
1407   //   X (after the qualified-id of the static member) is looked up as
1408   //   if the name was used in a member function of X.
1409   // C++0x [basic.lookup.unqual]p14:
1410   //   If a variable member of a namespace is defined outside of the
1411   //   scope of its namespace then any name used in the definition of
1412   //   the variable member (after the declarator-id) is looked up as
1413   //   if the definition of the variable member occurred in its
1414   //   namespace.
1415   // Both of these imply that we should push a scope whose context
1416   // is the semantic context of the declaration.  We can't use
1417   // PushDeclContext here because that context is not necessarily
1418   // lexically contained in the current context.  Fortunately,
1419   // the containing scope should have the appropriate information.
1420 
1421   assert(!S->getEntity() && "scope already has entity");
1422 
1423 #ifndef NDEBUG
1424   Scope *Ancestor = S->getParent();
1425   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1426   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1427 #endif
1428 
1429   CurContext = DC;
1430   S->setEntity(DC);
1431 
1432   if (S->getParent()->isTemplateParamScope()) {
1433     // Also set the corresponding entities for all immediately-enclosing
1434     // template parameter scopes.
1435     EnterTemplatedContext(S->getParent(), DC);
1436   }
1437 }
1438 
1439 void Sema::ExitDeclaratorContext(Scope *S) {
1440   assert(S->getEntity() == CurContext && "Context imbalance!");
1441 
1442   // Switch back to the lexical context.  The safety of this is
1443   // enforced by an assert in EnterDeclaratorContext.
1444   Scope *Ancestor = S->getParent();
1445   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1446   CurContext = Ancestor->getEntity();
1447 
1448   // We don't need to do anything with the scope, which is going to
1449   // disappear.
1450 }
1451 
1452 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1453   assert(S->isTemplateParamScope() &&
1454          "expected to be initializing a template parameter scope");
1455 
1456   // C++20 [temp.local]p7:
1457   //   In the definition of a member of a class template that appears outside
1458   //   of the class template definition, the name of a member of the class
1459   //   template hides the name of a template-parameter of any enclosing class
1460   //   templates (but not a template-parameter of the member if the member is a
1461   //   class or function template).
1462   // C++20 [temp.local]p9:
1463   //   In the definition of a class template or in the definition of a member
1464   //   of such a template that appears outside of the template definition, for
1465   //   each non-dependent base class (13.8.2.1), if the name of the base class
1466   //   or the name of a member of the base class is the same as the name of a
1467   //   template-parameter, the base class name or member name hides the
1468   //   template-parameter name (6.4.10).
1469   //
1470   // This means that a template parameter scope should be searched immediately
1471   // after searching the DeclContext for which it is a template parameter
1472   // scope. For example, for
1473   //   template<typename T> template<typename U> template<typename V>
1474   //     void N::A<T>::B<U>::f(...)
1475   // we search V then B<U> (and base classes) then U then A<T> (and base
1476   // classes) then T then N then ::.
1477   unsigned ScopeDepth = getTemplateDepth(S);
1478   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1479     DeclContext *SearchDCAfterScope = DC;
1480     for (; DC; DC = DC->getLookupParent()) {
1481       if (const TemplateParameterList *TPL =
1482               cast<Decl>(DC)->getDescribedTemplateParams()) {
1483         unsigned DCDepth = TPL->getDepth() + 1;
1484         if (DCDepth > ScopeDepth)
1485           continue;
1486         if (ScopeDepth == DCDepth)
1487           SearchDCAfterScope = DC = DC->getLookupParent();
1488         break;
1489       }
1490     }
1491     S->setLookupEntity(SearchDCAfterScope);
1492   }
1493 }
1494 
1495 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1496   // We assume that the caller has already called
1497   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1498   FunctionDecl *FD = D->getAsFunction();
1499   if (!FD)
1500     return;
1501 
1502   // Same implementation as PushDeclContext, but enters the context
1503   // from the lexical parent, rather than the top-level class.
1504   assert(CurContext == FD->getLexicalParent() &&
1505     "The next DeclContext should be lexically contained in the current one.");
1506   CurContext = FD;
1507   S->setEntity(CurContext);
1508 
1509   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1510     ParmVarDecl *Param = FD->getParamDecl(P);
1511     // If the parameter has an identifier, then add it to the scope
1512     if (Param->getIdentifier()) {
1513       S->AddDecl(Param);
1514       IdResolver.AddDecl(Param);
1515     }
1516   }
1517 }
1518 
1519 void Sema::ActOnExitFunctionContext() {
1520   // Same implementation as PopDeclContext, but returns to the lexical parent,
1521   // rather than the top-level class.
1522   assert(CurContext && "DeclContext imbalance!");
1523   CurContext = CurContext->getLexicalParent();
1524   assert(CurContext && "Popped translation unit!");
1525 }
1526 
1527 /// Determine whether overloading is allowed for a new function
1528 /// declaration considering prior declarations of the same name.
1529 ///
1530 /// This routine determines whether overloading is possible, not
1531 /// whether a new declaration actually overloads a previous one.
1532 /// It will return true in C++ (where overloads are alway permitted)
1533 /// or, as a C extension, when either the new declaration or a
1534 /// previous one is declared with the 'overloadable' attribute.
1535 static bool AllowOverloadingOfFunction(const LookupResult &Previous,
1536                                        ASTContext &Context,
1537                                        const FunctionDecl *New) {
1538   if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>())
1539     return true;
1540 
1541   // Multiversion function declarations are not overloads in the
1542   // usual sense of that term, but lookup will report that an
1543   // overload set was found if more than one multiversion function
1544   // declaration is present for the same name. It is therefore
1545   // inadequate to assume that some prior declaration(s) had
1546   // the overloadable attribute; checking is required. Since one
1547   // declaration is permitted to omit the attribute, it is necessary
1548   // to check at least two; hence the 'any_of' check below. Note that
1549   // the overloadable attribute is implicitly added to declarations
1550   // that were required to have it but did not.
1551   if (Previous.getResultKind() == LookupResult::FoundOverloaded) {
1552     return llvm::any_of(Previous, [](const NamedDecl *ND) {
1553       return ND->hasAttr<OverloadableAttr>();
1554     });
1555   } else if (Previous.getResultKind() == LookupResult::Found)
1556     return Previous.getFoundDecl()->hasAttr<OverloadableAttr>();
1557 
1558   return false;
1559 }
1560 
1561 /// Add this decl to the scope shadowed decl chains.
1562 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1563   // Move up the scope chain until we find the nearest enclosing
1564   // non-transparent context. The declaration will be introduced into this
1565   // scope.
1566   while (S->getEntity() && S->getEntity()->isTransparentContext())
1567     S = S->getParent();
1568 
1569   // Add scoped declarations into their context, so that they can be
1570   // found later. Declarations without a context won't be inserted
1571   // into any context.
1572   if (AddToContext)
1573     CurContext->addDecl(D);
1574 
1575   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1576   // are function-local declarations.
1577   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1578     return;
1579 
1580   // Template instantiations should also not be pushed into scope.
1581   if (isa<FunctionDecl>(D) &&
1582       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1583     return;
1584 
1585   // If this replaces anything in the current scope,
1586   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1587                                IEnd = IdResolver.end();
1588   for (; I != IEnd; ++I) {
1589     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1590       S->RemoveDecl(*I);
1591       IdResolver.RemoveDecl(*I);
1592 
1593       // Should only need to replace one decl.
1594       break;
1595     }
1596   }
1597 
1598   S->AddDecl(D);
1599 
1600   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1601     // Implicitly-generated labels may end up getting generated in an order that
1602     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1603     // the label at the appropriate place in the identifier chain.
1604     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1605       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1606       if (IDC == CurContext) {
1607         if (!S->isDeclScope(*I))
1608           continue;
1609       } else if (IDC->Encloses(CurContext))
1610         break;
1611     }
1612 
1613     IdResolver.InsertDeclAfter(I, D);
1614   } else {
1615     IdResolver.AddDecl(D);
1616   }
1617   warnOnReservedIdentifier(D);
1618 }
1619 
1620 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1621                          bool AllowInlineNamespace) const {
1622   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1623 }
1624 
1625 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1626   DeclContext *TargetDC = DC->getPrimaryContext();
1627   do {
1628     if (DeclContext *ScopeDC = S->getEntity())
1629       if (ScopeDC->getPrimaryContext() == TargetDC)
1630         return S;
1631   } while ((S = S->getParent()));
1632 
1633   return nullptr;
1634 }
1635 
1636 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1637                                             DeclContext*,
1638                                             ASTContext&);
1639 
1640 /// Filters out lookup results that don't fall within the given scope
1641 /// as determined by isDeclInScope.
1642 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1643                                 bool ConsiderLinkage,
1644                                 bool AllowInlineNamespace) {
1645   LookupResult::Filter F = R.makeFilter();
1646   while (F.hasNext()) {
1647     NamedDecl *D = F.next();
1648 
1649     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1650       continue;
1651 
1652     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1653       continue;
1654 
1655     F.erase();
1656   }
1657 
1658   F.done();
1659 }
1660 
1661 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1662 /// have compatible owning modules.
1663 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1664   // [module.interface]p7:
1665   // A declaration is attached to a module as follows:
1666   // - If the declaration is a non-dependent friend declaration that nominates a
1667   // function with a declarator-id that is a qualified-id or template-id or that
1668   // nominates a class other than with an elaborated-type-specifier with neither
1669   // a nested-name-specifier nor a simple-template-id, it is attached to the
1670   // module to which the friend is attached ([basic.link]).
1671   if (New->getFriendObjectKind() &&
1672       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1673     New->setLocalOwningModule(Old->getOwningModule());
1674     makeMergedDefinitionVisible(New);
1675     return false;
1676   }
1677 
1678   Module *NewM = New->getOwningModule();
1679   Module *OldM = Old->getOwningModule();
1680 
1681   if (NewM && NewM->isPrivateModule())
1682     NewM = NewM->Parent;
1683   if (OldM && OldM->isPrivateModule())
1684     OldM = OldM->Parent;
1685 
1686   if (NewM == OldM)
1687     return false;
1688 
1689   if (NewM && OldM) {
1690     // A module implementation unit has visibility of the decls in its
1691     // implicitly imported interface.
1692     if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface)
1693       return false;
1694 
1695     // Partitions are part of the module, but a partition could import another
1696     // module, so verify that the PMIs agree.
1697     if ((NewM->isModulePartition() || OldM->isModulePartition()) &&
1698         NewM->getPrimaryModuleInterfaceName() ==
1699             OldM->getPrimaryModuleInterfaceName())
1700       return false;
1701   }
1702 
1703   bool NewIsModuleInterface = NewM && NewM->isNamedModule();
1704   bool OldIsModuleInterface = OldM && OldM->isNamedModule();
1705   if (NewIsModuleInterface || OldIsModuleInterface) {
1706     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1707     //   if a declaration of D [...] appears in the purview of a module, all
1708     //   other such declarations shall appear in the purview of the same module
1709     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1710       << New
1711       << NewIsModuleInterface
1712       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1713       << OldIsModuleInterface
1714       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1715     Diag(Old->getLocation(), diag::note_previous_declaration);
1716     New->setInvalidDecl();
1717     return true;
1718   }
1719 
1720   return false;
1721 }
1722 
1723 // [module.interface]p6:
1724 // A redeclaration of an entity X is implicitly exported if X was introduced by
1725 // an exported declaration; otherwise it shall not be exported.
1726 bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) {
1727   // [module.interface]p1:
1728   // An export-declaration shall inhabit a namespace scope.
1729   //
1730   // So it is meaningless to talk about redeclaration which is not at namespace
1731   // scope.
1732   if (!New->getLexicalDeclContext()
1733            ->getNonTransparentContext()
1734            ->isFileContext() ||
1735       !Old->getLexicalDeclContext()
1736            ->getNonTransparentContext()
1737            ->isFileContext())
1738     return false;
1739 
1740   bool IsNewExported = New->isInExportDeclContext();
1741   bool IsOldExported = Old->isInExportDeclContext();
1742 
1743   // It should be irrevelant if both of them are not exported.
1744   if (!IsNewExported && !IsOldExported)
1745     return false;
1746 
1747   if (IsOldExported)
1748     return false;
1749 
1750   assert(IsNewExported);
1751 
1752   auto Lk = Old->getFormalLinkage();
1753   int S = 0;
1754   if (Lk == Linkage::Internal)
1755     S = 1;
1756   else if (Lk == Linkage::Module)
1757     S = 2;
1758   Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S;
1759   Diag(Old->getLocation(), diag::note_previous_declaration);
1760   return true;
1761 }
1762 
1763 // A wrapper function for checking the semantic restrictions of
1764 // a redeclaration within a module.
1765 bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) {
1766   if (CheckRedeclarationModuleOwnership(New, Old))
1767     return true;
1768 
1769   if (CheckRedeclarationExported(New, Old))
1770     return true;
1771 
1772   return false;
1773 }
1774 
1775 // Check the redefinition in C++20 Modules.
1776 //
1777 // [basic.def.odr]p14:
1778 // For any definable item D with definitions in multiple translation units,
1779 // - if D is a non-inline non-templated function or variable, or
1780 // - if the definitions in different translation units do not satisfy the
1781 // following requirements,
1782 //   the program is ill-formed; a diagnostic is required only if the definable
1783 //   item is attached to a named module and a prior definition is reachable at
1784 //   the point where a later definition occurs.
1785 // - Each such definition shall not be attached to a named module
1786 // ([module.unit]).
1787 // - Each such definition shall consist of the same sequence of tokens, ...
1788 // ...
1789 //
1790 // Return true if the redefinition is not allowed. Return false otherwise.
1791 bool Sema::IsRedefinitionInModule(const NamedDecl *New,
1792                                      const NamedDecl *Old) const {
1793   assert(getASTContext().isSameEntity(New, Old) &&
1794          "New and Old are not the same definition, we should diagnostic it "
1795          "immediately instead of checking it.");
1796   assert(const_cast<Sema *>(this)->isReachable(New) &&
1797          const_cast<Sema *>(this)->isReachable(Old) &&
1798          "We shouldn't see unreachable definitions here.");
1799 
1800   Module *NewM = New->getOwningModule();
1801   Module *OldM = Old->getOwningModule();
1802 
1803   // We only checks for named modules here. The header like modules is skipped.
1804   // FIXME: This is not right if we import the header like modules in the module
1805   // purview.
1806   //
1807   // For example, assuming "header.h" provides definition for `D`.
1808   // ```C++
1809   // //--- M.cppm
1810   // export module M;
1811   // import "header.h"; // or #include "header.h" but import it by clang modules
1812   // actually.
1813   //
1814   // //--- Use.cpp
1815   // import M;
1816   // import "header.h"; // or uses clang modules.
1817   // ```
1818   //
1819   // In this case, `D` has multiple definitions in multiple TU (M.cppm and
1820   // Use.cpp) and `D` is attached to a named module `M`. The compiler should
1821   // reject it. But the current implementation couldn't detect the case since we
1822   // don't record the information about the importee modules.
1823   //
1824   // But this might not be painful in practice. Since the design of C++20 Named
1825   // Modules suggests us to use headers in global module fragment instead of
1826   // module purview.
1827   if (NewM && NewM->isHeaderLikeModule())
1828     NewM = nullptr;
1829   if (OldM && OldM->isHeaderLikeModule())
1830     OldM = nullptr;
1831 
1832   if (!NewM && !OldM)
1833     return true;
1834 
1835   // [basic.def.odr]p14.3
1836   // Each such definition shall not be attached to a named module
1837   // ([module.unit]).
1838   if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule()))
1839     return true;
1840 
1841   // Then New and Old lives in the same TU if their share one same module unit.
1842   if (NewM)
1843     NewM = NewM->getTopLevelModule();
1844   if (OldM)
1845     OldM = OldM->getTopLevelModule();
1846   return OldM == NewM;
1847 }
1848 
1849 static bool isUsingDeclNotAtClassScope(NamedDecl *D) {
1850   if (D->getDeclContext()->isFileContext())
1851     return false;
1852 
1853   return isa<UsingShadowDecl>(D) ||
1854          isa<UnresolvedUsingTypenameDecl>(D) ||
1855          isa<UnresolvedUsingValueDecl>(D);
1856 }
1857 
1858 /// Removes using shadow declarations not at class scope from the lookup
1859 /// results.
1860 static void RemoveUsingDecls(LookupResult &R) {
1861   LookupResult::Filter F = R.makeFilter();
1862   while (F.hasNext())
1863     if (isUsingDeclNotAtClassScope(F.next()))
1864       F.erase();
1865 
1866   F.done();
1867 }
1868 
1869 /// Check for this common pattern:
1870 /// @code
1871 /// class S {
1872 ///   S(const S&); // DO NOT IMPLEMENT
1873 ///   void operator=(const S&); // DO NOT IMPLEMENT
1874 /// };
1875 /// @endcode
1876 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1877   // FIXME: Should check for private access too but access is set after we get
1878   // the decl here.
1879   if (D->doesThisDeclarationHaveABody())
1880     return false;
1881 
1882   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1883     return CD->isCopyConstructor();
1884   return D->isCopyAssignmentOperator();
1885 }
1886 
1887 // We need this to handle
1888 //
1889 // typedef struct {
1890 //   void *foo() { return 0; }
1891 // } A;
1892 //
1893 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1894 // for example. If 'A', foo will have external linkage. If we have '*A',
1895 // foo will have no linkage. Since we can't know until we get to the end
1896 // of the typedef, this function finds out if D might have non-external linkage.
1897 // Callers should verify at the end of the TU if it D has external linkage or
1898 // not.
1899 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1900   const DeclContext *DC = D->getDeclContext();
1901   while (!DC->isTranslationUnit()) {
1902     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1903       if (!RD->hasNameForLinkage())
1904         return true;
1905     }
1906     DC = DC->getParent();
1907   }
1908 
1909   return !D->isExternallyVisible();
1910 }
1911 
1912 // FIXME: This needs to be refactored; some other isInMainFile users want
1913 // these semantics.
1914 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1915   if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile)
1916     return false;
1917   return S.SourceMgr.isInMainFile(Loc);
1918 }
1919 
1920 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1921   assert(D);
1922 
1923   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1924     return false;
1925 
1926   // Ignore all entities declared within templates, and out-of-line definitions
1927   // of members of class templates.
1928   if (D->getDeclContext()->isDependentContext() ||
1929       D->getLexicalDeclContext()->isDependentContext())
1930     return false;
1931 
1932   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1933     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1934       return false;
1935     // A non-out-of-line declaration of a member specialization was implicitly
1936     // instantiated; it's the out-of-line declaration that we're interested in.
1937     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1938         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1939       return false;
1940 
1941     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1942       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1943         return false;
1944     } else {
1945       // 'static inline' functions are defined in headers; don't warn.
1946       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1947         return false;
1948     }
1949 
1950     if (FD->doesThisDeclarationHaveABody() &&
1951         Context.DeclMustBeEmitted(FD))
1952       return false;
1953   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1954     // Constants and utility variables are defined in headers with internal
1955     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1956     // like "inline".)
1957     if (!isMainFileLoc(*this, VD->getLocation()))
1958       return false;
1959 
1960     if (Context.DeclMustBeEmitted(VD))
1961       return false;
1962 
1963     if (VD->isStaticDataMember() &&
1964         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1965       return false;
1966     if (VD->isStaticDataMember() &&
1967         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1968         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1969       return false;
1970 
1971     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1972       return false;
1973   } else {
1974     return false;
1975   }
1976 
1977   // Only warn for unused decls internal to the translation unit.
1978   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1979   // for inline functions defined in the main source file, for instance.
1980   return mightHaveNonExternalLinkage(D);
1981 }
1982 
1983 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1984   if (!D)
1985     return;
1986 
1987   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1988     const FunctionDecl *First = FD->getFirstDecl();
1989     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1990       return; // First should already be in the vector.
1991   }
1992 
1993   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1994     const VarDecl *First = VD->getFirstDecl();
1995     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1996       return; // First should already be in the vector.
1997   }
1998 
1999   if (ShouldWarnIfUnusedFileScopedDecl(D))
2000     UnusedFileScopedDecls.push_back(D);
2001 }
2002 
2003 static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts,
2004                                      const NamedDecl *D) {
2005   if (D->isInvalidDecl())
2006     return false;
2007 
2008   if (const auto *DD = dyn_cast<DecompositionDecl>(D)) {
2009     // For a decomposition declaration, warn if none of the bindings are
2010     // referenced, instead of if the variable itself is referenced (which
2011     // it is, by the bindings' expressions).
2012     bool IsAllPlaceholders = true;
2013     for (const auto *BD : DD->bindings()) {
2014       if (BD->isReferenced())
2015         return false;
2016       IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts);
2017     }
2018     if (IsAllPlaceholders)
2019       return false;
2020   } else if (!D->getDeclName()) {
2021     return false;
2022   } else if (D->isReferenced() || D->isUsed()) {
2023     return false;
2024   }
2025 
2026   if (D->isPlaceholderVar(LangOpts))
2027     return false;
2028 
2029   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() ||
2030       D->hasAttr<CleanupAttr>())
2031     return false;
2032 
2033   if (isa<LabelDecl>(D))
2034     return true;
2035 
2036   // Except for labels, we only care about unused decls that are local to
2037   // functions.
2038   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
2039   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
2040     // For dependent types, the diagnostic is deferred.
2041     WithinFunction =
2042         WithinFunction || (R->isLocalClass() && !R->isDependentType());
2043   if (!WithinFunction)
2044     return false;
2045 
2046   if (isa<TypedefNameDecl>(D))
2047     return true;
2048 
2049   // White-list anything that isn't a local variable.
2050   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
2051     return false;
2052 
2053   // Types of valid local variables should be complete, so this should succeed.
2054   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2055 
2056     const Expr *Init = VD->getInit();
2057     if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Init))
2058       Init = Cleanups->getSubExpr();
2059 
2060     const auto *Ty = VD->getType().getTypePtr();
2061 
2062     // Only look at the outermost level of typedef.
2063     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
2064       // Allow anything marked with __attribute__((unused)).
2065       if (TT->getDecl()->hasAttr<UnusedAttr>())
2066         return false;
2067     }
2068 
2069     // Warn for reference variables whose initializtion performs lifetime
2070     // extension.
2071     if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Init);
2072         MTE && MTE->getExtendingDecl()) {
2073       Ty = VD->getType().getNonReferenceType().getTypePtr();
2074       Init = MTE->getSubExpr()->IgnoreImplicitAsWritten();
2075     }
2076 
2077     // If we failed to complete the type for some reason, or if the type is
2078     // dependent, don't diagnose the variable.
2079     if (Ty->isIncompleteType() || Ty->isDependentType())
2080       return false;
2081 
2082     // Look at the element type to ensure that the warning behaviour is
2083     // consistent for both scalars and arrays.
2084     Ty = Ty->getBaseElementTypeUnsafe();
2085 
2086     if (const TagType *TT = Ty->getAs<TagType>()) {
2087       const TagDecl *Tag = TT->getDecl();
2088       if (Tag->hasAttr<UnusedAttr>())
2089         return false;
2090 
2091       if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
2092         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
2093           return false;
2094 
2095         if (Init) {
2096           const auto *Construct = dyn_cast<CXXConstructExpr>(Init);
2097           if (Construct && !Construct->isElidable()) {
2098             const CXXConstructorDecl *CD = Construct->getConstructor();
2099             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
2100                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
2101               return false;
2102           }
2103 
2104           // Suppress the warning if we don't know how this is constructed, and
2105           // it could possibly be non-trivial constructor.
2106           if (Init->isTypeDependent()) {
2107             for (const CXXConstructorDecl *Ctor : RD->ctors())
2108               if (!Ctor->isTrivial())
2109                 return false;
2110           }
2111 
2112           // Suppress the warning if the constructor is unresolved because
2113           // its arguments are dependent.
2114           if (isa<CXXUnresolvedConstructExpr>(Init))
2115             return false;
2116         }
2117       }
2118     }
2119 
2120     // TODO: __attribute__((unused)) templates?
2121   }
2122 
2123   return true;
2124 }
2125 
2126 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
2127                                      FixItHint &Hint) {
2128   if (isa<LabelDecl>(D)) {
2129     SourceLocation AfterColon = Lexer::findLocationAfterToken(
2130         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
2131         /*SkipTrailingWhitespaceAndNewline=*/false);
2132     if (AfterColon.isInvalid())
2133       return;
2134     Hint = FixItHint::CreateRemoval(
2135         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
2136   }
2137 }
2138 
2139 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
2140   DiagnoseUnusedNestedTypedefs(
2141       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2142 }
2143 
2144 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D,
2145                                         DiagReceiverTy DiagReceiver) {
2146   if (D->getTypeForDecl()->isDependentType())
2147     return;
2148 
2149   for (auto *TmpD : D->decls()) {
2150     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2151       DiagnoseUnusedDecl(T, DiagReceiver);
2152     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
2153       DiagnoseUnusedNestedTypedefs(R, DiagReceiver);
2154   }
2155 }
2156 
2157 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
2158   DiagnoseUnusedDecl(
2159       D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); });
2160 }
2161 
2162 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
2163 /// unless they are marked attr(unused).
2164 void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) {
2165   if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D))
2166     return;
2167 
2168   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2169     // typedefs can be referenced later on, so the diagnostics are emitted
2170     // at end-of-translation-unit.
2171     UnusedLocalTypedefNameCandidates.insert(TD);
2172     return;
2173   }
2174 
2175   FixItHint Hint;
2176   GenerateFixForUnusedDecl(D, Context, Hint);
2177 
2178   unsigned DiagID;
2179   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
2180     DiagID = diag::warn_unused_exception_param;
2181   else if (isa<LabelDecl>(D))
2182     DiagID = diag::warn_unused_label;
2183   else
2184     DiagID = diag::warn_unused_variable;
2185 
2186   SourceLocation DiagLoc = D->getLocation();
2187   DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc));
2188 }
2189 
2190 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD,
2191                                     DiagReceiverTy DiagReceiver) {
2192   // If it's not referenced, it can't be set. If it has the Cleanup attribute,
2193   // it's not really unused.
2194   if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>())
2195     return;
2196 
2197   //  In C++, `_` variables behave as if they were maybe_unused
2198   if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts()))
2199     return;
2200 
2201   const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
2202 
2203   if (Ty->isReferenceType() || Ty->isDependentType())
2204     return;
2205 
2206   if (const TagType *TT = Ty->getAs<TagType>()) {
2207     const TagDecl *Tag = TT->getDecl();
2208     if (Tag->hasAttr<UnusedAttr>())
2209       return;
2210     // In C++, don't warn for record types that don't have WarnUnusedAttr, to
2211     // mimic gcc's behavior.
2212     if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag);
2213         RD && !RD->hasAttr<WarnUnusedAttr>())
2214       return;
2215   }
2216 
2217   // Don't warn about __block Objective-C pointer variables, as they might
2218   // be assigned in the block but not used elsewhere for the purpose of lifetime
2219   // extension.
2220   if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType())
2221     return;
2222 
2223   // Don't warn about Objective-C pointer variables with precise lifetime
2224   // semantics; they can be used to ensure ARC releases the object at a known
2225   // time, which may mean assignment but no other references.
2226   if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType())
2227     return;
2228 
2229   auto iter = RefsMinusAssignments.find(VD);
2230   if (iter == RefsMinusAssignments.end())
2231     return;
2232 
2233   assert(iter->getSecond() >= 0 &&
2234          "Found a negative number of references to a VarDecl");
2235   if (iter->getSecond() != 0)
2236     return;
2237   unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
2238                                          : diag::warn_unused_but_set_variable;
2239   DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD);
2240 }
2241 
2242 static void CheckPoppedLabel(LabelDecl *L, Sema &S,
2243                              Sema::DiagReceiverTy DiagReceiver) {
2244   // Verify that we have no forward references left.  If so, there was a goto
2245   // or address of a label taken, but no definition of it.  Label fwd
2246   // definitions are indicated with a null substmt which is also not a resolved
2247   // MS inline assembly label name.
2248   bool Diagnose = false;
2249   if (L->isMSAsmLabel())
2250     Diagnose = !L->isResolvedMSAsmLabel();
2251   else
2252     Diagnose = L->getStmt() == nullptr;
2253   if (Diagnose)
2254     DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use)
2255                                        << L);
2256 }
2257 
2258 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
2259   S->applyNRVO();
2260 
2261   if (S->decl_empty()) return;
2262   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
2263          "Scope shouldn't contain decls!");
2264 
2265   /// We visit the decls in non-deterministic order, but we want diagnostics
2266   /// emitted in deterministic order. Collect any diagnostic that may be emitted
2267   /// and sort the diagnostics before emitting them, after we visited all decls.
2268   struct LocAndDiag {
2269     SourceLocation Loc;
2270     std::optional<SourceLocation> PreviousDeclLoc;
2271     PartialDiagnostic PD;
2272   };
2273   SmallVector<LocAndDiag, 16> DeclDiags;
2274   auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) {
2275     DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)});
2276   };
2277   auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc,
2278                                       SourceLocation PreviousDeclLoc,
2279                                       PartialDiagnostic PD) {
2280     DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)});
2281   };
2282 
2283   for (auto *TmpD : S->decls()) {
2284     assert(TmpD && "This decl didn't get pushed??");
2285 
2286     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
2287     NamedDecl *D = cast<NamedDecl>(TmpD);
2288 
2289     // Diagnose unused variables in this scope.
2290     if (!S->hasUnrecoverableErrorOccurred()) {
2291       DiagnoseUnusedDecl(D, addDiag);
2292       if (const auto *RD = dyn_cast<RecordDecl>(D))
2293         DiagnoseUnusedNestedTypedefs(RD, addDiag);
2294       if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2295         DiagnoseUnusedButSetDecl(VD, addDiag);
2296         RefsMinusAssignments.erase(VD);
2297       }
2298     }
2299 
2300     if (!D->getDeclName()) continue;
2301 
2302     // If this was a forward reference to a label, verify it was defined.
2303     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2304       CheckPoppedLabel(LD, *this, addDiag);
2305 
2306     // Remove this name from our lexical scope, and warn on it if we haven't
2307     // already.
2308     IdResolver.RemoveDecl(D);
2309     auto ShadowI = ShadowingDecls.find(D);
2310     if (ShadowI != ShadowingDecls.end()) {
2311       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2312         addDiagWithPrev(D->getLocation(), FD->getLocation(),
2313                         PDiag(diag::warn_ctor_parm_shadows_field)
2314                             << D << FD << FD->getParent());
2315       }
2316       ShadowingDecls.erase(ShadowI);
2317     }
2318   }
2319 
2320   llvm::sort(DeclDiags,
2321              [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool {
2322                // The particular order for diagnostics is not important, as long
2323                // as the order is deterministic. Using the raw location is going
2324                // to generally be in source order unless there are macro
2325                // expansions involved.
2326                return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding();
2327              });
2328   for (const LocAndDiag &D : DeclDiags) {
2329     Diag(D.Loc, D.PD);
2330     if (D.PreviousDeclLoc)
2331       Diag(*D.PreviousDeclLoc, diag::note_previous_declaration);
2332   }
2333 }
2334 
2335 /// Look for an Objective-C class in the translation unit.
2336 ///
2337 /// \param Id The name of the Objective-C class we're looking for. If
2338 /// typo-correction fixes this name, the Id will be updated
2339 /// to the fixed name.
2340 ///
2341 /// \param IdLoc The location of the name in the translation unit.
2342 ///
2343 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2344 /// if there is no class with the given name.
2345 ///
2346 /// \returns The declaration of the named Objective-C class, or NULL if the
2347 /// class could not be found.
2348 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2349                                               SourceLocation IdLoc,
2350                                               bool DoTypoCorrection) {
2351   // The third "scope" argument is 0 since we aren't enabling lazy built-in
2352   // creation from this context.
2353   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2354 
2355   if (!IDecl && DoTypoCorrection) {
2356     // Perform typo correction at the given location, but only if we
2357     // find an Objective-C class name.
2358     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2359     if (TypoCorrection C =
2360             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2361                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2362       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2363       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2364       Id = IDecl->getIdentifier();
2365     }
2366   }
2367   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2368   // This routine must always return a class definition, if any.
2369   if (Def && Def->getDefinition())
2370       Def = Def->getDefinition();
2371   return Def;
2372 }
2373 
2374 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2375 /// from S, where a non-field would be declared. This routine copes
2376 /// with the difference between C and C++ scoping rules in structs and
2377 /// unions. For example, the following code is well-formed in C but
2378 /// ill-formed in C++:
2379 /// @code
2380 /// struct S6 {
2381 ///   enum { BAR } e;
2382 /// };
2383 ///
2384 /// void test_S6() {
2385 ///   struct S6 a;
2386 ///   a.e = BAR;
2387 /// }
2388 /// @endcode
2389 /// For the declaration of BAR, this routine will return a different
2390 /// scope. The scope S will be the scope of the unnamed enumeration
2391 /// within S6. In C++, this routine will return the scope associated
2392 /// with S6, because the enumeration's scope is a transparent
2393 /// context but structures can contain non-field names. In C, this
2394 /// routine will return the translation unit scope, since the
2395 /// enumeration's scope is a transparent context and structures cannot
2396 /// contain non-field names.
2397 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2398   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2399          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2400          (S->isClassScope() && !getLangOpts().CPlusPlus))
2401     S = S->getParent();
2402   return S;
2403 }
2404 
2405 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2406                                ASTContext::GetBuiltinTypeError Error) {
2407   switch (Error) {
2408   case ASTContext::GE_None:
2409     return "";
2410   case ASTContext::GE_Missing_type:
2411     return BuiltinInfo.getHeaderName(ID);
2412   case ASTContext::GE_Missing_stdio:
2413     return "stdio.h";
2414   case ASTContext::GE_Missing_setjmp:
2415     return "setjmp.h";
2416   case ASTContext::GE_Missing_ucontext:
2417     return "ucontext.h";
2418   }
2419   llvm_unreachable("unhandled error kind");
2420 }
2421 
2422 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2423                                   unsigned ID, SourceLocation Loc) {
2424   DeclContext *Parent = Context.getTranslationUnitDecl();
2425 
2426   if (getLangOpts().CPlusPlus) {
2427     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2428         Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false);
2429     CLinkageDecl->setImplicit();
2430     Parent->addDecl(CLinkageDecl);
2431     Parent = CLinkageDecl;
2432   }
2433 
2434   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2435                                            /*TInfo=*/nullptr, SC_Extern,
2436                                            getCurFPFeatures().isFPConstrained(),
2437                                            false, Type->isFunctionProtoType());
2438   New->setImplicit();
2439   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2440 
2441   // Create Decl objects for each parameter, adding them to the
2442   // FunctionDecl.
2443   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2444     SmallVector<ParmVarDecl *, 16> Params;
2445     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2446       ParmVarDecl *parm = ParmVarDecl::Create(
2447           Context, New, SourceLocation(), SourceLocation(), nullptr,
2448           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2449       parm->setScopeInfo(0, i);
2450       Params.push_back(parm);
2451     }
2452     New->setParams(Params);
2453   }
2454 
2455   AddKnownFunctionAttributes(New);
2456   return New;
2457 }
2458 
2459 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2460 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2461 /// if we're creating this built-in in anticipation of redeclaring the
2462 /// built-in.
2463 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2464                                      Scope *S, bool ForRedeclaration,
2465                                      SourceLocation Loc) {
2466   LookupNecessaryTypesForBuiltin(S, ID);
2467 
2468   ASTContext::GetBuiltinTypeError Error;
2469   QualType R = Context.GetBuiltinType(ID, Error);
2470   if (Error) {
2471     if (!ForRedeclaration)
2472       return nullptr;
2473 
2474     // If we have a builtin without an associated type we should not emit a
2475     // warning when we were not able to find a type for it.
2476     if (Error == ASTContext::GE_Missing_type ||
2477         Context.BuiltinInfo.allowTypeMismatch(ID))
2478       return nullptr;
2479 
2480     // If we could not find a type for setjmp it is because the jmp_buf type was
2481     // not defined prior to the setjmp declaration.
2482     if (Error == ASTContext::GE_Missing_setjmp) {
2483       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2484           << Context.BuiltinInfo.getName(ID);
2485       return nullptr;
2486     }
2487 
2488     // Generally, we emit a warning that the declaration requires the
2489     // appropriate header.
2490     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2491         << getHeaderName(Context.BuiltinInfo, ID, Error)
2492         << Context.BuiltinInfo.getName(ID);
2493     return nullptr;
2494   }
2495 
2496   if (!ForRedeclaration &&
2497       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2498        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2499     Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99
2500                            : diag::ext_implicit_lib_function_decl)
2501         << Context.BuiltinInfo.getName(ID) << R;
2502     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2503       Diag(Loc, diag::note_include_header_or_declare)
2504           << Header << Context.BuiltinInfo.getName(ID);
2505   }
2506 
2507   if (R.isNull())
2508     return nullptr;
2509 
2510   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2511   RegisterLocallyScopedExternCDecl(New, S);
2512 
2513   // TUScope is the translation-unit scope to insert this function into.
2514   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2515   // relate Scopes to DeclContexts, and probably eliminate CurContext
2516   // entirely, but we're not there yet.
2517   DeclContext *SavedContext = CurContext;
2518   CurContext = New->getDeclContext();
2519   PushOnScopeChains(New, TUScope);
2520   CurContext = SavedContext;
2521   return New;
2522 }
2523 
2524 /// Typedef declarations don't have linkage, but they still denote the same
2525 /// entity if their types are the same.
2526 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2527 /// isSameEntity.
2528 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2529                                                      TypedefNameDecl *Decl,
2530                                                      LookupResult &Previous) {
2531   // This is only interesting when modules are enabled.
2532   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2533     return;
2534 
2535   // Empty sets are uninteresting.
2536   if (Previous.empty())
2537     return;
2538 
2539   LookupResult::Filter Filter = Previous.makeFilter();
2540   while (Filter.hasNext()) {
2541     NamedDecl *Old = Filter.next();
2542 
2543     // Non-hidden declarations are never ignored.
2544     if (S.isVisible(Old))
2545       continue;
2546 
2547     // Declarations of the same entity are not ignored, even if they have
2548     // different linkages.
2549     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2550       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2551                                 Decl->getUnderlyingType()))
2552         continue;
2553 
2554       // If both declarations give a tag declaration a typedef name for linkage
2555       // purposes, then they declare the same entity.
2556       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2557           Decl->getAnonDeclWithTypedefName())
2558         continue;
2559     }
2560 
2561     Filter.erase();
2562   }
2563 
2564   Filter.done();
2565 }
2566 
2567 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2568   QualType OldType;
2569   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2570     OldType = OldTypedef->getUnderlyingType();
2571   else
2572     OldType = Context.getTypeDeclType(Old);
2573   QualType NewType = New->getUnderlyingType();
2574 
2575   if (NewType->isVariablyModifiedType()) {
2576     // Must not redefine a typedef with a variably-modified type.
2577     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2578     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2579       << Kind << NewType;
2580     if (Old->getLocation().isValid())
2581       notePreviousDefinition(Old, New->getLocation());
2582     New->setInvalidDecl();
2583     return true;
2584   }
2585 
2586   if (OldType != NewType &&
2587       !OldType->isDependentType() &&
2588       !NewType->isDependentType() &&
2589       !Context.hasSameType(OldType, NewType)) {
2590     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2591     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2592       << Kind << NewType << OldType;
2593     if (Old->getLocation().isValid())
2594       notePreviousDefinition(Old, New->getLocation());
2595     New->setInvalidDecl();
2596     return true;
2597   }
2598   return false;
2599 }
2600 
2601 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2602 /// same name and scope as a previous declaration 'Old'.  Figure out
2603 /// how to resolve this situation, merging decls or emitting
2604 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2605 ///
2606 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2607                                 LookupResult &OldDecls) {
2608   // If the new decl is known invalid already, don't bother doing any
2609   // merging checks.
2610   if (New->isInvalidDecl()) return;
2611 
2612   // Allow multiple definitions for ObjC built-in typedefs.
2613   // FIXME: Verify the underlying types are equivalent!
2614   if (getLangOpts().ObjC) {
2615     const IdentifierInfo *TypeID = New->getIdentifier();
2616     switch (TypeID->getLength()) {
2617     default: break;
2618     case 2:
2619       {
2620         if (!TypeID->isStr("id"))
2621           break;
2622         QualType T = New->getUnderlyingType();
2623         if (!T->isPointerType())
2624           break;
2625         if (!T->isVoidPointerType()) {
2626           QualType PT = T->castAs<PointerType>()->getPointeeType();
2627           if (!PT->isStructureType())
2628             break;
2629         }
2630         Context.setObjCIdRedefinitionType(T);
2631         // Install the built-in type for 'id', ignoring the current definition.
2632         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2633         return;
2634       }
2635     case 5:
2636       if (!TypeID->isStr("Class"))
2637         break;
2638       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2639       // Install the built-in type for 'Class', ignoring the current definition.
2640       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2641       return;
2642     case 3:
2643       if (!TypeID->isStr("SEL"))
2644         break;
2645       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2646       // Install the built-in type for 'SEL', ignoring the current definition.
2647       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2648       return;
2649     }
2650     // Fall through - the typedef name was not a builtin type.
2651   }
2652 
2653   // Verify the old decl was also a type.
2654   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2655   if (!Old) {
2656     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2657       << New->getDeclName();
2658 
2659     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2660     if (OldD->getLocation().isValid())
2661       notePreviousDefinition(OldD, New->getLocation());
2662 
2663     return New->setInvalidDecl();
2664   }
2665 
2666   // If the old declaration is invalid, just give up here.
2667   if (Old->isInvalidDecl())
2668     return New->setInvalidDecl();
2669 
2670   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2671     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2672     auto *NewTag = New->getAnonDeclWithTypedefName();
2673     NamedDecl *Hidden = nullptr;
2674     if (OldTag && NewTag &&
2675         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2676         !hasVisibleDefinition(OldTag, &Hidden)) {
2677       // There is a definition of this tag, but it is not visible. Use it
2678       // instead of our tag.
2679       New->setTypeForDecl(OldTD->getTypeForDecl());
2680       if (OldTD->isModed())
2681         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2682                                     OldTD->getUnderlyingType());
2683       else
2684         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2685 
2686       // Make the old tag definition visible.
2687       makeMergedDefinitionVisible(Hidden);
2688 
2689       // If this was an unscoped enumeration, yank all of its enumerators
2690       // out of the scope.
2691       if (isa<EnumDecl>(NewTag)) {
2692         Scope *EnumScope = getNonFieldDeclScope(S);
2693         for (auto *D : NewTag->decls()) {
2694           auto *ED = cast<EnumConstantDecl>(D);
2695           assert(EnumScope->isDeclScope(ED));
2696           EnumScope->RemoveDecl(ED);
2697           IdResolver.RemoveDecl(ED);
2698           ED->getLexicalDeclContext()->removeDecl(ED);
2699         }
2700       }
2701     }
2702   }
2703 
2704   // If the typedef types are not identical, reject them in all languages and
2705   // with any extensions enabled.
2706   if (isIncompatibleTypedef(Old, New))
2707     return;
2708 
2709   // The types match.  Link up the redeclaration chain and merge attributes if
2710   // the old declaration was a typedef.
2711   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2712     New->setPreviousDecl(Typedef);
2713     mergeDeclAttributes(New, Old);
2714   }
2715 
2716   if (getLangOpts().MicrosoftExt)
2717     return;
2718 
2719   if (getLangOpts().CPlusPlus) {
2720     // C++ [dcl.typedef]p2:
2721     //   In a given non-class scope, a typedef specifier can be used to
2722     //   redefine the name of any type declared in that scope to refer
2723     //   to the type to which it already refers.
2724     if (!isa<CXXRecordDecl>(CurContext))
2725       return;
2726 
2727     // C++0x [dcl.typedef]p4:
2728     //   In a given class scope, a typedef specifier can be used to redefine
2729     //   any class-name declared in that scope that is not also a typedef-name
2730     //   to refer to the type to which it already refers.
2731     //
2732     // This wording came in via DR424, which was a correction to the
2733     // wording in DR56, which accidentally banned code like:
2734     //
2735     //   struct S {
2736     //     typedef struct A { } A;
2737     //   };
2738     //
2739     // in the C++03 standard. We implement the C++0x semantics, which
2740     // allow the above but disallow
2741     //
2742     //   struct S {
2743     //     typedef int I;
2744     //     typedef int I;
2745     //   };
2746     //
2747     // since that was the intent of DR56.
2748     if (!isa<TypedefNameDecl>(Old))
2749       return;
2750 
2751     Diag(New->getLocation(), diag::err_redefinition)
2752       << New->getDeclName();
2753     notePreviousDefinition(Old, New->getLocation());
2754     return New->setInvalidDecl();
2755   }
2756 
2757   // Modules always permit redefinition of typedefs, as does C11.
2758   if (getLangOpts().Modules || getLangOpts().C11)
2759     return;
2760 
2761   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2762   // is normally mapped to an error, but can be controlled with
2763   // -Wtypedef-redefinition.  If either the original or the redefinition is
2764   // in a system header, don't emit this for compatibility with GCC.
2765   if (getDiagnostics().getSuppressSystemWarnings() &&
2766       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2767       (Old->isImplicit() ||
2768        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2769        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2770     return;
2771 
2772   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2773     << New->getDeclName();
2774   notePreviousDefinition(Old, New->getLocation());
2775 }
2776 
2777 /// DeclhasAttr - returns true if decl Declaration already has the target
2778 /// attribute.
2779 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2780   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2781   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2782   for (const auto *i : D->attrs())
2783     if (i->getKind() == A->getKind()) {
2784       if (Ann) {
2785         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2786           return true;
2787         continue;
2788       }
2789       // FIXME: Don't hardcode this check
2790       if (OA && isa<OwnershipAttr>(i))
2791         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2792       return true;
2793     }
2794 
2795   return false;
2796 }
2797 
2798 static bool isAttributeTargetADefinition(Decl *D) {
2799   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2800     return VD->isThisDeclarationADefinition();
2801   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2802     return TD->isCompleteDefinition() || TD->isBeingDefined();
2803   return true;
2804 }
2805 
2806 /// Merge alignment attributes from \p Old to \p New, taking into account the
2807 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2808 ///
2809 /// \return \c true if any attributes were added to \p New.
2810 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2811   // Look for alignas attributes on Old, and pick out whichever attribute
2812   // specifies the strictest alignment requirement.
2813   AlignedAttr *OldAlignasAttr = nullptr;
2814   AlignedAttr *OldStrictestAlignAttr = nullptr;
2815   unsigned OldAlign = 0;
2816   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2817     // FIXME: We have no way of representing inherited dependent alignments
2818     // in a case like:
2819     //   template<int A, int B> struct alignas(A) X;
2820     //   template<int A, int B> struct alignas(B) X {};
2821     // For now, we just ignore any alignas attributes which are not on the
2822     // definition in such a case.
2823     if (I->isAlignmentDependent())
2824       return false;
2825 
2826     if (I->isAlignas())
2827       OldAlignasAttr = I;
2828 
2829     unsigned Align = I->getAlignment(S.Context);
2830     if (Align > OldAlign) {
2831       OldAlign = Align;
2832       OldStrictestAlignAttr = I;
2833     }
2834   }
2835 
2836   // Look for alignas attributes on New.
2837   AlignedAttr *NewAlignasAttr = nullptr;
2838   unsigned NewAlign = 0;
2839   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2840     if (I->isAlignmentDependent())
2841       return false;
2842 
2843     if (I->isAlignas())
2844       NewAlignasAttr = I;
2845 
2846     unsigned Align = I->getAlignment(S.Context);
2847     if (Align > NewAlign)
2848       NewAlign = Align;
2849   }
2850 
2851   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2852     // Both declarations have 'alignas' attributes. We require them to match.
2853     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2854     // fall short. (If two declarations both have alignas, they must both match
2855     // every definition, and so must match each other if there is a definition.)
2856 
2857     // If either declaration only contains 'alignas(0)' specifiers, then it
2858     // specifies the natural alignment for the type.
2859     if (OldAlign == 0 || NewAlign == 0) {
2860       QualType Ty;
2861       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2862         Ty = VD->getType();
2863       else
2864         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2865 
2866       if (OldAlign == 0)
2867         OldAlign = S.Context.getTypeAlign(Ty);
2868       if (NewAlign == 0)
2869         NewAlign = S.Context.getTypeAlign(Ty);
2870     }
2871 
2872     if (OldAlign != NewAlign) {
2873       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2874         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2875         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2876       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2877     }
2878   }
2879 
2880   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2881     // C++11 [dcl.align]p6:
2882     //   if any declaration of an entity has an alignment-specifier,
2883     //   every defining declaration of that entity shall specify an
2884     //   equivalent alignment.
2885     // C11 6.7.5/7:
2886     //   If the definition of an object does not have an alignment
2887     //   specifier, any other declaration of that object shall also
2888     //   have no alignment specifier.
2889     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2890       << OldAlignasAttr;
2891     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2892       << OldAlignasAttr;
2893   }
2894 
2895   bool AnyAdded = false;
2896 
2897   // Ensure we have an attribute representing the strictest alignment.
2898   if (OldAlign > NewAlign) {
2899     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2900     Clone->setInherited(true);
2901     New->addAttr(Clone);
2902     AnyAdded = true;
2903   }
2904 
2905   // Ensure we have an alignas attribute if the old declaration had one.
2906   if (OldAlignasAttr && !NewAlignasAttr &&
2907       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2908     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2909     Clone->setInherited(true);
2910     New->addAttr(Clone);
2911     AnyAdded = true;
2912   }
2913 
2914   return AnyAdded;
2915 }
2916 
2917 #define WANT_DECL_MERGE_LOGIC
2918 #include "clang/Sema/AttrParsedAttrImpl.inc"
2919 #undef WANT_DECL_MERGE_LOGIC
2920 
2921 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2922                                const InheritableAttr *Attr,
2923                                Sema::AvailabilityMergeKind AMK) {
2924   // Diagnose any mutual exclusions between the attribute that we want to add
2925   // and attributes that already exist on the declaration.
2926   if (!DiagnoseMutualExclusions(S, D, Attr))
2927     return false;
2928 
2929   // This function copies an attribute Attr from a previous declaration to the
2930   // new declaration D if the new declaration doesn't itself have that attribute
2931   // yet or if that attribute allows duplicates.
2932   // If you're adding a new attribute that requires logic different from
2933   // "use explicit attribute on decl if present, else use attribute from
2934   // previous decl", for example if the attribute needs to be consistent
2935   // between redeclarations, you need to call a custom merge function here.
2936   InheritableAttr *NewAttr = nullptr;
2937   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2938     NewAttr = S.mergeAvailabilityAttr(
2939         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2940         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2941         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2942         AA->getPriority());
2943   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2944     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2945   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2946     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2947   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2948     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2949   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2950     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2951   else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2952     NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2953   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2954     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2955                                 FA->getFirstArg());
2956   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2957     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2958   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2959     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2960   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2961     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2962                                        IA->getInheritanceModel());
2963   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2964     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2965                                       &S.Context.Idents.get(AA->getSpelling()));
2966   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2967            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2968             isa<CUDAGlobalAttr>(Attr))) {
2969     // CUDA target attributes are part of function signature for
2970     // overloading purposes and must not be merged.
2971     return false;
2972   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2973     NewAttr = S.mergeMinSizeAttr(D, *MA);
2974   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2975     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2976   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2977     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2978   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2979     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2980   else if (isa<AlignedAttr>(Attr))
2981     // AlignedAttrs are handled separately, because we need to handle all
2982     // such attributes on a declaration at the same time.
2983     NewAttr = nullptr;
2984   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2985            (AMK == Sema::AMK_Override ||
2986             AMK == Sema::AMK_ProtocolImplementation ||
2987             AMK == Sema::AMK_OptionalProtocolImplementation))
2988     NewAttr = nullptr;
2989   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2990     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2991   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2992     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2993   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2994     NewAttr = S.mergeImportNameAttr(D, *INA);
2995   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2996     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2997   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2998     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2999   else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr))
3000     NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA);
3001   else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr))
3002     NewAttr =
3003         S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ());
3004   else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr))
3005     NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType());
3006   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
3007     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
3008 
3009   if (NewAttr) {
3010     NewAttr->setInherited(true);
3011     D->addAttr(NewAttr);
3012     if (isa<MSInheritanceAttr>(NewAttr))
3013       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
3014     return true;
3015   }
3016 
3017   return false;
3018 }
3019 
3020 static const NamedDecl *getDefinition(const Decl *D) {
3021   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
3022     return TD->getDefinition();
3023   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3024     const VarDecl *Def = VD->getDefinition();
3025     if (Def)
3026       return Def;
3027     return VD->getActingDefinition();
3028   }
3029   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3030     const FunctionDecl *Def = nullptr;
3031     if (FD->isDefined(Def, true))
3032       return Def;
3033   }
3034   return nullptr;
3035 }
3036 
3037 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
3038   for (const auto *Attribute : D->attrs())
3039     if (Attribute->getKind() == Kind)
3040       return true;
3041   return false;
3042 }
3043 
3044 /// checkNewAttributesAfterDef - If we already have a definition, check that
3045 /// there are no new attributes in this declaration.
3046 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
3047   if (!New->hasAttrs())
3048     return;
3049 
3050   const NamedDecl *Def = getDefinition(Old);
3051   if (!Def || Def == New)
3052     return;
3053 
3054   AttrVec &NewAttributes = New->getAttrs();
3055   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
3056     const Attr *NewAttribute = NewAttributes[I];
3057 
3058     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
3059       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
3060         Sema::SkipBodyInfo SkipBody;
3061         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
3062 
3063         // If we're skipping this definition, drop the "alias" attribute.
3064         if (SkipBody.ShouldSkip) {
3065           NewAttributes.erase(NewAttributes.begin() + I);
3066           --E;
3067           continue;
3068         }
3069       } else {
3070         VarDecl *VD = cast<VarDecl>(New);
3071         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
3072                                 VarDecl::TentativeDefinition
3073                             ? diag::err_alias_after_tentative
3074                             : diag::err_redefinition;
3075         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
3076         if (Diag == diag::err_redefinition)
3077           S.notePreviousDefinition(Def, VD->getLocation());
3078         else
3079           S.Diag(Def->getLocation(), diag::note_previous_definition);
3080         VD->setInvalidDecl();
3081       }
3082       ++I;
3083       continue;
3084     }
3085 
3086     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
3087       // Tentative definitions are only interesting for the alias check above.
3088       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
3089         ++I;
3090         continue;
3091       }
3092     }
3093 
3094     if (hasAttribute(Def, NewAttribute->getKind())) {
3095       ++I;
3096       continue; // regular attr merging will take care of validating this.
3097     }
3098 
3099     if (isa<C11NoReturnAttr>(NewAttribute)) {
3100       // C's _Noreturn is allowed to be added to a function after it is defined.
3101       ++I;
3102       continue;
3103     } else if (isa<UuidAttr>(NewAttribute)) {
3104       // msvc will allow a subsequent definition to add an uuid to a class
3105       ++I;
3106       continue;
3107     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
3108       if (AA->isAlignas()) {
3109         // C++11 [dcl.align]p6:
3110         //   if any declaration of an entity has an alignment-specifier,
3111         //   every defining declaration of that entity shall specify an
3112         //   equivalent alignment.
3113         // C11 6.7.5/7:
3114         //   If the definition of an object does not have an alignment
3115         //   specifier, any other declaration of that object shall also
3116         //   have no alignment specifier.
3117         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
3118           << AA;
3119         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
3120           << AA;
3121         NewAttributes.erase(NewAttributes.begin() + I);
3122         --E;
3123         continue;
3124       }
3125     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
3126       // If there is a C definition followed by a redeclaration with this
3127       // attribute then there are two different definitions. In C++, prefer the
3128       // standard diagnostics.
3129       if (!S.getLangOpts().CPlusPlus) {
3130         S.Diag(NewAttribute->getLocation(),
3131                diag::err_loader_uninitialized_redeclaration);
3132         S.Diag(Def->getLocation(), diag::note_previous_definition);
3133         NewAttributes.erase(NewAttributes.begin() + I);
3134         --E;
3135         continue;
3136       }
3137     } else if (isa<SelectAnyAttr>(NewAttribute) &&
3138                cast<VarDecl>(New)->isInline() &&
3139                !cast<VarDecl>(New)->isInlineSpecified()) {
3140       // Don't warn about applying selectany to implicitly inline variables.
3141       // Older compilers and language modes would require the use of selectany
3142       // to make such variables inline, and it would have no effect if we
3143       // honored it.
3144       ++I;
3145       continue;
3146     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
3147       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
3148       // declarations after definitions.
3149       ++I;
3150       continue;
3151     }
3152 
3153     S.Diag(NewAttribute->getLocation(),
3154            diag::warn_attribute_precede_definition);
3155     S.Diag(Def->getLocation(), diag::note_previous_definition);
3156     NewAttributes.erase(NewAttributes.begin() + I);
3157     --E;
3158   }
3159 }
3160 
3161 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
3162                                      const ConstInitAttr *CIAttr,
3163                                      bool AttrBeforeInit) {
3164   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
3165 
3166   // Figure out a good way to write this specifier on the old declaration.
3167   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
3168   // enough of the attribute list spelling information to extract that without
3169   // heroics.
3170   std::string SuitableSpelling;
3171   if (S.getLangOpts().CPlusPlus20)
3172     SuitableSpelling = std::string(
3173         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
3174   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3175     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3176         InsertLoc, {tok::l_square, tok::l_square,
3177                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
3178                     S.PP.getIdentifierInfo("require_constant_initialization"),
3179                     tok::r_square, tok::r_square}));
3180   if (SuitableSpelling.empty())
3181     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
3182         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
3183                     S.PP.getIdentifierInfo("require_constant_initialization"),
3184                     tok::r_paren, tok::r_paren}));
3185   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
3186     SuitableSpelling = "constinit";
3187   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
3188     SuitableSpelling = "[[clang::require_constant_initialization]]";
3189   if (SuitableSpelling.empty())
3190     SuitableSpelling = "__attribute__((require_constant_initialization))";
3191   SuitableSpelling += " ";
3192 
3193   if (AttrBeforeInit) {
3194     // extern constinit int a;
3195     // int a = 0; // error (missing 'constinit'), accepted as extension
3196     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
3197     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
3198         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3199     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
3200   } else {
3201     // int a = 0;
3202     // constinit extern int a; // error (missing 'constinit')
3203     S.Diag(CIAttr->getLocation(),
3204            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
3205                                  : diag::warn_require_const_init_added_too_late)
3206         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
3207     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
3208         << CIAttr->isConstinit()
3209         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
3210   }
3211 }
3212 
3213 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
3214 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
3215                                AvailabilityMergeKind AMK) {
3216   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
3217     UsedAttr *NewAttr = OldAttr->clone(Context);
3218     NewAttr->setInherited(true);
3219     New->addAttr(NewAttr);
3220   }
3221   if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
3222     RetainAttr *NewAttr = OldAttr->clone(Context);
3223     NewAttr->setInherited(true);
3224     New->addAttr(NewAttr);
3225   }
3226 
3227   if (!Old->hasAttrs() && !New->hasAttrs())
3228     return;
3229 
3230   // [dcl.constinit]p1:
3231   //   If the [constinit] specifier is applied to any declaration of a
3232   //   variable, it shall be applied to the initializing declaration.
3233   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
3234   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
3235   if (bool(OldConstInit) != bool(NewConstInit)) {
3236     const auto *OldVD = cast<VarDecl>(Old);
3237     auto *NewVD = cast<VarDecl>(New);
3238 
3239     // Find the initializing declaration. Note that we might not have linked
3240     // the new declaration into the redeclaration chain yet.
3241     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
3242     if (!InitDecl &&
3243         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
3244       InitDecl = NewVD;
3245 
3246     if (InitDecl == NewVD) {
3247       // This is the initializing declaration. If it would inherit 'constinit',
3248       // that's ill-formed. (Note that we do not apply this to the attribute
3249       // form).
3250       if (OldConstInit && OldConstInit->isConstinit())
3251         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
3252                                  /*AttrBeforeInit=*/true);
3253     } else if (NewConstInit) {
3254       // This is the first time we've been told that this declaration should
3255       // have a constant initializer. If we already saw the initializing
3256       // declaration, this is too late.
3257       if (InitDecl && InitDecl != NewVD) {
3258         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
3259                                  /*AttrBeforeInit=*/false);
3260         NewVD->dropAttr<ConstInitAttr>();
3261       }
3262     }
3263   }
3264 
3265   // Attributes declared post-definition are currently ignored.
3266   checkNewAttributesAfterDef(*this, New, Old);
3267 
3268   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
3269     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
3270       if (!OldA->isEquivalent(NewA)) {
3271         // This redeclaration changes __asm__ label.
3272         Diag(New->getLocation(), diag::err_different_asm_label);
3273         Diag(OldA->getLocation(), diag::note_previous_declaration);
3274       }
3275     } else if (Old->isUsed()) {
3276       // This redeclaration adds an __asm__ label to a declaration that has
3277       // already been ODR-used.
3278       Diag(New->getLocation(), diag::err_late_asm_label_name)
3279         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
3280     }
3281   }
3282 
3283   // Re-declaration cannot add abi_tag's.
3284   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
3285     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
3286       for (const auto &NewTag : NewAbiTagAttr->tags()) {
3287         if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) {
3288           Diag(NewAbiTagAttr->getLocation(),
3289                diag::err_new_abi_tag_on_redeclaration)
3290               << NewTag;
3291           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
3292         }
3293       }
3294     } else {
3295       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
3296       Diag(Old->getLocation(), diag::note_previous_declaration);
3297     }
3298   }
3299 
3300   // This redeclaration adds a section attribute.
3301   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
3302     if (auto *VD = dyn_cast<VarDecl>(New)) {
3303       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
3304         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
3305         Diag(Old->getLocation(), diag::note_previous_declaration);
3306       }
3307     }
3308   }
3309 
3310   // Redeclaration adds code-seg attribute.
3311   const auto *NewCSA = New->getAttr<CodeSegAttr>();
3312   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
3313       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
3314     Diag(New->getLocation(), diag::warn_mismatched_section)
3315          << 0 /*codeseg*/;
3316     Diag(Old->getLocation(), diag::note_previous_declaration);
3317   }
3318 
3319   if (!Old->hasAttrs())
3320     return;
3321 
3322   bool foundAny = New->hasAttrs();
3323 
3324   // Ensure that any moving of objects within the allocated map is done before
3325   // we process them.
3326   if (!foundAny) New->setAttrs(AttrVec());
3327 
3328   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3329     // Ignore deprecated/unavailable/availability attributes if requested.
3330     AvailabilityMergeKind LocalAMK = AMK_None;
3331     if (isa<DeprecatedAttr>(I) ||
3332         isa<UnavailableAttr>(I) ||
3333         isa<AvailabilityAttr>(I)) {
3334       switch (AMK) {
3335       case AMK_None:
3336         continue;
3337 
3338       case AMK_Redeclaration:
3339       case AMK_Override:
3340       case AMK_ProtocolImplementation:
3341       case AMK_OptionalProtocolImplementation:
3342         LocalAMK = AMK;
3343         break;
3344       }
3345     }
3346 
3347     // Already handled.
3348     if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3349       continue;
3350 
3351     if (mergeDeclAttribute(*this, New, I, LocalAMK))
3352       foundAny = true;
3353   }
3354 
3355   if (mergeAlignedAttrs(*this, New, Old))
3356     foundAny = true;
3357 
3358   if (!foundAny) New->dropAttrs();
3359 }
3360 
3361 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3362 /// to the new one.
3363 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3364                                      const ParmVarDecl *oldDecl,
3365                                      Sema &S) {
3366   // C++11 [dcl.attr.depend]p2:
3367   //   The first declaration of a function shall specify the
3368   //   carries_dependency attribute for its declarator-id if any declaration
3369   //   of the function specifies the carries_dependency attribute.
3370   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3371   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3372     S.Diag(CDA->getLocation(),
3373            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3374     // Find the first declaration of the parameter.
3375     // FIXME: Should we build redeclaration chains for function parameters?
3376     const FunctionDecl *FirstFD =
3377       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3378     const ParmVarDecl *FirstVD =
3379       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3380     S.Diag(FirstVD->getLocation(),
3381            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3382   }
3383 
3384   // HLSL parameter declarations for inout and out must match between
3385   // declarations. In HLSL inout and out are ambiguous at the call site, but
3386   // have different calling behavior, so you cannot overload a method based on a
3387   // difference between inout and out annotations.
3388   if (S.getLangOpts().HLSL) {
3389     const auto *NDAttr = newDecl->getAttr<HLSLParamModifierAttr>();
3390     const auto *ODAttr = oldDecl->getAttr<HLSLParamModifierAttr>();
3391     // We don't need to cover the case where one declaration doesn't have an
3392     // attribute. The only possible case there is if one declaration has an `in`
3393     // attribute and the other declaration has no attribute. This case is
3394     // allowed since parameters are `in` by default.
3395     if (NDAttr && ODAttr &&
3396         NDAttr->getSpellingListIndex() != ODAttr->getSpellingListIndex()) {
3397       S.Diag(newDecl->getLocation(), diag::err_hlsl_param_qualifier_mismatch)
3398           << NDAttr << newDecl;
3399       S.Diag(oldDecl->getLocation(), diag::note_previous_declaration_as)
3400           << ODAttr;
3401     }
3402   }
3403 
3404   if (!oldDecl->hasAttrs())
3405     return;
3406 
3407   bool foundAny = newDecl->hasAttrs();
3408 
3409   // Ensure that any moving of objects within the allocated map is
3410   // done before we process them.
3411   if (!foundAny) newDecl->setAttrs(AttrVec());
3412 
3413   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3414     if (!DeclHasAttr(newDecl, I)) {
3415       InheritableAttr *newAttr =
3416         cast<InheritableParamAttr>(I->clone(S.Context));
3417       newAttr->setInherited(true);
3418       newDecl->addAttr(newAttr);
3419       foundAny = true;
3420     }
3421   }
3422 
3423   if (!foundAny) newDecl->dropAttrs();
3424 }
3425 
3426 static bool EquivalentArrayTypes(QualType Old, QualType New,
3427                                  const ASTContext &Ctx) {
3428 
3429   auto NoSizeInfo = [&Ctx](QualType Ty) {
3430     if (Ty->isIncompleteArrayType() || Ty->isPointerType())
3431       return true;
3432     if (const auto *VAT = Ctx.getAsVariableArrayType(Ty))
3433       return VAT->getSizeModifier() == ArraySizeModifier::Star;
3434     return false;
3435   };
3436 
3437   // `type[]` is equivalent to `type *` and `type[*]`.
3438   if (NoSizeInfo(Old) && NoSizeInfo(New))
3439     return true;
3440 
3441   // Don't try to compare VLA sizes, unless one of them has the star modifier.
3442   if (Old->isVariableArrayType() && New->isVariableArrayType()) {
3443     const auto *OldVAT = Ctx.getAsVariableArrayType(Old);
3444     const auto *NewVAT = Ctx.getAsVariableArrayType(New);
3445     if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^
3446         (NewVAT->getSizeModifier() == ArraySizeModifier::Star))
3447       return false;
3448     return true;
3449   }
3450 
3451   // Only compare size, ignore Size modifiers and CVR.
3452   if (Old->isConstantArrayType() && New->isConstantArrayType()) {
3453     return Ctx.getAsConstantArrayType(Old)->getSize() ==
3454            Ctx.getAsConstantArrayType(New)->getSize();
3455   }
3456 
3457   // Don't try to compare dependent sized array
3458   if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) {
3459     return true;
3460   }
3461 
3462   return Old == New;
3463 }
3464 
3465 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3466                                 const ParmVarDecl *OldParam,
3467                                 Sema &S) {
3468   if (auto Oldnullability = OldParam->getType()->getNullability()) {
3469     if (auto Newnullability = NewParam->getType()->getNullability()) {
3470       if (*Oldnullability != *Newnullability) {
3471         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3472           << DiagNullabilityKind(
3473                *Newnullability,
3474                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3475                 != 0))
3476           << DiagNullabilityKind(
3477                *Oldnullability,
3478                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3479                 != 0));
3480         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3481       }
3482     } else {
3483       QualType NewT = NewParam->getType();
3484       NewT = S.Context.getAttributedType(
3485                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3486                          NewT, NewT);
3487       NewParam->setType(NewT);
3488     }
3489   }
3490   const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType());
3491   const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType());
3492   if (OldParamDT && NewParamDT &&
3493       OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) {
3494     QualType OldParamOT = OldParamDT->getOriginalType();
3495     QualType NewParamOT = NewParamDT->getOriginalType();
3496     if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) {
3497       S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form)
3498           << NewParam << NewParamOT;
3499       S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as)
3500           << OldParamOT;
3501     }
3502   }
3503 }
3504 
3505 namespace {
3506 
3507 /// Used in MergeFunctionDecl to keep track of function parameters in
3508 /// C.
3509 struct GNUCompatibleParamWarning {
3510   ParmVarDecl *OldParm;
3511   ParmVarDecl *NewParm;
3512   QualType PromotedType;
3513 };
3514 
3515 } // end anonymous namespace
3516 
3517 // Determine whether the previous declaration was a definition, implicit
3518 // declaration, or a declaration.
3519 template <typename T>
3520 static std::pair<diag::kind, SourceLocation>
3521 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3522   diag::kind PrevDiag;
3523   SourceLocation OldLocation = Old->getLocation();
3524   if (Old->isThisDeclarationADefinition())
3525     PrevDiag = diag::note_previous_definition;
3526   else if (Old->isImplicit()) {
3527     PrevDiag = diag::note_previous_implicit_declaration;
3528     if (const auto *FD = dyn_cast<FunctionDecl>(Old)) {
3529       if (FD->getBuiltinID())
3530         PrevDiag = diag::note_previous_builtin_declaration;
3531     }
3532     if (OldLocation.isInvalid())
3533       OldLocation = New->getLocation();
3534   } else
3535     PrevDiag = diag::note_previous_declaration;
3536   return std::make_pair(PrevDiag, OldLocation);
3537 }
3538 
3539 /// canRedefineFunction - checks if a function can be redefined. Currently,
3540 /// only extern inline functions can be redefined, and even then only in
3541 /// GNU89 mode.
3542 static bool canRedefineFunction(const FunctionDecl *FD,
3543                                 const LangOptions& LangOpts) {
3544   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3545           !LangOpts.CPlusPlus &&
3546           FD->isInlineSpecified() &&
3547           FD->getStorageClass() == SC_Extern);
3548 }
3549 
3550 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3551   const AttributedType *AT = T->getAs<AttributedType>();
3552   while (AT && !AT->isCallingConv())
3553     AT = AT->getModifiedType()->getAs<AttributedType>();
3554   return AT;
3555 }
3556 
3557 template <typename T>
3558 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3559   const DeclContext *DC = Old->getDeclContext();
3560   if (DC->isRecord())
3561     return false;
3562 
3563   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3564   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3565     return true;
3566   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3567     return true;
3568   return false;
3569 }
3570 
3571 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3572 static bool isExternC(VarTemplateDecl *) { return false; }
3573 static bool isExternC(FunctionTemplateDecl *) { return false; }
3574 
3575 /// Check whether a redeclaration of an entity introduced by a
3576 /// using-declaration is valid, given that we know it's not an overload
3577 /// (nor a hidden tag declaration).
3578 template<typename ExpectedDecl>
3579 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3580                                    ExpectedDecl *New) {
3581   // C++11 [basic.scope.declarative]p4:
3582   //   Given a set of declarations in a single declarative region, each of
3583   //   which specifies the same unqualified name,
3584   //   -- they shall all refer to the same entity, or all refer to functions
3585   //      and function templates; or
3586   //   -- exactly one declaration shall declare a class name or enumeration
3587   //      name that is not a typedef name and the other declarations shall all
3588   //      refer to the same variable or enumerator, or all refer to functions
3589   //      and function templates; in this case the class name or enumeration
3590   //      name is hidden (3.3.10).
3591 
3592   // C++11 [namespace.udecl]p14:
3593   //   If a function declaration in namespace scope or block scope has the
3594   //   same name and the same parameter-type-list as a function introduced
3595   //   by a using-declaration, and the declarations do not declare the same
3596   //   function, the program is ill-formed.
3597 
3598   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3599   if (Old &&
3600       !Old->getDeclContext()->getRedeclContext()->Equals(
3601           New->getDeclContext()->getRedeclContext()) &&
3602       !(isExternC(Old) && isExternC(New)))
3603     Old = nullptr;
3604 
3605   if (!Old) {
3606     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3607     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3608     S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3609     return true;
3610   }
3611   return false;
3612 }
3613 
3614 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3615                                             const FunctionDecl *B) {
3616   assert(A->getNumParams() == B->getNumParams());
3617 
3618   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3619     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3620     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3621     if (AttrA == AttrB)
3622       return true;
3623     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3624            AttrA->isDynamic() == AttrB->isDynamic();
3625   };
3626 
3627   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3628 }
3629 
3630 /// If necessary, adjust the semantic declaration context for a qualified
3631 /// declaration to name the correct inline namespace within the qualifier.
3632 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3633                                                DeclaratorDecl *OldD) {
3634   // The only case where we need to update the DeclContext is when
3635   // redeclaration lookup for a qualified name finds a declaration
3636   // in an inline namespace within the context named by the qualifier:
3637   //
3638   //   inline namespace N { int f(); }
3639   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3640   //
3641   // For unqualified declarations, the semantic context *can* change
3642   // along the redeclaration chain (for local extern declarations,
3643   // extern "C" declarations, and friend declarations in particular).
3644   if (!NewD->getQualifier())
3645     return;
3646 
3647   // NewD is probably already in the right context.
3648   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3649   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3650   if (NamedDC->Equals(SemaDC))
3651     return;
3652 
3653   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3654           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3655          "unexpected context for redeclaration");
3656 
3657   auto *LexDC = NewD->getLexicalDeclContext();
3658   auto FixSemaDC = [=](NamedDecl *D) {
3659     if (!D)
3660       return;
3661     D->setDeclContext(SemaDC);
3662     D->setLexicalDeclContext(LexDC);
3663   };
3664 
3665   FixSemaDC(NewD);
3666   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3667     FixSemaDC(FD->getDescribedFunctionTemplate());
3668   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3669     FixSemaDC(VD->getDescribedVarTemplate());
3670 }
3671 
3672 /// MergeFunctionDecl - We just parsed a function 'New' from
3673 /// declarator D which has the same name and scope as a previous
3674 /// declaration 'Old'.  Figure out how to resolve this situation,
3675 /// merging decls or emitting diagnostics as appropriate.
3676 ///
3677 /// In C++, New and Old must be declarations that are not
3678 /// overloaded. Use IsOverload to determine whether New and Old are
3679 /// overloaded, and to select the Old declaration that New should be
3680 /// merged with.
3681 ///
3682 /// Returns true if there was an error, false otherwise.
3683 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S,
3684                              bool MergeTypeWithOld, bool NewDeclIsDefn) {
3685   // Verify the old decl was also a function.
3686   FunctionDecl *Old = OldD->getAsFunction();
3687   if (!Old) {
3688     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3689       if (New->getFriendObjectKind()) {
3690         Diag(New->getLocation(), diag::err_using_decl_friend);
3691         Diag(Shadow->getTargetDecl()->getLocation(),
3692              diag::note_using_decl_target);
3693         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3694             << 0;
3695         return true;
3696       }
3697 
3698       // Check whether the two declarations might declare the same function or
3699       // function template.
3700       if (FunctionTemplateDecl *NewTemplate =
3701               New->getDescribedFunctionTemplate()) {
3702         if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3703                                                          NewTemplate))
3704           return true;
3705         OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3706                          ->getAsFunction();
3707       } else {
3708         if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3709           return true;
3710         OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3711       }
3712     } else {
3713       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3714         << New->getDeclName();
3715       notePreviousDefinition(OldD, New->getLocation());
3716       return true;
3717     }
3718   }
3719 
3720   // If the old declaration was found in an inline namespace and the new
3721   // declaration was qualified, update the DeclContext to match.
3722   adjustDeclContextForDeclaratorDecl(New, Old);
3723 
3724   // If the old declaration is invalid, just give up here.
3725   if (Old->isInvalidDecl())
3726     return true;
3727 
3728   // Disallow redeclaration of some builtins.
3729   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3730     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3731     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3732         << Old << Old->getType();
3733     return true;
3734   }
3735 
3736   diag::kind PrevDiag;
3737   SourceLocation OldLocation;
3738   std::tie(PrevDiag, OldLocation) =
3739       getNoteDiagForInvalidRedeclaration(Old, New);
3740 
3741   // Don't complain about this if we're in GNU89 mode and the old function
3742   // is an extern inline function.
3743   // Don't complain about specializations. They are not supposed to have
3744   // storage classes.
3745   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3746       New->getStorageClass() == SC_Static &&
3747       Old->hasExternalFormalLinkage() &&
3748       !New->getTemplateSpecializationInfo() &&
3749       !canRedefineFunction(Old, getLangOpts())) {
3750     if (getLangOpts().MicrosoftExt) {
3751       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3752       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3753     } else {
3754       Diag(New->getLocation(), diag::err_static_non_static) << New;
3755       Diag(OldLocation, PrevDiag) << Old << Old->getType();
3756       return true;
3757     }
3758   }
3759 
3760   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3761     if (!Old->hasAttr<InternalLinkageAttr>()) {
3762       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3763           << ILA;
3764       Diag(Old->getLocation(), diag::note_previous_declaration);
3765       New->dropAttr<InternalLinkageAttr>();
3766     }
3767 
3768   if (auto *EA = New->getAttr<ErrorAttr>()) {
3769     if (!Old->hasAttr<ErrorAttr>()) {
3770       Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3771       Diag(Old->getLocation(), diag::note_previous_declaration);
3772       New->dropAttr<ErrorAttr>();
3773     }
3774   }
3775 
3776   if (CheckRedeclarationInModule(New, Old))
3777     return true;
3778 
3779   if (!getLangOpts().CPlusPlus) {
3780     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3781     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3782       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3783         << New << OldOvl;
3784 
3785       // Try our best to find a decl that actually has the overloadable
3786       // attribute for the note. In most cases (e.g. programs with only one
3787       // broken declaration/definition), this won't matter.
3788       //
3789       // FIXME: We could do this if we juggled some extra state in
3790       // OverloadableAttr, rather than just removing it.
3791       const Decl *DiagOld = Old;
3792       if (OldOvl) {
3793         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3794           const auto *A = D->getAttr<OverloadableAttr>();
3795           return A && !A->isImplicit();
3796         });
3797         // If we've implicitly added *all* of the overloadable attrs to this
3798         // chain, emitting a "previous redecl" note is pointless.
3799         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3800       }
3801 
3802       if (DiagOld)
3803         Diag(DiagOld->getLocation(),
3804              diag::note_attribute_overloadable_prev_overload)
3805           << OldOvl;
3806 
3807       if (OldOvl)
3808         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3809       else
3810         New->dropAttr<OverloadableAttr>();
3811     }
3812   }
3813 
3814   // It is not permitted to redeclare an SME function with different SME
3815   // attributes.
3816   if (IsInvalidSMECallConversion(Old->getType(), New->getType(),
3817                                  AArch64SMECallConversionKind::MatchExactly)) {
3818     Diag(New->getLocation(), diag::err_sme_attr_mismatch)
3819         << New->getType() << Old->getType();
3820     Diag(OldLocation, diag::note_previous_declaration);
3821     return true;
3822   }
3823 
3824   // If a function is first declared with a calling convention, but is later
3825   // declared or defined without one, all following decls assume the calling
3826   // convention of the first.
3827   //
3828   // It's OK if a function is first declared without a calling convention,
3829   // but is later declared or defined with the default calling convention.
3830   //
3831   // To test if either decl has an explicit calling convention, we look for
3832   // AttributedType sugar nodes on the type as written.  If they are missing or
3833   // were canonicalized away, we assume the calling convention was implicit.
3834   //
3835   // Note also that we DO NOT return at this point, because we still have
3836   // other tests to run.
3837   QualType OldQType = Context.getCanonicalType(Old->getType());
3838   QualType NewQType = Context.getCanonicalType(New->getType());
3839   const FunctionType *OldType = cast<FunctionType>(OldQType);
3840   const FunctionType *NewType = cast<FunctionType>(NewQType);
3841   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3842   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3843   bool RequiresAdjustment = false;
3844 
3845   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3846     FunctionDecl *First = Old->getFirstDecl();
3847     const FunctionType *FT =
3848         First->getType().getCanonicalType()->castAs<FunctionType>();
3849     FunctionType::ExtInfo FI = FT->getExtInfo();
3850     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3851     if (!NewCCExplicit) {
3852       // Inherit the CC from the previous declaration if it was specified
3853       // there but not here.
3854       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3855       RequiresAdjustment = true;
3856     } else if (Old->getBuiltinID()) {
3857       // Builtin attribute isn't propagated to the new one yet at this point,
3858       // so we check if the old one is a builtin.
3859 
3860       // Calling Conventions on a Builtin aren't really useful and setting a
3861       // default calling convention and cdecl'ing some builtin redeclarations is
3862       // common, so warn and ignore the calling convention on the redeclaration.
3863       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3864           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3865           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3866       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3867       RequiresAdjustment = true;
3868     } else {
3869       // Calling conventions aren't compatible, so complain.
3870       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3871       Diag(New->getLocation(), diag::err_cconv_change)
3872         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3873         << !FirstCCExplicit
3874         << (!FirstCCExplicit ? "" :
3875             FunctionType::getNameForCallConv(FI.getCC()));
3876 
3877       // Put the note on the first decl, since it is the one that matters.
3878       Diag(First->getLocation(), diag::note_previous_declaration);
3879       return true;
3880     }
3881   }
3882 
3883   // FIXME: diagnose the other way around?
3884   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3885     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3886     RequiresAdjustment = true;
3887   }
3888 
3889   // Merge regparm attribute.
3890   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3891       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3892     if (NewTypeInfo.getHasRegParm()) {
3893       Diag(New->getLocation(), diag::err_regparm_mismatch)
3894         << NewType->getRegParmType()
3895         << OldType->getRegParmType();
3896       Diag(OldLocation, diag::note_previous_declaration);
3897       return true;
3898     }
3899 
3900     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3901     RequiresAdjustment = true;
3902   }
3903 
3904   // Merge ns_returns_retained attribute.
3905   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3906     if (NewTypeInfo.getProducesResult()) {
3907       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3908           << "'ns_returns_retained'";
3909       Diag(OldLocation, diag::note_previous_declaration);
3910       return true;
3911     }
3912 
3913     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3914     RequiresAdjustment = true;
3915   }
3916 
3917   if (OldTypeInfo.getNoCallerSavedRegs() !=
3918       NewTypeInfo.getNoCallerSavedRegs()) {
3919     if (NewTypeInfo.getNoCallerSavedRegs()) {
3920       AnyX86NoCallerSavedRegistersAttr *Attr =
3921         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3922       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3923       Diag(OldLocation, diag::note_previous_declaration);
3924       return true;
3925     }
3926 
3927     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3928     RequiresAdjustment = true;
3929   }
3930 
3931   if (RequiresAdjustment) {
3932     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3933     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3934     New->setType(QualType(AdjustedType, 0));
3935     NewQType = Context.getCanonicalType(New->getType());
3936   }
3937 
3938   // If this redeclaration makes the function inline, we may need to add it to
3939   // UndefinedButUsed.
3940   if (!Old->isInlined() && New->isInlined() &&
3941       !New->hasAttr<GNUInlineAttr>() &&
3942       !getLangOpts().GNUInline &&
3943       Old->isUsed(false) &&
3944       !Old->isDefined() && !New->isThisDeclarationADefinition())
3945     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3946                                            SourceLocation()));
3947 
3948   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3949   // about it.
3950   if (New->hasAttr<GNUInlineAttr>() &&
3951       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3952     UndefinedButUsed.erase(Old->getCanonicalDecl());
3953   }
3954 
3955   // If pass_object_size params don't match up perfectly, this isn't a valid
3956   // redeclaration.
3957   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3958       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3959     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3960         << New->getDeclName();
3961     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3962     return true;
3963   }
3964 
3965   if (getLangOpts().CPlusPlus) {
3966     OldQType = Context.getCanonicalType(Old->getType());
3967     NewQType = Context.getCanonicalType(New->getType());
3968 
3969     // Go back to the type source info to compare the declared return types,
3970     // per C++1y [dcl.type.auto]p13:
3971     //   Redeclarations or specializations of a function or function template
3972     //   with a declared return type that uses a placeholder type shall also
3973     //   use that placeholder, not a deduced type.
3974     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3975     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3976     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3977         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3978                                        OldDeclaredReturnType)) {
3979       QualType ResQT;
3980       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3981           OldDeclaredReturnType->isObjCObjectPointerType())
3982         // FIXME: This does the wrong thing for a deduced return type.
3983         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3984       if (ResQT.isNull()) {
3985         if (New->isCXXClassMember() && New->isOutOfLine())
3986           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3987               << New << New->getReturnTypeSourceRange();
3988         else
3989           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3990               << New->getReturnTypeSourceRange();
3991         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3992                                     << Old->getReturnTypeSourceRange();
3993         return true;
3994       }
3995       else
3996         NewQType = ResQT;
3997     }
3998 
3999     QualType OldReturnType = OldType->getReturnType();
4000     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
4001     if (OldReturnType != NewReturnType) {
4002       // If this function has a deduced return type and has already been
4003       // defined, copy the deduced value from the old declaration.
4004       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
4005       if (OldAT && OldAT->isDeduced()) {
4006         QualType DT = OldAT->getDeducedType();
4007         if (DT.isNull()) {
4008           New->setType(SubstAutoTypeDependent(New->getType()));
4009           NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType));
4010         } else {
4011           New->setType(SubstAutoType(New->getType(), DT));
4012           NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT));
4013         }
4014       }
4015     }
4016 
4017     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
4018     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
4019     if (OldMethod && NewMethod) {
4020       // Preserve triviality.
4021       NewMethod->setTrivial(OldMethod->isTrivial());
4022 
4023       // MSVC allows explicit template specialization at class scope:
4024       // 2 CXXMethodDecls referring to the same function will be injected.
4025       // We don't want a redeclaration error.
4026       bool IsClassScopeExplicitSpecialization =
4027                               OldMethod->isFunctionTemplateSpecialization() &&
4028                               NewMethod->isFunctionTemplateSpecialization();
4029       bool isFriend = NewMethod->getFriendObjectKind();
4030 
4031       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
4032           !IsClassScopeExplicitSpecialization) {
4033         //    -- Member function declarations with the same name and the
4034         //       same parameter types cannot be overloaded if any of them
4035         //       is a static member function declaration.
4036         if (OldMethod->isStatic() != NewMethod->isStatic()) {
4037           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
4038           Diag(OldLocation, PrevDiag) << Old << Old->getType();
4039           return true;
4040         }
4041 
4042         // C++ [class.mem]p1:
4043         //   [...] A member shall not be declared twice in the
4044         //   member-specification, except that a nested class or member
4045         //   class template can be declared and then later defined.
4046         if (!inTemplateInstantiation()) {
4047           unsigned NewDiag;
4048           if (isa<CXXConstructorDecl>(OldMethod))
4049             NewDiag = diag::err_constructor_redeclared;
4050           else if (isa<CXXDestructorDecl>(NewMethod))
4051             NewDiag = diag::err_destructor_redeclared;
4052           else if (isa<CXXConversionDecl>(NewMethod))
4053             NewDiag = diag::err_conv_function_redeclared;
4054           else
4055             NewDiag = diag::err_member_redeclared;
4056 
4057           Diag(New->getLocation(), NewDiag);
4058         } else {
4059           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
4060             << New << New->getType();
4061         }
4062         Diag(OldLocation, PrevDiag) << Old << Old->getType();
4063         return true;
4064 
4065       // Complain if this is an explicit declaration of a special
4066       // member that was initially declared implicitly.
4067       //
4068       // As an exception, it's okay to befriend such methods in order
4069       // to permit the implicit constructor/destructor/operator calls.
4070       } else if (OldMethod->isImplicit()) {
4071         if (isFriend) {
4072           NewMethod->setImplicit();
4073         } else {
4074           Diag(NewMethod->getLocation(),
4075                diag::err_definition_of_implicitly_declared_member)
4076             << New << getSpecialMember(OldMethod);
4077           return true;
4078         }
4079       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
4080         Diag(NewMethod->getLocation(),
4081              diag::err_definition_of_explicitly_defaulted_member)
4082           << getSpecialMember(OldMethod);
4083         return true;
4084       }
4085     }
4086 
4087     // C++1z [over.load]p2
4088     //   Certain function declarations cannot be overloaded:
4089     //     -- Function declarations that differ only in the return type,
4090     //        the exception specification, or both cannot be overloaded.
4091 
4092     // Check the exception specifications match. This may recompute the type of
4093     // both Old and New if it resolved exception specifications, so grab the
4094     // types again after this. Because this updates the type, we do this before
4095     // any of the other checks below, which may update the "de facto" NewQType
4096     // but do not necessarily update the type of New.
4097     if (CheckEquivalentExceptionSpec(Old, New))
4098       return true;
4099 
4100     // C++11 [dcl.attr.noreturn]p1:
4101     //   The first declaration of a function shall specify the noreturn
4102     //   attribute if any declaration of that function specifies the noreturn
4103     //   attribute.
4104     if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
4105       if (!Old->hasAttr<CXX11NoReturnAttr>()) {
4106         Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
4107             << NRA;
4108         Diag(Old->getLocation(), diag::note_previous_declaration);
4109       }
4110 
4111     // C++11 [dcl.attr.depend]p2:
4112     //   The first declaration of a function shall specify the
4113     //   carries_dependency attribute for its declarator-id if any declaration
4114     //   of the function specifies the carries_dependency attribute.
4115     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
4116     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
4117       Diag(CDA->getLocation(),
4118            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
4119       Diag(Old->getFirstDecl()->getLocation(),
4120            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
4121     }
4122 
4123     // (C++98 8.3.5p3):
4124     //   All declarations for a function shall agree exactly in both the
4125     //   return type and the parameter-type-list.
4126     // We also want to respect all the extended bits except noreturn.
4127 
4128     // noreturn should now match unless the old type info didn't have it.
4129     QualType OldQTypeForComparison = OldQType;
4130     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
4131       auto *OldType = OldQType->castAs<FunctionProtoType>();
4132       const FunctionType *OldTypeForComparison
4133         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
4134       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
4135       assert(OldQTypeForComparison.isCanonical());
4136     }
4137 
4138     if (haveIncompatibleLanguageLinkages(Old, New)) {
4139       // As a special case, retain the language linkage from previous
4140       // declarations of a friend function as an extension.
4141       //
4142       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
4143       // and is useful because there's otherwise no way to specify language
4144       // linkage within class scope.
4145       //
4146       // Check cautiously as the friend object kind isn't yet complete.
4147       if (New->getFriendObjectKind() != Decl::FOK_None) {
4148         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
4149         Diag(OldLocation, PrevDiag);
4150       } else {
4151         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4152         Diag(OldLocation, PrevDiag);
4153         return true;
4154       }
4155     }
4156 
4157     // If the function types are compatible, merge the declarations. Ignore the
4158     // exception specifier because it was already checked above in
4159     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
4160     // about incompatible types under -fms-compatibility.
4161     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
4162                                                          NewQType))
4163       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4164 
4165     // If the types are imprecise (due to dependent constructs in friends or
4166     // local extern declarations), it's OK if they differ. We'll check again
4167     // during instantiation.
4168     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
4169       return false;
4170 
4171     // Fall through for conflicting redeclarations and redefinitions.
4172   }
4173 
4174   // C: Function types need to be compatible, not identical. This handles
4175   // duplicate function decls like "void f(int); void f(enum X);" properly.
4176   if (!getLangOpts().CPlusPlus) {
4177     // C99 6.7.5.3p15: ...If one type has a parameter type list and the other
4178     // type is specified by a function definition that contains a (possibly
4179     // empty) identifier list, both shall agree in the number of parameters
4180     // and the type of each parameter shall be compatible with the type that
4181     // results from the application of default argument promotions to the
4182     // type of the corresponding identifier. ...
4183     // This cannot be handled by ASTContext::typesAreCompatible() because that
4184     // doesn't know whether the function type is for a definition or not when
4185     // eventually calling ASTContext::mergeFunctionTypes(). The only situation
4186     // we need to cover here is that the number of arguments agree as the
4187     // default argument promotion rules were already checked by
4188     // ASTContext::typesAreCompatible().
4189     if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn &&
4190         Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) {
4191       if (Old->hasInheritedPrototype())
4192         Old = Old->getCanonicalDecl();
4193       Diag(New->getLocation(), diag::err_conflicting_types) << New;
4194       Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
4195       return true;
4196     }
4197 
4198     // If we are merging two functions where only one of them has a prototype,
4199     // we may have enough information to decide to issue a diagnostic that the
4200     // function without a protoype will change behavior in C23. This handles
4201     // cases like:
4202     //   void i(); void i(int j);
4203     //   void i(int j); void i();
4204     //   void i(); void i(int j) {}
4205     // See ActOnFinishFunctionBody() for other cases of the behavior change
4206     // diagnostic. See GetFullTypeForDeclarator() for handling of a function
4207     // type without a prototype.
4208     if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() &&
4209         !New->isImplicit() && !Old->isImplicit()) {
4210       const FunctionDecl *WithProto, *WithoutProto;
4211       if (New->hasWrittenPrototype()) {
4212         WithProto = New;
4213         WithoutProto = Old;
4214       } else {
4215         WithProto = Old;
4216         WithoutProto = New;
4217       }
4218 
4219       if (WithProto->getNumParams() != 0) {
4220         if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) {
4221           // The one without the prototype will be changing behavior in C23, so
4222           // warn about that one so long as it's a user-visible declaration.
4223           bool IsWithoutProtoADef = false, IsWithProtoADef = false;
4224           if (WithoutProto == New)
4225             IsWithoutProtoADef = NewDeclIsDefn;
4226           else
4227             IsWithProtoADef = NewDeclIsDefn;
4228           Diag(WithoutProto->getLocation(),
4229                diag::warn_non_prototype_changes_behavior)
4230               << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1)
4231               << (WithoutProto == Old) << IsWithProtoADef;
4232 
4233           // The reason the one without the prototype will be changing behavior
4234           // is because of the one with the prototype, so note that so long as
4235           // it's a user-visible declaration. There is one exception to this:
4236           // when the new declaration is a definition without a prototype, the
4237           // old declaration with a prototype is not the cause of the issue,
4238           // and that does not need to be noted because the one with a
4239           // prototype will not change behavior in C23.
4240           if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() &&
4241               !IsWithoutProtoADef)
4242             Diag(WithProto->getLocation(), diag::note_conflicting_prototype);
4243         }
4244       }
4245     }
4246 
4247     if (Context.typesAreCompatible(OldQType, NewQType)) {
4248       const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
4249       const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
4250       const FunctionProtoType *OldProto = nullptr;
4251       if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
4252           (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
4253         // The old declaration provided a function prototype, but the
4254         // new declaration does not. Merge in the prototype.
4255         assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
4256         NewQType = Context.getFunctionType(NewFuncType->getReturnType(),
4257                                            OldProto->getParamTypes(),
4258                                            OldProto->getExtProtoInfo());
4259         New->setType(NewQType);
4260         New->setHasInheritedPrototype();
4261 
4262         // Synthesize parameters with the same types.
4263         SmallVector<ParmVarDecl *, 16> Params;
4264         for (const auto &ParamType : OldProto->param_types()) {
4265           ParmVarDecl *Param = ParmVarDecl::Create(
4266               Context, New, SourceLocation(), SourceLocation(), nullptr,
4267               ParamType, /*TInfo=*/nullptr, SC_None, nullptr);
4268           Param->setScopeInfo(0, Params.size());
4269           Param->setImplicit();
4270           Params.push_back(Param);
4271         }
4272 
4273         New->setParams(Params);
4274       }
4275 
4276       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4277     }
4278   }
4279 
4280   // Check if the function types are compatible when pointer size address
4281   // spaces are ignored.
4282   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
4283     return false;
4284 
4285   // GNU C permits a K&R definition to follow a prototype declaration
4286   // if the declared types of the parameters in the K&R definition
4287   // match the types in the prototype declaration, even when the
4288   // promoted types of the parameters from the K&R definition differ
4289   // from the types in the prototype. GCC then keeps the types from
4290   // the prototype.
4291   //
4292   // If a variadic prototype is followed by a non-variadic K&R definition,
4293   // the K&R definition becomes variadic.  This is sort of an edge case, but
4294   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
4295   // C99 6.9.1p8.
4296   if (!getLangOpts().CPlusPlus &&
4297       Old->hasPrototype() && !New->hasPrototype() &&
4298       New->getType()->getAs<FunctionProtoType>() &&
4299       Old->getNumParams() == New->getNumParams()) {
4300     SmallVector<QualType, 16> ArgTypes;
4301     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
4302     const FunctionProtoType *OldProto
4303       = Old->getType()->getAs<FunctionProtoType>();
4304     const FunctionProtoType *NewProto
4305       = New->getType()->getAs<FunctionProtoType>();
4306 
4307     // Determine whether this is the GNU C extension.
4308     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
4309                                                NewProto->getReturnType());
4310     bool LooseCompatible = !MergedReturn.isNull();
4311     for (unsigned Idx = 0, End = Old->getNumParams();
4312          LooseCompatible && Idx != End; ++Idx) {
4313       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
4314       ParmVarDecl *NewParm = New->getParamDecl(Idx);
4315       if (Context.typesAreCompatible(OldParm->getType(),
4316                                      NewProto->getParamType(Idx))) {
4317         ArgTypes.push_back(NewParm->getType());
4318       } else if (Context.typesAreCompatible(OldParm->getType(),
4319                                             NewParm->getType(),
4320                                             /*CompareUnqualified=*/true)) {
4321         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
4322                                            NewProto->getParamType(Idx) };
4323         Warnings.push_back(Warn);
4324         ArgTypes.push_back(NewParm->getType());
4325       } else
4326         LooseCompatible = false;
4327     }
4328 
4329     if (LooseCompatible) {
4330       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
4331         Diag(Warnings[Warn].NewParm->getLocation(),
4332              diag::ext_param_promoted_not_compatible_with_prototype)
4333           << Warnings[Warn].PromotedType
4334           << Warnings[Warn].OldParm->getType();
4335         if (Warnings[Warn].OldParm->getLocation().isValid())
4336           Diag(Warnings[Warn].OldParm->getLocation(),
4337                diag::note_previous_declaration);
4338       }
4339 
4340       if (MergeTypeWithOld)
4341         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
4342                                              OldProto->getExtProtoInfo()));
4343       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
4344     }
4345 
4346     // Fall through to diagnose conflicting types.
4347   }
4348 
4349   // A function that has already been declared has been redeclared or
4350   // defined with a different type; show an appropriate diagnostic.
4351 
4352   // If the previous declaration was an implicitly-generated builtin
4353   // declaration, then at the very least we should use a specialized note.
4354   unsigned BuiltinID;
4355   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
4356     // If it's actually a library-defined builtin function like 'malloc'
4357     // or 'printf', just warn about the incompatible redeclaration.
4358     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4359       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
4360       Diag(OldLocation, diag::note_previous_builtin_declaration)
4361         << Old << Old->getType();
4362       return false;
4363     }
4364 
4365     PrevDiag = diag::note_previous_builtin_declaration;
4366   }
4367 
4368   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
4369   Diag(OldLocation, PrevDiag) << Old << Old->getType();
4370   return true;
4371 }
4372 
4373 /// Completes the merge of two function declarations that are
4374 /// known to be compatible.
4375 ///
4376 /// This routine handles the merging of attributes and other
4377 /// properties of function declarations from the old declaration to
4378 /// the new declaration, once we know that New is in fact a
4379 /// redeclaration of Old.
4380 ///
4381 /// \returns false
4382 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
4383                                         Scope *S, bool MergeTypeWithOld) {
4384   // Merge the attributes
4385   mergeDeclAttributes(New, Old);
4386 
4387   // Merge "pure" flag.
4388   if (Old->isPure())
4389     New->setPure();
4390 
4391   // Merge "used" flag.
4392   if (Old->getMostRecentDecl()->isUsed(false))
4393     New->setIsUsed();
4394 
4395   // Merge attributes from the parameters.  These can mismatch with K&R
4396   // declarations.
4397   if (New->getNumParams() == Old->getNumParams())
4398       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
4399         ParmVarDecl *NewParam = New->getParamDecl(i);
4400         ParmVarDecl *OldParam = Old->getParamDecl(i);
4401         mergeParamDeclAttributes(NewParam, OldParam, *this);
4402         mergeParamDeclTypes(NewParam, OldParam, *this);
4403       }
4404 
4405   if (getLangOpts().CPlusPlus)
4406     return MergeCXXFunctionDecl(New, Old, S);
4407 
4408   // Merge the function types so the we get the composite types for the return
4409   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
4410   // was visible.
4411   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
4412   if (!Merged.isNull() && MergeTypeWithOld)
4413     New->setType(Merged);
4414 
4415   return false;
4416 }
4417 
4418 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
4419                                 ObjCMethodDecl *oldMethod) {
4420   // Merge the attributes, including deprecated/unavailable
4421   AvailabilityMergeKind MergeKind =
4422       isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
4423           ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
4424                                      : AMK_ProtocolImplementation)
4425           : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
4426                                                            : AMK_Override;
4427 
4428   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
4429 
4430   // Merge attributes from the parameters.
4431   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
4432                                        oe = oldMethod->param_end();
4433   for (ObjCMethodDecl::param_iterator
4434          ni = newMethod->param_begin(), ne = newMethod->param_end();
4435        ni != ne && oi != oe; ++ni, ++oi)
4436     mergeParamDeclAttributes(*ni, *oi, *this);
4437 
4438   CheckObjCMethodOverride(newMethod, oldMethod);
4439 }
4440 
4441 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
4442   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
4443 
4444   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
4445          ? diag::err_redefinition_different_type
4446          : diag::err_redeclaration_different_type)
4447     << New->getDeclName() << New->getType() << Old->getType();
4448 
4449   diag::kind PrevDiag;
4450   SourceLocation OldLocation;
4451   std::tie(PrevDiag, OldLocation)
4452     = getNoteDiagForInvalidRedeclaration(Old, New);
4453   S.Diag(OldLocation, PrevDiag) << Old << Old->getType();
4454   New->setInvalidDecl();
4455 }
4456 
4457 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
4458 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
4459 /// emitting diagnostics as appropriate.
4460 ///
4461 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
4462 /// to here in AddInitializerToDecl. We can't check them before the initializer
4463 /// is attached.
4464 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
4465                              bool MergeTypeWithOld) {
4466   if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors())
4467     return;
4468 
4469   QualType MergedT;
4470   if (getLangOpts().CPlusPlus) {
4471     if (New->getType()->isUndeducedType()) {
4472       // We don't know what the new type is until the initializer is attached.
4473       return;
4474     } else if (Context.hasSameType(New->getType(), Old->getType())) {
4475       // These could still be something that needs exception specs checked.
4476       return MergeVarDeclExceptionSpecs(New, Old);
4477     }
4478     // C++ [basic.link]p10:
4479     //   [...] the types specified by all declarations referring to a given
4480     //   object or function shall be identical, except that declarations for an
4481     //   array object can specify array types that differ by the presence or
4482     //   absence of a major array bound (8.3.4).
4483     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4484       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4485       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4486 
4487       // We are merging a variable declaration New into Old. If it has an array
4488       // bound, and that bound differs from Old's bound, we should diagnose the
4489       // mismatch.
4490       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4491         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4492              PrevVD = PrevVD->getPreviousDecl()) {
4493           QualType PrevVDTy = PrevVD->getType();
4494           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4495             continue;
4496 
4497           if (!Context.hasSameType(New->getType(), PrevVDTy))
4498             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4499         }
4500       }
4501 
4502       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4503         if (Context.hasSameType(OldArray->getElementType(),
4504                                 NewArray->getElementType()))
4505           MergedT = New->getType();
4506       }
4507       // FIXME: Check visibility. New is hidden but has a complete type. If New
4508       // has no array bound, it should not inherit one from Old, if Old is not
4509       // visible.
4510       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4511         if (Context.hasSameType(OldArray->getElementType(),
4512                                 NewArray->getElementType()))
4513           MergedT = Old->getType();
4514       }
4515     }
4516     else if (New->getType()->isObjCObjectPointerType() &&
4517                Old->getType()->isObjCObjectPointerType()) {
4518       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4519                                               Old->getType());
4520     }
4521   } else {
4522     // C 6.2.7p2:
4523     //   All declarations that refer to the same object or function shall have
4524     //   compatible type.
4525     MergedT = Context.mergeTypes(New->getType(), Old->getType());
4526   }
4527   if (MergedT.isNull()) {
4528     // It's OK if we couldn't merge types if either type is dependent, for a
4529     // block-scope variable. In other cases (static data members of class
4530     // templates, variable templates, ...), we require the types to be
4531     // equivalent.
4532     // FIXME: The C++ standard doesn't say anything about this.
4533     if ((New->getType()->isDependentType() ||
4534          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4535       // If the old type was dependent, we can't merge with it, so the new type
4536       // becomes dependent for now. We'll reproduce the original type when we
4537       // instantiate the TypeSourceInfo for the variable.
4538       if (!New->getType()->isDependentType() && MergeTypeWithOld)
4539         New->setType(Context.DependentTy);
4540       return;
4541     }
4542     return diagnoseVarDeclTypeMismatch(*this, New, Old);
4543   }
4544 
4545   // Don't actually update the type on the new declaration if the old
4546   // declaration was an extern declaration in a different scope.
4547   if (MergeTypeWithOld)
4548     New->setType(MergedT);
4549 }
4550 
4551 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4552                                   LookupResult &Previous) {
4553   // C11 6.2.7p4:
4554   //   For an identifier with internal or external linkage declared
4555   //   in a scope in which a prior declaration of that identifier is
4556   //   visible, if the prior declaration specifies internal or
4557   //   external linkage, the type of the identifier at the later
4558   //   declaration becomes the composite type.
4559   //
4560   // If the variable isn't visible, we do not merge with its type.
4561   if (Previous.isShadowed())
4562     return false;
4563 
4564   if (S.getLangOpts().CPlusPlus) {
4565     // C++11 [dcl.array]p3:
4566     //   If there is a preceding declaration of the entity in the same
4567     //   scope in which the bound was specified, an omitted array bound
4568     //   is taken to be the same as in that earlier declaration.
4569     return NewVD->isPreviousDeclInSameBlockScope() ||
4570            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4571             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4572   } else {
4573     // If the old declaration was function-local, don't merge with its
4574     // type unless we're in the same function.
4575     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4576            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4577   }
4578 }
4579 
4580 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4581 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4582 /// situation, merging decls or emitting diagnostics as appropriate.
4583 ///
4584 /// Tentative definition rules (C99 6.9.2p2) are checked by
4585 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4586 /// definitions here, since the initializer hasn't been attached.
4587 ///
4588 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4589   // If the new decl is already invalid, don't do any other checking.
4590   if (New->isInvalidDecl())
4591     return;
4592 
4593   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4594     return;
4595 
4596   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4597 
4598   // Verify the old decl was also a variable or variable template.
4599   VarDecl *Old = nullptr;
4600   VarTemplateDecl *OldTemplate = nullptr;
4601   if (Previous.isSingleResult()) {
4602     if (NewTemplate) {
4603       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4604       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4605 
4606       if (auto *Shadow =
4607               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4608         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4609           return New->setInvalidDecl();
4610     } else {
4611       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4612 
4613       if (auto *Shadow =
4614               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4615         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4616           return New->setInvalidDecl();
4617     }
4618   }
4619   if (!Old) {
4620     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4621         << New->getDeclName();
4622     notePreviousDefinition(Previous.getRepresentativeDecl(),
4623                            New->getLocation());
4624     return New->setInvalidDecl();
4625   }
4626 
4627   // If the old declaration was found in an inline namespace and the new
4628   // declaration was qualified, update the DeclContext to match.
4629   adjustDeclContextForDeclaratorDecl(New, Old);
4630 
4631   // Ensure the template parameters are compatible.
4632   if (NewTemplate &&
4633       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4634                                       OldTemplate->getTemplateParameters(),
4635                                       /*Complain=*/true, TPL_TemplateMatch))
4636     return New->setInvalidDecl();
4637 
4638   // C++ [class.mem]p1:
4639   //   A member shall not be declared twice in the member-specification [...]
4640   //
4641   // Here, we need only consider static data members.
4642   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4643     Diag(New->getLocation(), diag::err_duplicate_member)
4644       << New->getIdentifier();
4645     Diag(Old->getLocation(), diag::note_previous_declaration);
4646     New->setInvalidDecl();
4647   }
4648 
4649   mergeDeclAttributes(New, Old);
4650   // Warn if an already-declared variable is made a weak_import in a subsequent
4651   // declaration
4652   if (New->hasAttr<WeakImportAttr>() &&
4653       Old->getStorageClass() == SC_None &&
4654       !Old->hasAttr<WeakImportAttr>()) {
4655     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4656     Diag(Old->getLocation(), diag::note_previous_declaration);
4657     // Remove weak_import attribute on new declaration.
4658     New->dropAttr<WeakImportAttr>();
4659   }
4660 
4661   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4662     if (!Old->hasAttr<InternalLinkageAttr>()) {
4663       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4664           << ILA;
4665       Diag(Old->getLocation(), diag::note_previous_declaration);
4666       New->dropAttr<InternalLinkageAttr>();
4667     }
4668 
4669   // Merge the types.
4670   VarDecl *MostRecent = Old->getMostRecentDecl();
4671   if (MostRecent != Old) {
4672     MergeVarDeclTypes(New, MostRecent,
4673                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4674     if (New->isInvalidDecl())
4675       return;
4676   }
4677 
4678   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4679   if (New->isInvalidDecl())
4680     return;
4681 
4682   diag::kind PrevDiag;
4683   SourceLocation OldLocation;
4684   std::tie(PrevDiag, OldLocation) =
4685       getNoteDiagForInvalidRedeclaration(Old, New);
4686 
4687   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4688   if (New->getStorageClass() == SC_Static &&
4689       !New->isStaticDataMember() &&
4690       Old->hasExternalFormalLinkage()) {
4691     if (getLangOpts().MicrosoftExt) {
4692       Diag(New->getLocation(), diag::ext_static_non_static)
4693           << New->getDeclName();
4694       Diag(OldLocation, PrevDiag);
4695     } else {
4696       Diag(New->getLocation(), diag::err_static_non_static)
4697           << New->getDeclName();
4698       Diag(OldLocation, PrevDiag);
4699       return New->setInvalidDecl();
4700     }
4701   }
4702   // C99 6.2.2p4:
4703   //   For an identifier declared with the storage-class specifier
4704   //   extern in a scope in which a prior declaration of that
4705   //   identifier is visible,23) if the prior declaration specifies
4706   //   internal or external linkage, the linkage of the identifier at
4707   //   the later declaration is the same as the linkage specified at
4708   //   the prior declaration. If no prior declaration is visible, or
4709   //   if the prior declaration specifies no linkage, then the
4710   //   identifier has external linkage.
4711   if (New->hasExternalStorage() && Old->hasLinkage())
4712     /* Okay */;
4713   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4714            !New->isStaticDataMember() &&
4715            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4716     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4717     Diag(OldLocation, PrevDiag);
4718     return New->setInvalidDecl();
4719   }
4720 
4721   // Check if extern is followed by non-extern and vice-versa.
4722   if (New->hasExternalStorage() &&
4723       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4724     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4725     Diag(OldLocation, PrevDiag);
4726     return New->setInvalidDecl();
4727   }
4728   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4729       !New->hasExternalStorage()) {
4730     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4731     Diag(OldLocation, PrevDiag);
4732     return New->setInvalidDecl();
4733   }
4734 
4735   if (CheckRedeclarationInModule(New, Old))
4736     return;
4737 
4738   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4739 
4740   // FIXME: The test for external storage here seems wrong? We still
4741   // need to check for mismatches.
4742   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4743       // Don't complain about out-of-line definitions of static members.
4744       !(Old->getLexicalDeclContext()->isRecord() &&
4745         !New->getLexicalDeclContext()->isRecord())) {
4746     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4747     Diag(OldLocation, PrevDiag);
4748     return New->setInvalidDecl();
4749   }
4750 
4751   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4752     if (VarDecl *Def = Old->getDefinition()) {
4753       // C++1z [dcl.fcn.spec]p4:
4754       //   If the definition of a variable appears in a translation unit before
4755       //   its first declaration as inline, the program is ill-formed.
4756       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4757       Diag(Def->getLocation(), diag::note_previous_definition);
4758     }
4759   }
4760 
4761   // If this redeclaration makes the variable inline, we may need to add it to
4762   // UndefinedButUsed.
4763   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4764       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4765     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4766                                            SourceLocation()));
4767 
4768   if (New->getTLSKind() != Old->getTLSKind()) {
4769     if (!Old->getTLSKind()) {
4770       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4771       Diag(OldLocation, PrevDiag);
4772     } else if (!New->getTLSKind()) {
4773       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4774       Diag(OldLocation, PrevDiag);
4775     } else {
4776       // Do not allow redeclaration to change the variable between requiring
4777       // static and dynamic initialization.
4778       // FIXME: GCC allows this, but uses the TLS keyword on the first
4779       // declaration to determine the kind. Do we need to be compatible here?
4780       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4781         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4782       Diag(OldLocation, PrevDiag);
4783     }
4784   }
4785 
4786   // C++ doesn't have tentative definitions, so go right ahead and check here.
4787   if (getLangOpts().CPlusPlus) {
4788     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4789         Old->getCanonicalDecl()->isConstexpr()) {
4790       // This definition won't be a definition any more once it's been merged.
4791       Diag(New->getLocation(),
4792            diag::warn_deprecated_redundant_constexpr_static_def);
4793     } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) {
4794       VarDecl *Def = Old->getDefinition();
4795       if (Def && checkVarDeclRedefinition(Def, New))
4796         return;
4797     }
4798   }
4799 
4800   if (haveIncompatibleLanguageLinkages(Old, New)) {
4801     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4802     Diag(OldLocation, PrevDiag);
4803     New->setInvalidDecl();
4804     return;
4805   }
4806 
4807   // Merge "used" flag.
4808   if (Old->getMostRecentDecl()->isUsed(false))
4809     New->setIsUsed();
4810 
4811   // Keep a chain of previous declarations.
4812   New->setPreviousDecl(Old);
4813   if (NewTemplate)
4814     NewTemplate->setPreviousDecl(OldTemplate);
4815 
4816   // Inherit access appropriately.
4817   New->setAccess(Old->getAccess());
4818   if (NewTemplate)
4819     NewTemplate->setAccess(New->getAccess());
4820 
4821   if (Old->isInline())
4822     New->setImplicitlyInline();
4823 }
4824 
4825 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4826   SourceManager &SrcMgr = getSourceManager();
4827   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4828   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4829   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4830   auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first);
4831   auto &HSI = PP.getHeaderSearchInfo();
4832   StringRef HdrFilename =
4833       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4834 
4835   auto noteFromModuleOrInclude = [&](Module *Mod,
4836                                      SourceLocation IncLoc) -> bool {
4837     // Redefinition errors with modules are common with non modular mapped
4838     // headers, example: a non-modular header H in module A that also gets
4839     // included directly in a TU. Pointing twice to the same header/definition
4840     // is confusing, try to get better diagnostics when modules is on.
4841     if (IncLoc.isValid()) {
4842       if (Mod) {
4843         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4844             << HdrFilename.str() << Mod->getFullModuleName();
4845         if (!Mod->DefinitionLoc.isInvalid())
4846           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4847               << Mod->getFullModuleName();
4848       } else {
4849         Diag(IncLoc, diag::note_redefinition_include_same_file)
4850             << HdrFilename.str();
4851       }
4852       return true;
4853     }
4854 
4855     return false;
4856   };
4857 
4858   // Is it the same file and same offset? Provide more information on why
4859   // this leads to a redefinition error.
4860   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4861     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4862     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4863     bool EmittedDiag =
4864         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4865     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4866 
4867     // If the header has no guards, emit a note suggesting one.
4868     if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld))
4869       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4870 
4871     if (EmittedDiag)
4872       return;
4873   }
4874 
4875   // Redefinition coming from different files or couldn't do better above.
4876   if (Old->getLocation().isValid())
4877     Diag(Old->getLocation(), diag::note_previous_definition);
4878 }
4879 
4880 /// We've just determined that \p Old and \p New both appear to be definitions
4881 /// of the same variable. Either diagnose or fix the problem.
4882 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4883   if (!hasVisibleDefinition(Old) &&
4884       (New->getFormalLinkage() == Linkage::Internal || New->isInline() ||
4885        isa<VarTemplateSpecializationDecl>(New) ||
4886        New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() ||
4887        New->getDeclContext()->isDependentContext())) {
4888     // The previous definition is hidden, and multiple definitions are
4889     // permitted (in separate TUs). Demote this to a declaration.
4890     New->demoteThisDefinitionToDeclaration();
4891 
4892     // Make the canonical definition visible.
4893     if (auto *OldTD = Old->getDescribedVarTemplate())
4894       makeMergedDefinitionVisible(OldTD);
4895     makeMergedDefinitionVisible(Old);
4896     return false;
4897   } else {
4898     Diag(New->getLocation(), diag::err_redefinition) << New;
4899     notePreviousDefinition(Old, New->getLocation());
4900     New->setInvalidDecl();
4901     return true;
4902   }
4903 }
4904 
4905 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4906 /// no declarator (e.g. "struct foo;") is parsed.
4907 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
4908                                        DeclSpec &DS,
4909                                        const ParsedAttributesView &DeclAttrs,
4910                                        RecordDecl *&AnonRecord) {
4911   return ParsedFreeStandingDeclSpec(
4912       S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord);
4913 }
4914 
4915 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4916 // disambiguate entities defined in different scopes.
4917 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4918 // compatibility.
4919 // We will pick our mangling number depending on which version of MSVC is being
4920 // targeted.
4921 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4922   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4923              ? S->getMSCurManglingNumber()
4924              : S->getMSLastManglingNumber();
4925 }
4926 
4927 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4928   if (!Context.getLangOpts().CPlusPlus)
4929     return;
4930 
4931   if (isa<CXXRecordDecl>(Tag->getParent())) {
4932     // If this tag is the direct child of a class, number it if
4933     // it is anonymous.
4934     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4935       return;
4936     MangleNumberingContext &MCtx =
4937         Context.getManglingNumberContext(Tag->getParent());
4938     Context.setManglingNumber(
4939         Tag, MCtx.getManglingNumber(
4940                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4941     return;
4942   }
4943 
4944   // If this tag isn't a direct child of a class, number it if it is local.
4945   MangleNumberingContext *MCtx;
4946   Decl *ManglingContextDecl;
4947   std::tie(MCtx, ManglingContextDecl) =
4948       getCurrentMangleNumberContext(Tag->getDeclContext());
4949   if (MCtx) {
4950     Context.setManglingNumber(
4951         Tag, MCtx->getManglingNumber(
4952                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4953   }
4954 }
4955 
4956 namespace {
4957 struct NonCLikeKind {
4958   enum {
4959     None,
4960     BaseClass,
4961     DefaultMemberInit,
4962     Lambda,
4963     Friend,
4964     OtherMember,
4965     Invalid,
4966   } Kind = None;
4967   SourceRange Range;
4968 
4969   explicit operator bool() { return Kind != None; }
4970 };
4971 }
4972 
4973 /// Determine whether a class is C-like, according to the rules of C++
4974 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4975 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4976   if (RD->isInvalidDecl())
4977     return {NonCLikeKind::Invalid, {}};
4978 
4979   // C++ [dcl.typedef]p9: [P1766R1]
4980   //   An unnamed class with a typedef name for linkage purposes shall not
4981   //
4982   //    -- have any base classes
4983   if (RD->getNumBases())
4984     return {NonCLikeKind::BaseClass,
4985             SourceRange(RD->bases_begin()->getBeginLoc(),
4986                         RD->bases_end()[-1].getEndLoc())};
4987   bool Invalid = false;
4988   for (Decl *D : RD->decls()) {
4989     // Don't complain about things we already diagnosed.
4990     if (D->isInvalidDecl()) {
4991       Invalid = true;
4992       continue;
4993     }
4994 
4995     //  -- have any [...] default member initializers
4996     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4997       if (FD->hasInClassInitializer()) {
4998         auto *Init = FD->getInClassInitializer();
4999         return {NonCLikeKind::DefaultMemberInit,
5000                 Init ? Init->getSourceRange() : D->getSourceRange()};
5001       }
5002       continue;
5003     }
5004 
5005     // FIXME: We don't allow friend declarations. This violates the wording of
5006     // P1766, but not the intent.
5007     if (isa<FriendDecl>(D))
5008       return {NonCLikeKind::Friend, D->getSourceRange()};
5009 
5010     //  -- declare any members other than non-static data members, member
5011     //     enumerations, or member classes,
5012     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
5013         isa<EnumDecl>(D))
5014       continue;
5015     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
5016     if (!MemberRD) {
5017       if (D->isImplicit())
5018         continue;
5019       return {NonCLikeKind::OtherMember, D->getSourceRange()};
5020     }
5021 
5022     //  -- contain a lambda-expression,
5023     if (MemberRD->isLambda())
5024       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
5025 
5026     //  and all member classes shall also satisfy these requirements
5027     //  (recursively).
5028     if (MemberRD->isThisDeclarationADefinition()) {
5029       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
5030         return Kind;
5031     }
5032   }
5033 
5034   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
5035 }
5036 
5037 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
5038                                         TypedefNameDecl *NewTD) {
5039   if (TagFromDeclSpec->isInvalidDecl())
5040     return;
5041 
5042   // Do nothing if the tag already has a name for linkage purposes.
5043   if (TagFromDeclSpec->hasNameForLinkage())
5044     return;
5045 
5046   // A well-formed anonymous tag must always be a TUK_Definition.
5047   assert(TagFromDeclSpec->isThisDeclarationADefinition());
5048 
5049   // The type must match the tag exactly;  no qualifiers allowed.
5050   if (!Context.hasSameType(NewTD->getUnderlyingType(),
5051                            Context.getTagDeclType(TagFromDeclSpec))) {
5052     if (getLangOpts().CPlusPlus)
5053       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
5054     return;
5055   }
5056 
5057   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
5058   //   An unnamed class with a typedef name for linkage purposes shall [be
5059   //   C-like].
5060   //
5061   // FIXME: Also diagnose if we've already computed the linkage. That ideally
5062   // shouldn't happen, but there are constructs that the language rule doesn't
5063   // disallow for which we can't reasonably avoid computing linkage early.
5064   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
5065   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
5066                              : NonCLikeKind();
5067   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
5068   if (NonCLike || ChangesLinkage) {
5069     if (NonCLike.Kind == NonCLikeKind::Invalid)
5070       return;
5071 
5072     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
5073     if (ChangesLinkage) {
5074       // If the linkage changes, we can't accept this as an extension.
5075       if (NonCLike.Kind == NonCLikeKind::None)
5076         DiagID = diag::err_typedef_changes_linkage;
5077       else
5078         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
5079     }
5080 
5081     SourceLocation FixitLoc =
5082         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
5083     llvm::SmallString<40> TextToInsert;
5084     TextToInsert += ' ';
5085     TextToInsert += NewTD->getIdentifier()->getName();
5086 
5087     Diag(FixitLoc, DiagID)
5088       << isa<TypeAliasDecl>(NewTD)
5089       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
5090     if (NonCLike.Kind != NonCLikeKind::None) {
5091       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
5092         << NonCLike.Kind - 1 << NonCLike.Range;
5093     }
5094     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
5095       << NewTD << isa<TypeAliasDecl>(NewTD);
5096 
5097     if (ChangesLinkage)
5098       return;
5099   }
5100 
5101   // Otherwise, set this as the anon-decl typedef for the tag.
5102   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
5103 }
5104 
5105 static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) {
5106   DeclSpec::TST T = DS.getTypeSpecType();
5107   switch (T) {
5108   case DeclSpec::TST_class:
5109     return 0;
5110   case DeclSpec::TST_struct:
5111     return 1;
5112   case DeclSpec::TST_interface:
5113     return 2;
5114   case DeclSpec::TST_union:
5115     return 3;
5116   case DeclSpec::TST_enum:
5117     if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) {
5118       if (ED->isScopedUsingClassTag())
5119         return 5;
5120       if (ED->isScoped())
5121         return 6;
5122     }
5123     return 4;
5124   default:
5125     llvm_unreachable("unexpected type specifier");
5126   }
5127 }
5128 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
5129 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
5130 /// parameters to cope with template friend declarations.
5131 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
5132                                        DeclSpec &DS,
5133                                        const ParsedAttributesView &DeclAttrs,
5134                                        MultiTemplateParamsArg TemplateParams,
5135                                        bool IsExplicitInstantiation,
5136                                        RecordDecl *&AnonRecord) {
5137   Decl *TagD = nullptr;
5138   TagDecl *Tag = nullptr;
5139   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
5140       DS.getTypeSpecType() == DeclSpec::TST_struct ||
5141       DS.getTypeSpecType() == DeclSpec::TST_interface ||
5142       DS.getTypeSpecType() == DeclSpec::TST_union ||
5143       DS.getTypeSpecType() == DeclSpec::TST_enum) {
5144     TagD = DS.getRepAsDecl();
5145 
5146     if (!TagD) // We probably had an error
5147       return nullptr;
5148 
5149     // Note that the above type specs guarantee that the
5150     // type rep is a Decl, whereas in many of the others
5151     // it's a Type.
5152     if (isa<TagDecl>(TagD))
5153       Tag = cast<TagDecl>(TagD);
5154     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
5155       Tag = CTD->getTemplatedDecl();
5156   }
5157 
5158   if (Tag) {
5159     handleTagNumbering(Tag, S);
5160     Tag->setFreeStanding();
5161     if (Tag->isInvalidDecl())
5162       return Tag;
5163   }
5164 
5165   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
5166     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
5167     // or incomplete types shall not be restrict-qualified."
5168     if (TypeQuals & DeclSpec::TQ_restrict)
5169       Diag(DS.getRestrictSpecLoc(),
5170            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
5171            << DS.getSourceRange();
5172   }
5173 
5174   if (DS.isInlineSpecified())
5175     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5176         << getLangOpts().CPlusPlus17;
5177 
5178   if (DS.hasConstexprSpecifier()) {
5179     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
5180     // and definitions of functions and variables.
5181     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
5182     // the declaration of a function or function template
5183     if (Tag)
5184       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
5185           << GetDiagnosticTypeSpecifierID(DS)
5186           << static_cast<int>(DS.getConstexprSpecifier());
5187     else
5188       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
5189           << static_cast<int>(DS.getConstexprSpecifier());
5190     // Don't emit warnings after this error.
5191     return TagD;
5192   }
5193 
5194   DiagnoseFunctionSpecifiers(DS);
5195 
5196   if (DS.isFriendSpecified()) {
5197     // If we're dealing with a decl but not a TagDecl, assume that
5198     // whatever routines created it handled the friendship aspect.
5199     if (TagD && !Tag)
5200       return nullptr;
5201     return ActOnFriendTypeDecl(S, DS, TemplateParams);
5202   }
5203 
5204   const CXXScopeSpec &SS = DS.getTypeSpecScope();
5205   bool IsExplicitSpecialization =
5206     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
5207   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
5208       !IsExplicitInstantiation && !IsExplicitSpecialization &&
5209       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
5210     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
5211     // nested-name-specifier unless it is an explicit instantiation
5212     // or an explicit specialization.
5213     //
5214     // FIXME: We allow class template partial specializations here too, per the
5215     // obvious intent of DR1819.
5216     //
5217     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
5218     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
5219         << GetDiagnosticTypeSpecifierID(DS) << SS.getRange();
5220     return nullptr;
5221   }
5222 
5223   // Track whether this decl-specifier declares anything.
5224   bool DeclaresAnything = true;
5225 
5226   // Handle anonymous struct definitions.
5227   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
5228     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
5229         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
5230       if (getLangOpts().CPlusPlus ||
5231           Record->getDeclContext()->isRecord()) {
5232         // If CurContext is a DeclContext that can contain statements,
5233         // RecursiveASTVisitor won't visit the decls that
5234         // BuildAnonymousStructOrUnion() will put into CurContext.
5235         // Also store them here so that they can be part of the
5236         // DeclStmt that gets created in this case.
5237         // FIXME: Also return the IndirectFieldDecls created by
5238         // BuildAnonymousStructOr union, for the same reason?
5239         if (CurContext->isFunctionOrMethod())
5240           AnonRecord = Record;
5241         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
5242                                            Context.getPrintingPolicy());
5243       }
5244 
5245       DeclaresAnything = false;
5246     }
5247   }
5248 
5249   // C11 6.7.2.1p2:
5250   //   A struct-declaration that does not declare an anonymous structure or
5251   //   anonymous union shall contain a struct-declarator-list.
5252   //
5253   // This rule also existed in C89 and C99; the grammar for struct-declaration
5254   // did not permit a struct-declaration without a struct-declarator-list.
5255   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
5256       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
5257     // Check for Microsoft C extension: anonymous struct/union member.
5258     // Handle 2 kinds of anonymous struct/union:
5259     //   struct STRUCT;
5260     //   union UNION;
5261     // and
5262     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
5263     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
5264     if ((Tag && Tag->getDeclName()) ||
5265         DS.getTypeSpecType() == DeclSpec::TST_typename) {
5266       RecordDecl *Record = nullptr;
5267       if (Tag)
5268         Record = dyn_cast<RecordDecl>(Tag);
5269       else if (const RecordType *RT =
5270                    DS.getRepAsType().get()->getAsStructureType())
5271         Record = RT->getDecl();
5272       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
5273         Record = UT->getDecl();
5274 
5275       if (Record && getLangOpts().MicrosoftExt) {
5276         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
5277             << Record->isUnion() << DS.getSourceRange();
5278         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
5279       }
5280 
5281       DeclaresAnything = false;
5282     }
5283   }
5284 
5285   // Skip all the checks below if we have a type error.
5286   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
5287       (TagD && TagD->isInvalidDecl()))
5288     return TagD;
5289 
5290   if (getLangOpts().CPlusPlus &&
5291       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
5292     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
5293       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
5294           !Enum->getIdentifier() && !Enum->isInvalidDecl())
5295         DeclaresAnything = false;
5296 
5297   if (!DS.isMissingDeclaratorOk()) {
5298     // Customize diagnostic for a typedef missing a name.
5299     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
5300       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
5301           << DS.getSourceRange();
5302     else
5303       DeclaresAnything = false;
5304   }
5305 
5306   if (DS.isModulePrivateSpecified() &&
5307       Tag && Tag->getDeclContext()->isFunctionOrMethod())
5308     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
5309         << llvm::to_underlying(Tag->getTagKind())
5310         << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
5311 
5312   ActOnDocumentableDecl(TagD);
5313 
5314   // C 6.7/2:
5315   //   A declaration [...] shall declare at least a declarator [...], a tag,
5316   //   or the members of an enumeration.
5317   // C++ [dcl.dcl]p3:
5318   //   [If there are no declarators], and except for the declaration of an
5319   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5320   //   names into the program, or shall redeclare a name introduced by a
5321   //   previous declaration.
5322   if (!DeclaresAnything) {
5323     // In C, we allow this as a (popular) extension / bug. Don't bother
5324     // producing further diagnostics for redundant qualifiers after this.
5325     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
5326                                ? diag::err_no_declarators
5327                                : diag::ext_no_declarators)
5328         << DS.getSourceRange();
5329     return TagD;
5330   }
5331 
5332   // C++ [dcl.stc]p1:
5333   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
5334   //   init-declarator-list of the declaration shall not be empty.
5335   // C++ [dcl.fct.spec]p1:
5336   //   If a cv-qualifier appears in a decl-specifier-seq, the
5337   //   init-declarator-list of the declaration shall not be empty.
5338   //
5339   // Spurious qualifiers here appear to be valid in C.
5340   unsigned DiagID = diag::warn_standalone_specifier;
5341   if (getLangOpts().CPlusPlus)
5342     DiagID = diag::ext_standalone_specifier;
5343 
5344   // Note that a linkage-specification sets a storage class, but
5345   // 'extern "C" struct foo;' is actually valid and not theoretically
5346   // useless.
5347   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5348     if (SCS == DeclSpec::SCS_mutable)
5349       // Since mutable is not a viable storage class specifier in C, there is
5350       // no reason to treat it as an extension. Instead, diagnose as an error.
5351       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
5352     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
5353       Diag(DS.getStorageClassSpecLoc(), DiagID)
5354         << DeclSpec::getSpecifierName(SCS);
5355   }
5356 
5357   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
5358     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
5359       << DeclSpec::getSpecifierName(TSCS);
5360   if (DS.getTypeQualifiers()) {
5361     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5362       Diag(DS.getConstSpecLoc(), DiagID) << "const";
5363     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5364       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
5365     // Restrict is covered above.
5366     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5367       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
5368     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5369       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
5370   }
5371 
5372   // Warn about ignored type attributes, for example:
5373   // __attribute__((aligned)) struct A;
5374   // Attributes should be placed after tag to apply to type declaration.
5375   if (!DS.getAttributes().empty() || !DeclAttrs.empty()) {
5376     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
5377     if (TypeSpecType == DeclSpec::TST_class ||
5378         TypeSpecType == DeclSpec::TST_struct ||
5379         TypeSpecType == DeclSpec::TST_interface ||
5380         TypeSpecType == DeclSpec::TST_union ||
5381         TypeSpecType == DeclSpec::TST_enum) {
5382 
5383       auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) {
5384         unsigned DiagnosticId = diag::warn_declspec_attribute_ignored;
5385         if (AL.isAlignas() && !getLangOpts().CPlusPlus)
5386           DiagnosticId = diag::warn_attribute_ignored;
5387         else if (AL.isRegularKeywordAttribute())
5388           DiagnosticId = diag::err_declspec_keyword_has_no_effect;
5389         else
5390           DiagnosticId = diag::warn_declspec_attribute_ignored;
5391         Diag(AL.getLoc(), DiagnosticId)
5392             << AL << GetDiagnosticTypeSpecifierID(DS);
5393       };
5394 
5395       llvm::for_each(DS.getAttributes(), EmitAttributeDiagnostic);
5396       llvm::for_each(DeclAttrs, EmitAttributeDiagnostic);
5397     }
5398   }
5399 
5400   return TagD;
5401 }
5402 
5403 /// We are trying to inject an anonymous member into the given scope;
5404 /// check if there's an existing declaration that can't be overloaded.
5405 ///
5406 /// \return true if this is a forbidden redeclaration
5407 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S,
5408                                          DeclContext *Owner,
5409                                          DeclarationName Name,
5410                                          SourceLocation NameLoc, bool IsUnion,
5411                                          StorageClass SC) {
5412   LookupResult R(SemaRef, Name, NameLoc,
5413                  Owner->isRecord() ? Sema::LookupMemberName
5414                                    : Sema::LookupOrdinaryName,
5415                  Sema::ForVisibleRedeclaration);
5416   if (!SemaRef.LookupName(R, S)) return false;
5417 
5418   // Pick a representative declaration.
5419   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
5420   assert(PrevDecl && "Expected a non-null Decl");
5421 
5422   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
5423     return false;
5424 
5425   if (SC == StorageClass::SC_None &&
5426       PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) &&
5427       (Owner->isFunctionOrMethod() || Owner->isRecord())) {
5428     if (!Owner->isRecord())
5429       SemaRef.DiagPlaceholderVariableDefinition(NameLoc);
5430     return false;
5431   }
5432 
5433   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
5434     << IsUnion << Name;
5435   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5436 
5437   return true;
5438 }
5439 
5440 void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) {
5441   if (auto *RD = dyn_cast_if_present<RecordDecl>(D))
5442     DiagPlaceholderFieldDeclDefinitions(RD);
5443 }
5444 
5445 /// Emit diagnostic warnings for placeholder members.
5446 /// We can only do that after the class is fully constructed,
5447 /// as anonymous union/structs can insert placeholders
5448 /// in their parent scope (which might be a Record).
5449 void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) {
5450   if (!getLangOpts().CPlusPlus)
5451     return;
5452 
5453   // This function can be parsed before we have validated the
5454   // structure as an anonymous struct
5455   if (Record->isAnonymousStructOrUnion())
5456     return;
5457 
5458   const NamedDecl *First = 0;
5459   for (const Decl *D : Record->decls()) {
5460     const NamedDecl *ND = dyn_cast<NamedDecl>(D);
5461     if (!ND || !ND->isPlaceholderVar(getLangOpts()))
5462       continue;
5463     if (!First)
5464       First = ND;
5465     else
5466       DiagPlaceholderVariableDefinition(ND->getLocation());
5467   }
5468 }
5469 
5470 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
5471 /// anonymous struct or union AnonRecord into the owning context Owner
5472 /// and scope S. This routine will be invoked just after we realize
5473 /// that an unnamed union or struct is actually an anonymous union or
5474 /// struct, e.g.,
5475 ///
5476 /// @code
5477 /// union {
5478 ///   int i;
5479 ///   float f;
5480 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
5481 ///    // f into the surrounding scope.x
5482 /// @endcode
5483 ///
5484 /// This routine is recursive, injecting the names of nested anonymous
5485 /// structs/unions into the owning context and scope as well.
5486 static bool
5487 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
5488                                     RecordDecl *AnonRecord, AccessSpecifier AS,
5489                                     StorageClass SC,
5490                                     SmallVectorImpl<NamedDecl *> &Chaining) {
5491   bool Invalid = false;
5492 
5493   // Look every FieldDecl and IndirectFieldDecl with a name.
5494   for (auto *D : AnonRecord->decls()) {
5495     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
5496         cast<NamedDecl>(D)->getDeclName()) {
5497       ValueDecl *VD = cast<ValueDecl>(D);
5498       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
5499                                        VD->getLocation(), AnonRecord->isUnion(),
5500                                        SC)) {
5501         // C++ [class.union]p2:
5502         //   The names of the members of an anonymous union shall be
5503         //   distinct from the names of any other entity in the
5504         //   scope in which the anonymous union is declared.
5505         Invalid = true;
5506       } else {
5507         // C++ [class.union]p2:
5508         //   For the purpose of name lookup, after the anonymous union
5509         //   definition, the members of the anonymous union are
5510         //   considered to have been defined in the scope in which the
5511         //   anonymous union is declared.
5512         unsigned OldChainingSize = Chaining.size();
5513         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
5514           Chaining.append(IF->chain_begin(), IF->chain_end());
5515         else
5516           Chaining.push_back(VD);
5517 
5518         assert(Chaining.size() >= 2);
5519         NamedDecl **NamedChain =
5520           new (SemaRef.Context)NamedDecl*[Chaining.size()];
5521         for (unsigned i = 0; i < Chaining.size(); i++)
5522           NamedChain[i] = Chaining[i];
5523 
5524         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
5525             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
5526             VD->getType(), {NamedChain, Chaining.size()});
5527 
5528         for (const auto *Attr : VD->attrs())
5529           IndirectField->addAttr(Attr->clone(SemaRef.Context));
5530 
5531         IndirectField->setAccess(AS);
5532         IndirectField->setImplicit();
5533         SemaRef.PushOnScopeChains(IndirectField, S);
5534 
5535         // That includes picking up the appropriate access specifier.
5536         if (AS != AS_none) IndirectField->setAccess(AS);
5537 
5538         Chaining.resize(OldChainingSize);
5539       }
5540     }
5541   }
5542 
5543   return Invalid;
5544 }
5545 
5546 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5547 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5548 /// illegal input values are mapped to SC_None.
5549 static StorageClass
5550 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5551   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5552   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5553          "Parser allowed 'typedef' as storage class VarDecl.");
5554   switch (StorageClassSpec) {
5555   case DeclSpec::SCS_unspecified:    return SC_None;
5556   case DeclSpec::SCS_extern:
5557     if (DS.isExternInLinkageSpec())
5558       return SC_None;
5559     return SC_Extern;
5560   case DeclSpec::SCS_static:         return SC_Static;
5561   case DeclSpec::SCS_auto:           return SC_Auto;
5562   case DeclSpec::SCS_register:       return SC_Register;
5563   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5564     // Illegal SCSs map to None: error reporting is up to the caller.
5565   case DeclSpec::SCS_mutable:        // Fall through.
5566   case DeclSpec::SCS_typedef:        return SC_None;
5567   }
5568   llvm_unreachable("unknown storage class specifier");
5569 }
5570 
5571 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5572   assert(Record->hasInClassInitializer());
5573 
5574   for (const auto *I : Record->decls()) {
5575     const auto *FD = dyn_cast<FieldDecl>(I);
5576     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5577       FD = IFD->getAnonField();
5578     if (FD && FD->hasInClassInitializer())
5579       return FD->getLocation();
5580   }
5581 
5582   llvm_unreachable("couldn't find in-class initializer");
5583 }
5584 
5585 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5586                                       SourceLocation DefaultInitLoc) {
5587   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5588     return;
5589 
5590   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5591   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5592 }
5593 
5594 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5595                                       CXXRecordDecl *AnonUnion) {
5596   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5597     return;
5598 
5599   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5600 }
5601 
5602 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5603 /// anonymous structure or union. Anonymous unions are a C++ feature
5604 /// (C++ [class.union]) and a C11 feature; anonymous structures
5605 /// are a C11 feature and GNU C++ extension.
5606 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5607                                         AccessSpecifier AS,
5608                                         RecordDecl *Record,
5609                                         const PrintingPolicy &Policy) {
5610   DeclContext *Owner = Record->getDeclContext();
5611 
5612   // Diagnose whether this anonymous struct/union is an extension.
5613   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5614     Diag(Record->getLocation(), diag::ext_anonymous_union);
5615   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5616     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5617   else if (!Record->isUnion() && !getLangOpts().C11)
5618     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5619 
5620   // C and C++ require different kinds of checks for anonymous
5621   // structs/unions.
5622   bool Invalid = false;
5623   if (getLangOpts().CPlusPlus) {
5624     const char *PrevSpec = nullptr;
5625     if (Record->isUnion()) {
5626       // C++ [class.union]p6:
5627       // C++17 [class.union.anon]p2:
5628       //   Anonymous unions declared in a named namespace or in the
5629       //   global namespace shall be declared static.
5630       unsigned DiagID;
5631       DeclContext *OwnerScope = Owner->getRedeclContext();
5632       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5633           (OwnerScope->isTranslationUnit() ||
5634            (OwnerScope->isNamespace() &&
5635             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5636         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5637           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5638 
5639         // Recover by adding 'static'.
5640         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5641                                PrevSpec, DiagID, Policy);
5642       }
5643       // C++ [class.union]p6:
5644       //   A storage class is not allowed in a declaration of an
5645       //   anonymous union in a class scope.
5646       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5647                isa<RecordDecl>(Owner)) {
5648         Diag(DS.getStorageClassSpecLoc(),
5649              diag::err_anonymous_union_with_storage_spec)
5650           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5651 
5652         // Recover by removing the storage specifier.
5653         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5654                                SourceLocation(),
5655                                PrevSpec, DiagID, Context.getPrintingPolicy());
5656       }
5657     }
5658 
5659     // Ignore const/volatile/restrict qualifiers.
5660     if (DS.getTypeQualifiers()) {
5661       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5662         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5663           << Record->isUnion() << "const"
5664           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5665       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5666         Diag(DS.getVolatileSpecLoc(),
5667              diag::ext_anonymous_struct_union_qualified)
5668           << Record->isUnion() << "volatile"
5669           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5670       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5671         Diag(DS.getRestrictSpecLoc(),
5672              diag::ext_anonymous_struct_union_qualified)
5673           << Record->isUnion() << "restrict"
5674           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5675       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5676         Diag(DS.getAtomicSpecLoc(),
5677              diag::ext_anonymous_struct_union_qualified)
5678           << Record->isUnion() << "_Atomic"
5679           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5680       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5681         Diag(DS.getUnalignedSpecLoc(),
5682              diag::ext_anonymous_struct_union_qualified)
5683           << Record->isUnion() << "__unaligned"
5684           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5685 
5686       DS.ClearTypeQualifiers();
5687     }
5688 
5689     // C++ [class.union]p2:
5690     //   The member-specification of an anonymous union shall only
5691     //   define non-static data members. [Note: nested types and
5692     //   functions cannot be declared within an anonymous union. ]
5693     for (auto *Mem : Record->decls()) {
5694       // Ignore invalid declarations; we already diagnosed them.
5695       if (Mem->isInvalidDecl())
5696         continue;
5697 
5698       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5699         // C++ [class.union]p3:
5700         //   An anonymous union shall not have private or protected
5701         //   members (clause 11).
5702         assert(FD->getAccess() != AS_none);
5703         if (FD->getAccess() != AS_public) {
5704           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5705             << Record->isUnion() << (FD->getAccess() == AS_protected);
5706           Invalid = true;
5707         }
5708 
5709         // C++ [class.union]p1
5710         //   An object of a class with a non-trivial constructor, a non-trivial
5711         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5712         //   assignment operator cannot be a member of a union, nor can an
5713         //   array of such objects.
5714         if (CheckNontrivialField(FD))
5715           Invalid = true;
5716       } else if (Mem->isImplicit()) {
5717         // Any implicit members are fine.
5718       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5719         // This is a type that showed up in an
5720         // elaborated-type-specifier inside the anonymous struct or
5721         // union, but which actually declares a type outside of the
5722         // anonymous struct or union. It's okay.
5723       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5724         if (!MemRecord->isAnonymousStructOrUnion() &&
5725             MemRecord->getDeclName()) {
5726           // Visual C++ allows type definition in anonymous struct or union.
5727           if (getLangOpts().MicrosoftExt)
5728             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5729               << Record->isUnion();
5730           else {
5731             // This is a nested type declaration.
5732             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5733               << Record->isUnion();
5734             Invalid = true;
5735           }
5736         } else {
5737           // This is an anonymous type definition within another anonymous type.
5738           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5739           // not part of standard C++.
5740           Diag(MemRecord->getLocation(),
5741                diag::ext_anonymous_record_with_anonymous_type)
5742             << Record->isUnion();
5743         }
5744       } else if (isa<AccessSpecDecl>(Mem)) {
5745         // Any access specifier is fine.
5746       } else if (isa<StaticAssertDecl>(Mem)) {
5747         // In C++1z, static_assert declarations are also fine.
5748       } else {
5749         // We have something that isn't a non-static data
5750         // member. Complain about it.
5751         unsigned DK = diag::err_anonymous_record_bad_member;
5752         if (isa<TypeDecl>(Mem))
5753           DK = diag::err_anonymous_record_with_type;
5754         else if (isa<FunctionDecl>(Mem))
5755           DK = diag::err_anonymous_record_with_function;
5756         else if (isa<VarDecl>(Mem))
5757           DK = diag::err_anonymous_record_with_static;
5758 
5759         // Visual C++ allows type definition in anonymous struct or union.
5760         if (getLangOpts().MicrosoftExt &&
5761             DK == diag::err_anonymous_record_with_type)
5762           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5763             << Record->isUnion();
5764         else {
5765           Diag(Mem->getLocation(), DK) << Record->isUnion();
5766           Invalid = true;
5767         }
5768       }
5769     }
5770 
5771     // C++11 [class.union]p8 (DR1460):
5772     //   At most one variant member of a union may have a
5773     //   brace-or-equal-initializer.
5774     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5775         Owner->isRecord())
5776       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5777                                 cast<CXXRecordDecl>(Record));
5778   }
5779 
5780   if (!Record->isUnion() && !Owner->isRecord()) {
5781     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5782       << getLangOpts().CPlusPlus;
5783     Invalid = true;
5784   }
5785 
5786   // C++ [dcl.dcl]p3:
5787   //   [If there are no declarators], and except for the declaration of an
5788   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5789   //   names into the program
5790   // C++ [class.mem]p2:
5791   //   each such member-declaration shall either declare at least one member
5792   //   name of the class or declare at least one unnamed bit-field
5793   //
5794   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5795   if (getLangOpts().CPlusPlus && Record->field_empty())
5796     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5797 
5798   // Mock up a declarator.
5799   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member);
5800   StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5801   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5802   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5803 
5804   // Create a declaration for this anonymous struct/union.
5805   NamedDecl *Anon = nullptr;
5806   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5807     Anon = FieldDecl::Create(
5808         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5809         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5810         /*BitWidth=*/nullptr, /*Mutable=*/false,
5811         /*InitStyle=*/ICIS_NoInit);
5812     Anon->setAccess(AS);
5813     ProcessDeclAttributes(S, Anon, Dc);
5814 
5815     if (getLangOpts().CPlusPlus)
5816       FieldCollector->Add(cast<FieldDecl>(Anon));
5817   } else {
5818     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5819     if (SCSpec == DeclSpec::SCS_mutable) {
5820       // mutable can only appear on non-static class members, so it's always
5821       // an error here
5822       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5823       Invalid = true;
5824       SC = SC_None;
5825     }
5826 
5827     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5828                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5829                            Context.getTypeDeclType(Record), TInfo, SC);
5830     ProcessDeclAttributes(S, Anon, Dc);
5831 
5832     // Default-initialize the implicit variable. This initialization will be
5833     // trivial in almost all cases, except if a union member has an in-class
5834     // initializer:
5835     //   union { int n = 0; };
5836     ActOnUninitializedDecl(Anon);
5837   }
5838   Anon->setImplicit();
5839 
5840   // Mark this as an anonymous struct/union type.
5841   Record->setAnonymousStructOrUnion(true);
5842 
5843   // Add the anonymous struct/union object to the current
5844   // context. We'll be referencing this object when we refer to one of
5845   // its members.
5846   Owner->addDecl(Anon);
5847 
5848   // Inject the members of the anonymous struct/union into the owning
5849   // context and into the identifier resolver chain for name lookup
5850   // purposes.
5851   SmallVector<NamedDecl*, 2> Chain;
5852   Chain.push_back(Anon);
5853 
5854   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC,
5855                                           Chain))
5856     Invalid = true;
5857 
5858   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5859     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5860       MangleNumberingContext *MCtx;
5861       Decl *ManglingContextDecl;
5862       std::tie(MCtx, ManglingContextDecl) =
5863           getCurrentMangleNumberContext(NewVD->getDeclContext());
5864       if (MCtx) {
5865         Context.setManglingNumber(
5866             NewVD, MCtx->getManglingNumber(
5867                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5868         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5869       }
5870     }
5871   }
5872 
5873   if (Invalid)
5874     Anon->setInvalidDecl();
5875 
5876   return Anon;
5877 }
5878 
5879 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5880 /// Microsoft C anonymous structure.
5881 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5882 /// Example:
5883 ///
5884 /// struct A { int a; };
5885 /// struct B { struct A; int b; };
5886 ///
5887 /// void foo() {
5888 ///   B var;
5889 ///   var.a = 3;
5890 /// }
5891 ///
5892 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5893                                            RecordDecl *Record) {
5894   assert(Record && "expected a record!");
5895 
5896   // Mock up a declarator.
5897   Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
5898   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5899   assert(TInfo && "couldn't build declarator info for anonymous struct");
5900 
5901   auto *ParentDecl = cast<RecordDecl>(CurContext);
5902   QualType RecTy = Context.getTypeDeclType(Record);
5903 
5904   // Create a declaration for this anonymous struct.
5905   NamedDecl *Anon =
5906       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5907                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5908                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5909                         /*InitStyle=*/ICIS_NoInit);
5910   Anon->setImplicit();
5911 
5912   // Add the anonymous struct object to the current context.
5913   CurContext->addDecl(Anon);
5914 
5915   // Inject the members of the anonymous struct into the current
5916   // context and into the identifier resolver chain for name lookup
5917   // purposes.
5918   SmallVector<NamedDecl*, 2> Chain;
5919   Chain.push_back(Anon);
5920 
5921   RecordDecl *RecordDef = Record->getDefinition();
5922   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5923                                diag::err_field_incomplete_or_sizeless) ||
5924       InjectAnonymousStructOrUnionMembers(
5925           *this, S, CurContext, RecordDef, AS_none,
5926           StorageClassSpecToVarDeclStorageClass(DS), Chain)) {
5927     Anon->setInvalidDecl();
5928     ParentDecl->setInvalidDecl();
5929   }
5930 
5931   return Anon;
5932 }
5933 
5934 /// GetNameForDeclarator - Determine the full declaration name for the
5935 /// given Declarator.
5936 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5937   return GetNameFromUnqualifiedId(D.getName());
5938 }
5939 
5940 /// Retrieves the declaration name from a parsed unqualified-id.
5941 DeclarationNameInfo
5942 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5943   DeclarationNameInfo NameInfo;
5944   NameInfo.setLoc(Name.StartLocation);
5945 
5946   switch (Name.getKind()) {
5947 
5948   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5949   case UnqualifiedIdKind::IK_Identifier:
5950     NameInfo.setName(Name.Identifier);
5951     return NameInfo;
5952 
5953   case UnqualifiedIdKind::IK_DeductionGuideName: {
5954     // C++ [temp.deduct.guide]p3:
5955     //   The simple-template-id shall name a class template specialization.
5956     //   The template-name shall be the same identifier as the template-name
5957     //   of the simple-template-id.
5958     // These together intend to imply that the template-name shall name a
5959     // class template.
5960     // FIXME: template<typename T> struct X {};
5961     //        template<typename T> using Y = X<T>;
5962     //        Y(int) -> Y<int>;
5963     //   satisfies these rules but does not name a class template.
5964     TemplateName TN = Name.TemplateName.get().get();
5965     auto *Template = TN.getAsTemplateDecl();
5966     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5967       Diag(Name.StartLocation,
5968            diag::err_deduction_guide_name_not_class_template)
5969         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5970       if (Template)
5971         NoteTemplateLocation(*Template);
5972       return DeclarationNameInfo();
5973     }
5974 
5975     NameInfo.setName(
5976         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5977     return NameInfo;
5978   }
5979 
5980   case UnqualifiedIdKind::IK_OperatorFunctionId:
5981     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5982                                            Name.OperatorFunctionId.Operator));
5983     NameInfo.setCXXOperatorNameRange(SourceRange(
5984         Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5985     return NameInfo;
5986 
5987   case UnqualifiedIdKind::IK_LiteralOperatorId:
5988     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5989                                                            Name.Identifier));
5990     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5991     return NameInfo;
5992 
5993   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5994     TypeSourceInfo *TInfo;
5995     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5996     if (Ty.isNull())
5997       return DeclarationNameInfo();
5998     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5999                                                Context.getCanonicalType(Ty)));
6000     NameInfo.setNamedTypeInfo(TInfo);
6001     return NameInfo;
6002   }
6003 
6004   case UnqualifiedIdKind::IK_ConstructorName: {
6005     TypeSourceInfo *TInfo;
6006     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
6007     if (Ty.isNull())
6008       return DeclarationNameInfo();
6009     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6010                                               Context.getCanonicalType(Ty)));
6011     NameInfo.setNamedTypeInfo(TInfo);
6012     return NameInfo;
6013   }
6014 
6015   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
6016     // In well-formed code, we can only have a constructor
6017     // template-id that refers to the current context, so go there
6018     // to find the actual type being constructed.
6019     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
6020     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
6021       return DeclarationNameInfo();
6022 
6023     // Determine the type of the class being constructed.
6024     QualType CurClassType = Context.getTypeDeclType(CurClass);
6025 
6026     // FIXME: Check two things: that the template-id names the same type as
6027     // CurClassType, and that the template-id does not occur when the name
6028     // was qualified.
6029 
6030     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
6031                                     Context.getCanonicalType(CurClassType)));
6032     // FIXME: should we retrieve TypeSourceInfo?
6033     NameInfo.setNamedTypeInfo(nullptr);
6034     return NameInfo;
6035   }
6036 
6037   case UnqualifiedIdKind::IK_DestructorName: {
6038     TypeSourceInfo *TInfo;
6039     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
6040     if (Ty.isNull())
6041       return DeclarationNameInfo();
6042     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
6043                                               Context.getCanonicalType(Ty)));
6044     NameInfo.setNamedTypeInfo(TInfo);
6045     return NameInfo;
6046   }
6047 
6048   case UnqualifiedIdKind::IK_TemplateId: {
6049     TemplateName TName = Name.TemplateId->Template.get();
6050     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
6051     return Context.getNameForTemplate(TName, TNameLoc);
6052   }
6053 
6054   } // switch (Name.getKind())
6055 
6056   llvm_unreachable("Unknown name kind");
6057 }
6058 
6059 static QualType getCoreType(QualType Ty) {
6060   do {
6061     if (Ty->isPointerType() || Ty->isReferenceType())
6062       Ty = Ty->getPointeeType();
6063     else if (Ty->isArrayType())
6064       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
6065     else
6066       return Ty.withoutLocalFastQualifiers();
6067   } while (true);
6068 }
6069 
6070 /// hasSimilarParameters - Determine whether the C++ functions Declaration
6071 /// and Definition have "nearly" matching parameters. This heuristic is
6072 /// used to improve diagnostics in the case where an out-of-line function
6073 /// definition doesn't match any declaration within the class or namespace.
6074 /// Also sets Params to the list of indices to the parameters that differ
6075 /// between the declaration and the definition. If hasSimilarParameters
6076 /// returns true and Params is empty, then all of the parameters match.
6077 static bool hasSimilarParameters(ASTContext &Context,
6078                                      FunctionDecl *Declaration,
6079                                      FunctionDecl *Definition,
6080                                      SmallVectorImpl<unsigned> &Params) {
6081   Params.clear();
6082   if (Declaration->param_size() != Definition->param_size())
6083     return false;
6084   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
6085     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
6086     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
6087 
6088     // The parameter types are identical
6089     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
6090       continue;
6091 
6092     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
6093     QualType DefParamBaseTy = getCoreType(DefParamTy);
6094     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
6095     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
6096 
6097     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
6098         (DeclTyName && DeclTyName == DefTyName))
6099       Params.push_back(Idx);
6100     else  // The two parameters aren't even close
6101       return false;
6102   }
6103 
6104   return true;
6105 }
6106 
6107 /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given
6108 /// declarator needs to be rebuilt in the current instantiation.
6109 /// Any bits of declarator which appear before the name are valid for
6110 /// consideration here.  That's specifically the type in the decl spec
6111 /// and the base type in any member-pointer chunks.
6112 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
6113                                                     DeclarationName Name) {
6114   // The types we specifically need to rebuild are:
6115   //   - typenames, typeofs, and decltypes
6116   //   - types which will become injected class names
6117   // Of course, we also need to rebuild any type referencing such a
6118   // type.  It's safest to just say "dependent", but we call out a
6119   // few cases here.
6120 
6121   DeclSpec &DS = D.getMutableDeclSpec();
6122   switch (DS.getTypeSpecType()) {
6123   case DeclSpec::TST_typename:
6124   case DeclSpec::TST_typeofType:
6125   case DeclSpec::TST_typeof_unqualType:
6126 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
6127 #include "clang/Basic/TransformTypeTraits.def"
6128   case DeclSpec::TST_atomic: {
6129     // Grab the type from the parser.
6130     TypeSourceInfo *TSI = nullptr;
6131     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
6132     if (T.isNull() || !T->isInstantiationDependentType()) break;
6133 
6134     // Make sure there's a type source info.  This isn't really much
6135     // of a waste; most dependent types should have type source info
6136     // attached already.
6137     if (!TSI)
6138       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
6139 
6140     // Rebuild the type in the current instantiation.
6141     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
6142     if (!TSI) return true;
6143 
6144     // Store the new type back in the decl spec.
6145     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
6146     DS.UpdateTypeRep(LocType);
6147     break;
6148   }
6149 
6150   case DeclSpec::TST_decltype:
6151   case DeclSpec::TST_typeof_unqualExpr:
6152   case DeclSpec::TST_typeofExpr: {
6153     Expr *E = DS.getRepAsExpr();
6154     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
6155     if (Result.isInvalid()) return true;
6156     DS.UpdateExprRep(Result.get());
6157     break;
6158   }
6159 
6160   default:
6161     // Nothing to do for these decl specs.
6162     break;
6163   }
6164 
6165   // It doesn't matter what order we do this in.
6166   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
6167     DeclaratorChunk &Chunk = D.getTypeObject(I);
6168 
6169     // The only type information in the declarator which can come
6170     // before the declaration name is the base type of a member
6171     // pointer.
6172     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
6173       continue;
6174 
6175     // Rebuild the scope specifier in-place.
6176     CXXScopeSpec &SS = Chunk.Mem.Scope();
6177     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
6178       return true;
6179   }
6180 
6181   return false;
6182 }
6183 
6184 /// Returns true if the declaration is declared in a system header or from a
6185 /// system macro.
6186 static bool isFromSystemHeader(SourceManager &SM, const Decl *D) {
6187   return SM.isInSystemHeader(D->getLocation()) ||
6188          SM.isInSystemMacro(D->getLocation());
6189 }
6190 
6191 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
6192   // Avoid warning twice on the same identifier, and don't warn on redeclaration
6193   // of system decl.
6194   if (D->getPreviousDecl() || D->isImplicit())
6195     return;
6196   ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
6197   if (Status != ReservedIdentifierStatus::NotReserved &&
6198       !isFromSystemHeader(Context.getSourceManager(), D)) {
6199     Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
6200         << D << static_cast<int>(Status);
6201   }
6202 }
6203 
6204 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
6205   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
6206 
6207   // Check if we are in an `omp begin/end declare variant` scope. Handle this
6208   // declaration only if the `bind_to_declaration` extension is set.
6209   SmallVector<FunctionDecl *, 4> Bases;
6210   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
6211     if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty::
6212               implementation_extension_bind_to_declaration))
6213     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
6214         S, D, MultiTemplateParamsArg(), Bases);
6215 
6216   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
6217 
6218   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
6219       Dcl && Dcl->getDeclContext()->isFileContext())
6220     Dcl->setTopLevelDeclInObjCContainer();
6221 
6222   if (!Bases.empty())
6223     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
6224 
6225   return Dcl;
6226 }
6227 
6228 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
6229 ///   If T is the name of a class, then each of the following shall have a
6230 ///   name different from T:
6231 ///     - every static data member of class T;
6232 ///     - every member function of class T
6233 ///     - every member of class T that is itself a type;
6234 /// \returns true if the declaration name violates these rules.
6235 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
6236                                    DeclarationNameInfo NameInfo) {
6237   DeclarationName Name = NameInfo.getName();
6238 
6239   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
6240   while (Record && Record->isAnonymousStructOrUnion())
6241     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
6242   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
6243     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
6244     return true;
6245   }
6246 
6247   return false;
6248 }
6249 
6250 /// Diagnose a declaration whose declarator-id has the given
6251 /// nested-name-specifier.
6252 ///
6253 /// \param SS The nested-name-specifier of the declarator-id.
6254 ///
6255 /// \param DC The declaration context to which the nested-name-specifier
6256 /// resolves.
6257 ///
6258 /// \param Name The name of the entity being declared.
6259 ///
6260 /// \param Loc The location of the name of the entity being declared.
6261 ///
6262 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
6263 /// we're declaring an explicit / partial specialization / instantiation.
6264 ///
6265 /// \returns true if we cannot safely recover from this error, false otherwise.
6266 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
6267                                         DeclarationName Name,
6268                                         SourceLocation Loc, bool IsTemplateId) {
6269   DeclContext *Cur = CurContext;
6270   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
6271     Cur = Cur->getParent();
6272 
6273   // If the user provided a superfluous scope specifier that refers back to the
6274   // class in which the entity is already declared, diagnose and ignore it.
6275   //
6276   // class X {
6277   //   void X::f();
6278   // };
6279   //
6280   // Note, it was once ill-formed to give redundant qualification in all
6281   // contexts, but that rule was removed by DR482.
6282   if (Cur->Equals(DC)) {
6283     if (Cur->isRecord()) {
6284       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
6285                                       : diag::err_member_extra_qualification)
6286         << Name << FixItHint::CreateRemoval(SS.getRange());
6287       SS.clear();
6288     } else {
6289       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
6290     }
6291     return false;
6292   }
6293 
6294   // Check whether the qualifying scope encloses the scope of the original
6295   // declaration. For a template-id, we perform the checks in
6296   // CheckTemplateSpecializationScope.
6297   if (!Cur->Encloses(DC) && !IsTemplateId) {
6298     if (Cur->isRecord())
6299       Diag(Loc, diag::err_member_qualification)
6300         << Name << SS.getRange();
6301     else if (isa<TranslationUnitDecl>(DC))
6302       Diag(Loc, diag::err_invalid_declarator_global_scope)
6303         << Name << SS.getRange();
6304     else if (isa<FunctionDecl>(Cur))
6305       Diag(Loc, diag::err_invalid_declarator_in_function)
6306         << Name << SS.getRange();
6307     else if (isa<BlockDecl>(Cur))
6308       Diag(Loc, diag::err_invalid_declarator_in_block)
6309         << Name << SS.getRange();
6310     else if (isa<ExportDecl>(Cur)) {
6311       if (!isa<NamespaceDecl>(DC))
6312         Diag(Loc, diag::err_export_non_namespace_scope_name)
6313             << Name << SS.getRange();
6314       else
6315         // The cases that DC is not NamespaceDecl should be handled in
6316         // CheckRedeclarationExported.
6317         return false;
6318     } else
6319       Diag(Loc, diag::err_invalid_declarator_scope)
6320       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
6321 
6322     return true;
6323   }
6324 
6325   if (Cur->isRecord()) {
6326     // Cannot qualify members within a class.
6327     Diag(Loc, diag::err_member_qualification)
6328       << Name << SS.getRange();
6329     SS.clear();
6330 
6331     // C++ constructors and destructors with incorrect scopes can break
6332     // our AST invariants by having the wrong underlying types. If
6333     // that's the case, then drop this declaration entirely.
6334     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
6335          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
6336         !Context.hasSameType(Name.getCXXNameType(),
6337                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
6338       return true;
6339 
6340     return false;
6341   }
6342 
6343   // C++11 [dcl.meaning]p1:
6344   //   [...] "The nested-name-specifier of the qualified declarator-id shall
6345   //   not begin with a decltype-specifer"
6346   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
6347   while (SpecLoc.getPrefix())
6348     SpecLoc = SpecLoc.getPrefix();
6349   if (isa_and_nonnull<DecltypeType>(
6350           SpecLoc.getNestedNameSpecifier()->getAsType()))
6351     Diag(Loc, diag::err_decltype_in_declarator)
6352       << SpecLoc.getTypeLoc().getSourceRange();
6353 
6354   return false;
6355 }
6356 
6357 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
6358                                   MultiTemplateParamsArg TemplateParamLists) {
6359   // TODO: consider using NameInfo for diagnostic.
6360   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6361   DeclarationName Name = NameInfo.getName();
6362 
6363   // All of these full declarators require an identifier.  If it doesn't have
6364   // one, the ParsedFreeStandingDeclSpec action should be used.
6365   if (D.isDecompositionDeclarator()) {
6366     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
6367   } else if (!Name) {
6368     if (!D.isInvalidType())  // Reject this if we think it is valid.
6369       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
6370           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
6371     return nullptr;
6372   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
6373     return nullptr;
6374 
6375   // The scope passed in may not be a decl scope.  Zip up the scope tree until
6376   // we find one that is.
6377   while ((S->getFlags() & Scope::DeclScope) == 0 ||
6378          (S->getFlags() & Scope::TemplateParamScope) != 0)
6379     S = S->getParent();
6380 
6381   DeclContext *DC = CurContext;
6382   if (D.getCXXScopeSpec().isInvalid())
6383     D.setInvalidType();
6384   else if (D.getCXXScopeSpec().isSet()) {
6385     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
6386                                         UPPC_DeclarationQualifier))
6387       return nullptr;
6388 
6389     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
6390     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
6391     if (!DC || isa<EnumDecl>(DC)) {
6392       // If we could not compute the declaration context, it's because the
6393       // declaration context is dependent but does not refer to a class,
6394       // class template, or class template partial specialization. Complain
6395       // and return early, to avoid the coming semantic disaster.
6396       Diag(D.getIdentifierLoc(),
6397            diag::err_template_qualified_declarator_no_match)
6398         << D.getCXXScopeSpec().getScopeRep()
6399         << D.getCXXScopeSpec().getRange();
6400       return nullptr;
6401     }
6402     bool IsDependentContext = DC->isDependentContext();
6403 
6404     if (!IsDependentContext &&
6405         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
6406       return nullptr;
6407 
6408     // If a class is incomplete, do not parse entities inside it.
6409     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
6410       Diag(D.getIdentifierLoc(),
6411            diag::err_member_def_undefined_record)
6412         << Name << DC << D.getCXXScopeSpec().getRange();
6413       return nullptr;
6414     }
6415     if (!D.getDeclSpec().isFriendSpecified()) {
6416       if (diagnoseQualifiedDeclaration(
6417               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
6418               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
6419         if (DC->isRecord())
6420           return nullptr;
6421 
6422         D.setInvalidType();
6423       }
6424     }
6425 
6426     // Check whether we need to rebuild the type of the given
6427     // declaration in the current instantiation.
6428     if (EnteringContext && IsDependentContext &&
6429         TemplateParamLists.size() != 0) {
6430       ContextRAII SavedContext(*this, DC);
6431       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
6432         D.setInvalidType();
6433     }
6434   }
6435 
6436   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6437   QualType R = TInfo->getType();
6438 
6439   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6440                                       UPPC_DeclarationType))
6441     D.setInvalidType();
6442 
6443   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
6444                         forRedeclarationInCurContext());
6445 
6446   // See if this is a redefinition of a variable in the same scope.
6447   if (!D.getCXXScopeSpec().isSet()) {
6448     bool IsLinkageLookup = false;
6449     bool CreateBuiltins = false;
6450 
6451     // If the declaration we're planning to build will be a function
6452     // or object with linkage, then look for another declaration with
6453     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
6454     //
6455     // If the declaration we're planning to build will be declared with
6456     // external linkage in the translation unit, create any builtin with
6457     // the same name.
6458     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
6459       /* Do nothing*/;
6460     else if (CurContext->isFunctionOrMethod() &&
6461              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
6462               R->isFunctionType())) {
6463       IsLinkageLookup = true;
6464       CreateBuiltins =
6465           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
6466     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
6467                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
6468       CreateBuiltins = true;
6469 
6470     if (IsLinkageLookup) {
6471       Previous.clear(LookupRedeclarationWithLinkage);
6472       Previous.setRedeclarationKind(ForExternalRedeclaration);
6473     }
6474 
6475     LookupName(Previous, S, CreateBuiltins);
6476   } else { // Something like "int foo::x;"
6477     LookupQualifiedName(Previous, DC);
6478 
6479     // C++ [dcl.meaning]p1:
6480     //   When the declarator-id is qualified, the declaration shall refer to a
6481     //  previously declared member of the class or namespace to which the
6482     //  qualifier refers (or, in the case of a namespace, of an element of the
6483     //  inline namespace set of that namespace (7.3.1)) or to a specialization
6484     //  thereof; [...]
6485     //
6486     // Note that we already checked the context above, and that we do not have
6487     // enough information to make sure that Previous contains the declaration
6488     // we want to match. For example, given:
6489     //
6490     //   class X {
6491     //     void f();
6492     //     void f(float);
6493     //   };
6494     //
6495     //   void X::f(int) { } // ill-formed
6496     //
6497     // In this case, Previous will point to the overload set
6498     // containing the two f's declared in X, but neither of them
6499     // matches.
6500 
6501     RemoveUsingDecls(Previous);
6502   }
6503 
6504   if (Previous.isSingleResult() &&
6505       Previous.getFoundDecl()->isTemplateParameter()) {
6506     // Maybe we will complain about the shadowed template parameter.
6507     if (!D.isInvalidType())
6508       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
6509                                       Previous.getFoundDecl());
6510 
6511     // Just pretend that we didn't see the previous declaration.
6512     Previous.clear();
6513   }
6514 
6515   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
6516     // Forget that the previous declaration is the injected-class-name.
6517     Previous.clear();
6518 
6519   // In C++, the previous declaration we find might be a tag type
6520   // (class or enum). In this case, the new declaration will hide the
6521   // tag type. Note that this applies to functions, function templates, and
6522   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
6523   if (Previous.isSingleTagDecl() &&
6524       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6525       (TemplateParamLists.size() == 0 || R->isFunctionType()))
6526     Previous.clear();
6527 
6528   // Check that there are no default arguments other than in the parameters
6529   // of a function declaration (C++ only).
6530   if (getLangOpts().CPlusPlus)
6531     CheckExtraCXXDefaultArguments(D);
6532 
6533   NamedDecl *New;
6534 
6535   bool AddToScope = true;
6536   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
6537     if (TemplateParamLists.size()) {
6538       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
6539       return nullptr;
6540     }
6541 
6542     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
6543   } else if (R->isFunctionType()) {
6544     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
6545                                   TemplateParamLists,
6546                                   AddToScope);
6547   } else {
6548     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
6549                                   AddToScope);
6550   }
6551 
6552   if (!New)
6553     return nullptr;
6554 
6555   // If this has an identifier and is not a function template specialization,
6556   // add it to the scope stack.
6557   if (New->getDeclName() && AddToScope)
6558     PushOnScopeChains(New, S);
6559 
6560   if (isInOpenMPDeclareTargetContext())
6561     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
6562 
6563   return New;
6564 }
6565 
6566 /// Helper method to turn variable array types into constant array
6567 /// types in certain situations which would otherwise be errors (for
6568 /// GCC compatibility).
6569 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6570                                                     ASTContext &Context,
6571                                                     bool &SizeIsNegative,
6572                                                     llvm::APSInt &Oversized) {
6573   // This method tries to turn a variable array into a constant
6574   // array even when the size isn't an ICE.  This is necessary
6575   // for compatibility with code that depends on gcc's buggy
6576   // constant expression folding, like struct {char x[(int)(char*)2];}
6577   SizeIsNegative = false;
6578   Oversized = 0;
6579 
6580   if (T->isDependentType())
6581     return QualType();
6582 
6583   QualifierCollector Qs;
6584   const Type *Ty = Qs.strip(T);
6585 
6586   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6587     QualType Pointee = PTy->getPointeeType();
6588     QualType FixedType =
6589         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6590                                             Oversized);
6591     if (FixedType.isNull()) return FixedType;
6592     FixedType = Context.getPointerType(FixedType);
6593     return Qs.apply(Context, FixedType);
6594   }
6595   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6596     QualType Inner = PTy->getInnerType();
6597     QualType FixedType =
6598         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6599                                             Oversized);
6600     if (FixedType.isNull()) return FixedType;
6601     FixedType = Context.getParenType(FixedType);
6602     return Qs.apply(Context, FixedType);
6603   }
6604 
6605   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6606   if (!VLATy)
6607     return QualType();
6608 
6609   QualType ElemTy = VLATy->getElementType();
6610   if (ElemTy->isVariablyModifiedType()) {
6611     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6612                                                  SizeIsNegative, Oversized);
6613     if (ElemTy.isNull())
6614       return QualType();
6615   }
6616 
6617   Expr::EvalResult Result;
6618   if (!VLATy->getSizeExpr() ||
6619       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6620     return QualType();
6621 
6622   llvm::APSInt Res = Result.Val.getInt();
6623 
6624   // Check whether the array size is negative.
6625   if (Res.isSigned() && Res.isNegative()) {
6626     SizeIsNegative = true;
6627     return QualType();
6628   }
6629 
6630   // Check whether the array is too large to be addressed.
6631   unsigned ActiveSizeBits =
6632       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6633        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6634           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6635           : Res.getActiveBits();
6636   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6637     Oversized = Res;
6638     return QualType();
6639   }
6640 
6641   QualType FoldedArrayType = Context.getConstantArrayType(
6642       ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0);
6643   return Qs.apply(Context, FoldedArrayType);
6644 }
6645 
6646 static void
6647 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6648   SrcTL = SrcTL.getUnqualifiedLoc();
6649   DstTL = DstTL.getUnqualifiedLoc();
6650   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6651     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6652     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6653                                       DstPTL.getPointeeLoc());
6654     DstPTL.setStarLoc(SrcPTL.getStarLoc());
6655     return;
6656   }
6657   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6658     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6659     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6660                                       DstPTL.getInnerLoc());
6661     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6662     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6663     return;
6664   }
6665   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6666   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6667   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6668   TypeLoc DstElemTL = DstATL.getElementLoc();
6669   if (VariableArrayTypeLoc SrcElemATL =
6670           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6671     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6672     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6673   } else {
6674     DstElemTL.initializeFullCopy(SrcElemTL);
6675   }
6676   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6677   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6678   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6679 }
6680 
6681 /// Helper method to turn variable array types into constant array
6682 /// types in certain situations which would otherwise be errors (for
6683 /// GCC compatibility).
6684 static TypeSourceInfo*
6685 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6686                                               ASTContext &Context,
6687                                               bool &SizeIsNegative,
6688                                               llvm::APSInt &Oversized) {
6689   QualType FixedTy
6690     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6691                                           SizeIsNegative, Oversized);
6692   if (FixedTy.isNull())
6693     return nullptr;
6694   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6695   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6696                                     FixedTInfo->getTypeLoc());
6697   return FixedTInfo;
6698 }
6699 
6700 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6701 /// true if we were successful.
6702 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6703                                            QualType &T, SourceLocation Loc,
6704                                            unsigned FailedFoldDiagID) {
6705   bool SizeIsNegative;
6706   llvm::APSInt Oversized;
6707   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6708       TInfo, Context, SizeIsNegative, Oversized);
6709   if (FixedTInfo) {
6710     Diag(Loc, diag::ext_vla_folded_to_constant);
6711     TInfo = FixedTInfo;
6712     T = FixedTInfo->getType();
6713     return true;
6714   }
6715 
6716   if (SizeIsNegative)
6717     Diag(Loc, diag::err_typecheck_negative_array_size);
6718   else if (Oversized.getBoolValue())
6719     Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6720   else if (FailedFoldDiagID)
6721     Diag(Loc, FailedFoldDiagID);
6722   return false;
6723 }
6724 
6725 /// Register the given locally-scoped extern "C" declaration so
6726 /// that it can be found later for redeclarations. We include any extern "C"
6727 /// declaration that is not visible in the translation unit here, not just
6728 /// function-scope declarations.
6729 void
6730 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6731   if (!getLangOpts().CPlusPlus &&
6732       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6733     // Don't need to track declarations in the TU in C.
6734     return;
6735 
6736   // Note that we have a locally-scoped external with this name.
6737   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6738 }
6739 
6740 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6741   // FIXME: We can have multiple results via __attribute__((overloadable)).
6742   auto Result = Context.getExternCContextDecl()->lookup(Name);
6743   return Result.empty() ? nullptr : *Result.begin();
6744 }
6745 
6746 /// Diagnose function specifiers on a declaration of an identifier that
6747 /// does not identify a function.
6748 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6749   // FIXME: We should probably indicate the identifier in question to avoid
6750   // confusion for constructs like "virtual int a(), b;"
6751   if (DS.isVirtualSpecified())
6752     Diag(DS.getVirtualSpecLoc(),
6753          diag::err_virtual_non_function);
6754 
6755   if (DS.hasExplicitSpecifier())
6756     Diag(DS.getExplicitSpecLoc(),
6757          diag::err_explicit_non_function);
6758 
6759   if (DS.isNoreturnSpecified())
6760     Diag(DS.getNoreturnSpecLoc(),
6761          diag::err_noreturn_non_function);
6762 }
6763 
6764 NamedDecl*
6765 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6766                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6767   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6768   if (D.getCXXScopeSpec().isSet()) {
6769     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6770       << D.getCXXScopeSpec().getRange();
6771     D.setInvalidType();
6772     // Pretend we didn't see the scope specifier.
6773     DC = CurContext;
6774     Previous.clear();
6775   }
6776 
6777   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6778 
6779   if (D.getDeclSpec().isInlineSpecified())
6780     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6781         << getLangOpts().CPlusPlus17;
6782   if (D.getDeclSpec().hasConstexprSpecifier())
6783     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6784         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6785 
6786   if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) {
6787     if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
6788       Diag(D.getName().StartLocation,
6789            diag::err_deduction_guide_invalid_specifier)
6790           << "typedef";
6791     else
6792       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6793           << D.getName().getSourceRange();
6794     return nullptr;
6795   }
6796 
6797   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6798   if (!NewTD) return nullptr;
6799 
6800   // Handle attributes prior to checking for duplicates in MergeVarDecl
6801   ProcessDeclAttributes(S, NewTD, D);
6802 
6803   CheckTypedefForVariablyModifiedType(S, NewTD);
6804 
6805   bool Redeclaration = D.isRedeclaration();
6806   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6807   D.setRedeclaration(Redeclaration);
6808   return ND;
6809 }
6810 
6811 void
6812 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6813   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6814   // then it shall have block scope.
6815   // Note that variably modified types must be fixed before merging the decl so
6816   // that redeclarations will match.
6817   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6818   QualType T = TInfo->getType();
6819   if (T->isVariablyModifiedType()) {
6820     setFunctionHasBranchProtectedScope();
6821 
6822     if (S->getFnParent() == nullptr) {
6823       bool SizeIsNegative;
6824       llvm::APSInt Oversized;
6825       TypeSourceInfo *FixedTInfo =
6826         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6827                                                       SizeIsNegative,
6828                                                       Oversized);
6829       if (FixedTInfo) {
6830         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6831         NewTD->setTypeSourceInfo(FixedTInfo);
6832       } else {
6833         if (SizeIsNegative)
6834           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6835         else if (T->isVariableArrayType())
6836           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6837         else if (Oversized.getBoolValue())
6838           Diag(NewTD->getLocation(), diag::err_array_too_large)
6839             << toString(Oversized, 10);
6840         else
6841           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6842         NewTD->setInvalidDecl();
6843       }
6844     }
6845   }
6846 }
6847 
6848 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6849 /// declares a typedef-name, either using the 'typedef' type specifier or via
6850 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6851 NamedDecl*
6852 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6853                            LookupResult &Previous, bool &Redeclaration) {
6854 
6855   // Find the shadowed declaration before filtering for scope.
6856   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6857 
6858   // Merge the decl with the existing one if appropriate. If the decl is
6859   // in an outer scope, it isn't the same thing.
6860   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6861                        /*AllowInlineNamespace*/false);
6862   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6863   if (!Previous.empty()) {
6864     Redeclaration = true;
6865     MergeTypedefNameDecl(S, NewTD, Previous);
6866   } else {
6867     inferGslPointerAttribute(NewTD);
6868   }
6869 
6870   if (ShadowedDecl && !Redeclaration)
6871     CheckShadow(NewTD, ShadowedDecl, Previous);
6872 
6873   // If this is the C FILE type, notify the AST context.
6874   if (IdentifierInfo *II = NewTD->getIdentifier())
6875     if (!NewTD->isInvalidDecl() &&
6876         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6877       switch (II->getInterestingIdentifierID()) {
6878       case tok::InterestingIdentifierKind::FILE:
6879         Context.setFILEDecl(NewTD);
6880         break;
6881       case tok::InterestingIdentifierKind::jmp_buf:
6882         Context.setjmp_bufDecl(NewTD);
6883         break;
6884       case tok::InterestingIdentifierKind::sigjmp_buf:
6885         Context.setsigjmp_bufDecl(NewTD);
6886         break;
6887       case tok::InterestingIdentifierKind::ucontext_t:
6888         Context.setucontext_tDecl(NewTD);
6889         break;
6890       case tok::InterestingIdentifierKind::float_t:
6891       case tok::InterestingIdentifierKind::double_t:
6892         NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context));
6893         break;
6894       default:
6895         break;
6896       }
6897     }
6898 
6899   return NewTD;
6900 }
6901 
6902 /// Determines whether the given declaration is an out-of-scope
6903 /// previous declaration.
6904 ///
6905 /// This routine should be invoked when name lookup has found a
6906 /// previous declaration (PrevDecl) that is not in the scope where a
6907 /// new declaration by the same name is being introduced. If the new
6908 /// declaration occurs in a local scope, previous declarations with
6909 /// linkage may still be considered previous declarations (C99
6910 /// 6.2.2p4-5, C++ [basic.link]p6).
6911 ///
6912 /// \param PrevDecl the previous declaration found by name
6913 /// lookup
6914 ///
6915 /// \param DC the context in which the new declaration is being
6916 /// declared.
6917 ///
6918 /// \returns true if PrevDecl is an out-of-scope previous declaration
6919 /// for a new delcaration with the same name.
6920 static bool
6921 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6922                                 ASTContext &Context) {
6923   if (!PrevDecl)
6924     return false;
6925 
6926   if (!PrevDecl->hasLinkage())
6927     return false;
6928 
6929   if (Context.getLangOpts().CPlusPlus) {
6930     // C++ [basic.link]p6:
6931     //   If there is a visible declaration of an entity with linkage
6932     //   having the same name and type, ignoring entities declared
6933     //   outside the innermost enclosing namespace scope, the block
6934     //   scope declaration declares that same entity and receives the
6935     //   linkage of the previous declaration.
6936     DeclContext *OuterContext = DC->getRedeclContext();
6937     if (!OuterContext->isFunctionOrMethod())
6938       // This rule only applies to block-scope declarations.
6939       return false;
6940 
6941     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6942     if (PrevOuterContext->isRecord())
6943       // We found a member function: ignore it.
6944       return false;
6945 
6946     // Find the innermost enclosing namespace for the new and
6947     // previous declarations.
6948     OuterContext = OuterContext->getEnclosingNamespaceContext();
6949     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6950 
6951     // The previous declaration is in a different namespace, so it
6952     // isn't the same function.
6953     if (!OuterContext->Equals(PrevOuterContext))
6954       return false;
6955   }
6956 
6957   return true;
6958 }
6959 
6960 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6961   CXXScopeSpec &SS = D.getCXXScopeSpec();
6962   if (!SS.isSet()) return;
6963   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6964 }
6965 
6966 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6967   QualType type = decl->getType();
6968   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6969   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6970     // Various kinds of declaration aren't allowed to be __autoreleasing.
6971     unsigned kind = -1U;
6972     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6973       if (var->hasAttr<BlocksAttr>())
6974         kind = 0; // __block
6975       else if (!var->hasLocalStorage())
6976         kind = 1; // global
6977     } else if (isa<ObjCIvarDecl>(decl)) {
6978       kind = 3; // ivar
6979     } else if (isa<FieldDecl>(decl)) {
6980       kind = 2; // field
6981     }
6982 
6983     if (kind != -1U) {
6984       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6985         << kind;
6986     }
6987   } else if (lifetime == Qualifiers::OCL_None) {
6988     // Try to infer lifetime.
6989     if (!type->isObjCLifetimeType())
6990       return false;
6991 
6992     lifetime = type->getObjCARCImplicitLifetime();
6993     type = Context.getLifetimeQualifiedType(type, lifetime);
6994     decl->setType(type);
6995   }
6996 
6997   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6998     // Thread-local variables cannot have lifetime.
6999     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
7000         var->getTLSKind()) {
7001       Diag(var->getLocation(), diag::err_arc_thread_ownership)
7002         << var->getType();
7003       return true;
7004     }
7005   }
7006 
7007   return false;
7008 }
7009 
7010 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
7011   if (Decl->getType().hasAddressSpace())
7012     return;
7013   if (Decl->getType()->isDependentType())
7014     return;
7015   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
7016     QualType Type = Var->getType();
7017     if (Type->isSamplerT() || Type->isVoidType())
7018       return;
7019     LangAS ImplAS = LangAS::opencl_private;
7020     // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
7021     // __opencl_c_program_scope_global_variables feature, the address space
7022     // for a variable at program scope or a static or extern variable inside
7023     // a function are inferred to be __global.
7024     if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
7025         Var->hasGlobalStorage())
7026       ImplAS = LangAS::opencl_global;
7027     // If the original type from a decayed type is an array type and that array
7028     // type has no address space yet, deduce it now.
7029     if (auto DT = dyn_cast<DecayedType>(Type)) {
7030       auto OrigTy = DT->getOriginalType();
7031       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
7032         // Add the address space to the original array type and then propagate
7033         // that to the element type through `getAsArrayType`.
7034         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
7035         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
7036         // Re-generate the decayed type.
7037         Type = Context.getDecayedType(OrigTy);
7038       }
7039     }
7040     Type = Context.getAddrSpaceQualType(Type, ImplAS);
7041     // Apply any qualifiers (including address space) from the array type to
7042     // the element type. This implements C99 6.7.3p8: "If the specification of
7043     // an array type includes any type qualifiers, the element type is so
7044     // qualified, not the array type."
7045     if (Type->isArrayType())
7046       Type = QualType(Context.getAsArrayType(Type), 0);
7047     Decl->setType(Type);
7048   }
7049 }
7050 
7051 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
7052   // Ensure that an auto decl is deduced otherwise the checks below might cache
7053   // the wrong linkage.
7054   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
7055 
7056   // 'weak' only applies to declarations with external linkage.
7057   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
7058     if (!ND.isExternallyVisible()) {
7059       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
7060       ND.dropAttr<WeakAttr>();
7061     }
7062   }
7063   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
7064     if (ND.isExternallyVisible()) {
7065       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
7066       ND.dropAttr<WeakRefAttr>();
7067       ND.dropAttr<AliasAttr>();
7068     }
7069   }
7070 
7071   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
7072     if (VD->hasInit()) {
7073       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
7074         assert(VD->isThisDeclarationADefinition() &&
7075                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
7076         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
7077         VD->dropAttr<AliasAttr>();
7078       }
7079     }
7080   }
7081 
7082   // 'selectany' only applies to externally visible variable declarations.
7083   // It does not apply to functions.
7084   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
7085     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
7086       S.Diag(Attr->getLocation(),
7087              diag::err_attribute_selectany_non_extern_data);
7088       ND.dropAttr<SelectAnyAttr>();
7089     }
7090   }
7091 
7092   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
7093     auto *VD = dyn_cast<VarDecl>(&ND);
7094     bool IsAnonymousNS = false;
7095     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
7096     if (VD) {
7097       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
7098       while (NS && !IsAnonymousNS) {
7099         IsAnonymousNS = NS->isAnonymousNamespace();
7100         NS = dyn_cast<NamespaceDecl>(NS->getParent());
7101       }
7102     }
7103     // dll attributes require external linkage. Static locals may have external
7104     // linkage but still cannot be explicitly imported or exported.
7105     // In Microsoft mode, a variable defined in anonymous namespace must have
7106     // external linkage in order to be exported.
7107     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
7108     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
7109         (!AnonNSInMicrosoftMode &&
7110          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
7111       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
7112         << &ND << Attr;
7113       ND.setInvalidDecl();
7114     }
7115   }
7116 
7117   // Check the attributes on the function type, if any.
7118   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
7119     // Don't declare this variable in the second operand of the for-statement;
7120     // GCC miscompiles that by ending its lifetime before evaluating the
7121     // third operand. See gcc.gnu.org/PR86769.
7122     AttributedTypeLoc ATL;
7123     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
7124          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
7125          TL = ATL.getModifiedLoc()) {
7126       // The [[lifetimebound]] attribute can be applied to the implicit object
7127       // parameter of a non-static member function (other than a ctor or dtor)
7128       // by applying it to the function type.
7129       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
7130         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
7131         if (!MD || MD->isStatic()) {
7132           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
7133               << !MD << A->getRange();
7134         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
7135           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
7136               << isa<CXXDestructorDecl>(MD) << A->getRange();
7137         }
7138       }
7139     }
7140   }
7141 }
7142 
7143 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
7144                                            NamedDecl *NewDecl,
7145                                            bool IsSpecialization,
7146                                            bool IsDefinition) {
7147   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
7148     return;
7149 
7150   bool IsTemplate = false;
7151   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
7152     OldDecl = OldTD->getTemplatedDecl();
7153     IsTemplate = true;
7154     if (!IsSpecialization)
7155       IsDefinition = false;
7156   }
7157   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
7158     NewDecl = NewTD->getTemplatedDecl();
7159     IsTemplate = true;
7160   }
7161 
7162   if (!OldDecl || !NewDecl)
7163     return;
7164 
7165   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
7166   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
7167   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
7168   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
7169 
7170   // dllimport and dllexport are inheritable attributes so we have to exclude
7171   // inherited attribute instances.
7172   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
7173                     (NewExportAttr && !NewExportAttr->isInherited());
7174 
7175   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
7176   // the only exception being explicit specializations.
7177   // Implicitly generated declarations are also excluded for now because there
7178   // is no other way to switch these to use dllimport or dllexport.
7179   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
7180 
7181   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
7182     // Allow with a warning for free functions and global variables.
7183     bool JustWarn = false;
7184     if (!OldDecl->isCXXClassMember()) {
7185       auto *VD = dyn_cast<VarDecl>(OldDecl);
7186       if (VD && !VD->getDescribedVarTemplate())
7187         JustWarn = true;
7188       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
7189       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
7190         JustWarn = true;
7191     }
7192 
7193     // We cannot change a declaration that's been used because IR has already
7194     // been emitted. Dllimported functions will still work though (modulo
7195     // address equality) as they can use the thunk.
7196     if (OldDecl->isUsed())
7197       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
7198         JustWarn = false;
7199 
7200     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
7201                                : diag::err_attribute_dll_redeclaration;
7202     S.Diag(NewDecl->getLocation(), DiagID)
7203         << NewDecl
7204         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
7205     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7206     if (!JustWarn) {
7207       NewDecl->setInvalidDecl();
7208       return;
7209     }
7210   }
7211 
7212   // A redeclaration is not allowed to drop a dllimport attribute, the only
7213   // exceptions being inline function definitions (except for function
7214   // templates), local extern declarations, qualified friend declarations or
7215   // special MSVC extension: in the last case, the declaration is treated as if
7216   // it were marked dllexport.
7217   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
7218   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
7219   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
7220     // Ignore static data because out-of-line definitions are diagnosed
7221     // separately.
7222     IsStaticDataMember = VD->isStaticDataMember();
7223     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
7224                    VarDecl::DeclarationOnly;
7225   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
7226     IsInline = FD->isInlined();
7227     IsQualifiedFriend = FD->getQualifier() &&
7228                         FD->getFriendObjectKind() == Decl::FOK_Declared;
7229   }
7230 
7231   if (OldImportAttr && !HasNewAttr &&
7232       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
7233       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
7234     if (IsMicrosoftABI && IsDefinition) {
7235       if (IsSpecialization) {
7236         S.Diag(
7237             NewDecl->getLocation(),
7238             diag::err_attribute_dllimport_function_specialization_definition);
7239         S.Diag(OldImportAttr->getLocation(), diag::note_attribute);
7240         NewDecl->dropAttr<DLLImportAttr>();
7241       } else {
7242         S.Diag(NewDecl->getLocation(),
7243                diag::warn_redeclaration_without_import_attribute)
7244             << NewDecl;
7245         S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7246         NewDecl->dropAttr<DLLImportAttr>();
7247         NewDecl->addAttr(DLLExportAttr::CreateImplicit(
7248             S.Context, NewImportAttr->getRange()));
7249       }
7250     } else if (IsMicrosoftABI && IsSpecialization) {
7251       assert(!IsDefinition);
7252       // MSVC allows this. Keep the inherited attribute.
7253     } else {
7254       S.Diag(NewDecl->getLocation(),
7255              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7256           << NewDecl << OldImportAttr;
7257       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
7258       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
7259       OldDecl->dropAttr<DLLImportAttr>();
7260       NewDecl->dropAttr<DLLImportAttr>();
7261     }
7262   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
7263     // In MinGW, seeing a function declared inline drops the dllimport
7264     // attribute.
7265     OldDecl->dropAttr<DLLImportAttr>();
7266     NewDecl->dropAttr<DLLImportAttr>();
7267     S.Diag(NewDecl->getLocation(),
7268            diag::warn_dllimport_dropped_from_inline_function)
7269         << NewDecl << OldImportAttr;
7270   }
7271 
7272   // A specialization of a class template member function is processed here
7273   // since it's a redeclaration. If the parent class is dllexport, the
7274   // specialization inherits that attribute. This doesn't happen automatically
7275   // since the parent class isn't instantiated until later.
7276   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
7277     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
7278         !NewImportAttr && !NewExportAttr) {
7279       if (const DLLExportAttr *ParentExportAttr =
7280               MD->getParent()->getAttr<DLLExportAttr>()) {
7281         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
7282         NewAttr->setInherited(true);
7283         NewDecl->addAttr(NewAttr);
7284       }
7285     }
7286   }
7287 }
7288 
7289 /// Given that we are within the definition of the given function,
7290 /// will that definition behave like C99's 'inline', where the
7291 /// definition is discarded except for optimization purposes?
7292 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
7293   // Try to avoid calling GetGVALinkageForFunction.
7294 
7295   // All cases of this require the 'inline' keyword.
7296   if (!FD->isInlined()) return false;
7297 
7298   // This is only possible in C++ with the gnu_inline attribute.
7299   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
7300     return false;
7301 
7302   // Okay, go ahead and call the relatively-more-expensive function.
7303   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
7304 }
7305 
7306 /// Determine whether a variable is extern "C" prior to attaching
7307 /// an initializer. We can't just call isExternC() here, because that
7308 /// will also compute and cache whether the declaration is externally
7309 /// visible, which might change when we attach the initializer.
7310 ///
7311 /// This can only be used if the declaration is known to not be a
7312 /// redeclaration of an internal linkage declaration.
7313 ///
7314 /// For instance:
7315 ///
7316 ///   auto x = []{};
7317 ///
7318 /// Attaching the initializer here makes this declaration not externally
7319 /// visible, because its type has internal linkage.
7320 ///
7321 /// FIXME: This is a hack.
7322 template<typename T>
7323 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
7324   if (S.getLangOpts().CPlusPlus) {
7325     // In C++, the overloadable attribute negates the effects of extern "C".
7326     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
7327       return false;
7328 
7329     // So do CUDA's host/device attributes.
7330     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
7331                                  D->template hasAttr<CUDAHostAttr>()))
7332       return false;
7333   }
7334   return D->isExternC();
7335 }
7336 
7337 static bool shouldConsiderLinkage(const VarDecl *VD) {
7338   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
7339   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
7340       isa<OMPDeclareMapperDecl>(DC))
7341     return VD->hasExternalStorage();
7342   if (DC->isFileContext())
7343     return true;
7344   if (DC->isRecord())
7345     return false;
7346   if (DC->getDeclKind() == Decl::HLSLBuffer)
7347     return false;
7348 
7349   if (isa<RequiresExprBodyDecl>(DC))
7350     return false;
7351   llvm_unreachable("Unexpected context");
7352 }
7353 
7354 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
7355   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
7356   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
7357       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
7358     return true;
7359   if (DC->isRecord())
7360     return false;
7361   llvm_unreachable("Unexpected context");
7362 }
7363 
7364 static bool hasParsedAttr(Scope *S, const Declarator &PD,
7365                           ParsedAttr::Kind Kind) {
7366   // Check decl attributes on the DeclSpec.
7367   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
7368     return true;
7369 
7370   // Walk the declarator structure, checking decl attributes that were in a type
7371   // position to the decl itself.
7372   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
7373     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
7374       return true;
7375   }
7376 
7377   // Finally, check attributes on the decl itself.
7378   return PD.getAttributes().hasAttribute(Kind) ||
7379          PD.getDeclarationAttributes().hasAttribute(Kind);
7380 }
7381 
7382 /// Adjust the \c DeclContext for a function or variable that might be a
7383 /// function-local external declaration.
7384 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
7385   if (!DC->isFunctionOrMethod())
7386     return false;
7387 
7388   // If this is a local extern function or variable declared within a function
7389   // template, don't add it into the enclosing namespace scope until it is
7390   // instantiated; it might have a dependent type right now.
7391   if (DC->isDependentContext())
7392     return true;
7393 
7394   // C++11 [basic.link]p7:
7395   //   When a block scope declaration of an entity with linkage is not found to
7396   //   refer to some other declaration, then that entity is a member of the
7397   //   innermost enclosing namespace.
7398   //
7399   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
7400   // semantically-enclosing namespace, not a lexically-enclosing one.
7401   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
7402     DC = DC->getParent();
7403   return true;
7404 }
7405 
7406 /// Returns true if given declaration has external C language linkage.
7407 static bool isDeclExternC(const Decl *D) {
7408   if (const auto *FD = dyn_cast<FunctionDecl>(D))
7409     return FD->isExternC();
7410   if (const auto *VD = dyn_cast<VarDecl>(D))
7411     return VD->isExternC();
7412 
7413   llvm_unreachable("Unknown type of decl!");
7414 }
7415 
7416 /// Returns true if there hasn't been any invalid type diagnosed.
7417 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
7418   DeclContext *DC = NewVD->getDeclContext();
7419   QualType R = NewVD->getType();
7420 
7421   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
7422   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
7423   // argument.
7424   if (R->isImageType() || R->isPipeType()) {
7425     Se.Diag(NewVD->getLocation(),
7426             diag::err_opencl_type_can_only_be_used_as_function_parameter)
7427         << R;
7428     NewVD->setInvalidDecl();
7429     return false;
7430   }
7431 
7432   // OpenCL v1.2 s6.9.r:
7433   // The event type cannot be used to declare a program scope variable.
7434   // OpenCL v2.0 s6.9.q:
7435   // The clk_event_t and reserve_id_t types cannot be declared in program
7436   // scope.
7437   if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
7438     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
7439       Se.Diag(NewVD->getLocation(),
7440               diag::err_invalid_type_for_program_scope_var)
7441           << R;
7442       NewVD->setInvalidDecl();
7443       return false;
7444     }
7445   }
7446 
7447   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
7448   if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
7449                                                Se.getLangOpts())) {
7450     QualType NR = R.getCanonicalType();
7451     while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
7452            NR->isReferenceType()) {
7453       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
7454           NR->isFunctionReferenceType()) {
7455         Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
7456             << NR->isReferenceType();
7457         NewVD->setInvalidDecl();
7458         return false;
7459       }
7460       NR = NR->getPointeeType();
7461     }
7462   }
7463 
7464   if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
7465                                                Se.getLangOpts())) {
7466     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
7467     // half array type (unless the cl_khr_fp16 extension is enabled).
7468     if (Se.Context.getBaseElementType(R)->isHalfType()) {
7469       Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
7470       NewVD->setInvalidDecl();
7471       return false;
7472     }
7473   }
7474 
7475   // OpenCL v1.2 s6.9.r:
7476   // The event type cannot be used with the __local, __constant and __global
7477   // address space qualifiers.
7478   if (R->isEventT()) {
7479     if (R.getAddressSpace() != LangAS::opencl_private) {
7480       Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
7481       NewVD->setInvalidDecl();
7482       return false;
7483     }
7484   }
7485 
7486   if (R->isSamplerT()) {
7487     // OpenCL v1.2 s6.9.b p4:
7488     // The sampler type cannot be used with the __local and __global address
7489     // space qualifiers.
7490     if (R.getAddressSpace() == LangAS::opencl_local ||
7491         R.getAddressSpace() == LangAS::opencl_global) {
7492       Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
7493       NewVD->setInvalidDecl();
7494     }
7495 
7496     // OpenCL v1.2 s6.12.14.1:
7497     // A global sampler must be declared with either the constant address
7498     // space qualifier or with the const qualifier.
7499     if (DC->isTranslationUnit() &&
7500         !(R.getAddressSpace() == LangAS::opencl_constant ||
7501           R.isConstQualified())) {
7502       Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
7503       NewVD->setInvalidDecl();
7504     }
7505     if (NewVD->isInvalidDecl())
7506       return false;
7507   }
7508 
7509   return true;
7510 }
7511 
7512 template <typename AttrTy>
7513 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
7514   const TypedefNameDecl *TND = TT->getDecl();
7515   if (const auto *Attribute = TND->getAttr<AttrTy>()) {
7516     AttrTy *Clone = Attribute->clone(S.Context);
7517     Clone->setInherited(true);
7518     D->addAttr(Clone);
7519   }
7520 }
7521 
7522 // This function emits warning and a corresponding note based on the
7523 // ReadOnlyPlacementAttr attribute. The warning checks that all global variable
7524 // declarations of an annotated type must be const qualified.
7525 void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) {
7526   QualType VarType = VD->getType().getCanonicalType();
7527 
7528   // Ignore local declarations (for now) and those with const qualification.
7529   // TODO: Local variables should not be allowed if their type declaration has
7530   // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch.
7531   if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified())
7532     return;
7533 
7534   if (VarType->isArrayType()) {
7535     // Retrieve element type for array declarations.
7536     VarType = S.getASTContext().getBaseElementType(VarType);
7537   }
7538 
7539   const RecordDecl *RD = VarType->getAsRecordDecl();
7540 
7541   // Check if the record declaration is present and if it has any attributes.
7542   if (RD == nullptr)
7543     return;
7544 
7545   if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) {
7546     S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD;
7547     S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement);
7548     return;
7549   }
7550 }
7551 
7552 NamedDecl *Sema::ActOnVariableDeclarator(
7553     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
7554     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
7555     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
7556   QualType R = TInfo->getType();
7557   DeclarationName Name = GetNameForDeclarator(D).getName();
7558 
7559   IdentifierInfo *II = Name.getAsIdentifierInfo();
7560   bool IsPlaceholderVariable = false;
7561 
7562   if (D.isDecompositionDeclarator()) {
7563     // Take the name of the first declarator as our name for diagnostic
7564     // purposes.
7565     auto &Decomp = D.getDecompositionDeclarator();
7566     if (!Decomp.bindings().empty()) {
7567       II = Decomp.bindings()[0].Name;
7568       Name = II;
7569     }
7570   } else if (!II) {
7571     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
7572     return nullptr;
7573   }
7574 
7575 
7576   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
7577   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
7578 
7579   if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) &&
7580       SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) {
7581     IsPlaceholderVariable = true;
7582     if (!Previous.empty()) {
7583       NamedDecl *PrevDecl = *Previous.begin();
7584       bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals(
7585           DC->getRedeclContext());
7586       if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false))
7587         DiagPlaceholderVariableDefinition(D.getIdentifierLoc());
7588     }
7589   }
7590 
7591   // dllimport globals without explicit storage class are treated as extern. We
7592   // have to change the storage class this early to get the right DeclContext.
7593   if (SC == SC_None && !DC->isRecord() &&
7594       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
7595       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
7596     SC = SC_Extern;
7597 
7598   DeclContext *OriginalDC = DC;
7599   bool IsLocalExternDecl = SC == SC_Extern &&
7600                            adjustContextForLocalExternDecl(DC);
7601 
7602   if (SCSpec == DeclSpec::SCS_mutable) {
7603     // mutable can only appear on non-static class members, so it's always
7604     // an error here
7605     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
7606     D.setInvalidType();
7607     SC = SC_None;
7608   }
7609 
7610   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
7611       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
7612                               D.getDeclSpec().getStorageClassSpecLoc())) {
7613     // In C++11, the 'register' storage class specifier is deprecated.
7614     // Suppress the warning in system macros, it's used in macros in some
7615     // popular C system headers, such as in glibc's htonl() macro.
7616     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7617          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
7618                                    : diag::warn_deprecated_register)
7619       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7620   }
7621 
7622   DiagnoseFunctionSpecifiers(D.getDeclSpec());
7623 
7624   if (!DC->isRecord() && S->getFnParent() == nullptr) {
7625     // C99 6.9p2: The storage-class specifiers auto and register shall not
7626     // appear in the declaration specifiers in an external declaration.
7627     // Global Register+Asm is a GNU extension we support.
7628     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
7629       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
7630       D.setInvalidType();
7631     }
7632   }
7633 
7634   // If this variable has a VLA type and an initializer, try to
7635   // fold to a constant-sized type. This is otherwise invalid.
7636   if (D.hasInitializer() && R->isVariableArrayType())
7637     tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7638                                     /*DiagID=*/0);
7639 
7640   bool IsMemberSpecialization = false;
7641   bool IsVariableTemplateSpecialization = false;
7642   bool IsPartialSpecialization = false;
7643   bool IsVariableTemplate = false;
7644   VarDecl *NewVD = nullptr;
7645   VarTemplateDecl *NewTemplate = nullptr;
7646   TemplateParameterList *TemplateParams = nullptr;
7647   if (!getLangOpts().CPlusPlus) {
7648     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7649                             II, R, TInfo, SC);
7650 
7651     if (R->getContainedDeducedType())
7652       ParsingInitForAutoVars.insert(NewVD);
7653 
7654     if (D.isInvalidType())
7655       NewVD->setInvalidDecl();
7656 
7657     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7658         NewVD->hasLocalStorage())
7659       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7660                             NTCUC_AutoVar, NTCUK_Destruct);
7661   } else {
7662     bool Invalid = false;
7663 
7664     if (DC->isRecord() && !CurContext->isRecord()) {
7665       // This is an out-of-line definition of a static data member.
7666       switch (SC) {
7667       case SC_None:
7668         break;
7669       case SC_Static:
7670         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7671              diag::err_static_out_of_line)
7672           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7673         break;
7674       case SC_Auto:
7675       case SC_Register:
7676       case SC_Extern:
7677         // [dcl.stc] p2: The auto or register specifiers shall be applied only
7678         // to names of variables declared in a block or to function parameters.
7679         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7680         // of class members
7681 
7682         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7683              diag::err_storage_class_for_static_member)
7684           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7685         break;
7686       case SC_PrivateExtern:
7687         llvm_unreachable("C storage class in c++!");
7688       }
7689     }
7690 
7691     if (SC == SC_Static && CurContext->isRecord()) {
7692       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7693         // Walk up the enclosing DeclContexts to check for any that are
7694         // incompatible with static data members.
7695         const DeclContext *FunctionOrMethod = nullptr;
7696         const CXXRecordDecl *AnonStruct = nullptr;
7697         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7698           if (Ctxt->isFunctionOrMethod()) {
7699             FunctionOrMethod = Ctxt;
7700             break;
7701           }
7702           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7703           if (ParentDecl && !ParentDecl->getDeclName()) {
7704             AnonStruct = ParentDecl;
7705             break;
7706           }
7707         }
7708         if (FunctionOrMethod) {
7709           // C++ [class.static.data]p5: A local class shall not have static data
7710           // members.
7711           Diag(D.getIdentifierLoc(),
7712                diag::err_static_data_member_not_allowed_in_local_class)
7713               << Name << RD->getDeclName()
7714               << llvm::to_underlying(RD->getTagKind());
7715         } else if (AnonStruct) {
7716           // C++ [class.static.data]p4: Unnamed classes and classes contained
7717           // directly or indirectly within unnamed classes shall not contain
7718           // static data members.
7719           Diag(D.getIdentifierLoc(),
7720                diag::err_static_data_member_not_allowed_in_anon_struct)
7721               << Name << llvm::to_underlying(AnonStruct->getTagKind());
7722           Invalid = true;
7723         } else if (RD->isUnion()) {
7724           // C++98 [class.union]p1: If a union contains a static data member,
7725           // the program is ill-formed. C++11 drops this restriction.
7726           Diag(D.getIdentifierLoc(),
7727                getLangOpts().CPlusPlus11
7728                  ? diag::warn_cxx98_compat_static_data_member_in_union
7729                  : diag::ext_static_data_member_in_union) << Name;
7730         }
7731       }
7732     }
7733 
7734     // Match up the template parameter lists with the scope specifier, then
7735     // determine whether we have a template or a template specialization.
7736     bool InvalidScope = false;
7737     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7738         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7739         D.getCXXScopeSpec(),
7740         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7741             ? D.getName().TemplateId
7742             : nullptr,
7743         TemplateParamLists,
7744         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7745     Invalid |= InvalidScope;
7746 
7747     if (TemplateParams) {
7748       if (!TemplateParams->size() &&
7749           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7750         // There is an extraneous 'template<>' for this variable. Complain
7751         // about it, but allow the declaration of the variable.
7752         Diag(TemplateParams->getTemplateLoc(),
7753              diag::err_template_variable_noparams)
7754           << II
7755           << SourceRange(TemplateParams->getTemplateLoc(),
7756                          TemplateParams->getRAngleLoc());
7757         TemplateParams = nullptr;
7758       } else {
7759         // Check that we can declare a template here.
7760         if (CheckTemplateDeclScope(S, TemplateParams))
7761           return nullptr;
7762 
7763         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7764           // This is an explicit specialization or a partial specialization.
7765           IsVariableTemplateSpecialization = true;
7766           IsPartialSpecialization = TemplateParams->size() > 0;
7767         } else { // if (TemplateParams->size() > 0)
7768           // This is a template declaration.
7769           IsVariableTemplate = true;
7770 
7771           // Only C++1y supports variable templates (N3651).
7772           Diag(D.getIdentifierLoc(),
7773                getLangOpts().CPlusPlus14
7774                    ? diag::warn_cxx11_compat_variable_template
7775                    : diag::ext_variable_template);
7776         }
7777       }
7778     } else {
7779       // Check that we can declare a member specialization here.
7780       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7781           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7782         return nullptr;
7783       assert((Invalid ||
7784               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7785              "should have a 'template<>' for this decl");
7786     }
7787 
7788     if (IsVariableTemplateSpecialization) {
7789       SourceLocation TemplateKWLoc =
7790           TemplateParamLists.size() > 0
7791               ? TemplateParamLists[0]->getTemplateLoc()
7792               : SourceLocation();
7793       DeclResult Res = ActOnVarTemplateSpecialization(
7794           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7795           IsPartialSpecialization);
7796       if (Res.isInvalid())
7797         return nullptr;
7798       NewVD = cast<VarDecl>(Res.get());
7799       AddToScope = false;
7800     } else if (D.isDecompositionDeclarator()) {
7801       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7802                                         D.getIdentifierLoc(), R, TInfo, SC,
7803                                         Bindings);
7804     } else
7805       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7806                               D.getIdentifierLoc(), II, R, TInfo, SC);
7807 
7808     // If this is supposed to be a variable template, create it as such.
7809     if (IsVariableTemplate) {
7810       NewTemplate =
7811           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7812                                   TemplateParams, NewVD);
7813       NewVD->setDescribedVarTemplate(NewTemplate);
7814     }
7815 
7816     // If this decl has an auto type in need of deduction, make a note of the
7817     // Decl so we can diagnose uses of it in its own initializer.
7818     if (R->getContainedDeducedType())
7819       ParsingInitForAutoVars.insert(NewVD);
7820 
7821     if (D.isInvalidType() || Invalid) {
7822       NewVD->setInvalidDecl();
7823       if (NewTemplate)
7824         NewTemplate->setInvalidDecl();
7825     }
7826 
7827     SetNestedNameSpecifier(*this, NewVD, D);
7828 
7829     // If we have any template parameter lists that don't directly belong to
7830     // the variable (matching the scope specifier), store them.
7831     // An explicit variable template specialization does not own any template
7832     // parameter lists.
7833     bool IsExplicitSpecialization =
7834         IsVariableTemplateSpecialization && !IsPartialSpecialization;
7835     unsigned VDTemplateParamLists =
7836         (TemplateParams && !IsExplicitSpecialization) ? 1 : 0;
7837     if (TemplateParamLists.size() > VDTemplateParamLists)
7838       NewVD->setTemplateParameterListsInfo(
7839           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7840   }
7841 
7842   if (D.getDeclSpec().isInlineSpecified()) {
7843     if (!getLangOpts().CPlusPlus) {
7844       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7845           << 0;
7846     } else if (CurContext->isFunctionOrMethod()) {
7847       // 'inline' is not allowed on block scope variable declaration.
7848       Diag(D.getDeclSpec().getInlineSpecLoc(),
7849            diag::err_inline_declaration_block_scope) << Name
7850         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7851     } else {
7852       Diag(D.getDeclSpec().getInlineSpecLoc(),
7853            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7854                                      : diag::ext_inline_variable);
7855       NewVD->setInlineSpecified();
7856     }
7857   }
7858 
7859   // Set the lexical context. If the declarator has a C++ scope specifier, the
7860   // lexical context will be different from the semantic context.
7861   NewVD->setLexicalDeclContext(CurContext);
7862   if (NewTemplate)
7863     NewTemplate->setLexicalDeclContext(CurContext);
7864 
7865   if (IsLocalExternDecl) {
7866     if (D.isDecompositionDeclarator())
7867       for (auto *B : Bindings)
7868         B->setLocalExternDecl();
7869     else
7870       NewVD->setLocalExternDecl();
7871   }
7872 
7873   bool EmitTLSUnsupportedError = false;
7874   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7875     // C++11 [dcl.stc]p4:
7876     //   When thread_local is applied to a variable of block scope the
7877     //   storage-class-specifier static is implied if it does not appear
7878     //   explicitly.
7879     // Core issue: 'static' is not implied if the variable is declared
7880     //   'extern'.
7881     if (NewVD->hasLocalStorage() &&
7882         (SCSpec != DeclSpec::SCS_unspecified ||
7883          TSCS != DeclSpec::TSCS_thread_local ||
7884          !DC->isFunctionOrMethod()))
7885       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7886            diag::err_thread_non_global)
7887         << DeclSpec::getSpecifierName(TSCS);
7888     else if (!Context.getTargetInfo().isTLSSupported()) {
7889       if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
7890           getLangOpts().SYCLIsDevice) {
7891         // Postpone error emission until we've collected attributes required to
7892         // figure out whether it's a host or device variable and whether the
7893         // error should be ignored.
7894         EmitTLSUnsupportedError = true;
7895         // We still need to mark the variable as TLS so it shows up in AST with
7896         // proper storage class for other tools to use even if we're not going
7897         // to emit any code for it.
7898         NewVD->setTSCSpec(TSCS);
7899       } else
7900         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7901              diag::err_thread_unsupported);
7902     } else
7903       NewVD->setTSCSpec(TSCS);
7904   }
7905 
7906   switch (D.getDeclSpec().getConstexprSpecifier()) {
7907   case ConstexprSpecKind::Unspecified:
7908     break;
7909 
7910   case ConstexprSpecKind::Consteval:
7911     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7912          diag::err_constexpr_wrong_decl_kind)
7913         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7914     [[fallthrough]];
7915 
7916   case ConstexprSpecKind::Constexpr:
7917     NewVD->setConstexpr(true);
7918     // C++1z [dcl.spec.constexpr]p1:
7919     //   A static data member declared with the constexpr specifier is
7920     //   implicitly an inline variable.
7921     if (NewVD->isStaticDataMember() &&
7922         (getLangOpts().CPlusPlus17 ||
7923          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7924       NewVD->setImplicitlyInline();
7925     break;
7926 
7927   case ConstexprSpecKind::Constinit:
7928     if (!NewVD->hasGlobalStorage())
7929       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7930            diag::err_constinit_local_variable);
7931     else
7932       NewVD->addAttr(
7933           ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(),
7934                                 ConstInitAttr::Keyword_constinit));
7935     break;
7936   }
7937 
7938   // C99 6.7.4p3
7939   //   An inline definition of a function with external linkage shall
7940   //   not contain a definition of a modifiable object with static or
7941   //   thread storage duration...
7942   // We only apply this when the function is required to be defined
7943   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7944   // that a local variable with thread storage duration still has to
7945   // be marked 'static'.  Also note that it's possible to get these
7946   // semantics in C++ using __attribute__((gnu_inline)).
7947   if (SC == SC_Static && S->getFnParent() != nullptr &&
7948       !NewVD->getType().isConstQualified()) {
7949     FunctionDecl *CurFD = getCurFunctionDecl();
7950     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7951       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7952            diag::warn_static_local_in_extern_inline);
7953       MaybeSuggestAddingStaticToDecl(CurFD);
7954     }
7955   }
7956 
7957   if (D.getDeclSpec().isModulePrivateSpecified()) {
7958     if (IsVariableTemplateSpecialization)
7959       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7960           << (IsPartialSpecialization ? 1 : 0)
7961           << FixItHint::CreateRemoval(
7962                  D.getDeclSpec().getModulePrivateSpecLoc());
7963     else if (IsMemberSpecialization)
7964       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7965         << 2
7966         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7967     else if (NewVD->hasLocalStorage())
7968       Diag(NewVD->getLocation(), diag::err_module_private_local)
7969           << 0 << NewVD
7970           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7971           << FixItHint::CreateRemoval(
7972                  D.getDeclSpec().getModulePrivateSpecLoc());
7973     else {
7974       NewVD->setModulePrivate();
7975       if (NewTemplate)
7976         NewTemplate->setModulePrivate();
7977       for (auto *B : Bindings)
7978         B->setModulePrivate();
7979     }
7980   }
7981 
7982   if (getLangOpts().OpenCL) {
7983     deduceOpenCLAddressSpace(NewVD);
7984 
7985     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7986     if (TSC != TSCS_unspecified) {
7987       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7988            diag::err_opencl_unknown_type_specifier)
7989           << getLangOpts().getOpenCLVersionString()
7990           << DeclSpec::getSpecifierName(TSC) << 1;
7991       NewVD->setInvalidDecl();
7992     }
7993   }
7994 
7995   // WebAssembly tables are always in address space 1 (wasm_var). Don't apply
7996   // address space if the table has local storage (semantic checks elsewhere
7997   // will produce an error anyway).
7998   if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) {
7999     if (ATy && ATy->getElementType().isWebAssemblyReferenceType() &&
8000         !NewVD->hasLocalStorage()) {
8001       QualType Type = Context.getAddrSpaceQualType(
8002           NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1));
8003       NewVD->setType(Type);
8004     }
8005   }
8006 
8007   // Handle attributes prior to checking for duplicates in MergeVarDecl
8008   ProcessDeclAttributes(S, NewVD, D);
8009 
8010   // FIXME: This is probably the wrong location to be doing this and we should
8011   // probably be doing this for more attributes (especially for function
8012   // pointer attributes such as format, warn_unused_result, etc.). Ideally
8013   // the code to copy attributes would be generated by TableGen.
8014   if (R->isFunctionPointerType())
8015     if (const auto *TT = R->getAs<TypedefType>())
8016       copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
8017 
8018   if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice ||
8019       getLangOpts().SYCLIsDevice) {
8020     if (EmitTLSUnsupportedError &&
8021         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
8022          (getLangOpts().OpenMPIsTargetDevice &&
8023           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
8024       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8025            diag::err_thread_unsupported);
8026 
8027     if (EmitTLSUnsupportedError &&
8028         (LangOpts.SYCLIsDevice ||
8029          (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice)))
8030       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
8031     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
8032     // storage [duration]."
8033     if (SC == SC_None && S->getFnParent() != nullptr &&
8034         (NewVD->hasAttr<CUDASharedAttr>() ||
8035          NewVD->hasAttr<CUDAConstantAttr>())) {
8036       NewVD->setStorageClass(SC_Static);
8037     }
8038   }
8039 
8040   // Ensure that dllimport globals without explicit storage class are treated as
8041   // extern. The storage class is set above using parsed attributes. Now we can
8042   // check the VarDecl itself.
8043   assert(!NewVD->hasAttr<DLLImportAttr>() ||
8044          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
8045          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
8046 
8047   // In auto-retain/release, infer strong retension for variables of
8048   // retainable type.
8049   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
8050     NewVD->setInvalidDecl();
8051 
8052   // Handle GNU asm-label extension (encoded as an attribute).
8053   if (Expr *E = (Expr*)D.getAsmLabel()) {
8054     // The parser guarantees this is a string.
8055     StringLiteral *SE = cast<StringLiteral>(E);
8056     StringRef Label = SE->getString();
8057     if (S->getFnParent() != nullptr) {
8058       switch (SC) {
8059       case SC_None:
8060       case SC_Auto:
8061         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
8062         break;
8063       case SC_Register:
8064         // Local Named register
8065         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
8066             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
8067           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8068         break;
8069       case SC_Static:
8070       case SC_Extern:
8071       case SC_PrivateExtern:
8072         break;
8073       }
8074     } else if (SC == SC_Register) {
8075       // Global Named register
8076       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
8077         const auto &TI = Context.getTargetInfo();
8078         bool HasSizeMismatch;
8079 
8080         if (!TI.isValidGCCRegisterName(Label))
8081           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
8082         else if (!TI.validateGlobalRegisterVariable(Label,
8083                                                     Context.getTypeSize(R),
8084                                                     HasSizeMismatch))
8085           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
8086         else if (HasSizeMismatch)
8087           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
8088       }
8089 
8090       if (!R->isIntegralType(Context) && !R->isPointerType()) {
8091         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
8092         NewVD->setInvalidDecl(true);
8093       }
8094     }
8095 
8096     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
8097                                         /*IsLiteralLabel=*/true,
8098                                         SE->getStrTokenLoc(0)));
8099   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8100     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8101       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
8102     if (I != ExtnameUndeclaredIdentifiers.end()) {
8103       if (isDeclExternC(NewVD)) {
8104         NewVD->addAttr(I->second);
8105         ExtnameUndeclaredIdentifiers.erase(I);
8106       } else
8107         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
8108             << /*Variable*/1 << NewVD;
8109     }
8110   }
8111 
8112   // Find the shadowed declaration before filtering for scope.
8113   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
8114                                 ? getShadowedDeclaration(NewVD, Previous)
8115                                 : nullptr;
8116 
8117   // Don't consider existing declarations that are in a different
8118   // scope and are out-of-semantic-context declarations (if the new
8119   // declaration has linkage).
8120   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
8121                        D.getCXXScopeSpec().isNotEmpty() ||
8122                        IsMemberSpecialization ||
8123                        IsVariableTemplateSpecialization);
8124 
8125   // Check whether the previous declaration is in the same block scope. This
8126   // affects whether we merge types with it, per C++11 [dcl.array]p3.
8127   if (getLangOpts().CPlusPlus &&
8128       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
8129     NewVD->setPreviousDeclInSameBlockScope(
8130         Previous.isSingleResult() && !Previous.isShadowed() &&
8131         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
8132 
8133   if (!getLangOpts().CPlusPlus) {
8134     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8135   } else {
8136     // If this is an explicit specialization of a static data member, check it.
8137     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
8138         CheckMemberSpecialization(NewVD, Previous))
8139       NewVD->setInvalidDecl();
8140 
8141     // Merge the decl with the existing one if appropriate.
8142     if (!Previous.empty()) {
8143       if (Previous.isSingleResult() &&
8144           isa<FieldDecl>(Previous.getFoundDecl()) &&
8145           D.getCXXScopeSpec().isSet()) {
8146         // The user tried to define a non-static data member
8147         // out-of-line (C++ [dcl.meaning]p1).
8148         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
8149           << D.getCXXScopeSpec().getRange();
8150         Previous.clear();
8151         NewVD->setInvalidDecl();
8152       }
8153     } else if (D.getCXXScopeSpec().isSet()) {
8154       // No previous declaration in the qualifying scope.
8155       Diag(D.getIdentifierLoc(), diag::err_no_member)
8156         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
8157         << D.getCXXScopeSpec().getRange();
8158       NewVD->setInvalidDecl();
8159     }
8160 
8161     if (!IsVariableTemplateSpecialization && !IsPlaceholderVariable)
8162       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
8163 
8164     // CheckVariableDeclaration will set NewVD as invalid if something is in
8165     // error like WebAssembly tables being declared as arrays with a non-zero
8166     // size, but then parsing continues and emits further errors on that line.
8167     // To avoid that we check here if it happened and return nullptr.
8168     if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl())
8169       return nullptr;
8170 
8171     if (NewTemplate) {
8172       VarTemplateDecl *PrevVarTemplate =
8173           NewVD->getPreviousDecl()
8174               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
8175               : nullptr;
8176 
8177       // Check the template parameter list of this declaration, possibly
8178       // merging in the template parameter list from the previous variable
8179       // template declaration.
8180       if (CheckTemplateParameterList(
8181               TemplateParams,
8182               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
8183                               : nullptr,
8184               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
8185                DC->isDependentContext())
8186                   ? TPC_ClassTemplateMember
8187                   : TPC_VarTemplate))
8188         NewVD->setInvalidDecl();
8189 
8190       // If we are providing an explicit specialization of a static variable
8191       // template, make a note of that.
8192       if (PrevVarTemplate &&
8193           PrevVarTemplate->getInstantiatedFromMemberTemplate())
8194         PrevVarTemplate->setMemberSpecialization();
8195     }
8196   }
8197 
8198   // Diagnose shadowed variables iff this isn't a redeclaration.
8199   if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration())
8200     CheckShadow(NewVD, ShadowedDecl, Previous);
8201 
8202   ProcessPragmaWeak(S, NewVD);
8203 
8204   // If this is the first declaration of an extern C variable, update
8205   // the map of such variables.
8206   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
8207       isIncompleteDeclExternC(*this, NewVD))
8208     RegisterLocallyScopedExternCDecl(NewVD, S);
8209 
8210   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
8211     MangleNumberingContext *MCtx;
8212     Decl *ManglingContextDecl;
8213     std::tie(MCtx, ManglingContextDecl) =
8214         getCurrentMangleNumberContext(NewVD->getDeclContext());
8215     if (MCtx) {
8216       Context.setManglingNumber(
8217           NewVD, MCtx->getManglingNumber(
8218                      NewVD, getMSManglingNumber(getLangOpts(), S)));
8219       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
8220     }
8221   }
8222 
8223   // Special handling of variable named 'main'.
8224   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
8225       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8226       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
8227 
8228     // C++ [basic.start.main]p3
8229     // A program that declares a variable main at global scope is ill-formed.
8230     if (getLangOpts().CPlusPlus)
8231       Diag(D.getBeginLoc(), diag::err_main_global_variable);
8232 
8233     // In C, and external-linkage variable named main results in undefined
8234     // behavior.
8235     else if (NewVD->hasExternalFormalLinkage())
8236       Diag(D.getBeginLoc(), diag::warn_main_redefined);
8237   }
8238 
8239   if (D.isRedeclaration() && !Previous.empty()) {
8240     NamedDecl *Prev = Previous.getRepresentativeDecl();
8241     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
8242                                    D.isFunctionDefinition());
8243   }
8244 
8245   if (NewTemplate) {
8246     if (NewVD->isInvalidDecl())
8247       NewTemplate->setInvalidDecl();
8248     ActOnDocumentableDecl(NewTemplate);
8249     return NewTemplate;
8250   }
8251 
8252   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
8253     CompleteMemberSpecialization(NewVD, Previous);
8254 
8255   emitReadOnlyPlacementAttrWarning(*this, NewVD);
8256 
8257   return NewVD;
8258 }
8259 
8260 /// Enum describing the %select options in diag::warn_decl_shadow.
8261 enum ShadowedDeclKind {
8262   SDK_Local,
8263   SDK_Global,
8264   SDK_StaticMember,
8265   SDK_Field,
8266   SDK_Typedef,
8267   SDK_Using,
8268   SDK_StructuredBinding
8269 };
8270 
8271 /// Determine what kind of declaration we're shadowing.
8272 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
8273                                                 const DeclContext *OldDC) {
8274   if (isa<TypeAliasDecl>(ShadowedDecl))
8275     return SDK_Using;
8276   else if (isa<TypedefDecl>(ShadowedDecl))
8277     return SDK_Typedef;
8278   else if (isa<BindingDecl>(ShadowedDecl))
8279     return SDK_StructuredBinding;
8280   else if (isa<RecordDecl>(OldDC))
8281     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
8282 
8283   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
8284 }
8285 
8286 /// Return the location of the capture if the given lambda captures the given
8287 /// variable \p VD, or an invalid source location otherwise.
8288 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
8289                                          const VarDecl *VD) {
8290   for (const Capture &Capture : LSI->Captures) {
8291     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
8292       return Capture.getLocation();
8293   }
8294   return SourceLocation();
8295 }
8296 
8297 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
8298                                      const LookupResult &R) {
8299   // Only diagnose if we're shadowing an unambiguous field or variable.
8300   if (R.getResultKind() != LookupResult::Found)
8301     return false;
8302 
8303   // Return false if warning is ignored.
8304   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
8305 }
8306 
8307 /// Return the declaration shadowed by the given variable \p D, or null
8308 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8309 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
8310                                         const LookupResult &R) {
8311   if (!shouldWarnIfShadowedDecl(Diags, R))
8312     return nullptr;
8313 
8314   // Don't diagnose declarations at file scope.
8315   if (D->hasGlobalStorage() && !D->isStaticLocal())
8316     return nullptr;
8317 
8318   NamedDecl *ShadowedDecl = R.getFoundDecl();
8319   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8320                                                             : nullptr;
8321 }
8322 
8323 /// Return the declaration shadowed by the given typedef \p D, or null
8324 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8325 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
8326                                         const LookupResult &R) {
8327   // Don't warn if typedef declaration is part of a class
8328   if (D->getDeclContext()->isRecord())
8329     return nullptr;
8330 
8331   if (!shouldWarnIfShadowedDecl(Diags, R))
8332     return nullptr;
8333 
8334   NamedDecl *ShadowedDecl = R.getFoundDecl();
8335   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
8336 }
8337 
8338 /// Return the declaration shadowed by the given variable \p D, or null
8339 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
8340 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
8341                                         const LookupResult &R) {
8342   if (!shouldWarnIfShadowedDecl(Diags, R))
8343     return nullptr;
8344 
8345   NamedDecl *ShadowedDecl = R.getFoundDecl();
8346   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
8347                                                             : nullptr;
8348 }
8349 
8350 /// Diagnose variable or built-in function shadowing.  Implements
8351 /// -Wshadow.
8352 ///
8353 /// This method is called whenever a VarDecl is added to a "useful"
8354 /// scope.
8355 ///
8356 /// \param ShadowedDecl the declaration that is shadowed by the given variable
8357 /// \param R the lookup of the name
8358 ///
8359 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
8360                        const LookupResult &R) {
8361   DeclContext *NewDC = D->getDeclContext();
8362 
8363   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
8364     // Fields are not shadowed by variables in C++ static methods.
8365     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
8366       if (MD->isStatic())
8367         return;
8368 
8369     // Fields shadowed by constructor parameters are a special case. Usually
8370     // the constructor initializes the field with the parameter.
8371     if (isa<CXXConstructorDecl>(NewDC))
8372       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
8373         // Remember that this was shadowed so we can either warn about its
8374         // modification or its existence depending on warning settings.
8375         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
8376         return;
8377       }
8378   }
8379 
8380   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
8381     if (shadowedVar->isExternC()) {
8382       // For shadowing external vars, make sure that we point to the global
8383       // declaration, not a locally scoped extern declaration.
8384       for (auto *I : shadowedVar->redecls())
8385         if (I->isFileVarDecl()) {
8386           ShadowedDecl = I;
8387           break;
8388         }
8389     }
8390 
8391   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
8392 
8393   unsigned WarningDiag = diag::warn_decl_shadow;
8394   SourceLocation CaptureLoc;
8395   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
8396       isa<CXXMethodDecl>(NewDC)) {
8397     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
8398       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
8399         if (RD->getLambdaCaptureDefault() == LCD_None) {
8400           // Try to avoid warnings for lambdas with an explicit capture list.
8401           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
8402           // Warn only when the lambda captures the shadowed decl explicitly.
8403           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
8404           if (CaptureLoc.isInvalid())
8405             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
8406         } else {
8407           // Remember that this was shadowed so we can avoid the warning if the
8408           // shadowed decl isn't captured and the warning settings allow it.
8409           cast<LambdaScopeInfo>(getCurFunction())
8410               ->ShadowingDecls.push_back(
8411                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
8412           return;
8413         }
8414       }
8415 
8416       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
8417         // A variable can't shadow a local variable in an enclosing scope, if
8418         // they are separated by a non-capturing declaration context.
8419         for (DeclContext *ParentDC = NewDC;
8420              ParentDC && !ParentDC->Equals(OldDC);
8421              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
8422           // Only block literals, captured statements, and lambda expressions
8423           // can capture; other scopes don't.
8424           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
8425               !isLambdaCallOperator(ParentDC)) {
8426             return;
8427           }
8428         }
8429       }
8430     }
8431   }
8432 
8433   // Never warn about shadowing a placeholder variable.
8434   if (ShadowedDecl->isPlaceholderVar(getLangOpts()))
8435     return;
8436 
8437   // Only warn about certain kinds of shadowing for class members.
8438   if (NewDC && NewDC->isRecord()) {
8439     // In particular, don't warn about shadowing non-class members.
8440     if (!OldDC->isRecord())
8441       return;
8442 
8443     // TODO: should we warn about static data members shadowing
8444     // static data members from base classes?
8445 
8446     // TODO: don't diagnose for inaccessible shadowed members.
8447     // This is hard to do perfectly because we might friend the
8448     // shadowing context, but that's just a false negative.
8449   }
8450 
8451 
8452   DeclarationName Name = R.getLookupName();
8453 
8454   // Emit warning and note.
8455   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
8456   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
8457   if (!CaptureLoc.isInvalid())
8458     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8459         << Name << /*explicitly*/ 1;
8460   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8461 }
8462 
8463 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
8464 /// when these variables are captured by the lambda.
8465 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
8466   for (const auto &Shadow : LSI->ShadowingDecls) {
8467     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
8468     // Try to avoid the warning when the shadowed decl isn't captured.
8469     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
8470     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8471     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
8472                                        ? diag::warn_decl_shadow_uncaptured_local
8473                                        : diag::warn_decl_shadow)
8474         << Shadow.VD->getDeclName()
8475         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
8476     if (!CaptureLoc.isInvalid())
8477       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
8478           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
8479     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8480   }
8481 }
8482 
8483 /// Check -Wshadow without the advantage of a previous lookup.
8484 void Sema::CheckShadow(Scope *S, VarDecl *D) {
8485   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
8486     return;
8487 
8488   LookupResult R(*this, D->getDeclName(), D->getLocation(),
8489                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
8490   LookupName(R, S);
8491   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
8492     CheckShadow(D, ShadowedDecl, R);
8493 }
8494 
8495 /// Check if 'E', which is an expression that is about to be modified, refers
8496 /// to a constructor parameter that shadows a field.
8497 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
8498   // Quickly ignore expressions that can't be shadowing ctor parameters.
8499   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
8500     return;
8501   E = E->IgnoreParenImpCasts();
8502   auto *DRE = dyn_cast<DeclRefExpr>(E);
8503   if (!DRE)
8504     return;
8505   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
8506   auto I = ShadowingDecls.find(D);
8507   if (I == ShadowingDecls.end())
8508     return;
8509   const NamedDecl *ShadowedDecl = I->second;
8510   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
8511   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
8512   Diag(D->getLocation(), diag::note_var_declared_here) << D;
8513   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
8514 
8515   // Avoid issuing multiple warnings about the same decl.
8516   ShadowingDecls.erase(I);
8517 }
8518 
8519 /// Check for conflict between this global or extern "C" declaration and
8520 /// previous global or extern "C" declarations. This is only used in C++.
8521 template<typename T>
8522 static bool checkGlobalOrExternCConflict(
8523     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
8524   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
8525   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
8526 
8527   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
8528     // The common case: this global doesn't conflict with any extern "C"
8529     // declaration.
8530     return false;
8531   }
8532 
8533   if (Prev) {
8534     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
8535       // Both the old and new declarations have C language linkage. This is a
8536       // redeclaration.
8537       Previous.clear();
8538       Previous.addDecl(Prev);
8539       return true;
8540     }
8541 
8542     // This is a global, non-extern "C" declaration, and there is a previous
8543     // non-global extern "C" declaration. Diagnose if this is a variable
8544     // declaration.
8545     if (!isa<VarDecl>(ND))
8546       return false;
8547   } else {
8548     // The declaration is extern "C". Check for any declaration in the
8549     // translation unit which might conflict.
8550     if (IsGlobal) {
8551       // We have already performed the lookup into the translation unit.
8552       IsGlobal = false;
8553       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8554            I != E; ++I) {
8555         if (isa<VarDecl>(*I)) {
8556           Prev = *I;
8557           break;
8558         }
8559       }
8560     } else {
8561       DeclContext::lookup_result R =
8562           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
8563       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
8564            I != E; ++I) {
8565         if (isa<VarDecl>(*I)) {
8566           Prev = *I;
8567           break;
8568         }
8569         // FIXME: If we have any other entity with this name in global scope,
8570         // the declaration is ill-formed, but that is a defect: it breaks the
8571         // 'stat' hack, for instance. Only variables can have mangled name
8572         // clashes with extern "C" declarations, so only they deserve a
8573         // diagnostic.
8574       }
8575     }
8576 
8577     if (!Prev)
8578       return false;
8579   }
8580 
8581   // Use the first declaration's location to ensure we point at something which
8582   // is lexically inside an extern "C" linkage-spec.
8583   assert(Prev && "should have found a previous declaration to diagnose");
8584   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
8585     Prev = FD->getFirstDecl();
8586   else
8587     Prev = cast<VarDecl>(Prev)->getFirstDecl();
8588 
8589   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
8590     << IsGlobal << ND;
8591   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
8592     << IsGlobal;
8593   return false;
8594 }
8595 
8596 /// Apply special rules for handling extern "C" declarations. Returns \c true
8597 /// if we have found that this is a redeclaration of some prior entity.
8598 ///
8599 /// Per C++ [dcl.link]p6:
8600 ///   Two declarations [for a function or variable] with C language linkage
8601 ///   with the same name that appear in different scopes refer to the same
8602 ///   [entity]. An entity with C language linkage shall not be declared with
8603 ///   the same name as an entity in global scope.
8604 template<typename T>
8605 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
8606                                                   LookupResult &Previous) {
8607   if (!S.getLangOpts().CPlusPlus) {
8608     // In C, when declaring a global variable, look for a corresponding 'extern'
8609     // variable declared in function scope. We don't need this in C++, because
8610     // we find local extern decls in the surrounding file-scope DeclContext.
8611     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8612       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
8613         Previous.clear();
8614         Previous.addDecl(Prev);
8615         return true;
8616       }
8617     }
8618     return false;
8619   }
8620 
8621   // A declaration in the translation unit can conflict with an extern "C"
8622   // declaration.
8623   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
8624     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
8625 
8626   // An extern "C" declaration can conflict with a declaration in the
8627   // translation unit or can be a redeclaration of an extern "C" declaration
8628   // in another scope.
8629   if (isIncompleteDeclExternC(S,ND))
8630     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
8631 
8632   // Neither global nor extern "C": nothing to do.
8633   return false;
8634 }
8635 
8636 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
8637   // If the decl is already known invalid, don't check it.
8638   if (NewVD->isInvalidDecl())
8639     return;
8640 
8641   QualType T = NewVD->getType();
8642 
8643   // Defer checking an 'auto' type until its initializer is attached.
8644   if (T->isUndeducedType())
8645     return;
8646 
8647   if (NewVD->hasAttrs())
8648     CheckAlignasUnderalignment(NewVD);
8649 
8650   if (T->isObjCObjectType()) {
8651     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
8652       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
8653     T = Context.getObjCObjectPointerType(T);
8654     NewVD->setType(T);
8655   }
8656 
8657   // Emit an error if an address space was applied to decl with local storage.
8658   // This includes arrays of objects with address space qualifiers, but not
8659   // automatic variables that point to other address spaces.
8660   // ISO/IEC TR 18037 S5.1.2
8661   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
8662       T.getAddressSpace() != LangAS::Default) {
8663     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
8664     NewVD->setInvalidDecl();
8665     return;
8666   }
8667 
8668   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8669   // scope.
8670   if (getLangOpts().OpenCLVersion == 120 &&
8671       !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8672                                             getLangOpts()) &&
8673       NewVD->isStaticLocal()) {
8674     Diag(NewVD->getLocation(), diag::err_static_function_scope);
8675     NewVD->setInvalidDecl();
8676     return;
8677   }
8678 
8679   if (getLangOpts().OpenCL) {
8680     if (!diagnoseOpenCLTypes(*this, NewVD))
8681       return;
8682 
8683     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8684     if (NewVD->hasAttr<BlocksAttr>()) {
8685       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8686       return;
8687     }
8688 
8689     if (T->isBlockPointerType()) {
8690       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8691       // can't use 'extern' storage class.
8692       if (!T.isConstQualified()) {
8693         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8694             << 0 /*const*/;
8695         NewVD->setInvalidDecl();
8696         return;
8697       }
8698       if (NewVD->hasExternalStorage()) {
8699         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8700         NewVD->setInvalidDecl();
8701         return;
8702       }
8703     }
8704 
8705     // FIXME: Adding local AS in C++ for OpenCL might make sense.
8706     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8707         NewVD->hasExternalStorage()) {
8708       if (!T->isSamplerT() && !T->isDependentType() &&
8709           !(T.getAddressSpace() == LangAS::opencl_constant ||
8710             (T.getAddressSpace() == LangAS::opencl_global &&
8711              getOpenCLOptions().areProgramScopeVariablesSupported(
8712                  getLangOpts())))) {
8713         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8714         if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8715           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8716               << Scope << "global or constant";
8717         else
8718           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8719               << Scope << "constant";
8720         NewVD->setInvalidDecl();
8721         return;
8722       }
8723     } else {
8724       if (T.getAddressSpace() == LangAS::opencl_global) {
8725         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8726             << 1 /*is any function*/ << "global";
8727         NewVD->setInvalidDecl();
8728         return;
8729       }
8730       if (T.getAddressSpace() == LangAS::opencl_constant ||
8731           T.getAddressSpace() == LangAS::opencl_local) {
8732         FunctionDecl *FD = getCurFunctionDecl();
8733         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8734         // in functions.
8735         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8736           if (T.getAddressSpace() == LangAS::opencl_constant)
8737             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8738                 << 0 /*non-kernel only*/ << "constant";
8739           else
8740             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8741                 << 0 /*non-kernel only*/ << "local";
8742           NewVD->setInvalidDecl();
8743           return;
8744         }
8745         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8746         // in the outermost scope of a kernel function.
8747         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8748           if (!getCurScope()->isFunctionScope()) {
8749             if (T.getAddressSpace() == LangAS::opencl_constant)
8750               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8751                   << "constant";
8752             else
8753               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8754                   << "local";
8755             NewVD->setInvalidDecl();
8756             return;
8757           }
8758         }
8759       } else if (T.getAddressSpace() != LangAS::opencl_private &&
8760                  // If we are parsing a template we didn't deduce an addr
8761                  // space yet.
8762                  T.getAddressSpace() != LangAS::Default) {
8763         // Do not allow other address spaces on automatic variable.
8764         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8765         NewVD->setInvalidDecl();
8766         return;
8767       }
8768     }
8769   }
8770 
8771   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8772       && !NewVD->hasAttr<BlocksAttr>()) {
8773     if (getLangOpts().getGC() != LangOptions::NonGC)
8774       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8775     else {
8776       assert(!getLangOpts().ObjCAutoRefCount);
8777       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8778     }
8779   }
8780 
8781   // WebAssembly tables must be static with a zero length and can't be
8782   // declared within functions.
8783   if (T->isWebAssemblyTableType()) {
8784     if (getCurScope()->getParent()) { // Parent is null at top-level
8785       Diag(NewVD->getLocation(), diag::err_wasm_table_in_function);
8786       NewVD->setInvalidDecl();
8787       return;
8788     }
8789     if (NewVD->getStorageClass() != SC_Static) {
8790       Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static);
8791       NewVD->setInvalidDecl();
8792       return;
8793     }
8794     const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr());
8795     if (!ATy || ATy->getSize().getSExtValue() != 0) {
8796       Diag(NewVD->getLocation(),
8797            diag::err_typecheck_wasm_table_must_have_zero_length);
8798       NewVD->setInvalidDecl();
8799       return;
8800     }
8801   }
8802 
8803   bool isVM = T->isVariablyModifiedType();
8804   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8805       NewVD->hasAttr<BlocksAttr>())
8806     setFunctionHasBranchProtectedScope();
8807 
8808   if ((isVM && NewVD->hasLinkage()) ||
8809       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8810     bool SizeIsNegative;
8811     llvm::APSInt Oversized;
8812     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8813         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8814     QualType FixedT;
8815     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8816       FixedT = FixedTInfo->getType();
8817     else if (FixedTInfo) {
8818       // Type and type-as-written are canonically different. We need to fix up
8819       // both types separately.
8820       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8821                                                    Oversized);
8822     }
8823     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8824       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8825       // FIXME: This won't give the correct result for
8826       // int a[10][n];
8827       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8828 
8829       if (NewVD->isFileVarDecl())
8830         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8831         << SizeRange;
8832       else if (NewVD->isStaticLocal())
8833         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8834         << SizeRange;
8835       else
8836         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8837         << SizeRange;
8838       NewVD->setInvalidDecl();
8839       return;
8840     }
8841 
8842     if (!FixedTInfo) {
8843       if (NewVD->isFileVarDecl())
8844         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8845       else
8846         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8847       NewVD->setInvalidDecl();
8848       return;
8849     }
8850 
8851     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8852     NewVD->setType(FixedT);
8853     NewVD->setTypeSourceInfo(FixedTInfo);
8854   }
8855 
8856   if (T->isVoidType()) {
8857     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8858     //                    of objects and functions.
8859     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8860       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8861         << T;
8862       NewVD->setInvalidDecl();
8863       return;
8864     }
8865   }
8866 
8867   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8868     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8869     NewVD->setInvalidDecl();
8870     return;
8871   }
8872 
8873   if (!NewVD->hasLocalStorage() && T->isSizelessType() &&
8874       !T.isWebAssemblyReferenceType()) {
8875     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8876     NewVD->setInvalidDecl();
8877     return;
8878   }
8879 
8880   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8881     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8882     NewVD->setInvalidDecl();
8883     return;
8884   }
8885 
8886   if (NewVD->isConstexpr() && !T->isDependentType() &&
8887       RequireLiteralType(NewVD->getLocation(), T,
8888                          diag::err_constexpr_var_non_literal)) {
8889     NewVD->setInvalidDecl();
8890     return;
8891   }
8892 
8893   // PPC MMA non-pointer types are not allowed as non-local variable types.
8894   if (Context.getTargetInfo().getTriple().isPPC64() &&
8895       !NewVD->isLocalVarDecl() &&
8896       CheckPPCMMAType(T, NewVD->getLocation())) {
8897     NewVD->setInvalidDecl();
8898     return;
8899   }
8900 
8901   // Check that SVE types are only used in functions with SVE available.
8902   if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) {
8903     const FunctionDecl *FD = cast<FunctionDecl>(CurContext);
8904     llvm::StringMap<bool> CallerFeatureMap;
8905     Context.getFunctionFeatureMap(CallerFeatureMap, FD);
8906     if (!Builtin::evaluateRequiredTargetFeatures(
8907         "sve", CallerFeatureMap)) {
8908       Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T;
8909       NewVD->setInvalidDecl();
8910       return;
8911     }
8912   }
8913 
8914   if (T->isRVVSizelessBuiltinType())
8915     checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext));
8916 }
8917 
8918 /// Perform semantic checking on a newly-created variable
8919 /// declaration.
8920 ///
8921 /// This routine performs all of the type-checking required for a
8922 /// variable declaration once it has been built. It is used both to
8923 /// check variables after they have been parsed and their declarators
8924 /// have been translated into a declaration, and to check variables
8925 /// that have been instantiated from a template.
8926 ///
8927 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8928 ///
8929 /// Returns true if the variable declaration is a redeclaration.
8930 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8931   CheckVariableDeclarationType(NewVD);
8932 
8933   // If the decl is already known invalid, don't check it.
8934   if (NewVD->isInvalidDecl())
8935     return false;
8936 
8937   // If we did not find anything by this name, look for a non-visible
8938   // extern "C" declaration with the same name.
8939   if (Previous.empty() &&
8940       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8941     Previous.setShadowed();
8942 
8943   if (!Previous.empty()) {
8944     MergeVarDecl(NewVD, Previous);
8945     return true;
8946   }
8947   return false;
8948 }
8949 
8950 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8951 /// and if so, check that it's a valid override and remember it.
8952 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8953   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8954 
8955   // Look for methods in base classes that this method might override.
8956   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8957                      /*DetectVirtual=*/false);
8958   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8959     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8960     DeclarationName Name = MD->getDeclName();
8961 
8962     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8963       // We really want to find the base class destructor here.
8964       QualType T = Context.getTypeDeclType(BaseRecord);
8965       CanQualType CT = Context.getCanonicalType(T);
8966       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8967     }
8968 
8969     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8970       CXXMethodDecl *BaseMD =
8971           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8972       if (!BaseMD || !BaseMD->isVirtual() ||
8973           IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8974                      /*ConsiderCudaAttrs=*/true))
8975         continue;
8976       if (!CheckExplicitObjectOverride(MD, BaseMD))
8977         continue;
8978       if (Overridden.insert(BaseMD).second) {
8979         MD->addOverriddenMethod(BaseMD);
8980         CheckOverridingFunctionReturnType(MD, BaseMD);
8981         CheckOverridingFunctionAttributes(MD, BaseMD);
8982         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8983         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8984       }
8985 
8986       // A method can only override one function from each base class. We
8987       // don't track indirectly overridden methods from bases of bases.
8988       return true;
8989     }
8990 
8991     return false;
8992   };
8993 
8994   DC->lookupInBases(VisitBase, Paths);
8995   return !Overridden.empty();
8996 }
8997 
8998 namespace {
8999   // Struct for holding all of the extra arguments needed by
9000   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
9001   struct ActOnFDArgs {
9002     Scope *S;
9003     Declarator &D;
9004     MultiTemplateParamsArg TemplateParamLists;
9005     bool AddToScope;
9006   };
9007 } // end anonymous namespace
9008 
9009 namespace {
9010 
9011 // Callback to only accept typo corrections that have a non-zero edit distance.
9012 // Also only accept corrections that have the same parent decl.
9013 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
9014  public:
9015   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
9016                             CXXRecordDecl *Parent)
9017       : Context(Context), OriginalFD(TypoFD),
9018         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
9019 
9020   bool ValidateCandidate(const TypoCorrection &candidate) override {
9021     if (candidate.getEditDistance() == 0)
9022       return false;
9023 
9024     SmallVector<unsigned, 1> MismatchedParams;
9025     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
9026                                           CDeclEnd = candidate.end();
9027          CDecl != CDeclEnd; ++CDecl) {
9028       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9029 
9030       if (FD && !FD->hasBody() &&
9031           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
9032         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
9033           CXXRecordDecl *Parent = MD->getParent();
9034           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
9035             return true;
9036         } else if (!ExpectedParent) {
9037           return true;
9038         }
9039       }
9040     }
9041 
9042     return false;
9043   }
9044 
9045   std::unique_ptr<CorrectionCandidateCallback> clone() override {
9046     return std::make_unique<DifferentNameValidatorCCC>(*this);
9047   }
9048 
9049  private:
9050   ASTContext &Context;
9051   FunctionDecl *OriginalFD;
9052   CXXRecordDecl *ExpectedParent;
9053 };
9054 
9055 } // end anonymous namespace
9056 
9057 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
9058   TypoCorrectedFunctionDefinitions.insert(F);
9059 }
9060 
9061 /// Generate diagnostics for an invalid function redeclaration.
9062 ///
9063 /// This routine handles generating the diagnostic messages for an invalid
9064 /// function redeclaration, including finding possible similar declarations
9065 /// or performing typo correction if there are no previous declarations with
9066 /// the same name.
9067 ///
9068 /// Returns a NamedDecl iff typo correction was performed and substituting in
9069 /// the new declaration name does not cause new errors.
9070 static NamedDecl *DiagnoseInvalidRedeclaration(
9071     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
9072     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
9073   DeclarationName Name = NewFD->getDeclName();
9074   DeclContext *NewDC = NewFD->getDeclContext();
9075   SmallVector<unsigned, 1> MismatchedParams;
9076   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
9077   TypoCorrection Correction;
9078   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
9079   unsigned DiagMsg =
9080     IsLocalFriend ? diag::err_no_matching_local_friend :
9081     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
9082     diag::err_member_decl_does_not_match;
9083   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
9084                     IsLocalFriend ? Sema::LookupLocalFriendName
9085                                   : Sema::LookupOrdinaryName,
9086                     Sema::ForVisibleRedeclaration);
9087 
9088   NewFD->setInvalidDecl();
9089   if (IsLocalFriend)
9090     SemaRef.LookupName(Prev, S);
9091   else
9092     SemaRef.LookupQualifiedName(Prev, NewDC);
9093   assert(!Prev.isAmbiguous() &&
9094          "Cannot have an ambiguity in previous-declaration lookup");
9095   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9096   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
9097                                 MD ? MD->getParent() : nullptr);
9098   if (!Prev.empty()) {
9099     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
9100          Func != FuncEnd; ++Func) {
9101       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
9102       if (FD &&
9103           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9104         // Add 1 to the index so that 0 can mean the mismatch didn't
9105         // involve a parameter
9106         unsigned ParamNum =
9107             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
9108         NearMatches.push_back(std::make_pair(FD, ParamNum));
9109       }
9110     }
9111   // If the qualified name lookup yielded nothing, try typo correction
9112   } else if ((Correction = SemaRef.CorrectTypo(
9113                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
9114                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
9115                   IsLocalFriend ? nullptr : NewDC))) {
9116     // Set up everything for the call to ActOnFunctionDeclarator
9117     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
9118                               ExtraArgs.D.getIdentifierLoc());
9119     Previous.clear();
9120     Previous.setLookupName(Correction.getCorrection());
9121     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
9122                                     CDeclEnd = Correction.end();
9123          CDecl != CDeclEnd; ++CDecl) {
9124       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
9125       if (FD && !FD->hasBody() &&
9126           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
9127         Previous.addDecl(FD);
9128       }
9129     }
9130     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
9131 
9132     NamedDecl *Result;
9133     // Retry building the function declaration with the new previous
9134     // declarations, and with errors suppressed.
9135     {
9136       // Trap errors.
9137       Sema::SFINAETrap Trap(SemaRef);
9138 
9139       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
9140       // pieces need to verify the typo-corrected C++ declaration and hopefully
9141       // eliminate the need for the parameter pack ExtraArgs.
9142       Result = SemaRef.ActOnFunctionDeclarator(
9143           ExtraArgs.S, ExtraArgs.D,
9144           Correction.getCorrectionDecl()->getDeclContext(),
9145           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
9146           ExtraArgs.AddToScope);
9147 
9148       if (Trap.hasErrorOccurred())
9149         Result = nullptr;
9150     }
9151 
9152     if (Result) {
9153       // Determine which correction we picked.
9154       Decl *Canonical = Result->getCanonicalDecl();
9155       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9156            I != E; ++I)
9157         if ((*I)->getCanonicalDecl() == Canonical)
9158           Correction.setCorrectionDecl(*I);
9159 
9160       // Let Sema know about the correction.
9161       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
9162       SemaRef.diagnoseTypo(
9163           Correction,
9164           SemaRef.PDiag(IsLocalFriend
9165                           ? diag::err_no_matching_local_friend_suggest
9166                           : diag::err_member_decl_does_not_match_suggest)
9167             << Name << NewDC << IsDefinition);
9168       return Result;
9169     }
9170 
9171     // Pretend the typo correction never occurred
9172     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
9173                               ExtraArgs.D.getIdentifierLoc());
9174     ExtraArgs.D.setRedeclaration(wasRedeclaration);
9175     Previous.clear();
9176     Previous.setLookupName(Name);
9177   }
9178 
9179   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
9180       << Name << NewDC << IsDefinition << NewFD->getLocation();
9181 
9182   bool NewFDisConst = false;
9183   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
9184     NewFDisConst = NewMD->isConst();
9185 
9186   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
9187        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
9188        NearMatch != NearMatchEnd; ++NearMatch) {
9189     FunctionDecl *FD = NearMatch->first;
9190     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9191     bool FDisConst = MD && MD->isConst();
9192     bool IsMember = MD || !IsLocalFriend;
9193 
9194     // FIXME: These notes are poorly worded for the local friend case.
9195     if (unsigned Idx = NearMatch->second) {
9196       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
9197       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
9198       if (Loc.isInvalid()) Loc = FD->getLocation();
9199       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
9200                                  : diag::note_local_decl_close_param_match)
9201         << Idx << FDParam->getType()
9202         << NewFD->getParamDecl(Idx - 1)->getType();
9203     } else if (FDisConst != NewFDisConst) {
9204       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
9205           << NewFDisConst << FD->getSourceRange().getEnd()
9206           << (NewFDisConst
9207                   ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo()
9208                                                  .getConstQualifierLoc())
9209                   : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo()
9210                                                    .getRParenLoc()
9211                                                    .getLocWithOffset(1),
9212                                                " const"));
9213     } else
9214       SemaRef.Diag(FD->getLocation(),
9215                    IsMember ? diag::note_member_def_close_match
9216                             : diag::note_local_decl_close_match);
9217   }
9218   return nullptr;
9219 }
9220 
9221 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
9222   switch (D.getDeclSpec().getStorageClassSpec()) {
9223   default: llvm_unreachable("Unknown storage class!");
9224   case DeclSpec::SCS_auto:
9225   case DeclSpec::SCS_register:
9226   case DeclSpec::SCS_mutable:
9227     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9228                  diag::err_typecheck_sclass_func);
9229     D.getMutableDeclSpec().ClearStorageClassSpecs();
9230     D.setInvalidType();
9231     break;
9232   case DeclSpec::SCS_unspecified: break;
9233   case DeclSpec::SCS_extern:
9234     if (D.getDeclSpec().isExternInLinkageSpec())
9235       return SC_None;
9236     return SC_Extern;
9237   case DeclSpec::SCS_static: {
9238     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
9239       // C99 6.7.1p5:
9240       //   The declaration of an identifier for a function that has
9241       //   block scope shall have no explicit storage-class specifier
9242       //   other than extern
9243       // See also (C++ [dcl.stc]p4).
9244       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9245                    diag::err_static_block_func);
9246       break;
9247     } else
9248       return SC_Static;
9249   }
9250   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
9251   }
9252 
9253   // No explicit storage class has already been returned
9254   return SC_None;
9255 }
9256 
9257 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
9258                                            DeclContext *DC, QualType &R,
9259                                            TypeSourceInfo *TInfo,
9260                                            StorageClass SC,
9261                                            bool &IsVirtualOkay) {
9262   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
9263   DeclarationName Name = NameInfo.getName();
9264 
9265   FunctionDecl *NewFD = nullptr;
9266   bool isInline = D.getDeclSpec().isInlineSpecified();
9267 
9268   if (!SemaRef.getLangOpts().CPlusPlus) {
9269     // Determine whether the function was written with a prototype. This is
9270     // true when:
9271     //   - there is a prototype in the declarator, or
9272     //   - the type R of the function is some kind of typedef or other non-
9273     //     attributed reference to a type name (which eventually refers to a
9274     //     function type). Note, we can't always look at the adjusted type to
9275     //     check this case because attributes may cause a non-function
9276     //     declarator to still have a function type. e.g.,
9277     //       typedef void func(int a);
9278     //       __attribute__((noreturn)) func other_func; // This has a prototype
9279     bool HasPrototype =
9280         (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
9281         (D.getDeclSpec().isTypeRep() &&
9282          SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr)
9283              ->isFunctionProtoType()) ||
9284         (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
9285     assert(
9286         (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) &&
9287         "Strict prototypes are required");
9288 
9289     NewFD = FunctionDecl::Create(
9290         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9291         SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
9292         ConstexprSpecKind::Unspecified,
9293         /*TrailingRequiresClause=*/nullptr);
9294     if (D.isInvalidType())
9295       NewFD->setInvalidDecl();
9296 
9297     return NewFD;
9298   }
9299 
9300   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
9301 
9302   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9303   if (ConstexprKind == ConstexprSpecKind::Constinit) {
9304     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
9305                  diag::err_constexpr_wrong_decl_kind)
9306         << static_cast<int>(ConstexprKind);
9307     ConstexprKind = ConstexprSpecKind::Unspecified;
9308     D.getMutableDeclSpec().ClearConstexprSpec();
9309   }
9310   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
9311 
9312   SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R);
9313 
9314   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
9315     // This is a C++ constructor declaration.
9316     assert(DC->isRecord() &&
9317            "Constructors can only be declared in a member context");
9318 
9319     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
9320     return CXXConstructorDecl::Create(
9321         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9322         TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
9323         isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
9324         InheritedConstructor(), TrailingRequiresClause);
9325 
9326   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9327     // This is a C++ destructor declaration.
9328     if (DC->isRecord()) {
9329       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
9330       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
9331       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
9332           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
9333           SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9334           /*isImplicitlyDeclared=*/false, ConstexprKind,
9335           TrailingRequiresClause);
9336       // User defined destructors start as not selected if the class definition is still
9337       // not done.
9338       if (Record->isBeingDefined())
9339         NewDD->setIneligibleOrNotSelected(true);
9340 
9341       // If the destructor needs an implicit exception specification, set it
9342       // now. FIXME: It'd be nice to be able to create the right type to start
9343       // with, but the type needs to reference the destructor declaration.
9344       if (SemaRef.getLangOpts().CPlusPlus11)
9345         SemaRef.AdjustDestructorExceptionSpec(NewDD);
9346 
9347       IsVirtualOkay = true;
9348       return NewDD;
9349 
9350     } else {
9351       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
9352       D.setInvalidType();
9353 
9354       // Create a FunctionDecl to satisfy the function definition parsing
9355       // code path.
9356       return FunctionDecl::Create(
9357           SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
9358           TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9359           /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
9360     }
9361 
9362   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
9363     if (!DC->isRecord()) {
9364       SemaRef.Diag(D.getIdentifierLoc(),
9365            diag::err_conv_function_not_member);
9366       return nullptr;
9367     }
9368 
9369     SemaRef.CheckConversionDeclarator(D, R, SC);
9370     if (D.isInvalidType())
9371       return nullptr;
9372 
9373     IsVirtualOkay = true;
9374     return CXXConversionDecl::Create(
9375         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9376         TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9377         ExplicitSpecifier, ConstexprKind, SourceLocation(),
9378         TrailingRequiresClause);
9379 
9380   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
9381     if (TrailingRequiresClause)
9382       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
9383                    diag::err_trailing_requires_clause_on_deduction_guide)
9384           << TrailingRequiresClause->getSourceRange();
9385     if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC))
9386       return nullptr;
9387     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
9388                                          ExplicitSpecifier, NameInfo, R, TInfo,
9389                                          D.getEndLoc());
9390   } else if (DC->isRecord()) {
9391     // If the name of the function is the same as the name of the record,
9392     // then this must be an invalid constructor that has a return type.
9393     // (The parser checks for a return type and makes the declarator a
9394     // constructor if it has no return type).
9395     if (Name.getAsIdentifierInfo() &&
9396         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
9397       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
9398         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
9399         << SourceRange(D.getIdentifierLoc());
9400       return nullptr;
9401     }
9402 
9403     // This is a C++ method declaration.
9404     CXXMethodDecl *Ret = CXXMethodDecl::Create(
9405         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
9406         TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9407         ConstexprKind, SourceLocation(), TrailingRequiresClause);
9408     IsVirtualOkay = !Ret->isStatic();
9409     return Ret;
9410   } else {
9411     bool isFriend =
9412         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
9413     if (!isFriend && SemaRef.CurContext->isRecord())
9414       return nullptr;
9415 
9416     // Determine whether the function was written with a
9417     // prototype. This true when:
9418     //   - we're in C++ (where every function has a prototype),
9419     return FunctionDecl::Create(
9420         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
9421         SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
9422         true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
9423   }
9424 }
9425 
9426 enum OpenCLParamType {
9427   ValidKernelParam,
9428   PtrPtrKernelParam,
9429   PtrKernelParam,
9430   InvalidAddrSpacePtrKernelParam,
9431   InvalidKernelParam,
9432   RecordKernelParam
9433 };
9434 
9435 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
9436   // Size dependent types are just typedefs to normal integer types
9437   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
9438   // integers other than by their names.
9439   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
9440 
9441   // Remove typedefs one by one until we reach a typedef
9442   // for a size dependent type.
9443   QualType DesugaredTy = Ty;
9444   do {
9445     ArrayRef<StringRef> Names(SizeTypeNames);
9446     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
9447     if (Names.end() != Match)
9448       return true;
9449 
9450     Ty = DesugaredTy;
9451     DesugaredTy = Ty.getSingleStepDesugaredType(C);
9452   } while (DesugaredTy != Ty);
9453 
9454   return false;
9455 }
9456 
9457 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
9458   if (PT->isDependentType())
9459     return InvalidKernelParam;
9460 
9461   if (PT->isPointerType() || PT->isReferenceType()) {
9462     QualType PointeeType = PT->getPointeeType();
9463     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
9464         PointeeType.getAddressSpace() == LangAS::opencl_private ||
9465         PointeeType.getAddressSpace() == LangAS::Default)
9466       return InvalidAddrSpacePtrKernelParam;
9467 
9468     if (PointeeType->isPointerType()) {
9469       // This is a pointer to pointer parameter.
9470       // Recursively check inner type.
9471       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
9472       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
9473           ParamKind == InvalidKernelParam)
9474         return ParamKind;
9475 
9476       // OpenCL v3.0 s6.11.a:
9477       // A restriction to pass pointers to pointers only applies to OpenCL C
9478       // v1.2 or below.
9479       if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9480         return ValidKernelParam;
9481 
9482       return PtrPtrKernelParam;
9483     }
9484 
9485     // C++ for OpenCL v1.0 s2.4:
9486     // Moreover the types used in parameters of the kernel functions must be:
9487     // Standard layout types for pointer parameters. The same applies to
9488     // reference if an implementation supports them in kernel parameters.
9489     if (S.getLangOpts().OpenCLCPlusPlus &&
9490         !S.getOpenCLOptions().isAvailableOption(
9491             "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) {
9492      auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl();
9493      bool IsStandardLayoutType = true;
9494      if (CXXRec) {
9495        // If template type is not ODR-used its definition is only available
9496        // in the template definition not its instantiation.
9497        // FIXME: This logic doesn't work for types that depend on template
9498        // parameter (PR58590).
9499        if (!CXXRec->hasDefinition())
9500          CXXRec = CXXRec->getTemplateInstantiationPattern();
9501        if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout())
9502          IsStandardLayoutType = false;
9503      }
9504      if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
9505         !IsStandardLayoutType)
9506       return InvalidKernelParam;
9507     }
9508 
9509     // OpenCL v1.2 s6.9.p:
9510     // A restriction to pass pointers only applies to OpenCL C v1.2 or below.
9511     if (S.getLangOpts().getOpenCLCompatibleVersion() > 120)
9512       return ValidKernelParam;
9513 
9514     return PtrKernelParam;
9515   }
9516 
9517   // OpenCL v1.2 s6.9.k:
9518   // Arguments to kernel functions in a program cannot be declared with the
9519   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9520   // uintptr_t or a struct and/or union that contain fields declared to be one
9521   // of these built-in scalar types.
9522   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
9523     return InvalidKernelParam;
9524 
9525   if (PT->isImageType())
9526     return PtrKernelParam;
9527 
9528   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
9529     return InvalidKernelParam;
9530 
9531   // OpenCL extension spec v1.2 s9.5:
9532   // This extension adds support for half scalar and vector types as built-in
9533   // types that can be used for arithmetic operations, conversions etc.
9534   if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
9535       PT->isHalfType())
9536     return InvalidKernelParam;
9537 
9538   // Look into an array argument to check if it has a forbidden type.
9539   if (PT->isArrayType()) {
9540     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
9541     // Call ourself to check an underlying type of an array. Since the
9542     // getPointeeOrArrayElementType returns an innermost type which is not an
9543     // array, this recursive call only happens once.
9544     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
9545   }
9546 
9547   // C++ for OpenCL v1.0 s2.4:
9548   // Moreover the types used in parameters of the kernel functions must be:
9549   // Trivial and standard-layout types C++17 [basic.types] (plain old data
9550   // types) for parameters passed by value;
9551   if (S.getLangOpts().OpenCLCPlusPlus &&
9552       !S.getOpenCLOptions().isAvailableOption(
9553           "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
9554       !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
9555     return InvalidKernelParam;
9556 
9557   if (PT->isRecordType())
9558     return RecordKernelParam;
9559 
9560   return ValidKernelParam;
9561 }
9562 
9563 static void checkIsValidOpenCLKernelParameter(
9564   Sema &S,
9565   Declarator &D,
9566   ParmVarDecl *Param,
9567   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
9568   QualType PT = Param->getType();
9569 
9570   // Cache the valid types we encounter to avoid rechecking structs that are
9571   // used again
9572   if (ValidTypes.count(PT.getTypePtr()))
9573     return;
9574 
9575   switch (getOpenCLKernelParameterType(S, PT)) {
9576   case PtrPtrKernelParam:
9577     // OpenCL v3.0 s6.11.a:
9578     // A kernel function argument cannot be declared as a pointer to a pointer
9579     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
9580     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
9581     D.setInvalidType();
9582     return;
9583 
9584   case InvalidAddrSpacePtrKernelParam:
9585     // OpenCL v1.0 s6.5:
9586     // __kernel function arguments declared to be a pointer of a type can point
9587     // to one of the following address spaces only : __global, __local or
9588     // __constant.
9589     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
9590     D.setInvalidType();
9591     return;
9592 
9593     // OpenCL v1.2 s6.9.k:
9594     // Arguments to kernel functions in a program cannot be declared with the
9595     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
9596     // uintptr_t or a struct and/or union that contain fields declared to be
9597     // one of these built-in scalar types.
9598 
9599   case InvalidKernelParam:
9600     // OpenCL v1.2 s6.8 n:
9601     // A kernel function argument cannot be declared
9602     // of event_t type.
9603     // Do not diagnose half type since it is diagnosed as invalid argument
9604     // type for any function elsewhere.
9605     if (!PT->isHalfType()) {
9606       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9607 
9608       // Explain what typedefs are involved.
9609       const TypedefType *Typedef = nullptr;
9610       while ((Typedef = PT->getAs<TypedefType>())) {
9611         SourceLocation Loc = Typedef->getDecl()->getLocation();
9612         // SourceLocation may be invalid for a built-in type.
9613         if (Loc.isValid())
9614           S.Diag(Loc, diag::note_entity_declared_at) << PT;
9615         PT = Typedef->desugar();
9616       }
9617     }
9618 
9619     D.setInvalidType();
9620     return;
9621 
9622   case PtrKernelParam:
9623   case ValidKernelParam:
9624     ValidTypes.insert(PT.getTypePtr());
9625     return;
9626 
9627   case RecordKernelParam:
9628     break;
9629   }
9630 
9631   // Track nested structs we will inspect
9632   SmallVector<const Decl *, 4> VisitStack;
9633 
9634   // Track where we are in the nested structs. Items will migrate from
9635   // VisitStack to HistoryStack as we do the DFS for bad field.
9636   SmallVector<const FieldDecl *, 4> HistoryStack;
9637   HistoryStack.push_back(nullptr);
9638 
9639   // At this point we already handled everything except of a RecordType or
9640   // an ArrayType of a RecordType.
9641   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
9642   const RecordType *RecTy =
9643       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
9644   const RecordDecl *OrigRecDecl = RecTy->getDecl();
9645 
9646   VisitStack.push_back(RecTy->getDecl());
9647   assert(VisitStack.back() && "First decl null?");
9648 
9649   do {
9650     const Decl *Next = VisitStack.pop_back_val();
9651     if (!Next) {
9652       assert(!HistoryStack.empty());
9653       // Found a marker, we have gone up a level
9654       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
9655         ValidTypes.insert(Hist->getType().getTypePtr());
9656 
9657       continue;
9658     }
9659 
9660     // Adds everything except the original parameter declaration (which is not a
9661     // field itself) to the history stack.
9662     const RecordDecl *RD;
9663     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
9664       HistoryStack.push_back(Field);
9665 
9666       QualType FieldTy = Field->getType();
9667       // Other field types (known to be valid or invalid) are handled while we
9668       // walk around RecordDecl::fields().
9669       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
9670              "Unexpected type.");
9671       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
9672 
9673       RD = FieldRecTy->castAs<RecordType>()->getDecl();
9674     } else {
9675       RD = cast<RecordDecl>(Next);
9676     }
9677 
9678     // Add a null marker so we know when we've gone back up a level
9679     VisitStack.push_back(nullptr);
9680 
9681     for (const auto *FD : RD->fields()) {
9682       QualType QT = FD->getType();
9683 
9684       if (ValidTypes.count(QT.getTypePtr()))
9685         continue;
9686 
9687       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
9688       if (ParamType == ValidKernelParam)
9689         continue;
9690 
9691       if (ParamType == RecordKernelParam) {
9692         VisitStack.push_back(FD);
9693         continue;
9694       }
9695 
9696       // OpenCL v1.2 s6.9.p:
9697       // Arguments to kernel functions that are declared to be a struct or union
9698       // do not allow OpenCL objects to be passed as elements of the struct or
9699       // union. This restriction was lifted in OpenCL v2.0 with the introduction
9700       // of SVM.
9701       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
9702           ParamType == InvalidAddrSpacePtrKernelParam) {
9703         S.Diag(Param->getLocation(),
9704                diag::err_record_with_pointers_kernel_param)
9705           << PT->isUnionType()
9706           << PT;
9707       } else {
9708         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
9709       }
9710 
9711       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
9712           << OrigRecDecl->getDeclName();
9713 
9714       // We have an error, now let's go back up through history and show where
9715       // the offending field came from
9716       for (ArrayRef<const FieldDecl *>::const_iterator
9717                I = HistoryStack.begin() + 1,
9718                E = HistoryStack.end();
9719            I != E; ++I) {
9720         const FieldDecl *OuterField = *I;
9721         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
9722           << OuterField->getType();
9723       }
9724 
9725       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
9726         << QT->isPointerType()
9727         << QT;
9728       D.setInvalidType();
9729       return;
9730     }
9731   } while (!VisitStack.empty());
9732 }
9733 
9734 /// Find the DeclContext in which a tag is implicitly declared if we see an
9735 /// elaborated type specifier in the specified context, and lookup finds
9736 /// nothing.
9737 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9738   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9739     DC = DC->getParent();
9740   return DC;
9741 }
9742 
9743 /// Find the Scope in which a tag is implicitly declared if we see an
9744 /// elaborated type specifier in the specified context, and lookup finds
9745 /// nothing.
9746 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9747   while (S->isClassScope() ||
9748          (LangOpts.CPlusPlus &&
9749           S->isFunctionPrototypeScope()) ||
9750          ((S->getFlags() & Scope::DeclScope) == 0) ||
9751          (S->getEntity() && S->getEntity()->isTransparentContext()))
9752     S = S->getParent();
9753   return S;
9754 }
9755 
9756 /// Determine whether a declaration matches a known function in namespace std.
9757 static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD,
9758                          unsigned BuiltinID) {
9759   switch (BuiltinID) {
9760   case Builtin::BI__GetExceptionInfo:
9761     // No type checking whatsoever.
9762     return Ctx.getTargetInfo().getCXXABI().isMicrosoft();
9763 
9764   case Builtin::BIaddressof:
9765   case Builtin::BI__addressof:
9766   case Builtin::BIforward:
9767   case Builtin::BIforward_like:
9768   case Builtin::BImove:
9769   case Builtin::BImove_if_noexcept:
9770   case Builtin::BIas_const: {
9771     // Ensure that we don't treat the algorithm
9772     //   OutputIt std::move(InputIt, InputIt, OutputIt)
9773     // as the builtin std::move.
9774     const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9775     return FPT->getNumParams() == 1 && !FPT->isVariadic();
9776   }
9777 
9778   default:
9779     return false;
9780   }
9781 }
9782 
9783 NamedDecl*
9784 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9785                               TypeSourceInfo *TInfo, LookupResult &Previous,
9786                               MultiTemplateParamsArg TemplateParamListsRef,
9787                               bool &AddToScope) {
9788   QualType R = TInfo->getType();
9789 
9790   assert(R->isFunctionType());
9791   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9792     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9793 
9794   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9795   llvm::append_range(TemplateParamLists, TemplateParamListsRef);
9796   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9797     if (!TemplateParamLists.empty() &&
9798         Invented->getDepth() == TemplateParamLists.back()->getDepth())
9799       TemplateParamLists.back() = Invented;
9800     else
9801       TemplateParamLists.push_back(Invented);
9802   }
9803 
9804   // TODO: consider using NameInfo for diagnostic.
9805   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9806   DeclarationName Name = NameInfo.getName();
9807   StorageClass SC = getFunctionStorageClass(*this, D);
9808 
9809   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9810     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9811          diag::err_invalid_thread)
9812       << DeclSpec::getSpecifierName(TSCS);
9813 
9814   if (D.isFirstDeclarationOfMember())
9815     adjustMemberFunctionCC(
9816         R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()),
9817         D.isCtorOrDtor(), D.getIdentifierLoc());
9818 
9819   bool isFriend = false;
9820   FunctionTemplateDecl *FunctionTemplate = nullptr;
9821   bool isMemberSpecialization = false;
9822   bool isFunctionTemplateSpecialization = false;
9823 
9824   bool HasExplicitTemplateArgs = false;
9825   TemplateArgumentListInfo TemplateArgs;
9826 
9827   bool isVirtualOkay = false;
9828 
9829   DeclContext *OriginalDC = DC;
9830   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9831 
9832   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9833                                               isVirtualOkay);
9834   if (!NewFD) return nullptr;
9835 
9836   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9837     NewFD->setTopLevelDeclInObjCContainer();
9838 
9839   // Set the lexical context. If this is a function-scope declaration, or has a
9840   // C++ scope specifier, or is the object of a friend declaration, the lexical
9841   // context will be different from the semantic context.
9842   NewFD->setLexicalDeclContext(CurContext);
9843 
9844   if (IsLocalExternDecl)
9845     NewFD->setLocalExternDecl();
9846 
9847   if (getLangOpts().CPlusPlus) {
9848     // The rules for implicit inlines changed in C++20 for methods and friends
9849     // with an in-class definition (when such a definition is not attached to
9850     // the global module).  User-specified 'inline' overrides this (set when
9851     // the function decl is created above).
9852     // FIXME: We need a better way to separate C++ standard and clang modules.
9853     bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules ||
9854                                !NewFD->getOwningModule() ||
9855                                NewFD->getOwningModule()->isGlobalModule() ||
9856                                NewFD->getOwningModule()->isHeaderLikeModule();
9857     bool isInline = D.getDeclSpec().isInlineSpecified();
9858     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9859     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9860     isFriend = D.getDeclSpec().isFriendSpecified();
9861     if (isFriend && !isInline && D.isFunctionDefinition()) {
9862       // Pre-C++20 [class.friend]p5
9863       //   A function can be defined in a friend declaration of a
9864       //   class . . . . Such a function is implicitly inline.
9865       // Post C++20 [class.friend]p7
9866       //   Such a function is implicitly an inline function if it is attached
9867       //   to the global module.
9868       NewFD->setImplicitlyInline(ImplicitInlineCXX20);
9869     }
9870 
9871     // If this is a method defined in an __interface, and is not a constructor
9872     // or an overloaded operator, then set the pure flag (isVirtual will already
9873     // return true).
9874     if (const CXXRecordDecl *Parent =
9875           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9876       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9877         NewFD->setPure(true);
9878 
9879       // C++ [class.union]p2
9880       //   A union can have member functions, but not virtual functions.
9881       if (isVirtual && Parent->isUnion()) {
9882         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9883         NewFD->setInvalidDecl();
9884       }
9885       if ((Parent->isClass() || Parent->isStruct()) &&
9886           Parent->hasAttr<SYCLSpecialClassAttr>() &&
9887           NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() &&
9888           NewFD->getName() == "__init" && D.isFunctionDefinition()) {
9889         if (auto *Def = Parent->getDefinition())
9890           Def->setInitMethod(true);
9891       }
9892     }
9893 
9894     SetNestedNameSpecifier(*this, NewFD, D);
9895     isMemberSpecialization = false;
9896     isFunctionTemplateSpecialization = false;
9897     if (D.isInvalidType())
9898       NewFD->setInvalidDecl();
9899 
9900     // Match up the template parameter lists with the scope specifier, then
9901     // determine whether we have a template or a template specialization.
9902     bool Invalid = false;
9903     TemplateIdAnnotation *TemplateId =
9904         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9905             ? D.getName().TemplateId
9906             : nullptr;
9907     TemplateParameterList *TemplateParams =
9908         MatchTemplateParametersToScopeSpecifier(
9909             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9910             D.getCXXScopeSpec(), TemplateId, TemplateParamLists, isFriend,
9911             isMemberSpecialization, Invalid);
9912     if (TemplateParams) {
9913       // Check that we can declare a template here.
9914       if (CheckTemplateDeclScope(S, TemplateParams))
9915         NewFD->setInvalidDecl();
9916 
9917       if (TemplateParams->size() > 0) {
9918         // This is a function template
9919 
9920         // A destructor cannot be a template.
9921         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9922           Diag(NewFD->getLocation(), diag::err_destructor_template);
9923           NewFD->setInvalidDecl();
9924           // Function template with explicit template arguments.
9925         } else if (TemplateId) {
9926           Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9927               << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9928           NewFD->setInvalidDecl();
9929         }
9930 
9931         // If we're adding a template to a dependent context, we may need to
9932         // rebuilding some of the types used within the template parameter list,
9933         // now that we know what the current instantiation is.
9934         if (DC->isDependentContext()) {
9935           ContextRAII SavedContext(*this, DC);
9936           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9937             Invalid = true;
9938         }
9939 
9940         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9941                                                         NewFD->getLocation(),
9942                                                         Name, TemplateParams,
9943                                                         NewFD);
9944         FunctionTemplate->setLexicalDeclContext(CurContext);
9945         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9946 
9947         // For source fidelity, store the other template param lists.
9948         if (TemplateParamLists.size() > 1) {
9949           NewFD->setTemplateParameterListsInfo(Context,
9950               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9951                   .drop_back(1));
9952         }
9953       } else {
9954         // This is a function template specialization.
9955         isFunctionTemplateSpecialization = true;
9956         // For source fidelity, store all the template param lists.
9957         if (TemplateParamLists.size() > 0)
9958           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9959 
9960         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9961         if (isFriend) {
9962           // We want to remove the "template<>", found here.
9963           SourceRange RemoveRange = TemplateParams->getSourceRange();
9964 
9965           // If we remove the template<> and the name is not a
9966           // template-id, we're actually silently creating a problem:
9967           // the friend declaration will refer to an untemplated decl,
9968           // and clearly the user wants a template specialization.  So
9969           // we need to insert '<>' after the name.
9970           SourceLocation InsertLoc;
9971           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9972             InsertLoc = D.getName().getSourceRange().getEnd();
9973             InsertLoc = getLocForEndOfToken(InsertLoc);
9974           }
9975 
9976           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9977             << Name << RemoveRange
9978             << FixItHint::CreateRemoval(RemoveRange)
9979             << FixItHint::CreateInsertion(InsertLoc, "<>");
9980           Invalid = true;
9981 
9982           // Recover by faking up an empty template argument list.
9983           HasExplicitTemplateArgs = true;
9984           TemplateArgs.setLAngleLoc(InsertLoc);
9985           TemplateArgs.setRAngleLoc(InsertLoc);
9986         }
9987       }
9988     } else {
9989       // Check that we can declare a template here.
9990       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9991           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9992         NewFD->setInvalidDecl();
9993 
9994       // All template param lists were matched against the scope specifier:
9995       // this is NOT (an explicit specialization of) a template.
9996       if (TemplateParamLists.size() > 0)
9997         // For source fidelity, store all the template param lists.
9998         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9999 
10000       // "friend void foo<>(int);" is an implicit specialization decl.
10001       if (isFriend && TemplateId)
10002         isFunctionTemplateSpecialization = true;
10003     }
10004 
10005     // If this is a function template specialization and the unqualified-id of
10006     // the declarator-id is a template-id, convert the template argument list
10007     // into our AST format and check for unexpanded packs.
10008     if (isFunctionTemplateSpecialization && TemplateId) {
10009       HasExplicitTemplateArgs = true;
10010 
10011       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
10012       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
10013       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
10014                                          TemplateId->NumArgs);
10015       translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
10016 
10017       // FIXME: Should we check for unexpanded packs if this was an (invalid)
10018       // declaration of a function template partial specialization? Should we
10019       // consider the unexpanded pack context to be a partial specialization?
10020       for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) {
10021         if (DiagnoseUnexpandedParameterPack(
10022                 ArgLoc, isFriend ? UPPC_FriendDeclaration
10023                                  : UPPC_ExplicitSpecialization))
10024           NewFD->setInvalidDecl();
10025       }
10026     }
10027 
10028     if (Invalid) {
10029       NewFD->setInvalidDecl();
10030       if (FunctionTemplate)
10031         FunctionTemplate->setInvalidDecl();
10032     }
10033 
10034     // C++ [dcl.fct.spec]p5:
10035     //   The virtual specifier shall only be used in declarations of
10036     //   nonstatic class member functions that appear within a
10037     //   member-specification of a class declaration; see 10.3.
10038     //
10039     if (isVirtual && !NewFD->isInvalidDecl()) {
10040       if (!isVirtualOkay) {
10041         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10042              diag::err_virtual_non_function);
10043       } else if (!CurContext->isRecord()) {
10044         // 'virtual' was specified outside of the class.
10045         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10046              diag::err_virtual_out_of_class)
10047           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10048       } else if (NewFD->getDescribedFunctionTemplate()) {
10049         // C++ [temp.mem]p3:
10050         //  A member function template shall not be virtual.
10051         Diag(D.getDeclSpec().getVirtualSpecLoc(),
10052              diag::err_virtual_member_function_template)
10053           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
10054       } else {
10055         // Okay: Add virtual to the method.
10056         NewFD->setVirtualAsWritten(true);
10057       }
10058 
10059       if (getLangOpts().CPlusPlus14 &&
10060           NewFD->getReturnType()->isUndeducedType())
10061         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
10062     }
10063 
10064     if (getLangOpts().CPlusPlus14 &&
10065         (NewFD->isDependentContext() ||
10066          (isFriend && CurContext->isDependentContext())) &&
10067         NewFD->getReturnType()->isUndeducedType()) {
10068       // If the function template is referenced directly (for instance, as a
10069       // member of the current instantiation), pretend it has a dependent type.
10070       // This is not really justified by the standard, but is the only sane
10071       // thing to do.
10072       // FIXME: For a friend function, we have not marked the function as being
10073       // a friend yet, so 'isDependentContext' on the FD doesn't work.
10074       const FunctionProtoType *FPT =
10075           NewFD->getType()->castAs<FunctionProtoType>();
10076       QualType Result = SubstAutoTypeDependent(FPT->getReturnType());
10077       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
10078                                              FPT->getExtProtoInfo()));
10079     }
10080 
10081     // C++ [dcl.fct.spec]p3:
10082     //  The inline specifier shall not appear on a block scope function
10083     //  declaration.
10084     if (isInline && !NewFD->isInvalidDecl()) {
10085       if (CurContext->isFunctionOrMethod()) {
10086         // 'inline' is not allowed on block scope function declaration.
10087         Diag(D.getDeclSpec().getInlineSpecLoc(),
10088              diag::err_inline_declaration_block_scope) << Name
10089           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10090       }
10091     }
10092 
10093     // C++ [dcl.fct.spec]p6:
10094     //  The explicit specifier shall be used only in the declaration of a
10095     //  constructor or conversion function within its class definition;
10096     //  see 12.3.1 and 12.3.2.
10097     if (hasExplicit && !NewFD->isInvalidDecl() &&
10098         !isa<CXXDeductionGuideDecl>(NewFD)) {
10099       if (!CurContext->isRecord()) {
10100         // 'explicit' was specified outside of the class.
10101         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10102              diag::err_explicit_out_of_class)
10103             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10104       } else if (!isa<CXXConstructorDecl>(NewFD) &&
10105                  !isa<CXXConversionDecl>(NewFD)) {
10106         // 'explicit' was specified on a function that wasn't a constructor
10107         // or conversion function.
10108         Diag(D.getDeclSpec().getExplicitSpecLoc(),
10109              diag::err_explicit_non_ctor_or_conv_function)
10110             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
10111       }
10112     }
10113 
10114     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
10115     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
10116       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
10117       // are implicitly inline.
10118       NewFD->setImplicitlyInline();
10119 
10120       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
10121       // be either constructors or to return a literal type. Therefore,
10122       // destructors cannot be declared constexpr.
10123       if (isa<CXXDestructorDecl>(NewFD) &&
10124           (!getLangOpts().CPlusPlus20 ||
10125            ConstexprKind == ConstexprSpecKind::Consteval)) {
10126         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
10127             << static_cast<int>(ConstexprKind);
10128         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
10129                                     ? ConstexprSpecKind::Unspecified
10130                                     : ConstexprSpecKind::Constexpr);
10131       }
10132       // C++20 [dcl.constexpr]p2: An allocation function, or a
10133       // deallocation function shall not be declared with the consteval
10134       // specifier.
10135       if (ConstexprKind == ConstexprSpecKind::Consteval &&
10136           (NewFD->getOverloadedOperator() == OO_New ||
10137            NewFD->getOverloadedOperator() == OO_Array_New ||
10138            NewFD->getOverloadedOperator() == OO_Delete ||
10139            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
10140         Diag(D.getDeclSpec().getConstexprSpecLoc(),
10141              diag::err_invalid_consteval_decl_kind)
10142             << NewFD;
10143         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
10144       }
10145     }
10146 
10147     // If __module_private__ was specified, mark the function accordingly.
10148     if (D.getDeclSpec().isModulePrivateSpecified()) {
10149       if (isFunctionTemplateSpecialization) {
10150         SourceLocation ModulePrivateLoc
10151           = D.getDeclSpec().getModulePrivateSpecLoc();
10152         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
10153           << 0
10154           << FixItHint::CreateRemoval(ModulePrivateLoc);
10155       } else {
10156         NewFD->setModulePrivate();
10157         if (FunctionTemplate)
10158           FunctionTemplate->setModulePrivate();
10159       }
10160     }
10161 
10162     if (isFriend) {
10163       if (FunctionTemplate) {
10164         FunctionTemplate->setObjectOfFriendDecl();
10165         FunctionTemplate->setAccess(AS_public);
10166       }
10167       NewFD->setObjectOfFriendDecl();
10168       NewFD->setAccess(AS_public);
10169     }
10170 
10171     // If a function is defined as defaulted or deleted, mark it as such now.
10172     // We'll do the relevant checks on defaulted / deleted functions later.
10173     switch (D.getFunctionDefinitionKind()) {
10174     case FunctionDefinitionKind::Declaration:
10175     case FunctionDefinitionKind::Definition:
10176       break;
10177 
10178     case FunctionDefinitionKind::Defaulted:
10179       NewFD->setDefaulted();
10180       break;
10181 
10182     case FunctionDefinitionKind::Deleted:
10183       NewFD->setDeletedAsWritten();
10184       break;
10185     }
10186 
10187     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
10188         D.isFunctionDefinition() && !isInline) {
10189       // Pre C++20 [class.mfct]p2:
10190       //   A member function may be defined (8.4) in its class definition, in
10191       //   which case it is an inline member function (7.1.2)
10192       // Post C++20 [class.mfct]p1:
10193       //   If a member function is attached to the global module and is defined
10194       //   in its class definition, it is inline.
10195       NewFD->setImplicitlyInline(ImplicitInlineCXX20);
10196     }
10197 
10198     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
10199         !CurContext->isRecord()) {
10200       // C++ [class.static]p1:
10201       //   A data or function member of a class may be declared static
10202       //   in a class definition, in which case it is a static member of
10203       //   the class.
10204 
10205       // Complain about the 'static' specifier if it's on an out-of-line
10206       // member function definition.
10207 
10208       // MSVC permits the use of a 'static' storage specifier on an out-of-line
10209       // member function template declaration and class member template
10210       // declaration (MSVC versions before 2015), warn about this.
10211       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
10212            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
10213              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
10214            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
10215            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
10216         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10217     }
10218 
10219     // C++11 [except.spec]p15:
10220     //   A deallocation function with no exception-specification is treated
10221     //   as if it were specified with noexcept(true).
10222     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
10223     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
10224          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
10225         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
10226       NewFD->setType(Context.getFunctionType(
10227           FPT->getReturnType(), FPT->getParamTypes(),
10228           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
10229 
10230     // C++20 [dcl.inline]/7
10231     // If an inline function or variable that is attached to a named module
10232     // is declared in a definition domain, it shall be defined in that
10233     // domain.
10234     // So, if the current declaration does not have a definition, we must
10235     // check at the end of the TU (or when the PMF starts) to see that we
10236     // have a definition at that point.
10237     if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 &&
10238         NewFD->hasOwningModule() && NewFD->getOwningModule()->isNamedModule()) {
10239       PendingInlineFuncDecls.insert(NewFD);
10240     }
10241   }
10242 
10243   // Filter out previous declarations that don't match the scope.
10244   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
10245                        D.getCXXScopeSpec().isNotEmpty() ||
10246                        isMemberSpecialization ||
10247                        isFunctionTemplateSpecialization);
10248 
10249   // Handle GNU asm-label extension (encoded as an attribute).
10250   if (Expr *E = (Expr*) D.getAsmLabel()) {
10251     // The parser guarantees this is a string.
10252     StringLiteral *SE = cast<StringLiteral>(E);
10253     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
10254                                         /*IsLiteralLabel=*/true,
10255                                         SE->getStrTokenLoc(0)));
10256   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
10257     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
10258       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
10259     if (I != ExtnameUndeclaredIdentifiers.end()) {
10260       if (isDeclExternC(NewFD)) {
10261         NewFD->addAttr(I->second);
10262         ExtnameUndeclaredIdentifiers.erase(I);
10263       } else
10264         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
10265             << /*Variable*/0 << NewFD;
10266     }
10267   }
10268 
10269   // Copy the parameter declarations from the declarator D to the function
10270   // declaration NewFD, if they are available.  First scavenge them into Params.
10271   SmallVector<ParmVarDecl*, 16> Params;
10272   unsigned FTIIdx;
10273   if (D.isFunctionDeclarator(FTIIdx)) {
10274     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
10275 
10276     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
10277     // function that takes no arguments, not a function that takes a
10278     // single void argument.
10279     // We let through "const void" here because Sema::GetTypeForDeclarator
10280     // already checks for that case.
10281     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
10282       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
10283         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
10284         assert(Param->getDeclContext() != NewFD && "Was set before ?");
10285         Param->setDeclContext(NewFD);
10286         Params.push_back(Param);
10287 
10288         if (Param->isInvalidDecl())
10289           NewFD->setInvalidDecl();
10290       }
10291     }
10292 
10293     if (!getLangOpts().CPlusPlus) {
10294       // In C, find all the tag declarations from the prototype and move them
10295       // into the function DeclContext. Remove them from the surrounding tag
10296       // injection context of the function, which is typically but not always
10297       // the TU.
10298       DeclContext *PrototypeTagContext =
10299           getTagInjectionContext(NewFD->getLexicalDeclContext());
10300       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
10301         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
10302 
10303         // We don't want to reparent enumerators. Look at their parent enum
10304         // instead.
10305         if (!TD) {
10306           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
10307             TD = cast<EnumDecl>(ECD->getDeclContext());
10308         }
10309         if (!TD)
10310           continue;
10311         DeclContext *TagDC = TD->getLexicalDeclContext();
10312         if (!TagDC->containsDecl(TD))
10313           continue;
10314         TagDC->removeDecl(TD);
10315         TD->setDeclContext(NewFD);
10316         NewFD->addDecl(TD);
10317 
10318         // Preserve the lexical DeclContext if it is not the surrounding tag
10319         // injection context of the FD. In this example, the semantic context of
10320         // E will be f and the lexical context will be S, while both the
10321         // semantic and lexical contexts of S will be f:
10322         //   void f(struct S { enum E { a } f; } s);
10323         if (TagDC != PrototypeTagContext)
10324           TD->setLexicalDeclContext(TagDC);
10325       }
10326     }
10327   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
10328     // When we're declaring a function with a typedef, typeof, etc as in the
10329     // following example, we'll need to synthesize (unnamed)
10330     // parameters for use in the declaration.
10331     //
10332     // @code
10333     // typedef void fn(int);
10334     // fn f;
10335     // @endcode
10336 
10337     // Synthesize a parameter for each argument type.
10338     for (const auto &AI : FT->param_types()) {
10339       ParmVarDecl *Param =
10340           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
10341       Param->setScopeInfo(0, Params.size());
10342       Params.push_back(Param);
10343     }
10344   } else {
10345     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
10346            "Should not need args for typedef of non-prototype fn");
10347   }
10348 
10349   // Finally, we know we have the right number of parameters, install them.
10350   NewFD->setParams(Params);
10351 
10352   if (D.getDeclSpec().isNoreturnSpecified())
10353     NewFD->addAttr(
10354         C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc()));
10355 
10356   // Functions returning a variably modified type violate C99 6.7.5.2p2
10357   // because all functions have linkage.
10358   if (!NewFD->isInvalidDecl() &&
10359       NewFD->getReturnType()->isVariablyModifiedType()) {
10360     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
10361     NewFD->setInvalidDecl();
10362   }
10363 
10364   // Apply an implicit SectionAttr if '#pragma clang section text' is active
10365   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
10366       !NewFD->hasAttr<SectionAttr>())
10367     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
10368         Context, PragmaClangTextSection.SectionName,
10369         PragmaClangTextSection.PragmaLocation));
10370 
10371   // Apply an implicit SectionAttr if #pragma code_seg is active.
10372   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
10373       !NewFD->hasAttr<SectionAttr>()) {
10374     NewFD->addAttr(SectionAttr::CreateImplicit(
10375         Context, CodeSegStack.CurrentValue->getString(),
10376         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate));
10377     if (UnifySection(CodeSegStack.CurrentValue->getString(),
10378                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
10379                          ASTContext::PSF_Read,
10380                      NewFD))
10381       NewFD->dropAttr<SectionAttr>();
10382   }
10383 
10384   // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is
10385   // active.
10386   if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() &&
10387       !NewFD->hasAttr<StrictGuardStackCheckAttr>())
10388     NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit(
10389         Context, PragmaClangTextSection.PragmaLocation));
10390 
10391   // Apply an implicit CodeSegAttr from class declspec or
10392   // apply an implicit SectionAttr from #pragma code_seg if active.
10393   if (!NewFD->hasAttr<CodeSegAttr>()) {
10394     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
10395                                                                  D.isFunctionDefinition())) {
10396       NewFD->addAttr(SAttr);
10397     }
10398   }
10399 
10400   // Handle attributes.
10401   ProcessDeclAttributes(S, NewFD, D);
10402   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
10403   if (NewTVA && !NewTVA->isDefaultVersion() &&
10404       !Context.getTargetInfo().hasFeature("fmv")) {
10405     // Don't add to scope fmv functions declarations if fmv disabled
10406     AddToScope = false;
10407     return NewFD;
10408   }
10409 
10410   if (getLangOpts().OpenCL || getLangOpts().HLSL) {
10411     // Neither OpenCL nor HLSL allow an address space qualifyer on a return
10412     // type.
10413     //
10414     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
10415     // type declaration will generate a compilation error.
10416     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
10417     if (AddressSpace != LangAS::Default) {
10418       Diag(NewFD->getLocation(), diag::err_return_value_with_address_space);
10419       NewFD->setInvalidDecl();
10420     }
10421   }
10422 
10423   if (!getLangOpts().CPlusPlus) {
10424     // Perform semantic checking on the function declaration.
10425     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10426       CheckMain(NewFD, D.getDeclSpec());
10427 
10428     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10429       CheckMSVCRTEntryPoint(NewFD);
10430 
10431     if (!NewFD->isInvalidDecl())
10432       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10433                                                   isMemberSpecialization,
10434                                                   D.isFunctionDefinition()));
10435     else if (!Previous.empty())
10436       // Recover gracefully from an invalid redeclaration.
10437       D.setRedeclaration(true);
10438     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
10439             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10440            "previous declaration set still overloaded");
10441 
10442     // Diagnose no-prototype function declarations with calling conventions that
10443     // don't support variadic calls. Only do this in C and do it after merging
10444     // possibly prototyped redeclarations.
10445     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
10446     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
10447       CallingConv CC = FT->getExtInfo().getCC();
10448       if (!supportsVariadicCall(CC)) {
10449         // Windows system headers sometimes accidentally use stdcall without
10450         // (void) parameters, so we relax this to a warning.
10451         int DiagID =
10452             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
10453         Diag(NewFD->getLocation(), DiagID)
10454             << FunctionType::getNameForCallConv(CC);
10455       }
10456     }
10457 
10458    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
10459        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
10460      checkNonTrivialCUnion(NewFD->getReturnType(),
10461                            NewFD->getReturnTypeSourceRange().getBegin(),
10462                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
10463   } else {
10464     // C++11 [replacement.functions]p3:
10465     //  The program's definitions shall not be specified as inline.
10466     //
10467     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
10468     //
10469     // Suppress the diagnostic if the function is __attribute__((used)), since
10470     // that forces an external definition to be emitted.
10471     if (D.getDeclSpec().isInlineSpecified() &&
10472         NewFD->isReplaceableGlobalAllocationFunction() &&
10473         !NewFD->hasAttr<UsedAttr>())
10474       Diag(D.getDeclSpec().getInlineSpecLoc(),
10475            diag::ext_operator_new_delete_declared_inline)
10476         << NewFD->getDeclName();
10477 
10478     // We do not add HD attributes to specializations here because
10479     // they may have different constexpr-ness compared to their
10480     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
10481     // may end up with different effective targets. Instead, a
10482     // specialization inherits its target attributes from its template
10483     // in the CheckFunctionTemplateSpecialization() call below.
10484     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
10485       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
10486 
10487     // Handle explict specializations of function templates
10488     // and friend function declarations with an explicit
10489     // template argument list.
10490     if (isFunctionTemplateSpecialization) {
10491       bool isDependentSpecialization = false;
10492       if (isFriend) {
10493         // For friend function specializations, this is a dependent
10494         // specialization if its semantic context is dependent, its
10495         // type is dependent, or if its template-id is dependent.
10496         isDependentSpecialization =
10497             DC->isDependentContext() || NewFD->getType()->isDependentType() ||
10498             (HasExplicitTemplateArgs &&
10499              TemplateSpecializationType::
10500                  anyInstantiationDependentTemplateArguments(
10501                      TemplateArgs.arguments()));
10502         assert((!isDependentSpecialization ||
10503                 (HasExplicitTemplateArgs == isDependentSpecialization)) &&
10504                "dependent friend function specialization without template "
10505                "args");
10506       } else {
10507         // For class-scope explicit specializations of function templates,
10508         // if the lexical context is dependent, then the specialization
10509         // is dependent.
10510         isDependentSpecialization =
10511             CurContext->isRecord() && CurContext->isDependentContext();
10512       }
10513 
10514       TemplateArgumentListInfo *ExplicitTemplateArgs =
10515           HasExplicitTemplateArgs ? &TemplateArgs : nullptr;
10516       if (isDependentSpecialization) {
10517         // If it's a dependent specialization, it may not be possible
10518         // to determine the primary template (for explicit specializations)
10519         // or befriended declaration (for friends) until the enclosing
10520         // template is instantiated. In such cases, we store the declarations
10521         // found by name lookup and defer resolution until instantiation.
10522         if (CheckDependentFunctionTemplateSpecialization(
10523                 NewFD, ExplicitTemplateArgs, Previous))
10524           NewFD->setInvalidDecl();
10525       } else if (!NewFD->isInvalidDecl()) {
10526         if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs,
10527                                                 Previous))
10528           NewFD->setInvalidDecl();
10529       }
10530 
10531       // C++ [dcl.stc]p1:
10532       //   A storage-class-specifier shall not be specified in an explicit
10533       //   specialization (14.7.3)
10534       // FIXME: We should be checking this for dependent specializations.
10535       FunctionTemplateSpecializationInfo *Info =
10536           NewFD->getTemplateSpecializationInfo();
10537       if (Info && SC != SC_None) {
10538         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
10539           Diag(NewFD->getLocation(),
10540                diag::err_explicit_specialization_inconsistent_storage_class)
10541             << SC
10542             << FixItHint::CreateRemoval(
10543                                       D.getDeclSpec().getStorageClassSpecLoc());
10544 
10545         else
10546           Diag(NewFD->getLocation(),
10547                diag::ext_explicit_specialization_storage_class)
10548             << FixItHint::CreateRemoval(
10549                                       D.getDeclSpec().getStorageClassSpecLoc());
10550       }
10551     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
10552       if (CheckMemberSpecialization(NewFD, Previous))
10553           NewFD->setInvalidDecl();
10554     }
10555 
10556     // Perform semantic checking on the function declaration.
10557     if (!NewFD->isInvalidDecl() && NewFD->isMain())
10558       CheckMain(NewFD, D.getDeclSpec());
10559 
10560     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
10561       CheckMSVCRTEntryPoint(NewFD);
10562 
10563     if (!NewFD->isInvalidDecl())
10564       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
10565                                                   isMemberSpecialization,
10566                                                   D.isFunctionDefinition()));
10567     else if (!Previous.empty())
10568       // Recover gracefully from an invalid redeclaration.
10569       D.setRedeclaration(true);
10570 
10571     assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() ||
10572             !D.isRedeclaration() ||
10573             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
10574            "previous declaration set still overloaded");
10575 
10576     NamedDecl *PrincipalDecl = (FunctionTemplate
10577                                 ? cast<NamedDecl>(FunctionTemplate)
10578                                 : NewFD);
10579 
10580     if (isFriend && NewFD->getPreviousDecl()) {
10581       AccessSpecifier Access = AS_public;
10582       if (!NewFD->isInvalidDecl())
10583         Access = NewFD->getPreviousDecl()->getAccess();
10584 
10585       NewFD->setAccess(Access);
10586       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
10587     }
10588 
10589     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
10590         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
10591       PrincipalDecl->setNonMemberOperator();
10592 
10593     // If we have a function template, check the template parameter
10594     // list. This will check and merge default template arguments.
10595     if (FunctionTemplate) {
10596       FunctionTemplateDecl *PrevTemplate =
10597                                      FunctionTemplate->getPreviousDecl();
10598       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
10599                        PrevTemplate ? PrevTemplate->getTemplateParameters()
10600                                     : nullptr,
10601                             D.getDeclSpec().isFriendSpecified()
10602                               ? (D.isFunctionDefinition()
10603                                    ? TPC_FriendFunctionTemplateDefinition
10604                                    : TPC_FriendFunctionTemplate)
10605                               : (D.getCXXScopeSpec().isSet() &&
10606                                  DC && DC->isRecord() &&
10607                                  DC->isDependentContext())
10608                                   ? TPC_ClassTemplateMember
10609                                   : TPC_FunctionTemplate);
10610     }
10611 
10612     if (NewFD->isInvalidDecl()) {
10613       // Ignore all the rest of this.
10614     } else if (!D.isRedeclaration()) {
10615       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
10616                                        AddToScope };
10617       // Fake up an access specifier if it's supposed to be a class member.
10618       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
10619         NewFD->setAccess(AS_public);
10620 
10621       // Qualified decls generally require a previous declaration.
10622       if (D.getCXXScopeSpec().isSet()) {
10623         // ...with the major exception of templated-scope or
10624         // dependent-scope friend declarations.
10625 
10626         // TODO: we currently also suppress this check in dependent
10627         // contexts because (1) the parameter depth will be off when
10628         // matching friend templates and (2) we might actually be
10629         // selecting a friend based on a dependent factor.  But there
10630         // are situations where these conditions don't apply and we
10631         // can actually do this check immediately.
10632         //
10633         // Unless the scope is dependent, it's always an error if qualified
10634         // redeclaration lookup found nothing at all. Diagnose that now;
10635         // nothing will diagnose that error later.
10636         if (isFriend &&
10637             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
10638              (!Previous.empty() && CurContext->isDependentContext()))) {
10639           // ignore these
10640         } else if (NewFD->isCPUDispatchMultiVersion() ||
10641                    NewFD->isCPUSpecificMultiVersion()) {
10642           // ignore this, we allow the redeclaration behavior here to create new
10643           // versions of the function.
10644         } else {
10645           // The user tried to provide an out-of-line definition for a
10646           // function that is a member of a class or namespace, but there
10647           // was no such member function declared (C++ [class.mfct]p2,
10648           // C++ [namespace.memdef]p2). For example:
10649           //
10650           // class X {
10651           //   void f() const;
10652           // };
10653           //
10654           // void X::f() { } // ill-formed
10655           //
10656           // Complain about this problem, and attempt to suggest close
10657           // matches (e.g., those that differ only in cv-qualifiers and
10658           // whether the parameter types are references).
10659 
10660           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10661                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
10662             AddToScope = ExtraArgs.AddToScope;
10663             return Result;
10664           }
10665         }
10666 
10667         // Unqualified local friend declarations are required to resolve
10668         // to something.
10669       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
10670         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
10671                 *this, Previous, NewFD, ExtraArgs, true, S)) {
10672           AddToScope = ExtraArgs.AddToScope;
10673           return Result;
10674         }
10675       }
10676     } else if (!D.isFunctionDefinition() &&
10677                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
10678                !isFriend && !isFunctionTemplateSpecialization &&
10679                !isMemberSpecialization) {
10680       // An out-of-line member function declaration must also be a
10681       // definition (C++ [class.mfct]p2).
10682       // Note that this is not the case for explicit specializations of
10683       // function templates or member functions of class templates, per
10684       // C++ [temp.expl.spec]p2. We also allow these declarations as an
10685       // extension for compatibility with old SWIG code which likes to
10686       // generate them.
10687       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
10688         << D.getCXXScopeSpec().getRange();
10689     }
10690   }
10691 
10692   if (getLangOpts().HLSL && D.isFunctionDefinition()) {
10693     // Any top level function could potentially be specified as an entry.
10694     if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier())
10695       ActOnHLSLTopLevelFunction(NewFD);
10696 
10697     if (NewFD->hasAttr<HLSLShaderAttr>())
10698       CheckHLSLEntryPoint(NewFD);
10699   }
10700 
10701   // If this is the first declaration of a library builtin function, add
10702   // attributes as appropriate.
10703   if (!D.isRedeclaration()) {
10704     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
10705       if (unsigned BuiltinID = II->getBuiltinID()) {
10706         bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID);
10707         if (!InStdNamespace &&
10708             NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
10709           if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
10710             // Validate the type matches unless this builtin is specified as
10711             // matching regardless of its declared type.
10712             if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
10713               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10714             } else {
10715               ASTContext::GetBuiltinTypeError Error;
10716               LookupNecessaryTypesForBuiltin(S, BuiltinID);
10717               QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
10718 
10719               if (!Error && !BuiltinType.isNull() &&
10720                   Context.hasSameFunctionTypeIgnoringExceptionSpec(
10721                       NewFD->getType(), BuiltinType))
10722                 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10723             }
10724           }
10725         } else if (InStdNamespace && NewFD->isInStdNamespace() &&
10726                    isStdBuiltin(Context, NewFD, BuiltinID)) {
10727           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
10728         }
10729       }
10730     }
10731   }
10732 
10733   ProcessPragmaWeak(S, NewFD);
10734   checkAttributesAfterMerging(*this, *NewFD);
10735 
10736   AddKnownFunctionAttributes(NewFD);
10737 
10738   if (NewFD->hasAttr<OverloadableAttr>() &&
10739       !NewFD->getType()->getAs<FunctionProtoType>()) {
10740     Diag(NewFD->getLocation(),
10741          diag::err_attribute_overloadable_no_prototype)
10742       << NewFD;
10743     NewFD->dropAttr<OverloadableAttr>();
10744   }
10745 
10746   // If there's a #pragma GCC visibility in scope, and this isn't a class
10747   // member, set the visibility of this function.
10748   if (!DC->isRecord() && NewFD->isExternallyVisible())
10749     AddPushedVisibilityAttribute(NewFD);
10750 
10751   // If there's a #pragma clang arc_cf_code_audited in scope, consider
10752   // marking the function.
10753   AddCFAuditedAttribute(NewFD);
10754 
10755   // If this is a function definition, check if we have to apply any
10756   // attributes (i.e. optnone and no_builtin) due to a pragma.
10757   if (D.isFunctionDefinition()) {
10758     AddRangeBasedOptnone(NewFD);
10759     AddImplicitMSFunctionNoBuiltinAttr(NewFD);
10760     AddSectionMSAllocText(NewFD);
10761     ModifyFnAttributesMSPragmaOptimize(NewFD);
10762   }
10763 
10764   // If this is the first declaration of an extern C variable, update
10765   // the map of such variables.
10766   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
10767       isIncompleteDeclExternC(*this, NewFD))
10768     RegisterLocallyScopedExternCDecl(NewFD, S);
10769 
10770   // Set this FunctionDecl's range up to the right paren.
10771   NewFD->setRangeEnd(D.getSourceRange().getEnd());
10772 
10773   if (D.isRedeclaration() && !Previous.empty()) {
10774     NamedDecl *Prev = Previous.getRepresentativeDecl();
10775     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
10776                                    isMemberSpecialization ||
10777                                        isFunctionTemplateSpecialization,
10778                                    D.isFunctionDefinition());
10779   }
10780 
10781   if (getLangOpts().CUDA) {
10782     IdentifierInfo *II = NewFD->getIdentifier();
10783     if (II && II->isStr(getCudaConfigureFuncName()) &&
10784         !NewFD->isInvalidDecl() &&
10785         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
10786       if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
10787         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
10788             << getCudaConfigureFuncName();
10789       Context.setcudaConfigureCallDecl(NewFD);
10790     }
10791 
10792     // Variadic functions, other than a *declaration* of printf, are not allowed
10793     // in device-side CUDA code, unless someone passed
10794     // -fcuda-allow-variadic-functions.
10795     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
10796         (NewFD->hasAttr<CUDADeviceAttr>() ||
10797          NewFD->hasAttr<CUDAGlobalAttr>()) &&
10798         !(II && II->isStr("printf") && NewFD->isExternC() &&
10799           !D.isFunctionDefinition())) {
10800       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
10801     }
10802   }
10803 
10804   MarkUnusedFileScopedDecl(NewFD);
10805 
10806 
10807 
10808   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
10809     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
10810     if (SC == SC_Static) {
10811       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
10812       D.setInvalidType();
10813     }
10814 
10815     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
10816     if (!NewFD->getReturnType()->isVoidType()) {
10817       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
10818       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
10819           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
10820                                 : FixItHint());
10821       D.setInvalidType();
10822     }
10823 
10824     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
10825     for (auto *Param : NewFD->parameters())
10826       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
10827 
10828     if (getLangOpts().OpenCLCPlusPlus) {
10829       if (DC->isRecord()) {
10830         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
10831         D.setInvalidType();
10832       }
10833       if (FunctionTemplate) {
10834         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10835         D.setInvalidType();
10836       }
10837     }
10838   }
10839 
10840   if (getLangOpts().CPlusPlus) {
10841     // Precalculate whether this is a friend function template with a constraint
10842     // that depends on an enclosing template, per [temp.friend]p9.
10843     if (isFriend && FunctionTemplate &&
10844         FriendConstraintsDependOnEnclosingTemplate(NewFD))
10845       NewFD->setFriendConstraintRefersToEnclosingTemplate(true);
10846 
10847     if (FunctionTemplate) {
10848       if (NewFD->isInvalidDecl())
10849         FunctionTemplate->setInvalidDecl();
10850       return FunctionTemplate;
10851     }
10852 
10853     if (isMemberSpecialization && !NewFD->isInvalidDecl())
10854       CompleteMemberSpecialization(NewFD, Previous);
10855   }
10856 
10857   for (const ParmVarDecl *Param : NewFD->parameters()) {
10858     QualType PT = Param->getType();
10859 
10860     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10861     // types.
10862     if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10863       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10864         QualType ElemTy = PipeTy->getElementType();
10865           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10866             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10867             D.setInvalidType();
10868           }
10869       }
10870     }
10871     // WebAssembly tables can't be used as function parameters.
10872     if (Context.getTargetInfo().getTriple().isWasm()) {
10873       if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
10874         Diag(Param->getTypeSpecStartLoc(),
10875              diag::err_wasm_table_as_function_parameter);
10876         D.setInvalidType();
10877       }
10878     }
10879   }
10880 
10881   // Diagnose availability attributes. Availability cannot be used on functions
10882   // that are run during load/unload.
10883   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10884     if (NewFD->hasAttr<ConstructorAttr>()) {
10885       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10886           << 1;
10887       NewFD->dropAttr<AvailabilityAttr>();
10888     }
10889     if (NewFD->hasAttr<DestructorAttr>()) {
10890       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10891           << 2;
10892       NewFD->dropAttr<AvailabilityAttr>();
10893     }
10894   }
10895 
10896   // Diagnose no_builtin attribute on function declaration that are not a
10897   // definition.
10898   // FIXME: We should really be doing this in
10899   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10900   // the FunctionDecl and at this point of the code
10901   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10902   // because Sema::ActOnStartOfFunctionDef has not been called yet.
10903   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10904     switch (D.getFunctionDefinitionKind()) {
10905     case FunctionDefinitionKind::Defaulted:
10906     case FunctionDefinitionKind::Deleted:
10907       Diag(NBA->getLocation(),
10908            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10909           << NBA->getSpelling();
10910       break;
10911     case FunctionDefinitionKind::Declaration:
10912       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10913           << NBA->getSpelling();
10914       break;
10915     case FunctionDefinitionKind::Definition:
10916       break;
10917     }
10918 
10919   return NewFD;
10920 }
10921 
10922 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
10923 /// when __declspec(code_seg) "is applied to a class, all member functions of
10924 /// the class and nested classes -- this includes compiler-generated special
10925 /// member functions -- are put in the specified segment."
10926 /// The actual behavior is a little more complicated. The Microsoft compiler
10927 /// won't check outer classes if there is an active value from #pragma code_seg.
10928 /// The CodeSeg is always applied from the direct parent but only from outer
10929 /// classes when the #pragma code_seg stack is empty. See:
10930 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10931 /// available since MS has removed the page.
10932 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10933   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10934   if (!Method)
10935     return nullptr;
10936   const CXXRecordDecl *Parent = Method->getParent();
10937   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10938     Attr *NewAttr = SAttr->clone(S.getASTContext());
10939     NewAttr->setImplicit(true);
10940     return NewAttr;
10941   }
10942 
10943   // The Microsoft compiler won't check outer classes for the CodeSeg
10944   // when the #pragma code_seg stack is active.
10945   if (S.CodeSegStack.CurrentValue)
10946    return nullptr;
10947 
10948   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10949     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10950       Attr *NewAttr = SAttr->clone(S.getASTContext());
10951       NewAttr->setImplicit(true);
10952       return NewAttr;
10953     }
10954   }
10955   return nullptr;
10956 }
10957 
10958 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10959 /// containing class. Otherwise it will return implicit SectionAttr if the
10960 /// function is a definition and there is an active value on CodeSegStack
10961 /// (from the current #pragma code-seg value).
10962 ///
10963 /// \param FD Function being declared.
10964 /// \param IsDefinition Whether it is a definition or just a declaration.
10965 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10966 ///          nullptr if no attribute should be added.
10967 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10968                                                        bool IsDefinition) {
10969   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10970     return A;
10971   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10972       CodeSegStack.CurrentValue)
10973     return SectionAttr::CreateImplicit(
10974         getASTContext(), CodeSegStack.CurrentValue->getString(),
10975         CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate);
10976   return nullptr;
10977 }
10978 
10979 /// Determines if we can perform a correct type check for \p D as a
10980 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10981 /// best-effort check.
10982 ///
10983 /// \param NewD The new declaration.
10984 /// \param OldD The old declaration.
10985 /// \param NewT The portion of the type of the new declaration to check.
10986 /// \param OldT The portion of the type of the old declaration to check.
10987 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10988                                           QualType NewT, QualType OldT) {
10989   if (!NewD->getLexicalDeclContext()->isDependentContext())
10990     return true;
10991 
10992   // For dependently-typed local extern declarations and friends, we can't
10993   // perform a correct type check in general until instantiation:
10994   //
10995   //   int f();
10996   //   template<typename T> void g() { T f(); }
10997   //
10998   // (valid if g() is only instantiated with T = int).
10999   if (NewT->isDependentType() &&
11000       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
11001     return false;
11002 
11003   // Similarly, if the previous declaration was a dependent local extern
11004   // declaration, we don't really know its type yet.
11005   if (OldT->isDependentType() && OldD->isLocalExternDecl())
11006     return false;
11007 
11008   return true;
11009 }
11010 
11011 /// Checks if the new declaration declared in dependent context must be
11012 /// put in the same redeclaration chain as the specified declaration.
11013 ///
11014 /// \param D Declaration that is checked.
11015 /// \param PrevDecl Previous declaration found with proper lookup method for the
11016 ///                 same declaration name.
11017 /// \returns True if D must be added to the redeclaration chain which PrevDecl
11018 ///          belongs to.
11019 ///
11020 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
11021   if (!D->getLexicalDeclContext()->isDependentContext())
11022     return true;
11023 
11024   // Don't chain dependent friend function definitions until instantiation, to
11025   // permit cases like
11026   //
11027   //   void func();
11028   //   template<typename T> class C1 { friend void func() {} };
11029   //   template<typename T> class C2 { friend void func() {} };
11030   //
11031   // ... which is valid if only one of C1 and C2 is ever instantiated.
11032   //
11033   // FIXME: This need only apply to function definitions. For now, we proxy
11034   // this by checking for a file-scope function. We do not want this to apply
11035   // to friend declarations nominating member functions, because that gets in
11036   // the way of access checks.
11037   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
11038     return false;
11039 
11040   auto *VD = dyn_cast<ValueDecl>(D);
11041   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
11042   return !VD || !PrevVD ||
11043          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
11044                                         PrevVD->getType());
11045 }
11046 
11047 /// Check the target or target_version attribute of the function for
11048 /// MultiVersion validity.
11049 ///
11050 /// Returns true if there was an error, false otherwise.
11051 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
11052   const auto *TA = FD->getAttr<TargetAttr>();
11053   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11054   assert(
11055       (TA || TVA) &&
11056       "MultiVersion candidate requires a target or target_version attribute");
11057   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
11058   enum ErrType { Feature = 0, Architecture = 1 };
11059 
11060   if (TA) {
11061     ParsedTargetAttr ParseInfo =
11062         S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr());
11063     if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) {
11064       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11065           << Architecture << ParseInfo.CPU;
11066       return true;
11067     }
11068     for (const auto &Feat : ParseInfo.Features) {
11069       auto BareFeat = StringRef{Feat}.substr(1);
11070       if (Feat[0] == '-') {
11071         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11072             << Feature << ("no-" + BareFeat).str();
11073         return true;
11074       }
11075 
11076       if (!TargetInfo.validateCpuSupports(BareFeat) ||
11077           !TargetInfo.isValidFeatureName(BareFeat)) {
11078         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11079             << Feature << BareFeat;
11080         return true;
11081       }
11082     }
11083   }
11084 
11085   if (TVA) {
11086     llvm::SmallVector<StringRef, 8> Feats;
11087     TVA->getFeatures(Feats);
11088     for (const auto &Feat : Feats) {
11089       if (!TargetInfo.validateCpuSupports(Feat)) {
11090         S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
11091             << Feature << Feat;
11092         return true;
11093       }
11094     }
11095   }
11096   return false;
11097 }
11098 
11099 // Provide a white-list of attributes that are allowed to be combined with
11100 // multiversion functions.
11101 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
11102                                            MultiVersionKind MVKind) {
11103   // Note: this list/diagnosis must match the list in
11104   // checkMultiversionAttributesAllSame.
11105   switch (Kind) {
11106   default:
11107     return false;
11108   case attr::Used:
11109     return MVKind == MultiVersionKind::Target;
11110   case attr::NonNull:
11111   case attr::NoThrow:
11112     return true;
11113   }
11114 }
11115 
11116 static bool checkNonMultiVersionCompatAttributes(Sema &S,
11117                                                  const FunctionDecl *FD,
11118                                                  const FunctionDecl *CausedFD,
11119                                                  MultiVersionKind MVKind) {
11120   const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) {
11121     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
11122         << static_cast<unsigned>(MVKind) << A;
11123     if (CausedFD)
11124       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
11125     return true;
11126   };
11127 
11128   for (const Attr *A : FD->attrs()) {
11129     switch (A->getKind()) {
11130     case attr::CPUDispatch:
11131     case attr::CPUSpecific:
11132       if (MVKind != MultiVersionKind::CPUDispatch &&
11133           MVKind != MultiVersionKind::CPUSpecific)
11134         return Diagnose(S, A);
11135       break;
11136     case attr::Target:
11137       if (MVKind != MultiVersionKind::Target)
11138         return Diagnose(S, A);
11139       break;
11140     case attr::TargetVersion:
11141       if (MVKind != MultiVersionKind::TargetVersion)
11142         return Diagnose(S, A);
11143       break;
11144     case attr::TargetClones:
11145       if (MVKind != MultiVersionKind::TargetClones)
11146         return Diagnose(S, A);
11147       break;
11148     default:
11149       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind))
11150         return Diagnose(S, A);
11151       break;
11152     }
11153   }
11154   return false;
11155 }
11156 
11157 bool Sema::areMultiversionVariantFunctionsCompatible(
11158     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
11159     const PartialDiagnostic &NoProtoDiagID,
11160     const PartialDiagnosticAt &NoteCausedDiagIDAt,
11161     const PartialDiagnosticAt &NoSupportDiagIDAt,
11162     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
11163     bool ConstexprSupported, bool CLinkageMayDiffer) {
11164   enum DoesntSupport {
11165     FuncTemplates = 0,
11166     VirtFuncs = 1,
11167     DeducedReturn = 2,
11168     Constructors = 3,
11169     Destructors = 4,
11170     DeletedFuncs = 5,
11171     DefaultedFuncs = 6,
11172     ConstexprFuncs = 7,
11173     ConstevalFuncs = 8,
11174     Lambda = 9,
11175   };
11176   enum Different {
11177     CallingConv = 0,
11178     ReturnType = 1,
11179     ConstexprSpec = 2,
11180     InlineSpec = 3,
11181     Linkage = 4,
11182     LanguageLinkage = 5,
11183   };
11184 
11185   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
11186       !OldFD->getType()->getAs<FunctionProtoType>()) {
11187     Diag(OldFD->getLocation(), NoProtoDiagID);
11188     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
11189     return true;
11190   }
11191 
11192   if (NoProtoDiagID.getDiagID() != 0 &&
11193       !NewFD->getType()->getAs<FunctionProtoType>())
11194     return Diag(NewFD->getLocation(), NoProtoDiagID);
11195 
11196   if (!TemplatesSupported &&
11197       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11198     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11199            << FuncTemplates;
11200 
11201   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
11202     if (NewCXXFD->isVirtual())
11203       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11204              << VirtFuncs;
11205 
11206     if (isa<CXXConstructorDecl>(NewCXXFD))
11207       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11208              << Constructors;
11209 
11210     if (isa<CXXDestructorDecl>(NewCXXFD))
11211       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11212              << Destructors;
11213   }
11214 
11215   if (NewFD->isDeleted())
11216     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11217            << DeletedFuncs;
11218 
11219   if (NewFD->isDefaulted())
11220     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11221            << DefaultedFuncs;
11222 
11223   if (!ConstexprSupported && NewFD->isConstexpr())
11224     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11225            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
11226 
11227   QualType NewQType = Context.getCanonicalType(NewFD->getType());
11228   const auto *NewType = cast<FunctionType>(NewQType);
11229   QualType NewReturnType = NewType->getReturnType();
11230 
11231   if (NewReturnType->isUndeducedType())
11232     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
11233            << DeducedReturn;
11234 
11235   // Ensure the return type is identical.
11236   if (OldFD) {
11237     QualType OldQType = Context.getCanonicalType(OldFD->getType());
11238     const auto *OldType = cast<FunctionType>(OldQType);
11239     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
11240     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
11241 
11242     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
11243       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
11244 
11245     QualType OldReturnType = OldType->getReturnType();
11246 
11247     if (OldReturnType != NewReturnType)
11248       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
11249 
11250     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
11251       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
11252 
11253     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
11254       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
11255 
11256     if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
11257       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
11258 
11259     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
11260       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
11261 
11262     if (CheckEquivalentExceptionSpec(
11263             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
11264             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
11265       return true;
11266   }
11267   return false;
11268 }
11269 
11270 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
11271                                              const FunctionDecl *NewFD,
11272                                              bool CausesMV,
11273                                              MultiVersionKind MVKind) {
11274   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
11275     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
11276     if (OldFD)
11277       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11278     return true;
11279   }
11280 
11281   bool IsCPUSpecificCPUDispatchMVKind =
11282       MVKind == MultiVersionKind::CPUDispatch ||
11283       MVKind == MultiVersionKind::CPUSpecific;
11284 
11285   if (CausesMV && OldFD &&
11286       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind))
11287     return true;
11288 
11289   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind))
11290     return true;
11291 
11292   // Only allow transition to MultiVersion if it hasn't been used.
11293   if (OldFD && CausesMV && OldFD->isUsed(false))
11294     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11295 
11296   return S.areMultiversionVariantFunctionsCompatible(
11297       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
11298       PartialDiagnosticAt(NewFD->getLocation(),
11299                           S.PDiag(diag::note_multiversioning_caused_here)),
11300       PartialDiagnosticAt(NewFD->getLocation(),
11301                           S.PDiag(diag::err_multiversion_doesnt_support)
11302                               << static_cast<unsigned>(MVKind)),
11303       PartialDiagnosticAt(NewFD->getLocation(),
11304                           S.PDiag(diag::err_multiversion_diff)),
11305       /*TemplatesSupported=*/false,
11306       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind,
11307       /*CLinkageMayDiffer=*/false);
11308 }
11309 
11310 /// Check the validity of a multiversion function declaration that is the
11311 /// first of its kind. Also sets the multiversion'ness' of the function itself.
11312 ///
11313 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11314 ///
11315 /// Returns true if there was an error, false otherwise.
11316 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) {
11317   MultiVersionKind MVKind = FD->getMultiVersionKind();
11318   assert(MVKind != MultiVersionKind::None &&
11319          "Function lacks multiversion attribute");
11320   const auto *TA = FD->getAttr<TargetAttr>();
11321   const auto *TVA = FD->getAttr<TargetVersionAttr>();
11322   // Target and target_version only causes MV if it is default, otherwise this
11323   // is a normal function.
11324   if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion()))
11325     return false;
11326 
11327   if ((TA || TVA) && CheckMultiVersionValue(S, FD)) {
11328     FD->setInvalidDecl();
11329     return true;
11330   }
11331 
11332   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) {
11333     FD->setInvalidDecl();
11334     return true;
11335   }
11336 
11337   FD->setIsMultiVersion();
11338   return false;
11339 }
11340 
11341 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
11342   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
11343     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
11344       return true;
11345   }
11346 
11347   return false;
11348 }
11349 
11350 static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD,
11351                                              FunctionDecl *NewFD,
11352                                              bool &Redeclaration,
11353                                              NamedDecl *&OldDecl,
11354                                              LookupResult &Previous) {
11355   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11356   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11357   const auto *OldTA = OldFD->getAttr<TargetAttr>();
11358   const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>();
11359   // If the old decl is NOT MultiVersioned yet, and we don't cause that
11360   // to change, this is a simple redeclaration.
11361   if ((NewTA && !NewTA->isDefaultVersion() &&
11362        (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) ||
11363       (NewTVA && !NewTVA->isDefaultVersion() &&
11364        (!OldTVA || OldTVA->getName() == NewTVA->getName())))
11365     return false;
11366 
11367   // Otherwise, this decl causes MultiVersioning.
11368   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
11369                                        NewTVA ? MultiVersionKind::TargetVersion
11370                                               : MultiVersionKind::Target)) {
11371     NewFD->setInvalidDecl();
11372     return true;
11373   }
11374 
11375   if (CheckMultiVersionValue(S, NewFD)) {
11376     NewFD->setInvalidDecl();
11377     return true;
11378   }
11379 
11380   // If this is 'default', permit the forward declaration.
11381   if (!OldFD->isMultiVersion() &&
11382       ((NewTA && NewTA->isDefaultVersion() && !OldTA) ||
11383        (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) {
11384     Redeclaration = true;
11385     OldDecl = OldFD;
11386     OldFD->setIsMultiVersion();
11387     NewFD->setIsMultiVersion();
11388     return false;
11389   }
11390 
11391   if (CheckMultiVersionValue(S, OldFD)) {
11392     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11393     NewFD->setInvalidDecl();
11394     return true;
11395   }
11396 
11397   if (NewTA) {
11398     ParsedTargetAttr OldParsed =
11399         S.getASTContext().getTargetInfo().parseTargetAttr(
11400             OldTA->getFeaturesStr());
11401     llvm::sort(OldParsed.Features);
11402     ParsedTargetAttr NewParsed =
11403         S.getASTContext().getTargetInfo().parseTargetAttr(
11404             NewTA->getFeaturesStr());
11405     // Sort order doesn't matter, it just needs to be consistent.
11406     llvm::sort(NewParsed.Features);
11407     if (OldParsed == NewParsed) {
11408       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11409       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11410       NewFD->setInvalidDecl();
11411       return true;
11412     }
11413   }
11414 
11415   if (NewTVA) {
11416     llvm::SmallVector<StringRef, 8> Feats;
11417     OldTVA->getFeatures(Feats);
11418     llvm::sort(Feats);
11419     llvm::SmallVector<StringRef, 8> NewFeats;
11420     NewTVA->getFeatures(NewFeats);
11421     llvm::sort(NewFeats);
11422 
11423     if (Feats == NewFeats) {
11424       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11425       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11426       NewFD->setInvalidDecl();
11427       return true;
11428     }
11429   }
11430 
11431   for (const auto *FD : OldFD->redecls()) {
11432     const auto *CurTA = FD->getAttr<TargetAttr>();
11433     const auto *CurTVA = FD->getAttr<TargetVersionAttr>();
11434     // We allow forward declarations before ANY multiversioning attributes, but
11435     // nothing after the fact.
11436     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
11437         ((NewTA && (!CurTA || CurTA->isInherited())) ||
11438          (NewTVA && (!CurTVA || CurTVA->isInherited())))) {
11439       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
11440           << (NewTA ? 0 : 2);
11441       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
11442       NewFD->setInvalidDecl();
11443       return true;
11444     }
11445   }
11446 
11447   OldFD->setIsMultiVersion();
11448   NewFD->setIsMultiVersion();
11449   Redeclaration = false;
11450   OldDecl = nullptr;
11451   Previous.clear();
11452   return false;
11453 }
11454 
11455 static bool MultiVersionTypesCompatible(MultiVersionKind Old,
11456                                         MultiVersionKind New) {
11457   if (Old == New || Old == MultiVersionKind::None ||
11458       New == MultiVersionKind::None)
11459     return true;
11460 
11461   return (Old == MultiVersionKind::CPUDispatch &&
11462           New == MultiVersionKind::CPUSpecific) ||
11463          (Old == MultiVersionKind::CPUSpecific &&
11464           New == MultiVersionKind::CPUDispatch);
11465 }
11466 
11467 /// Check the validity of a new function declaration being added to an existing
11468 /// multiversioned declaration collection.
11469 static bool CheckMultiVersionAdditionalDecl(
11470     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
11471     MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp,
11472     const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones,
11473     bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) {
11474   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11475   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11476   MultiVersionKind OldMVKind = OldFD->getMultiVersionKind();
11477   // Disallow mixing of multiversioning types.
11478   if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) {
11479     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
11480     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
11481     NewFD->setInvalidDecl();
11482     return true;
11483   }
11484 
11485   ParsedTargetAttr NewParsed;
11486   if (NewTA) {
11487     NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr(
11488         NewTA->getFeaturesStr());
11489     llvm::sort(NewParsed.Features);
11490   }
11491   llvm::SmallVector<StringRef, 8> NewFeats;
11492   if (NewTVA) {
11493     NewTVA->getFeatures(NewFeats);
11494     llvm::sort(NewFeats);
11495   }
11496 
11497   bool UseMemberUsingDeclRules =
11498       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
11499 
11500   bool MayNeedOverloadableChecks =
11501       AllowOverloadingOfFunction(Previous, S.Context, NewFD);
11502 
11503   // Next, check ALL non-invalid non-overloads to see if this is a redeclaration
11504   // of a previous member of the MultiVersion set.
11505   for (NamedDecl *ND : Previous) {
11506     FunctionDecl *CurFD = ND->getAsFunction();
11507     if (!CurFD || CurFD->isInvalidDecl())
11508       continue;
11509     if (MayNeedOverloadableChecks &&
11510         S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
11511       continue;
11512 
11513     if (NewMVKind == MultiVersionKind::None &&
11514         OldMVKind == MultiVersionKind::TargetVersion) {
11515       NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11516           S.Context, "default", NewFD->getSourceRange()));
11517       NewFD->setIsMultiVersion();
11518       NewMVKind = MultiVersionKind::TargetVersion;
11519       if (!NewTVA) {
11520         NewTVA = NewFD->getAttr<TargetVersionAttr>();
11521         NewTVA->getFeatures(NewFeats);
11522         llvm::sort(NewFeats);
11523       }
11524     }
11525 
11526     switch (NewMVKind) {
11527     case MultiVersionKind::None:
11528       assert(OldMVKind == MultiVersionKind::TargetClones &&
11529              "Only target_clones can be omitted in subsequent declarations");
11530       break;
11531     case MultiVersionKind::Target: {
11532       const auto *CurTA = CurFD->getAttr<TargetAttr>();
11533       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
11534         NewFD->setIsMultiVersion();
11535         Redeclaration = true;
11536         OldDecl = ND;
11537         return false;
11538       }
11539 
11540       ParsedTargetAttr CurParsed =
11541           S.getASTContext().getTargetInfo().parseTargetAttr(
11542               CurTA->getFeaturesStr());
11543       llvm::sort(CurParsed.Features);
11544       if (CurParsed == NewParsed) {
11545         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11546         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11547         NewFD->setInvalidDecl();
11548         return true;
11549       }
11550       break;
11551     }
11552     case MultiVersionKind::TargetVersion: {
11553       const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>();
11554       if (CurTVA->getName() == NewTVA->getName()) {
11555         NewFD->setIsMultiVersion();
11556         Redeclaration = true;
11557         OldDecl = ND;
11558         return false;
11559       }
11560       llvm::SmallVector<StringRef, 8> CurFeats;
11561       if (CurTVA) {
11562         CurTVA->getFeatures(CurFeats);
11563         llvm::sort(CurFeats);
11564       }
11565       if (CurFeats == NewFeats) {
11566         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
11567         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11568         NewFD->setInvalidDecl();
11569         return true;
11570       }
11571       break;
11572     }
11573     case MultiVersionKind::TargetClones: {
11574       const auto *CurClones = CurFD->getAttr<TargetClonesAttr>();
11575       Redeclaration = true;
11576       OldDecl = CurFD;
11577       NewFD->setIsMultiVersion();
11578 
11579       if (CurClones && NewClones &&
11580           (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() ||
11581            !std::equal(CurClones->featuresStrs_begin(),
11582                        CurClones->featuresStrs_end(),
11583                        NewClones->featuresStrs_begin()))) {
11584         S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match);
11585         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11586         NewFD->setInvalidDecl();
11587         return true;
11588       }
11589 
11590       return false;
11591     }
11592     case MultiVersionKind::CPUSpecific:
11593     case MultiVersionKind::CPUDispatch: {
11594       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
11595       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
11596       // Handle CPUDispatch/CPUSpecific versions.
11597       // Only 1 CPUDispatch function is allowed, this will make it go through
11598       // the redeclaration errors.
11599       if (NewMVKind == MultiVersionKind::CPUDispatch &&
11600           CurFD->hasAttr<CPUDispatchAttr>()) {
11601         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
11602             std::equal(
11603                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
11604                 NewCPUDisp->cpus_begin(),
11605                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11606                   return Cur->getName() == New->getName();
11607                 })) {
11608           NewFD->setIsMultiVersion();
11609           Redeclaration = true;
11610           OldDecl = ND;
11611           return false;
11612         }
11613 
11614         // If the declarations don't match, this is an error condition.
11615         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
11616         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11617         NewFD->setInvalidDecl();
11618         return true;
11619       }
11620       if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) {
11621         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
11622             std::equal(
11623                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
11624                 NewCPUSpec->cpus_begin(),
11625                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
11626                   return Cur->getName() == New->getName();
11627                 })) {
11628           NewFD->setIsMultiVersion();
11629           Redeclaration = true;
11630           OldDecl = ND;
11631           return false;
11632         }
11633 
11634         // Only 1 version of CPUSpecific is allowed for each CPU.
11635         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
11636           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
11637             if (CurII == NewII) {
11638               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
11639                   << NewII;
11640               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
11641               NewFD->setInvalidDecl();
11642               return true;
11643             }
11644           }
11645         }
11646       }
11647       break;
11648     }
11649     }
11650   }
11651 
11652   // Else, this is simply a non-redecl case.  Checking the 'value' is only
11653   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
11654   // handled in the attribute adding step.
11655   if ((NewMVKind == MultiVersionKind::TargetVersion ||
11656        NewMVKind == MultiVersionKind::Target) &&
11657       CheckMultiVersionValue(S, NewFD)) {
11658     NewFD->setInvalidDecl();
11659     return true;
11660   }
11661 
11662   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
11663                                        !OldFD->isMultiVersion(), NewMVKind)) {
11664     NewFD->setInvalidDecl();
11665     return true;
11666   }
11667 
11668   // Permit forward declarations in the case where these two are compatible.
11669   if (!OldFD->isMultiVersion()) {
11670     OldFD->setIsMultiVersion();
11671     NewFD->setIsMultiVersion();
11672     Redeclaration = true;
11673     OldDecl = OldFD;
11674     return false;
11675   }
11676 
11677   NewFD->setIsMultiVersion();
11678   Redeclaration = false;
11679   OldDecl = nullptr;
11680   Previous.clear();
11681   return false;
11682 }
11683 
11684 /// Check the validity of a mulitversion function declaration.
11685 /// Also sets the multiversion'ness' of the function itself.
11686 ///
11687 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11688 ///
11689 /// Returns true if there was an error, false otherwise.
11690 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
11691                                       bool &Redeclaration, NamedDecl *&OldDecl,
11692                                       LookupResult &Previous) {
11693   const auto *NewTA = NewFD->getAttr<TargetAttr>();
11694   const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>();
11695   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
11696   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
11697   const auto *NewClones = NewFD->getAttr<TargetClonesAttr>();
11698   MultiVersionKind MVKind = NewFD->getMultiVersionKind();
11699 
11700   // Main isn't allowed to become a multiversion function, however it IS
11701   // permitted to have 'main' be marked with the 'target' optimization hint,
11702   // for 'target_version' only default is allowed.
11703   if (NewFD->isMain()) {
11704     if (MVKind != MultiVersionKind::None &&
11705         !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) &&
11706         !(MVKind == MultiVersionKind::TargetVersion &&
11707           NewTVA->isDefaultVersion())) {
11708       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
11709       NewFD->setInvalidDecl();
11710       return true;
11711     }
11712     return false;
11713   }
11714 
11715   // Target attribute on AArch64 is not used for multiversioning
11716   if (NewTA && S.getASTContext().getTargetInfo().getTriple().isAArch64())
11717     return false;
11718 
11719   if (!OldDecl || !OldDecl->getAsFunction() ||
11720       OldDecl->getDeclContext()->getRedeclContext() !=
11721           NewFD->getDeclContext()->getRedeclContext()) {
11722     // If there's no previous declaration, AND this isn't attempting to cause
11723     // multiversioning, this isn't an error condition.
11724     if (MVKind == MultiVersionKind::None)
11725       return false;
11726     return CheckMultiVersionFirstFunction(S, NewFD);
11727   }
11728 
11729   FunctionDecl *OldFD = OldDecl->getAsFunction();
11730 
11731   if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) {
11732     if (NewTVA || !OldFD->getAttr<TargetVersionAttr>())
11733       return false;
11734     if (!NewFD->getType()->getAs<FunctionProtoType>()) {
11735       // Multiversion declaration doesn't have prototype.
11736       S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
11737       NewFD->setInvalidDecl();
11738     } else {
11739       // No "target_version" attribute is equivalent to "default" attribute.
11740       NewFD->addAttr(TargetVersionAttr::CreateImplicit(
11741           S.Context, "default", NewFD->getSourceRange()));
11742       NewFD->setIsMultiVersion();
11743       OldFD->setIsMultiVersion();
11744       OldDecl = OldFD;
11745       Redeclaration = true;
11746     }
11747     return true;
11748   }
11749 
11750   // Multiversioned redeclarations aren't allowed to omit the attribute, except
11751   // for target_clones and target_version.
11752   if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None &&
11753       OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones &&
11754       OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) {
11755     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
11756         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
11757     NewFD->setInvalidDecl();
11758     return true;
11759   }
11760 
11761   if (!OldFD->isMultiVersion()) {
11762     switch (MVKind) {
11763     case MultiVersionKind::Target:
11764     case MultiVersionKind::TargetVersion:
11765       return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration,
11766                                               OldDecl, Previous);
11767     case MultiVersionKind::TargetClones:
11768       if (OldFD->isUsed(false)) {
11769         NewFD->setInvalidDecl();
11770         return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
11771       }
11772       OldFD->setIsMultiVersion();
11773       break;
11774 
11775     case MultiVersionKind::CPUDispatch:
11776     case MultiVersionKind::CPUSpecific:
11777     case MultiVersionKind::None:
11778       break;
11779     }
11780   }
11781 
11782   // At this point, we have a multiversion function decl (in OldFD) AND an
11783   // appropriate attribute in the current function decl.  Resolve that these are
11784   // still compatible with previous declarations.
11785   return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp,
11786                                          NewCPUSpec, NewClones, Redeclaration,
11787                                          OldDecl, Previous);
11788 }
11789 
11790 /// Perform semantic checking of a new function declaration.
11791 ///
11792 /// Performs semantic analysis of the new function declaration
11793 /// NewFD. This routine performs all semantic checking that does not
11794 /// require the actual declarator involved in the declaration, and is
11795 /// used both for the declaration of functions as they are parsed
11796 /// (called via ActOnDeclarator) and for the declaration of functions
11797 /// that have been instantiated via C++ template instantiation (called
11798 /// via InstantiateDecl).
11799 ///
11800 /// \param IsMemberSpecialization whether this new function declaration is
11801 /// a member specialization (that replaces any definition provided by the
11802 /// previous declaration).
11803 ///
11804 /// This sets NewFD->isInvalidDecl() to true if there was an error.
11805 ///
11806 /// \returns true if the function declaration is a redeclaration.
11807 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
11808                                     LookupResult &Previous,
11809                                     bool IsMemberSpecialization,
11810                                     bool DeclIsDefn) {
11811   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
11812          "Variably modified return types are not handled here");
11813 
11814   // Determine whether the type of this function should be merged with
11815   // a previous visible declaration. This never happens for functions in C++,
11816   // and always happens in C if the previous declaration was visible.
11817   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
11818                                !Previous.isShadowed();
11819 
11820   bool Redeclaration = false;
11821   NamedDecl *OldDecl = nullptr;
11822   bool MayNeedOverloadableChecks = false;
11823 
11824   // Merge or overload the declaration with an existing declaration of
11825   // the same name, if appropriate.
11826   if (!Previous.empty()) {
11827     // Determine whether NewFD is an overload of PrevDecl or
11828     // a declaration that requires merging. If it's an overload,
11829     // there's no more work to do here; we'll just add the new
11830     // function to the scope.
11831     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
11832       NamedDecl *Candidate = Previous.getRepresentativeDecl();
11833       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
11834         Redeclaration = true;
11835         OldDecl = Candidate;
11836       }
11837     } else {
11838       MayNeedOverloadableChecks = true;
11839       switch (CheckOverload(S, NewFD, Previous, OldDecl,
11840                             /*NewIsUsingDecl*/ false)) {
11841       case Ovl_Match:
11842         Redeclaration = true;
11843         break;
11844 
11845       case Ovl_NonFunction:
11846         Redeclaration = true;
11847         break;
11848 
11849       case Ovl_Overload:
11850         Redeclaration = false;
11851         break;
11852       }
11853     }
11854   }
11855 
11856   // Check for a previous extern "C" declaration with this name.
11857   if (!Redeclaration &&
11858       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
11859     if (!Previous.empty()) {
11860       // This is an extern "C" declaration with the same name as a previous
11861       // declaration, and thus redeclares that entity...
11862       Redeclaration = true;
11863       OldDecl = Previous.getFoundDecl();
11864       MergeTypeWithPrevious = false;
11865 
11866       // ... except in the presence of __attribute__((overloadable)).
11867       if (OldDecl->hasAttr<OverloadableAttr>() ||
11868           NewFD->hasAttr<OverloadableAttr>()) {
11869         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
11870           MayNeedOverloadableChecks = true;
11871           Redeclaration = false;
11872           OldDecl = nullptr;
11873         }
11874       }
11875     }
11876   }
11877 
11878   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous))
11879     return Redeclaration;
11880 
11881   // PPC MMA non-pointer types are not allowed as function return types.
11882   if (Context.getTargetInfo().getTriple().isPPC64() &&
11883       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
11884     NewFD->setInvalidDecl();
11885   }
11886 
11887   // C++11 [dcl.constexpr]p8:
11888   //   A constexpr specifier for a non-static member function that is not
11889   //   a constructor declares that member function to be const.
11890   //
11891   // This needs to be delayed until we know whether this is an out-of-line
11892   // definition of a static member function.
11893   //
11894   // This rule is not present in C++1y, so we produce a backwards
11895   // compatibility warning whenever it happens in C++11.
11896   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
11897   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
11898       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
11899       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
11900     CXXMethodDecl *OldMD = nullptr;
11901     if (OldDecl)
11902       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
11903     if (!OldMD || !OldMD->isStatic()) {
11904       const FunctionProtoType *FPT =
11905         MD->getType()->castAs<FunctionProtoType>();
11906       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11907       EPI.TypeQuals.addConst();
11908       MD->setType(Context.getFunctionType(FPT->getReturnType(),
11909                                           FPT->getParamTypes(), EPI));
11910 
11911       // Warn that we did this, if we're not performing template instantiation.
11912       // In that case, we'll have warned already when the template was defined.
11913       if (!inTemplateInstantiation()) {
11914         SourceLocation AddConstLoc;
11915         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
11916                 .IgnoreParens().getAs<FunctionTypeLoc>())
11917           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
11918 
11919         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
11920           << FixItHint::CreateInsertion(AddConstLoc, " const");
11921       }
11922     }
11923   }
11924 
11925   if (Redeclaration) {
11926     // NewFD and OldDecl represent declarations that need to be
11927     // merged.
11928     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious,
11929                           DeclIsDefn)) {
11930       NewFD->setInvalidDecl();
11931       return Redeclaration;
11932     }
11933 
11934     Previous.clear();
11935     Previous.addDecl(OldDecl);
11936 
11937     if (FunctionTemplateDecl *OldTemplateDecl =
11938             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
11939       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
11940       FunctionTemplateDecl *NewTemplateDecl
11941         = NewFD->getDescribedFunctionTemplate();
11942       assert(NewTemplateDecl && "Template/non-template mismatch");
11943 
11944       // The call to MergeFunctionDecl above may have created some state in
11945       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
11946       // can add it as a redeclaration.
11947       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
11948 
11949       NewFD->setPreviousDeclaration(OldFD);
11950       if (NewFD->isCXXClassMember()) {
11951         NewFD->setAccess(OldTemplateDecl->getAccess());
11952         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
11953       }
11954 
11955       // If this is an explicit specialization of a member that is a function
11956       // template, mark it as a member specialization.
11957       if (IsMemberSpecialization &&
11958           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
11959         NewTemplateDecl->setMemberSpecialization();
11960         assert(OldTemplateDecl->isMemberSpecialization());
11961         // Explicit specializations of a member template do not inherit deleted
11962         // status from the parent member template that they are specializing.
11963         if (OldFD->isDeleted()) {
11964           // FIXME: This assert will not hold in the presence of modules.
11965           assert(OldFD->getCanonicalDecl() == OldFD);
11966           // FIXME: We need an update record for this AST mutation.
11967           OldFD->setDeletedAsWritten(false);
11968         }
11969       }
11970 
11971     } else {
11972       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
11973         auto *OldFD = cast<FunctionDecl>(OldDecl);
11974         // This needs to happen first so that 'inline' propagates.
11975         NewFD->setPreviousDeclaration(OldFD);
11976         if (NewFD->isCXXClassMember())
11977           NewFD->setAccess(OldFD->getAccess());
11978       }
11979     }
11980   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
11981              !NewFD->getAttr<OverloadableAttr>()) {
11982     assert((Previous.empty() ||
11983             llvm::any_of(Previous,
11984                          [](const NamedDecl *ND) {
11985                            return ND->hasAttr<OverloadableAttr>();
11986                          })) &&
11987            "Non-redecls shouldn't happen without overloadable present");
11988 
11989     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
11990       const auto *FD = dyn_cast<FunctionDecl>(ND);
11991       return FD && !FD->hasAttr<OverloadableAttr>();
11992     });
11993 
11994     if (OtherUnmarkedIter != Previous.end()) {
11995       Diag(NewFD->getLocation(),
11996            diag::err_attribute_overloadable_multiple_unmarked_overloads);
11997       Diag((*OtherUnmarkedIter)->getLocation(),
11998            diag::note_attribute_overloadable_prev_overload)
11999           << false;
12000 
12001       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
12002     }
12003   }
12004 
12005   if (LangOpts.OpenMP)
12006     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
12007 
12008   // Semantic checking for this function declaration (in isolation).
12009 
12010   if (getLangOpts().CPlusPlus) {
12011     // C++-specific checks.
12012     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
12013       CheckConstructor(Constructor);
12014     } else if (CXXDestructorDecl *Destructor =
12015                    dyn_cast<CXXDestructorDecl>(NewFD)) {
12016       // We check here for invalid destructor names.
12017       // If we have a friend destructor declaration that is dependent, we can't
12018       // diagnose right away because cases like this are still valid:
12019       // template <class T> struct A { friend T::X::~Y(); };
12020       // struct B { struct Y { ~Y(); }; using X = Y; };
12021       // template struct A<B>;
12022       if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None ||
12023           !Destructor->getFunctionObjectParameterType()->isDependentType()) {
12024         CXXRecordDecl *Record = Destructor->getParent();
12025         QualType ClassType = Context.getTypeDeclType(Record);
12026 
12027         DeclarationName Name = Context.DeclarationNames.getCXXDestructorName(
12028             Context.getCanonicalType(ClassType));
12029         if (NewFD->getDeclName() != Name) {
12030           Diag(NewFD->getLocation(), diag::err_destructor_name);
12031           NewFD->setInvalidDecl();
12032           return Redeclaration;
12033         }
12034       }
12035     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
12036       if (auto *TD = Guide->getDescribedFunctionTemplate())
12037         CheckDeductionGuideTemplate(TD);
12038 
12039       // A deduction guide is not on the list of entities that can be
12040       // explicitly specialized.
12041       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
12042         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
12043             << /*explicit specialization*/ 1;
12044     }
12045 
12046     // Find any virtual functions that this function overrides.
12047     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
12048       if (!Method->isFunctionTemplateSpecialization() &&
12049           !Method->getDescribedFunctionTemplate() &&
12050           Method->isCanonicalDecl()) {
12051         AddOverriddenMethods(Method->getParent(), Method);
12052       }
12053       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
12054         // C++2a [class.virtual]p6
12055         // A virtual method shall not have a requires-clause.
12056         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
12057              diag::err_constrained_virtual_method);
12058 
12059       if (Method->isStatic())
12060         checkThisInStaticMemberFunctionType(Method);
12061     }
12062 
12063     // C++20: dcl.decl.general p4:
12064     // The optional requires-clause ([temp.pre]) in an init-declarator or
12065     // member-declarator shall be present only if the declarator declares a
12066     // templated function ([dcl.fct]).
12067     if (Expr *TRC = NewFD->getTrailingRequiresClause()) {
12068       // [temp.pre]/8:
12069       // An entity is templated if it is
12070       // - a template,
12071       // - an entity defined ([basic.def]) or created ([class.temporary]) in a
12072       // templated entity,
12073       // - a member of a templated entity,
12074       // - an enumerator for an enumeration that is a templated entity, or
12075       // - the closure type of a lambda-expression ([expr.prim.lambda.closure])
12076       // appearing in the declaration of a templated entity. [Note 6: A local
12077       // class, a local or block variable, or a friend function defined in a
12078       // templated entity is a templated entity.  — end note]
12079       //
12080       // A templated function is a function template or a function that is
12081       // templated. A templated class is a class template or a class that is
12082       // templated. A templated variable is a variable template or a variable
12083       // that is templated.
12084 
12085       if (!NewFD->getDescribedFunctionTemplate() && // -a template
12086           // defined... in a templated entity
12087           !(DeclIsDefn && NewFD->isTemplated()) &&
12088           // a member of a templated entity
12089           !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) &&
12090           // Don't complain about instantiations, they've already had these
12091           // rules + others enforced.
12092           !NewFD->isTemplateInstantiation()) {
12093         Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function);
12094       }
12095     }
12096 
12097     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
12098       ActOnConversionDeclarator(Conversion);
12099 
12100     // Extra checking for C++ overloaded operators (C++ [over.oper]).
12101     if (NewFD->isOverloadedOperator() &&
12102         CheckOverloadedOperatorDeclaration(NewFD)) {
12103       NewFD->setInvalidDecl();
12104       return Redeclaration;
12105     }
12106 
12107     // Extra checking for C++0x literal operators (C++0x [over.literal]).
12108     if (NewFD->getLiteralIdentifier() &&
12109         CheckLiteralOperatorDeclaration(NewFD)) {
12110       NewFD->setInvalidDecl();
12111       return Redeclaration;
12112     }
12113 
12114     // In C++, check default arguments now that we have merged decls. Unless
12115     // the lexical context is the class, because in this case this is done
12116     // during delayed parsing anyway.
12117     if (!CurContext->isRecord())
12118       CheckCXXDefaultArguments(NewFD);
12119 
12120     // If this function is declared as being extern "C", then check to see if
12121     // the function returns a UDT (class, struct, or union type) that is not C
12122     // compatible, and if it does, warn the user.
12123     // But, issue any diagnostic on the first declaration only.
12124     if (Previous.empty() && NewFD->isExternC()) {
12125       QualType R = NewFD->getReturnType();
12126       if (R->isIncompleteType() && !R->isVoidType())
12127         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
12128             << NewFD << R;
12129       else if (!R.isPODType(Context) && !R->isVoidType() &&
12130                !R->isObjCObjectPointerType())
12131         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
12132     }
12133 
12134     // C++1z [dcl.fct]p6:
12135     //   [...] whether the function has a non-throwing exception-specification
12136     //   [is] part of the function type
12137     //
12138     // This results in an ABI break between C++14 and C++17 for functions whose
12139     // declared type includes an exception-specification in a parameter or
12140     // return type. (Exception specifications on the function itself are OK in
12141     // most cases, and exception specifications are not permitted in most other
12142     // contexts where they could make it into a mangling.)
12143     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
12144       auto HasNoexcept = [&](QualType T) -> bool {
12145         // Strip off declarator chunks that could be between us and a function
12146         // type. We don't need to look far, exception specifications are very
12147         // restricted prior to C++17.
12148         if (auto *RT = T->getAs<ReferenceType>())
12149           T = RT->getPointeeType();
12150         else if (T->isAnyPointerType())
12151           T = T->getPointeeType();
12152         else if (auto *MPT = T->getAs<MemberPointerType>())
12153           T = MPT->getPointeeType();
12154         if (auto *FPT = T->getAs<FunctionProtoType>())
12155           if (FPT->isNothrow())
12156             return true;
12157         return false;
12158       };
12159 
12160       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
12161       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
12162       for (QualType T : FPT->param_types())
12163         AnyNoexcept |= HasNoexcept(T);
12164       if (AnyNoexcept)
12165         Diag(NewFD->getLocation(),
12166              diag::warn_cxx17_compat_exception_spec_in_signature)
12167             << NewFD;
12168     }
12169 
12170     if (!Redeclaration && LangOpts.CUDA)
12171       checkCUDATargetOverload(NewFD, Previous);
12172   }
12173 
12174   // Check if the function definition uses any AArch64 SME features without
12175   // having the '+sme' feature enabled.
12176   if (DeclIsDefn) {
12177     bool UsesSM = NewFD->hasAttr<ArmLocallyStreamingAttr>();
12178     bool UsesZA = NewFD->hasAttr<ArmNewZAAttr>();
12179     if (const auto *FPT = NewFD->getType()->getAs<FunctionProtoType>()) {
12180       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
12181       UsesSM |=
12182           EPI.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
12183       UsesZA |= EPI.AArch64SMEAttributes & FunctionType::SME_PStateZASharedMask;
12184     }
12185 
12186     if (UsesSM || UsesZA) {
12187       llvm::StringMap<bool> FeatureMap;
12188       Context.getFunctionFeatureMap(FeatureMap, NewFD);
12189       if (!FeatureMap.contains("sme")) {
12190         if (UsesSM)
12191           Diag(NewFD->getLocation(),
12192                diag::err_sme_definition_using_sm_in_non_sme_target);
12193         else
12194           Diag(NewFD->getLocation(),
12195                diag::err_sme_definition_using_za_in_non_sme_target);
12196       }
12197     }
12198   }
12199 
12200   return Redeclaration;
12201 }
12202 
12203 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
12204   // C++11 [basic.start.main]p3:
12205   //   A program that [...] declares main to be inline, static or
12206   //   constexpr is ill-formed.
12207   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
12208   //   appear in a declaration of main.
12209   // static main is not an error under C99, but we should warn about it.
12210   // We accept _Noreturn main as an extension.
12211   if (FD->getStorageClass() == SC_Static)
12212     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
12213          ? diag::err_static_main : diag::warn_static_main)
12214       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12215   if (FD->isInlineSpecified())
12216     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
12217       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
12218   if (DS.isNoreturnSpecified()) {
12219     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
12220     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
12221     Diag(NoreturnLoc, diag::ext_noreturn_main);
12222     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
12223       << FixItHint::CreateRemoval(NoreturnRange);
12224   }
12225   if (FD->isConstexpr()) {
12226     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
12227         << FD->isConsteval()
12228         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
12229     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
12230   }
12231 
12232   if (getLangOpts().OpenCL) {
12233     Diag(FD->getLocation(), diag::err_opencl_no_main)
12234         << FD->hasAttr<OpenCLKernelAttr>();
12235     FD->setInvalidDecl();
12236     return;
12237   }
12238 
12239   // Functions named main in hlsl are default entries, but don't have specific
12240   // signatures they are required to conform to.
12241   if (getLangOpts().HLSL)
12242     return;
12243 
12244   QualType T = FD->getType();
12245   assert(T->isFunctionType() && "function decl is not of function type");
12246   const FunctionType* FT = T->castAs<FunctionType>();
12247 
12248   // Set default calling convention for main()
12249   if (FT->getCallConv() != CC_C) {
12250     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
12251     FD->setType(QualType(FT, 0));
12252     T = Context.getCanonicalType(FD->getType());
12253   }
12254 
12255   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
12256     // In C with GNU extensions we allow main() to have non-integer return
12257     // type, but we should warn about the extension, and we disable the
12258     // implicit-return-zero rule.
12259 
12260     // GCC in C mode accepts qualified 'int'.
12261     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
12262       FD->setHasImplicitReturnZero(true);
12263     else {
12264       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
12265       SourceRange RTRange = FD->getReturnTypeSourceRange();
12266       if (RTRange.isValid())
12267         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
12268             << FixItHint::CreateReplacement(RTRange, "int");
12269     }
12270   } else {
12271     // In C and C++, main magically returns 0 if you fall off the end;
12272     // set the flag which tells us that.
12273     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
12274 
12275     // All the standards say that main() should return 'int'.
12276     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
12277       FD->setHasImplicitReturnZero(true);
12278     else {
12279       // Otherwise, this is just a flat-out error.
12280       SourceRange RTRange = FD->getReturnTypeSourceRange();
12281       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
12282           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
12283                                 : FixItHint());
12284       FD->setInvalidDecl(true);
12285     }
12286   }
12287 
12288   // Treat protoless main() as nullary.
12289   if (isa<FunctionNoProtoType>(FT)) return;
12290 
12291   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
12292   unsigned nparams = FTP->getNumParams();
12293   assert(FD->getNumParams() == nparams);
12294 
12295   bool HasExtraParameters = (nparams > 3);
12296 
12297   if (FTP->isVariadic()) {
12298     Diag(FD->getLocation(), diag::ext_variadic_main);
12299     // FIXME: if we had information about the location of the ellipsis, we
12300     // could add a FixIt hint to remove it as a parameter.
12301   }
12302 
12303   // Darwin passes an undocumented fourth argument of type char**.  If
12304   // other platforms start sprouting these, the logic below will start
12305   // getting shifty.
12306   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
12307     HasExtraParameters = false;
12308 
12309   if (HasExtraParameters) {
12310     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
12311     FD->setInvalidDecl(true);
12312     nparams = 3;
12313   }
12314 
12315   // FIXME: a lot of the following diagnostics would be improved
12316   // if we had some location information about types.
12317 
12318   QualType CharPP =
12319     Context.getPointerType(Context.getPointerType(Context.CharTy));
12320   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
12321 
12322   for (unsigned i = 0; i < nparams; ++i) {
12323     QualType AT = FTP->getParamType(i);
12324 
12325     bool mismatch = true;
12326 
12327     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
12328       mismatch = false;
12329     else if (Expected[i] == CharPP) {
12330       // As an extension, the following forms are okay:
12331       //   char const **
12332       //   char const * const *
12333       //   char * const *
12334 
12335       QualifierCollector qs;
12336       const PointerType* PT;
12337       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
12338           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
12339           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
12340                               Context.CharTy)) {
12341         qs.removeConst();
12342         mismatch = !qs.empty();
12343       }
12344     }
12345 
12346     if (mismatch) {
12347       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
12348       // TODO: suggest replacing given type with expected type
12349       FD->setInvalidDecl(true);
12350     }
12351   }
12352 
12353   if (nparams == 1 && !FD->isInvalidDecl()) {
12354     Diag(FD->getLocation(), diag::warn_main_one_arg);
12355   }
12356 
12357   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12358     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12359     FD->setInvalidDecl();
12360   }
12361 }
12362 
12363 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
12364 
12365   // Default calling convention for main and wmain is __cdecl
12366   if (FD->getName() == "main" || FD->getName() == "wmain")
12367     return false;
12368 
12369   // Default calling convention for MinGW is __cdecl
12370   const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
12371   if (T.isWindowsGNUEnvironment())
12372     return false;
12373 
12374   // Default calling convention for WinMain, wWinMain and DllMain
12375   // is __stdcall on 32 bit Windows
12376   if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
12377     return true;
12378 
12379   return false;
12380 }
12381 
12382 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
12383   QualType T = FD->getType();
12384   assert(T->isFunctionType() && "function decl is not of function type");
12385   const FunctionType *FT = T->castAs<FunctionType>();
12386 
12387   // Set an implicit return of 'zero' if the function can return some integral,
12388   // enumeration, pointer or nullptr type.
12389   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
12390       FT->getReturnType()->isAnyPointerType() ||
12391       FT->getReturnType()->isNullPtrType())
12392     // DllMain is exempt because a return value of zero means it failed.
12393     if (FD->getName() != "DllMain")
12394       FD->setHasImplicitReturnZero(true);
12395 
12396   // Explicity specified calling conventions are applied to MSVC entry points
12397   if (!hasExplicitCallingConv(T)) {
12398     if (isDefaultStdCall(FD, *this)) {
12399       if (FT->getCallConv() != CC_X86StdCall) {
12400         FT = Context.adjustFunctionType(
12401             FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
12402         FD->setType(QualType(FT, 0));
12403       }
12404     } else if (FT->getCallConv() != CC_C) {
12405       FT = Context.adjustFunctionType(FT,
12406                                       FT->getExtInfo().withCallingConv(CC_C));
12407       FD->setType(QualType(FT, 0));
12408     }
12409   }
12410 
12411   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
12412     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
12413     FD->setInvalidDecl();
12414   }
12415 }
12416 
12417 void Sema::ActOnHLSLTopLevelFunction(FunctionDecl *FD) {
12418   auto &TargetInfo = getASTContext().getTargetInfo();
12419 
12420   if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry)
12421     return;
12422 
12423   StringRef Env = TargetInfo.getTriple().getEnvironmentName();
12424   HLSLShaderAttr::ShaderType ShaderType;
12425   if (HLSLShaderAttr::ConvertStrToShaderType(Env, ShaderType)) {
12426     if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) {
12427       // The entry point is already annotated - check that it matches the
12428       // triple.
12429       if (Shader->getType() != ShaderType) {
12430         Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch)
12431             << Shader;
12432         FD->setInvalidDecl();
12433       }
12434     } else {
12435       // Implicitly add the shader attribute if the entry function isn't
12436       // explicitly annotated.
12437       FD->addAttr(HLSLShaderAttr::CreateImplicit(Context, ShaderType,
12438                                                  FD->getBeginLoc()));
12439     }
12440   } else {
12441     switch (TargetInfo.getTriple().getEnvironment()) {
12442     case llvm::Triple::UnknownEnvironment:
12443     case llvm::Triple::Library:
12444       break;
12445     default:
12446       llvm_unreachable("Unhandled environment in triple");
12447     }
12448   }
12449 }
12450 
12451 void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) {
12452   const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>();
12453   assert(ShaderAttr && "Entry point has no shader attribute");
12454   HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12455 
12456   switch (ST) {
12457   case HLSLShaderAttr::Pixel:
12458   case HLSLShaderAttr::Vertex:
12459   case HLSLShaderAttr::Geometry:
12460   case HLSLShaderAttr::Hull:
12461   case HLSLShaderAttr::Domain:
12462   case HLSLShaderAttr::RayGeneration:
12463   case HLSLShaderAttr::Intersection:
12464   case HLSLShaderAttr::AnyHit:
12465   case HLSLShaderAttr::ClosestHit:
12466   case HLSLShaderAttr::Miss:
12467   case HLSLShaderAttr::Callable:
12468     if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) {
12469       DiagnoseHLSLAttrStageMismatch(NT, ST,
12470                                     {HLSLShaderAttr::Compute,
12471                                      HLSLShaderAttr::Amplification,
12472                                      HLSLShaderAttr::Mesh});
12473       FD->setInvalidDecl();
12474     }
12475     break;
12476 
12477   case HLSLShaderAttr::Compute:
12478   case HLSLShaderAttr::Amplification:
12479   case HLSLShaderAttr::Mesh:
12480     if (!FD->hasAttr<HLSLNumThreadsAttr>()) {
12481       Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads)
12482           << HLSLShaderAttr::ConvertShaderTypeToStr(ST);
12483       FD->setInvalidDecl();
12484     }
12485     break;
12486   }
12487 
12488   for (ParmVarDecl *Param : FD->parameters()) {
12489     if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) {
12490       CheckHLSLSemanticAnnotation(FD, Param, AnnotationAttr);
12491     } else {
12492       // FIXME: Handle struct parameters where annotations are on struct fields.
12493       // See: https://github.com/llvm/llvm-project/issues/57875
12494       Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation);
12495       Diag(Param->getLocation(), diag::note_previous_decl) << Param;
12496       FD->setInvalidDecl();
12497     }
12498   }
12499   // FIXME: Verify return type semantic annotation.
12500 }
12501 
12502 void Sema::CheckHLSLSemanticAnnotation(
12503     FunctionDecl *EntryPoint, const Decl *Param,
12504     const HLSLAnnotationAttr *AnnotationAttr) {
12505   auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>();
12506   assert(ShaderAttr && "Entry point has no shader attribute");
12507   HLSLShaderAttr::ShaderType ST = ShaderAttr->getType();
12508 
12509   switch (AnnotationAttr->getKind()) {
12510   case attr::HLSLSV_DispatchThreadID:
12511   case attr::HLSLSV_GroupIndex:
12512     if (ST == HLSLShaderAttr::Compute)
12513       return;
12514     DiagnoseHLSLAttrStageMismatch(AnnotationAttr, ST,
12515                                   {HLSLShaderAttr::Compute});
12516     break;
12517   default:
12518     llvm_unreachable("Unknown HLSLAnnotationAttr");
12519   }
12520 }
12521 
12522 void Sema::DiagnoseHLSLAttrStageMismatch(
12523     const Attr *A, HLSLShaderAttr::ShaderType Stage,
12524     std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages) {
12525   SmallVector<StringRef, 8> StageStrings;
12526   llvm::transform(AllowedStages, std::back_inserter(StageStrings),
12527                   [](HLSLShaderAttr::ShaderType ST) {
12528                     return StringRef(
12529                         HLSLShaderAttr::ConvertShaderTypeToStr(ST));
12530                   });
12531   Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage)
12532       << A << HLSLShaderAttr::ConvertShaderTypeToStr(Stage)
12533       << (AllowedStages.size() != 1) << join(StageStrings, ", ");
12534 }
12535 
12536 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
12537   // FIXME: Need strict checking.  In C89, we need to check for
12538   // any assignment, increment, decrement, function-calls, or
12539   // commas outside of a sizeof.  In C99, it's the same list,
12540   // except that the aforementioned are allowed in unevaluated
12541   // expressions.  Everything else falls under the
12542   // "may accept other forms of constant expressions" exception.
12543   //
12544   // Regular C++ code will not end up here (exceptions: language extensions,
12545   // OpenCL C++ etc), so the constant expression rules there don't matter.
12546   if (Init->isValueDependent()) {
12547     assert(Init->containsErrors() &&
12548            "Dependent code should only occur in error-recovery path.");
12549     return true;
12550   }
12551   const Expr *Culprit;
12552   if (Init->isConstantInitializer(Context, false, &Culprit))
12553     return false;
12554   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
12555     << Culprit->getSourceRange();
12556   return true;
12557 }
12558 
12559 namespace {
12560   // Visits an initialization expression to see if OrigDecl is evaluated in
12561   // its own initialization and throws a warning if it does.
12562   class SelfReferenceChecker
12563       : public EvaluatedExprVisitor<SelfReferenceChecker> {
12564     Sema &S;
12565     Decl *OrigDecl;
12566     bool isRecordType;
12567     bool isPODType;
12568     bool isReferenceType;
12569 
12570     bool isInitList;
12571     llvm::SmallVector<unsigned, 4> InitFieldIndex;
12572 
12573   public:
12574     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
12575 
12576     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
12577                                                     S(S), OrigDecl(OrigDecl) {
12578       isPODType = false;
12579       isRecordType = false;
12580       isReferenceType = false;
12581       isInitList = false;
12582       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
12583         isPODType = VD->getType().isPODType(S.Context);
12584         isRecordType = VD->getType()->isRecordType();
12585         isReferenceType = VD->getType()->isReferenceType();
12586       }
12587     }
12588 
12589     // For most expressions, just call the visitor.  For initializer lists,
12590     // track the index of the field being initialized since fields are
12591     // initialized in order allowing use of previously initialized fields.
12592     void CheckExpr(Expr *E) {
12593       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
12594       if (!InitList) {
12595         Visit(E);
12596         return;
12597       }
12598 
12599       // Track and increment the index here.
12600       isInitList = true;
12601       InitFieldIndex.push_back(0);
12602       for (auto *Child : InitList->children()) {
12603         CheckExpr(cast<Expr>(Child));
12604         ++InitFieldIndex.back();
12605       }
12606       InitFieldIndex.pop_back();
12607     }
12608 
12609     // Returns true if MemberExpr is checked and no further checking is needed.
12610     // Returns false if additional checking is required.
12611     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
12612       llvm::SmallVector<FieldDecl*, 4> Fields;
12613       Expr *Base = E;
12614       bool ReferenceField = false;
12615 
12616       // Get the field members used.
12617       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12618         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
12619         if (!FD)
12620           return false;
12621         Fields.push_back(FD);
12622         if (FD->getType()->isReferenceType())
12623           ReferenceField = true;
12624         Base = ME->getBase()->IgnoreParenImpCasts();
12625       }
12626 
12627       // Keep checking only if the base Decl is the same.
12628       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
12629       if (!DRE || DRE->getDecl() != OrigDecl)
12630         return false;
12631 
12632       // A reference field can be bound to an unininitialized field.
12633       if (CheckReference && !ReferenceField)
12634         return true;
12635 
12636       // Convert FieldDecls to their index number.
12637       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
12638       for (const FieldDecl *I : llvm::reverse(Fields))
12639         UsedFieldIndex.push_back(I->getFieldIndex());
12640 
12641       // See if a warning is needed by checking the first difference in index
12642       // numbers.  If field being used has index less than the field being
12643       // initialized, then the use is safe.
12644       for (auto UsedIter = UsedFieldIndex.begin(),
12645                 UsedEnd = UsedFieldIndex.end(),
12646                 OrigIter = InitFieldIndex.begin(),
12647                 OrigEnd = InitFieldIndex.end();
12648            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
12649         if (*UsedIter < *OrigIter)
12650           return true;
12651         if (*UsedIter > *OrigIter)
12652           break;
12653       }
12654 
12655       // TODO: Add a different warning which will print the field names.
12656       HandleDeclRefExpr(DRE);
12657       return true;
12658     }
12659 
12660     // For most expressions, the cast is directly above the DeclRefExpr.
12661     // For conditional operators, the cast can be outside the conditional
12662     // operator if both expressions are DeclRefExpr's.
12663     void HandleValue(Expr *E) {
12664       E = E->IgnoreParens();
12665       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
12666         HandleDeclRefExpr(DRE);
12667         return;
12668       }
12669 
12670       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
12671         Visit(CO->getCond());
12672         HandleValue(CO->getTrueExpr());
12673         HandleValue(CO->getFalseExpr());
12674         return;
12675       }
12676 
12677       if (BinaryConditionalOperator *BCO =
12678               dyn_cast<BinaryConditionalOperator>(E)) {
12679         Visit(BCO->getCond());
12680         HandleValue(BCO->getFalseExpr());
12681         return;
12682       }
12683 
12684       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
12685         HandleValue(OVE->getSourceExpr());
12686         return;
12687       }
12688 
12689       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12690         if (BO->getOpcode() == BO_Comma) {
12691           Visit(BO->getLHS());
12692           HandleValue(BO->getRHS());
12693           return;
12694         }
12695       }
12696 
12697       if (isa<MemberExpr>(E)) {
12698         if (isInitList) {
12699           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
12700                                       false /*CheckReference*/))
12701             return;
12702         }
12703 
12704         Expr *Base = E->IgnoreParenImpCasts();
12705         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12706           // Check for static member variables and don't warn on them.
12707           if (!isa<FieldDecl>(ME->getMemberDecl()))
12708             return;
12709           Base = ME->getBase()->IgnoreParenImpCasts();
12710         }
12711         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
12712           HandleDeclRefExpr(DRE);
12713         return;
12714       }
12715 
12716       Visit(E);
12717     }
12718 
12719     // Reference types not handled in HandleValue are handled here since all
12720     // uses of references are bad, not just r-value uses.
12721     void VisitDeclRefExpr(DeclRefExpr *E) {
12722       if (isReferenceType)
12723         HandleDeclRefExpr(E);
12724     }
12725 
12726     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
12727       if (E->getCastKind() == CK_LValueToRValue) {
12728         HandleValue(E->getSubExpr());
12729         return;
12730       }
12731 
12732       Inherited::VisitImplicitCastExpr(E);
12733     }
12734 
12735     void VisitMemberExpr(MemberExpr *E) {
12736       if (isInitList) {
12737         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
12738           return;
12739       }
12740 
12741       // Don't warn on arrays since they can be treated as pointers.
12742       if (E->getType()->canDecayToPointerType()) return;
12743 
12744       // Warn when a non-static method call is followed by non-static member
12745       // field accesses, which is followed by a DeclRefExpr.
12746       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
12747       bool Warn = (MD && !MD->isStatic());
12748       Expr *Base = E->getBase()->IgnoreParenImpCasts();
12749       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
12750         if (!isa<FieldDecl>(ME->getMemberDecl()))
12751           Warn = false;
12752         Base = ME->getBase()->IgnoreParenImpCasts();
12753       }
12754 
12755       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
12756         if (Warn)
12757           HandleDeclRefExpr(DRE);
12758         return;
12759       }
12760 
12761       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
12762       // Visit that expression.
12763       Visit(Base);
12764     }
12765 
12766     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
12767       Expr *Callee = E->getCallee();
12768 
12769       if (isa<UnresolvedLookupExpr>(Callee))
12770         return Inherited::VisitCXXOperatorCallExpr(E);
12771 
12772       Visit(Callee);
12773       for (auto Arg: E->arguments())
12774         HandleValue(Arg->IgnoreParenImpCasts());
12775     }
12776 
12777     void VisitUnaryOperator(UnaryOperator *E) {
12778       // For POD record types, addresses of its own members are well-defined.
12779       if (E->getOpcode() == UO_AddrOf && isRecordType &&
12780           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
12781         if (!isPODType)
12782           HandleValue(E->getSubExpr());
12783         return;
12784       }
12785 
12786       if (E->isIncrementDecrementOp()) {
12787         HandleValue(E->getSubExpr());
12788         return;
12789       }
12790 
12791       Inherited::VisitUnaryOperator(E);
12792     }
12793 
12794     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
12795 
12796     void VisitCXXConstructExpr(CXXConstructExpr *E) {
12797       if (E->getConstructor()->isCopyConstructor()) {
12798         Expr *ArgExpr = E->getArg(0);
12799         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
12800           if (ILE->getNumInits() == 1)
12801             ArgExpr = ILE->getInit(0);
12802         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
12803           if (ICE->getCastKind() == CK_NoOp)
12804             ArgExpr = ICE->getSubExpr();
12805         HandleValue(ArgExpr);
12806         return;
12807       }
12808       Inherited::VisitCXXConstructExpr(E);
12809     }
12810 
12811     void VisitCallExpr(CallExpr *E) {
12812       // Treat std::move as a use.
12813       if (E->isCallToStdMove()) {
12814         HandleValue(E->getArg(0));
12815         return;
12816       }
12817 
12818       Inherited::VisitCallExpr(E);
12819     }
12820 
12821     void VisitBinaryOperator(BinaryOperator *E) {
12822       if (E->isCompoundAssignmentOp()) {
12823         HandleValue(E->getLHS());
12824         Visit(E->getRHS());
12825         return;
12826       }
12827 
12828       Inherited::VisitBinaryOperator(E);
12829     }
12830 
12831     // A custom visitor for BinaryConditionalOperator is needed because the
12832     // regular visitor would check the condition and true expression separately
12833     // but both point to the same place giving duplicate diagnostics.
12834     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
12835       Visit(E->getCond());
12836       Visit(E->getFalseExpr());
12837     }
12838 
12839     void HandleDeclRefExpr(DeclRefExpr *DRE) {
12840       Decl* ReferenceDecl = DRE->getDecl();
12841       if (OrigDecl != ReferenceDecl) return;
12842       unsigned diag;
12843       if (isReferenceType) {
12844         diag = diag::warn_uninit_self_reference_in_reference_init;
12845       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
12846         diag = diag::warn_static_self_reference_in_init;
12847       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
12848                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
12849                  DRE->getDecl()->getType()->isRecordType()) {
12850         diag = diag::warn_uninit_self_reference_in_init;
12851       } else {
12852         // Local variables will be handled by the CFG analysis.
12853         return;
12854       }
12855 
12856       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
12857                             S.PDiag(diag)
12858                                 << DRE->getDecl() << OrigDecl->getLocation()
12859                                 << DRE->getSourceRange());
12860     }
12861   };
12862 
12863   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
12864   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
12865                                  bool DirectInit) {
12866     // Parameters arguments are occassionially constructed with itself,
12867     // for instance, in recursive functions.  Skip them.
12868     if (isa<ParmVarDecl>(OrigDecl))
12869       return;
12870 
12871     E = E->IgnoreParens();
12872 
12873     // Skip checking T a = a where T is not a record or reference type.
12874     // Doing so is a way to silence uninitialized warnings.
12875     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
12876       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
12877         if (ICE->getCastKind() == CK_LValueToRValue)
12878           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
12879             if (DRE->getDecl() == OrigDecl)
12880               return;
12881 
12882     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
12883   }
12884 } // end anonymous namespace
12885 
12886 namespace {
12887   // Simple wrapper to add the name of a variable or (if no variable is
12888   // available) a DeclarationName into a diagnostic.
12889   struct VarDeclOrName {
12890     VarDecl *VDecl;
12891     DeclarationName Name;
12892 
12893     friend const Sema::SemaDiagnosticBuilder &
12894     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
12895       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
12896     }
12897   };
12898 } // end anonymous namespace
12899 
12900 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
12901                                             DeclarationName Name, QualType Type,
12902                                             TypeSourceInfo *TSI,
12903                                             SourceRange Range, bool DirectInit,
12904                                             Expr *Init) {
12905   bool IsInitCapture = !VDecl;
12906   assert((!VDecl || !VDecl->isInitCapture()) &&
12907          "init captures are expected to be deduced prior to initialization");
12908 
12909   VarDeclOrName VN{VDecl, Name};
12910 
12911   DeducedType *Deduced = Type->getContainedDeducedType();
12912   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
12913 
12914   // Diagnose auto array declarations in C23, unless it's a supported extension.
12915   if (getLangOpts().C23 && Type->isArrayType() &&
12916       !isa_and_present<StringLiteral, InitListExpr>(Init)) {
12917       Diag(Range.getBegin(), diag::err_auto_not_allowed)
12918           << (int)Deduced->getContainedAutoType()->getKeyword()
12919           << /*in array decl*/ 23 << Range;
12920     return QualType();
12921   }
12922 
12923   // C++11 [dcl.spec.auto]p3
12924   if (!Init) {
12925     assert(VDecl && "no init for init capture deduction?");
12926 
12927     // Except for class argument deduction, and then for an initializing
12928     // declaration only, i.e. no static at class scope or extern.
12929     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
12930         VDecl->hasExternalStorage() ||
12931         VDecl->isStaticDataMember()) {
12932       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
12933         << VDecl->getDeclName() << Type;
12934       return QualType();
12935     }
12936   }
12937 
12938   ArrayRef<Expr*> DeduceInits;
12939   if (Init)
12940     DeduceInits = Init;
12941 
12942   auto *PL = dyn_cast_if_present<ParenListExpr>(Init);
12943   if (DirectInit && PL)
12944     DeduceInits = PL->exprs();
12945 
12946   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
12947     assert(VDecl && "non-auto type for init capture deduction?");
12948     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12949     InitializationKind Kind = InitializationKind::CreateForInit(
12950         VDecl->getLocation(), DirectInit, Init);
12951     // FIXME: Initialization should not be taking a mutable list of inits.
12952     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
12953     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
12954                                                        InitsCopy);
12955   }
12956 
12957   if (DirectInit) {
12958     if (auto *IL = dyn_cast<InitListExpr>(Init))
12959       DeduceInits = IL->inits();
12960   }
12961 
12962   // Deduction only works if we have exactly one source expression.
12963   if (DeduceInits.empty()) {
12964     // It isn't possible to write this directly, but it is possible to
12965     // end up in this situation with "auto x(some_pack...);"
12966     Diag(Init->getBeginLoc(), IsInitCapture
12967                                   ? diag::err_init_capture_no_expression
12968                                   : diag::err_auto_var_init_no_expression)
12969         << VN << Type << Range;
12970     return QualType();
12971   }
12972 
12973   if (DeduceInits.size() > 1) {
12974     Diag(DeduceInits[1]->getBeginLoc(),
12975          IsInitCapture ? diag::err_init_capture_multiple_expressions
12976                        : diag::err_auto_var_init_multiple_expressions)
12977         << VN << Type << Range;
12978     return QualType();
12979   }
12980 
12981   Expr *DeduceInit = DeduceInits[0];
12982   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
12983     Diag(Init->getBeginLoc(), IsInitCapture
12984                                   ? diag::err_init_capture_paren_braces
12985                                   : diag::err_auto_var_init_paren_braces)
12986         << isa<InitListExpr>(Init) << VN << Type << Range;
12987     return QualType();
12988   }
12989 
12990   // Expressions default to 'id' when we're in a debugger.
12991   bool DefaultedAnyToId = false;
12992   if (getLangOpts().DebuggerCastResultToId &&
12993       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
12994     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12995     if (Result.isInvalid()) {
12996       return QualType();
12997     }
12998     Init = Result.get();
12999     DefaultedAnyToId = true;
13000   }
13001 
13002   // C++ [dcl.decomp]p1:
13003   //   If the assignment-expression [...] has array type A and no ref-qualifier
13004   //   is present, e has type cv A
13005   if (VDecl && isa<DecompositionDecl>(VDecl) &&
13006       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
13007       DeduceInit->getType()->isConstantArrayType())
13008     return Context.getQualifiedType(DeduceInit->getType(),
13009                                     Type.getQualifiers());
13010 
13011   QualType DeducedType;
13012   TemplateDeductionInfo Info(DeduceInit->getExprLoc());
13013   TemplateDeductionResult Result =
13014       DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info);
13015   if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) {
13016     if (!IsInitCapture)
13017       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
13018     else if (isa<InitListExpr>(Init))
13019       Diag(Range.getBegin(),
13020            diag::err_init_capture_deduction_failure_from_init_list)
13021           << VN
13022           << (DeduceInit->getType().isNull() ? TSI->getType()
13023                                              : DeduceInit->getType())
13024           << DeduceInit->getSourceRange();
13025     else
13026       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
13027           << VN << TSI->getType()
13028           << (DeduceInit->getType().isNull() ? TSI->getType()
13029                                              : DeduceInit->getType())
13030           << DeduceInit->getSourceRange();
13031   }
13032 
13033   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
13034   // 'id' instead of a specific object type prevents most of our usual
13035   // checks.
13036   // We only want to warn outside of template instantiations, though:
13037   // inside a template, the 'id' could have come from a parameter.
13038   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
13039       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
13040     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
13041     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
13042   }
13043 
13044   return DeducedType;
13045 }
13046 
13047 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
13048                                          Expr *Init) {
13049   assert(!Init || !Init->containsErrors());
13050   QualType DeducedType = deduceVarTypeFromInitializer(
13051       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
13052       VDecl->getSourceRange(), DirectInit, Init);
13053   if (DeducedType.isNull()) {
13054     VDecl->setInvalidDecl();
13055     return true;
13056   }
13057 
13058   VDecl->setType(DeducedType);
13059   assert(VDecl->isLinkageValid());
13060 
13061   // In ARC, infer lifetime.
13062   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
13063     VDecl->setInvalidDecl();
13064 
13065   if (getLangOpts().OpenCL)
13066     deduceOpenCLAddressSpace(VDecl);
13067 
13068   // If this is a redeclaration, check that the type we just deduced matches
13069   // the previously declared type.
13070   if (VarDecl *Old = VDecl->getPreviousDecl()) {
13071     // We never need to merge the type, because we cannot form an incomplete
13072     // array of auto, nor deduce such a type.
13073     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
13074   }
13075 
13076   // Check the deduced type is valid for a variable declaration.
13077   CheckVariableDeclarationType(VDecl);
13078   return VDecl->isInvalidDecl();
13079 }
13080 
13081 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
13082                                               SourceLocation Loc) {
13083   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
13084     Init = EWC->getSubExpr();
13085 
13086   if (auto *CE = dyn_cast<ConstantExpr>(Init))
13087     Init = CE->getSubExpr();
13088 
13089   QualType InitType = Init->getType();
13090   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13091           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
13092          "shouldn't be called if type doesn't have a non-trivial C struct");
13093   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
13094     for (auto *I : ILE->inits()) {
13095       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
13096           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
13097         continue;
13098       SourceLocation SL = I->getExprLoc();
13099       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
13100     }
13101     return;
13102   }
13103 
13104   if (isa<ImplicitValueInitExpr>(Init)) {
13105     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13106       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
13107                             NTCUK_Init);
13108   } else {
13109     // Assume all other explicit initializers involving copying some existing
13110     // object.
13111     // TODO: ignore any explicit initializers where we can guarantee
13112     // copy-elision.
13113     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
13114       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
13115   }
13116 }
13117 
13118 namespace {
13119 
13120 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
13121   // Ignore unavailable fields. A field can be marked as unavailable explicitly
13122   // in the source code or implicitly by the compiler if it is in a union
13123   // defined in a system header and has non-trivial ObjC ownership
13124   // qualifications. We don't want those fields to participate in determining
13125   // whether the containing union is non-trivial.
13126   return FD->hasAttr<UnavailableAttr>();
13127 }
13128 
13129 struct DiagNonTrivalCUnionDefaultInitializeVisitor
13130     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13131                                     void> {
13132   using Super =
13133       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
13134                                     void>;
13135 
13136   DiagNonTrivalCUnionDefaultInitializeVisitor(
13137       QualType OrigTy, SourceLocation OrigLoc,
13138       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13139       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13140 
13141   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
13142                      const FieldDecl *FD, bool InNonTrivialUnion) {
13143     if (const auto *AT = S.Context.getAsArrayType(QT))
13144       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13145                                      InNonTrivialUnion);
13146     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
13147   }
13148 
13149   void visitARCStrong(QualType QT, const FieldDecl *FD,
13150                       bool InNonTrivialUnion) {
13151     if (InNonTrivialUnion)
13152       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13153           << 1 << 0 << QT << FD->getName();
13154   }
13155 
13156   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13157     if (InNonTrivialUnion)
13158       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13159           << 1 << 0 << QT << FD->getName();
13160   }
13161 
13162   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13163     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13164     if (RD->isUnion()) {
13165       if (OrigLoc.isValid()) {
13166         bool IsUnion = false;
13167         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13168           IsUnion = OrigRD->isUnion();
13169         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13170             << 0 << OrigTy << IsUnion << UseContext;
13171         // Reset OrigLoc so that this diagnostic is emitted only once.
13172         OrigLoc = SourceLocation();
13173       }
13174       InNonTrivialUnion = true;
13175     }
13176 
13177     if (InNonTrivialUnion)
13178       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13179           << 0 << 0 << QT.getUnqualifiedType() << "";
13180 
13181     for (const FieldDecl *FD : RD->fields())
13182       if (!shouldIgnoreForRecordTriviality(FD))
13183         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13184   }
13185 
13186   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13187 
13188   // The non-trivial C union type or the struct/union type that contains a
13189   // non-trivial C union.
13190   QualType OrigTy;
13191   SourceLocation OrigLoc;
13192   Sema::NonTrivialCUnionContext UseContext;
13193   Sema &S;
13194 };
13195 
13196 struct DiagNonTrivalCUnionDestructedTypeVisitor
13197     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
13198   using Super =
13199       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
13200 
13201   DiagNonTrivalCUnionDestructedTypeVisitor(
13202       QualType OrigTy, SourceLocation OrigLoc,
13203       Sema::NonTrivialCUnionContext UseContext, Sema &S)
13204       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13205 
13206   void visitWithKind(QualType::DestructionKind DK, QualType QT,
13207                      const FieldDecl *FD, bool InNonTrivialUnion) {
13208     if (const auto *AT = S.Context.getAsArrayType(QT))
13209       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13210                                      InNonTrivialUnion);
13211     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
13212   }
13213 
13214   void visitARCStrong(QualType QT, const FieldDecl *FD,
13215                       bool InNonTrivialUnion) {
13216     if (InNonTrivialUnion)
13217       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13218           << 1 << 1 << QT << FD->getName();
13219   }
13220 
13221   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13222     if (InNonTrivialUnion)
13223       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13224           << 1 << 1 << QT << FD->getName();
13225   }
13226 
13227   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13228     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13229     if (RD->isUnion()) {
13230       if (OrigLoc.isValid()) {
13231         bool IsUnion = false;
13232         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13233           IsUnion = OrigRD->isUnion();
13234         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13235             << 1 << OrigTy << IsUnion << UseContext;
13236         // Reset OrigLoc so that this diagnostic is emitted only once.
13237         OrigLoc = SourceLocation();
13238       }
13239       InNonTrivialUnion = true;
13240     }
13241 
13242     if (InNonTrivialUnion)
13243       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13244           << 0 << 1 << QT.getUnqualifiedType() << "";
13245 
13246     for (const FieldDecl *FD : RD->fields())
13247       if (!shouldIgnoreForRecordTriviality(FD))
13248         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13249   }
13250 
13251   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13252   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
13253                           bool InNonTrivialUnion) {}
13254 
13255   // The non-trivial C union type or the struct/union type that contains a
13256   // non-trivial C union.
13257   QualType OrigTy;
13258   SourceLocation OrigLoc;
13259   Sema::NonTrivialCUnionContext UseContext;
13260   Sema &S;
13261 };
13262 
13263 struct DiagNonTrivalCUnionCopyVisitor
13264     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
13265   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
13266 
13267   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
13268                                  Sema::NonTrivialCUnionContext UseContext,
13269                                  Sema &S)
13270       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
13271 
13272   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
13273                      const FieldDecl *FD, bool InNonTrivialUnion) {
13274     if (const auto *AT = S.Context.getAsArrayType(QT))
13275       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
13276                                      InNonTrivialUnion);
13277     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
13278   }
13279 
13280   void visitARCStrong(QualType QT, const FieldDecl *FD,
13281                       bool InNonTrivialUnion) {
13282     if (InNonTrivialUnion)
13283       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13284           << 1 << 2 << QT << FD->getName();
13285   }
13286 
13287   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13288     if (InNonTrivialUnion)
13289       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
13290           << 1 << 2 << QT << FD->getName();
13291   }
13292 
13293   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
13294     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
13295     if (RD->isUnion()) {
13296       if (OrigLoc.isValid()) {
13297         bool IsUnion = false;
13298         if (auto *OrigRD = OrigTy->getAsRecordDecl())
13299           IsUnion = OrigRD->isUnion();
13300         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
13301             << 2 << OrigTy << IsUnion << UseContext;
13302         // Reset OrigLoc so that this diagnostic is emitted only once.
13303         OrigLoc = SourceLocation();
13304       }
13305       InNonTrivialUnion = true;
13306     }
13307 
13308     if (InNonTrivialUnion)
13309       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
13310           << 0 << 2 << QT.getUnqualifiedType() << "";
13311 
13312     for (const FieldDecl *FD : RD->fields())
13313       if (!shouldIgnoreForRecordTriviality(FD))
13314         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
13315   }
13316 
13317   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
13318                 const FieldDecl *FD, bool InNonTrivialUnion) {}
13319   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
13320   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
13321                             bool InNonTrivialUnion) {}
13322 
13323   // The non-trivial C union type or the struct/union type that contains a
13324   // non-trivial C union.
13325   QualType OrigTy;
13326   SourceLocation OrigLoc;
13327   Sema::NonTrivialCUnionContext UseContext;
13328   Sema &S;
13329 };
13330 
13331 } // namespace
13332 
13333 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
13334                                  NonTrivialCUnionContext UseContext,
13335                                  unsigned NonTrivialKind) {
13336   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13337           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
13338           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
13339          "shouldn't be called if type doesn't have a non-trivial C union");
13340 
13341   if ((NonTrivialKind & NTCUK_Init) &&
13342       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13343     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
13344         .visit(QT, nullptr, false);
13345   if ((NonTrivialKind & NTCUK_Destruct) &&
13346       QT.hasNonTrivialToPrimitiveDestructCUnion())
13347     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
13348         .visit(QT, nullptr, false);
13349   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
13350     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
13351         .visit(QT, nullptr, false);
13352 }
13353 
13354 /// AddInitializerToDecl - Adds the initializer Init to the
13355 /// declaration dcl. If DirectInit is true, this is C++ direct
13356 /// initialization rather than copy initialization.
13357 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
13358   // If there is no declaration, there was an error parsing it.  Just ignore
13359   // the initializer.
13360   if (!RealDecl || RealDecl->isInvalidDecl()) {
13361     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
13362     return;
13363   }
13364 
13365   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
13366     // Pure-specifiers are handled in ActOnPureSpecifier.
13367     Diag(Method->getLocation(), diag::err_member_function_initialization)
13368       << Method->getDeclName() << Init->getSourceRange();
13369     Method->setInvalidDecl();
13370     return;
13371   }
13372 
13373   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
13374   if (!VDecl) {
13375     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
13376     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
13377     RealDecl->setInvalidDecl();
13378     return;
13379   }
13380 
13381   // WebAssembly tables can't be used to initialise a variable.
13382   if (Init && !Init->getType().isNull() &&
13383       Init->getType()->isWebAssemblyTableType()) {
13384     Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0;
13385     VDecl->setInvalidDecl();
13386     return;
13387   }
13388 
13389   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
13390   if (VDecl->getType()->isUndeducedType()) {
13391     // Attempt typo correction early so that the type of the init expression can
13392     // be deduced based on the chosen correction if the original init contains a
13393     // TypoExpr.
13394     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
13395     if (!Res.isUsable()) {
13396       // There are unresolved typos in Init, just drop them.
13397       // FIXME: improve the recovery strategy to preserve the Init.
13398       RealDecl->setInvalidDecl();
13399       return;
13400     }
13401     if (Res.get()->containsErrors()) {
13402       // Invalidate the decl as we don't know the type for recovery-expr yet.
13403       RealDecl->setInvalidDecl();
13404       VDecl->setInit(Res.get());
13405       return;
13406     }
13407     Init = Res.get();
13408 
13409     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
13410       return;
13411   }
13412 
13413   // dllimport cannot be used on variable definitions.
13414   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
13415     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
13416     VDecl->setInvalidDecl();
13417     return;
13418   }
13419 
13420   // C99 6.7.8p5. If the declaration of an identifier has block scope, and
13421   // the identifier has external or internal linkage, the declaration shall
13422   // have no initializer for the identifier.
13423   // C++14 [dcl.init]p5 is the same restriction for C++.
13424   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
13425     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
13426     VDecl->setInvalidDecl();
13427     return;
13428   }
13429 
13430   if (!VDecl->getType()->isDependentType()) {
13431     // A definition must end up with a complete type, which means it must be
13432     // complete with the restriction that an array type might be completed by
13433     // the initializer; note that later code assumes this restriction.
13434     QualType BaseDeclType = VDecl->getType();
13435     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
13436       BaseDeclType = Array->getElementType();
13437     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
13438                             diag::err_typecheck_decl_incomplete_type)) {
13439       RealDecl->setInvalidDecl();
13440       return;
13441     }
13442 
13443     // The variable can not have an abstract class type.
13444     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
13445                                diag::err_abstract_type_in_decl,
13446                                AbstractVariableType))
13447       VDecl->setInvalidDecl();
13448   }
13449 
13450   // C++ [module.import/6] external definitions are not permitted in header
13451   // units.
13452   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
13453       !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() &&
13454       VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() &&
13455       !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(VDecl)) {
13456     Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit);
13457     VDecl->setInvalidDecl();
13458   }
13459 
13460   // If adding the initializer will turn this declaration into a definition,
13461   // and we already have a definition for this variable, diagnose or otherwise
13462   // handle the situation.
13463   if (VarDecl *Def = VDecl->getDefinition())
13464     if (Def != VDecl &&
13465         (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
13466         !VDecl->isThisDeclarationADemotedDefinition() &&
13467         checkVarDeclRedefinition(Def, VDecl))
13468       return;
13469 
13470   if (getLangOpts().CPlusPlus) {
13471     // C++ [class.static.data]p4
13472     //   If a static data member is of const integral or const
13473     //   enumeration type, its declaration in the class definition can
13474     //   specify a constant-initializer which shall be an integral
13475     //   constant expression (5.19). In that case, the member can appear
13476     //   in integral constant expressions. The member shall still be
13477     //   defined in a namespace scope if it is used in the program and the
13478     //   namespace scope definition shall not contain an initializer.
13479     //
13480     // We already performed a redefinition check above, but for static
13481     // data members we also need to check whether there was an in-class
13482     // declaration with an initializer.
13483     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
13484       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
13485           << VDecl->getDeclName();
13486       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
13487            diag::note_previous_initializer)
13488           << 0;
13489       return;
13490     }
13491 
13492     if (VDecl->hasLocalStorage())
13493       setFunctionHasBranchProtectedScope();
13494 
13495     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
13496       VDecl->setInvalidDecl();
13497       return;
13498     }
13499   }
13500 
13501   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
13502   // a kernel function cannot be initialized."
13503   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
13504     Diag(VDecl->getLocation(), diag::err_local_cant_init);
13505     VDecl->setInvalidDecl();
13506     return;
13507   }
13508 
13509   // The LoaderUninitialized attribute acts as a definition (of undef).
13510   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
13511     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
13512     VDecl->setInvalidDecl();
13513     return;
13514   }
13515 
13516   // Get the decls type and save a reference for later, since
13517   // CheckInitializerTypes may change it.
13518   QualType DclT = VDecl->getType(), SavT = DclT;
13519 
13520   // Expressions default to 'id' when we're in a debugger
13521   // and we are assigning it to a variable of Objective-C pointer type.
13522   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
13523       Init->getType() == Context.UnknownAnyTy) {
13524     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
13525     if (Result.isInvalid()) {
13526       VDecl->setInvalidDecl();
13527       return;
13528     }
13529     Init = Result.get();
13530   }
13531 
13532   // Perform the initialization.
13533   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
13534   bool IsParenListInit = false;
13535   if (!VDecl->isInvalidDecl()) {
13536     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
13537     InitializationKind Kind = InitializationKind::CreateForInit(
13538         VDecl->getLocation(), DirectInit, Init);
13539 
13540     MultiExprArg Args = Init;
13541     if (CXXDirectInit)
13542       Args = MultiExprArg(CXXDirectInit->getExprs(),
13543                           CXXDirectInit->getNumExprs());
13544 
13545     // Try to correct any TypoExprs in the initialization arguments.
13546     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
13547       ExprResult Res = CorrectDelayedTyposInExpr(
13548           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
13549           [this, Entity, Kind](Expr *E) {
13550             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
13551             return Init.Failed() ? ExprError() : E;
13552           });
13553       if (Res.isInvalid()) {
13554         VDecl->setInvalidDecl();
13555       } else if (Res.get() != Args[Idx]) {
13556         Args[Idx] = Res.get();
13557       }
13558     }
13559     if (VDecl->isInvalidDecl())
13560       return;
13561 
13562     InitializationSequence InitSeq(*this, Entity, Kind, Args,
13563                                    /*TopLevelOfInitList=*/false,
13564                                    /*TreatUnavailableAsInvalid=*/false);
13565     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
13566     if (Result.isInvalid()) {
13567       // If the provided initializer fails to initialize the var decl,
13568       // we attach a recovery expr for better recovery.
13569       auto RecoveryExpr =
13570           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
13571       if (RecoveryExpr.get())
13572         VDecl->setInit(RecoveryExpr.get());
13573       return;
13574     }
13575 
13576     Init = Result.getAs<Expr>();
13577     IsParenListInit = !InitSeq.steps().empty() &&
13578                       InitSeq.step_begin()->Kind ==
13579                           InitializationSequence::SK_ParenthesizedListInit;
13580     QualType VDeclType = VDecl->getType();
13581     if (Init && !Init->getType().isNull() &&
13582         !Init->getType()->isDependentType() && !VDeclType->isDependentType() &&
13583         Context.getAsIncompleteArrayType(VDeclType) &&
13584         Context.getAsIncompleteArrayType(Init->getType())) {
13585       // Bail out if it is not possible to deduce array size from the
13586       // initializer.
13587       Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
13588           << VDeclType;
13589       VDecl->setInvalidDecl();
13590       return;
13591     }
13592   }
13593 
13594   // Check for self-references within variable initializers.
13595   // Variables declared within a function/method body (except for references)
13596   // are handled by a dataflow analysis.
13597   // This is undefined behavior in C++, but valid in C.
13598   if (getLangOpts().CPlusPlus)
13599     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
13600         VDecl->getType()->isReferenceType())
13601       CheckSelfReference(*this, RealDecl, Init, DirectInit);
13602 
13603   // If the type changed, it means we had an incomplete type that was
13604   // completed by the initializer. For example:
13605   //   int ary[] = { 1, 3, 5 };
13606   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
13607   if (!VDecl->isInvalidDecl() && (DclT != SavT))
13608     VDecl->setType(DclT);
13609 
13610   if (!VDecl->isInvalidDecl()) {
13611     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
13612 
13613     if (VDecl->hasAttr<BlocksAttr>())
13614       checkRetainCycles(VDecl, Init);
13615 
13616     // It is safe to assign a weak reference into a strong variable.
13617     // Although this code can still have problems:
13618     //   id x = self.weakProp;
13619     //   id y = self.weakProp;
13620     // we do not warn to warn spuriously when 'x' and 'y' are on separate
13621     // paths through the function. This should be revisited if
13622     // -Wrepeated-use-of-weak is made flow-sensitive.
13623     if (FunctionScopeInfo *FSI = getCurFunction())
13624       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
13625            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
13626           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
13627                            Init->getBeginLoc()))
13628         FSI->markSafeWeakUse(Init);
13629   }
13630 
13631   // The initialization is usually a full-expression.
13632   //
13633   // FIXME: If this is a braced initialization of an aggregate, it is not
13634   // an expression, and each individual field initializer is a separate
13635   // full-expression. For instance, in:
13636   //
13637   //   struct Temp { ~Temp(); };
13638   //   struct S { S(Temp); };
13639   //   struct T { S a, b; } t = { Temp(), Temp() }
13640   //
13641   // we should destroy the first Temp before constructing the second.
13642   ExprResult Result =
13643       ActOnFinishFullExpr(Init, VDecl->getLocation(),
13644                           /*DiscardedValue*/ false, VDecl->isConstexpr());
13645   if (Result.isInvalid()) {
13646     VDecl->setInvalidDecl();
13647     return;
13648   }
13649   Init = Result.get();
13650 
13651   // Attach the initializer to the decl.
13652   VDecl->setInit(Init);
13653 
13654   if (VDecl->isLocalVarDecl()) {
13655     // Don't check the initializer if the declaration is malformed.
13656     if (VDecl->isInvalidDecl()) {
13657       // do nothing
13658 
13659     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
13660     // This is true even in C++ for OpenCL.
13661     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
13662       CheckForConstantInitializer(Init, DclT);
13663 
13664     // Otherwise, C++ does not restrict the initializer.
13665     } else if (getLangOpts().CPlusPlus) {
13666       // do nothing
13667 
13668     // C99 6.7.8p4: All the expressions in an initializer for an object that has
13669     // static storage duration shall be constant expressions or string literals.
13670     } else if (VDecl->getStorageClass() == SC_Static) {
13671       CheckForConstantInitializer(Init, DclT);
13672 
13673     // C89 is stricter than C99 for aggregate initializers.
13674     // C89 6.5.7p3: All the expressions [...] in an initializer list
13675     // for an object that has aggregate or union type shall be
13676     // constant expressions.
13677     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
13678                isa<InitListExpr>(Init)) {
13679       const Expr *Culprit;
13680       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
13681         Diag(Culprit->getExprLoc(),
13682              diag::ext_aggregate_init_not_constant)
13683           << Culprit->getSourceRange();
13684       }
13685     }
13686 
13687     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
13688       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
13689         if (VDecl->hasLocalStorage())
13690           BE->getBlockDecl()->setCanAvoidCopyToHeap();
13691   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
13692              VDecl->getLexicalDeclContext()->isRecord()) {
13693     // This is an in-class initialization for a static data member, e.g.,
13694     //
13695     // struct S {
13696     //   static const int value = 17;
13697     // };
13698 
13699     // C++ [class.mem]p4:
13700     //   A member-declarator can contain a constant-initializer only
13701     //   if it declares a static member (9.4) of const integral or
13702     //   const enumeration type, see 9.4.2.
13703     //
13704     // C++11 [class.static.data]p3:
13705     //   If a non-volatile non-inline const static data member is of integral
13706     //   or enumeration type, its declaration in the class definition can
13707     //   specify a brace-or-equal-initializer in which every initializer-clause
13708     //   that is an assignment-expression is a constant expression. A static
13709     //   data member of literal type can be declared in the class definition
13710     //   with the constexpr specifier; if so, its declaration shall specify a
13711     //   brace-or-equal-initializer in which every initializer-clause that is
13712     //   an assignment-expression is a constant expression.
13713 
13714     // Do nothing on dependent types.
13715     if (DclT->isDependentType()) {
13716 
13717     // Allow any 'static constexpr' members, whether or not they are of literal
13718     // type. We separately check that every constexpr variable is of literal
13719     // type.
13720     } else if (VDecl->isConstexpr()) {
13721 
13722     // Require constness.
13723     } else if (!DclT.isConstQualified()) {
13724       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
13725         << Init->getSourceRange();
13726       VDecl->setInvalidDecl();
13727 
13728     // We allow integer constant expressions in all cases.
13729     } else if (DclT->isIntegralOrEnumerationType()) {
13730       // Check whether the expression is a constant expression.
13731       SourceLocation Loc;
13732       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
13733         // In C++11, a non-constexpr const static data member with an
13734         // in-class initializer cannot be volatile.
13735         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
13736       else if (Init->isValueDependent())
13737         ; // Nothing to check.
13738       else if (Init->isIntegerConstantExpr(Context, &Loc))
13739         ; // Ok, it's an ICE!
13740       else if (Init->getType()->isScopedEnumeralType() &&
13741                Init->isCXX11ConstantExpr(Context))
13742         ; // Ok, it is a scoped-enum constant expression.
13743       else if (Init->isEvaluatable(Context)) {
13744         // If we can constant fold the initializer through heroics, accept it,
13745         // but report this as a use of an extension for -pedantic.
13746         Diag(Loc, diag::ext_in_class_initializer_non_constant)
13747           << Init->getSourceRange();
13748       } else {
13749         // Otherwise, this is some crazy unknown case.  Report the issue at the
13750         // location provided by the isIntegerConstantExpr failed check.
13751         Diag(Loc, diag::err_in_class_initializer_non_constant)
13752           << Init->getSourceRange();
13753         VDecl->setInvalidDecl();
13754       }
13755 
13756     // We allow foldable floating-point constants as an extension.
13757     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
13758       // In C++98, this is a GNU extension. In C++11, it is not, but we support
13759       // it anyway and provide a fixit to add the 'constexpr'.
13760       if (getLangOpts().CPlusPlus11) {
13761         Diag(VDecl->getLocation(),
13762              diag::ext_in_class_initializer_float_type_cxx11)
13763             << DclT << Init->getSourceRange();
13764         Diag(VDecl->getBeginLoc(),
13765              diag::note_in_class_initializer_float_type_cxx11)
13766             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13767       } else {
13768         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
13769           << DclT << Init->getSourceRange();
13770 
13771         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
13772           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
13773             << Init->getSourceRange();
13774           VDecl->setInvalidDecl();
13775         }
13776       }
13777 
13778     // Suggest adding 'constexpr' in C++11 for literal types.
13779     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
13780       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
13781           << DclT << Init->getSourceRange()
13782           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
13783       VDecl->setConstexpr(true);
13784 
13785     } else {
13786       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
13787         << DclT << Init->getSourceRange();
13788       VDecl->setInvalidDecl();
13789     }
13790   } else if (VDecl->isFileVarDecl()) {
13791     // In C, extern is typically used to avoid tentative definitions when
13792     // declaring variables in headers, but adding an intializer makes it a
13793     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
13794     // In C++, extern is often used to give implictly static const variables
13795     // external linkage, so don't warn in that case. If selectany is present,
13796     // this might be header code intended for C and C++ inclusion, so apply the
13797     // C++ rules.
13798     if (VDecl->getStorageClass() == SC_Extern &&
13799         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
13800          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
13801         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
13802         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
13803       Diag(VDecl->getLocation(), diag::warn_extern_init);
13804 
13805     // In Microsoft C++ mode, a const variable defined in namespace scope has
13806     // external linkage by default if the variable is declared with
13807     // __declspec(dllexport).
13808     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
13809         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
13810         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
13811       VDecl->setStorageClass(SC_Extern);
13812 
13813     // C99 6.7.8p4. All file scoped initializers need to be constant.
13814     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
13815       CheckForConstantInitializer(Init, DclT);
13816   }
13817 
13818   QualType InitType = Init->getType();
13819   if (!InitType.isNull() &&
13820       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
13821        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
13822     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
13823 
13824   // We will represent direct-initialization similarly to copy-initialization:
13825   //    int x(1);  -as-> int x = 1;
13826   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
13827   //
13828   // Clients that want to distinguish between the two forms, can check for
13829   // direct initializer using VarDecl::getInitStyle().
13830   // A major benefit is that clients that don't particularly care about which
13831   // exactly form was it (like the CodeGen) can handle both cases without
13832   // special case code.
13833 
13834   // C++ 8.5p11:
13835   // The form of initialization (using parentheses or '=') is generally
13836   // insignificant, but does matter when the entity being initialized has a
13837   // class type.
13838   if (CXXDirectInit) {
13839     assert(DirectInit && "Call-style initializer must be direct init.");
13840     VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit
13841                                         : VarDecl::CallInit);
13842   } else if (DirectInit) {
13843     // This must be list-initialization. No other way is direct-initialization.
13844     VDecl->setInitStyle(VarDecl::ListInit);
13845   }
13846 
13847   if (LangOpts.OpenMP &&
13848       (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) &&
13849       VDecl->isFileVarDecl())
13850     DeclsToCheckForDeferredDiags.insert(VDecl);
13851   CheckCompleteVariableDeclaration(VDecl);
13852 }
13853 
13854 /// ActOnInitializerError - Given that there was an error parsing an
13855 /// initializer for the given declaration, try to at least re-establish
13856 /// invariants such as whether a variable's type is either dependent or
13857 /// complete.
13858 void Sema::ActOnInitializerError(Decl *D) {
13859   // Our main concern here is re-establishing invariants like "a
13860   // variable's type is either dependent or complete".
13861   if (!D || D->isInvalidDecl()) return;
13862 
13863   VarDecl *VD = dyn_cast<VarDecl>(D);
13864   if (!VD) return;
13865 
13866   // Bindings are not usable if we can't make sense of the initializer.
13867   if (auto *DD = dyn_cast<DecompositionDecl>(D))
13868     for (auto *BD : DD->bindings())
13869       BD->setInvalidDecl();
13870 
13871   // Auto types are meaningless if we can't make sense of the initializer.
13872   if (VD->getType()->isUndeducedType()) {
13873     D->setInvalidDecl();
13874     return;
13875   }
13876 
13877   QualType Ty = VD->getType();
13878   if (Ty->isDependentType()) return;
13879 
13880   // Require a complete type.
13881   if (RequireCompleteType(VD->getLocation(),
13882                           Context.getBaseElementType(Ty),
13883                           diag::err_typecheck_decl_incomplete_type)) {
13884     VD->setInvalidDecl();
13885     return;
13886   }
13887 
13888   // Require a non-abstract type.
13889   if (RequireNonAbstractType(VD->getLocation(), Ty,
13890                              diag::err_abstract_type_in_decl,
13891                              AbstractVariableType)) {
13892     VD->setInvalidDecl();
13893     return;
13894   }
13895 
13896   // Don't bother complaining about constructors or destructors,
13897   // though.
13898 }
13899 
13900 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
13901   // If there is no declaration, there was an error parsing it. Just ignore it.
13902   if (!RealDecl)
13903     return;
13904 
13905   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
13906     QualType Type = Var->getType();
13907 
13908     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
13909     if (isa<DecompositionDecl>(RealDecl)) {
13910       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
13911       Var->setInvalidDecl();
13912       return;
13913     }
13914 
13915     if (Type->isUndeducedType() &&
13916         DeduceVariableDeclarationType(Var, false, nullptr))
13917       return;
13918 
13919     // C++11 [class.static.data]p3: A static data member can be declared with
13920     // the constexpr specifier; if so, its declaration shall specify
13921     // a brace-or-equal-initializer.
13922     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
13923     // the definition of a variable [...] or the declaration of a static data
13924     // member.
13925     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
13926         !Var->isThisDeclarationADemotedDefinition()) {
13927       if (Var->isStaticDataMember()) {
13928         // C++1z removes the relevant rule; the in-class declaration is always
13929         // a definition there.
13930         if (!getLangOpts().CPlusPlus17 &&
13931             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13932           Diag(Var->getLocation(),
13933                diag::err_constexpr_static_mem_var_requires_init)
13934               << Var;
13935           Var->setInvalidDecl();
13936           return;
13937         }
13938       } else {
13939         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
13940         Var->setInvalidDecl();
13941         return;
13942       }
13943     }
13944 
13945     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
13946     // be initialized.
13947     if (!Var->isInvalidDecl() &&
13948         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
13949         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
13950       bool HasConstExprDefaultConstructor = false;
13951       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13952         for (auto *Ctor : RD->ctors()) {
13953           if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
13954               Ctor->getMethodQualifiers().getAddressSpace() ==
13955                   LangAS::opencl_constant) {
13956             HasConstExprDefaultConstructor = true;
13957           }
13958         }
13959       }
13960       if (!HasConstExprDefaultConstructor) {
13961         Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
13962         Var->setInvalidDecl();
13963         return;
13964       }
13965     }
13966 
13967     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
13968       if (Var->getStorageClass() == SC_Extern) {
13969         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
13970             << Var;
13971         Var->setInvalidDecl();
13972         return;
13973       }
13974       if (RequireCompleteType(Var->getLocation(), Var->getType(),
13975                               diag::err_typecheck_decl_incomplete_type)) {
13976         Var->setInvalidDecl();
13977         return;
13978       }
13979       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
13980         if (!RD->hasTrivialDefaultConstructor()) {
13981           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
13982           Var->setInvalidDecl();
13983           return;
13984         }
13985       }
13986       // The declaration is unitialized, no need for further checks.
13987       return;
13988     }
13989 
13990     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
13991     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
13992         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
13993       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
13994                             NTCUC_DefaultInitializedObject, NTCUK_Init);
13995 
13996 
13997     switch (DefKind) {
13998     case VarDecl::Definition:
13999       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
14000         break;
14001 
14002       // We have an out-of-line definition of a static data member
14003       // that has an in-class initializer, so we type-check this like
14004       // a declaration.
14005       //
14006       [[fallthrough]];
14007 
14008     case VarDecl::DeclarationOnly:
14009       // It's only a declaration.
14010 
14011       // Block scope. C99 6.7p7: If an identifier for an object is
14012       // declared with no linkage (C99 6.2.2p6), the type for the
14013       // object shall be complete.
14014       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
14015           !Var->hasLinkage() && !Var->isInvalidDecl() &&
14016           RequireCompleteType(Var->getLocation(), Type,
14017                               diag::err_typecheck_decl_incomplete_type))
14018         Var->setInvalidDecl();
14019 
14020       // Make sure that the type is not abstract.
14021       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14022           RequireNonAbstractType(Var->getLocation(), Type,
14023                                  diag::err_abstract_type_in_decl,
14024                                  AbstractVariableType))
14025         Var->setInvalidDecl();
14026       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
14027           Var->getStorageClass() == SC_PrivateExtern) {
14028         Diag(Var->getLocation(), diag::warn_private_extern);
14029         Diag(Var->getLocation(), diag::note_private_extern);
14030       }
14031 
14032       if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
14033           !Var->isInvalidDecl())
14034         ExternalDeclarations.push_back(Var);
14035 
14036       return;
14037 
14038     case VarDecl::TentativeDefinition:
14039       // File scope. C99 6.9.2p2: A declaration of an identifier for an
14040       // object that has file scope without an initializer, and without a
14041       // storage-class specifier or with the storage-class specifier "static",
14042       // constitutes a tentative definition. Note: A tentative definition with
14043       // external linkage is valid (C99 6.2.2p5).
14044       if (!Var->isInvalidDecl()) {
14045         if (const IncompleteArrayType *ArrayT
14046                                     = Context.getAsIncompleteArrayType(Type)) {
14047           if (RequireCompleteSizedType(
14048                   Var->getLocation(), ArrayT->getElementType(),
14049                   diag::err_array_incomplete_or_sizeless_type))
14050             Var->setInvalidDecl();
14051         } else if (Var->getStorageClass() == SC_Static) {
14052           // C99 6.9.2p3: If the declaration of an identifier for an object is
14053           // a tentative definition and has internal linkage (C99 6.2.2p3), the
14054           // declared type shall not be an incomplete type.
14055           // NOTE: code such as the following
14056           //     static struct s;
14057           //     struct s { int a; };
14058           // is accepted by gcc. Hence here we issue a warning instead of
14059           // an error and we do not invalidate the static declaration.
14060           // NOTE: to avoid multiple warnings, only check the first declaration.
14061           if (Var->isFirstDecl())
14062             RequireCompleteType(Var->getLocation(), Type,
14063                                 diag::ext_typecheck_decl_incomplete_type);
14064         }
14065       }
14066 
14067       // Record the tentative definition; we're done.
14068       if (!Var->isInvalidDecl())
14069         TentativeDefinitions.push_back(Var);
14070       return;
14071     }
14072 
14073     // Provide a specific diagnostic for uninitialized variable
14074     // definitions with incomplete array type.
14075     if (Type->isIncompleteArrayType()) {
14076       if (Var->isConstexpr())
14077         Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init)
14078             << Var;
14079       else
14080         Diag(Var->getLocation(),
14081              diag::err_typecheck_incomplete_array_needs_initializer);
14082       Var->setInvalidDecl();
14083       return;
14084     }
14085 
14086     // Provide a specific diagnostic for uninitialized variable
14087     // definitions with reference type.
14088     if (Type->isReferenceType()) {
14089       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
14090           << Var << SourceRange(Var->getLocation(), Var->getLocation());
14091       return;
14092     }
14093 
14094     // Do not attempt to type-check the default initializer for a
14095     // variable with dependent type.
14096     if (Type->isDependentType())
14097       return;
14098 
14099     if (Var->isInvalidDecl())
14100       return;
14101 
14102     if (!Var->hasAttr<AliasAttr>()) {
14103       if (RequireCompleteType(Var->getLocation(),
14104                               Context.getBaseElementType(Type),
14105                               diag::err_typecheck_decl_incomplete_type)) {
14106         Var->setInvalidDecl();
14107         return;
14108       }
14109     } else {
14110       return;
14111     }
14112 
14113     // The variable can not have an abstract class type.
14114     if (RequireNonAbstractType(Var->getLocation(), Type,
14115                                diag::err_abstract_type_in_decl,
14116                                AbstractVariableType)) {
14117       Var->setInvalidDecl();
14118       return;
14119     }
14120 
14121     // Check for jumps past the implicit initializer.  C++0x
14122     // clarifies that this applies to a "variable with automatic
14123     // storage duration", not a "local variable".
14124     // C++11 [stmt.dcl]p3
14125     //   A program that jumps from a point where a variable with automatic
14126     //   storage duration is not in scope to a point where it is in scope is
14127     //   ill-formed unless the variable has scalar type, class type with a
14128     //   trivial default constructor and a trivial destructor, a cv-qualified
14129     //   version of one of these types, or an array of one of the preceding
14130     //   types and is declared without an initializer.
14131     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
14132       if (const RecordType *Record
14133             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
14134         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
14135         // Mark the function (if we're in one) for further checking even if the
14136         // looser rules of C++11 do not require such checks, so that we can
14137         // diagnose incompatibilities with C++98.
14138         if (!CXXRecord->isPOD())
14139           setFunctionHasBranchProtectedScope();
14140       }
14141     }
14142     // In OpenCL, we can't initialize objects in the __local address space,
14143     // even implicitly, so don't synthesize an implicit initializer.
14144     if (getLangOpts().OpenCL &&
14145         Var->getType().getAddressSpace() == LangAS::opencl_local)
14146       return;
14147     // C++03 [dcl.init]p9:
14148     //   If no initializer is specified for an object, and the
14149     //   object is of (possibly cv-qualified) non-POD class type (or
14150     //   array thereof), the object shall be default-initialized; if
14151     //   the object is of const-qualified type, the underlying class
14152     //   type shall have a user-declared default
14153     //   constructor. Otherwise, if no initializer is specified for
14154     //   a non- static object, the object and its subobjects, if
14155     //   any, have an indeterminate initial value); if the object
14156     //   or any of its subobjects are of const-qualified type, the
14157     //   program is ill-formed.
14158     // C++0x [dcl.init]p11:
14159     //   If no initializer is specified for an object, the object is
14160     //   default-initialized; [...].
14161     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
14162     InitializationKind Kind
14163       = InitializationKind::CreateDefault(Var->getLocation());
14164 
14165     InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt);
14166     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt);
14167 
14168     if (Init.get()) {
14169       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
14170       // This is important for template substitution.
14171       Var->setInitStyle(VarDecl::CallInit);
14172     } else if (Init.isInvalid()) {
14173       // If default-init fails, attach a recovery-expr initializer to track
14174       // that initialization was attempted and failed.
14175       auto RecoveryExpr =
14176           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
14177       if (RecoveryExpr.get())
14178         Var->setInit(RecoveryExpr.get());
14179     }
14180 
14181     CheckCompleteVariableDeclaration(Var);
14182   }
14183 }
14184 
14185 void Sema::ActOnCXXForRangeDecl(Decl *D) {
14186   // If there is no declaration, there was an error parsing it. Ignore it.
14187   if (!D)
14188     return;
14189 
14190   VarDecl *VD = dyn_cast<VarDecl>(D);
14191   if (!VD) {
14192     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
14193     D->setInvalidDecl();
14194     return;
14195   }
14196 
14197   VD->setCXXForRangeDecl(true);
14198 
14199   // for-range-declaration cannot be given a storage class specifier.
14200   int Error = -1;
14201   switch (VD->getStorageClass()) {
14202   case SC_None:
14203     break;
14204   case SC_Extern:
14205     Error = 0;
14206     break;
14207   case SC_Static:
14208     Error = 1;
14209     break;
14210   case SC_PrivateExtern:
14211     Error = 2;
14212     break;
14213   case SC_Auto:
14214     Error = 3;
14215     break;
14216   case SC_Register:
14217     Error = 4;
14218     break;
14219   }
14220 
14221   // for-range-declaration cannot be given a storage class specifier con't.
14222   switch (VD->getTSCSpec()) {
14223   case TSCS_thread_local:
14224     Error = 6;
14225     break;
14226   case TSCS___thread:
14227   case TSCS__Thread_local:
14228   case TSCS_unspecified:
14229     break;
14230   }
14231 
14232   if (Error != -1) {
14233     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
14234         << VD << Error;
14235     D->setInvalidDecl();
14236   }
14237 }
14238 
14239 StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
14240                                             IdentifierInfo *Ident,
14241                                             ParsedAttributes &Attrs) {
14242   // C++1y [stmt.iter]p1:
14243   //   A range-based for statement of the form
14244   //      for ( for-range-identifier : for-range-initializer ) statement
14245   //   is equivalent to
14246   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
14247   DeclSpec DS(Attrs.getPool().getFactory());
14248 
14249   const char *PrevSpec;
14250   unsigned DiagID;
14251   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
14252                      getPrintingPolicy());
14253 
14254   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit);
14255   D.SetIdentifier(Ident, IdentLoc);
14256   D.takeAttributes(Attrs);
14257 
14258   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
14259                 IdentLoc);
14260   Decl *Var = ActOnDeclarator(S, D);
14261   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
14262   FinalizeDeclaration(Var);
14263   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
14264                        Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd()
14265                                                       : IdentLoc);
14266 }
14267 
14268 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
14269   if (var->isInvalidDecl()) return;
14270 
14271   MaybeAddCUDAConstantAttr(var);
14272 
14273   if (getLangOpts().OpenCL) {
14274     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
14275     // initialiser
14276     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
14277         !var->hasInit()) {
14278       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
14279           << 1 /*Init*/;
14280       var->setInvalidDecl();
14281       return;
14282     }
14283   }
14284 
14285   // In Objective-C, don't allow jumps past the implicit initialization of a
14286   // local retaining variable.
14287   if (getLangOpts().ObjC &&
14288       var->hasLocalStorage()) {
14289     switch (var->getType().getObjCLifetime()) {
14290     case Qualifiers::OCL_None:
14291     case Qualifiers::OCL_ExplicitNone:
14292     case Qualifiers::OCL_Autoreleasing:
14293       break;
14294 
14295     case Qualifiers::OCL_Weak:
14296     case Qualifiers::OCL_Strong:
14297       setFunctionHasBranchProtectedScope();
14298       break;
14299     }
14300   }
14301 
14302   if (var->hasLocalStorage() &&
14303       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
14304     setFunctionHasBranchProtectedScope();
14305 
14306   // Warn about externally-visible variables being defined without a
14307   // prior declaration.  We only want to do this for global
14308   // declarations, but we also specifically need to avoid doing it for
14309   // class members because the linkage of an anonymous class can
14310   // change if it's later given a typedef name.
14311   if (var->isThisDeclarationADefinition() &&
14312       var->getDeclContext()->getRedeclContext()->isFileContext() &&
14313       var->isExternallyVisible() && var->hasLinkage() &&
14314       !var->isInline() && !var->getDescribedVarTemplate() &&
14315       var->getStorageClass() != SC_Register &&
14316       !isa<VarTemplatePartialSpecializationDecl>(var) &&
14317       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
14318       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
14319                                   var->getLocation())) {
14320     // Find a previous declaration that's not a definition.
14321     VarDecl *prev = var->getPreviousDecl();
14322     while (prev && prev->isThisDeclarationADefinition())
14323       prev = prev->getPreviousDecl();
14324 
14325     if (!prev) {
14326       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
14327       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14328           << /* variable */ 0;
14329     }
14330   }
14331 
14332   // Cache the result of checking for constant initialization.
14333   std::optional<bool> CacheHasConstInit;
14334   const Expr *CacheCulprit = nullptr;
14335   auto checkConstInit = [&]() mutable {
14336     if (!CacheHasConstInit)
14337       CacheHasConstInit = var->getInit()->isConstantInitializer(
14338             Context, var->getType()->isReferenceType(), &CacheCulprit);
14339     return *CacheHasConstInit;
14340   };
14341 
14342   if (var->getTLSKind() == VarDecl::TLS_Static) {
14343     if (var->getType().isDestructedType()) {
14344       // GNU C++98 edits for __thread, [basic.start.term]p3:
14345       //   The type of an object with thread storage duration shall not
14346       //   have a non-trivial destructor.
14347       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
14348       if (getLangOpts().CPlusPlus11)
14349         Diag(var->getLocation(), diag::note_use_thread_local);
14350     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
14351       if (!checkConstInit()) {
14352         // GNU C++98 edits for __thread, [basic.start.init]p4:
14353         //   An object of thread storage duration shall not require dynamic
14354         //   initialization.
14355         // FIXME: Need strict checking here.
14356         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
14357           << CacheCulprit->getSourceRange();
14358         if (getLangOpts().CPlusPlus11)
14359           Diag(var->getLocation(), diag::note_use_thread_local);
14360       }
14361     }
14362   }
14363 
14364 
14365   if (!var->getType()->isStructureType() && var->hasInit() &&
14366       isa<InitListExpr>(var->getInit())) {
14367     const auto *ILE = cast<InitListExpr>(var->getInit());
14368     unsigned NumInits = ILE->getNumInits();
14369     if (NumInits > 2)
14370       for (unsigned I = 0; I < NumInits; ++I) {
14371         const auto *Init = ILE->getInit(I);
14372         if (!Init)
14373           break;
14374         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14375         if (!SL)
14376           break;
14377 
14378         unsigned NumConcat = SL->getNumConcatenated();
14379         // Diagnose missing comma in string array initialization.
14380         // Do not warn when all the elements in the initializer are concatenated
14381         // together. Do not warn for macros too.
14382         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
14383           bool OnlyOneMissingComma = true;
14384           for (unsigned J = I + 1; J < NumInits; ++J) {
14385             const auto *Init = ILE->getInit(J);
14386             if (!Init)
14387               break;
14388             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
14389             if (!SLJ || SLJ->getNumConcatenated() > 1) {
14390               OnlyOneMissingComma = false;
14391               break;
14392             }
14393           }
14394 
14395           if (OnlyOneMissingComma) {
14396             SmallVector<FixItHint, 1> Hints;
14397             for (unsigned i = 0; i < NumConcat - 1; ++i)
14398               Hints.push_back(FixItHint::CreateInsertion(
14399                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
14400 
14401             Diag(SL->getStrTokenLoc(1),
14402                  diag::warn_concatenated_literal_array_init)
14403                 << Hints;
14404             Diag(SL->getBeginLoc(),
14405                  diag::note_concatenated_string_literal_silence);
14406           }
14407           // In any case, stop now.
14408           break;
14409         }
14410       }
14411   }
14412 
14413 
14414   QualType type = var->getType();
14415 
14416   if (var->hasAttr<BlocksAttr>())
14417     getCurFunction()->addByrefBlockVar(var);
14418 
14419   Expr *Init = var->getInit();
14420   bool GlobalStorage = var->hasGlobalStorage();
14421   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
14422   QualType baseType = Context.getBaseElementType(type);
14423   bool HasConstInit = true;
14424 
14425   // Check whether the initializer is sufficiently constant.
14426   if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
14427       !Init->isValueDependent() &&
14428       (GlobalStorage || var->isConstexpr() ||
14429        var->mightBeUsableInConstantExpressions(Context))) {
14430     // If this variable might have a constant initializer or might be usable in
14431     // constant expressions, check whether or not it actually is now.  We can't
14432     // do this lazily, because the result might depend on things that change
14433     // later, such as which constexpr functions happen to be defined.
14434     SmallVector<PartialDiagnosticAt, 8> Notes;
14435     if (!getLangOpts().CPlusPlus11) {
14436       // Prior to C++11, in contexts where a constant initializer is required,
14437       // the set of valid constant initializers is described by syntactic rules
14438       // in [expr.const]p2-6.
14439       // FIXME: Stricter checking for these rules would be useful for constinit /
14440       // -Wglobal-constructors.
14441       HasConstInit = checkConstInit();
14442 
14443       // Compute and cache the constant value, and remember that we have a
14444       // constant initializer.
14445       if (HasConstInit) {
14446         (void)var->checkForConstantInitialization(Notes);
14447         Notes.clear();
14448       } else if (CacheCulprit) {
14449         Notes.emplace_back(CacheCulprit->getExprLoc(),
14450                            PDiag(diag::note_invalid_subexpr_in_const_expr));
14451         Notes.back().second << CacheCulprit->getSourceRange();
14452       }
14453     } else {
14454       // Evaluate the initializer to see if it's a constant initializer.
14455       HasConstInit = var->checkForConstantInitialization(Notes);
14456     }
14457 
14458     if (HasConstInit) {
14459       // FIXME: Consider replacing the initializer with a ConstantExpr.
14460     } else if (var->isConstexpr()) {
14461       SourceLocation DiagLoc = var->getLocation();
14462       // If the note doesn't add any useful information other than a source
14463       // location, fold it into the primary diagnostic.
14464       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
14465                                    diag::note_invalid_subexpr_in_const_expr) {
14466         DiagLoc = Notes[0].first;
14467         Notes.clear();
14468       }
14469       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
14470           << var << Init->getSourceRange();
14471       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
14472         Diag(Notes[I].first, Notes[I].second);
14473     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
14474       auto *Attr = var->getAttr<ConstInitAttr>();
14475       Diag(var->getLocation(), diag::err_require_constant_init_failed)
14476           << Init->getSourceRange();
14477       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
14478           << Attr->getRange() << Attr->isConstinit();
14479       for (auto &it : Notes)
14480         Diag(it.first, it.second);
14481     } else if (IsGlobal &&
14482                !getDiagnostics().isIgnored(diag::warn_global_constructor,
14483                                            var->getLocation())) {
14484       // Warn about globals which don't have a constant initializer.  Don't
14485       // warn about globals with a non-trivial destructor because we already
14486       // warned about them.
14487       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
14488       if (!(RD && !RD->hasTrivialDestructor())) {
14489         // checkConstInit() here permits trivial default initialization even in
14490         // C++11 onwards, where such an initializer is not a constant initializer
14491         // but nonetheless doesn't require a global constructor.
14492         if (!checkConstInit())
14493           Diag(var->getLocation(), diag::warn_global_constructor)
14494               << Init->getSourceRange();
14495       }
14496     }
14497   }
14498 
14499   // Apply section attributes and pragmas to global variables.
14500   if (GlobalStorage && var->isThisDeclarationADefinition() &&
14501       !inTemplateInstantiation()) {
14502     PragmaStack<StringLiteral *> *Stack = nullptr;
14503     int SectionFlags = ASTContext::PSF_Read;
14504     bool MSVCEnv =
14505         Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment();
14506     std::optional<QualType::NonConstantStorageReason> Reason;
14507     if (HasConstInit &&
14508         !(Reason = var->getType().isNonConstantStorage(Context, true, false))) {
14509       Stack = &ConstSegStack;
14510     } else {
14511       SectionFlags |= ASTContext::PSF_Write;
14512       Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack;
14513     }
14514     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
14515       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
14516         SectionFlags |= ASTContext::PSF_Implicit;
14517       UnifySection(SA->getName(), SectionFlags, var);
14518     } else if (Stack->CurrentValue) {
14519       if (Stack != &ConstSegStack && MSVCEnv &&
14520           ConstSegStack.CurrentValue != ConstSegStack.DefaultValue &&
14521           var->getType().isConstQualified()) {
14522         assert((!Reason || Reason != QualType::NonConstantStorageReason::
14523                                          NonConstNonReferenceType) &&
14524                "This case should've already been handled elsewhere");
14525         Diag(var->getLocation(), diag::warn_section_msvc_compat)
14526                 << var << ConstSegStack.CurrentValue << (int)(!HasConstInit
14527             ? QualType::NonConstantStorageReason::NonTrivialCtor
14528             : *Reason);
14529       }
14530       SectionFlags |= ASTContext::PSF_Implicit;
14531       auto SectionName = Stack->CurrentValue->getString();
14532       var->addAttr(SectionAttr::CreateImplicit(Context, SectionName,
14533                                                Stack->CurrentPragmaLocation,
14534                                                SectionAttr::Declspec_allocate));
14535       if (UnifySection(SectionName, SectionFlags, var))
14536         var->dropAttr<SectionAttr>();
14537     }
14538 
14539     // Apply the init_seg attribute if this has an initializer.  If the
14540     // initializer turns out to not be dynamic, we'll end up ignoring this
14541     // attribute.
14542     if (CurInitSeg && var->getInit())
14543       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
14544                                                CurInitSegLoc));
14545   }
14546 
14547   // All the following checks are C++ only.
14548   if (!getLangOpts().CPlusPlus) {
14549     // If this variable must be emitted, add it as an initializer for the
14550     // current module.
14551     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14552       Context.addModuleInitializer(ModuleScopes.back().Module, var);
14553     return;
14554   }
14555 
14556   // Require the destructor.
14557   if (!type->isDependentType())
14558     if (const RecordType *recordType = baseType->getAs<RecordType>())
14559       FinalizeVarWithDestructor(var, recordType);
14560 
14561   // If this variable must be emitted, add it as an initializer for the current
14562   // module.
14563   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
14564     Context.addModuleInitializer(ModuleScopes.back().Module, var);
14565 
14566   // Build the bindings if this is a structured binding declaration.
14567   if (auto *DD = dyn_cast<DecompositionDecl>(var))
14568     CheckCompleteDecompositionDeclaration(DD);
14569 }
14570 
14571 /// Check if VD needs to be dllexport/dllimport due to being in a
14572 /// dllexport/import function.
14573 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
14574   assert(VD->isStaticLocal());
14575 
14576   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14577 
14578   // Find outermost function when VD is in lambda function.
14579   while (FD && !getDLLAttr(FD) &&
14580          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
14581          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
14582     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
14583   }
14584 
14585   if (!FD)
14586     return;
14587 
14588   // Static locals inherit dll attributes from their function.
14589   if (Attr *A = getDLLAttr(FD)) {
14590     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
14591     NewAttr->setInherited(true);
14592     VD->addAttr(NewAttr);
14593   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
14594     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
14595     NewAttr->setInherited(true);
14596     VD->addAttr(NewAttr);
14597 
14598     // Export this function to enforce exporting this static variable even
14599     // if it is not used in this compilation unit.
14600     if (!FD->hasAttr<DLLExportAttr>())
14601       FD->addAttr(NewAttr);
14602 
14603   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
14604     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
14605     NewAttr->setInherited(true);
14606     VD->addAttr(NewAttr);
14607   }
14608 }
14609 
14610 void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) {
14611   assert(VD->getTLSKind());
14612 
14613   // Perform TLS alignment check here after attributes attached to the variable
14614   // which may affect the alignment have been processed. Only perform the check
14615   // if the target has a maximum TLS alignment (zero means no constraints).
14616   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
14617     // Protect the check so that it's not performed on dependent types and
14618     // dependent alignments (we can't determine the alignment in that case).
14619     if (!VD->hasDependentAlignment()) {
14620       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
14621       if (Context.getDeclAlign(VD) > MaxAlignChars) {
14622         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
14623             << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
14624             << (unsigned)MaxAlignChars.getQuantity();
14625       }
14626     }
14627   }
14628 }
14629 
14630 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
14631 /// any semantic actions necessary after any initializer has been attached.
14632 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
14633   // Note that we are no longer parsing the initializer for this declaration.
14634   ParsingInitForAutoVars.erase(ThisDecl);
14635 
14636   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
14637   if (!VD)
14638     return;
14639 
14640   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
14641   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
14642       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
14643     if (PragmaClangBSSSection.Valid)
14644       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
14645           Context, PragmaClangBSSSection.SectionName,
14646           PragmaClangBSSSection.PragmaLocation));
14647     if (PragmaClangDataSection.Valid)
14648       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
14649           Context, PragmaClangDataSection.SectionName,
14650           PragmaClangDataSection.PragmaLocation));
14651     if (PragmaClangRodataSection.Valid)
14652       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
14653           Context, PragmaClangRodataSection.SectionName,
14654           PragmaClangRodataSection.PragmaLocation));
14655     if (PragmaClangRelroSection.Valid)
14656       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
14657           Context, PragmaClangRelroSection.SectionName,
14658           PragmaClangRelroSection.PragmaLocation));
14659   }
14660 
14661   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
14662     for (auto *BD : DD->bindings()) {
14663       FinalizeDeclaration(BD);
14664     }
14665   }
14666 
14667   checkAttributesAfterMerging(*this, *VD);
14668 
14669   if (VD->isStaticLocal())
14670     CheckStaticLocalForDllExport(VD);
14671 
14672   if (VD->getTLSKind())
14673     CheckThreadLocalForLargeAlignment(VD);
14674 
14675   // Perform check for initializers of device-side global variables.
14676   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
14677   // 7.5). We must also apply the same checks to all __shared__
14678   // variables whether they are local or not. CUDA also allows
14679   // constant initializers for __constant__ and __device__ variables.
14680   if (getLangOpts().CUDA)
14681     checkAllowedCUDAInitializer(VD);
14682 
14683   // Grab the dllimport or dllexport attribute off of the VarDecl.
14684   const InheritableAttr *DLLAttr = getDLLAttr(VD);
14685 
14686   // Imported static data members cannot be defined out-of-line.
14687   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
14688     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
14689         VD->isThisDeclarationADefinition()) {
14690       // We allow definitions of dllimport class template static data members
14691       // with a warning.
14692       CXXRecordDecl *Context =
14693         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
14694       bool IsClassTemplateMember =
14695           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
14696           Context->getDescribedClassTemplate();
14697 
14698       Diag(VD->getLocation(),
14699            IsClassTemplateMember
14700                ? diag::warn_attribute_dllimport_static_field_definition
14701                : diag::err_attribute_dllimport_static_field_definition);
14702       Diag(IA->getLocation(), diag::note_attribute);
14703       if (!IsClassTemplateMember)
14704         VD->setInvalidDecl();
14705     }
14706   }
14707 
14708   // dllimport/dllexport variables cannot be thread local, their TLS index
14709   // isn't exported with the variable.
14710   if (DLLAttr && VD->getTLSKind()) {
14711     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
14712     if (F && getDLLAttr(F)) {
14713       assert(VD->isStaticLocal());
14714       // But if this is a static local in a dlimport/dllexport function, the
14715       // function will never be inlined, which means the var would never be
14716       // imported, so having it marked import/export is safe.
14717     } else {
14718       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
14719                                                                     << DLLAttr;
14720       VD->setInvalidDecl();
14721     }
14722   }
14723 
14724   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
14725     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14726       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14727           << Attr;
14728       VD->dropAttr<UsedAttr>();
14729     }
14730   }
14731   if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
14732     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
14733       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
14734           << Attr;
14735       VD->dropAttr<RetainAttr>();
14736     }
14737   }
14738 
14739   const DeclContext *DC = VD->getDeclContext();
14740   // If there's a #pragma GCC visibility in scope, and this isn't a class
14741   // member, set the visibility of this variable.
14742   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
14743     AddPushedVisibilityAttribute(VD);
14744 
14745   // FIXME: Warn on unused var template partial specializations.
14746   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
14747     MarkUnusedFileScopedDecl(VD);
14748 
14749   // Now we have parsed the initializer and can update the table of magic
14750   // tag values.
14751   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
14752       !VD->getType()->isIntegralOrEnumerationType())
14753     return;
14754 
14755   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
14756     const Expr *MagicValueExpr = VD->getInit();
14757     if (!MagicValueExpr) {
14758       continue;
14759     }
14760     std::optional<llvm::APSInt> MagicValueInt;
14761     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
14762       Diag(I->getRange().getBegin(),
14763            diag::err_type_tag_for_datatype_not_ice)
14764         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14765       continue;
14766     }
14767     if (MagicValueInt->getActiveBits() > 64) {
14768       Diag(I->getRange().getBegin(),
14769            diag::err_type_tag_for_datatype_too_large)
14770         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
14771       continue;
14772     }
14773     uint64_t MagicValue = MagicValueInt->getZExtValue();
14774     RegisterTypeTagForDatatype(I->getArgumentKind(),
14775                                MagicValue,
14776                                I->getMatchingCType(),
14777                                I->getLayoutCompatible(),
14778                                I->getMustBeNull());
14779   }
14780 }
14781 
14782 static bool hasDeducedAuto(DeclaratorDecl *DD) {
14783   auto *VD = dyn_cast<VarDecl>(DD);
14784   return VD && !VD->getType()->hasAutoForTrailingReturnType();
14785 }
14786 
14787 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
14788                                                    ArrayRef<Decl *> Group) {
14789   SmallVector<Decl*, 8> Decls;
14790 
14791   if (DS.isTypeSpecOwned())
14792     Decls.push_back(DS.getRepAsDecl());
14793 
14794   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
14795   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
14796   bool DiagnosedMultipleDecomps = false;
14797   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
14798   bool DiagnosedNonDeducedAuto = false;
14799 
14800   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14801     if (Decl *D = Group[i]) {
14802       // Check if the Decl has been declared in '#pragma omp declare target'
14803       // directive and has static storage duration.
14804       if (auto *VD = dyn_cast<VarDecl>(D);
14805           LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() &&
14806           VD->hasGlobalStorage())
14807         ActOnOpenMPDeclareTargetInitializer(D);
14808       // For declarators, there are some additional syntactic-ish checks we need
14809       // to perform.
14810       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
14811         if (!FirstDeclaratorInGroup)
14812           FirstDeclaratorInGroup = DD;
14813         if (!FirstDecompDeclaratorInGroup)
14814           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
14815         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
14816             !hasDeducedAuto(DD))
14817           FirstNonDeducedAutoInGroup = DD;
14818 
14819         if (FirstDeclaratorInGroup != DD) {
14820           // A decomposition declaration cannot be combined with any other
14821           // declaration in the same group.
14822           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
14823             Diag(FirstDecompDeclaratorInGroup->getLocation(),
14824                  diag::err_decomp_decl_not_alone)
14825                 << FirstDeclaratorInGroup->getSourceRange()
14826                 << DD->getSourceRange();
14827             DiagnosedMultipleDecomps = true;
14828           }
14829 
14830           // A declarator that uses 'auto' in any way other than to declare a
14831           // variable with a deduced type cannot be combined with any other
14832           // declarator in the same group.
14833           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
14834             Diag(FirstNonDeducedAutoInGroup->getLocation(),
14835                  diag::err_auto_non_deduced_not_alone)
14836                 << FirstNonDeducedAutoInGroup->getType()
14837                        ->hasAutoForTrailingReturnType()
14838                 << FirstDeclaratorInGroup->getSourceRange()
14839                 << DD->getSourceRange();
14840             DiagnosedNonDeducedAuto = true;
14841           }
14842         }
14843       }
14844 
14845       Decls.push_back(D);
14846     }
14847   }
14848 
14849   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
14850     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
14851       handleTagNumbering(Tag, S);
14852       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
14853           getLangOpts().CPlusPlus)
14854         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
14855     }
14856   }
14857 
14858   return BuildDeclaratorGroup(Decls);
14859 }
14860 
14861 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
14862 /// group, performing any necessary semantic checking.
14863 Sema::DeclGroupPtrTy
14864 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
14865   // C++14 [dcl.spec.auto]p7: (DR1347)
14866   //   If the type that replaces the placeholder type is not the same in each
14867   //   deduction, the program is ill-formed.
14868   if (Group.size() > 1) {
14869     QualType Deduced;
14870     VarDecl *DeducedDecl = nullptr;
14871     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
14872       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
14873       if (!D || D->isInvalidDecl())
14874         break;
14875       DeducedType *DT = D->getType()->getContainedDeducedType();
14876       if (!DT || DT->getDeducedType().isNull())
14877         continue;
14878       if (Deduced.isNull()) {
14879         Deduced = DT->getDeducedType();
14880         DeducedDecl = D;
14881       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
14882         auto *AT = dyn_cast<AutoType>(DT);
14883         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
14884                         diag::err_auto_different_deductions)
14885                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
14886                    << DeducedDecl->getDeclName() << DT->getDeducedType()
14887                    << D->getDeclName();
14888         if (DeducedDecl->hasInit())
14889           Dia << DeducedDecl->getInit()->getSourceRange();
14890         if (D->getInit())
14891           Dia << D->getInit()->getSourceRange();
14892         D->setInvalidDecl();
14893         break;
14894       }
14895     }
14896   }
14897 
14898   ActOnDocumentableDecls(Group);
14899 
14900   return DeclGroupPtrTy::make(
14901       DeclGroupRef::Create(Context, Group.data(), Group.size()));
14902 }
14903 
14904 void Sema::ActOnDocumentableDecl(Decl *D) {
14905   ActOnDocumentableDecls(D);
14906 }
14907 
14908 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
14909   // Don't parse the comment if Doxygen diagnostics are ignored.
14910   if (Group.empty() || !Group[0])
14911     return;
14912 
14913   if (Diags.isIgnored(diag::warn_doc_param_not_found,
14914                       Group[0]->getLocation()) &&
14915       Diags.isIgnored(diag::warn_unknown_comment_command_name,
14916                       Group[0]->getLocation()))
14917     return;
14918 
14919   if (Group.size() >= 2) {
14920     // This is a decl group.  Normally it will contain only declarations
14921     // produced from declarator list.  But in case we have any definitions or
14922     // additional declaration references:
14923     //   'typedef struct S {} S;'
14924     //   'typedef struct S *S;'
14925     //   'struct S *pS;'
14926     // FinalizeDeclaratorGroup adds these as separate declarations.
14927     Decl *MaybeTagDecl = Group[0];
14928     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
14929       Group = Group.slice(1);
14930     }
14931   }
14932 
14933   // FIMXE: We assume every Decl in the group is in the same file.
14934   // This is false when preprocessor constructs the group from decls in
14935   // different files (e. g. macros or #include).
14936   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
14937 }
14938 
14939 /// Common checks for a parameter-declaration that should apply to both function
14940 /// parameters and non-type template parameters.
14941 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
14942   // Check that there are no default arguments inside the type of this
14943   // parameter.
14944   if (getLangOpts().CPlusPlus)
14945     CheckExtraCXXDefaultArguments(D);
14946 
14947   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
14948   if (D.getCXXScopeSpec().isSet()) {
14949     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
14950       << D.getCXXScopeSpec().getRange();
14951   }
14952 
14953   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
14954   // simple identifier except [...irrelevant cases...].
14955   switch (D.getName().getKind()) {
14956   case UnqualifiedIdKind::IK_Identifier:
14957     break;
14958 
14959   case UnqualifiedIdKind::IK_OperatorFunctionId:
14960   case UnqualifiedIdKind::IK_ConversionFunctionId:
14961   case UnqualifiedIdKind::IK_LiteralOperatorId:
14962   case UnqualifiedIdKind::IK_ConstructorName:
14963   case UnqualifiedIdKind::IK_DestructorName:
14964   case UnqualifiedIdKind::IK_ImplicitSelfParam:
14965   case UnqualifiedIdKind::IK_DeductionGuideName:
14966     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
14967       << GetNameForDeclarator(D).getName();
14968     break;
14969 
14970   case UnqualifiedIdKind::IK_TemplateId:
14971   case UnqualifiedIdKind::IK_ConstructorTemplateId:
14972     // GetNameForDeclarator would not produce a useful name in this case.
14973     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
14974     break;
14975   }
14976 }
14977 
14978 static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P,
14979                                          SourceLocation ExplicitThisLoc) {
14980   if (!ExplicitThisLoc.isValid())
14981     return;
14982   assert(S.getLangOpts().CPlusPlus &&
14983          "explicit parameter in non-cplusplus mode");
14984   if (!S.getLangOpts().CPlusPlus23)
14985     S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this)
14986         << P->getSourceRange();
14987 
14988   // C++2b [dcl.fct/7] An explicit object parameter shall not be a function
14989   // parameter pack.
14990   if (P->isParameterPack()) {
14991     S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack)
14992         << P->getSourceRange();
14993     return;
14994   }
14995   P->setExplicitObjectParameterLoc(ExplicitThisLoc);
14996   if (LambdaScopeInfo *LSI = S.getCurLambda())
14997     LSI->ExplicitObjectParameter = P;
14998 }
14999 
15000 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
15001 /// to introduce parameters into function prototype scope.
15002 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D,
15003                                  SourceLocation ExplicitThisLoc) {
15004   const DeclSpec &DS = D.getDeclSpec();
15005 
15006   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
15007 
15008   // C++03 [dcl.stc]p2 also permits 'auto'.
15009   StorageClass SC = SC_None;
15010   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
15011     SC = SC_Register;
15012     // In C++11, the 'register' storage class specifier is deprecated.
15013     // In C++17, it is not allowed, but we tolerate it as an extension.
15014     if (getLangOpts().CPlusPlus11) {
15015       Diag(DS.getStorageClassSpecLoc(),
15016            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
15017                                      : diag::warn_deprecated_register)
15018         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
15019     }
15020   } else if (getLangOpts().CPlusPlus &&
15021              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
15022     SC = SC_Auto;
15023   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
15024     Diag(DS.getStorageClassSpecLoc(),
15025          diag::err_invalid_storage_class_in_func_decl);
15026     D.getMutableDeclSpec().ClearStorageClassSpecs();
15027   }
15028 
15029   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
15030     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
15031       << DeclSpec::getSpecifierName(TSCS);
15032   if (DS.isInlineSpecified())
15033     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
15034         << getLangOpts().CPlusPlus17;
15035   if (DS.hasConstexprSpecifier())
15036     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
15037         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
15038 
15039   DiagnoseFunctionSpecifiers(DS);
15040 
15041   CheckFunctionOrTemplateParamDeclarator(S, D);
15042 
15043   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15044   QualType parmDeclType = TInfo->getType();
15045 
15046   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
15047   IdentifierInfo *II = D.getIdentifier();
15048   if (II) {
15049     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
15050                    ForVisibleRedeclaration);
15051     LookupName(R, S);
15052     if (!R.empty()) {
15053       NamedDecl *PrevDecl = *R.begin();
15054       if (R.isSingleResult() && PrevDecl->isTemplateParameter()) {
15055         // Maybe we will complain about the shadowed template parameter.
15056         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15057         // Just pretend that we didn't see the previous declaration.
15058         PrevDecl = nullptr;
15059       }
15060       if (PrevDecl && S->isDeclScope(PrevDecl)) {
15061         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
15062         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15063         // Recover by removing the name
15064         II = nullptr;
15065         D.SetIdentifier(nullptr, D.getIdentifierLoc());
15066         D.setInvalidType(true);
15067       }
15068     }
15069   }
15070 
15071   // Temporarily put parameter variables in the translation unit, not
15072   // the enclosing context.  This prevents them from accidentally
15073   // looking like class members in C++.
15074   ParmVarDecl *New =
15075       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
15076                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
15077 
15078   if (D.isInvalidType())
15079     New->setInvalidDecl();
15080 
15081   CheckExplicitObjectParameter(*this, New, ExplicitThisLoc);
15082 
15083   assert(S->isFunctionPrototypeScope());
15084   assert(S->getFunctionPrototypeDepth() >= 1);
15085   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
15086                     S->getNextFunctionPrototypeIndex());
15087 
15088   // Add the parameter declaration into this scope.
15089   S->AddDecl(New);
15090   if (II)
15091     IdResolver.AddDecl(New);
15092 
15093   ProcessDeclAttributes(S, New, D);
15094 
15095   if (D.getDeclSpec().isModulePrivateSpecified())
15096     Diag(New->getLocation(), diag::err_module_private_local)
15097         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15098         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
15099 
15100   if (New->hasAttr<BlocksAttr>()) {
15101     Diag(New->getLocation(), diag::err_block_on_nonlocal);
15102   }
15103 
15104   if (getLangOpts().OpenCL)
15105     deduceOpenCLAddressSpace(New);
15106 
15107   return New;
15108 }
15109 
15110 /// Synthesizes a variable for a parameter arising from a
15111 /// typedef.
15112 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
15113                                               SourceLocation Loc,
15114                                               QualType T) {
15115   /* FIXME: setting StartLoc == Loc.
15116      Would it be worth to modify callers so as to provide proper source
15117      location for the unnamed parameters, embedding the parameter's type? */
15118   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
15119                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
15120                                            SC_None, nullptr);
15121   Param->setImplicit();
15122   return Param;
15123 }
15124 
15125 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
15126   // Don't diagnose unused-parameter errors in template instantiations; we
15127   // will already have done so in the template itself.
15128   if (inTemplateInstantiation())
15129     return;
15130 
15131   for (const ParmVarDecl *Parameter : Parameters) {
15132     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
15133         !Parameter->hasAttr<UnusedAttr>() &&
15134         !Parameter->getIdentifier()->isPlaceholder()) {
15135       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
15136         << Parameter->getDeclName();
15137     }
15138   }
15139 }
15140 
15141 void Sema::DiagnoseSizeOfParametersAndReturnValue(
15142     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
15143   if (LangOpts.NumLargeByValueCopy == 0) // No check.
15144     return;
15145 
15146   // Warn if the return value is pass-by-value and larger than the specified
15147   // threshold.
15148   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
15149     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
15150     if (Size > LangOpts.NumLargeByValueCopy)
15151       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
15152   }
15153 
15154   // Warn if any parameter is pass-by-value and larger than the specified
15155   // threshold.
15156   for (const ParmVarDecl *Parameter : Parameters) {
15157     QualType T = Parameter->getType();
15158     if (T->isDependentType() || !T.isPODType(Context))
15159       continue;
15160     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
15161     if (Size > LangOpts.NumLargeByValueCopy)
15162       Diag(Parameter->getLocation(), diag::warn_parameter_size)
15163           << Parameter << Size;
15164   }
15165 }
15166 
15167 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
15168                                   SourceLocation NameLoc, IdentifierInfo *Name,
15169                                   QualType T, TypeSourceInfo *TSInfo,
15170                                   StorageClass SC) {
15171   // In ARC, infer a lifetime qualifier for appropriate parameter types.
15172   if (getLangOpts().ObjCAutoRefCount &&
15173       T.getObjCLifetime() == Qualifiers::OCL_None &&
15174       T->isObjCLifetimeType()) {
15175 
15176     Qualifiers::ObjCLifetime lifetime;
15177 
15178     // Special cases for arrays:
15179     //   - if it's const, use __unsafe_unretained
15180     //   - otherwise, it's an error
15181     if (T->isArrayType()) {
15182       if (!T.isConstQualified()) {
15183         if (DelayedDiagnostics.shouldDelayDiagnostics())
15184           DelayedDiagnostics.add(
15185               sema::DelayedDiagnostic::makeForbiddenType(
15186               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
15187         else
15188           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
15189               << TSInfo->getTypeLoc().getSourceRange();
15190       }
15191       lifetime = Qualifiers::OCL_ExplicitNone;
15192     } else {
15193       lifetime = T->getObjCARCImplicitLifetime();
15194     }
15195     T = Context.getLifetimeQualifiedType(T, lifetime);
15196   }
15197 
15198   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
15199                                          Context.getAdjustedParameterType(T),
15200                                          TSInfo, SC, nullptr);
15201 
15202   // Make a note if we created a new pack in the scope of a lambda, so that
15203   // we know that references to that pack must also be expanded within the
15204   // lambda scope.
15205   if (New->isParameterPack())
15206     if (auto *LSI = getEnclosingLambda())
15207       LSI->LocalPacks.push_back(New);
15208 
15209   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
15210       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
15211     checkNonTrivialCUnion(New->getType(), New->getLocation(),
15212                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
15213 
15214   // Parameter declarators cannot be interface types. All ObjC objects are
15215   // passed by reference.
15216   if (T->isObjCObjectType()) {
15217     SourceLocation TypeEndLoc =
15218         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
15219     Diag(NameLoc,
15220          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
15221       << FixItHint::CreateInsertion(TypeEndLoc, "*");
15222     T = Context.getObjCObjectPointerType(T);
15223     New->setType(T);
15224   }
15225 
15226   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
15227   // duration shall not be qualified by an address-space qualifier."
15228   // Since all parameters have automatic store duration, they can not have
15229   // an address space.
15230   if (T.getAddressSpace() != LangAS::Default &&
15231       // OpenCL allows function arguments declared to be an array of a type
15232       // to be qualified with an address space.
15233       !(getLangOpts().OpenCL &&
15234         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) &&
15235       // WebAssembly allows reference types as parameters. Funcref in particular
15236       // lives in a different address space.
15237       !(T->isFunctionPointerType() &&
15238         T.getAddressSpace() == LangAS::wasm_funcref)) {
15239     Diag(NameLoc, diag::err_arg_with_address_space);
15240     New->setInvalidDecl();
15241   }
15242 
15243   // PPC MMA non-pointer types are not allowed as function argument types.
15244   if (Context.getTargetInfo().getTriple().isPPC64() &&
15245       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
15246     New->setInvalidDecl();
15247   }
15248 
15249   return New;
15250 }
15251 
15252 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
15253                                            SourceLocation LocAfterDecls) {
15254   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
15255 
15256   // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration
15257   // in the declaration list shall have at least one declarator, those
15258   // declarators shall only declare identifiers from the identifier list, and
15259   // every identifier in the identifier list shall be declared.
15260   //
15261   // C89 3.7.1p5 "If a declarator includes an identifier list, only the
15262   // identifiers it names shall be declared in the declaration list."
15263   //
15264   // This is why we only diagnose in C99 and later. Note, the other conditions
15265   // listed are checked elsewhere.
15266   if (!FTI.hasPrototype) {
15267     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
15268       --i;
15269       if (FTI.Params[i].Param == nullptr) {
15270         if (getLangOpts().C99) {
15271           SmallString<256> Code;
15272           llvm::raw_svector_ostream(Code)
15273               << "  int " << FTI.Params[i].Ident->getName() << ";\n";
15274           Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
15275               << FTI.Params[i].Ident
15276               << FixItHint::CreateInsertion(LocAfterDecls, Code);
15277         }
15278 
15279         // Implicitly declare the argument as type 'int' for lack of a better
15280         // type.
15281         AttributeFactory attrs;
15282         DeclSpec DS(attrs);
15283         const char* PrevSpec; // unused
15284         unsigned DiagID; // unused
15285         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
15286                            DiagID, Context.getPrintingPolicy());
15287         // Use the identifier location for the type source range.
15288         DS.SetRangeStart(FTI.Params[i].IdentLoc);
15289         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
15290         Declarator ParamD(DS, ParsedAttributesView::none(),
15291                           DeclaratorContext::KNRTypeList);
15292         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
15293         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
15294       }
15295     }
15296   }
15297 }
15298 
15299 Decl *
15300 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
15301                               MultiTemplateParamsArg TemplateParameterLists,
15302                               SkipBodyInfo *SkipBody, FnBodyKind BodyKind) {
15303   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
15304   assert(D.isFunctionDeclarator() && "Not a function declarator!");
15305   Scope *ParentScope = FnBodyScope->getParent();
15306 
15307   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
15308   // we define a non-templated function definition, we will create a declaration
15309   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
15310   // The base function declaration will have the equivalent of an `omp declare
15311   // variant` annotation which specifies the mangled definition as a
15312   // specialization function under the OpenMP context defined as part of the
15313   // `omp begin declare variant`.
15314   SmallVector<FunctionDecl *, 4> Bases;
15315   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
15316     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
15317         ParentScope, D, TemplateParameterLists, Bases);
15318 
15319   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
15320   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
15321   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind);
15322 
15323   if (!Bases.empty())
15324     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
15325 
15326   return Dcl;
15327 }
15328 
15329 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
15330   Consumer.HandleInlineFunctionDefinition(D);
15331 }
15332 
15333 static bool FindPossiblePrototype(const FunctionDecl *FD,
15334                                   const FunctionDecl *&PossiblePrototype) {
15335   for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev;
15336        Prev = Prev->getPreviousDecl()) {
15337     // Ignore any declarations that occur in function or method
15338     // scope, because they aren't visible from the header.
15339     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
15340       continue;
15341 
15342     PossiblePrototype = Prev;
15343     return Prev->getType()->isFunctionProtoType();
15344   }
15345   return false;
15346 }
15347 
15348 static bool
15349 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
15350                                 const FunctionDecl *&PossiblePrototype) {
15351   // Don't warn about invalid declarations.
15352   if (FD->isInvalidDecl())
15353     return false;
15354 
15355   // Or declarations that aren't global.
15356   if (!FD->isGlobal())
15357     return false;
15358 
15359   // Don't warn about C++ member functions.
15360   if (isa<CXXMethodDecl>(FD))
15361     return false;
15362 
15363   // Don't warn about 'main'.
15364   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
15365     if (IdentifierInfo *II = FD->getIdentifier())
15366       if (II->isStr("main") || II->isStr("efi_main"))
15367         return false;
15368 
15369   // Don't warn about inline functions.
15370   if (FD->isInlined())
15371     return false;
15372 
15373   // Don't warn about function templates.
15374   if (FD->getDescribedFunctionTemplate())
15375     return false;
15376 
15377   // Don't warn about function template specializations.
15378   if (FD->isFunctionTemplateSpecialization())
15379     return false;
15380 
15381   // Don't warn for OpenCL kernels.
15382   if (FD->hasAttr<OpenCLKernelAttr>())
15383     return false;
15384 
15385   // Don't warn on explicitly deleted functions.
15386   if (FD->isDeleted())
15387     return false;
15388 
15389   // Don't warn on implicitly local functions (such as having local-typed
15390   // parameters).
15391   if (!FD->isExternallyVisible())
15392     return false;
15393 
15394   // If we were able to find a potential prototype, don't warn.
15395   if (FindPossiblePrototype(FD, PossiblePrototype))
15396     return false;
15397 
15398   return true;
15399 }
15400 
15401 void
15402 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
15403                                    const FunctionDecl *EffectiveDefinition,
15404                                    SkipBodyInfo *SkipBody) {
15405   const FunctionDecl *Definition = EffectiveDefinition;
15406   if (!Definition &&
15407       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
15408     return;
15409 
15410   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
15411     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
15412       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
15413         // A merged copy of the same function, instantiated as a member of
15414         // the same class, is OK.
15415         if (declaresSameEntity(OrigFD, OrigDef) &&
15416             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
15417                                cast<Decl>(FD->getLexicalDeclContext())))
15418           return;
15419       }
15420     }
15421   }
15422 
15423   if (canRedefineFunction(Definition, getLangOpts()))
15424     return;
15425 
15426   // Don't emit an error when this is redefinition of a typo-corrected
15427   // definition.
15428   if (TypoCorrectedFunctionDefinitions.count(Definition))
15429     return;
15430 
15431   // If we don't have a visible definition of the function, and it's inline or
15432   // a template, skip the new definition.
15433   if (SkipBody && !hasVisibleDefinition(Definition) &&
15434       (Definition->getFormalLinkage() == Linkage::Internal ||
15435        Definition->isInlined() || Definition->getDescribedFunctionTemplate() ||
15436        Definition->getNumTemplateParameterLists())) {
15437     SkipBody->ShouldSkip = true;
15438     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
15439     if (auto *TD = Definition->getDescribedFunctionTemplate())
15440       makeMergedDefinitionVisible(TD);
15441     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
15442     return;
15443   }
15444 
15445   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
15446       Definition->getStorageClass() == SC_Extern)
15447     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
15448         << FD << getLangOpts().CPlusPlus;
15449   else
15450     Diag(FD->getLocation(), diag::err_redefinition) << FD;
15451 
15452   Diag(Definition->getLocation(), diag::note_previous_definition);
15453   FD->setInvalidDecl();
15454 }
15455 
15456 LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) {
15457   CXXRecordDecl *LambdaClass = CallOperator->getParent();
15458 
15459   LambdaScopeInfo *LSI = PushLambdaScope();
15460   LSI->CallOperator = CallOperator;
15461   LSI->Lambda = LambdaClass;
15462   LSI->ReturnType = CallOperator->getReturnType();
15463   // This function in calls in situation where the context of the call operator
15464   // is not entered, so we set AfterParameterList to false, so that
15465   // `tryCaptureVariable` finds explicit captures in the appropriate context.
15466   LSI->AfterParameterList = false;
15467   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
15468 
15469   if (LCD == LCD_None)
15470     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
15471   else if (LCD == LCD_ByCopy)
15472     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
15473   else if (LCD == LCD_ByRef)
15474     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
15475   DeclarationNameInfo DNI = CallOperator->getNameInfo();
15476 
15477   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
15478   LSI->Mutable = !CallOperator->isConst();
15479   if (CallOperator->isExplicitObjectMemberFunction())
15480     LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0);
15481 
15482   // Add the captures to the LSI so they can be noted as already
15483   // captured within tryCaptureVar.
15484   auto I = LambdaClass->field_begin();
15485   for (const auto &C : LambdaClass->captures()) {
15486     if (C.capturesVariable()) {
15487       ValueDecl *VD = C.getCapturedVar();
15488       if (VD->isInitCapture())
15489         CurrentInstantiationScope->InstantiatedLocal(VD, VD);
15490       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
15491       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
15492           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
15493           /*EllipsisLoc*/C.isPackExpansion()
15494                          ? C.getEllipsisLoc() : SourceLocation(),
15495           I->getType(), /*Invalid*/false);
15496 
15497     } else if (C.capturesThis()) {
15498       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
15499                           C.getCaptureKind() == LCK_StarThis);
15500     } else {
15501       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
15502                              I->getType());
15503     }
15504     ++I;
15505   }
15506   return LSI;
15507 }
15508 
15509 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
15510                                     SkipBodyInfo *SkipBody,
15511                                     FnBodyKind BodyKind) {
15512   if (!D) {
15513     // Parsing the function declaration failed in some way. Push on a fake scope
15514     // anyway so we can try to parse the function body.
15515     PushFunctionScope();
15516     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
15517     return D;
15518   }
15519 
15520   FunctionDecl *FD = nullptr;
15521 
15522   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
15523     FD = FunTmpl->getTemplatedDecl();
15524   else
15525     FD = cast<FunctionDecl>(D);
15526 
15527   // Do not push if it is a lambda because one is already pushed when building
15528   // the lambda in ActOnStartOfLambdaDefinition().
15529   if (!isLambdaCallOperator(FD))
15530     // [expr.const]/p14.1
15531     // An expression or conversion is in an immediate function context if it is
15532     // potentially evaluated and either: its innermost enclosing non-block scope
15533     // is a function parameter scope of an immediate function.
15534     PushExpressionEvaluationContext(
15535         FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext
15536                           : ExprEvalContexts.back().Context);
15537 
15538   // Each ExpressionEvaluationContextRecord also keeps track of whether the
15539   // context is nested in an immediate function context, so smaller contexts
15540   // that appear inside immediate functions (like variable initializers) are
15541   // considered to be inside an immediate function context even though by
15542   // themselves they are not immediate function contexts. But when a new
15543   // function is entered, we need to reset this tracking, since the entered
15544   // function might be not an immediate function.
15545   ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval();
15546   ExprEvalContexts.back().InImmediateEscalatingFunctionContext =
15547       getLangOpts().CPlusPlus20 && FD->isImmediateEscalating();
15548 
15549   // Check for defining attributes before the check for redefinition.
15550   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
15551     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
15552     FD->dropAttr<AliasAttr>();
15553     FD->setInvalidDecl();
15554   }
15555   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
15556     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
15557     FD->dropAttr<IFuncAttr>();
15558     FD->setInvalidDecl();
15559   }
15560   if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) {
15561     if (!Context.getTargetInfo().hasFeature("fmv") &&
15562         !Attr->isDefaultVersion()) {
15563       // If function multi versioning disabled skip parsing function body
15564       // defined with non-default target_version attribute
15565       if (SkipBody)
15566         SkipBody->ShouldSkip = true;
15567       return nullptr;
15568     }
15569   }
15570 
15571   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
15572     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
15573         Ctor->isDefaultConstructor() &&
15574         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15575       // If this is an MS ABI dllexport default constructor, instantiate any
15576       // default arguments.
15577       InstantiateDefaultCtorDefaultArgs(Ctor);
15578     }
15579   }
15580 
15581   // See if this is a redefinition. If 'will have body' (or similar) is already
15582   // set, then these checks were already performed when it was set.
15583   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
15584       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
15585     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
15586 
15587     // If we're skipping the body, we're done. Don't enter the scope.
15588     if (SkipBody && SkipBody->ShouldSkip)
15589       return D;
15590   }
15591 
15592   // Mark this function as "will have a body eventually".  This lets users to
15593   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
15594   // this function.
15595   FD->setWillHaveBody();
15596 
15597   // If we are instantiating a generic lambda call operator, push
15598   // a LambdaScopeInfo onto the function stack.  But use the information
15599   // that's already been calculated (ActOnLambdaExpr) to prime the current
15600   // LambdaScopeInfo.
15601   // When the template operator is being specialized, the LambdaScopeInfo,
15602   // has to be properly restored so that tryCaptureVariable doesn't try
15603   // and capture any new variables. In addition when calculating potential
15604   // captures during transformation of nested lambdas, it is necessary to
15605   // have the LSI properly restored.
15606   if (isGenericLambdaCallOperatorSpecialization(FD)) {
15607     assert(inTemplateInstantiation() &&
15608            "There should be an active template instantiation on the stack "
15609            "when instantiating a generic lambda!");
15610     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D));
15611   } else {
15612     // Enter a new function scope
15613     PushFunctionScope();
15614   }
15615 
15616   // Builtin functions cannot be defined.
15617   if (unsigned BuiltinID = FD->getBuiltinID()) {
15618     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
15619         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
15620       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
15621       FD->setInvalidDecl();
15622     }
15623   }
15624 
15625   // The return type of a function definition must be complete (C99 6.9.1p3).
15626   // C++23 [dcl.fct.def.general]/p2
15627   // The type of [...] the return for a function definition
15628   // shall not be a (possibly cv-qualified) class type that is incomplete
15629   // or abstract within the function body unless the function is deleted.
15630   QualType ResultType = FD->getReturnType();
15631   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
15632       !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete &&
15633       (RequireCompleteType(FD->getLocation(), ResultType,
15634                            diag::err_func_def_incomplete_result) ||
15635        RequireNonAbstractType(FD->getLocation(), FD->getReturnType(),
15636                               diag::err_abstract_type_in_decl,
15637                               AbstractReturnType)))
15638     FD->setInvalidDecl();
15639 
15640   if (FnBodyScope)
15641     PushDeclContext(FnBodyScope, FD);
15642 
15643   // Check the validity of our function parameters
15644   if (BodyKind != FnBodyKind::Delete)
15645     CheckParmsForFunctionDef(FD->parameters(),
15646                              /*CheckParameterNames=*/true);
15647 
15648   // Add non-parameter declarations already in the function to the current
15649   // scope.
15650   if (FnBodyScope) {
15651     for (Decl *NPD : FD->decls()) {
15652       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
15653       if (!NonParmDecl)
15654         continue;
15655       assert(!isa<ParmVarDecl>(NonParmDecl) &&
15656              "parameters should not be in newly created FD yet");
15657 
15658       // If the decl has a name, make it accessible in the current scope.
15659       if (NonParmDecl->getDeclName())
15660         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
15661 
15662       // Similarly, dive into enums and fish their constants out, making them
15663       // accessible in this scope.
15664       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
15665         for (auto *EI : ED->enumerators())
15666           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
15667       }
15668     }
15669   }
15670 
15671   // Introduce our parameters into the function scope
15672   for (auto *Param : FD->parameters()) {
15673     Param->setOwningFunction(FD);
15674 
15675     // If this has an identifier, add it to the scope stack.
15676     if (Param->getIdentifier() && FnBodyScope) {
15677       CheckShadow(FnBodyScope, Param);
15678 
15679       PushOnScopeChains(Param, FnBodyScope);
15680     }
15681   }
15682 
15683   // C++ [module.import/6] external definitions are not permitted in header
15684   // units.  Deleted and Defaulted functions are implicitly inline (but the
15685   // inline state is not set at this point, so check the BodyKind explicitly).
15686   // FIXME: Consider an alternate location for the test where the inlined()
15687   // state is complete.
15688   if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() &&
15689       !FD->isInvalidDecl() && !FD->isInlined() &&
15690       BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default &&
15691       FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() &&
15692       !FD->isTemplateInstantiation()) {
15693     assert(FD->isThisDeclarationADefinition());
15694     Diag(FD->getLocation(), diag::err_extern_def_in_header_unit);
15695     FD->setInvalidDecl();
15696   }
15697 
15698   // Ensure that the function's exception specification is instantiated.
15699   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
15700     ResolveExceptionSpec(D->getLocation(), FPT);
15701 
15702   // dllimport cannot be applied to non-inline function definitions.
15703   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
15704       !FD->isTemplateInstantiation()) {
15705     assert(!FD->hasAttr<DLLExportAttr>());
15706     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
15707     FD->setInvalidDecl();
15708     return D;
15709   }
15710   // We want to attach documentation to original Decl (which might be
15711   // a function template).
15712   ActOnDocumentableDecl(D);
15713   if (getCurLexicalContext()->isObjCContainer() &&
15714       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
15715       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
15716     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
15717 
15718   return D;
15719 }
15720 
15721 /// Given the set of return statements within a function body,
15722 /// compute the variables that are subject to the named return value
15723 /// optimization.
15724 ///
15725 /// Each of the variables that is subject to the named return value
15726 /// optimization will be marked as NRVO variables in the AST, and any
15727 /// return statement that has a marked NRVO variable as its NRVO candidate can
15728 /// use the named return value optimization.
15729 ///
15730 /// This function applies a very simplistic algorithm for NRVO: if every return
15731 /// statement in the scope of a variable has the same NRVO candidate, that
15732 /// candidate is an NRVO variable.
15733 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
15734   ReturnStmt **Returns = Scope->Returns.data();
15735 
15736   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
15737     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
15738       if (!NRVOCandidate->isNRVOVariable())
15739         Returns[I]->setNRVOCandidate(nullptr);
15740     }
15741   }
15742 }
15743 
15744 bool Sema::canDelayFunctionBody(const Declarator &D) {
15745   // We can't delay parsing the body of a constexpr function template (yet).
15746   if (D.getDeclSpec().hasConstexprSpecifier())
15747     return false;
15748 
15749   // We can't delay parsing the body of a function template with a deduced
15750   // return type (yet).
15751   if (D.getDeclSpec().hasAutoTypeSpec()) {
15752     // If the placeholder introduces a non-deduced trailing return type,
15753     // we can still delay parsing it.
15754     if (D.getNumTypeObjects()) {
15755       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
15756       if (Outer.Kind == DeclaratorChunk::Function &&
15757           Outer.Fun.hasTrailingReturnType()) {
15758         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
15759         return Ty.isNull() || !Ty->isUndeducedType();
15760       }
15761     }
15762     return false;
15763   }
15764 
15765   return true;
15766 }
15767 
15768 bool Sema::canSkipFunctionBody(Decl *D) {
15769   // We cannot skip the body of a function (or function template) which is
15770   // constexpr, since we may need to evaluate its body in order to parse the
15771   // rest of the file.
15772   // We cannot skip the body of a function with an undeduced return type,
15773   // because any callers of that function need to know the type.
15774   if (const FunctionDecl *FD = D->getAsFunction()) {
15775     if (FD->isConstexpr())
15776       return false;
15777     // We can't simply call Type::isUndeducedType here, because inside template
15778     // auto can be deduced to a dependent type, which is not considered
15779     // "undeduced".
15780     if (FD->getReturnType()->getContainedDeducedType())
15781       return false;
15782   }
15783   return Consumer.shouldSkipFunctionBody(D);
15784 }
15785 
15786 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
15787   if (!Decl)
15788     return nullptr;
15789   if (FunctionDecl *FD = Decl->getAsFunction())
15790     FD->setHasSkippedBody();
15791   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
15792     MD->setHasSkippedBody();
15793   return Decl;
15794 }
15795 
15796 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
15797   return ActOnFinishFunctionBody(D, BodyArg, /*IsInstantiation=*/false);
15798 }
15799 
15800 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
15801 /// body.
15802 class ExitFunctionBodyRAII {
15803 public:
15804   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
15805   ~ExitFunctionBodyRAII() {
15806     if (!IsLambda)
15807       S.PopExpressionEvaluationContext();
15808   }
15809 
15810 private:
15811   Sema &S;
15812   bool IsLambda = false;
15813 };
15814 
15815 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
15816   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
15817 
15818   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
15819     if (EscapeInfo.count(BD))
15820       return EscapeInfo[BD];
15821 
15822     bool R = false;
15823     const BlockDecl *CurBD = BD;
15824 
15825     do {
15826       R = !CurBD->doesNotEscape();
15827       if (R)
15828         break;
15829       CurBD = CurBD->getParent()->getInnermostBlockDecl();
15830     } while (CurBD);
15831 
15832     return EscapeInfo[BD] = R;
15833   };
15834 
15835   // If the location where 'self' is implicitly retained is inside a escaping
15836   // block, emit a diagnostic.
15837   for (const std::pair<SourceLocation, const BlockDecl *> &P :
15838        S.ImplicitlyRetainedSelfLocs)
15839     if (IsOrNestedInEscapingBlock(P.second))
15840       S.Diag(P.first, diag::warn_implicitly_retains_self)
15841           << FixItHint::CreateInsertion(P.first, "self->");
15842 }
15843 
15844 void Sema::CheckCoroutineWrapper(FunctionDecl *FD) {
15845   RecordDecl *RD = FD->getReturnType()->getAsRecordDecl();
15846   if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>())
15847     return;
15848   // Allow `get_return_object()`.
15849   if (FD->getDeclName().isIdentifier() &&
15850       FD->getName().equals("get_return_object") && FD->param_empty())
15851     return;
15852   if (!FD->hasAttr<CoroWrapperAttr>())
15853     Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD;
15854 }
15855 
15856 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
15857                                     bool IsInstantiation) {
15858   FunctionScopeInfo *FSI = getCurFunction();
15859   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
15860 
15861   if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
15862     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
15863 
15864   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15865   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
15866 
15867   // If we skip function body, we can't tell if a function is a coroutine.
15868   if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) {
15869     if (FSI->isCoroutine())
15870       CheckCompletedCoroutineBody(FD, Body);
15871     else
15872       CheckCoroutineWrapper(FD);
15873   }
15874 
15875   {
15876     // Do not call PopExpressionEvaluationContext() if it is a lambda because
15877     // one is already popped when finishing the lambda in BuildLambdaExpr().
15878     // This is meant to pop the context added in ActOnStartOfFunctionDef().
15879     ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
15880     if (FD) {
15881       FD->setBody(Body);
15882       FD->setWillHaveBody(false);
15883       CheckImmediateEscalatingFunctionDefinition(FD, FSI);
15884 
15885       if (getLangOpts().CPlusPlus14) {
15886         if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
15887             FD->getReturnType()->isUndeducedType()) {
15888           // For a function with a deduced result type to return void,
15889           // the result type as written must be 'auto' or 'decltype(auto)',
15890           // possibly cv-qualified or constrained, but not ref-qualified.
15891           if (!FD->getReturnType()->getAs<AutoType>()) {
15892             Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
15893                 << FD->getReturnType();
15894             FD->setInvalidDecl();
15895           } else {
15896             // Falling off the end of the function is the same as 'return;'.
15897             Expr *Dummy = nullptr;
15898             if (DeduceFunctionTypeFromReturnExpr(
15899                     FD, dcl->getLocation(), Dummy,
15900                     FD->getReturnType()->getAs<AutoType>()))
15901               FD->setInvalidDecl();
15902           }
15903         }
15904       } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
15905         // In C++11, we don't use 'auto' deduction rules for lambda call
15906         // operators because we don't support return type deduction.
15907         auto *LSI = getCurLambda();
15908         if (LSI->HasImplicitReturnType) {
15909           deduceClosureReturnType(*LSI);
15910 
15911           // C++11 [expr.prim.lambda]p4:
15912           //   [...] if there are no return statements in the compound-statement
15913           //   [the deduced type is] the type void
15914           QualType RetType =
15915               LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
15916 
15917           // Update the return type to the deduced type.
15918           const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
15919           FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
15920                                               Proto->getExtProtoInfo()));
15921         }
15922       }
15923 
15924       // If the function implicitly returns zero (like 'main') or is naked,
15925       // don't complain about missing return statements.
15926       if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
15927         WP.disableCheckFallThrough();
15928 
15929       // MSVC permits the use of pure specifier (=0) on function definition,
15930       // defined at class scope, warn about this non-standard construct.
15931       if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
15932         Diag(FD->getLocation(), diag::ext_pure_function_definition);
15933 
15934       if (!FD->isInvalidDecl()) {
15935         // Don't diagnose unused parameters of defaulted, deleted or naked
15936         // functions.
15937         if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() &&
15938             !FD->hasAttr<NakedAttr>())
15939           DiagnoseUnusedParameters(FD->parameters());
15940         DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
15941                                                FD->getReturnType(), FD);
15942 
15943         // If this is a structor, we need a vtable.
15944         if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
15945           MarkVTableUsed(FD->getLocation(), Constructor->getParent());
15946         else if (CXXDestructorDecl *Destructor =
15947                      dyn_cast<CXXDestructorDecl>(FD))
15948           MarkVTableUsed(FD->getLocation(), Destructor->getParent());
15949 
15950         // Try to apply the named return value optimization. We have to check
15951         // if we can do this here because lambdas keep return statements around
15952         // to deduce an implicit return type.
15953         if (FD->getReturnType()->isRecordType() &&
15954             (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
15955           computeNRVO(Body, FSI);
15956       }
15957 
15958       // GNU warning -Wmissing-prototypes:
15959       //   Warn if a global function is defined without a previous
15960       //   prototype declaration. This warning is issued even if the
15961       //   definition itself provides a prototype. The aim is to detect
15962       //   global functions that fail to be declared in header files.
15963       const FunctionDecl *PossiblePrototype = nullptr;
15964       if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
15965         Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
15966 
15967         if (PossiblePrototype) {
15968           // We found a declaration that is not a prototype,
15969           // but that could be a zero-parameter prototype
15970           if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
15971             TypeLoc TL = TI->getTypeLoc();
15972             if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
15973               Diag(PossiblePrototype->getLocation(),
15974                    diag::note_declaration_not_a_prototype)
15975                   << (FD->getNumParams() != 0)
15976                   << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion(
15977                                                     FTL.getRParenLoc(), "void")
15978                                               : FixItHint{});
15979           }
15980         } else {
15981           // Returns true if the token beginning at this Loc is `const`.
15982           auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
15983                                   const LangOptions &LangOpts) {
15984             std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
15985             if (LocInfo.first.isInvalid())
15986               return false;
15987 
15988             bool Invalid = false;
15989             StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
15990             if (Invalid)
15991               return false;
15992 
15993             if (LocInfo.second > Buffer.size())
15994               return false;
15995 
15996             const char *LexStart = Buffer.data() + LocInfo.second;
15997             StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
15998 
15999             return StartTok.consume_front("const") &&
16000                    (StartTok.empty() || isWhitespace(StartTok[0]) ||
16001                     StartTok.starts_with("/*") || StartTok.starts_with("//"));
16002           };
16003 
16004           auto findBeginLoc = [&]() {
16005             // If the return type has `const` qualifier, we want to insert
16006             // `static` before `const` (and not before the typename).
16007             if ((FD->getReturnType()->isAnyPointerType() &&
16008                  FD->getReturnType()->getPointeeType().isConstQualified()) ||
16009                 FD->getReturnType().isConstQualified()) {
16010               // But only do this if we can determine where the `const` is.
16011 
16012               if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
16013                                getLangOpts()))
16014 
16015                 return FD->getBeginLoc();
16016             }
16017             return FD->getTypeSpecStartLoc();
16018           };
16019           Diag(FD->getTypeSpecStartLoc(),
16020                diag::note_static_for_internal_linkage)
16021               << /* function */ 1
16022               << (FD->getStorageClass() == SC_None
16023                       ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
16024                       : FixItHint{});
16025         }
16026       }
16027 
16028       // We might not have found a prototype because we didn't wish to warn on
16029       // the lack of a missing prototype. Try again without the checks for
16030       // whether we want to warn on the missing prototype.
16031       if (!PossiblePrototype)
16032         (void)FindPossiblePrototype(FD, PossiblePrototype);
16033 
16034       // If the function being defined does not have a prototype, then we may
16035       // need to diagnose it as changing behavior in C23 because we now know
16036       // whether the function accepts arguments or not. This only handles the
16037       // case where the definition has no prototype but does have parameters
16038       // and either there is no previous potential prototype, or the previous
16039       // potential prototype also has no actual prototype. This handles cases
16040       // like:
16041       //   void f(); void f(a) int a; {}
16042       //   void g(a) int a; {}
16043       // See MergeFunctionDecl() for other cases of the behavior change
16044       // diagnostic. See GetFullTypeForDeclarator() for handling of a function
16045       // type without a prototype.
16046       if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 &&
16047           (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() &&
16048                                   !PossiblePrototype->isImplicit()))) {
16049         // The function definition has parameters, so this will change behavior
16050         // in C23. If there is a possible prototype, it comes before the
16051         // function definition.
16052         // FIXME: The declaration may have already been diagnosed as being
16053         // deprecated in GetFullTypeForDeclarator() if it had no arguments, but
16054         // there's no way to test for the "changes behavior" condition in
16055         // SemaType.cpp when forming the declaration's function type. So, we do
16056         // this awkward dance instead.
16057         //
16058         // If we have a possible prototype and it declares a function with a
16059         // prototype, we don't want to diagnose it; if we have a possible
16060         // prototype and it has no prototype, it may have already been
16061         // diagnosed in SemaType.cpp as deprecated depending on whether
16062         // -Wstrict-prototypes is enabled. If we already warned about it being
16063         // deprecated, add a note that it also changes behavior. If we didn't
16064         // warn about it being deprecated (because the diagnostic is not
16065         // enabled), warn now that it is deprecated and changes behavior.
16066 
16067         // This K&R C function definition definitely changes behavior in C23,
16068         // so diagnose it.
16069         Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior)
16070             << /*definition*/ 1 << /* not supported in C23 */ 0;
16071 
16072         // If we have a possible prototype for the function which is a user-
16073         // visible declaration, we already tested that it has no prototype.
16074         // This will change behavior in C23. This gets a warning rather than a
16075         // note because it's the same behavior-changing problem as with the
16076         // definition.
16077         if (PossiblePrototype)
16078           Diag(PossiblePrototype->getLocation(),
16079                diag::warn_non_prototype_changes_behavior)
16080               << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1
16081               << /*definition*/ 1;
16082       }
16083 
16084       // Warn on CPUDispatch with an actual body.
16085       if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
16086         if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
16087           if (!CmpndBody->body_empty())
16088             Diag(CmpndBody->body_front()->getBeginLoc(),
16089                  diag::warn_dispatch_body_ignored);
16090 
16091       if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
16092         const CXXMethodDecl *KeyFunction;
16093         if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
16094             MD->isVirtual() &&
16095             (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
16096             MD == KeyFunction->getCanonicalDecl()) {
16097           // Update the key-function state if necessary for this ABI.
16098           if (FD->isInlined() &&
16099               !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
16100             Context.setNonKeyFunction(MD);
16101 
16102             // If the newly-chosen key function is already defined, then we
16103             // need to mark the vtable as used retroactively.
16104             KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
16105             const FunctionDecl *Definition;
16106             if (KeyFunction && KeyFunction->isDefined(Definition))
16107               MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
16108           } else {
16109             // We just defined they key function; mark the vtable as used.
16110             MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
16111           }
16112         }
16113       }
16114 
16115       assert(
16116           (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
16117           "Function parsing confused");
16118     } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
16119       assert(MD == getCurMethodDecl() && "Method parsing confused");
16120       MD->setBody(Body);
16121       if (!MD->isInvalidDecl()) {
16122         DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
16123                                                MD->getReturnType(), MD);
16124 
16125         if (Body)
16126           computeNRVO(Body, FSI);
16127       }
16128       if (FSI->ObjCShouldCallSuper) {
16129         Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
16130             << MD->getSelector().getAsString();
16131         FSI->ObjCShouldCallSuper = false;
16132       }
16133       if (FSI->ObjCWarnForNoDesignatedInitChain) {
16134         const ObjCMethodDecl *InitMethod = nullptr;
16135         bool isDesignated =
16136             MD->isDesignatedInitializerForTheInterface(&InitMethod);
16137         assert(isDesignated && InitMethod);
16138         (void)isDesignated;
16139 
16140         auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
16141           auto IFace = MD->getClassInterface();
16142           if (!IFace)
16143             return false;
16144           auto SuperD = IFace->getSuperClass();
16145           if (!SuperD)
16146             return false;
16147           return SuperD->getIdentifier() ==
16148                  NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
16149         };
16150         // Don't issue this warning for unavailable inits or direct subclasses
16151         // of NSObject.
16152         if (!MD->isUnavailable() && !superIsNSObject(MD)) {
16153           Diag(MD->getLocation(),
16154                diag::warn_objc_designated_init_missing_super_call);
16155           Diag(InitMethod->getLocation(),
16156                diag::note_objc_designated_init_marked_here);
16157         }
16158         FSI->ObjCWarnForNoDesignatedInitChain = false;
16159       }
16160       if (FSI->ObjCWarnForNoInitDelegation) {
16161         // Don't issue this warning for unavaialable inits.
16162         if (!MD->isUnavailable())
16163           Diag(MD->getLocation(),
16164                diag::warn_objc_secondary_init_missing_init_call);
16165         FSI->ObjCWarnForNoInitDelegation = false;
16166       }
16167 
16168       diagnoseImplicitlyRetainedSelf(*this);
16169     } else {
16170       // Parsing the function declaration failed in some way. Pop the fake scope
16171       // we pushed on.
16172       PopFunctionScopeInfo(ActivePolicy, dcl);
16173       return nullptr;
16174     }
16175 
16176     if (Body && FSI->HasPotentialAvailabilityViolations)
16177       DiagnoseUnguardedAvailabilityViolations(dcl);
16178 
16179     assert(!FSI->ObjCShouldCallSuper &&
16180            "This should only be set for ObjC methods, which should have been "
16181            "handled in the block above.");
16182 
16183     // Verify and clean out per-function state.
16184     if (Body && (!FD || !FD->isDefaulted())) {
16185       // C++ constructors that have function-try-blocks can't have return
16186       // statements in the handlers of that block. (C++ [except.handle]p14)
16187       // Verify this.
16188       if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
16189         DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
16190 
16191       // Verify that gotos and switch cases don't jump into scopes illegally.
16192       if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled())
16193         DiagnoseInvalidJumps(Body);
16194 
16195       if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
16196         if (!Destructor->getParent()->isDependentType())
16197           CheckDestructor(Destructor);
16198 
16199         MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
16200                                                Destructor->getParent());
16201       }
16202 
16203       // If any errors have occurred, clear out any temporaries that may have
16204       // been leftover. This ensures that these temporaries won't be picked up
16205       // for deletion in some later function.
16206       if (hasUncompilableErrorOccurred() ||
16207           hasAnyUnrecoverableErrorsInThisFunction() ||
16208           getDiagnostics().getSuppressAllDiagnostics()) {
16209         DiscardCleanupsInEvaluationContext();
16210       }
16211       if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) {
16212         // Since the body is valid, issue any analysis-based warnings that are
16213         // enabled.
16214         ActivePolicy = &WP;
16215       }
16216 
16217       if (!IsInstantiation && FD &&
16218           (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) &&
16219           !FD->isInvalidDecl() &&
16220           !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
16221         FD->setInvalidDecl();
16222 
16223       if (FD && FD->hasAttr<NakedAttr>()) {
16224         for (const Stmt *S : Body->children()) {
16225           // Allow local register variables without initializer as they don't
16226           // require prologue.
16227           bool RegisterVariables = false;
16228           if (auto *DS = dyn_cast<DeclStmt>(S)) {
16229             for (const auto *Decl : DS->decls()) {
16230               if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
16231                 RegisterVariables =
16232                     Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
16233                 if (!RegisterVariables)
16234                   break;
16235               }
16236             }
16237           }
16238           if (RegisterVariables)
16239             continue;
16240           if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
16241             Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
16242             Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
16243             FD->setInvalidDecl();
16244             break;
16245           }
16246         }
16247       }
16248 
16249       assert(ExprCleanupObjects.size() ==
16250                  ExprEvalContexts.back().NumCleanupObjects &&
16251              "Leftover temporaries in function");
16252       assert(!Cleanup.exprNeedsCleanups() &&
16253              "Unaccounted cleanups in function");
16254       assert(MaybeODRUseExprs.empty() &&
16255              "Leftover expressions for odr-use checking");
16256     }
16257   } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop
16258     // the declaration context below. Otherwise, we're unable to transform
16259     // 'this' expressions when transforming immediate context functions.
16260 
16261   if (!IsInstantiation)
16262     PopDeclContext();
16263 
16264   PopFunctionScopeInfo(ActivePolicy, dcl);
16265   // If any errors have occurred, clear out any temporaries that may have
16266   // been leftover. This ensures that these temporaries won't be picked up for
16267   // deletion in some later function.
16268   if (hasUncompilableErrorOccurred()) {
16269     DiscardCleanupsInEvaluationContext();
16270   }
16271 
16272   if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice ||
16273                                   !LangOpts.OMPTargetTriples.empty())) ||
16274              LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
16275     auto ES = getEmissionStatus(FD);
16276     if (ES == Sema::FunctionEmissionStatus::Emitted ||
16277         ES == Sema::FunctionEmissionStatus::Unknown)
16278       DeclsToCheckForDeferredDiags.insert(FD);
16279   }
16280 
16281   if (FD && !FD->isDeleted())
16282     checkTypeSupport(FD->getType(), FD->getLocation(), FD);
16283 
16284   return dcl;
16285 }
16286 
16287 /// When we finish delayed parsing of an attribute, we must attach it to the
16288 /// relevant Decl.
16289 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
16290                                        ParsedAttributes &Attrs) {
16291   // Always attach attributes to the underlying decl.
16292   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
16293     D = TD->getTemplatedDecl();
16294   ProcessDeclAttributeList(S, D, Attrs);
16295 
16296   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
16297     if (Method->isStatic())
16298       checkThisInStaticMemberFunctionAttributes(Method);
16299 }
16300 
16301 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
16302 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
16303 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
16304                                           IdentifierInfo &II, Scope *S) {
16305   // It is not valid to implicitly define a function in C23.
16306   assert(LangOpts.implicitFunctionsAllowed() &&
16307          "Implicit function declarations aren't allowed in this language mode");
16308 
16309   // Find the scope in which the identifier is injected and the corresponding
16310   // DeclContext.
16311   // FIXME: C89 does not say what happens if there is no enclosing block scope.
16312   // In that case, we inject the declaration into the translation unit scope
16313   // instead.
16314   Scope *BlockScope = S;
16315   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
16316     BlockScope = BlockScope->getParent();
16317 
16318   // Loop until we find a DeclContext that is either a function/method or the
16319   // translation unit, which are the only two valid places to implicitly define
16320   // a function. This avoids accidentally defining the function within a tag
16321   // declaration, for example.
16322   Scope *ContextScope = BlockScope;
16323   while (!ContextScope->getEntity() ||
16324          (!ContextScope->getEntity()->isFunctionOrMethod() &&
16325           !ContextScope->getEntity()->isTranslationUnit()))
16326     ContextScope = ContextScope->getParent();
16327   ContextRAII SavedContext(*this, ContextScope->getEntity());
16328 
16329   // Before we produce a declaration for an implicitly defined
16330   // function, see whether there was a locally-scoped declaration of
16331   // this name as a function or variable. If so, use that
16332   // (non-visible) declaration, and complain about it.
16333   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
16334   if (ExternCPrev) {
16335     // We still need to inject the function into the enclosing block scope so
16336     // that later (non-call) uses can see it.
16337     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
16338 
16339     // C89 footnote 38:
16340     //   If in fact it is not defined as having type "function returning int",
16341     //   the behavior is undefined.
16342     if (!isa<FunctionDecl>(ExternCPrev) ||
16343         !Context.typesAreCompatible(
16344             cast<FunctionDecl>(ExternCPrev)->getType(),
16345             Context.getFunctionNoProtoType(Context.IntTy))) {
16346       Diag(Loc, diag::ext_use_out_of_scope_declaration)
16347           << ExternCPrev << !getLangOpts().C99;
16348       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
16349       return ExternCPrev;
16350     }
16351   }
16352 
16353   // Extension in C99 (defaults to error). Legal in C89, but warn about it.
16354   unsigned diag_id;
16355   if (II.getName().starts_with("__builtin_"))
16356     diag_id = diag::warn_builtin_unknown;
16357   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
16358   else if (getLangOpts().C99)
16359     diag_id = diag::ext_implicit_function_decl_c99;
16360   else
16361     diag_id = diag::warn_implicit_function_decl;
16362 
16363   TypoCorrection Corrected;
16364   // Because typo correction is expensive, only do it if the implicit
16365   // function declaration is going to be treated as an error.
16366   //
16367   // Perform the correction before issuing the main diagnostic, as some
16368   // consumers use typo-correction callbacks to enhance the main diagnostic.
16369   if (S && !ExternCPrev &&
16370       (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) {
16371     DeclFilterCCC<FunctionDecl> CCC{};
16372     Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
16373                             S, nullptr, CCC, CTK_NonError);
16374   }
16375 
16376   Diag(Loc, diag_id) << &II;
16377   if (Corrected) {
16378     // If the correction is going to suggest an implicitly defined function,
16379     // skip the correction as not being a particularly good idea.
16380     bool Diagnose = true;
16381     if (const auto *D = Corrected.getCorrectionDecl())
16382       Diagnose = !D->isImplicit();
16383     if (Diagnose)
16384       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
16385                    /*ErrorRecovery*/ false);
16386   }
16387 
16388   // If we found a prior declaration of this function, don't bother building
16389   // another one. We've already pushed that one into scope, so there's nothing
16390   // more to do.
16391   if (ExternCPrev)
16392     return ExternCPrev;
16393 
16394   // Set a Declarator for the implicit definition: int foo();
16395   const char *Dummy;
16396   AttributeFactory attrFactory;
16397   DeclSpec DS(attrFactory);
16398   unsigned DiagID;
16399   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
16400                                   Context.getPrintingPolicy());
16401   (void)Error; // Silence warning.
16402   assert(!Error && "Error setting up implicit decl!");
16403   SourceLocation NoLoc;
16404   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block);
16405   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
16406                                              /*IsAmbiguous=*/false,
16407                                              /*LParenLoc=*/NoLoc,
16408                                              /*Params=*/nullptr,
16409                                              /*NumParams=*/0,
16410                                              /*EllipsisLoc=*/NoLoc,
16411                                              /*RParenLoc=*/NoLoc,
16412                                              /*RefQualifierIsLvalueRef=*/true,
16413                                              /*RefQualifierLoc=*/NoLoc,
16414                                              /*MutableLoc=*/NoLoc, EST_None,
16415                                              /*ESpecRange=*/SourceRange(),
16416                                              /*Exceptions=*/nullptr,
16417                                              /*ExceptionRanges=*/nullptr,
16418                                              /*NumExceptions=*/0,
16419                                              /*NoexceptExpr=*/nullptr,
16420                                              /*ExceptionSpecTokens=*/nullptr,
16421                                              /*DeclsInPrototype=*/std::nullopt,
16422                                              Loc, Loc, D),
16423                 std::move(DS.getAttributes()), SourceLocation());
16424   D.SetIdentifier(&II, Loc);
16425 
16426   // Insert this function into the enclosing block scope.
16427   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
16428   FD->setImplicit();
16429 
16430   AddKnownFunctionAttributes(FD);
16431 
16432   return FD;
16433 }
16434 
16435 /// If this function is a C++ replaceable global allocation function
16436 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
16437 /// adds any function attributes that we know a priori based on the standard.
16438 ///
16439 /// We need to check for duplicate attributes both here and where user-written
16440 /// attributes are applied to declarations.
16441 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
16442     FunctionDecl *FD) {
16443   if (FD->isInvalidDecl())
16444     return;
16445 
16446   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
16447       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
16448     return;
16449 
16450   std::optional<unsigned> AlignmentParam;
16451   bool IsNothrow = false;
16452   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
16453     return;
16454 
16455   // C++2a [basic.stc.dynamic.allocation]p4:
16456   //   An allocation function that has a non-throwing exception specification
16457   //   indicates failure by returning a null pointer value. Any other allocation
16458   //   function never returns a null pointer value and indicates failure only by
16459   //   throwing an exception [...]
16460   //
16461   // However, -fcheck-new invalidates this possible assumption, so don't add
16462   // NonNull when that is enabled.
16463   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() &&
16464       !getLangOpts().CheckNew)
16465     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
16466 
16467   // C++2a [basic.stc.dynamic.allocation]p2:
16468   //   An allocation function attempts to allocate the requested amount of
16469   //   storage. [...] If the request succeeds, the value returned by a
16470   //   replaceable allocation function is a [...] pointer value p0 different
16471   //   from any previously returned value p1 [...]
16472   //
16473   // However, this particular information is being added in codegen,
16474   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
16475 
16476   // C++2a [basic.stc.dynamic.allocation]p2:
16477   //   An allocation function attempts to allocate the requested amount of
16478   //   storage. If it is successful, it returns the address of the start of a
16479   //   block of storage whose length in bytes is at least as large as the
16480   //   requested size.
16481   if (!FD->hasAttr<AllocSizeAttr>()) {
16482     FD->addAttr(AllocSizeAttr::CreateImplicit(
16483         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
16484         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
16485   }
16486 
16487   // C++2a [basic.stc.dynamic.allocation]p3:
16488   //   For an allocation function [...], the pointer returned on a successful
16489   //   call shall represent the address of storage that is aligned as follows:
16490   //   (3.1) If the allocation function takes an argument of type
16491   //         std​::​align_­val_­t, the storage will have the alignment
16492   //         specified by the value of this argument.
16493   if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) {
16494     FD->addAttr(AllocAlignAttr::CreateImplicit(
16495         Context, ParamIdx(*AlignmentParam, FD), FD->getLocation()));
16496   }
16497 
16498   // FIXME:
16499   // C++2a [basic.stc.dynamic.allocation]p3:
16500   //   For an allocation function [...], the pointer returned on a successful
16501   //   call shall represent the address of storage that is aligned as follows:
16502   //   (3.2) Otherwise, if the allocation function is named operator new[],
16503   //         the storage is aligned for any object that does not have
16504   //         new-extended alignment ([basic.align]) and is no larger than the
16505   //         requested size.
16506   //   (3.3) Otherwise, the storage is aligned for any object that does not
16507   //         have new-extended alignment and is of the requested size.
16508 }
16509 
16510 /// Adds any function attributes that we know a priori based on
16511 /// the declaration of this function.
16512 ///
16513 /// These attributes can apply both to implicitly-declared builtins
16514 /// (like __builtin___printf_chk) or to library-declared functions
16515 /// like NSLog or printf.
16516 ///
16517 /// We need to check for duplicate attributes both here and where user-written
16518 /// attributes are applied to declarations.
16519 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
16520   if (FD->isInvalidDecl())
16521     return;
16522 
16523   // If this is a built-in function, map its builtin attributes to
16524   // actual attributes.
16525   if (unsigned BuiltinID = FD->getBuiltinID()) {
16526     // Handle printf-formatting attributes.
16527     unsigned FormatIdx;
16528     bool HasVAListArg;
16529     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
16530       if (!FD->hasAttr<FormatAttr>()) {
16531         const char *fmt = "printf";
16532         unsigned int NumParams = FD->getNumParams();
16533         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
16534             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
16535           fmt = "NSString";
16536         FD->addAttr(FormatAttr::CreateImplicit(Context,
16537                                                &Context.Idents.get(fmt),
16538                                                FormatIdx+1,
16539                                                HasVAListArg ? 0 : FormatIdx+2,
16540                                                FD->getLocation()));
16541       }
16542     }
16543     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
16544                                              HasVAListArg)) {
16545      if (!FD->hasAttr<FormatAttr>())
16546        FD->addAttr(FormatAttr::CreateImplicit(Context,
16547                                               &Context.Idents.get("scanf"),
16548                                               FormatIdx+1,
16549                                               HasVAListArg ? 0 : FormatIdx+2,
16550                                               FD->getLocation()));
16551     }
16552 
16553     // Handle automatically recognized callbacks.
16554     SmallVector<int, 4> Encoding;
16555     if (!FD->hasAttr<CallbackAttr>() &&
16556         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
16557       FD->addAttr(CallbackAttr::CreateImplicit(
16558           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
16559 
16560     // Mark const if we don't care about errno and/or floating point exceptions
16561     // that are the only thing preventing the function from being const. This
16562     // allows IRgen to use LLVM intrinsics for such functions.
16563     bool NoExceptions =
16564         getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore;
16565     bool ConstWithoutErrnoAndExceptions =
16566         Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID);
16567     bool ConstWithoutExceptions =
16568         Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID);
16569     if (!FD->hasAttr<ConstAttr>() &&
16570         (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) &&
16571         (!ConstWithoutErrnoAndExceptions ||
16572          (!getLangOpts().MathErrno && NoExceptions)) &&
16573         (!ConstWithoutExceptions || NoExceptions))
16574       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16575 
16576     // We make "fma" on GNU or Windows const because we know it does not set
16577     // errno in those environments even though it could set errno based on the
16578     // C standard.
16579     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
16580     if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) &&
16581         !FD->hasAttr<ConstAttr>()) {
16582       switch (BuiltinID) {
16583       case Builtin::BI__builtin_fma:
16584       case Builtin::BI__builtin_fmaf:
16585       case Builtin::BI__builtin_fmal:
16586       case Builtin::BIfma:
16587       case Builtin::BIfmaf:
16588       case Builtin::BIfmal:
16589         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16590         break;
16591       default:
16592         break;
16593       }
16594     }
16595 
16596     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
16597         !FD->hasAttr<ReturnsTwiceAttr>())
16598       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
16599                                          FD->getLocation()));
16600     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
16601       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16602     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
16603       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
16604     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
16605       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
16606     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
16607         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
16608       // Add the appropriate attribute, depending on the CUDA compilation mode
16609       // and which target the builtin belongs to. For example, during host
16610       // compilation, aux builtins are __device__, while the rest are __host__.
16611       if (getLangOpts().CUDAIsDevice !=
16612           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
16613         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
16614       else
16615         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
16616     }
16617 
16618     // Add known guaranteed alignment for allocation functions.
16619     switch (BuiltinID) {
16620     case Builtin::BImemalign:
16621     case Builtin::BIaligned_alloc:
16622       if (!FD->hasAttr<AllocAlignAttr>())
16623         FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
16624                                                    FD->getLocation()));
16625       break;
16626     default:
16627       break;
16628     }
16629 
16630     // Add allocsize attribute for allocation functions.
16631     switch (BuiltinID) {
16632     case Builtin::BIcalloc:
16633       FD->addAttr(AllocSizeAttr::CreateImplicit(
16634           Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation()));
16635       break;
16636     case Builtin::BImemalign:
16637     case Builtin::BIaligned_alloc:
16638     case Builtin::BIrealloc:
16639       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD),
16640                                                 ParamIdx(), FD->getLocation()));
16641       break;
16642     case Builtin::BImalloc:
16643       FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD),
16644                                                 ParamIdx(), FD->getLocation()));
16645       break;
16646     default:
16647       break;
16648     }
16649 
16650     // Add lifetime attribute to std::move, std::fowrard et al.
16651     switch (BuiltinID) {
16652     case Builtin::BIaddressof:
16653     case Builtin::BI__addressof:
16654     case Builtin::BI__builtin_addressof:
16655     case Builtin::BIas_const:
16656     case Builtin::BIforward:
16657     case Builtin::BIforward_like:
16658     case Builtin::BImove:
16659     case Builtin::BImove_if_noexcept:
16660       if (ParmVarDecl *P = FD->getParamDecl(0u);
16661           !P->hasAttr<LifetimeBoundAttr>())
16662         P->addAttr(
16663             LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation()));
16664       break;
16665     default:
16666       break;
16667     }
16668   }
16669 
16670   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
16671 
16672   // If C++ exceptions are enabled but we are told extern "C" functions cannot
16673   // throw, add an implicit nothrow attribute to any extern "C" function we come
16674   // across.
16675   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
16676       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
16677     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
16678     if (!FPT || FPT->getExceptionSpecType() == EST_None)
16679       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
16680   }
16681 
16682   IdentifierInfo *Name = FD->getIdentifier();
16683   if (!Name)
16684     return;
16685   if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) ||
16686       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
16687        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
16688            LinkageSpecLanguageIDs::C)) {
16689     // Okay: this could be a libc/libm/Objective-C function we know
16690     // about.
16691   } else
16692     return;
16693 
16694   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
16695     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
16696     // target-specific builtins, perhaps?
16697     if (!FD->hasAttr<FormatAttr>())
16698       FD->addAttr(FormatAttr::CreateImplicit(Context,
16699                                              &Context.Idents.get("printf"), 2,
16700                                              Name->isStr("vasprintf") ? 0 : 3,
16701                                              FD->getLocation()));
16702   }
16703 
16704   if (Name->isStr("__CFStringMakeConstantString")) {
16705     // We already have a __builtin___CFStringMakeConstantString,
16706     // but builds that use -fno-constant-cfstrings don't go through that.
16707     if (!FD->hasAttr<FormatArgAttr>())
16708       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
16709                                                 FD->getLocation()));
16710   }
16711 }
16712 
16713 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
16714                                     TypeSourceInfo *TInfo) {
16715   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
16716   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
16717 
16718   if (!TInfo) {
16719     assert(D.isInvalidType() && "no declarator info for valid type");
16720     TInfo = Context.getTrivialTypeSourceInfo(T);
16721   }
16722 
16723   // Scope manipulation handled by caller.
16724   TypedefDecl *NewTD =
16725       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
16726                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
16727 
16728   // Bail out immediately if we have an invalid declaration.
16729   if (D.isInvalidType()) {
16730     NewTD->setInvalidDecl();
16731     return NewTD;
16732   }
16733 
16734   if (D.getDeclSpec().isModulePrivateSpecified()) {
16735     if (CurContext->isFunctionOrMethod())
16736       Diag(NewTD->getLocation(), diag::err_module_private_local)
16737           << 2 << NewTD
16738           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
16739           << FixItHint::CreateRemoval(
16740                  D.getDeclSpec().getModulePrivateSpecLoc());
16741     else
16742       NewTD->setModulePrivate();
16743   }
16744 
16745   // C++ [dcl.typedef]p8:
16746   //   If the typedef declaration defines an unnamed class (or
16747   //   enum), the first typedef-name declared by the declaration
16748   //   to be that class type (or enum type) is used to denote the
16749   //   class type (or enum type) for linkage purposes only.
16750   // We need to check whether the type was declared in the declaration.
16751   switch (D.getDeclSpec().getTypeSpecType()) {
16752   case TST_enum:
16753   case TST_struct:
16754   case TST_interface:
16755   case TST_union:
16756   case TST_class: {
16757     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
16758     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
16759     break;
16760   }
16761 
16762   default:
16763     break;
16764   }
16765 
16766   return NewTD;
16767 }
16768 
16769 /// Check that this is a valid underlying type for an enum declaration.
16770 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
16771   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
16772   QualType T = TI->getType();
16773 
16774   if (T->isDependentType())
16775     return false;
16776 
16777   // This doesn't use 'isIntegralType' despite the error message mentioning
16778   // integral type because isIntegralType would also allow enum types in C.
16779   if (const BuiltinType *BT = T->getAs<BuiltinType>())
16780     if (BT->isInteger())
16781       return false;
16782 
16783   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
16784          << T << T->isBitIntType();
16785 }
16786 
16787 /// Check whether this is a valid redeclaration of a previous enumeration.
16788 /// \return true if the redeclaration was invalid.
16789 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
16790                                   QualType EnumUnderlyingTy, bool IsFixed,
16791                                   const EnumDecl *Prev) {
16792   if (IsScoped != Prev->isScoped()) {
16793     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
16794       << Prev->isScoped();
16795     Diag(Prev->getLocation(), diag::note_previous_declaration);
16796     return true;
16797   }
16798 
16799   if (IsFixed && Prev->isFixed()) {
16800     if (!EnumUnderlyingTy->isDependentType() &&
16801         !Prev->getIntegerType()->isDependentType() &&
16802         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
16803                                         Prev->getIntegerType())) {
16804       // TODO: Highlight the underlying type of the redeclaration.
16805       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
16806         << EnumUnderlyingTy << Prev->getIntegerType();
16807       Diag(Prev->getLocation(), diag::note_previous_declaration)
16808           << Prev->getIntegerTypeRange();
16809       return true;
16810     }
16811   } else if (IsFixed != Prev->isFixed()) {
16812     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
16813       << Prev->isFixed();
16814     Diag(Prev->getLocation(), diag::note_previous_declaration);
16815     return true;
16816   }
16817 
16818   return false;
16819 }
16820 
16821 /// Get diagnostic %select index for tag kind for
16822 /// redeclaration diagnostic message.
16823 /// WARNING: Indexes apply to particular diagnostics only!
16824 ///
16825 /// \returns diagnostic %select index.
16826 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
16827   switch (Tag) {
16828   case TagTypeKind::Struct:
16829     return 0;
16830   case TagTypeKind::Interface:
16831     return 1;
16832   case TagTypeKind::Class:
16833     return 2;
16834   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
16835   }
16836 }
16837 
16838 /// Determine if tag kind is a class-key compatible with
16839 /// class for redeclaration (class, struct, or __interface).
16840 ///
16841 /// \returns true iff the tag kind is compatible.
16842 static bool isClassCompatTagKind(TagTypeKind Tag)
16843 {
16844   return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class ||
16845          Tag == TagTypeKind::Interface;
16846 }
16847 
16848 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
16849                                              TagTypeKind TTK) {
16850   if (isa<TypedefDecl>(PrevDecl))
16851     return NTK_Typedef;
16852   else if (isa<TypeAliasDecl>(PrevDecl))
16853     return NTK_TypeAlias;
16854   else if (isa<ClassTemplateDecl>(PrevDecl))
16855     return NTK_Template;
16856   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
16857     return NTK_TypeAliasTemplate;
16858   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
16859     return NTK_TemplateTemplateArgument;
16860   switch (TTK) {
16861   case TagTypeKind::Struct:
16862   case TagTypeKind::Interface:
16863   case TagTypeKind::Class:
16864     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
16865   case TagTypeKind::Union:
16866     return NTK_NonUnion;
16867   case TagTypeKind::Enum:
16868     return NTK_NonEnum;
16869   }
16870   llvm_unreachable("invalid TTK");
16871 }
16872 
16873 /// Determine whether a tag with a given kind is acceptable
16874 /// as a redeclaration of the given tag declaration.
16875 ///
16876 /// \returns true if the new tag kind is acceptable, false otherwise.
16877 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
16878                                         TagTypeKind NewTag, bool isDefinition,
16879                                         SourceLocation NewTagLoc,
16880                                         const IdentifierInfo *Name) {
16881   // C++ [dcl.type.elab]p3:
16882   //   The class-key or enum keyword present in the
16883   //   elaborated-type-specifier shall agree in kind with the
16884   //   declaration to which the name in the elaborated-type-specifier
16885   //   refers. This rule also applies to the form of
16886   //   elaborated-type-specifier that declares a class-name or
16887   //   friend class since it can be construed as referring to the
16888   //   definition of the class. Thus, in any
16889   //   elaborated-type-specifier, the enum keyword shall be used to
16890   //   refer to an enumeration (7.2), the union class-key shall be
16891   //   used to refer to a union (clause 9), and either the class or
16892   //   struct class-key shall be used to refer to a class (clause 9)
16893   //   declared using the class or struct class-key.
16894   TagTypeKind OldTag = Previous->getTagKind();
16895   if (OldTag != NewTag &&
16896       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
16897     return false;
16898 
16899   // Tags are compatible, but we might still want to warn on mismatched tags.
16900   // Non-class tags can't be mismatched at this point.
16901   if (!isClassCompatTagKind(NewTag))
16902     return true;
16903 
16904   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
16905   // by our warning analysis. We don't want to warn about mismatches with (eg)
16906   // declarations in system headers that are designed to be specialized, but if
16907   // a user asks us to warn, we should warn if their code contains mismatched
16908   // declarations.
16909   auto IsIgnoredLoc = [&](SourceLocation Loc) {
16910     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
16911                                       Loc);
16912   };
16913   if (IsIgnoredLoc(NewTagLoc))
16914     return true;
16915 
16916   auto IsIgnored = [&](const TagDecl *Tag) {
16917     return IsIgnoredLoc(Tag->getLocation());
16918   };
16919   while (IsIgnored(Previous)) {
16920     Previous = Previous->getPreviousDecl();
16921     if (!Previous)
16922       return true;
16923     OldTag = Previous->getTagKind();
16924   }
16925 
16926   bool isTemplate = false;
16927   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
16928     isTemplate = Record->getDescribedClassTemplate();
16929 
16930   if (inTemplateInstantiation()) {
16931     if (OldTag != NewTag) {
16932       // In a template instantiation, do not offer fix-its for tag mismatches
16933       // since they usually mess up the template instead of fixing the problem.
16934       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16935         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16936         << getRedeclDiagFromTagKind(OldTag);
16937       // FIXME: Note previous location?
16938     }
16939     return true;
16940   }
16941 
16942   if (isDefinition) {
16943     // On definitions, check all previous tags and issue a fix-it for each
16944     // one that doesn't match the current tag.
16945     if (Previous->getDefinition()) {
16946       // Don't suggest fix-its for redefinitions.
16947       return true;
16948     }
16949 
16950     bool previousMismatch = false;
16951     for (const TagDecl *I : Previous->redecls()) {
16952       if (I->getTagKind() != NewTag) {
16953         // Ignore previous declarations for which the warning was disabled.
16954         if (IsIgnored(I))
16955           continue;
16956 
16957         if (!previousMismatch) {
16958           previousMismatch = true;
16959           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
16960             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16961             << getRedeclDiagFromTagKind(I->getTagKind());
16962         }
16963         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
16964           << getRedeclDiagFromTagKind(NewTag)
16965           << FixItHint::CreateReplacement(I->getInnerLocStart(),
16966                TypeWithKeyword::getTagTypeKindName(NewTag));
16967       }
16968     }
16969     return true;
16970   }
16971 
16972   // Identify the prevailing tag kind: this is the kind of the definition (if
16973   // there is a non-ignored definition), or otherwise the kind of the prior
16974   // (non-ignored) declaration.
16975   const TagDecl *PrevDef = Previous->getDefinition();
16976   if (PrevDef && IsIgnored(PrevDef))
16977     PrevDef = nullptr;
16978   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
16979   if (Redecl->getTagKind() != NewTag) {
16980     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
16981       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
16982       << getRedeclDiagFromTagKind(OldTag);
16983     Diag(Redecl->getLocation(), diag::note_previous_use);
16984 
16985     // If there is a previous definition, suggest a fix-it.
16986     if (PrevDef) {
16987       Diag(NewTagLoc, diag::note_struct_class_suggestion)
16988         << getRedeclDiagFromTagKind(Redecl->getTagKind())
16989         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
16990              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
16991     }
16992   }
16993 
16994   return true;
16995 }
16996 
16997 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
16998 /// from an outer enclosing namespace or file scope inside a friend declaration.
16999 /// This should provide the commented out code in the following snippet:
17000 ///   namespace N {
17001 ///     struct X;
17002 ///     namespace M {
17003 ///       struct Y { friend struct /*N::*/ X; };
17004 ///     }
17005 ///   }
17006 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
17007                                          SourceLocation NameLoc) {
17008   // While the decl is in a namespace, do repeated lookup of that name and see
17009   // if we get the same namespace back.  If we do not, continue until
17010   // translation unit scope, at which point we have a fully qualified NNS.
17011   SmallVector<IdentifierInfo *, 4> Namespaces;
17012   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17013   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
17014     // This tag should be declared in a namespace, which can only be enclosed by
17015     // other namespaces.  Bail if there's an anonymous namespace in the chain.
17016     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
17017     if (!Namespace || Namespace->isAnonymousNamespace())
17018       return FixItHint();
17019     IdentifierInfo *II = Namespace->getIdentifier();
17020     Namespaces.push_back(II);
17021     NamedDecl *Lookup = SemaRef.LookupSingleName(
17022         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
17023     if (Lookup == Namespace)
17024       break;
17025   }
17026 
17027   // Once we have all the namespaces, reverse them to go outermost first, and
17028   // build an NNS.
17029   SmallString<64> Insertion;
17030   llvm::raw_svector_ostream OS(Insertion);
17031   if (DC->isTranslationUnit())
17032     OS << "::";
17033   std::reverse(Namespaces.begin(), Namespaces.end());
17034   for (auto *II : Namespaces)
17035     OS << II->getName() << "::";
17036   return FixItHint::CreateInsertion(NameLoc, Insertion);
17037 }
17038 
17039 /// Determine whether a tag originally declared in context \p OldDC can
17040 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
17041 /// found a declaration in \p OldDC as a previous decl, perhaps through a
17042 /// using-declaration).
17043 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
17044                                          DeclContext *NewDC) {
17045   OldDC = OldDC->getRedeclContext();
17046   NewDC = NewDC->getRedeclContext();
17047 
17048   if (OldDC->Equals(NewDC))
17049     return true;
17050 
17051   // In MSVC mode, we allow a redeclaration if the contexts are related (either
17052   // encloses the other).
17053   if (S.getLangOpts().MSVCCompat &&
17054       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
17055     return true;
17056 
17057   return false;
17058 }
17059 
17060 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
17061 /// former case, Name will be non-null.  In the later case, Name will be null.
17062 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
17063 /// reference/declaration/definition of a tag.
17064 ///
17065 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
17066 /// trailing-type-specifier) other than one in an alias-declaration.
17067 ///
17068 /// \param SkipBody If non-null, will be set to indicate if the caller should
17069 /// skip the definition of this tag and treat it as if it were a declaration.
17070 DeclResult
17071 Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
17072                CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17073                const ParsedAttributesView &Attrs, AccessSpecifier AS,
17074                SourceLocation ModulePrivateLoc,
17075                MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl,
17076                bool &IsDependent, SourceLocation ScopedEnumKWLoc,
17077                bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
17078                bool IsTypeSpecifier, bool IsTemplateParamOrArg,
17079                OffsetOfKind OOK, SkipBodyInfo *SkipBody) {
17080   // If this is not a definition, it must have a name.
17081   IdentifierInfo *OrigName = Name;
17082   assert((Name != nullptr || TUK == TUK_Definition) &&
17083          "Nameless record must be a definition!");
17084   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
17085 
17086   OwnedDecl = false;
17087   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
17088   bool ScopedEnum = ScopedEnumKWLoc.isValid();
17089 
17090   // FIXME: Check member specializations more carefully.
17091   bool isMemberSpecialization = false;
17092   bool Invalid = false;
17093 
17094   // We only need to do this matching if we have template parameters
17095   // or a scope specifier, which also conveniently avoids this work
17096   // for non-C++ cases.
17097   if (TemplateParameterLists.size() > 0 ||
17098       (SS.isNotEmpty() && TUK != TUK_Reference)) {
17099     if (TemplateParameterList *TemplateParams =
17100             MatchTemplateParametersToScopeSpecifier(
17101                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
17102                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
17103       if (Kind == TagTypeKind::Enum) {
17104         Diag(KWLoc, diag::err_enum_template);
17105         return true;
17106       }
17107 
17108       if (TemplateParams->size() > 0) {
17109         // This is a declaration or definition of a class template (which may
17110         // be a member of another template).
17111 
17112         if (Invalid)
17113           return true;
17114 
17115         OwnedDecl = false;
17116         DeclResult Result = CheckClassTemplate(
17117             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
17118             AS, ModulePrivateLoc,
17119             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
17120             TemplateParameterLists.data(), SkipBody);
17121         return Result.get();
17122       } else {
17123         // The "template<>" header is extraneous.
17124         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17125           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17126         isMemberSpecialization = true;
17127       }
17128     }
17129 
17130     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
17131         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
17132       return true;
17133   }
17134 
17135   // Figure out the underlying type if this a enum declaration. We need to do
17136   // this early, because it's needed to detect if this is an incompatible
17137   // redeclaration.
17138   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
17139   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
17140 
17141   if (Kind == TagTypeKind::Enum) {
17142     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
17143       // No underlying type explicitly specified, or we failed to parse the
17144       // type, default to int.
17145       EnumUnderlying = Context.IntTy.getTypePtr();
17146     } else if (UnderlyingType.get()) {
17147       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
17148       // integral type; any cv-qualification is ignored.
17149       TypeSourceInfo *TI = nullptr;
17150       GetTypeFromParser(UnderlyingType.get(), &TI);
17151       EnumUnderlying = TI;
17152 
17153       if (CheckEnumUnderlyingType(TI))
17154         // Recover by falling back to int.
17155         EnumUnderlying = Context.IntTy.getTypePtr();
17156 
17157       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
17158                                           UPPC_FixedUnderlyingType))
17159         EnumUnderlying = Context.IntTy.getTypePtr();
17160 
17161     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
17162       // For MSVC ABI compatibility, unfixed enums must use an underlying type
17163       // of 'int'. However, if this is an unfixed forward declaration, don't set
17164       // the underlying type unless the user enables -fms-compatibility. This
17165       // makes unfixed forward declared enums incomplete and is more conforming.
17166       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
17167         EnumUnderlying = Context.IntTy.getTypePtr();
17168     }
17169   }
17170 
17171   DeclContext *SearchDC = CurContext;
17172   DeclContext *DC = CurContext;
17173   bool isStdBadAlloc = false;
17174   bool isStdAlignValT = false;
17175 
17176   RedeclarationKind Redecl = forRedeclarationInCurContext();
17177   if (TUK == TUK_Friend || TUK == TUK_Reference)
17178     Redecl = NotForRedeclaration;
17179 
17180   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
17181   /// implemented asks for structural equivalence checking, the returned decl
17182   /// here is passed back to the parser, allowing the tag body to be parsed.
17183   auto createTagFromNewDecl = [&]() -> TagDecl * {
17184     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
17185     // If there is an identifier, use the location of the identifier as the
17186     // location of the decl, otherwise use the location of the struct/union
17187     // keyword.
17188     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17189     TagDecl *New = nullptr;
17190 
17191     if (Kind == TagTypeKind::Enum) {
17192       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
17193                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
17194       // If this is an undefined enum, bail.
17195       if (TUK != TUK_Definition && !Invalid)
17196         return nullptr;
17197       if (EnumUnderlying) {
17198         EnumDecl *ED = cast<EnumDecl>(New);
17199         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
17200           ED->setIntegerTypeSourceInfo(TI);
17201         else
17202           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17203         QualType EnumTy = ED->getIntegerType();
17204         ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17205                                  ? Context.getPromotedIntegerType(EnumTy)
17206                                  : EnumTy);
17207       }
17208     } else { // struct/union
17209       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17210                                nullptr);
17211     }
17212 
17213     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17214       // Add alignment attributes if necessary; these attributes are checked
17215       // when the ASTContext lays out the structure.
17216       //
17217       // It is important for implementing the correct semantics that this
17218       // happen here (in ActOnTag). The #pragma pack stack is
17219       // maintained as a result of parser callbacks which can occur at
17220       // many points during the parsing of a struct declaration (because
17221       // the #pragma tokens are effectively skipped over during the
17222       // parsing of the struct).
17223       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17224         AddAlignmentAttributesForRecord(RD);
17225         AddMsStructLayoutForRecord(RD);
17226       }
17227     }
17228     New->setLexicalDeclContext(CurContext);
17229     return New;
17230   };
17231 
17232   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
17233   if (Name && SS.isNotEmpty()) {
17234     // We have a nested-name tag ('struct foo::bar').
17235 
17236     // Check for invalid 'foo::'.
17237     if (SS.isInvalid()) {
17238       Name = nullptr;
17239       goto CreateNewDecl;
17240     }
17241 
17242     // If this is a friend or a reference to a class in a dependent
17243     // context, don't try to make a decl for it.
17244     if (TUK == TUK_Friend || TUK == TUK_Reference) {
17245       DC = computeDeclContext(SS, false);
17246       if (!DC) {
17247         IsDependent = true;
17248         return true;
17249       }
17250     } else {
17251       DC = computeDeclContext(SS, true);
17252       if (!DC) {
17253         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
17254           << SS.getRange();
17255         return true;
17256       }
17257     }
17258 
17259     if (RequireCompleteDeclContext(SS, DC))
17260       return true;
17261 
17262     SearchDC = DC;
17263     // Look-up name inside 'foo::'.
17264     LookupQualifiedName(Previous, DC);
17265 
17266     if (Previous.isAmbiguous())
17267       return true;
17268 
17269     if (Previous.empty()) {
17270       // Name lookup did not find anything. However, if the
17271       // nested-name-specifier refers to the current instantiation,
17272       // and that current instantiation has any dependent base
17273       // classes, we might find something at instantiation time: treat
17274       // this as a dependent elaborated-type-specifier.
17275       // But this only makes any sense for reference-like lookups.
17276       if (Previous.wasNotFoundInCurrentInstantiation() &&
17277           (TUK == TUK_Reference || TUK == TUK_Friend)) {
17278         IsDependent = true;
17279         return true;
17280       }
17281 
17282       // A tag 'foo::bar' must already exist.
17283       Diag(NameLoc, diag::err_not_tag_in_scope)
17284           << llvm::to_underlying(Kind) << Name << DC << SS.getRange();
17285       Name = nullptr;
17286       Invalid = true;
17287       goto CreateNewDecl;
17288     }
17289   } else if (Name) {
17290     // C++14 [class.mem]p14:
17291     //   If T is the name of a class, then each of the following shall have a
17292     //   name different from T:
17293     //    -- every member of class T that is itself a type
17294     if (TUK != TUK_Reference && TUK != TUK_Friend &&
17295         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
17296       return true;
17297 
17298     // If this is a named struct, check to see if there was a previous forward
17299     // declaration or definition.
17300     // FIXME: We're looking into outer scopes here, even when we
17301     // shouldn't be. Doing so can result in ambiguities that we
17302     // shouldn't be diagnosing.
17303     LookupName(Previous, S);
17304 
17305     // When declaring or defining a tag, ignore ambiguities introduced
17306     // by types using'ed into this scope.
17307     if (Previous.isAmbiguous() &&
17308         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
17309       LookupResult::Filter F = Previous.makeFilter();
17310       while (F.hasNext()) {
17311         NamedDecl *ND = F.next();
17312         if (!ND->getDeclContext()->getRedeclContext()->Equals(
17313                 SearchDC->getRedeclContext()))
17314           F.erase();
17315       }
17316       F.done();
17317     }
17318 
17319     // C++11 [namespace.memdef]p3:
17320     //   If the name in a friend declaration is neither qualified nor
17321     //   a template-id and the declaration is a function or an
17322     //   elaborated-type-specifier, the lookup to determine whether
17323     //   the entity has been previously declared shall not consider
17324     //   any scopes outside the innermost enclosing namespace.
17325     //
17326     // MSVC doesn't implement the above rule for types, so a friend tag
17327     // declaration may be a redeclaration of a type declared in an enclosing
17328     // scope.  They do implement this rule for friend functions.
17329     //
17330     // Does it matter that this should be by scope instead of by
17331     // semantic context?
17332     if (!Previous.empty() && TUK == TUK_Friend) {
17333       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
17334       LookupResult::Filter F = Previous.makeFilter();
17335       bool FriendSawTagOutsideEnclosingNamespace = false;
17336       while (F.hasNext()) {
17337         NamedDecl *ND = F.next();
17338         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
17339         if (DC->isFileContext() &&
17340             !EnclosingNS->Encloses(ND->getDeclContext())) {
17341           if (getLangOpts().MSVCCompat)
17342             FriendSawTagOutsideEnclosingNamespace = true;
17343           else
17344             F.erase();
17345         }
17346       }
17347       F.done();
17348 
17349       // Diagnose this MSVC extension in the easy case where lookup would have
17350       // unambiguously found something outside the enclosing namespace.
17351       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
17352         NamedDecl *ND = Previous.getFoundDecl();
17353         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
17354             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
17355       }
17356     }
17357 
17358     // Note:  there used to be some attempt at recovery here.
17359     if (Previous.isAmbiguous())
17360       return true;
17361 
17362     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
17363       // FIXME: This makes sure that we ignore the contexts associated
17364       // with C structs, unions, and enums when looking for a matching
17365       // tag declaration or definition. See the similar lookup tweak
17366       // in Sema::LookupName; is there a better way to deal with this?
17367       while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC))
17368         SearchDC = SearchDC->getParent();
17369     } else if (getLangOpts().CPlusPlus) {
17370       // Inside ObjCContainer want to keep it as a lexical decl context but go
17371       // past it (most often to TranslationUnit) to find the semantic decl
17372       // context.
17373       while (isa<ObjCContainerDecl>(SearchDC))
17374         SearchDC = SearchDC->getParent();
17375     }
17376   } else if (getLangOpts().CPlusPlus) {
17377     // Don't use ObjCContainerDecl as the semantic decl context for anonymous
17378     // TagDecl the same way as we skip it for named TagDecl.
17379     while (isa<ObjCContainerDecl>(SearchDC))
17380       SearchDC = SearchDC->getParent();
17381   }
17382 
17383   if (Previous.isSingleResult() &&
17384       Previous.getFoundDecl()->isTemplateParameter()) {
17385     // Maybe we will complain about the shadowed template parameter.
17386     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
17387     // Just pretend that we didn't see the previous declaration.
17388     Previous.clear();
17389   }
17390 
17391   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
17392       DC->Equals(getStdNamespace())) {
17393     if (Name->isStr("bad_alloc")) {
17394       // This is a declaration of or a reference to "std::bad_alloc".
17395       isStdBadAlloc = true;
17396 
17397       // If std::bad_alloc has been implicitly declared (but made invisible to
17398       // name lookup), fill in this implicit declaration as the previous
17399       // declaration, so that the declarations get chained appropriately.
17400       if (Previous.empty() && StdBadAlloc)
17401         Previous.addDecl(getStdBadAlloc());
17402     } else if (Name->isStr("align_val_t")) {
17403       isStdAlignValT = true;
17404       if (Previous.empty() && StdAlignValT)
17405         Previous.addDecl(getStdAlignValT());
17406     }
17407   }
17408 
17409   // If we didn't find a previous declaration, and this is a reference
17410   // (or friend reference), move to the correct scope.  In C++, we
17411   // also need to do a redeclaration lookup there, just in case
17412   // there's a shadow friend decl.
17413   if (Name && Previous.empty() &&
17414       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
17415     if (Invalid) goto CreateNewDecl;
17416     assert(SS.isEmpty());
17417 
17418     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
17419       // C++ [basic.scope.pdecl]p5:
17420       //   -- for an elaborated-type-specifier of the form
17421       //
17422       //          class-key identifier
17423       //
17424       //      if the elaborated-type-specifier is used in the
17425       //      decl-specifier-seq or parameter-declaration-clause of a
17426       //      function defined in namespace scope, the identifier is
17427       //      declared as a class-name in the namespace that contains
17428       //      the declaration; otherwise, except as a friend
17429       //      declaration, the identifier is declared in the smallest
17430       //      non-class, non-function-prototype scope that contains the
17431       //      declaration.
17432       //
17433       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
17434       // C structs and unions.
17435       //
17436       // It is an error in C++ to declare (rather than define) an enum
17437       // type, including via an elaborated type specifier.  We'll
17438       // diagnose that later; for now, declare the enum in the same
17439       // scope as we would have picked for any other tag type.
17440       //
17441       // GNU C also supports this behavior as part of its incomplete
17442       // enum types extension, while GNU C++ does not.
17443       //
17444       // Find the context where we'll be declaring the tag.
17445       // FIXME: We would like to maintain the current DeclContext as the
17446       // lexical context,
17447       SearchDC = getTagInjectionContext(SearchDC);
17448 
17449       // Find the scope where we'll be declaring the tag.
17450       S = getTagInjectionScope(S, getLangOpts());
17451     } else {
17452       assert(TUK == TUK_Friend);
17453       CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC);
17454 
17455       // C++ [namespace.memdef]p3:
17456       //   If a friend declaration in a non-local class first declares a
17457       //   class or function, the friend class or function is a member of
17458       //   the innermost enclosing namespace.
17459       SearchDC = RD->isLocalClass() ? RD->isLocalClass()
17460                                     : SearchDC->getEnclosingNamespaceContext();
17461     }
17462 
17463     // In C++, we need to do a redeclaration lookup to properly
17464     // diagnose some problems.
17465     // FIXME: redeclaration lookup is also used (with and without C++) to find a
17466     // hidden declaration so that we don't get ambiguity errors when using a
17467     // type declared by an elaborated-type-specifier.  In C that is not correct
17468     // and we should instead merge compatible types found by lookup.
17469     if (getLangOpts().CPlusPlus) {
17470       // FIXME: This can perform qualified lookups into function contexts,
17471       // which are meaningless.
17472       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17473       LookupQualifiedName(Previous, SearchDC);
17474     } else {
17475       Previous.setRedeclarationKind(forRedeclarationInCurContext());
17476       LookupName(Previous, S);
17477     }
17478   }
17479 
17480   // If we have a known previous declaration to use, then use it.
17481   if (Previous.empty() && SkipBody && SkipBody->Previous)
17482     Previous.addDecl(SkipBody->Previous);
17483 
17484   if (!Previous.empty()) {
17485     NamedDecl *PrevDecl = Previous.getFoundDecl();
17486     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
17487 
17488     // It's okay to have a tag decl in the same scope as a typedef
17489     // which hides a tag decl in the same scope.  Finding this
17490     // with a redeclaration lookup can only actually happen in C++.
17491     //
17492     // This is also okay for elaborated-type-specifiers, which is
17493     // technically forbidden by the current standard but which is
17494     // okay according to the likely resolution of an open issue;
17495     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
17496     if (getLangOpts().CPlusPlus) {
17497       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17498         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
17499           TagDecl *Tag = TT->getDecl();
17500           if (Tag->getDeclName() == Name &&
17501               Tag->getDeclContext()->getRedeclContext()
17502                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
17503             PrevDecl = Tag;
17504             Previous.clear();
17505             Previous.addDecl(Tag);
17506             Previous.resolveKind();
17507           }
17508         }
17509       }
17510     }
17511 
17512     // If this is a redeclaration of a using shadow declaration, it must
17513     // declare a tag in the same context. In MSVC mode, we allow a
17514     // redefinition if either context is within the other.
17515     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
17516       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
17517       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
17518           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
17519           !(OldTag && isAcceptableTagRedeclContext(
17520                           *this, OldTag->getDeclContext(), SearchDC))) {
17521         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
17522         Diag(Shadow->getTargetDecl()->getLocation(),
17523              diag::note_using_decl_target);
17524         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
17525             << 0;
17526         // Recover by ignoring the old declaration.
17527         Previous.clear();
17528         goto CreateNewDecl;
17529       }
17530     }
17531 
17532     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
17533       // If this is a use of a previous tag, or if the tag is already declared
17534       // in the same scope (so that the definition/declaration completes or
17535       // rementions the tag), reuse the decl.
17536       if (TUK == TUK_Reference || TUK == TUK_Friend ||
17537           isDeclInScope(DirectPrevDecl, SearchDC, S,
17538                         SS.isNotEmpty() || isMemberSpecialization)) {
17539         // Make sure that this wasn't declared as an enum and now used as a
17540         // struct or something similar.
17541         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
17542                                           TUK == TUK_Definition, KWLoc,
17543                                           Name)) {
17544           bool SafeToContinue =
17545               (PrevTagDecl->getTagKind() != TagTypeKind::Enum &&
17546                Kind != TagTypeKind::Enum);
17547           if (SafeToContinue)
17548             Diag(KWLoc, diag::err_use_with_wrong_tag)
17549               << Name
17550               << FixItHint::CreateReplacement(SourceRange(KWLoc),
17551                                               PrevTagDecl->getKindName());
17552           else
17553             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
17554           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
17555 
17556           if (SafeToContinue)
17557             Kind = PrevTagDecl->getTagKind();
17558           else {
17559             // Recover by making this an anonymous redefinition.
17560             Name = nullptr;
17561             Previous.clear();
17562             Invalid = true;
17563           }
17564         }
17565 
17566         if (Kind == TagTypeKind::Enum &&
17567             PrevTagDecl->getTagKind() == TagTypeKind::Enum) {
17568           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
17569           if (TUK == TUK_Reference || TUK == TUK_Friend)
17570             return PrevTagDecl;
17571 
17572           QualType EnumUnderlyingTy;
17573           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17574             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
17575           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
17576             EnumUnderlyingTy = QualType(T, 0);
17577 
17578           // All conflicts with previous declarations are recovered by
17579           // returning the previous declaration, unless this is a definition,
17580           // in which case we want the caller to bail out.
17581           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
17582                                      ScopedEnum, EnumUnderlyingTy,
17583                                      IsFixed, PrevEnum))
17584             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
17585         }
17586 
17587         // C++11 [class.mem]p1:
17588         //   A member shall not be declared twice in the member-specification,
17589         //   except that a nested class or member class template can be declared
17590         //   and then later defined.
17591         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
17592             S->isDeclScope(PrevDecl)) {
17593           Diag(NameLoc, diag::ext_member_redeclared);
17594           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
17595         }
17596 
17597         if (!Invalid) {
17598           // If this is a use, just return the declaration we found, unless
17599           // we have attributes.
17600           if (TUK == TUK_Reference || TUK == TUK_Friend) {
17601             if (!Attrs.empty()) {
17602               // FIXME: Diagnose these attributes. For now, we create a new
17603               // declaration to hold them.
17604             } else if (TUK == TUK_Reference &&
17605                        (PrevTagDecl->getFriendObjectKind() ==
17606                             Decl::FOK_Undeclared ||
17607                         PrevDecl->getOwningModule() != getCurrentModule()) &&
17608                        SS.isEmpty()) {
17609               // This declaration is a reference to an existing entity, but
17610               // has different visibility from that entity: it either makes
17611               // a friend visible or it makes a type visible in a new module.
17612               // In either case, create a new declaration. We only do this if
17613               // the declaration would have meant the same thing if no prior
17614               // declaration were found, that is, if it was found in the same
17615               // scope where we would have injected a declaration.
17616               if (!getTagInjectionContext(CurContext)->getRedeclContext()
17617                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
17618                 return PrevTagDecl;
17619               // This is in the injected scope, create a new declaration in
17620               // that scope.
17621               S = getTagInjectionScope(S, getLangOpts());
17622             } else {
17623               return PrevTagDecl;
17624             }
17625           }
17626 
17627           // Diagnose attempts to redefine a tag.
17628           if (TUK == TUK_Definition) {
17629             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
17630               // If we're defining a specialization and the previous definition
17631               // is from an implicit instantiation, don't emit an error
17632               // here; we'll catch this in the general case below.
17633               bool IsExplicitSpecializationAfterInstantiation = false;
17634               if (isMemberSpecialization) {
17635                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
17636                   IsExplicitSpecializationAfterInstantiation =
17637                     RD->getTemplateSpecializationKind() !=
17638                     TSK_ExplicitSpecialization;
17639                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
17640                   IsExplicitSpecializationAfterInstantiation =
17641                     ED->getTemplateSpecializationKind() !=
17642                     TSK_ExplicitSpecialization;
17643               }
17644 
17645               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
17646               // not keep more that one definition around (merge them). However,
17647               // ensure the decl passes the structural compatibility check in
17648               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
17649               NamedDecl *Hidden = nullptr;
17650               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
17651                 // There is a definition of this tag, but it is not visible. We
17652                 // explicitly make use of C++'s one definition rule here, and
17653                 // assume that this definition is identical to the hidden one
17654                 // we already have. Make the existing definition visible and
17655                 // use it in place of this one.
17656                 if (!getLangOpts().CPlusPlus) {
17657                   // Postpone making the old definition visible until after we
17658                   // complete parsing the new one and do the structural
17659                   // comparison.
17660                   SkipBody->CheckSameAsPrevious = true;
17661                   SkipBody->New = createTagFromNewDecl();
17662                   SkipBody->Previous = Def;
17663                   return Def;
17664                 } else {
17665                   SkipBody->ShouldSkip = true;
17666                   SkipBody->Previous = Def;
17667                   makeMergedDefinitionVisible(Hidden);
17668                   // Carry on and handle it like a normal definition. We'll
17669                   // skip starting the definitiion later.
17670                 }
17671               } else if (!IsExplicitSpecializationAfterInstantiation) {
17672                 // A redeclaration in function prototype scope in C isn't
17673                 // visible elsewhere, so merely issue a warning.
17674                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
17675                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
17676                 else
17677                   Diag(NameLoc, diag::err_redefinition) << Name;
17678                 notePreviousDefinition(Def,
17679                                        NameLoc.isValid() ? NameLoc : KWLoc);
17680                 // If this is a redefinition, recover by making this
17681                 // struct be anonymous, which will make any later
17682                 // references get the previous definition.
17683                 Name = nullptr;
17684                 Previous.clear();
17685                 Invalid = true;
17686               }
17687             } else {
17688               // If the type is currently being defined, complain
17689               // about a nested redefinition.
17690               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
17691               if (TD->isBeingDefined()) {
17692                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
17693                 Diag(PrevTagDecl->getLocation(),
17694                      diag::note_previous_definition);
17695                 Name = nullptr;
17696                 Previous.clear();
17697                 Invalid = true;
17698               }
17699             }
17700 
17701             // Okay, this is definition of a previously declared or referenced
17702             // tag. We're going to create a new Decl for it.
17703           }
17704 
17705           // Okay, we're going to make a redeclaration.  If this is some kind
17706           // of reference, make sure we build the redeclaration in the same DC
17707           // as the original, and ignore the current access specifier.
17708           if (TUK == TUK_Friend || TUK == TUK_Reference) {
17709             SearchDC = PrevTagDecl->getDeclContext();
17710             AS = AS_none;
17711           }
17712         }
17713         // If we get here we have (another) forward declaration or we
17714         // have a definition.  Just create a new decl.
17715 
17716       } else {
17717         // If we get here, this is a definition of a new tag type in a nested
17718         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
17719         // new decl/type.  We set PrevDecl to NULL so that the entities
17720         // have distinct types.
17721         Previous.clear();
17722       }
17723       // If we get here, we're going to create a new Decl. If PrevDecl
17724       // is non-NULL, it's a definition of the tag declared by
17725       // PrevDecl. If it's NULL, we have a new definition.
17726 
17727     // Otherwise, PrevDecl is not a tag, but was found with tag
17728     // lookup.  This is only actually possible in C++, where a few
17729     // things like templates still live in the tag namespace.
17730     } else {
17731       // Use a better diagnostic if an elaborated-type-specifier
17732       // found the wrong kind of type on the first
17733       // (non-redeclaration) lookup.
17734       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
17735           !Previous.isForRedeclaration()) {
17736         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17737         Diag(NameLoc, diag::err_tag_reference_non_tag)
17738             << PrevDecl << NTK << llvm::to_underlying(Kind);
17739         Diag(PrevDecl->getLocation(), diag::note_declared_at);
17740         Invalid = true;
17741 
17742       // Otherwise, only diagnose if the declaration is in scope.
17743       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
17744                                 SS.isNotEmpty() || isMemberSpecialization)) {
17745         // do nothing
17746 
17747       // Diagnose implicit declarations introduced by elaborated types.
17748       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
17749         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
17750         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
17751         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17752         Invalid = true;
17753 
17754       // Otherwise it's a declaration.  Call out a particularly common
17755       // case here.
17756       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
17757         unsigned Kind = 0;
17758         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
17759         Diag(NameLoc, diag::err_tag_definition_of_typedef)
17760           << Name << Kind << TND->getUnderlyingType();
17761         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
17762         Invalid = true;
17763 
17764       // Otherwise, diagnose.
17765       } else {
17766         // The tag name clashes with something else in the target scope,
17767         // issue an error and recover by making this tag be anonymous.
17768         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
17769         notePreviousDefinition(PrevDecl, NameLoc);
17770         Name = nullptr;
17771         Invalid = true;
17772       }
17773 
17774       // The existing declaration isn't relevant to us; we're in a
17775       // new scope, so clear out the previous declaration.
17776       Previous.clear();
17777     }
17778   }
17779 
17780 CreateNewDecl:
17781 
17782   TagDecl *PrevDecl = nullptr;
17783   if (Previous.isSingleResult())
17784     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
17785 
17786   // If there is an identifier, use the location of the identifier as the
17787   // location of the decl, otherwise use the location of the struct/union
17788   // keyword.
17789   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
17790 
17791   // Otherwise, create a new declaration. If there is a previous
17792   // declaration of the same entity, the two will be linked via
17793   // PrevDecl.
17794   TagDecl *New;
17795 
17796   if (Kind == TagTypeKind::Enum) {
17797     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17798     // enum X { A, B, C } D;    D should chain to X.
17799     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
17800                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
17801                            ScopedEnumUsesClassTag, IsFixed);
17802 
17803     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
17804       StdAlignValT = cast<EnumDecl>(New);
17805 
17806     // If this is an undefined enum, warn.
17807     if (TUK != TUK_Definition && !Invalid) {
17808       TagDecl *Def;
17809       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
17810         // C++0x: 7.2p2: opaque-enum-declaration.
17811         // Conflicts are diagnosed above. Do nothing.
17812       }
17813       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
17814         Diag(Loc, diag::ext_forward_ref_enum_def)
17815           << New;
17816         Diag(Def->getLocation(), diag::note_previous_definition);
17817       } else {
17818         unsigned DiagID = diag::ext_forward_ref_enum;
17819         if (getLangOpts().MSVCCompat)
17820           DiagID = diag::ext_ms_forward_ref_enum;
17821         else if (getLangOpts().CPlusPlus)
17822           DiagID = diag::err_forward_ref_enum;
17823         Diag(Loc, DiagID);
17824       }
17825     }
17826 
17827     if (EnumUnderlying) {
17828       EnumDecl *ED = cast<EnumDecl>(New);
17829       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
17830         ED->setIntegerTypeSourceInfo(TI);
17831       else
17832         ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
17833       QualType EnumTy = ED->getIntegerType();
17834       ED->setPromotionType(Context.isPromotableIntegerType(EnumTy)
17835                                ? Context.getPromotedIntegerType(EnumTy)
17836                                : EnumTy);
17837       assert(ED->isComplete() && "enum with type should be complete");
17838     }
17839   } else {
17840     // struct/union/class
17841 
17842     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
17843     // struct X { int A; } D;    D should chain to X.
17844     if (getLangOpts().CPlusPlus) {
17845       // FIXME: Look for a way to use RecordDecl for simple structs.
17846       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17847                                   cast_or_null<CXXRecordDecl>(PrevDecl));
17848 
17849       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
17850         StdBadAlloc = cast<CXXRecordDecl>(New);
17851     } else
17852       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
17853                                cast_or_null<RecordDecl>(PrevDecl));
17854   }
17855 
17856   if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus)
17857     Diag(New->getLocation(), diag::ext_type_defined_in_offsetof)
17858         << (OOK == OOK_Macro) << New->getSourceRange();
17859 
17860   // C++11 [dcl.type]p3:
17861   //   A type-specifier-seq shall not define a class or enumeration [...].
17862   if (!Invalid && getLangOpts().CPlusPlus &&
17863       (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) {
17864     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
17865       << Context.getTagDeclType(New);
17866     Invalid = true;
17867   }
17868 
17869   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
17870       DC->getDeclKind() == Decl::Enum) {
17871     Diag(New->getLocation(), diag::err_type_defined_in_enum)
17872       << Context.getTagDeclType(New);
17873     Invalid = true;
17874   }
17875 
17876   // Maybe add qualifier info.
17877   if (SS.isNotEmpty()) {
17878     if (SS.isSet()) {
17879       // If this is either a declaration or a definition, check the
17880       // nested-name-specifier against the current context.
17881       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
17882           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
17883                                        isMemberSpecialization))
17884         Invalid = true;
17885 
17886       New->setQualifierInfo(SS.getWithLocInContext(Context));
17887       if (TemplateParameterLists.size() > 0) {
17888         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
17889       }
17890     }
17891     else
17892       Invalid = true;
17893   }
17894 
17895   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
17896     // Add alignment attributes if necessary; these attributes are checked when
17897     // the ASTContext lays out the structure.
17898     //
17899     // It is important for implementing the correct semantics that this
17900     // happen here (in ActOnTag). The #pragma pack stack is
17901     // maintained as a result of parser callbacks which can occur at
17902     // many points during the parsing of a struct declaration (because
17903     // the #pragma tokens are effectively skipped over during the
17904     // parsing of the struct).
17905     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
17906       AddAlignmentAttributesForRecord(RD);
17907       AddMsStructLayoutForRecord(RD);
17908     }
17909   }
17910 
17911   if (ModulePrivateLoc.isValid()) {
17912     if (isMemberSpecialization)
17913       Diag(New->getLocation(), diag::err_module_private_specialization)
17914         << 2
17915         << FixItHint::CreateRemoval(ModulePrivateLoc);
17916     // __module_private__ does not apply to local classes. However, we only
17917     // diagnose this as an error when the declaration specifiers are
17918     // freestanding. Here, we just ignore the __module_private__.
17919     else if (!SearchDC->isFunctionOrMethod())
17920       New->setModulePrivate();
17921   }
17922 
17923   // If this is a specialization of a member class (of a class template),
17924   // check the specialization.
17925   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
17926     Invalid = true;
17927 
17928   // If we're declaring or defining a tag in function prototype scope in C,
17929   // note that this type can only be used within the function and add it to
17930   // the list of decls to inject into the function definition scope.
17931   if ((Name || Kind == TagTypeKind::Enum) &&
17932       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
17933     if (getLangOpts().CPlusPlus) {
17934       // C++ [dcl.fct]p6:
17935       //   Types shall not be defined in return or parameter types.
17936       if (TUK == TUK_Definition && !IsTypeSpecifier) {
17937         Diag(Loc, diag::err_type_defined_in_param_type)
17938             << Name;
17939         Invalid = true;
17940       }
17941     } else if (!PrevDecl) {
17942       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
17943     }
17944   }
17945 
17946   if (Invalid)
17947     New->setInvalidDecl();
17948 
17949   // Set the lexical context. If the tag has a C++ scope specifier, the
17950   // lexical context will be different from the semantic context.
17951   New->setLexicalDeclContext(CurContext);
17952 
17953   // Mark this as a friend decl if applicable.
17954   // In Microsoft mode, a friend declaration also acts as a forward
17955   // declaration so we always pass true to setObjectOfFriendDecl to make
17956   // the tag name visible.
17957   if (TUK == TUK_Friend)
17958     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
17959 
17960   // Set the access specifier.
17961   if (!Invalid && SearchDC->isRecord())
17962     SetMemberAccessSpecifier(New, PrevDecl, AS);
17963 
17964   if (PrevDecl)
17965     CheckRedeclarationInModule(New, PrevDecl);
17966 
17967   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
17968     New->startDefinition();
17969 
17970   ProcessDeclAttributeList(S, New, Attrs);
17971   AddPragmaAttributes(S, New);
17972 
17973   // If this has an identifier, add it to the scope stack.
17974   if (TUK == TUK_Friend) {
17975     // We might be replacing an existing declaration in the lookup tables;
17976     // if so, borrow its access specifier.
17977     if (PrevDecl)
17978       New->setAccess(PrevDecl->getAccess());
17979 
17980     DeclContext *DC = New->getDeclContext()->getRedeclContext();
17981     DC->makeDeclVisibleInContext(New);
17982     if (Name) // can be null along some error paths
17983       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
17984         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
17985   } else if (Name) {
17986     S = getNonFieldDeclScope(S);
17987     PushOnScopeChains(New, S, true);
17988   } else {
17989     CurContext->addDecl(New);
17990   }
17991 
17992   // If this is the C FILE type, notify the AST context.
17993   if (IdentifierInfo *II = New->getIdentifier())
17994     if (!New->isInvalidDecl() &&
17995         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
17996         II->isStr("FILE"))
17997       Context.setFILEDecl(New);
17998 
17999   if (PrevDecl)
18000     mergeDeclAttributes(New, PrevDecl);
18001 
18002   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
18003     inferGslOwnerPointerAttribute(CXXRD);
18004 
18005   // If there's a #pragma GCC visibility in scope, set the visibility of this
18006   // record.
18007   AddPushedVisibilityAttribute(New);
18008 
18009   if (isMemberSpecialization && !New->isInvalidDecl())
18010     CompleteMemberSpecialization(New, Previous);
18011 
18012   OwnedDecl = true;
18013   // In C++, don't return an invalid declaration. We can't recover well from
18014   // the cases where we make the type anonymous.
18015   if (Invalid && getLangOpts().CPlusPlus) {
18016     if (New->isBeingDefined())
18017       if (auto RD = dyn_cast<RecordDecl>(New))
18018         RD->completeDefinition();
18019     return true;
18020   } else if (SkipBody && SkipBody->ShouldSkip) {
18021     return SkipBody->Previous;
18022   } else {
18023     return New;
18024   }
18025 }
18026 
18027 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
18028   AdjustDeclIfTemplate(TagD);
18029   TagDecl *Tag = cast<TagDecl>(TagD);
18030 
18031   // Enter the tag context.
18032   PushDeclContext(S, Tag);
18033 
18034   ActOnDocumentableDecl(TagD);
18035 
18036   // If there's a #pragma GCC visibility in scope, set the visibility of this
18037   // record.
18038   AddPushedVisibilityAttribute(Tag);
18039 }
18040 
18041 bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) {
18042   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
18043     return false;
18044 
18045   // Make the previous decl visible.
18046   makeMergedDefinitionVisible(SkipBody.Previous);
18047   return true;
18048 }
18049 
18050 void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) {
18051   assert(IDecl->getLexicalParent() == CurContext &&
18052       "The next DeclContext should be lexically contained in the current one.");
18053   CurContext = IDecl;
18054 }
18055 
18056 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
18057                                            SourceLocation FinalLoc,
18058                                            bool IsFinalSpelledSealed,
18059                                            bool IsAbstract,
18060                                            SourceLocation LBraceLoc) {
18061   AdjustDeclIfTemplate(TagD);
18062   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
18063 
18064   FieldCollector->StartClass();
18065 
18066   if (!Record->getIdentifier())
18067     return;
18068 
18069   if (IsAbstract)
18070     Record->markAbstract();
18071 
18072   if (FinalLoc.isValid()) {
18073     Record->addAttr(FinalAttr::Create(Context, FinalLoc,
18074                                       IsFinalSpelledSealed
18075                                           ? FinalAttr::Keyword_sealed
18076                                           : FinalAttr::Keyword_final));
18077   }
18078   // C++ [class]p2:
18079   //   [...] The class-name is also inserted into the scope of the
18080   //   class itself; this is known as the injected-class-name. For
18081   //   purposes of access checking, the injected-class-name is treated
18082   //   as if it were a public member name.
18083   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
18084       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
18085       Record->getLocation(), Record->getIdentifier(),
18086       /*PrevDecl=*/nullptr,
18087       /*DelayTypeCreation=*/true);
18088   Context.getTypeDeclType(InjectedClassName, Record);
18089   InjectedClassName->setImplicit();
18090   InjectedClassName->setAccess(AS_public);
18091   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
18092       InjectedClassName->setDescribedClassTemplate(Template);
18093   PushOnScopeChains(InjectedClassName, S);
18094   assert(InjectedClassName->isInjectedClassName() &&
18095          "Broken injected-class-name");
18096 }
18097 
18098 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
18099                                     SourceRange BraceRange) {
18100   AdjustDeclIfTemplate(TagD);
18101   TagDecl *Tag = cast<TagDecl>(TagD);
18102   Tag->setBraceRange(BraceRange);
18103 
18104   // Make sure we "complete" the definition even it is invalid.
18105   if (Tag->isBeingDefined()) {
18106     assert(Tag->isInvalidDecl() && "We should already have completed it");
18107     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18108       RD->completeDefinition();
18109   }
18110 
18111   if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) {
18112     FieldCollector->FinishClass();
18113     if (RD->hasAttr<SYCLSpecialClassAttr>()) {
18114       auto *Def = RD->getDefinition();
18115       assert(Def && "The record is expected to have a completed definition");
18116       unsigned NumInitMethods = 0;
18117       for (auto *Method : Def->methods()) {
18118         if (!Method->getIdentifier())
18119             continue;
18120         if (Method->getName() == "__init")
18121           NumInitMethods++;
18122       }
18123       if (NumInitMethods > 1 || !Def->hasInitMethod())
18124         Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method);
18125     }
18126   }
18127 
18128   // Exit this scope of this tag's definition.
18129   PopDeclContext();
18130 
18131   if (getCurLexicalContext()->isObjCContainer() &&
18132       Tag->getDeclContext()->isFileContext())
18133     Tag->setTopLevelDeclInObjCContainer();
18134 
18135   // Notify the consumer that we've defined a tag.
18136   if (!Tag->isInvalidDecl())
18137     Consumer.HandleTagDeclDefinition(Tag);
18138 
18139   // Clangs implementation of #pragma align(packed) differs in bitfield layout
18140   // from XLs and instead matches the XL #pragma pack(1) behavior.
18141   if (Context.getTargetInfo().getTriple().isOSAIX() &&
18142       AlignPackStack.hasValue()) {
18143     AlignPackInfo APInfo = AlignPackStack.CurrentValue;
18144     // Only diagnose #pragma align(packed).
18145     if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
18146       return;
18147     const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
18148     if (!RD)
18149       return;
18150     // Only warn if there is at least 1 bitfield member.
18151     if (llvm::any_of(RD->fields(),
18152                      [](const FieldDecl *FD) { return FD->isBitField(); }))
18153       Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
18154   }
18155 }
18156 
18157 void Sema::ActOnObjCContainerFinishDefinition() {
18158   // Exit this scope of this interface definition.
18159   PopDeclContext();
18160 }
18161 
18162 void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) {
18163   assert(ObjCCtx == CurContext && "Mismatch of container contexts");
18164   OriginalLexicalContext = ObjCCtx;
18165   ActOnObjCContainerFinishDefinition();
18166 }
18167 
18168 void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) {
18169   ActOnObjCContainerStartDefinition(ObjCCtx);
18170   OriginalLexicalContext = nullptr;
18171 }
18172 
18173 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
18174   AdjustDeclIfTemplate(TagD);
18175   TagDecl *Tag = cast<TagDecl>(TagD);
18176   Tag->setInvalidDecl();
18177 
18178   // Make sure we "complete" the definition even it is invalid.
18179   if (Tag->isBeingDefined()) {
18180     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
18181       RD->completeDefinition();
18182   }
18183 
18184   // We're undoing ActOnTagStartDefinition here, not
18185   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
18186   // the FieldCollector.
18187 
18188   PopDeclContext();
18189 }
18190 
18191 // Note that FieldName may be null for anonymous bitfields.
18192 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
18193                                 IdentifierInfo *FieldName, QualType FieldTy,
18194                                 bool IsMsStruct, Expr *BitWidth) {
18195   assert(BitWidth);
18196   if (BitWidth->containsErrors())
18197     return ExprError();
18198 
18199   // C99 6.7.2.1p4 - verify the field type.
18200   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
18201   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
18202     // Handle incomplete and sizeless types with a specific error.
18203     if (RequireCompleteSizedType(FieldLoc, FieldTy,
18204                                  diag::err_field_incomplete_or_sizeless))
18205       return ExprError();
18206     if (FieldName)
18207       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
18208         << FieldName << FieldTy << BitWidth->getSourceRange();
18209     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
18210       << FieldTy << BitWidth->getSourceRange();
18211   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
18212                                              UPPC_BitFieldWidth))
18213     return ExprError();
18214 
18215   // If the bit-width is type- or value-dependent, don't try to check
18216   // it now.
18217   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
18218     return BitWidth;
18219 
18220   llvm::APSInt Value;
18221   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
18222   if (ICE.isInvalid())
18223     return ICE;
18224   BitWidth = ICE.get();
18225 
18226   // Zero-width bitfield is ok for anonymous field.
18227   if (Value == 0 && FieldName)
18228     return Diag(FieldLoc, diag::err_bitfield_has_zero_width)
18229            << FieldName << BitWidth->getSourceRange();
18230 
18231   if (Value.isSigned() && Value.isNegative()) {
18232     if (FieldName)
18233       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
18234                << FieldName << toString(Value, 10);
18235     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
18236       << toString(Value, 10);
18237   }
18238 
18239   // The size of the bit-field must not exceed our maximum permitted object
18240   // size.
18241   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
18242     return Diag(FieldLoc, diag::err_bitfield_too_wide)
18243            << !FieldName << FieldName << toString(Value, 10);
18244   }
18245 
18246   if (!FieldTy->isDependentType()) {
18247     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
18248     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
18249     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
18250 
18251     // Over-wide bitfields are an error in C or when using the MSVC bitfield
18252     // ABI.
18253     bool CStdConstraintViolation =
18254         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
18255     bool MSBitfieldViolation =
18256         Value.ugt(TypeStorageSize) &&
18257         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
18258     if (CStdConstraintViolation || MSBitfieldViolation) {
18259       unsigned DiagWidth =
18260           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
18261       return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
18262              << (bool)FieldName << FieldName << toString(Value, 10)
18263              << !CStdConstraintViolation << DiagWidth;
18264     }
18265 
18266     // Warn on types where the user might conceivably expect to get all
18267     // specified bits as value bits: that's all integral types other than
18268     // 'bool'.
18269     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
18270       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
18271           << FieldName << toString(Value, 10)
18272           << (unsigned)TypeWidth;
18273     }
18274   }
18275 
18276   return BitWidth;
18277 }
18278 
18279 /// ActOnField - Each field of a C struct/union is passed into this in order
18280 /// to create a FieldDecl object for it.
18281 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
18282                        Declarator &D, Expr *BitfieldWidth) {
18283   FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart,
18284                                D, BitfieldWidth,
18285                                /*InitStyle=*/ICIS_NoInit, AS_public);
18286   return Res;
18287 }
18288 
18289 /// HandleField - Analyze a field of a C struct or a C++ data member.
18290 ///
18291 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
18292                              SourceLocation DeclStart,
18293                              Declarator &D, Expr *BitWidth,
18294                              InClassInitStyle InitStyle,
18295                              AccessSpecifier AS) {
18296   if (D.isDecompositionDeclarator()) {
18297     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
18298     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
18299       << Decomp.getSourceRange();
18300     return nullptr;
18301   }
18302 
18303   IdentifierInfo *II = D.getIdentifier();
18304   SourceLocation Loc = DeclStart;
18305   if (II) Loc = D.getIdentifierLoc();
18306 
18307   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18308   QualType T = TInfo->getType();
18309   if (getLangOpts().CPlusPlus) {
18310     CheckExtraCXXDefaultArguments(D);
18311 
18312     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
18313                                         UPPC_DataMemberType)) {
18314       D.setInvalidType();
18315       T = Context.IntTy;
18316       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
18317     }
18318   }
18319 
18320   DiagnoseFunctionSpecifiers(D.getDeclSpec());
18321 
18322   if (D.getDeclSpec().isInlineSpecified())
18323     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
18324         << getLangOpts().CPlusPlus17;
18325   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
18326     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
18327          diag::err_invalid_thread)
18328       << DeclSpec::getSpecifierName(TSCS);
18329 
18330   // Check to see if this name was declared as a member previously
18331   NamedDecl *PrevDecl = nullptr;
18332   LookupResult Previous(*this, II, Loc, LookupMemberName,
18333                         ForVisibleRedeclaration);
18334   LookupName(Previous, S);
18335   switch (Previous.getResultKind()) {
18336     case LookupResult::Found:
18337     case LookupResult::FoundUnresolvedValue:
18338       PrevDecl = Previous.getAsSingle<NamedDecl>();
18339       break;
18340 
18341     case LookupResult::FoundOverloaded:
18342       PrevDecl = Previous.getRepresentativeDecl();
18343       break;
18344 
18345     case LookupResult::NotFound:
18346     case LookupResult::NotFoundInCurrentInstantiation:
18347     case LookupResult::Ambiguous:
18348       break;
18349   }
18350   Previous.suppressDiagnostics();
18351 
18352   if (PrevDecl && PrevDecl->isTemplateParameter()) {
18353     // Maybe we will complain about the shadowed template parameter.
18354     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
18355     // Just pretend that we didn't see the previous declaration.
18356     PrevDecl = nullptr;
18357   }
18358 
18359   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
18360     PrevDecl = nullptr;
18361 
18362   bool Mutable
18363     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
18364   SourceLocation TSSL = D.getBeginLoc();
18365   FieldDecl *NewFD
18366     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
18367                      TSSL, AS, PrevDecl, &D);
18368 
18369   if (NewFD->isInvalidDecl())
18370     Record->setInvalidDecl();
18371 
18372   if (D.getDeclSpec().isModulePrivateSpecified())
18373     NewFD->setModulePrivate();
18374 
18375   if (NewFD->isInvalidDecl() && PrevDecl) {
18376     // Don't introduce NewFD into scope; there's already something
18377     // with the same name in the same scope.
18378   } else if (II) {
18379     PushOnScopeChains(NewFD, S);
18380   } else
18381     Record->addDecl(NewFD);
18382 
18383   return NewFD;
18384 }
18385 
18386 /// Build a new FieldDecl and check its well-formedness.
18387 ///
18388 /// This routine builds a new FieldDecl given the fields name, type,
18389 /// record, etc. \p PrevDecl should refer to any previous declaration
18390 /// with the same name and in the same scope as the field to be
18391 /// created.
18392 ///
18393 /// \returns a new FieldDecl.
18394 ///
18395 /// \todo The Declarator argument is a hack. It will be removed once
18396 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
18397                                 TypeSourceInfo *TInfo,
18398                                 RecordDecl *Record, SourceLocation Loc,
18399                                 bool Mutable, Expr *BitWidth,
18400                                 InClassInitStyle InitStyle,
18401                                 SourceLocation TSSL,
18402                                 AccessSpecifier AS, NamedDecl *PrevDecl,
18403                                 Declarator *D) {
18404   IdentifierInfo *II = Name.getAsIdentifierInfo();
18405   bool InvalidDecl = false;
18406   if (D) InvalidDecl = D->isInvalidType();
18407 
18408   // If we receive a broken type, recover by assuming 'int' and
18409   // marking this declaration as invalid.
18410   if (T.isNull() || T->containsErrors()) {
18411     InvalidDecl = true;
18412     T = Context.IntTy;
18413   }
18414 
18415   QualType EltTy = Context.getBaseElementType(T);
18416   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
18417     if (RequireCompleteSizedType(Loc, EltTy,
18418                                  diag::err_field_incomplete_or_sizeless)) {
18419       // Fields of incomplete type force their record to be invalid.
18420       Record->setInvalidDecl();
18421       InvalidDecl = true;
18422     } else {
18423       NamedDecl *Def;
18424       EltTy->isIncompleteType(&Def);
18425       if (Def && Def->isInvalidDecl()) {
18426         Record->setInvalidDecl();
18427         InvalidDecl = true;
18428       }
18429     }
18430   }
18431 
18432   // TR 18037 does not allow fields to be declared with address space
18433   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
18434       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
18435     Diag(Loc, diag::err_field_with_address_space);
18436     Record->setInvalidDecl();
18437     InvalidDecl = true;
18438   }
18439 
18440   if (LangOpts.OpenCL) {
18441     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
18442     // used as structure or union field: image, sampler, event or block types.
18443     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
18444         T->isBlockPointerType()) {
18445       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
18446       Record->setInvalidDecl();
18447       InvalidDecl = true;
18448     }
18449     // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
18450     // is enabled.
18451     if (BitWidth && !getOpenCLOptions().isAvailableOption(
18452                         "__cl_clang_bitfields", LangOpts)) {
18453       Diag(Loc, diag::err_opencl_bitfields);
18454       InvalidDecl = true;
18455     }
18456   }
18457 
18458   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
18459   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
18460       T.hasQualifiers()) {
18461     InvalidDecl = true;
18462     Diag(Loc, diag::err_anon_bitfield_qualifiers);
18463   }
18464 
18465   // C99 6.7.2.1p8: A member of a structure or union may have any type other
18466   // than a variably modified type.
18467   if (!InvalidDecl && T->isVariablyModifiedType()) {
18468     if (!tryToFixVariablyModifiedVarType(
18469             TInfo, T, Loc, diag::err_typecheck_field_variable_size))
18470       InvalidDecl = true;
18471   }
18472 
18473   // Fields can not have abstract class types
18474   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
18475                                              diag::err_abstract_type_in_decl,
18476                                              AbstractFieldType))
18477     InvalidDecl = true;
18478 
18479   if (InvalidDecl)
18480     BitWidth = nullptr;
18481   // If this is declared as a bit-field, check the bit-field.
18482   if (BitWidth) {
18483     BitWidth =
18484         VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get();
18485     if (!BitWidth) {
18486       InvalidDecl = true;
18487       BitWidth = nullptr;
18488     }
18489   }
18490 
18491   // Check that 'mutable' is consistent with the type of the declaration.
18492   if (!InvalidDecl && Mutable) {
18493     unsigned DiagID = 0;
18494     if (T->isReferenceType())
18495       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
18496                                         : diag::err_mutable_reference;
18497     else if (T.isConstQualified())
18498       DiagID = diag::err_mutable_const;
18499 
18500     if (DiagID) {
18501       SourceLocation ErrLoc = Loc;
18502       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
18503         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
18504       Diag(ErrLoc, DiagID);
18505       if (DiagID != diag::ext_mutable_reference) {
18506         Mutable = false;
18507         InvalidDecl = true;
18508       }
18509     }
18510   }
18511 
18512   // C++11 [class.union]p8 (DR1460):
18513   //   At most one variant member of a union may have a
18514   //   brace-or-equal-initializer.
18515   if (InitStyle != ICIS_NoInit)
18516     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
18517 
18518   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
18519                                        BitWidth, Mutable, InitStyle);
18520   if (InvalidDecl)
18521     NewFD->setInvalidDecl();
18522 
18523   if (PrevDecl && !isa<TagDecl>(PrevDecl) &&
18524       !PrevDecl->isPlaceholderVar(getLangOpts())) {
18525     Diag(Loc, diag::err_duplicate_member) << II;
18526     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18527     NewFD->setInvalidDecl();
18528   }
18529 
18530   if (!InvalidDecl && getLangOpts().CPlusPlus) {
18531     if (Record->isUnion()) {
18532       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18533         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
18534         if (RDecl->getDefinition()) {
18535           // C++ [class.union]p1: An object of a class with a non-trivial
18536           // constructor, a non-trivial copy constructor, a non-trivial
18537           // destructor, or a non-trivial copy assignment operator
18538           // cannot be a member of a union, nor can an array of such
18539           // objects.
18540           if (CheckNontrivialField(NewFD))
18541             NewFD->setInvalidDecl();
18542         }
18543       }
18544 
18545       // C++ [class.union]p1: If a union contains a member of reference type,
18546       // the program is ill-formed, except when compiling with MSVC extensions
18547       // enabled.
18548       if (EltTy->isReferenceType()) {
18549         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
18550                                     diag::ext_union_member_of_reference_type :
18551                                     diag::err_union_member_of_reference_type)
18552           << NewFD->getDeclName() << EltTy;
18553         if (!getLangOpts().MicrosoftExt)
18554           NewFD->setInvalidDecl();
18555       }
18556     }
18557   }
18558 
18559   // FIXME: We need to pass in the attributes given an AST
18560   // representation, not a parser representation.
18561   if (D) {
18562     // FIXME: The current scope is almost... but not entirely... correct here.
18563     ProcessDeclAttributes(getCurScope(), NewFD, *D);
18564 
18565     if (NewFD->hasAttrs())
18566       CheckAlignasUnderalignment(NewFD);
18567   }
18568 
18569   // In auto-retain/release, infer strong retension for fields of
18570   // retainable type.
18571   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
18572     NewFD->setInvalidDecl();
18573 
18574   if (T.isObjCGCWeak())
18575     Diag(Loc, diag::warn_attribute_weak_on_field);
18576 
18577   // PPC MMA non-pointer types are not allowed as field types.
18578   if (Context.getTargetInfo().getTriple().isPPC64() &&
18579       CheckPPCMMAType(T, NewFD->getLocation()))
18580     NewFD->setInvalidDecl();
18581 
18582   NewFD->setAccess(AS);
18583   return NewFD;
18584 }
18585 
18586 bool Sema::CheckNontrivialField(FieldDecl *FD) {
18587   assert(FD);
18588   assert(getLangOpts().CPlusPlus && "valid check only for C++");
18589 
18590   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
18591     return false;
18592 
18593   QualType EltTy = Context.getBaseElementType(FD->getType());
18594   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
18595     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
18596     if (RDecl->getDefinition()) {
18597       // We check for copy constructors before constructors
18598       // because otherwise we'll never get complaints about
18599       // copy constructors.
18600 
18601       CXXSpecialMember member = CXXInvalid;
18602       // We're required to check for any non-trivial constructors. Since the
18603       // implicit default constructor is suppressed if there are any
18604       // user-declared constructors, we just need to check that there is a
18605       // trivial default constructor and a trivial copy constructor. (We don't
18606       // worry about move constructors here, since this is a C++98 check.)
18607       if (RDecl->hasNonTrivialCopyConstructor())
18608         member = CXXCopyConstructor;
18609       else if (!RDecl->hasTrivialDefaultConstructor())
18610         member = CXXDefaultConstructor;
18611       else if (RDecl->hasNonTrivialCopyAssignment())
18612         member = CXXCopyAssignment;
18613       else if (RDecl->hasNonTrivialDestructor())
18614         member = CXXDestructor;
18615 
18616       if (member != CXXInvalid) {
18617         if (!getLangOpts().CPlusPlus11 &&
18618             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
18619           // Objective-C++ ARC: it is an error to have a non-trivial field of
18620           // a union. However, system headers in Objective-C programs
18621           // occasionally have Objective-C lifetime objects within unions,
18622           // and rather than cause the program to fail, we make those
18623           // members unavailable.
18624           SourceLocation Loc = FD->getLocation();
18625           if (getSourceManager().isInSystemHeader(Loc)) {
18626             if (!FD->hasAttr<UnavailableAttr>())
18627               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
18628                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
18629             return false;
18630           }
18631         }
18632 
18633         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
18634                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
18635                diag::err_illegal_union_or_anon_struct_member)
18636           << FD->getParent()->isUnion() << FD->getDeclName() << member;
18637         DiagnoseNontrivial(RDecl, member);
18638         return !getLangOpts().CPlusPlus11;
18639       }
18640     }
18641   }
18642 
18643   return false;
18644 }
18645 
18646 /// TranslateIvarVisibility - Translate visibility from a token ID to an
18647 ///  AST enum value.
18648 static ObjCIvarDecl::AccessControl
18649 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
18650   switch (ivarVisibility) {
18651   default: llvm_unreachable("Unknown visitibility kind");
18652   case tok::objc_private: return ObjCIvarDecl::Private;
18653   case tok::objc_public: return ObjCIvarDecl::Public;
18654   case tok::objc_protected: return ObjCIvarDecl::Protected;
18655   case tok::objc_package: return ObjCIvarDecl::Package;
18656   }
18657 }
18658 
18659 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
18660 /// in order to create an IvarDecl object for it.
18661 Decl *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D,
18662                       Expr *BitWidth, tok::ObjCKeywordKind Visibility) {
18663 
18664   IdentifierInfo *II = D.getIdentifier();
18665   SourceLocation Loc = DeclStart;
18666   if (II) Loc = D.getIdentifierLoc();
18667 
18668   // FIXME: Unnamed fields can be handled in various different ways, for
18669   // example, unnamed unions inject all members into the struct namespace!
18670 
18671   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
18672   QualType T = TInfo->getType();
18673 
18674   if (BitWidth) {
18675     // 6.7.2.1p3, 6.7.2.1p4
18676     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
18677     if (!BitWidth)
18678       D.setInvalidType();
18679   } else {
18680     // Not a bitfield.
18681 
18682     // validate II.
18683 
18684   }
18685   if (T->isReferenceType()) {
18686     Diag(Loc, diag::err_ivar_reference_type);
18687     D.setInvalidType();
18688   }
18689   // C99 6.7.2.1p8: A member of a structure or union may have any type other
18690   // than a variably modified type.
18691   else if (T->isVariablyModifiedType()) {
18692     if (!tryToFixVariablyModifiedVarType(
18693             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
18694       D.setInvalidType();
18695   }
18696 
18697   // Get the visibility (access control) for this ivar.
18698   ObjCIvarDecl::AccessControl ac =
18699     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
18700                                         : ObjCIvarDecl::None;
18701   // Must set ivar's DeclContext to its enclosing interface.
18702   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
18703   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
18704     return nullptr;
18705   ObjCContainerDecl *EnclosingContext;
18706   if (ObjCImplementationDecl *IMPDecl =
18707       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
18708     if (LangOpts.ObjCRuntime.isFragile()) {
18709     // Case of ivar declared in an implementation. Context is that of its class.
18710       EnclosingContext = IMPDecl->getClassInterface();
18711       assert(EnclosingContext && "Implementation has no class interface!");
18712     }
18713     else
18714       EnclosingContext = EnclosingDecl;
18715   } else {
18716     if (ObjCCategoryDecl *CDecl =
18717         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
18718       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
18719         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
18720         return nullptr;
18721       }
18722     }
18723     EnclosingContext = EnclosingDecl;
18724   }
18725 
18726   // Construct the decl.
18727   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(
18728       Context, EnclosingContext, DeclStart, Loc, II, T, TInfo, ac, BitWidth);
18729 
18730   if (T->containsErrors())
18731     NewID->setInvalidDecl();
18732 
18733   if (II) {
18734     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
18735                                            ForVisibleRedeclaration);
18736     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
18737         && !isa<TagDecl>(PrevDecl)) {
18738       Diag(Loc, diag::err_duplicate_member) << II;
18739       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
18740       NewID->setInvalidDecl();
18741     }
18742   }
18743 
18744   // Process attributes attached to the ivar.
18745   ProcessDeclAttributes(S, NewID, D);
18746 
18747   if (D.isInvalidType())
18748     NewID->setInvalidDecl();
18749 
18750   // In ARC, infer 'retaining' for ivars of retainable type.
18751   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
18752     NewID->setInvalidDecl();
18753 
18754   if (D.getDeclSpec().isModulePrivateSpecified())
18755     NewID->setModulePrivate();
18756 
18757   if (II) {
18758     // FIXME: When interfaces are DeclContexts, we'll need to add
18759     // these to the interface.
18760     S->AddDecl(NewID);
18761     IdResolver.AddDecl(NewID);
18762   }
18763 
18764   if (LangOpts.ObjCRuntime.isNonFragile() &&
18765       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
18766     Diag(Loc, diag::warn_ivars_in_interface);
18767 
18768   return NewID;
18769 }
18770 
18771 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
18772 /// class and class extensions. For every class \@interface and class
18773 /// extension \@interface, if the last ivar is a bitfield of any type,
18774 /// then add an implicit `char :0` ivar to the end of that interface.
18775 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
18776                              SmallVectorImpl<Decl *> &AllIvarDecls) {
18777   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
18778     return;
18779 
18780   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
18781   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
18782 
18783   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
18784     return;
18785   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
18786   if (!ID) {
18787     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
18788       if (!CD->IsClassExtension())
18789         return;
18790     }
18791     // No need to add this to end of @implementation.
18792     else
18793       return;
18794   }
18795   // All conditions are met. Add a new bitfield to the tail end of ivars.
18796   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
18797   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
18798 
18799   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
18800                               DeclLoc, DeclLoc, nullptr,
18801                               Context.CharTy,
18802                               Context.getTrivialTypeSourceInfo(Context.CharTy,
18803                                                                DeclLoc),
18804                               ObjCIvarDecl::Private, BW,
18805                               true);
18806   AllIvarDecls.push_back(Ivar);
18807 }
18808 
18809 /// [class.dtor]p4:
18810 ///   At the end of the definition of a class, overload resolution is
18811 ///   performed among the prospective destructors declared in that class with
18812 ///   an empty argument list to select the destructor for the class, also
18813 ///   known as the selected destructor.
18814 ///
18815 /// We do the overload resolution here, then mark the selected constructor in the AST.
18816 /// Later CXXRecordDecl::getDestructor() will return the selected constructor.
18817 static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) {
18818   if (!Record->hasUserDeclaredDestructor()) {
18819     return;
18820   }
18821 
18822   SourceLocation Loc = Record->getLocation();
18823   OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal);
18824 
18825   for (auto *Decl : Record->decls()) {
18826     if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) {
18827       if (DD->isInvalidDecl())
18828         continue;
18829       S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {},
18830                              OCS);
18831       assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected.");
18832     }
18833   }
18834 
18835   if (OCS.empty()) {
18836     return;
18837   }
18838   OverloadCandidateSet::iterator Best;
18839   unsigned Msg = 0;
18840   OverloadCandidateDisplayKind DisplayKind;
18841 
18842   switch (OCS.BestViableFunction(S, Loc, Best)) {
18843   case OR_Success:
18844   case OR_Deleted:
18845     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function));
18846     break;
18847 
18848   case OR_Ambiguous:
18849     Msg = diag::err_ambiguous_destructor;
18850     DisplayKind = OCD_AmbiguousCandidates;
18851     break;
18852 
18853   case OR_No_Viable_Function:
18854     Msg = diag::err_no_viable_destructor;
18855     DisplayKind = OCD_AllCandidates;
18856     break;
18857   }
18858 
18859   if (Msg) {
18860     // OpenCL have got their own thing going with destructors. It's slightly broken,
18861     // but we allow it.
18862     if (!S.LangOpts.OpenCL) {
18863       PartialDiagnostic Diag = S.PDiag(Msg) << Record;
18864       OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {});
18865       Record->setInvalidDecl();
18866     }
18867     // It's a bit hacky: At this point we've raised an error but we want the
18868     // rest of the compiler to continue somehow working. However almost
18869     // everything we'll try to do with the class will depend on there being a
18870     // destructor. So let's pretend the first one is selected and hope for the
18871     // best.
18872     Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function));
18873   }
18874 }
18875 
18876 /// [class.mem.special]p5
18877 /// Two special member functions are of the same kind if:
18878 /// - they are both default constructors,
18879 /// - they are both copy or move constructors with the same first parameter
18880 ///   type, or
18881 /// - they are both copy or move assignment operators with the same first
18882 ///   parameter type and the same cv-qualifiers and ref-qualifier, if any.
18883 static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context,
18884                                               CXXMethodDecl *M1,
18885                                               CXXMethodDecl *M2,
18886                                               Sema::CXXSpecialMember CSM) {
18887   // We don't want to compare templates to non-templates: See
18888   // https://github.com/llvm/llvm-project/issues/59206
18889   if (CSM == Sema::CXXDefaultConstructor)
18890     return bool(M1->getDescribedFunctionTemplate()) ==
18891            bool(M2->getDescribedFunctionTemplate());
18892   // FIXME: better resolve CWG
18893   // https://cplusplus.github.io/CWG/issues/2787.html
18894   if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(),
18895                            M2->getNonObjectParameter(0)->getType()))
18896     return false;
18897   if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(),
18898                            M2->getFunctionObjectParameterReferenceType()))
18899     return false;
18900 
18901   return true;
18902 }
18903 
18904 /// [class.mem.special]p6:
18905 /// An eligible special member function is a special member function for which:
18906 /// - the function is not deleted,
18907 /// - the associated constraints, if any, are satisfied, and
18908 /// - no special member function of the same kind whose associated constraints
18909 ///   [CWG2595], if any, are satisfied is more constrained.
18910 static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record,
18911                                ArrayRef<CXXMethodDecl *> Methods,
18912                                Sema::CXXSpecialMember CSM) {
18913   SmallVector<bool, 4> SatisfactionStatus;
18914 
18915   for (CXXMethodDecl *Method : Methods) {
18916     const Expr *Constraints = Method->getTrailingRequiresClause();
18917     if (!Constraints)
18918       SatisfactionStatus.push_back(true);
18919     else {
18920       ConstraintSatisfaction Satisfaction;
18921       if (S.CheckFunctionConstraints(Method, Satisfaction))
18922         SatisfactionStatus.push_back(false);
18923       else
18924         SatisfactionStatus.push_back(Satisfaction.IsSatisfied);
18925     }
18926   }
18927 
18928   for (size_t i = 0; i < Methods.size(); i++) {
18929     if (!SatisfactionStatus[i])
18930       continue;
18931     CXXMethodDecl *Method = Methods[i];
18932     CXXMethodDecl *OrigMethod = Method;
18933     if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction())
18934       OrigMethod = cast<CXXMethodDecl>(MF);
18935 
18936     const Expr *Constraints = OrigMethod->getTrailingRequiresClause();
18937     bool AnotherMethodIsMoreConstrained = false;
18938     for (size_t j = 0; j < Methods.size(); j++) {
18939       if (i == j || !SatisfactionStatus[j])
18940         continue;
18941       CXXMethodDecl *OtherMethod = Methods[j];
18942       if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction())
18943         OtherMethod = cast<CXXMethodDecl>(MF);
18944 
18945       if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod,
18946                                              CSM))
18947         continue;
18948 
18949       const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause();
18950       if (!OtherConstraints)
18951         continue;
18952       if (!Constraints) {
18953         AnotherMethodIsMoreConstrained = true;
18954         break;
18955       }
18956       if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod,
18957                                    {Constraints},
18958                                    AnotherMethodIsMoreConstrained)) {
18959         // There was an error with the constraints comparison. Exit the loop
18960         // and don't consider this function eligible.
18961         AnotherMethodIsMoreConstrained = true;
18962       }
18963       if (AnotherMethodIsMoreConstrained)
18964         break;
18965     }
18966     // FIXME: Do not consider deleted methods as eligible after implementing
18967     // DR1734 and DR1496.
18968     if (!AnotherMethodIsMoreConstrained) {
18969       Method->setIneligibleOrNotSelected(false);
18970       Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM);
18971     }
18972   }
18973 }
18974 
18975 static void ComputeSpecialMemberFunctionsEligiblity(Sema &S,
18976                                                     CXXRecordDecl *Record) {
18977   SmallVector<CXXMethodDecl *, 4> DefaultConstructors;
18978   SmallVector<CXXMethodDecl *, 4> CopyConstructors;
18979   SmallVector<CXXMethodDecl *, 4> MoveConstructors;
18980   SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators;
18981   SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators;
18982 
18983   for (auto *Decl : Record->decls()) {
18984     auto *MD = dyn_cast<CXXMethodDecl>(Decl);
18985     if (!MD) {
18986       auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl);
18987       if (FTD)
18988         MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl());
18989     }
18990     if (!MD)
18991       continue;
18992     if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
18993       if (CD->isInvalidDecl())
18994         continue;
18995       if (CD->isDefaultConstructor())
18996         DefaultConstructors.push_back(MD);
18997       else if (CD->isCopyConstructor())
18998         CopyConstructors.push_back(MD);
18999       else if (CD->isMoveConstructor())
19000         MoveConstructors.push_back(MD);
19001     } else if (MD->isCopyAssignmentOperator()) {
19002       CopyAssignmentOperators.push_back(MD);
19003     } else if (MD->isMoveAssignmentOperator()) {
19004       MoveAssignmentOperators.push_back(MD);
19005     }
19006   }
19007 
19008   SetEligibleMethods(S, Record, DefaultConstructors,
19009                      Sema::CXXDefaultConstructor);
19010   SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor);
19011   SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor);
19012   SetEligibleMethods(S, Record, CopyAssignmentOperators,
19013                      Sema::CXXCopyAssignment);
19014   SetEligibleMethods(S, Record, MoveAssignmentOperators,
19015                      Sema::CXXMoveAssignment);
19016 }
19017 
19018 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
19019                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
19020                        SourceLocation RBrac,
19021                        const ParsedAttributesView &Attrs) {
19022   assert(EnclosingDecl && "missing record or interface decl");
19023 
19024   // If this is an Objective-C @implementation or category and we have
19025   // new fields here we should reset the layout of the interface since
19026   // it will now change.
19027   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
19028     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
19029     switch (DC->getKind()) {
19030     default: break;
19031     case Decl::ObjCCategory:
19032       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
19033       break;
19034     case Decl::ObjCImplementation:
19035       Context.
19036         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
19037       break;
19038     }
19039   }
19040 
19041   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
19042   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
19043 
19044   // Start counting up the number of named members; make sure to include
19045   // members of anonymous structs and unions in the total.
19046   unsigned NumNamedMembers = 0;
19047   if (Record) {
19048     for (const auto *I : Record->decls()) {
19049       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
19050         if (IFD->getDeclName())
19051           ++NumNamedMembers;
19052     }
19053   }
19054 
19055   // Verify that all the fields are okay.
19056   SmallVector<FieldDecl*, 32> RecFields;
19057 
19058   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
19059        i != end; ++i) {
19060     FieldDecl *FD = cast<FieldDecl>(*i);
19061 
19062     // Get the type for the field.
19063     const Type *FDTy = FD->getType().getTypePtr();
19064 
19065     if (!FD->isAnonymousStructOrUnion()) {
19066       // Remember all fields written by the user.
19067       RecFields.push_back(FD);
19068     }
19069 
19070     // If the field is already invalid for some reason, don't emit more
19071     // diagnostics about it.
19072     if (FD->isInvalidDecl()) {
19073       EnclosingDecl->setInvalidDecl();
19074       continue;
19075     }
19076 
19077     // C99 6.7.2.1p2:
19078     //   A structure or union shall not contain a member with
19079     //   incomplete or function type (hence, a structure shall not
19080     //   contain an instance of itself, but may contain a pointer to
19081     //   an instance of itself), except that the last member of a
19082     //   structure with more than one named member may have incomplete
19083     //   array type; such a structure (and any union containing,
19084     //   possibly recursively, a member that is such a structure)
19085     //   shall not be a member of a structure or an element of an
19086     //   array.
19087     bool IsLastField = (i + 1 == Fields.end());
19088     if (FDTy->isFunctionType()) {
19089       // Field declared as a function.
19090       Diag(FD->getLocation(), diag::err_field_declared_as_function)
19091         << FD->getDeclName();
19092       FD->setInvalidDecl();
19093       EnclosingDecl->setInvalidDecl();
19094       continue;
19095     } else if (FDTy->isIncompleteArrayType() &&
19096                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
19097       if (Record) {
19098         // Flexible array member.
19099         // Microsoft and g++ is more permissive regarding flexible array.
19100         // It will accept flexible array in union and also
19101         // as the sole element of a struct/class.
19102         unsigned DiagID = 0;
19103         if (!Record->isUnion() && !IsLastField) {
19104           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
19105               << FD->getDeclName() << FD->getType()
19106               << llvm::to_underlying(Record->getTagKind());
19107           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
19108           FD->setInvalidDecl();
19109           EnclosingDecl->setInvalidDecl();
19110           continue;
19111         } else if (Record->isUnion())
19112           DiagID = getLangOpts().MicrosoftExt
19113                        ? diag::ext_flexible_array_union_ms
19114                        : getLangOpts().CPlusPlus
19115                              ? diag::ext_flexible_array_union_gnu
19116                              : diag::err_flexible_array_union;
19117         else if (NumNamedMembers < 1)
19118           DiagID = getLangOpts().MicrosoftExt
19119                        ? diag::ext_flexible_array_empty_aggregate_ms
19120                        : getLangOpts().CPlusPlus
19121                              ? diag::ext_flexible_array_empty_aggregate_gnu
19122                              : diag::err_flexible_array_empty_aggregate;
19123 
19124         if (DiagID)
19125           Diag(FD->getLocation(), DiagID)
19126               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19127         // While the layout of types that contain virtual bases is not specified
19128         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
19129         // virtual bases after the derived members.  This would make a flexible
19130         // array member declared at the end of an object not adjacent to the end
19131         // of the type.
19132         if (CXXRecord && CXXRecord->getNumVBases() != 0)
19133           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
19134               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19135         if (!getLangOpts().C99)
19136           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
19137               << FD->getDeclName() << llvm::to_underlying(Record->getTagKind());
19138 
19139         // If the element type has a non-trivial destructor, we would not
19140         // implicitly destroy the elements, so disallow it for now.
19141         //
19142         // FIXME: GCC allows this. We should probably either implicitly delete
19143         // the destructor of the containing class, or just allow this.
19144         QualType BaseElem = Context.getBaseElementType(FD->getType());
19145         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
19146           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
19147             << FD->getDeclName() << FD->getType();
19148           FD->setInvalidDecl();
19149           EnclosingDecl->setInvalidDecl();
19150           continue;
19151         }
19152         // Okay, we have a legal flexible array member at the end of the struct.
19153         Record->setHasFlexibleArrayMember(true);
19154       } else {
19155         // In ObjCContainerDecl ivars with incomplete array type are accepted,
19156         // unless they are followed by another ivar. That check is done
19157         // elsewhere, after synthesized ivars are known.
19158       }
19159     } else if (!FDTy->isDependentType() &&
19160                RequireCompleteSizedType(
19161                    FD->getLocation(), FD->getType(),
19162                    diag::err_field_incomplete_or_sizeless)) {
19163       // Incomplete type
19164       FD->setInvalidDecl();
19165       EnclosingDecl->setInvalidDecl();
19166       continue;
19167     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
19168       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
19169         // A type which contains a flexible array member is considered to be a
19170         // flexible array member.
19171         Record->setHasFlexibleArrayMember(true);
19172         if (!Record->isUnion()) {
19173           // If this is a struct/class and this is not the last element, reject
19174           // it.  Note that GCC supports variable sized arrays in the middle of
19175           // structures.
19176           if (!IsLastField)
19177             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
19178               << FD->getDeclName() << FD->getType();
19179           else {
19180             // We support flexible arrays at the end of structs in
19181             // other structs as an extension.
19182             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
19183               << FD->getDeclName();
19184           }
19185         }
19186       }
19187       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
19188           RequireNonAbstractType(FD->getLocation(), FD->getType(),
19189                                  diag::err_abstract_type_in_decl,
19190                                  AbstractIvarType)) {
19191         // Ivars can not have abstract class types
19192         FD->setInvalidDecl();
19193       }
19194       if (Record && FDTTy->getDecl()->hasObjectMember())
19195         Record->setHasObjectMember(true);
19196       if (Record && FDTTy->getDecl()->hasVolatileMember())
19197         Record->setHasVolatileMember(true);
19198     } else if (FDTy->isObjCObjectType()) {
19199       /// A field cannot be an Objective-c object
19200       Diag(FD->getLocation(), diag::err_statically_allocated_object)
19201         << FixItHint::CreateInsertion(FD->getLocation(), "*");
19202       QualType T = Context.getObjCObjectPointerType(FD->getType());
19203       FD->setType(T);
19204     } else if (Record && Record->isUnion() &&
19205                FD->getType().hasNonTrivialObjCLifetime() &&
19206                getSourceManager().isInSystemHeader(FD->getLocation()) &&
19207                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
19208                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
19209                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
19210       // For backward compatibility, fields of C unions declared in system
19211       // headers that have non-trivial ObjC ownership qualifications are marked
19212       // as unavailable unless the qualifier is explicit and __strong. This can
19213       // break ABI compatibility between programs compiled with ARC and MRR, but
19214       // is a better option than rejecting programs using those unions under
19215       // ARC.
19216       FD->addAttr(UnavailableAttr::CreateImplicit(
19217           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
19218           FD->getLocation()));
19219     } else if (getLangOpts().ObjC &&
19220                getLangOpts().getGC() != LangOptions::NonGC && Record &&
19221                !Record->hasObjectMember()) {
19222       if (FD->getType()->isObjCObjectPointerType() ||
19223           FD->getType().isObjCGCStrong())
19224         Record->setHasObjectMember(true);
19225       else if (Context.getAsArrayType(FD->getType())) {
19226         QualType BaseType = Context.getBaseElementType(FD->getType());
19227         if (BaseType->isRecordType() &&
19228             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
19229           Record->setHasObjectMember(true);
19230         else if (BaseType->isObjCObjectPointerType() ||
19231                  BaseType.isObjCGCStrong())
19232                Record->setHasObjectMember(true);
19233       }
19234     }
19235 
19236     if (Record && !getLangOpts().CPlusPlus &&
19237         !shouldIgnoreForRecordTriviality(FD)) {
19238       QualType FT = FD->getType();
19239       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
19240         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
19241         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
19242             Record->isUnion())
19243           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
19244       }
19245       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
19246       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
19247         Record->setNonTrivialToPrimitiveCopy(true);
19248         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
19249           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
19250       }
19251       if (FT.isDestructedType()) {
19252         Record->setNonTrivialToPrimitiveDestroy(true);
19253         Record->setParamDestroyedInCallee(true);
19254         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
19255           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
19256       }
19257 
19258       if (const auto *RT = FT->getAs<RecordType>()) {
19259         if (RT->getDecl()->getArgPassingRestrictions() ==
19260             RecordArgPassingKind::CanNeverPassInRegs)
19261           Record->setArgPassingRestrictions(
19262               RecordArgPassingKind::CanNeverPassInRegs);
19263       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
19264         Record->setArgPassingRestrictions(
19265             RecordArgPassingKind::CanNeverPassInRegs);
19266     }
19267 
19268     if (Record && FD->getType().isVolatileQualified())
19269       Record->setHasVolatileMember(true);
19270     // Keep track of the number of named members.
19271     if (FD->getIdentifier())
19272       ++NumNamedMembers;
19273   }
19274 
19275   // Okay, we successfully defined 'Record'.
19276   if (Record) {
19277     bool Completed = false;
19278     if (CXXRecord) {
19279       if (!CXXRecord->isInvalidDecl()) {
19280         // Set access bits correctly on the directly-declared conversions.
19281         for (CXXRecordDecl::conversion_iterator
19282                I = CXXRecord->conversion_begin(),
19283                E = CXXRecord->conversion_end(); I != E; ++I)
19284           I.setAccess((*I)->getAccess());
19285       }
19286 
19287       // Add any implicitly-declared members to this class.
19288       AddImplicitlyDeclaredMembersToClass(CXXRecord);
19289 
19290       if (!CXXRecord->isDependentType()) {
19291         if (!CXXRecord->isInvalidDecl()) {
19292           // If we have virtual base classes, we may end up finding multiple
19293           // final overriders for a given virtual function. Check for this
19294           // problem now.
19295           if (CXXRecord->getNumVBases()) {
19296             CXXFinalOverriderMap FinalOverriders;
19297             CXXRecord->getFinalOverriders(FinalOverriders);
19298 
19299             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
19300                                              MEnd = FinalOverriders.end();
19301                  M != MEnd; ++M) {
19302               for (OverridingMethods::iterator SO = M->second.begin(),
19303                                             SOEnd = M->second.end();
19304                    SO != SOEnd; ++SO) {
19305                 assert(SO->second.size() > 0 &&
19306                        "Virtual function without overriding functions?");
19307                 if (SO->second.size() == 1)
19308                   continue;
19309 
19310                 // C++ [class.virtual]p2:
19311                 //   In a derived class, if a virtual member function of a base
19312                 //   class subobject has more than one final overrider the
19313                 //   program is ill-formed.
19314                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
19315                   << (const NamedDecl *)M->first << Record;
19316                 Diag(M->first->getLocation(),
19317                      diag::note_overridden_virtual_function);
19318                 for (OverridingMethods::overriding_iterator
19319                           OM = SO->second.begin(),
19320                        OMEnd = SO->second.end();
19321                      OM != OMEnd; ++OM)
19322                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
19323                     << (const NamedDecl *)M->first << OM->Method->getParent();
19324 
19325                 Record->setInvalidDecl();
19326               }
19327             }
19328             CXXRecord->completeDefinition(&FinalOverriders);
19329             Completed = true;
19330           }
19331         }
19332         ComputeSelectedDestructor(*this, CXXRecord);
19333         ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord);
19334       }
19335     }
19336 
19337     if (!Completed)
19338       Record->completeDefinition();
19339 
19340     // Handle attributes before checking the layout.
19341     ProcessDeclAttributeList(S, Record, Attrs);
19342 
19343     // Check to see if a FieldDecl is a pointer to a function.
19344     auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) {
19345       const FieldDecl *FD = dyn_cast<FieldDecl>(D);
19346       if (!FD) {
19347         // Check whether this is a forward declaration that was inserted by
19348         // Clang. This happens when a non-forward declared / defined type is
19349         // used, e.g.:
19350         //
19351         //   struct foo {
19352         //     struct bar *(*f)();
19353         //     struct bar *(*g)();
19354         //   };
19355         //
19356         // "struct bar" shows up in the decl AST as a "RecordDecl" with an
19357         // incomplete definition.
19358         if (const auto *TD = dyn_cast<TagDecl>(D))
19359           return !TD->isCompleteDefinition();
19360         return false;
19361       }
19362       QualType FieldType = FD->getType().getDesugaredType(Context);
19363       if (isa<PointerType>(FieldType)) {
19364         QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType();
19365         return PointeeType.getDesugaredType(Context)->isFunctionType();
19366       }
19367       return false;
19368     };
19369 
19370     // Maybe randomize the record's decls. We automatically randomize a record
19371     // of function pointers, unless it has the "no_randomize_layout" attribute.
19372     if (!getLangOpts().CPlusPlus &&
19373         (Record->hasAttr<RandomizeLayoutAttr>() ||
19374          (!Record->hasAttr<NoRandomizeLayoutAttr>() &&
19375           llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) &&
19376         !Record->isUnion() && !getLangOpts().RandstructSeed.empty() &&
19377         !Record->isRandomized()) {
19378       SmallVector<Decl *, 32> NewDeclOrdering;
19379       if (randstruct::randomizeStructureLayout(Context, Record,
19380                                                NewDeclOrdering))
19381         Record->reorderDecls(NewDeclOrdering);
19382     }
19383 
19384     // We may have deferred checking for a deleted destructor. Check now.
19385     if (CXXRecord) {
19386       auto *Dtor = CXXRecord->getDestructor();
19387       if (Dtor && Dtor->isImplicit() &&
19388           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
19389         CXXRecord->setImplicitDestructorIsDeleted();
19390         SetDeclDeleted(Dtor, CXXRecord->getLocation());
19391       }
19392     }
19393 
19394     if (Record->hasAttrs()) {
19395       CheckAlignasUnderalignment(Record);
19396 
19397       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
19398         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
19399                                            IA->getRange(), IA->getBestCase(),
19400                                            IA->getInheritanceModel());
19401     }
19402 
19403     // Check if the structure/union declaration is a type that can have zero
19404     // size in C. For C this is a language extension, for C++ it may cause
19405     // compatibility problems.
19406     bool CheckForZeroSize;
19407     if (!getLangOpts().CPlusPlus) {
19408       CheckForZeroSize = true;
19409     } else {
19410       // For C++ filter out types that cannot be referenced in C code.
19411       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
19412       CheckForZeroSize =
19413           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
19414           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
19415           CXXRecord->isCLike();
19416     }
19417     if (CheckForZeroSize) {
19418       bool ZeroSize = true;
19419       bool IsEmpty = true;
19420       unsigned NonBitFields = 0;
19421       for (RecordDecl::field_iterator I = Record->field_begin(),
19422                                       E = Record->field_end();
19423            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
19424         IsEmpty = false;
19425         if (I->isUnnamedBitfield()) {
19426           if (!I->isZeroLengthBitField(Context))
19427             ZeroSize = false;
19428         } else {
19429           ++NonBitFields;
19430           QualType FieldType = I->getType();
19431           if (FieldType->isIncompleteType() ||
19432               !Context.getTypeSizeInChars(FieldType).isZero())
19433             ZeroSize = false;
19434         }
19435       }
19436 
19437       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
19438       // allowed in C++, but warn if its declaration is inside
19439       // extern "C" block.
19440       if (ZeroSize) {
19441         Diag(RecLoc, getLangOpts().CPlusPlus ?
19442                          diag::warn_zero_size_struct_union_in_extern_c :
19443                          diag::warn_zero_size_struct_union_compat)
19444           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
19445       }
19446 
19447       // Structs without named members are extension in C (C99 6.7.2.1p7),
19448       // but are accepted by GCC.
19449       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
19450         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
19451                                diag::ext_no_named_members_in_struct_union)
19452           << Record->isUnion();
19453       }
19454     }
19455   } else {
19456     ObjCIvarDecl **ClsFields =
19457       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
19458     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
19459       ID->setEndOfDefinitionLoc(RBrac);
19460       // Add ivar's to class's DeclContext.
19461       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19462         ClsFields[i]->setLexicalDeclContext(ID);
19463         ID->addDecl(ClsFields[i]);
19464       }
19465       // Must enforce the rule that ivars in the base classes may not be
19466       // duplicates.
19467       if (ID->getSuperClass())
19468         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
19469     } else if (ObjCImplementationDecl *IMPDecl =
19470                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
19471       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
19472       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
19473         // Ivar declared in @implementation never belongs to the implementation.
19474         // Only it is in implementation's lexical context.
19475         ClsFields[I]->setLexicalDeclContext(IMPDecl);
19476       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
19477       IMPDecl->setIvarLBraceLoc(LBrac);
19478       IMPDecl->setIvarRBraceLoc(RBrac);
19479     } else if (ObjCCategoryDecl *CDecl =
19480                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
19481       // case of ivars in class extension; all other cases have been
19482       // reported as errors elsewhere.
19483       // FIXME. Class extension does not have a LocEnd field.
19484       // CDecl->setLocEnd(RBrac);
19485       // Add ivar's to class extension's DeclContext.
19486       // Diagnose redeclaration of private ivars.
19487       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
19488       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
19489         if (IDecl) {
19490           if (const ObjCIvarDecl *ClsIvar =
19491               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
19492             Diag(ClsFields[i]->getLocation(),
19493                  diag::err_duplicate_ivar_declaration);
19494             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
19495             continue;
19496           }
19497           for (const auto *Ext : IDecl->known_extensions()) {
19498             if (const ObjCIvarDecl *ClsExtIvar
19499                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
19500               Diag(ClsFields[i]->getLocation(),
19501                    diag::err_duplicate_ivar_declaration);
19502               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
19503               continue;
19504             }
19505           }
19506         }
19507         ClsFields[i]->setLexicalDeclContext(CDecl);
19508         CDecl->addDecl(ClsFields[i]);
19509       }
19510       CDecl->setIvarLBraceLoc(LBrac);
19511       CDecl->setIvarRBraceLoc(RBrac);
19512     }
19513   }
19514 }
19515 
19516 /// Determine whether the given integral value is representable within
19517 /// the given type T.
19518 static bool isRepresentableIntegerValue(ASTContext &Context,
19519                                         llvm::APSInt &Value,
19520                                         QualType T) {
19521   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
19522          "Integral type required!");
19523   unsigned BitWidth = Context.getIntWidth(T);
19524 
19525   if (Value.isUnsigned() || Value.isNonNegative()) {
19526     if (T->isSignedIntegerOrEnumerationType())
19527       --BitWidth;
19528     return Value.getActiveBits() <= BitWidth;
19529   }
19530   return Value.getSignificantBits() <= BitWidth;
19531 }
19532 
19533 // Given an integral type, return the next larger integral type
19534 // (or a NULL type of no such type exists).
19535 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
19536   // FIXME: Int128/UInt128 support, which also needs to be introduced into
19537   // enum checking below.
19538   assert((T->isIntegralType(Context) ||
19539          T->isEnumeralType()) && "Integral type required!");
19540   const unsigned NumTypes = 4;
19541   QualType SignedIntegralTypes[NumTypes] = {
19542     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
19543   };
19544   QualType UnsignedIntegralTypes[NumTypes] = {
19545     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
19546     Context.UnsignedLongLongTy
19547   };
19548 
19549   unsigned BitWidth = Context.getTypeSize(T);
19550   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
19551                                                         : UnsignedIntegralTypes;
19552   for (unsigned I = 0; I != NumTypes; ++I)
19553     if (Context.getTypeSize(Types[I]) > BitWidth)
19554       return Types[I];
19555 
19556   return QualType();
19557 }
19558 
19559 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
19560                                           EnumConstantDecl *LastEnumConst,
19561                                           SourceLocation IdLoc,
19562                                           IdentifierInfo *Id,
19563                                           Expr *Val) {
19564   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
19565   llvm::APSInt EnumVal(IntWidth);
19566   QualType EltTy;
19567 
19568   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
19569     Val = nullptr;
19570 
19571   if (Val)
19572     Val = DefaultLvalueConversion(Val).get();
19573 
19574   if (Val) {
19575     if (Enum->isDependentType() || Val->isTypeDependent() ||
19576         Val->containsErrors())
19577       EltTy = Context.DependentTy;
19578     else {
19579       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
19580       // underlying type, but do allow it in all other contexts.
19581       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
19582         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
19583         // constant-expression in the enumerator-definition shall be a converted
19584         // constant expression of the underlying type.
19585         EltTy = Enum->getIntegerType();
19586         ExprResult Converted =
19587           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
19588                                            CCEK_Enumerator);
19589         if (Converted.isInvalid())
19590           Val = nullptr;
19591         else
19592           Val = Converted.get();
19593       } else if (!Val->isValueDependent() &&
19594                  !(Val =
19595                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
19596                            .get())) {
19597         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
19598       } else {
19599         if (Enum->isComplete()) {
19600           EltTy = Enum->getIntegerType();
19601 
19602           // In Obj-C and Microsoft mode, require the enumeration value to be
19603           // representable in the underlying type of the enumeration. In C++11,
19604           // we perform a non-narrowing conversion as part of converted constant
19605           // expression checking.
19606           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19607             if (Context.getTargetInfo()
19608                     .getTriple()
19609                     .isWindowsMSVCEnvironment()) {
19610               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
19611             } else {
19612               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
19613             }
19614           }
19615 
19616           // Cast to the underlying type.
19617           Val = ImpCastExprToType(Val, EltTy,
19618                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
19619                                                          : CK_IntegralCast)
19620                     .get();
19621         } else if (getLangOpts().CPlusPlus) {
19622           // C++11 [dcl.enum]p5:
19623           //   If the underlying type is not fixed, the type of each enumerator
19624           //   is the type of its initializing value:
19625           //     - If an initializer is specified for an enumerator, the
19626           //       initializing value has the same type as the expression.
19627           EltTy = Val->getType();
19628         } else {
19629           // C99 6.7.2.2p2:
19630           //   The expression that defines the value of an enumeration constant
19631           //   shall be an integer constant expression that has a value
19632           //   representable as an int.
19633 
19634           // Complain if the value is not representable in an int.
19635           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
19636             Diag(IdLoc, diag::ext_enum_value_not_int)
19637               << toString(EnumVal, 10) << Val->getSourceRange()
19638               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
19639           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
19640             // Force the type of the expression to 'int'.
19641             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
19642           }
19643           EltTy = Val->getType();
19644         }
19645       }
19646     }
19647   }
19648 
19649   if (!Val) {
19650     if (Enum->isDependentType())
19651       EltTy = Context.DependentTy;
19652     else if (!LastEnumConst) {
19653       // C++0x [dcl.enum]p5:
19654       //   If the underlying type is not fixed, the type of each enumerator
19655       //   is the type of its initializing value:
19656       //     - If no initializer is specified for the first enumerator, the
19657       //       initializing value has an unspecified integral type.
19658       //
19659       // GCC uses 'int' for its unspecified integral type, as does
19660       // C99 6.7.2.2p3.
19661       if (Enum->isFixed()) {
19662         EltTy = Enum->getIntegerType();
19663       }
19664       else {
19665         EltTy = Context.IntTy;
19666       }
19667     } else {
19668       // Assign the last value + 1.
19669       EnumVal = LastEnumConst->getInitVal();
19670       ++EnumVal;
19671       EltTy = LastEnumConst->getType();
19672 
19673       // Check for overflow on increment.
19674       if (EnumVal < LastEnumConst->getInitVal()) {
19675         // C++0x [dcl.enum]p5:
19676         //   If the underlying type is not fixed, the type of each enumerator
19677         //   is the type of its initializing value:
19678         //
19679         //     - Otherwise the type of the initializing value is the same as
19680         //       the type of the initializing value of the preceding enumerator
19681         //       unless the incremented value is not representable in that type,
19682         //       in which case the type is an unspecified integral type
19683         //       sufficient to contain the incremented value. If no such type
19684         //       exists, the program is ill-formed.
19685         QualType T = getNextLargerIntegralType(Context, EltTy);
19686         if (T.isNull() || Enum->isFixed()) {
19687           // There is no integral type larger enough to represent this
19688           // value. Complain, then allow the value to wrap around.
19689           EnumVal = LastEnumConst->getInitVal();
19690           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
19691           ++EnumVal;
19692           if (Enum->isFixed())
19693             // When the underlying type is fixed, this is ill-formed.
19694             Diag(IdLoc, diag::err_enumerator_wrapped)
19695               << toString(EnumVal, 10)
19696               << EltTy;
19697           else
19698             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
19699               << toString(EnumVal, 10);
19700         } else {
19701           EltTy = T;
19702         }
19703 
19704         // Retrieve the last enumerator's value, extent that type to the
19705         // type that is supposed to be large enough to represent the incremented
19706         // value, then increment.
19707         EnumVal = LastEnumConst->getInitVal();
19708         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19709         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
19710         ++EnumVal;
19711 
19712         // If we're not in C++, diagnose the overflow of enumerator values,
19713         // which in C99 means that the enumerator value is not representable in
19714         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
19715         // permits enumerator values that are representable in some larger
19716         // integral type.
19717         if (!getLangOpts().CPlusPlus && !T.isNull())
19718           Diag(IdLoc, diag::warn_enum_value_overflow);
19719       } else if (!getLangOpts().CPlusPlus &&
19720                  !EltTy->isDependentType() &&
19721                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
19722         // Enforce C99 6.7.2.2p2 even when we compute the next value.
19723         Diag(IdLoc, diag::ext_enum_value_not_int)
19724           << toString(EnumVal, 10) << 1;
19725       }
19726     }
19727   }
19728 
19729   if (!EltTy->isDependentType()) {
19730     // Make the enumerator value match the signedness and size of the
19731     // enumerator's type.
19732     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
19733     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
19734   }
19735 
19736   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
19737                                   Val, EnumVal);
19738 }
19739 
19740 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
19741                                                 SourceLocation IILoc) {
19742   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
19743       !getLangOpts().CPlusPlus)
19744     return SkipBodyInfo();
19745 
19746   // We have an anonymous enum definition. Look up the first enumerator to
19747   // determine if we should merge the definition with an existing one and
19748   // skip the body.
19749   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
19750                                          forRedeclarationInCurContext());
19751   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
19752   if (!PrevECD)
19753     return SkipBodyInfo();
19754 
19755   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
19756   NamedDecl *Hidden;
19757   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
19758     SkipBodyInfo Skip;
19759     Skip.Previous = Hidden;
19760     return Skip;
19761   }
19762 
19763   return SkipBodyInfo();
19764 }
19765 
19766 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
19767                               SourceLocation IdLoc, IdentifierInfo *Id,
19768                               const ParsedAttributesView &Attrs,
19769                               SourceLocation EqualLoc, Expr *Val) {
19770   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
19771   EnumConstantDecl *LastEnumConst =
19772     cast_or_null<EnumConstantDecl>(lastEnumConst);
19773 
19774   // The scope passed in may not be a decl scope.  Zip up the scope tree until
19775   // we find one that is.
19776   S = getNonFieldDeclScope(S);
19777 
19778   // Verify that there isn't already something declared with this name in this
19779   // scope.
19780   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
19781   LookupName(R, S);
19782   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
19783 
19784   if (PrevDecl && PrevDecl->isTemplateParameter()) {
19785     // Maybe we will complain about the shadowed template parameter.
19786     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
19787     // Just pretend that we didn't see the previous declaration.
19788     PrevDecl = nullptr;
19789   }
19790 
19791   // C++ [class.mem]p15:
19792   // If T is the name of a class, then each of the following shall have a name
19793   // different from T:
19794   // - every enumerator of every member of class T that is an unscoped
19795   // enumerated type
19796   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
19797     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
19798                             DeclarationNameInfo(Id, IdLoc));
19799 
19800   EnumConstantDecl *New =
19801     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
19802   if (!New)
19803     return nullptr;
19804 
19805   if (PrevDecl) {
19806     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
19807       // Check for other kinds of shadowing not already handled.
19808       CheckShadow(New, PrevDecl, R);
19809     }
19810 
19811     // When in C++, we may get a TagDecl with the same name; in this case the
19812     // enum constant will 'hide' the tag.
19813     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
19814            "Received TagDecl when not in C++!");
19815     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
19816       if (isa<EnumConstantDecl>(PrevDecl))
19817         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
19818       else
19819         Diag(IdLoc, diag::err_redefinition) << Id;
19820       notePreviousDefinition(PrevDecl, IdLoc);
19821       return nullptr;
19822     }
19823   }
19824 
19825   // Process attributes.
19826   ProcessDeclAttributeList(S, New, Attrs);
19827   AddPragmaAttributes(S, New);
19828 
19829   // Register this decl in the current scope stack.
19830   New->setAccess(TheEnumDecl->getAccess());
19831   PushOnScopeChains(New, S);
19832 
19833   ActOnDocumentableDecl(New);
19834 
19835   return New;
19836 }
19837 
19838 // Returns true when the enum initial expression does not trigger the
19839 // duplicate enum warning.  A few common cases are exempted as follows:
19840 // Element2 = Element1
19841 // Element2 = Element1 + 1
19842 // Element2 = Element1 - 1
19843 // Where Element2 and Element1 are from the same enum.
19844 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
19845   Expr *InitExpr = ECD->getInitExpr();
19846   if (!InitExpr)
19847     return true;
19848   InitExpr = InitExpr->IgnoreImpCasts();
19849 
19850   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
19851     if (!BO->isAdditiveOp())
19852       return true;
19853     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
19854     if (!IL)
19855       return true;
19856     if (IL->getValue() != 1)
19857       return true;
19858 
19859     InitExpr = BO->getLHS();
19860   }
19861 
19862   // This checks if the elements are from the same enum.
19863   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
19864   if (!DRE)
19865     return true;
19866 
19867   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
19868   if (!EnumConstant)
19869     return true;
19870 
19871   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
19872       Enum)
19873     return true;
19874 
19875   return false;
19876 }
19877 
19878 // Emits a warning when an element is implicitly set a value that
19879 // a previous element has already been set to.
19880 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
19881                                         EnumDecl *Enum, QualType EnumType) {
19882   // Avoid anonymous enums
19883   if (!Enum->getIdentifier())
19884     return;
19885 
19886   // Only check for small enums.
19887   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
19888     return;
19889 
19890   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
19891     return;
19892 
19893   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
19894   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
19895 
19896   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
19897 
19898   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
19899   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
19900 
19901   // Use int64_t as a key to avoid needing special handling for map keys.
19902   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
19903     llvm::APSInt Val = D->getInitVal();
19904     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
19905   };
19906 
19907   DuplicatesVector DupVector;
19908   ValueToVectorMap EnumMap;
19909 
19910   // Populate the EnumMap with all values represented by enum constants without
19911   // an initializer.
19912   for (auto *Element : Elements) {
19913     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
19914 
19915     // Null EnumConstantDecl means a previous diagnostic has been emitted for
19916     // this constant.  Skip this enum since it may be ill-formed.
19917     if (!ECD) {
19918       return;
19919     }
19920 
19921     // Constants with initializers are handled in the next loop.
19922     if (ECD->getInitExpr())
19923       continue;
19924 
19925     // Duplicate values are handled in the next loop.
19926     EnumMap.insert({EnumConstantToKey(ECD), ECD});
19927   }
19928 
19929   if (EnumMap.size() == 0)
19930     return;
19931 
19932   // Create vectors for any values that has duplicates.
19933   for (auto *Element : Elements) {
19934     // The last loop returned if any constant was null.
19935     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
19936     if (!ValidDuplicateEnum(ECD, Enum))
19937       continue;
19938 
19939     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
19940     if (Iter == EnumMap.end())
19941       continue;
19942 
19943     DeclOrVector& Entry = Iter->second;
19944     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
19945       // Ensure constants are different.
19946       if (D == ECD)
19947         continue;
19948 
19949       // Create new vector and push values onto it.
19950       auto Vec = std::make_unique<ECDVector>();
19951       Vec->push_back(D);
19952       Vec->push_back(ECD);
19953 
19954       // Update entry to point to the duplicates vector.
19955       Entry = Vec.get();
19956 
19957       // Store the vector somewhere we can consult later for quick emission of
19958       // diagnostics.
19959       DupVector.emplace_back(std::move(Vec));
19960       continue;
19961     }
19962 
19963     ECDVector *Vec = Entry.get<ECDVector*>();
19964     // Make sure constants are not added more than once.
19965     if (*Vec->begin() == ECD)
19966       continue;
19967 
19968     Vec->push_back(ECD);
19969   }
19970 
19971   // Emit diagnostics.
19972   for (const auto &Vec : DupVector) {
19973     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
19974 
19975     // Emit warning for one enum constant.
19976     auto *FirstECD = Vec->front();
19977     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
19978       << FirstECD << toString(FirstECD->getInitVal(), 10)
19979       << FirstECD->getSourceRange();
19980 
19981     // Emit one note for each of the remaining enum constants with
19982     // the same value.
19983     for (auto *ECD : llvm::drop_begin(*Vec))
19984       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
19985         << ECD << toString(ECD->getInitVal(), 10)
19986         << ECD->getSourceRange();
19987   }
19988 }
19989 
19990 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
19991                              bool AllowMask) const {
19992   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
19993   assert(ED->isCompleteDefinition() && "expected enum definition");
19994 
19995   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
19996   llvm::APInt &FlagBits = R.first->second;
19997 
19998   if (R.second) {
19999     for (auto *E : ED->enumerators()) {
20000       const auto &EVal = E->getInitVal();
20001       // Only single-bit enumerators introduce new flag values.
20002       if (EVal.isPowerOf2())
20003         FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal;
20004     }
20005   }
20006 
20007   // A value is in a flag enum if either its bits are a subset of the enum's
20008   // flag bits (the first condition) or we are allowing masks and the same is
20009   // true of its complement (the second condition). When masks are allowed, we
20010   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
20011   //
20012   // While it's true that any value could be used as a mask, the assumption is
20013   // that a mask will have all of the insignificant bits set. Anything else is
20014   // likely a logic error.
20015   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
20016   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
20017 }
20018 
20019 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
20020                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
20021                          const ParsedAttributesView &Attrs) {
20022   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
20023   QualType EnumType = Context.getTypeDeclType(Enum);
20024 
20025   ProcessDeclAttributeList(S, Enum, Attrs);
20026 
20027   if (Enum->isDependentType()) {
20028     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20029       EnumConstantDecl *ECD =
20030         cast_or_null<EnumConstantDecl>(Elements[i]);
20031       if (!ECD) continue;
20032 
20033       ECD->setType(EnumType);
20034     }
20035 
20036     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
20037     return;
20038   }
20039 
20040   // TODO: If the result value doesn't fit in an int, it must be a long or long
20041   // long value.  ISO C does not support this, but GCC does as an extension,
20042   // emit a warning.
20043   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
20044   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
20045   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
20046 
20047   // Verify that all the values are okay, compute the size of the values, and
20048   // reverse the list.
20049   unsigned NumNegativeBits = 0;
20050   unsigned NumPositiveBits = 0;
20051 
20052   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
20053     EnumConstantDecl *ECD =
20054       cast_or_null<EnumConstantDecl>(Elements[i]);
20055     if (!ECD) continue;  // Already issued a diagnostic.
20056 
20057     const llvm::APSInt &InitVal = ECD->getInitVal();
20058 
20059     // Keep track of the size of positive and negative values.
20060     if (InitVal.isUnsigned() || InitVal.isNonNegative()) {
20061       // If the enumerator is zero that should still be counted as a positive
20062       // bit since we need a bit to store the value zero.
20063       unsigned ActiveBits = InitVal.getActiveBits();
20064       NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u});
20065     } else {
20066       NumNegativeBits =
20067           std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits());
20068     }
20069   }
20070 
20071   // If we have an empty set of enumerators we still need one bit.
20072   // From [dcl.enum]p8
20073   // If the enumerator-list is empty, the values of the enumeration are as if
20074   // the enumeration had a single enumerator with value 0
20075   if (!NumPositiveBits && !NumNegativeBits)
20076     NumPositiveBits = 1;
20077 
20078   // Figure out the type that should be used for this enum.
20079   QualType BestType;
20080   unsigned BestWidth;
20081 
20082   // C++0x N3000 [conv.prom]p3:
20083   //   An rvalue of an unscoped enumeration type whose underlying
20084   //   type is not fixed can be converted to an rvalue of the first
20085   //   of the following types that can represent all the values of
20086   //   the enumeration: int, unsigned int, long int, unsigned long
20087   //   int, long long int, or unsigned long long int.
20088   // C99 6.4.4.3p2:
20089   //   An identifier declared as an enumeration constant has type int.
20090   // The C99 rule is modified by a gcc extension
20091   QualType BestPromotionType;
20092 
20093   bool Packed = Enum->hasAttr<PackedAttr>();
20094   // -fshort-enums is the equivalent to specifying the packed attribute on all
20095   // enum definitions.
20096   if (LangOpts.ShortEnums)
20097     Packed = true;
20098 
20099   // If the enum already has a type because it is fixed or dictated by the
20100   // target, promote that type instead of analyzing the enumerators.
20101   if (Enum->isComplete()) {
20102     BestType = Enum->getIntegerType();
20103     if (Context.isPromotableIntegerType(BestType))
20104       BestPromotionType = Context.getPromotedIntegerType(BestType);
20105     else
20106       BestPromotionType = BestType;
20107 
20108     BestWidth = Context.getIntWidth(BestType);
20109   }
20110   else if (NumNegativeBits) {
20111     // If there is a negative value, figure out the smallest integer type (of
20112     // int/long/longlong) that fits.
20113     // If it's packed, check also if it fits a char or a short.
20114     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
20115       BestType = Context.SignedCharTy;
20116       BestWidth = CharWidth;
20117     } else if (Packed && NumNegativeBits <= ShortWidth &&
20118                NumPositiveBits < ShortWidth) {
20119       BestType = Context.ShortTy;
20120       BestWidth = ShortWidth;
20121     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
20122       BestType = Context.IntTy;
20123       BestWidth = IntWidth;
20124     } else {
20125       BestWidth = Context.getTargetInfo().getLongWidth();
20126 
20127       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
20128         BestType = Context.LongTy;
20129       } else {
20130         BestWidth = Context.getTargetInfo().getLongLongWidth();
20131 
20132         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
20133           Diag(Enum->getLocation(), diag::ext_enum_too_large);
20134         BestType = Context.LongLongTy;
20135       }
20136     }
20137     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
20138   } else {
20139     // If there is no negative value, figure out the smallest type that fits
20140     // all of the enumerator values.
20141     // If it's packed, check also if it fits a char or a short.
20142     if (Packed && NumPositiveBits <= CharWidth) {
20143       BestType = Context.UnsignedCharTy;
20144       BestPromotionType = Context.IntTy;
20145       BestWidth = CharWidth;
20146     } else if (Packed && NumPositiveBits <= ShortWidth) {
20147       BestType = Context.UnsignedShortTy;
20148       BestPromotionType = Context.IntTy;
20149       BestWidth = ShortWidth;
20150     } else if (NumPositiveBits <= IntWidth) {
20151       BestType = Context.UnsignedIntTy;
20152       BestWidth = IntWidth;
20153       BestPromotionType
20154         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20155                            ? Context.UnsignedIntTy : Context.IntTy;
20156     } else if (NumPositiveBits <=
20157                (BestWidth = Context.getTargetInfo().getLongWidth())) {
20158       BestType = Context.UnsignedLongTy;
20159       BestPromotionType
20160         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20161                            ? Context.UnsignedLongTy : Context.LongTy;
20162     } else {
20163       BestWidth = Context.getTargetInfo().getLongLongWidth();
20164       assert(NumPositiveBits <= BestWidth &&
20165              "How could an initializer get larger than ULL?");
20166       BestType = Context.UnsignedLongLongTy;
20167       BestPromotionType
20168         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
20169                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
20170     }
20171   }
20172 
20173   // Loop over all of the enumerator constants, changing their types to match
20174   // the type of the enum if needed.
20175   for (auto *D : Elements) {
20176     auto *ECD = cast_or_null<EnumConstantDecl>(D);
20177     if (!ECD) continue;  // Already issued a diagnostic.
20178 
20179     // Standard C says the enumerators have int type, but we allow, as an
20180     // extension, the enumerators to be larger than int size.  If each
20181     // enumerator value fits in an int, type it as an int, otherwise type it the
20182     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
20183     // that X has type 'int', not 'unsigned'.
20184 
20185     // Determine whether the value fits into an int.
20186     llvm::APSInt InitVal = ECD->getInitVal();
20187 
20188     // If it fits into an integer type, force it.  Otherwise force it to match
20189     // the enum decl type.
20190     QualType NewTy;
20191     unsigned NewWidth;
20192     bool NewSign;
20193     if (!getLangOpts().CPlusPlus &&
20194         !Enum->isFixed() &&
20195         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
20196       NewTy = Context.IntTy;
20197       NewWidth = IntWidth;
20198       NewSign = true;
20199     } else if (ECD->getType() == BestType) {
20200       // Already the right type!
20201       if (getLangOpts().CPlusPlus)
20202         // C++ [dcl.enum]p4: Following the closing brace of an
20203         // enum-specifier, each enumerator has the type of its
20204         // enumeration.
20205         ECD->setType(EnumType);
20206       continue;
20207     } else {
20208       NewTy = BestType;
20209       NewWidth = BestWidth;
20210       NewSign = BestType->isSignedIntegerOrEnumerationType();
20211     }
20212 
20213     // Adjust the APSInt value.
20214     InitVal = InitVal.extOrTrunc(NewWidth);
20215     InitVal.setIsSigned(NewSign);
20216     ECD->setInitVal(InitVal);
20217 
20218     // Adjust the Expr initializer and type.
20219     if (ECD->getInitExpr() &&
20220         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
20221       ECD->setInitExpr(ImplicitCastExpr::Create(
20222           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
20223           /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
20224     if (getLangOpts().CPlusPlus)
20225       // C++ [dcl.enum]p4: Following the closing brace of an
20226       // enum-specifier, each enumerator has the type of its
20227       // enumeration.
20228       ECD->setType(EnumType);
20229     else
20230       ECD->setType(NewTy);
20231   }
20232 
20233   Enum->completeDefinition(BestType, BestPromotionType,
20234                            NumPositiveBits, NumNegativeBits);
20235 
20236   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
20237 
20238   if (Enum->isClosedFlag()) {
20239     for (Decl *D : Elements) {
20240       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
20241       if (!ECD) continue;  // Already issued a diagnostic.
20242 
20243       llvm::APSInt InitVal = ECD->getInitVal();
20244       if (InitVal != 0 && !InitVal.isPowerOf2() &&
20245           !IsValueInFlagEnum(Enum, InitVal, true))
20246         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
20247           << ECD << Enum;
20248     }
20249   }
20250 
20251   // Now that the enum type is defined, ensure it's not been underaligned.
20252   if (Enum->hasAttrs())
20253     CheckAlignasUnderalignment(Enum);
20254 }
20255 
20256 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
20257                                   SourceLocation StartLoc,
20258                                   SourceLocation EndLoc) {
20259   StringLiteral *AsmString = cast<StringLiteral>(expr);
20260 
20261   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
20262                                                    AsmString, StartLoc,
20263                                                    EndLoc);
20264   CurContext->addDecl(New);
20265   return New;
20266 }
20267 
20268 Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) {
20269   auto *New = TopLevelStmtDecl::Create(Context, Statement);
20270   Context.getTranslationUnitDecl()->addDecl(New);
20271   return New;
20272 }
20273 
20274 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
20275                                       IdentifierInfo* AliasName,
20276                                       SourceLocation PragmaLoc,
20277                                       SourceLocation NameLoc,
20278                                       SourceLocation AliasNameLoc) {
20279   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
20280                                          LookupOrdinaryName);
20281   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
20282                            AttributeCommonInfo::Form::Pragma());
20283   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
20284       Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info);
20285 
20286   // If a declaration that:
20287   // 1) declares a function or a variable
20288   // 2) has external linkage
20289   // already exists, add a label attribute to it.
20290   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20291     if (isDeclExternC(PrevDecl))
20292       PrevDecl->addAttr(Attr);
20293     else
20294       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
20295           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
20296     // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers.
20297   } else
20298     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
20299 }
20300 
20301 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
20302                              SourceLocation PragmaLoc,
20303                              SourceLocation NameLoc) {
20304   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
20305 
20306   if (PrevDecl) {
20307     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
20308   } else {
20309     (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc));
20310   }
20311 }
20312 
20313 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
20314                                 IdentifierInfo* AliasName,
20315                                 SourceLocation PragmaLoc,
20316                                 SourceLocation NameLoc,
20317                                 SourceLocation AliasNameLoc) {
20318   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
20319                                     LookupOrdinaryName);
20320   WeakInfo W = WeakInfo(Name, NameLoc);
20321 
20322   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
20323     if (!PrevDecl->hasAttr<AliasAttr>())
20324       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
20325         DeclApplyPragmaWeak(TUScope, ND, W);
20326   } else {
20327     (void)WeakUndeclaredIdentifiers[AliasName].insert(W);
20328   }
20329 }
20330 
20331 ObjCContainerDecl *Sema::getObjCDeclContext() const {
20332   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
20333 }
20334 
20335 Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD,
20336                                                      bool Final) {
20337   assert(FD && "Expected non-null FunctionDecl");
20338 
20339   // SYCL functions can be template, so we check if they have appropriate
20340   // attribute prior to checking if it is a template.
20341   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
20342     return FunctionEmissionStatus::Emitted;
20343 
20344   // Templates are emitted when they're instantiated.
20345   if (FD->isDependentContext())
20346     return FunctionEmissionStatus::TemplateDiscarded;
20347 
20348   // Check whether this function is an externally visible definition.
20349   auto IsEmittedForExternalSymbol = [this, FD]() {
20350     // We have to check the GVA linkage of the function's *definition* -- if we
20351     // only have a declaration, we don't know whether or not the function will
20352     // be emitted, because (say) the definition could include "inline".
20353     const FunctionDecl *Def = FD->getDefinition();
20354 
20355     return Def && !isDiscardableGVALinkage(
20356                       getASTContext().GetGVALinkageForFunction(Def));
20357   };
20358 
20359   if (LangOpts.OpenMPIsTargetDevice) {
20360     // In OpenMP device mode we will not emit host only functions, or functions
20361     // we don't need due to their linkage.
20362     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20363         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20364     // DevTy may be changed later by
20365     //  #pragma omp declare target to(*) device_type(*).
20366     // Therefore DevTy having no value does not imply host. The emission status
20367     // will be checked again at the end of compilation unit with Final = true.
20368     if (DevTy)
20369       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
20370         return FunctionEmissionStatus::OMPDiscarded;
20371     // If we have an explicit value for the device type, or we are in a target
20372     // declare context, we need to emit all extern and used symbols.
20373     if (isInOpenMPDeclareTargetContext() || DevTy)
20374       if (IsEmittedForExternalSymbol())
20375         return FunctionEmissionStatus::Emitted;
20376     // Device mode only emits what it must, if it wasn't tagged yet and needed,
20377     // we'll omit it.
20378     if (Final)
20379       return FunctionEmissionStatus::OMPDiscarded;
20380   } else if (LangOpts.OpenMP > 45) {
20381     // In OpenMP host compilation prior to 5.0 everything was an emitted host
20382     // function. In 5.0, no_host was introduced which might cause a function to
20383     // be ommitted.
20384     std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
20385         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
20386     if (DevTy)
20387       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
20388         return FunctionEmissionStatus::OMPDiscarded;
20389   }
20390 
20391   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
20392     return FunctionEmissionStatus::Emitted;
20393 
20394   if (LangOpts.CUDA) {
20395     // When compiling for device, host functions are never emitted.  Similarly,
20396     // when compiling for host, device and global functions are never emitted.
20397     // (Technically, we do emit a host-side stub for global functions, but this
20398     // doesn't count for our purposes here.)
20399     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
20400     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
20401       return FunctionEmissionStatus::CUDADiscarded;
20402     if (!LangOpts.CUDAIsDevice &&
20403         (T == Sema::CFT_Device || T == Sema::CFT_Global))
20404       return FunctionEmissionStatus::CUDADiscarded;
20405 
20406     if (IsEmittedForExternalSymbol())
20407       return FunctionEmissionStatus::Emitted;
20408   }
20409 
20410   // Otherwise, the function is known-emitted if it's in our set of
20411   // known-emitted functions.
20412   return FunctionEmissionStatus::Unknown;
20413 }
20414 
20415 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
20416   // Host-side references to a __global__ function refer to the stub, so the
20417   // function itself is never emitted and therefore should not be marked.
20418   // If we have host fn calls kernel fn calls host+device, the HD function
20419   // does not get instantiated on the host. We model this by omitting at the
20420   // call to the kernel from the callgraph. This ensures that, when compiling
20421   // for host, only HD functions actually called from the host get marked as
20422   // known-emitted.
20423   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
20424          IdentifyCUDATarget(Callee) == CFT_Global;
20425 }
20426