xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCoroutine.cpp (revision b1879975794772ee51f0b4865753364c7d7626c3)
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ Coroutines.
10 //
11 //  This file contains references to sections of the Coroutines TS, which
12 //  can be found at http://wg21.link/coroutines.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "clang/Sema/EnterExpressionEvaluationContext.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Overload.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "llvm/ADT/SmallSet.h"
30 
31 using namespace clang;
32 using namespace sema;
33 
34 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
35                                  SourceLocation Loc, bool &Res) {
36   DeclarationName DN = S.PP.getIdentifierInfo(Name);
37   LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
38   // Suppress diagnostics when a private member is selected. The same warnings
39   // will be produced again when building the call.
40   LR.suppressDiagnostics();
41   Res = S.LookupQualifiedName(LR, RD);
42   return LR;
43 }
44 
45 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
46                          SourceLocation Loc) {
47   bool Res;
48   lookupMember(S, Name, RD, Loc, Res);
49   return Res;
50 }
51 
52 /// Look up the std::coroutine_traits<...>::promise_type for the given
53 /// function type.
54 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
55                                   SourceLocation KwLoc) {
56   const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
57   const SourceLocation FuncLoc = FD->getLocation();
58 
59   ClassTemplateDecl *CoroTraits =
60       S.lookupCoroutineTraits(KwLoc, FuncLoc);
61   if (!CoroTraits)
62     return QualType();
63 
64   // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65   // to [dcl.fct.def.coroutine]3
66   TemplateArgumentListInfo Args(KwLoc, KwLoc);
67   auto AddArg = [&](QualType T) {
68     Args.addArgument(TemplateArgumentLoc(
69         TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
70   };
71   AddArg(FnType->getReturnType());
72   // If the function is a non-static member function, add the type
73   // of the implicit object parameter before the formal parameters.
74   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
75     if (MD->isImplicitObjectMemberFunction()) {
76       // [over.match.funcs]4
77       // For non-static member functions, the type of the implicit object
78       // parameter is
79       //  -- "lvalue reference to cv X" for functions declared without a
80       //      ref-qualifier or with the & ref-qualifier
81       //  -- "rvalue reference to cv X" for functions declared with the &&
82       //      ref-qualifier
83       QualType T = MD->getFunctionObjectParameterType();
84       T = FnType->getRefQualifier() == RQ_RValue
85               ? S.Context.getRValueReferenceType(T)
86               : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87       AddArg(T);
88     }
89   }
90   for (QualType T : FnType->getParamTypes())
91     AddArg(T);
92 
93   // Build the template-id.
94   QualType CoroTrait =
95       S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
96   if (CoroTrait.isNull())
97     return QualType();
98   if (S.RequireCompleteType(KwLoc, CoroTrait,
99                             diag::err_coroutine_type_missing_specialization))
100     return QualType();
101 
102   auto *RD = CoroTrait->getAsCXXRecordDecl();
103   assert(RD && "specialization of class template is not a class?");
104 
105   // Look up the ::promise_type member.
106   LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
107                  Sema::LookupOrdinaryName);
108   S.LookupQualifiedName(R, RD);
109   auto *Promise = R.getAsSingle<TypeDecl>();
110   if (!Promise) {
111     S.Diag(FuncLoc,
112            diag::err_implied_std_coroutine_traits_promise_type_not_found)
113         << RD;
114     return QualType();
115   }
116   // The promise type is required to be a class type.
117   QualType PromiseType = S.Context.getTypeDeclType(Promise);
118 
119   auto buildElaboratedType = [&]() {
120     auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
121     NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
122                                       CoroTrait.getTypePtr());
123     return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
124                                        PromiseType);
125   };
126 
127   if (!PromiseType->getAsCXXRecordDecl()) {
128     S.Diag(FuncLoc,
129            diag::err_implied_std_coroutine_traits_promise_type_not_class)
130         << buildElaboratedType();
131     return QualType();
132   }
133   if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
134                             diag::err_coroutine_promise_type_incomplete))
135     return QualType();
136 
137   return PromiseType;
138 }
139 
140 /// Look up the std::coroutine_handle<PromiseType>.
141 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
142                                           SourceLocation Loc) {
143   if (PromiseType.isNull())
144     return QualType();
145 
146   NamespaceDecl *CoroNamespace = S.getStdNamespace();
147   assert(CoroNamespace && "Should already be diagnosed");
148 
149   LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
150                       Loc, Sema::LookupOrdinaryName);
151   if (!S.LookupQualifiedName(Result, CoroNamespace)) {
152     S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
153         << "std::coroutine_handle";
154     return QualType();
155   }
156 
157   ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
158   if (!CoroHandle) {
159     Result.suppressDiagnostics();
160     // We found something weird. Complain about the first thing we found.
161     NamedDecl *Found = *Result.begin();
162     S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
163     return QualType();
164   }
165 
166   // Form template argument list for coroutine_handle<Promise>.
167   TemplateArgumentListInfo Args(Loc, Loc);
168   Args.addArgument(TemplateArgumentLoc(
169       TemplateArgument(PromiseType),
170       S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
171 
172   // Build the template-id.
173   QualType CoroHandleType =
174       S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
175   if (CoroHandleType.isNull())
176     return QualType();
177   if (S.RequireCompleteType(Loc, CoroHandleType,
178                             diag::err_coroutine_type_missing_specialization))
179     return QualType();
180 
181   return CoroHandleType;
182 }
183 
184 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
185                                     StringRef Keyword) {
186   // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
187   // a function body.
188   // FIXME: This also covers [expr.await]p2: "An await-expression shall not
189   // appear in a default argument." But the diagnostic QoI here could be
190   // improved to inform the user that default arguments specifically are not
191   // allowed.
192   auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
193   if (!FD) {
194     S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
195                     ? diag::err_coroutine_objc_method
196                     : diag::err_coroutine_outside_function) << Keyword;
197     return false;
198   }
199 
200   // An enumeration for mapping the diagnostic type to the correct diagnostic
201   // selection index.
202   enum InvalidFuncDiag {
203     DiagCtor = 0,
204     DiagDtor,
205     DiagMain,
206     DiagConstexpr,
207     DiagAutoRet,
208     DiagVarargs,
209     DiagConsteval,
210   };
211   bool Diagnosed = false;
212   auto DiagInvalid = [&](InvalidFuncDiag ID) {
213     S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
214     Diagnosed = true;
215     return false;
216   };
217 
218   // Diagnose when a constructor, destructor
219   // or the function 'main' are declared as a coroutine.
220   auto *MD = dyn_cast<CXXMethodDecl>(FD);
221   // [class.ctor]p11: "A constructor shall not be a coroutine."
222   if (MD && isa<CXXConstructorDecl>(MD))
223     return DiagInvalid(DiagCtor);
224   // [class.dtor]p17: "A destructor shall not be a coroutine."
225   else if (MD && isa<CXXDestructorDecl>(MD))
226     return DiagInvalid(DiagDtor);
227   // [basic.start.main]p3: "The function main shall not be a coroutine."
228   else if (FD->isMain())
229     return DiagInvalid(DiagMain);
230 
231   // Emit a diagnostics for each of the following conditions which is not met.
232   // [expr.const]p2: "An expression e is a core constant expression unless the
233   // evaluation of e [...] would evaluate one of the following expressions:
234   // [...] an await-expression [...] a yield-expression."
235   if (FD->isConstexpr())
236     DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
237   // [dcl.spec.auto]p15: "A function declared with a return type that uses a
238   // placeholder type shall not be a coroutine."
239   if (FD->getReturnType()->isUndeducedType())
240     DiagInvalid(DiagAutoRet);
241   // [dcl.fct.def.coroutine]p1
242   // The parameter-declaration-clause of the coroutine shall not terminate with
243   // an ellipsis that is not part of a parameter-declaration.
244   if (FD->isVariadic())
245     DiagInvalid(DiagVarargs);
246 
247   return !Diagnosed;
248 }
249 
250 /// Build a call to 'operator co_await' if there is a suitable operator for
251 /// the given expression.
252 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
253                                           UnresolvedLookupExpr *Lookup) {
254   UnresolvedSet<16> Functions;
255   Functions.append(Lookup->decls_begin(), Lookup->decls_end());
256   return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
257 }
258 
259 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
260                                            SourceLocation Loc, Expr *E) {
261   ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
262   if (R.isInvalid())
263     return ExprError();
264   return SemaRef.BuildOperatorCoawaitCall(Loc, E,
265                                           cast<UnresolvedLookupExpr>(R.get()));
266 }
267 
268 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
269                                        SourceLocation Loc) {
270   QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
271   if (CoroHandleType.isNull())
272     return ExprError();
273 
274   DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
275   LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
276                      Sema::LookupOrdinaryName);
277   if (!S.LookupQualifiedName(Found, LookupCtx)) {
278     S.Diag(Loc, diag::err_coroutine_handle_missing_member)
279         << "from_address";
280     return ExprError();
281   }
282 
283   Expr *FramePtr =
284       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
285 
286   CXXScopeSpec SS;
287   ExprResult FromAddr =
288       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
289   if (FromAddr.isInvalid())
290     return ExprError();
291 
292   return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
293 }
294 
295 struct ReadySuspendResumeResult {
296   enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
297   Expr *Results[3];
298   OpaqueValueExpr *OpaqueValue;
299   bool IsInvalid;
300 };
301 
302 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
303                                   StringRef Name, MultiExprArg Args) {
304   DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
305 
306   // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
307   CXXScopeSpec SS;
308   ExprResult Result = S.BuildMemberReferenceExpr(
309       Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
310       SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
311       /*Scope=*/nullptr);
312   if (Result.isInvalid())
313     return ExprError();
314 
315   // We meant exactly what we asked for. No need for typo correction.
316   if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
317     S.clearDelayedTypo(TE);
318     S.Diag(Loc, diag::err_no_member)
319         << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
320         << Base->getSourceRange();
321     return ExprError();
322   }
323 
324   auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
325   return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
326 }
327 
328 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
329 // on its address. This is to enable the support for coroutine-handle
330 // returning await_suspend that results in a guaranteed tail call to the target
331 // coroutine.
332 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
333                            SourceLocation Loc) {
334   if (RetType->isReferenceType())
335     return nullptr;
336   Type const *T = RetType.getTypePtr();
337   if (!T->isClassType() && !T->isStructureType())
338     return nullptr;
339 
340   // FIXME: Add convertability check to coroutine_handle<>. Possibly via
341   // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
342   // a private function in SemaExprCXX.cpp
343 
344   ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
345   if (AddressExpr.isInvalid())
346     return nullptr;
347 
348   Expr *JustAddress = AddressExpr.get();
349 
350   // Check that the type of AddressExpr is void*
351   if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
352     S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
353            diag::warn_coroutine_handle_address_invalid_return_type)
354         << JustAddress->getType();
355 
356   // Clean up temporary objects, because the resulting expression
357   // will become the body of await_suspend wrapper.
358   return S.MaybeCreateExprWithCleanups(JustAddress);
359 }
360 
361 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
362 /// expression.
363 /// The generated AST tries to clean up temporary objects as early as
364 /// possible so that they don't live across suspension points if possible.
365 /// Having temporary objects living across suspension points unnecessarily can
366 /// lead to large frame size, and also lead to memory corruptions if the
367 /// coroutine frame is destroyed after coming back from suspension. This is done
368 /// by wrapping both the await_ready call and the await_suspend call with
369 /// ExprWithCleanups. In the end of this function, we also need to explicitly
370 /// set cleanup state so that the CoawaitExpr is also wrapped with an
371 /// ExprWithCleanups to clean up the awaiter associated with the co_await
372 /// expression.
373 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
374                                                   SourceLocation Loc, Expr *E) {
375   OpaqueValueExpr *Operand = new (S.Context)
376       OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
377 
378   // Assume valid until we see otherwise.
379   // Further operations are responsible for setting IsInalid to true.
380   ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
381 
382   using ACT = ReadySuspendResumeResult::AwaitCallType;
383 
384   auto BuildSubExpr = [&](ACT CallType, StringRef Func,
385                           MultiExprArg Arg) -> Expr * {
386     ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
387     if (Result.isInvalid()) {
388       Calls.IsInvalid = true;
389       return nullptr;
390     }
391     Calls.Results[CallType] = Result.get();
392     return Result.get();
393   };
394 
395   CallExpr *AwaitReady = cast_or_null<CallExpr>(
396       BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
397   if (!AwaitReady)
398     return Calls;
399   if (!AwaitReady->getType()->isDependentType()) {
400     // [expr.await]p3 [...]
401     // — await-ready is the expression e.await_ready(), contextually converted
402     // to bool.
403     ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
404     if (Conv.isInvalid()) {
405       S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
406              diag::note_await_ready_no_bool_conversion);
407       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
408           << AwaitReady->getDirectCallee() << E->getSourceRange();
409       Calls.IsInvalid = true;
410     } else
411       Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
412   }
413 
414   ExprResult CoroHandleRes =
415       buildCoroutineHandle(S, CoroPromise->getType(), Loc);
416   if (CoroHandleRes.isInvalid()) {
417     Calls.IsInvalid = true;
418     return Calls;
419   }
420   Expr *CoroHandle = CoroHandleRes.get();
421   CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
422       BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
423   if (!AwaitSuspend)
424     return Calls;
425   if (!AwaitSuspend->getType()->isDependentType()) {
426     // [expr.await]p3 [...]
427     //   - await-suspend is the expression e.await_suspend(h), which shall be
428     //     a prvalue of type void, bool, or std::coroutine_handle<Z> for some
429     //     type Z.
430     QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
431 
432     // Support for coroutine_handle returning await_suspend.
433     if (Expr *TailCallSuspend =
434             maybeTailCall(S, RetType, AwaitSuspend, Loc))
435       // Note that we don't wrap the expression with ExprWithCleanups here
436       // because that might interfere with tailcall contract (e.g. inserting
437       // clean up instructions in-between tailcall and return). Instead
438       // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
439       // call.
440       Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
441     else {
442       // non-class prvalues always have cv-unqualified types
443       if (RetType->isReferenceType() ||
444           (!RetType->isBooleanType() && !RetType->isVoidType())) {
445         S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
446                diag::err_await_suspend_invalid_return_type)
447             << RetType;
448         S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
449             << AwaitSuspend->getDirectCallee();
450         Calls.IsInvalid = true;
451       } else
452         Calls.Results[ACT::ACT_Suspend] =
453             S.MaybeCreateExprWithCleanups(AwaitSuspend);
454     }
455   }
456 
457   BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
458 
459   // Make sure the awaiter object gets a chance to be cleaned up.
460   S.Cleanup.setExprNeedsCleanups(true);
461 
462   return Calls;
463 }
464 
465 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
466                                    SourceLocation Loc, StringRef Name,
467                                    MultiExprArg Args) {
468 
469   // Form a reference to the promise.
470   ExprResult PromiseRef = S.BuildDeclRefExpr(
471       Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
472   if (PromiseRef.isInvalid())
473     return ExprError();
474 
475   return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
476 }
477 
478 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
479   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
480   auto *FD = cast<FunctionDecl>(CurContext);
481   bool IsThisDependentType = [&] {
482     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD))
483       return MD->isImplicitObjectMemberFunction() &&
484              MD->getThisType()->isDependentType();
485     return false;
486   }();
487 
488   QualType T = FD->getType()->isDependentType() || IsThisDependentType
489                    ? Context.DependentTy
490                    : lookupPromiseType(*this, FD, Loc);
491   if (T.isNull())
492     return nullptr;
493 
494   auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
495                              &PP.getIdentifierTable().get("__promise"), T,
496                              Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
497   VD->setImplicit();
498   CheckVariableDeclarationType(VD);
499   if (VD->isInvalidDecl())
500     return nullptr;
501 
502   auto *ScopeInfo = getCurFunction();
503 
504   // Build a list of arguments, based on the coroutine function's arguments,
505   // that if present will be passed to the promise type's constructor.
506   llvm::SmallVector<Expr *, 4> CtorArgExprs;
507 
508   // Add implicit object parameter.
509   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
510     if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
511       ExprResult ThisExpr = ActOnCXXThis(Loc);
512       if (ThisExpr.isInvalid())
513         return nullptr;
514       ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
515       if (ThisExpr.isInvalid())
516         return nullptr;
517       CtorArgExprs.push_back(ThisExpr.get());
518     }
519   }
520 
521   // Add the coroutine function's parameters.
522   auto &Moves = ScopeInfo->CoroutineParameterMoves;
523   for (auto *PD : FD->parameters()) {
524     if (PD->getType()->isDependentType())
525       continue;
526 
527     auto RefExpr = ExprEmpty();
528     auto Move = Moves.find(PD);
529     assert(Move != Moves.end() &&
530            "Coroutine function parameter not inserted into move map");
531     // If a reference to the function parameter exists in the coroutine
532     // frame, use that reference.
533     auto *MoveDecl =
534         cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
535     RefExpr =
536         BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
537                          ExprValueKind::VK_LValue, FD->getLocation());
538     if (RefExpr.isInvalid())
539       return nullptr;
540     CtorArgExprs.push_back(RefExpr.get());
541   }
542 
543   // If we have a non-zero number of constructor arguments, try to use them.
544   // Otherwise, fall back to the promise type's default constructor.
545   if (!CtorArgExprs.empty()) {
546     // Create an initialization sequence for the promise type using the
547     // constructor arguments, wrapped in a parenthesized list expression.
548     Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
549                                       CtorArgExprs, FD->getLocation());
550     InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
551     InitializationKind Kind = InitializationKind::CreateForInit(
552         VD->getLocation(), /*DirectInit=*/true, PLE);
553     InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
554                                    /*TopLevelOfInitList=*/false,
555                                    /*TreatUnavailableAsInvalid=*/false);
556 
557     // [dcl.fct.def.coroutine]5.7
558     // promise-constructor-arguments is determined as follows: overload
559     // resolution is performed on a promise constructor call created by
560     // assembling an argument list  q_1 ... q_n . If a viable constructor is
561     // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
562     // , ...,  q_n ), otherwise promise-constructor-arguments is empty.
563     if (InitSeq) {
564       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
565       if (Result.isInvalid()) {
566         VD->setInvalidDecl();
567       } else if (Result.get()) {
568         VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
569         VD->setInitStyle(VarDecl::CallInit);
570         CheckCompleteVariableDeclaration(VD);
571       }
572     } else
573       ActOnUninitializedDecl(VD);
574   } else
575     ActOnUninitializedDecl(VD);
576 
577   FD->addDecl(VD);
578   return VD;
579 }
580 
581 /// Check that this is a context in which a coroutine suspension can appear.
582 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
583                                                 StringRef Keyword,
584                                                 bool IsImplicit = false) {
585   if (!isValidCoroutineContext(S, Loc, Keyword))
586     return nullptr;
587 
588   assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
589 
590   auto *ScopeInfo = S.getCurFunction();
591   assert(ScopeInfo && "missing function scope for function");
592 
593   if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
594     ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
595 
596   if (ScopeInfo->CoroutinePromise)
597     return ScopeInfo;
598 
599   if (!S.buildCoroutineParameterMoves(Loc))
600     return nullptr;
601 
602   ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
603   if (!ScopeInfo->CoroutinePromise)
604     return nullptr;
605 
606   return ScopeInfo;
607 }
608 
609 /// Recursively check \p E and all its children to see if any call target
610 /// (including constructor call) is declared noexcept. Also any value returned
611 /// from the call has a noexcept destructor.
612 static void checkNoThrow(Sema &S, const Stmt *E,
613                          llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
614   auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
615     // In the case of dtor, the call to dtor is implicit and hence we should
616     // pass nullptr to canCalleeThrow.
617     if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
618       if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
619         // co_await promise.final_suspend() could end up calling
620         // __builtin_coro_resume for symmetric transfer if await_suspend()
621         // returns a handle. In that case, even __builtin_coro_resume is not
622         // declared as noexcept and may throw, it does not throw _into_ the
623         // coroutine that just suspended, but rather throws back out from
624         // whoever called coroutine_handle::resume(), hence we claim that
625         // logically it does not throw.
626         if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
627           return;
628       }
629       if (ThrowingDecls.empty()) {
630         // [dcl.fct.def.coroutine]p15
631         //   The expression co_await promise.final_suspend() shall not be
632         //   potentially-throwing ([except.spec]).
633         //
634         // First time seeing an error, emit the error message.
635         S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
636                diag::err_coroutine_promise_final_suspend_requires_nothrow);
637       }
638       ThrowingDecls.insert(D);
639     }
640   };
641 
642   if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
643     CXXConstructorDecl *Ctor = CE->getConstructor();
644     checkDeclNoexcept(Ctor);
645     // Check the corresponding destructor of the constructor.
646     checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
647   } else if (auto *CE = dyn_cast<CallExpr>(E)) {
648     if (CE->isTypeDependent())
649       return;
650 
651     checkDeclNoexcept(CE->getCalleeDecl());
652     QualType ReturnType = CE->getCallReturnType(S.getASTContext());
653     // Check the destructor of the call return type, if any.
654     if (ReturnType.isDestructedType() ==
655         QualType::DestructionKind::DK_cxx_destructor) {
656       const auto *T =
657           cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
658       checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
659                         /*IsDtor=*/true);
660     }
661   } else
662     for (const auto *Child : E->children()) {
663       if (!Child)
664         continue;
665       checkNoThrow(S, Child, ThrowingDecls);
666     }
667 }
668 
669 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
670   llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
671   // We first collect all declarations that should not throw but not declared
672   // with noexcept. We then sort them based on the location before printing.
673   // This is to avoid emitting the same note multiple times on the same
674   // declaration, and also provide a deterministic order for the messages.
675   checkNoThrow(*this, FinalSuspend, ThrowingDecls);
676   auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
677                                                         ThrowingDecls.end()};
678   sort(SortedDecls, [](const Decl *A, const Decl *B) {
679     return A->getEndLoc() < B->getEndLoc();
680   });
681   for (const auto *D : SortedDecls) {
682     Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
683   }
684   return ThrowingDecls.empty();
685 }
686 
687 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
688                                    StringRef Keyword) {
689   // Ignore previous expr evaluation contexts.
690   EnterExpressionEvaluationContext PotentiallyEvaluated(
691       *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
692   if (!checkCoroutineContext(*this, KWLoc, Keyword))
693     return false;
694   auto *ScopeInfo = getCurFunction();
695   assert(ScopeInfo->CoroutinePromise);
696 
697   // If we have existing coroutine statements then we have already built
698   // the initial and final suspend points.
699   if (!ScopeInfo->NeedsCoroutineSuspends)
700     return true;
701 
702   ScopeInfo->setNeedsCoroutineSuspends(false);
703 
704   auto *Fn = cast<FunctionDecl>(CurContext);
705   SourceLocation Loc = Fn->getLocation();
706   // Build the initial suspend point
707   auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
708     ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
709                                           Loc, Name, std::nullopt);
710     if (Operand.isInvalid())
711       return StmtError();
712     ExprResult Suspend =
713         buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
714     if (Suspend.isInvalid())
715       return StmtError();
716     Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
717                                        /*IsImplicit*/ true);
718     Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
719     if (Suspend.isInvalid()) {
720       Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
721           << ((Name == "initial_suspend") ? 0 : 1);
722       Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
723       return StmtError();
724     }
725     return cast<Stmt>(Suspend.get());
726   };
727 
728   StmtResult InitSuspend = buildSuspends("initial_suspend");
729   if (InitSuspend.isInvalid())
730     return true;
731 
732   StmtResult FinalSuspend = buildSuspends("final_suspend");
733   if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
734     return true;
735 
736   ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
737 
738   return true;
739 }
740 
741 // Recursively walks up the scope hierarchy until either a 'catch' or a function
742 // scope is found, whichever comes first.
743 static bool isWithinCatchScope(Scope *S) {
744   // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
745   // lambdas that use 'co_await' are allowed. The loop below ends when a
746   // function scope is found in order to ensure the following behavior:
747   //
748   // void foo() {      // <- function scope
749   //   try {           //
750   //     co_await x;   // <- 'co_await' is OK within a function scope
751   //   } catch {       // <- catch scope
752   //     co_await x;   // <- 'co_await' is not OK within a catch scope
753   //     []() {        // <- function scope
754   //       co_await x; // <- 'co_await' is OK within a function scope
755   //     }();
756   //   }
757   // }
758   while (S && !S->isFunctionScope()) {
759     if (S->isCatchScope())
760       return true;
761     S = S->getParent();
762   }
763   return false;
764 }
765 
766 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
767 // a *potentially evaluated* expression within the compound-statement of a
768 // function-body *outside of a handler* [...] A context within a function
769 // where an await-expression can appear is called a suspension context of the
770 // function."
771 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
772                                    StringRef Keyword) {
773   // First emphasis of [expr.await]p2: must be a potentially evaluated context.
774   // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
775   // \c sizeof.
776   if (S.isUnevaluatedContext()) {
777     S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
778     return false;
779   }
780 
781   // Second emphasis of [expr.await]p2: must be outside of an exception handler.
782   if (isWithinCatchScope(S.getCurScope())) {
783     S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
784     return false;
785   }
786 
787   return true;
788 }
789 
790 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
791   if (!checkSuspensionContext(*this, Loc, "co_await"))
792     return ExprError();
793 
794   if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
795     CorrectDelayedTyposInExpr(E);
796     return ExprError();
797   }
798 
799   if (E->hasPlaceholderType()) {
800     ExprResult R = CheckPlaceholderExpr(E);
801     if (R.isInvalid()) return ExprError();
802     E = R.get();
803   }
804   ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
805   if (Lookup.isInvalid())
806     return ExprError();
807   return BuildUnresolvedCoawaitExpr(Loc, E,
808                                    cast<UnresolvedLookupExpr>(Lookup.get()));
809 }
810 
811 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
812   DeclarationName OpName =
813       Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
814   LookupResult Operators(*this, OpName, SourceLocation(),
815                          Sema::LookupOperatorName);
816   LookupName(Operators, S);
817 
818   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
819   const auto &Functions = Operators.asUnresolvedSet();
820   Expr *CoawaitOp = UnresolvedLookupExpr::Create(
821       Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
822       DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Functions.begin(),
823       Functions.end(), /*KnownDependent=*/false,
824       /*KnownInstantiationDependent=*/false);
825   assert(CoawaitOp);
826   return CoawaitOp;
827 }
828 
829 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
830 // DependentCoawaitExpr if needed.
831 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
832                                             UnresolvedLookupExpr *Lookup) {
833   auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
834   if (!FSI)
835     return ExprError();
836 
837   if (Operand->hasPlaceholderType()) {
838     ExprResult R = CheckPlaceholderExpr(Operand);
839     if (R.isInvalid())
840       return ExprError();
841     Operand = R.get();
842   }
843 
844   auto *Promise = FSI->CoroutinePromise;
845   if (Promise->getType()->isDependentType()) {
846     Expr *Res = new (Context)
847         DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
848     return Res;
849   }
850 
851   auto *RD = Promise->getType()->getAsCXXRecordDecl();
852   auto *Transformed = Operand;
853   if (lookupMember(*this, "await_transform", RD, Loc)) {
854     ExprResult R =
855         buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
856     if (R.isInvalid()) {
857       Diag(Loc,
858            diag::note_coroutine_promise_implicit_await_transform_required_here)
859           << Operand->getSourceRange();
860       return ExprError();
861     }
862     Transformed = R.get();
863   }
864   ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
865   if (Awaiter.isInvalid())
866     return ExprError();
867 
868   return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
869 }
870 
871 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
872                                           Expr *Awaiter, bool IsImplicit) {
873   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
874   if (!Coroutine)
875     return ExprError();
876 
877   if (Awaiter->hasPlaceholderType()) {
878     ExprResult R = CheckPlaceholderExpr(Awaiter);
879     if (R.isInvalid()) return ExprError();
880     Awaiter = R.get();
881   }
882 
883   if (Awaiter->getType()->isDependentType()) {
884     Expr *Res = new (Context)
885         CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
886     return Res;
887   }
888 
889   // If the expression is a temporary, materialize it as an lvalue so that we
890   // can use it multiple times.
891   if (Awaiter->isPRValue())
892     Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
893 
894   // The location of the `co_await` token cannot be used when constructing
895   // the member call expressions since it's before the location of `Expr`, which
896   // is used as the start of the member call expression.
897   SourceLocation CallLoc = Awaiter->getExprLoc();
898 
899   // Build the await_ready, await_suspend, await_resume calls.
900   ReadySuspendResumeResult RSS =
901       buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
902   if (RSS.IsInvalid)
903     return ExprError();
904 
905   Expr *Res = new (Context)
906       CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
907                   RSS.Results[2], RSS.OpaqueValue, IsImplicit);
908 
909   return Res;
910 }
911 
912 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
913   if (!checkSuspensionContext(*this, Loc, "co_yield"))
914     return ExprError();
915 
916   if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
917     CorrectDelayedTyposInExpr(E);
918     return ExprError();
919   }
920 
921   // Build yield_value call.
922   ExprResult Awaitable = buildPromiseCall(
923       *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
924   if (Awaitable.isInvalid())
925     return ExprError();
926 
927   // Build 'operator co_await' call.
928   Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
929   if (Awaitable.isInvalid())
930     return ExprError();
931 
932   return BuildCoyieldExpr(Loc, Awaitable.get());
933 }
934 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
935   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
936   if (!Coroutine)
937     return ExprError();
938 
939   if (E->hasPlaceholderType()) {
940     ExprResult R = CheckPlaceholderExpr(E);
941     if (R.isInvalid()) return ExprError();
942     E = R.get();
943   }
944 
945   Expr *Operand = E;
946 
947   if (E->getType()->isDependentType()) {
948     Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
949     return Res;
950   }
951 
952   // If the expression is a temporary, materialize it as an lvalue so that we
953   // can use it multiple times.
954   if (E->isPRValue())
955     E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
956 
957   // Build the await_ready, await_suspend, await_resume calls.
958   ReadySuspendResumeResult RSS = buildCoawaitCalls(
959       *this, Coroutine->CoroutinePromise, Loc, E);
960   if (RSS.IsInvalid)
961     return ExprError();
962 
963   Expr *Res =
964       new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
965                                 RSS.Results[2], RSS.OpaqueValue);
966 
967   return Res;
968 }
969 
970 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
971   if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
972     CorrectDelayedTyposInExpr(E);
973     return StmtError();
974   }
975   return BuildCoreturnStmt(Loc, E);
976 }
977 
978 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
979                                    bool IsImplicit) {
980   auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
981   if (!FSI)
982     return StmtError();
983 
984   if (E && E->hasPlaceholderType() &&
985       !E->hasPlaceholderType(BuiltinType::Overload)) {
986     ExprResult R = CheckPlaceholderExpr(E);
987     if (R.isInvalid()) return StmtError();
988     E = R.get();
989   }
990 
991   VarDecl *Promise = FSI->CoroutinePromise;
992   ExprResult PC;
993   if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
994     getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
995     PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
996   } else {
997     E = MakeFullDiscardedValueExpr(E).get();
998     PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
999   }
1000   if (PC.isInvalid())
1001     return StmtError();
1002 
1003   Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1004 
1005   Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1006   return Res;
1007 }
1008 
1009 /// Look up the std::nothrow object.
1010 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1011   NamespaceDecl *Std = S.getStdNamespace();
1012   assert(Std && "Should already be diagnosed");
1013 
1014   LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1015                       Sema::LookupOrdinaryName);
1016   if (!S.LookupQualifiedName(Result, Std)) {
1017     // <coroutine> is not requred to include <new>, so we couldn't omit
1018     // the check here.
1019     S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1020     return nullptr;
1021   }
1022 
1023   auto *VD = Result.getAsSingle<VarDecl>();
1024   if (!VD) {
1025     Result.suppressDiagnostics();
1026     // We found something weird. Complain about the first thing we found.
1027     NamedDecl *Found = *Result.begin();
1028     S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1029     return nullptr;
1030   }
1031 
1032   ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1033   if (DR.isInvalid())
1034     return nullptr;
1035 
1036   return DR.get();
1037 }
1038 
1039 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1040                                                         SourceLocation Loc) {
1041   EnumDecl *StdAlignValT = S.getStdAlignValT();
1042   QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1043   return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1044 }
1045 
1046 // Find an appropriate delete for the promise.
1047 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1048                                  FunctionDecl *&OperatorDelete) {
1049   DeclarationName DeleteName =
1050       S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1051 
1052   auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1053   assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1054 
1055   const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1056 
1057   // [dcl.fct.def.coroutine]p12
1058   // The deallocation function's name is looked up by searching for it in the
1059   // scope of the promise type. If nothing is found, a search is performed in
1060   // the global scope.
1061   if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1062                                  /*Diagnose*/ true, /*WantSize*/ true,
1063                                  /*WantAligned*/ Overaligned))
1064     return false;
1065 
1066   // [dcl.fct.def.coroutine]p12
1067   //   If both a usual deallocation function with only a pointer parameter and a
1068   //   usual deallocation function with both a pointer parameter and a size
1069   //   parameter are found, then the selected deallocation function shall be the
1070   //   one with two parameters. Otherwise, the selected deallocation function
1071   //   shall be the function with one parameter.
1072   if (!OperatorDelete) {
1073     // Look for a global declaration.
1074     // Coroutines can always provide their required size.
1075     const bool CanProvideSize = true;
1076     // Sema::FindUsualDeallocationFunction will try to find the one with two
1077     // parameters first. It will return the deallocation function with one
1078     // parameter if failed.
1079     OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1080                                                      Overaligned, DeleteName);
1081 
1082     if (!OperatorDelete)
1083       return false;
1084   }
1085 
1086   S.MarkFunctionReferenced(Loc, OperatorDelete);
1087   return true;
1088 }
1089 
1090 
1091 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1092   FunctionScopeInfo *Fn = getCurFunction();
1093   assert(Fn && Fn->isCoroutine() && "not a coroutine");
1094   if (!Body) {
1095     assert(FD->isInvalidDecl() &&
1096            "a null body is only allowed for invalid declarations");
1097     return;
1098   }
1099   // We have a function that uses coroutine keywords, but we failed to build
1100   // the promise type.
1101   if (!Fn->CoroutinePromise)
1102     return FD->setInvalidDecl();
1103 
1104   if (isa<CoroutineBodyStmt>(Body)) {
1105     // Nothing todo. the body is already a transformed coroutine body statement.
1106     return;
1107   }
1108 
1109   // The always_inline attribute doesn't reliably apply to a coroutine,
1110   // because the coroutine will be split into pieces and some pieces
1111   // might be called indirectly, as in a virtual call. Even the ramp
1112   // function cannot be inlined at -O0, due to pipeline ordering
1113   // problems (see https://llvm.org/PR53413). Tell the user about it.
1114   if (FD->hasAttr<AlwaysInlineAttr>())
1115     Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1116 
1117   // The design of coroutines means we cannot allow use of VLAs within one, so
1118   // diagnose if we've seen a VLA in the body of this function.
1119   if (Fn->FirstVLALoc.isValid())
1120     Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
1121 
1122   // [stmt.return.coroutine]p1:
1123   //   A coroutine shall not enclose a return statement ([stmt.return]).
1124   if (Fn->FirstReturnLoc.isValid()) {
1125     assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1126                    "first coroutine location not set");
1127     Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1128     Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1129             << Fn->getFirstCoroutineStmtKeyword();
1130   }
1131 
1132   // Coroutines will get splitted into pieces. The GNU address of label
1133   // extension wouldn't be meaningful in coroutines.
1134   for (AddrLabelExpr *ALE : Fn->AddrLabels)
1135     Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1136 
1137   CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1138   if (Builder.isInvalid() || !Builder.buildStatements())
1139     return FD->setInvalidDecl();
1140 
1141   // Build body for the coroutine wrapper statement.
1142   Body = CoroutineBodyStmt::Create(Context, Builder);
1143 }
1144 
1145 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1146   if (auto *CS = dyn_cast<CompoundStmt>(Body))
1147     return CS;
1148 
1149   // The body of the coroutine may be a try statement if it is in
1150   // 'function-try-block' syntax. Here we wrap it into a compound
1151   // statement for consistency.
1152   assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1153   return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1154                               SourceLocation(), SourceLocation());
1155 }
1156 
1157 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1158                                            sema::FunctionScopeInfo &Fn,
1159                                            Stmt *Body)
1160     : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1161       IsPromiseDependentType(
1162           !Fn.CoroutinePromise ||
1163           Fn.CoroutinePromise->getType()->isDependentType()) {
1164   this->Body = buildCoroutineBody(Body, S.getASTContext());
1165 
1166   for (auto KV : Fn.CoroutineParameterMoves)
1167     this->ParamMovesVector.push_back(KV.second);
1168   this->ParamMoves = this->ParamMovesVector;
1169 
1170   if (!IsPromiseDependentType) {
1171     PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1172     assert(PromiseRecordDecl && "Type should have already been checked");
1173   }
1174   this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1175 }
1176 
1177 bool CoroutineStmtBuilder::buildStatements() {
1178   assert(this->IsValid && "coroutine already invalid");
1179   this->IsValid = makeReturnObject();
1180   if (this->IsValid && !IsPromiseDependentType)
1181     buildDependentStatements();
1182   return this->IsValid;
1183 }
1184 
1185 bool CoroutineStmtBuilder::buildDependentStatements() {
1186   assert(this->IsValid && "coroutine already invalid");
1187   assert(!this->IsPromiseDependentType &&
1188          "coroutine cannot have a dependent promise type");
1189   this->IsValid = makeOnException() && makeOnFallthrough() &&
1190                   makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1191                   makeNewAndDeleteExpr();
1192   return this->IsValid;
1193 }
1194 
1195 bool CoroutineStmtBuilder::makePromiseStmt() {
1196   // Form a declaration statement for the promise declaration, so that AST
1197   // visitors can more easily find it.
1198   StmtResult PromiseStmt =
1199       S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1200   if (PromiseStmt.isInvalid())
1201     return false;
1202 
1203   this->Promise = PromiseStmt.get();
1204   return true;
1205 }
1206 
1207 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1208   if (Fn.hasInvalidCoroutineSuspends())
1209     return false;
1210   this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1211   this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1212   return true;
1213 }
1214 
1215 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1216                                      CXXRecordDecl *PromiseRecordDecl,
1217                                      FunctionScopeInfo &Fn) {
1218   auto Loc = E->getExprLoc();
1219   if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1220     auto *Decl = DeclRef->getDecl();
1221     if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1222       if (Method->isStatic())
1223         return true;
1224       else
1225         Loc = Decl->getLocation();
1226     }
1227   }
1228 
1229   S.Diag(
1230       Loc,
1231       diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1232       << PromiseRecordDecl;
1233   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1234       << Fn.getFirstCoroutineStmtKeyword();
1235   return false;
1236 }
1237 
1238 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1239   assert(!IsPromiseDependentType &&
1240          "cannot make statement while the promise type is dependent");
1241 
1242   // [dcl.fct.def.coroutine]p10
1243   //   If a search for the name get_return_object_on_allocation_failure in
1244   // the scope of the promise type ([class.member.lookup]) finds any
1245   // declarations, then the result of a call to an allocation function used to
1246   // obtain storage for the coroutine state is assumed to return nullptr if it
1247   // fails to obtain storage, ... If the allocation function returns nullptr,
1248   // ... and the return value is obtained by a call to
1249   // T::get_return_object_on_allocation_failure(), where T is the
1250   // promise type.
1251   DeclarationName DN =
1252       S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1253   LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1254   if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1255     return true;
1256 
1257   CXXScopeSpec SS;
1258   ExprResult DeclNameExpr =
1259       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1260   if (DeclNameExpr.isInvalid())
1261     return false;
1262 
1263   if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1264     return false;
1265 
1266   ExprResult ReturnObjectOnAllocationFailure =
1267       S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1268   if (ReturnObjectOnAllocationFailure.isInvalid())
1269     return false;
1270 
1271   StmtResult ReturnStmt =
1272       S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1273   if (ReturnStmt.isInvalid()) {
1274     S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1275         << DN;
1276     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1277         << Fn.getFirstCoroutineStmtKeyword();
1278     return false;
1279   }
1280 
1281   this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1282   return true;
1283 }
1284 
1285 // Collect placement arguments for allocation function of coroutine FD.
1286 // Return true if we collect placement arguments succesfully. Return false,
1287 // otherwise.
1288 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1289                                  SmallVectorImpl<Expr *> &PlacementArgs) {
1290   if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1291     if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
1292       ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1293       if (ThisExpr.isInvalid())
1294         return false;
1295       ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1296       if (ThisExpr.isInvalid())
1297         return false;
1298       PlacementArgs.push_back(ThisExpr.get());
1299     }
1300   }
1301 
1302   for (auto *PD : FD.parameters()) {
1303     if (PD->getType()->isDependentType())
1304       continue;
1305 
1306     // Build a reference to the parameter.
1307     auto PDLoc = PD->getLocation();
1308     ExprResult PDRefExpr =
1309         S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1310                            ExprValueKind::VK_LValue, PDLoc);
1311     if (PDRefExpr.isInvalid())
1312       return false;
1313 
1314     PlacementArgs.push_back(PDRefExpr.get());
1315   }
1316 
1317   return true;
1318 }
1319 
1320 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1321   // Form and check allocation and deallocation calls.
1322   assert(!IsPromiseDependentType &&
1323          "cannot make statement while the promise type is dependent");
1324   QualType PromiseType = Fn.CoroutinePromise->getType();
1325 
1326   if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1327     return false;
1328 
1329   const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1330 
1331   // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1332   // parameter list composed of the requested size of the coroutine state being
1333   // allocated, followed by the coroutine function's arguments. If a matching
1334   // allocation function exists, use it. Otherwise, use an allocation function
1335   // that just takes the requested size.
1336   //
1337   // [dcl.fct.def.coroutine]p9
1338   //   An implementation may need to allocate additional storage for a
1339   //   coroutine.
1340   // This storage is known as the coroutine state and is obtained by calling a
1341   // non-array allocation function ([basic.stc.dynamic.allocation]). The
1342   // allocation function's name is looked up by searching for it in the scope of
1343   // the promise type.
1344   // - If any declarations are found, overload resolution is performed on a
1345   // function call created by assembling an argument list. The first argument is
1346   // the amount of space requested, and has type std::size_t. The
1347   // lvalues p1 ... pn are the succeeding arguments.
1348   //
1349   // ...where "p1 ... pn" are defined earlier as:
1350   //
1351   // [dcl.fct.def.coroutine]p3
1352   //   The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1353   //   Pn>`
1354   // , where R is the return type of the function, and `P1, ..., Pn` are the
1355   // sequence of types of the non-object function parameters, preceded by the
1356   // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1357   // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1358   // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1359   // the i-th non-object function parameter for a non-static member function,
1360   // and p_i denotes the i-th function parameter otherwise. For a non-static
1361   // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1362   // lvalue that denotes the parameter copy corresponding to p_i.
1363 
1364   FunctionDecl *OperatorNew = nullptr;
1365   SmallVector<Expr *, 1> PlacementArgs;
1366 
1367   const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1368     DeclarationName NewName =
1369         S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1370     LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1371 
1372     if (PromiseType->isRecordType())
1373       S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1374 
1375     return !R.empty() && !R.isAmbiguous();
1376   }();
1377 
1378   // Helper function to indicate whether the last lookup found the aligned
1379   // allocation function.
1380   bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1381   auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1382                                           Sema::AFS_Both,
1383                                       bool WithoutPlacementArgs = false,
1384                                       bool ForceNonAligned = false) {
1385     // [dcl.fct.def.coroutine]p9
1386     //   The allocation function's name is looked up by searching for it in the
1387     // scope of the promise type.
1388     // - If any declarations are found, ...
1389     // - If no declarations are found in the scope of the promise type, a search
1390     // is performed in the global scope.
1391     if (NewScope == Sema::AFS_Both)
1392       NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1393 
1394     PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1395     FunctionDecl *UnusedResult = nullptr;
1396     S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1397                               /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1398                               /*isArray*/ false, PassAlignment,
1399                               WithoutPlacementArgs ? MultiExprArg{}
1400                                                    : PlacementArgs,
1401                               OperatorNew, UnusedResult, /*Diagnose*/ false);
1402   };
1403 
1404   // We don't expect to call to global operator new with (size, p0, …, pn).
1405   // So if we choose to lookup the allocation function in global scope, we
1406   // shouldn't lookup placement arguments.
1407   if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1408     return false;
1409 
1410   LookupAllocationFunction();
1411 
1412   if (PromiseContainsNew && !PlacementArgs.empty()) {
1413     // [dcl.fct.def.coroutine]p9
1414     //   If no viable function is found ([over.match.viable]), overload
1415     //   resolution
1416     // is performed again on a function call created by passing just the amount
1417     // of space required as an argument of type std::size_t.
1418     //
1419     // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1420     //   Otherwise, overload resolution is performed again on a function call
1421     //   created
1422     // by passing the amount of space requested as an argument of type
1423     // std::size_t as the first argument, and the requested alignment as
1424     // an argument of type std:align_val_t as the second argument.
1425     if (!OperatorNew ||
1426         (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1427       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1428                                /*WithoutPlacementArgs*/ true);
1429   }
1430 
1431   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1432   //   Otherwise, overload resolution is performed again on a function call
1433   //   created
1434   // by passing the amount of space requested as an argument of type
1435   // std::size_t as the first argument, and the lvalues p1 ... pn as the
1436   // succeeding arguments. Otherwise, overload resolution is performed again
1437   // on a function call created by passing just the amount of space required as
1438   // an argument of type std::size_t.
1439   //
1440   // So within the proposed change in P2014RO, the priority order of aligned
1441   // allocation functions wiht promise_type is:
1442   //
1443   //    void* operator new( std::size_t, std::align_val_t, placement_args... );
1444   //    void* operator new( std::size_t, std::align_val_t);
1445   //    void* operator new( std::size_t, placement_args... );
1446   //    void* operator new( std::size_t);
1447 
1448   // Helper variable to emit warnings.
1449   bool FoundNonAlignedInPromise = false;
1450   if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1451     if (!OperatorNew || !PassAlignment) {
1452       FoundNonAlignedInPromise = OperatorNew;
1453 
1454       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1455                                /*WithoutPlacementArgs*/ false,
1456                                /*ForceNonAligned*/ true);
1457 
1458       if (!OperatorNew && !PlacementArgs.empty())
1459         LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1460                                  /*WithoutPlacementArgs*/ true,
1461                                  /*ForceNonAligned*/ true);
1462     }
1463 
1464   bool IsGlobalOverload =
1465       OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1466   // If we didn't find a class-local new declaration and non-throwing new
1467   // was is required then we need to lookup the non-throwing global operator
1468   // instead.
1469   if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1470     auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1471     if (!StdNoThrow)
1472       return false;
1473     PlacementArgs = {StdNoThrow};
1474     OperatorNew = nullptr;
1475     LookupAllocationFunction(Sema::AFS_Global);
1476   }
1477 
1478   // If we found a non-aligned allocation function in the promise_type,
1479   // it indicates the user forgot to update the allocation function. Let's emit
1480   // a warning here.
1481   if (FoundNonAlignedInPromise) {
1482     S.Diag(OperatorNew->getLocation(),
1483            diag::warn_non_aligned_allocation_function)
1484         << &FD;
1485   }
1486 
1487   if (!OperatorNew) {
1488     if (PromiseContainsNew)
1489       S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1490     else if (RequiresNoThrowAlloc)
1491       S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1492           << &FD << S.getLangOpts().CoroAlignedAllocation;
1493 
1494     return false;
1495   }
1496 
1497   if (RequiresNoThrowAlloc) {
1498     const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1499     if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1500       S.Diag(OperatorNew->getLocation(),
1501              diag::err_coroutine_promise_new_requires_nothrow)
1502           << OperatorNew;
1503       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1504           << OperatorNew;
1505       return false;
1506     }
1507   }
1508 
1509   FunctionDecl *OperatorDelete = nullptr;
1510   if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1511     // FIXME: We should add an error here. According to:
1512     // [dcl.fct.def.coroutine]p12
1513     //   If no usual deallocation function is found, the program is ill-formed.
1514     return false;
1515   }
1516 
1517   Expr *FramePtr =
1518       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1519 
1520   Expr *FrameSize =
1521       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1522 
1523   Expr *FrameAlignment = nullptr;
1524 
1525   if (S.getLangOpts().CoroAlignedAllocation) {
1526     FrameAlignment =
1527         S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1528 
1529     TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1530     if (!AlignValTy)
1531       return false;
1532 
1533     FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1534                                          FrameAlignment, SourceRange(Loc, Loc),
1535                                          SourceRange(Loc, Loc))
1536                          .get();
1537   }
1538 
1539   // Make new call.
1540   ExprResult NewRef =
1541       S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1542   if (NewRef.isInvalid())
1543     return false;
1544 
1545   SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1546   if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1547     NewArgs.push_back(FrameAlignment);
1548 
1549   if (OperatorNew->getNumParams() > NewArgs.size())
1550     llvm::append_range(NewArgs, PlacementArgs);
1551 
1552   ExprResult NewExpr =
1553       S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1554   NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1555   if (NewExpr.isInvalid())
1556     return false;
1557 
1558   // Make delete call.
1559 
1560   QualType OpDeleteQualType = OperatorDelete->getType();
1561 
1562   ExprResult DeleteRef =
1563       S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1564   if (DeleteRef.isInvalid())
1565     return false;
1566 
1567   Expr *CoroFree =
1568       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1569 
1570   SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1571 
1572   // [dcl.fct.def.coroutine]p12
1573   //   The selected deallocation function shall be called with the address of
1574   //   the block of storage to be reclaimed as its first argument. If a
1575   //   deallocation function with a parameter of type std::size_t is
1576   //   used, the size of the block is passed as the corresponding argument.
1577   const auto *OpDeleteType =
1578       OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1579   if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1580       S.getASTContext().hasSameUnqualifiedType(
1581           OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1582     DeleteArgs.push_back(FrameSize);
1583 
1584   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1585   //   If deallocation function lookup finds a usual deallocation function with
1586   //   a pointer parameter, size parameter and alignment parameter then this
1587   //   will be the selected deallocation function, otherwise if lookup finds a
1588   //   usual deallocation function with both a pointer parameter and a size
1589   //   parameter, then this will be the selected deallocation function.
1590   //   Otherwise, if lookup finds a usual deallocation function with only a
1591   //   pointer parameter, then this will be the selected deallocation
1592   //   function.
1593   //
1594   // So we are not forced to pass alignment to the deallocation function.
1595   if (S.getLangOpts().CoroAlignedAllocation &&
1596       OpDeleteType->getNumParams() > DeleteArgs.size() &&
1597       S.getASTContext().hasSameUnqualifiedType(
1598           OpDeleteType->getParamType(DeleteArgs.size()),
1599           FrameAlignment->getType()))
1600     DeleteArgs.push_back(FrameAlignment);
1601 
1602   ExprResult DeleteExpr =
1603       S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1604   DeleteExpr =
1605       S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1606   if (DeleteExpr.isInvalid())
1607     return false;
1608 
1609   this->Allocate = NewExpr.get();
1610   this->Deallocate = DeleteExpr.get();
1611 
1612   return true;
1613 }
1614 
1615 bool CoroutineStmtBuilder::makeOnFallthrough() {
1616   assert(!IsPromiseDependentType &&
1617          "cannot make statement while the promise type is dependent");
1618 
1619   // [dcl.fct.def.coroutine]/p6
1620   // If searches for the names return_void and return_value in the scope of
1621   // the promise type each find any declarations, the program is ill-formed.
1622   // [Note 1: If return_void is found, flowing off the end of a coroutine is
1623   // equivalent to a co_return with no operand. Otherwise, flowing off the end
1624   // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1625   // end note]
1626   bool HasRVoid, HasRValue;
1627   LookupResult LRVoid =
1628       lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1629   LookupResult LRValue =
1630       lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1631 
1632   StmtResult Fallthrough;
1633   if (HasRVoid && HasRValue) {
1634     // FIXME Improve this diagnostic
1635     S.Diag(FD.getLocation(),
1636            diag::err_coroutine_promise_incompatible_return_functions)
1637         << PromiseRecordDecl;
1638     S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1639            diag::note_member_first_declared_here)
1640         << LRVoid.getLookupName();
1641     S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1642            diag::note_member_first_declared_here)
1643         << LRValue.getLookupName();
1644     return false;
1645   } else if (!HasRVoid && !HasRValue) {
1646     // We need to set 'Fallthrough'. Otherwise the other analysis part might
1647     // think the coroutine has defined a return_value method. So it might emit
1648     // **false** positive warning. e.g.,
1649     //
1650     //    promise_without_return_func foo() {
1651     //        co_await something();
1652     //    }
1653     //
1654     // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1655     // co_return statements, which isn't correct.
1656     Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1657     if (Fallthrough.isInvalid())
1658       return false;
1659   } else if (HasRVoid) {
1660     Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1661                                       /*IsImplicit=*/true);
1662     Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1663     if (Fallthrough.isInvalid())
1664       return false;
1665   }
1666 
1667   this->OnFallthrough = Fallthrough.get();
1668   return true;
1669 }
1670 
1671 bool CoroutineStmtBuilder::makeOnException() {
1672   // Try to form 'p.unhandled_exception();'
1673   assert(!IsPromiseDependentType &&
1674          "cannot make statement while the promise type is dependent");
1675 
1676   const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1677 
1678   if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1679     auto DiagID =
1680         RequireUnhandledException
1681             ? diag::err_coroutine_promise_unhandled_exception_required
1682             : diag::
1683                   warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1684     S.Diag(Loc, DiagID) << PromiseRecordDecl;
1685     S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1686         << PromiseRecordDecl;
1687     return !RequireUnhandledException;
1688   }
1689 
1690   // If exceptions are disabled, don't try to build OnException.
1691   if (!S.getLangOpts().CXXExceptions)
1692     return true;
1693 
1694   ExprResult UnhandledException = buildPromiseCall(
1695       S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1696   UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1697                                              /*DiscardedValue*/ false);
1698   if (UnhandledException.isInvalid())
1699     return false;
1700 
1701   // Since the body of the coroutine will be wrapped in try-catch, it will
1702   // be incompatible with SEH __try if present in a function.
1703   if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1704     S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1705     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1706         << Fn.getFirstCoroutineStmtKeyword();
1707     return false;
1708   }
1709 
1710   this->OnException = UnhandledException.get();
1711   return true;
1712 }
1713 
1714 bool CoroutineStmtBuilder::makeReturnObject() {
1715   // [dcl.fct.def.coroutine]p7
1716   // The expression promise.get_return_object() is used to initialize the
1717   // returned reference or prvalue result object of a call to a coroutine.
1718   ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1719                                              "get_return_object", std::nullopt);
1720   if (ReturnObject.isInvalid())
1721     return false;
1722 
1723   this->ReturnValue = ReturnObject.get();
1724   return true;
1725 }
1726 
1727 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1728   if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1729     auto *MethodDecl = MbrRef->getMethodDecl();
1730     S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1731         << MethodDecl;
1732   }
1733   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1734       << Fn.getFirstCoroutineStmtKeyword();
1735 }
1736 
1737 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1738   assert(!IsPromiseDependentType &&
1739          "cannot make statement while the promise type is dependent");
1740   assert(this->ReturnValue && "ReturnValue must be already formed");
1741 
1742   QualType const GroType = this->ReturnValue->getType();
1743   assert(!GroType->isDependentType() &&
1744          "get_return_object type must no longer be dependent");
1745 
1746   QualType const FnRetType = FD.getReturnType();
1747   assert(!FnRetType->isDependentType() &&
1748          "get_return_object type must no longer be dependent");
1749 
1750   // The call to get_­return_­object is sequenced before the call to
1751   // initial_­suspend and is invoked at most once, but there are caveats
1752   // regarding on whether the prvalue result object may be initialized
1753   // directly/eager or delayed, depending on the types involved.
1754   //
1755   // More info at https://github.com/cplusplus/papers/issues/1414
1756   bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1757 
1758   if (FnRetType->isVoidType()) {
1759     ExprResult Res =
1760         S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1761     if (Res.isInvalid())
1762       return false;
1763 
1764     if (!GroMatchesRetType)
1765       this->ResultDecl = Res.get();
1766     return true;
1767   }
1768 
1769   if (GroType->isVoidType()) {
1770     // Trigger a nice error message.
1771     InitializedEntity Entity =
1772         InitializedEntity::InitializeResult(Loc, FnRetType);
1773     S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1774     noteMemberDeclaredHere(S, ReturnValue, Fn);
1775     return false;
1776   }
1777 
1778   StmtResult ReturnStmt;
1779   clang::VarDecl *GroDecl = nullptr;
1780   if (GroMatchesRetType) {
1781     ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1782   } else {
1783     GroDecl = VarDecl::Create(
1784         S.Context, &FD, FD.getLocation(), FD.getLocation(),
1785         &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1786         S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1787     GroDecl->setImplicit();
1788 
1789     S.CheckVariableDeclarationType(GroDecl);
1790     if (GroDecl->isInvalidDecl())
1791       return false;
1792 
1793     InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1794     ExprResult Res =
1795         S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1796     if (Res.isInvalid())
1797       return false;
1798 
1799     Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1800     if (Res.isInvalid())
1801       return false;
1802 
1803     S.AddInitializerToDecl(GroDecl, Res.get(),
1804                            /*DirectInit=*/false);
1805 
1806     S.FinalizeDeclaration(GroDecl);
1807 
1808     // Form a declaration statement for the return declaration, so that AST
1809     // visitors can more easily find it.
1810     StmtResult GroDeclStmt =
1811         S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1812     if (GroDeclStmt.isInvalid())
1813       return false;
1814 
1815     this->ResultDecl = GroDeclStmt.get();
1816 
1817     ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1818     if (declRef.isInvalid())
1819       return false;
1820 
1821     ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1822   }
1823 
1824   if (ReturnStmt.isInvalid()) {
1825     noteMemberDeclaredHere(S, ReturnValue, Fn);
1826     return false;
1827   }
1828 
1829   if (!GroMatchesRetType &&
1830       cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1831     GroDecl->setNRVOVariable(true);
1832 
1833   this->ReturnStmt = ReturnStmt.get();
1834   return true;
1835 }
1836 
1837 // Create a static_cast\<T&&>(expr).
1838 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1839   if (T.isNull())
1840     T = E->getType();
1841   QualType TargetType = S.BuildReferenceType(
1842       T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1843   SourceLocation ExprLoc = E->getBeginLoc();
1844   TypeSourceInfo *TargetLoc =
1845       S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1846 
1847   return S
1848       .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1849                          SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1850       .get();
1851 }
1852 
1853 /// Build a variable declaration for move parameter.
1854 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1855                              IdentifierInfo *II) {
1856   TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1857   VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1858                                   TInfo, SC_None);
1859   Decl->setImplicit();
1860   return Decl;
1861 }
1862 
1863 // Build statements that move coroutine function parameters to the coroutine
1864 // frame, and store them on the function scope info.
1865 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1866   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1867   auto *FD = cast<FunctionDecl>(CurContext);
1868 
1869   auto *ScopeInfo = getCurFunction();
1870   if (!ScopeInfo->CoroutineParameterMoves.empty())
1871     return false;
1872 
1873   // [dcl.fct.def.coroutine]p13
1874   //   When a coroutine is invoked, after initializing its parameters
1875   //   ([expr.call]), a copy is created for each coroutine parameter. For a
1876   //   parameter of type cv T, the copy is a variable of type cv T with
1877   //   automatic storage duration that is direct-initialized from an xvalue of
1878   //   type T referring to the parameter.
1879   for (auto *PD : FD->parameters()) {
1880     if (PD->getType()->isDependentType())
1881       continue;
1882 
1883     // Preserve the referenced state for unused parameter diagnostics.
1884     bool DeclReferenced = PD->isReferenced();
1885 
1886     ExprResult PDRefExpr =
1887         BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1888                          ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1889 
1890     PD->setReferenced(DeclReferenced);
1891 
1892     if (PDRefExpr.isInvalid())
1893       return false;
1894 
1895     Expr *CExpr = nullptr;
1896     if (PD->getType()->getAsCXXRecordDecl() ||
1897         PD->getType()->isRValueReferenceType())
1898       CExpr = castForMoving(*this, PDRefExpr.get());
1899     else
1900       CExpr = PDRefExpr.get();
1901     // [dcl.fct.def.coroutine]p13
1902     //   The initialization and destruction of each parameter copy occurs in the
1903     //   context of the called coroutine.
1904     auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1905     AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1906 
1907     // Convert decl to a statement.
1908     StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1909     if (Stmt.isInvalid())
1910       return false;
1911 
1912     ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
1913   }
1914   return true;
1915 }
1916 
1917 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
1918   CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
1919   if (!Res)
1920     return StmtError();
1921   return Res;
1922 }
1923 
1924 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
1925                                                SourceLocation FuncLoc) {
1926   if (StdCoroutineTraitsCache)
1927     return StdCoroutineTraitsCache;
1928 
1929   IdentifierInfo const &TraitIdent =
1930       PP.getIdentifierTable().get("coroutine_traits");
1931 
1932   NamespaceDecl *StdSpace = getStdNamespace();
1933   LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
1934   bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
1935 
1936   if (!Found) {
1937     // The goggles, we found nothing!
1938     Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
1939         << "std::coroutine_traits";
1940     return nullptr;
1941   }
1942 
1943   // coroutine_traits is required to be a class template.
1944   StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
1945   if (!StdCoroutineTraitsCache) {
1946     Result.suppressDiagnostics();
1947     NamedDecl *Found = *Result.begin();
1948     Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
1949     return nullptr;
1950   }
1951 
1952   return StdCoroutineTraitsCache;
1953 }
1954