1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/StmtCXX.h" 21 #include "clang/Basic/Builtins.h" 22 #include "clang/Lex/Preprocessor.h" 23 #include "clang/Sema/Initialization.h" 24 #include "clang/Sema/Overload.h" 25 #include "clang/Sema/ScopeInfo.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallSet.h" 28 29 using namespace clang; 30 using namespace sema; 31 32 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 33 SourceLocation Loc, bool &Res) { 34 DeclarationName DN = S.PP.getIdentifierInfo(Name); 35 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 36 // Suppress diagnostics when a private member is selected. The same warnings 37 // will be produced again when building the call. 38 LR.suppressDiagnostics(); 39 Res = S.LookupQualifiedName(LR, RD); 40 return LR; 41 } 42 43 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 44 SourceLocation Loc) { 45 bool Res; 46 lookupMember(S, Name, RD, Loc, Res); 47 return Res; 48 } 49 50 /// Look up the std::coroutine_traits<...>::promise_type for the given 51 /// function type. 52 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 53 SourceLocation KwLoc) { 54 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 55 const SourceLocation FuncLoc = FD->getLocation(); 56 57 ClassTemplateDecl *CoroTraits = 58 S.lookupCoroutineTraits(KwLoc, FuncLoc); 59 if (!CoroTraits) 60 return QualType(); 61 62 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 63 // to [dcl.fct.def.coroutine]3 64 TemplateArgumentListInfo Args(KwLoc, KwLoc); 65 auto AddArg = [&](QualType T) { 66 Args.addArgument(TemplateArgumentLoc( 67 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 68 }; 69 AddArg(FnType->getReturnType()); 70 // If the function is a non-static member function, add the type 71 // of the implicit object parameter before the formal parameters. 72 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 73 if (MD->isInstance()) { 74 // [over.match.funcs]4 75 // For non-static member functions, the type of the implicit object 76 // parameter is 77 // -- "lvalue reference to cv X" for functions declared without a 78 // ref-qualifier or with the & ref-qualifier 79 // -- "rvalue reference to cv X" for functions declared with the && 80 // ref-qualifier 81 QualType T = MD->getThisType()->castAs<PointerType>()->getPointeeType(); 82 T = FnType->getRefQualifier() == RQ_RValue 83 ? S.Context.getRValueReferenceType(T) 84 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 85 AddArg(T); 86 } 87 } 88 for (QualType T : FnType->getParamTypes()) 89 AddArg(T); 90 91 // Build the template-id. 92 QualType CoroTrait = 93 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 94 if (CoroTrait.isNull()) 95 return QualType(); 96 if (S.RequireCompleteType(KwLoc, CoroTrait, 97 diag::err_coroutine_type_missing_specialization)) 98 return QualType(); 99 100 auto *RD = CoroTrait->getAsCXXRecordDecl(); 101 assert(RD && "specialization of class template is not a class?"); 102 103 // Look up the ::promise_type member. 104 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 105 Sema::LookupOrdinaryName); 106 S.LookupQualifiedName(R, RD); 107 auto *Promise = R.getAsSingle<TypeDecl>(); 108 if (!Promise) { 109 S.Diag(FuncLoc, 110 diag::err_implied_std_coroutine_traits_promise_type_not_found) 111 << RD; 112 return QualType(); 113 } 114 // The promise type is required to be a class type. 115 QualType PromiseType = S.Context.getTypeDeclType(Promise); 116 117 auto buildElaboratedType = [&]() { 118 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 119 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 120 CoroTrait.getTypePtr()); 121 return S.Context.getElaboratedType(ETK_None, NNS, PromiseType); 122 }; 123 124 if (!PromiseType->getAsCXXRecordDecl()) { 125 S.Diag(FuncLoc, 126 diag::err_implied_std_coroutine_traits_promise_type_not_class) 127 << buildElaboratedType(); 128 return QualType(); 129 } 130 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 131 diag::err_coroutine_promise_type_incomplete)) 132 return QualType(); 133 134 return PromiseType; 135 } 136 137 /// Look up the std::coroutine_handle<PromiseType>. 138 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 139 SourceLocation Loc) { 140 if (PromiseType.isNull()) 141 return QualType(); 142 143 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 144 assert(CoroNamespace && "Should already be diagnosed"); 145 146 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 147 Loc, Sema::LookupOrdinaryName); 148 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 149 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 150 << "std::coroutine_handle"; 151 return QualType(); 152 } 153 154 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 155 if (!CoroHandle) { 156 Result.suppressDiagnostics(); 157 // We found something weird. Complain about the first thing we found. 158 NamedDecl *Found = *Result.begin(); 159 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 160 return QualType(); 161 } 162 163 // Form template argument list for coroutine_handle<Promise>. 164 TemplateArgumentListInfo Args(Loc, Loc); 165 Args.addArgument(TemplateArgumentLoc( 166 TemplateArgument(PromiseType), 167 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 168 169 // Build the template-id. 170 QualType CoroHandleType = 171 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 172 if (CoroHandleType.isNull()) 173 return QualType(); 174 if (S.RequireCompleteType(Loc, CoroHandleType, 175 diag::err_coroutine_type_missing_specialization)) 176 return QualType(); 177 178 return CoroHandleType; 179 } 180 181 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 182 StringRef Keyword) { 183 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 184 // a function body. 185 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 186 // appear in a default argument." But the diagnostic QoI here could be 187 // improved to inform the user that default arguments specifically are not 188 // allowed. 189 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 190 if (!FD) { 191 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 192 ? diag::err_coroutine_objc_method 193 : diag::err_coroutine_outside_function) << Keyword; 194 return false; 195 } 196 197 // An enumeration for mapping the diagnostic type to the correct diagnostic 198 // selection index. 199 enum InvalidFuncDiag { 200 DiagCtor = 0, 201 DiagDtor, 202 DiagMain, 203 DiagConstexpr, 204 DiagAutoRet, 205 DiagVarargs, 206 DiagConsteval, 207 }; 208 bool Diagnosed = false; 209 auto DiagInvalid = [&](InvalidFuncDiag ID) { 210 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 211 Diagnosed = true; 212 return false; 213 }; 214 215 // Diagnose when a constructor, destructor 216 // or the function 'main' are declared as a coroutine. 217 auto *MD = dyn_cast<CXXMethodDecl>(FD); 218 // [class.ctor]p11: "A constructor shall not be a coroutine." 219 if (MD && isa<CXXConstructorDecl>(MD)) 220 return DiagInvalid(DiagCtor); 221 // [class.dtor]p17: "A destructor shall not be a coroutine." 222 else if (MD && isa<CXXDestructorDecl>(MD)) 223 return DiagInvalid(DiagDtor); 224 // [basic.start.main]p3: "The function main shall not be a coroutine." 225 else if (FD->isMain()) 226 return DiagInvalid(DiagMain); 227 228 // Emit a diagnostics for each of the following conditions which is not met. 229 // [expr.const]p2: "An expression e is a core constant expression unless the 230 // evaluation of e [...] would evaluate one of the following expressions: 231 // [...] an await-expression [...] a yield-expression." 232 if (FD->isConstexpr()) 233 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 234 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 235 // placeholder type shall not be a coroutine." 236 if (FD->getReturnType()->isUndeducedType()) 237 DiagInvalid(DiagAutoRet); 238 // [dcl.fct.def.coroutine]p1 239 // The parameter-declaration-clause of the coroutine shall not terminate with 240 // an ellipsis that is not part of a parameter-declaration. 241 if (FD->isVariadic()) 242 DiagInvalid(DiagVarargs); 243 244 return !Diagnosed; 245 } 246 247 /// Build a call to 'operator co_await' if there is a suitable operator for 248 /// the given expression. 249 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 250 UnresolvedLookupExpr *Lookup) { 251 UnresolvedSet<16> Functions; 252 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 253 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 254 } 255 256 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 257 SourceLocation Loc, Expr *E) { 258 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 259 if (R.isInvalid()) 260 return ExprError(); 261 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 262 cast<UnresolvedLookupExpr>(R.get())); 263 } 264 265 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 266 SourceLocation Loc) { 267 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 268 if (CoroHandleType.isNull()) 269 return ExprError(); 270 271 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 272 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 273 Sema::LookupOrdinaryName); 274 if (!S.LookupQualifiedName(Found, LookupCtx)) { 275 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 276 << "from_address"; 277 return ExprError(); 278 } 279 280 Expr *FramePtr = 281 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 282 283 CXXScopeSpec SS; 284 ExprResult FromAddr = 285 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 286 if (FromAddr.isInvalid()) 287 return ExprError(); 288 289 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 290 } 291 292 struct ReadySuspendResumeResult { 293 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 294 Expr *Results[3]; 295 OpaqueValueExpr *OpaqueValue; 296 bool IsInvalid; 297 }; 298 299 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 300 StringRef Name, MultiExprArg Args) { 301 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 302 303 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 304 CXXScopeSpec SS; 305 ExprResult Result = S.BuildMemberReferenceExpr( 306 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 307 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 308 /*Scope=*/nullptr); 309 if (Result.isInvalid()) 310 return ExprError(); 311 312 // We meant exactly what we asked for. No need for typo correction. 313 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 314 S.clearDelayedTypo(TE); 315 S.Diag(Loc, diag::err_no_member) 316 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 317 << Base->getSourceRange(); 318 return ExprError(); 319 } 320 321 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, Loc, nullptr); 322 } 323 324 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 325 // on its address. This is to enable the support for coroutine-handle 326 // returning await_suspend that results in a guaranteed tail call to the target 327 // coroutine. 328 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 329 SourceLocation Loc) { 330 if (RetType->isReferenceType()) 331 return nullptr; 332 Type const *T = RetType.getTypePtr(); 333 if (!T->isClassType() && !T->isStructureType()) 334 return nullptr; 335 336 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 337 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 338 // a private function in SemaExprCXX.cpp 339 340 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 341 if (AddressExpr.isInvalid()) 342 return nullptr; 343 344 Expr *JustAddress = AddressExpr.get(); 345 346 // Check that the type of AddressExpr is void* 347 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 348 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 349 diag::warn_coroutine_handle_address_invalid_return_type) 350 << JustAddress->getType(); 351 352 // Clean up temporary objects so that they don't live across suspension points 353 // unnecessarily. We choose to clean up before the call to 354 // __builtin_coro_resume so that the cleanup code are not inserted in-between 355 // the resume call and return instruction, which would interfere with the 356 // musttail call contract. 357 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); 358 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, 359 JustAddress); 360 } 361 362 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 363 /// expression. 364 /// The generated AST tries to clean up temporary objects as early as 365 /// possible so that they don't live across suspension points if possible. 366 /// Having temporary objects living across suspension points unnecessarily can 367 /// lead to large frame size, and also lead to memory corruptions if the 368 /// coroutine frame is destroyed after coming back from suspension. This is done 369 /// by wrapping both the await_ready call and the await_suspend call with 370 /// ExprWithCleanups. In the end of this function, we also need to explicitly 371 /// set cleanup state so that the CoawaitExpr is also wrapped with an 372 /// ExprWithCleanups to clean up the awaiter associated with the co_await 373 /// expression. 374 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 375 SourceLocation Loc, Expr *E) { 376 OpaqueValueExpr *Operand = new (S.Context) 377 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 378 379 // Assume valid until we see otherwise. 380 // Further operations are responsible for setting IsInalid to true. 381 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 382 383 using ACT = ReadySuspendResumeResult::AwaitCallType; 384 385 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 386 MultiExprArg Arg) -> Expr * { 387 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 388 if (Result.isInvalid()) { 389 Calls.IsInvalid = true; 390 return nullptr; 391 } 392 Calls.Results[CallType] = Result.get(); 393 return Result.get(); 394 }; 395 396 CallExpr *AwaitReady = cast_or_null<CallExpr>( 397 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 398 if (!AwaitReady) 399 return Calls; 400 if (!AwaitReady->getType()->isDependentType()) { 401 // [expr.await]p3 [...] 402 // — await-ready is the expression e.await_ready(), contextually converted 403 // to bool. 404 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 405 if (Conv.isInvalid()) { 406 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 407 diag::note_await_ready_no_bool_conversion); 408 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 409 << AwaitReady->getDirectCallee() << E->getSourceRange(); 410 Calls.IsInvalid = true; 411 } else 412 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 413 } 414 415 ExprResult CoroHandleRes = 416 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 417 if (CoroHandleRes.isInvalid()) { 418 Calls.IsInvalid = true; 419 return Calls; 420 } 421 Expr *CoroHandle = CoroHandleRes.get(); 422 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 423 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 424 if (!AwaitSuspend) 425 return Calls; 426 if (!AwaitSuspend->getType()->isDependentType()) { 427 // [expr.await]p3 [...] 428 // - await-suspend is the expression e.await_suspend(h), which shall be 429 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 430 // type Z. 431 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 432 433 // Support for coroutine_handle returning await_suspend. 434 if (Expr *TailCallSuspend = 435 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 436 // Note that we don't wrap the expression with ExprWithCleanups here 437 // because that might interfere with tailcall contract (e.g. inserting 438 // clean up instructions in-between tailcall and return). Instead 439 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 440 // call. 441 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 442 else { 443 // non-class prvalues always have cv-unqualified types 444 if (RetType->isReferenceType() || 445 (!RetType->isBooleanType() && !RetType->isVoidType())) { 446 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 447 diag::err_await_suspend_invalid_return_type) 448 << RetType; 449 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 450 << AwaitSuspend->getDirectCallee(); 451 Calls.IsInvalid = true; 452 } else 453 Calls.Results[ACT::ACT_Suspend] = 454 S.MaybeCreateExprWithCleanups(AwaitSuspend); 455 } 456 } 457 458 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 459 460 // Make sure the awaiter object gets a chance to be cleaned up. 461 S.Cleanup.setExprNeedsCleanups(true); 462 463 return Calls; 464 } 465 466 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 467 SourceLocation Loc, StringRef Name, 468 MultiExprArg Args) { 469 470 // Form a reference to the promise. 471 ExprResult PromiseRef = S.BuildDeclRefExpr( 472 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 473 if (PromiseRef.isInvalid()) 474 return ExprError(); 475 476 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 477 } 478 479 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 480 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 481 auto *FD = cast<FunctionDecl>(CurContext); 482 bool IsThisDependentType = [&] { 483 if (auto *MD = dyn_cast_or_null<CXXMethodDecl>(FD)) 484 return MD->isInstance() && MD->getThisType()->isDependentType(); 485 else 486 return false; 487 }(); 488 489 QualType T = FD->getType()->isDependentType() || IsThisDependentType 490 ? Context.DependentTy 491 : lookupPromiseType(*this, FD, Loc); 492 if (T.isNull()) 493 return nullptr; 494 495 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 496 &PP.getIdentifierTable().get("__promise"), T, 497 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 498 VD->setImplicit(); 499 CheckVariableDeclarationType(VD); 500 if (VD->isInvalidDecl()) 501 return nullptr; 502 503 auto *ScopeInfo = getCurFunction(); 504 505 // Build a list of arguments, based on the coroutine function's arguments, 506 // that if present will be passed to the promise type's constructor. 507 llvm::SmallVector<Expr *, 4> CtorArgExprs; 508 509 // Add implicit object parameter. 510 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 511 if (MD->isInstance() && !isLambdaCallOperator(MD)) { 512 ExprResult ThisExpr = ActOnCXXThis(Loc); 513 if (ThisExpr.isInvalid()) 514 return nullptr; 515 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 516 if (ThisExpr.isInvalid()) 517 return nullptr; 518 CtorArgExprs.push_back(ThisExpr.get()); 519 } 520 } 521 522 // Add the coroutine function's parameters. 523 auto &Moves = ScopeInfo->CoroutineParameterMoves; 524 for (auto *PD : FD->parameters()) { 525 if (PD->getType()->isDependentType()) 526 continue; 527 528 auto RefExpr = ExprEmpty(); 529 auto Move = Moves.find(PD); 530 assert(Move != Moves.end() && 531 "Coroutine function parameter not inserted into move map"); 532 // If a reference to the function parameter exists in the coroutine 533 // frame, use that reference. 534 auto *MoveDecl = 535 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 536 RefExpr = 537 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 538 ExprValueKind::VK_LValue, FD->getLocation()); 539 if (RefExpr.isInvalid()) 540 return nullptr; 541 CtorArgExprs.push_back(RefExpr.get()); 542 } 543 544 // If we have a non-zero number of constructor arguments, try to use them. 545 // Otherwise, fall back to the promise type's default constructor. 546 if (!CtorArgExprs.empty()) { 547 // Create an initialization sequence for the promise type using the 548 // constructor arguments, wrapped in a parenthesized list expression. 549 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 550 CtorArgExprs, FD->getLocation()); 551 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 552 InitializationKind Kind = InitializationKind::CreateForInit( 553 VD->getLocation(), /*DirectInit=*/true, PLE); 554 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 555 /*TopLevelOfInitList=*/false, 556 /*TreatUnavailableAsInvalid=*/false); 557 558 // [dcl.fct.def.coroutine]5.7 559 // promise-constructor-arguments is determined as follows: overload 560 // resolution is performed on a promise constructor call created by 561 // assembling an argument list q_1 ... q_n . If a viable constructor is 562 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 563 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 564 if (InitSeq) { 565 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 566 if (Result.isInvalid()) { 567 VD->setInvalidDecl(); 568 } else if (Result.get()) { 569 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 570 VD->setInitStyle(VarDecl::CallInit); 571 CheckCompleteVariableDeclaration(VD); 572 } 573 } else 574 ActOnUninitializedDecl(VD); 575 } else 576 ActOnUninitializedDecl(VD); 577 578 FD->addDecl(VD); 579 return VD; 580 } 581 582 /// Check that this is a context in which a coroutine suspension can appear. 583 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 584 StringRef Keyword, 585 bool IsImplicit = false) { 586 if (!isValidCoroutineContext(S, Loc, Keyword)) 587 return nullptr; 588 589 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 590 591 auto *ScopeInfo = S.getCurFunction(); 592 assert(ScopeInfo && "missing function scope for function"); 593 594 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 595 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 596 597 if (ScopeInfo->CoroutinePromise) 598 return ScopeInfo; 599 600 if (!S.buildCoroutineParameterMoves(Loc)) 601 return nullptr; 602 603 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 604 if (!ScopeInfo->CoroutinePromise) 605 return nullptr; 606 607 return ScopeInfo; 608 } 609 610 /// Recursively check \p E and all its children to see if any call target 611 /// (including constructor call) is declared noexcept. Also any value returned 612 /// from the call has a noexcept destructor. 613 static void checkNoThrow(Sema &S, const Stmt *E, 614 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 615 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 616 // In the case of dtor, the call to dtor is implicit and hence we should 617 // pass nullptr to canCalleeThrow. 618 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 619 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 620 // co_await promise.final_suspend() could end up calling 621 // __builtin_coro_resume for symmetric transfer if await_suspend() 622 // returns a handle. In that case, even __builtin_coro_resume is not 623 // declared as noexcept and may throw, it does not throw _into_ the 624 // coroutine that just suspended, but rather throws back out from 625 // whoever called coroutine_handle::resume(), hence we claim that 626 // logically it does not throw. 627 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 628 return; 629 } 630 if (ThrowingDecls.empty()) { 631 // [dcl.fct.def.coroutine]p15 632 // The expression co_await promise.final_suspend() shall not be 633 // potentially-throwing ([except.spec]). 634 // 635 // First time seeing an error, emit the error message. 636 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 637 diag::err_coroutine_promise_final_suspend_requires_nothrow); 638 } 639 ThrowingDecls.insert(D); 640 } 641 }; 642 643 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 644 CXXConstructorDecl *Ctor = CE->getConstructor(); 645 checkDeclNoexcept(Ctor); 646 // Check the corresponding destructor of the constructor. 647 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 648 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 649 if (CE->isTypeDependent()) 650 return; 651 652 checkDeclNoexcept(CE->getCalleeDecl()); 653 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 654 // Check the destructor of the call return type, if any. 655 if (ReturnType.isDestructedType() == 656 QualType::DestructionKind::DK_cxx_destructor) { 657 const auto *T = 658 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 659 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 660 /*IsDtor=*/true); 661 } 662 } else 663 for (const auto *Child : E->children()) { 664 if (!Child) 665 continue; 666 checkNoThrow(S, Child, ThrowingDecls); 667 } 668 } 669 670 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 671 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 672 // We first collect all declarations that should not throw but not declared 673 // with noexcept. We then sort them based on the location before printing. 674 // This is to avoid emitting the same note multiple times on the same 675 // declaration, and also provide a deterministic order for the messages. 676 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 677 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 678 ThrowingDecls.end()}; 679 sort(SortedDecls, [](const Decl *A, const Decl *B) { 680 return A->getEndLoc() < B->getEndLoc(); 681 }); 682 for (const auto *D : SortedDecls) { 683 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 684 } 685 return ThrowingDecls.empty(); 686 } 687 688 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 689 StringRef Keyword) { 690 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 691 return false; 692 auto *ScopeInfo = getCurFunction(); 693 assert(ScopeInfo->CoroutinePromise); 694 695 // If we have existing coroutine statements then we have already built 696 // the initial and final suspend points. 697 if (!ScopeInfo->NeedsCoroutineSuspends) 698 return true; 699 700 ScopeInfo->setNeedsCoroutineSuspends(false); 701 702 auto *Fn = cast<FunctionDecl>(CurContext); 703 SourceLocation Loc = Fn->getLocation(); 704 // Build the initial suspend point 705 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 706 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 707 Loc, Name, std::nullopt); 708 if (Operand.isInvalid()) 709 return StmtError(); 710 ExprResult Suspend = 711 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 712 if (Suspend.isInvalid()) 713 return StmtError(); 714 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 715 /*IsImplicit*/ true); 716 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 717 if (Suspend.isInvalid()) { 718 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 719 << ((Name == "initial_suspend") ? 0 : 1); 720 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 721 return StmtError(); 722 } 723 return cast<Stmt>(Suspend.get()); 724 }; 725 726 StmtResult InitSuspend = buildSuspends("initial_suspend"); 727 if (InitSuspend.isInvalid()) 728 return true; 729 730 StmtResult FinalSuspend = buildSuspends("final_suspend"); 731 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 732 return true; 733 734 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 735 736 return true; 737 } 738 739 // Recursively walks up the scope hierarchy until either a 'catch' or a function 740 // scope is found, whichever comes first. 741 static bool isWithinCatchScope(Scope *S) { 742 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 743 // lambdas that use 'co_await' are allowed. The loop below ends when a 744 // function scope is found in order to ensure the following behavior: 745 // 746 // void foo() { // <- function scope 747 // try { // 748 // co_await x; // <- 'co_await' is OK within a function scope 749 // } catch { // <- catch scope 750 // co_await x; // <- 'co_await' is not OK within a catch scope 751 // []() { // <- function scope 752 // co_await x; // <- 'co_await' is OK within a function scope 753 // }(); 754 // } 755 // } 756 while (S && !S->isFunctionScope()) { 757 if (S->isCatchScope()) 758 return true; 759 S = S->getParent(); 760 } 761 return false; 762 } 763 764 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 765 // a *potentially evaluated* expression within the compound-statement of a 766 // function-body *outside of a handler* [...] A context within a function 767 // where an await-expression can appear is called a suspension context of the 768 // function." 769 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 770 StringRef Keyword) { 771 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 772 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 773 // \c sizeof. 774 if (S.isUnevaluatedContext()) { 775 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 776 return false; 777 } 778 779 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 780 if (isWithinCatchScope(S.getCurScope())) { 781 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 782 return false; 783 } 784 785 return true; 786 } 787 788 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 789 if (!checkSuspensionContext(*this, Loc, "co_await")) 790 return ExprError(); 791 792 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 793 CorrectDelayedTyposInExpr(E); 794 return ExprError(); 795 } 796 797 if (E->hasPlaceholderType()) { 798 ExprResult R = CheckPlaceholderExpr(E); 799 if (R.isInvalid()) return ExprError(); 800 E = R.get(); 801 } 802 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 803 if (Lookup.isInvalid()) 804 return ExprError(); 805 return BuildUnresolvedCoawaitExpr(Loc, E, 806 cast<UnresolvedLookupExpr>(Lookup.get())); 807 } 808 809 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 810 DeclarationName OpName = 811 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 812 LookupResult Operators(*this, OpName, SourceLocation(), 813 Sema::LookupOperatorName); 814 LookupName(Operators, S); 815 816 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 817 const auto &Functions = Operators.asUnresolvedSet(); 818 bool IsOverloaded = 819 Functions.size() > 1 || 820 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 821 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 822 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 823 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, 824 Functions.begin(), Functions.end()); 825 assert(CoawaitOp); 826 return CoawaitOp; 827 } 828 829 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 830 // DependentCoawaitExpr if needed. 831 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 832 UnresolvedLookupExpr *Lookup) { 833 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 834 if (!FSI) 835 return ExprError(); 836 837 if (Operand->hasPlaceholderType()) { 838 ExprResult R = CheckPlaceholderExpr(Operand); 839 if (R.isInvalid()) 840 return ExprError(); 841 Operand = R.get(); 842 } 843 844 auto *Promise = FSI->CoroutinePromise; 845 if (Promise->getType()->isDependentType()) { 846 Expr *Res = new (Context) 847 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 848 return Res; 849 } 850 851 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 852 auto *Transformed = Operand; 853 if (lookupMember(*this, "await_transform", RD, Loc)) { 854 ExprResult R = 855 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 856 if (R.isInvalid()) { 857 Diag(Loc, 858 diag::note_coroutine_promise_implicit_await_transform_required_here) 859 << Operand->getSourceRange(); 860 return ExprError(); 861 } 862 Transformed = R.get(); 863 } 864 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 865 if (Awaiter.isInvalid()) 866 return ExprError(); 867 868 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 869 } 870 871 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 872 Expr *Awaiter, bool IsImplicit) { 873 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 874 if (!Coroutine) 875 return ExprError(); 876 877 if (Awaiter->hasPlaceholderType()) { 878 ExprResult R = CheckPlaceholderExpr(Awaiter); 879 if (R.isInvalid()) return ExprError(); 880 Awaiter = R.get(); 881 } 882 883 if (Awaiter->getType()->isDependentType()) { 884 Expr *Res = new (Context) 885 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 886 return Res; 887 } 888 889 // If the expression is a temporary, materialize it as an lvalue so that we 890 // can use it multiple times. 891 if (Awaiter->isPRValue()) 892 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 893 894 // The location of the `co_await` token cannot be used when constructing 895 // the member call expressions since it's before the location of `Expr`, which 896 // is used as the start of the member call expression. 897 SourceLocation CallLoc = Awaiter->getExprLoc(); 898 899 // Build the await_ready, await_suspend, await_resume calls. 900 ReadySuspendResumeResult RSS = 901 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 902 if (RSS.IsInvalid) 903 return ExprError(); 904 905 Expr *Res = new (Context) 906 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 907 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 908 909 return Res; 910 } 911 912 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 913 if (!checkSuspensionContext(*this, Loc, "co_yield")) 914 return ExprError(); 915 916 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 917 CorrectDelayedTyposInExpr(E); 918 return ExprError(); 919 } 920 921 // Build yield_value call. 922 ExprResult Awaitable = buildPromiseCall( 923 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 924 if (Awaitable.isInvalid()) 925 return ExprError(); 926 927 // Build 'operator co_await' call. 928 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 929 if (Awaitable.isInvalid()) 930 return ExprError(); 931 932 return BuildCoyieldExpr(Loc, Awaitable.get()); 933 } 934 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 935 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 936 if (!Coroutine) 937 return ExprError(); 938 939 if (E->hasPlaceholderType()) { 940 ExprResult R = CheckPlaceholderExpr(E); 941 if (R.isInvalid()) return ExprError(); 942 E = R.get(); 943 } 944 945 Expr *Operand = E; 946 947 if (E->getType()->isDependentType()) { 948 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 949 return Res; 950 } 951 952 // If the expression is a temporary, materialize it as an lvalue so that we 953 // can use it multiple times. 954 if (E->isPRValue()) 955 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 956 957 // Build the await_ready, await_suspend, await_resume calls. 958 ReadySuspendResumeResult RSS = buildCoawaitCalls( 959 *this, Coroutine->CoroutinePromise, Loc, E); 960 if (RSS.IsInvalid) 961 return ExprError(); 962 963 Expr *Res = 964 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 965 RSS.Results[2], RSS.OpaqueValue); 966 967 return Res; 968 } 969 970 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 971 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 972 CorrectDelayedTyposInExpr(E); 973 return StmtError(); 974 } 975 return BuildCoreturnStmt(Loc, E); 976 } 977 978 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 979 bool IsImplicit) { 980 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 981 if (!FSI) 982 return StmtError(); 983 984 if (E && E->hasPlaceholderType() && 985 !E->hasPlaceholderType(BuiltinType::Overload)) { 986 ExprResult R = CheckPlaceholderExpr(E); 987 if (R.isInvalid()) return StmtError(); 988 E = R.get(); 989 } 990 991 VarDecl *Promise = FSI->CoroutinePromise; 992 ExprResult PC; 993 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 994 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 995 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 996 } else { 997 E = MakeFullDiscardedValueExpr(E).get(); 998 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 999 } 1000 if (PC.isInvalid()) 1001 return StmtError(); 1002 1003 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1004 1005 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1006 return Res; 1007 } 1008 1009 /// Look up the std::nothrow object. 1010 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1011 NamespaceDecl *Std = S.getStdNamespace(); 1012 assert(Std && "Should already be diagnosed"); 1013 1014 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1015 Sema::LookupOrdinaryName); 1016 if (!S.LookupQualifiedName(Result, Std)) { 1017 // <coroutine> is not requred to include <new>, so we couldn't omit 1018 // the check here. 1019 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1020 return nullptr; 1021 } 1022 1023 auto *VD = Result.getAsSingle<VarDecl>(); 1024 if (!VD) { 1025 Result.suppressDiagnostics(); 1026 // We found something weird. Complain about the first thing we found. 1027 NamedDecl *Found = *Result.begin(); 1028 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1029 return nullptr; 1030 } 1031 1032 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1033 if (DR.isInvalid()) 1034 return nullptr; 1035 1036 return DR.get(); 1037 } 1038 1039 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1040 SourceLocation Loc) { 1041 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1042 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1043 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1044 } 1045 1046 // Find an appropriate delete for the promise. 1047 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1048 FunctionDecl *&OperatorDelete) { 1049 DeclarationName DeleteName = 1050 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1051 1052 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1053 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1054 1055 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1056 1057 // [dcl.fct.def.coroutine]p12 1058 // The deallocation function's name is looked up by searching for it in the 1059 // scope of the promise type. If nothing is found, a search is performed in 1060 // the global scope. 1061 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1062 /*Diagnose*/ true, /*WantSize*/ true, 1063 /*WantAligned*/ Overaligned)) 1064 return false; 1065 1066 // [dcl.fct.def.coroutine]p12 1067 // If both a usual deallocation function with only a pointer parameter and a 1068 // usual deallocation function with both a pointer parameter and a size 1069 // parameter are found, then the selected deallocation function shall be the 1070 // one with two parameters. Otherwise, the selected deallocation function 1071 // shall be the function with one parameter. 1072 if (!OperatorDelete) { 1073 // Look for a global declaration. 1074 // Coroutines can always provide their required size. 1075 const bool CanProvideSize = true; 1076 // Sema::FindUsualDeallocationFunction will try to find the one with two 1077 // parameters first. It will return the deallocation function with one 1078 // parameter if failed. 1079 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1080 Overaligned, DeleteName); 1081 1082 if (!OperatorDelete) 1083 return false; 1084 } 1085 1086 S.MarkFunctionReferenced(Loc, OperatorDelete); 1087 return true; 1088 } 1089 1090 1091 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1092 FunctionScopeInfo *Fn = getCurFunction(); 1093 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1094 if (!Body) { 1095 assert(FD->isInvalidDecl() && 1096 "a null body is only allowed for invalid declarations"); 1097 return; 1098 } 1099 // We have a function that uses coroutine keywords, but we failed to build 1100 // the promise type. 1101 if (!Fn->CoroutinePromise) 1102 return FD->setInvalidDecl(); 1103 1104 if (isa<CoroutineBodyStmt>(Body)) { 1105 // Nothing todo. the body is already a transformed coroutine body statement. 1106 return; 1107 } 1108 1109 // The always_inline attribute doesn't reliably apply to a coroutine, 1110 // because the coroutine will be split into pieces and some pieces 1111 // might be called indirectly, as in a virtual call. Even the ramp 1112 // function cannot be inlined at -O0, due to pipeline ordering 1113 // problems (see https://llvm.org/PR53413). Tell the user about it. 1114 if (FD->hasAttr<AlwaysInlineAttr>()) 1115 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1116 1117 // [stmt.return.coroutine]p1: 1118 // A coroutine shall not enclose a return statement ([stmt.return]). 1119 if (Fn->FirstReturnLoc.isValid()) { 1120 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1121 "first coroutine location not set"); 1122 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1123 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1124 << Fn->getFirstCoroutineStmtKeyword(); 1125 } 1126 1127 // Coroutines will get splitted into pieces. The GNU address of label 1128 // extension wouldn't be meaningful in coroutines. 1129 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1130 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1131 1132 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1133 if (Builder.isInvalid() || !Builder.buildStatements()) 1134 return FD->setInvalidDecl(); 1135 1136 // Build body for the coroutine wrapper statement. 1137 Body = CoroutineBodyStmt::Create(Context, Builder); 1138 } 1139 1140 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1141 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1142 return CS; 1143 1144 // The body of the coroutine may be a try statement if it is in 1145 // 'function-try-block' syntax. Here we wrap it into a compound 1146 // statement for consistency. 1147 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1148 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1149 SourceLocation(), SourceLocation()); 1150 } 1151 1152 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1153 sema::FunctionScopeInfo &Fn, 1154 Stmt *Body) 1155 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1156 IsPromiseDependentType( 1157 !Fn.CoroutinePromise || 1158 Fn.CoroutinePromise->getType()->isDependentType()) { 1159 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1160 1161 for (auto KV : Fn.CoroutineParameterMoves) 1162 this->ParamMovesVector.push_back(KV.second); 1163 this->ParamMoves = this->ParamMovesVector; 1164 1165 if (!IsPromiseDependentType) { 1166 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1167 assert(PromiseRecordDecl && "Type should have already been checked"); 1168 } 1169 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1170 } 1171 1172 bool CoroutineStmtBuilder::buildStatements() { 1173 assert(this->IsValid && "coroutine already invalid"); 1174 this->IsValid = makeReturnObject(); 1175 if (this->IsValid && !IsPromiseDependentType) 1176 buildDependentStatements(); 1177 return this->IsValid; 1178 } 1179 1180 bool CoroutineStmtBuilder::buildDependentStatements() { 1181 assert(this->IsValid && "coroutine already invalid"); 1182 assert(!this->IsPromiseDependentType && 1183 "coroutine cannot have a dependent promise type"); 1184 this->IsValid = makeOnException() && makeOnFallthrough() && 1185 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1186 makeNewAndDeleteExpr(); 1187 return this->IsValid; 1188 } 1189 1190 bool CoroutineStmtBuilder::makePromiseStmt() { 1191 // Form a declaration statement for the promise declaration, so that AST 1192 // visitors can more easily find it. 1193 StmtResult PromiseStmt = 1194 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1195 if (PromiseStmt.isInvalid()) 1196 return false; 1197 1198 this->Promise = PromiseStmt.get(); 1199 return true; 1200 } 1201 1202 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1203 if (Fn.hasInvalidCoroutineSuspends()) 1204 return false; 1205 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1206 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1207 return true; 1208 } 1209 1210 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1211 CXXRecordDecl *PromiseRecordDecl, 1212 FunctionScopeInfo &Fn) { 1213 auto Loc = E->getExprLoc(); 1214 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1215 auto *Decl = DeclRef->getDecl(); 1216 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1217 if (Method->isStatic()) 1218 return true; 1219 else 1220 Loc = Decl->getLocation(); 1221 } 1222 } 1223 1224 S.Diag( 1225 Loc, 1226 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1227 << PromiseRecordDecl; 1228 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1229 << Fn.getFirstCoroutineStmtKeyword(); 1230 return false; 1231 } 1232 1233 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1234 assert(!IsPromiseDependentType && 1235 "cannot make statement while the promise type is dependent"); 1236 1237 // [dcl.fct.def.coroutine]p10 1238 // If a search for the name get_return_object_on_allocation_failure in 1239 // the scope of the promise type ([class.member.lookup]) finds any 1240 // declarations, then the result of a call to an allocation function used to 1241 // obtain storage for the coroutine state is assumed to return nullptr if it 1242 // fails to obtain storage, ... If the allocation function returns nullptr, 1243 // ... and the return value is obtained by a call to 1244 // T::get_return_object_on_allocation_failure(), where T is the 1245 // promise type. 1246 DeclarationName DN = 1247 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1248 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1249 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1250 return true; 1251 1252 CXXScopeSpec SS; 1253 ExprResult DeclNameExpr = 1254 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1255 if (DeclNameExpr.isInvalid()) 1256 return false; 1257 1258 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1259 return false; 1260 1261 ExprResult ReturnObjectOnAllocationFailure = 1262 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1263 if (ReturnObjectOnAllocationFailure.isInvalid()) 1264 return false; 1265 1266 StmtResult ReturnStmt = 1267 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1268 if (ReturnStmt.isInvalid()) { 1269 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1270 << DN; 1271 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1272 << Fn.getFirstCoroutineStmtKeyword(); 1273 return false; 1274 } 1275 1276 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1277 return true; 1278 } 1279 1280 // Collect placement arguments for allocation function of coroutine FD. 1281 // Return true if we collect placement arguments succesfully. Return false, 1282 // otherwise. 1283 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1284 SmallVectorImpl<Expr *> &PlacementArgs) { 1285 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1286 if (MD->isInstance() && !isLambdaCallOperator(MD)) { 1287 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1288 if (ThisExpr.isInvalid()) 1289 return false; 1290 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1291 if (ThisExpr.isInvalid()) 1292 return false; 1293 PlacementArgs.push_back(ThisExpr.get()); 1294 } 1295 } 1296 1297 for (auto *PD : FD.parameters()) { 1298 if (PD->getType()->isDependentType()) 1299 continue; 1300 1301 // Build a reference to the parameter. 1302 auto PDLoc = PD->getLocation(); 1303 ExprResult PDRefExpr = 1304 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1305 ExprValueKind::VK_LValue, PDLoc); 1306 if (PDRefExpr.isInvalid()) 1307 return false; 1308 1309 PlacementArgs.push_back(PDRefExpr.get()); 1310 } 1311 1312 return true; 1313 } 1314 1315 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1316 // Form and check allocation and deallocation calls. 1317 assert(!IsPromiseDependentType && 1318 "cannot make statement while the promise type is dependent"); 1319 QualType PromiseType = Fn.CoroutinePromise->getType(); 1320 1321 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1322 return false; 1323 1324 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1325 1326 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1327 // parameter list composed of the requested size of the coroutine state being 1328 // allocated, followed by the coroutine function's arguments. If a matching 1329 // allocation function exists, use it. Otherwise, use an allocation function 1330 // that just takes the requested size. 1331 // 1332 // [dcl.fct.def.coroutine]p9 1333 // An implementation may need to allocate additional storage for a 1334 // coroutine. 1335 // This storage is known as the coroutine state and is obtained by calling a 1336 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1337 // allocation function's name is looked up by searching for it in the scope of 1338 // the promise type. 1339 // - If any declarations are found, overload resolution is performed on a 1340 // function call created by assembling an argument list. The first argument is 1341 // the amount of space requested, and has type std::size_t. The 1342 // lvalues p1 ... pn are the succeeding arguments. 1343 // 1344 // ...where "p1 ... pn" are defined earlier as: 1345 // 1346 // [dcl.fct.def.coroutine]p3 1347 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1348 // Pn>` 1349 // , where R is the return type of the function, and `P1, ..., Pn` are the 1350 // sequence of types of the non-object function parameters, preceded by the 1351 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1352 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1353 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1354 // the i-th non-object function parameter for a non-static member function, 1355 // and p_i denotes the i-th function parameter otherwise. For a non-static 1356 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1357 // lvalue that denotes the parameter copy corresponding to p_i. 1358 1359 FunctionDecl *OperatorNew = nullptr; 1360 SmallVector<Expr *, 1> PlacementArgs; 1361 1362 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1363 DeclarationName NewName = 1364 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1365 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1366 1367 if (PromiseType->isRecordType()) 1368 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1369 1370 return !R.empty() && !R.isAmbiguous(); 1371 }(); 1372 1373 // Helper function to indicate whether the last lookup found the aligned 1374 // allocation function. 1375 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1376 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1377 Sema::AFS_Both, 1378 bool WithoutPlacementArgs = false, 1379 bool ForceNonAligned = false) { 1380 // [dcl.fct.def.coroutine]p9 1381 // The allocation function's name is looked up by searching for it in the 1382 // scope of the promise type. 1383 // - If any declarations are found, ... 1384 // - If no declarations are found in the scope of the promise type, a search 1385 // is performed in the global scope. 1386 if (NewScope == Sema::AFS_Both) 1387 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1388 1389 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1390 FunctionDecl *UnusedResult = nullptr; 1391 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1392 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1393 /*isArray*/ false, PassAlignment, 1394 WithoutPlacementArgs ? MultiExprArg{} 1395 : PlacementArgs, 1396 OperatorNew, UnusedResult, /*Diagnose*/ false); 1397 }; 1398 1399 // We don't expect to call to global operator new with (size, p0, …, pn). 1400 // So if we choose to lookup the allocation function in global scope, we 1401 // shouldn't lookup placement arguments. 1402 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1403 return false; 1404 1405 LookupAllocationFunction(); 1406 1407 if (PromiseContainsNew && !PlacementArgs.empty()) { 1408 // [dcl.fct.def.coroutine]p9 1409 // If no viable function is found ([over.match.viable]), overload 1410 // resolution 1411 // is performed again on a function call created by passing just the amount 1412 // of space required as an argument of type std::size_t. 1413 // 1414 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1415 // Otherwise, overload resolution is performed again on a function call 1416 // created 1417 // by passing the amount of space requested as an argument of type 1418 // std::size_t as the first argument, and the requested alignment as 1419 // an argument of type std:align_val_t as the second argument. 1420 if (!OperatorNew || 1421 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1422 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1423 /*WithoutPlacementArgs*/ true); 1424 } 1425 1426 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1427 // Otherwise, overload resolution is performed again on a function call 1428 // created 1429 // by passing the amount of space requested as an argument of type 1430 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1431 // succeeding arguments. Otherwise, overload resolution is performed again 1432 // on a function call created by passing just the amount of space required as 1433 // an argument of type std::size_t. 1434 // 1435 // So within the proposed change in P2014RO, the priority order of aligned 1436 // allocation functions wiht promise_type is: 1437 // 1438 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1439 // void* operator new( std::size_t, std::align_val_t); 1440 // void* operator new( std::size_t, placement_args... ); 1441 // void* operator new( std::size_t); 1442 1443 // Helper variable to emit warnings. 1444 bool FoundNonAlignedInPromise = false; 1445 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1446 if (!OperatorNew || !PassAlignment) { 1447 FoundNonAlignedInPromise = OperatorNew; 1448 1449 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1450 /*WithoutPlacementArgs*/ false, 1451 /*ForceNonAligned*/ true); 1452 1453 if (!OperatorNew && !PlacementArgs.empty()) 1454 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1455 /*WithoutPlacementArgs*/ true, 1456 /*ForceNonAligned*/ true); 1457 } 1458 1459 bool IsGlobalOverload = 1460 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1461 // If we didn't find a class-local new declaration and non-throwing new 1462 // was is required then we need to lookup the non-throwing global operator 1463 // instead. 1464 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1465 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1466 if (!StdNoThrow) 1467 return false; 1468 PlacementArgs = {StdNoThrow}; 1469 OperatorNew = nullptr; 1470 LookupAllocationFunction(Sema::AFS_Global); 1471 } 1472 1473 // If we found a non-aligned allocation function in the promise_type, 1474 // it indicates the user forgot to update the allocation function. Let's emit 1475 // a warning here. 1476 if (FoundNonAlignedInPromise) { 1477 S.Diag(OperatorNew->getLocation(), 1478 diag::warn_non_aligned_allocation_function) 1479 << &FD; 1480 } 1481 1482 if (!OperatorNew) { 1483 if (PromiseContainsNew) 1484 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1485 else if (RequiresNoThrowAlloc) 1486 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1487 << &FD << S.getLangOpts().CoroAlignedAllocation; 1488 1489 return false; 1490 } 1491 1492 if (RequiresNoThrowAlloc) { 1493 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1494 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1495 S.Diag(OperatorNew->getLocation(), 1496 diag::err_coroutine_promise_new_requires_nothrow) 1497 << OperatorNew; 1498 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1499 << OperatorNew; 1500 return false; 1501 } 1502 } 1503 1504 FunctionDecl *OperatorDelete = nullptr; 1505 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1506 // FIXME: We should add an error here. According to: 1507 // [dcl.fct.def.coroutine]p12 1508 // If no usual deallocation function is found, the program is ill-formed. 1509 return false; 1510 } 1511 1512 Expr *FramePtr = 1513 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1514 1515 Expr *FrameSize = 1516 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1517 1518 Expr *FrameAlignment = nullptr; 1519 1520 if (S.getLangOpts().CoroAlignedAllocation) { 1521 FrameAlignment = 1522 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1523 1524 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1525 if (!AlignValTy) 1526 return false; 1527 1528 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1529 FrameAlignment, SourceRange(Loc, Loc), 1530 SourceRange(Loc, Loc)) 1531 .get(); 1532 } 1533 1534 // Make new call. 1535 ExprResult NewRef = 1536 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1537 if (NewRef.isInvalid()) 1538 return false; 1539 1540 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1541 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1542 NewArgs.push_back(FrameAlignment); 1543 1544 if (OperatorNew->getNumParams() > NewArgs.size()) 1545 llvm::append_range(NewArgs, PlacementArgs); 1546 1547 ExprResult NewExpr = 1548 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1549 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1550 if (NewExpr.isInvalid()) 1551 return false; 1552 1553 // Make delete call. 1554 1555 QualType OpDeleteQualType = OperatorDelete->getType(); 1556 1557 ExprResult DeleteRef = 1558 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1559 if (DeleteRef.isInvalid()) 1560 return false; 1561 1562 Expr *CoroFree = 1563 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1564 1565 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1566 1567 // [dcl.fct.def.coroutine]p12 1568 // The selected deallocation function shall be called with the address of 1569 // the block of storage to be reclaimed as its first argument. If a 1570 // deallocation function with a parameter of type std::size_t is 1571 // used, the size of the block is passed as the corresponding argument. 1572 const auto *OpDeleteType = 1573 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1574 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1575 S.getASTContext().hasSameUnqualifiedType( 1576 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1577 DeleteArgs.push_back(FrameSize); 1578 1579 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1580 // If deallocation function lookup finds a usual deallocation function with 1581 // a pointer parameter, size parameter and alignment parameter then this 1582 // will be the selected deallocation function, otherwise if lookup finds a 1583 // usual deallocation function with both a pointer parameter and a size 1584 // parameter, then this will be the selected deallocation function. 1585 // Otherwise, if lookup finds a usual deallocation function with only a 1586 // pointer parameter, then this will be the selected deallocation 1587 // function. 1588 // 1589 // So we are not forced to pass alignment to the deallocation function. 1590 if (S.getLangOpts().CoroAlignedAllocation && 1591 OpDeleteType->getNumParams() > DeleteArgs.size() && 1592 S.getASTContext().hasSameUnqualifiedType( 1593 OpDeleteType->getParamType(DeleteArgs.size()), 1594 FrameAlignment->getType())) 1595 DeleteArgs.push_back(FrameAlignment); 1596 1597 ExprResult DeleteExpr = 1598 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1599 DeleteExpr = 1600 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1601 if (DeleteExpr.isInvalid()) 1602 return false; 1603 1604 this->Allocate = NewExpr.get(); 1605 this->Deallocate = DeleteExpr.get(); 1606 1607 return true; 1608 } 1609 1610 bool CoroutineStmtBuilder::makeOnFallthrough() { 1611 assert(!IsPromiseDependentType && 1612 "cannot make statement while the promise type is dependent"); 1613 1614 // [dcl.fct.def.coroutine]/p6 1615 // If searches for the names return_void and return_value in the scope of 1616 // the promise type each find any declarations, the program is ill-formed. 1617 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1618 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1619 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1620 // end note] 1621 bool HasRVoid, HasRValue; 1622 LookupResult LRVoid = 1623 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1624 LookupResult LRValue = 1625 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1626 1627 StmtResult Fallthrough; 1628 if (HasRVoid && HasRValue) { 1629 // FIXME Improve this diagnostic 1630 S.Diag(FD.getLocation(), 1631 diag::err_coroutine_promise_incompatible_return_functions) 1632 << PromiseRecordDecl; 1633 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1634 diag::note_member_first_declared_here) 1635 << LRVoid.getLookupName(); 1636 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1637 diag::note_member_first_declared_here) 1638 << LRValue.getLookupName(); 1639 return false; 1640 } else if (!HasRVoid && !HasRValue) { 1641 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1642 // think the coroutine has defined a return_value method. So it might emit 1643 // **false** positive warning. e.g., 1644 // 1645 // promise_without_return_func foo() { 1646 // co_await something(); 1647 // } 1648 // 1649 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1650 // co_return statements, which isn't correct. 1651 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1652 if (Fallthrough.isInvalid()) 1653 return false; 1654 } else if (HasRVoid) { 1655 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1656 /*IsImplicit*/false); 1657 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1658 if (Fallthrough.isInvalid()) 1659 return false; 1660 } 1661 1662 this->OnFallthrough = Fallthrough.get(); 1663 return true; 1664 } 1665 1666 bool CoroutineStmtBuilder::makeOnException() { 1667 // Try to form 'p.unhandled_exception();' 1668 assert(!IsPromiseDependentType && 1669 "cannot make statement while the promise type is dependent"); 1670 1671 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1672 1673 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1674 auto DiagID = 1675 RequireUnhandledException 1676 ? diag::err_coroutine_promise_unhandled_exception_required 1677 : diag:: 1678 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1679 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1680 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1681 << PromiseRecordDecl; 1682 return !RequireUnhandledException; 1683 } 1684 1685 // If exceptions are disabled, don't try to build OnException. 1686 if (!S.getLangOpts().CXXExceptions) 1687 return true; 1688 1689 ExprResult UnhandledException = buildPromiseCall( 1690 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1691 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1692 /*DiscardedValue*/ false); 1693 if (UnhandledException.isInvalid()) 1694 return false; 1695 1696 // Since the body of the coroutine will be wrapped in try-catch, it will 1697 // be incompatible with SEH __try if present in a function. 1698 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1699 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1700 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1701 << Fn.getFirstCoroutineStmtKeyword(); 1702 return false; 1703 } 1704 1705 this->OnException = UnhandledException.get(); 1706 return true; 1707 } 1708 1709 bool CoroutineStmtBuilder::makeReturnObject() { 1710 // [dcl.fct.def.coroutine]p7 1711 // The expression promise.get_return_object() is used to initialize the 1712 // returned reference or prvalue result object of a call to a coroutine. 1713 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1714 "get_return_object", std::nullopt); 1715 if (ReturnObject.isInvalid()) 1716 return false; 1717 1718 this->ReturnValue = ReturnObject.get(); 1719 return true; 1720 } 1721 1722 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1723 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1724 auto *MethodDecl = MbrRef->getMethodDecl(); 1725 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1726 << MethodDecl; 1727 } 1728 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1729 << Fn.getFirstCoroutineStmtKeyword(); 1730 } 1731 1732 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1733 assert(!IsPromiseDependentType && 1734 "cannot make statement while the promise type is dependent"); 1735 assert(this->ReturnValue && "ReturnValue must be already formed"); 1736 1737 QualType const GroType = this->ReturnValue->getType(); 1738 assert(!GroType->isDependentType() && 1739 "get_return_object type must no longer be dependent"); 1740 1741 QualType const FnRetType = FD.getReturnType(); 1742 assert(!FnRetType->isDependentType() && 1743 "get_return_object type must no longer be dependent"); 1744 1745 // The call to get_return_object is sequenced before the call to 1746 // initial_suspend and is invoked at most once, but there are caveats 1747 // regarding on whether the prvalue result object may be initialized 1748 // directly/eager or delayed, depending on the types involved. 1749 // 1750 // More info at https://github.com/cplusplus/papers/issues/1414 1751 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1752 1753 if (FnRetType->isVoidType()) { 1754 ExprResult Res = 1755 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1756 if (Res.isInvalid()) 1757 return false; 1758 1759 if (!GroMatchesRetType) 1760 this->ResultDecl = Res.get(); 1761 return true; 1762 } 1763 1764 if (GroType->isVoidType()) { 1765 // Trigger a nice error message. 1766 InitializedEntity Entity = 1767 InitializedEntity::InitializeResult(Loc, FnRetType); 1768 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1769 noteMemberDeclaredHere(S, ReturnValue, Fn); 1770 return false; 1771 } 1772 1773 StmtResult ReturnStmt; 1774 clang::VarDecl *GroDecl = nullptr; 1775 if (GroMatchesRetType) { 1776 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1777 } else { 1778 GroDecl = VarDecl::Create( 1779 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1780 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1781 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1782 GroDecl->setImplicit(); 1783 1784 S.CheckVariableDeclarationType(GroDecl); 1785 if (GroDecl->isInvalidDecl()) 1786 return false; 1787 1788 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1789 ExprResult Res = 1790 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1791 if (Res.isInvalid()) 1792 return false; 1793 1794 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1795 if (Res.isInvalid()) 1796 return false; 1797 1798 S.AddInitializerToDecl(GroDecl, Res.get(), 1799 /*DirectInit=*/false); 1800 1801 S.FinalizeDeclaration(GroDecl); 1802 1803 // Form a declaration statement for the return declaration, so that AST 1804 // visitors can more easily find it. 1805 StmtResult GroDeclStmt = 1806 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1807 if (GroDeclStmt.isInvalid()) 1808 return false; 1809 1810 this->ResultDecl = GroDeclStmt.get(); 1811 1812 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1813 if (declRef.isInvalid()) 1814 return false; 1815 1816 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1817 } 1818 1819 if (ReturnStmt.isInvalid()) { 1820 noteMemberDeclaredHere(S, ReturnValue, Fn); 1821 return false; 1822 } 1823 1824 if (!GroMatchesRetType && 1825 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1826 GroDecl->setNRVOVariable(true); 1827 1828 this->ReturnStmt = ReturnStmt.get(); 1829 return true; 1830 } 1831 1832 // Create a static_cast\<T&&>(expr). 1833 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1834 if (T.isNull()) 1835 T = E->getType(); 1836 QualType TargetType = S.BuildReferenceType( 1837 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1838 SourceLocation ExprLoc = E->getBeginLoc(); 1839 TypeSourceInfo *TargetLoc = 1840 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1841 1842 return S 1843 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1844 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1845 .get(); 1846 } 1847 1848 /// Build a variable declaration for move parameter. 1849 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1850 IdentifierInfo *II) { 1851 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1852 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1853 TInfo, SC_None); 1854 Decl->setImplicit(); 1855 return Decl; 1856 } 1857 1858 // Build statements that move coroutine function parameters to the coroutine 1859 // frame, and store them on the function scope info. 1860 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1861 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1862 auto *FD = cast<FunctionDecl>(CurContext); 1863 1864 auto *ScopeInfo = getCurFunction(); 1865 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1866 return false; 1867 1868 // [dcl.fct.def.coroutine]p13 1869 // When a coroutine is invoked, after initializing its parameters 1870 // ([expr.call]), a copy is created for each coroutine parameter. For a 1871 // parameter of type cv T, the copy is a variable of type cv T with 1872 // automatic storage duration that is direct-initialized from an xvalue of 1873 // type T referring to the parameter. 1874 for (auto *PD : FD->parameters()) { 1875 if (PD->getType()->isDependentType()) 1876 continue; 1877 1878 ExprResult PDRefExpr = 1879 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1880 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1881 if (PDRefExpr.isInvalid()) 1882 return false; 1883 1884 Expr *CExpr = nullptr; 1885 if (PD->getType()->getAsCXXRecordDecl() || 1886 PD->getType()->isRValueReferenceType()) 1887 CExpr = castForMoving(*this, PDRefExpr.get()); 1888 else 1889 CExpr = PDRefExpr.get(); 1890 // [dcl.fct.def.coroutine]p13 1891 // The initialization and destruction of each parameter copy occurs in the 1892 // context of the called coroutine. 1893 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1894 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1895 1896 // Convert decl to a statement. 1897 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1898 if (Stmt.isInvalid()) 1899 return false; 1900 1901 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 1902 } 1903 return true; 1904 } 1905 1906 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 1907 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 1908 if (!Res) 1909 return StmtError(); 1910 return Res; 1911 } 1912 1913 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 1914 SourceLocation FuncLoc) { 1915 if (StdCoroutineTraitsCache) 1916 return StdCoroutineTraitsCache; 1917 1918 IdentifierInfo const &TraitIdent = 1919 PP.getIdentifierTable().get("coroutine_traits"); 1920 1921 NamespaceDecl *StdSpace = getStdNamespace(); 1922 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 1923 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 1924 1925 if (!Found) { 1926 // The goggles, we found nothing! 1927 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 1928 << "std::coroutine_traits"; 1929 return nullptr; 1930 } 1931 1932 // coroutine_traits is required to be a class template. 1933 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 1934 if (!StdCoroutineTraitsCache) { 1935 Result.suppressDiagnostics(); 1936 NamedDecl *Found = *Result.begin(); 1937 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 1938 return nullptr; 1939 } 1940 1941 return StdCoroutineTraitsCache; 1942 } 1943