xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCoroutine.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ Coroutines.
10 //
11 //  This file contains references to sections of the Coroutines TS, which
12 //  can be found at http://wg21.link/coroutines.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "CoroutineStmtBuilder.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/Expr.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/StmtCXX.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Lex/Preprocessor.h"
24 #include "clang/Sema/EnterExpressionEvaluationContext.h"
25 #include "clang/Sema/Initialization.h"
26 #include "clang/Sema/Overload.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "clang/Sema/SemaInternal.h"
29 #include "llvm/ADT/SmallSet.h"
30 
31 using namespace clang;
32 using namespace sema;
33 
34 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
35                                  SourceLocation Loc, bool &Res) {
36   DeclarationName DN = S.PP.getIdentifierInfo(Name);
37   LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
38   // Suppress diagnostics when a private member is selected. The same warnings
39   // will be produced again when building the call.
40   LR.suppressDiagnostics();
41   Res = S.LookupQualifiedName(LR, RD);
42   return LR;
43 }
44 
45 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
46                          SourceLocation Loc) {
47   bool Res;
48   lookupMember(S, Name, RD, Loc, Res);
49   return Res;
50 }
51 
52 /// Look up the std::coroutine_traits<...>::promise_type for the given
53 /// function type.
54 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
55                                   SourceLocation KwLoc) {
56   const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
57   const SourceLocation FuncLoc = FD->getLocation();
58 
59   ClassTemplateDecl *CoroTraits =
60       S.lookupCoroutineTraits(KwLoc, FuncLoc);
61   if (!CoroTraits)
62     return QualType();
63 
64   // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65   // to [dcl.fct.def.coroutine]3
66   TemplateArgumentListInfo Args(KwLoc, KwLoc);
67   auto AddArg = [&](QualType T) {
68     Args.addArgument(TemplateArgumentLoc(
69         TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc)));
70   };
71   AddArg(FnType->getReturnType());
72   // If the function is a non-static member function, add the type
73   // of the implicit object parameter before the formal parameters.
74   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
75     if (MD->isImplicitObjectMemberFunction()) {
76       // [over.match.funcs]4
77       // For non-static member functions, the type of the implicit object
78       // parameter is
79       //  -- "lvalue reference to cv X" for functions declared without a
80       //      ref-qualifier or with the & ref-qualifier
81       //  -- "rvalue reference to cv X" for functions declared with the &&
82       //      ref-qualifier
83       QualType T = MD->getFunctionObjectParameterType();
84       T = FnType->getRefQualifier() == RQ_RValue
85               ? S.Context.getRValueReferenceType(T)
86               : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87       AddArg(T);
88     }
89   }
90   for (QualType T : FnType->getParamTypes())
91     AddArg(T);
92 
93   // Build the template-id.
94   QualType CoroTrait =
95       S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args);
96   if (CoroTrait.isNull())
97     return QualType();
98   if (S.RequireCompleteType(KwLoc, CoroTrait,
99                             diag::err_coroutine_type_missing_specialization))
100     return QualType();
101 
102   auto *RD = CoroTrait->getAsCXXRecordDecl();
103   assert(RD && "specialization of class template is not a class?");
104 
105   // Look up the ::promise_type member.
106   LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc,
107                  Sema::LookupOrdinaryName);
108   S.LookupQualifiedName(R, RD);
109   auto *Promise = R.getAsSingle<TypeDecl>();
110   if (!Promise) {
111     S.Diag(FuncLoc,
112            diag::err_implied_std_coroutine_traits_promise_type_not_found)
113         << RD;
114     return QualType();
115   }
116   // The promise type is required to be a class type.
117   QualType PromiseType = S.Context.getTypeDeclType(Promise);
118 
119   auto buildElaboratedType = [&]() {
120     auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace());
121     NNS = NestedNameSpecifier::Create(S.Context, NNS, false,
122                                       CoroTrait.getTypePtr());
123     return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS,
124                                        PromiseType);
125   };
126 
127   if (!PromiseType->getAsCXXRecordDecl()) {
128     S.Diag(FuncLoc,
129            diag::err_implied_std_coroutine_traits_promise_type_not_class)
130         << buildElaboratedType();
131     return QualType();
132   }
133   if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
134                             diag::err_coroutine_promise_type_incomplete))
135     return QualType();
136 
137   return PromiseType;
138 }
139 
140 /// Look up the std::coroutine_handle<PromiseType>.
141 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
142                                           SourceLocation Loc) {
143   if (PromiseType.isNull())
144     return QualType();
145 
146   NamespaceDecl *CoroNamespace = S.getStdNamespace();
147   assert(CoroNamespace && "Should already be diagnosed");
148 
149   LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"),
150                       Loc, Sema::LookupOrdinaryName);
151   if (!S.LookupQualifiedName(Result, CoroNamespace)) {
152     S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
153         << "std::coroutine_handle";
154     return QualType();
155   }
156 
157   ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
158   if (!CoroHandle) {
159     Result.suppressDiagnostics();
160     // We found something weird. Complain about the first thing we found.
161     NamedDecl *Found = *Result.begin();
162     S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
163     return QualType();
164   }
165 
166   // Form template argument list for coroutine_handle<Promise>.
167   TemplateArgumentListInfo Args(Loc, Loc);
168   Args.addArgument(TemplateArgumentLoc(
169       TemplateArgument(PromiseType),
170       S.Context.getTrivialTypeSourceInfo(PromiseType, Loc)));
171 
172   // Build the template-id.
173   QualType CoroHandleType =
174       S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args);
175   if (CoroHandleType.isNull())
176     return QualType();
177   if (S.RequireCompleteType(Loc, CoroHandleType,
178                             diag::err_coroutine_type_missing_specialization))
179     return QualType();
180 
181   return CoroHandleType;
182 }
183 
184 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
185                                     StringRef Keyword) {
186   // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
187   // a function body.
188   // FIXME: This also covers [expr.await]p2: "An await-expression shall not
189   // appear in a default argument." But the diagnostic QoI here could be
190   // improved to inform the user that default arguments specifically are not
191   // allowed.
192   auto *FD = dyn_cast<FunctionDecl>(S.CurContext);
193   if (!FD) {
194     S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
195                     ? diag::err_coroutine_objc_method
196                     : diag::err_coroutine_outside_function) << Keyword;
197     return false;
198   }
199 
200   // An enumeration for mapping the diagnostic type to the correct diagnostic
201   // selection index.
202   enum InvalidFuncDiag {
203     DiagCtor = 0,
204     DiagDtor,
205     DiagMain,
206     DiagConstexpr,
207     DiagAutoRet,
208     DiagVarargs,
209     DiagConsteval,
210   };
211   bool Diagnosed = false;
212   auto DiagInvalid = [&](InvalidFuncDiag ID) {
213     S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
214     Diagnosed = true;
215     return false;
216   };
217 
218   // Diagnose when a constructor, destructor
219   // or the function 'main' are declared as a coroutine.
220   auto *MD = dyn_cast<CXXMethodDecl>(FD);
221   // [class.ctor]p11: "A constructor shall not be a coroutine."
222   if (MD && isa<CXXConstructorDecl>(MD))
223     return DiagInvalid(DiagCtor);
224   // [class.dtor]p17: "A destructor shall not be a coroutine."
225   else if (MD && isa<CXXDestructorDecl>(MD))
226     return DiagInvalid(DiagDtor);
227   // [basic.start.main]p3: "The function main shall not be a coroutine."
228   else if (FD->isMain())
229     return DiagInvalid(DiagMain);
230 
231   // Emit a diagnostics for each of the following conditions which is not met.
232   // [expr.const]p2: "An expression e is a core constant expression unless the
233   // evaluation of e [...] would evaluate one of the following expressions:
234   // [...] an await-expression [...] a yield-expression."
235   if (FD->isConstexpr())
236     DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
237   // [dcl.spec.auto]p15: "A function declared with a return type that uses a
238   // placeholder type shall not be a coroutine."
239   if (FD->getReturnType()->isUndeducedType())
240     DiagInvalid(DiagAutoRet);
241   // [dcl.fct.def.coroutine]p1
242   // The parameter-declaration-clause of the coroutine shall not terminate with
243   // an ellipsis that is not part of a parameter-declaration.
244   if (FD->isVariadic())
245     DiagInvalid(DiagVarargs);
246 
247   return !Diagnosed;
248 }
249 
250 /// Build a call to 'operator co_await' if there is a suitable operator for
251 /// the given expression.
252 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
253                                           UnresolvedLookupExpr *Lookup) {
254   UnresolvedSet<16> Functions;
255   Functions.append(Lookup->decls_begin(), Lookup->decls_end());
256   return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E);
257 }
258 
259 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
260                                            SourceLocation Loc, Expr *E) {
261   ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
262   if (R.isInvalid())
263     return ExprError();
264   return SemaRef.BuildOperatorCoawaitCall(Loc, E,
265                                           cast<UnresolvedLookupExpr>(R.get()));
266 }
267 
268 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
269                                        SourceLocation Loc) {
270   QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
271   if (CoroHandleType.isNull())
272     return ExprError();
273 
274   DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType);
275   LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc,
276                      Sema::LookupOrdinaryName);
277   if (!S.LookupQualifiedName(Found, LookupCtx)) {
278     S.Diag(Loc, diag::err_coroutine_handle_missing_member)
279         << "from_address";
280     return ExprError();
281   }
282 
283   Expr *FramePtr =
284       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
285 
286   CXXScopeSpec SS;
287   ExprResult FromAddr =
288       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
289   if (FromAddr.isInvalid())
290     return ExprError();
291 
292   return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc);
293 }
294 
295 struct ReadySuspendResumeResult {
296   enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
297   Expr *Results[3];
298   OpaqueValueExpr *OpaqueValue;
299   bool IsInvalid;
300 };
301 
302 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
303                                   StringRef Name, MultiExprArg Args) {
304   DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
305 
306   // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
307   CXXScopeSpec SS;
308   ExprResult Result = S.BuildMemberReferenceExpr(
309       Base, Base->getType(), Loc, /*IsPtr=*/false, SS,
310       SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr,
311       /*Scope=*/nullptr);
312   if (Result.isInvalid())
313     return ExprError();
314 
315   // We meant exactly what we asked for. No need for typo correction.
316   if (auto *TE = dyn_cast<TypoExpr>(Result.get())) {
317     S.clearDelayedTypo(TE);
318     S.Diag(Loc, diag::err_no_member)
319         << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
320         << Base->getSourceRange();
321     return ExprError();
322   }
323 
324   auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
325   return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr);
326 }
327 
328 // See if return type is coroutine-handle and if so, invoke builtin coro-resume
329 // on its address. This is to enable the support for coroutine-handle
330 // returning await_suspend that results in a guaranteed tail call to the target
331 // coroutine.
332 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
333                            SourceLocation Loc) {
334   if (RetType->isReferenceType())
335     return nullptr;
336   Type const *T = RetType.getTypePtr();
337   if (!T->isClassType() && !T->isStructureType())
338     return nullptr;
339 
340   // FIXME: Add convertability check to coroutine_handle<>. Possibly via
341   // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
342   // a private function in SemaExprCXX.cpp
343 
344   ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt);
345   if (AddressExpr.isInvalid())
346     return nullptr;
347 
348   Expr *JustAddress = AddressExpr.get();
349 
350   // FIXME: Without optimizations, the temporary result from `await_suspend()`
351   // may be put on the coroutine frame since the coroutine frame constructor
352   // will think the temporary variable will escape from the
353   // `coroutine_handle<>::address()` call. This is problematic since the
354   // coroutine should be considered to be suspended after it enters
355   // `await_suspend` so it shouldn't access/update the coroutine frame after
356   // that.
357   //
358   // See https://github.com/llvm/llvm-project/issues/65054 for the report.
359   //
360   // The long term solution may wrap the whole logic about `await-suspend`
361   // into a standalone function. This is similar to the proposed solution
362   // in tryMarkAwaitSuspendNoInline. See the comments there for details.
363   //
364   // The short term solution here is to mark `coroutine_handle<>::address()`
365   // function as always-inline so that the coroutine frame constructor won't
366   // think the temporary result is escaped incorrectly.
367   if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee())
368     if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>())
369       FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(),
370                                                    FD->getLocation()));
371 
372   // Check that the type of AddressExpr is void*
373   if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
374     S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
375            diag::warn_coroutine_handle_address_invalid_return_type)
376         << JustAddress->getType();
377 
378   // Clean up temporary objects so that they don't live across suspension points
379   // unnecessarily. We choose to clean up before the call to
380   // __builtin_coro_resume so that the cleanup code are not inserted in-between
381   // the resume call and return instruction, which would interfere with the
382   // musttail call contract.
383   JustAddress = S.MaybeCreateExprWithCleanups(JustAddress);
384   return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
385                                 JustAddress);
386 }
387 
388 /// The await_suspend call performed by co_await is essentially asynchronous
389 /// to the execution of the coroutine. Inlining it normally into an unsplit
390 /// coroutine can cause miscompilation because the coroutine CFG misrepresents
391 /// the true control flow of the program: things that happen in the
392 /// await_suspend are not guaranteed to happen prior to the resumption of the
393 /// coroutine, and things that happen after the resumption of the coroutine
394 /// (including its exit and the potential deallocation of the coroutine frame)
395 /// are not guaranteed to happen only after the end of await_suspend.
396 ///
397 /// See https://github.com/llvm/llvm-project/issues/56301 and
398 /// https://reviews.llvm.org/D157070 for the example and the full discussion.
399 ///
400 /// The short-term solution to this problem is to mark the call as uninlinable.
401 /// But we don't want to do this if the call is known to be trivial, which is
402 /// very common.
403 ///
404 /// The long-term solution may introduce patterns like:
405 ///
406 ///  call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle,
407 ///                                ptr @awaitSuspendFn)
408 ///
409 /// Then it is much easier to perform the safety analysis in the middle end.
410 /// If it is safe to inline the call to awaitSuspend, we can replace it in the
411 /// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass.
412 static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter,
413                                         CallExpr *AwaitSuspend) {
414   // The method here to extract the awaiter decl is not precise.
415   // This is intentional. Since it is hard to perform the analysis in the
416   // frontend due to the complexity of C++'s type systems.
417   // And we prefer to perform such analysis in the middle end since it is
418   // easier to implement and more powerful.
419   CXXRecordDecl *AwaiterDecl =
420       Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl();
421 
422   if (AwaiterDecl && AwaiterDecl->field_empty())
423     return;
424 
425   FunctionDecl *FD = AwaitSuspend->getDirectCallee();
426 
427   assert(FD);
428 
429   // If the `await_suspend()` function is marked as `always_inline` explicitly,
430   // we should give the user the right to control the codegen.
431   if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>())
432     return;
433 
434   // This is problematic if the user calls the await_suspend standalone. But on
435   // the on hand, it is not incorrect semantically since inlining is not part
436   // of the standard. On the other hand, it is relatively rare to call
437   // the await_suspend function standalone.
438   //
439   // And given we've already had the long-term plan, the current workaround
440   // looks relatively tolerant.
441   FD->addAttr(
442       NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation()));
443 }
444 
445 /// Build calls to await_ready, await_suspend, and await_resume for a co_await
446 /// expression.
447 /// The generated AST tries to clean up temporary objects as early as
448 /// possible so that they don't live across suspension points if possible.
449 /// Having temporary objects living across suspension points unnecessarily can
450 /// lead to large frame size, and also lead to memory corruptions if the
451 /// coroutine frame is destroyed after coming back from suspension. This is done
452 /// by wrapping both the await_ready call and the await_suspend call with
453 /// ExprWithCleanups. In the end of this function, we also need to explicitly
454 /// set cleanup state so that the CoawaitExpr is also wrapped with an
455 /// ExprWithCleanups to clean up the awaiter associated with the co_await
456 /// expression.
457 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
458                                                   SourceLocation Loc, Expr *E) {
459   OpaqueValueExpr *Operand = new (S.Context)
460       OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
461 
462   // Assume valid until we see otherwise.
463   // Further operations are responsible for setting IsInalid to true.
464   ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false};
465 
466   using ACT = ReadySuspendResumeResult::AwaitCallType;
467 
468   auto BuildSubExpr = [&](ACT CallType, StringRef Func,
469                           MultiExprArg Arg) -> Expr * {
470     ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
471     if (Result.isInvalid()) {
472       Calls.IsInvalid = true;
473       return nullptr;
474     }
475     Calls.Results[CallType] = Result.get();
476     return Result.get();
477   };
478 
479   CallExpr *AwaitReady = cast_or_null<CallExpr>(
480       BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
481   if (!AwaitReady)
482     return Calls;
483   if (!AwaitReady->getType()->isDependentType()) {
484     // [expr.await]p3 [...]
485     // — await-ready is the expression e.await_ready(), contextually converted
486     // to bool.
487     ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
488     if (Conv.isInvalid()) {
489       S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
490              diag::note_await_ready_no_bool_conversion);
491       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
492           << AwaitReady->getDirectCallee() << E->getSourceRange();
493       Calls.IsInvalid = true;
494     } else
495       Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get());
496   }
497 
498   ExprResult CoroHandleRes =
499       buildCoroutineHandle(S, CoroPromise->getType(), Loc);
500   if (CoroHandleRes.isInvalid()) {
501     Calls.IsInvalid = true;
502     return Calls;
503   }
504   Expr *CoroHandle = CoroHandleRes.get();
505   CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
506       BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
507   if (!AwaitSuspend)
508     return Calls;
509   if (!AwaitSuspend->getType()->isDependentType()) {
510     // [expr.await]p3 [...]
511     //   - await-suspend is the expression e.await_suspend(h), which shall be
512     //     a prvalue of type void, bool, or std::coroutine_handle<Z> for some
513     //     type Z.
514     QualType RetType = AwaitSuspend->getCallReturnType(S.Context);
515 
516     // We need to mark await_suspend as noinline temporarily. See the comment
517     // of tryMarkAwaitSuspendNoInline for details.
518     tryMarkAwaitSuspendNoInline(S, Operand, AwaitSuspend);
519 
520     // Support for coroutine_handle returning await_suspend.
521     if (Expr *TailCallSuspend =
522             maybeTailCall(S, RetType, AwaitSuspend, Loc))
523       // Note that we don't wrap the expression with ExprWithCleanups here
524       // because that might interfere with tailcall contract (e.g. inserting
525       // clean up instructions in-between tailcall and return). Instead
526       // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
527       // call.
528       Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
529     else {
530       // non-class prvalues always have cv-unqualified types
531       if (RetType->isReferenceType() ||
532           (!RetType->isBooleanType() && !RetType->isVoidType())) {
533         S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
534                diag::err_await_suspend_invalid_return_type)
535             << RetType;
536         S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
537             << AwaitSuspend->getDirectCallee();
538         Calls.IsInvalid = true;
539       } else
540         Calls.Results[ACT::ACT_Suspend] =
541             S.MaybeCreateExprWithCleanups(AwaitSuspend);
542     }
543   }
544 
545   BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
546 
547   // Make sure the awaiter object gets a chance to be cleaned up.
548   S.Cleanup.setExprNeedsCleanups(true);
549 
550   return Calls;
551 }
552 
553 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
554                                    SourceLocation Loc, StringRef Name,
555                                    MultiExprArg Args) {
556 
557   // Form a reference to the promise.
558   ExprResult PromiseRef = S.BuildDeclRefExpr(
559       Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
560   if (PromiseRef.isInvalid())
561     return ExprError();
562 
563   return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args);
564 }
565 
566 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
567   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
568   auto *FD = cast<FunctionDecl>(CurContext);
569   bool IsThisDependentType = [&] {
570     if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD))
571       return MD->isImplicitObjectMemberFunction() &&
572              MD->getThisType()->isDependentType();
573     return false;
574   }();
575 
576   QualType T = FD->getType()->isDependentType() || IsThisDependentType
577                    ? Context.DependentTy
578                    : lookupPromiseType(*this, FD, Loc);
579   if (T.isNull())
580     return nullptr;
581 
582   auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(),
583                              &PP.getIdentifierTable().get("__promise"), T,
584                              Context.getTrivialTypeSourceInfo(T, Loc), SC_None);
585   VD->setImplicit();
586   CheckVariableDeclarationType(VD);
587   if (VD->isInvalidDecl())
588     return nullptr;
589 
590   auto *ScopeInfo = getCurFunction();
591 
592   // Build a list of arguments, based on the coroutine function's arguments,
593   // that if present will be passed to the promise type's constructor.
594   llvm::SmallVector<Expr *, 4> CtorArgExprs;
595 
596   // Add implicit object parameter.
597   if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
598     if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
599       ExprResult ThisExpr = ActOnCXXThis(Loc);
600       if (ThisExpr.isInvalid())
601         return nullptr;
602       ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
603       if (ThisExpr.isInvalid())
604         return nullptr;
605       CtorArgExprs.push_back(ThisExpr.get());
606     }
607   }
608 
609   // Add the coroutine function's parameters.
610   auto &Moves = ScopeInfo->CoroutineParameterMoves;
611   for (auto *PD : FD->parameters()) {
612     if (PD->getType()->isDependentType())
613       continue;
614 
615     auto RefExpr = ExprEmpty();
616     auto Move = Moves.find(PD);
617     assert(Move != Moves.end() &&
618            "Coroutine function parameter not inserted into move map");
619     // If a reference to the function parameter exists in the coroutine
620     // frame, use that reference.
621     auto *MoveDecl =
622         cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl());
623     RefExpr =
624         BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
625                          ExprValueKind::VK_LValue, FD->getLocation());
626     if (RefExpr.isInvalid())
627       return nullptr;
628     CtorArgExprs.push_back(RefExpr.get());
629   }
630 
631   // If we have a non-zero number of constructor arguments, try to use them.
632   // Otherwise, fall back to the promise type's default constructor.
633   if (!CtorArgExprs.empty()) {
634     // Create an initialization sequence for the promise type using the
635     // constructor arguments, wrapped in a parenthesized list expression.
636     Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(),
637                                       CtorArgExprs, FD->getLocation());
638     InitializedEntity Entity = InitializedEntity::InitializeVariable(VD);
639     InitializationKind Kind = InitializationKind::CreateForInit(
640         VD->getLocation(), /*DirectInit=*/true, PLE);
641     InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
642                                    /*TopLevelOfInitList=*/false,
643                                    /*TreatUnavailableAsInvalid=*/false);
644 
645     // [dcl.fct.def.coroutine]5.7
646     // promise-constructor-arguments is determined as follows: overload
647     // resolution is performed on a promise constructor call created by
648     // assembling an argument list  q_1 ... q_n . If a viable constructor is
649     // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
650     // , ...,  q_n ), otherwise promise-constructor-arguments is empty.
651     if (InitSeq) {
652       ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs);
653       if (Result.isInvalid()) {
654         VD->setInvalidDecl();
655       } else if (Result.get()) {
656         VD->setInit(MaybeCreateExprWithCleanups(Result.get()));
657         VD->setInitStyle(VarDecl::CallInit);
658         CheckCompleteVariableDeclaration(VD);
659       }
660     } else
661       ActOnUninitializedDecl(VD);
662   } else
663     ActOnUninitializedDecl(VD);
664 
665   FD->addDecl(VD);
666   return VD;
667 }
668 
669 /// Check that this is a context in which a coroutine suspension can appear.
670 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
671                                                 StringRef Keyword,
672                                                 bool IsImplicit = false) {
673   if (!isValidCoroutineContext(S, Loc, Keyword))
674     return nullptr;
675 
676   assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
677 
678   auto *ScopeInfo = S.getCurFunction();
679   assert(ScopeInfo && "missing function scope for function");
680 
681   if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
682     ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
683 
684   if (ScopeInfo->CoroutinePromise)
685     return ScopeInfo;
686 
687   if (!S.buildCoroutineParameterMoves(Loc))
688     return nullptr;
689 
690   ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
691   if (!ScopeInfo->CoroutinePromise)
692     return nullptr;
693 
694   return ScopeInfo;
695 }
696 
697 /// Recursively check \p E and all its children to see if any call target
698 /// (including constructor call) is declared noexcept. Also any value returned
699 /// from the call has a noexcept destructor.
700 static void checkNoThrow(Sema &S, const Stmt *E,
701                          llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
702   auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
703     // In the case of dtor, the call to dtor is implicit and hence we should
704     // pass nullptr to canCalleeThrow.
705     if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) {
706       if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
707         // co_await promise.final_suspend() could end up calling
708         // __builtin_coro_resume for symmetric transfer if await_suspend()
709         // returns a handle. In that case, even __builtin_coro_resume is not
710         // declared as noexcept and may throw, it does not throw _into_ the
711         // coroutine that just suspended, but rather throws back out from
712         // whoever called coroutine_handle::resume(), hence we claim that
713         // logically it does not throw.
714         if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
715           return;
716       }
717       if (ThrowingDecls.empty()) {
718         // [dcl.fct.def.coroutine]p15
719         //   The expression co_await promise.final_suspend() shall not be
720         //   potentially-throwing ([except.spec]).
721         //
722         // First time seeing an error, emit the error message.
723         S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
724                diag::err_coroutine_promise_final_suspend_requires_nothrow);
725       }
726       ThrowingDecls.insert(D);
727     }
728   };
729 
730   if (auto *CE = dyn_cast<CXXConstructExpr>(E)) {
731     CXXConstructorDecl *Ctor = CE->getConstructor();
732     checkDeclNoexcept(Ctor);
733     // Check the corresponding destructor of the constructor.
734     checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
735   } else if (auto *CE = dyn_cast<CallExpr>(E)) {
736     if (CE->isTypeDependent())
737       return;
738 
739     checkDeclNoexcept(CE->getCalleeDecl());
740     QualType ReturnType = CE->getCallReturnType(S.getASTContext());
741     // Check the destructor of the call return type, if any.
742     if (ReturnType.isDestructedType() ==
743         QualType::DestructionKind::DK_cxx_destructor) {
744       const auto *T =
745           cast<RecordType>(ReturnType.getCanonicalType().getTypePtr());
746       checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(),
747                         /*IsDtor=*/true);
748     }
749   } else
750     for (const auto *Child : E->children()) {
751       if (!Child)
752         continue;
753       checkNoThrow(S, Child, ThrowingDecls);
754     }
755 }
756 
757 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
758   llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
759   // We first collect all declarations that should not throw but not declared
760   // with noexcept. We then sort them based on the location before printing.
761   // This is to avoid emitting the same note multiple times on the same
762   // declaration, and also provide a deterministic order for the messages.
763   checkNoThrow(*this, FinalSuspend, ThrowingDecls);
764   auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
765                                                         ThrowingDecls.end()};
766   sort(SortedDecls, [](const Decl *A, const Decl *B) {
767     return A->getEndLoc() < B->getEndLoc();
768   });
769   for (const auto *D : SortedDecls) {
770     Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
771   }
772   return ThrowingDecls.empty();
773 }
774 
775 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
776                                    StringRef Keyword) {
777   // Ignore previous expr evaluation contexts.
778   EnterExpressionEvaluationContext PotentiallyEvaluated(
779       *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
780   if (!checkCoroutineContext(*this, KWLoc, Keyword))
781     return false;
782   auto *ScopeInfo = getCurFunction();
783   assert(ScopeInfo->CoroutinePromise);
784 
785   // If we have existing coroutine statements then we have already built
786   // the initial and final suspend points.
787   if (!ScopeInfo->NeedsCoroutineSuspends)
788     return true;
789 
790   ScopeInfo->setNeedsCoroutineSuspends(false);
791 
792   auto *Fn = cast<FunctionDecl>(CurContext);
793   SourceLocation Loc = Fn->getLocation();
794   // Build the initial suspend point
795   auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
796     ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise,
797                                           Loc, Name, std::nullopt);
798     if (Operand.isInvalid())
799       return StmtError();
800     ExprResult Suspend =
801         buildOperatorCoawaitCall(*this, SC, Loc, Operand.get());
802     if (Suspend.isInvalid())
803       return StmtError();
804     Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(),
805                                        /*IsImplicit*/ true);
806     Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false);
807     if (Suspend.isInvalid()) {
808       Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
809           << ((Name == "initial_suspend") ? 0 : 1);
810       Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
811       return StmtError();
812     }
813     return cast<Stmt>(Suspend.get());
814   };
815 
816   StmtResult InitSuspend = buildSuspends("initial_suspend");
817   if (InitSuspend.isInvalid())
818     return true;
819 
820   StmtResult FinalSuspend = buildSuspends("final_suspend");
821   if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get()))
822     return true;
823 
824   ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get());
825 
826   return true;
827 }
828 
829 // Recursively walks up the scope hierarchy until either a 'catch' or a function
830 // scope is found, whichever comes first.
831 static bool isWithinCatchScope(Scope *S) {
832   // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
833   // lambdas that use 'co_await' are allowed. The loop below ends when a
834   // function scope is found in order to ensure the following behavior:
835   //
836   // void foo() {      // <- function scope
837   //   try {           //
838   //     co_await x;   // <- 'co_await' is OK within a function scope
839   //   } catch {       // <- catch scope
840   //     co_await x;   // <- 'co_await' is not OK within a catch scope
841   //     []() {        // <- function scope
842   //       co_await x; // <- 'co_await' is OK within a function scope
843   //     }();
844   //   }
845   // }
846   while (S && !S->isFunctionScope()) {
847     if (S->isCatchScope())
848       return true;
849     S = S->getParent();
850   }
851   return false;
852 }
853 
854 // [expr.await]p2, emphasis added: "An await-expression shall appear only in
855 // a *potentially evaluated* expression within the compound-statement of a
856 // function-body *outside of a handler* [...] A context within a function
857 // where an await-expression can appear is called a suspension context of the
858 // function."
859 static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
860                                    StringRef Keyword) {
861   // First emphasis of [expr.await]p2: must be a potentially evaluated context.
862   // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
863   // \c sizeof.
864   if (S.isUnevaluatedContext()) {
865     S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
866     return false;
867   }
868 
869   // Second emphasis of [expr.await]p2: must be outside of an exception handler.
870   if (isWithinCatchScope(S.getCurScope())) {
871     S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
872     return false;
873   }
874 
875   return true;
876 }
877 
878 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
879   if (!checkSuspensionContext(*this, Loc, "co_await"))
880     return ExprError();
881 
882   if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) {
883     CorrectDelayedTyposInExpr(E);
884     return ExprError();
885   }
886 
887   if (E->hasPlaceholderType()) {
888     ExprResult R = CheckPlaceholderExpr(E);
889     if (R.isInvalid()) return ExprError();
890     E = R.get();
891   }
892   ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
893   if (Lookup.isInvalid())
894     return ExprError();
895   return BuildUnresolvedCoawaitExpr(Loc, E,
896                                    cast<UnresolvedLookupExpr>(Lookup.get()));
897 }
898 
899 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
900   DeclarationName OpName =
901       Context.DeclarationNames.getCXXOperatorName(OO_Coawait);
902   LookupResult Operators(*this, OpName, SourceLocation(),
903                          Sema::LookupOperatorName);
904   LookupName(Operators, S);
905 
906   assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
907   const auto &Functions = Operators.asUnresolvedSet();
908   bool IsOverloaded =
909       Functions.size() > 1 ||
910       (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin()));
911   Expr *CoawaitOp = UnresolvedLookupExpr::Create(
912       Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
913       DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded,
914       Functions.begin(), Functions.end());
915   assert(CoawaitOp);
916   return CoawaitOp;
917 }
918 
919 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
920 // DependentCoawaitExpr if needed.
921 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
922                                             UnresolvedLookupExpr *Lookup) {
923   auto *FSI = checkCoroutineContext(*this, Loc, "co_await");
924   if (!FSI)
925     return ExprError();
926 
927   if (Operand->hasPlaceholderType()) {
928     ExprResult R = CheckPlaceholderExpr(Operand);
929     if (R.isInvalid())
930       return ExprError();
931     Operand = R.get();
932   }
933 
934   auto *Promise = FSI->CoroutinePromise;
935   if (Promise->getType()->isDependentType()) {
936     Expr *Res = new (Context)
937         DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
938     return Res;
939   }
940 
941   auto *RD = Promise->getType()->getAsCXXRecordDecl();
942   auto *Transformed = Operand;
943   if (lookupMember(*this, "await_transform", RD, Loc)) {
944     ExprResult R =
945         buildPromiseCall(*this, Promise, Loc, "await_transform", Operand);
946     if (R.isInvalid()) {
947       Diag(Loc,
948            diag::note_coroutine_promise_implicit_await_transform_required_here)
949           << Operand->getSourceRange();
950       return ExprError();
951     }
952     Transformed = R.get();
953   }
954   ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup);
955   if (Awaiter.isInvalid())
956     return ExprError();
957 
958   return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get());
959 }
960 
961 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
962                                           Expr *Awaiter, bool IsImplicit) {
963   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit);
964   if (!Coroutine)
965     return ExprError();
966 
967   if (Awaiter->hasPlaceholderType()) {
968     ExprResult R = CheckPlaceholderExpr(Awaiter);
969     if (R.isInvalid()) return ExprError();
970     Awaiter = R.get();
971   }
972 
973   if (Awaiter->getType()->isDependentType()) {
974     Expr *Res = new (Context)
975         CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
976     return Res;
977   }
978 
979   // If the expression is a temporary, materialize it as an lvalue so that we
980   // can use it multiple times.
981   if (Awaiter->isPRValue())
982     Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true);
983 
984   // The location of the `co_await` token cannot be used when constructing
985   // the member call expressions since it's before the location of `Expr`, which
986   // is used as the start of the member call expression.
987   SourceLocation CallLoc = Awaiter->getExprLoc();
988 
989   // Build the await_ready, await_suspend, await_resume calls.
990   ReadySuspendResumeResult RSS =
991       buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter);
992   if (RSS.IsInvalid)
993     return ExprError();
994 
995   Expr *Res = new (Context)
996       CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
997                   RSS.Results[2], RSS.OpaqueValue, IsImplicit);
998 
999   return Res;
1000 }
1001 
1002 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
1003   if (!checkSuspensionContext(*this, Loc, "co_yield"))
1004     return ExprError();
1005 
1006   if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) {
1007     CorrectDelayedTyposInExpr(E);
1008     return ExprError();
1009   }
1010 
1011   // Build yield_value call.
1012   ExprResult Awaitable = buildPromiseCall(
1013       *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E);
1014   if (Awaitable.isInvalid())
1015     return ExprError();
1016 
1017   // Build 'operator co_await' call.
1018   Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get());
1019   if (Awaitable.isInvalid())
1020     return ExprError();
1021 
1022   return BuildCoyieldExpr(Loc, Awaitable.get());
1023 }
1024 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
1025   auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield");
1026   if (!Coroutine)
1027     return ExprError();
1028 
1029   if (E->hasPlaceholderType()) {
1030     ExprResult R = CheckPlaceholderExpr(E);
1031     if (R.isInvalid()) return ExprError();
1032     E = R.get();
1033   }
1034 
1035   Expr *Operand = E;
1036 
1037   if (E->getType()->isDependentType()) {
1038     Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
1039     return Res;
1040   }
1041 
1042   // If the expression is a temporary, materialize it as an lvalue so that we
1043   // can use it multiple times.
1044   if (E->isPRValue())
1045     E = CreateMaterializeTemporaryExpr(E->getType(), E, true);
1046 
1047   // Build the await_ready, await_suspend, await_resume calls.
1048   ReadySuspendResumeResult RSS = buildCoawaitCalls(
1049       *this, Coroutine->CoroutinePromise, Loc, E);
1050   if (RSS.IsInvalid)
1051     return ExprError();
1052 
1053   Expr *Res =
1054       new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
1055                                 RSS.Results[2], RSS.OpaqueValue);
1056 
1057   return Res;
1058 }
1059 
1060 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
1061   if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) {
1062     CorrectDelayedTyposInExpr(E);
1063     return StmtError();
1064   }
1065   return BuildCoreturnStmt(Loc, E);
1066 }
1067 
1068 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
1069                                    bool IsImplicit) {
1070   auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit);
1071   if (!FSI)
1072     return StmtError();
1073 
1074   if (E && E->hasPlaceholderType() &&
1075       !E->hasPlaceholderType(BuiltinType::Overload)) {
1076     ExprResult R = CheckPlaceholderExpr(E);
1077     if (R.isInvalid()) return StmtError();
1078     E = R.get();
1079   }
1080 
1081   VarDecl *Promise = FSI->CoroutinePromise;
1082   ExprResult PC;
1083   if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) {
1084     getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn);
1085     PC = buildPromiseCall(*this, Promise, Loc, "return_value", E);
1086   } else {
1087     E = MakeFullDiscardedValueExpr(E).get();
1088     PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt);
1089   }
1090   if (PC.isInvalid())
1091     return StmtError();
1092 
1093   Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get();
1094 
1095   Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1096   return Res;
1097 }
1098 
1099 /// Look up the std::nothrow object.
1100 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1101   NamespaceDecl *Std = S.getStdNamespace();
1102   assert(Std && "Should already be diagnosed");
1103 
1104   LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc,
1105                       Sema::LookupOrdinaryName);
1106   if (!S.LookupQualifiedName(Result, Std)) {
1107     // <coroutine> is not requred to include <new>, so we couldn't omit
1108     // the check here.
1109     S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1110     return nullptr;
1111   }
1112 
1113   auto *VD = Result.getAsSingle<VarDecl>();
1114   if (!VD) {
1115     Result.suppressDiagnostics();
1116     // We found something weird. Complain about the first thing we found.
1117     NamedDecl *Found = *Result.begin();
1118     S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1119     return nullptr;
1120   }
1121 
1122   ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1123   if (DR.isInvalid())
1124     return nullptr;
1125 
1126   return DR.get();
1127 }
1128 
1129 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1130                                                         SourceLocation Loc) {
1131   EnumDecl *StdAlignValT = S.getStdAlignValT();
1132   QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1133   return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl);
1134 }
1135 
1136 // Find an appropriate delete for the promise.
1137 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1138                                  FunctionDecl *&OperatorDelete) {
1139   DeclarationName DeleteName =
1140       S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1141 
1142   auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1143   assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1144 
1145   const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1146 
1147   // [dcl.fct.def.coroutine]p12
1148   // The deallocation function's name is looked up by searching for it in the
1149   // scope of the promise type. If nothing is found, a search is performed in
1150   // the global scope.
1151   if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete,
1152                                  /*Diagnose*/ true, /*WantSize*/ true,
1153                                  /*WantAligned*/ Overaligned))
1154     return false;
1155 
1156   // [dcl.fct.def.coroutine]p12
1157   //   If both a usual deallocation function with only a pointer parameter and a
1158   //   usual deallocation function with both a pointer parameter and a size
1159   //   parameter are found, then the selected deallocation function shall be the
1160   //   one with two parameters. Otherwise, the selected deallocation function
1161   //   shall be the function with one parameter.
1162   if (!OperatorDelete) {
1163     // Look for a global declaration.
1164     // Coroutines can always provide their required size.
1165     const bool CanProvideSize = true;
1166     // Sema::FindUsualDeallocationFunction will try to find the one with two
1167     // parameters first. It will return the deallocation function with one
1168     // parameter if failed.
1169     OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize,
1170                                                      Overaligned, DeleteName);
1171 
1172     if (!OperatorDelete)
1173       return false;
1174   }
1175 
1176   S.MarkFunctionReferenced(Loc, OperatorDelete);
1177   return true;
1178 }
1179 
1180 
1181 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1182   FunctionScopeInfo *Fn = getCurFunction();
1183   assert(Fn && Fn->isCoroutine() && "not a coroutine");
1184   if (!Body) {
1185     assert(FD->isInvalidDecl() &&
1186            "a null body is only allowed for invalid declarations");
1187     return;
1188   }
1189   // We have a function that uses coroutine keywords, but we failed to build
1190   // the promise type.
1191   if (!Fn->CoroutinePromise)
1192     return FD->setInvalidDecl();
1193 
1194   if (isa<CoroutineBodyStmt>(Body)) {
1195     // Nothing todo. the body is already a transformed coroutine body statement.
1196     return;
1197   }
1198 
1199   // The always_inline attribute doesn't reliably apply to a coroutine,
1200   // because the coroutine will be split into pieces and some pieces
1201   // might be called indirectly, as in a virtual call. Even the ramp
1202   // function cannot be inlined at -O0, due to pipeline ordering
1203   // problems (see https://llvm.org/PR53413). Tell the user about it.
1204   if (FD->hasAttr<AlwaysInlineAttr>())
1205     Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1206 
1207   // The design of coroutines means we cannot allow use of VLAs within one, so
1208   // diagnose if we've seen a VLA in the body of this function.
1209   if (Fn->FirstVLALoc.isValid())
1210     Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
1211 
1212   // [stmt.return.coroutine]p1:
1213   //   A coroutine shall not enclose a return statement ([stmt.return]).
1214   if (Fn->FirstReturnLoc.isValid()) {
1215     assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1216                    "first coroutine location not set");
1217     Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1218     Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1219             << Fn->getFirstCoroutineStmtKeyword();
1220   }
1221 
1222   // Coroutines will get splitted into pieces. The GNU address of label
1223   // extension wouldn't be meaningful in coroutines.
1224   for (AddrLabelExpr *ALE : Fn->AddrLabels)
1225     Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1226 
1227   CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1228   if (Builder.isInvalid() || !Builder.buildStatements())
1229     return FD->setInvalidDecl();
1230 
1231   // Build body for the coroutine wrapper statement.
1232   Body = CoroutineBodyStmt::Create(Context, Builder);
1233 }
1234 
1235 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1236   if (auto *CS = dyn_cast<CompoundStmt>(Body))
1237     return CS;
1238 
1239   // The body of the coroutine may be a try statement if it is in
1240   // 'function-try-block' syntax. Here we wrap it into a compound
1241   // statement for consistency.
1242   assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1243   return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(),
1244                               SourceLocation(), SourceLocation());
1245 }
1246 
1247 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1248                                            sema::FunctionScopeInfo &Fn,
1249                                            Stmt *Body)
1250     : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1251       IsPromiseDependentType(
1252           !Fn.CoroutinePromise ||
1253           Fn.CoroutinePromise->getType()->isDependentType()) {
1254   this->Body = buildCoroutineBody(Body, S.getASTContext());
1255 
1256   for (auto KV : Fn.CoroutineParameterMoves)
1257     this->ParamMovesVector.push_back(KV.second);
1258   this->ParamMoves = this->ParamMovesVector;
1259 
1260   if (!IsPromiseDependentType) {
1261     PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1262     assert(PromiseRecordDecl && "Type should have already been checked");
1263   }
1264   this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1265 }
1266 
1267 bool CoroutineStmtBuilder::buildStatements() {
1268   assert(this->IsValid && "coroutine already invalid");
1269   this->IsValid = makeReturnObject();
1270   if (this->IsValid && !IsPromiseDependentType)
1271     buildDependentStatements();
1272   return this->IsValid;
1273 }
1274 
1275 bool CoroutineStmtBuilder::buildDependentStatements() {
1276   assert(this->IsValid && "coroutine already invalid");
1277   assert(!this->IsPromiseDependentType &&
1278          "coroutine cannot have a dependent promise type");
1279   this->IsValid = makeOnException() && makeOnFallthrough() &&
1280                   makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1281                   makeNewAndDeleteExpr();
1282   return this->IsValid;
1283 }
1284 
1285 bool CoroutineStmtBuilder::makePromiseStmt() {
1286   // Form a declaration statement for the promise declaration, so that AST
1287   // visitors can more easily find it.
1288   StmtResult PromiseStmt =
1289       S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc);
1290   if (PromiseStmt.isInvalid())
1291     return false;
1292 
1293   this->Promise = PromiseStmt.get();
1294   return true;
1295 }
1296 
1297 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1298   if (Fn.hasInvalidCoroutineSuspends())
1299     return false;
1300   this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first);
1301   this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second);
1302   return true;
1303 }
1304 
1305 static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1306                                      CXXRecordDecl *PromiseRecordDecl,
1307                                      FunctionScopeInfo &Fn) {
1308   auto Loc = E->getExprLoc();
1309   if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) {
1310     auto *Decl = DeclRef->getDecl();
1311     if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) {
1312       if (Method->isStatic())
1313         return true;
1314       else
1315         Loc = Decl->getLocation();
1316     }
1317   }
1318 
1319   S.Diag(
1320       Loc,
1321       diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1322       << PromiseRecordDecl;
1323   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1324       << Fn.getFirstCoroutineStmtKeyword();
1325   return false;
1326 }
1327 
1328 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1329   assert(!IsPromiseDependentType &&
1330          "cannot make statement while the promise type is dependent");
1331 
1332   // [dcl.fct.def.coroutine]p10
1333   //   If a search for the name get_return_object_on_allocation_failure in
1334   // the scope of the promise type ([class.member.lookup]) finds any
1335   // declarations, then the result of a call to an allocation function used to
1336   // obtain storage for the coroutine state is assumed to return nullptr if it
1337   // fails to obtain storage, ... If the allocation function returns nullptr,
1338   // ... and the return value is obtained by a call to
1339   // T::get_return_object_on_allocation_failure(), where T is the
1340   // promise type.
1341   DeclarationName DN =
1342       S.PP.getIdentifierInfo("get_return_object_on_allocation_failure");
1343   LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1344   if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1345     return true;
1346 
1347   CXXScopeSpec SS;
1348   ExprResult DeclNameExpr =
1349       S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false);
1350   if (DeclNameExpr.isInvalid())
1351     return false;
1352 
1353   if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn))
1354     return false;
1355 
1356   ExprResult ReturnObjectOnAllocationFailure =
1357       S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc);
1358   if (ReturnObjectOnAllocationFailure.isInvalid())
1359     return false;
1360 
1361   StmtResult ReturnStmt =
1362       S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get());
1363   if (ReturnStmt.isInvalid()) {
1364     S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1365         << DN;
1366     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1367         << Fn.getFirstCoroutineStmtKeyword();
1368     return false;
1369   }
1370 
1371   this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1372   return true;
1373 }
1374 
1375 // Collect placement arguments for allocation function of coroutine FD.
1376 // Return true if we collect placement arguments succesfully. Return false,
1377 // otherwise.
1378 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1379                                  SmallVectorImpl<Expr *> &PlacementArgs) {
1380   if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) {
1381     if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
1382       ExprResult ThisExpr = S.ActOnCXXThis(Loc);
1383       if (ThisExpr.isInvalid())
1384         return false;
1385       ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get());
1386       if (ThisExpr.isInvalid())
1387         return false;
1388       PlacementArgs.push_back(ThisExpr.get());
1389     }
1390   }
1391 
1392   for (auto *PD : FD.parameters()) {
1393     if (PD->getType()->isDependentType())
1394       continue;
1395 
1396     // Build a reference to the parameter.
1397     auto PDLoc = PD->getLocation();
1398     ExprResult PDRefExpr =
1399         S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1400                            ExprValueKind::VK_LValue, PDLoc);
1401     if (PDRefExpr.isInvalid())
1402       return false;
1403 
1404     PlacementArgs.push_back(PDRefExpr.get());
1405   }
1406 
1407   return true;
1408 }
1409 
1410 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1411   // Form and check allocation and deallocation calls.
1412   assert(!IsPromiseDependentType &&
1413          "cannot make statement while the promise type is dependent");
1414   QualType PromiseType = Fn.CoroutinePromise->getType();
1415 
1416   if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1417     return false;
1418 
1419   const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1420 
1421   // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1422   // parameter list composed of the requested size of the coroutine state being
1423   // allocated, followed by the coroutine function's arguments. If a matching
1424   // allocation function exists, use it. Otherwise, use an allocation function
1425   // that just takes the requested size.
1426   //
1427   // [dcl.fct.def.coroutine]p9
1428   //   An implementation may need to allocate additional storage for a
1429   //   coroutine.
1430   // This storage is known as the coroutine state and is obtained by calling a
1431   // non-array allocation function ([basic.stc.dynamic.allocation]). The
1432   // allocation function's name is looked up by searching for it in the scope of
1433   // the promise type.
1434   // - If any declarations are found, overload resolution is performed on a
1435   // function call created by assembling an argument list. The first argument is
1436   // the amount of space requested, and has type std::size_t. The
1437   // lvalues p1 ... pn are the succeeding arguments.
1438   //
1439   // ...where "p1 ... pn" are defined earlier as:
1440   //
1441   // [dcl.fct.def.coroutine]p3
1442   //   The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1443   //   Pn>`
1444   // , where R is the return type of the function, and `P1, ..., Pn` are the
1445   // sequence of types of the non-object function parameters, preceded by the
1446   // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1447   // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1448   // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1449   // the i-th non-object function parameter for a non-static member function,
1450   // and p_i denotes the i-th function parameter otherwise. For a non-static
1451   // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1452   // lvalue that denotes the parameter copy corresponding to p_i.
1453 
1454   FunctionDecl *OperatorNew = nullptr;
1455   SmallVector<Expr *, 1> PlacementArgs;
1456 
1457   const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1458     DeclarationName NewName =
1459         S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New);
1460     LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1461 
1462     if (PromiseType->isRecordType())
1463       S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1464 
1465     return !R.empty() && !R.isAmbiguous();
1466   }();
1467 
1468   // Helper function to indicate whether the last lookup found the aligned
1469   // allocation function.
1470   bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1471   auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1472                                           Sema::AFS_Both,
1473                                       bool WithoutPlacementArgs = false,
1474                                       bool ForceNonAligned = false) {
1475     // [dcl.fct.def.coroutine]p9
1476     //   The allocation function's name is looked up by searching for it in the
1477     // scope of the promise type.
1478     // - If any declarations are found, ...
1479     // - If no declarations are found in the scope of the promise type, a search
1480     // is performed in the global scope.
1481     if (NewScope == Sema::AFS_Both)
1482       NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1483 
1484     PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1485     FunctionDecl *UnusedResult = nullptr;
1486     S.FindAllocationFunctions(Loc, SourceRange(), NewScope,
1487                               /*DeleteScope*/ Sema::AFS_Both, PromiseType,
1488                               /*isArray*/ false, PassAlignment,
1489                               WithoutPlacementArgs ? MultiExprArg{}
1490                                                    : PlacementArgs,
1491                               OperatorNew, UnusedResult, /*Diagnose*/ false);
1492   };
1493 
1494   // We don't expect to call to global operator new with (size, p0, …, pn).
1495   // So if we choose to lookup the allocation function in global scope, we
1496   // shouldn't lookup placement arguments.
1497   if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1498     return false;
1499 
1500   LookupAllocationFunction();
1501 
1502   if (PromiseContainsNew && !PlacementArgs.empty()) {
1503     // [dcl.fct.def.coroutine]p9
1504     //   If no viable function is found ([over.match.viable]), overload
1505     //   resolution
1506     // is performed again on a function call created by passing just the amount
1507     // of space required as an argument of type std::size_t.
1508     //
1509     // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1510     //   Otherwise, overload resolution is performed again on a function call
1511     //   created
1512     // by passing the amount of space requested as an argument of type
1513     // std::size_t as the first argument, and the requested alignment as
1514     // an argument of type std:align_val_t as the second argument.
1515     if (!OperatorNew ||
1516         (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1517       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1518                                /*WithoutPlacementArgs*/ true);
1519   }
1520 
1521   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1522   //   Otherwise, overload resolution is performed again on a function call
1523   //   created
1524   // by passing the amount of space requested as an argument of type
1525   // std::size_t as the first argument, and the lvalues p1 ... pn as the
1526   // succeeding arguments. Otherwise, overload resolution is performed again
1527   // on a function call created by passing just the amount of space required as
1528   // an argument of type std::size_t.
1529   //
1530   // So within the proposed change in P2014RO, the priority order of aligned
1531   // allocation functions wiht promise_type is:
1532   //
1533   //    void* operator new( std::size_t, std::align_val_t, placement_args... );
1534   //    void* operator new( std::size_t, std::align_val_t);
1535   //    void* operator new( std::size_t, placement_args... );
1536   //    void* operator new( std::size_t);
1537 
1538   // Helper variable to emit warnings.
1539   bool FoundNonAlignedInPromise = false;
1540   if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1541     if (!OperatorNew || !PassAlignment) {
1542       FoundNonAlignedInPromise = OperatorNew;
1543 
1544       LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1545                                /*WithoutPlacementArgs*/ false,
1546                                /*ForceNonAligned*/ true);
1547 
1548       if (!OperatorNew && !PlacementArgs.empty())
1549         LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1550                                  /*WithoutPlacementArgs*/ true,
1551                                  /*ForceNonAligned*/ true);
1552     }
1553 
1554   bool IsGlobalOverload =
1555       OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1556   // If we didn't find a class-local new declaration and non-throwing new
1557   // was is required then we need to lookup the non-throwing global operator
1558   // instead.
1559   if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1560     auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1561     if (!StdNoThrow)
1562       return false;
1563     PlacementArgs = {StdNoThrow};
1564     OperatorNew = nullptr;
1565     LookupAllocationFunction(Sema::AFS_Global);
1566   }
1567 
1568   // If we found a non-aligned allocation function in the promise_type,
1569   // it indicates the user forgot to update the allocation function. Let's emit
1570   // a warning here.
1571   if (FoundNonAlignedInPromise) {
1572     S.Diag(OperatorNew->getLocation(),
1573            diag::warn_non_aligned_allocation_function)
1574         << &FD;
1575   }
1576 
1577   if (!OperatorNew) {
1578     if (PromiseContainsNew)
1579       S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1580     else if (RequiresNoThrowAlloc)
1581       S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1582           << &FD << S.getLangOpts().CoroAlignedAllocation;
1583 
1584     return false;
1585   }
1586 
1587   if (RequiresNoThrowAlloc) {
1588     const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1589     if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1590       S.Diag(OperatorNew->getLocation(),
1591              diag::err_coroutine_promise_new_requires_nothrow)
1592           << OperatorNew;
1593       S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1594           << OperatorNew;
1595       return false;
1596     }
1597   }
1598 
1599   FunctionDecl *OperatorDelete = nullptr;
1600   if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1601     // FIXME: We should add an error here. According to:
1602     // [dcl.fct.def.coroutine]p12
1603     //   If no usual deallocation function is found, the program is ill-formed.
1604     return false;
1605   }
1606 
1607   Expr *FramePtr =
1608       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1609 
1610   Expr *FrameSize =
1611       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1612 
1613   Expr *FrameAlignment = nullptr;
1614 
1615   if (S.getLangOpts().CoroAlignedAllocation) {
1616     FrameAlignment =
1617         S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1618 
1619     TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1620     if (!AlignValTy)
1621       return false;
1622 
1623     FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy,
1624                                          FrameAlignment, SourceRange(Loc, Loc),
1625                                          SourceRange(Loc, Loc))
1626                          .get();
1627   }
1628 
1629   // Make new call.
1630   ExprResult NewRef =
1631       S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1632   if (NewRef.isInvalid())
1633     return false;
1634 
1635   SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1636   if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1637     NewArgs.push_back(FrameAlignment);
1638 
1639   if (OperatorNew->getNumParams() > NewArgs.size())
1640     llvm::append_range(NewArgs, PlacementArgs);
1641 
1642   ExprResult NewExpr =
1643       S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc);
1644   NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false);
1645   if (NewExpr.isInvalid())
1646     return false;
1647 
1648   // Make delete call.
1649 
1650   QualType OpDeleteQualType = OperatorDelete->getType();
1651 
1652   ExprResult DeleteRef =
1653       S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1654   if (DeleteRef.isInvalid())
1655     return false;
1656 
1657   Expr *CoroFree =
1658       S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1659 
1660   SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1661 
1662   // [dcl.fct.def.coroutine]p12
1663   //   The selected deallocation function shall be called with the address of
1664   //   the block of storage to be reclaimed as its first argument. If a
1665   //   deallocation function with a parameter of type std::size_t is
1666   //   used, the size of the block is passed as the corresponding argument.
1667   const auto *OpDeleteType =
1668       OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1669   if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1670       S.getASTContext().hasSameUnqualifiedType(
1671           OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType()))
1672     DeleteArgs.push_back(FrameSize);
1673 
1674   // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1675   //   If deallocation function lookup finds a usual deallocation function with
1676   //   a pointer parameter, size parameter and alignment parameter then this
1677   //   will be the selected deallocation function, otherwise if lookup finds a
1678   //   usual deallocation function with both a pointer parameter and a size
1679   //   parameter, then this will be the selected deallocation function.
1680   //   Otherwise, if lookup finds a usual deallocation function with only a
1681   //   pointer parameter, then this will be the selected deallocation
1682   //   function.
1683   //
1684   // So we are not forced to pass alignment to the deallocation function.
1685   if (S.getLangOpts().CoroAlignedAllocation &&
1686       OpDeleteType->getNumParams() > DeleteArgs.size() &&
1687       S.getASTContext().hasSameUnqualifiedType(
1688           OpDeleteType->getParamType(DeleteArgs.size()),
1689           FrameAlignment->getType()))
1690     DeleteArgs.push_back(FrameAlignment);
1691 
1692   ExprResult DeleteExpr =
1693       S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc);
1694   DeleteExpr =
1695       S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false);
1696   if (DeleteExpr.isInvalid())
1697     return false;
1698 
1699   this->Allocate = NewExpr.get();
1700   this->Deallocate = DeleteExpr.get();
1701 
1702   return true;
1703 }
1704 
1705 bool CoroutineStmtBuilder::makeOnFallthrough() {
1706   assert(!IsPromiseDependentType &&
1707          "cannot make statement while the promise type is dependent");
1708 
1709   // [dcl.fct.def.coroutine]/p6
1710   // If searches for the names return_void and return_value in the scope of
1711   // the promise type each find any declarations, the program is ill-formed.
1712   // [Note 1: If return_void is found, flowing off the end of a coroutine is
1713   // equivalent to a co_return with no operand. Otherwise, flowing off the end
1714   // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1715   // end note]
1716   bool HasRVoid, HasRValue;
1717   LookupResult LRVoid =
1718       lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid);
1719   LookupResult LRValue =
1720       lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue);
1721 
1722   StmtResult Fallthrough;
1723   if (HasRVoid && HasRValue) {
1724     // FIXME Improve this diagnostic
1725     S.Diag(FD.getLocation(),
1726            diag::err_coroutine_promise_incompatible_return_functions)
1727         << PromiseRecordDecl;
1728     S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1729            diag::note_member_first_declared_here)
1730         << LRVoid.getLookupName();
1731     S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1732            diag::note_member_first_declared_here)
1733         << LRValue.getLookupName();
1734     return false;
1735   } else if (!HasRVoid && !HasRValue) {
1736     // We need to set 'Fallthrough'. Otherwise the other analysis part might
1737     // think the coroutine has defined a return_value method. So it might emit
1738     // **false** positive warning. e.g.,
1739     //
1740     //    promise_without_return_func foo() {
1741     //        co_await something();
1742     //    }
1743     //
1744     // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1745     // co_return statements, which isn't correct.
1746     Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation());
1747     if (Fallthrough.isInvalid())
1748       return false;
1749   } else if (HasRVoid) {
1750     Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr,
1751                                       /*IsImplicit*/false);
1752     Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get());
1753     if (Fallthrough.isInvalid())
1754       return false;
1755   }
1756 
1757   this->OnFallthrough = Fallthrough.get();
1758   return true;
1759 }
1760 
1761 bool CoroutineStmtBuilder::makeOnException() {
1762   // Try to form 'p.unhandled_exception();'
1763   assert(!IsPromiseDependentType &&
1764          "cannot make statement while the promise type is dependent");
1765 
1766   const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1767 
1768   if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) {
1769     auto DiagID =
1770         RequireUnhandledException
1771             ? diag::err_coroutine_promise_unhandled_exception_required
1772             : diag::
1773                   warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1774     S.Diag(Loc, DiagID) << PromiseRecordDecl;
1775     S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1776         << PromiseRecordDecl;
1777     return !RequireUnhandledException;
1778   }
1779 
1780   // If exceptions are disabled, don't try to build OnException.
1781   if (!S.getLangOpts().CXXExceptions)
1782     return true;
1783 
1784   ExprResult UnhandledException = buildPromiseCall(
1785       S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt);
1786   UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc,
1787                                              /*DiscardedValue*/ false);
1788   if (UnhandledException.isInvalid())
1789     return false;
1790 
1791   // Since the body of the coroutine will be wrapped in try-catch, it will
1792   // be incompatible with SEH __try if present in a function.
1793   if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1794     S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1795     S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1796         << Fn.getFirstCoroutineStmtKeyword();
1797     return false;
1798   }
1799 
1800   this->OnException = UnhandledException.get();
1801   return true;
1802 }
1803 
1804 bool CoroutineStmtBuilder::makeReturnObject() {
1805   // [dcl.fct.def.coroutine]p7
1806   // The expression promise.get_return_object() is used to initialize the
1807   // returned reference or prvalue result object of a call to a coroutine.
1808   ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc,
1809                                              "get_return_object", std::nullopt);
1810   if (ReturnObject.isInvalid())
1811     return false;
1812 
1813   this->ReturnValue = ReturnObject.get();
1814   return true;
1815 }
1816 
1817 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1818   if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) {
1819     auto *MethodDecl = MbrRef->getMethodDecl();
1820     S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1821         << MethodDecl;
1822   }
1823   S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1824       << Fn.getFirstCoroutineStmtKeyword();
1825 }
1826 
1827 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1828   assert(!IsPromiseDependentType &&
1829          "cannot make statement while the promise type is dependent");
1830   assert(this->ReturnValue && "ReturnValue must be already formed");
1831 
1832   QualType const GroType = this->ReturnValue->getType();
1833   assert(!GroType->isDependentType() &&
1834          "get_return_object type must no longer be dependent");
1835 
1836   QualType const FnRetType = FD.getReturnType();
1837   assert(!FnRetType->isDependentType() &&
1838          "get_return_object type must no longer be dependent");
1839 
1840   // The call to get_­return_­object is sequenced before the call to
1841   // initial_­suspend and is invoked at most once, but there are caveats
1842   // regarding on whether the prvalue result object may be initialized
1843   // directly/eager or delayed, depending on the types involved.
1844   //
1845   // More info at https://github.com/cplusplus/papers/issues/1414
1846   bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType);
1847 
1848   if (FnRetType->isVoidType()) {
1849     ExprResult Res =
1850         S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false);
1851     if (Res.isInvalid())
1852       return false;
1853 
1854     if (!GroMatchesRetType)
1855       this->ResultDecl = Res.get();
1856     return true;
1857   }
1858 
1859   if (GroType->isVoidType()) {
1860     // Trigger a nice error message.
1861     InitializedEntity Entity =
1862         InitializedEntity::InitializeResult(Loc, FnRetType);
1863     S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1864     noteMemberDeclaredHere(S, ReturnValue, Fn);
1865     return false;
1866   }
1867 
1868   StmtResult ReturnStmt;
1869   clang::VarDecl *GroDecl = nullptr;
1870   if (GroMatchesRetType) {
1871     ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue);
1872   } else {
1873     GroDecl = VarDecl::Create(
1874         S.Context, &FD, FD.getLocation(), FD.getLocation(),
1875         &S.PP.getIdentifierTable().get("__coro_gro"), GroType,
1876         S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None);
1877     GroDecl->setImplicit();
1878 
1879     S.CheckVariableDeclarationType(GroDecl);
1880     if (GroDecl->isInvalidDecl())
1881       return false;
1882 
1883     InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl);
1884     ExprResult Res =
1885         S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue);
1886     if (Res.isInvalid())
1887       return false;
1888 
1889     Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false);
1890     if (Res.isInvalid())
1891       return false;
1892 
1893     S.AddInitializerToDecl(GroDecl, Res.get(),
1894                            /*DirectInit=*/false);
1895 
1896     S.FinalizeDeclaration(GroDecl);
1897 
1898     // Form a declaration statement for the return declaration, so that AST
1899     // visitors can more easily find it.
1900     StmtResult GroDeclStmt =
1901         S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc);
1902     if (GroDeclStmt.isInvalid())
1903       return false;
1904 
1905     this->ResultDecl = GroDeclStmt.get();
1906 
1907     ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1908     if (declRef.isInvalid())
1909       return false;
1910 
1911     ReturnStmt = S.BuildReturnStmt(Loc, declRef.get());
1912   }
1913 
1914   if (ReturnStmt.isInvalid()) {
1915     noteMemberDeclaredHere(S, ReturnValue, Fn);
1916     return false;
1917   }
1918 
1919   if (!GroMatchesRetType &&
1920       cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1921     GroDecl->setNRVOVariable(true);
1922 
1923   this->ReturnStmt = ReturnStmt.get();
1924   return true;
1925 }
1926 
1927 // Create a static_cast\<T&&>(expr).
1928 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1929   if (T.isNull())
1930     T = E->getType();
1931   QualType TargetType = S.BuildReferenceType(
1932       T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName());
1933   SourceLocation ExprLoc = E->getBeginLoc();
1934   TypeSourceInfo *TargetLoc =
1935       S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc);
1936 
1937   return S
1938       .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
1939                          SourceRange(ExprLoc, ExprLoc), E->getSourceRange())
1940       .get();
1941 }
1942 
1943 /// Build a variable declaration for move parameter.
1944 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1945                              IdentifierInfo *II) {
1946   TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc);
1947   VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type,
1948                                   TInfo, SC_None);
1949   Decl->setImplicit();
1950   return Decl;
1951 }
1952 
1953 // Build statements that move coroutine function parameters to the coroutine
1954 // frame, and store them on the function scope info.
1955 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1956   assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1957   auto *FD = cast<FunctionDecl>(CurContext);
1958 
1959   auto *ScopeInfo = getCurFunction();
1960   if (!ScopeInfo->CoroutineParameterMoves.empty())
1961     return false;
1962 
1963   // [dcl.fct.def.coroutine]p13
1964   //   When a coroutine is invoked, after initializing its parameters
1965   //   ([expr.call]), a copy is created for each coroutine parameter. For a
1966   //   parameter of type cv T, the copy is a variable of type cv T with
1967   //   automatic storage duration that is direct-initialized from an xvalue of
1968   //   type T referring to the parameter.
1969   for (auto *PD : FD->parameters()) {
1970     if (PD->getType()->isDependentType())
1971       continue;
1972 
1973     // Preserve the referenced state for unused parameter diagnostics.
1974     bool DeclReferenced = PD->isReferenced();
1975 
1976     ExprResult PDRefExpr =
1977         BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1978                          ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1979 
1980     PD->setReferenced(DeclReferenced);
1981 
1982     if (PDRefExpr.isInvalid())
1983       return false;
1984 
1985     Expr *CExpr = nullptr;
1986     if (PD->getType()->getAsCXXRecordDecl() ||
1987         PD->getType()->isRValueReferenceType())
1988       CExpr = castForMoving(*this, PDRefExpr.get());
1989     else
1990       CExpr = PDRefExpr.get();
1991     // [dcl.fct.def.coroutine]p13
1992     //   The initialization and destruction of each parameter copy occurs in the
1993     //   context of the called coroutine.
1994     auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1995     AddInitializerToDecl(D, CExpr, /*DirectInit=*/true);
1996 
1997     // Convert decl to a statement.
1998     StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc);
1999     if (Stmt.isInvalid())
2000       return false;
2001 
2002     ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get()));
2003   }
2004   return true;
2005 }
2006 
2007 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
2008   CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args);
2009   if (!Res)
2010     return StmtError();
2011   return Res;
2012 }
2013 
2014 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
2015                                                SourceLocation FuncLoc) {
2016   if (StdCoroutineTraitsCache)
2017     return StdCoroutineTraitsCache;
2018 
2019   IdentifierInfo const &TraitIdent =
2020       PP.getIdentifierTable().get("coroutine_traits");
2021 
2022   NamespaceDecl *StdSpace = getStdNamespace();
2023   LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
2024   bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
2025 
2026   if (!Found) {
2027     // The goggles, we found nothing!
2028     Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
2029         << "std::coroutine_traits";
2030     return nullptr;
2031   }
2032 
2033   // coroutine_traits is required to be a class template.
2034   StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
2035   if (!StdCoroutineTraitsCache) {
2036     Result.suppressDiagnostics();
2037     NamedDecl *Found = *Result.begin();
2038     Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
2039     return nullptr;
2040   }
2041 
2042   return StdCoroutineTraitsCache;
2043 }
2044