1 //===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for C++ Coroutines. 10 // 11 // This file contains references to sections of the Coroutines TS, which 12 // can be found at http://wg21.link/coroutines. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "CoroutineStmtBuilder.h" 17 #include "clang/AST/ASTLambda.h" 18 #include "clang/AST/Decl.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtCXX.h" 22 #include "clang/Basic/Builtins.h" 23 #include "clang/Lex/Preprocessor.h" 24 #include "clang/Sema/EnterExpressionEvaluationContext.h" 25 #include "clang/Sema/Initialization.h" 26 #include "clang/Sema/Overload.h" 27 #include "clang/Sema/ScopeInfo.h" 28 #include "clang/Sema/SemaInternal.h" 29 #include "llvm/ADT/SmallSet.h" 30 31 using namespace clang; 32 using namespace sema; 33 34 static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 35 SourceLocation Loc, bool &Res) { 36 DeclarationName DN = S.PP.getIdentifierInfo(Name); 37 LookupResult LR(S, DN, Loc, Sema::LookupMemberName); 38 // Suppress diagnostics when a private member is selected. The same warnings 39 // will be produced again when building the call. 40 LR.suppressDiagnostics(); 41 Res = S.LookupQualifiedName(LR, RD); 42 return LR; 43 } 44 45 static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD, 46 SourceLocation Loc) { 47 bool Res; 48 lookupMember(S, Name, RD, Loc, Res); 49 return Res; 50 } 51 52 /// Look up the std::coroutine_traits<...>::promise_type for the given 53 /// function type. 54 static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD, 55 SourceLocation KwLoc) { 56 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>(); 57 const SourceLocation FuncLoc = FD->getLocation(); 58 59 ClassTemplateDecl *CoroTraits = 60 S.lookupCoroutineTraits(KwLoc, FuncLoc); 61 if (!CoroTraits) 62 return QualType(); 63 64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according 65 // to [dcl.fct.def.coroutine]3 66 TemplateArgumentListInfo Args(KwLoc, KwLoc); 67 auto AddArg = [&](QualType T) { 68 Args.addArgument(TemplateArgumentLoc( 69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, KwLoc))); 70 }; 71 AddArg(FnType->getReturnType()); 72 // If the function is a non-static member function, add the type 73 // of the implicit object parameter before the formal parameters. 74 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 75 if (MD->isImplicitObjectMemberFunction()) { 76 // [over.match.funcs]4 77 // For non-static member functions, the type of the implicit object 78 // parameter is 79 // -- "lvalue reference to cv X" for functions declared without a 80 // ref-qualifier or with the & ref-qualifier 81 // -- "rvalue reference to cv X" for functions declared with the && 82 // ref-qualifier 83 QualType T = MD->getFunctionObjectParameterType(); 84 T = FnType->getRefQualifier() == RQ_RValue 85 ? S.Context.getRValueReferenceType(T) 86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true); 87 AddArg(T); 88 } 89 } 90 for (QualType T : FnType->getParamTypes()) 91 AddArg(T); 92 93 // Build the template-id. 94 QualType CoroTrait = 95 S.CheckTemplateIdType(TemplateName(CoroTraits), KwLoc, Args); 96 if (CoroTrait.isNull()) 97 return QualType(); 98 if (S.RequireCompleteType(KwLoc, CoroTrait, 99 diag::err_coroutine_type_missing_specialization)) 100 return QualType(); 101 102 auto *RD = CoroTrait->getAsCXXRecordDecl(); 103 assert(RD && "specialization of class template is not a class?"); 104 105 // Look up the ::promise_type member. 106 LookupResult R(S, &S.PP.getIdentifierTable().get("promise_type"), KwLoc, 107 Sema::LookupOrdinaryName); 108 S.LookupQualifiedName(R, RD); 109 auto *Promise = R.getAsSingle<TypeDecl>(); 110 if (!Promise) { 111 S.Diag(FuncLoc, 112 diag::err_implied_std_coroutine_traits_promise_type_not_found) 113 << RD; 114 return QualType(); 115 } 116 // The promise type is required to be a class type. 117 QualType PromiseType = S.Context.getTypeDeclType(Promise); 118 119 auto buildElaboratedType = [&]() { 120 auto *NNS = NestedNameSpecifier::Create(S.Context, nullptr, S.getStdNamespace()); 121 NNS = NestedNameSpecifier::Create(S.Context, NNS, false, 122 CoroTrait.getTypePtr()); 123 return S.Context.getElaboratedType(ElaboratedTypeKeyword::None, NNS, 124 PromiseType); 125 }; 126 127 if (!PromiseType->getAsCXXRecordDecl()) { 128 S.Diag(FuncLoc, 129 diag::err_implied_std_coroutine_traits_promise_type_not_class) 130 << buildElaboratedType(); 131 return QualType(); 132 } 133 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(), 134 diag::err_coroutine_promise_type_incomplete)) 135 return QualType(); 136 137 return PromiseType; 138 } 139 140 /// Look up the std::coroutine_handle<PromiseType>. 141 static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType, 142 SourceLocation Loc) { 143 if (PromiseType.isNull()) 144 return QualType(); 145 146 NamespaceDecl *CoroNamespace = S.getStdNamespace(); 147 assert(CoroNamespace && "Should already be diagnosed"); 148 149 LookupResult Result(S, &S.PP.getIdentifierTable().get("coroutine_handle"), 150 Loc, Sema::LookupOrdinaryName); 151 if (!S.LookupQualifiedName(Result, CoroNamespace)) { 152 S.Diag(Loc, diag::err_implied_coroutine_type_not_found) 153 << "std::coroutine_handle"; 154 return QualType(); 155 } 156 157 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>(); 158 if (!CoroHandle) { 159 Result.suppressDiagnostics(); 160 // We found something weird. Complain about the first thing we found. 161 NamedDecl *Found = *Result.begin(); 162 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle); 163 return QualType(); 164 } 165 166 // Form template argument list for coroutine_handle<Promise>. 167 TemplateArgumentListInfo Args(Loc, Loc); 168 Args.addArgument(TemplateArgumentLoc( 169 TemplateArgument(PromiseType), 170 S.Context.getTrivialTypeSourceInfo(PromiseType, Loc))); 171 172 // Build the template-id. 173 QualType CoroHandleType = 174 S.CheckTemplateIdType(TemplateName(CoroHandle), Loc, Args); 175 if (CoroHandleType.isNull()) 176 return QualType(); 177 if (S.RequireCompleteType(Loc, CoroHandleType, 178 diag::err_coroutine_type_missing_specialization)) 179 return QualType(); 180 181 return CoroHandleType; 182 } 183 184 static bool isValidCoroutineContext(Sema &S, SourceLocation Loc, 185 StringRef Keyword) { 186 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within 187 // a function body. 188 // FIXME: This also covers [expr.await]p2: "An await-expression shall not 189 // appear in a default argument." But the diagnostic QoI here could be 190 // improved to inform the user that default arguments specifically are not 191 // allowed. 192 auto *FD = dyn_cast<FunctionDecl>(S.CurContext); 193 if (!FD) { 194 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext) 195 ? diag::err_coroutine_objc_method 196 : diag::err_coroutine_outside_function) << Keyword; 197 return false; 198 } 199 200 // An enumeration for mapping the diagnostic type to the correct diagnostic 201 // selection index. 202 enum InvalidFuncDiag { 203 DiagCtor = 0, 204 DiagDtor, 205 DiagMain, 206 DiagConstexpr, 207 DiagAutoRet, 208 DiagVarargs, 209 DiagConsteval, 210 }; 211 bool Diagnosed = false; 212 auto DiagInvalid = [&](InvalidFuncDiag ID) { 213 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword; 214 Diagnosed = true; 215 return false; 216 }; 217 218 // Diagnose when a constructor, destructor 219 // or the function 'main' are declared as a coroutine. 220 auto *MD = dyn_cast<CXXMethodDecl>(FD); 221 // [class.ctor]p11: "A constructor shall not be a coroutine." 222 if (MD && isa<CXXConstructorDecl>(MD)) 223 return DiagInvalid(DiagCtor); 224 // [class.dtor]p17: "A destructor shall not be a coroutine." 225 else if (MD && isa<CXXDestructorDecl>(MD)) 226 return DiagInvalid(DiagDtor); 227 // [basic.start.main]p3: "The function main shall not be a coroutine." 228 else if (FD->isMain()) 229 return DiagInvalid(DiagMain); 230 231 // Emit a diagnostics for each of the following conditions which is not met. 232 // [expr.const]p2: "An expression e is a core constant expression unless the 233 // evaluation of e [...] would evaluate one of the following expressions: 234 // [...] an await-expression [...] a yield-expression." 235 if (FD->isConstexpr()) 236 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr); 237 // [dcl.spec.auto]p15: "A function declared with a return type that uses a 238 // placeholder type shall not be a coroutine." 239 if (FD->getReturnType()->isUndeducedType()) 240 DiagInvalid(DiagAutoRet); 241 // [dcl.fct.def.coroutine]p1 242 // The parameter-declaration-clause of the coroutine shall not terminate with 243 // an ellipsis that is not part of a parameter-declaration. 244 if (FD->isVariadic()) 245 DiagInvalid(DiagVarargs); 246 247 return !Diagnosed; 248 } 249 250 /// Build a call to 'operator co_await' if there is a suitable operator for 251 /// the given expression. 252 ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E, 253 UnresolvedLookupExpr *Lookup) { 254 UnresolvedSet<16> Functions; 255 Functions.append(Lookup->decls_begin(), Lookup->decls_end()); 256 return CreateOverloadedUnaryOp(Loc, UO_Coawait, Functions, E); 257 } 258 259 static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S, 260 SourceLocation Loc, Expr *E) { 261 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc); 262 if (R.isInvalid()) 263 return ExprError(); 264 return SemaRef.BuildOperatorCoawaitCall(Loc, E, 265 cast<UnresolvedLookupExpr>(R.get())); 266 } 267 268 static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType, 269 SourceLocation Loc) { 270 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc); 271 if (CoroHandleType.isNull()) 272 return ExprError(); 273 274 DeclContext *LookupCtx = S.computeDeclContext(CoroHandleType); 275 LookupResult Found(S, &S.PP.getIdentifierTable().get("from_address"), Loc, 276 Sema::LookupOrdinaryName); 277 if (!S.LookupQualifiedName(Found, LookupCtx)) { 278 S.Diag(Loc, diag::err_coroutine_handle_missing_member) 279 << "from_address"; 280 return ExprError(); 281 } 282 283 Expr *FramePtr = 284 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 285 286 CXXScopeSpec SS; 287 ExprResult FromAddr = 288 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 289 if (FromAddr.isInvalid()) 290 return ExprError(); 291 292 return S.BuildCallExpr(nullptr, FromAddr.get(), Loc, FramePtr, Loc); 293 } 294 295 struct ReadySuspendResumeResult { 296 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume }; 297 Expr *Results[3]; 298 OpaqueValueExpr *OpaqueValue; 299 bool IsInvalid; 300 }; 301 302 static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc, 303 StringRef Name, MultiExprArg Args) { 304 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc); 305 306 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&. 307 CXXScopeSpec SS; 308 ExprResult Result = S.BuildMemberReferenceExpr( 309 Base, Base->getType(), Loc, /*IsPtr=*/false, SS, 310 SourceLocation(), nullptr, NameInfo, /*TemplateArgs=*/nullptr, 311 /*Scope=*/nullptr); 312 if (Result.isInvalid()) 313 return ExprError(); 314 315 // We meant exactly what we asked for. No need for typo correction. 316 if (auto *TE = dyn_cast<TypoExpr>(Result.get())) { 317 S.clearDelayedTypo(TE); 318 S.Diag(Loc, diag::err_no_member) 319 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl() 320 << Base->getSourceRange(); 321 return ExprError(); 322 } 323 324 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc(); 325 return S.BuildCallExpr(nullptr, Result.get(), Loc, Args, EndLoc, nullptr); 326 } 327 328 // See if return type is coroutine-handle and if so, invoke builtin coro-resume 329 // on its address. This is to enable the support for coroutine-handle 330 // returning await_suspend that results in a guaranteed tail call to the target 331 // coroutine. 332 static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E, 333 SourceLocation Loc) { 334 if (RetType->isReferenceType()) 335 return nullptr; 336 Type const *T = RetType.getTypePtr(); 337 if (!T->isClassType() && !T->isStructureType()) 338 return nullptr; 339 340 // FIXME: Add convertability check to coroutine_handle<>. Possibly via 341 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment 342 // a private function in SemaExprCXX.cpp 343 344 ExprResult AddressExpr = buildMemberCall(S, E, Loc, "address", std::nullopt); 345 if (AddressExpr.isInvalid()) 346 return nullptr; 347 348 Expr *JustAddress = AddressExpr.get(); 349 350 // FIXME: Without optimizations, the temporary result from `await_suspend()` 351 // may be put on the coroutine frame since the coroutine frame constructor 352 // will think the temporary variable will escape from the 353 // `coroutine_handle<>::address()` call. This is problematic since the 354 // coroutine should be considered to be suspended after it enters 355 // `await_suspend` so it shouldn't access/update the coroutine frame after 356 // that. 357 // 358 // See https://github.com/llvm/llvm-project/issues/65054 for the report. 359 // 360 // The long term solution may wrap the whole logic about `await-suspend` 361 // into a standalone function. This is similar to the proposed solution 362 // in tryMarkAwaitSuspendNoInline. See the comments there for details. 363 // 364 // The short term solution here is to mark `coroutine_handle<>::address()` 365 // function as always-inline so that the coroutine frame constructor won't 366 // think the temporary result is escaped incorrectly. 367 if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee()) 368 if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>()) 369 FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(), 370 FD->getLocation())); 371 372 // Check that the type of AddressExpr is void* 373 if (!JustAddress->getType().getTypePtr()->isVoidPointerType()) 374 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(), 375 diag::warn_coroutine_handle_address_invalid_return_type) 376 << JustAddress->getType(); 377 378 // Clean up temporary objects so that they don't live across suspension points 379 // unnecessarily. We choose to clean up before the call to 380 // __builtin_coro_resume so that the cleanup code are not inserted in-between 381 // the resume call and return instruction, which would interfere with the 382 // musttail call contract. 383 JustAddress = S.MaybeCreateExprWithCleanups(JustAddress); 384 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume, 385 JustAddress); 386 } 387 388 /// The await_suspend call performed by co_await is essentially asynchronous 389 /// to the execution of the coroutine. Inlining it normally into an unsplit 390 /// coroutine can cause miscompilation because the coroutine CFG misrepresents 391 /// the true control flow of the program: things that happen in the 392 /// await_suspend are not guaranteed to happen prior to the resumption of the 393 /// coroutine, and things that happen after the resumption of the coroutine 394 /// (including its exit and the potential deallocation of the coroutine frame) 395 /// are not guaranteed to happen only after the end of await_suspend. 396 /// 397 /// See https://github.com/llvm/llvm-project/issues/56301 and 398 /// https://reviews.llvm.org/D157070 for the example and the full discussion. 399 /// 400 /// The short-term solution to this problem is to mark the call as uninlinable. 401 /// But we don't want to do this if the call is known to be trivial, which is 402 /// very common. 403 /// 404 /// The long-term solution may introduce patterns like: 405 /// 406 /// call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle, 407 /// ptr @awaitSuspendFn) 408 /// 409 /// Then it is much easier to perform the safety analysis in the middle end. 410 /// If it is safe to inline the call to awaitSuspend, we can replace it in the 411 /// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass. 412 static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter, 413 CallExpr *AwaitSuspend) { 414 // The method here to extract the awaiter decl is not precise. 415 // This is intentional. Since it is hard to perform the analysis in the 416 // frontend due to the complexity of C++'s type systems. 417 // And we prefer to perform such analysis in the middle end since it is 418 // easier to implement and more powerful. 419 CXXRecordDecl *AwaiterDecl = 420 Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl(); 421 422 if (AwaiterDecl && AwaiterDecl->field_empty()) 423 return; 424 425 FunctionDecl *FD = AwaitSuspend->getDirectCallee(); 426 427 assert(FD); 428 429 // If the `await_suspend()` function is marked as `always_inline` explicitly, 430 // we should give the user the right to control the codegen. 431 if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>()) 432 return; 433 434 // This is problematic if the user calls the await_suspend standalone. But on 435 // the on hand, it is not incorrect semantically since inlining is not part 436 // of the standard. On the other hand, it is relatively rare to call 437 // the await_suspend function standalone. 438 // 439 // And given we've already had the long-term plan, the current workaround 440 // looks relatively tolerant. 441 FD->addAttr( 442 NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation())); 443 } 444 445 /// Build calls to await_ready, await_suspend, and await_resume for a co_await 446 /// expression. 447 /// The generated AST tries to clean up temporary objects as early as 448 /// possible so that they don't live across suspension points if possible. 449 /// Having temporary objects living across suspension points unnecessarily can 450 /// lead to large frame size, and also lead to memory corruptions if the 451 /// coroutine frame is destroyed after coming back from suspension. This is done 452 /// by wrapping both the await_ready call and the await_suspend call with 453 /// ExprWithCleanups. In the end of this function, we also need to explicitly 454 /// set cleanup state so that the CoawaitExpr is also wrapped with an 455 /// ExprWithCleanups to clean up the awaiter associated with the co_await 456 /// expression. 457 static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise, 458 SourceLocation Loc, Expr *E) { 459 OpaqueValueExpr *Operand = new (S.Context) 460 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E); 461 462 // Assume valid until we see otherwise. 463 // Further operations are responsible for setting IsInalid to true. 464 ReadySuspendResumeResult Calls = {{}, Operand, /*IsInvalid=*/false}; 465 466 using ACT = ReadySuspendResumeResult::AwaitCallType; 467 468 auto BuildSubExpr = [&](ACT CallType, StringRef Func, 469 MultiExprArg Arg) -> Expr * { 470 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg); 471 if (Result.isInvalid()) { 472 Calls.IsInvalid = true; 473 return nullptr; 474 } 475 Calls.Results[CallType] = Result.get(); 476 return Result.get(); 477 }; 478 479 CallExpr *AwaitReady = cast_or_null<CallExpr>( 480 BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt)); 481 if (!AwaitReady) 482 return Calls; 483 if (!AwaitReady->getType()->isDependentType()) { 484 // [expr.await]p3 [...] 485 // — await-ready is the expression e.await_ready(), contextually converted 486 // to bool. 487 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady); 488 if (Conv.isInvalid()) { 489 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(), 490 diag::note_await_ready_no_bool_conversion); 491 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 492 << AwaitReady->getDirectCallee() << E->getSourceRange(); 493 Calls.IsInvalid = true; 494 } else 495 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(Conv.get()); 496 } 497 498 ExprResult CoroHandleRes = 499 buildCoroutineHandle(S, CoroPromise->getType(), Loc); 500 if (CoroHandleRes.isInvalid()) { 501 Calls.IsInvalid = true; 502 return Calls; 503 } 504 Expr *CoroHandle = CoroHandleRes.get(); 505 CallExpr *AwaitSuspend = cast_or_null<CallExpr>( 506 BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle)); 507 if (!AwaitSuspend) 508 return Calls; 509 if (!AwaitSuspend->getType()->isDependentType()) { 510 // [expr.await]p3 [...] 511 // - await-suspend is the expression e.await_suspend(h), which shall be 512 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some 513 // type Z. 514 QualType RetType = AwaitSuspend->getCallReturnType(S.Context); 515 516 // We need to mark await_suspend as noinline temporarily. See the comment 517 // of tryMarkAwaitSuspendNoInline for details. 518 tryMarkAwaitSuspendNoInline(S, Operand, AwaitSuspend); 519 520 // Support for coroutine_handle returning await_suspend. 521 if (Expr *TailCallSuspend = 522 maybeTailCall(S, RetType, AwaitSuspend, Loc)) 523 // Note that we don't wrap the expression with ExprWithCleanups here 524 // because that might interfere with tailcall contract (e.g. inserting 525 // clean up instructions in-between tailcall and return). Instead 526 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume 527 // call. 528 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend; 529 else { 530 // non-class prvalues always have cv-unqualified types 531 if (RetType->isReferenceType() || 532 (!RetType->isBooleanType() && !RetType->isVoidType())) { 533 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(), 534 diag::err_await_suspend_invalid_return_type) 535 << RetType; 536 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 537 << AwaitSuspend->getDirectCallee(); 538 Calls.IsInvalid = true; 539 } else 540 Calls.Results[ACT::ACT_Suspend] = 541 S.MaybeCreateExprWithCleanups(AwaitSuspend); 542 } 543 } 544 545 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt); 546 547 // Make sure the awaiter object gets a chance to be cleaned up. 548 S.Cleanup.setExprNeedsCleanups(true); 549 550 return Calls; 551 } 552 553 static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise, 554 SourceLocation Loc, StringRef Name, 555 MultiExprArg Args) { 556 557 // Form a reference to the promise. 558 ExprResult PromiseRef = S.BuildDeclRefExpr( 559 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc); 560 if (PromiseRef.isInvalid()) 561 return ExprError(); 562 563 return buildMemberCall(S, PromiseRef.get(), Loc, Name, Args); 564 } 565 566 VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) { 567 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 568 auto *FD = cast<FunctionDecl>(CurContext); 569 bool IsThisDependentType = [&] { 570 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(FD)) 571 return MD->isImplicitObjectMemberFunction() && 572 MD->getThisType()->isDependentType(); 573 return false; 574 }(); 575 576 QualType T = FD->getType()->isDependentType() || IsThisDependentType 577 ? Context.DependentTy 578 : lookupPromiseType(*this, FD, Loc); 579 if (T.isNull()) 580 return nullptr; 581 582 auto *VD = VarDecl::Create(Context, FD, FD->getLocation(), FD->getLocation(), 583 &PP.getIdentifierTable().get("__promise"), T, 584 Context.getTrivialTypeSourceInfo(T, Loc), SC_None); 585 VD->setImplicit(); 586 CheckVariableDeclarationType(VD); 587 if (VD->isInvalidDecl()) 588 return nullptr; 589 590 auto *ScopeInfo = getCurFunction(); 591 592 // Build a list of arguments, based on the coroutine function's arguments, 593 // that if present will be passed to the promise type's constructor. 594 llvm::SmallVector<Expr *, 4> CtorArgExprs; 595 596 // Add implicit object parameter. 597 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 598 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 599 ExprResult ThisExpr = ActOnCXXThis(Loc); 600 if (ThisExpr.isInvalid()) 601 return nullptr; 602 ThisExpr = CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 603 if (ThisExpr.isInvalid()) 604 return nullptr; 605 CtorArgExprs.push_back(ThisExpr.get()); 606 } 607 } 608 609 // Add the coroutine function's parameters. 610 auto &Moves = ScopeInfo->CoroutineParameterMoves; 611 for (auto *PD : FD->parameters()) { 612 if (PD->getType()->isDependentType()) 613 continue; 614 615 auto RefExpr = ExprEmpty(); 616 auto Move = Moves.find(PD); 617 assert(Move != Moves.end() && 618 "Coroutine function parameter not inserted into move map"); 619 // If a reference to the function parameter exists in the coroutine 620 // frame, use that reference. 621 auto *MoveDecl = 622 cast<VarDecl>(cast<DeclStmt>(Move->second)->getSingleDecl()); 623 RefExpr = 624 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(), 625 ExprValueKind::VK_LValue, FD->getLocation()); 626 if (RefExpr.isInvalid()) 627 return nullptr; 628 CtorArgExprs.push_back(RefExpr.get()); 629 } 630 631 // If we have a non-zero number of constructor arguments, try to use them. 632 // Otherwise, fall back to the promise type's default constructor. 633 if (!CtorArgExprs.empty()) { 634 // Create an initialization sequence for the promise type using the 635 // constructor arguments, wrapped in a parenthesized list expression. 636 Expr *PLE = ParenListExpr::Create(Context, FD->getLocation(), 637 CtorArgExprs, FD->getLocation()); 638 InitializedEntity Entity = InitializedEntity::InitializeVariable(VD); 639 InitializationKind Kind = InitializationKind::CreateForInit( 640 VD->getLocation(), /*DirectInit=*/true, PLE); 641 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs, 642 /*TopLevelOfInitList=*/false, 643 /*TreatUnavailableAsInvalid=*/false); 644 645 // [dcl.fct.def.coroutine]5.7 646 // promise-constructor-arguments is determined as follows: overload 647 // resolution is performed on a promise constructor call created by 648 // assembling an argument list q_1 ... q_n . If a viable constructor is 649 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1 650 // , ..., q_n ), otherwise promise-constructor-arguments is empty. 651 if (InitSeq) { 652 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, CtorArgExprs); 653 if (Result.isInvalid()) { 654 VD->setInvalidDecl(); 655 } else if (Result.get()) { 656 VD->setInit(MaybeCreateExprWithCleanups(Result.get())); 657 VD->setInitStyle(VarDecl::CallInit); 658 CheckCompleteVariableDeclaration(VD); 659 } 660 } else 661 ActOnUninitializedDecl(VD); 662 } else 663 ActOnUninitializedDecl(VD); 664 665 FD->addDecl(VD); 666 return VD; 667 } 668 669 /// Check that this is a context in which a coroutine suspension can appear. 670 static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc, 671 StringRef Keyword, 672 bool IsImplicit = false) { 673 if (!isValidCoroutineContext(S, Loc, Keyword)) 674 return nullptr; 675 676 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope"); 677 678 auto *ScopeInfo = S.getCurFunction(); 679 assert(ScopeInfo && "missing function scope for function"); 680 681 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit) 682 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword); 683 684 if (ScopeInfo->CoroutinePromise) 685 return ScopeInfo; 686 687 if (!S.buildCoroutineParameterMoves(Loc)) 688 return nullptr; 689 690 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc); 691 if (!ScopeInfo->CoroutinePromise) 692 return nullptr; 693 694 return ScopeInfo; 695 } 696 697 /// Recursively check \p E and all its children to see if any call target 698 /// (including constructor call) is declared noexcept. Also any value returned 699 /// from the call has a noexcept destructor. 700 static void checkNoThrow(Sema &S, const Stmt *E, 701 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) { 702 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) { 703 // In the case of dtor, the call to dtor is implicit and hence we should 704 // pass nullptr to canCalleeThrow. 705 if (Sema::canCalleeThrow(S, IsDtor ? nullptr : cast<Expr>(E), D)) { 706 if (const auto *FD = dyn_cast<FunctionDecl>(D)) { 707 // co_await promise.final_suspend() could end up calling 708 // __builtin_coro_resume for symmetric transfer if await_suspend() 709 // returns a handle. In that case, even __builtin_coro_resume is not 710 // declared as noexcept and may throw, it does not throw _into_ the 711 // coroutine that just suspended, but rather throws back out from 712 // whoever called coroutine_handle::resume(), hence we claim that 713 // logically it does not throw. 714 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume) 715 return; 716 } 717 if (ThrowingDecls.empty()) { 718 // [dcl.fct.def.coroutine]p15 719 // The expression co_await promise.final_suspend() shall not be 720 // potentially-throwing ([except.spec]). 721 // 722 // First time seeing an error, emit the error message. 723 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(), 724 diag::err_coroutine_promise_final_suspend_requires_nothrow); 725 } 726 ThrowingDecls.insert(D); 727 } 728 }; 729 730 if (auto *CE = dyn_cast<CXXConstructExpr>(E)) { 731 CXXConstructorDecl *Ctor = CE->getConstructor(); 732 checkDeclNoexcept(Ctor); 733 // Check the corresponding destructor of the constructor. 734 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true); 735 } else if (auto *CE = dyn_cast<CallExpr>(E)) { 736 if (CE->isTypeDependent()) 737 return; 738 739 checkDeclNoexcept(CE->getCalleeDecl()); 740 QualType ReturnType = CE->getCallReturnType(S.getASTContext()); 741 // Check the destructor of the call return type, if any. 742 if (ReturnType.isDestructedType() == 743 QualType::DestructionKind::DK_cxx_destructor) { 744 const auto *T = 745 cast<RecordType>(ReturnType.getCanonicalType().getTypePtr()); 746 checkDeclNoexcept(cast<CXXRecordDecl>(T->getDecl())->getDestructor(), 747 /*IsDtor=*/true); 748 } 749 } else 750 for (const auto *Child : E->children()) { 751 if (!Child) 752 continue; 753 checkNoThrow(S, Child, ThrowingDecls); 754 } 755 } 756 757 bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) { 758 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls; 759 // We first collect all declarations that should not throw but not declared 760 // with noexcept. We then sort them based on the location before printing. 761 // This is to avoid emitting the same note multiple times on the same 762 // declaration, and also provide a deterministic order for the messages. 763 checkNoThrow(*this, FinalSuspend, ThrowingDecls); 764 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(), 765 ThrowingDecls.end()}; 766 sort(SortedDecls, [](const Decl *A, const Decl *B) { 767 return A->getEndLoc() < B->getEndLoc(); 768 }); 769 for (const auto *D : SortedDecls) { 770 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept); 771 } 772 return ThrowingDecls.empty(); 773 } 774 775 bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc, 776 StringRef Keyword) { 777 // Ignore previous expr evaluation contexts. 778 EnterExpressionEvaluationContext PotentiallyEvaluated( 779 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 780 if (!checkCoroutineContext(*this, KWLoc, Keyword)) 781 return false; 782 auto *ScopeInfo = getCurFunction(); 783 assert(ScopeInfo->CoroutinePromise); 784 785 // If we have existing coroutine statements then we have already built 786 // the initial and final suspend points. 787 if (!ScopeInfo->NeedsCoroutineSuspends) 788 return true; 789 790 ScopeInfo->setNeedsCoroutineSuspends(false); 791 792 auto *Fn = cast<FunctionDecl>(CurContext); 793 SourceLocation Loc = Fn->getLocation(); 794 // Build the initial suspend point 795 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult { 796 ExprResult Operand = buildPromiseCall(*this, ScopeInfo->CoroutinePromise, 797 Loc, Name, std::nullopt); 798 if (Operand.isInvalid()) 799 return StmtError(); 800 ExprResult Suspend = 801 buildOperatorCoawaitCall(*this, SC, Loc, Operand.get()); 802 if (Suspend.isInvalid()) 803 return StmtError(); 804 Suspend = BuildResolvedCoawaitExpr(Loc, Operand.get(), Suspend.get(), 805 /*IsImplicit*/ true); 806 Suspend = ActOnFinishFullExpr(Suspend.get(), /*DiscardedValue*/ false); 807 if (Suspend.isInvalid()) { 808 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required) 809 << ((Name == "initial_suspend") ? 0 : 1); 810 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword; 811 return StmtError(); 812 } 813 return cast<Stmt>(Suspend.get()); 814 }; 815 816 StmtResult InitSuspend = buildSuspends("initial_suspend"); 817 if (InitSuspend.isInvalid()) 818 return true; 819 820 StmtResult FinalSuspend = buildSuspends("final_suspend"); 821 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend.get())) 822 return true; 823 824 ScopeInfo->setCoroutineSuspends(InitSuspend.get(), FinalSuspend.get()); 825 826 return true; 827 } 828 829 // Recursively walks up the scope hierarchy until either a 'catch' or a function 830 // scope is found, whichever comes first. 831 static bool isWithinCatchScope(Scope *S) { 832 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but 833 // lambdas that use 'co_await' are allowed. The loop below ends when a 834 // function scope is found in order to ensure the following behavior: 835 // 836 // void foo() { // <- function scope 837 // try { // 838 // co_await x; // <- 'co_await' is OK within a function scope 839 // } catch { // <- catch scope 840 // co_await x; // <- 'co_await' is not OK within a catch scope 841 // []() { // <- function scope 842 // co_await x; // <- 'co_await' is OK within a function scope 843 // }(); 844 // } 845 // } 846 while (S && !S->isFunctionScope()) { 847 if (S->isCatchScope()) 848 return true; 849 S = S->getParent(); 850 } 851 return false; 852 } 853 854 // [expr.await]p2, emphasis added: "An await-expression shall appear only in 855 // a *potentially evaluated* expression within the compound-statement of a 856 // function-body *outside of a handler* [...] A context within a function 857 // where an await-expression can appear is called a suspension context of the 858 // function." 859 static bool checkSuspensionContext(Sema &S, SourceLocation Loc, 860 StringRef Keyword) { 861 // First emphasis of [expr.await]p2: must be a potentially evaluated context. 862 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of 863 // \c sizeof. 864 if (S.isUnevaluatedContext()) { 865 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword; 866 return false; 867 } 868 869 // Second emphasis of [expr.await]p2: must be outside of an exception handler. 870 if (isWithinCatchScope(S.getCurScope())) { 871 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword; 872 return false; 873 } 874 875 return true; 876 } 877 878 ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) { 879 if (!checkSuspensionContext(*this, Loc, "co_await")) 880 return ExprError(); 881 882 if (!ActOnCoroutineBodyStart(S, Loc, "co_await")) { 883 CorrectDelayedTyposInExpr(E); 884 return ExprError(); 885 } 886 887 if (E->hasPlaceholderType()) { 888 ExprResult R = CheckPlaceholderExpr(E); 889 if (R.isInvalid()) return ExprError(); 890 E = R.get(); 891 } 892 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc); 893 if (Lookup.isInvalid()) 894 return ExprError(); 895 return BuildUnresolvedCoawaitExpr(Loc, E, 896 cast<UnresolvedLookupExpr>(Lookup.get())); 897 } 898 899 ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) { 900 DeclarationName OpName = 901 Context.DeclarationNames.getCXXOperatorName(OO_Coawait); 902 LookupResult Operators(*this, OpName, SourceLocation(), 903 Sema::LookupOperatorName); 904 LookupName(Operators, S); 905 906 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); 907 const auto &Functions = Operators.asUnresolvedSet(); 908 bool IsOverloaded = 909 Functions.size() > 1 || 910 (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); 911 Expr *CoawaitOp = UnresolvedLookupExpr::Create( 912 Context, /*NamingClass*/ nullptr, NestedNameSpecifierLoc(), 913 DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, IsOverloaded, 914 Functions.begin(), Functions.end()); 915 assert(CoawaitOp); 916 return CoawaitOp; 917 } 918 919 // Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to 920 // DependentCoawaitExpr if needed. 921 ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 922 UnresolvedLookupExpr *Lookup) { 923 auto *FSI = checkCoroutineContext(*this, Loc, "co_await"); 924 if (!FSI) 925 return ExprError(); 926 927 if (Operand->hasPlaceholderType()) { 928 ExprResult R = CheckPlaceholderExpr(Operand); 929 if (R.isInvalid()) 930 return ExprError(); 931 Operand = R.get(); 932 } 933 934 auto *Promise = FSI->CoroutinePromise; 935 if (Promise->getType()->isDependentType()) { 936 Expr *Res = new (Context) 937 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup); 938 return Res; 939 } 940 941 auto *RD = Promise->getType()->getAsCXXRecordDecl(); 942 auto *Transformed = Operand; 943 if (lookupMember(*this, "await_transform", RD, Loc)) { 944 ExprResult R = 945 buildPromiseCall(*this, Promise, Loc, "await_transform", Operand); 946 if (R.isInvalid()) { 947 Diag(Loc, 948 diag::note_coroutine_promise_implicit_await_transform_required_here) 949 << Operand->getSourceRange(); 950 return ExprError(); 951 } 952 Transformed = R.get(); 953 } 954 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, Transformed, Lookup); 955 if (Awaiter.isInvalid()) 956 return ExprError(); 957 958 return BuildResolvedCoawaitExpr(Loc, Operand, Awaiter.get()); 959 } 960 961 ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand, 962 Expr *Awaiter, bool IsImplicit) { 963 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_await", IsImplicit); 964 if (!Coroutine) 965 return ExprError(); 966 967 if (Awaiter->hasPlaceholderType()) { 968 ExprResult R = CheckPlaceholderExpr(Awaiter); 969 if (R.isInvalid()) return ExprError(); 970 Awaiter = R.get(); 971 } 972 973 if (Awaiter->getType()->isDependentType()) { 974 Expr *Res = new (Context) 975 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit); 976 return Res; 977 } 978 979 // If the expression is a temporary, materialize it as an lvalue so that we 980 // can use it multiple times. 981 if (Awaiter->isPRValue()) 982 Awaiter = CreateMaterializeTemporaryExpr(Awaiter->getType(), Awaiter, true); 983 984 // The location of the `co_await` token cannot be used when constructing 985 // the member call expressions since it's before the location of `Expr`, which 986 // is used as the start of the member call expression. 987 SourceLocation CallLoc = Awaiter->getExprLoc(); 988 989 // Build the await_ready, await_suspend, await_resume calls. 990 ReadySuspendResumeResult RSS = 991 buildCoawaitCalls(*this, Coroutine->CoroutinePromise, CallLoc, Awaiter); 992 if (RSS.IsInvalid) 993 return ExprError(); 994 995 Expr *Res = new (Context) 996 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1], 997 RSS.Results[2], RSS.OpaqueValue, IsImplicit); 998 999 return Res; 1000 } 1001 1002 ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) { 1003 if (!checkSuspensionContext(*this, Loc, "co_yield")) 1004 return ExprError(); 1005 1006 if (!ActOnCoroutineBodyStart(S, Loc, "co_yield")) { 1007 CorrectDelayedTyposInExpr(E); 1008 return ExprError(); 1009 } 1010 1011 // Build yield_value call. 1012 ExprResult Awaitable = buildPromiseCall( 1013 *this, getCurFunction()->CoroutinePromise, Loc, "yield_value", E); 1014 if (Awaitable.isInvalid()) 1015 return ExprError(); 1016 1017 // Build 'operator co_await' call. 1018 Awaitable = buildOperatorCoawaitCall(*this, S, Loc, Awaitable.get()); 1019 if (Awaitable.isInvalid()) 1020 return ExprError(); 1021 1022 return BuildCoyieldExpr(Loc, Awaitable.get()); 1023 } 1024 ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) { 1025 auto *Coroutine = checkCoroutineContext(*this, Loc, "co_yield"); 1026 if (!Coroutine) 1027 return ExprError(); 1028 1029 if (E->hasPlaceholderType()) { 1030 ExprResult R = CheckPlaceholderExpr(E); 1031 if (R.isInvalid()) return ExprError(); 1032 E = R.get(); 1033 } 1034 1035 Expr *Operand = E; 1036 1037 if (E->getType()->isDependentType()) { 1038 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E); 1039 return Res; 1040 } 1041 1042 // If the expression is a temporary, materialize it as an lvalue so that we 1043 // can use it multiple times. 1044 if (E->isPRValue()) 1045 E = CreateMaterializeTemporaryExpr(E->getType(), E, true); 1046 1047 // Build the await_ready, await_suspend, await_resume calls. 1048 ReadySuspendResumeResult RSS = buildCoawaitCalls( 1049 *this, Coroutine->CoroutinePromise, Loc, E); 1050 if (RSS.IsInvalid) 1051 return ExprError(); 1052 1053 Expr *Res = 1054 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1], 1055 RSS.Results[2], RSS.OpaqueValue); 1056 1057 return Res; 1058 } 1059 1060 StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) { 1061 if (!ActOnCoroutineBodyStart(S, Loc, "co_return")) { 1062 CorrectDelayedTyposInExpr(E); 1063 return StmtError(); 1064 } 1065 return BuildCoreturnStmt(Loc, E); 1066 } 1067 1068 StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E, 1069 bool IsImplicit) { 1070 auto *FSI = checkCoroutineContext(*this, Loc, "co_return", IsImplicit); 1071 if (!FSI) 1072 return StmtError(); 1073 1074 if (E && E->hasPlaceholderType() && 1075 !E->hasPlaceholderType(BuiltinType::Overload)) { 1076 ExprResult R = CheckPlaceholderExpr(E); 1077 if (R.isInvalid()) return StmtError(); 1078 E = R.get(); 1079 } 1080 1081 VarDecl *Promise = FSI->CoroutinePromise; 1082 ExprResult PC; 1083 if (E && (isa<InitListExpr>(E) || !E->getType()->isVoidType())) { 1084 getNamedReturnInfo(E, SimplerImplicitMoveMode::ForceOn); 1085 PC = buildPromiseCall(*this, Promise, Loc, "return_value", E); 1086 } else { 1087 E = MakeFullDiscardedValueExpr(E).get(); 1088 PC = buildPromiseCall(*this, Promise, Loc, "return_void", std::nullopt); 1089 } 1090 if (PC.isInvalid()) 1091 return StmtError(); 1092 1093 Expr *PCE = ActOnFinishFullExpr(PC.get(), /*DiscardedValue*/ false).get(); 1094 1095 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit); 1096 return Res; 1097 } 1098 1099 /// Look up the std::nothrow object. 1100 static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) { 1101 NamespaceDecl *Std = S.getStdNamespace(); 1102 assert(Std && "Should already be diagnosed"); 1103 1104 LookupResult Result(S, &S.PP.getIdentifierTable().get("nothrow"), Loc, 1105 Sema::LookupOrdinaryName); 1106 if (!S.LookupQualifiedName(Result, Std)) { 1107 // <coroutine> is not requred to include <new>, so we couldn't omit 1108 // the check here. 1109 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found); 1110 return nullptr; 1111 } 1112 1113 auto *VD = Result.getAsSingle<VarDecl>(); 1114 if (!VD) { 1115 Result.suppressDiagnostics(); 1116 // We found something weird. Complain about the first thing we found. 1117 NamedDecl *Found = *Result.begin(); 1118 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow); 1119 return nullptr; 1120 } 1121 1122 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc); 1123 if (DR.isInvalid()) 1124 return nullptr; 1125 1126 return DR.get(); 1127 } 1128 1129 static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S, 1130 SourceLocation Loc) { 1131 EnumDecl *StdAlignValT = S.getStdAlignValT(); 1132 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT); 1133 return S.Context.getTrivialTypeSourceInfo(StdAlignValDecl); 1134 } 1135 1136 // Find an appropriate delete for the promise. 1137 static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType, 1138 FunctionDecl *&OperatorDelete) { 1139 DeclarationName DeleteName = 1140 S.Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1141 1142 auto *PointeeRD = PromiseType->getAsCXXRecordDecl(); 1143 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type"); 1144 1145 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation; 1146 1147 // [dcl.fct.def.coroutine]p12 1148 // The deallocation function's name is looked up by searching for it in the 1149 // scope of the promise type. If nothing is found, a search is performed in 1150 // the global scope. 1151 if (S.FindDeallocationFunction(Loc, PointeeRD, DeleteName, OperatorDelete, 1152 /*Diagnose*/ true, /*WantSize*/ true, 1153 /*WantAligned*/ Overaligned)) 1154 return false; 1155 1156 // [dcl.fct.def.coroutine]p12 1157 // If both a usual deallocation function with only a pointer parameter and a 1158 // usual deallocation function with both a pointer parameter and a size 1159 // parameter are found, then the selected deallocation function shall be the 1160 // one with two parameters. Otherwise, the selected deallocation function 1161 // shall be the function with one parameter. 1162 if (!OperatorDelete) { 1163 // Look for a global declaration. 1164 // Coroutines can always provide their required size. 1165 const bool CanProvideSize = true; 1166 // Sema::FindUsualDeallocationFunction will try to find the one with two 1167 // parameters first. It will return the deallocation function with one 1168 // parameter if failed. 1169 OperatorDelete = S.FindUsualDeallocationFunction(Loc, CanProvideSize, 1170 Overaligned, DeleteName); 1171 1172 if (!OperatorDelete) 1173 return false; 1174 } 1175 1176 S.MarkFunctionReferenced(Loc, OperatorDelete); 1177 return true; 1178 } 1179 1180 1181 void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) { 1182 FunctionScopeInfo *Fn = getCurFunction(); 1183 assert(Fn && Fn->isCoroutine() && "not a coroutine"); 1184 if (!Body) { 1185 assert(FD->isInvalidDecl() && 1186 "a null body is only allowed for invalid declarations"); 1187 return; 1188 } 1189 // We have a function that uses coroutine keywords, but we failed to build 1190 // the promise type. 1191 if (!Fn->CoroutinePromise) 1192 return FD->setInvalidDecl(); 1193 1194 if (isa<CoroutineBodyStmt>(Body)) { 1195 // Nothing todo. the body is already a transformed coroutine body statement. 1196 return; 1197 } 1198 1199 // The always_inline attribute doesn't reliably apply to a coroutine, 1200 // because the coroutine will be split into pieces and some pieces 1201 // might be called indirectly, as in a virtual call. Even the ramp 1202 // function cannot be inlined at -O0, due to pipeline ordering 1203 // problems (see https://llvm.org/PR53413). Tell the user about it. 1204 if (FD->hasAttr<AlwaysInlineAttr>()) 1205 Diag(FD->getLocation(), diag::warn_always_inline_coroutine); 1206 1207 // The design of coroutines means we cannot allow use of VLAs within one, so 1208 // diagnose if we've seen a VLA in the body of this function. 1209 if (Fn->FirstVLALoc.isValid()) 1210 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported); 1211 1212 // [stmt.return.coroutine]p1: 1213 // A coroutine shall not enclose a return statement ([stmt.return]). 1214 if (Fn->FirstReturnLoc.isValid()) { 1215 assert(Fn->FirstCoroutineStmtLoc.isValid() && 1216 "first coroutine location not set"); 1217 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine); 1218 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1219 << Fn->getFirstCoroutineStmtKeyword(); 1220 } 1221 1222 // Coroutines will get splitted into pieces. The GNU address of label 1223 // extension wouldn't be meaningful in coroutines. 1224 for (AddrLabelExpr *ALE : Fn->AddrLabels) 1225 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label); 1226 1227 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body); 1228 if (Builder.isInvalid() || !Builder.buildStatements()) 1229 return FD->setInvalidDecl(); 1230 1231 // Build body for the coroutine wrapper statement. 1232 Body = CoroutineBodyStmt::Create(Context, Builder); 1233 } 1234 1235 static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) { 1236 if (auto *CS = dyn_cast<CompoundStmt>(Body)) 1237 return CS; 1238 1239 // The body of the coroutine may be a try statement if it is in 1240 // 'function-try-block' syntax. Here we wrap it into a compound 1241 // statement for consistency. 1242 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type"); 1243 return CompoundStmt::Create(Context, {Body}, FPOptionsOverride(), 1244 SourceLocation(), SourceLocation()); 1245 } 1246 1247 CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD, 1248 sema::FunctionScopeInfo &Fn, 1249 Stmt *Body) 1250 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()), 1251 IsPromiseDependentType( 1252 !Fn.CoroutinePromise || 1253 Fn.CoroutinePromise->getType()->isDependentType()) { 1254 this->Body = buildCoroutineBody(Body, S.getASTContext()); 1255 1256 for (auto KV : Fn.CoroutineParameterMoves) 1257 this->ParamMovesVector.push_back(KV.second); 1258 this->ParamMoves = this->ParamMovesVector; 1259 1260 if (!IsPromiseDependentType) { 1261 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl(); 1262 assert(PromiseRecordDecl && "Type should have already been checked"); 1263 } 1264 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend(); 1265 } 1266 1267 bool CoroutineStmtBuilder::buildStatements() { 1268 assert(this->IsValid && "coroutine already invalid"); 1269 this->IsValid = makeReturnObject(); 1270 if (this->IsValid && !IsPromiseDependentType) 1271 buildDependentStatements(); 1272 return this->IsValid; 1273 } 1274 1275 bool CoroutineStmtBuilder::buildDependentStatements() { 1276 assert(this->IsValid && "coroutine already invalid"); 1277 assert(!this->IsPromiseDependentType && 1278 "coroutine cannot have a dependent promise type"); 1279 this->IsValid = makeOnException() && makeOnFallthrough() && 1280 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() && 1281 makeNewAndDeleteExpr(); 1282 return this->IsValid; 1283 } 1284 1285 bool CoroutineStmtBuilder::makePromiseStmt() { 1286 // Form a declaration statement for the promise declaration, so that AST 1287 // visitors can more easily find it. 1288 StmtResult PromiseStmt = 1289 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), Loc, Loc); 1290 if (PromiseStmt.isInvalid()) 1291 return false; 1292 1293 this->Promise = PromiseStmt.get(); 1294 return true; 1295 } 1296 1297 bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() { 1298 if (Fn.hasInvalidCoroutineSuspends()) 1299 return false; 1300 this->InitialSuspend = cast<Expr>(Fn.CoroutineSuspends.first); 1301 this->FinalSuspend = cast<Expr>(Fn.CoroutineSuspends.second); 1302 return true; 1303 } 1304 1305 static bool diagReturnOnAllocFailure(Sema &S, Expr *E, 1306 CXXRecordDecl *PromiseRecordDecl, 1307 FunctionScopeInfo &Fn) { 1308 auto Loc = E->getExprLoc(); 1309 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(E)) { 1310 auto *Decl = DeclRef->getDecl(); 1311 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Decl)) { 1312 if (Method->isStatic()) 1313 return true; 1314 else 1315 Loc = Decl->getLocation(); 1316 } 1317 } 1318 1319 S.Diag( 1320 Loc, 1321 diag::err_coroutine_promise_get_return_object_on_allocation_failure) 1322 << PromiseRecordDecl; 1323 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1324 << Fn.getFirstCoroutineStmtKeyword(); 1325 return false; 1326 } 1327 1328 bool CoroutineStmtBuilder::makeReturnOnAllocFailure() { 1329 assert(!IsPromiseDependentType && 1330 "cannot make statement while the promise type is dependent"); 1331 1332 // [dcl.fct.def.coroutine]p10 1333 // If a search for the name get_return_object_on_allocation_failure in 1334 // the scope of the promise type ([class.member.lookup]) finds any 1335 // declarations, then the result of a call to an allocation function used to 1336 // obtain storage for the coroutine state is assumed to return nullptr if it 1337 // fails to obtain storage, ... If the allocation function returns nullptr, 1338 // ... and the return value is obtained by a call to 1339 // T::get_return_object_on_allocation_failure(), where T is the 1340 // promise type. 1341 DeclarationName DN = 1342 S.PP.getIdentifierInfo("get_return_object_on_allocation_failure"); 1343 LookupResult Found(S, DN, Loc, Sema::LookupMemberName); 1344 if (!S.LookupQualifiedName(Found, PromiseRecordDecl)) 1345 return true; 1346 1347 CXXScopeSpec SS; 1348 ExprResult DeclNameExpr = 1349 S.BuildDeclarationNameExpr(SS, Found, /*NeedsADL=*/false); 1350 if (DeclNameExpr.isInvalid()) 1351 return false; 1352 1353 if (!diagReturnOnAllocFailure(S, DeclNameExpr.get(), PromiseRecordDecl, Fn)) 1354 return false; 1355 1356 ExprResult ReturnObjectOnAllocationFailure = 1357 S.BuildCallExpr(nullptr, DeclNameExpr.get(), Loc, {}, Loc); 1358 if (ReturnObjectOnAllocationFailure.isInvalid()) 1359 return false; 1360 1361 StmtResult ReturnStmt = 1362 S.BuildReturnStmt(Loc, ReturnObjectOnAllocationFailure.get()); 1363 if (ReturnStmt.isInvalid()) { 1364 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here) 1365 << DN; 1366 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1367 << Fn.getFirstCoroutineStmtKeyword(); 1368 return false; 1369 } 1370 1371 this->ReturnStmtOnAllocFailure = ReturnStmt.get(); 1372 return true; 1373 } 1374 1375 // Collect placement arguments for allocation function of coroutine FD. 1376 // Return true if we collect placement arguments succesfully. Return false, 1377 // otherwise. 1378 static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc, 1379 SmallVectorImpl<Expr *> &PlacementArgs) { 1380 if (auto *MD = dyn_cast<CXXMethodDecl>(&FD)) { 1381 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) { 1382 ExprResult ThisExpr = S.ActOnCXXThis(Loc); 1383 if (ThisExpr.isInvalid()) 1384 return false; 1385 ThisExpr = S.CreateBuiltinUnaryOp(Loc, UO_Deref, ThisExpr.get()); 1386 if (ThisExpr.isInvalid()) 1387 return false; 1388 PlacementArgs.push_back(ThisExpr.get()); 1389 } 1390 } 1391 1392 for (auto *PD : FD.parameters()) { 1393 if (PD->getType()->isDependentType()) 1394 continue; 1395 1396 // Build a reference to the parameter. 1397 auto PDLoc = PD->getLocation(); 1398 ExprResult PDRefExpr = 1399 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(), 1400 ExprValueKind::VK_LValue, PDLoc); 1401 if (PDRefExpr.isInvalid()) 1402 return false; 1403 1404 PlacementArgs.push_back(PDRefExpr.get()); 1405 } 1406 1407 return true; 1408 } 1409 1410 bool CoroutineStmtBuilder::makeNewAndDeleteExpr() { 1411 // Form and check allocation and deallocation calls. 1412 assert(!IsPromiseDependentType && 1413 "cannot make statement while the promise type is dependent"); 1414 QualType PromiseType = Fn.CoroutinePromise->getType(); 1415 1416 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type)) 1417 return false; 1418 1419 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr; 1420 1421 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a 1422 // parameter list composed of the requested size of the coroutine state being 1423 // allocated, followed by the coroutine function's arguments. If a matching 1424 // allocation function exists, use it. Otherwise, use an allocation function 1425 // that just takes the requested size. 1426 // 1427 // [dcl.fct.def.coroutine]p9 1428 // An implementation may need to allocate additional storage for a 1429 // coroutine. 1430 // This storage is known as the coroutine state and is obtained by calling a 1431 // non-array allocation function ([basic.stc.dynamic.allocation]). The 1432 // allocation function's name is looked up by searching for it in the scope of 1433 // the promise type. 1434 // - If any declarations are found, overload resolution is performed on a 1435 // function call created by assembling an argument list. The first argument is 1436 // the amount of space requested, and has type std::size_t. The 1437 // lvalues p1 ... pn are the succeeding arguments. 1438 // 1439 // ...where "p1 ... pn" are defined earlier as: 1440 // 1441 // [dcl.fct.def.coroutine]p3 1442 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ..., 1443 // Pn>` 1444 // , where R is the return type of the function, and `P1, ..., Pn` are the 1445 // sequence of types of the non-object function parameters, preceded by the 1446 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static 1447 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an 1448 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes 1449 // the i-th non-object function parameter for a non-static member function, 1450 // and p_i denotes the i-th function parameter otherwise. For a non-static 1451 // member function, q_1 is an lvalue that denotes *this; any other q_i is an 1452 // lvalue that denotes the parameter copy corresponding to p_i. 1453 1454 FunctionDecl *OperatorNew = nullptr; 1455 SmallVector<Expr *, 1> PlacementArgs; 1456 1457 const bool PromiseContainsNew = [this, &PromiseType]() -> bool { 1458 DeclarationName NewName = 1459 S.getASTContext().DeclarationNames.getCXXOperatorName(OO_New); 1460 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName); 1461 1462 if (PromiseType->isRecordType()) 1463 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl()); 1464 1465 return !R.empty() && !R.isAmbiguous(); 1466 }(); 1467 1468 // Helper function to indicate whether the last lookup found the aligned 1469 // allocation function. 1470 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation; 1471 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope = 1472 Sema::AFS_Both, 1473 bool WithoutPlacementArgs = false, 1474 bool ForceNonAligned = false) { 1475 // [dcl.fct.def.coroutine]p9 1476 // The allocation function's name is looked up by searching for it in the 1477 // scope of the promise type. 1478 // - If any declarations are found, ... 1479 // - If no declarations are found in the scope of the promise type, a search 1480 // is performed in the global scope. 1481 if (NewScope == Sema::AFS_Both) 1482 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global; 1483 1484 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation; 1485 FunctionDecl *UnusedResult = nullptr; 1486 S.FindAllocationFunctions(Loc, SourceRange(), NewScope, 1487 /*DeleteScope*/ Sema::AFS_Both, PromiseType, 1488 /*isArray*/ false, PassAlignment, 1489 WithoutPlacementArgs ? MultiExprArg{} 1490 : PlacementArgs, 1491 OperatorNew, UnusedResult, /*Diagnose*/ false); 1492 }; 1493 1494 // We don't expect to call to global operator new with (size, p0, …, pn). 1495 // So if we choose to lookup the allocation function in global scope, we 1496 // shouldn't lookup placement arguments. 1497 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs)) 1498 return false; 1499 1500 LookupAllocationFunction(); 1501 1502 if (PromiseContainsNew && !PlacementArgs.empty()) { 1503 // [dcl.fct.def.coroutine]p9 1504 // If no viable function is found ([over.match.viable]), overload 1505 // resolution 1506 // is performed again on a function call created by passing just the amount 1507 // of space required as an argument of type std::size_t. 1508 // 1509 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0: 1510 // Otherwise, overload resolution is performed again on a function call 1511 // created 1512 // by passing the amount of space requested as an argument of type 1513 // std::size_t as the first argument, and the requested alignment as 1514 // an argument of type std:align_val_t as the second argument. 1515 if (!OperatorNew || 1516 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment)) 1517 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1518 /*WithoutPlacementArgs*/ true); 1519 } 1520 1521 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1522 // Otherwise, overload resolution is performed again on a function call 1523 // created 1524 // by passing the amount of space requested as an argument of type 1525 // std::size_t as the first argument, and the lvalues p1 ... pn as the 1526 // succeeding arguments. Otherwise, overload resolution is performed again 1527 // on a function call created by passing just the amount of space required as 1528 // an argument of type std::size_t. 1529 // 1530 // So within the proposed change in P2014RO, the priority order of aligned 1531 // allocation functions wiht promise_type is: 1532 // 1533 // void* operator new( std::size_t, std::align_val_t, placement_args... ); 1534 // void* operator new( std::size_t, std::align_val_t); 1535 // void* operator new( std::size_t, placement_args... ); 1536 // void* operator new( std::size_t); 1537 1538 // Helper variable to emit warnings. 1539 bool FoundNonAlignedInPromise = false; 1540 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation) 1541 if (!OperatorNew || !PassAlignment) { 1542 FoundNonAlignedInPromise = OperatorNew; 1543 1544 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1545 /*WithoutPlacementArgs*/ false, 1546 /*ForceNonAligned*/ true); 1547 1548 if (!OperatorNew && !PlacementArgs.empty()) 1549 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class, 1550 /*WithoutPlacementArgs*/ true, 1551 /*ForceNonAligned*/ true); 1552 } 1553 1554 bool IsGlobalOverload = 1555 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext()); 1556 // If we didn't find a class-local new declaration and non-throwing new 1557 // was is required then we need to lookup the non-throwing global operator 1558 // instead. 1559 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) { 1560 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc); 1561 if (!StdNoThrow) 1562 return false; 1563 PlacementArgs = {StdNoThrow}; 1564 OperatorNew = nullptr; 1565 LookupAllocationFunction(Sema::AFS_Global); 1566 } 1567 1568 // If we found a non-aligned allocation function in the promise_type, 1569 // it indicates the user forgot to update the allocation function. Let's emit 1570 // a warning here. 1571 if (FoundNonAlignedInPromise) { 1572 S.Diag(OperatorNew->getLocation(), 1573 diag::warn_non_aligned_allocation_function) 1574 << &FD; 1575 } 1576 1577 if (!OperatorNew) { 1578 if (PromiseContainsNew) 1579 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD; 1580 else if (RequiresNoThrowAlloc) 1581 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new) 1582 << &FD << S.getLangOpts().CoroAlignedAllocation; 1583 1584 return false; 1585 } 1586 1587 if (RequiresNoThrowAlloc) { 1588 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>(); 1589 if (!FT->isNothrow(/*ResultIfDependent*/ false)) { 1590 S.Diag(OperatorNew->getLocation(), 1591 diag::err_coroutine_promise_new_requires_nothrow) 1592 << OperatorNew; 1593 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required) 1594 << OperatorNew; 1595 return false; 1596 } 1597 } 1598 1599 FunctionDecl *OperatorDelete = nullptr; 1600 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) { 1601 // FIXME: We should add an error here. According to: 1602 // [dcl.fct.def.coroutine]p12 1603 // If no usual deallocation function is found, the program is ill-formed. 1604 return false; 1605 } 1606 1607 Expr *FramePtr = 1608 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {}); 1609 1610 Expr *FrameSize = 1611 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {}); 1612 1613 Expr *FrameAlignment = nullptr; 1614 1615 if (S.getLangOpts().CoroAlignedAllocation) { 1616 FrameAlignment = 1617 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {}); 1618 1619 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc); 1620 if (!AlignValTy) 1621 return false; 1622 1623 FrameAlignment = S.BuildCXXNamedCast(Loc, tok::kw_static_cast, AlignValTy, 1624 FrameAlignment, SourceRange(Loc, Loc), 1625 SourceRange(Loc, Loc)) 1626 .get(); 1627 } 1628 1629 // Make new call. 1630 ExprResult NewRef = 1631 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc); 1632 if (NewRef.isInvalid()) 1633 return false; 1634 1635 SmallVector<Expr *, 2> NewArgs(1, FrameSize); 1636 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment) 1637 NewArgs.push_back(FrameAlignment); 1638 1639 if (OperatorNew->getNumParams() > NewArgs.size()) 1640 llvm::append_range(NewArgs, PlacementArgs); 1641 1642 ExprResult NewExpr = 1643 S.BuildCallExpr(S.getCurScope(), NewRef.get(), Loc, NewArgs, Loc); 1644 NewExpr = S.ActOnFinishFullExpr(NewExpr.get(), /*DiscardedValue*/ false); 1645 if (NewExpr.isInvalid()) 1646 return false; 1647 1648 // Make delete call. 1649 1650 QualType OpDeleteQualType = OperatorDelete->getType(); 1651 1652 ExprResult DeleteRef = 1653 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc); 1654 if (DeleteRef.isInvalid()) 1655 return false; 1656 1657 Expr *CoroFree = 1658 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr}); 1659 1660 SmallVector<Expr *, 2> DeleteArgs{CoroFree}; 1661 1662 // [dcl.fct.def.coroutine]p12 1663 // The selected deallocation function shall be called with the address of 1664 // the block of storage to be reclaimed as its first argument. If a 1665 // deallocation function with a parameter of type std::size_t is 1666 // used, the size of the block is passed as the corresponding argument. 1667 const auto *OpDeleteType = 1668 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>(); 1669 if (OpDeleteType->getNumParams() > DeleteArgs.size() && 1670 S.getASTContext().hasSameUnqualifiedType( 1671 OpDeleteType->getParamType(DeleteArgs.size()), FrameSize->getType())) 1672 DeleteArgs.push_back(FrameSize); 1673 1674 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0: 1675 // If deallocation function lookup finds a usual deallocation function with 1676 // a pointer parameter, size parameter and alignment parameter then this 1677 // will be the selected deallocation function, otherwise if lookup finds a 1678 // usual deallocation function with both a pointer parameter and a size 1679 // parameter, then this will be the selected deallocation function. 1680 // Otherwise, if lookup finds a usual deallocation function with only a 1681 // pointer parameter, then this will be the selected deallocation 1682 // function. 1683 // 1684 // So we are not forced to pass alignment to the deallocation function. 1685 if (S.getLangOpts().CoroAlignedAllocation && 1686 OpDeleteType->getNumParams() > DeleteArgs.size() && 1687 S.getASTContext().hasSameUnqualifiedType( 1688 OpDeleteType->getParamType(DeleteArgs.size()), 1689 FrameAlignment->getType())) 1690 DeleteArgs.push_back(FrameAlignment); 1691 1692 ExprResult DeleteExpr = 1693 S.BuildCallExpr(S.getCurScope(), DeleteRef.get(), Loc, DeleteArgs, Loc); 1694 DeleteExpr = 1695 S.ActOnFinishFullExpr(DeleteExpr.get(), /*DiscardedValue*/ false); 1696 if (DeleteExpr.isInvalid()) 1697 return false; 1698 1699 this->Allocate = NewExpr.get(); 1700 this->Deallocate = DeleteExpr.get(); 1701 1702 return true; 1703 } 1704 1705 bool CoroutineStmtBuilder::makeOnFallthrough() { 1706 assert(!IsPromiseDependentType && 1707 "cannot make statement while the promise type is dependent"); 1708 1709 // [dcl.fct.def.coroutine]/p6 1710 // If searches for the names return_void and return_value in the scope of 1711 // the promise type each find any declarations, the program is ill-formed. 1712 // [Note 1: If return_void is found, flowing off the end of a coroutine is 1713 // equivalent to a co_return with no operand. Otherwise, flowing off the end 1714 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). — 1715 // end note] 1716 bool HasRVoid, HasRValue; 1717 LookupResult LRVoid = 1718 lookupMember(S, "return_void", PromiseRecordDecl, Loc, HasRVoid); 1719 LookupResult LRValue = 1720 lookupMember(S, "return_value", PromiseRecordDecl, Loc, HasRValue); 1721 1722 StmtResult Fallthrough; 1723 if (HasRVoid && HasRValue) { 1724 // FIXME Improve this diagnostic 1725 S.Diag(FD.getLocation(), 1726 diag::err_coroutine_promise_incompatible_return_functions) 1727 << PromiseRecordDecl; 1728 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(), 1729 diag::note_member_first_declared_here) 1730 << LRVoid.getLookupName(); 1731 S.Diag(LRValue.getRepresentativeDecl()->getLocation(), 1732 diag::note_member_first_declared_here) 1733 << LRValue.getLookupName(); 1734 return false; 1735 } else if (!HasRVoid && !HasRValue) { 1736 // We need to set 'Fallthrough'. Otherwise the other analysis part might 1737 // think the coroutine has defined a return_value method. So it might emit 1738 // **false** positive warning. e.g., 1739 // 1740 // promise_without_return_func foo() { 1741 // co_await something(); 1742 // } 1743 // 1744 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a 1745 // co_return statements, which isn't correct. 1746 Fallthrough = S.ActOnNullStmt(PromiseRecordDecl->getLocation()); 1747 if (Fallthrough.isInvalid()) 1748 return false; 1749 } else if (HasRVoid) { 1750 Fallthrough = S.BuildCoreturnStmt(FD.getLocation(), nullptr, 1751 /*IsImplicit*/false); 1752 Fallthrough = S.ActOnFinishFullStmt(Fallthrough.get()); 1753 if (Fallthrough.isInvalid()) 1754 return false; 1755 } 1756 1757 this->OnFallthrough = Fallthrough.get(); 1758 return true; 1759 } 1760 1761 bool CoroutineStmtBuilder::makeOnException() { 1762 // Try to form 'p.unhandled_exception();' 1763 assert(!IsPromiseDependentType && 1764 "cannot make statement while the promise type is dependent"); 1765 1766 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions; 1767 1768 if (!lookupMember(S, "unhandled_exception", PromiseRecordDecl, Loc)) { 1769 auto DiagID = 1770 RequireUnhandledException 1771 ? diag::err_coroutine_promise_unhandled_exception_required 1772 : diag:: 1773 warn_coroutine_promise_unhandled_exception_required_with_exceptions; 1774 S.Diag(Loc, DiagID) << PromiseRecordDecl; 1775 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here) 1776 << PromiseRecordDecl; 1777 return !RequireUnhandledException; 1778 } 1779 1780 // If exceptions are disabled, don't try to build OnException. 1781 if (!S.getLangOpts().CXXExceptions) 1782 return true; 1783 1784 ExprResult UnhandledException = buildPromiseCall( 1785 S, Fn.CoroutinePromise, Loc, "unhandled_exception", std::nullopt); 1786 UnhandledException = S.ActOnFinishFullExpr(UnhandledException.get(), Loc, 1787 /*DiscardedValue*/ false); 1788 if (UnhandledException.isInvalid()) 1789 return false; 1790 1791 // Since the body of the coroutine will be wrapped in try-catch, it will 1792 // be incompatible with SEH __try if present in a function. 1793 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) { 1794 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions); 1795 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1796 << Fn.getFirstCoroutineStmtKeyword(); 1797 return false; 1798 } 1799 1800 this->OnException = UnhandledException.get(); 1801 return true; 1802 } 1803 1804 bool CoroutineStmtBuilder::makeReturnObject() { 1805 // [dcl.fct.def.coroutine]p7 1806 // The expression promise.get_return_object() is used to initialize the 1807 // returned reference or prvalue result object of a call to a coroutine. 1808 ExprResult ReturnObject = buildPromiseCall(S, Fn.CoroutinePromise, Loc, 1809 "get_return_object", std::nullopt); 1810 if (ReturnObject.isInvalid()) 1811 return false; 1812 1813 this->ReturnValue = ReturnObject.get(); 1814 return true; 1815 } 1816 1817 static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) { 1818 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(E)) { 1819 auto *MethodDecl = MbrRef->getMethodDecl(); 1820 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here) 1821 << MethodDecl; 1822 } 1823 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here) 1824 << Fn.getFirstCoroutineStmtKeyword(); 1825 } 1826 1827 bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() { 1828 assert(!IsPromiseDependentType && 1829 "cannot make statement while the promise type is dependent"); 1830 assert(this->ReturnValue && "ReturnValue must be already formed"); 1831 1832 QualType const GroType = this->ReturnValue->getType(); 1833 assert(!GroType->isDependentType() && 1834 "get_return_object type must no longer be dependent"); 1835 1836 QualType const FnRetType = FD.getReturnType(); 1837 assert(!FnRetType->isDependentType() && 1838 "get_return_object type must no longer be dependent"); 1839 1840 // The call to get_return_object is sequenced before the call to 1841 // initial_suspend and is invoked at most once, but there are caveats 1842 // regarding on whether the prvalue result object may be initialized 1843 // directly/eager or delayed, depending on the types involved. 1844 // 1845 // More info at https://github.com/cplusplus/papers/issues/1414 1846 bool GroMatchesRetType = S.getASTContext().hasSameType(GroType, FnRetType); 1847 1848 if (FnRetType->isVoidType()) { 1849 ExprResult Res = 1850 S.ActOnFinishFullExpr(this->ReturnValue, Loc, /*DiscardedValue*/ false); 1851 if (Res.isInvalid()) 1852 return false; 1853 1854 if (!GroMatchesRetType) 1855 this->ResultDecl = Res.get(); 1856 return true; 1857 } 1858 1859 if (GroType->isVoidType()) { 1860 // Trigger a nice error message. 1861 InitializedEntity Entity = 1862 InitializedEntity::InitializeResult(Loc, FnRetType); 1863 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1864 noteMemberDeclaredHere(S, ReturnValue, Fn); 1865 return false; 1866 } 1867 1868 StmtResult ReturnStmt; 1869 clang::VarDecl *GroDecl = nullptr; 1870 if (GroMatchesRetType) { 1871 ReturnStmt = S.BuildReturnStmt(Loc, ReturnValue); 1872 } else { 1873 GroDecl = VarDecl::Create( 1874 S.Context, &FD, FD.getLocation(), FD.getLocation(), 1875 &S.PP.getIdentifierTable().get("__coro_gro"), GroType, 1876 S.Context.getTrivialTypeSourceInfo(GroType, Loc), SC_None); 1877 GroDecl->setImplicit(); 1878 1879 S.CheckVariableDeclarationType(GroDecl); 1880 if (GroDecl->isInvalidDecl()) 1881 return false; 1882 1883 InitializedEntity Entity = InitializedEntity::InitializeVariable(GroDecl); 1884 ExprResult Res = 1885 S.PerformCopyInitialization(Entity, SourceLocation(), ReturnValue); 1886 if (Res.isInvalid()) 1887 return false; 1888 1889 Res = S.ActOnFinishFullExpr(Res.get(), /*DiscardedValue*/ false); 1890 if (Res.isInvalid()) 1891 return false; 1892 1893 S.AddInitializerToDecl(GroDecl, Res.get(), 1894 /*DirectInit=*/false); 1895 1896 S.FinalizeDeclaration(GroDecl); 1897 1898 // Form a declaration statement for the return declaration, so that AST 1899 // visitors can more easily find it. 1900 StmtResult GroDeclStmt = 1901 S.ActOnDeclStmt(S.ConvertDeclToDeclGroup(GroDecl), Loc, Loc); 1902 if (GroDeclStmt.isInvalid()) 1903 return false; 1904 1905 this->ResultDecl = GroDeclStmt.get(); 1906 1907 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc); 1908 if (declRef.isInvalid()) 1909 return false; 1910 1911 ReturnStmt = S.BuildReturnStmt(Loc, declRef.get()); 1912 } 1913 1914 if (ReturnStmt.isInvalid()) { 1915 noteMemberDeclaredHere(S, ReturnValue, Fn); 1916 return false; 1917 } 1918 1919 if (!GroMatchesRetType && 1920 cast<clang::ReturnStmt>(ReturnStmt.get())->getNRVOCandidate() == GroDecl) 1921 GroDecl->setNRVOVariable(true); 1922 1923 this->ReturnStmt = ReturnStmt.get(); 1924 return true; 1925 } 1926 1927 // Create a static_cast\<T&&>(expr). 1928 static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) { 1929 if (T.isNull()) 1930 T = E->getType(); 1931 QualType TargetType = S.BuildReferenceType( 1932 T, /*SpelledAsLValue*/ false, SourceLocation(), DeclarationName()); 1933 SourceLocation ExprLoc = E->getBeginLoc(); 1934 TypeSourceInfo *TargetLoc = 1935 S.Context.getTrivialTypeSourceInfo(TargetType, ExprLoc); 1936 1937 return S 1938 .BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E, 1939 SourceRange(ExprLoc, ExprLoc), E->getSourceRange()) 1940 .get(); 1941 } 1942 1943 /// Build a variable declaration for move parameter. 1944 static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type, 1945 IdentifierInfo *II) { 1946 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(Type, Loc); 1947 VarDecl *Decl = VarDecl::Create(S.Context, S.CurContext, Loc, Loc, II, Type, 1948 TInfo, SC_None); 1949 Decl->setImplicit(); 1950 return Decl; 1951 } 1952 1953 // Build statements that move coroutine function parameters to the coroutine 1954 // frame, and store them on the function scope info. 1955 bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) { 1956 assert(isa<FunctionDecl>(CurContext) && "not in a function scope"); 1957 auto *FD = cast<FunctionDecl>(CurContext); 1958 1959 auto *ScopeInfo = getCurFunction(); 1960 if (!ScopeInfo->CoroutineParameterMoves.empty()) 1961 return false; 1962 1963 // [dcl.fct.def.coroutine]p13 1964 // When a coroutine is invoked, after initializing its parameters 1965 // ([expr.call]), a copy is created for each coroutine parameter. For a 1966 // parameter of type cv T, the copy is a variable of type cv T with 1967 // automatic storage duration that is direct-initialized from an xvalue of 1968 // type T referring to the parameter. 1969 for (auto *PD : FD->parameters()) { 1970 if (PD->getType()->isDependentType()) 1971 continue; 1972 1973 // Preserve the referenced state for unused parameter diagnostics. 1974 bool DeclReferenced = PD->isReferenced(); 1975 1976 ExprResult PDRefExpr = 1977 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(), 1978 ExprValueKind::VK_LValue, Loc); // FIXME: scope? 1979 1980 PD->setReferenced(DeclReferenced); 1981 1982 if (PDRefExpr.isInvalid()) 1983 return false; 1984 1985 Expr *CExpr = nullptr; 1986 if (PD->getType()->getAsCXXRecordDecl() || 1987 PD->getType()->isRValueReferenceType()) 1988 CExpr = castForMoving(*this, PDRefExpr.get()); 1989 else 1990 CExpr = PDRefExpr.get(); 1991 // [dcl.fct.def.coroutine]p13 1992 // The initialization and destruction of each parameter copy occurs in the 1993 // context of the called coroutine. 1994 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier()); 1995 AddInitializerToDecl(D, CExpr, /*DirectInit=*/true); 1996 1997 // Convert decl to a statement. 1998 StmtResult Stmt = ActOnDeclStmt(ConvertDeclToDeclGroup(D), Loc, Loc); 1999 if (Stmt.isInvalid()) 2000 return false; 2001 2002 ScopeInfo->CoroutineParameterMoves.insert(std::make_pair(PD, Stmt.get())); 2003 } 2004 return true; 2005 } 2006 2007 StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) { 2008 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(Context, Args); 2009 if (!Res) 2010 return StmtError(); 2011 return Res; 2012 } 2013 2014 ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc, 2015 SourceLocation FuncLoc) { 2016 if (StdCoroutineTraitsCache) 2017 return StdCoroutineTraitsCache; 2018 2019 IdentifierInfo const &TraitIdent = 2020 PP.getIdentifierTable().get("coroutine_traits"); 2021 2022 NamespaceDecl *StdSpace = getStdNamespace(); 2023 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName); 2024 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace); 2025 2026 if (!Found) { 2027 // The goggles, we found nothing! 2028 Diag(KwLoc, diag::err_implied_coroutine_type_not_found) 2029 << "std::coroutine_traits"; 2030 return nullptr; 2031 } 2032 2033 // coroutine_traits is required to be a class template. 2034 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>(); 2035 if (!StdCoroutineTraitsCache) { 2036 Result.suppressDiagnostics(); 2037 NamedDecl *Found = *Result.begin(); 2038 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits); 2039 return nullptr; 2040 } 2041 2042 return StdCoroutineTraitsCache; 2043 } 2044