xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaConcept.cpp (revision d9a42747950146bf03cda7f6e25d219253f8a57a)
1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ constraints and concepts.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaConcept.h"
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/SemaDiagnostic.h"
17 #include "clang/Sema/TemplateDeduction.h"
18 #include "clang/Sema/Template.h"
19 #include "clang/Sema/Overload.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/AST/ExprConcepts.h"
22 #include "clang/AST/RecursiveASTVisitor.h"
23 #include "clang/Basic/OperatorPrecedence.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PointerUnion.h"
26 #include "llvm/ADT/StringExtras.h"
27 
28 using namespace clang;
29 using namespace sema;
30 
31 namespace {
32 class LogicalBinOp {
33   OverloadedOperatorKind Op = OO_None;
34   const Expr *LHS = nullptr;
35   const Expr *RHS = nullptr;
36 
37 public:
38   LogicalBinOp(const Expr *E) {
39     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
40       Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
41       LHS = BO->getLHS();
42       RHS = BO->getRHS();
43     } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
44       // If OO is not || or && it might not have exactly 2 arguments.
45       if (OO->getNumArgs() == 2) {
46         Op = OO->getOperator();
47         LHS = OO->getArg(0);
48         RHS = OO->getArg(1);
49       }
50     }
51   }
52 
53   bool isAnd() const { return Op == OO_AmpAmp; }
54   bool isOr() const { return Op == OO_PipePipe; }
55   explicit operator bool() const { return isAnd() || isOr(); }
56 
57   const Expr *getLHS() const { return LHS; }
58   const Expr *getRHS() const { return RHS; }
59 };
60 }
61 
62 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
63                                      Token NextToken, bool *PossibleNonPrimary,
64                                      bool IsTrailingRequiresClause) {
65   // C++2a [temp.constr.atomic]p1
66   // ..E shall be a constant expression of type bool.
67 
68   ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
69 
70   if (LogicalBinOp BO = ConstraintExpression) {
71     return CheckConstraintExpression(BO.getLHS(), NextToken,
72                                      PossibleNonPrimary) &&
73            CheckConstraintExpression(BO.getRHS(), NextToken,
74                                      PossibleNonPrimary);
75   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
76     return CheckConstraintExpression(C->getSubExpr(), NextToken,
77                                      PossibleNonPrimary);
78 
79   QualType Type = ConstraintExpression->getType();
80 
81   auto CheckForNonPrimary = [&] {
82     if (PossibleNonPrimary)
83       *PossibleNonPrimary =
84           // We have the following case:
85           // template<typename> requires func(0) struct S { };
86           // The user probably isn't aware of the parentheses required around
87           // the function call, and we're only going to parse 'func' as the
88           // primary-expression, and complain that it is of non-bool type.
89           (NextToken.is(tok::l_paren) &&
90            (IsTrailingRequiresClause ||
91             (Type->isDependentType() &&
92              isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
93             Type->isFunctionType() ||
94             Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
95           // We have the following case:
96           // template<typename T> requires size_<T> == 0 struct S { };
97           // The user probably isn't aware of the parentheses required around
98           // the binary operator, and we're only going to parse 'func' as the
99           // first operand, and complain that it is of non-bool type.
100           getBinOpPrecedence(NextToken.getKind(),
101                              /*GreaterThanIsOperator=*/true,
102                              getLangOpts().CPlusPlus11) > prec::LogicalAnd;
103   };
104 
105   // An atomic constraint!
106   if (ConstraintExpression->isTypeDependent()) {
107     CheckForNonPrimary();
108     return true;
109   }
110 
111   if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
112     Diag(ConstraintExpression->getExprLoc(),
113          diag::err_non_bool_atomic_constraint) << Type
114         << ConstraintExpression->getSourceRange();
115     CheckForNonPrimary();
116     return false;
117   }
118 
119   if (PossibleNonPrimary)
120       *PossibleNonPrimary = false;
121   return true;
122 }
123 
124 template <typename AtomicEvaluator>
125 static bool
126 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
127                                 ConstraintSatisfaction &Satisfaction,
128                                 AtomicEvaluator &&Evaluator) {
129   ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
130 
131   if (LogicalBinOp BO = ConstraintExpr) {
132     if (calculateConstraintSatisfaction(S, BO.getLHS(), Satisfaction,
133                                         Evaluator))
134       return true;
135 
136     bool IsLHSSatisfied = Satisfaction.IsSatisfied;
137 
138     if (BO.isOr() && IsLHSSatisfied)
139       // [temp.constr.op] p3
140       //    A disjunction is a constraint taking two operands. To determine if
141       //    a disjunction is satisfied, the satisfaction of the first operand
142       //    is checked. If that is satisfied, the disjunction is satisfied.
143       //    Otherwise, the disjunction is satisfied if and only if the second
144       //    operand is satisfied.
145       return false;
146 
147     if (BO.isAnd() && !IsLHSSatisfied)
148       // [temp.constr.op] p2
149       //    A conjunction is a constraint taking two operands. To determine if
150       //    a conjunction is satisfied, the satisfaction of the first operand
151       //    is checked. If that is not satisfied, the conjunction is not
152       //    satisfied. Otherwise, the conjunction is satisfied if and only if
153       //    the second operand is satisfied.
154       return false;
155 
156     return calculateConstraintSatisfaction(
157         S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
158   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
159     return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
160         std::forward<AtomicEvaluator>(Evaluator));
161   }
162 
163   // An atomic constraint expression
164   ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
165 
166   if (SubstitutedAtomicExpr.isInvalid())
167     return true;
168 
169   if (!SubstitutedAtomicExpr.isUsable())
170     // Evaluator has decided satisfaction without yielding an expression.
171     return false;
172 
173   EnterExpressionEvaluationContext ConstantEvaluated(
174       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
175   SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
176   Expr::EvalResult EvalResult;
177   EvalResult.Diag = &EvaluationDiags;
178   if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
179                                                            S.Context) ||
180       !EvaluationDiags.empty()) {
181     // C++2a [temp.constr.atomic]p1
182     //   ...E shall be a constant expression of type bool.
183     S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
184            diag::err_non_constant_constraint_expression)
185         << SubstitutedAtomicExpr.get()->getSourceRange();
186     for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
187       S.Diag(PDiag.first, PDiag.second);
188     return true;
189   }
190 
191   assert(EvalResult.Val.isInt() &&
192          "evaluating bool expression didn't produce int");
193   Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
194   if (!Satisfaction.IsSatisfied)
195     Satisfaction.Details.emplace_back(ConstraintExpr,
196                                       SubstitutedAtomicExpr.get());
197 
198   return false;
199 }
200 
201 static bool calculateConstraintSatisfaction(
202     Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
203     SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
204     const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
205   return calculateConstraintSatisfaction(
206       S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
207         EnterExpressionEvaluationContext ConstantEvaluated(
208             S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
209 
210         // Atomic constraint - substitute arguments and check satisfaction.
211         ExprResult SubstitutedExpression;
212         {
213           TemplateDeductionInfo Info(TemplateNameLoc);
214           Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
215               Sema::InstantiatingTemplate::ConstraintSubstitution{},
216               const_cast<NamedDecl *>(Template), Info,
217               AtomicExpr->getSourceRange());
218           if (Inst.isInvalid())
219             return ExprError();
220           // We do not want error diagnostics escaping here.
221           Sema::SFINAETrap Trap(S);
222           SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
223                                               MLTAL);
224           // Substitution might have stripped off a contextual conversion to
225           // bool if this is the operand of an '&&' or '||'. For example, we
226           // might lose an lvalue-to-rvalue conversion here. If so, put it back
227           // before we try to evaluate.
228           if (!SubstitutedExpression.isInvalid())
229             SubstitutedExpression =
230                 S.PerformContextuallyConvertToBool(SubstitutedExpression.get());
231           if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
232             // C++2a [temp.constr.atomic]p1
233             //   ...If substitution results in an invalid type or expression, the
234             //   constraint is not satisfied.
235             if (!Trap.hasErrorOccurred())
236               // A non-SFINAE error has occurred as a result of this
237               // substitution.
238               return ExprError();
239 
240             PartialDiagnosticAt SubstDiag{SourceLocation(),
241                                           PartialDiagnostic::NullDiagnostic()};
242             Info.takeSFINAEDiagnostic(SubstDiag);
243             // FIXME: Concepts: This is an unfortunate consequence of there
244             //  being no serialization code for PartialDiagnostics and the fact
245             //  that serializing them would likely take a lot more storage than
246             //  just storing them as strings. We would still like, in the
247             //  future, to serialize the proper PartialDiagnostic as serializing
248             //  it as a string defeats the purpose of the diagnostic mechanism.
249             SmallString<128> DiagString;
250             DiagString = ": ";
251             SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
252             unsigned MessageSize = DiagString.size();
253             char *Mem = new (S.Context) char[MessageSize];
254             memcpy(Mem, DiagString.c_str(), MessageSize);
255             Satisfaction.Details.emplace_back(
256                 AtomicExpr,
257                 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
258                         SubstDiag.first, StringRef(Mem, MessageSize)});
259             Satisfaction.IsSatisfied = false;
260             return ExprEmpty();
261           }
262         }
263 
264         if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
265           return ExprError();
266 
267         return SubstitutedExpression;
268       });
269 }
270 
271 static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template,
272                                         ArrayRef<const Expr *> ConstraintExprs,
273                                         ArrayRef<TemplateArgument> TemplateArgs,
274                                         SourceRange TemplateIDRange,
275                                         ConstraintSatisfaction &Satisfaction) {
276   if (ConstraintExprs.empty()) {
277     Satisfaction.IsSatisfied = true;
278     return false;
279   }
280 
281   for (auto& Arg : TemplateArgs)
282     if (Arg.isInstantiationDependent()) {
283       // No need to check satisfaction for dependent constraint expressions.
284       Satisfaction.IsSatisfied = true;
285       return false;
286     }
287 
288   Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
289       Sema::InstantiatingTemplate::ConstraintsCheck{},
290       const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
291   if (Inst.isInvalid())
292     return true;
293 
294   MultiLevelTemplateArgumentList MLTAL;
295   MLTAL.addOuterTemplateArguments(TemplateArgs);
296 
297   for (const Expr *ConstraintExpr : ConstraintExprs) {
298     if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
299                                         TemplateIDRange.getBegin(), MLTAL,
300                                         ConstraintExpr, Satisfaction))
301       return true;
302     if (!Satisfaction.IsSatisfied)
303       // [temp.constr.op] p2
304       //   [...] To determine if a conjunction is satisfied, the satisfaction
305       //   of the first operand is checked. If that is not satisfied, the
306       //   conjunction is not satisfied. [...]
307       return false;
308   }
309   return false;
310 }
311 
312 bool Sema::CheckConstraintSatisfaction(
313     const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
314     ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange,
315     ConstraintSatisfaction &OutSatisfaction) {
316   if (ConstraintExprs.empty()) {
317     OutSatisfaction.IsSatisfied = true;
318     return false;
319   }
320   if (!Template) {
321     return ::CheckConstraintSatisfaction(*this, nullptr, ConstraintExprs,
322                                          TemplateArgs, TemplateIDRange,
323                                          OutSatisfaction);
324   }
325   llvm::FoldingSetNodeID ID;
326   ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs);
327   void *InsertPos;
328   if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
329     OutSatisfaction = *Cached;
330     return false;
331   }
332   auto Satisfaction =
333       std::make_unique<ConstraintSatisfaction>(Template, TemplateArgs);
334   if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
335                                     TemplateArgs, TemplateIDRange,
336                                     *Satisfaction)) {
337     return true;
338   }
339   OutSatisfaction = *Satisfaction;
340   // We cannot use InsertPos here because CheckConstraintSatisfaction might have
341   // invalidated it.
342   // Note that entries of SatisfactionCache are deleted in Sema's destructor.
343   SatisfactionCache.InsertNode(Satisfaction.release());
344   return false;
345 }
346 
347 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
348                                        ConstraintSatisfaction &Satisfaction) {
349   return calculateConstraintSatisfaction(
350       *this, ConstraintExpr, Satisfaction,
351       [this](const Expr *AtomicExpr) -> ExprResult {
352         // We only do this to immitate lvalue-to-rvalue conversion.
353         return PerformContextuallyConvertToBool(const_cast<Expr *>(AtomicExpr));
354       });
355 }
356 
357 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
358                                     ConstraintSatisfaction &Satisfaction,
359                                     SourceLocation UsageLoc) {
360   const Expr *RC = FD->getTrailingRequiresClause();
361   if (RC->isInstantiationDependent()) {
362     Satisfaction.IsSatisfied = true;
363     return false;
364   }
365   Qualifiers ThisQuals;
366   CXXRecordDecl *Record = nullptr;
367   if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
368     ThisQuals = Method->getMethodQualifiers();
369     Record = const_cast<CXXRecordDecl *>(Method->getParent());
370   }
371   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
372   // We substitute with empty arguments in order to rebuild the atomic
373   // constraint in a constant-evaluated context.
374   // FIXME: Should this be a dedicated TreeTransform?
375   return CheckConstraintSatisfaction(
376       FD, {RC}, /*TemplateArgs=*/{},
377       SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
378       Satisfaction);
379 }
380 
381 bool Sema::EnsureTemplateArgumentListConstraints(
382     TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
383     SourceRange TemplateIDRange) {
384   ConstraintSatisfaction Satisfaction;
385   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
386   TD->getAssociatedConstraints(AssociatedConstraints);
387   if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
388                                   TemplateIDRange, Satisfaction))
389     return true;
390 
391   if (!Satisfaction.IsSatisfied) {
392     SmallString<128> TemplateArgString;
393     TemplateArgString = " ";
394     TemplateArgString += getTemplateArgumentBindingsText(
395         TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());
396 
397     Diag(TemplateIDRange.getBegin(),
398          diag::err_template_arg_list_constraints_not_satisfied)
399         << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
400         << TemplateArgString << TemplateIDRange;
401     DiagnoseUnsatisfiedConstraint(Satisfaction);
402     return true;
403   }
404   return false;
405 }
406 
407 bool Sema::CheckInstantiatedFunctionTemplateConstraints(
408     SourceLocation PointOfInstantiation, FunctionDecl *Decl,
409     ArrayRef<TemplateArgument> TemplateArgs,
410     ConstraintSatisfaction &Satisfaction) {
411   // In most cases we're not going to have constraints, so check for that first.
412   FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
413   // Note - code synthesis context for the constraints check is created
414   // inside CheckConstraintsSatisfaction.
415   SmallVector<const Expr *, 3> TemplateAC;
416   Template->getAssociatedConstraints(TemplateAC);
417   if (TemplateAC.empty()) {
418     Satisfaction.IsSatisfied = true;
419     return false;
420   }
421 
422   // Enter the scope of this instantiation. We don't use
423   // PushDeclContext because we don't have a scope.
424   Sema::ContextRAII savedContext(*this, Decl);
425   LocalInstantiationScope Scope(*this);
426 
427   // If this is not an explicit specialization - we need to get the instantiated
428   // version of the template arguments and add them to scope for the
429   // substitution.
430   if (Decl->isTemplateInstantiation()) {
431     InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(),
432         InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(),
433         TemplateArgs, SourceRange());
434     if (Inst.isInvalid())
435       return true;
436     MultiLevelTemplateArgumentList MLTAL(
437         *Decl->getTemplateSpecializationArgs());
438     if (addInstantiatedParametersToScope(
439             Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(), Scope, MLTAL))
440       return true;
441   }
442   Qualifiers ThisQuals;
443   CXXRecordDecl *Record = nullptr;
444   if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
445     ThisQuals = Method->getMethodQualifiers();
446     Record = Method->getParent();
447   }
448   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
449   return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs,
450                                      PointOfInstantiation, Satisfaction);
451 }
452 
453 static void diagnoseUnsatisfiedRequirement(Sema &S,
454                                            concepts::ExprRequirement *Req,
455                                            bool First) {
456   assert(!Req->isSatisfied()
457          && "Diagnose() can only be used on an unsatisfied requirement");
458   switch (Req->getSatisfactionStatus()) {
459     case concepts::ExprRequirement::SS_Dependent:
460       llvm_unreachable("Diagnosing a dependent requirement");
461       break;
462     case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
463       auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
464       if (!SubstDiag->DiagMessage.empty())
465         S.Diag(SubstDiag->DiagLoc,
466                diag::note_expr_requirement_expr_substitution_error)
467                << (int)First << SubstDiag->SubstitutedEntity
468                << SubstDiag->DiagMessage;
469       else
470         S.Diag(SubstDiag->DiagLoc,
471                diag::note_expr_requirement_expr_unknown_substitution_error)
472             << (int)First << SubstDiag->SubstitutedEntity;
473       break;
474     }
475     case concepts::ExprRequirement::SS_NoexceptNotMet:
476       S.Diag(Req->getNoexceptLoc(),
477              diag::note_expr_requirement_noexcept_not_met)
478           << (int)First << Req->getExpr();
479       break;
480     case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
481       auto *SubstDiag =
482           Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
483       if (!SubstDiag->DiagMessage.empty())
484         S.Diag(SubstDiag->DiagLoc,
485                diag::note_expr_requirement_type_requirement_substitution_error)
486             << (int)First << SubstDiag->SubstitutedEntity
487             << SubstDiag->DiagMessage;
488       else
489         S.Diag(SubstDiag->DiagLoc,
490                diag::note_expr_requirement_type_requirement_unknown_substitution_error)
491             << (int)First << SubstDiag->SubstitutedEntity;
492       break;
493     }
494     case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
495       ConceptSpecializationExpr *ConstraintExpr =
496           Req->getReturnTypeRequirementSubstitutedConstraintExpr();
497       if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
498         // A simple case - expr type is the type being constrained and the concept
499         // was not provided arguments.
500         Expr *e = Req->getExpr();
501         S.Diag(e->getBeginLoc(),
502                diag::note_expr_requirement_constraints_not_satisfied_simple)
503             << (int)First << S.Context.getReferenceQualifiedType(e)
504             << ConstraintExpr->getNamedConcept();
505       } else {
506         S.Diag(ConstraintExpr->getBeginLoc(),
507                diag::note_expr_requirement_constraints_not_satisfied)
508             << (int)First << ConstraintExpr;
509       }
510       S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
511       break;
512     }
513     case concepts::ExprRequirement::SS_Satisfied:
514       llvm_unreachable("We checked this above");
515   }
516 }
517 
518 static void diagnoseUnsatisfiedRequirement(Sema &S,
519                                            concepts::TypeRequirement *Req,
520                                            bool First) {
521   assert(!Req->isSatisfied()
522          && "Diagnose() can only be used on an unsatisfied requirement");
523   switch (Req->getSatisfactionStatus()) {
524   case concepts::TypeRequirement::SS_Dependent:
525     llvm_unreachable("Diagnosing a dependent requirement");
526     return;
527   case concepts::TypeRequirement::SS_SubstitutionFailure: {
528     auto *SubstDiag = Req->getSubstitutionDiagnostic();
529     if (!SubstDiag->DiagMessage.empty())
530       S.Diag(SubstDiag->DiagLoc,
531              diag::note_type_requirement_substitution_error) << (int)First
532           << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
533     else
534       S.Diag(SubstDiag->DiagLoc,
535              diag::note_type_requirement_unknown_substitution_error)
536           << (int)First << SubstDiag->SubstitutedEntity;
537     return;
538   }
539   default:
540     llvm_unreachable("Unknown satisfaction status");
541     return;
542   }
543 }
544 
545 static void diagnoseUnsatisfiedRequirement(Sema &S,
546                                            concepts::NestedRequirement *Req,
547                                            bool First) {
548   if (Req->isSubstitutionFailure()) {
549     concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
550         Req->getSubstitutionDiagnostic();
551     if (!SubstDiag->DiagMessage.empty())
552       S.Diag(SubstDiag->DiagLoc,
553              diag::note_nested_requirement_substitution_error)
554              << (int)First << SubstDiag->SubstitutedEntity
555              << SubstDiag->DiagMessage;
556     else
557       S.Diag(SubstDiag->DiagLoc,
558              diag::note_nested_requirement_unknown_substitution_error)
559           << (int)First << SubstDiag->SubstitutedEntity;
560     return;
561   }
562   S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
563 }
564 
565 
566 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
567                                                         Expr *SubstExpr,
568                                                         bool First = true) {
569   SubstExpr = SubstExpr->IgnoreParenImpCasts();
570   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
571     switch (BO->getOpcode()) {
572     // These two cases will in practice only be reached when using fold
573     // expressions with || and &&, since otherwise the || and && will have been
574     // broken down into atomic constraints during satisfaction checking.
575     case BO_LOr:
576       // Or evaluated to false - meaning both RHS and LHS evaluated to false.
577       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
578       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
579                                                   /*First=*/false);
580       return;
581     case BO_LAnd: {
582       bool LHSSatisfied =
583           BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
584       if (LHSSatisfied) {
585         // LHS is true, so RHS must be false.
586         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
587         return;
588       }
589       // LHS is false
590       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
591 
592       // RHS might also be false
593       bool RHSSatisfied =
594           BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
595       if (!RHSSatisfied)
596         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
597                                                     /*First=*/false);
598       return;
599     }
600     case BO_GE:
601     case BO_LE:
602     case BO_GT:
603     case BO_LT:
604     case BO_EQ:
605     case BO_NE:
606       if (BO->getLHS()->getType()->isIntegerType() &&
607           BO->getRHS()->getType()->isIntegerType()) {
608         Expr::EvalResult SimplifiedLHS;
609         Expr::EvalResult SimplifiedRHS;
610         BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
611                                     Expr::SE_NoSideEffects,
612                                     /*InConstantContext=*/true);
613         BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
614                                     Expr::SE_NoSideEffects,
615                                     /*InConstantContext=*/true);
616         if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
617           S.Diag(SubstExpr->getBeginLoc(),
618                  diag::note_atomic_constraint_evaluated_to_false_elaborated)
619               << (int)First << SubstExpr
620               << toString(SimplifiedLHS.Val.getInt(), 10)
621               << BinaryOperator::getOpcodeStr(BO->getOpcode())
622               << toString(SimplifiedRHS.Val.getInt(), 10);
623           return;
624         }
625       }
626       break;
627 
628     default:
629       break;
630     }
631   } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
632     if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
633       S.Diag(
634           CSE->getSourceRange().getBegin(),
635           diag::
636           note_single_arg_concept_specialization_constraint_evaluated_to_false)
637           << (int)First
638           << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
639           << CSE->getNamedConcept();
640     } else {
641       S.Diag(SubstExpr->getSourceRange().getBegin(),
642              diag::note_concept_specialization_constraint_evaluated_to_false)
643           << (int)First << CSE;
644     }
645     S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
646     return;
647   } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
648     for (concepts::Requirement *Req : RE->getRequirements())
649       if (!Req->isDependent() && !Req->isSatisfied()) {
650         if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
651           diagnoseUnsatisfiedRequirement(S, E, First);
652         else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
653           diagnoseUnsatisfiedRequirement(S, T, First);
654         else
655           diagnoseUnsatisfiedRequirement(
656               S, cast<concepts::NestedRequirement>(Req), First);
657         break;
658       }
659     return;
660   }
661 
662   S.Diag(SubstExpr->getSourceRange().getBegin(),
663          diag::note_atomic_constraint_evaluated_to_false)
664       << (int)First << SubstExpr;
665 }
666 
667 template<typename SubstitutionDiagnostic>
668 static void diagnoseUnsatisfiedConstraintExpr(
669     Sema &S, const Expr *E,
670     const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
671     bool First = true) {
672   if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
673     S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
674         << Diag->second;
675     return;
676   }
677 
678   diagnoseWellFormedUnsatisfiedConstraintExpr(S,
679       Record.template get<Expr *>(), First);
680 }
681 
682 void
683 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
684                                     bool First) {
685   assert(!Satisfaction.IsSatisfied &&
686          "Attempted to diagnose a satisfied constraint");
687   for (auto &Pair : Satisfaction.Details) {
688     diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
689     First = false;
690   }
691 }
692 
693 void Sema::DiagnoseUnsatisfiedConstraint(
694     const ASTConstraintSatisfaction &Satisfaction,
695     bool First) {
696   assert(!Satisfaction.IsSatisfied &&
697          "Attempted to diagnose a satisfied constraint");
698   for (auto &Pair : Satisfaction) {
699     diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
700     First = false;
701   }
702 }
703 
704 const NormalizedConstraint *
705 Sema::getNormalizedAssociatedConstraints(
706     NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
707   auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
708   if (CacheEntry == NormalizationCache.end()) {
709     auto Normalized =
710         NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
711                                                   AssociatedConstraints);
712     CacheEntry =
713         NormalizationCache
714             .try_emplace(ConstrainedDecl,
715                          Normalized
716                              ? new (Context) NormalizedConstraint(
717                                  std::move(*Normalized))
718                              : nullptr)
719             .first;
720   }
721   return CacheEntry->second;
722 }
723 
724 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
725     ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
726     const ASTTemplateArgumentListInfo *ArgsAsWritten) {
727   if (!N.isAtomic()) {
728     if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
729                                     ArgsAsWritten))
730       return true;
731     return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
732                                        ArgsAsWritten);
733   }
734   TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
735 
736   AtomicConstraint &Atomic = *N.getAtomicConstraint();
737   TemplateArgumentListInfo SubstArgs;
738   MultiLevelTemplateArgumentList MLTAL;
739   MLTAL.addOuterTemplateArguments(TemplateArgs);
740   if (!Atomic.ParameterMapping) {
741     llvm::SmallBitVector OccurringIndices(TemplateParams->size());
742     S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
743                                  /*Depth=*/0, OccurringIndices);
744     Atomic.ParameterMapping.emplace(
745         MutableArrayRef<TemplateArgumentLoc>(
746             new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
747             OccurringIndices.count()));
748     for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
749       if (OccurringIndices[I])
750         new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
751             S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
752                 // Here we assume we do not support things like
753                 // template<typename A, typename B>
754                 // concept C = ...;
755                 //
756                 // template<typename... Ts> requires C<Ts...>
757                 // struct S { };
758                 // The above currently yields a diagnostic.
759                 // We still might have default arguments for concept parameters.
760                 ArgsAsWritten->NumTemplateArgs > I ?
761                 ArgsAsWritten->arguments()[I].getLocation() :
762                 SourceLocation()));
763   }
764   Sema::InstantiatingTemplate Inst(
765       S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
766       Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
767       SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
768                   ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
769   if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
770     return true;
771   Atomic.ParameterMapping.emplace(
772         MutableArrayRef<TemplateArgumentLoc>(
773             new (S.Context) TemplateArgumentLoc[SubstArgs.size()],
774             SubstArgs.size()));
775   std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
776             N.getAtomicConstraint()->ParameterMapping->begin());
777   return false;
778 }
779 
780 Optional<NormalizedConstraint>
781 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
782                                           ArrayRef<const Expr *> E) {
783   assert(E.size() != 0);
784   auto Conjunction = fromConstraintExpr(S, D, E[0]);
785   if (!Conjunction)
786     return None;
787   for (unsigned I = 1; I < E.size(); ++I) {
788     auto Next = fromConstraintExpr(S, D, E[I]);
789     if (!Next)
790       return None;
791     *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
792                                         std::move(*Next), CCK_Conjunction);
793   }
794   return Conjunction;
795 }
796 
797 llvm::Optional<NormalizedConstraint>
798 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
799   assert(E != nullptr);
800 
801   // C++ [temp.constr.normal]p1.1
802   // [...]
803   // - The normal form of an expression (E) is the normal form of E.
804   // [...]
805   E = E->IgnoreParenImpCasts();
806   if (LogicalBinOp BO = E) {
807     auto LHS = fromConstraintExpr(S, D, BO.getLHS());
808     if (!LHS)
809       return None;
810     auto RHS = fromConstraintExpr(S, D, BO.getRHS());
811     if (!RHS)
812       return None;
813 
814     return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
815                                 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
816   } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
817     const NormalizedConstraint *SubNF;
818     {
819       Sema::InstantiatingTemplate Inst(
820           S, CSE->getExprLoc(),
821           Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
822           CSE->getSourceRange());
823       // C++ [temp.constr.normal]p1.1
824       // [...]
825       // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
826       // where C names a concept, is the normal form of the
827       // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
828       // respective template parameters in the parameter mappings in each atomic
829       // constraint. If any such substitution results in an invalid type or
830       // expression, the program is ill-formed; no diagnostic is required.
831       // [...]
832       ConceptDecl *CD = CSE->getNamedConcept();
833       SubNF = S.getNormalizedAssociatedConstraints(CD,
834                                                    {CD->getConstraintExpr()});
835       if (!SubNF)
836         return None;
837     }
838 
839     Optional<NormalizedConstraint> New;
840     New.emplace(S.Context, *SubNF);
841 
842     if (substituteParameterMappings(
843             S, *New, CSE->getNamedConcept(),
844             CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
845       return None;
846 
847     return New;
848   }
849   return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
850 }
851 
852 using NormalForm =
853     llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
854 
855 static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
856   if (Normalized.isAtomic())
857     return {{Normalized.getAtomicConstraint()}};
858 
859   NormalForm LCNF = makeCNF(Normalized.getLHS());
860   NormalForm RCNF = makeCNF(Normalized.getRHS());
861   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
862     LCNF.reserve(LCNF.size() + RCNF.size());
863     while (!RCNF.empty())
864       LCNF.push_back(RCNF.pop_back_val());
865     return LCNF;
866   }
867 
868   // Disjunction
869   NormalForm Res;
870   Res.reserve(LCNF.size() * RCNF.size());
871   for (auto &LDisjunction : LCNF)
872     for (auto &RDisjunction : RCNF) {
873       NormalForm::value_type Combined;
874       Combined.reserve(LDisjunction.size() + RDisjunction.size());
875       std::copy(LDisjunction.begin(), LDisjunction.end(),
876                 std::back_inserter(Combined));
877       std::copy(RDisjunction.begin(), RDisjunction.end(),
878                 std::back_inserter(Combined));
879       Res.emplace_back(Combined);
880     }
881   return Res;
882 }
883 
884 static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
885   if (Normalized.isAtomic())
886     return {{Normalized.getAtomicConstraint()}};
887 
888   NormalForm LDNF = makeDNF(Normalized.getLHS());
889   NormalForm RDNF = makeDNF(Normalized.getRHS());
890   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
891     LDNF.reserve(LDNF.size() + RDNF.size());
892     while (!RDNF.empty())
893       LDNF.push_back(RDNF.pop_back_val());
894     return LDNF;
895   }
896 
897   // Conjunction
898   NormalForm Res;
899   Res.reserve(LDNF.size() * RDNF.size());
900   for (auto &LConjunction : LDNF) {
901     for (auto &RConjunction : RDNF) {
902       NormalForm::value_type Combined;
903       Combined.reserve(LConjunction.size() + RConjunction.size());
904       std::copy(LConjunction.begin(), LConjunction.end(),
905                 std::back_inserter(Combined));
906       std::copy(RConjunction.begin(), RConjunction.end(),
907                 std::back_inserter(Combined));
908       Res.emplace_back(Combined);
909     }
910   }
911   return Res;
912 }
913 
914 template<typename AtomicSubsumptionEvaluator>
915 static bool subsumes(NormalForm PDNF, NormalForm QCNF,
916                      AtomicSubsumptionEvaluator E) {
917   // C++ [temp.constr.order] p2
918   //   Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
919   //   disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
920   //   the conjuctive normal form of Q, where [...]
921   for (const auto &Pi : PDNF) {
922     for (const auto &Qj : QCNF) {
923       // C++ [temp.constr.order] p2
924       //   - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
925       //     and only if there exists an atomic constraint Pia in Pi for which
926       //     there exists an atomic constraint, Qjb, in Qj such that Pia
927       //     subsumes Qjb.
928       bool Found = false;
929       for (const AtomicConstraint *Pia : Pi) {
930         for (const AtomicConstraint *Qjb : Qj) {
931           if (E(*Pia, *Qjb)) {
932             Found = true;
933             break;
934           }
935         }
936         if (Found)
937           break;
938       }
939       if (!Found)
940         return false;
941     }
942   }
943   return true;
944 }
945 
946 template<typename AtomicSubsumptionEvaluator>
947 static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
948                      NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
949                      AtomicSubsumptionEvaluator E) {
950   // C++ [temp.constr.order] p2
951   //   In order to determine if a constraint P subsumes a constraint Q, P is
952   //   transformed into disjunctive normal form, and Q is transformed into
953   //   conjunctive normal form. [...]
954   auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
955   if (!PNormalized)
956     return true;
957   const NormalForm PDNF = makeDNF(*PNormalized);
958 
959   auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
960   if (!QNormalized)
961     return true;
962   const NormalForm QCNF = makeCNF(*QNormalized);
963 
964   Subsumes = subsumes(PDNF, QCNF, E);
965   return false;
966 }
967 
968 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
969                                   NamedDecl *D2, ArrayRef<const Expr *> AC2,
970                                   bool &Result) {
971   if (AC1.empty()) {
972     Result = AC2.empty();
973     return false;
974   }
975   if (AC2.empty()) {
976     // TD1 has associated constraints and TD2 does not.
977     Result = true;
978     return false;
979   }
980 
981   std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
982   auto CacheEntry = SubsumptionCache.find(Key);
983   if (CacheEntry != SubsumptionCache.end()) {
984     Result = CacheEntry->second;
985     return false;
986   }
987 
988   if (subsumes(*this, D1, AC1, D2, AC2, Result,
989         [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
990           return A.subsumes(Context, B);
991         }))
992     return true;
993   SubsumptionCache.try_emplace(Key, Result);
994   return false;
995 }
996 
997 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
998     ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
999   if (isSFINAEContext())
1000     // No need to work here because our notes would be discarded.
1001     return false;
1002 
1003   if (AC1.empty() || AC2.empty())
1004     return false;
1005 
1006   auto NormalExprEvaluator =
1007       [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
1008         return A.subsumes(Context, B);
1009       };
1010 
1011   const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
1012   auto IdenticalExprEvaluator =
1013       [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
1014         if (!A.hasMatchingParameterMapping(Context, B))
1015           return false;
1016         const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
1017         if (EA == EB)
1018           return true;
1019 
1020         // Not the same source level expression - are the expressions
1021         // identical?
1022         llvm::FoldingSetNodeID IDA, IDB;
1023         EA->Profile(IDA, Context, /*Canonical=*/true);
1024         EB->Profile(IDB, Context, /*Canonical=*/true);
1025         if (IDA != IDB)
1026           return false;
1027 
1028         AmbiguousAtomic1 = EA;
1029         AmbiguousAtomic2 = EB;
1030         return true;
1031       };
1032 
1033   {
1034     // The subsumption checks might cause diagnostics
1035     SFINAETrap Trap(*this);
1036     auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
1037     if (!Normalized1)
1038       return false;
1039     const NormalForm DNF1 = makeDNF(*Normalized1);
1040     const NormalForm CNF1 = makeCNF(*Normalized1);
1041 
1042     auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
1043     if (!Normalized2)
1044       return false;
1045     const NormalForm DNF2 = makeDNF(*Normalized2);
1046     const NormalForm CNF2 = makeCNF(*Normalized2);
1047 
1048     bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
1049     bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
1050     bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
1051     bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
1052     if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
1053         Is2AtLeastAs1 == Is2AtLeastAs1Normally)
1054       // Same result - no ambiguity was caused by identical atomic expressions.
1055       return false;
1056   }
1057 
1058   // A different result! Some ambiguous atomic constraint(s) caused a difference
1059   assert(AmbiguousAtomic1 && AmbiguousAtomic2);
1060 
1061   Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
1062       << AmbiguousAtomic1->getSourceRange();
1063   Diag(AmbiguousAtomic2->getBeginLoc(),
1064        diag::note_ambiguous_atomic_constraints_similar_expression)
1065       << AmbiguousAtomic2->getSourceRange();
1066   return true;
1067 }
1068 
1069 concepts::ExprRequirement::ExprRequirement(
1070     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
1071     ReturnTypeRequirement Req, SatisfactionStatus Status,
1072     ConceptSpecializationExpr *SubstitutedConstraintExpr) :
1073     Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
1074                 Status == SS_Dependent &&
1075                 (E->containsUnexpandedParameterPack() ||
1076                  Req.containsUnexpandedParameterPack()),
1077                 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
1078     TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
1079     Status(Status) {
1080   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1081          "Simple requirement must not have a return type requirement or a "
1082          "noexcept specification");
1083   assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
1084          (SubstitutedConstraintExpr != nullptr));
1085 }
1086 
1087 concepts::ExprRequirement::ExprRequirement(
1088     SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
1089     SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
1090     Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
1091                 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
1092     Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
1093     Status(SS_ExprSubstitutionFailure) {
1094   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1095          "Simple requirement must not have a return type requirement or a "
1096          "noexcept specification");
1097 }
1098 
1099 concepts::ExprRequirement::ReturnTypeRequirement::
1100 ReturnTypeRequirement(TemplateParameterList *TPL) :
1101     TypeConstraintInfo(TPL, false) {
1102   assert(TPL->size() == 1);
1103   const TypeConstraint *TC =
1104       cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
1105   assert(TC &&
1106          "TPL must have a template type parameter with a type constraint");
1107   auto *Constraint =
1108       cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
1109   bool Dependent =
1110       Constraint->getTemplateArgsAsWritten() &&
1111       TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
1112           Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
1113   TypeConstraintInfo.setInt(Dependent ? true : false);
1114 }
1115 
1116 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
1117     Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
1118                 T->getType()->containsUnexpandedParameterPack(),
1119                 // We reach this ctor with either dependent types (in which
1120                 // IsSatisfied doesn't matter) or with non-dependent type in
1121                 // which the existence of the type indicates satisfaction.
1122                 /*IsSatisfied=*/true),
1123     Value(T),
1124     Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
1125                                                         : SS_Satisfied) {}
1126