xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaConcept.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ constraints and concepts.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaConcept.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprConcepts.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/Basic/OperatorPrecedence.h"
20 #include "clang/Sema/EnterExpressionEvaluationContext.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Overload.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "clang/Sema/Sema.h"
25 #include "clang/Sema/SemaDiagnostic.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "clang/Sema/Template.h"
28 #include "clang/Sema/TemplateDeduction.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerUnion.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include <optional>
33 
34 using namespace clang;
35 using namespace sema;
36 
37 namespace {
38 class LogicalBinOp {
39   SourceLocation Loc;
40   OverloadedOperatorKind Op = OO_None;
41   const Expr *LHS = nullptr;
42   const Expr *RHS = nullptr;
43 
44 public:
45   LogicalBinOp(const Expr *E) {
46     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
47       Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
48       LHS = BO->getLHS();
49       RHS = BO->getRHS();
50       Loc = BO->getExprLoc();
51     } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
52       // If OO is not || or && it might not have exactly 2 arguments.
53       if (OO->getNumArgs() == 2) {
54         Op = OO->getOperator();
55         LHS = OO->getArg(0);
56         RHS = OO->getArg(1);
57         Loc = OO->getOperatorLoc();
58       }
59     }
60   }
61 
62   bool isAnd() const { return Op == OO_AmpAmp; }
63   bool isOr() const { return Op == OO_PipePipe; }
64   explicit operator bool() const { return isAnd() || isOr(); }
65 
66   const Expr *getLHS() const { return LHS; }
67   const Expr *getRHS() const { return RHS; }
68   OverloadedOperatorKind getOp() const { return Op; }
69 
70   ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
71     return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
72   }
73 
74   ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
75                            ExprResult RHS) const {
76     assert((isAnd() || isOr()) && "Not the right kind of op?");
77     assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");
78 
79     if (!LHS.isUsable() || !RHS.isUsable())
80       return ExprEmpty();
81 
82     // We should just be able to 'normalize' these to the builtin Binary
83     // Operator, since that is how they are evaluated in constriant checks.
84     return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
85                                   BinaryOperator::getOverloadedOpcode(Op),
86                                   SemaRef.Context.BoolTy, VK_PRValue,
87                                   OK_Ordinary, Loc, FPOptionsOverride{});
88   }
89 };
90 }
91 
92 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
93                                      Token NextToken, bool *PossibleNonPrimary,
94                                      bool IsTrailingRequiresClause) {
95   // C++2a [temp.constr.atomic]p1
96   // ..E shall be a constant expression of type bool.
97 
98   ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
99 
100   if (LogicalBinOp BO = ConstraintExpression) {
101     return CheckConstraintExpression(BO.getLHS(), NextToken,
102                                      PossibleNonPrimary) &&
103            CheckConstraintExpression(BO.getRHS(), NextToken,
104                                      PossibleNonPrimary);
105   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
106     return CheckConstraintExpression(C->getSubExpr(), NextToken,
107                                      PossibleNonPrimary);
108 
109   QualType Type = ConstraintExpression->getType();
110 
111   auto CheckForNonPrimary = [&] {
112     if (!PossibleNonPrimary)
113       return;
114 
115     *PossibleNonPrimary =
116         // We have the following case:
117         // template<typename> requires func(0) struct S { };
118         // The user probably isn't aware of the parentheses required around
119         // the function call, and we're only going to parse 'func' as the
120         // primary-expression, and complain that it is of non-bool type.
121         //
122         // However, if we're in a lambda, this might also be:
123         // []<typename> requires var () {};
124         // Which also looks like a function call due to the lambda parentheses,
125         // but unlike the first case, isn't an error, so this check is skipped.
126         (NextToken.is(tok::l_paren) &&
127          (IsTrailingRequiresClause ||
128           (Type->isDependentType() &&
129            isa<UnresolvedLookupExpr>(ConstraintExpression) &&
130            !dyn_cast_if_present<LambdaScopeInfo>(getCurFunction())) ||
131           Type->isFunctionType() ||
132           Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
133         // We have the following case:
134         // template<typename T> requires size_<T> == 0 struct S { };
135         // The user probably isn't aware of the parentheses required around
136         // the binary operator, and we're only going to parse 'func' as the
137         // first operand, and complain that it is of non-bool type.
138         getBinOpPrecedence(NextToken.getKind(),
139                            /*GreaterThanIsOperator=*/true,
140                            getLangOpts().CPlusPlus11) > prec::LogicalAnd;
141   };
142 
143   // An atomic constraint!
144   if (ConstraintExpression->isTypeDependent()) {
145     CheckForNonPrimary();
146     return true;
147   }
148 
149   if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
150     Diag(ConstraintExpression->getExprLoc(),
151          diag::err_non_bool_atomic_constraint) << Type
152         << ConstraintExpression->getSourceRange();
153     CheckForNonPrimary();
154     return false;
155   }
156 
157   if (PossibleNonPrimary)
158       *PossibleNonPrimary = false;
159   return true;
160 }
161 
162 namespace {
163 struct SatisfactionStackRAII {
164   Sema &SemaRef;
165   bool Inserted = false;
166   SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,
167                         const llvm::FoldingSetNodeID &FSNID)
168       : SemaRef(SemaRef) {
169       if (ND) {
170       SemaRef.PushSatisfactionStackEntry(ND, FSNID);
171       Inserted = true;
172       }
173   }
174   ~SatisfactionStackRAII() {
175         if (Inserted)
176           SemaRef.PopSatisfactionStackEntry();
177   }
178 };
179 } // namespace
180 
181 template <typename ConstraintEvaluator>
182 static ExprResult
183 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
184                                 ConstraintSatisfaction &Satisfaction,
185                                 const ConstraintEvaluator &Evaluator);
186 
187 template <typename ConstraintEvaluator>
188 static ExprResult
189 calculateConstraintSatisfaction(Sema &S, const Expr *LHS,
190                                 OverloadedOperatorKind Op, const Expr *RHS,
191                                 ConstraintSatisfaction &Satisfaction,
192                                 const ConstraintEvaluator &Evaluator) {
193   size_t EffectiveDetailEndIndex = Satisfaction.Details.size();
194 
195   ExprResult LHSRes =
196       calculateConstraintSatisfaction(S, LHS, Satisfaction, Evaluator);
197 
198   if (LHSRes.isInvalid())
199     return ExprError();
200 
201   bool IsLHSSatisfied = Satisfaction.IsSatisfied;
202 
203   if (Op == clang::OO_PipePipe && IsLHSSatisfied)
204     // [temp.constr.op] p3
205     //    A disjunction is a constraint taking two operands. To determine if
206     //    a disjunction is satisfied, the satisfaction of the first operand
207     //    is checked. If that is satisfied, the disjunction is satisfied.
208     //    Otherwise, the disjunction is satisfied if and only if the second
209     //    operand is satisfied.
210     // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
211     return LHSRes;
212 
213   if (Op == clang::OO_AmpAmp && !IsLHSSatisfied)
214     // [temp.constr.op] p2
215     //    A conjunction is a constraint taking two operands. To determine if
216     //    a conjunction is satisfied, the satisfaction of the first operand
217     //    is checked. If that is not satisfied, the conjunction is not
218     //    satisfied. Otherwise, the conjunction is satisfied if and only if
219     //    the second operand is satisfied.
220     // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
221     return LHSRes;
222 
223   ExprResult RHSRes =
224       calculateConstraintSatisfaction(S, RHS, Satisfaction, Evaluator);
225   if (RHSRes.isInvalid())
226     return ExprError();
227 
228   bool IsRHSSatisfied = Satisfaction.IsSatisfied;
229   // Current implementation adds diagnostic information about the falsity
230   // of each false atomic constraint expression when it evaluates them.
231   // When the evaluation results to `false || true`, the information
232   // generated during the evaluation of left-hand side is meaningless
233   // because the whole expression evaluates to true.
234   // The following code removes the irrelevant diagnostic information.
235   // FIXME: We should probably delay the addition of diagnostic information
236   // until we know the entire expression is false.
237   if (Op == clang::OO_PipePipe && IsRHSSatisfied) {
238     auto EffectiveDetailEnd = Satisfaction.Details.begin();
239     std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);
240     Satisfaction.Details.erase(EffectiveDetailEnd, Satisfaction.Details.end());
241   }
242 
243   if (!LHSRes.isUsable() || !RHSRes.isUsable())
244     return ExprEmpty();
245 
246   return BinaryOperator::Create(S.Context, LHSRes.get(), RHSRes.get(),
247                                 BinaryOperator::getOverloadedOpcode(Op),
248                                 S.Context.BoolTy, VK_PRValue, OK_Ordinary,
249                                 LHS->getBeginLoc(), FPOptionsOverride{});
250 }
251 
252 template <typename ConstraintEvaluator>
253 static ExprResult
254 calculateConstraintSatisfaction(Sema &S, const CXXFoldExpr *FE,
255                                 ConstraintSatisfaction &Satisfaction,
256                                 const ConstraintEvaluator &Evaluator) {
257   bool Conjunction = FE->getOperator() == BinaryOperatorKind::BO_LAnd;
258   size_t EffectiveDetailEndIndex = Satisfaction.Details.size();
259 
260   ExprResult Out;
261   if (FE->isLeftFold() && FE->getInit()) {
262     Out = calculateConstraintSatisfaction(S, FE->getInit(), Satisfaction,
263                                           Evaluator);
264     if (Out.isInvalid())
265       return ExprError();
266 
267     // If the first clause of a conjunction is not satisfied,
268     // or if the first clause of a disjection is satisfied,
269     // we have established satisfaction of the whole constraint
270     // and we should not continue further.
271     if (Conjunction != Satisfaction.IsSatisfied)
272       return Out;
273   }
274   std::optional<unsigned> NumExpansions =
275       Evaluator.EvaluateFoldExpandedConstraintSize(FE);
276   if (!NumExpansions)
277     return ExprError();
278   for (unsigned I = 0; I < *NumExpansions; I++) {
279     Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
280     ExprResult Res = calculateConstraintSatisfaction(S, FE->getPattern(),
281                                                      Satisfaction, Evaluator);
282     if (Res.isInvalid())
283       return ExprError();
284     bool IsRHSSatisfied = Satisfaction.IsSatisfied;
285     if (!Conjunction && IsRHSSatisfied) {
286       auto EffectiveDetailEnd = Satisfaction.Details.begin();
287       std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);
288       Satisfaction.Details.erase(EffectiveDetailEnd,
289                                  Satisfaction.Details.end());
290     }
291     if (Out.isUnset())
292       Out = Res;
293     else if (!Res.isUnset()) {
294       Out = BinaryOperator::Create(
295           S.Context, Out.get(), Res.get(), FE->getOperator(), S.Context.BoolTy,
296           VK_PRValue, OK_Ordinary, FE->getBeginLoc(), FPOptionsOverride{});
297     }
298     if (Conjunction != IsRHSSatisfied)
299       return Out;
300   }
301 
302   if (FE->isRightFold() && FE->getInit()) {
303     ExprResult Res = calculateConstraintSatisfaction(S, FE->getInit(),
304                                                      Satisfaction, Evaluator);
305     if (Out.isInvalid())
306       return ExprError();
307 
308     if (Out.isUnset())
309       Out = Res;
310     else if (!Res.isUnset()) {
311       Out = BinaryOperator::Create(
312           S.Context, Out.get(), Res.get(), FE->getOperator(), S.Context.BoolTy,
313           VK_PRValue, OK_Ordinary, FE->getBeginLoc(), FPOptionsOverride{});
314     }
315   }
316 
317   if (Out.isUnset()) {
318     Satisfaction.IsSatisfied = Conjunction;
319     Out = S.BuildEmptyCXXFoldExpr(FE->getBeginLoc(), FE->getOperator());
320   }
321   return Out;
322 }
323 
324 template <typename ConstraintEvaluator>
325 static ExprResult
326 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
327                                 ConstraintSatisfaction &Satisfaction,
328                                 const ConstraintEvaluator &Evaluator) {
329   ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
330 
331   if (LogicalBinOp BO = ConstraintExpr)
332     return calculateConstraintSatisfaction(
333         S, BO.getLHS(), BO.getOp(), BO.getRHS(), Satisfaction, Evaluator);
334 
335   if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
336     // These aren't evaluated, so we don't care about cleanups, so we can just
337     // evaluate these as if the cleanups didn't exist.
338     return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
339                                            Evaluator);
340   }
341 
342   if (auto *FE = dyn_cast<CXXFoldExpr>(ConstraintExpr);
343       FE && S.getLangOpts().CPlusPlus26 &&
344       (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||
345        FE->getOperator() == BinaryOperatorKind::BO_LOr)) {
346     return calculateConstraintSatisfaction(S, FE, Satisfaction, Evaluator);
347   }
348 
349   // An atomic constraint expression
350   ExprResult SubstitutedAtomicExpr =
351       Evaluator.EvaluateAtomicConstraint(ConstraintExpr);
352 
353   if (SubstitutedAtomicExpr.isInvalid())
354     return ExprError();
355 
356   if (!SubstitutedAtomicExpr.isUsable())
357     // Evaluator has decided satisfaction without yielding an expression.
358     return ExprEmpty();
359 
360   // We don't have the ability to evaluate this, since it contains a
361   // RecoveryExpr, so we want to fail overload resolution.  Otherwise,
362   // we'd potentially pick up a different overload, and cause confusing
363   // diagnostics. SO, add a failure detail that will cause us to make this
364   // overload set not viable.
365   if (SubstitutedAtomicExpr.get()->containsErrors()) {
366     Satisfaction.IsSatisfied = false;
367     Satisfaction.ContainsErrors = true;
368 
369     PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
370     SmallString<128> DiagString;
371     DiagString = ": ";
372     Msg.EmitToString(S.getDiagnostics(), DiagString);
373     unsigned MessageSize = DiagString.size();
374     char *Mem = new (S.Context) char[MessageSize];
375     memcpy(Mem, DiagString.c_str(), MessageSize);
376     Satisfaction.Details.emplace_back(
377         new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
378             SubstitutedAtomicExpr.get()->getBeginLoc(),
379             StringRef(Mem, MessageSize)});
380     return SubstitutedAtomicExpr;
381   }
382 
383   EnterExpressionEvaluationContext ConstantEvaluated(
384       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
385   SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
386   Expr::EvalResult EvalResult;
387   EvalResult.Diag = &EvaluationDiags;
388   if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
389                                                            S.Context) ||
390       !EvaluationDiags.empty()) {
391     // C++2a [temp.constr.atomic]p1
392     //   ...E shall be a constant expression of type bool.
393     S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
394            diag::err_non_constant_constraint_expression)
395         << SubstitutedAtomicExpr.get()->getSourceRange();
396     for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
397       S.Diag(PDiag.first, PDiag.second);
398     return ExprError();
399   }
400 
401   assert(EvalResult.Val.isInt() &&
402          "evaluating bool expression didn't produce int");
403   Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
404   if (!Satisfaction.IsSatisfied)
405     Satisfaction.Details.emplace_back(SubstitutedAtomicExpr.get());
406 
407   return SubstitutedAtomicExpr;
408 }
409 
410 static bool
411 DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID,
412                             const NamedDecl *Templ, const Expr *E,
413                             const MultiLevelTemplateArgumentList &MLTAL) {
414   E->Profile(ID, S.Context, /*Canonical=*/true);
415   for (const auto &List : MLTAL)
416     for (const auto &TemplateArg : List.Args)
417       TemplateArg.Profile(ID, S.Context);
418 
419   // Note that we have to do this with our own collection, because there are
420   // times where a constraint-expression check can cause us to need to evaluate
421   // other constriants that are unrelated, such as when evaluating a recovery
422   // expression, or when trying to determine the constexpr-ness of special
423   // members. Otherwise we could just use the
424   // Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function.
425   if (S.SatisfactionStackContains(Templ, ID)) {
426     S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)
427         << const_cast<Expr *>(E) << E->getSourceRange();
428     return true;
429   }
430 
431   return false;
432 }
433 
434 static ExprResult calculateConstraintSatisfaction(
435     Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
436     const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
437     ConstraintSatisfaction &Satisfaction) {
438 
439   struct ConstraintEvaluator {
440     Sema &S;
441     const NamedDecl *Template;
442     SourceLocation TemplateNameLoc;
443     const MultiLevelTemplateArgumentList &MLTAL;
444     ConstraintSatisfaction &Satisfaction;
445 
446     ExprResult EvaluateAtomicConstraint(const Expr *AtomicExpr) const {
447       EnterExpressionEvaluationContext ConstantEvaluated(
448           S, Sema::ExpressionEvaluationContext::ConstantEvaluated,
449           Sema::ReuseLambdaContextDecl);
450 
451       // Atomic constraint - substitute arguments and check satisfaction.
452       ExprResult SubstitutedExpression;
453       {
454         TemplateDeductionInfo Info(TemplateNameLoc);
455         Sema::InstantiatingTemplate Inst(
456             S, AtomicExpr->getBeginLoc(),
457             Sema::InstantiatingTemplate::ConstraintSubstitution{},
458             const_cast<NamedDecl *>(Template), Info,
459             AtomicExpr->getSourceRange());
460         if (Inst.isInvalid())
461           return ExprError();
462 
463         llvm::FoldingSetNodeID ID;
464         if (Template &&
465             DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) {
466           Satisfaction.IsSatisfied = false;
467           Satisfaction.ContainsErrors = true;
468           return ExprEmpty();
469         }
470 
471         SatisfactionStackRAII StackRAII(S, Template, ID);
472 
473         // We do not want error diagnostics escaping here.
474         Sema::SFINAETrap Trap(S);
475         SubstitutedExpression =
476             S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);
477 
478         if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
479           // C++2a [temp.constr.atomic]p1
480           //   ...If substitution results in an invalid type or expression, the
481           //   constraint is not satisfied.
482           if (!Trap.hasErrorOccurred())
483             // A non-SFINAE error has occurred as a result of this
484             // substitution.
485             return ExprError();
486 
487           PartialDiagnosticAt SubstDiag{SourceLocation(),
488                                         PartialDiagnostic::NullDiagnostic()};
489           Info.takeSFINAEDiagnostic(SubstDiag);
490           // FIXME: Concepts: This is an unfortunate consequence of there
491           //  being no serialization code for PartialDiagnostics and the fact
492           //  that serializing them would likely take a lot more storage than
493           //  just storing them as strings. We would still like, in the
494           //  future, to serialize the proper PartialDiagnostic as serializing
495           //  it as a string defeats the purpose of the diagnostic mechanism.
496           SmallString<128> DiagString;
497           DiagString = ": ";
498           SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
499           unsigned MessageSize = DiagString.size();
500           char *Mem = new (S.Context) char[MessageSize];
501           memcpy(Mem, DiagString.c_str(), MessageSize);
502           Satisfaction.Details.emplace_back(
503               new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
504                   SubstDiag.first, StringRef(Mem, MessageSize)});
505           Satisfaction.IsSatisfied = false;
506           return ExprEmpty();
507         }
508       }
509 
510       if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
511         return ExprError();
512 
513       // [temp.constr.atomic]p3: To determine if an atomic constraint is
514       // satisfied, the parameter mapping and template arguments are first
515       // substituted into its expression.  If substitution results in an
516       // invalid type or expression, the constraint is not satisfied.
517       // Otherwise, the lvalue-to-rvalue conversion is performed if necessary,
518       // and E shall be a constant expression of type bool.
519       //
520       // Perform the L to R Value conversion if necessary. We do so for all
521       // non-PRValue categories, else we fail to extend the lifetime of
522       // temporaries, and that fails the constant expression check.
523       if (!SubstitutedExpression.get()->isPRValue())
524         SubstitutedExpression = ImplicitCastExpr::Create(
525             S.Context, SubstitutedExpression.get()->getType(),
526             CK_LValueToRValue, SubstitutedExpression.get(),
527             /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
528 
529       return SubstitutedExpression;
530     }
531 
532     std::optional<unsigned>
533     EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {
534 
535       // We should ignore errors in the presence of packs of different size.
536       Sema::SFINAETrap Trap(S);
537 
538       Expr *Pattern = FE->getPattern();
539 
540       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
541       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
542       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
543       bool Expand = true;
544       bool RetainExpansion = false;
545       std::optional<unsigned> OrigNumExpansions = FE->getNumExpansions(),
546                               NumExpansions = OrigNumExpansions;
547       if (S.CheckParameterPacksForExpansion(
548               FE->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded,
549               MLTAL, Expand, RetainExpansion, NumExpansions) ||
550           !Expand || RetainExpansion)
551         return std::nullopt;
552 
553       if (NumExpansions && S.getLangOpts().BracketDepth < NumExpansions) {
554         S.Diag(FE->getEllipsisLoc(),
555                clang::diag::err_fold_expression_limit_exceeded)
556             << *NumExpansions << S.getLangOpts().BracketDepth
557             << FE->getSourceRange();
558         S.Diag(FE->getEllipsisLoc(), diag::note_bracket_depth);
559         return std::nullopt;
560       }
561       return NumExpansions;
562     }
563   };
564 
565   return calculateConstraintSatisfaction(
566       S, ConstraintExpr, Satisfaction,
567       ConstraintEvaluator{S, Template, TemplateNameLoc, MLTAL, Satisfaction});
568 }
569 
570 static bool CheckConstraintSatisfaction(
571     Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
572     llvm::SmallVectorImpl<Expr *> &Converted,
573     const MultiLevelTemplateArgumentList &TemplateArgsLists,
574     SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
575   if (ConstraintExprs.empty()) {
576     Satisfaction.IsSatisfied = true;
577     return false;
578   }
579 
580   if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
581     // No need to check satisfaction for dependent constraint expressions.
582     Satisfaction.IsSatisfied = true;
583     return false;
584   }
585 
586   ArrayRef<TemplateArgument> TemplateArgs =
587       TemplateArgsLists.getNumSubstitutedLevels() > 0
588           ? TemplateArgsLists.getOutermost()
589           : ArrayRef<TemplateArgument> {};
590   Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
591       Sema::InstantiatingTemplate::ConstraintsCheck{},
592       const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
593   if (Inst.isInvalid())
594     return true;
595 
596   for (const Expr *ConstraintExpr : ConstraintExprs) {
597     ExprResult Res = calculateConstraintSatisfaction(
598         S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
599         ConstraintExpr, Satisfaction);
600     if (Res.isInvalid())
601       return true;
602 
603     Converted.push_back(Res.get());
604     if (!Satisfaction.IsSatisfied) {
605       // Backfill the 'converted' list with nulls so we can keep the Converted
606       // and unconverted lists in sync.
607       Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
608       // [temp.constr.op] p2
609       // [...] To determine if a conjunction is satisfied, the satisfaction
610       // of the first operand is checked. If that is not satisfied, the
611       // conjunction is not satisfied. [...]
612       return false;
613     }
614   }
615   return false;
616 }
617 
618 bool Sema::CheckConstraintSatisfaction(
619     const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
620     llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
621     const MultiLevelTemplateArgumentList &TemplateArgsLists,
622     SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
623   if (ConstraintExprs.empty()) {
624     OutSatisfaction.IsSatisfied = true;
625     return false;
626   }
627   if (!Template) {
628     return ::CheckConstraintSatisfaction(
629         *this, nullptr, ConstraintExprs, ConvertedConstraints,
630         TemplateArgsLists, TemplateIDRange, OutSatisfaction);
631   }
632   // Invalid templates could make their way here. Substituting them could result
633   // in dependent expressions.
634   if (Template->isInvalidDecl()) {
635     OutSatisfaction.IsSatisfied = false;
636     return true;
637   }
638 
639   // A list of the template argument list flattened in a predictible manner for
640   // the purposes of caching. The ConstraintSatisfaction type is in AST so it
641   // has no access to the MultiLevelTemplateArgumentList, so this has to happen
642   // here.
643   llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
644   for (auto List : TemplateArgsLists)
645     FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),
646                          List.Args.end());
647 
648   llvm::FoldingSetNodeID ID;
649   ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
650   void *InsertPos;
651   if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
652     OutSatisfaction = *Cached;
653     return false;
654   }
655 
656   auto Satisfaction =
657       std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
658   if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
659                                     ConvertedConstraints, TemplateArgsLists,
660                                     TemplateIDRange, *Satisfaction)) {
661     OutSatisfaction = *Satisfaction;
662     return true;
663   }
664 
665   if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
666     // The evaluation of this constraint resulted in us trying to re-evaluate it
667     // recursively. This isn't really possible, except we try to form a
668     // RecoveryExpr as a part of the evaluation.  If this is the case, just
669     // return the 'cached' version (which will have the same result), and save
670     // ourselves the extra-insert. If it ever becomes possible to legitimately
671     // recursively check a constraint, we should skip checking the 'inner' one
672     // above, and replace the cached version with this one, as it would be more
673     // specific.
674     OutSatisfaction = *Cached;
675     return false;
676   }
677 
678   // Else we can simply add this satisfaction to the list.
679   OutSatisfaction = *Satisfaction;
680   // We cannot use InsertPos here because CheckConstraintSatisfaction might have
681   // invalidated it.
682   // Note that entries of SatisfactionCache are deleted in Sema's destructor.
683   SatisfactionCache.InsertNode(Satisfaction.release());
684   return false;
685 }
686 
687 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
688                                        ConstraintSatisfaction &Satisfaction) {
689 
690   struct ConstraintEvaluator {
691     Sema &S;
692     ExprResult EvaluateAtomicConstraint(const Expr *AtomicExpr) const {
693       return S.PerformContextuallyConvertToBool(const_cast<Expr *>(AtomicExpr));
694     }
695 
696     std::optional<unsigned>
697     EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {
698       return 0;
699     }
700   };
701 
702   return calculateConstraintSatisfaction(*this, ConstraintExpr, Satisfaction,
703                                          ConstraintEvaluator{*this})
704       .isInvalid();
705 }
706 
707 bool Sema::addInstantiatedCapturesToScope(
708     FunctionDecl *Function, const FunctionDecl *PatternDecl,
709     LocalInstantiationScope &Scope,
710     const MultiLevelTemplateArgumentList &TemplateArgs) {
711   const auto *LambdaClass = cast<CXXMethodDecl>(Function)->getParent();
712   const auto *LambdaPattern = cast<CXXMethodDecl>(PatternDecl)->getParent();
713 
714   unsigned Instantiated = 0;
715 
716   auto AddSingleCapture = [&](const ValueDecl *CapturedPattern,
717                               unsigned Index) {
718     ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar();
719     if (CapturedVar->isInitCapture())
720       Scope.InstantiatedLocal(CapturedPattern, CapturedVar);
721   };
722 
723   for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) {
724     if (!CapturePattern.capturesVariable()) {
725       Instantiated++;
726       continue;
727     }
728     const ValueDecl *CapturedPattern = CapturePattern.getCapturedVar();
729     if (!CapturedPattern->isParameterPack()) {
730       AddSingleCapture(CapturedPattern, Instantiated++);
731     } else {
732       Scope.MakeInstantiatedLocalArgPack(CapturedPattern);
733       std::optional<unsigned> NumArgumentsInExpansion =
734           getNumArgumentsInExpansion(CapturedPattern->getType(), TemplateArgs);
735       if (!NumArgumentsInExpansion)
736         continue;
737       for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg)
738         AddSingleCapture(CapturedPattern, Instantiated++);
739     }
740   }
741   return false;
742 }
743 
744 bool Sema::SetupConstraintScope(
745     FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
746     const MultiLevelTemplateArgumentList &MLTAL,
747     LocalInstantiationScope &Scope) {
748   if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
749     FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
750     InstantiatingTemplate Inst(
751         *this, FD->getPointOfInstantiation(),
752         Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
753         TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
754         SourceRange());
755     if (Inst.isInvalid())
756       return true;
757 
758     // addInstantiatedParametersToScope creates a map of 'uninstantiated' to
759     // 'instantiated' parameters and adds it to the context. For the case where
760     // this function is a template being instantiated NOW, we also need to add
761     // the list of current template arguments to the list so that they also can
762     // be picked out of the map.
763     if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
764       MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(),
765                                                    /*Final=*/false);
766       if (addInstantiatedParametersToScope(
767               FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
768         return true;
769     }
770 
771     // If this is a member function, make sure we get the parameters that
772     // reference the original primary template.
773     // We walk up the instantiated template chain so that nested lambdas get
774     // handled properly.
775     // We should only collect instantiated parameters from the primary template.
776     // Otherwise, we may have mismatched template parameter depth!
777     if (FunctionTemplateDecl *FromMemTempl =
778             PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
779       while (FromMemTempl->getInstantiatedFromMemberTemplate())
780         FromMemTempl = FromMemTempl->getInstantiatedFromMemberTemplate();
781       if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
782                                            Scope, MLTAL))
783         return true;
784     }
785 
786     return false;
787   }
788 
789   if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
790       FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
791     FunctionDecl *InstantiatedFrom =
792         FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
793             ? FD->getInstantiatedFromMemberFunction()
794             : FD->getInstantiatedFromDecl();
795 
796     InstantiatingTemplate Inst(
797         *this, FD->getPointOfInstantiation(),
798         Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
799         TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
800         SourceRange());
801     if (Inst.isInvalid())
802       return true;
803 
804     // Case where this was not a template, but instantiated as a
805     // child-function.
806     if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
807       return true;
808   }
809 
810   return false;
811 }
812 
813 // This function collects all of the template arguments for the purposes of
814 // constraint-instantiation and checking.
815 std::optional<MultiLevelTemplateArgumentList>
816 Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
817     FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
818     LocalInstantiationScope &Scope) {
819   MultiLevelTemplateArgumentList MLTAL;
820 
821   // Collect the list of template arguments relative to the 'primary' template.
822   // We need the entire list, since the constraint is completely uninstantiated
823   // at this point.
824   MLTAL =
825       getTemplateInstantiationArgs(FD, FD->getLexicalDeclContext(),
826                                    /*Final=*/false, /*Innermost=*/std::nullopt,
827                                    /*RelativeToPrimary=*/true,
828                                    /*Pattern=*/nullptr,
829                                    /*ForConstraintInstantiation=*/true);
830   if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
831     return std::nullopt;
832 
833   return MLTAL;
834 }
835 
836 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
837                                     ConstraintSatisfaction &Satisfaction,
838                                     SourceLocation UsageLoc,
839                                     bool ForOverloadResolution) {
840   // Don't check constraints if the function is dependent. Also don't check if
841   // this is a function template specialization, as the call to
842   // CheckinstantiatedFunctionTemplateConstraints after this will check it
843   // better.
844   if (FD->isDependentContext() ||
845       FD->getTemplatedKind() ==
846           FunctionDecl::TK_FunctionTemplateSpecialization) {
847     Satisfaction.IsSatisfied = true;
848     return false;
849   }
850 
851   // A lambda conversion operator has the same constraints as the call operator
852   // and constraints checking relies on whether we are in a lambda call operator
853   // (and may refer to its parameters), so check the call operator instead.
854   // Note that the declarations outside of the lambda should also be
855   // considered. Turning on the 'ForOverloadResolution' flag results in the
856   // LocalInstantiationScope not looking into its parents, but we can still
857   // access Decls from the parents while building a lambda RAII scope later.
858   if (const auto *MD = dyn_cast<CXXConversionDecl>(FD);
859       MD && isLambdaConversionOperator(const_cast<CXXConversionDecl *>(MD)))
860     return CheckFunctionConstraints(MD->getParent()->getLambdaCallOperator(),
861                                     Satisfaction, UsageLoc,
862                                     /*ShouldAddDeclsFromParentScope=*/true);
863 
864   DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);
865 
866   while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
867     if (isLambdaCallOperator(CtxToSave))
868       CtxToSave = CtxToSave->getParent()->getParent();
869     else
870       CtxToSave = CtxToSave->getNonTransparentContext();
871   }
872 
873   ContextRAII SavedContext{*this, CtxToSave};
874   LocalInstantiationScope Scope(*this, !ForOverloadResolution);
875   std::optional<MultiLevelTemplateArgumentList> MLTAL =
876       SetupConstraintCheckingTemplateArgumentsAndScope(
877           const_cast<FunctionDecl *>(FD), {}, Scope);
878 
879   if (!MLTAL)
880     return true;
881 
882   Qualifiers ThisQuals;
883   CXXRecordDecl *Record = nullptr;
884   if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
885     ThisQuals = Method->getMethodQualifiers();
886     Record = const_cast<CXXRecordDecl *>(Method->getParent());
887   }
888   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
889 
890   LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
891       *this, const_cast<FunctionDecl *>(FD), *MLTAL, Scope,
892       ForOverloadResolution);
893 
894   return CheckConstraintSatisfaction(
895       FD, {FD->getTrailingRequiresClause()}, *MLTAL,
896       SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
897       Satisfaction);
898 }
899 
900 
901 // Figure out the to-translation-unit depth for this function declaration for
902 // the purpose of seeing if they differ by constraints. This isn't the same as
903 // getTemplateDepth, because it includes already instantiated parents.
904 static unsigned
905 CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
906                                      bool SkipForSpecialization = false) {
907   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
908       ND, ND->getLexicalDeclContext(), /*Final=*/false,
909       /*Innermost=*/std::nullopt,
910       /*RelativeToPrimary=*/true,
911       /*Pattern=*/nullptr,
912       /*ForConstraintInstantiation=*/true, SkipForSpecialization);
913   return MLTAL.getNumLevels();
914 }
915 
916 namespace {
917   class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
918   unsigned TemplateDepth = 0;
919   public:
920   using inherited = TreeTransform<AdjustConstraintDepth>;
921   AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
922       : inherited(SemaRef), TemplateDepth(TemplateDepth) {}
923 
924   using inherited::TransformTemplateTypeParmType;
925   QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
926                                          TemplateTypeParmTypeLoc TL, bool) {
927     const TemplateTypeParmType *T = TL.getTypePtr();
928 
929     TemplateTypeParmDecl *NewTTPDecl = nullptr;
930     if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
931       NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
932           TransformDecl(TL.getNameLoc(), OldTTPDecl));
933 
934     QualType Result = getSema().Context.getTemplateTypeParmType(
935         T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
936         NewTTPDecl);
937     TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
938     NewTL.setNameLoc(TL.getNameLoc());
939     return Result;
940   }
941   };
942 } // namespace
943 
944 static const Expr *SubstituteConstraintExpressionWithoutSatisfaction(
945     Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo,
946     const Expr *ConstrExpr) {
947   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
948       DeclInfo.getDecl(), DeclInfo.getLexicalDeclContext(), /*Final=*/false,
949       /*Innermost=*/std::nullopt,
950       /*RelativeToPrimary=*/true,
951       /*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true,
952       /*SkipForSpecialization*/ false);
953 
954   if (MLTAL.getNumSubstitutedLevels() == 0)
955     return ConstrExpr;
956 
957   Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false);
958 
959   Sema::InstantiatingTemplate Inst(
960       S, DeclInfo.getLocation(),
961       Sema::InstantiatingTemplate::ConstraintNormalization{},
962       const_cast<NamedDecl *>(DeclInfo.getDecl()), SourceRange{});
963   if (Inst.isInvalid())
964     return nullptr;
965 
966   // Set up a dummy 'instantiation' scope in the case of reference to function
967   // parameters that the surrounding function hasn't been instantiated yet. Note
968   // this may happen while we're comparing two templates' constraint
969   // equivalence.
970   LocalInstantiationScope ScopeForParameters(S, /*CombineWithOuterScope=*/true);
971   if (auto *FD = DeclInfo.getDecl()->getAsFunction())
972     for (auto *PVD : FD->parameters()) {
973       if (!PVD->isParameterPack()) {
974         ScopeForParameters.InstantiatedLocal(PVD, PVD);
975         continue;
976       }
977       // This is hacky: we're mapping the parameter pack to a size-of-1 argument
978       // to avoid building SubstTemplateTypeParmPackTypes for
979       // PackExpansionTypes. The SubstTemplateTypeParmPackType node would
980       // otherwise reference the AssociatedDecl of the template arguments, which
981       // is, in this case, the template declaration.
982       //
983       // However, as we are in the process of comparing potential
984       // re-declarations, the canonical declaration is the declaration itself at
985       // this point. So if we didn't expand these packs, we would end up with an
986       // incorrect profile difference because we will be profiling the
987       // canonical types!
988       //
989       // FIXME: Improve the "no-transform" machinery in FindInstantiatedDecl so
990       // that we can eliminate the Scope in the cases where the declarations are
991       // not necessarily instantiated. It would also benefit the noexcept
992       // specifier comparison.
993       ScopeForParameters.MakeInstantiatedLocalArgPack(PVD);
994       ScopeForParameters.InstantiatedLocalPackArg(PVD, PVD);
995     }
996 
997   std::optional<Sema::CXXThisScopeRAII> ThisScope;
998 
999   // See TreeTransform::RebuildTemplateSpecializationType. A context scope is
1000   // essential for having an injected class as the canonical type for a template
1001   // specialization type at the rebuilding stage. This guarantees that, for
1002   // out-of-line definitions, injected class name types and their equivalent
1003   // template specializations can be profiled to the same value, which makes it
1004   // possible that e.g. constraints involving C<Class<T>> and C<Class> are
1005   // perceived identical.
1006   std::optional<Sema::ContextRAII> ContextScope;
1007   if (auto *RD = dyn_cast<CXXRecordDecl>(DeclInfo.getDeclContext())) {
1008     ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers());
1009     ContextScope.emplace(S, const_cast<DeclContext *>(cast<DeclContext>(RD)),
1010                          /*NewThisContext=*/false);
1011   }
1012   ExprResult SubstConstr = S.SubstConstraintExprWithoutSatisfaction(
1013       const_cast<clang::Expr *>(ConstrExpr), MLTAL);
1014   if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable())
1015     return nullptr;
1016   return SubstConstr.get();
1017 }
1018 
1019 bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
1020                                          const Expr *OldConstr,
1021                                          const TemplateCompareNewDeclInfo &New,
1022                                          const Expr *NewConstr) {
1023   if (OldConstr == NewConstr)
1024     return true;
1025   // C++ [temp.constr.decl]p4
1026   if (Old && !New.isInvalid() && !New.ContainsDecl(Old) &&
1027       Old->getLexicalDeclContext() != New.getLexicalDeclContext()) {
1028     if (const Expr *SubstConstr =
1029             SubstituteConstraintExpressionWithoutSatisfaction(*this, Old,
1030                                                               OldConstr))
1031       OldConstr = SubstConstr;
1032     else
1033       return false;
1034     if (const Expr *SubstConstr =
1035             SubstituteConstraintExpressionWithoutSatisfaction(*this, New,
1036                                                               NewConstr))
1037       NewConstr = SubstConstr;
1038     else
1039       return false;
1040   }
1041 
1042   llvm::FoldingSetNodeID ID1, ID2;
1043   OldConstr->Profile(ID1, Context, /*Canonical=*/true);
1044   NewConstr->Profile(ID2, Context, /*Canonical=*/true);
1045   return ID1 == ID2;
1046 }
1047 
1048 bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
1049   assert(FD->getFriendObjectKind() && "Must be a friend!");
1050 
1051   // The logic for non-templates is handled in ASTContext::isSameEntity, so we
1052   // don't have to bother checking 'DependsOnEnclosingTemplate' for a
1053   // non-function-template.
1054   assert(FD->getDescribedFunctionTemplate() &&
1055          "Non-function templates don't need to be checked");
1056 
1057   SmallVector<const Expr *, 3> ACs;
1058   FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);
1059 
1060   unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
1061   for (const Expr *Constraint : ACs)
1062     if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth,
1063                                                        Constraint))
1064       return true;
1065 
1066   return false;
1067 }
1068 
1069 bool Sema::EnsureTemplateArgumentListConstraints(
1070     TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
1071     SourceRange TemplateIDRange) {
1072   ConstraintSatisfaction Satisfaction;
1073   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
1074   TD->getAssociatedConstraints(AssociatedConstraints);
1075   if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
1076                                   TemplateIDRange, Satisfaction))
1077     return true;
1078 
1079   if (!Satisfaction.IsSatisfied) {
1080     SmallString<128> TemplateArgString;
1081     TemplateArgString = " ";
1082     TemplateArgString += getTemplateArgumentBindingsText(
1083         TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
1084         TemplateArgsLists.getInnermost().size());
1085 
1086     Diag(TemplateIDRange.getBegin(),
1087          diag::err_template_arg_list_constraints_not_satisfied)
1088         << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
1089         << TemplateArgString << TemplateIDRange;
1090     DiagnoseUnsatisfiedConstraint(Satisfaction);
1091     return true;
1092   }
1093   return false;
1094 }
1095 
1096 bool Sema::CheckInstantiatedFunctionTemplateConstraints(
1097     SourceLocation PointOfInstantiation, FunctionDecl *Decl,
1098     ArrayRef<TemplateArgument> TemplateArgs,
1099     ConstraintSatisfaction &Satisfaction) {
1100   // In most cases we're not going to have constraints, so check for that first.
1101   FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
1102   // Note - code synthesis context for the constraints check is created
1103   // inside CheckConstraintsSatisfaction.
1104   SmallVector<const Expr *, 3> TemplateAC;
1105   Template->getAssociatedConstraints(TemplateAC);
1106   if (TemplateAC.empty()) {
1107     Satisfaction.IsSatisfied = true;
1108     return false;
1109   }
1110 
1111   // Enter the scope of this instantiation. We don't use
1112   // PushDeclContext because we don't have a scope.
1113   Sema::ContextRAII savedContext(*this, Decl);
1114   LocalInstantiationScope Scope(*this);
1115 
1116   std::optional<MultiLevelTemplateArgumentList> MLTAL =
1117       SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
1118                                                        Scope);
1119 
1120   if (!MLTAL)
1121     return true;
1122 
1123   Qualifiers ThisQuals;
1124   CXXRecordDecl *Record = nullptr;
1125   if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
1126     ThisQuals = Method->getMethodQualifiers();
1127     Record = Method->getParent();
1128   }
1129 
1130   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
1131   LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
1132       *this, const_cast<FunctionDecl *>(Decl), *MLTAL, Scope);
1133 
1134   llvm::SmallVector<Expr *, 1> Converted;
1135   return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
1136                                      PointOfInstantiation, Satisfaction);
1137 }
1138 
1139 static void diagnoseUnsatisfiedRequirement(Sema &S,
1140                                            concepts::ExprRequirement *Req,
1141                                            bool First) {
1142   assert(!Req->isSatisfied()
1143          && "Diagnose() can only be used on an unsatisfied requirement");
1144   switch (Req->getSatisfactionStatus()) {
1145     case concepts::ExprRequirement::SS_Dependent:
1146       llvm_unreachable("Diagnosing a dependent requirement");
1147       break;
1148     case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
1149       auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
1150       if (!SubstDiag->DiagMessage.empty())
1151         S.Diag(SubstDiag->DiagLoc,
1152                diag::note_expr_requirement_expr_substitution_error)
1153                << (int)First << SubstDiag->SubstitutedEntity
1154                << SubstDiag->DiagMessage;
1155       else
1156         S.Diag(SubstDiag->DiagLoc,
1157                diag::note_expr_requirement_expr_unknown_substitution_error)
1158             << (int)First << SubstDiag->SubstitutedEntity;
1159       break;
1160     }
1161     case concepts::ExprRequirement::SS_NoexceptNotMet:
1162       S.Diag(Req->getNoexceptLoc(),
1163              diag::note_expr_requirement_noexcept_not_met)
1164           << (int)First << Req->getExpr();
1165       break;
1166     case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
1167       auto *SubstDiag =
1168           Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
1169       if (!SubstDiag->DiagMessage.empty())
1170         S.Diag(SubstDiag->DiagLoc,
1171                diag::note_expr_requirement_type_requirement_substitution_error)
1172             << (int)First << SubstDiag->SubstitutedEntity
1173             << SubstDiag->DiagMessage;
1174       else
1175         S.Diag(SubstDiag->DiagLoc,
1176                diag::note_expr_requirement_type_requirement_unknown_substitution_error)
1177             << (int)First << SubstDiag->SubstitutedEntity;
1178       break;
1179     }
1180     case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
1181       ConceptSpecializationExpr *ConstraintExpr =
1182           Req->getReturnTypeRequirementSubstitutedConstraintExpr();
1183       if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
1184         // A simple case - expr type is the type being constrained and the concept
1185         // was not provided arguments.
1186         Expr *e = Req->getExpr();
1187         S.Diag(e->getBeginLoc(),
1188                diag::note_expr_requirement_constraints_not_satisfied_simple)
1189             << (int)First << S.Context.getReferenceQualifiedType(e)
1190             << ConstraintExpr->getNamedConcept();
1191       } else {
1192         S.Diag(ConstraintExpr->getBeginLoc(),
1193                diag::note_expr_requirement_constraints_not_satisfied)
1194             << (int)First << ConstraintExpr;
1195       }
1196       S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
1197       break;
1198     }
1199     case concepts::ExprRequirement::SS_Satisfied:
1200       llvm_unreachable("We checked this above");
1201   }
1202 }
1203 
1204 static void diagnoseUnsatisfiedRequirement(Sema &S,
1205                                            concepts::TypeRequirement *Req,
1206                                            bool First) {
1207   assert(!Req->isSatisfied()
1208          && "Diagnose() can only be used on an unsatisfied requirement");
1209   switch (Req->getSatisfactionStatus()) {
1210   case concepts::TypeRequirement::SS_Dependent:
1211     llvm_unreachable("Diagnosing a dependent requirement");
1212     return;
1213   case concepts::TypeRequirement::SS_SubstitutionFailure: {
1214     auto *SubstDiag = Req->getSubstitutionDiagnostic();
1215     if (!SubstDiag->DiagMessage.empty())
1216       S.Diag(SubstDiag->DiagLoc,
1217              diag::note_type_requirement_substitution_error) << (int)First
1218           << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
1219     else
1220       S.Diag(SubstDiag->DiagLoc,
1221              diag::note_type_requirement_unknown_substitution_error)
1222           << (int)First << SubstDiag->SubstitutedEntity;
1223     return;
1224   }
1225   default:
1226     llvm_unreachable("Unknown satisfaction status");
1227     return;
1228   }
1229 }
1230 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
1231                                                         Expr *SubstExpr,
1232                                                         bool First = true);
1233 
1234 static void diagnoseUnsatisfiedRequirement(Sema &S,
1235                                            concepts::NestedRequirement *Req,
1236                                            bool First) {
1237   using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;
1238   for (auto &Record : Req->getConstraintSatisfaction()) {
1239     if (auto *SubstDiag = Record.dyn_cast<SubstitutionDiagnostic *>())
1240       S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)
1241           << (int)First << Req->getInvalidConstraintEntity()
1242           << SubstDiag->second;
1243     else
1244       diagnoseWellFormedUnsatisfiedConstraintExpr(S, Record.dyn_cast<Expr *>(),
1245                                                   First);
1246     First = false;
1247   }
1248 }
1249 
1250 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
1251                                                         Expr *SubstExpr,
1252                                                         bool First) {
1253   SubstExpr = SubstExpr->IgnoreParenImpCasts();
1254   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
1255     switch (BO->getOpcode()) {
1256     // These two cases will in practice only be reached when using fold
1257     // expressions with || and &&, since otherwise the || and && will have been
1258     // broken down into atomic constraints during satisfaction checking.
1259     case BO_LOr:
1260       // Or evaluated to false - meaning both RHS and LHS evaluated to false.
1261       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
1262       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
1263                                                   /*First=*/false);
1264       return;
1265     case BO_LAnd: {
1266       bool LHSSatisfied =
1267           BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
1268       if (LHSSatisfied) {
1269         // LHS is true, so RHS must be false.
1270         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
1271         return;
1272       }
1273       // LHS is false
1274       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
1275 
1276       // RHS might also be false
1277       bool RHSSatisfied =
1278           BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
1279       if (!RHSSatisfied)
1280         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
1281                                                     /*First=*/false);
1282       return;
1283     }
1284     case BO_GE:
1285     case BO_LE:
1286     case BO_GT:
1287     case BO_LT:
1288     case BO_EQ:
1289     case BO_NE:
1290       if (BO->getLHS()->getType()->isIntegerType() &&
1291           BO->getRHS()->getType()->isIntegerType()) {
1292         Expr::EvalResult SimplifiedLHS;
1293         Expr::EvalResult SimplifiedRHS;
1294         BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
1295                                     Expr::SE_NoSideEffects,
1296                                     /*InConstantContext=*/true);
1297         BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
1298                                     Expr::SE_NoSideEffects,
1299                                     /*InConstantContext=*/true);
1300         if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
1301           S.Diag(SubstExpr->getBeginLoc(),
1302                  diag::note_atomic_constraint_evaluated_to_false_elaborated)
1303               << (int)First << SubstExpr
1304               << toString(SimplifiedLHS.Val.getInt(), 10)
1305               << BinaryOperator::getOpcodeStr(BO->getOpcode())
1306               << toString(SimplifiedRHS.Val.getInt(), 10);
1307           return;
1308         }
1309       }
1310       break;
1311 
1312     default:
1313       break;
1314     }
1315   } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
1316     if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
1317       S.Diag(
1318           CSE->getSourceRange().getBegin(),
1319           diag::
1320           note_single_arg_concept_specialization_constraint_evaluated_to_false)
1321           << (int)First
1322           << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
1323           << CSE->getNamedConcept();
1324     } else {
1325       S.Diag(SubstExpr->getSourceRange().getBegin(),
1326              diag::note_concept_specialization_constraint_evaluated_to_false)
1327           << (int)First << CSE;
1328     }
1329     S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
1330     return;
1331   } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
1332     // FIXME: RequiresExpr should store dependent diagnostics.
1333     for (concepts::Requirement *Req : RE->getRequirements())
1334       if (!Req->isDependent() && !Req->isSatisfied()) {
1335         if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
1336           diagnoseUnsatisfiedRequirement(S, E, First);
1337         else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
1338           diagnoseUnsatisfiedRequirement(S, T, First);
1339         else
1340           diagnoseUnsatisfiedRequirement(
1341               S, cast<concepts::NestedRequirement>(Req), First);
1342         break;
1343       }
1344     return;
1345   } else if (auto *TTE = dyn_cast<TypeTraitExpr>(SubstExpr);
1346              TTE && TTE->getTrait() == clang::TypeTrait::BTT_IsDeducible) {
1347     assert(TTE->getNumArgs() == 2);
1348     S.Diag(SubstExpr->getSourceRange().getBegin(),
1349            diag::note_is_deducible_constraint_evaluated_to_false)
1350         << TTE->getArg(0)->getType() << TTE->getArg(1)->getType();
1351     return;
1352   }
1353 
1354   S.Diag(SubstExpr->getSourceRange().getBegin(),
1355          diag::note_atomic_constraint_evaluated_to_false)
1356       << (int)First << SubstExpr;
1357 }
1358 
1359 template <typename SubstitutionDiagnostic>
1360 static void diagnoseUnsatisfiedConstraintExpr(
1361     Sema &S, const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
1362     bool First = true) {
1363   if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()) {
1364     S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
1365         << Diag->second;
1366     return;
1367   }
1368 
1369   diagnoseWellFormedUnsatisfiedConstraintExpr(S,
1370       Record.template get<Expr *>(), First);
1371 }
1372 
1373 void
1374 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
1375                                     bool First) {
1376   assert(!Satisfaction.IsSatisfied &&
1377          "Attempted to diagnose a satisfied constraint");
1378   for (auto &Record : Satisfaction.Details) {
1379     diagnoseUnsatisfiedConstraintExpr(*this, Record, First);
1380     First = false;
1381   }
1382 }
1383 
1384 void Sema::DiagnoseUnsatisfiedConstraint(
1385     const ASTConstraintSatisfaction &Satisfaction,
1386     bool First) {
1387   assert(!Satisfaction.IsSatisfied &&
1388          "Attempted to diagnose a satisfied constraint");
1389   for (auto &Record : Satisfaction) {
1390     diagnoseUnsatisfiedConstraintExpr(*this, Record, First);
1391     First = false;
1392   }
1393 }
1394 
1395 const NormalizedConstraint *
1396 Sema::getNormalizedAssociatedConstraints(
1397     NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
1398   // In case the ConstrainedDecl comes from modules, it is necessary to use
1399   // the canonical decl to avoid different atomic constraints with the 'same'
1400   // declarations.
1401   ConstrainedDecl = cast<NamedDecl>(ConstrainedDecl->getCanonicalDecl());
1402 
1403   auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
1404   if (CacheEntry == NormalizationCache.end()) {
1405     auto Normalized =
1406         NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
1407                                                   AssociatedConstraints);
1408     CacheEntry =
1409         NormalizationCache
1410             .try_emplace(ConstrainedDecl,
1411                          Normalized
1412                              ? new (Context) NormalizedConstraint(
1413                                  std::move(*Normalized))
1414                              : nullptr)
1415             .first;
1416   }
1417   return CacheEntry->second;
1418 }
1419 
1420 const NormalizedConstraint *clang::getNormalizedAssociatedConstraints(
1421     Sema &S, NamedDecl *ConstrainedDecl,
1422     ArrayRef<const Expr *> AssociatedConstraints) {
1423   return S.getNormalizedAssociatedConstraints(ConstrainedDecl,
1424                                               AssociatedConstraints);
1425 }
1426 
1427 static bool
1428 substituteParameterMappings(Sema &S, NormalizedConstraint &N,
1429                             ConceptDecl *Concept,
1430                             const MultiLevelTemplateArgumentList &MLTAL,
1431                             const ASTTemplateArgumentListInfo *ArgsAsWritten) {
1432 
1433   if (N.isCompound()) {
1434     if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
1435                                     ArgsAsWritten))
1436       return true;
1437     return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
1438                                        ArgsAsWritten);
1439   }
1440 
1441   if (N.isFoldExpanded()) {
1442     Sema::ArgumentPackSubstitutionIndexRAII _(S, -1);
1443     return substituteParameterMappings(
1444         S, N.getFoldExpandedConstraint()->Constraint, Concept, MLTAL,
1445         ArgsAsWritten);
1446   }
1447 
1448   TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
1449 
1450   AtomicConstraint &Atomic = *N.getAtomicConstraint();
1451   TemplateArgumentListInfo SubstArgs;
1452   if (!Atomic.ParameterMapping) {
1453     llvm::SmallBitVector OccurringIndices(TemplateParams->size());
1454     S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
1455                                  /*Depth=*/0, OccurringIndices);
1456     TemplateArgumentLoc *TempArgs =
1457         new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
1458     for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
1459       if (OccurringIndices[I])
1460         new (&(TempArgs)[J++])
1461             TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
1462                 TemplateParams->begin()[I],
1463                 // Here we assume we do not support things like
1464                 // template<typename A, typename B>
1465                 // concept C = ...;
1466                 //
1467                 // template<typename... Ts> requires C<Ts...>
1468                 // struct S { };
1469                 // The above currently yields a diagnostic.
1470                 // We still might have default arguments for concept parameters.
1471                 ArgsAsWritten->NumTemplateArgs > I
1472                     ? ArgsAsWritten->arguments()[I].getLocation()
1473                     : SourceLocation()));
1474     Atomic.ParameterMapping.emplace(TempArgs,  OccurringIndices.count());
1475   }
1476   SourceLocation InstLocBegin =
1477       ArgsAsWritten->arguments().empty()
1478           ? ArgsAsWritten->getLAngleLoc()
1479           : ArgsAsWritten->arguments().front().getSourceRange().getBegin();
1480   SourceLocation InstLocEnd =
1481       ArgsAsWritten->arguments().empty()
1482           ? ArgsAsWritten->getRAngleLoc()
1483           : ArgsAsWritten->arguments().front().getSourceRange().getEnd();
1484   Sema::InstantiatingTemplate Inst(
1485       S, InstLocBegin,
1486       Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
1487       {InstLocBegin, InstLocEnd});
1488   if (Inst.isInvalid())
1489     return true;
1490   if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
1491     return true;
1492 
1493   TemplateArgumentLoc *TempArgs =
1494       new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
1495   std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
1496             TempArgs);
1497   Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
1498   return false;
1499 }
1500 
1501 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
1502                                         const ConceptSpecializationExpr *CSE) {
1503   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
1504       CSE->getNamedConcept(), CSE->getNamedConcept()->getLexicalDeclContext(),
1505       /*Final=*/false, CSE->getTemplateArguments(),
1506       /*RelativeToPrimary=*/true,
1507       /*Pattern=*/nullptr,
1508       /*ForConstraintInstantiation=*/true);
1509 
1510   return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
1511                                      CSE->getTemplateArgsAsWritten());
1512 }
1513 
1514 NormalizedConstraint::NormalizedConstraint(ASTContext &C,
1515                                            NormalizedConstraint LHS,
1516                                            NormalizedConstraint RHS,
1517                                            CompoundConstraintKind Kind)
1518     : Constraint{CompoundConstraint{
1519           new(C) NormalizedConstraintPair{std::move(LHS), std::move(RHS)},
1520           Kind}} {}
1521 
1522 NormalizedConstraint::NormalizedConstraint(ASTContext &C,
1523                                            const NormalizedConstraint &Other) {
1524   if (Other.isAtomic()) {
1525     Constraint = new (C) AtomicConstraint(*Other.getAtomicConstraint());
1526   } else if (Other.isFoldExpanded()) {
1527     Constraint = new (C) FoldExpandedConstraint(
1528         Other.getFoldExpandedConstraint()->Kind,
1529         NormalizedConstraint(C, Other.getFoldExpandedConstraint()->Constraint),
1530         Other.getFoldExpandedConstraint()->Pattern);
1531   } else {
1532     Constraint = CompoundConstraint(
1533         new (C)
1534             NormalizedConstraintPair{NormalizedConstraint(C, Other.getLHS()),
1535                                      NormalizedConstraint(C, Other.getRHS())},
1536         Other.getCompoundKind());
1537   }
1538 }
1539 
1540 NormalizedConstraint &NormalizedConstraint::getLHS() const {
1541   assert(isCompound() && "getLHS called on a non-compound constraint.");
1542   return Constraint.get<CompoundConstraint>().getPointer()->LHS;
1543 }
1544 
1545 NormalizedConstraint &NormalizedConstraint::getRHS() const {
1546   assert(isCompound() && "getRHS called on a non-compound constraint.");
1547   return Constraint.get<CompoundConstraint>().getPointer()->RHS;
1548 }
1549 
1550 std::optional<NormalizedConstraint>
1551 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
1552                                           ArrayRef<const Expr *> E) {
1553   assert(E.size() != 0);
1554   auto Conjunction = fromConstraintExpr(S, D, E[0]);
1555   if (!Conjunction)
1556     return std::nullopt;
1557   for (unsigned I = 1; I < E.size(); ++I) {
1558     auto Next = fromConstraintExpr(S, D, E[I]);
1559     if (!Next)
1560       return std::nullopt;
1561     *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
1562                                         std::move(*Next), CCK_Conjunction);
1563   }
1564   return Conjunction;
1565 }
1566 
1567 std::optional<NormalizedConstraint>
1568 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
1569   assert(E != nullptr);
1570 
1571   // C++ [temp.constr.normal]p1.1
1572   // [...]
1573   // - The normal form of an expression (E) is the normal form of E.
1574   // [...]
1575   E = E->IgnoreParenImpCasts();
1576 
1577   // C++2a [temp.param]p4:
1578   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1579   // Fold expression is considered atomic constraints per current wording.
1580   // See http://cplusplus.github.io/concepts-ts/ts-active.html#28
1581 
1582   if (LogicalBinOp BO = E) {
1583     auto LHS = fromConstraintExpr(S, D, BO.getLHS());
1584     if (!LHS)
1585       return std::nullopt;
1586     auto RHS = fromConstraintExpr(S, D, BO.getRHS());
1587     if (!RHS)
1588       return std::nullopt;
1589 
1590     return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
1591                                 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
1592   } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
1593     const NormalizedConstraint *SubNF;
1594     {
1595       Sema::InstantiatingTemplate Inst(
1596           S, CSE->getExprLoc(),
1597           Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
1598           CSE->getSourceRange());
1599       if (Inst.isInvalid())
1600         return std::nullopt;
1601       // C++ [temp.constr.normal]p1.1
1602       // [...]
1603       // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
1604       // where C names a concept, is the normal form of the
1605       // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
1606       // respective template parameters in the parameter mappings in each atomic
1607       // constraint. If any such substitution results in an invalid type or
1608       // expression, the program is ill-formed; no diagnostic is required.
1609       // [...]
1610       ConceptDecl *CD = CSE->getNamedConcept();
1611       SubNF = S.getNormalizedAssociatedConstraints(CD,
1612                                                    {CD->getConstraintExpr()});
1613       if (!SubNF)
1614         return std::nullopt;
1615     }
1616 
1617     std::optional<NormalizedConstraint> New;
1618     New.emplace(S.Context, *SubNF);
1619 
1620     if (substituteParameterMappings(S, *New, CSE))
1621       return std::nullopt;
1622 
1623     return New;
1624   } else if (auto *FE = dyn_cast<const CXXFoldExpr>(E);
1625              FE && S.getLangOpts().CPlusPlus26 &&
1626              (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||
1627               FE->getOperator() == BinaryOperatorKind::BO_LOr)) {
1628 
1629     // Normalize fold expressions in C++26.
1630 
1631     FoldExpandedConstraint::FoldOperatorKind Kind =
1632         FE->getOperator() == BinaryOperatorKind::BO_LAnd
1633             ? FoldExpandedConstraint::FoldOperatorKind::And
1634             : FoldExpandedConstraint::FoldOperatorKind::Or;
1635 
1636     if (FE->getInit()) {
1637       auto LHS = fromConstraintExpr(S, D, FE->getLHS());
1638       auto RHS = fromConstraintExpr(S, D, FE->getRHS());
1639       if (!LHS || !RHS)
1640         return std::nullopt;
1641 
1642       if (FE->isRightFold())
1643         RHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1644             Kind, std::move(*RHS), FE->getPattern()}};
1645       else
1646         LHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1647             Kind, std::move(*LHS), FE->getPattern()}};
1648 
1649       return NormalizedConstraint(
1650           S.Context, std::move(*LHS), std::move(*RHS),
1651           FE->getOperator() == BinaryOperatorKind::BO_LAnd ? CCK_Conjunction
1652                                                            : CCK_Disjunction);
1653     }
1654     auto Sub = fromConstraintExpr(S, D, FE->getPattern());
1655     if (!Sub)
1656       return std::nullopt;
1657     return NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1658         Kind, std::move(*Sub), FE->getPattern()}};
1659   }
1660 
1661   return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
1662 }
1663 
1664 bool FoldExpandedConstraint::AreCompatibleForSubsumption(
1665     const FoldExpandedConstraint &A, const FoldExpandedConstraint &B) {
1666 
1667   // [C++26] [temp.constr.fold]
1668   // Two fold expanded constraints are compatible for subsumption
1669   // if their respective constraints both contain an equivalent unexpanded pack.
1670 
1671   llvm::SmallVector<UnexpandedParameterPack> APacks, BPacks;
1672   Sema::collectUnexpandedParameterPacks(const_cast<Expr *>(A.Pattern), APacks);
1673   Sema::collectUnexpandedParameterPacks(const_cast<Expr *>(B.Pattern), BPacks);
1674 
1675   for (const UnexpandedParameterPack &APack : APacks) {
1676     std::pair<unsigned, unsigned> DepthAndIndex = getDepthAndIndex(APack);
1677     auto it = llvm::find_if(BPacks, [&](const UnexpandedParameterPack &BPack) {
1678       return getDepthAndIndex(BPack) == DepthAndIndex;
1679     });
1680     if (it != BPacks.end())
1681       return true;
1682   }
1683   return false;
1684 }
1685 
1686 NormalForm clang::makeCNF(const NormalizedConstraint &Normalized) {
1687   if (Normalized.isAtomic())
1688     return {{Normalized.getAtomicConstraint()}};
1689 
1690   else if (Normalized.isFoldExpanded())
1691     return {{Normalized.getFoldExpandedConstraint()}};
1692 
1693   NormalForm LCNF = makeCNF(Normalized.getLHS());
1694   NormalForm RCNF = makeCNF(Normalized.getRHS());
1695   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
1696     LCNF.reserve(LCNF.size() + RCNF.size());
1697     while (!RCNF.empty())
1698       LCNF.push_back(RCNF.pop_back_val());
1699     return LCNF;
1700   }
1701 
1702   // Disjunction
1703   NormalForm Res;
1704   Res.reserve(LCNF.size() * RCNF.size());
1705   for (auto &LDisjunction : LCNF)
1706     for (auto &RDisjunction : RCNF) {
1707       NormalForm::value_type Combined;
1708       Combined.reserve(LDisjunction.size() + RDisjunction.size());
1709       std::copy(LDisjunction.begin(), LDisjunction.end(),
1710                 std::back_inserter(Combined));
1711       std::copy(RDisjunction.begin(), RDisjunction.end(),
1712                 std::back_inserter(Combined));
1713       Res.emplace_back(Combined);
1714     }
1715   return Res;
1716 }
1717 
1718 NormalForm clang::makeDNF(const NormalizedConstraint &Normalized) {
1719   if (Normalized.isAtomic())
1720     return {{Normalized.getAtomicConstraint()}};
1721 
1722   else if (Normalized.isFoldExpanded())
1723     return {{Normalized.getFoldExpandedConstraint()}};
1724 
1725   NormalForm LDNF = makeDNF(Normalized.getLHS());
1726   NormalForm RDNF = makeDNF(Normalized.getRHS());
1727   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
1728     LDNF.reserve(LDNF.size() + RDNF.size());
1729     while (!RDNF.empty())
1730       LDNF.push_back(RDNF.pop_back_val());
1731     return LDNF;
1732   }
1733 
1734   // Conjunction
1735   NormalForm Res;
1736   Res.reserve(LDNF.size() * RDNF.size());
1737   for (auto &LConjunction : LDNF) {
1738     for (auto &RConjunction : RDNF) {
1739       NormalForm::value_type Combined;
1740       Combined.reserve(LConjunction.size() + RConjunction.size());
1741       std::copy(LConjunction.begin(), LConjunction.end(),
1742                 std::back_inserter(Combined));
1743       std::copy(RConjunction.begin(), RConjunction.end(),
1744                 std::back_inserter(Combined));
1745       Res.emplace_back(Combined);
1746     }
1747   }
1748   return Res;
1749 }
1750 
1751 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1,
1752                                   MutableArrayRef<const Expr *> AC1,
1753                                   NamedDecl *D2,
1754                                   MutableArrayRef<const Expr *> AC2,
1755                                   bool &Result) {
1756   if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) {
1757     auto IsExpectedEntity = [](const FunctionDecl *FD) {
1758       FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind();
1759       return Kind == FunctionDecl::TK_NonTemplate ||
1760              Kind == FunctionDecl::TK_FunctionTemplate;
1761     };
1762     const auto *FD2 = dyn_cast<FunctionDecl>(D2);
1763     (void)IsExpectedEntity;
1764     (void)FD1;
1765     (void)FD2;
1766     assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&
1767            "use non-instantiated function declaration for constraints partial "
1768            "ordering");
1769   }
1770 
1771   if (AC1.empty()) {
1772     Result = AC2.empty();
1773     return false;
1774   }
1775   if (AC2.empty()) {
1776     // TD1 has associated constraints and TD2 does not.
1777     Result = true;
1778     return false;
1779   }
1780 
1781   std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
1782   auto CacheEntry = SubsumptionCache.find(Key);
1783   if (CacheEntry != SubsumptionCache.end()) {
1784     Result = CacheEntry->second;
1785     return false;
1786   }
1787 
1788   unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true);
1789   unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true);
1790 
1791   for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {
1792     if (Depth2 > Depth1) {
1793       AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)
1794                    .TransformExpr(const_cast<Expr *>(AC1[I]))
1795                    .get();
1796     } else if (Depth1 > Depth2) {
1797       AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)
1798                    .TransformExpr(const_cast<Expr *>(AC2[I]))
1799                    .get();
1800     }
1801   }
1802 
1803   if (clang::subsumes(
1804           *this, D1, AC1, D2, AC2, Result,
1805           [this](const AtomicConstraint &A, const AtomicConstraint &B) {
1806             return A.subsumes(Context, B);
1807           }))
1808     return true;
1809   SubsumptionCache.try_emplace(Key, Result);
1810   return false;
1811 }
1812 
1813 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
1814     ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
1815   if (isSFINAEContext())
1816     // No need to work here because our notes would be discarded.
1817     return false;
1818 
1819   if (AC1.empty() || AC2.empty())
1820     return false;
1821 
1822   auto NormalExprEvaluator =
1823       [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
1824         return A.subsumes(Context, B);
1825       };
1826 
1827   const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
1828   auto IdenticalExprEvaluator =
1829       [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
1830         if (!A.hasMatchingParameterMapping(Context, B))
1831           return false;
1832         const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
1833         if (EA == EB)
1834           return true;
1835 
1836         // Not the same source level expression - are the expressions
1837         // identical?
1838         llvm::FoldingSetNodeID IDA, IDB;
1839         EA->Profile(IDA, Context, /*Canonical=*/true);
1840         EB->Profile(IDB, Context, /*Canonical=*/true);
1841         if (IDA != IDB)
1842           return false;
1843 
1844         AmbiguousAtomic1 = EA;
1845         AmbiguousAtomic2 = EB;
1846         return true;
1847       };
1848 
1849   {
1850     // The subsumption checks might cause diagnostics
1851     SFINAETrap Trap(*this);
1852     auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
1853     if (!Normalized1)
1854       return false;
1855     const NormalForm DNF1 = makeDNF(*Normalized1);
1856     const NormalForm CNF1 = makeCNF(*Normalized1);
1857 
1858     auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
1859     if (!Normalized2)
1860       return false;
1861     const NormalForm DNF2 = makeDNF(*Normalized2);
1862     const NormalForm CNF2 = makeCNF(*Normalized2);
1863 
1864     bool Is1AtLeastAs2Normally =
1865         clang::subsumes(DNF1, CNF2, NormalExprEvaluator);
1866     bool Is2AtLeastAs1Normally =
1867         clang::subsumes(DNF2, CNF1, NormalExprEvaluator);
1868     bool Is1AtLeastAs2 = clang::subsumes(DNF1, CNF2, IdenticalExprEvaluator);
1869     bool Is2AtLeastAs1 = clang::subsumes(DNF2, CNF1, IdenticalExprEvaluator);
1870     if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
1871         Is2AtLeastAs1 == Is2AtLeastAs1Normally)
1872       // Same result - no ambiguity was caused by identical atomic expressions.
1873       return false;
1874   }
1875 
1876   // A different result! Some ambiguous atomic constraint(s) caused a difference
1877   assert(AmbiguousAtomic1 && AmbiguousAtomic2);
1878 
1879   Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
1880       << AmbiguousAtomic1->getSourceRange();
1881   Diag(AmbiguousAtomic2->getBeginLoc(),
1882        diag::note_ambiguous_atomic_constraints_similar_expression)
1883       << AmbiguousAtomic2->getSourceRange();
1884   return true;
1885 }
1886 
1887 concepts::ExprRequirement::ExprRequirement(
1888     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
1889     ReturnTypeRequirement Req, SatisfactionStatus Status,
1890     ConceptSpecializationExpr *SubstitutedConstraintExpr) :
1891     Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
1892                 Status == SS_Dependent &&
1893                 (E->containsUnexpandedParameterPack() ||
1894                  Req.containsUnexpandedParameterPack()),
1895                 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
1896     TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
1897     Status(Status) {
1898   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1899          "Simple requirement must not have a return type requirement or a "
1900          "noexcept specification");
1901   assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
1902          (SubstitutedConstraintExpr != nullptr));
1903 }
1904 
1905 concepts::ExprRequirement::ExprRequirement(
1906     SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
1907     SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
1908     Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
1909                 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
1910     Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
1911     Status(SS_ExprSubstitutionFailure) {
1912   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1913          "Simple requirement must not have a return type requirement or a "
1914          "noexcept specification");
1915 }
1916 
1917 concepts::ExprRequirement::ReturnTypeRequirement::
1918 ReturnTypeRequirement(TemplateParameterList *TPL) :
1919     TypeConstraintInfo(TPL, false) {
1920   assert(TPL->size() == 1);
1921   const TypeConstraint *TC =
1922       cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
1923   assert(TC &&
1924          "TPL must have a template type parameter with a type constraint");
1925   auto *Constraint =
1926       cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
1927   bool Dependent =
1928       Constraint->getTemplateArgsAsWritten() &&
1929       TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
1930           Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
1931   TypeConstraintInfo.setInt(Dependent ? true : false);
1932 }
1933 
1934 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
1935     Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
1936                 T->getType()->containsUnexpandedParameterPack(),
1937                 // We reach this ctor with either dependent types (in which
1938                 // IsSatisfied doesn't matter) or with non-dependent type in
1939                 // which the existence of the type indicates satisfaction.
1940                 /*IsSatisfied=*/true),
1941     Value(T),
1942     Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
1943                                                         : SS_Satisfied) {}
1944