1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements semantic analysis for C++ constraints and concepts. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Sema/SemaConcept.h" 15 #include "clang/Sema/Sema.h" 16 #include "clang/Sema/SemaInternal.h" 17 #include "clang/Sema/SemaDiagnostic.h" 18 #include "clang/Sema/TemplateDeduction.h" 19 #include "clang/Sema/Template.h" 20 #include "clang/Sema/Overload.h" 21 #include "clang/Sema/Initialization.h" 22 #include "clang/Sema/SemaInternal.h" 23 #include "clang/AST/ExprConcepts.h" 24 #include "clang/AST/RecursiveASTVisitor.h" 25 #include "clang/Basic/OperatorPrecedence.h" 26 #include "llvm/ADT/DenseMap.h" 27 #include "llvm/ADT/PointerUnion.h" 28 using namespace clang; 29 using namespace sema; 30 31 namespace { 32 class LogicalBinOp { 33 OverloadedOperatorKind Op = OO_None; 34 const Expr *LHS = nullptr; 35 const Expr *RHS = nullptr; 36 37 public: 38 LogicalBinOp(const Expr *E) { 39 if (auto *BO = dyn_cast<BinaryOperator>(E)) { 40 Op = BinaryOperator::getOverloadedOperator(BO->getOpcode()); 41 LHS = BO->getLHS(); 42 RHS = BO->getRHS(); 43 } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) { 44 Op = OO->getOperator(); 45 LHS = OO->getArg(0); 46 RHS = OO->getArg(1); 47 } 48 } 49 50 bool isAnd() const { return Op == OO_AmpAmp; } 51 bool isOr() const { return Op == OO_PipePipe; } 52 explicit operator bool() const { return isAnd() || isOr(); } 53 54 const Expr *getLHS() const { return LHS; } 55 const Expr *getRHS() const { return RHS; } 56 }; 57 } 58 59 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression, 60 Token NextToken, bool *PossibleNonPrimary, 61 bool IsTrailingRequiresClause) { 62 // C++2a [temp.constr.atomic]p1 63 // ..E shall be a constant expression of type bool. 64 65 ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts(); 66 67 if (LogicalBinOp BO = ConstraintExpression) { 68 return CheckConstraintExpression(BO.getLHS(), NextToken, 69 PossibleNonPrimary) && 70 CheckConstraintExpression(BO.getRHS(), NextToken, 71 PossibleNonPrimary); 72 } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression)) 73 return CheckConstraintExpression(C->getSubExpr(), NextToken, 74 PossibleNonPrimary); 75 76 QualType Type = ConstraintExpression->getType(); 77 78 auto CheckForNonPrimary = [&] { 79 if (PossibleNonPrimary) 80 *PossibleNonPrimary = 81 // We have the following case: 82 // template<typename> requires func(0) struct S { }; 83 // The user probably isn't aware of the parentheses required around 84 // the function call, and we're only going to parse 'func' as the 85 // primary-expression, and complain that it is of non-bool type. 86 (NextToken.is(tok::l_paren) && 87 (IsTrailingRequiresClause || 88 (Type->isDependentType() && 89 isa<UnresolvedLookupExpr>(ConstraintExpression)) || 90 Type->isFunctionType() || 91 Type->isSpecificBuiltinType(BuiltinType::Overload))) || 92 // We have the following case: 93 // template<typename T> requires size_<T> == 0 struct S { }; 94 // The user probably isn't aware of the parentheses required around 95 // the binary operator, and we're only going to parse 'func' as the 96 // first operand, and complain that it is of non-bool type. 97 getBinOpPrecedence(NextToken.getKind(), 98 /*GreaterThanIsOperator=*/true, 99 getLangOpts().CPlusPlus11) > prec::LogicalAnd; 100 }; 101 102 // An atomic constraint! 103 if (ConstraintExpression->isTypeDependent()) { 104 CheckForNonPrimary(); 105 return true; 106 } 107 108 if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) { 109 Diag(ConstraintExpression->getExprLoc(), 110 diag::err_non_bool_atomic_constraint) << Type 111 << ConstraintExpression->getSourceRange(); 112 CheckForNonPrimary(); 113 return false; 114 } 115 116 if (PossibleNonPrimary) 117 *PossibleNonPrimary = false; 118 return true; 119 } 120 121 template <typename AtomicEvaluator> 122 static bool 123 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr, 124 ConstraintSatisfaction &Satisfaction, 125 AtomicEvaluator &&Evaluator) { 126 ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts(); 127 128 if (LogicalBinOp BO = ConstraintExpr) { 129 if (calculateConstraintSatisfaction(S, BO.getLHS(), Satisfaction, 130 Evaluator)) 131 return true; 132 133 bool IsLHSSatisfied = Satisfaction.IsSatisfied; 134 135 if (BO.isOr() && IsLHSSatisfied) 136 // [temp.constr.op] p3 137 // A disjunction is a constraint taking two operands. To determine if 138 // a disjunction is satisfied, the satisfaction of the first operand 139 // is checked. If that is satisfied, the disjunction is satisfied. 140 // Otherwise, the disjunction is satisfied if and only if the second 141 // operand is satisfied. 142 return false; 143 144 if (BO.isAnd() && !IsLHSSatisfied) 145 // [temp.constr.op] p2 146 // A conjunction is a constraint taking two operands. To determine if 147 // a conjunction is satisfied, the satisfaction of the first operand 148 // is checked. If that is not satisfied, the conjunction is not 149 // satisfied. Otherwise, the conjunction is satisfied if and only if 150 // the second operand is satisfied. 151 return false; 152 153 return calculateConstraintSatisfaction( 154 S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator)); 155 } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) { 156 return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction, 157 std::forward<AtomicEvaluator>(Evaluator)); 158 } 159 160 // An atomic constraint expression 161 ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr); 162 163 if (SubstitutedAtomicExpr.isInvalid()) 164 return true; 165 166 if (!SubstitutedAtomicExpr.isUsable()) 167 // Evaluator has decided satisfaction without yielding an expression. 168 return false; 169 170 EnterExpressionEvaluationContext ConstantEvaluated( 171 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 172 SmallVector<PartialDiagnosticAt, 2> EvaluationDiags; 173 Expr::EvalResult EvalResult; 174 EvalResult.Diag = &EvaluationDiags; 175 if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) { 176 // C++2a [temp.constr.atomic]p1 177 // ...E shall be a constant expression of type bool. 178 S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(), 179 diag::err_non_constant_constraint_expression) 180 << SubstitutedAtomicExpr.get()->getSourceRange(); 181 for (const PartialDiagnosticAt &PDiag : EvaluationDiags) 182 S.Diag(PDiag.first, PDiag.second); 183 return true; 184 } 185 186 Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue(); 187 if (!Satisfaction.IsSatisfied) 188 Satisfaction.Details.emplace_back(ConstraintExpr, 189 SubstitutedAtomicExpr.get()); 190 191 return false; 192 } 193 194 static bool calculateConstraintSatisfaction( 195 Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs, 196 SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL, 197 const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) { 198 return calculateConstraintSatisfaction( 199 S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) { 200 EnterExpressionEvaluationContext ConstantEvaluated( 201 S, Sema::ExpressionEvaluationContext::ConstantEvaluated); 202 203 // Atomic constraint - substitute arguments and check satisfaction. 204 ExprResult SubstitutedExpression; 205 { 206 TemplateDeductionInfo Info(TemplateNameLoc); 207 Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(), 208 Sema::InstantiatingTemplate::ConstraintSubstitution{}, 209 const_cast<NamedDecl *>(Template), Info, 210 AtomicExpr->getSourceRange()); 211 if (Inst.isInvalid()) 212 return ExprError(); 213 // We do not want error diagnostics escaping here. 214 Sema::SFINAETrap Trap(S); 215 SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr), 216 MLTAL); 217 if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) { 218 // C++2a [temp.constr.atomic]p1 219 // ...If substitution results in an invalid type or expression, the 220 // constraint is not satisfied. 221 if (!Trap.hasErrorOccurred()) 222 // A non-SFINAE error has occured as a result of this 223 // substitution. 224 return ExprError(); 225 226 PartialDiagnosticAt SubstDiag{SourceLocation(), 227 PartialDiagnostic::NullDiagnostic()}; 228 Info.takeSFINAEDiagnostic(SubstDiag); 229 // FIXME: Concepts: This is an unfortunate consequence of there 230 // being no serialization code for PartialDiagnostics and the fact 231 // that serializing them would likely take a lot more storage than 232 // just storing them as strings. We would still like, in the 233 // future, to serialize the proper PartialDiagnostic as serializing 234 // it as a string defeats the purpose of the diagnostic mechanism. 235 SmallString<128> DiagString; 236 DiagString = ": "; 237 SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString); 238 unsigned MessageSize = DiagString.size(); 239 char *Mem = new (S.Context) char[MessageSize]; 240 memcpy(Mem, DiagString.c_str(), MessageSize); 241 Satisfaction.Details.emplace_back( 242 AtomicExpr, 243 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ 244 SubstDiag.first, StringRef(Mem, MessageSize)}); 245 Satisfaction.IsSatisfied = false; 246 return ExprEmpty(); 247 } 248 } 249 250 if (!S.CheckConstraintExpression(SubstitutedExpression.get())) 251 return ExprError(); 252 253 return SubstitutedExpression; 254 }); 255 } 256 257 static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template, 258 ArrayRef<const Expr *> ConstraintExprs, 259 ArrayRef<TemplateArgument> TemplateArgs, 260 SourceRange TemplateIDRange, 261 ConstraintSatisfaction &Satisfaction) { 262 if (ConstraintExprs.empty()) { 263 Satisfaction.IsSatisfied = true; 264 return false; 265 } 266 267 for (auto& Arg : TemplateArgs) 268 if (Arg.isInstantiationDependent()) { 269 // No need to check satisfaction for dependent constraint expressions. 270 Satisfaction.IsSatisfied = true; 271 return false; 272 } 273 274 Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(), 275 Sema::InstantiatingTemplate::ConstraintsCheck{}, 276 const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange); 277 if (Inst.isInvalid()) 278 return true; 279 280 MultiLevelTemplateArgumentList MLTAL; 281 MLTAL.addOuterTemplateArguments(TemplateArgs); 282 283 for (const Expr *ConstraintExpr : ConstraintExprs) { 284 if (calculateConstraintSatisfaction(S, Template, TemplateArgs, 285 TemplateIDRange.getBegin(), MLTAL, 286 ConstraintExpr, Satisfaction)) 287 return true; 288 if (!Satisfaction.IsSatisfied) 289 // [temp.constr.op] p2 290 // [...] To determine if a conjunction is satisfied, the satisfaction 291 // of the first operand is checked. If that is not satisfied, the 292 // conjunction is not satisfied. [...] 293 return false; 294 } 295 return false; 296 } 297 298 bool Sema::CheckConstraintSatisfaction( 299 const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs, 300 ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange, 301 ConstraintSatisfaction &OutSatisfaction) { 302 if (ConstraintExprs.empty()) { 303 OutSatisfaction.IsSatisfied = true; 304 return false; 305 } 306 307 llvm::FoldingSetNodeID ID; 308 void *InsertPos; 309 ConstraintSatisfaction *Satisfaction = nullptr; 310 bool ShouldCache = LangOpts.ConceptSatisfactionCaching && Template; 311 if (ShouldCache) { 312 ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs); 313 Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos); 314 if (Satisfaction) { 315 OutSatisfaction = *Satisfaction; 316 return false; 317 } 318 Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs); 319 } else { 320 Satisfaction = &OutSatisfaction; 321 } 322 if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs, 323 TemplateArgs, TemplateIDRange, 324 *Satisfaction)) { 325 if (ShouldCache) 326 delete Satisfaction; 327 return true; 328 } 329 330 if (ShouldCache) { 331 // We cannot use InsertNode here because CheckConstraintSatisfaction might 332 // have invalidated it. 333 SatisfactionCache.InsertNode(Satisfaction); 334 OutSatisfaction = *Satisfaction; 335 } 336 return false; 337 } 338 339 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr, 340 ConstraintSatisfaction &Satisfaction) { 341 return calculateConstraintSatisfaction( 342 *this, ConstraintExpr, Satisfaction, 343 [](const Expr *AtomicExpr) -> ExprResult { 344 return ExprResult(const_cast<Expr *>(AtomicExpr)); 345 }); 346 } 347 348 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD, 349 ConstraintSatisfaction &Satisfaction, 350 SourceLocation UsageLoc) { 351 const Expr *RC = FD->getTrailingRequiresClause(); 352 if (RC->isInstantiationDependent()) { 353 Satisfaction.IsSatisfied = true; 354 return false; 355 } 356 Qualifiers ThisQuals; 357 CXXRecordDecl *Record = nullptr; 358 if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) { 359 ThisQuals = Method->getMethodQualifiers(); 360 Record = const_cast<CXXRecordDecl *>(Method->getParent()); 361 } 362 CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); 363 // We substitute with empty arguments in order to rebuild the atomic 364 // constraint in a constant-evaluated context. 365 // FIXME: Should this be a dedicated TreeTransform? 366 return CheckConstraintSatisfaction( 367 FD, {RC}, /*TemplateArgs=*/{}, 368 SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()), 369 Satisfaction); 370 } 371 372 bool Sema::EnsureTemplateArgumentListConstraints( 373 TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs, 374 SourceRange TemplateIDRange) { 375 ConstraintSatisfaction Satisfaction; 376 llvm::SmallVector<const Expr *, 3> AssociatedConstraints; 377 TD->getAssociatedConstraints(AssociatedConstraints); 378 if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs, 379 TemplateIDRange, Satisfaction)) 380 return true; 381 382 if (!Satisfaction.IsSatisfied) { 383 SmallString<128> TemplateArgString; 384 TemplateArgString = " "; 385 TemplateArgString += getTemplateArgumentBindingsText( 386 TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size()); 387 388 Diag(TemplateIDRange.getBegin(), 389 diag::err_template_arg_list_constraints_not_satisfied) 390 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD 391 << TemplateArgString << TemplateIDRange; 392 DiagnoseUnsatisfiedConstraint(Satisfaction); 393 return true; 394 } 395 return false; 396 } 397 398 static void diagnoseUnsatisfiedRequirement(Sema &S, 399 concepts::ExprRequirement *Req, 400 bool First) { 401 assert(!Req->isSatisfied() 402 && "Diagnose() can only be used on an unsatisfied requirement"); 403 switch (Req->getSatisfactionStatus()) { 404 case concepts::ExprRequirement::SS_Dependent: 405 llvm_unreachable("Diagnosing a dependent requirement"); 406 break; 407 case concepts::ExprRequirement::SS_ExprSubstitutionFailure: { 408 auto *SubstDiag = Req->getExprSubstitutionDiagnostic(); 409 if (!SubstDiag->DiagMessage.empty()) 410 S.Diag(SubstDiag->DiagLoc, 411 diag::note_expr_requirement_expr_substitution_error) 412 << (int)First << SubstDiag->SubstitutedEntity 413 << SubstDiag->DiagMessage; 414 else 415 S.Diag(SubstDiag->DiagLoc, 416 diag::note_expr_requirement_expr_unknown_substitution_error) 417 << (int)First << SubstDiag->SubstitutedEntity; 418 break; 419 } 420 case concepts::ExprRequirement::SS_NoexceptNotMet: 421 S.Diag(Req->getNoexceptLoc(), 422 diag::note_expr_requirement_noexcept_not_met) 423 << (int)First << Req->getExpr(); 424 break; 425 case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: { 426 auto *SubstDiag = 427 Req->getReturnTypeRequirement().getSubstitutionDiagnostic(); 428 if (!SubstDiag->DiagMessage.empty()) 429 S.Diag(SubstDiag->DiagLoc, 430 diag::note_expr_requirement_type_requirement_substitution_error) 431 << (int)First << SubstDiag->SubstitutedEntity 432 << SubstDiag->DiagMessage; 433 else 434 S.Diag(SubstDiag->DiagLoc, 435 diag::note_expr_requirement_type_requirement_unknown_substitution_error) 436 << (int)First << SubstDiag->SubstitutedEntity; 437 break; 438 } 439 case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: { 440 ConceptSpecializationExpr *ConstraintExpr = 441 Req->getReturnTypeRequirementSubstitutedConstraintExpr(); 442 if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) 443 // A simple case - expr type is the type being constrained and the concept 444 // was not provided arguments. 445 S.Diag(ConstraintExpr->getBeginLoc(), 446 diag::note_expr_requirement_constraints_not_satisfied_simple) 447 << (int)First << S.BuildDecltypeType(Req->getExpr(), 448 Req->getExpr()->getBeginLoc()) 449 << ConstraintExpr->getNamedConcept(); 450 else 451 S.Diag(ConstraintExpr->getBeginLoc(), 452 diag::note_expr_requirement_constraints_not_satisfied) 453 << (int)First << ConstraintExpr; 454 S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction()); 455 break; 456 } 457 case concepts::ExprRequirement::SS_Satisfied: 458 llvm_unreachable("We checked this above"); 459 } 460 } 461 462 static void diagnoseUnsatisfiedRequirement(Sema &S, 463 concepts::TypeRequirement *Req, 464 bool First) { 465 assert(!Req->isSatisfied() 466 && "Diagnose() can only be used on an unsatisfied requirement"); 467 switch (Req->getSatisfactionStatus()) { 468 case concepts::TypeRequirement::SS_Dependent: 469 llvm_unreachable("Diagnosing a dependent requirement"); 470 return; 471 case concepts::TypeRequirement::SS_SubstitutionFailure: { 472 auto *SubstDiag = Req->getSubstitutionDiagnostic(); 473 if (!SubstDiag->DiagMessage.empty()) 474 S.Diag(SubstDiag->DiagLoc, 475 diag::note_type_requirement_substitution_error) << (int)First 476 << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage; 477 else 478 S.Diag(SubstDiag->DiagLoc, 479 diag::note_type_requirement_unknown_substitution_error) 480 << (int)First << SubstDiag->SubstitutedEntity; 481 return; 482 } 483 default: 484 llvm_unreachable("Unknown satisfaction status"); 485 return; 486 } 487 } 488 489 static void diagnoseUnsatisfiedRequirement(Sema &S, 490 concepts::NestedRequirement *Req, 491 bool First) { 492 if (Req->isSubstitutionFailure()) { 493 concepts::Requirement::SubstitutionDiagnostic *SubstDiag = 494 Req->getSubstitutionDiagnostic(); 495 if (!SubstDiag->DiagMessage.empty()) 496 S.Diag(SubstDiag->DiagLoc, 497 diag::note_nested_requirement_substitution_error) 498 << (int)First << SubstDiag->SubstitutedEntity 499 << SubstDiag->DiagMessage; 500 else 501 S.Diag(SubstDiag->DiagLoc, 502 diag::note_nested_requirement_unknown_substitution_error) 503 << (int)First << SubstDiag->SubstitutedEntity; 504 return; 505 } 506 S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First); 507 } 508 509 510 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, 511 Expr *SubstExpr, 512 bool First = true) { 513 SubstExpr = SubstExpr->IgnoreParenImpCasts(); 514 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) { 515 switch (BO->getOpcode()) { 516 // These two cases will in practice only be reached when using fold 517 // expressions with || and &&, since otherwise the || and && will have been 518 // broken down into atomic constraints during satisfaction checking. 519 case BO_LOr: 520 // Or evaluated to false - meaning both RHS and LHS evaluated to false. 521 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); 522 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), 523 /*First=*/false); 524 return; 525 case BO_LAnd: 526 bool LHSSatisfied; 527 BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context); 528 if (LHSSatisfied) { 529 // LHS is true, so RHS must be false. 530 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First); 531 return; 532 } 533 // LHS is false 534 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First); 535 536 // RHS might also be false 537 bool RHSSatisfied; 538 BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context); 539 if (!RHSSatisfied) 540 diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), 541 /*First=*/false); 542 return; 543 case BO_GE: 544 case BO_LE: 545 case BO_GT: 546 case BO_LT: 547 case BO_EQ: 548 case BO_NE: 549 if (BO->getLHS()->getType()->isIntegerType() && 550 BO->getRHS()->getType()->isIntegerType()) { 551 Expr::EvalResult SimplifiedLHS; 552 Expr::EvalResult SimplifiedRHS; 553 BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context); 554 BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context); 555 if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) { 556 S.Diag(SubstExpr->getBeginLoc(), 557 diag::note_atomic_constraint_evaluated_to_false_elaborated) 558 << (int)First << SubstExpr 559 << SimplifiedLHS.Val.getInt().toString(10) 560 << BinaryOperator::getOpcodeStr(BO->getOpcode()) 561 << SimplifiedRHS.Val.getInt().toString(10); 562 return; 563 } 564 } 565 break; 566 567 default: 568 break; 569 } 570 } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) { 571 if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { 572 S.Diag( 573 CSE->getSourceRange().getBegin(), 574 diag:: 575 note_single_arg_concept_specialization_constraint_evaluated_to_false) 576 << (int)First 577 << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument() 578 << CSE->getNamedConcept(); 579 } else { 580 S.Diag(SubstExpr->getSourceRange().getBegin(), 581 diag::note_concept_specialization_constraint_evaluated_to_false) 582 << (int)First << CSE; 583 } 584 S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction()); 585 return; 586 } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) { 587 for (concepts::Requirement *Req : RE->getRequirements()) 588 if (!Req->isDependent() && !Req->isSatisfied()) { 589 if (auto *E = dyn_cast<concepts::ExprRequirement>(Req)) 590 diagnoseUnsatisfiedRequirement(S, E, First); 591 else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req)) 592 diagnoseUnsatisfiedRequirement(S, T, First); 593 else 594 diagnoseUnsatisfiedRequirement( 595 S, cast<concepts::NestedRequirement>(Req), First); 596 break; 597 } 598 return; 599 } 600 601 S.Diag(SubstExpr->getSourceRange().getBegin(), 602 diag::note_atomic_constraint_evaluated_to_false) 603 << (int)First << SubstExpr; 604 } 605 606 template<typename SubstitutionDiagnostic> 607 static void diagnoseUnsatisfiedConstraintExpr( 608 Sema &S, const Expr *E, 609 const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record, 610 bool First = true) { 611 if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){ 612 S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed) 613 << Diag->second; 614 return; 615 } 616 617 diagnoseWellFormedUnsatisfiedConstraintExpr(S, 618 Record.template get<Expr *>(), First); 619 } 620 621 void 622 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction, 623 bool First) { 624 assert(!Satisfaction.IsSatisfied && 625 "Attempted to diagnose a satisfied constraint"); 626 for (auto &Pair : Satisfaction.Details) { 627 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); 628 First = false; 629 } 630 } 631 632 void Sema::DiagnoseUnsatisfiedConstraint( 633 const ASTConstraintSatisfaction &Satisfaction, 634 bool First) { 635 assert(!Satisfaction.IsSatisfied && 636 "Attempted to diagnose a satisfied constraint"); 637 for (auto &Pair : Satisfaction) { 638 diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First); 639 First = false; 640 } 641 } 642 643 const NormalizedConstraint * 644 Sema::getNormalizedAssociatedConstraints( 645 NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) { 646 auto CacheEntry = NormalizationCache.find(ConstrainedDecl); 647 if (CacheEntry == NormalizationCache.end()) { 648 auto Normalized = 649 NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl, 650 AssociatedConstraints); 651 CacheEntry = 652 NormalizationCache 653 .try_emplace(ConstrainedDecl, 654 Normalized 655 ? new (Context) NormalizedConstraint( 656 std::move(*Normalized)) 657 : nullptr) 658 .first; 659 } 660 return CacheEntry->second; 661 } 662 663 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, 664 ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs, 665 const ASTTemplateArgumentListInfo *ArgsAsWritten) { 666 if (!N.isAtomic()) { 667 if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs, 668 ArgsAsWritten)) 669 return true; 670 return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs, 671 ArgsAsWritten); 672 } 673 TemplateParameterList *TemplateParams = Concept->getTemplateParameters(); 674 675 AtomicConstraint &Atomic = *N.getAtomicConstraint(); 676 TemplateArgumentListInfo SubstArgs; 677 MultiLevelTemplateArgumentList MLTAL; 678 MLTAL.addOuterTemplateArguments(TemplateArgs); 679 if (!Atomic.ParameterMapping) { 680 llvm::SmallBitVector OccurringIndices(TemplateParams->size()); 681 S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false, 682 /*Depth=*/0, OccurringIndices); 683 Atomic.ParameterMapping.emplace( 684 MutableArrayRef<TemplateArgumentLoc>( 685 new (S.Context) TemplateArgumentLoc[OccurringIndices.count()], 686 OccurringIndices.count())); 687 for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I) 688 if (OccurringIndices[I]) 689 new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc( 690 S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I], 691 // Here we assume we do not support things like 692 // template<typename A, typename B> 693 // concept C = ...; 694 // 695 // template<typename... Ts> requires C<Ts...> 696 // struct S { }; 697 // The above currently yields a diagnostic. 698 // We still might have default arguments for concept parameters. 699 ArgsAsWritten->NumTemplateArgs > I ? 700 ArgsAsWritten->arguments()[I].getLocation() : 701 SourceLocation())); 702 } 703 Sema::InstantiatingTemplate Inst( 704 S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(), 705 Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept, 706 SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(), 707 ArgsAsWritten->arguments().back().getSourceRange().getEnd())); 708 if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs)) 709 return true; 710 Atomic.ParameterMapping.emplace( 711 MutableArrayRef<TemplateArgumentLoc>( 712 new (S.Context) TemplateArgumentLoc[SubstArgs.size()], 713 SubstArgs.size())); 714 std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(), 715 N.getAtomicConstraint()->ParameterMapping->begin()); 716 return false; 717 } 718 719 Optional<NormalizedConstraint> 720 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D, 721 ArrayRef<const Expr *> E) { 722 assert(E.size() != 0); 723 auto First = fromConstraintExpr(S, D, E[0]); 724 if (E.size() == 1) 725 return First; 726 auto Second = fromConstraintExpr(S, D, E[1]); 727 if (!Second) 728 return None; 729 llvm::Optional<NormalizedConstraint> Conjunction; 730 Conjunction.emplace(S.Context, std::move(*First), std::move(*Second), 731 CCK_Conjunction); 732 for (unsigned I = 2; I < E.size(); ++I) { 733 auto Next = fromConstraintExpr(S, D, E[I]); 734 if (!Next) 735 return llvm::Optional<NormalizedConstraint>{}; 736 NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction), 737 std::move(*Next), CCK_Conjunction); 738 *Conjunction = std::move(NewConjunction); 739 } 740 return Conjunction; 741 } 742 743 llvm::Optional<NormalizedConstraint> 744 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) { 745 assert(E != nullptr); 746 747 // C++ [temp.constr.normal]p1.1 748 // [...] 749 // - The normal form of an expression (E) is the normal form of E. 750 // [...] 751 E = E->IgnoreParenImpCasts(); 752 if (LogicalBinOp BO = E) { 753 auto LHS = fromConstraintExpr(S, D, BO.getLHS()); 754 if (!LHS) 755 return None; 756 auto RHS = fromConstraintExpr(S, D, BO.getRHS()); 757 if (!RHS) 758 return None; 759 760 return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS), 761 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction); 762 } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) { 763 const NormalizedConstraint *SubNF; 764 { 765 Sema::InstantiatingTemplate Inst( 766 S, CSE->getExprLoc(), 767 Sema::InstantiatingTemplate::ConstraintNormalization{}, D, 768 CSE->getSourceRange()); 769 // C++ [temp.constr.normal]p1.1 770 // [...] 771 // The normal form of an id-expression of the form C<A1, A2, ..., AN>, 772 // where C names a concept, is the normal form of the 773 // constraint-expression of C, after substituting A1, A2, ..., AN for C’s 774 // respective template parameters in the parameter mappings in each atomic 775 // constraint. If any such substitution results in an invalid type or 776 // expression, the program is ill-formed; no diagnostic is required. 777 // [...] 778 ConceptDecl *CD = CSE->getNamedConcept(); 779 SubNF = S.getNormalizedAssociatedConstraints(CD, 780 {CD->getConstraintExpr()}); 781 if (!SubNF) 782 return None; 783 } 784 785 Optional<NormalizedConstraint> New; 786 New.emplace(S.Context, *SubNF); 787 788 if (substituteParameterMappings( 789 S, *New, CSE->getNamedConcept(), 790 CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten())) 791 return None; 792 793 return New; 794 } 795 return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)}; 796 } 797 798 using NormalForm = 799 llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>; 800 801 static NormalForm makeCNF(const NormalizedConstraint &Normalized) { 802 if (Normalized.isAtomic()) 803 return {{Normalized.getAtomicConstraint()}}; 804 805 NormalForm LCNF = makeCNF(Normalized.getLHS()); 806 NormalForm RCNF = makeCNF(Normalized.getRHS()); 807 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) { 808 LCNF.reserve(LCNF.size() + RCNF.size()); 809 while (!RCNF.empty()) 810 LCNF.push_back(RCNF.pop_back_val()); 811 return LCNF; 812 } 813 814 // Disjunction 815 NormalForm Res; 816 Res.reserve(LCNF.size() * RCNF.size()); 817 for (auto &LDisjunction : LCNF) 818 for (auto &RDisjunction : RCNF) { 819 NormalForm::value_type Combined; 820 Combined.reserve(LDisjunction.size() + RDisjunction.size()); 821 std::copy(LDisjunction.begin(), LDisjunction.end(), 822 std::back_inserter(Combined)); 823 std::copy(RDisjunction.begin(), RDisjunction.end(), 824 std::back_inserter(Combined)); 825 Res.emplace_back(Combined); 826 } 827 return Res; 828 } 829 830 static NormalForm makeDNF(const NormalizedConstraint &Normalized) { 831 if (Normalized.isAtomic()) 832 return {{Normalized.getAtomicConstraint()}}; 833 834 NormalForm LDNF = makeDNF(Normalized.getLHS()); 835 NormalForm RDNF = makeDNF(Normalized.getRHS()); 836 if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) { 837 LDNF.reserve(LDNF.size() + RDNF.size()); 838 while (!RDNF.empty()) 839 LDNF.push_back(RDNF.pop_back_val()); 840 return LDNF; 841 } 842 843 // Conjunction 844 NormalForm Res; 845 Res.reserve(LDNF.size() * RDNF.size()); 846 for (auto &LConjunction : LDNF) { 847 for (auto &RConjunction : RDNF) { 848 NormalForm::value_type Combined; 849 Combined.reserve(LConjunction.size() + RConjunction.size()); 850 std::copy(LConjunction.begin(), LConjunction.end(), 851 std::back_inserter(Combined)); 852 std::copy(RConjunction.begin(), RConjunction.end(), 853 std::back_inserter(Combined)); 854 Res.emplace_back(Combined); 855 } 856 } 857 return Res; 858 } 859 860 template<typename AtomicSubsumptionEvaluator> 861 static bool subsumes(NormalForm PDNF, NormalForm QCNF, 862 AtomicSubsumptionEvaluator E) { 863 // C++ [temp.constr.order] p2 864 // Then, P subsumes Q if and only if, for every disjunctive clause Pi in the 865 // disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in 866 // the conjuctive normal form of Q, where [...] 867 for (const auto &Pi : PDNF) { 868 for (const auto &Qj : QCNF) { 869 // C++ [temp.constr.order] p2 870 // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if 871 // and only if there exists an atomic constraint Pia in Pi for which 872 // there exists an atomic constraint, Qjb, in Qj such that Pia 873 // subsumes Qjb. 874 bool Found = false; 875 for (const AtomicConstraint *Pia : Pi) { 876 for (const AtomicConstraint *Qjb : Qj) { 877 if (E(*Pia, *Qjb)) { 878 Found = true; 879 break; 880 } 881 } 882 if (Found) 883 break; 884 } 885 if (!Found) 886 return false; 887 } 888 } 889 return true; 890 } 891 892 template<typename AtomicSubsumptionEvaluator> 893 static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P, 894 NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes, 895 AtomicSubsumptionEvaluator E) { 896 // C++ [temp.constr.order] p2 897 // In order to determine if a constraint P subsumes a constraint Q, P is 898 // transformed into disjunctive normal form, and Q is transformed into 899 // conjunctive normal form. [...] 900 auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P); 901 if (!PNormalized) 902 return true; 903 const NormalForm PDNF = makeDNF(*PNormalized); 904 905 auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q); 906 if (!QNormalized) 907 return true; 908 const NormalForm QCNF = makeCNF(*QNormalized); 909 910 Subsumes = subsumes(PDNF, QCNF, E); 911 return false; 912 } 913 914 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1, 915 NamedDecl *D2, ArrayRef<const Expr *> AC2, 916 bool &Result) { 917 if (AC1.empty()) { 918 Result = AC2.empty(); 919 return false; 920 } 921 if (AC2.empty()) { 922 // TD1 has associated constraints and TD2 does not. 923 Result = true; 924 return false; 925 } 926 927 std::pair<NamedDecl *, NamedDecl *> Key{D1, D2}; 928 auto CacheEntry = SubsumptionCache.find(Key); 929 if (CacheEntry != SubsumptionCache.end()) { 930 Result = CacheEntry->second; 931 return false; 932 } 933 934 if (subsumes(*this, D1, AC1, D2, AC2, Result, 935 [this] (const AtomicConstraint &A, const AtomicConstraint &B) { 936 return A.subsumes(Context, B); 937 })) 938 return true; 939 SubsumptionCache.try_emplace(Key, Result); 940 return false; 941 } 942 943 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1, 944 ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) { 945 if (isSFINAEContext()) 946 // No need to work here because our notes would be discarded. 947 return false; 948 949 if (AC1.empty() || AC2.empty()) 950 return false; 951 952 auto NormalExprEvaluator = 953 [this] (const AtomicConstraint &A, const AtomicConstraint &B) { 954 return A.subsumes(Context, B); 955 }; 956 957 const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr; 958 auto IdenticalExprEvaluator = 959 [&] (const AtomicConstraint &A, const AtomicConstraint &B) { 960 if (!A.hasMatchingParameterMapping(Context, B)) 961 return false; 962 const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr; 963 if (EA == EB) 964 return true; 965 966 // Not the same source level expression - are the expressions 967 // identical? 968 llvm::FoldingSetNodeID IDA, IDB; 969 EA->Profile(IDA, Context, /*Cannonical=*/true); 970 EB->Profile(IDB, Context, /*Cannonical=*/true); 971 if (IDA != IDB) 972 return false; 973 974 AmbiguousAtomic1 = EA; 975 AmbiguousAtomic2 = EB; 976 return true; 977 }; 978 979 { 980 // The subsumption checks might cause diagnostics 981 SFINAETrap Trap(*this); 982 auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1); 983 if (!Normalized1) 984 return false; 985 const NormalForm DNF1 = makeDNF(*Normalized1); 986 const NormalForm CNF1 = makeCNF(*Normalized1); 987 988 auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2); 989 if (!Normalized2) 990 return false; 991 const NormalForm DNF2 = makeDNF(*Normalized2); 992 const NormalForm CNF2 = makeCNF(*Normalized2); 993 994 bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator); 995 bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator); 996 bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator); 997 bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator); 998 if (Is1AtLeastAs2 == Is1AtLeastAs2Normally && 999 Is2AtLeastAs1 == Is2AtLeastAs1Normally) 1000 // Same result - no ambiguity was caused by identical atomic expressions. 1001 return false; 1002 } 1003 1004 // A different result! Some ambiguous atomic constraint(s) caused a difference 1005 assert(AmbiguousAtomic1 && AmbiguousAtomic2); 1006 1007 Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints) 1008 << AmbiguousAtomic1->getSourceRange(); 1009 Diag(AmbiguousAtomic2->getBeginLoc(), 1010 diag::note_ambiguous_atomic_constraints_similar_expression) 1011 << AmbiguousAtomic2->getSourceRange(); 1012 return true; 1013 } 1014 1015 concepts::ExprRequirement::ExprRequirement( 1016 Expr *E, bool IsSimple, SourceLocation NoexceptLoc, 1017 ReturnTypeRequirement Req, SatisfactionStatus Status, 1018 ConceptSpecializationExpr *SubstitutedConstraintExpr) : 1019 Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent, 1020 Status == SS_Dependent && 1021 (E->containsUnexpandedParameterPack() || 1022 Req.containsUnexpandedParameterPack()), 1023 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc), 1024 TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr), 1025 Status(Status) { 1026 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && 1027 "Simple requirement must not have a return type requirement or a " 1028 "noexcept specification"); 1029 assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) == 1030 (SubstitutedConstraintExpr != nullptr)); 1031 } 1032 1033 concepts::ExprRequirement::ExprRequirement( 1034 SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple, 1035 SourceLocation NoexceptLoc, ReturnTypeRequirement Req) : 1036 Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(), 1037 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false), 1038 Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req), 1039 Status(SS_ExprSubstitutionFailure) { 1040 assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) && 1041 "Simple requirement must not have a return type requirement or a " 1042 "noexcept specification"); 1043 } 1044 1045 concepts::ExprRequirement::ReturnTypeRequirement:: 1046 ReturnTypeRequirement(TemplateParameterList *TPL) : 1047 TypeConstraintInfo(TPL, 0) { 1048 assert(TPL->size() == 1); 1049 const TypeConstraint *TC = 1050 cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint(); 1051 assert(TC && 1052 "TPL must have a template type parameter with a type constraint"); 1053 auto *Constraint = 1054 cast_or_null<ConceptSpecializationExpr>( 1055 TC->getImmediatelyDeclaredConstraint()); 1056 bool Dependent = 1057 Constraint->getTemplateArgsAsWritten() && 1058 TemplateSpecializationType::anyInstantiationDependentTemplateArguments( 1059 Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1)); 1060 TypeConstraintInfo.setInt(Dependent ? 1 : 0); 1061 } 1062 1063 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) : 1064 Requirement(RK_Type, T->getType()->isInstantiationDependentType(), 1065 T->getType()->containsUnexpandedParameterPack(), 1066 // We reach this ctor with either dependent types (in which 1067 // IsSatisfied doesn't matter) or with non-dependent type in 1068 // which the existence of the type indicates satisfaction. 1069 /*IsSatisfied=*/true), 1070 Value(T), 1071 Status(T->getType()->isInstantiationDependentType() ? SS_Dependent 1072 : SS_Satisfied) {} 1073