xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaConcept.cpp (revision 62987288060ff68c817b7056815aa9fb8ba8ecd7)
1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ constraints and concepts.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaConcept.h"
14 #include "TreeTransform.h"
15 #include "clang/AST/ASTLambda.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/ExprConcepts.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/Basic/OperatorPrecedence.h"
20 #include "clang/Sema/EnterExpressionEvaluationContext.h"
21 #include "clang/Sema/Initialization.h"
22 #include "clang/Sema/Overload.h"
23 #include "clang/Sema/ScopeInfo.h"
24 #include "clang/Sema/Sema.h"
25 #include "clang/Sema/SemaDiagnostic.h"
26 #include "clang/Sema/SemaInternal.h"
27 #include "clang/Sema/Template.h"
28 #include "clang/Sema/TemplateDeduction.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerUnion.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include <optional>
33 
34 using namespace clang;
35 using namespace sema;
36 
37 namespace {
38 class LogicalBinOp {
39   SourceLocation Loc;
40   OverloadedOperatorKind Op = OO_None;
41   const Expr *LHS = nullptr;
42   const Expr *RHS = nullptr;
43 
44 public:
45   LogicalBinOp(const Expr *E) {
46     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
47       Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
48       LHS = BO->getLHS();
49       RHS = BO->getRHS();
50       Loc = BO->getExprLoc();
51     } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
52       // If OO is not || or && it might not have exactly 2 arguments.
53       if (OO->getNumArgs() == 2) {
54         Op = OO->getOperator();
55         LHS = OO->getArg(0);
56         RHS = OO->getArg(1);
57         Loc = OO->getOperatorLoc();
58       }
59     }
60   }
61 
62   bool isAnd() const { return Op == OO_AmpAmp; }
63   bool isOr() const { return Op == OO_PipePipe; }
64   explicit operator bool() const { return isAnd() || isOr(); }
65 
66   const Expr *getLHS() const { return LHS; }
67   const Expr *getRHS() const { return RHS; }
68   OverloadedOperatorKind getOp() const { return Op; }
69 
70   ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const {
71     return recreateBinOp(SemaRef, LHS, const_cast<Expr *>(getRHS()));
72   }
73 
74   ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS,
75                            ExprResult RHS) const {
76     assert((isAnd() || isOr()) && "Not the right kind of op?");
77     assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?");
78 
79     if (!LHS.isUsable() || !RHS.isUsable())
80       return ExprEmpty();
81 
82     // We should just be able to 'normalize' these to the builtin Binary
83     // Operator, since that is how they are evaluated in constriant checks.
84     return BinaryOperator::Create(SemaRef.Context, LHS.get(), RHS.get(),
85                                   BinaryOperator::getOverloadedOpcode(Op),
86                                   SemaRef.Context.BoolTy, VK_PRValue,
87                                   OK_Ordinary, Loc, FPOptionsOverride{});
88   }
89 };
90 }
91 
92 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
93                                      Token NextToken, bool *PossibleNonPrimary,
94                                      bool IsTrailingRequiresClause) {
95   // C++2a [temp.constr.atomic]p1
96   // ..E shall be a constant expression of type bool.
97 
98   ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
99 
100   if (LogicalBinOp BO = ConstraintExpression) {
101     return CheckConstraintExpression(BO.getLHS(), NextToken,
102                                      PossibleNonPrimary) &&
103            CheckConstraintExpression(BO.getRHS(), NextToken,
104                                      PossibleNonPrimary);
105   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
106     return CheckConstraintExpression(C->getSubExpr(), NextToken,
107                                      PossibleNonPrimary);
108 
109   QualType Type = ConstraintExpression->getType();
110 
111   auto CheckForNonPrimary = [&] {
112     if (!PossibleNonPrimary)
113       return;
114 
115     *PossibleNonPrimary =
116         // We have the following case:
117         // template<typename> requires func(0) struct S { };
118         // The user probably isn't aware of the parentheses required around
119         // the function call, and we're only going to parse 'func' as the
120         // primary-expression, and complain that it is of non-bool type.
121         //
122         // However, if we're in a lambda, this might also be:
123         // []<typename> requires var () {};
124         // Which also looks like a function call due to the lambda parentheses,
125         // but unlike the first case, isn't an error, so this check is skipped.
126         (NextToken.is(tok::l_paren) &&
127          (IsTrailingRequiresClause ||
128           (Type->isDependentType() &&
129            isa<UnresolvedLookupExpr>(ConstraintExpression) &&
130            !dyn_cast_if_present<LambdaScopeInfo>(getCurFunction())) ||
131           Type->isFunctionType() ||
132           Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
133         // We have the following case:
134         // template<typename T> requires size_<T> == 0 struct S { };
135         // The user probably isn't aware of the parentheses required around
136         // the binary operator, and we're only going to parse 'func' as the
137         // first operand, and complain that it is of non-bool type.
138         getBinOpPrecedence(NextToken.getKind(),
139                            /*GreaterThanIsOperator=*/true,
140                            getLangOpts().CPlusPlus11) > prec::LogicalAnd;
141   };
142 
143   // An atomic constraint!
144   if (ConstraintExpression->isTypeDependent()) {
145     CheckForNonPrimary();
146     return true;
147   }
148 
149   if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
150     Diag(ConstraintExpression->getExprLoc(),
151          diag::err_non_bool_atomic_constraint) << Type
152         << ConstraintExpression->getSourceRange();
153     CheckForNonPrimary();
154     return false;
155   }
156 
157   if (PossibleNonPrimary)
158       *PossibleNonPrimary = false;
159   return true;
160 }
161 
162 namespace {
163 struct SatisfactionStackRAII {
164   Sema &SemaRef;
165   bool Inserted = false;
166   SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND,
167                         const llvm::FoldingSetNodeID &FSNID)
168       : SemaRef(SemaRef) {
169       if (ND) {
170       SemaRef.PushSatisfactionStackEntry(ND, FSNID);
171       Inserted = true;
172       }
173   }
174   ~SatisfactionStackRAII() {
175         if (Inserted)
176           SemaRef.PopSatisfactionStackEntry();
177   }
178 };
179 } // namespace
180 
181 template <typename ConstraintEvaluator>
182 static ExprResult
183 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
184                                 ConstraintSatisfaction &Satisfaction,
185                                 const ConstraintEvaluator &Evaluator);
186 
187 template <typename ConstraintEvaluator>
188 static ExprResult
189 calculateConstraintSatisfaction(Sema &S, const Expr *LHS,
190                                 OverloadedOperatorKind Op, const Expr *RHS,
191                                 ConstraintSatisfaction &Satisfaction,
192                                 const ConstraintEvaluator &Evaluator) {
193   size_t EffectiveDetailEndIndex = Satisfaction.Details.size();
194 
195   ExprResult LHSRes =
196       calculateConstraintSatisfaction(S, LHS, Satisfaction, Evaluator);
197 
198   if (LHSRes.isInvalid())
199     return ExprError();
200 
201   bool IsLHSSatisfied = Satisfaction.IsSatisfied;
202 
203   if (Op == clang::OO_PipePipe && IsLHSSatisfied)
204     // [temp.constr.op] p3
205     //    A disjunction is a constraint taking two operands. To determine if
206     //    a disjunction is satisfied, the satisfaction of the first operand
207     //    is checked. If that is satisfied, the disjunction is satisfied.
208     //    Otherwise, the disjunction is satisfied if and only if the second
209     //    operand is satisfied.
210     // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
211     return LHSRes;
212 
213   if (Op == clang::OO_AmpAmp && !IsLHSSatisfied)
214     // [temp.constr.op] p2
215     //    A conjunction is a constraint taking two operands. To determine if
216     //    a conjunction is satisfied, the satisfaction of the first operand
217     //    is checked. If that is not satisfied, the conjunction is not
218     //    satisfied. Otherwise, the conjunction is satisfied if and only if
219     //    the second operand is satisfied.
220     // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp.
221     return LHSRes;
222 
223   ExprResult RHSRes =
224       calculateConstraintSatisfaction(S, RHS, Satisfaction, Evaluator);
225   if (RHSRes.isInvalid())
226     return ExprError();
227 
228   bool IsRHSSatisfied = Satisfaction.IsSatisfied;
229   // Current implementation adds diagnostic information about the falsity
230   // of each false atomic constraint expression when it evaluates them.
231   // When the evaluation results to `false || true`, the information
232   // generated during the evaluation of left-hand side is meaningless
233   // because the whole expression evaluates to true.
234   // The following code removes the irrelevant diagnostic information.
235   // FIXME: We should probably delay the addition of diagnostic information
236   // until we know the entire expression is false.
237   if (Op == clang::OO_PipePipe && IsRHSSatisfied) {
238     auto EffectiveDetailEnd = Satisfaction.Details.begin();
239     std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);
240     Satisfaction.Details.erase(EffectiveDetailEnd, Satisfaction.Details.end());
241   }
242 
243   if (!LHSRes.isUsable() || !RHSRes.isUsable())
244     return ExprEmpty();
245 
246   return BinaryOperator::Create(S.Context, LHSRes.get(), RHSRes.get(),
247                                 BinaryOperator::getOverloadedOpcode(Op),
248                                 S.Context.BoolTy, VK_PRValue, OK_Ordinary,
249                                 LHS->getBeginLoc(), FPOptionsOverride{});
250 }
251 
252 template <typename ConstraintEvaluator>
253 static ExprResult
254 calculateConstraintSatisfaction(Sema &S, const CXXFoldExpr *FE,
255                                 ConstraintSatisfaction &Satisfaction,
256                                 const ConstraintEvaluator &Evaluator) {
257   bool Conjunction = FE->getOperator() == BinaryOperatorKind::BO_LAnd;
258   size_t EffectiveDetailEndIndex = Satisfaction.Details.size();
259 
260   ExprResult Out;
261   if (FE->isLeftFold() && FE->getInit()) {
262     Out = calculateConstraintSatisfaction(S, FE->getInit(), Satisfaction,
263                                           Evaluator);
264     if (Out.isInvalid())
265       return ExprError();
266 
267     // If the first clause of a conjunction is not satisfied,
268     // or if the first clause of a disjection is satisfied,
269     // we have established satisfaction of the whole constraint
270     // and we should not continue further.
271     if (Conjunction != Satisfaction.IsSatisfied)
272       return Out;
273   }
274   std::optional<unsigned> NumExpansions =
275       Evaluator.EvaluateFoldExpandedConstraintSize(FE);
276   if (!NumExpansions)
277     return ExprError();
278   for (unsigned I = 0; I < *NumExpansions; I++) {
279     Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
280     ExprResult Res = calculateConstraintSatisfaction(S, FE->getPattern(),
281                                                      Satisfaction, Evaluator);
282     if (Res.isInvalid())
283       return ExprError();
284     bool IsRHSSatisfied = Satisfaction.IsSatisfied;
285     if (!Conjunction && IsRHSSatisfied) {
286       auto EffectiveDetailEnd = Satisfaction.Details.begin();
287       std::advance(EffectiveDetailEnd, EffectiveDetailEndIndex);
288       Satisfaction.Details.erase(EffectiveDetailEnd,
289                                  Satisfaction.Details.end());
290     }
291     if (Out.isUnset())
292       Out = Res;
293     else if (!Res.isUnset()) {
294       Out = BinaryOperator::Create(
295           S.Context, Out.get(), Res.get(), FE->getOperator(), S.Context.BoolTy,
296           VK_PRValue, OK_Ordinary, FE->getBeginLoc(), FPOptionsOverride{});
297     }
298     if (Conjunction != IsRHSSatisfied)
299       return Out;
300   }
301 
302   if (FE->isRightFold() && FE->getInit()) {
303     ExprResult Res = calculateConstraintSatisfaction(S, FE->getInit(),
304                                                      Satisfaction, Evaluator);
305     if (Out.isInvalid())
306       return ExprError();
307 
308     if (Out.isUnset())
309       Out = Res;
310     else if (!Res.isUnset()) {
311       Out = BinaryOperator::Create(
312           S.Context, Out.get(), Res.get(), FE->getOperator(), S.Context.BoolTy,
313           VK_PRValue, OK_Ordinary, FE->getBeginLoc(), FPOptionsOverride{});
314     }
315   }
316 
317   if (Out.isUnset()) {
318     Satisfaction.IsSatisfied = Conjunction;
319     Out = S.BuildEmptyCXXFoldExpr(FE->getBeginLoc(), FE->getOperator());
320   }
321   return Out;
322 }
323 
324 template <typename ConstraintEvaluator>
325 static ExprResult
326 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
327                                 ConstraintSatisfaction &Satisfaction,
328                                 const ConstraintEvaluator &Evaluator) {
329   ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
330 
331   if (LogicalBinOp BO = ConstraintExpr)
332     return calculateConstraintSatisfaction(
333         S, BO.getLHS(), BO.getOp(), BO.getRHS(), Satisfaction, Evaluator);
334 
335   if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
336     // These aren't evaluated, so we don't care about cleanups, so we can just
337     // evaluate these as if the cleanups didn't exist.
338     return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
339                                            Evaluator);
340   }
341 
342   if (auto *FE = dyn_cast<CXXFoldExpr>(ConstraintExpr);
343       FE && S.getLangOpts().CPlusPlus26 &&
344       (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||
345        FE->getOperator() == BinaryOperatorKind::BO_LOr)) {
346     return calculateConstraintSatisfaction(S, FE, Satisfaction, Evaluator);
347   }
348 
349   // An atomic constraint expression
350   ExprResult SubstitutedAtomicExpr =
351       Evaluator.EvaluateAtomicConstraint(ConstraintExpr);
352 
353   if (SubstitutedAtomicExpr.isInvalid())
354     return ExprError();
355 
356   if (!SubstitutedAtomicExpr.isUsable())
357     // Evaluator has decided satisfaction without yielding an expression.
358     return ExprEmpty();
359 
360   // We don't have the ability to evaluate this, since it contains a
361   // RecoveryExpr, so we want to fail overload resolution.  Otherwise,
362   // we'd potentially pick up a different overload, and cause confusing
363   // diagnostics. SO, add a failure detail that will cause us to make this
364   // overload set not viable.
365   if (SubstitutedAtomicExpr.get()->containsErrors()) {
366     Satisfaction.IsSatisfied = false;
367     Satisfaction.ContainsErrors = true;
368 
369     PartialDiagnostic Msg = S.PDiag(diag::note_constraint_references_error);
370     SmallString<128> DiagString;
371     DiagString = ": ";
372     Msg.EmitToString(S.getDiagnostics(), DiagString);
373     unsigned MessageSize = DiagString.size();
374     char *Mem = new (S.Context) char[MessageSize];
375     memcpy(Mem, DiagString.c_str(), MessageSize);
376     Satisfaction.Details.emplace_back(
377         new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
378             SubstitutedAtomicExpr.get()->getBeginLoc(),
379             StringRef(Mem, MessageSize)});
380     return SubstitutedAtomicExpr;
381   }
382 
383   EnterExpressionEvaluationContext ConstantEvaluated(
384       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
385   SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
386   Expr::EvalResult EvalResult;
387   EvalResult.Diag = &EvaluationDiags;
388   if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
389                                                            S.Context) ||
390       !EvaluationDiags.empty()) {
391     // C++2a [temp.constr.atomic]p1
392     //   ...E shall be a constant expression of type bool.
393     S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
394            diag::err_non_constant_constraint_expression)
395         << SubstitutedAtomicExpr.get()->getSourceRange();
396     for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
397       S.Diag(PDiag.first, PDiag.second);
398     return ExprError();
399   }
400 
401   assert(EvalResult.Val.isInt() &&
402          "evaluating bool expression didn't produce int");
403   Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
404   if (!Satisfaction.IsSatisfied)
405     Satisfaction.Details.emplace_back(SubstitutedAtomicExpr.get());
406 
407   return SubstitutedAtomicExpr;
408 }
409 
410 static bool
411 DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID,
412                             const NamedDecl *Templ, const Expr *E,
413                             const MultiLevelTemplateArgumentList &MLTAL) {
414   E->Profile(ID, S.Context, /*Canonical=*/true);
415   for (const auto &List : MLTAL)
416     for (const auto &TemplateArg : List.Args)
417       TemplateArg.Profile(ID, S.Context);
418 
419   // Note that we have to do this with our own collection, because there are
420   // times where a constraint-expression check can cause us to need to evaluate
421   // other constriants that are unrelated, such as when evaluating a recovery
422   // expression, or when trying to determine the constexpr-ness of special
423   // members. Otherwise we could just use the
424   // Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function.
425   if (S.SatisfactionStackContains(Templ, ID)) {
426     S.Diag(E->getExprLoc(), diag::err_constraint_depends_on_self)
427         << const_cast<Expr *>(E) << E->getSourceRange();
428     return true;
429   }
430 
431   return false;
432 }
433 
434 static ExprResult calculateConstraintSatisfaction(
435     Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc,
436     const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr,
437     ConstraintSatisfaction &Satisfaction) {
438 
439   struct ConstraintEvaluator {
440     Sema &S;
441     const NamedDecl *Template;
442     SourceLocation TemplateNameLoc;
443     const MultiLevelTemplateArgumentList &MLTAL;
444     ConstraintSatisfaction &Satisfaction;
445 
446     ExprResult EvaluateAtomicConstraint(const Expr *AtomicExpr) const {
447       EnterExpressionEvaluationContext ConstantEvaluated(
448           S, Sema::ExpressionEvaluationContext::ConstantEvaluated,
449           Sema::ReuseLambdaContextDecl);
450 
451       // Atomic constraint - substitute arguments and check satisfaction.
452       ExprResult SubstitutedExpression;
453       {
454         TemplateDeductionInfo Info(TemplateNameLoc);
455         Sema::InstantiatingTemplate Inst(
456             S, AtomicExpr->getBeginLoc(),
457             Sema::InstantiatingTemplate::ConstraintSubstitution{},
458             const_cast<NamedDecl *>(Template), Info,
459             AtomicExpr->getSourceRange());
460         if (Inst.isInvalid())
461           return ExprError();
462 
463         llvm::FoldingSetNodeID ID;
464         if (Template &&
465             DiagRecursiveConstraintEval(S, ID, Template, AtomicExpr, MLTAL)) {
466           Satisfaction.IsSatisfied = false;
467           Satisfaction.ContainsErrors = true;
468           return ExprEmpty();
469         }
470 
471         SatisfactionStackRAII StackRAII(S, Template, ID);
472 
473         // We do not want error diagnostics escaping here.
474         Sema::SFINAETrap Trap(S);
475         SubstitutedExpression =
476             S.SubstConstraintExpr(const_cast<Expr *>(AtomicExpr), MLTAL);
477 
478         if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
479           // C++2a [temp.constr.atomic]p1
480           //   ...If substitution results in an invalid type or expression, the
481           //   constraint is not satisfied.
482           if (!Trap.hasErrorOccurred())
483             // A non-SFINAE error has occurred as a result of this
484             // substitution.
485             return ExprError();
486 
487           PartialDiagnosticAt SubstDiag{SourceLocation(),
488                                         PartialDiagnostic::NullDiagnostic()};
489           Info.takeSFINAEDiagnostic(SubstDiag);
490           // FIXME: Concepts: This is an unfortunate consequence of there
491           //  being no serialization code for PartialDiagnostics and the fact
492           //  that serializing them would likely take a lot more storage than
493           //  just storing them as strings. We would still like, in the
494           //  future, to serialize the proper PartialDiagnostic as serializing
495           //  it as a string defeats the purpose of the diagnostic mechanism.
496           SmallString<128> DiagString;
497           DiagString = ": ";
498           SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
499           unsigned MessageSize = DiagString.size();
500           char *Mem = new (S.Context) char[MessageSize];
501           memcpy(Mem, DiagString.c_str(), MessageSize);
502           Satisfaction.Details.emplace_back(
503               new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
504                   SubstDiag.first, StringRef(Mem, MessageSize)});
505           Satisfaction.IsSatisfied = false;
506           return ExprEmpty();
507         }
508       }
509 
510       if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
511         return ExprError();
512 
513       // [temp.constr.atomic]p3: To determine if an atomic constraint is
514       // satisfied, the parameter mapping and template arguments are first
515       // substituted into its expression.  If substitution results in an
516       // invalid type or expression, the constraint is not satisfied.
517       // Otherwise, the lvalue-to-rvalue conversion is performed if necessary,
518       // and E shall be a constant expression of type bool.
519       //
520       // Perform the L to R Value conversion if necessary. We do so for all
521       // non-PRValue categories, else we fail to extend the lifetime of
522       // temporaries, and that fails the constant expression check.
523       if (!SubstitutedExpression.get()->isPRValue())
524         SubstitutedExpression = ImplicitCastExpr::Create(
525             S.Context, SubstitutedExpression.get()->getType(),
526             CK_LValueToRValue, SubstitutedExpression.get(),
527             /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
528 
529       return SubstitutedExpression;
530     }
531 
532     std::optional<unsigned>
533     EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {
534 
535       // We should ignore errors in the presence of packs of different size.
536       Sema::SFINAETrap Trap(S);
537 
538       Expr *Pattern = FE->getPattern();
539 
540       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
541       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
542       assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
543       bool Expand = true;
544       bool RetainExpansion = false;
545       std::optional<unsigned> OrigNumExpansions = FE->getNumExpansions(),
546                               NumExpansions = OrigNumExpansions;
547       if (S.CheckParameterPacksForExpansion(
548               FE->getEllipsisLoc(), Pattern->getSourceRange(), Unexpanded,
549               MLTAL, Expand, RetainExpansion, NumExpansions) ||
550           !Expand || RetainExpansion)
551         return std::nullopt;
552 
553       if (NumExpansions && S.getLangOpts().BracketDepth < NumExpansions) {
554         S.Diag(FE->getEllipsisLoc(),
555                clang::diag::err_fold_expression_limit_exceeded)
556             << *NumExpansions << S.getLangOpts().BracketDepth
557             << FE->getSourceRange();
558         S.Diag(FE->getEllipsisLoc(), diag::note_bracket_depth);
559         return std::nullopt;
560       }
561       return NumExpansions;
562     }
563   };
564 
565   return calculateConstraintSatisfaction(
566       S, ConstraintExpr, Satisfaction,
567       ConstraintEvaluator{S, Template, TemplateNameLoc, MLTAL, Satisfaction});
568 }
569 
570 static bool CheckConstraintSatisfaction(
571     Sema &S, const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
572     llvm::SmallVectorImpl<Expr *> &Converted,
573     const MultiLevelTemplateArgumentList &TemplateArgsLists,
574     SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) {
575   if (ConstraintExprs.empty()) {
576     Satisfaction.IsSatisfied = true;
577     return false;
578   }
579 
580   if (TemplateArgsLists.isAnyArgInstantiationDependent()) {
581     // No need to check satisfaction for dependent constraint expressions.
582     Satisfaction.IsSatisfied = true;
583     return false;
584   }
585 
586   ArrayRef<TemplateArgument> TemplateArgs =
587       TemplateArgsLists.getNumSubstitutedLevels() > 0
588           ? TemplateArgsLists.getOutermost()
589           : ArrayRef<TemplateArgument> {};
590   Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
591       Sema::InstantiatingTemplate::ConstraintsCheck{},
592       const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
593   if (Inst.isInvalid())
594     return true;
595 
596   for (const Expr *ConstraintExpr : ConstraintExprs) {
597     ExprResult Res = calculateConstraintSatisfaction(
598         S, Template, TemplateIDRange.getBegin(), TemplateArgsLists,
599         ConstraintExpr, Satisfaction);
600     if (Res.isInvalid())
601       return true;
602 
603     Converted.push_back(Res.get());
604     if (!Satisfaction.IsSatisfied) {
605       // Backfill the 'converted' list with nulls so we can keep the Converted
606       // and unconverted lists in sync.
607       Converted.append(ConstraintExprs.size() - Converted.size(), nullptr);
608       // [temp.constr.op] p2
609       // [...] To determine if a conjunction is satisfied, the satisfaction
610       // of the first operand is checked. If that is not satisfied, the
611       // conjunction is not satisfied. [...]
612       return false;
613     }
614   }
615   return false;
616 }
617 
618 bool Sema::CheckConstraintSatisfaction(
619     const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
620     llvm::SmallVectorImpl<Expr *> &ConvertedConstraints,
621     const MultiLevelTemplateArgumentList &TemplateArgsLists,
622     SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) {
623   if (ConstraintExprs.empty()) {
624     OutSatisfaction.IsSatisfied = true;
625     return false;
626   }
627   if (!Template) {
628     return ::CheckConstraintSatisfaction(
629         *this, nullptr, ConstraintExprs, ConvertedConstraints,
630         TemplateArgsLists, TemplateIDRange, OutSatisfaction);
631   }
632   // Invalid templates could make their way here. Substituting them could result
633   // in dependent expressions.
634   if (Template->isInvalidDecl()) {
635     OutSatisfaction.IsSatisfied = false;
636     return true;
637   }
638 
639   // A list of the template argument list flattened in a predictible manner for
640   // the purposes of caching. The ConstraintSatisfaction type is in AST so it
641   // has no access to the MultiLevelTemplateArgumentList, so this has to happen
642   // here.
643   llvm::SmallVector<TemplateArgument, 4> FlattenedArgs;
644   for (auto List : TemplateArgsLists)
645     FlattenedArgs.insert(FlattenedArgs.end(), List.Args.begin(),
646                          List.Args.end());
647 
648   llvm::FoldingSetNodeID ID;
649   ConstraintSatisfaction::Profile(ID, Context, Template, FlattenedArgs);
650   void *InsertPos;
651   if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
652     OutSatisfaction = *Cached;
653     return false;
654   }
655 
656   auto Satisfaction =
657       std::make_unique<ConstraintSatisfaction>(Template, FlattenedArgs);
658   if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
659                                     ConvertedConstraints, TemplateArgsLists,
660                                     TemplateIDRange, *Satisfaction)) {
661     OutSatisfaction = *Satisfaction;
662     return true;
663   }
664 
665   if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) {
666     // The evaluation of this constraint resulted in us trying to re-evaluate it
667     // recursively. This isn't really possible, except we try to form a
668     // RecoveryExpr as a part of the evaluation.  If this is the case, just
669     // return the 'cached' version (which will have the same result), and save
670     // ourselves the extra-insert. If it ever becomes possible to legitimately
671     // recursively check a constraint, we should skip checking the 'inner' one
672     // above, and replace the cached version with this one, as it would be more
673     // specific.
674     OutSatisfaction = *Cached;
675     return false;
676   }
677 
678   // Else we can simply add this satisfaction to the list.
679   OutSatisfaction = *Satisfaction;
680   // We cannot use InsertPos here because CheckConstraintSatisfaction might have
681   // invalidated it.
682   // Note that entries of SatisfactionCache are deleted in Sema's destructor.
683   SatisfactionCache.InsertNode(Satisfaction.release());
684   return false;
685 }
686 
687 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
688                                        ConstraintSatisfaction &Satisfaction) {
689 
690   struct ConstraintEvaluator {
691     Sema &S;
692     ExprResult EvaluateAtomicConstraint(const Expr *AtomicExpr) const {
693       return S.PerformContextuallyConvertToBool(const_cast<Expr *>(AtomicExpr));
694     }
695 
696     std::optional<unsigned>
697     EvaluateFoldExpandedConstraintSize(const CXXFoldExpr *FE) const {
698       return 0;
699     }
700   };
701 
702   return calculateConstraintSatisfaction(*this, ConstraintExpr, Satisfaction,
703                                          ConstraintEvaluator{*this})
704       .isInvalid();
705 }
706 
707 bool Sema::addInstantiatedCapturesToScope(
708     FunctionDecl *Function, const FunctionDecl *PatternDecl,
709     LocalInstantiationScope &Scope,
710     const MultiLevelTemplateArgumentList &TemplateArgs) {
711   const auto *LambdaClass = cast<CXXMethodDecl>(Function)->getParent();
712   const auto *LambdaPattern = cast<CXXMethodDecl>(PatternDecl)->getParent();
713 
714   unsigned Instantiated = 0;
715 
716   auto AddSingleCapture = [&](const ValueDecl *CapturedPattern,
717                               unsigned Index) {
718     ValueDecl *CapturedVar = LambdaClass->getCapture(Index)->getCapturedVar();
719     if (CapturedVar->isInitCapture())
720       Scope.InstantiatedLocal(CapturedPattern, CapturedVar);
721   };
722 
723   for (const LambdaCapture &CapturePattern : LambdaPattern->captures()) {
724     if (!CapturePattern.capturesVariable()) {
725       Instantiated++;
726       continue;
727     }
728     const ValueDecl *CapturedPattern = CapturePattern.getCapturedVar();
729     if (!CapturedPattern->isParameterPack()) {
730       AddSingleCapture(CapturedPattern, Instantiated++);
731     } else {
732       Scope.MakeInstantiatedLocalArgPack(CapturedPattern);
733       std::optional<unsigned> NumArgumentsInExpansion =
734           getNumArgumentsInExpansion(CapturedPattern->getType(), TemplateArgs);
735       if (!NumArgumentsInExpansion)
736         continue;
737       for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg)
738         AddSingleCapture(CapturedPattern, Instantiated++);
739     }
740   }
741   return false;
742 }
743 
744 bool Sema::SetupConstraintScope(
745     FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
746     const MultiLevelTemplateArgumentList &MLTAL,
747     LocalInstantiationScope &Scope) {
748   if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) {
749     FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate();
750     InstantiatingTemplate Inst(
751         *this, FD->getPointOfInstantiation(),
752         Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate,
753         TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
754         SourceRange());
755     if (Inst.isInvalid())
756       return true;
757 
758     // addInstantiatedParametersToScope creates a map of 'uninstantiated' to
759     // 'instantiated' parameters and adds it to the context. For the case where
760     // this function is a template being instantiated NOW, we also need to add
761     // the list of current template arguments to the list so that they also can
762     // be picked out of the map.
763     if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) {
764       MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(),
765                                                    /*Final=*/false);
766       if (addInstantiatedParametersToScope(
767               FD, PrimaryTemplate->getTemplatedDecl(), Scope, JustTemplArgs))
768         return true;
769     }
770 
771     // If this is a member function, make sure we get the parameters that
772     // reference the original primary template.
773     // We walk up the instantiated template chain so that nested lambdas get
774     // handled properly.
775     // We should only collect instantiated parameters from the primary template.
776     // Otherwise, we may have mismatched template parameter depth!
777     if (FunctionTemplateDecl *FromMemTempl =
778             PrimaryTemplate->getInstantiatedFromMemberTemplate()) {
779       while (FromMemTempl->getInstantiatedFromMemberTemplate())
780         FromMemTempl = FromMemTempl->getInstantiatedFromMemberTemplate();
781       if (addInstantiatedParametersToScope(FD, FromMemTempl->getTemplatedDecl(),
782                                            Scope, MLTAL))
783         return true;
784     }
785 
786     return false;
787   }
788 
789   if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization ||
790       FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) {
791     FunctionDecl *InstantiatedFrom =
792         FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization
793             ? FD->getInstantiatedFromMemberFunction()
794             : FD->getInstantiatedFromDecl();
795 
796     InstantiatingTemplate Inst(
797         *this, FD->getPointOfInstantiation(),
798         Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom,
799         TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{},
800         SourceRange());
801     if (Inst.isInvalid())
802       return true;
803 
804     // Case where this was not a template, but instantiated as a
805     // child-function.
806     if (addInstantiatedParametersToScope(FD, InstantiatedFrom, Scope, MLTAL))
807       return true;
808   }
809 
810   return false;
811 }
812 
813 // This function collects all of the template arguments for the purposes of
814 // constraint-instantiation and checking.
815 std::optional<MultiLevelTemplateArgumentList>
816 Sema::SetupConstraintCheckingTemplateArgumentsAndScope(
817     FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs,
818     LocalInstantiationScope &Scope) {
819   MultiLevelTemplateArgumentList MLTAL;
820 
821   // Collect the list of template arguments relative to the 'primary' template.
822   // We need the entire list, since the constraint is completely uninstantiated
823   // at this point.
824   MLTAL =
825       getTemplateInstantiationArgs(FD, FD->getLexicalDeclContext(),
826                                    /*Final=*/false, /*Innermost=*/std::nullopt,
827                                    /*RelativeToPrimary=*/true,
828                                    /*Pattern=*/nullptr,
829                                    /*ForConstraintInstantiation=*/true);
830   if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope))
831     return std::nullopt;
832 
833   return MLTAL;
834 }
835 
836 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
837                                     ConstraintSatisfaction &Satisfaction,
838                                     SourceLocation UsageLoc,
839                                     bool ForOverloadResolution) {
840   // Don't check constraints if the function is dependent. Also don't check if
841   // this is a function template specialization, as the call to
842   // CheckinstantiatedFunctionTemplateConstraints after this will check it
843   // better.
844   if (FD->isDependentContext() ||
845       FD->getTemplatedKind() ==
846           FunctionDecl::TK_FunctionTemplateSpecialization) {
847     Satisfaction.IsSatisfied = true;
848     return false;
849   }
850 
851   // A lambda conversion operator has the same constraints as the call operator
852   // and constraints checking relies on whether we are in a lambda call operator
853   // (and may refer to its parameters), so check the call operator instead.
854   // Note that the declarations outside of the lambda should also be
855   // considered. Turning on the 'ForOverloadResolution' flag results in the
856   // LocalInstantiationScope not looking into its parents, but we can still
857   // access Decls from the parents while building a lambda RAII scope later.
858   if (const auto *MD = dyn_cast<CXXConversionDecl>(FD);
859       MD && isLambdaConversionOperator(const_cast<CXXConversionDecl *>(MD)))
860     return CheckFunctionConstraints(MD->getParent()->getLambdaCallOperator(),
861                                     Satisfaction, UsageLoc,
862                                     /*ShouldAddDeclsFromParentScope=*/true);
863 
864   DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD);
865 
866   while (isLambdaCallOperator(CtxToSave) || FD->isTransparentContext()) {
867     if (isLambdaCallOperator(CtxToSave))
868       CtxToSave = CtxToSave->getParent()->getParent();
869     else
870       CtxToSave = CtxToSave->getNonTransparentContext();
871   }
872 
873   ContextRAII SavedContext{*this, CtxToSave};
874   LocalInstantiationScope Scope(*this, !ForOverloadResolution);
875   std::optional<MultiLevelTemplateArgumentList> MLTAL =
876       SetupConstraintCheckingTemplateArgumentsAndScope(
877           const_cast<FunctionDecl *>(FD), {}, Scope);
878 
879   if (!MLTAL)
880     return true;
881 
882   Qualifiers ThisQuals;
883   CXXRecordDecl *Record = nullptr;
884   if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
885     ThisQuals = Method->getMethodQualifiers();
886     Record = const_cast<CXXRecordDecl *>(Method->getParent());
887   }
888   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
889 
890   LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
891       *this, const_cast<FunctionDecl *>(FD), *MLTAL, Scope,
892       ForOverloadResolution);
893 
894   return CheckConstraintSatisfaction(
895       FD, {FD->getTrailingRequiresClause()}, *MLTAL,
896       SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
897       Satisfaction);
898 }
899 
900 
901 // Figure out the to-translation-unit depth for this function declaration for
902 // the purpose of seeing if they differ by constraints. This isn't the same as
903 // getTemplateDepth, because it includes already instantiated parents.
904 static unsigned
905 CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND,
906                                      bool SkipForSpecialization = false) {
907   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
908       ND, ND->getLexicalDeclContext(), /*Final=*/false,
909       /*Innermost=*/std::nullopt,
910       /*RelativeToPrimary=*/true,
911       /*Pattern=*/nullptr,
912       /*ForConstraintInstantiation=*/true, SkipForSpecialization);
913   return MLTAL.getNumLevels();
914 }
915 
916 namespace {
917   class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> {
918   unsigned TemplateDepth = 0;
919   public:
920   using inherited = TreeTransform<AdjustConstraintDepth>;
921   AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth)
922       : inherited(SemaRef), TemplateDepth(TemplateDepth) {}
923 
924   using inherited::TransformTemplateTypeParmType;
925   QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
926                                          TemplateTypeParmTypeLoc TL, bool) {
927     const TemplateTypeParmType *T = TL.getTypePtr();
928 
929     TemplateTypeParmDecl *NewTTPDecl = nullptr;
930     if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl())
931       NewTTPDecl = cast_or_null<TemplateTypeParmDecl>(
932           TransformDecl(TL.getNameLoc(), OldTTPDecl));
933 
934     QualType Result = getSema().Context.getTemplateTypeParmType(
935         T->getDepth() + TemplateDepth, T->getIndex(), T->isParameterPack(),
936         NewTTPDecl);
937     TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(Result);
938     NewTL.setNameLoc(TL.getNameLoc());
939     return Result;
940   }
941   };
942 } // namespace
943 
944 static const Expr *SubstituteConstraintExpressionWithoutSatisfaction(
945     Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo,
946     const Expr *ConstrExpr) {
947   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
948       DeclInfo.getDecl(), DeclInfo.getLexicalDeclContext(), /*Final=*/false,
949       /*Innermost=*/std::nullopt,
950       /*RelativeToPrimary=*/true,
951       /*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true,
952       /*SkipForSpecialization*/ false);
953 
954   if (MLTAL.getNumSubstitutedLevels() == 0)
955     return ConstrExpr;
956 
957   Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/false);
958 
959   Sema::InstantiatingTemplate Inst(
960       S, DeclInfo.getLocation(),
961       Sema::InstantiatingTemplate::ConstraintNormalization{},
962       const_cast<NamedDecl *>(DeclInfo.getDecl()), SourceRange{});
963   if (Inst.isInvalid())
964     return nullptr;
965 
966   // Set up a dummy 'instantiation' scope in the case of reference to function
967   // parameters that the surrounding function hasn't been instantiated yet. Note
968   // this may happen while we're comparing two templates' constraint
969   // equivalence.
970   LocalInstantiationScope ScopeForParameters(S);
971   if (auto *FD = DeclInfo.getDecl()->getAsFunction())
972     for (auto *PVD : FD->parameters())
973       ScopeForParameters.InstantiatedLocal(PVD, PVD);
974 
975   std::optional<Sema::CXXThisScopeRAII> ThisScope;
976 
977   // See TreeTransform::RebuildTemplateSpecializationType. A context scope is
978   // essential for having an injected class as the canonical type for a template
979   // specialization type at the rebuilding stage. This guarantees that, for
980   // out-of-line definitions, injected class name types and their equivalent
981   // template specializations can be profiled to the same value, which makes it
982   // possible that e.g. constraints involving C<Class<T>> and C<Class> are
983   // perceived identical.
984   std::optional<Sema::ContextRAII> ContextScope;
985   if (auto *RD = dyn_cast<CXXRecordDecl>(DeclInfo.getDeclContext())) {
986     ThisScope.emplace(S, const_cast<CXXRecordDecl *>(RD), Qualifiers());
987     ContextScope.emplace(S, const_cast<DeclContext *>(cast<DeclContext>(RD)),
988                          /*NewThisContext=*/false);
989   }
990   ExprResult SubstConstr = S.SubstConstraintExprWithoutSatisfaction(
991       const_cast<clang::Expr *>(ConstrExpr), MLTAL);
992   if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable())
993     return nullptr;
994   return SubstConstr.get();
995 }
996 
997 bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old,
998                                          const Expr *OldConstr,
999                                          const TemplateCompareNewDeclInfo &New,
1000                                          const Expr *NewConstr) {
1001   if (OldConstr == NewConstr)
1002     return true;
1003   // C++ [temp.constr.decl]p4
1004   if (Old && !New.isInvalid() && !New.ContainsDecl(Old) &&
1005       Old->getLexicalDeclContext() != New.getLexicalDeclContext()) {
1006     if (const Expr *SubstConstr =
1007             SubstituteConstraintExpressionWithoutSatisfaction(*this, Old,
1008                                                               OldConstr))
1009       OldConstr = SubstConstr;
1010     else
1011       return false;
1012     if (const Expr *SubstConstr =
1013             SubstituteConstraintExpressionWithoutSatisfaction(*this, New,
1014                                                               NewConstr))
1015       NewConstr = SubstConstr;
1016     else
1017       return false;
1018   }
1019 
1020   llvm::FoldingSetNodeID ID1, ID2;
1021   OldConstr->Profile(ID1, Context, /*Canonical=*/true);
1022   NewConstr->Profile(ID2, Context, /*Canonical=*/true);
1023   return ID1 == ID2;
1024 }
1025 
1026 bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) {
1027   assert(FD->getFriendObjectKind() && "Must be a friend!");
1028 
1029   // The logic for non-templates is handled in ASTContext::isSameEntity, so we
1030   // don't have to bother checking 'DependsOnEnclosingTemplate' for a
1031   // non-function-template.
1032   assert(FD->getDescribedFunctionTemplate() &&
1033          "Non-function templates don't need to be checked");
1034 
1035   SmallVector<const Expr *, 3> ACs;
1036   FD->getDescribedFunctionTemplate()->getAssociatedConstraints(ACs);
1037 
1038   unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(*this, FD);
1039   for (const Expr *Constraint : ACs)
1040     if (ConstraintExpressionDependsOnEnclosingTemplate(FD, OldTemplateDepth,
1041                                                        Constraint))
1042       return true;
1043 
1044   return false;
1045 }
1046 
1047 bool Sema::EnsureTemplateArgumentListConstraints(
1048     TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists,
1049     SourceRange TemplateIDRange) {
1050   ConstraintSatisfaction Satisfaction;
1051   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
1052   TD->getAssociatedConstraints(AssociatedConstraints);
1053   if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgsLists,
1054                                   TemplateIDRange, Satisfaction))
1055     return true;
1056 
1057   if (!Satisfaction.IsSatisfied) {
1058     SmallString<128> TemplateArgString;
1059     TemplateArgString = " ";
1060     TemplateArgString += getTemplateArgumentBindingsText(
1061         TD->getTemplateParameters(), TemplateArgsLists.getInnermost().data(),
1062         TemplateArgsLists.getInnermost().size());
1063 
1064     Diag(TemplateIDRange.getBegin(),
1065          diag::err_template_arg_list_constraints_not_satisfied)
1066         << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
1067         << TemplateArgString << TemplateIDRange;
1068     DiagnoseUnsatisfiedConstraint(Satisfaction);
1069     return true;
1070   }
1071   return false;
1072 }
1073 
1074 bool Sema::CheckInstantiatedFunctionTemplateConstraints(
1075     SourceLocation PointOfInstantiation, FunctionDecl *Decl,
1076     ArrayRef<TemplateArgument> TemplateArgs,
1077     ConstraintSatisfaction &Satisfaction) {
1078   // In most cases we're not going to have constraints, so check for that first.
1079   FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
1080   // Note - code synthesis context for the constraints check is created
1081   // inside CheckConstraintsSatisfaction.
1082   SmallVector<const Expr *, 3> TemplateAC;
1083   Template->getAssociatedConstraints(TemplateAC);
1084   if (TemplateAC.empty()) {
1085     Satisfaction.IsSatisfied = true;
1086     return false;
1087   }
1088 
1089   // Enter the scope of this instantiation. We don't use
1090   // PushDeclContext because we don't have a scope.
1091   Sema::ContextRAII savedContext(*this, Decl);
1092   LocalInstantiationScope Scope(*this);
1093 
1094   std::optional<MultiLevelTemplateArgumentList> MLTAL =
1095       SetupConstraintCheckingTemplateArgumentsAndScope(Decl, TemplateArgs,
1096                                                        Scope);
1097 
1098   if (!MLTAL)
1099     return true;
1100 
1101   Qualifiers ThisQuals;
1102   CXXRecordDecl *Record = nullptr;
1103   if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
1104     ThisQuals = Method->getMethodQualifiers();
1105     Record = Method->getParent();
1106   }
1107 
1108   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
1109   LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
1110       *this, const_cast<FunctionDecl *>(Decl), *MLTAL, Scope);
1111 
1112   llvm::SmallVector<Expr *, 1> Converted;
1113   return CheckConstraintSatisfaction(Template, TemplateAC, Converted, *MLTAL,
1114                                      PointOfInstantiation, Satisfaction);
1115 }
1116 
1117 static void diagnoseUnsatisfiedRequirement(Sema &S,
1118                                            concepts::ExprRequirement *Req,
1119                                            bool First) {
1120   assert(!Req->isSatisfied()
1121          && "Diagnose() can only be used on an unsatisfied requirement");
1122   switch (Req->getSatisfactionStatus()) {
1123     case concepts::ExprRequirement::SS_Dependent:
1124       llvm_unreachable("Diagnosing a dependent requirement");
1125       break;
1126     case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
1127       auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
1128       if (!SubstDiag->DiagMessage.empty())
1129         S.Diag(SubstDiag->DiagLoc,
1130                diag::note_expr_requirement_expr_substitution_error)
1131                << (int)First << SubstDiag->SubstitutedEntity
1132                << SubstDiag->DiagMessage;
1133       else
1134         S.Diag(SubstDiag->DiagLoc,
1135                diag::note_expr_requirement_expr_unknown_substitution_error)
1136             << (int)First << SubstDiag->SubstitutedEntity;
1137       break;
1138     }
1139     case concepts::ExprRequirement::SS_NoexceptNotMet:
1140       S.Diag(Req->getNoexceptLoc(),
1141              diag::note_expr_requirement_noexcept_not_met)
1142           << (int)First << Req->getExpr();
1143       break;
1144     case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
1145       auto *SubstDiag =
1146           Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
1147       if (!SubstDiag->DiagMessage.empty())
1148         S.Diag(SubstDiag->DiagLoc,
1149                diag::note_expr_requirement_type_requirement_substitution_error)
1150             << (int)First << SubstDiag->SubstitutedEntity
1151             << SubstDiag->DiagMessage;
1152       else
1153         S.Diag(SubstDiag->DiagLoc,
1154                diag::note_expr_requirement_type_requirement_unknown_substitution_error)
1155             << (int)First << SubstDiag->SubstitutedEntity;
1156       break;
1157     }
1158     case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
1159       ConceptSpecializationExpr *ConstraintExpr =
1160           Req->getReturnTypeRequirementSubstitutedConstraintExpr();
1161       if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
1162         // A simple case - expr type is the type being constrained and the concept
1163         // was not provided arguments.
1164         Expr *e = Req->getExpr();
1165         S.Diag(e->getBeginLoc(),
1166                diag::note_expr_requirement_constraints_not_satisfied_simple)
1167             << (int)First << S.Context.getReferenceQualifiedType(e)
1168             << ConstraintExpr->getNamedConcept();
1169       } else {
1170         S.Diag(ConstraintExpr->getBeginLoc(),
1171                diag::note_expr_requirement_constraints_not_satisfied)
1172             << (int)First << ConstraintExpr;
1173       }
1174       S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
1175       break;
1176     }
1177     case concepts::ExprRequirement::SS_Satisfied:
1178       llvm_unreachable("We checked this above");
1179   }
1180 }
1181 
1182 static void diagnoseUnsatisfiedRequirement(Sema &S,
1183                                            concepts::TypeRequirement *Req,
1184                                            bool First) {
1185   assert(!Req->isSatisfied()
1186          && "Diagnose() can only be used on an unsatisfied requirement");
1187   switch (Req->getSatisfactionStatus()) {
1188   case concepts::TypeRequirement::SS_Dependent:
1189     llvm_unreachable("Diagnosing a dependent requirement");
1190     return;
1191   case concepts::TypeRequirement::SS_SubstitutionFailure: {
1192     auto *SubstDiag = Req->getSubstitutionDiagnostic();
1193     if (!SubstDiag->DiagMessage.empty())
1194       S.Diag(SubstDiag->DiagLoc,
1195              diag::note_type_requirement_substitution_error) << (int)First
1196           << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
1197     else
1198       S.Diag(SubstDiag->DiagLoc,
1199              diag::note_type_requirement_unknown_substitution_error)
1200           << (int)First << SubstDiag->SubstitutedEntity;
1201     return;
1202   }
1203   default:
1204     llvm_unreachable("Unknown satisfaction status");
1205     return;
1206   }
1207 }
1208 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
1209                                                         Expr *SubstExpr,
1210                                                         bool First = true);
1211 
1212 static void diagnoseUnsatisfiedRequirement(Sema &S,
1213                                            concepts::NestedRequirement *Req,
1214                                            bool First) {
1215   using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>;
1216   for (auto &Record : Req->getConstraintSatisfaction()) {
1217     if (auto *SubstDiag = Record.dyn_cast<SubstitutionDiagnostic *>())
1218       S.Diag(SubstDiag->first, diag::note_nested_requirement_substitution_error)
1219           << (int)First << Req->getInvalidConstraintEntity()
1220           << SubstDiag->second;
1221     else
1222       diagnoseWellFormedUnsatisfiedConstraintExpr(S, Record.dyn_cast<Expr *>(),
1223                                                   First);
1224     First = false;
1225   }
1226 }
1227 
1228 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
1229                                                         Expr *SubstExpr,
1230                                                         bool First) {
1231   SubstExpr = SubstExpr->IgnoreParenImpCasts();
1232   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
1233     switch (BO->getOpcode()) {
1234     // These two cases will in practice only be reached when using fold
1235     // expressions with || and &&, since otherwise the || and && will have been
1236     // broken down into atomic constraints during satisfaction checking.
1237     case BO_LOr:
1238       // Or evaluated to false - meaning both RHS and LHS evaluated to false.
1239       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
1240       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
1241                                                   /*First=*/false);
1242       return;
1243     case BO_LAnd: {
1244       bool LHSSatisfied =
1245           BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
1246       if (LHSSatisfied) {
1247         // LHS is true, so RHS must be false.
1248         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
1249         return;
1250       }
1251       // LHS is false
1252       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
1253 
1254       // RHS might also be false
1255       bool RHSSatisfied =
1256           BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
1257       if (!RHSSatisfied)
1258         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
1259                                                     /*First=*/false);
1260       return;
1261     }
1262     case BO_GE:
1263     case BO_LE:
1264     case BO_GT:
1265     case BO_LT:
1266     case BO_EQ:
1267     case BO_NE:
1268       if (BO->getLHS()->getType()->isIntegerType() &&
1269           BO->getRHS()->getType()->isIntegerType()) {
1270         Expr::EvalResult SimplifiedLHS;
1271         Expr::EvalResult SimplifiedRHS;
1272         BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
1273                                     Expr::SE_NoSideEffects,
1274                                     /*InConstantContext=*/true);
1275         BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
1276                                     Expr::SE_NoSideEffects,
1277                                     /*InConstantContext=*/true);
1278         if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
1279           S.Diag(SubstExpr->getBeginLoc(),
1280                  diag::note_atomic_constraint_evaluated_to_false_elaborated)
1281               << (int)First << SubstExpr
1282               << toString(SimplifiedLHS.Val.getInt(), 10)
1283               << BinaryOperator::getOpcodeStr(BO->getOpcode())
1284               << toString(SimplifiedRHS.Val.getInt(), 10);
1285           return;
1286         }
1287       }
1288       break;
1289 
1290     default:
1291       break;
1292     }
1293   } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
1294     if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
1295       S.Diag(
1296           CSE->getSourceRange().getBegin(),
1297           diag::
1298           note_single_arg_concept_specialization_constraint_evaluated_to_false)
1299           << (int)First
1300           << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
1301           << CSE->getNamedConcept();
1302     } else {
1303       S.Diag(SubstExpr->getSourceRange().getBegin(),
1304              diag::note_concept_specialization_constraint_evaluated_to_false)
1305           << (int)First << CSE;
1306     }
1307     S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
1308     return;
1309   } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
1310     // FIXME: RequiresExpr should store dependent diagnostics.
1311     for (concepts::Requirement *Req : RE->getRequirements())
1312       if (!Req->isDependent() && !Req->isSatisfied()) {
1313         if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
1314           diagnoseUnsatisfiedRequirement(S, E, First);
1315         else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
1316           diagnoseUnsatisfiedRequirement(S, T, First);
1317         else
1318           diagnoseUnsatisfiedRequirement(
1319               S, cast<concepts::NestedRequirement>(Req), First);
1320         break;
1321       }
1322     return;
1323   } else if (auto *TTE = dyn_cast<TypeTraitExpr>(SubstExpr);
1324              TTE && TTE->getTrait() == clang::TypeTrait::BTT_IsDeducible) {
1325     assert(TTE->getNumArgs() == 2);
1326     S.Diag(SubstExpr->getSourceRange().getBegin(),
1327            diag::note_is_deducible_constraint_evaluated_to_false)
1328         << TTE->getArg(0)->getType() << TTE->getArg(1)->getType();
1329     return;
1330   }
1331 
1332   S.Diag(SubstExpr->getSourceRange().getBegin(),
1333          diag::note_atomic_constraint_evaluated_to_false)
1334       << (int)First << SubstExpr;
1335 }
1336 
1337 template <typename SubstitutionDiagnostic>
1338 static void diagnoseUnsatisfiedConstraintExpr(
1339     Sema &S, const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
1340     bool First = true) {
1341   if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()) {
1342     S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
1343         << Diag->second;
1344     return;
1345   }
1346 
1347   diagnoseWellFormedUnsatisfiedConstraintExpr(S,
1348       Record.template get<Expr *>(), First);
1349 }
1350 
1351 void
1352 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
1353                                     bool First) {
1354   assert(!Satisfaction.IsSatisfied &&
1355          "Attempted to diagnose a satisfied constraint");
1356   for (auto &Record : Satisfaction.Details) {
1357     diagnoseUnsatisfiedConstraintExpr(*this, Record, First);
1358     First = false;
1359   }
1360 }
1361 
1362 void Sema::DiagnoseUnsatisfiedConstraint(
1363     const ASTConstraintSatisfaction &Satisfaction,
1364     bool First) {
1365   assert(!Satisfaction.IsSatisfied &&
1366          "Attempted to diagnose a satisfied constraint");
1367   for (auto &Record : Satisfaction) {
1368     diagnoseUnsatisfiedConstraintExpr(*this, Record, First);
1369     First = false;
1370   }
1371 }
1372 
1373 const NormalizedConstraint *
1374 Sema::getNormalizedAssociatedConstraints(
1375     NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
1376   // In case the ConstrainedDecl comes from modules, it is necessary to use
1377   // the canonical decl to avoid different atomic constraints with the 'same'
1378   // declarations.
1379   ConstrainedDecl = cast<NamedDecl>(ConstrainedDecl->getCanonicalDecl());
1380 
1381   auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
1382   if (CacheEntry == NormalizationCache.end()) {
1383     auto Normalized =
1384         NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
1385                                                   AssociatedConstraints);
1386     CacheEntry =
1387         NormalizationCache
1388             .try_emplace(ConstrainedDecl,
1389                          Normalized
1390                              ? new (Context) NormalizedConstraint(
1391                                  std::move(*Normalized))
1392                              : nullptr)
1393             .first;
1394   }
1395   return CacheEntry->second;
1396 }
1397 
1398 const NormalizedConstraint *clang::getNormalizedAssociatedConstraints(
1399     Sema &S, NamedDecl *ConstrainedDecl,
1400     ArrayRef<const Expr *> AssociatedConstraints) {
1401   return S.getNormalizedAssociatedConstraints(ConstrainedDecl,
1402                                               AssociatedConstraints);
1403 }
1404 
1405 static bool
1406 substituteParameterMappings(Sema &S, NormalizedConstraint &N,
1407                             ConceptDecl *Concept,
1408                             const MultiLevelTemplateArgumentList &MLTAL,
1409                             const ASTTemplateArgumentListInfo *ArgsAsWritten) {
1410 
1411   if (N.isCompound()) {
1412     if (substituteParameterMappings(S, N.getLHS(), Concept, MLTAL,
1413                                     ArgsAsWritten))
1414       return true;
1415     return substituteParameterMappings(S, N.getRHS(), Concept, MLTAL,
1416                                        ArgsAsWritten);
1417   }
1418 
1419   if (N.isFoldExpanded()) {
1420     Sema::ArgumentPackSubstitutionIndexRAII _(S, -1);
1421     return substituteParameterMappings(
1422         S, N.getFoldExpandedConstraint()->Constraint, Concept, MLTAL,
1423         ArgsAsWritten);
1424   }
1425 
1426   TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
1427 
1428   AtomicConstraint &Atomic = *N.getAtomicConstraint();
1429   TemplateArgumentListInfo SubstArgs;
1430   if (!Atomic.ParameterMapping) {
1431     llvm::SmallBitVector OccurringIndices(TemplateParams->size());
1432     S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
1433                                  /*Depth=*/0, OccurringIndices);
1434     TemplateArgumentLoc *TempArgs =
1435         new (S.Context) TemplateArgumentLoc[OccurringIndices.count()];
1436     for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
1437       if (OccurringIndices[I])
1438         new (&(TempArgs)[J++])
1439             TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc(
1440                 TemplateParams->begin()[I],
1441                 // Here we assume we do not support things like
1442                 // template<typename A, typename B>
1443                 // concept C = ...;
1444                 //
1445                 // template<typename... Ts> requires C<Ts...>
1446                 // struct S { };
1447                 // The above currently yields a diagnostic.
1448                 // We still might have default arguments for concept parameters.
1449                 ArgsAsWritten->NumTemplateArgs > I
1450                     ? ArgsAsWritten->arguments()[I].getLocation()
1451                     : SourceLocation()));
1452     Atomic.ParameterMapping.emplace(TempArgs,  OccurringIndices.count());
1453   }
1454   SourceLocation InstLocBegin =
1455       ArgsAsWritten->arguments().empty()
1456           ? ArgsAsWritten->getLAngleLoc()
1457           : ArgsAsWritten->arguments().front().getSourceRange().getBegin();
1458   SourceLocation InstLocEnd =
1459       ArgsAsWritten->arguments().empty()
1460           ? ArgsAsWritten->getRAngleLoc()
1461           : ArgsAsWritten->arguments().front().getSourceRange().getEnd();
1462   Sema::InstantiatingTemplate Inst(
1463       S, InstLocBegin,
1464       Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
1465       {InstLocBegin, InstLocEnd});
1466   if (Inst.isInvalid())
1467     return true;
1468   if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
1469     return true;
1470 
1471   TemplateArgumentLoc *TempArgs =
1472       new (S.Context) TemplateArgumentLoc[SubstArgs.size()];
1473   std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
1474             TempArgs);
1475   Atomic.ParameterMapping.emplace(TempArgs, SubstArgs.size());
1476   return false;
1477 }
1478 
1479 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
1480                                         const ConceptSpecializationExpr *CSE) {
1481   MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs(
1482       CSE->getNamedConcept(), CSE->getNamedConcept()->getLexicalDeclContext(),
1483       /*Final=*/false, CSE->getTemplateArguments(),
1484       /*RelativeToPrimary=*/true,
1485       /*Pattern=*/nullptr,
1486       /*ForConstraintInstantiation=*/true);
1487 
1488   return substituteParameterMappings(S, N, CSE->getNamedConcept(), MLTAL,
1489                                      CSE->getTemplateArgsAsWritten());
1490 }
1491 
1492 NormalizedConstraint::NormalizedConstraint(ASTContext &C,
1493                                            NormalizedConstraint LHS,
1494                                            NormalizedConstraint RHS,
1495                                            CompoundConstraintKind Kind)
1496     : Constraint{CompoundConstraint{
1497           new(C) NormalizedConstraintPair{std::move(LHS), std::move(RHS)},
1498           Kind}} {}
1499 
1500 NormalizedConstraint::NormalizedConstraint(ASTContext &C,
1501                                            const NormalizedConstraint &Other) {
1502   if (Other.isAtomic()) {
1503     Constraint = new (C) AtomicConstraint(*Other.getAtomicConstraint());
1504   } else if (Other.isFoldExpanded()) {
1505     Constraint = new (C) FoldExpandedConstraint(
1506         Other.getFoldExpandedConstraint()->Kind,
1507         NormalizedConstraint(C, Other.getFoldExpandedConstraint()->Constraint),
1508         Other.getFoldExpandedConstraint()->Pattern);
1509   } else {
1510     Constraint = CompoundConstraint(
1511         new (C)
1512             NormalizedConstraintPair{NormalizedConstraint(C, Other.getLHS()),
1513                                      NormalizedConstraint(C, Other.getRHS())},
1514         Other.getCompoundKind());
1515   }
1516 }
1517 
1518 NormalizedConstraint &NormalizedConstraint::getLHS() const {
1519   assert(isCompound() && "getLHS called on a non-compound constraint.");
1520   return Constraint.get<CompoundConstraint>().getPointer()->LHS;
1521 }
1522 
1523 NormalizedConstraint &NormalizedConstraint::getRHS() const {
1524   assert(isCompound() && "getRHS called on a non-compound constraint.");
1525   return Constraint.get<CompoundConstraint>().getPointer()->RHS;
1526 }
1527 
1528 std::optional<NormalizedConstraint>
1529 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
1530                                           ArrayRef<const Expr *> E) {
1531   assert(E.size() != 0);
1532   auto Conjunction = fromConstraintExpr(S, D, E[0]);
1533   if (!Conjunction)
1534     return std::nullopt;
1535   for (unsigned I = 1; I < E.size(); ++I) {
1536     auto Next = fromConstraintExpr(S, D, E[I]);
1537     if (!Next)
1538       return std::nullopt;
1539     *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
1540                                         std::move(*Next), CCK_Conjunction);
1541   }
1542   return Conjunction;
1543 }
1544 
1545 std::optional<NormalizedConstraint>
1546 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
1547   assert(E != nullptr);
1548 
1549   // C++ [temp.constr.normal]p1.1
1550   // [...]
1551   // - The normal form of an expression (E) is the normal form of E.
1552   // [...]
1553   E = E->IgnoreParenImpCasts();
1554 
1555   // C++2a [temp.param]p4:
1556   //     [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1557   // Fold expression is considered atomic constraints per current wording.
1558   // See http://cplusplus.github.io/concepts-ts/ts-active.html#28
1559 
1560   if (LogicalBinOp BO = E) {
1561     auto LHS = fromConstraintExpr(S, D, BO.getLHS());
1562     if (!LHS)
1563       return std::nullopt;
1564     auto RHS = fromConstraintExpr(S, D, BO.getRHS());
1565     if (!RHS)
1566       return std::nullopt;
1567 
1568     return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
1569                                 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
1570   } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
1571     const NormalizedConstraint *SubNF;
1572     {
1573       Sema::InstantiatingTemplate Inst(
1574           S, CSE->getExprLoc(),
1575           Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
1576           CSE->getSourceRange());
1577       if (Inst.isInvalid())
1578         return std::nullopt;
1579       // C++ [temp.constr.normal]p1.1
1580       // [...]
1581       // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
1582       // where C names a concept, is the normal form of the
1583       // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
1584       // respective template parameters in the parameter mappings in each atomic
1585       // constraint. If any such substitution results in an invalid type or
1586       // expression, the program is ill-formed; no diagnostic is required.
1587       // [...]
1588       ConceptDecl *CD = CSE->getNamedConcept();
1589       SubNF = S.getNormalizedAssociatedConstraints(CD,
1590                                                    {CD->getConstraintExpr()});
1591       if (!SubNF)
1592         return std::nullopt;
1593     }
1594 
1595     std::optional<NormalizedConstraint> New;
1596     New.emplace(S.Context, *SubNF);
1597 
1598     if (substituteParameterMappings(S, *New, CSE))
1599       return std::nullopt;
1600 
1601     return New;
1602   } else if (auto *FE = dyn_cast<const CXXFoldExpr>(E);
1603              FE && S.getLangOpts().CPlusPlus26 &&
1604              (FE->getOperator() == BinaryOperatorKind::BO_LAnd ||
1605               FE->getOperator() == BinaryOperatorKind::BO_LOr)) {
1606 
1607     // Normalize fold expressions in C++26.
1608 
1609     FoldExpandedConstraint::FoldOperatorKind Kind =
1610         FE->getOperator() == BinaryOperatorKind::BO_LAnd
1611             ? FoldExpandedConstraint::FoldOperatorKind::And
1612             : FoldExpandedConstraint::FoldOperatorKind::Or;
1613 
1614     if (FE->getInit()) {
1615       auto LHS = fromConstraintExpr(S, D, FE->getLHS());
1616       auto RHS = fromConstraintExpr(S, D, FE->getRHS());
1617       if (!LHS || !RHS)
1618         return std::nullopt;
1619 
1620       if (FE->isRightFold())
1621         RHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1622             Kind, std::move(*RHS), FE->getPattern()}};
1623       else
1624         LHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1625             Kind, std::move(*LHS), FE->getPattern()}};
1626 
1627       return NormalizedConstraint(
1628           S.Context, std::move(*LHS), std::move(*RHS),
1629           FE->getOperator() == BinaryOperatorKind::BO_LAnd ? CCK_Conjunction
1630                                                            : CCK_Disjunction);
1631     }
1632     auto Sub = fromConstraintExpr(S, D, FE->getPattern());
1633     if (!Sub)
1634       return std::nullopt;
1635     return NormalizedConstraint{new (S.Context) FoldExpandedConstraint{
1636         Kind, std::move(*Sub), FE->getPattern()}};
1637   }
1638 
1639   return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
1640 }
1641 
1642 bool FoldExpandedConstraint::AreCompatibleForSubsumption(
1643     const FoldExpandedConstraint &A, const FoldExpandedConstraint &B) {
1644 
1645   // [C++26] [temp.constr.fold]
1646   // Two fold expanded constraints are compatible for subsumption
1647   // if their respective constraints both contain an equivalent unexpanded pack.
1648 
1649   llvm::SmallVector<UnexpandedParameterPack> APacks, BPacks;
1650   Sema::collectUnexpandedParameterPacks(const_cast<Expr *>(A.Pattern), APacks);
1651   Sema::collectUnexpandedParameterPacks(const_cast<Expr *>(B.Pattern), BPacks);
1652 
1653   for (const UnexpandedParameterPack &APack : APacks) {
1654     std::pair<unsigned, unsigned> DepthAndIndex = getDepthAndIndex(APack);
1655     auto it = llvm::find_if(BPacks, [&](const UnexpandedParameterPack &BPack) {
1656       return getDepthAndIndex(BPack) == DepthAndIndex;
1657     });
1658     if (it != BPacks.end())
1659       return true;
1660   }
1661   return false;
1662 }
1663 
1664 NormalForm clang::makeCNF(const NormalizedConstraint &Normalized) {
1665   if (Normalized.isAtomic())
1666     return {{Normalized.getAtomicConstraint()}};
1667 
1668   else if (Normalized.isFoldExpanded())
1669     return {{Normalized.getFoldExpandedConstraint()}};
1670 
1671   NormalForm LCNF = makeCNF(Normalized.getLHS());
1672   NormalForm RCNF = makeCNF(Normalized.getRHS());
1673   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
1674     LCNF.reserve(LCNF.size() + RCNF.size());
1675     while (!RCNF.empty())
1676       LCNF.push_back(RCNF.pop_back_val());
1677     return LCNF;
1678   }
1679 
1680   // Disjunction
1681   NormalForm Res;
1682   Res.reserve(LCNF.size() * RCNF.size());
1683   for (auto &LDisjunction : LCNF)
1684     for (auto &RDisjunction : RCNF) {
1685       NormalForm::value_type Combined;
1686       Combined.reserve(LDisjunction.size() + RDisjunction.size());
1687       std::copy(LDisjunction.begin(), LDisjunction.end(),
1688                 std::back_inserter(Combined));
1689       std::copy(RDisjunction.begin(), RDisjunction.end(),
1690                 std::back_inserter(Combined));
1691       Res.emplace_back(Combined);
1692     }
1693   return Res;
1694 }
1695 
1696 NormalForm clang::makeDNF(const NormalizedConstraint &Normalized) {
1697   if (Normalized.isAtomic())
1698     return {{Normalized.getAtomicConstraint()}};
1699 
1700   else if (Normalized.isFoldExpanded())
1701     return {{Normalized.getFoldExpandedConstraint()}};
1702 
1703   NormalForm LDNF = makeDNF(Normalized.getLHS());
1704   NormalForm RDNF = makeDNF(Normalized.getRHS());
1705   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
1706     LDNF.reserve(LDNF.size() + RDNF.size());
1707     while (!RDNF.empty())
1708       LDNF.push_back(RDNF.pop_back_val());
1709     return LDNF;
1710   }
1711 
1712   // Conjunction
1713   NormalForm Res;
1714   Res.reserve(LDNF.size() * RDNF.size());
1715   for (auto &LConjunction : LDNF) {
1716     for (auto &RConjunction : RDNF) {
1717       NormalForm::value_type Combined;
1718       Combined.reserve(LConjunction.size() + RConjunction.size());
1719       std::copy(LConjunction.begin(), LConjunction.end(),
1720                 std::back_inserter(Combined));
1721       std::copy(RConjunction.begin(), RConjunction.end(),
1722                 std::back_inserter(Combined));
1723       Res.emplace_back(Combined);
1724     }
1725   }
1726   return Res;
1727 }
1728 
1729 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1,
1730                                   MutableArrayRef<const Expr *> AC1,
1731                                   NamedDecl *D2,
1732                                   MutableArrayRef<const Expr *> AC2,
1733                                   bool &Result) {
1734   if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) {
1735     auto IsExpectedEntity = [](const FunctionDecl *FD) {
1736       FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind();
1737       return Kind == FunctionDecl::TK_NonTemplate ||
1738              Kind == FunctionDecl::TK_FunctionTemplate;
1739     };
1740     const auto *FD2 = dyn_cast<FunctionDecl>(D2);
1741     (void)IsExpectedEntity;
1742     (void)FD1;
1743     (void)FD2;
1744     assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) &&
1745            "use non-instantiated function declaration for constraints partial "
1746            "ordering");
1747   }
1748 
1749   if (AC1.empty()) {
1750     Result = AC2.empty();
1751     return false;
1752   }
1753   if (AC2.empty()) {
1754     // TD1 has associated constraints and TD2 does not.
1755     Result = true;
1756     return false;
1757   }
1758 
1759   std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
1760   auto CacheEntry = SubsumptionCache.find(Key);
1761   if (CacheEntry != SubsumptionCache.end()) {
1762     Result = CacheEntry->second;
1763     return false;
1764   }
1765 
1766   unsigned Depth1 = CalculateTemplateDepthForConstraints(*this, D1, true);
1767   unsigned Depth2 = CalculateTemplateDepthForConstraints(*this, D2, true);
1768 
1769   for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) {
1770     if (Depth2 > Depth1) {
1771       AC1[I] = AdjustConstraintDepth(*this, Depth2 - Depth1)
1772                    .TransformExpr(const_cast<Expr *>(AC1[I]))
1773                    .get();
1774     } else if (Depth1 > Depth2) {
1775       AC2[I] = AdjustConstraintDepth(*this, Depth1 - Depth2)
1776                    .TransformExpr(const_cast<Expr *>(AC2[I]))
1777                    .get();
1778     }
1779   }
1780 
1781   if (clang::subsumes(
1782           *this, D1, AC1, D2, AC2, Result,
1783           [this](const AtomicConstraint &A, const AtomicConstraint &B) {
1784             return A.subsumes(Context, B);
1785           }))
1786     return true;
1787   SubsumptionCache.try_emplace(Key, Result);
1788   return false;
1789 }
1790 
1791 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
1792     ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
1793   if (isSFINAEContext())
1794     // No need to work here because our notes would be discarded.
1795     return false;
1796 
1797   if (AC1.empty() || AC2.empty())
1798     return false;
1799 
1800   auto NormalExprEvaluator =
1801       [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
1802         return A.subsumes(Context, B);
1803       };
1804 
1805   const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
1806   auto IdenticalExprEvaluator =
1807       [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
1808         if (!A.hasMatchingParameterMapping(Context, B))
1809           return false;
1810         const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
1811         if (EA == EB)
1812           return true;
1813 
1814         // Not the same source level expression - are the expressions
1815         // identical?
1816         llvm::FoldingSetNodeID IDA, IDB;
1817         EA->Profile(IDA, Context, /*Canonical=*/true);
1818         EB->Profile(IDB, Context, /*Canonical=*/true);
1819         if (IDA != IDB)
1820           return false;
1821 
1822         AmbiguousAtomic1 = EA;
1823         AmbiguousAtomic2 = EB;
1824         return true;
1825       };
1826 
1827   {
1828     // The subsumption checks might cause diagnostics
1829     SFINAETrap Trap(*this);
1830     auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
1831     if (!Normalized1)
1832       return false;
1833     const NormalForm DNF1 = makeDNF(*Normalized1);
1834     const NormalForm CNF1 = makeCNF(*Normalized1);
1835 
1836     auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
1837     if (!Normalized2)
1838       return false;
1839     const NormalForm DNF2 = makeDNF(*Normalized2);
1840     const NormalForm CNF2 = makeCNF(*Normalized2);
1841 
1842     bool Is1AtLeastAs2Normally =
1843         clang::subsumes(DNF1, CNF2, NormalExprEvaluator);
1844     bool Is2AtLeastAs1Normally =
1845         clang::subsumes(DNF2, CNF1, NormalExprEvaluator);
1846     bool Is1AtLeastAs2 = clang::subsumes(DNF1, CNF2, IdenticalExprEvaluator);
1847     bool Is2AtLeastAs1 = clang::subsumes(DNF2, CNF1, IdenticalExprEvaluator);
1848     if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
1849         Is2AtLeastAs1 == Is2AtLeastAs1Normally)
1850       // Same result - no ambiguity was caused by identical atomic expressions.
1851       return false;
1852   }
1853 
1854   // A different result! Some ambiguous atomic constraint(s) caused a difference
1855   assert(AmbiguousAtomic1 && AmbiguousAtomic2);
1856 
1857   Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
1858       << AmbiguousAtomic1->getSourceRange();
1859   Diag(AmbiguousAtomic2->getBeginLoc(),
1860        diag::note_ambiguous_atomic_constraints_similar_expression)
1861       << AmbiguousAtomic2->getSourceRange();
1862   return true;
1863 }
1864 
1865 concepts::ExprRequirement::ExprRequirement(
1866     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
1867     ReturnTypeRequirement Req, SatisfactionStatus Status,
1868     ConceptSpecializationExpr *SubstitutedConstraintExpr) :
1869     Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
1870                 Status == SS_Dependent &&
1871                 (E->containsUnexpandedParameterPack() ||
1872                  Req.containsUnexpandedParameterPack()),
1873                 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
1874     TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
1875     Status(Status) {
1876   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1877          "Simple requirement must not have a return type requirement or a "
1878          "noexcept specification");
1879   assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
1880          (SubstitutedConstraintExpr != nullptr));
1881 }
1882 
1883 concepts::ExprRequirement::ExprRequirement(
1884     SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
1885     SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
1886     Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
1887                 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
1888     Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
1889     Status(SS_ExprSubstitutionFailure) {
1890   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1891          "Simple requirement must not have a return type requirement or a "
1892          "noexcept specification");
1893 }
1894 
1895 concepts::ExprRequirement::ReturnTypeRequirement::
1896 ReturnTypeRequirement(TemplateParameterList *TPL) :
1897     TypeConstraintInfo(TPL, false) {
1898   assert(TPL->size() == 1);
1899   const TypeConstraint *TC =
1900       cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
1901   assert(TC &&
1902          "TPL must have a template type parameter with a type constraint");
1903   auto *Constraint =
1904       cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
1905   bool Dependent =
1906       Constraint->getTemplateArgsAsWritten() &&
1907       TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
1908           Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
1909   TypeConstraintInfo.setInt(Dependent ? true : false);
1910 }
1911 
1912 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
1913     Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
1914                 T->getType()->containsUnexpandedParameterPack(),
1915                 // We reach this ctor with either dependent types (in which
1916                 // IsSatisfied doesn't matter) or with non-dependent type in
1917                 // which the existence of the type indicates satisfaction.
1918                 /*IsSatisfied=*/true),
1919     Value(T),
1920     Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
1921                                                         : SS_Satisfied) {}
1922