xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaConcept.cpp (revision 5956d97f4b3204318ceb6aa9c77bd0bc6ea87a41)
1 //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for C++ constraints and concepts.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Sema/SemaConcept.h"
14 #include "clang/Sema/Sema.h"
15 #include "clang/Sema/SemaInternal.h"
16 #include "clang/Sema/SemaDiagnostic.h"
17 #include "clang/Sema/TemplateDeduction.h"
18 #include "clang/Sema/Template.h"
19 #include "clang/Sema/Overload.h"
20 #include "clang/Sema/Initialization.h"
21 #include "clang/AST/ExprConcepts.h"
22 #include "clang/AST/RecursiveASTVisitor.h"
23 #include "clang/Basic/OperatorPrecedence.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/PointerUnion.h"
26 #include "llvm/ADT/StringExtras.h"
27 
28 using namespace clang;
29 using namespace sema;
30 
31 namespace {
32 class LogicalBinOp {
33   OverloadedOperatorKind Op = OO_None;
34   const Expr *LHS = nullptr;
35   const Expr *RHS = nullptr;
36 
37 public:
38   LogicalBinOp(const Expr *E) {
39     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
40       Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
41       LHS = BO->getLHS();
42       RHS = BO->getRHS();
43     } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
44       // If OO is not || or && it might not have exactly 2 arguments.
45       if (OO->getNumArgs() == 2) {
46         Op = OO->getOperator();
47         LHS = OO->getArg(0);
48         RHS = OO->getArg(1);
49       }
50     }
51   }
52 
53   bool isAnd() const { return Op == OO_AmpAmp; }
54   bool isOr() const { return Op == OO_PipePipe; }
55   explicit operator bool() const { return isAnd() || isOr(); }
56 
57   const Expr *getLHS() const { return LHS; }
58   const Expr *getRHS() const { return RHS; }
59 };
60 }
61 
62 bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
63                                      Token NextToken, bool *PossibleNonPrimary,
64                                      bool IsTrailingRequiresClause) {
65   // C++2a [temp.constr.atomic]p1
66   // ..E shall be a constant expression of type bool.
67 
68   ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
69 
70   if (LogicalBinOp BO = ConstraintExpression) {
71     return CheckConstraintExpression(BO.getLHS(), NextToken,
72                                      PossibleNonPrimary) &&
73            CheckConstraintExpression(BO.getRHS(), NextToken,
74                                      PossibleNonPrimary);
75   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
76     return CheckConstraintExpression(C->getSubExpr(), NextToken,
77                                      PossibleNonPrimary);
78 
79   QualType Type = ConstraintExpression->getType();
80 
81   auto CheckForNonPrimary = [&] {
82     if (PossibleNonPrimary)
83       *PossibleNonPrimary =
84           // We have the following case:
85           // template<typename> requires func(0) struct S { };
86           // The user probably isn't aware of the parentheses required around
87           // the function call, and we're only going to parse 'func' as the
88           // primary-expression, and complain that it is of non-bool type.
89           (NextToken.is(tok::l_paren) &&
90            (IsTrailingRequiresClause ||
91             (Type->isDependentType() &&
92              isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
93             Type->isFunctionType() ||
94             Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
95           // We have the following case:
96           // template<typename T> requires size_<T> == 0 struct S { };
97           // The user probably isn't aware of the parentheses required around
98           // the binary operator, and we're only going to parse 'func' as the
99           // first operand, and complain that it is of non-bool type.
100           getBinOpPrecedence(NextToken.getKind(),
101                              /*GreaterThanIsOperator=*/true,
102                              getLangOpts().CPlusPlus11) > prec::LogicalAnd;
103   };
104 
105   // An atomic constraint!
106   if (ConstraintExpression->isTypeDependent()) {
107     CheckForNonPrimary();
108     return true;
109   }
110 
111   if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
112     Diag(ConstraintExpression->getExprLoc(),
113          diag::err_non_bool_atomic_constraint) << Type
114         << ConstraintExpression->getSourceRange();
115     CheckForNonPrimary();
116     return false;
117   }
118 
119   if (PossibleNonPrimary)
120       *PossibleNonPrimary = false;
121   return true;
122 }
123 
124 template <typename AtomicEvaluator>
125 static bool
126 calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
127                                 ConstraintSatisfaction &Satisfaction,
128                                 AtomicEvaluator &&Evaluator) {
129   ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
130 
131   if (LogicalBinOp BO = ConstraintExpr) {
132     if (calculateConstraintSatisfaction(S, BO.getLHS(), Satisfaction,
133                                         Evaluator))
134       return true;
135 
136     bool IsLHSSatisfied = Satisfaction.IsSatisfied;
137 
138     if (BO.isOr() && IsLHSSatisfied)
139       // [temp.constr.op] p3
140       //    A disjunction is a constraint taking two operands. To determine if
141       //    a disjunction is satisfied, the satisfaction of the first operand
142       //    is checked. If that is satisfied, the disjunction is satisfied.
143       //    Otherwise, the disjunction is satisfied if and only if the second
144       //    operand is satisfied.
145       return false;
146 
147     if (BO.isAnd() && !IsLHSSatisfied)
148       // [temp.constr.op] p2
149       //    A conjunction is a constraint taking two operands. To determine if
150       //    a conjunction is satisfied, the satisfaction of the first operand
151       //    is checked. If that is not satisfied, the conjunction is not
152       //    satisfied. Otherwise, the conjunction is satisfied if and only if
153       //    the second operand is satisfied.
154       return false;
155 
156     return calculateConstraintSatisfaction(
157         S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
158   } else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
159     return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
160         std::forward<AtomicEvaluator>(Evaluator));
161   }
162 
163   // An atomic constraint expression
164   ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
165 
166   if (SubstitutedAtomicExpr.isInvalid())
167     return true;
168 
169   if (!SubstitutedAtomicExpr.isUsable())
170     // Evaluator has decided satisfaction without yielding an expression.
171     return false;
172 
173   EnterExpressionEvaluationContext ConstantEvaluated(
174       S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
175   SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
176   Expr::EvalResult EvalResult;
177   EvalResult.Diag = &EvaluationDiags;
178   if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(EvalResult,
179                                                            S.Context) ||
180       !EvaluationDiags.empty()) {
181     // C++2a [temp.constr.atomic]p1
182     //   ...E shall be a constant expression of type bool.
183     S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
184            diag::err_non_constant_constraint_expression)
185         << SubstitutedAtomicExpr.get()->getSourceRange();
186     for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
187       S.Diag(PDiag.first, PDiag.second);
188     return true;
189   }
190 
191   assert(EvalResult.Val.isInt() &&
192          "evaluating bool expression didn't produce int");
193   Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
194   if (!Satisfaction.IsSatisfied)
195     Satisfaction.Details.emplace_back(ConstraintExpr,
196                                       SubstitutedAtomicExpr.get());
197 
198   return false;
199 }
200 
201 static bool calculateConstraintSatisfaction(
202     Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
203     SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
204     const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
205   return calculateConstraintSatisfaction(
206       S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
207         EnterExpressionEvaluationContext ConstantEvaluated(
208             S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
209 
210         // Atomic constraint - substitute arguments and check satisfaction.
211         ExprResult SubstitutedExpression;
212         {
213           TemplateDeductionInfo Info(TemplateNameLoc);
214           Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
215               Sema::InstantiatingTemplate::ConstraintSubstitution{},
216               const_cast<NamedDecl *>(Template), Info,
217               AtomicExpr->getSourceRange());
218           if (Inst.isInvalid())
219             return ExprError();
220           // We do not want error diagnostics escaping here.
221           Sema::SFINAETrap Trap(S);
222           SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
223                                               MLTAL);
224           // Substitution might have stripped off a contextual conversion to
225           // bool if this is the operand of an '&&' or '||'. For example, we
226           // might lose an lvalue-to-rvalue conversion here. If so, put it back
227           // before we try to evaluate.
228           if (!SubstitutedExpression.isInvalid())
229             SubstitutedExpression =
230                 S.PerformContextuallyConvertToBool(SubstitutedExpression.get());
231           if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
232             // C++2a [temp.constr.atomic]p1
233             //   ...If substitution results in an invalid type or expression, the
234             //   constraint is not satisfied.
235             if (!Trap.hasErrorOccurred())
236               // A non-SFINAE error has occurred as a result of this
237               // substitution.
238               return ExprError();
239 
240             PartialDiagnosticAt SubstDiag{SourceLocation(),
241                                           PartialDiagnostic::NullDiagnostic()};
242             Info.takeSFINAEDiagnostic(SubstDiag);
243             // FIXME: Concepts: This is an unfortunate consequence of there
244             //  being no serialization code for PartialDiagnostics and the fact
245             //  that serializing them would likely take a lot more storage than
246             //  just storing them as strings. We would still like, in the
247             //  future, to serialize the proper PartialDiagnostic as serializing
248             //  it as a string defeats the purpose of the diagnostic mechanism.
249             SmallString<128> DiagString;
250             DiagString = ": ";
251             SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
252             unsigned MessageSize = DiagString.size();
253             char *Mem = new (S.Context) char[MessageSize];
254             memcpy(Mem, DiagString.c_str(), MessageSize);
255             Satisfaction.Details.emplace_back(
256                 AtomicExpr,
257                 new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
258                         SubstDiag.first, StringRef(Mem, MessageSize)});
259             Satisfaction.IsSatisfied = false;
260             return ExprEmpty();
261           }
262         }
263 
264         if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
265           return ExprError();
266 
267         return SubstitutedExpression;
268       });
269 }
270 
271 static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template,
272                                         ArrayRef<const Expr *> ConstraintExprs,
273                                         ArrayRef<TemplateArgument> TemplateArgs,
274                                         SourceRange TemplateIDRange,
275                                         ConstraintSatisfaction &Satisfaction) {
276   if (ConstraintExprs.empty()) {
277     Satisfaction.IsSatisfied = true;
278     return false;
279   }
280 
281   for (auto& Arg : TemplateArgs)
282     if (Arg.isInstantiationDependent()) {
283       // No need to check satisfaction for dependent constraint expressions.
284       Satisfaction.IsSatisfied = true;
285       return false;
286     }
287 
288   Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
289       Sema::InstantiatingTemplate::ConstraintsCheck{},
290       const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
291   if (Inst.isInvalid())
292     return true;
293 
294   MultiLevelTemplateArgumentList MLTAL;
295   MLTAL.addOuterTemplateArguments(TemplateArgs);
296 
297   for (const Expr *ConstraintExpr : ConstraintExprs) {
298     if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
299                                         TemplateIDRange.getBegin(), MLTAL,
300                                         ConstraintExpr, Satisfaction))
301       return true;
302     if (!Satisfaction.IsSatisfied)
303       // [temp.constr.op] p2
304       //   [...] To determine if a conjunction is satisfied, the satisfaction
305       //   of the first operand is checked. If that is not satisfied, the
306       //   conjunction is not satisfied. [...]
307       return false;
308   }
309   return false;
310 }
311 
312 bool Sema::CheckConstraintSatisfaction(
313     const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
314     ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange,
315     ConstraintSatisfaction &OutSatisfaction) {
316   if (ConstraintExprs.empty()) {
317     OutSatisfaction.IsSatisfied = true;
318     return false;
319   }
320 
321   llvm::FoldingSetNodeID ID;
322   void *InsertPos;
323   ConstraintSatisfaction *Satisfaction = nullptr;
324   bool ShouldCache = LangOpts.ConceptSatisfactionCaching && Template;
325   if (ShouldCache) {
326     ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs);
327     Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos);
328     if (Satisfaction) {
329       OutSatisfaction = *Satisfaction;
330       return false;
331     }
332     Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs);
333   } else {
334     Satisfaction = &OutSatisfaction;
335   }
336   if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
337                                     TemplateArgs, TemplateIDRange,
338                                     *Satisfaction)) {
339     if (ShouldCache)
340       delete Satisfaction;
341     return true;
342   }
343 
344   if (ShouldCache) {
345     // We cannot use InsertNode here because CheckConstraintSatisfaction might
346     // have invalidated it.
347     SatisfactionCache.InsertNode(Satisfaction);
348     OutSatisfaction = *Satisfaction;
349   }
350   return false;
351 }
352 
353 bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
354                                        ConstraintSatisfaction &Satisfaction) {
355   return calculateConstraintSatisfaction(
356       *this, ConstraintExpr, Satisfaction,
357       [](const Expr *AtomicExpr) -> ExprResult {
358         return ExprResult(const_cast<Expr *>(AtomicExpr));
359       });
360 }
361 
362 bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
363                                     ConstraintSatisfaction &Satisfaction,
364                                     SourceLocation UsageLoc) {
365   const Expr *RC = FD->getTrailingRequiresClause();
366   if (RC->isInstantiationDependent()) {
367     Satisfaction.IsSatisfied = true;
368     return false;
369   }
370   Qualifiers ThisQuals;
371   CXXRecordDecl *Record = nullptr;
372   if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
373     ThisQuals = Method->getMethodQualifiers();
374     Record = const_cast<CXXRecordDecl *>(Method->getParent());
375   }
376   CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
377   // We substitute with empty arguments in order to rebuild the atomic
378   // constraint in a constant-evaluated context.
379   // FIXME: Should this be a dedicated TreeTransform?
380   return CheckConstraintSatisfaction(
381       FD, {RC}, /*TemplateArgs=*/{},
382       SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
383       Satisfaction);
384 }
385 
386 bool Sema::EnsureTemplateArgumentListConstraints(
387     TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
388     SourceRange TemplateIDRange) {
389   ConstraintSatisfaction Satisfaction;
390   llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
391   TD->getAssociatedConstraints(AssociatedConstraints);
392   if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
393                                   TemplateIDRange, Satisfaction))
394     return true;
395 
396   if (!Satisfaction.IsSatisfied) {
397     SmallString<128> TemplateArgString;
398     TemplateArgString = " ";
399     TemplateArgString += getTemplateArgumentBindingsText(
400         TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());
401 
402     Diag(TemplateIDRange.getBegin(),
403          diag::err_template_arg_list_constraints_not_satisfied)
404         << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
405         << TemplateArgString << TemplateIDRange;
406     DiagnoseUnsatisfiedConstraint(Satisfaction);
407     return true;
408   }
409   return false;
410 }
411 
412 static void diagnoseUnsatisfiedRequirement(Sema &S,
413                                            concepts::ExprRequirement *Req,
414                                            bool First) {
415   assert(!Req->isSatisfied()
416          && "Diagnose() can only be used on an unsatisfied requirement");
417   switch (Req->getSatisfactionStatus()) {
418     case concepts::ExprRequirement::SS_Dependent:
419       llvm_unreachable("Diagnosing a dependent requirement");
420       break;
421     case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
422       auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
423       if (!SubstDiag->DiagMessage.empty())
424         S.Diag(SubstDiag->DiagLoc,
425                diag::note_expr_requirement_expr_substitution_error)
426                << (int)First << SubstDiag->SubstitutedEntity
427                << SubstDiag->DiagMessage;
428       else
429         S.Diag(SubstDiag->DiagLoc,
430                diag::note_expr_requirement_expr_unknown_substitution_error)
431             << (int)First << SubstDiag->SubstitutedEntity;
432       break;
433     }
434     case concepts::ExprRequirement::SS_NoexceptNotMet:
435       S.Diag(Req->getNoexceptLoc(),
436              diag::note_expr_requirement_noexcept_not_met)
437           << (int)First << Req->getExpr();
438       break;
439     case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
440       auto *SubstDiag =
441           Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
442       if (!SubstDiag->DiagMessage.empty())
443         S.Diag(SubstDiag->DiagLoc,
444                diag::note_expr_requirement_type_requirement_substitution_error)
445             << (int)First << SubstDiag->SubstitutedEntity
446             << SubstDiag->DiagMessage;
447       else
448         S.Diag(SubstDiag->DiagLoc,
449                diag::note_expr_requirement_type_requirement_unknown_substitution_error)
450             << (int)First << SubstDiag->SubstitutedEntity;
451       break;
452     }
453     case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
454       ConceptSpecializationExpr *ConstraintExpr =
455           Req->getReturnTypeRequirementSubstitutedConstraintExpr();
456       if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
457         // A simple case - expr type is the type being constrained and the concept
458         // was not provided arguments.
459         Expr *e = Req->getExpr();
460         S.Diag(e->getBeginLoc(),
461                diag::note_expr_requirement_constraints_not_satisfied_simple)
462             << (int)First << S.Context.getReferenceQualifiedType(e)
463             << ConstraintExpr->getNamedConcept();
464       } else {
465         S.Diag(ConstraintExpr->getBeginLoc(),
466                diag::note_expr_requirement_constraints_not_satisfied)
467             << (int)First << ConstraintExpr;
468       }
469       S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
470       break;
471     }
472     case concepts::ExprRequirement::SS_Satisfied:
473       llvm_unreachable("We checked this above");
474   }
475 }
476 
477 static void diagnoseUnsatisfiedRequirement(Sema &S,
478                                            concepts::TypeRequirement *Req,
479                                            bool First) {
480   assert(!Req->isSatisfied()
481          && "Diagnose() can only be used on an unsatisfied requirement");
482   switch (Req->getSatisfactionStatus()) {
483   case concepts::TypeRequirement::SS_Dependent:
484     llvm_unreachable("Diagnosing a dependent requirement");
485     return;
486   case concepts::TypeRequirement::SS_SubstitutionFailure: {
487     auto *SubstDiag = Req->getSubstitutionDiagnostic();
488     if (!SubstDiag->DiagMessage.empty())
489       S.Diag(SubstDiag->DiagLoc,
490              diag::note_type_requirement_substitution_error) << (int)First
491           << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
492     else
493       S.Diag(SubstDiag->DiagLoc,
494              diag::note_type_requirement_unknown_substitution_error)
495           << (int)First << SubstDiag->SubstitutedEntity;
496     return;
497   }
498   default:
499     llvm_unreachable("Unknown satisfaction status");
500     return;
501   }
502 }
503 
504 static void diagnoseUnsatisfiedRequirement(Sema &S,
505                                            concepts::NestedRequirement *Req,
506                                            bool First) {
507   if (Req->isSubstitutionFailure()) {
508     concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
509         Req->getSubstitutionDiagnostic();
510     if (!SubstDiag->DiagMessage.empty())
511       S.Diag(SubstDiag->DiagLoc,
512              diag::note_nested_requirement_substitution_error)
513              << (int)First << SubstDiag->SubstitutedEntity
514              << SubstDiag->DiagMessage;
515     else
516       S.Diag(SubstDiag->DiagLoc,
517              diag::note_nested_requirement_unknown_substitution_error)
518           << (int)First << SubstDiag->SubstitutedEntity;
519     return;
520   }
521   S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
522 }
523 
524 
525 static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
526                                                         Expr *SubstExpr,
527                                                         bool First = true) {
528   SubstExpr = SubstExpr->IgnoreParenImpCasts();
529   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
530     switch (BO->getOpcode()) {
531     // These two cases will in practice only be reached when using fold
532     // expressions with || and &&, since otherwise the || and && will have been
533     // broken down into atomic constraints during satisfaction checking.
534     case BO_LOr:
535       // Or evaluated to false - meaning both RHS and LHS evaluated to false.
536       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
537       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
538                                                   /*First=*/false);
539       return;
540     case BO_LAnd: {
541       bool LHSSatisfied =
542           BO->getLHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
543       if (LHSSatisfied) {
544         // LHS is true, so RHS must be false.
545         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
546         return;
547       }
548       // LHS is false
549       diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
550 
551       // RHS might also be false
552       bool RHSSatisfied =
553           BO->getRHS()->EvaluateKnownConstInt(S.Context).getBoolValue();
554       if (!RHSSatisfied)
555         diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
556                                                     /*First=*/false);
557       return;
558     }
559     case BO_GE:
560     case BO_LE:
561     case BO_GT:
562     case BO_LT:
563     case BO_EQ:
564     case BO_NE:
565       if (BO->getLHS()->getType()->isIntegerType() &&
566           BO->getRHS()->getType()->isIntegerType()) {
567         Expr::EvalResult SimplifiedLHS;
568         Expr::EvalResult SimplifiedRHS;
569         BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context,
570                                     Expr::SE_NoSideEffects,
571                                     /*InConstantContext=*/true);
572         BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context,
573                                     Expr::SE_NoSideEffects,
574                                     /*InConstantContext=*/true);
575         if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
576           S.Diag(SubstExpr->getBeginLoc(),
577                  diag::note_atomic_constraint_evaluated_to_false_elaborated)
578               << (int)First << SubstExpr
579               << toString(SimplifiedLHS.Val.getInt(), 10)
580               << BinaryOperator::getOpcodeStr(BO->getOpcode())
581               << toString(SimplifiedRHS.Val.getInt(), 10);
582           return;
583         }
584       }
585       break;
586 
587     default:
588       break;
589     }
590   } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
591     if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
592       S.Diag(
593           CSE->getSourceRange().getBegin(),
594           diag::
595           note_single_arg_concept_specialization_constraint_evaluated_to_false)
596           << (int)First
597           << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
598           << CSE->getNamedConcept();
599     } else {
600       S.Diag(SubstExpr->getSourceRange().getBegin(),
601              diag::note_concept_specialization_constraint_evaluated_to_false)
602           << (int)First << CSE;
603     }
604     S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
605     return;
606   } else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
607     for (concepts::Requirement *Req : RE->getRequirements())
608       if (!Req->isDependent() && !Req->isSatisfied()) {
609         if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
610           diagnoseUnsatisfiedRequirement(S, E, First);
611         else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
612           diagnoseUnsatisfiedRequirement(S, T, First);
613         else
614           diagnoseUnsatisfiedRequirement(
615               S, cast<concepts::NestedRequirement>(Req), First);
616         break;
617       }
618     return;
619   }
620 
621   S.Diag(SubstExpr->getSourceRange().getBegin(),
622          diag::note_atomic_constraint_evaluated_to_false)
623       << (int)First << SubstExpr;
624 }
625 
626 template<typename SubstitutionDiagnostic>
627 static void diagnoseUnsatisfiedConstraintExpr(
628     Sema &S, const Expr *E,
629     const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
630     bool First = true) {
631   if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
632     S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
633         << Diag->second;
634     return;
635   }
636 
637   diagnoseWellFormedUnsatisfiedConstraintExpr(S,
638       Record.template get<Expr *>(), First);
639 }
640 
641 void
642 Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
643                                     bool First) {
644   assert(!Satisfaction.IsSatisfied &&
645          "Attempted to diagnose a satisfied constraint");
646   for (auto &Pair : Satisfaction.Details) {
647     diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
648     First = false;
649   }
650 }
651 
652 void Sema::DiagnoseUnsatisfiedConstraint(
653     const ASTConstraintSatisfaction &Satisfaction,
654     bool First) {
655   assert(!Satisfaction.IsSatisfied &&
656          "Attempted to diagnose a satisfied constraint");
657   for (auto &Pair : Satisfaction) {
658     diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
659     First = false;
660   }
661 }
662 
663 const NormalizedConstraint *
664 Sema::getNormalizedAssociatedConstraints(
665     NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
666   auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
667   if (CacheEntry == NormalizationCache.end()) {
668     auto Normalized =
669         NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
670                                                   AssociatedConstraints);
671     CacheEntry =
672         NormalizationCache
673             .try_emplace(ConstrainedDecl,
674                          Normalized
675                              ? new (Context) NormalizedConstraint(
676                                  std::move(*Normalized))
677                              : nullptr)
678             .first;
679   }
680   return CacheEntry->second;
681 }
682 
683 static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
684     ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
685     const ASTTemplateArgumentListInfo *ArgsAsWritten) {
686   if (!N.isAtomic()) {
687     if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
688                                     ArgsAsWritten))
689       return true;
690     return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
691                                        ArgsAsWritten);
692   }
693   TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
694 
695   AtomicConstraint &Atomic = *N.getAtomicConstraint();
696   TemplateArgumentListInfo SubstArgs;
697   MultiLevelTemplateArgumentList MLTAL;
698   MLTAL.addOuterTemplateArguments(TemplateArgs);
699   if (!Atomic.ParameterMapping) {
700     llvm::SmallBitVector OccurringIndices(TemplateParams->size());
701     S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
702                                  /*Depth=*/0, OccurringIndices);
703     Atomic.ParameterMapping.emplace(
704         MutableArrayRef<TemplateArgumentLoc>(
705             new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
706             OccurringIndices.count()));
707     for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
708       if (OccurringIndices[I])
709         new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
710             S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
711                 // Here we assume we do not support things like
712                 // template<typename A, typename B>
713                 // concept C = ...;
714                 //
715                 // template<typename... Ts> requires C<Ts...>
716                 // struct S { };
717                 // The above currently yields a diagnostic.
718                 // We still might have default arguments for concept parameters.
719                 ArgsAsWritten->NumTemplateArgs > I ?
720                 ArgsAsWritten->arguments()[I].getLocation() :
721                 SourceLocation()));
722   }
723   Sema::InstantiatingTemplate Inst(
724       S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
725       Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
726       SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
727                   ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
728   if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
729     return true;
730   Atomic.ParameterMapping.emplace(
731         MutableArrayRef<TemplateArgumentLoc>(
732             new (S.Context) TemplateArgumentLoc[SubstArgs.size()],
733             SubstArgs.size()));
734   std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
735             N.getAtomicConstraint()->ParameterMapping->begin());
736   return false;
737 }
738 
739 Optional<NormalizedConstraint>
740 NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
741                                           ArrayRef<const Expr *> E) {
742   assert(E.size() != 0);
743   auto Conjunction = fromConstraintExpr(S, D, E[0]);
744   if (!Conjunction)
745     return None;
746   for (unsigned I = 1; I < E.size(); ++I) {
747     auto Next = fromConstraintExpr(S, D, E[I]);
748     if (!Next)
749       return None;
750     *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction),
751                                         std::move(*Next), CCK_Conjunction);
752   }
753   return Conjunction;
754 }
755 
756 llvm::Optional<NormalizedConstraint>
757 NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
758   assert(E != nullptr);
759 
760   // C++ [temp.constr.normal]p1.1
761   // [...]
762   // - The normal form of an expression (E) is the normal form of E.
763   // [...]
764   E = E->IgnoreParenImpCasts();
765   if (LogicalBinOp BO = E) {
766     auto LHS = fromConstraintExpr(S, D, BO.getLHS());
767     if (!LHS)
768       return None;
769     auto RHS = fromConstraintExpr(S, D, BO.getRHS());
770     if (!RHS)
771       return None;
772 
773     return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
774                                 BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
775   } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
776     const NormalizedConstraint *SubNF;
777     {
778       Sema::InstantiatingTemplate Inst(
779           S, CSE->getExprLoc(),
780           Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
781           CSE->getSourceRange());
782       // C++ [temp.constr.normal]p1.1
783       // [...]
784       // The normal form of an id-expression of the form C<A1, A2, ..., AN>,
785       // where C names a concept, is the normal form of the
786       // constraint-expression of C, after substituting A1, A2, ..., AN for C’s
787       // respective template parameters in the parameter mappings in each atomic
788       // constraint. If any such substitution results in an invalid type or
789       // expression, the program is ill-formed; no diagnostic is required.
790       // [...]
791       ConceptDecl *CD = CSE->getNamedConcept();
792       SubNF = S.getNormalizedAssociatedConstraints(CD,
793                                                    {CD->getConstraintExpr()});
794       if (!SubNF)
795         return None;
796     }
797 
798     Optional<NormalizedConstraint> New;
799     New.emplace(S.Context, *SubNF);
800 
801     if (substituteParameterMappings(
802             S, *New, CSE->getNamedConcept(),
803             CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
804       return None;
805 
806     return New;
807   }
808   return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
809 }
810 
811 using NormalForm =
812     llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
813 
814 static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
815   if (Normalized.isAtomic())
816     return {{Normalized.getAtomicConstraint()}};
817 
818   NormalForm LCNF = makeCNF(Normalized.getLHS());
819   NormalForm RCNF = makeCNF(Normalized.getRHS());
820   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
821     LCNF.reserve(LCNF.size() + RCNF.size());
822     while (!RCNF.empty())
823       LCNF.push_back(RCNF.pop_back_val());
824     return LCNF;
825   }
826 
827   // Disjunction
828   NormalForm Res;
829   Res.reserve(LCNF.size() * RCNF.size());
830   for (auto &LDisjunction : LCNF)
831     for (auto &RDisjunction : RCNF) {
832       NormalForm::value_type Combined;
833       Combined.reserve(LDisjunction.size() + RDisjunction.size());
834       std::copy(LDisjunction.begin(), LDisjunction.end(),
835                 std::back_inserter(Combined));
836       std::copy(RDisjunction.begin(), RDisjunction.end(),
837                 std::back_inserter(Combined));
838       Res.emplace_back(Combined);
839     }
840   return Res;
841 }
842 
843 static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
844   if (Normalized.isAtomic())
845     return {{Normalized.getAtomicConstraint()}};
846 
847   NormalForm LDNF = makeDNF(Normalized.getLHS());
848   NormalForm RDNF = makeDNF(Normalized.getRHS());
849   if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
850     LDNF.reserve(LDNF.size() + RDNF.size());
851     while (!RDNF.empty())
852       LDNF.push_back(RDNF.pop_back_val());
853     return LDNF;
854   }
855 
856   // Conjunction
857   NormalForm Res;
858   Res.reserve(LDNF.size() * RDNF.size());
859   for (auto &LConjunction : LDNF) {
860     for (auto &RConjunction : RDNF) {
861       NormalForm::value_type Combined;
862       Combined.reserve(LConjunction.size() + RConjunction.size());
863       std::copy(LConjunction.begin(), LConjunction.end(),
864                 std::back_inserter(Combined));
865       std::copy(RConjunction.begin(), RConjunction.end(),
866                 std::back_inserter(Combined));
867       Res.emplace_back(Combined);
868     }
869   }
870   return Res;
871 }
872 
873 template<typename AtomicSubsumptionEvaluator>
874 static bool subsumes(NormalForm PDNF, NormalForm QCNF,
875                      AtomicSubsumptionEvaluator E) {
876   // C++ [temp.constr.order] p2
877   //   Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
878   //   disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
879   //   the conjuctive normal form of Q, where [...]
880   for (const auto &Pi : PDNF) {
881     for (const auto &Qj : QCNF) {
882       // C++ [temp.constr.order] p2
883       //   - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
884       //     and only if there exists an atomic constraint Pia in Pi for which
885       //     there exists an atomic constraint, Qjb, in Qj such that Pia
886       //     subsumes Qjb.
887       bool Found = false;
888       for (const AtomicConstraint *Pia : Pi) {
889         for (const AtomicConstraint *Qjb : Qj) {
890           if (E(*Pia, *Qjb)) {
891             Found = true;
892             break;
893           }
894         }
895         if (Found)
896           break;
897       }
898       if (!Found)
899         return false;
900     }
901   }
902   return true;
903 }
904 
905 template<typename AtomicSubsumptionEvaluator>
906 static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
907                      NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
908                      AtomicSubsumptionEvaluator E) {
909   // C++ [temp.constr.order] p2
910   //   In order to determine if a constraint P subsumes a constraint Q, P is
911   //   transformed into disjunctive normal form, and Q is transformed into
912   //   conjunctive normal form. [...]
913   auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
914   if (!PNormalized)
915     return true;
916   const NormalForm PDNF = makeDNF(*PNormalized);
917 
918   auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
919   if (!QNormalized)
920     return true;
921   const NormalForm QCNF = makeCNF(*QNormalized);
922 
923   Subsumes = subsumes(PDNF, QCNF, E);
924   return false;
925 }
926 
927 bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
928                                   NamedDecl *D2, ArrayRef<const Expr *> AC2,
929                                   bool &Result) {
930   if (AC1.empty()) {
931     Result = AC2.empty();
932     return false;
933   }
934   if (AC2.empty()) {
935     // TD1 has associated constraints and TD2 does not.
936     Result = true;
937     return false;
938   }
939 
940   std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
941   auto CacheEntry = SubsumptionCache.find(Key);
942   if (CacheEntry != SubsumptionCache.end()) {
943     Result = CacheEntry->second;
944     return false;
945   }
946 
947   if (subsumes(*this, D1, AC1, D2, AC2, Result,
948         [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
949           return A.subsumes(Context, B);
950         }))
951     return true;
952   SubsumptionCache.try_emplace(Key, Result);
953   return false;
954 }
955 
956 bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
957     ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
958   if (isSFINAEContext())
959     // No need to work here because our notes would be discarded.
960     return false;
961 
962   if (AC1.empty() || AC2.empty())
963     return false;
964 
965   auto NormalExprEvaluator =
966       [this] (const AtomicConstraint &A, const AtomicConstraint &B) {
967         return A.subsumes(Context, B);
968       };
969 
970   const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
971   auto IdenticalExprEvaluator =
972       [&] (const AtomicConstraint &A, const AtomicConstraint &B) {
973         if (!A.hasMatchingParameterMapping(Context, B))
974           return false;
975         const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
976         if (EA == EB)
977           return true;
978 
979         // Not the same source level expression - are the expressions
980         // identical?
981         llvm::FoldingSetNodeID IDA, IDB;
982         EA->Profile(IDA, Context, /*Canonical=*/true);
983         EB->Profile(IDB, Context, /*Canonical=*/true);
984         if (IDA != IDB)
985           return false;
986 
987         AmbiguousAtomic1 = EA;
988         AmbiguousAtomic2 = EB;
989         return true;
990       };
991 
992   {
993     // The subsumption checks might cause diagnostics
994     SFINAETrap Trap(*this);
995     auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
996     if (!Normalized1)
997       return false;
998     const NormalForm DNF1 = makeDNF(*Normalized1);
999     const NormalForm CNF1 = makeCNF(*Normalized1);
1000 
1001     auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
1002     if (!Normalized2)
1003       return false;
1004     const NormalForm DNF2 = makeDNF(*Normalized2);
1005     const NormalForm CNF2 = makeCNF(*Normalized2);
1006 
1007     bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
1008     bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
1009     bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
1010     bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
1011     if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
1012         Is2AtLeastAs1 == Is2AtLeastAs1Normally)
1013       // Same result - no ambiguity was caused by identical atomic expressions.
1014       return false;
1015   }
1016 
1017   // A different result! Some ambiguous atomic constraint(s) caused a difference
1018   assert(AmbiguousAtomic1 && AmbiguousAtomic2);
1019 
1020   Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
1021       << AmbiguousAtomic1->getSourceRange();
1022   Diag(AmbiguousAtomic2->getBeginLoc(),
1023        diag::note_ambiguous_atomic_constraints_similar_expression)
1024       << AmbiguousAtomic2->getSourceRange();
1025   return true;
1026 }
1027 
1028 concepts::ExprRequirement::ExprRequirement(
1029     Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
1030     ReturnTypeRequirement Req, SatisfactionStatus Status,
1031     ConceptSpecializationExpr *SubstitutedConstraintExpr) :
1032     Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
1033                 Status == SS_Dependent &&
1034                 (E->containsUnexpandedParameterPack() ||
1035                  Req.containsUnexpandedParameterPack()),
1036                 Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
1037     TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
1038     Status(Status) {
1039   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1040          "Simple requirement must not have a return type requirement or a "
1041          "noexcept specification");
1042   assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
1043          (SubstitutedConstraintExpr != nullptr));
1044 }
1045 
1046 concepts::ExprRequirement::ExprRequirement(
1047     SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
1048     SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
1049     Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
1050                 Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
1051     Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
1052     Status(SS_ExprSubstitutionFailure) {
1053   assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
1054          "Simple requirement must not have a return type requirement or a "
1055          "noexcept specification");
1056 }
1057 
1058 concepts::ExprRequirement::ReturnTypeRequirement::
1059 ReturnTypeRequirement(TemplateParameterList *TPL) :
1060     TypeConstraintInfo(TPL, false) {
1061   assert(TPL->size() == 1);
1062   const TypeConstraint *TC =
1063       cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
1064   assert(TC &&
1065          "TPL must have a template type parameter with a type constraint");
1066   auto *Constraint =
1067       cast<ConceptSpecializationExpr>(TC->getImmediatelyDeclaredConstraint());
1068   bool Dependent =
1069       Constraint->getTemplateArgsAsWritten() &&
1070       TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
1071           Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
1072   TypeConstraintInfo.setInt(Dependent ? true : false);
1073 }
1074 
1075 concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
1076     Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
1077                 T->getType()->containsUnexpandedParameterPack(),
1078                 // We reach this ctor with either dependent types (in which
1079                 // IsSatisfied doesn't matter) or with non-dependent type in
1080                 // which the existence of the type indicates satisfaction.
1081                 /*IsSatisfied=*/true),
1082     Value(T),
1083     Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
1084                                                         : SS_Satisfied) {}
1085