1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSet.h" 79 #include "llvm/ADT/StringSwitch.h" 80 #include "llvm/ADT/Triple.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ConvertUTF.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/Locale.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/SaveAndRestore.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 #include <bitset> 93 #include <cassert> 94 #include <cctype> 95 #include <cstddef> 96 #include <cstdint> 97 #include <functional> 98 #include <limits> 99 #include <string> 100 #include <tuple> 101 #include <utility> 102 103 using namespace clang; 104 using namespace sema; 105 106 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 107 unsigned ByteNo) const { 108 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 109 Context.getTargetInfo()); 110 } 111 112 /// Checks that a call expression's argument count is the desired number. 113 /// This is useful when doing custom type-checking. Returns true on error. 114 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 115 unsigned argCount = call->getNumArgs(); 116 if (argCount == desiredArgCount) return false; 117 118 if (argCount < desiredArgCount) 119 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 120 << 0 /*function call*/ << desiredArgCount << argCount 121 << call->getSourceRange(); 122 123 // Highlight all the excess arguments. 124 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 125 call->getArg(argCount - 1)->getEndLoc()); 126 127 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 128 << 0 /*function call*/ << desiredArgCount << argCount 129 << call->getArg(1)->getSourceRange(); 130 } 131 132 /// Check that the first argument to __builtin_annotation is an integer 133 /// and the second argument is a non-wide string literal. 134 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 135 if (checkArgCount(S, TheCall, 2)) 136 return true; 137 138 // First argument should be an integer. 139 Expr *ValArg = TheCall->getArg(0); 140 QualType Ty = ValArg->getType(); 141 if (!Ty->isIntegerType()) { 142 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 143 << ValArg->getSourceRange(); 144 return true; 145 } 146 147 // Second argument should be a constant string. 148 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 149 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 150 if (!Literal || !Literal->isAscii()) { 151 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 152 << StrArg->getSourceRange(); 153 return true; 154 } 155 156 TheCall->setType(Ty); 157 return false; 158 } 159 160 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 161 // We need at least one argument. 162 if (TheCall->getNumArgs() < 1) { 163 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 164 << 0 << 1 << TheCall->getNumArgs() 165 << TheCall->getCallee()->getSourceRange(); 166 return true; 167 } 168 169 // All arguments should be wide string literals. 170 for (Expr *Arg : TheCall->arguments()) { 171 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 172 if (!Literal || !Literal->isWide()) { 173 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 174 << Arg->getSourceRange(); 175 return true; 176 } 177 } 178 179 return false; 180 } 181 182 /// Check that the argument to __builtin_addressof is a glvalue, and set the 183 /// result type to the corresponding pointer type. 184 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 185 if (checkArgCount(S, TheCall, 1)) 186 return true; 187 188 ExprResult Arg(TheCall->getArg(0)); 189 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 190 if (ResultType.isNull()) 191 return true; 192 193 TheCall->setArg(0, Arg.get()); 194 TheCall->setType(ResultType); 195 return false; 196 } 197 198 /// Check the number of arguments and set the result type to 199 /// the argument type. 200 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 201 if (checkArgCount(S, TheCall, 1)) 202 return true; 203 204 TheCall->setType(TheCall->getArg(0)->getType()); 205 return false; 206 } 207 208 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 209 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 210 /// type (but not a function pointer) and that the alignment is a power-of-two. 211 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 212 if (checkArgCount(S, TheCall, 2)) 213 return true; 214 215 clang::Expr *Source = TheCall->getArg(0); 216 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 217 218 auto IsValidIntegerType = [](QualType Ty) { 219 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 220 }; 221 QualType SrcTy = Source->getType(); 222 // We should also be able to use it with arrays (but not functions!). 223 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 224 SrcTy = S.Context.getDecayedType(SrcTy); 225 } 226 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 227 SrcTy->isFunctionPointerType()) { 228 // FIXME: this is not quite the right error message since we don't allow 229 // floating point types, or member pointers. 230 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 231 << SrcTy; 232 return true; 233 } 234 235 clang::Expr *AlignOp = TheCall->getArg(1); 236 if (!IsValidIntegerType(AlignOp->getType())) { 237 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 238 << AlignOp->getType(); 239 return true; 240 } 241 Expr::EvalResult AlignResult; 242 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 243 // We can't check validity of alignment if it is value dependent. 244 if (!AlignOp->isValueDependent() && 245 AlignOp->EvaluateAsInt(AlignResult, S.Context, 246 Expr::SE_AllowSideEffects)) { 247 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 248 llvm::APSInt MaxValue( 249 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 250 if (AlignValue < 1) { 251 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 252 return true; 253 } 254 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 255 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 256 << toString(MaxValue, 10); 257 return true; 258 } 259 if (!AlignValue.isPowerOf2()) { 260 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 261 return true; 262 } 263 if (AlignValue == 1) { 264 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 265 << IsBooleanAlignBuiltin; 266 } 267 } 268 269 ExprResult SrcArg = S.PerformCopyInitialization( 270 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 271 SourceLocation(), Source); 272 if (SrcArg.isInvalid()) 273 return true; 274 TheCall->setArg(0, SrcArg.get()); 275 ExprResult AlignArg = 276 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 277 S.Context, AlignOp->getType(), false), 278 SourceLocation(), AlignOp); 279 if (AlignArg.isInvalid()) 280 return true; 281 TheCall->setArg(1, AlignArg.get()); 282 // For align_up/align_down, the return type is the same as the (potentially 283 // decayed) argument type including qualifiers. For is_aligned(), the result 284 // is always bool. 285 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 286 return false; 287 } 288 289 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 290 unsigned BuiltinID) { 291 if (checkArgCount(S, TheCall, 3)) 292 return true; 293 294 // First two arguments should be integers. 295 for (unsigned I = 0; I < 2; ++I) { 296 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 297 if (Arg.isInvalid()) return true; 298 TheCall->setArg(I, Arg.get()); 299 300 QualType Ty = Arg.get()->getType(); 301 if (!Ty->isIntegerType()) { 302 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 303 << Ty << Arg.get()->getSourceRange(); 304 return true; 305 } 306 } 307 308 // Third argument should be a pointer to a non-const integer. 309 // IRGen correctly handles volatile, restrict, and address spaces, and 310 // the other qualifiers aren't possible. 311 { 312 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 313 if (Arg.isInvalid()) return true; 314 TheCall->setArg(2, Arg.get()); 315 316 QualType Ty = Arg.get()->getType(); 317 const auto *PtrTy = Ty->getAs<PointerType>(); 318 if (!PtrTy || 319 !PtrTy->getPointeeType()->isIntegerType() || 320 PtrTy->getPointeeType().isConstQualified()) { 321 S.Diag(Arg.get()->getBeginLoc(), 322 diag::err_overflow_builtin_must_be_ptr_int) 323 << Ty << Arg.get()->getSourceRange(); 324 return true; 325 } 326 } 327 328 // Disallow signed ExtIntType args larger than 128 bits to mul function until 329 // we improve backend support. 330 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 331 for (unsigned I = 0; I < 3; ++I) { 332 const auto Arg = TheCall->getArg(I); 333 // Third argument will be a pointer. 334 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 335 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 336 S.getASTContext().getIntWidth(Ty) > 128) 337 return S.Diag(Arg->getBeginLoc(), 338 diag::err_overflow_builtin_ext_int_max_size) 339 << 128; 340 } 341 } 342 343 return false; 344 } 345 346 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 347 if (checkArgCount(S, BuiltinCall, 2)) 348 return true; 349 350 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 351 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 352 Expr *Call = BuiltinCall->getArg(0); 353 Expr *Chain = BuiltinCall->getArg(1); 354 355 if (Call->getStmtClass() != Stmt::CallExprClass) { 356 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 357 << Call->getSourceRange(); 358 return true; 359 } 360 361 auto CE = cast<CallExpr>(Call); 362 if (CE->getCallee()->getType()->isBlockPointerType()) { 363 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 364 << Call->getSourceRange(); 365 return true; 366 } 367 368 const Decl *TargetDecl = CE->getCalleeDecl(); 369 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 370 if (FD->getBuiltinID()) { 371 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 372 << Call->getSourceRange(); 373 return true; 374 } 375 376 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 377 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 378 << Call->getSourceRange(); 379 return true; 380 } 381 382 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 383 if (ChainResult.isInvalid()) 384 return true; 385 if (!ChainResult.get()->getType()->isPointerType()) { 386 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 387 << Chain->getSourceRange(); 388 return true; 389 } 390 391 QualType ReturnTy = CE->getCallReturnType(S.Context); 392 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 393 QualType BuiltinTy = S.Context.getFunctionType( 394 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 395 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 396 397 Builtin = 398 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 399 400 BuiltinCall->setType(CE->getType()); 401 BuiltinCall->setValueKind(CE->getValueKind()); 402 BuiltinCall->setObjectKind(CE->getObjectKind()); 403 BuiltinCall->setCallee(Builtin); 404 BuiltinCall->setArg(1, ChainResult.get()); 405 406 return false; 407 } 408 409 namespace { 410 411 class EstimateSizeFormatHandler 412 : public analyze_format_string::FormatStringHandler { 413 size_t Size; 414 415 public: 416 EstimateSizeFormatHandler(StringRef Format) 417 : Size(std::min(Format.find(0), Format.size()) + 418 1 /* null byte always written by sprintf */) {} 419 420 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 421 const char *, unsigned SpecifierLen) override { 422 423 const size_t FieldWidth = computeFieldWidth(FS); 424 const size_t Precision = computePrecision(FS); 425 426 // The actual format. 427 switch (FS.getConversionSpecifier().getKind()) { 428 // Just a char. 429 case analyze_format_string::ConversionSpecifier::cArg: 430 case analyze_format_string::ConversionSpecifier::CArg: 431 Size += std::max(FieldWidth, (size_t)1); 432 break; 433 // Just an integer. 434 case analyze_format_string::ConversionSpecifier::dArg: 435 case analyze_format_string::ConversionSpecifier::DArg: 436 case analyze_format_string::ConversionSpecifier::iArg: 437 case analyze_format_string::ConversionSpecifier::oArg: 438 case analyze_format_string::ConversionSpecifier::OArg: 439 case analyze_format_string::ConversionSpecifier::uArg: 440 case analyze_format_string::ConversionSpecifier::UArg: 441 case analyze_format_string::ConversionSpecifier::xArg: 442 case analyze_format_string::ConversionSpecifier::XArg: 443 Size += std::max(FieldWidth, Precision); 444 break; 445 446 // %g style conversion switches between %f or %e style dynamically. 447 // %f always takes less space, so default to it. 448 case analyze_format_string::ConversionSpecifier::gArg: 449 case analyze_format_string::ConversionSpecifier::GArg: 450 451 // Floating point number in the form '[+]ddd.ddd'. 452 case analyze_format_string::ConversionSpecifier::fArg: 453 case analyze_format_string::ConversionSpecifier::FArg: 454 Size += std::max(FieldWidth, 1 /* integer part */ + 455 (Precision ? 1 + Precision 456 : 0) /* period + decimal */); 457 break; 458 459 // Floating point number in the form '[-]d.ddde[+-]dd'. 460 case analyze_format_string::ConversionSpecifier::eArg: 461 case analyze_format_string::ConversionSpecifier::EArg: 462 Size += 463 std::max(FieldWidth, 464 1 /* integer part */ + 465 (Precision ? 1 + Precision : 0) /* period + decimal */ + 466 1 /* e or E letter */ + 2 /* exponent */); 467 break; 468 469 // Floating point number in the form '[-]0xh.hhhhp±dd'. 470 case analyze_format_string::ConversionSpecifier::aArg: 471 case analyze_format_string::ConversionSpecifier::AArg: 472 Size += 473 std::max(FieldWidth, 474 2 /* 0x */ + 1 /* integer part */ + 475 (Precision ? 1 + Precision : 0) /* period + decimal */ + 476 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 477 break; 478 479 // Just a string. 480 case analyze_format_string::ConversionSpecifier::sArg: 481 case analyze_format_string::ConversionSpecifier::SArg: 482 Size += FieldWidth; 483 break; 484 485 // Just a pointer in the form '0xddd'. 486 case analyze_format_string::ConversionSpecifier::pArg: 487 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 488 break; 489 490 // A plain percent. 491 case analyze_format_string::ConversionSpecifier::PercentArg: 492 Size += 1; 493 break; 494 495 default: 496 break; 497 } 498 499 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 500 501 if (FS.hasAlternativeForm()) { 502 switch (FS.getConversionSpecifier().getKind()) { 503 default: 504 break; 505 // Force a leading '0'. 506 case analyze_format_string::ConversionSpecifier::oArg: 507 Size += 1; 508 break; 509 // Force a leading '0x'. 510 case analyze_format_string::ConversionSpecifier::xArg: 511 case analyze_format_string::ConversionSpecifier::XArg: 512 Size += 2; 513 break; 514 // Force a period '.' before decimal, even if precision is 0. 515 case analyze_format_string::ConversionSpecifier::aArg: 516 case analyze_format_string::ConversionSpecifier::AArg: 517 case analyze_format_string::ConversionSpecifier::eArg: 518 case analyze_format_string::ConversionSpecifier::EArg: 519 case analyze_format_string::ConversionSpecifier::fArg: 520 case analyze_format_string::ConversionSpecifier::FArg: 521 case analyze_format_string::ConversionSpecifier::gArg: 522 case analyze_format_string::ConversionSpecifier::GArg: 523 Size += (Precision ? 0 : 1); 524 break; 525 } 526 } 527 assert(SpecifierLen <= Size && "no underflow"); 528 Size -= SpecifierLen; 529 return true; 530 } 531 532 size_t getSizeLowerBound() const { return Size; } 533 534 private: 535 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 536 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 537 size_t FieldWidth = 0; 538 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 539 FieldWidth = FW.getConstantAmount(); 540 return FieldWidth; 541 } 542 543 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 544 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 545 size_t Precision = 0; 546 547 // See man 3 printf for default precision value based on the specifier. 548 switch (FW.getHowSpecified()) { 549 case analyze_format_string::OptionalAmount::NotSpecified: 550 switch (FS.getConversionSpecifier().getKind()) { 551 default: 552 break; 553 case analyze_format_string::ConversionSpecifier::dArg: // %d 554 case analyze_format_string::ConversionSpecifier::DArg: // %D 555 case analyze_format_string::ConversionSpecifier::iArg: // %i 556 Precision = 1; 557 break; 558 case analyze_format_string::ConversionSpecifier::oArg: // %d 559 case analyze_format_string::ConversionSpecifier::OArg: // %D 560 case analyze_format_string::ConversionSpecifier::uArg: // %d 561 case analyze_format_string::ConversionSpecifier::UArg: // %D 562 case analyze_format_string::ConversionSpecifier::xArg: // %d 563 case analyze_format_string::ConversionSpecifier::XArg: // %D 564 Precision = 1; 565 break; 566 case analyze_format_string::ConversionSpecifier::fArg: // %f 567 case analyze_format_string::ConversionSpecifier::FArg: // %F 568 case analyze_format_string::ConversionSpecifier::eArg: // %e 569 case analyze_format_string::ConversionSpecifier::EArg: // %E 570 case analyze_format_string::ConversionSpecifier::gArg: // %g 571 case analyze_format_string::ConversionSpecifier::GArg: // %G 572 Precision = 6; 573 break; 574 case analyze_format_string::ConversionSpecifier::pArg: // %d 575 Precision = 1; 576 break; 577 } 578 break; 579 case analyze_format_string::OptionalAmount::Constant: 580 Precision = FW.getConstantAmount(); 581 break; 582 default: 583 break; 584 } 585 return Precision; 586 } 587 }; 588 589 } // namespace 590 591 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 592 /// __builtin_*_chk function, then use the object size argument specified in the 593 /// source. Otherwise, infer the object size using __builtin_object_size. 594 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 595 CallExpr *TheCall) { 596 // FIXME: There are some more useful checks we could be doing here: 597 // - Evaluate strlen of strcpy arguments, use as object size. 598 599 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 600 isConstantEvaluated()) 601 return; 602 603 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 604 if (!BuiltinID) 605 return; 606 607 const TargetInfo &TI = getASTContext().getTargetInfo(); 608 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 609 610 unsigned DiagID = 0; 611 bool IsChkVariant = false; 612 Optional<llvm::APSInt> UsedSize; 613 unsigned SizeIndex, ObjectIndex; 614 switch (BuiltinID) { 615 default: 616 return; 617 case Builtin::BIsprintf: 618 case Builtin::BI__builtin___sprintf_chk: { 619 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 620 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 621 622 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 623 624 if (!Format->isAscii() && !Format->isUTF8()) 625 return; 626 627 StringRef FormatStrRef = Format->getString(); 628 EstimateSizeFormatHandler H(FormatStrRef); 629 const char *FormatBytes = FormatStrRef.data(); 630 const ConstantArrayType *T = 631 Context.getAsConstantArrayType(Format->getType()); 632 assert(T && "String literal not of constant array type!"); 633 size_t TypeSize = T->getSize().getZExtValue(); 634 635 // In case there's a null byte somewhere. 636 size_t StrLen = 637 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 638 if (!analyze_format_string::ParsePrintfString( 639 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 640 Context.getTargetInfo(), false)) { 641 DiagID = diag::warn_fortify_source_format_overflow; 642 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 643 .extOrTrunc(SizeTypeWidth); 644 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 645 IsChkVariant = true; 646 ObjectIndex = 2; 647 } else { 648 IsChkVariant = false; 649 ObjectIndex = 0; 650 } 651 break; 652 } 653 } 654 return; 655 } 656 case Builtin::BI__builtin___memcpy_chk: 657 case Builtin::BI__builtin___memmove_chk: 658 case Builtin::BI__builtin___memset_chk: 659 case Builtin::BI__builtin___strlcat_chk: 660 case Builtin::BI__builtin___strlcpy_chk: 661 case Builtin::BI__builtin___strncat_chk: 662 case Builtin::BI__builtin___strncpy_chk: 663 case Builtin::BI__builtin___stpncpy_chk: 664 case Builtin::BI__builtin___memccpy_chk: 665 case Builtin::BI__builtin___mempcpy_chk: { 666 DiagID = diag::warn_builtin_chk_overflow; 667 IsChkVariant = true; 668 SizeIndex = TheCall->getNumArgs() - 2; 669 ObjectIndex = TheCall->getNumArgs() - 1; 670 break; 671 } 672 673 case Builtin::BI__builtin___snprintf_chk: 674 case Builtin::BI__builtin___vsnprintf_chk: { 675 DiagID = diag::warn_builtin_chk_overflow; 676 IsChkVariant = true; 677 SizeIndex = 1; 678 ObjectIndex = 3; 679 break; 680 } 681 682 case Builtin::BIstrncat: 683 case Builtin::BI__builtin_strncat: 684 case Builtin::BIstrncpy: 685 case Builtin::BI__builtin_strncpy: 686 case Builtin::BIstpncpy: 687 case Builtin::BI__builtin_stpncpy: { 688 // Whether these functions overflow depends on the runtime strlen of the 689 // string, not just the buffer size, so emitting the "always overflow" 690 // diagnostic isn't quite right. We should still diagnose passing a buffer 691 // size larger than the destination buffer though; this is a runtime abort 692 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 693 DiagID = diag::warn_fortify_source_size_mismatch; 694 SizeIndex = TheCall->getNumArgs() - 1; 695 ObjectIndex = 0; 696 break; 697 } 698 699 case Builtin::BImemcpy: 700 case Builtin::BI__builtin_memcpy: 701 case Builtin::BImemmove: 702 case Builtin::BI__builtin_memmove: 703 case Builtin::BImemset: 704 case Builtin::BI__builtin_memset: 705 case Builtin::BImempcpy: 706 case Builtin::BI__builtin_mempcpy: { 707 DiagID = diag::warn_fortify_source_overflow; 708 SizeIndex = TheCall->getNumArgs() - 1; 709 ObjectIndex = 0; 710 break; 711 } 712 case Builtin::BIsnprintf: 713 case Builtin::BI__builtin_snprintf: 714 case Builtin::BIvsnprintf: 715 case Builtin::BI__builtin_vsnprintf: { 716 DiagID = diag::warn_fortify_source_size_mismatch; 717 SizeIndex = 1; 718 ObjectIndex = 0; 719 break; 720 } 721 } 722 723 llvm::APSInt ObjectSize; 724 // For __builtin___*_chk, the object size is explicitly provided by the caller 725 // (usually using __builtin_object_size). Use that value to check this call. 726 if (IsChkVariant) { 727 Expr::EvalResult Result; 728 Expr *SizeArg = TheCall->getArg(ObjectIndex); 729 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 730 return; 731 ObjectSize = Result.Val.getInt(); 732 733 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 734 } else { 735 // If the parameter has a pass_object_size attribute, then we should use its 736 // (potentially) more strict checking mode. Otherwise, conservatively assume 737 // type 0. 738 int BOSType = 0; 739 if (const auto *POS = 740 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 741 BOSType = POS->getType(); 742 743 Expr *ObjArg = TheCall->getArg(ObjectIndex); 744 uint64_t Result; 745 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 746 return; 747 // Get the object size in the target's size_t width. 748 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 749 } 750 751 // Evaluate the number of bytes of the object that this call will use. 752 if (!UsedSize) { 753 Expr::EvalResult Result; 754 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 755 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 756 return; 757 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 758 } 759 760 if (UsedSize.getValue().ule(ObjectSize)) 761 return; 762 763 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 764 // Skim off the details of whichever builtin was called to produce a better 765 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 766 if (IsChkVariant) { 767 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 768 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 769 } else if (FunctionName.startswith("__builtin_")) { 770 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 771 } 772 773 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 774 PDiag(DiagID) 775 << FunctionName << toString(ObjectSize, /*Radix=*/10) 776 << toString(UsedSize.getValue(), /*Radix=*/10)); 777 } 778 779 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 780 Scope::ScopeFlags NeededScopeFlags, 781 unsigned DiagID) { 782 // Scopes aren't available during instantiation. Fortunately, builtin 783 // functions cannot be template args so they cannot be formed through template 784 // instantiation. Therefore checking once during the parse is sufficient. 785 if (SemaRef.inTemplateInstantiation()) 786 return false; 787 788 Scope *S = SemaRef.getCurScope(); 789 while (S && !S->isSEHExceptScope()) 790 S = S->getParent(); 791 if (!S || !(S->getFlags() & NeededScopeFlags)) { 792 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 793 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 794 << DRE->getDecl()->getIdentifier(); 795 return true; 796 } 797 798 return false; 799 } 800 801 static inline bool isBlockPointer(Expr *Arg) { 802 return Arg->getType()->isBlockPointerType(); 803 } 804 805 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 806 /// void*, which is a requirement of device side enqueue. 807 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 808 const BlockPointerType *BPT = 809 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 810 ArrayRef<QualType> Params = 811 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 812 unsigned ArgCounter = 0; 813 bool IllegalParams = false; 814 // Iterate through the block parameters until either one is found that is not 815 // a local void*, or the block is valid. 816 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 817 I != E; ++I, ++ArgCounter) { 818 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 819 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 820 LangAS::opencl_local) { 821 // Get the location of the error. If a block literal has been passed 822 // (BlockExpr) then we can point straight to the offending argument, 823 // else we just point to the variable reference. 824 SourceLocation ErrorLoc; 825 if (isa<BlockExpr>(BlockArg)) { 826 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 827 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 828 } else if (isa<DeclRefExpr>(BlockArg)) { 829 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 830 } 831 S.Diag(ErrorLoc, 832 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 833 IllegalParams = true; 834 } 835 } 836 837 return IllegalParams; 838 } 839 840 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 841 if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts())) { 842 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 843 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 844 return true; 845 } 846 return false; 847 } 848 849 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 850 if (checkArgCount(S, TheCall, 2)) 851 return true; 852 853 if (checkOpenCLSubgroupExt(S, TheCall)) 854 return true; 855 856 // First argument is an ndrange_t type. 857 Expr *NDRangeArg = TheCall->getArg(0); 858 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 859 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 860 << TheCall->getDirectCallee() << "'ndrange_t'"; 861 return true; 862 } 863 864 Expr *BlockArg = TheCall->getArg(1); 865 if (!isBlockPointer(BlockArg)) { 866 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 867 << TheCall->getDirectCallee() << "block"; 868 return true; 869 } 870 return checkOpenCLBlockArgs(S, BlockArg); 871 } 872 873 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 874 /// get_kernel_work_group_size 875 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 876 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 877 if (checkArgCount(S, TheCall, 1)) 878 return true; 879 880 Expr *BlockArg = TheCall->getArg(0); 881 if (!isBlockPointer(BlockArg)) { 882 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 883 << TheCall->getDirectCallee() << "block"; 884 return true; 885 } 886 return checkOpenCLBlockArgs(S, BlockArg); 887 } 888 889 /// Diagnose integer type and any valid implicit conversion to it. 890 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 891 const QualType &IntType); 892 893 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 894 unsigned Start, unsigned End) { 895 bool IllegalParams = false; 896 for (unsigned I = Start; I <= End; ++I) 897 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 898 S.Context.getSizeType()); 899 return IllegalParams; 900 } 901 902 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 903 /// 'local void*' parameter of passed block. 904 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 905 Expr *BlockArg, 906 unsigned NumNonVarArgs) { 907 const BlockPointerType *BPT = 908 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 909 unsigned NumBlockParams = 910 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 911 unsigned TotalNumArgs = TheCall->getNumArgs(); 912 913 // For each argument passed to the block, a corresponding uint needs to 914 // be passed to describe the size of the local memory. 915 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 916 S.Diag(TheCall->getBeginLoc(), 917 diag::err_opencl_enqueue_kernel_local_size_args); 918 return true; 919 } 920 921 // Check that the sizes of the local memory are specified by integers. 922 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 923 TotalNumArgs - 1); 924 } 925 926 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 927 /// overload formats specified in Table 6.13.17.1. 928 /// int enqueue_kernel(queue_t queue, 929 /// kernel_enqueue_flags_t flags, 930 /// const ndrange_t ndrange, 931 /// void (^block)(void)) 932 /// int enqueue_kernel(queue_t queue, 933 /// kernel_enqueue_flags_t flags, 934 /// const ndrange_t ndrange, 935 /// uint num_events_in_wait_list, 936 /// clk_event_t *event_wait_list, 937 /// clk_event_t *event_ret, 938 /// void (^block)(void)) 939 /// int enqueue_kernel(queue_t queue, 940 /// kernel_enqueue_flags_t flags, 941 /// const ndrange_t ndrange, 942 /// void (^block)(local void*, ...), 943 /// uint size0, ...) 944 /// int enqueue_kernel(queue_t queue, 945 /// kernel_enqueue_flags_t flags, 946 /// const ndrange_t ndrange, 947 /// uint num_events_in_wait_list, 948 /// clk_event_t *event_wait_list, 949 /// clk_event_t *event_ret, 950 /// void (^block)(local void*, ...), 951 /// uint size0, ...) 952 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 953 unsigned NumArgs = TheCall->getNumArgs(); 954 955 if (NumArgs < 4) { 956 S.Diag(TheCall->getBeginLoc(), 957 diag::err_typecheck_call_too_few_args_at_least) 958 << 0 << 4 << NumArgs; 959 return true; 960 } 961 962 Expr *Arg0 = TheCall->getArg(0); 963 Expr *Arg1 = TheCall->getArg(1); 964 Expr *Arg2 = TheCall->getArg(2); 965 Expr *Arg3 = TheCall->getArg(3); 966 967 // First argument always needs to be a queue_t type. 968 if (!Arg0->getType()->isQueueT()) { 969 S.Diag(TheCall->getArg(0)->getBeginLoc(), 970 diag::err_opencl_builtin_expected_type) 971 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 972 return true; 973 } 974 975 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 976 if (!Arg1->getType()->isIntegerType()) { 977 S.Diag(TheCall->getArg(1)->getBeginLoc(), 978 diag::err_opencl_builtin_expected_type) 979 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 980 return true; 981 } 982 983 // Third argument is always an ndrange_t type. 984 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 985 S.Diag(TheCall->getArg(2)->getBeginLoc(), 986 diag::err_opencl_builtin_expected_type) 987 << TheCall->getDirectCallee() << "'ndrange_t'"; 988 return true; 989 } 990 991 // With four arguments, there is only one form that the function could be 992 // called in: no events and no variable arguments. 993 if (NumArgs == 4) { 994 // check that the last argument is the right block type. 995 if (!isBlockPointer(Arg3)) { 996 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 997 << TheCall->getDirectCallee() << "block"; 998 return true; 999 } 1000 // we have a block type, check the prototype 1001 const BlockPointerType *BPT = 1002 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1003 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1004 S.Diag(Arg3->getBeginLoc(), 1005 diag::err_opencl_enqueue_kernel_blocks_no_args); 1006 return true; 1007 } 1008 return false; 1009 } 1010 // we can have block + varargs. 1011 if (isBlockPointer(Arg3)) 1012 return (checkOpenCLBlockArgs(S, Arg3) || 1013 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1014 // last two cases with either exactly 7 args or 7 args and varargs. 1015 if (NumArgs >= 7) { 1016 // check common block argument. 1017 Expr *Arg6 = TheCall->getArg(6); 1018 if (!isBlockPointer(Arg6)) { 1019 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1020 << TheCall->getDirectCallee() << "block"; 1021 return true; 1022 } 1023 if (checkOpenCLBlockArgs(S, Arg6)) 1024 return true; 1025 1026 // Forth argument has to be any integer type. 1027 if (!Arg3->getType()->isIntegerType()) { 1028 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1029 diag::err_opencl_builtin_expected_type) 1030 << TheCall->getDirectCallee() << "integer"; 1031 return true; 1032 } 1033 // check remaining common arguments. 1034 Expr *Arg4 = TheCall->getArg(4); 1035 Expr *Arg5 = TheCall->getArg(5); 1036 1037 // Fifth argument is always passed as a pointer to clk_event_t. 1038 if (!Arg4->isNullPointerConstant(S.Context, 1039 Expr::NPC_ValueDependentIsNotNull) && 1040 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1041 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1042 diag::err_opencl_builtin_expected_type) 1043 << TheCall->getDirectCallee() 1044 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1045 return true; 1046 } 1047 1048 // Sixth argument is always passed as a pointer to clk_event_t. 1049 if (!Arg5->isNullPointerConstant(S.Context, 1050 Expr::NPC_ValueDependentIsNotNull) && 1051 !(Arg5->getType()->isPointerType() && 1052 Arg5->getType()->getPointeeType()->isClkEventT())) { 1053 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1054 diag::err_opencl_builtin_expected_type) 1055 << TheCall->getDirectCallee() 1056 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1057 return true; 1058 } 1059 1060 if (NumArgs == 7) 1061 return false; 1062 1063 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1064 } 1065 1066 // None of the specific case has been detected, give generic error 1067 S.Diag(TheCall->getBeginLoc(), 1068 diag::err_opencl_enqueue_kernel_incorrect_args); 1069 return true; 1070 } 1071 1072 /// Returns OpenCL access qual. 1073 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1074 return D->getAttr<OpenCLAccessAttr>(); 1075 } 1076 1077 /// Returns true if pipe element type is different from the pointer. 1078 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1079 const Expr *Arg0 = Call->getArg(0); 1080 // First argument type should always be pipe. 1081 if (!Arg0->getType()->isPipeType()) { 1082 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1083 << Call->getDirectCallee() << Arg0->getSourceRange(); 1084 return true; 1085 } 1086 OpenCLAccessAttr *AccessQual = 1087 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1088 // Validates the access qualifier is compatible with the call. 1089 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1090 // read_only and write_only, and assumed to be read_only if no qualifier is 1091 // specified. 1092 switch (Call->getDirectCallee()->getBuiltinID()) { 1093 case Builtin::BIread_pipe: 1094 case Builtin::BIreserve_read_pipe: 1095 case Builtin::BIcommit_read_pipe: 1096 case Builtin::BIwork_group_reserve_read_pipe: 1097 case Builtin::BIsub_group_reserve_read_pipe: 1098 case Builtin::BIwork_group_commit_read_pipe: 1099 case Builtin::BIsub_group_commit_read_pipe: 1100 if (!(!AccessQual || AccessQual->isReadOnly())) { 1101 S.Diag(Arg0->getBeginLoc(), 1102 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1103 << "read_only" << Arg0->getSourceRange(); 1104 return true; 1105 } 1106 break; 1107 case Builtin::BIwrite_pipe: 1108 case Builtin::BIreserve_write_pipe: 1109 case Builtin::BIcommit_write_pipe: 1110 case Builtin::BIwork_group_reserve_write_pipe: 1111 case Builtin::BIsub_group_reserve_write_pipe: 1112 case Builtin::BIwork_group_commit_write_pipe: 1113 case Builtin::BIsub_group_commit_write_pipe: 1114 if (!(AccessQual && AccessQual->isWriteOnly())) { 1115 S.Diag(Arg0->getBeginLoc(), 1116 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1117 << "write_only" << Arg0->getSourceRange(); 1118 return true; 1119 } 1120 break; 1121 default: 1122 break; 1123 } 1124 return false; 1125 } 1126 1127 /// Returns true if pipe element type is different from the pointer. 1128 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1129 const Expr *Arg0 = Call->getArg(0); 1130 const Expr *ArgIdx = Call->getArg(Idx); 1131 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1132 const QualType EltTy = PipeTy->getElementType(); 1133 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1134 // The Idx argument should be a pointer and the type of the pointer and 1135 // the type of pipe element should also be the same. 1136 if (!ArgTy || 1137 !S.Context.hasSameType( 1138 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1139 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1140 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1141 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1142 return true; 1143 } 1144 return false; 1145 } 1146 1147 // Performs semantic analysis for the read/write_pipe call. 1148 // \param S Reference to the semantic analyzer. 1149 // \param Call A pointer to the builtin call. 1150 // \return True if a semantic error has been found, false otherwise. 1151 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1152 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1153 // functions have two forms. 1154 switch (Call->getNumArgs()) { 1155 case 2: 1156 if (checkOpenCLPipeArg(S, Call)) 1157 return true; 1158 // The call with 2 arguments should be 1159 // read/write_pipe(pipe T, T*). 1160 // Check packet type T. 1161 if (checkOpenCLPipePacketType(S, Call, 1)) 1162 return true; 1163 break; 1164 1165 case 4: { 1166 if (checkOpenCLPipeArg(S, Call)) 1167 return true; 1168 // The call with 4 arguments should be 1169 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1170 // Check reserve_id_t. 1171 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1172 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1173 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1174 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1175 return true; 1176 } 1177 1178 // Check the index. 1179 const Expr *Arg2 = Call->getArg(2); 1180 if (!Arg2->getType()->isIntegerType() && 1181 !Arg2->getType()->isUnsignedIntegerType()) { 1182 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1183 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1184 << Arg2->getType() << Arg2->getSourceRange(); 1185 return true; 1186 } 1187 1188 // Check packet type T. 1189 if (checkOpenCLPipePacketType(S, Call, 3)) 1190 return true; 1191 } break; 1192 default: 1193 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1194 << Call->getDirectCallee() << Call->getSourceRange(); 1195 return true; 1196 } 1197 1198 return false; 1199 } 1200 1201 // Performs a semantic analysis on the {work_group_/sub_group_ 1202 // /_}reserve_{read/write}_pipe 1203 // \param S Reference to the semantic analyzer. 1204 // \param Call The call to the builtin function to be analyzed. 1205 // \return True if a semantic error was found, false otherwise. 1206 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1207 if (checkArgCount(S, Call, 2)) 1208 return true; 1209 1210 if (checkOpenCLPipeArg(S, Call)) 1211 return true; 1212 1213 // Check the reserve size. 1214 if (!Call->getArg(1)->getType()->isIntegerType() && 1215 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1216 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1217 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1218 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1219 return true; 1220 } 1221 1222 // Since return type of reserve_read/write_pipe built-in function is 1223 // reserve_id_t, which is not defined in the builtin def file , we used int 1224 // as return type and need to override the return type of these functions. 1225 Call->setType(S.Context.OCLReserveIDTy); 1226 1227 return false; 1228 } 1229 1230 // Performs a semantic analysis on {work_group_/sub_group_ 1231 // /_}commit_{read/write}_pipe 1232 // \param S Reference to the semantic analyzer. 1233 // \param Call The call to the builtin function to be analyzed. 1234 // \return True if a semantic error was found, false otherwise. 1235 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1236 if (checkArgCount(S, Call, 2)) 1237 return true; 1238 1239 if (checkOpenCLPipeArg(S, Call)) 1240 return true; 1241 1242 // Check reserve_id_t. 1243 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1244 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1245 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1246 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1247 return true; 1248 } 1249 1250 return false; 1251 } 1252 1253 // Performs a semantic analysis on the call to built-in Pipe 1254 // Query Functions. 1255 // \param S Reference to the semantic analyzer. 1256 // \param Call The call to the builtin function to be analyzed. 1257 // \return True if a semantic error was found, false otherwise. 1258 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1259 if (checkArgCount(S, Call, 1)) 1260 return true; 1261 1262 if (!Call->getArg(0)->getType()->isPipeType()) { 1263 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1264 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1272 // Performs semantic analysis for the to_global/local/private call. 1273 // \param S Reference to the semantic analyzer. 1274 // \param BuiltinID ID of the builtin function. 1275 // \param Call A pointer to the builtin call. 1276 // \return True if a semantic error has been found, false otherwise. 1277 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1278 CallExpr *Call) { 1279 if (checkArgCount(S, Call, 1)) 1280 return true; 1281 1282 auto RT = Call->getArg(0)->getType(); 1283 if (!RT->isPointerType() || RT->getPointeeType() 1284 .getAddressSpace() == LangAS::opencl_constant) { 1285 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1286 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1287 return true; 1288 } 1289 1290 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1291 S.Diag(Call->getArg(0)->getBeginLoc(), 1292 diag::warn_opencl_generic_address_space_arg) 1293 << Call->getDirectCallee()->getNameInfo().getAsString() 1294 << Call->getArg(0)->getSourceRange(); 1295 } 1296 1297 RT = RT->getPointeeType(); 1298 auto Qual = RT.getQualifiers(); 1299 switch (BuiltinID) { 1300 case Builtin::BIto_global: 1301 Qual.setAddressSpace(LangAS::opencl_global); 1302 break; 1303 case Builtin::BIto_local: 1304 Qual.setAddressSpace(LangAS::opencl_local); 1305 break; 1306 case Builtin::BIto_private: 1307 Qual.setAddressSpace(LangAS::opencl_private); 1308 break; 1309 default: 1310 llvm_unreachable("Invalid builtin function"); 1311 } 1312 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1313 RT.getUnqualifiedType(), Qual))); 1314 1315 return false; 1316 } 1317 1318 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1319 if (checkArgCount(S, TheCall, 1)) 1320 return ExprError(); 1321 1322 // Compute __builtin_launder's parameter type from the argument. 1323 // The parameter type is: 1324 // * The type of the argument if it's not an array or function type, 1325 // Otherwise, 1326 // * The decayed argument type. 1327 QualType ParamTy = [&]() { 1328 QualType ArgTy = TheCall->getArg(0)->getType(); 1329 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1330 return S.Context.getPointerType(Ty->getElementType()); 1331 if (ArgTy->isFunctionType()) { 1332 return S.Context.getPointerType(ArgTy); 1333 } 1334 return ArgTy; 1335 }(); 1336 1337 TheCall->setType(ParamTy); 1338 1339 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1340 if (!ParamTy->isPointerType()) 1341 return 0; 1342 if (ParamTy->isFunctionPointerType()) 1343 return 1; 1344 if (ParamTy->isVoidPointerType()) 1345 return 2; 1346 return llvm::Optional<unsigned>{}; 1347 }(); 1348 if (DiagSelect.hasValue()) { 1349 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1350 << DiagSelect.getValue() << TheCall->getSourceRange(); 1351 return ExprError(); 1352 } 1353 1354 // We either have an incomplete class type, or we have a class template 1355 // whose instantiation has not been forced. Example: 1356 // 1357 // template <class T> struct Foo { T value; }; 1358 // Foo<int> *p = nullptr; 1359 // auto *d = __builtin_launder(p); 1360 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1361 diag::err_incomplete_type)) 1362 return ExprError(); 1363 1364 assert(ParamTy->getPointeeType()->isObjectType() && 1365 "Unhandled non-object pointer case"); 1366 1367 InitializedEntity Entity = 1368 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1369 ExprResult Arg = 1370 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1371 if (Arg.isInvalid()) 1372 return ExprError(); 1373 TheCall->setArg(0, Arg.get()); 1374 1375 return TheCall; 1376 } 1377 1378 // Emit an error and return true if the current architecture is not in the list 1379 // of supported architectures. 1380 static bool 1381 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1382 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1383 llvm::Triple::ArchType CurArch = 1384 S.getASTContext().getTargetInfo().getTriple().getArch(); 1385 if (llvm::is_contained(SupportedArchs, CurArch)) 1386 return false; 1387 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1388 << TheCall->getSourceRange(); 1389 return true; 1390 } 1391 1392 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1393 SourceLocation CallSiteLoc); 1394 1395 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1396 CallExpr *TheCall) { 1397 switch (TI.getTriple().getArch()) { 1398 default: 1399 // Some builtins don't require additional checking, so just consider these 1400 // acceptable. 1401 return false; 1402 case llvm::Triple::arm: 1403 case llvm::Triple::armeb: 1404 case llvm::Triple::thumb: 1405 case llvm::Triple::thumbeb: 1406 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1407 case llvm::Triple::aarch64: 1408 case llvm::Triple::aarch64_32: 1409 case llvm::Triple::aarch64_be: 1410 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1411 case llvm::Triple::bpfeb: 1412 case llvm::Triple::bpfel: 1413 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1414 case llvm::Triple::hexagon: 1415 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1416 case llvm::Triple::mips: 1417 case llvm::Triple::mipsel: 1418 case llvm::Triple::mips64: 1419 case llvm::Triple::mips64el: 1420 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1421 case llvm::Triple::systemz: 1422 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1423 case llvm::Triple::x86: 1424 case llvm::Triple::x86_64: 1425 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1426 case llvm::Triple::ppc: 1427 case llvm::Triple::ppcle: 1428 case llvm::Triple::ppc64: 1429 case llvm::Triple::ppc64le: 1430 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1431 case llvm::Triple::amdgcn: 1432 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1433 case llvm::Triple::riscv32: 1434 case llvm::Triple::riscv64: 1435 return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall); 1436 } 1437 } 1438 1439 ExprResult 1440 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1441 CallExpr *TheCall) { 1442 ExprResult TheCallResult(TheCall); 1443 1444 // Find out if any arguments are required to be integer constant expressions. 1445 unsigned ICEArguments = 0; 1446 ASTContext::GetBuiltinTypeError Error; 1447 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1448 if (Error != ASTContext::GE_None) 1449 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1450 1451 // If any arguments are required to be ICE's, check and diagnose. 1452 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1453 // Skip arguments not required to be ICE's. 1454 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1455 1456 llvm::APSInt Result; 1457 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1458 return true; 1459 ICEArguments &= ~(1 << ArgNo); 1460 } 1461 1462 switch (BuiltinID) { 1463 case Builtin::BI__builtin___CFStringMakeConstantString: 1464 assert(TheCall->getNumArgs() == 1 && 1465 "Wrong # arguments to builtin CFStringMakeConstantString"); 1466 if (CheckObjCString(TheCall->getArg(0))) 1467 return ExprError(); 1468 break; 1469 case Builtin::BI__builtin_ms_va_start: 1470 case Builtin::BI__builtin_stdarg_start: 1471 case Builtin::BI__builtin_va_start: 1472 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1473 return ExprError(); 1474 break; 1475 case Builtin::BI__va_start: { 1476 switch (Context.getTargetInfo().getTriple().getArch()) { 1477 case llvm::Triple::aarch64: 1478 case llvm::Triple::arm: 1479 case llvm::Triple::thumb: 1480 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1481 return ExprError(); 1482 break; 1483 default: 1484 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1485 return ExprError(); 1486 break; 1487 } 1488 break; 1489 } 1490 1491 // The acquire, release, and no fence variants are ARM and AArch64 only. 1492 case Builtin::BI_interlockedbittestandset_acq: 1493 case Builtin::BI_interlockedbittestandset_rel: 1494 case Builtin::BI_interlockedbittestandset_nf: 1495 case Builtin::BI_interlockedbittestandreset_acq: 1496 case Builtin::BI_interlockedbittestandreset_rel: 1497 case Builtin::BI_interlockedbittestandreset_nf: 1498 if (CheckBuiltinTargetSupport( 1499 *this, BuiltinID, TheCall, 1500 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1501 return ExprError(); 1502 break; 1503 1504 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1505 case Builtin::BI_bittest64: 1506 case Builtin::BI_bittestandcomplement64: 1507 case Builtin::BI_bittestandreset64: 1508 case Builtin::BI_bittestandset64: 1509 case Builtin::BI_interlockedbittestandreset64: 1510 case Builtin::BI_interlockedbittestandset64: 1511 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1512 {llvm::Triple::x86_64, llvm::Triple::arm, 1513 llvm::Triple::thumb, llvm::Triple::aarch64})) 1514 return ExprError(); 1515 break; 1516 1517 case Builtin::BI__builtin_isgreater: 1518 case Builtin::BI__builtin_isgreaterequal: 1519 case Builtin::BI__builtin_isless: 1520 case Builtin::BI__builtin_islessequal: 1521 case Builtin::BI__builtin_islessgreater: 1522 case Builtin::BI__builtin_isunordered: 1523 if (SemaBuiltinUnorderedCompare(TheCall)) 1524 return ExprError(); 1525 break; 1526 case Builtin::BI__builtin_fpclassify: 1527 if (SemaBuiltinFPClassification(TheCall, 6)) 1528 return ExprError(); 1529 break; 1530 case Builtin::BI__builtin_isfinite: 1531 case Builtin::BI__builtin_isinf: 1532 case Builtin::BI__builtin_isinf_sign: 1533 case Builtin::BI__builtin_isnan: 1534 case Builtin::BI__builtin_isnormal: 1535 case Builtin::BI__builtin_signbit: 1536 case Builtin::BI__builtin_signbitf: 1537 case Builtin::BI__builtin_signbitl: 1538 if (SemaBuiltinFPClassification(TheCall, 1)) 1539 return ExprError(); 1540 break; 1541 case Builtin::BI__builtin_shufflevector: 1542 return SemaBuiltinShuffleVector(TheCall); 1543 // TheCall will be freed by the smart pointer here, but that's fine, since 1544 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1545 case Builtin::BI__builtin_prefetch: 1546 if (SemaBuiltinPrefetch(TheCall)) 1547 return ExprError(); 1548 break; 1549 case Builtin::BI__builtin_alloca_with_align: 1550 if (SemaBuiltinAllocaWithAlign(TheCall)) 1551 return ExprError(); 1552 LLVM_FALLTHROUGH; 1553 case Builtin::BI__builtin_alloca: 1554 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1555 << TheCall->getDirectCallee(); 1556 break; 1557 case Builtin::BI__arithmetic_fence: 1558 if (SemaBuiltinArithmeticFence(TheCall)) 1559 return ExprError(); 1560 break; 1561 case Builtin::BI__assume: 1562 case Builtin::BI__builtin_assume: 1563 if (SemaBuiltinAssume(TheCall)) 1564 return ExprError(); 1565 break; 1566 case Builtin::BI__builtin_assume_aligned: 1567 if (SemaBuiltinAssumeAligned(TheCall)) 1568 return ExprError(); 1569 break; 1570 case Builtin::BI__builtin_dynamic_object_size: 1571 case Builtin::BI__builtin_object_size: 1572 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1573 return ExprError(); 1574 break; 1575 case Builtin::BI__builtin_longjmp: 1576 if (SemaBuiltinLongjmp(TheCall)) 1577 return ExprError(); 1578 break; 1579 case Builtin::BI__builtin_setjmp: 1580 if (SemaBuiltinSetjmp(TheCall)) 1581 return ExprError(); 1582 break; 1583 case Builtin::BI__builtin_classify_type: 1584 if (checkArgCount(*this, TheCall, 1)) return true; 1585 TheCall->setType(Context.IntTy); 1586 break; 1587 case Builtin::BI__builtin_complex: 1588 if (SemaBuiltinComplex(TheCall)) 1589 return ExprError(); 1590 break; 1591 case Builtin::BI__builtin_constant_p: { 1592 if (checkArgCount(*this, TheCall, 1)) return true; 1593 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1594 if (Arg.isInvalid()) return true; 1595 TheCall->setArg(0, Arg.get()); 1596 TheCall->setType(Context.IntTy); 1597 break; 1598 } 1599 case Builtin::BI__builtin_launder: 1600 return SemaBuiltinLaunder(*this, TheCall); 1601 case Builtin::BI__sync_fetch_and_add: 1602 case Builtin::BI__sync_fetch_and_add_1: 1603 case Builtin::BI__sync_fetch_and_add_2: 1604 case Builtin::BI__sync_fetch_and_add_4: 1605 case Builtin::BI__sync_fetch_and_add_8: 1606 case Builtin::BI__sync_fetch_and_add_16: 1607 case Builtin::BI__sync_fetch_and_sub: 1608 case Builtin::BI__sync_fetch_and_sub_1: 1609 case Builtin::BI__sync_fetch_and_sub_2: 1610 case Builtin::BI__sync_fetch_and_sub_4: 1611 case Builtin::BI__sync_fetch_and_sub_8: 1612 case Builtin::BI__sync_fetch_and_sub_16: 1613 case Builtin::BI__sync_fetch_and_or: 1614 case Builtin::BI__sync_fetch_and_or_1: 1615 case Builtin::BI__sync_fetch_and_or_2: 1616 case Builtin::BI__sync_fetch_and_or_4: 1617 case Builtin::BI__sync_fetch_and_or_8: 1618 case Builtin::BI__sync_fetch_and_or_16: 1619 case Builtin::BI__sync_fetch_and_and: 1620 case Builtin::BI__sync_fetch_and_and_1: 1621 case Builtin::BI__sync_fetch_and_and_2: 1622 case Builtin::BI__sync_fetch_and_and_4: 1623 case Builtin::BI__sync_fetch_and_and_8: 1624 case Builtin::BI__sync_fetch_and_and_16: 1625 case Builtin::BI__sync_fetch_and_xor: 1626 case Builtin::BI__sync_fetch_and_xor_1: 1627 case Builtin::BI__sync_fetch_and_xor_2: 1628 case Builtin::BI__sync_fetch_and_xor_4: 1629 case Builtin::BI__sync_fetch_and_xor_8: 1630 case Builtin::BI__sync_fetch_and_xor_16: 1631 case Builtin::BI__sync_fetch_and_nand: 1632 case Builtin::BI__sync_fetch_and_nand_1: 1633 case Builtin::BI__sync_fetch_and_nand_2: 1634 case Builtin::BI__sync_fetch_and_nand_4: 1635 case Builtin::BI__sync_fetch_and_nand_8: 1636 case Builtin::BI__sync_fetch_and_nand_16: 1637 case Builtin::BI__sync_add_and_fetch: 1638 case Builtin::BI__sync_add_and_fetch_1: 1639 case Builtin::BI__sync_add_and_fetch_2: 1640 case Builtin::BI__sync_add_and_fetch_4: 1641 case Builtin::BI__sync_add_and_fetch_8: 1642 case Builtin::BI__sync_add_and_fetch_16: 1643 case Builtin::BI__sync_sub_and_fetch: 1644 case Builtin::BI__sync_sub_and_fetch_1: 1645 case Builtin::BI__sync_sub_and_fetch_2: 1646 case Builtin::BI__sync_sub_and_fetch_4: 1647 case Builtin::BI__sync_sub_and_fetch_8: 1648 case Builtin::BI__sync_sub_and_fetch_16: 1649 case Builtin::BI__sync_and_and_fetch: 1650 case Builtin::BI__sync_and_and_fetch_1: 1651 case Builtin::BI__sync_and_and_fetch_2: 1652 case Builtin::BI__sync_and_and_fetch_4: 1653 case Builtin::BI__sync_and_and_fetch_8: 1654 case Builtin::BI__sync_and_and_fetch_16: 1655 case Builtin::BI__sync_or_and_fetch: 1656 case Builtin::BI__sync_or_and_fetch_1: 1657 case Builtin::BI__sync_or_and_fetch_2: 1658 case Builtin::BI__sync_or_and_fetch_4: 1659 case Builtin::BI__sync_or_and_fetch_8: 1660 case Builtin::BI__sync_or_and_fetch_16: 1661 case Builtin::BI__sync_xor_and_fetch: 1662 case Builtin::BI__sync_xor_and_fetch_1: 1663 case Builtin::BI__sync_xor_and_fetch_2: 1664 case Builtin::BI__sync_xor_and_fetch_4: 1665 case Builtin::BI__sync_xor_and_fetch_8: 1666 case Builtin::BI__sync_xor_and_fetch_16: 1667 case Builtin::BI__sync_nand_and_fetch: 1668 case Builtin::BI__sync_nand_and_fetch_1: 1669 case Builtin::BI__sync_nand_and_fetch_2: 1670 case Builtin::BI__sync_nand_and_fetch_4: 1671 case Builtin::BI__sync_nand_and_fetch_8: 1672 case Builtin::BI__sync_nand_and_fetch_16: 1673 case Builtin::BI__sync_val_compare_and_swap: 1674 case Builtin::BI__sync_val_compare_and_swap_1: 1675 case Builtin::BI__sync_val_compare_and_swap_2: 1676 case Builtin::BI__sync_val_compare_and_swap_4: 1677 case Builtin::BI__sync_val_compare_and_swap_8: 1678 case Builtin::BI__sync_val_compare_and_swap_16: 1679 case Builtin::BI__sync_bool_compare_and_swap: 1680 case Builtin::BI__sync_bool_compare_and_swap_1: 1681 case Builtin::BI__sync_bool_compare_and_swap_2: 1682 case Builtin::BI__sync_bool_compare_and_swap_4: 1683 case Builtin::BI__sync_bool_compare_and_swap_8: 1684 case Builtin::BI__sync_bool_compare_and_swap_16: 1685 case Builtin::BI__sync_lock_test_and_set: 1686 case Builtin::BI__sync_lock_test_and_set_1: 1687 case Builtin::BI__sync_lock_test_and_set_2: 1688 case Builtin::BI__sync_lock_test_and_set_4: 1689 case Builtin::BI__sync_lock_test_and_set_8: 1690 case Builtin::BI__sync_lock_test_and_set_16: 1691 case Builtin::BI__sync_lock_release: 1692 case Builtin::BI__sync_lock_release_1: 1693 case Builtin::BI__sync_lock_release_2: 1694 case Builtin::BI__sync_lock_release_4: 1695 case Builtin::BI__sync_lock_release_8: 1696 case Builtin::BI__sync_lock_release_16: 1697 case Builtin::BI__sync_swap: 1698 case Builtin::BI__sync_swap_1: 1699 case Builtin::BI__sync_swap_2: 1700 case Builtin::BI__sync_swap_4: 1701 case Builtin::BI__sync_swap_8: 1702 case Builtin::BI__sync_swap_16: 1703 return SemaBuiltinAtomicOverloaded(TheCallResult); 1704 case Builtin::BI__sync_synchronize: 1705 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1706 << TheCall->getCallee()->getSourceRange(); 1707 break; 1708 case Builtin::BI__builtin_nontemporal_load: 1709 case Builtin::BI__builtin_nontemporal_store: 1710 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1711 case Builtin::BI__builtin_memcpy_inline: { 1712 clang::Expr *SizeOp = TheCall->getArg(2); 1713 // We warn about copying to or from `nullptr` pointers when `size` is 1714 // greater than 0. When `size` is value dependent we cannot evaluate its 1715 // value so we bail out. 1716 if (SizeOp->isValueDependent()) 1717 break; 1718 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1719 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1720 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1721 } 1722 break; 1723 } 1724 #define BUILTIN(ID, TYPE, ATTRS) 1725 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1726 case Builtin::BI##ID: \ 1727 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1728 #include "clang/Basic/Builtins.def" 1729 case Builtin::BI__annotation: 1730 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1731 return ExprError(); 1732 break; 1733 case Builtin::BI__builtin_annotation: 1734 if (SemaBuiltinAnnotation(*this, TheCall)) 1735 return ExprError(); 1736 break; 1737 case Builtin::BI__builtin_addressof: 1738 if (SemaBuiltinAddressof(*this, TheCall)) 1739 return ExprError(); 1740 break; 1741 case Builtin::BI__builtin_is_aligned: 1742 case Builtin::BI__builtin_align_up: 1743 case Builtin::BI__builtin_align_down: 1744 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1745 return ExprError(); 1746 break; 1747 case Builtin::BI__builtin_add_overflow: 1748 case Builtin::BI__builtin_sub_overflow: 1749 case Builtin::BI__builtin_mul_overflow: 1750 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1751 return ExprError(); 1752 break; 1753 case Builtin::BI__builtin_operator_new: 1754 case Builtin::BI__builtin_operator_delete: { 1755 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1756 ExprResult Res = 1757 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1758 if (Res.isInvalid()) 1759 CorrectDelayedTyposInExpr(TheCallResult.get()); 1760 return Res; 1761 } 1762 case Builtin::BI__builtin_dump_struct: { 1763 // We first want to ensure we are called with 2 arguments 1764 if (checkArgCount(*this, TheCall, 2)) 1765 return ExprError(); 1766 // Ensure that the first argument is of type 'struct XX *' 1767 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1768 const QualType PtrArgType = PtrArg->getType(); 1769 if (!PtrArgType->isPointerType() || 1770 !PtrArgType->getPointeeType()->isRecordType()) { 1771 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1772 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1773 << "structure pointer"; 1774 return ExprError(); 1775 } 1776 1777 // Ensure that the second argument is of type 'FunctionType' 1778 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1779 const QualType FnPtrArgType = FnPtrArg->getType(); 1780 if (!FnPtrArgType->isPointerType()) { 1781 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1782 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1783 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1784 return ExprError(); 1785 } 1786 1787 const auto *FuncType = 1788 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1789 1790 if (!FuncType) { 1791 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1792 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1793 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1794 return ExprError(); 1795 } 1796 1797 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1798 if (!FT->getNumParams()) { 1799 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1800 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1801 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1802 return ExprError(); 1803 } 1804 QualType PT = FT->getParamType(0); 1805 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1806 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1807 !PT->getPointeeType().isConstQualified()) { 1808 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1809 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1810 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1811 return ExprError(); 1812 } 1813 } 1814 1815 TheCall->setType(Context.IntTy); 1816 break; 1817 } 1818 case Builtin::BI__builtin_expect_with_probability: { 1819 // We first want to ensure we are called with 3 arguments 1820 if (checkArgCount(*this, TheCall, 3)) 1821 return ExprError(); 1822 // then check probability is constant float in range [0.0, 1.0] 1823 const Expr *ProbArg = TheCall->getArg(2); 1824 SmallVector<PartialDiagnosticAt, 8> Notes; 1825 Expr::EvalResult Eval; 1826 Eval.Diag = &Notes; 1827 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 1828 !Eval.Val.isFloat()) { 1829 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1830 << ProbArg->getSourceRange(); 1831 for (const PartialDiagnosticAt &PDiag : Notes) 1832 Diag(PDiag.first, PDiag.second); 1833 return ExprError(); 1834 } 1835 llvm::APFloat Probability = Eval.Val.getFloat(); 1836 bool LoseInfo = false; 1837 Probability.convert(llvm::APFloat::IEEEdouble(), 1838 llvm::RoundingMode::Dynamic, &LoseInfo); 1839 if (!(Probability >= llvm::APFloat(0.0) && 1840 Probability <= llvm::APFloat(1.0))) { 1841 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1842 << ProbArg->getSourceRange(); 1843 return ExprError(); 1844 } 1845 break; 1846 } 1847 case Builtin::BI__builtin_preserve_access_index: 1848 if (SemaBuiltinPreserveAI(*this, TheCall)) 1849 return ExprError(); 1850 break; 1851 case Builtin::BI__builtin_call_with_static_chain: 1852 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1853 return ExprError(); 1854 break; 1855 case Builtin::BI__exception_code: 1856 case Builtin::BI_exception_code: 1857 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1858 diag::err_seh___except_block)) 1859 return ExprError(); 1860 break; 1861 case Builtin::BI__exception_info: 1862 case Builtin::BI_exception_info: 1863 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1864 diag::err_seh___except_filter)) 1865 return ExprError(); 1866 break; 1867 case Builtin::BI__GetExceptionInfo: 1868 if (checkArgCount(*this, TheCall, 1)) 1869 return ExprError(); 1870 1871 if (CheckCXXThrowOperand( 1872 TheCall->getBeginLoc(), 1873 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1874 TheCall)) 1875 return ExprError(); 1876 1877 TheCall->setType(Context.VoidPtrTy); 1878 break; 1879 // OpenCL v2.0, s6.13.16 - Pipe functions 1880 case Builtin::BIread_pipe: 1881 case Builtin::BIwrite_pipe: 1882 // Since those two functions are declared with var args, we need a semantic 1883 // check for the argument. 1884 if (SemaBuiltinRWPipe(*this, TheCall)) 1885 return ExprError(); 1886 break; 1887 case Builtin::BIreserve_read_pipe: 1888 case Builtin::BIreserve_write_pipe: 1889 case Builtin::BIwork_group_reserve_read_pipe: 1890 case Builtin::BIwork_group_reserve_write_pipe: 1891 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1892 return ExprError(); 1893 break; 1894 case Builtin::BIsub_group_reserve_read_pipe: 1895 case Builtin::BIsub_group_reserve_write_pipe: 1896 if (checkOpenCLSubgroupExt(*this, TheCall) || 1897 SemaBuiltinReserveRWPipe(*this, TheCall)) 1898 return ExprError(); 1899 break; 1900 case Builtin::BIcommit_read_pipe: 1901 case Builtin::BIcommit_write_pipe: 1902 case Builtin::BIwork_group_commit_read_pipe: 1903 case Builtin::BIwork_group_commit_write_pipe: 1904 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1905 return ExprError(); 1906 break; 1907 case Builtin::BIsub_group_commit_read_pipe: 1908 case Builtin::BIsub_group_commit_write_pipe: 1909 if (checkOpenCLSubgroupExt(*this, TheCall) || 1910 SemaBuiltinCommitRWPipe(*this, TheCall)) 1911 return ExprError(); 1912 break; 1913 case Builtin::BIget_pipe_num_packets: 1914 case Builtin::BIget_pipe_max_packets: 1915 if (SemaBuiltinPipePackets(*this, TheCall)) 1916 return ExprError(); 1917 break; 1918 case Builtin::BIto_global: 1919 case Builtin::BIto_local: 1920 case Builtin::BIto_private: 1921 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1922 return ExprError(); 1923 break; 1924 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1925 case Builtin::BIenqueue_kernel: 1926 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1927 return ExprError(); 1928 break; 1929 case Builtin::BIget_kernel_work_group_size: 1930 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1931 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1932 return ExprError(); 1933 break; 1934 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1935 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1936 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1937 return ExprError(); 1938 break; 1939 case Builtin::BI__builtin_os_log_format: 1940 Cleanup.setExprNeedsCleanups(true); 1941 LLVM_FALLTHROUGH; 1942 case Builtin::BI__builtin_os_log_format_buffer_size: 1943 if (SemaBuiltinOSLogFormat(TheCall)) 1944 return ExprError(); 1945 break; 1946 case Builtin::BI__builtin_frame_address: 1947 case Builtin::BI__builtin_return_address: { 1948 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1949 return ExprError(); 1950 1951 // -Wframe-address warning if non-zero passed to builtin 1952 // return/frame address. 1953 Expr::EvalResult Result; 1954 if (!TheCall->getArg(0)->isValueDependent() && 1955 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1956 Result.Val.getInt() != 0) 1957 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1958 << ((BuiltinID == Builtin::BI__builtin_return_address) 1959 ? "__builtin_return_address" 1960 : "__builtin_frame_address") 1961 << TheCall->getSourceRange(); 1962 break; 1963 } 1964 1965 case Builtin::BI__builtin_matrix_transpose: 1966 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1967 1968 case Builtin::BI__builtin_matrix_column_major_load: 1969 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1970 1971 case Builtin::BI__builtin_matrix_column_major_store: 1972 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1973 1974 case Builtin::BI__builtin_get_device_side_mangled_name: { 1975 auto Check = [](CallExpr *TheCall) { 1976 if (TheCall->getNumArgs() != 1) 1977 return false; 1978 auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts()); 1979 if (!DRE) 1980 return false; 1981 auto *D = DRE->getDecl(); 1982 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) 1983 return false; 1984 return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() || 1985 D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>(); 1986 }; 1987 if (!Check(TheCall)) { 1988 Diag(TheCall->getBeginLoc(), 1989 diag::err_hip_invalid_args_builtin_mangled_name); 1990 return ExprError(); 1991 } 1992 } 1993 } 1994 1995 // Since the target specific builtins for each arch overlap, only check those 1996 // of the arch we are compiling for. 1997 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1998 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1999 assert(Context.getAuxTargetInfo() && 2000 "Aux Target Builtin, but not an aux target?"); 2001 2002 if (CheckTSBuiltinFunctionCall( 2003 *Context.getAuxTargetInfo(), 2004 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 2005 return ExprError(); 2006 } else { 2007 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 2008 TheCall)) 2009 return ExprError(); 2010 } 2011 } 2012 2013 return TheCallResult; 2014 } 2015 2016 // Get the valid immediate range for the specified NEON type code. 2017 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 2018 NeonTypeFlags Type(t); 2019 int IsQuad = ForceQuad ? true : Type.isQuad(); 2020 switch (Type.getEltType()) { 2021 case NeonTypeFlags::Int8: 2022 case NeonTypeFlags::Poly8: 2023 return shift ? 7 : (8 << IsQuad) - 1; 2024 case NeonTypeFlags::Int16: 2025 case NeonTypeFlags::Poly16: 2026 return shift ? 15 : (4 << IsQuad) - 1; 2027 case NeonTypeFlags::Int32: 2028 return shift ? 31 : (2 << IsQuad) - 1; 2029 case NeonTypeFlags::Int64: 2030 case NeonTypeFlags::Poly64: 2031 return shift ? 63 : (1 << IsQuad) - 1; 2032 case NeonTypeFlags::Poly128: 2033 return shift ? 127 : (1 << IsQuad) - 1; 2034 case NeonTypeFlags::Float16: 2035 assert(!shift && "cannot shift float types!"); 2036 return (4 << IsQuad) - 1; 2037 case NeonTypeFlags::Float32: 2038 assert(!shift && "cannot shift float types!"); 2039 return (2 << IsQuad) - 1; 2040 case NeonTypeFlags::Float64: 2041 assert(!shift && "cannot shift float types!"); 2042 return (1 << IsQuad) - 1; 2043 case NeonTypeFlags::BFloat16: 2044 assert(!shift && "cannot shift float types!"); 2045 return (4 << IsQuad) - 1; 2046 } 2047 llvm_unreachable("Invalid NeonTypeFlag!"); 2048 } 2049 2050 /// getNeonEltType - Return the QualType corresponding to the elements of 2051 /// the vector type specified by the NeonTypeFlags. This is used to check 2052 /// the pointer arguments for Neon load/store intrinsics. 2053 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2054 bool IsPolyUnsigned, bool IsInt64Long) { 2055 switch (Flags.getEltType()) { 2056 case NeonTypeFlags::Int8: 2057 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2058 case NeonTypeFlags::Int16: 2059 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2060 case NeonTypeFlags::Int32: 2061 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2062 case NeonTypeFlags::Int64: 2063 if (IsInt64Long) 2064 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2065 else 2066 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2067 : Context.LongLongTy; 2068 case NeonTypeFlags::Poly8: 2069 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2070 case NeonTypeFlags::Poly16: 2071 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2072 case NeonTypeFlags::Poly64: 2073 if (IsInt64Long) 2074 return Context.UnsignedLongTy; 2075 else 2076 return Context.UnsignedLongLongTy; 2077 case NeonTypeFlags::Poly128: 2078 break; 2079 case NeonTypeFlags::Float16: 2080 return Context.HalfTy; 2081 case NeonTypeFlags::Float32: 2082 return Context.FloatTy; 2083 case NeonTypeFlags::Float64: 2084 return Context.DoubleTy; 2085 case NeonTypeFlags::BFloat16: 2086 return Context.BFloat16Ty; 2087 } 2088 llvm_unreachable("Invalid NeonTypeFlag!"); 2089 } 2090 2091 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2092 // Range check SVE intrinsics that take immediate values. 2093 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2094 2095 switch (BuiltinID) { 2096 default: 2097 return false; 2098 #define GET_SVE_IMMEDIATE_CHECK 2099 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2100 #undef GET_SVE_IMMEDIATE_CHECK 2101 } 2102 2103 // Perform all the immediate checks for this builtin call. 2104 bool HasError = false; 2105 for (auto &I : ImmChecks) { 2106 int ArgNum, CheckTy, ElementSizeInBits; 2107 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2108 2109 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2110 2111 // Function that checks whether the operand (ArgNum) is an immediate 2112 // that is one of the predefined values. 2113 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2114 int ErrDiag) -> bool { 2115 // We can't check the value of a dependent argument. 2116 Expr *Arg = TheCall->getArg(ArgNum); 2117 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2118 return false; 2119 2120 // Check constant-ness first. 2121 llvm::APSInt Imm; 2122 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2123 return true; 2124 2125 if (!CheckImm(Imm.getSExtValue())) 2126 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2127 return false; 2128 }; 2129 2130 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2131 case SVETypeFlags::ImmCheck0_31: 2132 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2133 HasError = true; 2134 break; 2135 case SVETypeFlags::ImmCheck0_13: 2136 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2137 HasError = true; 2138 break; 2139 case SVETypeFlags::ImmCheck1_16: 2140 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2141 HasError = true; 2142 break; 2143 case SVETypeFlags::ImmCheck0_7: 2144 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2145 HasError = true; 2146 break; 2147 case SVETypeFlags::ImmCheckExtract: 2148 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2149 (2048 / ElementSizeInBits) - 1)) 2150 HasError = true; 2151 break; 2152 case SVETypeFlags::ImmCheckShiftRight: 2153 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2154 HasError = true; 2155 break; 2156 case SVETypeFlags::ImmCheckShiftRightNarrow: 2157 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2158 ElementSizeInBits / 2)) 2159 HasError = true; 2160 break; 2161 case SVETypeFlags::ImmCheckShiftLeft: 2162 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2163 ElementSizeInBits - 1)) 2164 HasError = true; 2165 break; 2166 case SVETypeFlags::ImmCheckLaneIndex: 2167 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2168 (128 / (1 * ElementSizeInBits)) - 1)) 2169 HasError = true; 2170 break; 2171 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2172 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2173 (128 / (2 * ElementSizeInBits)) - 1)) 2174 HasError = true; 2175 break; 2176 case SVETypeFlags::ImmCheckLaneIndexDot: 2177 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2178 (128 / (4 * ElementSizeInBits)) - 1)) 2179 HasError = true; 2180 break; 2181 case SVETypeFlags::ImmCheckComplexRot90_270: 2182 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2183 diag::err_rotation_argument_to_cadd)) 2184 HasError = true; 2185 break; 2186 case SVETypeFlags::ImmCheckComplexRotAll90: 2187 if (CheckImmediateInSet( 2188 [](int64_t V) { 2189 return V == 0 || V == 90 || V == 180 || V == 270; 2190 }, 2191 diag::err_rotation_argument_to_cmla)) 2192 HasError = true; 2193 break; 2194 case SVETypeFlags::ImmCheck0_1: 2195 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2196 HasError = true; 2197 break; 2198 case SVETypeFlags::ImmCheck0_2: 2199 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2200 HasError = true; 2201 break; 2202 case SVETypeFlags::ImmCheck0_3: 2203 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2204 HasError = true; 2205 break; 2206 } 2207 } 2208 2209 return HasError; 2210 } 2211 2212 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2213 unsigned BuiltinID, CallExpr *TheCall) { 2214 llvm::APSInt Result; 2215 uint64_t mask = 0; 2216 unsigned TV = 0; 2217 int PtrArgNum = -1; 2218 bool HasConstPtr = false; 2219 switch (BuiltinID) { 2220 #define GET_NEON_OVERLOAD_CHECK 2221 #include "clang/Basic/arm_neon.inc" 2222 #include "clang/Basic/arm_fp16.inc" 2223 #undef GET_NEON_OVERLOAD_CHECK 2224 } 2225 2226 // For NEON intrinsics which are overloaded on vector element type, validate 2227 // the immediate which specifies which variant to emit. 2228 unsigned ImmArg = TheCall->getNumArgs()-1; 2229 if (mask) { 2230 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2231 return true; 2232 2233 TV = Result.getLimitedValue(64); 2234 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2235 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2236 << TheCall->getArg(ImmArg)->getSourceRange(); 2237 } 2238 2239 if (PtrArgNum >= 0) { 2240 // Check that pointer arguments have the specified type. 2241 Expr *Arg = TheCall->getArg(PtrArgNum); 2242 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2243 Arg = ICE->getSubExpr(); 2244 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2245 QualType RHSTy = RHS.get()->getType(); 2246 2247 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2248 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2249 Arch == llvm::Triple::aarch64_32 || 2250 Arch == llvm::Triple::aarch64_be; 2251 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2252 QualType EltTy = 2253 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2254 if (HasConstPtr) 2255 EltTy = EltTy.withConst(); 2256 QualType LHSTy = Context.getPointerType(EltTy); 2257 AssignConvertType ConvTy; 2258 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2259 if (RHS.isInvalid()) 2260 return true; 2261 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2262 RHS.get(), AA_Assigning)) 2263 return true; 2264 } 2265 2266 // For NEON intrinsics which take an immediate value as part of the 2267 // instruction, range check them here. 2268 unsigned i = 0, l = 0, u = 0; 2269 switch (BuiltinID) { 2270 default: 2271 return false; 2272 #define GET_NEON_IMMEDIATE_CHECK 2273 #include "clang/Basic/arm_neon.inc" 2274 #include "clang/Basic/arm_fp16.inc" 2275 #undef GET_NEON_IMMEDIATE_CHECK 2276 } 2277 2278 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2279 } 2280 2281 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2282 switch (BuiltinID) { 2283 default: 2284 return false; 2285 #include "clang/Basic/arm_mve_builtin_sema.inc" 2286 } 2287 } 2288 2289 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2290 CallExpr *TheCall) { 2291 bool Err = false; 2292 switch (BuiltinID) { 2293 default: 2294 return false; 2295 #include "clang/Basic/arm_cde_builtin_sema.inc" 2296 } 2297 2298 if (Err) 2299 return true; 2300 2301 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2302 } 2303 2304 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2305 const Expr *CoprocArg, bool WantCDE) { 2306 if (isConstantEvaluated()) 2307 return false; 2308 2309 // We can't check the value of a dependent argument. 2310 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2311 return false; 2312 2313 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2314 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2315 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2316 2317 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2318 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2319 2320 if (IsCDECoproc != WantCDE) 2321 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2322 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2323 2324 return false; 2325 } 2326 2327 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2328 unsigned MaxWidth) { 2329 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2330 BuiltinID == ARM::BI__builtin_arm_ldaex || 2331 BuiltinID == ARM::BI__builtin_arm_strex || 2332 BuiltinID == ARM::BI__builtin_arm_stlex || 2333 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2334 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2335 BuiltinID == AArch64::BI__builtin_arm_strex || 2336 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2337 "unexpected ARM builtin"); 2338 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2339 BuiltinID == ARM::BI__builtin_arm_ldaex || 2340 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2341 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2342 2343 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2344 2345 // Ensure that we have the proper number of arguments. 2346 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2347 return true; 2348 2349 // Inspect the pointer argument of the atomic builtin. This should always be 2350 // a pointer type, whose element is an integral scalar or pointer type. 2351 // Because it is a pointer type, we don't have to worry about any implicit 2352 // casts here. 2353 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2354 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2355 if (PointerArgRes.isInvalid()) 2356 return true; 2357 PointerArg = PointerArgRes.get(); 2358 2359 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2360 if (!pointerType) { 2361 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2362 << PointerArg->getType() << PointerArg->getSourceRange(); 2363 return true; 2364 } 2365 2366 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2367 // task is to insert the appropriate casts into the AST. First work out just 2368 // what the appropriate type is. 2369 QualType ValType = pointerType->getPointeeType(); 2370 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2371 if (IsLdrex) 2372 AddrType.addConst(); 2373 2374 // Issue a warning if the cast is dodgy. 2375 CastKind CastNeeded = CK_NoOp; 2376 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2377 CastNeeded = CK_BitCast; 2378 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2379 << PointerArg->getType() << Context.getPointerType(AddrType) 2380 << AA_Passing << PointerArg->getSourceRange(); 2381 } 2382 2383 // Finally, do the cast and replace the argument with the corrected version. 2384 AddrType = Context.getPointerType(AddrType); 2385 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2386 if (PointerArgRes.isInvalid()) 2387 return true; 2388 PointerArg = PointerArgRes.get(); 2389 2390 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2391 2392 // In general, we allow ints, floats and pointers to be loaded and stored. 2393 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2394 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2395 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2396 << PointerArg->getType() << PointerArg->getSourceRange(); 2397 return true; 2398 } 2399 2400 // But ARM doesn't have instructions to deal with 128-bit versions. 2401 if (Context.getTypeSize(ValType) > MaxWidth) { 2402 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2403 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2404 << PointerArg->getType() << PointerArg->getSourceRange(); 2405 return true; 2406 } 2407 2408 switch (ValType.getObjCLifetime()) { 2409 case Qualifiers::OCL_None: 2410 case Qualifiers::OCL_ExplicitNone: 2411 // okay 2412 break; 2413 2414 case Qualifiers::OCL_Weak: 2415 case Qualifiers::OCL_Strong: 2416 case Qualifiers::OCL_Autoreleasing: 2417 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2418 << ValType << PointerArg->getSourceRange(); 2419 return true; 2420 } 2421 2422 if (IsLdrex) { 2423 TheCall->setType(ValType); 2424 return false; 2425 } 2426 2427 // Initialize the argument to be stored. 2428 ExprResult ValArg = TheCall->getArg(0); 2429 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2430 Context, ValType, /*consume*/ false); 2431 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2432 if (ValArg.isInvalid()) 2433 return true; 2434 TheCall->setArg(0, ValArg.get()); 2435 2436 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2437 // but the custom checker bypasses all default analysis. 2438 TheCall->setType(Context.IntTy); 2439 return false; 2440 } 2441 2442 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2443 CallExpr *TheCall) { 2444 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2445 BuiltinID == ARM::BI__builtin_arm_ldaex || 2446 BuiltinID == ARM::BI__builtin_arm_strex || 2447 BuiltinID == ARM::BI__builtin_arm_stlex) { 2448 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2449 } 2450 2451 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2452 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2453 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2454 } 2455 2456 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2457 BuiltinID == ARM::BI__builtin_arm_wsr64) 2458 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2459 2460 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2461 BuiltinID == ARM::BI__builtin_arm_rsrp || 2462 BuiltinID == ARM::BI__builtin_arm_wsr || 2463 BuiltinID == ARM::BI__builtin_arm_wsrp) 2464 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2465 2466 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2467 return true; 2468 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2469 return true; 2470 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2471 return true; 2472 2473 // For intrinsics which take an immediate value as part of the instruction, 2474 // range check them here. 2475 // FIXME: VFP Intrinsics should error if VFP not present. 2476 switch (BuiltinID) { 2477 default: return false; 2478 case ARM::BI__builtin_arm_ssat: 2479 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2480 case ARM::BI__builtin_arm_usat: 2481 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2482 case ARM::BI__builtin_arm_ssat16: 2483 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2484 case ARM::BI__builtin_arm_usat16: 2485 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2486 case ARM::BI__builtin_arm_vcvtr_f: 2487 case ARM::BI__builtin_arm_vcvtr_d: 2488 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2489 case ARM::BI__builtin_arm_dmb: 2490 case ARM::BI__builtin_arm_dsb: 2491 case ARM::BI__builtin_arm_isb: 2492 case ARM::BI__builtin_arm_dbg: 2493 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2494 case ARM::BI__builtin_arm_cdp: 2495 case ARM::BI__builtin_arm_cdp2: 2496 case ARM::BI__builtin_arm_mcr: 2497 case ARM::BI__builtin_arm_mcr2: 2498 case ARM::BI__builtin_arm_mrc: 2499 case ARM::BI__builtin_arm_mrc2: 2500 case ARM::BI__builtin_arm_mcrr: 2501 case ARM::BI__builtin_arm_mcrr2: 2502 case ARM::BI__builtin_arm_mrrc: 2503 case ARM::BI__builtin_arm_mrrc2: 2504 case ARM::BI__builtin_arm_ldc: 2505 case ARM::BI__builtin_arm_ldcl: 2506 case ARM::BI__builtin_arm_ldc2: 2507 case ARM::BI__builtin_arm_ldc2l: 2508 case ARM::BI__builtin_arm_stc: 2509 case ARM::BI__builtin_arm_stcl: 2510 case ARM::BI__builtin_arm_stc2: 2511 case ARM::BI__builtin_arm_stc2l: 2512 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2513 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2514 /*WantCDE*/ false); 2515 } 2516 } 2517 2518 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2519 unsigned BuiltinID, 2520 CallExpr *TheCall) { 2521 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2522 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2523 BuiltinID == AArch64::BI__builtin_arm_strex || 2524 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2525 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2526 } 2527 2528 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2529 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2530 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2531 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2532 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2533 } 2534 2535 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2536 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2537 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2538 2539 // Memory Tagging Extensions (MTE) Intrinsics 2540 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2541 BuiltinID == AArch64::BI__builtin_arm_addg || 2542 BuiltinID == AArch64::BI__builtin_arm_gmi || 2543 BuiltinID == AArch64::BI__builtin_arm_ldg || 2544 BuiltinID == AArch64::BI__builtin_arm_stg || 2545 BuiltinID == AArch64::BI__builtin_arm_subp) { 2546 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2547 } 2548 2549 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2550 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2551 BuiltinID == AArch64::BI__builtin_arm_wsr || 2552 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2553 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2554 2555 // Only check the valid encoding range. Any constant in this range would be 2556 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2557 // an exception for incorrect registers. This matches MSVC behavior. 2558 if (BuiltinID == AArch64::BI_ReadStatusReg || 2559 BuiltinID == AArch64::BI_WriteStatusReg) 2560 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2561 2562 if (BuiltinID == AArch64::BI__getReg) 2563 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2564 2565 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2566 return true; 2567 2568 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2569 return true; 2570 2571 // For intrinsics which take an immediate value as part of the instruction, 2572 // range check them here. 2573 unsigned i = 0, l = 0, u = 0; 2574 switch (BuiltinID) { 2575 default: return false; 2576 case AArch64::BI__builtin_arm_dmb: 2577 case AArch64::BI__builtin_arm_dsb: 2578 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2579 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2580 } 2581 2582 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2583 } 2584 2585 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2586 if (Arg->getType()->getAsPlaceholderType()) 2587 return false; 2588 2589 // The first argument needs to be a record field access. 2590 // If it is an array element access, we delay decision 2591 // to BPF backend to check whether the access is a 2592 // field access or not. 2593 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2594 dyn_cast<MemberExpr>(Arg->IgnoreParens()) || 2595 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens())); 2596 } 2597 2598 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2599 QualType VectorTy, QualType EltTy) { 2600 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2601 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2602 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2603 << Call->getSourceRange() << VectorEltTy << EltTy; 2604 return false; 2605 } 2606 return true; 2607 } 2608 2609 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2610 QualType ArgType = Arg->getType(); 2611 if (ArgType->getAsPlaceholderType()) 2612 return false; 2613 2614 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2615 // format: 2616 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2617 // 2. <type> var; 2618 // __builtin_preserve_type_info(var, flag); 2619 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) && 2620 !dyn_cast<UnaryOperator>(Arg->IgnoreParens())) 2621 return false; 2622 2623 // Typedef type. 2624 if (ArgType->getAs<TypedefType>()) 2625 return true; 2626 2627 // Record type or Enum type. 2628 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2629 if (const auto *RT = Ty->getAs<RecordType>()) { 2630 if (!RT->getDecl()->getDeclName().isEmpty()) 2631 return true; 2632 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2633 if (!ET->getDecl()->getDeclName().isEmpty()) 2634 return true; 2635 } 2636 2637 return false; 2638 } 2639 2640 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2641 QualType ArgType = Arg->getType(); 2642 if (ArgType->getAsPlaceholderType()) 2643 return false; 2644 2645 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 2646 // format: 2647 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 2648 // flag); 2649 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 2650 if (!UO) 2651 return false; 2652 2653 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 2654 if (!CE) 2655 return false; 2656 if (CE->getCastKind() != CK_IntegralToPointer && 2657 CE->getCastKind() != CK_NullToPointer) 2658 return false; 2659 2660 // The integer must be from an EnumConstantDecl. 2661 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 2662 if (!DR) 2663 return false; 2664 2665 const EnumConstantDecl *Enumerator = 2666 dyn_cast<EnumConstantDecl>(DR->getDecl()); 2667 if (!Enumerator) 2668 return false; 2669 2670 // The type must be EnumType. 2671 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2672 const auto *ET = Ty->getAs<EnumType>(); 2673 if (!ET) 2674 return false; 2675 2676 // The enum value must be supported. 2677 for (auto *EDI : ET->getDecl()->enumerators()) { 2678 if (EDI == Enumerator) 2679 return true; 2680 } 2681 2682 return false; 2683 } 2684 2685 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2686 CallExpr *TheCall) { 2687 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2688 BuiltinID == BPF::BI__builtin_btf_type_id || 2689 BuiltinID == BPF::BI__builtin_preserve_type_info || 2690 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 2691 "unexpected BPF builtin"); 2692 2693 if (checkArgCount(*this, TheCall, 2)) 2694 return true; 2695 2696 // The second argument needs to be a constant int 2697 Expr *Arg = TheCall->getArg(1); 2698 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 2699 diag::kind kind; 2700 if (!Value) { 2701 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 2702 kind = diag::err_preserve_field_info_not_const; 2703 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 2704 kind = diag::err_btf_type_id_not_const; 2705 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 2706 kind = diag::err_preserve_type_info_not_const; 2707 else 2708 kind = diag::err_preserve_enum_value_not_const; 2709 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 2710 return true; 2711 } 2712 2713 // The first argument 2714 Arg = TheCall->getArg(0); 2715 bool InvalidArg = false; 2716 bool ReturnUnsignedInt = true; 2717 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 2718 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 2719 InvalidArg = true; 2720 kind = diag::err_preserve_field_info_not_field; 2721 } 2722 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 2723 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 2724 InvalidArg = true; 2725 kind = diag::err_preserve_type_info_invalid; 2726 } 2727 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 2728 if (!isValidBPFPreserveEnumValueArg(Arg)) { 2729 InvalidArg = true; 2730 kind = diag::err_preserve_enum_value_invalid; 2731 } 2732 ReturnUnsignedInt = false; 2733 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2734 ReturnUnsignedInt = false; 2735 } 2736 2737 if (InvalidArg) { 2738 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 2739 return true; 2740 } 2741 2742 if (ReturnUnsignedInt) 2743 TheCall->setType(Context.UnsignedIntTy); 2744 else 2745 TheCall->setType(Context.UnsignedLongTy); 2746 return false; 2747 } 2748 2749 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2750 struct ArgInfo { 2751 uint8_t OpNum; 2752 bool IsSigned; 2753 uint8_t BitWidth; 2754 uint8_t Align; 2755 }; 2756 struct BuiltinInfo { 2757 unsigned BuiltinID; 2758 ArgInfo Infos[2]; 2759 }; 2760 2761 static BuiltinInfo Infos[] = { 2762 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2763 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2764 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2765 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2766 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2767 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2768 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2769 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2770 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2771 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2772 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2773 2774 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2777 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2785 2786 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2798 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2803 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2804 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2807 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2808 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2809 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2810 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2811 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2812 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2813 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2814 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2815 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2816 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2817 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2818 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2819 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2820 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2821 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2822 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2823 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2824 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2825 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2826 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2828 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2830 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2834 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2837 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2838 {{ 1, false, 6, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2842 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2843 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2845 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2846 {{ 1, false, 5, 0 }} }, 2847 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2848 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2849 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2851 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2852 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2853 { 2, false, 5, 0 }} }, 2854 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2855 { 2, false, 6, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2857 { 3, false, 5, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2859 { 3, false, 6, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2864 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2866 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2867 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2868 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2869 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2871 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2872 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2873 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2874 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2875 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2876 {{ 2, false, 4, 0 }, 2877 { 3, false, 5, 0 }} }, 2878 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2879 {{ 2, false, 4, 0 }, 2880 { 3, false, 5, 0 }} }, 2881 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2882 {{ 2, false, 4, 0 }, 2883 { 3, false, 5, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2885 {{ 2, false, 4, 0 }, 2886 { 3, false, 5, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2890 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2892 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2894 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2896 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2898 { 2, false, 5, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2900 { 2, false, 6, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2902 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2903 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2905 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2906 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2907 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2908 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2909 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2910 {{ 1, false, 4, 0 }} }, 2911 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2912 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2913 {{ 1, false, 4, 0 }} }, 2914 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2915 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2916 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2917 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2918 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2919 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2920 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2921 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2922 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2923 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2924 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2925 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2926 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2927 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2928 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2929 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2930 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2931 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2932 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2933 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2934 {{ 3, false, 1, 0 }} }, 2935 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2936 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2937 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2938 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2939 {{ 3, false, 1, 0 }} }, 2940 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2941 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2942 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2943 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2944 {{ 3, false, 1, 0 }} }, 2945 }; 2946 2947 // Use a dynamically initialized static to sort the table exactly once on 2948 // first run. 2949 static const bool SortOnce = 2950 (llvm::sort(Infos, 2951 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2952 return LHS.BuiltinID < RHS.BuiltinID; 2953 }), 2954 true); 2955 (void)SortOnce; 2956 2957 const BuiltinInfo *F = llvm::partition_point( 2958 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2959 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2960 return false; 2961 2962 bool Error = false; 2963 2964 for (const ArgInfo &A : F->Infos) { 2965 // Ignore empty ArgInfo elements. 2966 if (A.BitWidth == 0) 2967 continue; 2968 2969 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2970 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2971 if (!A.Align) { 2972 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2973 } else { 2974 unsigned M = 1 << A.Align; 2975 Min *= M; 2976 Max *= M; 2977 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2978 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2979 } 2980 } 2981 return Error; 2982 } 2983 2984 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2985 CallExpr *TheCall) { 2986 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2987 } 2988 2989 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2990 unsigned BuiltinID, CallExpr *TheCall) { 2991 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2992 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2993 } 2994 2995 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2996 CallExpr *TheCall) { 2997 2998 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2999 BuiltinID <= Mips::BI__builtin_mips_lwx) { 3000 if (!TI.hasFeature("dsp")) 3001 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 3002 } 3003 3004 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 3005 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 3006 if (!TI.hasFeature("dspr2")) 3007 return Diag(TheCall->getBeginLoc(), 3008 diag::err_mips_builtin_requires_dspr2); 3009 } 3010 3011 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 3012 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 3013 if (!TI.hasFeature("msa")) 3014 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 3015 } 3016 3017 return false; 3018 } 3019 3020 // CheckMipsBuiltinArgument - Checks the constant value passed to the 3021 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 3022 // ordering for DSP is unspecified. MSA is ordered by the data format used 3023 // by the underlying instruction i.e., df/m, df/n and then by size. 3024 // 3025 // FIXME: The size tests here should instead be tablegen'd along with the 3026 // definitions from include/clang/Basic/BuiltinsMips.def. 3027 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 3028 // be too. 3029 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 3030 unsigned i = 0, l = 0, u = 0, m = 0; 3031 switch (BuiltinID) { 3032 default: return false; 3033 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3034 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3035 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3036 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3037 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3038 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3039 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3040 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3041 // df/m field. 3042 // These intrinsics take an unsigned 3 bit immediate. 3043 case Mips::BI__builtin_msa_bclri_b: 3044 case Mips::BI__builtin_msa_bnegi_b: 3045 case Mips::BI__builtin_msa_bseti_b: 3046 case Mips::BI__builtin_msa_sat_s_b: 3047 case Mips::BI__builtin_msa_sat_u_b: 3048 case Mips::BI__builtin_msa_slli_b: 3049 case Mips::BI__builtin_msa_srai_b: 3050 case Mips::BI__builtin_msa_srari_b: 3051 case Mips::BI__builtin_msa_srli_b: 3052 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3053 case Mips::BI__builtin_msa_binsli_b: 3054 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3055 // These intrinsics take an unsigned 4 bit immediate. 3056 case Mips::BI__builtin_msa_bclri_h: 3057 case Mips::BI__builtin_msa_bnegi_h: 3058 case Mips::BI__builtin_msa_bseti_h: 3059 case Mips::BI__builtin_msa_sat_s_h: 3060 case Mips::BI__builtin_msa_sat_u_h: 3061 case Mips::BI__builtin_msa_slli_h: 3062 case Mips::BI__builtin_msa_srai_h: 3063 case Mips::BI__builtin_msa_srari_h: 3064 case Mips::BI__builtin_msa_srli_h: 3065 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3066 case Mips::BI__builtin_msa_binsli_h: 3067 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3068 // These intrinsics take an unsigned 5 bit immediate. 3069 // The first block of intrinsics actually have an unsigned 5 bit field, 3070 // not a df/n field. 3071 case Mips::BI__builtin_msa_cfcmsa: 3072 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3073 case Mips::BI__builtin_msa_clei_u_b: 3074 case Mips::BI__builtin_msa_clei_u_h: 3075 case Mips::BI__builtin_msa_clei_u_w: 3076 case Mips::BI__builtin_msa_clei_u_d: 3077 case Mips::BI__builtin_msa_clti_u_b: 3078 case Mips::BI__builtin_msa_clti_u_h: 3079 case Mips::BI__builtin_msa_clti_u_w: 3080 case Mips::BI__builtin_msa_clti_u_d: 3081 case Mips::BI__builtin_msa_maxi_u_b: 3082 case Mips::BI__builtin_msa_maxi_u_h: 3083 case Mips::BI__builtin_msa_maxi_u_w: 3084 case Mips::BI__builtin_msa_maxi_u_d: 3085 case Mips::BI__builtin_msa_mini_u_b: 3086 case Mips::BI__builtin_msa_mini_u_h: 3087 case Mips::BI__builtin_msa_mini_u_w: 3088 case Mips::BI__builtin_msa_mini_u_d: 3089 case Mips::BI__builtin_msa_addvi_b: 3090 case Mips::BI__builtin_msa_addvi_h: 3091 case Mips::BI__builtin_msa_addvi_w: 3092 case Mips::BI__builtin_msa_addvi_d: 3093 case Mips::BI__builtin_msa_bclri_w: 3094 case Mips::BI__builtin_msa_bnegi_w: 3095 case Mips::BI__builtin_msa_bseti_w: 3096 case Mips::BI__builtin_msa_sat_s_w: 3097 case Mips::BI__builtin_msa_sat_u_w: 3098 case Mips::BI__builtin_msa_slli_w: 3099 case Mips::BI__builtin_msa_srai_w: 3100 case Mips::BI__builtin_msa_srari_w: 3101 case Mips::BI__builtin_msa_srli_w: 3102 case Mips::BI__builtin_msa_srlri_w: 3103 case Mips::BI__builtin_msa_subvi_b: 3104 case Mips::BI__builtin_msa_subvi_h: 3105 case Mips::BI__builtin_msa_subvi_w: 3106 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3107 case Mips::BI__builtin_msa_binsli_w: 3108 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3109 // These intrinsics take an unsigned 6 bit immediate. 3110 case Mips::BI__builtin_msa_bclri_d: 3111 case Mips::BI__builtin_msa_bnegi_d: 3112 case Mips::BI__builtin_msa_bseti_d: 3113 case Mips::BI__builtin_msa_sat_s_d: 3114 case Mips::BI__builtin_msa_sat_u_d: 3115 case Mips::BI__builtin_msa_slli_d: 3116 case Mips::BI__builtin_msa_srai_d: 3117 case Mips::BI__builtin_msa_srari_d: 3118 case Mips::BI__builtin_msa_srli_d: 3119 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3120 case Mips::BI__builtin_msa_binsli_d: 3121 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3122 // These intrinsics take a signed 5 bit immediate. 3123 case Mips::BI__builtin_msa_ceqi_b: 3124 case Mips::BI__builtin_msa_ceqi_h: 3125 case Mips::BI__builtin_msa_ceqi_w: 3126 case Mips::BI__builtin_msa_ceqi_d: 3127 case Mips::BI__builtin_msa_clti_s_b: 3128 case Mips::BI__builtin_msa_clti_s_h: 3129 case Mips::BI__builtin_msa_clti_s_w: 3130 case Mips::BI__builtin_msa_clti_s_d: 3131 case Mips::BI__builtin_msa_clei_s_b: 3132 case Mips::BI__builtin_msa_clei_s_h: 3133 case Mips::BI__builtin_msa_clei_s_w: 3134 case Mips::BI__builtin_msa_clei_s_d: 3135 case Mips::BI__builtin_msa_maxi_s_b: 3136 case Mips::BI__builtin_msa_maxi_s_h: 3137 case Mips::BI__builtin_msa_maxi_s_w: 3138 case Mips::BI__builtin_msa_maxi_s_d: 3139 case Mips::BI__builtin_msa_mini_s_b: 3140 case Mips::BI__builtin_msa_mini_s_h: 3141 case Mips::BI__builtin_msa_mini_s_w: 3142 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3143 // These intrinsics take an unsigned 8 bit immediate. 3144 case Mips::BI__builtin_msa_andi_b: 3145 case Mips::BI__builtin_msa_nori_b: 3146 case Mips::BI__builtin_msa_ori_b: 3147 case Mips::BI__builtin_msa_shf_b: 3148 case Mips::BI__builtin_msa_shf_h: 3149 case Mips::BI__builtin_msa_shf_w: 3150 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3151 case Mips::BI__builtin_msa_bseli_b: 3152 case Mips::BI__builtin_msa_bmnzi_b: 3153 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3154 // df/n format 3155 // These intrinsics take an unsigned 4 bit immediate. 3156 case Mips::BI__builtin_msa_copy_s_b: 3157 case Mips::BI__builtin_msa_copy_u_b: 3158 case Mips::BI__builtin_msa_insve_b: 3159 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3160 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3161 // These intrinsics take an unsigned 3 bit immediate. 3162 case Mips::BI__builtin_msa_copy_s_h: 3163 case Mips::BI__builtin_msa_copy_u_h: 3164 case Mips::BI__builtin_msa_insve_h: 3165 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3166 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3167 // These intrinsics take an unsigned 2 bit immediate. 3168 case Mips::BI__builtin_msa_copy_s_w: 3169 case Mips::BI__builtin_msa_copy_u_w: 3170 case Mips::BI__builtin_msa_insve_w: 3171 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3172 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3173 // These intrinsics take an unsigned 1 bit immediate. 3174 case Mips::BI__builtin_msa_copy_s_d: 3175 case Mips::BI__builtin_msa_copy_u_d: 3176 case Mips::BI__builtin_msa_insve_d: 3177 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3178 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3179 // Memory offsets and immediate loads. 3180 // These intrinsics take a signed 10 bit immediate. 3181 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3182 case Mips::BI__builtin_msa_ldi_h: 3183 case Mips::BI__builtin_msa_ldi_w: 3184 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3185 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3186 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3187 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3188 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3189 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3190 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3191 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3192 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3193 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3194 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3195 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3196 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3197 } 3198 3199 if (!m) 3200 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3201 3202 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3203 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3204 } 3205 3206 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3207 /// advancing the pointer over the consumed characters. The decoded type is 3208 /// returned. If the decoded type represents a constant integer with a 3209 /// constraint on its value then Mask is set to that value. The type descriptors 3210 /// used in Str are specific to PPC MMA builtins and are documented in the file 3211 /// defining the PPC builtins. 3212 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3213 unsigned &Mask) { 3214 bool RequireICE = false; 3215 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3216 switch (*Str++) { 3217 case 'V': 3218 return Context.getVectorType(Context.UnsignedCharTy, 16, 3219 VectorType::VectorKind::AltiVecVector); 3220 case 'i': { 3221 char *End; 3222 unsigned size = strtoul(Str, &End, 10); 3223 assert(End != Str && "Missing constant parameter constraint"); 3224 Str = End; 3225 Mask = size; 3226 return Context.IntTy; 3227 } 3228 case 'W': { 3229 char *End; 3230 unsigned size = strtoul(Str, &End, 10); 3231 assert(End != Str && "Missing PowerPC MMA type size"); 3232 Str = End; 3233 QualType Type; 3234 switch (size) { 3235 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3236 case size: Type = Context.Id##Ty; break; 3237 #include "clang/Basic/PPCTypes.def" 3238 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3239 } 3240 bool CheckVectorArgs = false; 3241 while (!CheckVectorArgs) { 3242 switch (*Str++) { 3243 case '*': 3244 Type = Context.getPointerType(Type); 3245 break; 3246 case 'C': 3247 Type = Type.withConst(); 3248 break; 3249 default: 3250 CheckVectorArgs = true; 3251 --Str; 3252 break; 3253 } 3254 } 3255 return Type; 3256 } 3257 default: 3258 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3259 } 3260 } 3261 3262 static bool isPPC_64Builtin(unsigned BuiltinID) { 3263 // These builtins only work on PPC 64bit targets. 3264 switch (BuiltinID) { 3265 case PPC::BI__builtin_divde: 3266 case PPC::BI__builtin_divdeu: 3267 case PPC::BI__builtin_bpermd: 3268 case PPC::BI__builtin_ppc_ldarx: 3269 case PPC::BI__builtin_ppc_stdcx: 3270 case PPC::BI__builtin_ppc_tdw: 3271 case PPC::BI__builtin_ppc_trapd: 3272 case PPC::BI__builtin_ppc_cmpeqb: 3273 case PPC::BI__builtin_ppc_setb: 3274 case PPC::BI__builtin_ppc_mulhd: 3275 case PPC::BI__builtin_ppc_mulhdu: 3276 case PPC::BI__builtin_ppc_maddhd: 3277 case PPC::BI__builtin_ppc_maddhdu: 3278 case PPC::BI__builtin_ppc_maddld: 3279 case PPC::BI__builtin_ppc_load8r: 3280 case PPC::BI__builtin_ppc_store8r: 3281 case PPC::BI__builtin_ppc_insert_exp: 3282 case PPC::BI__builtin_ppc_extract_sig: 3283 return true; 3284 } 3285 return false; 3286 } 3287 3288 static bool SemaFeatureCheck(Sema &S, CallExpr *TheCall, 3289 StringRef FeatureToCheck, unsigned DiagID, 3290 StringRef DiagArg = "") { 3291 if (S.Context.getTargetInfo().hasFeature(FeatureToCheck)) 3292 return false; 3293 3294 if (DiagArg.empty()) 3295 S.Diag(TheCall->getBeginLoc(), DiagID) << TheCall->getSourceRange(); 3296 else 3297 S.Diag(TheCall->getBeginLoc(), DiagID) 3298 << DiagArg << TheCall->getSourceRange(); 3299 3300 return true; 3301 } 3302 3303 /// Returns true if the argument consists of one contiguous run of 1s with any 3304 /// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so 3305 /// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not, 3306 /// since all 1s are not contiguous. 3307 bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) { 3308 llvm::APSInt Result; 3309 // We can't check the value of a dependent argument. 3310 Expr *Arg = TheCall->getArg(ArgNum); 3311 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3312 return false; 3313 3314 // Check constant-ness first. 3315 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3316 return true; 3317 3318 // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s. 3319 if (Result.isShiftedMask() || (~Result).isShiftedMask()) 3320 return false; 3321 3322 return Diag(TheCall->getBeginLoc(), 3323 diag::err_argument_not_contiguous_bit_field) 3324 << ArgNum << Arg->getSourceRange(); 3325 } 3326 3327 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3328 CallExpr *TheCall) { 3329 unsigned i = 0, l = 0, u = 0; 3330 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3331 llvm::APSInt Result; 3332 3333 if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit) 3334 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3335 << TheCall->getSourceRange(); 3336 3337 switch (BuiltinID) { 3338 default: return false; 3339 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3340 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3341 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3342 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3343 case PPC::BI__builtin_altivec_dss: 3344 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3345 case PPC::BI__builtin_tbegin: 3346 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3347 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3348 case PPC::BI__builtin_tabortwc: 3349 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3350 case PPC::BI__builtin_tabortwci: 3351 case PPC::BI__builtin_tabortdci: 3352 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3353 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3354 case PPC::BI__builtin_altivec_dst: 3355 case PPC::BI__builtin_altivec_dstt: 3356 case PPC::BI__builtin_altivec_dstst: 3357 case PPC::BI__builtin_altivec_dststt: 3358 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3359 case PPC::BI__builtin_vsx_xxpermdi: 3360 case PPC::BI__builtin_vsx_xxsldwi: 3361 return SemaBuiltinVSX(TheCall); 3362 case PPC::BI__builtin_divwe: 3363 case PPC::BI__builtin_divweu: 3364 case PPC::BI__builtin_divde: 3365 case PPC::BI__builtin_divdeu: 3366 return SemaFeatureCheck(*this, TheCall, "extdiv", 3367 diag::err_ppc_builtin_only_on_arch, "7"); 3368 case PPC::BI__builtin_bpermd: 3369 return SemaFeatureCheck(*this, TheCall, "bpermd", 3370 diag::err_ppc_builtin_only_on_arch, "7"); 3371 case PPC::BI__builtin_unpack_vector_int128: 3372 return SemaFeatureCheck(*this, TheCall, "vsx", 3373 diag::err_ppc_builtin_only_on_arch, "7") || 3374 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3375 case PPC::BI__builtin_pack_vector_int128: 3376 return SemaFeatureCheck(*this, TheCall, "vsx", 3377 diag::err_ppc_builtin_only_on_arch, "7"); 3378 case PPC::BI__builtin_altivec_vgnb: 3379 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3380 case PPC::BI__builtin_altivec_vec_replace_elt: 3381 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3382 QualType VecTy = TheCall->getArg(0)->getType(); 3383 QualType EltTy = TheCall->getArg(1)->getType(); 3384 unsigned Width = Context.getIntWidth(EltTy); 3385 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3386 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3387 } 3388 case PPC::BI__builtin_vsx_xxeval: 3389 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3390 case PPC::BI__builtin_altivec_vsldbi: 3391 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3392 case PPC::BI__builtin_altivec_vsrdbi: 3393 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3394 case PPC::BI__builtin_vsx_xxpermx: 3395 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3396 case PPC::BI__builtin_ppc_tw: 3397 case PPC::BI__builtin_ppc_tdw: 3398 return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31); 3399 case PPC::BI__builtin_ppc_cmpeqb: 3400 case PPC::BI__builtin_ppc_setb: 3401 case PPC::BI__builtin_ppc_maddhd: 3402 case PPC::BI__builtin_ppc_maddhdu: 3403 case PPC::BI__builtin_ppc_maddld: 3404 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3405 diag::err_ppc_builtin_only_on_arch, "9"); 3406 case PPC::BI__builtin_ppc_cmprb: 3407 return SemaFeatureCheck(*this, TheCall, "isa-v30-instructions", 3408 diag::err_ppc_builtin_only_on_arch, "9") || 3409 SemaBuiltinConstantArgRange(TheCall, 0, 0, 1); 3410 // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must 3411 // be a constant that represents a contiguous bit field. 3412 case PPC::BI__builtin_ppc_rlwnm: 3413 return SemaBuiltinConstantArg(TheCall, 1, Result) || 3414 SemaValueIsRunOfOnes(TheCall, 2); 3415 case PPC::BI__builtin_ppc_rlwimi: 3416 case PPC::BI__builtin_ppc_rldimi: 3417 return SemaBuiltinConstantArg(TheCall, 2, Result) || 3418 SemaValueIsRunOfOnes(TheCall, 3); 3419 case PPC::BI__builtin_ppc_extract_exp: 3420 case PPC::BI__builtin_ppc_extract_sig: 3421 case PPC::BI__builtin_ppc_insert_exp: 3422 return SemaFeatureCheck(*this, TheCall, "power9-vector", 3423 diag::err_ppc_builtin_only_on_arch, "9"); 3424 case PPC::BI__builtin_ppc_mtfsb0: 3425 case PPC::BI__builtin_ppc_mtfsb1: 3426 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 3427 case PPC::BI__builtin_ppc_mtfsf: 3428 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255); 3429 case PPC::BI__builtin_ppc_mtfsfi: 3430 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) || 3431 SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 3432 case PPC::BI__builtin_ppc_alignx: 3433 return SemaBuiltinConstantArgPower2(TheCall, 0); 3434 case PPC::BI__builtin_ppc_rdlam: 3435 return SemaValueIsRunOfOnes(TheCall, 2); 3436 case PPC::BI__builtin_ppc_icbt: 3437 case PPC::BI__builtin_ppc_sthcx: 3438 case PPC::BI__builtin_ppc_stbcx: 3439 case PPC::BI__builtin_ppc_lharx: 3440 case PPC::BI__builtin_ppc_lbarx: 3441 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3442 diag::err_ppc_builtin_only_on_arch, "8"); 3443 case PPC::BI__builtin_vsx_ldrmb: 3444 case PPC::BI__builtin_vsx_strmb: 3445 return SemaFeatureCheck(*this, TheCall, "isa-v207-instructions", 3446 diag::err_ppc_builtin_only_on_arch, "8") || 3447 SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 3448 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 3449 case PPC::BI__builtin_##Name: \ 3450 return SemaBuiltinPPCMMACall(TheCall, Types); 3451 #include "clang/Basic/BuiltinsPPC.def" 3452 } 3453 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3454 } 3455 3456 // Check if the given type is a non-pointer PPC MMA type. This function is used 3457 // in Sema to prevent invalid uses of restricted PPC MMA types. 3458 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3459 if (Type->isPointerType() || Type->isArrayType()) 3460 return false; 3461 3462 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3463 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3464 if (false 3465 #include "clang/Basic/PPCTypes.def" 3466 ) { 3467 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3468 return true; 3469 } 3470 return false; 3471 } 3472 3473 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3474 CallExpr *TheCall) { 3475 // position of memory order and scope arguments in the builtin 3476 unsigned OrderIndex, ScopeIndex; 3477 switch (BuiltinID) { 3478 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3479 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3480 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3481 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3482 OrderIndex = 2; 3483 ScopeIndex = 3; 3484 break; 3485 case AMDGPU::BI__builtin_amdgcn_fence: 3486 OrderIndex = 0; 3487 ScopeIndex = 1; 3488 break; 3489 default: 3490 return false; 3491 } 3492 3493 ExprResult Arg = TheCall->getArg(OrderIndex); 3494 auto ArgExpr = Arg.get(); 3495 Expr::EvalResult ArgResult; 3496 3497 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3498 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3499 << ArgExpr->getType(); 3500 auto Ord = ArgResult.Val.getInt().getZExtValue(); 3501 3502 // Check valididty of memory ordering as per C11 / C++11's memody model. 3503 // Only fence needs check. Atomic dec/inc allow all memory orders. 3504 if (!llvm::isValidAtomicOrderingCABI(Ord)) 3505 return Diag(ArgExpr->getBeginLoc(), 3506 diag::warn_atomic_op_has_invalid_memory_order) 3507 << ArgExpr->getSourceRange(); 3508 switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) { 3509 case llvm::AtomicOrderingCABI::relaxed: 3510 case llvm::AtomicOrderingCABI::consume: 3511 if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence) 3512 return Diag(ArgExpr->getBeginLoc(), 3513 diag::warn_atomic_op_has_invalid_memory_order) 3514 << ArgExpr->getSourceRange(); 3515 break; 3516 case llvm::AtomicOrderingCABI::acquire: 3517 case llvm::AtomicOrderingCABI::release: 3518 case llvm::AtomicOrderingCABI::acq_rel: 3519 case llvm::AtomicOrderingCABI::seq_cst: 3520 break; 3521 } 3522 3523 Arg = TheCall->getArg(ScopeIndex); 3524 ArgExpr = Arg.get(); 3525 Expr::EvalResult ArgResult1; 3526 // Check that sync scope is a constant literal 3527 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3528 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3529 << ArgExpr->getType(); 3530 3531 return false; 3532 } 3533 3534 bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) { 3535 llvm::APSInt Result; 3536 3537 // We can't check the value of a dependent argument. 3538 Expr *Arg = TheCall->getArg(ArgNum); 3539 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3540 return false; 3541 3542 // Check constant-ness first. 3543 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3544 return true; 3545 3546 int64_t Val = Result.getSExtValue(); 3547 if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7)) 3548 return false; 3549 3550 return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul) 3551 << Arg->getSourceRange(); 3552 } 3553 3554 bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI, 3555 unsigned BuiltinID, 3556 CallExpr *TheCall) { 3557 // CodeGenFunction can also detect this, but this gives a better error 3558 // message. 3559 bool FeatureMissing = false; 3560 SmallVector<StringRef> ReqFeatures; 3561 StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID); 3562 Features.split(ReqFeatures, ','); 3563 3564 // Check if each required feature is included 3565 for (StringRef F : ReqFeatures) { 3566 if (TI.hasFeature(F)) 3567 continue; 3568 3569 // If the feature is 64bit, alter the string so it will print better in 3570 // the diagnostic. 3571 if (F == "64bit") 3572 F = "RV64"; 3573 3574 // Convert features like "zbr" and "experimental-zbr" to "Zbr". 3575 F.consume_front("experimental-"); 3576 std::string FeatureStr = F.str(); 3577 FeatureStr[0] = std::toupper(FeatureStr[0]); 3578 3579 // Error message 3580 FeatureMissing = true; 3581 Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension) 3582 << TheCall->getSourceRange() << StringRef(FeatureStr); 3583 } 3584 3585 if (FeatureMissing) 3586 return true; 3587 3588 switch (BuiltinID) { 3589 case RISCV::BI__builtin_rvv_vsetvli: 3590 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) || 3591 CheckRISCVLMUL(TheCall, 2); 3592 case RISCV::BI__builtin_rvv_vsetvlimax: 3593 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) || 3594 CheckRISCVLMUL(TheCall, 1); 3595 case RISCV::BI__builtin_rvv_vget_v_i8m2_i8m1: 3596 case RISCV::BI__builtin_rvv_vget_v_i16m2_i16m1: 3597 case RISCV::BI__builtin_rvv_vget_v_i32m2_i32m1: 3598 case RISCV::BI__builtin_rvv_vget_v_i64m2_i64m1: 3599 case RISCV::BI__builtin_rvv_vget_v_f32m2_f32m1: 3600 case RISCV::BI__builtin_rvv_vget_v_f64m2_f64m1: 3601 case RISCV::BI__builtin_rvv_vget_v_u8m2_u8m1: 3602 case RISCV::BI__builtin_rvv_vget_v_u16m2_u16m1: 3603 case RISCV::BI__builtin_rvv_vget_v_u32m2_u32m1: 3604 case RISCV::BI__builtin_rvv_vget_v_u64m2_u64m1: 3605 case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m2: 3606 case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m2: 3607 case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m2: 3608 case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m2: 3609 case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m2: 3610 case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m2: 3611 case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m2: 3612 case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m2: 3613 case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m2: 3614 case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m2: 3615 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m4: 3616 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m4: 3617 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m4: 3618 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m4: 3619 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m4: 3620 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m4: 3621 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m4: 3622 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m4: 3623 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m4: 3624 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m4: 3625 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3626 case RISCV::BI__builtin_rvv_vget_v_i8m4_i8m1: 3627 case RISCV::BI__builtin_rvv_vget_v_i16m4_i16m1: 3628 case RISCV::BI__builtin_rvv_vget_v_i32m4_i32m1: 3629 case RISCV::BI__builtin_rvv_vget_v_i64m4_i64m1: 3630 case RISCV::BI__builtin_rvv_vget_v_f32m4_f32m1: 3631 case RISCV::BI__builtin_rvv_vget_v_f64m4_f64m1: 3632 case RISCV::BI__builtin_rvv_vget_v_u8m4_u8m1: 3633 case RISCV::BI__builtin_rvv_vget_v_u16m4_u16m1: 3634 case RISCV::BI__builtin_rvv_vget_v_u32m4_u32m1: 3635 case RISCV::BI__builtin_rvv_vget_v_u64m4_u64m1: 3636 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m2: 3637 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m2: 3638 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m2: 3639 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m2: 3640 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m2: 3641 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m2: 3642 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m2: 3643 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m2: 3644 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m2: 3645 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m2: 3646 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3); 3647 case RISCV::BI__builtin_rvv_vget_v_i8m8_i8m1: 3648 case RISCV::BI__builtin_rvv_vget_v_i16m8_i16m1: 3649 case RISCV::BI__builtin_rvv_vget_v_i32m8_i32m1: 3650 case RISCV::BI__builtin_rvv_vget_v_i64m8_i64m1: 3651 case RISCV::BI__builtin_rvv_vget_v_f32m8_f32m1: 3652 case RISCV::BI__builtin_rvv_vget_v_f64m8_f64m1: 3653 case RISCV::BI__builtin_rvv_vget_v_u8m8_u8m1: 3654 case RISCV::BI__builtin_rvv_vget_v_u16m8_u16m1: 3655 case RISCV::BI__builtin_rvv_vget_v_u32m8_u32m1: 3656 case RISCV::BI__builtin_rvv_vget_v_u64m8_u64m1: 3657 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7); 3658 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m2: 3659 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m2: 3660 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m2: 3661 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m2: 3662 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m2: 3663 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m2: 3664 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m2: 3665 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m2: 3666 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m2: 3667 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m2: 3668 case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m4: 3669 case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m4: 3670 case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m4: 3671 case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m4: 3672 case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m4: 3673 case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m4: 3674 case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m4: 3675 case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m4: 3676 case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m4: 3677 case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m4: 3678 case RISCV::BI__builtin_rvv_vset_v_i8m4_i8m8: 3679 case RISCV::BI__builtin_rvv_vset_v_i16m4_i16m8: 3680 case RISCV::BI__builtin_rvv_vset_v_i32m4_i32m8: 3681 case RISCV::BI__builtin_rvv_vset_v_i64m4_i64m8: 3682 case RISCV::BI__builtin_rvv_vset_v_f32m4_f32m8: 3683 case RISCV::BI__builtin_rvv_vset_v_f64m4_f64m8: 3684 case RISCV::BI__builtin_rvv_vset_v_u8m4_u8m8: 3685 case RISCV::BI__builtin_rvv_vset_v_u16m4_u16m8: 3686 case RISCV::BI__builtin_rvv_vset_v_u32m4_u32m8: 3687 case RISCV::BI__builtin_rvv_vset_v_u64m4_u64m8: 3688 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3689 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m4: 3690 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m4: 3691 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m4: 3692 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m4: 3693 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m4: 3694 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m4: 3695 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m4: 3696 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m4: 3697 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m4: 3698 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m4: 3699 case RISCV::BI__builtin_rvv_vset_v_i8m2_i8m8: 3700 case RISCV::BI__builtin_rvv_vset_v_i16m2_i16m8: 3701 case RISCV::BI__builtin_rvv_vset_v_i32m2_i32m8: 3702 case RISCV::BI__builtin_rvv_vset_v_i64m2_i64m8: 3703 case RISCV::BI__builtin_rvv_vset_v_f32m2_f32m8: 3704 case RISCV::BI__builtin_rvv_vset_v_f64m2_f64m8: 3705 case RISCV::BI__builtin_rvv_vset_v_u8m2_u8m8: 3706 case RISCV::BI__builtin_rvv_vset_v_u16m2_u16m8: 3707 case RISCV::BI__builtin_rvv_vset_v_u32m2_u32m8: 3708 case RISCV::BI__builtin_rvv_vset_v_u64m2_u64m8: 3709 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3); 3710 case RISCV::BI__builtin_rvv_vset_v_i8m1_i8m8: 3711 case RISCV::BI__builtin_rvv_vset_v_i16m1_i16m8: 3712 case RISCV::BI__builtin_rvv_vset_v_i32m1_i32m8: 3713 case RISCV::BI__builtin_rvv_vset_v_i64m1_i64m8: 3714 case RISCV::BI__builtin_rvv_vset_v_f32m1_f32m8: 3715 case RISCV::BI__builtin_rvv_vset_v_f64m1_f64m8: 3716 case RISCV::BI__builtin_rvv_vset_v_u8m1_u8m8: 3717 case RISCV::BI__builtin_rvv_vset_v_u16m1_u16m8: 3718 case RISCV::BI__builtin_rvv_vset_v_u32m1_u32m8: 3719 case RISCV::BI__builtin_rvv_vset_v_u64m1_u64m8: 3720 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7); 3721 } 3722 3723 return false; 3724 } 3725 3726 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3727 CallExpr *TheCall) { 3728 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3729 Expr *Arg = TheCall->getArg(0); 3730 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 3731 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 3732 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3733 << Arg->getSourceRange(); 3734 } 3735 3736 // For intrinsics which take an immediate value as part of the instruction, 3737 // range check them here. 3738 unsigned i = 0, l = 0, u = 0; 3739 switch (BuiltinID) { 3740 default: return false; 3741 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3742 case SystemZ::BI__builtin_s390_verimb: 3743 case SystemZ::BI__builtin_s390_verimh: 3744 case SystemZ::BI__builtin_s390_verimf: 3745 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3746 case SystemZ::BI__builtin_s390_vfaeb: 3747 case SystemZ::BI__builtin_s390_vfaeh: 3748 case SystemZ::BI__builtin_s390_vfaef: 3749 case SystemZ::BI__builtin_s390_vfaebs: 3750 case SystemZ::BI__builtin_s390_vfaehs: 3751 case SystemZ::BI__builtin_s390_vfaefs: 3752 case SystemZ::BI__builtin_s390_vfaezb: 3753 case SystemZ::BI__builtin_s390_vfaezh: 3754 case SystemZ::BI__builtin_s390_vfaezf: 3755 case SystemZ::BI__builtin_s390_vfaezbs: 3756 case SystemZ::BI__builtin_s390_vfaezhs: 3757 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3758 case SystemZ::BI__builtin_s390_vfisb: 3759 case SystemZ::BI__builtin_s390_vfidb: 3760 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3761 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3762 case SystemZ::BI__builtin_s390_vftcisb: 3763 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3764 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3765 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3766 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3767 case SystemZ::BI__builtin_s390_vstrcb: 3768 case SystemZ::BI__builtin_s390_vstrch: 3769 case SystemZ::BI__builtin_s390_vstrcf: 3770 case SystemZ::BI__builtin_s390_vstrczb: 3771 case SystemZ::BI__builtin_s390_vstrczh: 3772 case SystemZ::BI__builtin_s390_vstrczf: 3773 case SystemZ::BI__builtin_s390_vstrcbs: 3774 case SystemZ::BI__builtin_s390_vstrchs: 3775 case SystemZ::BI__builtin_s390_vstrcfs: 3776 case SystemZ::BI__builtin_s390_vstrczbs: 3777 case SystemZ::BI__builtin_s390_vstrczhs: 3778 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3779 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3780 case SystemZ::BI__builtin_s390_vfminsb: 3781 case SystemZ::BI__builtin_s390_vfmaxsb: 3782 case SystemZ::BI__builtin_s390_vfmindb: 3783 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3784 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3785 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3786 case SystemZ::BI__builtin_s390_vclfnhs: 3787 case SystemZ::BI__builtin_s390_vclfnls: 3788 case SystemZ::BI__builtin_s390_vcfn: 3789 case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break; 3790 case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break; 3791 } 3792 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3793 } 3794 3795 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3796 /// This checks that the target supports __builtin_cpu_supports and 3797 /// that the string argument is constant and valid. 3798 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3799 CallExpr *TheCall) { 3800 Expr *Arg = TheCall->getArg(0); 3801 3802 // Check if the argument is a string literal. 3803 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3804 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3805 << Arg->getSourceRange(); 3806 3807 // Check the contents of the string. 3808 StringRef Feature = 3809 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3810 if (!TI.validateCpuSupports(Feature)) 3811 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3812 << Arg->getSourceRange(); 3813 return false; 3814 } 3815 3816 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3817 /// This checks that the target supports __builtin_cpu_is and 3818 /// that the string argument is constant and valid. 3819 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3820 Expr *Arg = TheCall->getArg(0); 3821 3822 // Check if the argument is a string literal. 3823 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3824 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3825 << Arg->getSourceRange(); 3826 3827 // Check the contents of the string. 3828 StringRef Feature = 3829 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3830 if (!TI.validateCpuIs(Feature)) 3831 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3832 << Arg->getSourceRange(); 3833 return false; 3834 } 3835 3836 // Check if the rounding mode is legal. 3837 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3838 // Indicates if this instruction has rounding control or just SAE. 3839 bool HasRC = false; 3840 3841 unsigned ArgNum = 0; 3842 switch (BuiltinID) { 3843 default: 3844 return false; 3845 case X86::BI__builtin_ia32_vcvttsd2si32: 3846 case X86::BI__builtin_ia32_vcvttsd2si64: 3847 case X86::BI__builtin_ia32_vcvttsd2usi32: 3848 case X86::BI__builtin_ia32_vcvttsd2usi64: 3849 case X86::BI__builtin_ia32_vcvttss2si32: 3850 case X86::BI__builtin_ia32_vcvttss2si64: 3851 case X86::BI__builtin_ia32_vcvttss2usi32: 3852 case X86::BI__builtin_ia32_vcvttss2usi64: 3853 ArgNum = 1; 3854 break; 3855 case X86::BI__builtin_ia32_maxpd512: 3856 case X86::BI__builtin_ia32_maxps512: 3857 case X86::BI__builtin_ia32_minpd512: 3858 case X86::BI__builtin_ia32_minps512: 3859 ArgNum = 2; 3860 break; 3861 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3862 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3863 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3864 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3865 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3866 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3867 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3868 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3869 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3870 case X86::BI__builtin_ia32_exp2pd_mask: 3871 case X86::BI__builtin_ia32_exp2ps_mask: 3872 case X86::BI__builtin_ia32_getexppd512_mask: 3873 case X86::BI__builtin_ia32_getexpps512_mask: 3874 case X86::BI__builtin_ia32_rcp28pd_mask: 3875 case X86::BI__builtin_ia32_rcp28ps_mask: 3876 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3877 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3878 case X86::BI__builtin_ia32_vcomisd: 3879 case X86::BI__builtin_ia32_vcomiss: 3880 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3881 ArgNum = 3; 3882 break; 3883 case X86::BI__builtin_ia32_cmppd512_mask: 3884 case X86::BI__builtin_ia32_cmpps512_mask: 3885 case X86::BI__builtin_ia32_cmpsd_mask: 3886 case X86::BI__builtin_ia32_cmpss_mask: 3887 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3888 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3889 case X86::BI__builtin_ia32_getexpss128_round_mask: 3890 case X86::BI__builtin_ia32_getmantpd512_mask: 3891 case X86::BI__builtin_ia32_getmantps512_mask: 3892 case X86::BI__builtin_ia32_maxsd_round_mask: 3893 case X86::BI__builtin_ia32_maxss_round_mask: 3894 case X86::BI__builtin_ia32_minsd_round_mask: 3895 case X86::BI__builtin_ia32_minss_round_mask: 3896 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3897 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3898 case X86::BI__builtin_ia32_reducepd512_mask: 3899 case X86::BI__builtin_ia32_reduceps512_mask: 3900 case X86::BI__builtin_ia32_rndscalepd_mask: 3901 case X86::BI__builtin_ia32_rndscaleps_mask: 3902 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3903 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3904 ArgNum = 4; 3905 break; 3906 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3907 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3908 case X86::BI__builtin_ia32_fixupimmps512_mask: 3909 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3910 case X86::BI__builtin_ia32_fixupimmsd_mask: 3911 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3912 case X86::BI__builtin_ia32_fixupimmss_mask: 3913 case X86::BI__builtin_ia32_fixupimmss_maskz: 3914 case X86::BI__builtin_ia32_getmantsd_round_mask: 3915 case X86::BI__builtin_ia32_getmantss_round_mask: 3916 case X86::BI__builtin_ia32_rangepd512_mask: 3917 case X86::BI__builtin_ia32_rangeps512_mask: 3918 case X86::BI__builtin_ia32_rangesd128_round_mask: 3919 case X86::BI__builtin_ia32_rangess128_round_mask: 3920 case X86::BI__builtin_ia32_reducesd_mask: 3921 case X86::BI__builtin_ia32_reducess_mask: 3922 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3923 case X86::BI__builtin_ia32_rndscaless_round_mask: 3924 ArgNum = 5; 3925 break; 3926 case X86::BI__builtin_ia32_vcvtsd2si64: 3927 case X86::BI__builtin_ia32_vcvtsd2si32: 3928 case X86::BI__builtin_ia32_vcvtsd2usi32: 3929 case X86::BI__builtin_ia32_vcvtsd2usi64: 3930 case X86::BI__builtin_ia32_vcvtss2si32: 3931 case X86::BI__builtin_ia32_vcvtss2si64: 3932 case X86::BI__builtin_ia32_vcvtss2usi32: 3933 case X86::BI__builtin_ia32_vcvtss2usi64: 3934 case X86::BI__builtin_ia32_sqrtpd512: 3935 case X86::BI__builtin_ia32_sqrtps512: 3936 ArgNum = 1; 3937 HasRC = true; 3938 break; 3939 case X86::BI__builtin_ia32_addpd512: 3940 case X86::BI__builtin_ia32_addps512: 3941 case X86::BI__builtin_ia32_divpd512: 3942 case X86::BI__builtin_ia32_divps512: 3943 case X86::BI__builtin_ia32_mulpd512: 3944 case X86::BI__builtin_ia32_mulps512: 3945 case X86::BI__builtin_ia32_subpd512: 3946 case X86::BI__builtin_ia32_subps512: 3947 case X86::BI__builtin_ia32_cvtsi2sd64: 3948 case X86::BI__builtin_ia32_cvtsi2ss32: 3949 case X86::BI__builtin_ia32_cvtsi2ss64: 3950 case X86::BI__builtin_ia32_cvtusi2sd64: 3951 case X86::BI__builtin_ia32_cvtusi2ss32: 3952 case X86::BI__builtin_ia32_cvtusi2ss64: 3953 ArgNum = 2; 3954 HasRC = true; 3955 break; 3956 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3957 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3958 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3959 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3960 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3961 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3962 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3963 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3964 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3965 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3966 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3967 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3968 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3969 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3970 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3971 ArgNum = 3; 3972 HasRC = true; 3973 break; 3974 case X86::BI__builtin_ia32_addss_round_mask: 3975 case X86::BI__builtin_ia32_addsd_round_mask: 3976 case X86::BI__builtin_ia32_divss_round_mask: 3977 case X86::BI__builtin_ia32_divsd_round_mask: 3978 case X86::BI__builtin_ia32_mulss_round_mask: 3979 case X86::BI__builtin_ia32_mulsd_round_mask: 3980 case X86::BI__builtin_ia32_subss_round_mask: 3981 case X86::BI__builtin_ia32_subsd_round_mask: 3982 case X86::BI__builtin_ia32_scalefpd512_mask: 3983 case X86::BI__builtin_ia32_scalefps512_mask: 3984 case X86::BI__builtin_ia32_scalefsd_round_mask: 3985 case X86::BI__builtin_ia32_scalefss_round_mask: 3986 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3987 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3988 case X86::BI__builtin_ia32_sqrtss_round_mask: 3989 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3990 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3991 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3992 case X86::BI__builtin_ia32_vfmaddss3_mask: 3993 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3994 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3995 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3996 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3997 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3998 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3999 case X86::BI__builtin_ia32_vfmaddps512_mask: 4000 case X86::BI__builtin_ia32_vfmaddps512_maskz: 4001 case X86::BI__builtin_ia32_vfmaddps512_mask3: 4002 case X86::BI__builtin_ia32_vfmsubps512_mask3: 4003 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 4004 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 4005 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 4006 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 4007 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 4008 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 4009 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 4010 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 4011 ArgNum = 4; 4012 HasRC = true; 4013 break; 4014 } 4015 4016 llvm::APSInt Result; 4017 4018 // We can't check the value of a dependent argument. 4019 Expr *Arg = TheCall->getArg(ArgNum); 4020 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4021 return false; 4022 4023 // Check constant-ness first. 4024 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4025 return true; 4026 4027 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 4028 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 4029 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 4030 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 4031 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 4032 Result == 8/*ROUND_NO_EXC*/ || 4033 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 4034 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 4035 return false; 4036 4037 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 4038 << Arg->getSourceRange(); 4039 } 4040 4041 // Check if the gather/scatter scale is legal. 4042 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 4043 CallExpr *TheCall) { 4044 unsigned ArgNum = 0; 4045 switch (BuiltinID) { 4046 default: 4047 return false; 4048 case X86::BI__builtin_ia32_gatherpfdpd: 4049 case X86::BI__builtin_ia32_gatherpfdps: 4050 case X86::BI__builtin_ia32_gatherpfqpd: 4051 case X86::BI__builtin_ia32_gatherpfqps: 4052 case X86::BI__builtin_ia32_scatterpfdpd: 4053 case X86::BI__builtin_ia32_scatterpfdps: 4054 case X86::BI__builtin_ia32_scatterpfqpd: 4055 case X86::BI__builtin_ia32_scatterpfqps: 4056 ArgNum = 3; 4057 break; 4058 case X86::BI__builtin_ia32_gatherd_pd: 4059 case X86::BI__builtin_ia32_gatherd_pd256: 4060 case X86::BI__builtin_ia32_gatherq_pd: 4061 case X86::BI__builtin_ia32_gatherq_pd256: 4062 case X86::BI__builtin_ia32_gatherd_ps: 4063 case X86::BI__builtin_ia32_gatherd_ps256: 4064 case X86::BI__builtin_ia32_gatherq_ps: 4065 case X86::BI__builtin_ia32_gatherq_ps256: 4066 case X86::BI__builtin_ia32_gatherd_q: 4067 case X86::BI__builtin_ia32_gatherd_q256: 4068 case X86::BI__builtin_ia32_gatherq_q: 4069 case X86::BI__builtin_ia32_gatherq_q256: 4070 case X86::BI__builtin_ia32_gatherd_d: 4071 case X86::BI__builtin_ia32_gatherd_d256: 4072 case X86::BI__builtin_ia32_gatherq_d: 4073 case X86::BI__builtin_ia32_gatherq_d256: 4074 case X86::BI__builtin_ia32_gather3div2df: 4075 case X86::BI__builtin_ia32_gather3div2di: 4076 case X86::BI__builtin_ia32_gather3div4df: 4077 case X86::BI__builtin_ia32_gather3div4di: 4078 case X86::BI__builtin_ia32_gather3div4sf: 4079 case X86::BI__builtin_ia32_gather3div4si: 4080 case X86::BI__builtin_ia32_gather3div8sf: 4081 case X86::BI__builtin_ia32_gather3div8si: 4082 case X86::BI__builtin_ia32_gather3siv2df: 4083 case X86::BI__builtin_ia32_gather3siv2di: 4084 case X86::BI__builtin_ia32_gather3siv4df: 4085 case X86::BI__builtin_ia32_gather3siv4di: 4086 case X86::BI__builtin_ia32_gather3siv4sf: 4087 case X86::BI__builtin_ia32_gather3siv4si: 4088 case X86::BI__builtin_ia32_gather3siv8sf: 4089 case X86::BI__builtin_ia32_gather3siv8si: 4090 case X86::BI__builtin_ia32_gathersiv8df: 4091 case X86::BI__builtin_ia32_gathersiv16sf: 4092 case X86::BI__builtin_ia32_gatherdiv8df: 4093 case X86::BI__builtin_ia32_gatherdiv16sf: 4094 case X86::BI__builtin_ia32_gathersiv8di: 4095 case X86::BI__builtin_ia32_gathersiv16si: 4096 case X86::BI__builtin_ia32_gatherdiv8di: 4097 case X86::BI__builtin_ia32_gatherdiv16si: 4098 case X86::BI__builtin_ia32_scatterdiv2df: 4099 case X86::BI__builtin_ia32_scatterdiv2di: 4100 case X86::BI__builtin_ia32_scatterdiv4df: 4101 case X86::BI__builtin_ia32_scatterdiv4di: 4102 case X86::BI__builtin_ia32_scatterdiv4sf: 4103 case X86::BI__builtin_ia32_scatterdiv4si: 4104 case X86::BI__builtin_ia32_scatterdiv8sf: 4105 case X86::BI__builtin_ia32_scatterdiv8si: 4106 case X86::BI__builtin_ia32_scattersiv2df: 4107 case X86::BI__builtin_ia32_scattersiv2di: 4108 case X86::BI__builtin_ia32_scattersiv4df: 4109 case X86::BI__builtin_ia32_scattersiv4di: 4110 case X86::BI__builtin_ia32_scattersiv4sf: 4111 case X86::BI__builtin_ia32_scattersiv4si: 4112 case X86::BI__builtin_ia32_scattersiv8sf: 4113 case X86::BI__builtin_ia32_scattersiv8si: 4114 case X86::BI__builtin_ia32_scattersiv8df: 4115 case X86::BI__builtin_ia32_scattersiv16sf: 4116 case X86::BI__builtin_ia32_scatterdiv8df: 4117 case X86::BI__builtin_ia32_scatterdiv16sf: 4118 case X86::BI__builtin_ia32_scattersiv8di: 4119 case X86::BI__builtin_ia32_scattersiv16si: 4120 case X86::BI__builtin_ia32_scatterdiv8di: 4121 case X86::BI__builtin_ia32_scatterdiv16si: 4122 ArgNum = 4; 4123 break; 4124 } 4125 4126 llvm::APSInt Result; 4127 4128 // We can't check the value of a dependent argument. 4129 Expr *Arg = TheCall->getArg(ArgNum); 4130 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4131 return false; 4132 4133 // Check constant-ness first. 4134 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4135 return true; 4136 4137 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 4138 return false; 4139 4140 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 4141 << Arg->getSourceRange(); 4142 } 4143 4144 enum { TileRegLow = 0, TileRegHigh = 7 }; 4145 4146 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 4147 ArrayRef<int> ArgNums) { 4148 for (int ArgNum : ArgNums) { 4149 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 4150 return true; 4151 } 4152 return false; 4153 } 4154 4155 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 4156 ArrayRef<int> ArgNums) { 4157 // Because the max number of tile register is TileRegHigh + 1, so here we use 4158 // each bit to represent the usage of them in bitset. 4159 std::bitset<TileRegHigh + 1> ArgValues; 4160 for (int ArgNum : ArgNums) { 4161 Expr *Arg = TheCall->getArg(ArgNum); 4162 if (Arg->isTypeDependent() || Arg->isValueDependent()) 4163 continue; 4164 4165 llvm::APSInt Result; 4166 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 4167 return true; 4168 int ArgExtValue = Result.getExtValue(); 4169 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 4170 "Incorrect tile register num."); 4171 if (ArgValues.test(ArgExtValue)) 4172 return Diag(TheCall->getBeginLoc(), 4173 diag::err_x86_builtin_tile_arg_duplicate) 4174 << TheCall->getArg(ArgNum)->getSourceRange(); 4175 ArgValues.set(ArgExtValue); 4176 } 4177 return false; 4178 } 4179 4180 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 4181 ArrayRef<int> ArgNums) { 4182 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 4183 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 4184 } 4185 4186 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 4187 switch (BuiltinID) { 4188 default: 4189 return false; 4190 case X86::BI__builtin_ia32_tileloadd64: 4191 case X86::BI__builtin_ia32_tileloaddt164: 4192 case X86::BI__builtin_ia32_tilestored64: 4193 case X86::BI__builtin_ia32_tilezero: 4194 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 4195 case X86::BI__builtin_ia32_tdpbssd: 4196 case X86::BI__builtin_ia32_tdpbsud: 4197 case X86::BI__builtin_ia32_tdpbusd: 4198 case X86::BI__builtin_ia32_tdpbuud: 4199 case X86::BI__builtin_ia32_tdpbf16ps: 4200 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 4201 } 4202 } 4203 static bool isX86_32Builtin(unsigned BuiltinID) { 4204 // These builtins only work on x86-32 targets. 4205 switch (BuiltinID) { 4206 case X86::BI__builtin_ia32_readeflags_u32: 4207 case X86::BI__builtin_ia32_writeeflags_u32: 4208 return true; 4209 } 4210 4211 return false; 4212 } 4213 4214 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 4215 CallExpr *TheCall) { 4216 if (BuiltinID == X86::BI__builtin_cpu_supports) 4217 return SemaBuiltinCpuSupports(*this, TI, TheCall); 4218 4219 if (BuiltinID == X86::BI__builtin_cpu_is) 4220 return SemaBuiltinCpuIs(*this, TI, TheCall); 4221 4222 // Check for 32-bit only builtins on a 64-bit target. 4223 const llvm::Triple &TT = TI.getTriple(); 4224 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 4225 return Diag(TheCall->getCallee()->getBeginLoc(), 4226 diag::err_32_bit_builtin_64_bit_tgt); 4227 4228 // If the intrinsic has rounding or SAE make sure its valid. 4229 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 4230 return true; 4231 4232 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 4233 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 4234 return true; 4235 4236 // If the intrinsic has a tile arguments, make sure they are valid. 4237 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 4238 return true; 4239 4240 // For intrinsics which take an immediate value as part of the instruction, 4241 // range check them here. 4242 int i = 0, l = 0, u = 0; 4243 switch (BuiltinID) { 4244 default: 4245 return false; 4246 case X86::BI__builtin_ia32_vec_ext_v2si: 4247 case X86::BI__builtin_ia32_vec_ext_v2di: 4248 case X86::BI__builtin_ia32_vextractf128_pd256: 4249 case X86::BI__builtin_ia32_vextractf128_ps256: 4250 case X86::BI__builtin_ia32_vextractf128_si256: 4251 case X86::BI__builtin_ia32_extract128i256: 4252 case X86::BI__builtin_ia32_extractf64x4_mask: 4253 case X86::BI__builtin_ia32_extracti64x4_mask: 4254 case X86::BI__builtin_ia32_extractf32x8_mask: 4255 case X86::BI__builtin_ia32_extracti32x8_mask: 4256 case X86::BI__builtin_ia32_extractf64x2_256_mask: 4257 case X86::BI__builtin_ia32_extracti64x2_256_mask: 4258 case X86::BI__builtin_ia32_extractf32x4_256_mask: 4259 case X86::BI__builtin_ia32_extracti32x4_256_mask: 4260 i = 1; l = 0; u = 1; 4261 break; 4262 case X86::BI__builtin_ia32_vec_set_v2di: 4263 case X86::BI__builtin_ia32_vinsertf128_pd256: 4264 case X86::BI__builtin_ia32_vinsertf128_ps256: 4265 case X86::BI__builtin_ia32_vinsertf128_si256: 4266 case X86::BI__builtin_ia32_insert128i256: 4267 case X86::BI__builtin_ia32_insertf32x8: 4268 case X86::BI__builtin_ia32_inserti32x8: 4269 case X86::BI__builtin_ia32_insertf64x4: 4270 case X86::BI__builtin_ia32_inserti64x4: 4271 case X86::BI__builtin_ia32_insertf64x2_256: 4272 case X86::BI__builtin_ia32_inserti64x2_256: 4273 case X86::BI__builtin_ia32_insertf32x4_256: 4274 case X86::BI__builtin_ia32_inserti32x4_256: 4275 i = 2; l = 0; u = 1; 4276 break; 4277 case X86::BI__builtin_ia32_vpermilpd: 4278 case X86::BI__builtin_ia32_vec_ext_v4hi: 4279 case X86::BI__builtin_ia32_vec_ext_v4si: 4280 case X86::BI__builtin_ia32_vec_ext_v4sf: 4281 case X86::BI__builtin_ia32_vec_ext_v4di: 4282 case X86::BI__builtin_ia32_extractf32x4_mask: 4283 case X86::BI__builtin_ia32_extracti32x4_mask: 4284 case X86::BI__builtin_ia32_extractf64x2_512_mask: 4285 case X86::BI__builtin_ia32_extracti64x2_512_mask: 4286 i = 1; l = 0; u = 3; 4287 break; 4288 case X86::BI_mm_prefetch: 4289 case X86::BI__builtin_ia32_vec_ext_v8hi: 4290 case X86::BI__builtin_ia32_vec_ext_v8si: 4291 i = 1; l = 0; u = 7; 4292 break; 4293 case X86::BI__builtin_ia32_sha1rnds4: 4294 case X86::BI__builtin_ia32_blendpd: 4295 case X86::BI__builtin_ia32_shufpd: 4296 case X86::BI__builtin_ia32_vec_set_v4hi: 4297 case X86::BI__builtin_ia32_vec_set_v4si: 4298 case X86::BI__builtin_ia32_vec_set_v4di: 4299 case X86::BI__builtin_ia32_shuf_f32x4_256: 4300 case X86::BI__builtin_ia32_shuf_f64x2_256: 4301 case X86::BI__builtin_ia32_shuf_i32x4_256: 4302 case X86::BI__builtin_ia32_shuf_i64x2_256: 4303 case X86::BI__builtin_ia32_insertf64x2_512: 4304 case X86::BI__builtin_ia32_inserti64x2_512: 4305 case X86::BI__builtin_ia32_insertf32x4: 4306 case X86::BI__builtin_ia32_inserti32x4: 4307 i = 2; l = 0; u = 3; 4308 break; 4309 case X86::BI__builtin_ia32_vpermil2pd: 4310 case X86::BI__builtin_ia32_vpermil2pd256: 4311 case X86::BI__builtin_ia32_vpermil2ps: 4312 case X86::BI__builtin_ia32_vpermil2ps256: 4313 i = 3; l = 0; u = 3; 4314 break; 4315 case X86::BI__builtin_ia32_cmpb128_mask: 4316 case X86::BI__builtin_ia32_cmpw128_mask: 4317 case X86::BI__builtin_ia32_cmpd128_mask: 4318 case X86::BI__builtin_ia32_cmpq128_mask: 4319 case X86::BI__builtin_ia32_cmpb256_mask: 4320 case X86::BI__builtin_ia32_cmpw256_mask: 4321 case X86::BI__builtin_ia32_cmpd256_mask: 4322 case X86::BI__builtin_ia32_cmpq256_mask: 4323 case X86::BI__builtin_ia32_cmpb512_mask: 4324 case X86::BI__builtin_ia32_cmpw512_mask: 4325 case X86::BI__builtin_ia32_cmpd512_mask: 4326 case X86::BI__builtin_ia32_cmpq512_mask: 4327 case X86::BI__builtin_ia32_ucmpb128_mask: 4328 case X86::BI__builtin_ia32_ucmpw128_mask: 4329 case X86::BI__builtin_ia32_ucmpd128_mask: 4330 case X86::BI__builtin_ia32_ucmpq128_mask: 4331 case X86::BI__builtin_ia32_ucmpb256_mask: 4332 case X86::BI__builtin_ia32_ucmpw256_mask: 4333 case X86::BI__builtin_ia32_ucmpd256_mask: 4334 case X86::BI__builtin_ia32_ucmpq256_mask: 4335 case X86::BI__builtin_ia32_ucmpb512_mask: 4336 case X86::BI__builtin_ia32_ucmpw512_mask: 4337 case X86::BI__builtin_ia32_ucmpd512_mask: 4338 case X86::BI__builtin_ia32_ucmpq512_mask: 4339 case X86::BI__builtin_ia32_vpcomub: 4340 case X86::BI__builtin_ia32_vpcomuw: 4341 case X86::BI__builtin_ia32_vpcomud: 4342 case X86::BI__builtin_ia32_vpcomuq: 4343 case X86::BI__builtin_ia32_vpcomb: 4344 case X86::BI__builtin_ia32_vpcomw: 4345 case X86::BI__builtin_ia32_vpcomd: 4346 case X86::BI__builtin_ia32_vpcomq: 4347 case X86::BI__builtin_ia32_vec_set_v8hi: 4348 case X86::BI__builtin_ia32_vec_set_v8si: 4349 i = 2; l = 0; u = 7; 4350 break; 4351 case X86::BI__builtin_ia32_vpermilpd256: 4352 case X86::BI__builtin_ia32_roundps: 4353 case X86::BI__builtin_ia32_roundpd: 4354 case X86::BI__builtin_ia32_roundps256: 4355 case X86::BI__builtin_ia32_roundpd256: 4356 case X86::BI__builtin_ia32_getmantpd128_mask: 4357 case X86::BI__builtin_ia32_getmantpd256_mask: 4358 case X86::BI__builtin_ia32_getmantps128_mask: 4359 case X86::BI__builtin_ia32_getmantps256_mask: 4360 case X86::BI__builtin_ia32_getmantpd512_mask: 4361 case X86::BI__builtin_ia32_getmantps512_mask: 4362 case X86::BI__builtin_ia32_vec_ext_v16qi: 4363 case X86::BI__builtin_ia32_vec_ext_v16hi: 4364 i = 1; l = 0; u = 15; 4365 break; 4366 case X86::BI__builtin_ia32_pblendd128: 4367 case X86::BI__builtin_ia32_blendps: 4368 case X86::BI__builtin_ia32_blendpd256: 4369 case X86::BI__builtin_ia32_shufpd256: 4370 case X86::BI__builtin_ia32_roundss: 4371 case X86::BI__builtin_ia32_roundsd: 4372 case X86::BI__builtin_ia32_rangepd128_mask: 4373 case X86::BI__builtin_ia32_rangepd256_mask: 4374 case X86::BI__builtin_ia32_rangepd512_mask: 4375 case X86::BI__builtin_ia32_rangeps128_mask: 4376 case X86::BI__builtin_ia32_rangeps256_mask: 4377 case X86::BI__builtin_ia32_rangeps512_mask: 4378 case X86::BI__builtin_ia32_getmantsd_round_mask: 4379 case X86::BI__builtin_ia32_getmantss_round_mask: 4380 case X86::BI__builtin_ia32_vec_set_v16qi: 4381 case X86::BI__builtin_ia32_vec_set_v16hi: 4382 i = 2; l = 0; u = 15; 4383 break; 4384 case X86::BI__builtin_ia32_vec_ext_v32qi: 4385 i = 1; l = 0; u = 31; 4386 break; 4387 case X86::BI__builtin_ia32_cmpps: 4388 case X86::BI__builtin_ia32_cmpss: 4389 case X86::BI__builtin_ia32_cmppd: 4390 case X86::BI__builtin_ia32_cmpsd: 4391 case X86::BI__builtin_ia32_cmpps256: 4392 case X86::BI__builtin_ia32_cmppd256: 4393 case X86::BI__builtin_ia32_cmpps128_mask: 4394 case X86::BI__builtin_ia32_cmppd128_mask: 4395 case X86::BI__builtin_ia32_cmpps256_mask: 4396 case X86::BI__builtin_ia32_cmppd256_mask: 4397 case X86::BI__builtin_ia32_cmpps512_mask: 4398 case X86::BI__builtin_ia32_cmppd512_mask: 4399 case X86::BI__builtin_ia32_cmpsd_mask: 4400 case X86::BI__builtin_ia32_cmpss_mask: 4401 case X86::BI__builtin_ia32_vec_set_v32qi: 4402 i = 2; l = 0; u = 31; 4403 break; 4404 case X86::BI__builtin_ia32_permdf256: 4405 case X86::BI__builtin_ia32_permdi256: 4406 case X86::BI__builtin_ia32_permdf512: 4407 case X86::BI__builtin_ia32_permdi512: 4408 case X86::BI__builtin_ia32_vpermilps: 4409 case X86::BI__builtin_ia32_vpermilps256: 4410 case X86::BI__builtin_ia32_vpermilpd512: 4411 case X86::BI__builtin_ia32_vpermilps512: 4412 case X86::BI__builtin_ia32_pshufd: 4413 case X86::BI__builtin_ia32_pshufd256: 4414 case X86::BI__builtin_ia32_pshufd512: 4415 case X86::BI__builtin_ia32_pshufhw: 4416 case X86::BI__builtin_ia32_pshufhw256: 4417 case X86::BI__builtin_ia32_pshufhw512: 4418 case X86::BI__builtin_ia32_pshuflw: 4419 case X86::BI__builtin_ia32_pshuflw256: 4420 case X86::BI__builtin_ia32_pshuflw512: 4421 case X86::BI__builtin_ia32_vcvtps2ph: 4422 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4423 case X86::BI__builtin_ia32_vcvtps2ph256: 4424 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4425 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4426 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4427 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4428 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4429 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4430 case X86::BI__builtin_ia32_rndscaleps_mask: 4431 case X86::BI__builtin_ia32_rndscalepd_mask: 4432 case X86::BI__builtin_ia32_reducepd128_mask: 4433 case X86::BI__builtin_ia32_reducepd256_mask: 4434 case X86::BI__builtin_ia32_reducepd512_mask: 4435 case X86::BI__builtin_ia32_reduceps128_mask: 4436 case X86::BI__builtin_ia32_reduceps256_mask: 4437 case X86::BI__builtin_ia32_reduceps512_mask: 4438 case X86::BI__builtin_ia32_prold512: 4439 case X86::BI__builtin_ia32_prolq512: 4440 case X86::BI__builtin_ia32_prold128: 4441 case X86::BI__builtin_ia32_prold256: 4442 case X86::BI__builtin_ia32_prolq128: 4443 case X86::BI__builtin_ia32_prolq256: 4444 case X86::BI__builtin_ia32_prord512: 4445 case X86::BI__builtin_ia32_prorq512: 4446 case X86::BI__builtin_ia32_prord128: 4447 case X86::BI__builtin_ia32_prord256: 4448 case X86::BI__builtin_ia32_prorq128: 4449 case X86::BI__builtin_ia32_prorq256: 4450 case X86::BI__builtin_ia32_fpclasspd128_mask: 4451 case X86::BI__builtin_ia32_fpclasspd256_mask: 4452 case X86::BI__builtin_ia32_fpclassps128_mask: 4453 case X86::BI__builtin_ia32_fpclassps256_mask: 4454 case X86::BI__builtin_ia32_fpclassps512_mask: 4455 case X86::BI__builtin_ia32_fpclasspd512_mask: 4456 case X86::BI__builtin_ia32_fpclasssd_mask: 4457 case X86::BI__builtin_ia32_fpclassss_mask: 4458 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4459 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4460 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4461 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4462 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4463 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4464 case X86::BI__builtin_ia32_kshiftliqi: 4465 case X86::BI__builtin_ia32_kshiftlihi: 4466 case X86::BI__builtin_ia32_kshiftlisi: 4467 case X86::BI__builtin_ia32_kshiftlidi: 4468 case X86::BI__builtin_ia32_kshiftriqi: 4469 case X86::BI__builtin_ia32_kshiftrihi: 4470 case X86::BI__builtin_ia32_kshiftrisi: 4471 case X86::BI__builtin_ia32_kshiftridi: 4472 i = 1; l = 0; u = 255; 4473 break; 4474 case X86::BI__builtin_ia32_vperm2f128_pd256: 4475 case X86::BI__builtin_ia32_vperm2f128_ps256: 4476 case X86::BI__builtin_ia32_vperm2f128_si256: 4477 case X86::BI__builtin_ia32_permti256: 4478 case X86::BI__builtin_ia32_pblendw128: 4479 case X86::BI__builtin_ia32_pblendw256: 4480 case X86::BI__builtin_ia32_blendps256: 4481 case X86::BI__builtin_ia32_pblendd256: 4482 case X86::BI__builtin_ia32_palignr128: 4483 case X86::BI__builtin_ia32_palignr256: 4484 case X86::BI__builtin_ia32_palignr512: 4485 case X86::BI__builtin_ia32_alignq512: 4486 case X86::BI__builtin_ia32_alignd512: 4487 case X86::BI__builtin_ia32_alignd128: 4488 case X86::BI__builtin_ia32_alignd256: 4489 case X86::BI__builtin_ia32_alignq128: 4490 case X86::BI__builtin_ia32_alignq256: 4491 case X86::BI__builtin_ia32_vcomisd: 4492 case X86::BI__builtin_ia32_vcomiss: 4493 case X86::BI__builtin_ia32_shuf_f32x4: 4494 case X86::BI__builtin_ia32_shuf_f64x2: 4495 case X86::BI__builtin_ia32_shuf_i32x4: 4496 case X86::BI__builtin_ia32_shuf_i64x2: 4497 case X86::BI__builtin_ia32_shufpd512: 4498 case X86::BI__builtin_ia32_shufps: 4499 case X86::BI__builtin_ia32_shufps256: 4500 case X86::BI__builtin_ia32_shufps512: 4501 case X86::BI__builtin_ia32_dbpsadbw128: 4502 case X86::BI__builtin_ia32_dbpsadbw256: 4503 case X86::BI__builtin_ia32_dbpsadbw512: 4504 case X86::BI__builtin_ia32_vpshldd128: 4505 case X86::BI__builtin_ia32_vpshldd256: 4506 case X86::BI__builtin_ia32_vpshldd512: 4507 case X86::BI__builtin_ia32_vpshldq128: 4508 case X86::BI__builtin_ia32_vpshldq256: 4509 case X86::BI__builtin_ia32_vpshldq512: 4510 case X86::BI__builtin_ia32_vpshldw128: 4511 case X86::BI__builtin_ia32_vpshldw256: 4512 case X86::BI__builtin_ia32_vpshldw512: 4513 case X86::BI__builtin_ia32_vpshrdd128: 4514 case X86::BI__builtin_ia32_vpshrdd256: 4515 case X86::BI__builtin_ia32_vpshrdd512: 4516 case X86::BI__builtin_ia32_vpshrdq128: 4517 case X86::BI__builtin_ia32_vpshrdq256: 4518 case X86::BI__builtin_ia32_vpshrdq512: 4519 case X86::BI__builtin_ia32_vpshrdw128: 4520 case X86::BI__builtin_ia32_vpshrdw256: 4521 case X86::BI__builtin_ia32_vpshrdw512: 4522 i = 2; l = 0; u = 255; 4523 break; 4524 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4525 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4526 case X86::BI__builtin_ia32_fixupimmps512_mask: 4527 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4528 case X86::BI__builtin_ia32_fixupimmsd_mask: 4529 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4530 case X86::BI__builtin_ia32_fixupimmss_mask: 4531 case X86::BI__builtin_ia32_fixupimmss_maskz: 4532 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4533 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4534 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4535 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4536 case X86::BI__builtin_ia32_fixupimmps128_mask: 4537 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4538 case X86::BI__builtin_ia32_fixupimmps256_mask: 4539 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4540 case X86::BI__builtin_ia32_pternlogd512_mask: 4541 case X86::BI__builtin_ia32_pternlogd512_maskz: 4542 case X86::BI__builtin_ia32_pternlogq512_mask: 4543 case X86::BI__builtin_ia32_pternlogq512_maskz: 4544 case X86::BI__builtin_ia32_pternlogd128_mask: 4545 case X86::BI__builtin_ia32_pternlogd128_maskz: 4546 case X86::BI__builtin_ia32_pternlogd256_mask: 4547 case X86::BI__builtin_ia32_pternlogd256_maskz: 4548 case X86::BI__builtin_ia32_pternlogq128_mask: 4549 case X86::BI__builtin_ia32_pternlogq128_maskz: 4550 case X86::BI__builtin_ia32_pternlogq256_mask: 4551 case X86::BI__builtin_ia32_pternlogq256_maskz: 4552 i = 3; l = 0; u = 255; 4553 break; 4554 case X86::BI__builtin_ia32_gatherpfdpd: 4555 case X86::BI__builtin_ia32_gatherpfdps: 4556 case X86::BI__builtin_ia32_gatherpfqpd: 4557 case X86::BI__builtin_ia32_gatherpfqps: 4558 case X86::BI__builtin_ia32_scatterpfdpd: 4559 case X86::BI__builtin_ia32_scatterpfdps: 4560 case X86::BI__builtin_ia32_scatterpfqpd: 4561 case X86::BI__builtin_ia32_scatterpfqps: 4562 i = 4; l = 2; u = 3; 4563 break; 4564 case X86::BI__builtin_ia32_reducesd_mask: 4565 case X86::BI__builtin_ia32_reducess_mask: 4566 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4567 case X86::BI__builtin_ia32_rndscaless_round_mask: 4568 i = 4; l = 0; u = 255; 4569 break; 4570 } 4571 4572 // Note that we don't force a hard error on the range check here, allowing 4573 // template-generated or macro-generated dead code to potentially have out-of- 4574 // range values. These need to code generate, but don't need to necessarily 4575 // make any sense. We use a warning that defaults to an error. 4576 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4577 } 4578 4579 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4580 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4581 /// Returns true when the format fits the function and the FormatStringInfo has 4582 /// been populated. 4583 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4584 FormatStringInfo *FSI) { 4585 FSI->HasVAListArg = Format->getFirstArg() == 0; 4586 FSI->FormatIdx = Format->getFormatIdx() - 1; 4587 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4588 4589 // The way the format attribute works in GCC, the implicit this argument 4590 // of member functions is counted. However, it doesn't appear in our own 4591 // lists, so decrement format_idx in that case. 4592 if (IsCXXMember) { 4593 if(FSI->FormatIdx == 0) 4594 return false; 4595 --FSI->FormatIdx; 4596 if (FSI->FirstDataArg != 0) 4597 --FSI->FirstDataArg; 4598 } 4599 return true; 4600 } 4601 4602 /// Checks if a the given expression evaluates to null. 4603 /// 4604 /// Returns true if the value evaluates to null. 4605 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4606 // If the expression has non-null type, it doesn't evaluate to null. 4607 if (auto nullability 4608 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4609 if (*nullability == NullabilityKind::NonNull) 4610 return false; 4611 } 4612 4613 // As a special case, transparent unions initialized with zero are 4614 // considered null for the purposes of the nonnull attribute. 4615 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4616 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4617 if (const CompoundLiteralExpr *CLE = 4618 dyn_cast<CompoundLiteralExpr>(Expr)) 4619 if (const InitListExpr *ILE = 4620 dyn_cast<InitListExpr>(CLE->getInitializer())) 4621 Expr = ILE->getInit(0); 4622 } 4623 4624 bool Result; 4625 return (!Expr->isValueDependent() && 4626 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4627 !Result); 4628 } 4629 4630 static void CheckNonNullArgument(Sema &S, 4631 const Expr *ArgExpr, 4632 SourceLocation CallSiteLoc) { 4633 if (CheckNonNullExpr(S, ArgExpr)) 4634 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4635 S.PDiag(diag::warn_null_arg) 4636 << ArgExpr->getSourceRange()); 4637 } 4638 4639 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4640 FormatStringInfo FSI; 4641 if ((GetFormatStringType(Format) == FST_NSString) && 4642 getFormatStringInfo(Format, false, &FSI)) { 4643 Idx = FSI.FormatIdx; 4644 return true; 4645 } 4646 return false; 4647 } 4648 4649 /// Diagnose use of %s directive in an NSString which is being passed 4650 /// as formatting string to formatting method. 4651 static void 4652 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4653 const NamedDecl *FDecl, 4654 Expr **Args, 4655 unsigned NumArgs) { 4656 unsigned Idx = 0; 4657 bool Format = false; 4658 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4659 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4660 Idx = 2; 4661 Format = true; 4662 } 4663 else 4664 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4665 if (S.GetFormatNSStringIdx(I, Idx)) { 4666 Format = true; 4667 break; 4668 } 4669 } 4670 if (!Format || NumArgs <= Idx) 4671 return; 4672 const Expr *FormatExpr = Args[Idx]; 4673 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4674 FormatExpr = CSCE->getSubExpr(); 4675 const StringLiteral *FormatString; 4676 if (const ObjCStringLiteral *OSL = 4677 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4678 FormatString = OSL->getString(); 4679 else 4680 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4681 if (!FormatString) 4682 return; 4683 if (S.FormatStringHasSArg(FormatString)) { 4684 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4685 << "%s" << 1 << 1; 4686 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4687 << FDecl->getDeclName(); 4688 } 4689 } 4690 4691 /// Determine whether the given type has a non-null nullability annotation. 4692 static bool isNonNullType(ASTContext &ctx, QualType type) { 4693 if (auto nullability = type->getNullability(ctx)) 4694 return *nullability == NullabilityKind::NonNull; 4695 4696 return false; 4697 } 4698 4699 static void CheckNonNullArguments(Sema &S, 4700 const NamedDecl *FDecl, 4701 const FunctionProtoType *Proto, 4702 ArrayRef<const Expr *> Args, 4703 SourceLocation CallSiteLoc) { 4704 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4705 4706 // Already checked by by constant evaluator. 4707 if (S.isConstantEvaluated()) 4708 return; 4709 // Check the attributes attached to the method/function itself. 4710 llvm::SmallBitVector NonNullArgs; 4711 if (FDecl) { 4712 // Handle the nonnull attribute on the function/method declaration itself. 4713 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4714 if (!NonNull->args_size()) { 4715 // Easy case: all pointer arguments are nonnull. 4716 for (const auto *Arg : Args) 4717 if (S.isValidPointerAttrType(Arg->getType())) 4718 CheckNonNullArgument(S, Arg, CallSiteLoc); 4719 return; 4720 } 4721 4722 for (const ParamIdx &Idx : NonNull->args()) { 4723 unsigned IdxAST = Idx.getASTIndex(); 4724 if (IdxAST >= Args.size()) 4725 continue; 4726 if (NonNullArgs.empty()) 4727 NonNullArgs.resize(Args.size()); 4728 NonNullArgs.set(IdxAST); 4729 } 4730 } 4731 } 4732 4733 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4734 // Handle the nonnull attribute on the parameters of the 4735 // function/method. 4736 ArrayRef<ParmVarDecl*> parms; 4737 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4738 parms = FD->parameters(); 4739 else 4740 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4741 4742 unsigned ParamIndex = 0; 4743 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4744 I != E; ++I, ++ParamIndex) { 4745 const ParmVarDecl *PVD = *I; 4746 if (PVD->hasAttr<NonNullAttr>() || 4747 isNonNullType(S.Context, PVD->getType())) { 4748 if (NonNullArgs.empty()) 4749 NonNullArgs.resize(Args.size()); 4750 4751 NonNullArgs.set(ParamIndex); 4752 } 4753 } 4754 } else { 4755 // If we have a non-function, non-method declaration but no 4756 // function prototype, try to dig out the function prototype. 4757 if (!Proto) { 4758 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4759 QualType type = VD->getType().getNonReferenceType(); 4760 if (auto pointerType = type->getAs<PointerType>()) 4761 type = pointerType->getPointeeType(); 4762 else if (auto blockType = type->getAs<BlockPointerType>()) 4763 type = blockType->getPointeeType(); 4764 // FIXME: data member pointers? 4765 4766 // Dig out the function prototype, if there is one. 4767 Proto = type->getAs<FunctionProtoType>(); 4768 } 4769 } 4770 4771 // Fill in non-null argument information from the nullability 4772 // information on the parameter types (if we have them). 4773 if (Proto) { 4774 unsigned Index = 0; 4775 for (auto paramType : Proto->getParamTypes()) { 4776 if (isNonNullType(S.Context, paramType)) { 4777 if (NonNullArgs.empty()) 4778 NonNullArgs.resize(Args.size()); 4779 4780 NonNullArgs.set(Index); 4781 } 4782 4783 ++Index; 4784 } 4785 } 4786 } 4787 4788 // Check for non-null arguments. 4789 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4790 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4791 if (NonNullArgs[ArgIndex]) 4792 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4793 } 4794 } 4795 4796 /// Warn if a pointer or reference argument passed to a function points to an 4797 /// object that is less aligned than the parameter. This can happen when 4798 /// creating a typedef with a lower alignment than the original type and then 4799 /// calling functions defined in terms of the original type. 4800 void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl, 4801 StringRef ParamName, QualType ArgTy, 4802 QualType ParamTy) { 4803 4804 // If a function accepts a pointer or reference type 4805 if (!ParamTy->isPointerType() && !ParamTy->isReferenceType()) 4806 return; 4807 4808 // If the parameter is a pointer type, get the pointee type for the 4809 // argument too. If the parameter is a reference type, don't try to get 4810 // the pointee type for the argument. 4811 if (ParamTy->isPointerType()) 4812 ArgTy = ArgTy->getPointeeType(); 4813 4814 // Remove reference or pointer 4815 ParamTy = ParamTy->getPointeeType(); 4816 4817 // Find expected alignment, and the actual alignment of the passed object. 4818 // getTypeAlignInChars requires complete types 4819 if (ArgTy.isNull() || ParamTy->isIncompleteType() || 4820 ArgTy->isIncompleteType() || ParamTy->isUndeducedType() || 4821 ArgTy->isUndeducedType()) 4822 return; 4823 4824 CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy); 4825 CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy); 4826 4827 // If the argument is less aligned than the parameter, there is a 4828 // potential alignment issue. 4829 if (ArgAlign < ParamAlign) 4830 Diag(Loc, diag::warn_param_mismatched_alignment) 4831 << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity() 4832 << ParamName << FDecl; 4833 } 4834 4835 /// Handles the checks for format strings, non-POD arguments to vararg 4836 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4837 /// attributes. 4838 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4839 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4840 bool IsMemberFunction, SourceLocation Loc, 4841 SourceRange Range, VariadicCallType CallType) { 4842 // FIXME: We should check as much as we can in the template definition. 4843 if (CurContext->isDependentContext()) 4844 return; 4845 4846 // Printf and scanf checking. 4847 llvm::SmallBitVector CheckedVarArgs; 4848 if (FDecl) { 4849 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4850 // Only create vector if there are format attributes. 4851 CheckedVarArgs.resize(Args.size()); 4852 4853 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4854 CheckedVarArgs); 4855 } 4856 } 4857 4858 // Refuse POD arguments that weren't caught by the format string 4859 // checks above. 4860 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4861 if (CallType != VariadicDoesNotApply && 4862 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4863 unsigned NumParams = Proto ? Proto->getNumParams() 4864 : FDecl && isa<FunctionDecl>(FDecl) 4865 ? cast<FunctionDecl>(FDecl)->getNumParams() 4866 : FDecl && isa<ObjCMethodDecl>(FDecl) 4867 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4868 : 0; 4869 4870 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4871 // Args[ArgIdx] can be null in malformed code. 4872 if (const Expr *Arg = Args[ArgIdx]) { 4873 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4874 checkVariadicArgument(Arg, CallType); 4875 } 4876 } 4877 } 4878 4879 if (FDecl || Proto) { 4880 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4881 4882 // Type safety checking. 4883 if (FDecl) { 4884 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4885 CheckArgumentWithTypeTag(I, Args, Loc); 4886 } 4887 } 4888 4889 // Check that passed arguments match the alignment of original arguments. 4890 // Try to get the missing prototype from the declaration. 4891 if (!Proto && FDecl) { 4892 const auto *FT = FDecl->getFunctionType(); 4893 if (isa_and_nonnull<FunctionProtoType>(FT)) 4894 Proto = cast<FunctionProtoType>(FDecl->getFunctionType()); 4895 } 4896 if (Proto) { 4897 // For variadic functions, we may have more args than parameters. 4898 // For some K&R functions, we may have less args than parameters. 4899 const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size()); 4900 for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) { 4901 // Args[ArgIdx] can be null in malformed code. 4902 if (const Expr *Arg = Args[ArgIdx]) { 4903 if (Arg->containsErrors()) 4904 continue; 4905 4906 QualType ParamTy = Proto->getParamType(ArgIdx); 4907 QualType ArgTy = Arg->getType(); 4908 CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1), 4909 ArgTy, ParamTy); 4910 } 4911 } 4912 } 4913 4914 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4915 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4916 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4917 if (!Arg->isValueDependent()) { 4918 Expr::EvalResult Align; 4919 if (Arg->EvaluateAsInt(Align, Context)) { 4920 const llvm::APSInt &I = Align.Val.getInt(); 4921 if (!I.isPowerOf2()) 4922 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4923 << Arg->getSourceRange(); 4924 4925 if (I > Sema::MaximumAlignment) 4926 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4927 << Arg->getSourceRange() << Sema::MaximumAlignment; 4928 } 4929 } 4930 } 4931 4932 if (FD) 4933 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4934 } 4935 4936 /// CheckConstructorCall - Check a constructor call for correctness and safety 4937 /// properties not enforced by the C type system. 4938 void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType, 4939 ArrayRef<const Expr *> Args, 4940 const FunctionProtoType *Proto, 4941 SourceLocation Loc) { 4942 VariadicCallType CallType = 4943 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4944 4945 auto *Ctor = cast<CXXConstructorDecl>(FDecl); 4946 CheckArgAlignment(Loc, FDecl, "'this'", Context.getPointerType(ThisType), 4947 Context.getPointerType(Ctor->getThisObjectType())); 4948 4949 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4950 Loc, SourceRange(), CallType); 4951 } 4952 4953 /// CheckFunctionCall - Check a direct function call for various correctness 4954 /// and safety properties not strictly enforced by the C type system. 4955 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4956 const FunctionProtoType *Proto) { 4957 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4958 isa<CXXMethodDecl>(FDecl); 4959 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4960 IsMemberOperatorCall; 4961 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4962 TheCall->getCallee()); 4963 Expr** Args = TheCall->getArgs(); 4964 unsigned NumArgs = TheCall->getNumArgs(); 4965 4966 Expr *ImplicitThis = nullptr; 4967 if (IsMemberOperatorCall) { 4968 // If this is a call to a member operator, hide the first argument 4969 // from checkCall. 4970 // FIXME: Our choice of AST representation here is less than ideal. 4971 ImplicitThis = Args[0]; 4972 ++Args; 4973 --NumArgs; 4974 } else if (IsMemberFunction) 4975 ImplicitThis = 4976 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4977 4978 if (ImplicitThis) { 4979 // ImplicitThis may or may not be a pointer, depending on whether . or -> is 4980 // used. 4981 QualType ThisType = ImplicitThis->getType(); 4982 if (!ThisType->isPointerType()) { 4983 assert(!ThisType->isReferenceType()); 4984 ThisType = Context.getPointerType(ThisType); 4985 } 4986 4987 QualType ThisTypeFromDecl = 4988 Context.getPointerType(cast<CXXMethodDecl>(FDecl)->getThisObjectType()); 4989 4990 CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType, 4991 ThisTypeFromDecl); 4992 } 4993 4994 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4995 IsMemberFunction, TheCall->getRParenLoc(), 4996 TheCall->getCallee()->getSourceRange(), CallType); 4997 4998 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4999 // None of the checks below are needed for functions that don't have 5000 // simple names (e.g., C++ conversion functions). 5001 if (!FnInfo) 5002 return false; 5003 5004 CheckTCBEnforcement(TheCall, FDecl); 5005 5006 CheckAbsoluteValueFunction(TheCall, FDecl); 5007 CheckMaxUnsignedZero(TheCall, FDecl); 5008 5009 if (getLangOpts().ObjC) 5010 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 5011 5012 unsigned CMId = FDecl->getMemoryFunctionKind(); 5013 5014 // Handle memory setting and copying functions. 5015 switch (CMId) { 5016 case 0: 5017 return false; 5018 case Builtin::BIstrlcpy: // fallthrough 5019 case Builtin::BIstrlcat: 5020 CheckStrlcpycatArguments(TheCall, FnInfo); 5021 break; 5022 case Builtin::BIstrncat: 5023 CheckStrncatArguments(TheCall, FnInfo); 5024 break; 5025 case Builtin::BIfree: 5026 CheckFreeArguments(TheCall); 5027 break; 5028 default: 5029 CheckMemaccessArguments(TheCall, CMId, FnInfo); 5030 } 5031 5032 return false; 5033 } 5034 5035 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 5036 ArrayRef<const Expr *> Args) { 5037 VariadicCallType CallType = 5038 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 5039 5040 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 5041 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 5042 CallType); 5043 5044 return false; 5045 } 5046 5047 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 5048 const FunctionProtoType *Proto) { 5049 QualType Ty; 5050 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 5051 Ty = V->getType().getNonReferenceType(); 5052 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 5053 Ty = F->getType().getNonReferenceType(); 5054 else 5055 return false; 5056 5057 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 5058 !Ty->isFunctionProtoType()) 5059 return false; 5060 5061 VariadicCallType CallType; 5062 if (!Proto || !Proto->isVariadic()) { 5063 CallType = VariadicDoesNotApply; 5064 } else if (Ty->isBlockPointerType()) { 5065 CallType = VariadicBlock; 5066 } else { // Ty->isFunctionPointerType() 5067 CallType = VariadicFunction; 5068 } 5069 5070 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 5071 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5072 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5073 TheCall->getCallee()->getSourceRange(), CallType); 5074 5075 return false; 5076 } 5077 5078 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 5079 /// such as function pointers returned from functions. 5080 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 5081 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 5082 TheCall->getCallee()); 5083 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 5084 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 5085 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 5086 TheCall->getCallee()->getSourceRange(), CallType); 5087 5088 return false; 5089 } 5090 5091 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 5092 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 5093 return false; 5094 5095 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 5096 switch (Op) { 5097 case AtomicExpr::AO__c11_atomic_init: 5098 case AtomicExpr::AO__opencl_atomic_init: 5099 llvm_unreachable("There is no ordering argument for an init"); 5100 5101 case AtomicExpr::AO__c11_atomic_load: 5102 case AtomicExpr::AO__opencl_atomic_load: 5103 case AtomicExpr::AO__atomic_load_n: 5104 case AtomicExpr::AO__atomic_load: 5105 return OrderingCABI != llvm::AtomicOrderingCABI::release && 5106 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5107 5108 case AtomicExpr::AO__c11_atomic_store: 5109 case AtomicExpr::AO__opencl_atomic_store: 5110 case AtomicExpr::AO__atomic_store: 5111 case AtomicExpr::AO__atomic_store_n: 5112 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 5113 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 5114 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 5115 5116 default: 5117 return true; 5118 } 5119 } 5120 5121 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 5122 AtomicExpr::AtomicOp Op) { 5123 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 5124 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5125 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 5126 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 5127 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 5128 Op); 5129 } 5130 5131 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 5132 SourceLocation RParenLoc, MultiExprArg Args, 5133 AtomicExpr::AtomicOp Op, 5134 AtomicArgumentOrder ArgOrder) { 5135 // All the non-OpenCL operations take one of the following forms. 5136 // The OpenCL operations take the __c11 forms with one extra argument for 5137 // synchronization scope. 5138 enum { 5139 // C __c11_atomic_init(A *, C) 5140 Init, 5141 5142 // C __c11_atomic_load(A *, int) 5143 Load, 5144 5145 // void __atomic_load(A *, CP, int) 5146 LoadCopy, 5147 5148 // void __atomic_store(A *, CP, int) 5149 Copy, 5150 5151 // C __c11_atomic_add(A *, M, int) 5152 Arithmetic, 5153 5154 // C __atomic_exchange_n(A *, CP, int) 5155 Xchg, 5156 5157 // void __atomic_exchange(A *, C *, CP, int) 5158 GNUXchg, 5159 5160 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 5161 C11CmpXchg, 5162 5163 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 5164 GNUCmpXchg 5165 } Form = Init; 5166 5167 const unsigned NumForm = GNUCmpXchg + 1; 5168 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 5169 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 5170 // where: 5171 // C is an appropriate type, 5172 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 5173 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 5174 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 5175 // the int parameters are for orderings. 5176 5177 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 5178 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 5179 "need to update code for modified forms"); 5180 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 5181 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 5182 AtomicExpr::AO__atomic_load, 5183 "need to update code for modified C11 atomics"); 5184 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 5185 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 5186 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 5187 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 5188 IsOpenCL; 5189 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 5190 Op == AtomicExpr::AO__atomic_store_n || 5191 Op == AtomicExpr::AO__atomic_exchange_n || 5192 Op == AtomicExpr::AO__atomic_compare_exchange_n; 5193 bool IsAddSub = false; 5194 5195 switch (Op) { 5196 case AtomicExpr::AO__c11_atomic_init: 5197 case AtomicExpr::AO__opencl_atomic_init: 5198 Form = Init; 5199 break; 5200 5201 case AtomicExpr::AO__c11_atomic_load: 5202 case AtomicExpr::AO__opencl_atomic_load: 5203 case AtomicExpr::AO__atomic_load_n: 5204 Form = Load; 5205 break; 5206 5207 case AtomicExpr::AO__atomic_load: 5208 Form = LoadCopy; 5209 break; 5210 5211 case AtomicExpr::AO__c11_atomic_store: 5212 case AtomicExpr::AO__opencl_atomic_store: 5213 case AtomicExpr::AO__atomic_store: 5214 case AtomicExpr::AO__atomic_store_n: 5215 Form = Copy; 5216 break; 5217 5218 case AtomicExpr::AO__c11_atomic_fetch_add: 5219 case AtomicExpr::AO__c11_atomic_fetch_sub: 5220 case AtomicExpr::AO__opencl_atomic_fetch_add: 5221 case AtomicExpr::AO__opencl_atomic_fetch_sub: 5222 case AtomicExpr::AO__atomic_fetch_add: 5223 case AtomicExpr::AO__atomic_fetch_sub: 5224 case AtomicExpr::AO__atomic_add_fetch: 5225 case AtomicExpr::AO__atomic_sub_fetch: 5226 IsAddSub = true; 5227 Form = Arithmetic; 5228 break; 5229 case AtomicExpr::AO__c11_atomic_fetch_and: 5230 case AtomicExpr::AO__c11_atomic_fetch_or: 5231 case AtomicExpr::AO__c11_atomic_fetch_xor: 5232 case AtomicExpr::AO__opencl_atomic_fetch_and: 5233 case AtomicExpr::AO__opencl_atomic_fetch_or: 5234 case AtomicExpr::AO__opencl_atomic_fetch_xor: 5235 case AtomicExpr::AO__atomic_fetch_and: 5236 case AtomicExpr::AO__atomic_fetch_or: 5237 case AtomicExpr::AO__atomic_fetch_xor: 5238 case AtomicExpr::AO__atomic_fetch_nand: 5239 case AtomicExpr::AO__atomic_and_fetch: 5240 case AtomicExpr::AO__atomic_or_fetch: 5241 case AtomicExpr::AO__atomic_xor_fetch: 5242 case AtomicExpr::AO__atomic_nand_fetch: 5243 Form = Arithmetic; 5244 break; 5245 case AtomicExpr::AO__c11_atomic_fetch_min: 5246 case AtomicExpr::AO__c11_atomic_fetch_max: 5247 case AtomicExpr::AO__opencl_atomic_fetch_min: 5248 case AtomicExpr::AO__opencl_atomic_fetch_max: 5249 case AtomicExpr::AO__atomic_min_fetch: 5250 case AtomicExpr::AO__atomic_max_fetch: 5251 case AtomicExpr::AO__atomic_fetch_min: 5252 case AtomicExpr::AO__atomic_fetch_max: 5253 Form = Arithmetic; 5254 break; 5255 5256 case AtomicExpr::AO__c11_atomic_exchange: 5257 case AtomicExpr::AO__opencl_atomic_exchange: 5258 case AtomicExpr::AO__atomic_exchange_n: 5259 Form = Xchg; 5260 break; 5261 5262 case AtomicExpr::AO__atomic_exchange: 5263 Form = GNUXchg; 5264 break; 5265 5266 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 5267 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 5268 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 5269 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 5270 Form = C11CmpXchg; 5271 break; 5272 5273 case AtomicExpr::AO__atomic_compare_exchange: 5274 case AtomicExpr::AO__atomic_compare_exchange_n: 5275 Form = GNUCmpXchg; 5276 break; 5277 } 5278 5279 unsigned AdjustedNumArgs = NumArgs[Form]; 5280 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 5281 ++AdjustedNumArgs; 5282 // Check we have the right number of arguments. 5283 if (Args.size() < AdjustedNumArgs) { 5284 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 5285 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5286 << ExprRange; 5287 return ExprError(); 5288 } else if (Args.size() > AdjustedNumArgs) { 5289 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 5290 diag::err_typecheck_call_too_many_args) 5291 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 5292 << ExprRange; 5293 return ExprError(); 5294 } 5295 5296 // Inspect the first argument of the atomic operation. 5297 Expr *Ptr = Args[0]; 5298 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 5299 if (ConvertedPtr.isInvalid()) 5300 return ExprError(); 5301 5302 Ptr = ConvertedPtr.get(); 5303 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 5304 if (!pointerType) { 5305 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 5306 << Ptr->getType() << Ptr->getSourceRange(); 5307 return ExprError(); 5308 } 5309 5310 // For a __c11 builtin, this should be a pointer to an _Atomic type. 5311 QualType AtomTy = pointerType->getPointeeType(); // 'A' 5312 QualType ValType = AtomTy; // 'C' 5313 if (IsC11) { 5314 if (!AtomTy->isAtomicType()) { 5315 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 5316 << Ptr->getType() << Ptr->getSourceRange(); 5317 return ExprError(); 5318 } 5319 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 5320 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 5321 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 5322 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 5323 << Ptr->getSourceRange(); 5324 return ExprError(); 5325 } 5326 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 5327 } else if (Form != Load && Form != LoadCopy) { 5328 if (ValType.isConstQualified()) { 5329 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 5330 << Ptr->getType() << Ptr->getSourceRange(); 5331 return ExprError(); 5332 } 5333 } 5334 5335 // For an arithmetic operation, the implied arithmetic must be well-formed. 5336 if (Form == Arithmetic) { 5337 // gcc does not enforce these rules for GNU atomics, but we do so for 5338 // sanity. 5339 auto IsAllowedValueType = [&](QualType ValType) { 5340 if (ValType->isIntegerType()) 5341 return true; 5342 if (ValType->isPointerType()) 5343 return true; 5344 if (!ValType->isFloatingType()) 5345 return false; 5346 // LLVM Parser does not allow atomicrmw with x86_fp80 type. 5347 if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) && 5348 &Context.getTargetInfo().getLongDoubleFormat() == 5349 &llvm::APFloat::x87DoubleExtended()) 5350 return false; 5351 return true; 5352 }; 5353 if (IsAddSub && !IsAllowedValueType(ValType)) { 5354 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_ptr_or_fp) 5355 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5356 return ExprError(); 5357 } 5358 if (!IsAddSub && !ValType->isIntegerType()) { 5359 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 5360 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5361 return ExprError(); 5362 } 5363 if (IsC11 && ValType->isPointerType() && 5364 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 5365 diag::err_incomplete_type)) { 5366 return ExprError(); 5367 } 5368 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 5369 // For __atomic_*_n operations, the value type must be a scalar integral or 5370 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 5371 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 5372 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 5373 return ExprError(); 5374 } 5375 5376 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 5377 !AtomTy->isScalarType()) { 5378 // For GNU atomics, require a trivially-copyable type. This is not part of 5379 // the GNU atomics specification, but we enforce it for sanity. 5380 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 5381 << Ptr->getType() << Ptr->getSourceRange(); 5382 return ExprError(); 5383 } 5384 5385 switch (ValType.getObjCLifetime()) { 5386 case Qualifiers::OCL_None: 5387 case Qualifiers::OCL_ExplicitNone: 5388 // okay 5389 break; 5390 5391 case Qualifiers::OCL_Weak: 5392 case Qualifiers::OCL_Strong: 5393 case Qualifiers::OCL_Autoreleasing: 5394 // FIXME: Can this happen? By this point, ValType should be known 5395 // to be trivially copyable. 5396 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 5397 << ValType << Ptr->getSourceRange(); 5398 return ExprError(); 5399 } 5400 5401 // All atomic operations have an overload which takes a pointer to a volatile 5402 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 5403 // into the result or the other operands. Similarly atomic_load takes a 5404 // pointer to a const 'A'. 5405 ValType.removeLocalVolatile(); 5406 ValType.removeLocalConst(); 5407 QualType ResultType = ValType; 5408 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 5409 Form == Init) 5410 ResultType = Context.VoidTy; 5411 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 5412 ResultType = Context.BoolTy; 5413 5414 // The type of a parameter passed 'by value'. In the GNU atomics, such 5415 // arguments are actually passed as pointers. 5416 QualType ByValType = ValType; // 'CP' 5417 bool IsPassedByAddress = false; 5418 if (!IsC11 && !IsN) { 5419 ByValType = Ptr->getType(); 5420 IsPassedByAddress = true; 5421 } 5422 5423 SmallVector<Expr *, 5> APIOrderedArgs; 5424 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 5425 APIOrderedArgs.push_back(Args[0]); 5426 switch (Form) { 5427 case Init: 5428 case Load: 5429 APIOrderedArgs.push_back(Args[1]); // Val1/Order 5430 break; 5431 case LoadCopy: 5432 case Copy: 5433 case Arithmetic: 5434 case Xchg: 5435 APIOrderedArgs.push_back(Args[2]); // Val1 5436 APIOrderedArgs.push_back(Args[1]); // Order 5437 break; 5438 case GNUXchg: 5439 APIOrderedArgs.push_back(Args[2]); // Val1 5440 APIOrderedArgs.push_back(Args[3]); // Val2 5441 APIOrderedArgs.push_back(Args[1]); // Order 5442 break; 5443 case C11CmpXchg: 5444 APIOrderedArgs.push_back(Args[2]); // Val1 5445 APIOrderedArgs.push_back(Args[4]); // Val2 5446 APIOrderedArgs.push_back(Args[1]); // Order 5447 APIOrderedArgs.push_back(Args[3]); // OrderFail 5448 break; 5449 case GNUCmpXchg: 5450 APIOrderedArgs.push_back(Args[2]); // Val1 5451 APIOrderedArgs.push_back(Args[4]); // Val2 5452 APIOrderedArgs.push_back(Args[5]); // Weak 5453 APIOrderedArgs.push_back(Args[1]); // Order 5454 APIOrderedArgs.push_back(Args[3]); // OrderFail 5455 break; 5456 } 5457 } else 5458 APIOrderedArgs.append(Args.begin(), Args.end()); 5459 5460 // The first argument's non-CV pointer type is used to deduce the type of 5461 // subsequent arguments, except for: 5462 // - weak flag (always converted to bool) 5463 // - memory order (always converted to int) 5464 // - scope (always converted to int) 5465 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5466 QualType Ty; 5467 if (i < NumVals[Form] + 1) { 5468 switch (i) { 5469 case 0: 5470 // The first argument is always a pointer. It has a fixed type. 5471 // It is always dereferenced, a nullptr is undefined. 5472 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5473 // Nothing else to do: we already know all we want about this pointer. 5474 continue; 5475 case 1: 5476 // The second argument is the non-atomic operand. For arithmetic, this 5477 // is always passed by value, and for a compare_exchange it is always 5478 // passed by address. For the rest, GNU uses by-address and C11 uses 5479 // by-value. 5480 assert(Form != Load); 5481 if (Form == Arithmetic && ValType->isPointerType()) 5482 Ty = Context.getPointerDiffType(); 5483 else if (Form == Init || Form == Arithmetic) 5484 Ty = ValType; 5485 else if (Form == Copy || Form == Xchg) { 5486 if (IsPassedByAddress) { 5487 // The value pointer is always dereferenced, a nullptr is undefined. 5488 CheckNonNullArgument(*this, APIOrderedArgs[i], 5489 ExprRange.getBegin()); 5490 } 5491 Ty = ByValType; 5492 } else { 5493 Expr *ValArg = APIOrderedArgs[i]; 5494 // The value pointer is always dereferenced, a nullptr is undefined. 5495 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 5496 LangAS AS = LangAS::Default; 5497 // Keep address space of non-atomic pointer type. 5498 if (const PointerType *PtrTy = 5499 ValArg->getType()->getAs<PointerType>()) { 5500 AS = PtrTy->getPointeeType().getAddressSpace(); 5501 } 5502 Ty = Context.getPointerType( 5503 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 5504 } 5505 break; 5506 case 2: 5507 // The third argument to compare_exchange / GNU exchange is the desired 5508 // value, either by-value (for the C11 and *_n variant) or as a pointer. 5509 if (IsPassedByAddress) 5510 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5511 Ty = ByValType; 5512 break; 5513 case 3: 5514 // The fourth argument to GNU compare_exchange is a 'weak' flag. 5515 Ty = Context.BoolTy; 5516 break; 5517 } 5518 } else { 5519 // The order(s) and scope are always converted to int. 5520 Ty = Context.IntTy; 5521 } 5522 5523 InitializedEntity Entity = 5524 InitializedEntity::InitializeParameter(Context, Ty, false); 5525 ExprResult Arg = APIOrderedArgs[i]; 5526 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5527 if (Arg.isInvalid()) 5528 return true; 5529 APIOrderedArgs[i] = Arg.get(); 5530 } 5531 5532 // Permute the arguments into a 'consistent' order. 5533 SmallVector<Expr*, 5> SubExprs; 5534 SubExprs.push_back(Ptr); 5535 switch (Form) { 5536 case Init: 5537 // Note, AtomicExpr::getVal1() has a special case for this atomic. 5538 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5539 break; 5540 case Load: 5541 SubExprs.push_back(APIOrderedArgs[1]); // Order 5542 break; 5543 case LoadCopy: 5544 case Copy: 5545 case Arithmetic: 5546 case Xchg: 5547 SubExprs.push_back(APIOrderedArgs[2]); // Order 5548 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5549 break; 5550 case GNUXchg: 5551 // Note, AtomicExpr::getVal2() has a special case for this atomic. 5552 SubExprs.push_back(APIOrderedArgs[3]); // Order 5553 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5554 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5555 break; 5556 case C11CmpXchg: 5557 SubExprs.push_back(APIOrderedArgs[3]); // Order 5558 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5559 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 5560 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5561 break; 5562 case GNUCmpXchg: 5563 SubExprs.push_back(APIOrderedArgs[4]); // Order 5564 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5565 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 5566 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5567 SubExprs.push_back(APIOrderedArgs[3]); // Weak 5568 break; 5569 } 5570 5571 if (SubExprs.size() >= 2 && Form != Init) { 5572 if (Optional<llvm::APSInt> Result = 5573 SubExprs[1]->getIntegerConstantExpr(Context)) 5574 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 5575 Diag(SubExprs[1]->getBeginLoc(), 5576 diag::warn_atomic_op_has_invalid_memory_order) 5577 << SubExprs[1]->getSourceRange(); 5578 } 5579 5580 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 5581 auto *Scope = Args[Args.size() - 1]; 5582 if (Optional<llvm::APSInt> Result = 5583 Scope->getIntegerConstantExpr(Context)) { 5584 if (!ScopeModel->isValid(Result->getZExtValue())) 5585 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 5586 << Scope->getSourceRange(); 5587 } 5588 SubExprs.push_back(Scope); 5589 } 5590 5591 AtomicExpr *AE = new (Context) 5592 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 5593 5594 if ((Op == AtomicExpr::AO__c11_atomic_load || 5595 Op == AtomicExpr::AO__c11_atomic_store || 5596 Op == AtomicExpr::AO__opencl_atomic_load || 5597 Op == AtomicExpr::AO__opencl_atomic_store ) && 5598 Context.AtomicUsesUnsupportedLibcall(AE)) 5599 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 5600 << ((Op == AtomicExpr::AO__c11_atomic_load || 5601 Op == AtomicExpr::AO__opencl_atomic_load) 5602 ? 0 5603 : 1); 5604 5605 if (ValType->isExtIntType()) { 5606 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 5607 return ExprError(); 5608 } 5609 5610 return AE; 5611 } 5612 5613 /// checkBuiltinArgument - Given a call to a builtin function, perform 5614 /// normal type-checking on the given argument, updating the call in 5615 /// place. This is useful when a builtin function requires custom 5616 /// type-checking for some of its arguments but not necessarily all of 5617 /// them. 5618 /// 5619 /// Returns true on error. 5620 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 5621 FunctionDecl *Fn = E->getDirectCallee(); 5622 assert(Fn && "builtin call without direct callee!"); 5623 5624 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 5625 InitializedEntity Entity = 5626 InitializedEntity::InitializeParameter(S.Context, Param); 5627 5628 ExprResult Arg = E->getArg(0); 5629 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 5630 if (Arg.isInvalid()) 5631 return true; 5632 5633 E->setArg(ArgIndex, Arg.get()); 5634 return false; 5635 } 5636 5637 /// We have a call to a function like __sync_fetch_and_add, which is an 5638 /// overloaded function based on the pointer type of its first argument. 5639 /// The main BuildCallExpr routines have already promoted the types of 5640 /// arguments because all of these calls are prototyped as void(...). 5641 /// 5642 /// This function goes through and does final semantic checking for these 5643 /// builtins, as well as generating any warnings. 5644 ExprResult 5645 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5646 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5647 Expr *Callee = TheCall->getCallee(); 5648 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5649 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5650 5651 // Ensure that we have at least one argument to do type inference from. 5652 if (TheCall->getNumArgs() < 1) { 5653 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5654 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5655 return ExprError(); 5656 } 5657 5658 // Inspect the first argument of the atomic builtin. This should always be 5659 // a pointer type, whose element is an integral scalar or pointer type. 5660 // Because it is a pointer type, we don't have to worry about any implicit 5661 // casts here. 5662 // FIXME: We don't allow floating point scalars as input. 5663 Expr *FirstArg = TheCall->getArg(0); 5664 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5665 if (FirstArgResult.isInvalid()) 5666 return ExprError(); 5667 FirstArg = FirstArgResult.get(); 5668 TheCall->setArg(0, FirstArg); 5669 5670 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5671 if (!pointerType) { 5672 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5673 << FirstArg->getType() << FirstArg->getSourceRange(); 5674 return ExprError(); 5675 } 5676 5677 QualType ValType = pointerType->getPointeeType(); 5678 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5679 !ValType->isBlockPointerType()) { 5680 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5681 << FirstArg->getType() << FirstArg->getSourceRange(); 5682 return ExprError(); 5683 } 5684 5685 if (ValType.isConstQualified()) { 5686 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5687 << FirstArg->getType() << FirstArg->getSourceRange(); 5688 return ExprError(); 5689 } 5690 5691 switch (ValType.getObjCLifetime()) { 5692 case Qualifiers::OCL_None: 5693 case Qualifiers::OCL_ExplicitNone: 5694 // okay 5695 break; 5696 5697 case Qualifiers::OCL_Weak: 5698 case Qualifiers::OCL_Strong: 5699 case Qualifiers::OCL_Autoreleasing: 5700 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5701 << ValType << FirstArg->getSourceRange(); 5702 return ExprError(); 5703 } 5704 5705 // Strip any qualifiers off ValType. 5706 ValType = ValType.getUnqualifiedType(); 5707 5708 // The majority of builtins return a value, but a few have special return 5709 // types, so allow them to override appropriately below. 5710 QualType ResultType = ValType; 5711 5712 // We need to figure out which concrete builtin this maps onto. For example, 5713 // __sync_fetch_and_add with a 2 byte object turns into 5714 // __sync_fetch_and_add_2. 5715 #define BUILTIN_ROW(x) \ 5716 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5717 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5718 5719 static const unsigned BuiltinIndices[][5] = { 5720 BUILTIN_ROW(__sync_fetch_and_add), 5721 BUILTIN_ROW(__sync_fetch_and_sub), 5722 BUILTIN_ROW(__sync_fetch_and_or), 5723 BUILTIN_ROW(__sync_fetch_and_and), 5724 BUILTIN_ROW(__sync_fetch_and_xor), 5725 BUILTIN_ROW(__sync_fetch_and_nand), 5726 5727 BUILTIN_ROW(__sync_add_and_fetch), 5728 BUILTIN_ROW(__sync_sub_and_fetch), 5729 BUILTIN_ROW(__sync_and_and_fetch), 5730 BUILTIN_ROW(__sync_or_and_fetch), 5731 BUILTIN_ROW(__sync_xor_and_fetch), 5732 BUILTIN_ROW(__sync_nand_and_fetch), 5733 5734 BUILTIN_ROW(__sync_val_compare_and_swap), 5735 BUILTIN_ROW(__sync_bool_compare_and_swap), 5736 BUILTIN_ROW(__sync_lock_test_and_set), 5737 BUILTIN_ROW(__sync_lock_release), 5738 BUILTIN_ROW(__sync_swap) 5739 }; 5740 #undef BUILTIN_ROW 5741 5742 // Determine the index of the size. 5743 unsigned SizeIndex; 5744 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5745 case 1: SizeIndex = 0; break; 5746 case 2: SizeIndex = 1; break; 5747 case 4: SizeIndex = 2; break; 5748 case 8: SizeIndex = 3; break; 5749 case 16: SizeIndex = 4; break; 5750 default: 5751 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5752 << FirstArg->getType() << FirstArg->getSourceRange(); 5753 return ExprError(); 5754 } 5755 5756 // Each of these builtins has one pointer argument, followed by some number of 5757 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5758 // that we ignore. Find out which row of BuiltinIndices to read from as well 5759 // as the number of fixed args. 5760 unsigned BuiltinID = FDecl->getBuiltinID(); 5761 unsigned BuiltinIndex, NumFixed = 1; 5762 bool WarnAboutSemanticsChange = false; 5763 switch (BuiltinID) { 5764 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5765 case Builtin::BI__sync_fetch_and_add: 5766 case Builtin::BI__sync_fetch_and_add_1: 5767 case Builtin::BI__sync_fetch_and_add_2: 5768 case Builtin::BI__sync_fetch_and_add_4: 5769 case Builtin::BI__sync_fetch_and_add_8: 5770 case Builtin::BI__sync_fetch_and_add_16: 5771 BuiltinIndex = 0; 5772 break; 5773 5774 case Builtin::BI__sync_fetch_and_sub: 5775 case Builtin::BI__sync_fetch_and_sub_1: 5776 case Builtin::BI__sync_fetch_and_sub_2: 5777 case Builtin::BI__sync_fetch_and_sub_4: 5778 case Builtin::BI__sync_fetch_and_sub_8: 5779 case Builtin::BI__sync_fetch_and_sub_16: 5780 BuiltinIndex = 1; 5781 break; 5782 5783 case Builtin::BI__sync_fetch_and_or: 5784 case Builtin::BI__sync_fetch_and_or_1: 5785 case Builtin::BI__sync_fetch_and_or_2: 5786 case Builtin::BI__sync_fetch_and_or_4: 5787 case Builtin::BI__sync_fetch_and_or_8: 5788 case Builtin::BI__sync_fetch_and_or_16: 5789 BuiltinIndex = 2; 5790 break; 5791 5792 case Builtin::BI__sync_fetch_and_and: 5793 case Builtin::BI__sync_fetch_and_and_1: 5794 case Builtin::BI__sync_fetch_and_and_2: 5795 case Builtin::BI__sync_fetch_and_and_4: 5796 case Builtin::BI__sync_fetch_and_and_8: 5797 case Builtin::BI__sync_fetch_and_and_16: 5798 BuiltinIndex = 3; 5799 break; 5800 5801 case Builtin::BI__sync_fetch_and_xor: 5802 case Builtin::BI__sync_fetch_and_xor_1: 5803 case Builtin::BI__sync_fetch_and_xor_2: 5804 case Builtin::BI__sync_fetch_and_xor_4: 5805 case Builtin::BI__sync_fetch_and_xor_8: 5806 case Builtin::BI__sync_fetch_and_xor_16: 5807 BuiltinIndex = 4; 5808 break; 5809 5810 case Builtin::BI__sync_fetch_and_nand: 5811 case Builtin::BI__sync_fetch_and_nand_1: 5812 case Builtin::BI__sync_fetch_and_nand_2: 5813 case Builtin::BI__sync_fetch_and_nand_4: 5814 case Builtin::BI__sync_fetch_and_nand_8: 5815 case Builtin::BI__sync_fetch_and_nand_16: 5816 BuiltinIndex = 5; 5817 WarnAboutSemanticsChange = true; 5818 break; 5819 5820 case Builtin::BI__sync_add_and_fetch: 5821 case Builtin::BI__sync_add_and_fetch_1: 5822 case Builtin::BI__sync_add_and_fetch_2: 5823 case Builtin::BI__sync_add_and_fetch_4: 5824 case Builtin::BI__sync_add_and_fetch_8: 5825 case Builtin::BI__sync_add_and_fetch_16: 5826 BuiltinIndex = 6; 5827 break; 5828 5829 case Builtin::BI__sync_sub_and_fetch: 5830 case Builtin::BI__sync_sub_and_fetch_1: 5831 case Builtin::BI__sync_sub_and_fetch_2: 5832 case Builtin::BI__sync_sub_and_fetch_4: 5833 case Builtin::BI__sync_sub_and_fetch_8: 5834 case Builtin::BI__sync_sub_and_fetch_16: 5835 BuiltinIndex = 7; 5836 break; 5837 5838 case Builtin::BI__sync_and_and_fetch: 5839 case Builtin::BI__sync_and_and_fetch_1: 5840 case Builtin::BI__sync_and_and_fetch_2: 5841 case Builtin::BI__sync_and_and_fetch_4: 5842 case Builtin::BI__sync_and_and_fetch_8: 5843 case Builtin::BI__sync_and_and_fetch_16: 5844 BuiltinIndex = 8; 5845 break; 5846 5847 case Builtin::BI__sync_or_and_fetch: 5848 case Builtin::BI__sync_or_and_fetch_1: 5849 case Builtin::BI__sync_or_and_fetch_2: 5850 case Builtin::BI__sync_or_and_fetch_4: 5851 case Builtin::BI__sync_or_and_fetch_8: 5852 case Builtin::BI__sync_or_and_fetch_16: 5853 BuiltinIndex = 9; 5854 break; 5855 5856 case Builtin::BI__sync_xor_and_fetch: 5857 case Builtin::BI__sync_xor_and_fetch_1: 5858 case Builtin::BI__sync_xor_and_fetch_2: 5859 case Builtin::BI__sync_xor_and_fetch_4: 5860 case Builtin::BI__sync_xor_and_fetch_8: 5861 case Builtin::BI__sync_xor_and_fetch_16: 5862 BuiltinIndex = 10; 5863 break; 5864 5865 case Builtin::BI__sync_nand_and_fetch: 5866 case Builtin::BI__sync_nand_and_fetch_1: 5867 case Builtin::BI__sync_nand_and_fetch_2: 5868 case Builtin::BI__sync_nand_and_fetch_4: 5869 case Builtin::BI__sync_nand_and_fetch_8: 5870 case Builtin::BI__sync_nand_and_fetch_16: 5871 BuiltinIndex = 11; 5872 WarnAboutSemanticsChange = true; 5873 break; 5874 5875 case Builtin::BI__sync_val_compare_and_swap: 5876 case Builtin::BI__sync_val_compare_and_swap_1: 5877 case Builtin::BI__sync_val_compare_and_swap_2: 5878 case Builtin::BI__sync_val_compare_and_swap_4: 5879 case Builtin::BI__sync_val_compare_and_swap_8: 5880 case Builtin::BI__sync_val_compare_and_swap_16: 5881 BuiltinIndex = 12; 5882 NumFixed = 2; 5883 break; 5884 5885 case Builtin::BI__sync_bool_compare_and_swap: 5886 case Builtin::BI__sync_bool_compare_and_swap_1: 5887 case Builtin::BI__sync_bool_compare_and_swap_2: 5888 case Builtin::BI__sync_bool_compare_and_swap_4: 5889 case Builtin::BI__sync_bool_compare_and_swap_8: 5890 case Builtin::BI__sync_bool_compare_and_swap_16: 5891 BuiltinIndex = 13; 5892 NumFixed = 2; 5893 ResultType = Context.BoolTy; 5894 break; 5895 5896 case Builtin::BI__sync_lock_test_and_set: 5897 case Builtin::BI__sync_lock_test_and_set_1: 5898 case Builtin::BI__sync_lock_test_and_set_2: 5899 case Builtin::BI__sync_lock_test_and_set_4: 5900 case Builtin::BI__sync_lock_test_and_set_8: 5901 case Builtin::BI__sync_lock_test_and_set_16: 5902 BuiltinIndex = 14; 5903 break; 5904 5905 case Builtin::BI__sync_lock_release: 5906 case Builtin::BI__sync_lock_release_1: 5907 case Builtin::BI__sync_lock_release_2: 5908 case Builtin::BI__sync_lock_release_4: 5909 case Builtin::BI__sync_lock_release_8: 5910 case Builtin::BI__sync_lock_release_16: 5911 BuiltinIndex = 15; 5912 NumFixed = 0; 5913 ResultType = Context.VoidTy; 5914 break; 5915 5916 case Builtin::BI__sync_swap: 5917 case Builtin::BI__sync_swap_1: 5918 case Builtin::BI__sync_swap_2: 5919 case Builtin::BI__sync_swap_4: 5920 case Builtin::BI__sync_swap_8: 5921 case Builtin::BI__sync_swap_16: 5922 BuiltinIndex = 16; 5923 break; 5924 } 5925 5926 // Now that we know how many fixed arguments we expect, first check that we 5927 // have at least that many. 5928 if (TheCall->getNumArgs() < 1+NumFixed) { 5929 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5930 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5931 << Callee->getSourceRange(); 5932 return ExprError(); 5933 } 5934 5935 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5936 << Callee->getSourceRange(); 5937 5938 if (WarnAboutSemanticsChange) { 5939 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5940 << Callee->getSourceRange(); 5941 } 5942 5943 // Get the decl for the concrete builtin from this, we can tell what the 5944 // concrete integer type we should convert to is. 5945 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5946 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5947 FunctionDecl *NewBuiltinDecl; 5948 if (NewBuiltinID == BuiltinID) 5949 NewBuiltinDecl = FDecl; 5950 else { 5951 // Perform builtin lookup to avoid redeclaring it. 5952 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5953 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5954 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5955 assert(Res.getFoundDecl()); 5956 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5957 if (!NewBuiltinDecl) 5958 return ExprError(); 5959 } 5960 5961 // The first argument --- the pointer --- has a fixed type; we 5962 // deduce the types of the rest of the arguments accordingly. Walk 5963 // the remaining arguments, converting them to the deduced value type. 5964 for (unsigned i = 0; i != NumFixed; ++i) { 5965 ExprResult Arg = TheCall->getArg(i+1); 5966 5967 // GCC does an implicit conversion to the pointer or integer ValType. This 5968 // can fail in some cases (1i -> int**), check for this error case now. 5969 // Initialize the argument. 5970 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5971 ValType, /*consume*/ false); 5972 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5973 if (Arg.isInvalid()) 5974 return ExprError(); 5975 5976 // Okay, we have something that *can* be converted to the right type. Check 5977 // to see if there is a potentially weird extension going on here. This can 5978 // happen when you do an atomic operation on something like an char* and 5979 // pass in 42. The 42 gets converted to char. This is even more strange 5980 // for things like 45.123 -> char, etc. 5981 // FIXME: Do this check. 5982 TheCall->setArg(i+1, Arg.get()); 5983 } 5984 5985 // Create a new DeclRefExpr to refer to the new decl. 5986 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5987 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5988 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5989 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5990 5991 // Set the callee in the CallExpr. 5992 // FIXME: This loses syntactic information. 5993 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5994 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5995 CK_BuiltinFnToFnPtr); 5996 TheCall->setCallee(PromotedCall.get()); 5997 5998 // Change the result type of the call to match the original value type. This 5999 // is arbitrary, but the codegen for these builtins ins design to handle it 6000 // gracefully. 6001 TheCall->setType(ResultType); 6002 6003 // Prohibit use of _ExtInt with atomic builtins. 6004 // The arguments would have already been converted to the first argument's 6005 // type, so only need to check the first argument. 6006 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 6007 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 6008 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 6009 return ExprError(); 6010 } 6011 6012 return TheCallResult; 6013 } 6014 6015 /// SemaBuiltinNontemporalOverloaded - We have a call to 6016 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 6017 /// overloaded function based on the pointer type of its last argument. 6018 /// 6019 /// This function goes through and does final semantic checking for these 6020 /// builtins. 6021 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 6022 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 6023 DeclRefExpr *DRE = 6024 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6025 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6026 unsigned BuiltinID = FDecl->getBuiltinID(); 6027 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 6028 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 6029 "Unexpected nontemporal load/store builtin!"); 6030 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 6031 unsigned numArgs = isStore ? 2 : 1; 6032 6033 // Ensure that we have the proper number of arguments. 6034 if (checkArgCount(*this, TheCall, numArgs)) 6035 return ExprError(); 6036 6037 // Inspect the last argument of the nontemporal builtin. This should always 6038 // be a pointer type, from which we imply the type of the memory access. 6039 // Because it is a pointer type, we don't have to worry about any implicit 6040 // casts here. 6041 Expr *PointerArg = TheCall->getArg(numArgs - 1); 6042 ExprResult PointerArgResult = 6043 DefaultFunctionArrayLvalueConversion(PointerArg); 6044 6045 if (PointerArgResult.isInvalid()) 6046 return ExprError(); 6047 PointerArg = PointerArgResult.get(); 6048 TheCall->setArg(numArgs - 1, PointerArg); 6049 6050 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 6051 if (!pointerType) { 6052 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 6053 << PointerArg->getType() << PointerArg->getSourceRange(); 6054 return ExprError(); 6055 } 6056 6057 QualType ValType = pointerType->getPointeeType(); 6058 6059 // Strip any qualifiers off ValType. 6060 ValType = ValType.getUnqualifiedType(); 6061 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 6062 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 6063 !ValType->isVectorType()) { 6064 Diag(DRE->getBeginLoc(), 6065 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 6066 << PointerArg->getType() << PointerArg->getSourceRange(); 6067 return ExprError(); 6068 } 6069 6070 if (!isStore) { 6071 TheCall->setType(ValType); 6072 return TheCallResult; 6073 } 6074 6075 ExprResult ValArg = TheCall->getArg(0); 6076 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6077 Context, ValType, /*consume*/ false); 6078 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 6079 if (ValArg.isInvalid()) 6080 return ExprError(); 6081 6082 TheCall->setArg(0, ValArg.get()); 6083 TheCall->setType(Context.VoidTy); 6084 return TheCallResult; 6085 } 6086 6087 /// CheckObjCString - Checks that the argument to the builtin 6088 /// CFString constructor is correct 6089 /// Note: It might also make sense to do the UTF-16 conversion here (would 6090 /// simplify the backend). 6091 bool Sema::CheckObjCString(Expr *Arg) { 6092 Arg = Arg->IgnoreParenCasts(); 6093 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 6094 6095 if (!Literal || !Literal->isAscii()) { 6096 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 6097 << Arg->getSourceRange(); 6098 return true; 6099 } 6100 6101 if (Literal->containsNonAsciiOrNull()) { 6102 StringRef String = Literal->getString(); 6103 unsigned NumBytes = String.size(); 6104 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 6105 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 6106 llvm::UTF16 *ToPtr = &ToBuf[0]; 6107 6108 llvm::ConversionResult Result = 6109 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 6110 ToPtr + NumBytes, llvm::strictConversion); 6111 // Check for conversion failure. 6112 if (Result != llvm::conversionOK) 6113 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 6114 << Arg->getSourceRange(); 6115 } 6116 return false; 6117 } 6118 6119 /// CheckObjCString - Checks that the format string argument to the os_log() 6120 /// and os_trace() functions is correct, and converts it to const char *. 6121 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 6122 Arg = Arg->IgnoreParenCasts(); 6123 auto *Literal = dyn_cast<StringLiteral>(Arg); 6124 if (!Literal) { 6125 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 6126 Literal = ObjcLiteral->getString(); 6127 } 6128 } 6129 6130 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 6131 return ExprError( 6132 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 6133 << Arg->getSourceRange()); 6134 } 6135 6136 ExprResult Result(Literal); 6137 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 6138 InitializedEntity Entity = 6139 InitializedEntity::InitializeParameter(Context, ResultTy, false); 6140 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 6141 return Result; 6142 } 6143 6144 /// Check that the user is calling the appropriate va_start builtin for the 6145 /// target and calling convention. 6146 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 6147 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 6148 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 6149 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 6150 TT.getArch() == llvm::Triple::aarch64_32); 6151 bool IsWindows = TT.isOSWindows(); 6152 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 6153 if (IsX64 || IsAArch64) { 6154 CallingConv CC = CC_C; 6155 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 6156 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 6157 if (IsMSVAStart) { 6158 // Don't allow this in System V ABI functions. 6159 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 6160 return S.Diag(Fn->getBeginLoc(), 6161 diag::err_ms_va_start_used_in_sysv_function); 6162 } else { 6163 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 6164 // On x64 Windows, don't allow this in System V ABI functions. 6165 // (Yes, that means there's no corresponding way to support variadic 6166 // System V ABI functions on Windows.) 6167 if ((IsWindows && CC == CC_X86_64SysV) || 6168 (!IsWindows && CC == CC_Win64)) 6169 return S.Diag(Fn->getBeginLoc(), 6170 diag::err_va_start_used_in_wrong_abi_function) 6171 << !IsWindows; 6172 } 6173 return false; 6174 } 6175 6176 if (IsMSVAStart) 6177 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 6178 return false; 6179 } 6180 6181 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 6182 ParmVarDecl **LastParam = nullptr) { 6183 // Determine whether the current function, block, or obj-c method is variadic 6184 // and get its parameter list. 6185 bool IsVariadic = false; 6186 ArrayRef<ParmVarDecl *> Params; 6187 DeclContext *Caller = S.CurContext; 6188 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 6189 IsVariadic = Block->isVariadic(); 6190 Params = Block->parameters(); 6191 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 6192 IsVariadic = FD->isVariadic(); 6193 Params = FD->parameters(); 6194 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 6195 IsVariadic = MD->isVariadic(); 6196 // FIXME: This isn't correct for methods (results in bogus warning). 6197 Params = MD->parameters(); 6198 } else if (isa<CapturedDecl>(Caller)) { 6199 // We don't support va_start in a CapturedDecl. 6200 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 6201 return true; 6202 } else { 6203 // This must be some other declcontext that parses exprs. 6204 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 6205 return true; 6206 } 6207 6208 if (!IsVariadic) { 6209 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 6210 return true; 6211 } 6212 6213 if (LastParam) 6214 *LastParam = Params.empty() ? nullptr : Params.back(); 6215 6216 return false; 6217 } 6218 6219 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 6220 /// for validity. Emit an error and return true on failure; return false 6221 /// on success. 6222 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 6223 Expr *Fn = TheCall->getCallee(); 6224 6225 if (checkVAStartABI(*this, BuiltinID, Fn)) 6226 return true; 6227 6228 if (checkArgCount(*this, TheCall, 2)) 6229 return true; 6230 6231 // Type-check the first argument normally. 6232 if (checkBuiltinArgument(*this, TheCall, 0)) 6233 return true; 6234 6235 // Check that the current function is variadic, and get its last parameter. 6236 ParmVarDecl *LastParam; 6237 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 6238 return true; 6239 6240 // Verify that the second argument to the builtin is the last argument of the 6241 // current function or method. 6242 bool SecondArgIsLastNamedArgument = false; 6243 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 6244 6245 // These are valid if SecondArgIsLastNamedArgument is false after the next 6246 // block. 6247 QualType Type; 6248 SourceLocation ParamLoc; 6249 bool IsCRegister = false; 6250 6251 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 6252 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 6253 SecondArgIsLastNamedArgument = PV == LastParam; 6254 6255 Type = PV->getType(); 6256 ParamLoc = PV->getLocation(); 6257 IsCRegister = 6258 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 6259 } 6260 } 6261 6262 if (!SecondArgIsLastNamedArgument) 6263 Diag(TheCall->getArg(1)->getBeginLoc(), 6264 diag::warn_second_arg_of_va_start_not_last_named_param); 6265 else if (IsCRegister || Type->isReferenceType() || 6266 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 6267 // Promotable integers are UB, but enumerations need a bit of 6268 // extra checking to see what their promotable type actually is. 6269 if (!Type->isPromotableIntegerType()) 6270 return false; 6271 if (!Type->isEnumeralType()) 6272 return true; 6273 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 6274 return !(ED && 6275 Context.typesAreCompatible(ED->getPromotionType(), Type)); 6276 }()) { 6277 unsigned Reason = 0; 6278 if (Type->isReferenceType()) Reason = 1; 6279 else if (IsCRegister) Reason = 2; 6280 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 6281 Diag(ParamLoc, diag::note_parameter_type) << Type; 6282 } 6283 6284 TheCall->setType(Context.VoidTy); 6285 return false; 6286 } 6287 6288 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 6289 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 6290 // const char *named_addr); 6291 6292 Expr *Func = Call->getCallee(); 6293 6294 if (Call->getNumArgs() < 3) 6295 return Diag(Call->getEndLoc(), 6296 diag::err_typecheck_call_too_few_args_at_least) 6297 << 0 /*function call*/ << 3 << Call->getNumArgs(); 6298 6299 // Type-check the first argument normally. 6300 if (checkBuiltinArgument(*this, Call, 0)) 6301 return true; 6302 6303 // Check that the current function is variadic. 6304 if (checkVAStartIsInVariadicFunction(*this, Func)) 6305 return true; 6306 6307 // __va_start on Windows does not validate the parameter qualifiers 6308 6309 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 6310 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 6311 6312 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 6313 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 6314 6315 const QualType &ConstCharPtrTy = 6316 Context.getPointerType(Context.CharTy.withConst()); 6317 if (!Arg1Ty->isPointerType() || 6318 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 6319 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6320 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 6321 << 0 /* qualifier difference */ 6322 << 3 /* parameter mismatch */ 6323 << 2 << Arg1->getType() << ConstCharPtrTy; 6324 6325 const QualType SizeTy = Context.getSizeType(); 6326 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 6327 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6328 << Arg2->getType() << SizeTy << 1 /* different class */ 6329 << 0 /* qualifier difference */ 6330 << 3 /* parameter mismatch */ 6331 << 3 << Arg2->getType() << SizeTy; 6332 6333 return false; 6334 } 6335 6336 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 6337 /// friends. This is declared to take (...), so we have to check everything. 6338 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 6339 if (checkArgCount(*this, TheCall, 2)) 6340 return true; 6341 6342 ExprResult OrigArg0 = TheCall->getArg(0); 6343 ExprResult OrigArg1 = TheCall->getArg(1); 6344 6345 // Do standard promotions between the two arguments, returning their common 6346 // type. 6347 QualType Res = UsualArithmeticConversions( 6348 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 6349 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 6350 return true; 6351 6352 // Make sure any conversions are pushed back into the call; this is 6353 // type safe since unordered compare builtins are declared as "_Bool 6354 // foo(...)". 6355 TheCall->setArg(0, OrigArg0.get()); 6356 TheCall->setArg(1, OrigArg1.get()); 6357 6358 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 6359 return false; 6360 6361 // If the common type isn't a real floating type, then the arguments were 6362 // invalid for this operation. 6363 if (Res.isNull() || !Res->isRealFloatingType()) 6364 return Diag(OrigArg0.get()->getBeginLoc(), 6365 diag::err_typecheck_call_invalid_ordered_compare) 6366 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 6367 << SourceRange(OrigArg0.get()->getBeginLoc(), 6368 OrigArg1.get()->getEndLoc()); 6369 6370 return false; 6371 } 6372 6373 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 6374 /// __builtin_isnan and friends. This is declared to take (...), so we have 6375 /// to check everything. We expect the last argument to be a floating point 6376 /// value. 6377 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 6378 if (checkArgCount(*this, TheCall, NumArgs)) 6379 return true; 6380 6381 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 6382 // on all preceding parameters just being int. Try all of those. 6383 for (unsigned i = 0; i < NumArgs - 1; ++i) { 6384 Expr *Arg = TheCall->getArg(i); 6385 6386 if (Arg->isTypeDependent()) 6387 return false; 6388 6389 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 6390 6391 if (Res.isInvalid()) 6392 return true; 6393 TheCall->setArg(i, Res.get()); 6394 } 6395 6396 Expr *OrigArg = TheCall->getArg(NumArgs-1); 6397 6398 if (OrigArg->isTypeDependent()) 6399 return false; 6400 6401 // Usual Unary Conversions will convert half to float, which we want for 6402 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 6403 // type how it is, but do normal L->Rvalue conversions. 6404 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 6405 OrigArg = UsualUnaryConversions(OrigArg).get(); 6406 else 6407 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 6408 TheCall->setArg(NumArgs - 1, OrigArg); 6409 6410 // This operation requires a non-_Complex floating-point number. 6411 if (!OrigArg->getType()->isRealFloatingType()) 6412 return Diag(OrigArg->getBeginLoc(), 6413 diag::err_typecheck_call_invalid_unary_fp) 6414 << OrigArg->getType() << OrigArg->getSourceRange(); 6415 6416 return false; 6417 } 6418 6419 /// Perform semantic analysis for a call to __builtin_complex. 6420 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 6421 if (checkArgCount(*this, TheCall, 2)) 6422 return true; 6423 6424 bool Dependent = false; 6425 for (unsigned I = 0; I != 2; ++I) { 6426 Expr *Arg = TheCall->getArg(I); 6427 QualType T = Arg->getType(); 6428 if (T->isDependentType()) { 6429 Dependent = true; 6430 continue; 6431 } 6432 6433 // Despite supporting _Complex int, GCC requires a real floating point type 6434 // for the operands of __builtin_complex. 6435 if (!T->isRealFloatingType()) { 6436 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 6437 << Arg->getType() << Arg->getSourceRange(); 6438 } 6439 6440 ExprResult Converted = DefaultLvalueConversion(Arg); 6441 if (Converted.isInvalid()) 6442 return true; 6443 TheCall->setArg(I, Converted.get()); 6444 } 6445 6446 if (Dependent) { 6447 TheCall->setType(Context.DependentTy); 6448 return false; 6449 } 6450 6451 Expr *Real = TheCall->getArg(0); 6452 Expr *Imag = TheCall->getArg(1); 6453 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6454 return Diag(Real->getBeginLoc(), 6455 diag::err_typecheck_call_different_arg_types) 6456 << Real->getType() << Imag->getType() 6457 << Real->getSourceRange() << Imag->getSourceRange(); 6458 } 6459 6460 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6461 // don't allow this builtin to form those types either. 6462 // FIXME: Should we allow these types? 6463 if (Real->getType()->isFloat16Type()) 6464 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6465 << "_Float16"; 6466 if (Real->getType()->isHalfType()) 6467 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6468 << "half"; 6469 6470 TheCall->setType(Context.getComplexType(Real->getType())); 6471 return false; 6472 } 6473 6474 // Customized Sema Checking for VSX builtins that have the following signature: 6475 // vector [...] builtinName(vector [...], vector [...], const int); 6476 // Which takes the same type of vectors (any legal vector type) for the first 6477 // two arguments and takes compile time constant for the third argument. 6478 // Example builtins are : 6479 // vector double vec_xxpermdi(vector double, vector double, int); 6480 // vector short vec_xxsldwi(vector short, vector short, int); 6481 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 6482 unsigned ExpectedNumArgs = 3; 6483 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 6484 return true; 6485 6486 // Check the third argument is a compile time constant 6487 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 6488 return Diag(TheCall->getBeginLoc(), 6489 diag::err_vsx_builtin_nonconstant_argument) 6490 << 3 /* argument index */ << TheCall->getDirectCallee() 6491 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 6492 TheCall->getArg(2)->getEndLoc()); 6493 6494 QualType Arg1Ty = TheCall->getArg(0)->getType(); 6495 QualType Arg2Ty = TheCall->getArg(1)->getType(); 6496 6497 // Check the type of argument 1 and argument 2 are vectors. 6498 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 6499 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 6500 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 6501 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 6502 << TheCall->getDirectCallee() 6503 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6504 TheCall->getArg(1)->getEndLoc()); 6505 } 6506 6507 // Check the first two arguments are the same type. 6508 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 6509 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 6510 << TheCall->getDirectCallee() 6511 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6512 TheCall->getArg(1)->getEndLoc()); 6513 } 6514 6515 // When default clang type checking is turned off and the customized type 6516 // checking is used, the returning type of the function must be explicitly 6517 // set. Otherwise it is _Bool by default. 6518 TheCall->setType(Arg1Ty); 6519 6520 return false; 6521 } 6522 6523 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 6524 // This is declared to take (...), so we have to check everything. 6525 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 6526 if (TheCall->getNumArgs() < 2) 6527 return ExprError(Diag(TheCall->getEndLoc(), 6528 diag::err_typecheck_call_too_few_args_at_least) 6529 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 6530 << TheCall->getSourceRange()); 6531 6532 // Determine which of the following types of shufflevector we're checking: 6533 // 1) unary, vector mask: (lhs, mask) 6534 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 6535 QualType resType = TheCall->getArg(0)->getType(); 6536 unsigned numElements = 0; 6537 6538 if (!TheCall->getArg(0)->isTypeDependent() && 6539 !TheCall->getArg(1)->isTypeDependent()) { 6540 QualType LHSType = TheCall->getArg(0)->getType(); 6541 QualType RHSType = TheCall->getArg(1)->getType(); 6542 6543 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 6544 return ExprError( 6545 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 6546 << TheCall->getDirectCallee() 6547 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6548 TheCall->getArg(1)->getEndLoc())); 6549 6550 numElements = LHSType->castAs<VectorType>()->getNumElements(); 6551 unsigned numResElements = TheCall->getNumArgs() - 2; 6552 6553 // Check to see if we have a call with 2 vector arguments, the unary shuffle 6554 // with mask. If so, verify that RHS is an integer vector type with the 6555 // same number of elts as lhs. 6556 if (TheCall->getNumArgs() == 2) { 6557 if (!RHSType->hasIntegerRepresentation() || 6558 RHSType->castAs<VectorType>()->getNumElements() != numElements) 6559 return ExprError(Diag(TheCall->getBeginLoc(), 6560 diag::err_vec_builtin_incompatible_vector) 6561 << TheCall->getDirectCallee() 6562 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 6563 TheCall->getArg(1)->getEndLoc())); 6564 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 6565 return ExprError(Diag(TheCall->getBeginLoc(), 6566 diag::err_vec_builtin_incompatible_vector) 6567 << TheCall->getDirectCallee() 6568 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6569 TheCall->getArg(1)->getEndLoc())); 6570 } else if (numElements != numResElements) { 6571 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 6572 resType = Context.getVectorType(eltType, numResElements, 6573 VectorType::GenericVector); 6574 } 6575 } 6576 6577 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 6578 if (TheCall->getArg(i)->isTypeDependent() || 6579 TheCall->getArg(i)->isValueDependent()) 6580 continue; 6581 6582 Optional<llvm::APSInt> Result; 6583 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 6584 return ExprError(Diag(TheCall->getBeginLoc(), 6585 diag::err_shufflevector_nonconstant_argument) 6586 << TheCall->getArg(i)->getSourceRange()); 6587 6588 // Allow -1 which will be translated to undef in the IR. 6589 if (Result->isSigned() && Result->isAllOnesValue()) 6590 continue; 6591 6592 if (Result->getActiveBits() > 64 || 6593 Result->getZExtValue() >= numElements * 2) 6594 return ExprError(Diag(TheCall->getBeginLoc(), 6595 diag::err_shufflevector_argument_too_large) 6596 << TheCall->getArg(i)->getSourceRange()); 6597 } 6598 6599 SmallVector<Expr*, 32> exprs; 6600 6601 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 6602 exprs.push_back(TheCall->getArg(i)); 6603 TheCall->setArg(i, nullptr); 6604 } 6605 6606 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 6607 TheCall->getCallee()->getBeginLoc(), 6608 TheCall->getRParenLoc()); 6609 } 6610 6611 /// SemaConvertVectorExpr - Handle __builtin_convertvector 6612 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 6613 SourceLocation BuiltinLoc, 6614 SourceLocation RParenLoc) { 6615 ExprValueKind VK = VK_PRValue; 6616 ExprObjectKind OK = OK_Ordinary; 6617 QualType DstTy = TInfo->getType(); 6618 QualType SrcTy = E->getType(); 6619 6620 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 6621 return ExprError(Diag(BuiltinLoc, 6622 diag::err_convertvector_non_vector) 6623 << E->getSourceRange()); 6624 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 6625 return ExprError(Diag(BuiltinLoc, 6626 diag::err_convertvector_non_vector_type)); 6627 6628 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 6629 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 6630 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 6631 if (SrcElts != DstElts) 6632 return ExprError(Diag(BuiltinLoc, 6633 diag::err_convertvector_incompatible_vector) 6634 << E->getSourceRange()); 6635 } 6636 6637 return new (Context) 6638 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 6639 } 6640 6641 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 6642 // This is declared to take (const void*, ...) and can take two 6643 // optional constant int args. 6644 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 6645 unsigned NumArgs = TheCall->getNumArgs(); 6646 6647 if (NumArgs > 3) 6648 return Diag(TheCall->getEndLoc(), 6649 diag::err_typecheck_call_too_many_args_at_most) 6650 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6651 6652 // Argument 0 is checked for us and the remaining arguments must be 6653 // constant integers. 6654 for (unsigned i = 1; i != NumArgs; ++i) 6655 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 6656 return true; 6657 6658 return false; 6659 } 6660 6661 /// SemaBuiltinArithmeticFence - Handle __arithmetic_fence. 6662 bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) { 6663 if (!Context.getTargetInfo().checkArithmeticFenceSupported()) 6664 return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 6665 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6666 if (checkArgCount(*this, TheCall, 1)) 6667 return true; 6668 Expr *Arg = TheCall->getArg(0); 6669 if (Arg->isInstantiationDependent()) 6670 return false; 6671 6672 QualType ArgTy = Arg->getType(); 6673 if (!ArgTy->hasFloatingRepresentation()) 6674 return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector) 6675 << ArgTy; 6676 if (Arg->isLValue()) { 6677 ExprResult FirstArg = DefaultLvalueConversion(Arg); 6678 TheCall->setArg(0, FirstArg.get()); 6679 } 6680 TheCall->setType(TheCall->getArg(0)->getType()); 6681 return false; 6682 } 6683 6684 /// SemaBuiltinAssume - Handle __assume (MS Extension). 6685 // __assume does not evaluate its arguments, and should warn if its argument 6686 // has side effects. 6687 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6688 Expr *Arg = TheCall->getArg(0); 6689 if (Arg->isInstantiationDependent()) return false; 6690 6691 if (Arg->HasSideEffects(Context)) 6692 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6693 << Arg->getSourceRange() 6694 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6695 6696 return false; 6697 } 6698 6699 /// Handle __builtin_alloca_with_align. This is declared 6700 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6701 /// than 8. 6702 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6703 // The alignment must be a constant integer. 6704 Expr *Arg = TheCall->getArg(1); 6705 6706 // We can't check the value of a dependent argument. 6707 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6708 if (const auto *UE = 6709 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6710 if (UE->getKind() == UETT_AlignOf || 6711 UE->getKind() == UETT_PreferredAlignOf) 6712 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6713 << Arg->getSourceRange(); 6714 6715 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6716 6717 if (!Result.isPowerOf2()) 6718 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6719 << Arg->getSourceRange(); 6720 6721 if (Result < Context.getCharWidth()) 6722 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6723 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6724 6725 if (Result > std::numeric_limits<int32_t>::max()) 6726 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6727 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6728 } 6729 6730 return false; 6731 } 6732 6733 /// Handle __builtin_assume_aligned. This is declared 6734 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6735 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6736 unsigned NumArgs = TheCall->getNumArgs(); 6737 6738 if (NumArgs > 3) 6739 return Diag(TheCall->getEndLoc(), 6740 diag::err_typecheck_call_too_many_args_at_most) 6741 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6742 6743 // The alignment must be a constant integer. 6744 Expr *Arg = TheCall->getArg(1); 6745 6746 // We can't check the value of a dependent argument. 6747 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6748 llvm::APSInt Result; 6749 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6750 return true; 6751 6752 if (!Result.isPowerOf2()) 6753 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6754 << Arg->getSourceRange(); 6755 6756 if (Result > Sema::MaximumAlignment) 6757 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6758 << Arg->getSourceRange() << Sema::MaximumAlignment; 6759 } 6760 6761 if (NumArgs > 2) { 6762 ExprResult Arg(TheCall->getArg(2)); 6763 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6764 Context.getSizeType(), false); 6765 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6766 if (Arg.isInvalid()) return true; 6767 TheCall->setArg(2, Arg.get()); 6768 } 6769 6770 return false; 6771 } 6772 6773 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6774 unsigned BuiltinID = 6775 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6776 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6777 6778 unsigned NumArgs = TheCall->getNumArgs(); 6779 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6780 if (NumArgs < NumRequiredArgs) { 6781 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6782 << 0 /* function call */ << NumRequiredArgs << NumArgs 6783 << TheCall->getSourceRange(); 6784 } 6785 if (NumArgs >= NumRequiredArgs + 0x100) { 6786 return Diag(TheCall->getEndLoc(), 6787 diag::err_typecheck_call_too_many_args_at_most) 6788 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6789 << TheCall->getSourceRange(); 6790 } 6791 unsigned i = 0; 6792 6793 // For formatting call, check buffer arg. 6794 if (!IsSizeCall) { 6795 ExprResult Arg(TheCall->getArg(i)); 6796 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6797 Context, Context.VoidPtrTy, false); 6798 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6799 if (Arg.isInvalid()) 6800 return true; 6801 TheCall->setArg(i, Arg.get()); 6802 i++; 6803 } 6804 6805 // Check string literal arg. 6806 unsigned FormatIdx = i; 6807 { 6808 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6809 if (Arg.isInvalid()) 6810 return true; 6811 TheCall->setArg(i, Arg.get()); 6812 i++; 6813 } 6814 6815 // Make sure variadic args are scalar. 6816 unsigned FirstDataArg = i; 6817 while (i < NumArgs) { 6818 ExprResult Arg = DefaultVariadicArgumentPromotion( 6819 TheCall->getArg(i), VariadicFunction, nullptr); 6820 if (Arg.isInvalid()) 6821 return true; 6822 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6823 if (ArgSize.getQuantity() >= 0x100) { 6824 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6825 << i << (int)ArgSize.getQuantity() << 0xff 6826 << TheCall->getSourceRange(); 6827 } 6828 TheCall->setArg(i, Arg.get()); 6829 i++; 6830 } 6831 6832 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6833 // call to avoid duplicate diagnostics. 6834 if (!IsSizeCall) { 6835 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6836 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6837 bool Success = CheckFormatArguments( 6838 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6839 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6840 CheckedVarArgs); 6841 if (!Success) 6842 return true; 6843 } 6844 6845 if (IsSizeCall) { 6846 TheCall->setType(Context.getSizeType()); 6847 } else { 6848 TheCall->setType(Context.VoidPtrTy); 6849 } 6850 return false; 6851 } 6852 6853 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6854 /// TheCall is a constant expression. 6855 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6856 llvm::APSInt &Result) { 6857 Expr *Arg = TheCall->getArg(ArgNum); 6858 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6859 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6860 6861 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6862 6863 Optional<llvm::APSInt> R; 6864 if (!(R = Arg->getIntegerConstantExpr(Context))) 6865 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6866 << FDecl->getDeclName() << Arg->getSourceRange(); 6867 Result = *R; 6868 return false; 6869 } 6870 6871 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6872 /// TheCall is a constant expression in the range [Low, High]. 6873 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6874 int Low, int High, bool RangeIsError) { 6875 if (isConstantEvaluated()) 6876 return false; 6877 llvm::APSInt Result; 6878 6879 // We can't check the value of a dependent argument. 6880 Expr *Arg = TheCall->getArg(ArgNum); 6881 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6882 return false; 6883 6884 // Check constant-ness first. 6885 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6886 return true; 6887 6888 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6889 if (RangeIsError) 6890 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6891 << toString(Result, 10) << Low << High << Arg->getSourceRange(); 6892 else 6893 // Defer the warning until we know if the code will be emitted so that 6894 // dead code can ignore this. 6895 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6896 PDiag(diag::warn_argument_invalid_range) 6897 << toString(Result, 10) << Low << High 6898 << Arg->getSourceRange()); 6899 } 6900 6901 return false; 6902 } 6903 6904 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6905 /// TheCall is a constant expression is a multiple of Num.. 6906 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6907 unsigned Num) { 6908 llvm::APSInt Result; 6909 6910 // We can't check the value of a dependent argument. 6911 Expr *Arg = TheCall->getArg(ArgNum); 6912 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6913 return false; 6914 6915 // Check constant-ness first. 6916 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6917 return true; 6918 6919 if (Result.getSExtValue() % Num != 0) 6920 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6921 << Num << Arg->getSourceRange(); 6922 6923 return false; 6924 } 6925 6926 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6927 /// constant expression representing a power of 2. 6928 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6929 llvm::APSInt Result; 6930 6931 // We can't check the value of a dependent argument. 6932 Expr *Arg = TheCall->getArg(ArgNum); 6933 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6934 return false; 6935 6936 // Check constant-ness first. 6937 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6938 return true; 6939 6940 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6941 // and only if x is a power of 2. 6942 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6943 return false; 6944 6945 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6946 << Arg->getSourceRange(); 6947 } 6948 6949 static bool IsShiftedByte(llvm::APSInt Value) { 6950 if (Value.isNegative()) 6951 return false; 6952 6953 // Check if it's a shifted byte, by shifting it down 6954 while (true) { 6955 // If the value fits in the bottom byte, the check passes. 6956 if (Value < 0x100) 6957 return true; 6958 6959 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6960 // fails. 6961 if ((Value & 0xFF) != 0) 6962 return false; 6963 6964 // If the bottom 8 bits are all 0, but something above that is nonzero, 6965 // then shifting the value right by 8 bits won't affect whether it's a 6966 // shifted byte or not. So do that, and go round again. 6967 Value >>= 8; 6968 } 6969 } 6970 6971 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6972 /// a constant expression representing an arbitrary byte value shifted left by 6973 /// a multiple of 8 bits. 6974 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6975 unsigned ArgBits) { 6976 llvm::APSInt Result; 6977 6978 // We can't check the value of a dependent argument. 6979 Expr *Arg = TheCall->getArg(ArgNum); 6980 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6981 return false; 6982 6983 // Check constant-ness first. 6984 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6985 return true; 6986 6987 // Truncate to the given size. 6988 Result = Result.getLoBits(ArgBits); 6989 Result.setIsUnsigned(true); 6990 6991 if (IsShiftedByte(Result)) 6992 return false; 6993 6994 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6995 << Arg->getSourceRange(); 6996 } 6997 6998 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6999 /// TheCall is a constant expression representing either a shifted byte value, 7000 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 7001 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 7002 /// Arm MVE intrinsics. 7003 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 7004 int ArgNum, 7005 unsigned ArgBits) { 7006 llvm::APSInt Result; 7007 7008 // We can't check the value of a dependent argument. 7009 Expr *Arg = TheCall->getArg(ArgNum); 7010 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7011 return false; 7012 7013 // Check constant-ness first. 7014 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 7015 return true; 7016 7017 // Truncate to the given size. 7018 Result = Result.getLoBits(ArgBits); 7019 Result.setIsUnsigned(true); 7020 7021 // Check to see if it's in either of the required forms. 7022 if (IsShiftedByte(Result) || 7023 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 7024 return false; 7025 7026 return Diag(TheCall->getBeginLoc(), 7027 diag::err_argument_not_shifted_byte_or_xxff) 7028 << Arg->getSourceRange(); 7029 } 7030 7031 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 7032 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 7033 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 7034 if (checkArgCount(*this, TheCall, 2)) 7035 return true; 7036 Expr *Arg0 = TheCall->getArg(0); 7037 Expr *Arg1 = TheCall->getArg(1); 7038 7039 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7040 if (FirstArg.isInvalid()) 7041 return true; 7042 QualType FirstArgType = FirstArg.get()->getType(); 7043 if (!FirstArgType->isAnyPointerType()) 7044 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7045 << "first" << FirstArgType << Arg0->getSourceRange(); 7046 TheCall->setArg(0, FirstArg.get()); 7047 7048 ExprResult SecArg = DefaultLvalueConversion(Arg1); 7049 if (SecArg.isInvalid()) 7050 return true; 7051 QualType SecArgType = SecArg.get()->getType(); 7052 if (!SecArgType->isIntegerType()) 7053 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7054 << "second" << SecArgType << Arg1->getSourceRange(); 7055 7056 // Derive the return type from the pointer argument. 7057 TheCall->setType(FirstArgType); 7058 return false; 7059 } 7060 7061 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 7062 if (checkArgCount(*this, TheCall, 2)) 7063 return true; 7064 7065 Expr *Arg0 = TheCall->getArg(0); 7066 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7067 if (FirstArg.isInvalid()) 7068 return true; 7069 QualType FirstArgType = FirstArg.get()->getType(); 7070 if (!FirstArgType->isAnyPointerType()) 7071 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7072 << "first" << FirstArgType << Arg0->getSourceRange(); 7073 TheCall->setArg(0, FirstArg.get()); 7074 7075 // Derive the return type from the pointer argument. 7076 TheCall->setType(FirstArgType); 7077 7078 // Second arg must be an constant in range [0,15] 7079 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7080 } 7081 7082 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 7083 if (checkArgCount(*this, TheCall, 2)) 7084 return true; 7085 Expr *Arg0 = TheCall->getArg(0); 7086 Expr *Arg1 = TheCall->getArg(1); 7087 7088 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7089 if (FirstArg.isInvalid()) 7090 return true; 7091 QualType FirstArgType = FirstArg.get()->getType(); 7092 if (!FirstArgType->isAnyPointerType()) 7093 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7094 << "first" << FirstArgType << Arg0->getSourceRange(); 7095 7096 QualType SecArgType = Arg1->getType(); 7097 if (!SecArgType->isIntegerType()) 7098 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 7099 << "second" << SecArgType << Arg1->getSourceRange(); 7100 TheCall->setType(Context.IntTy); 7101 return false; 7102 } 7103 7104 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 7105 BuiltinID == AArch64::BI__builtin_arm_stg) { 7106 if (checkArgCount(*this, TheCall, 1)) 7107 return true; 7108 Expr *Arg0 = TheCall->getArg(0); 7109 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 7110 if (FirstArg.isInvalid()) 7111 return true; 7112 7113 QualType FirstArgType = FirstArg.get()->getType(); 7114 if (!FirstArgType->isAnyPointerType()) 7115 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 7116 << "first" << FirstArgType << Arg0->getSourceRange(); 7117 TheCall->setArg(0, FirstArg.get()); 7118 7119 // Derive the return type from the pointer argument. 7120 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 7121 TheCall->setType(FirstArgType); 7122 return false; 7123 } 7124 7125 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 7126 Expr *ArgA = TheCall->getArg(0); 7127 Expr *ArgB = TheCall->getArg(1); 7128 7129 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 7130 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 7131 7132 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 7133 return true; 7134 7135 QualType ArgTypeA = ArgExprA.get()->getType(); 7136 QualType ArgTypeB = ArgExprB.get()->getType(); 7137 7138 auto isNull = [&] (Expr *E) -> bool { 7139 return E->isNullPointerConstant( 7140 Context, Expr::NPC_ValueDependentIsNotNull); }; 7141 7142 // argument should be either a pointer or null 7143 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 7144 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7145 << "first" << ArgTypeA << ArgA->getSourceRange(); 7146 7147 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 7148 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 7149 << "second" << ArgTypeB << ArgB->getSourceRange(); 7150 7151 // Ensure Pointee types are compatible 7152 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 7153 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 7154 QualType pointeeA = ArgTypeA->getPointeeType(); 7155 QualType pointeeB = ArgTypeB->getPointeeType(); 7156 if (!Context.typesAreCompatible( 7157 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 7158 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 7159 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 7160 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 7161 << ArgB->getSourceRange(); 7162 } 7163 } 7164 7165 // at least one argument should be pointer type 7166 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 7167 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 7168 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 7169 7170 if (isNull(ArgA)) // adopt type of the other pointer 7171 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 7172 7173 if (isNull(ArgB)) 7174 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 7175 7176 TheCall->setArg(0, ArgExprA.get()); 7177 TheCall->setArg(1, ArgExprB.get()); 7178 TheCall->setType(Context.LongLongTy); 7179 return false; 7180 } 7181 assert(false && "Unhandled ARM MTE intrinsic"); 7182 return true; 7183 } 7184 7185 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 7186 /// TheCall is an ARM/AArch64 special register string literal. 7187 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 7188 int ArgNum, unsigned ExpectedFieldNum, 7189 bool AllowName) { 7190 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7191 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7192 BuiltinID == ARM::BI__builtin_arm_rsr || 7193 BuiltinID == ARM::BI__builtin_arm_rsrp || 7194 BuiltinID == ARM::BI__builtin_arm_wsr || 7195 BuiltinID == ARM::BI__builtin_arm_wsrp; 7196 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 7197 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 7198 BuiltinID == AArch64::BI__builtin_arm_rsr || 7199 BuiltinID == AArch64::BI__builtin_arm_rsrp || 7200 BuiltinID == AArch64::BI__builtin_arm_wsr || 7201 BuiltinID == AArch64::BI__builtin_arm_wsrp; 7202 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 7203 7204 // We can't check the value of a dependent argument. 7205 Expr *Arg = TheCall->getArg(ArgNum); 7206 if (Arg->isTypeDependent() || Arg->isValueDependent()) 7207 return false; 7208 7209 // Check if the argument is a string literal. 7210 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 7211 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 7212 << Arg->getSourceRange(); 7213 7214 // Check the type of special register given. 7215 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 7216 SmallVector<StringRef, 6> Fields; 7217 Reg.split(Fields, ":"); 7218 7219 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 7220 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7221 << Arg->getSourceRange(); 7222 7223 // If the string is the name of a register then we cannot check that it is 7224 // valid here but if the string is of one the forms described in ACLE then we 7225 // can check that the supplied fields are integers and within the valid 7226 // ranges. 7227 if (Fields.size() > 1) { 7228 bool FiveFields = Fields.size() == 5; 7229 7230 bool ValidString = true; 7231 if (IsARMBuiltin) { 7232 ValidString &= Fields[0].startswith_insensitive("cp") || 7233 Fields[0].startswith_insensitive("p"); 7234 if (ValidString) 7235 Fields[0] = Fields[0].drop_front( 7236 Fields[0].startswith_insensitive("cp") ? 2 : 1); 7237 7238 ValidString &= Fields[2].startswith_insensitive("c"); 7239 if (ValidString) 7240 Fields[2] = Fields[2].drop_front(1); 7241 7242 if (FiveFields) { 7243 ValidString &= Fields[3].startswith_insensitive("c"); 7244 if (ValidString) 7245 Fields[3] = Fields[3].drop_front(1); 7246 } 7247 } 7248 7249 SmallVector<int, 5> Ranges; 7250 if (FiveFields) 7251 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 7252 else 7253 Ranges.append({15, 7, 15}); 7254 7255 for (unsigned i=0; i<Fields.size(); ++i) { 7256 int IntField; 7257 ValidString &= !Fields[i].getAsInteger(10, IntField); 7258 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 7259 } 7260 7261 if (!ValidString) 7262 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 7263 << Arg->getSourceRange(); 7264 } else if (IsAArch64Builtin && Fields.size() == 1) { 7265 // If the register name is one of those that appear in the condition below 7266 // and the special register builtin being used is one of the write builtins, 7267 // then we require that the argument provided for writing to the register 7268 // is an integer constant expression. This is because it will be lowered to 7269 // an MSR (immediate) instruction, so we need to know the immediate at 7270 // compile time. 7271 if (TheCall->getNumArgs() != 2) 7272 return false; 7273 7274 std::string RegLower = Reg.lower(); 7275 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 7276 RegLower != "pan" && RegLower != "uao") 7277 return false; 7278 7279 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 7280 } 7281 7282 return false; 7283 } 7284 7285 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 7286 /// Emit an error and return true on failure; return false on success. 7287 /// TypeStr is a string containing the type descriptor of the value returned by 7288 /// the builtin and the descriptors of the expected type of the arguments. 7289 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) { 7290 7291 assert((TypeStr[0] != '\0') && 7292 "Invalid types in PPC MMA builtin declaration"); 7293 7294 unsigned Mask = 0; 7295 unsigned ArgNum = 0; 7296 7297 // The first type in TypeStr is the type of the value returned by the 7298 // builtin. So we first read that type and change the type of TheCall. 7299 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7300 TheCall->setType(type); 7301 7302 while (*TypeStr != '\0') { 7303 Mask = 0; 7304 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7305 if (ArgNum >= TheCall->getNumArgs()) { 7306 ArgNum++; 7307 break; 7308 } 7309 7310 Expr *Arg = TheCall->getArg(ArgNum); 7311 QualType ArgType = Arg->getType(); 7312 7313 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) || 7314 (!ExpectedType->isVoidPointerType() && 7315 ArgType.getCanonicalType() != ExpectedType)) 7316 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 7317 << ArgType << ExpectedType << 1 << 0 << 0; 7318 7319 // If the value of the Mask is not 0, we have a constraint in the size of 7320 // the integer argument so here we ensure the argument is a constant that 7321 // is in the valid range. 7322 if (Mask != 0 && 7323 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 7324 return true; 7325 7326 ArgNum++; 7327 } 7328 7329 // In case we exited early from the previous loop, there are other types to 7330 // read from TypeStr. So we need to read them all to ensure we have the right 7331 // number of arguments in TheCall and if it is not the case, to display a 7332 // better error message. 7333 while (*TypeStr != '\0') { 7334 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 7335 ArgNum++; 7336 } 7337 if (checkArgCount(*this, TheCall, ArgNum)) 7338 return true; 7339 7340 return false; 7341 } 7342 7343 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 7344 /// This checks that the target supports __builtin_longjmp and 7345 /// that val is a constant 1. 7346 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 7347 if (!Context.getTargetInfo().hasSjLjLowering()) 7348 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 7349 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7350 7351 Expr *Arg = TheCall->getArg(1); 7352 llvm::APSInt Result; 7353 7354 // TODO: This is less than ideal. Overload this to take a value. 7355 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 7356 return true; 7357 7358 if (Result != 1) 7359 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 7360 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 7361 7362 return false; 7363 } 7364 7365 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 7366 /// This checks that the target supports __builtin_setjmp. 7367 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 7368 if (!Context.getTargetInfo().hasSjLjLowering()) 7369 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 7370 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 7371 return false; 7372 } 7373 7374 namespace { 7375 7376 class UncoveredArgHandler { 7377 enum { Unknown = -1, AllCovered = -2 }; 7378 7379 signed FirstUncoveredArg = Unknown; 7380 SmallVector<const Expr *, 4> DiagnosticExprs; 7381 7382 public: 7383 UncoveredArgHandler() = default; 7384 7385 bool hasUncoveredArg() const { 7386 return (FirstUncoveredArg >= 0); 7387 } 7388 7389 unsigned getUncoveredArg() const { 7390 assert(hasUncoveredArg() && "no uncovered argument"); 7391 return FirstUncoveredArg; 7392 } 7393 7394 void setAllCovered() { 7395 // A string has been found with all arguments covered, so clear out 7396 // the diagnostics. 7397 DiagnosticExprs.clear(); 7398 FirstUncoveredArg = AllCovered; 7399 } 7400 7401 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 7402 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 7403 7404 // Don't update if a previous string covers all arguments. 7405 if (FirstUncoveredArg == AllCovered) 7406 return; 7407 7408 // UncoveredArgHandler tracks the highest uncovered argument index 7409 // and with it all the strings that match this index. 7410 if (NewFirstUncoveredArg == FirstUncoveredArg) 7411 DiagnosticExprs.push_back(StrExpr); 7412 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 7413 DiagnosticExprs.clear(); 7414 DiagnosticExprs.push_back(StrExpr); 7415 FirstUncoveredArg = NewFirstUncoveredArg; 7416 } 7417 } 7418 7419 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 7420 }; 7421 7422 enum StringLiteralCheckType { 7423 SLCT_NotALiteral, 7424 SLCT_UncheckedLiteral, 7425 SLCT_CheckedLiteral 7426 }; 7427 7428 } // namespace 7429 7430 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 7431 BinaryOperatorKind BinOpKind, 7432 bool AddendIsRight) { 7433 unsigned BitWidth = Offset.getBitWidth(); 7434 unsigned AddendBitWidth = Addend.getBitWidth(); 7435 // There might be negative interim results. 7436 if (Addend.isUnsigned()) { 7437 Addend = Addend.zext(++AddendBitWidth); 7438 Addend.setIsSigned(true); 7439 } 7440 // Adjust the bit width of the APSInts. 7441 if (AddendBitWidth > BitWidth) { 7442 Offset = Offset.sext(AddendBitWidth); 7443 BitWidth = AddendBitWidth; 7444 } else if (BitWidth > AddendBitWidth) { 7445 Addend = Addend.sext(BitWidth); 7446 } 7447 7448 bool Ov = false; 7449 llvm::APSInt ResOffset = Offset; 7450 if (BinOpKind == BO_Add) 7451 ResOffset = Offset.sadd_ov(Addend, Ov); 7452 else { 7453 assert(AddendIsRight && BinOpKind == BO_Sub && 7454 "operator must be add or sub with addend on the right"); 7455 ResOffset = Offset.ssub_ov(Addend, Ov); 7456 } 7457 7458 // We add an offset to a pointer here so we should support an offset as big as 7459 // possible. 7460 if (Ov) { 7461 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 7462 "index (intermediate) result too big"); 7463 Offset = Offset.sext(2 * BitWidth); 7464 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 7465 return; 7466 } 7467 7468 Offset = ResOffset; 7469 } 7470 7471 namespace { 7472 7473 // This is a wrapper class around StringLiteral to support offsetted string 7474 // literals as format strings. It takes the offset into account when returning 7475 // the string and its length or the source locations to display notes correctly. 7476 class FormatStringLiteral { 7477 const StringLiteral *FExpr; 7478 int64_t Offset; 7479 7480 public: 7481 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 7482 : FExpr(fexpr), Offset(Offset) {} 7483 7484 StringRef getString() const { 7485 return FExpr->getString().drop_front(Offset); 7486 } 7487 7488 unsigned getByteLength() const { 7489 return FExpr->getByteLength() - getCharByteWidth() * Offset; 7490 } 7491 7492 unsigned getLength() const { return FExpr->getLength() - Offset; } 7493 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 7494 7495 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 7496 7497 QualType getType() const { return FExpr->getType(); } 7498 7499 bool isAscii() const { return FExpr->isAscii(); } 7500 bool isWide() const { return FExpr->isWide(); } 7501 bool isUTF8() const { return FExpr->isUTF8(); } 7502 bool isUTF16() const { return FExpr->isUTF16(); } 7503 bool isUTF32() const { return FExpr->isUTF32(); } 7504 bool isPascal() const { return FExpr->isPascal(); } 7505 7506 SourceLocation getLocationOfByte( 7507 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 7508 const TargetInfo &Target, unsigned *StartToken = nullptr, 7509 unsigned *StartTokenByteOffset = nullptr) const { 7510 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 7511 StartToken, StartTokenByteOffset); 7512 } 7513 7514 SourceLocation getBeginLoc() const LLVM_READONLY { 7515 return FExpr->getBeginLoc().getLocWithOffset(Offset); 7516 } 7517 7518 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 7519 }; 7520 7521 } // namespace 7522 7523 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 7524 const Expr *OrigFormatExpr, 7525 ArrayRef<const Expr *> Args, 7526 bool HasVAListArg, unsigned format_idx, 7527 unsigned firstDataArg, 7528 Sema::FormatStringType Type, 7529 bool inFunctionCall, 7530 Sema::VariadicCallType CallType, 7531 llvm::SmallBitVector &CheckedVarArgs, 7532 UncoveredArgHandler &UncoveredArg, 7533 bool IgnoreStringsWithoutSpecifiers); 7534 7535 // Determine if an expression is a string literal or constant string. 7536 // If this function returns false on the arguments to a function expecting a 7537 // format string, we will usually need to emit a warning. 7538 // True string literals are then checked by CheckFormatString. 7539 static StringLiteralCheckType 7540 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 7541 bool HasVAListArg, unsigned format_idx, 7542 unsigned firstDataArg, Sema::FormatStringType Type, 7543 Sema::VariadicCallType CallType, bool InFunctionCall, 7544 llvm::SmallBitVector &CheckedVarArgs, 7545 UncoveredArgHandler &UncoveredArg, 7546 llvm::APSInt Offset, 7547 bool IgnoreStringsWithoutSpecifiers = false) { 7548 if (S.isConstantEvaluated()) 7549 return SLCT_NotALiteral; 7550 tryAgain: 7551 assert(Offset.isSigned() && "invalid offset"); 7552 7553 if (E->isTypeDependent() || E->isValueDependent()) 7554 return SLCT_NotALiteral; 7555 7556 E = E->IgnoreParenCasts(); 7557 7558 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 7559 // Technically -Wformat-nonliteral does not warn about this case. 7560 // The behavior of printf and friends in this case is implementation 7561 // dependent. Ideally if the format string cannot be null then 7562 // it should have a 'nonnull' attribute in the function prototype. 7563 return SLCT_UncheckedLiteral; 7564 7565 switch (E->getStmtClass()) { 7566 case Stmt::BinaryConditionalOperatorClass: 7567 case Stmt::ConditionalOperatorClass: { 7568 // The expression is a literal if both sub-expressions were, and it was 7569 // completely checked only if both sub-expressions were checked. 7570 const AbstractConditionalOperator *C = 7571 cast<AbstractConditionalOperator>(E); 7572 7573 // Determine whether it is necessary to check both sub-expressions, for 7574 // example, because the condition expression is a constant that can be 7575 // evaluated at compile time. 7576 bool CheckLeft = true, CheckRight = true; 7577 7578 bool Cond; 7579 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 7580 S.isConstantEvaluated())) { 7581 if (Cond) 7582 CheckRight = false; 7583 else 7584 CheckLeft = false; 7585 } 7586 7587 // We need to maintain the offsets for the right and the left hand side 7588 // separately to check if every possible indexed expression is a valid 7589 // string literal. They might have different offsets for different string 7590 // literals in the end. 7591 StringLiteralCheckType Left; 7592 if (!CheckLeft) 7593 Left = SLCT_UncheckedLiteral; 7594 else { 7595 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 7596 HasVAListArg, format_idx, firstDataArg, 7597 Type, CallType, InFunctionCall, 7598 CheckedVarArgs, UncoveredArg, Offset, 7599 IgnoreStringsWithoutSpecifiers); 7600 if (Left == SLCT_NotALiteral || !CheckRight) { 7601 return Left; 7602 } 7603 } 7604 7605 StringLiteralCheckType Right = checkFormatStringExpr( 7606 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 7607 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7608 IgnoreStringsWithoutSpecifiers); 7609 7610 return (CheckLeft && Left < Right) ? Left : Right; 7611 } 7612 7613 case Stmt::ImplicitCastExprClass: 7614 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 7615 goto tryAgain; 7616 7617 case Stmt::OpaqueValueExprClass: 7618 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 7619 E = src; 7620 goto tryAgain; 7621 } 7622 return SLCT_NotALiteral; 7623 7624 case Stmt::PredefinedExprClass: 7625 // While __func__, etc., are technically not string literals, they 7626 // cannot contain format specifiers and thus are not a security 7627 // liability. 7628 return SLCT_UncheckedLiteral; 7629 7630 case Stmt::DeclRefExprClass: { 7631 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 7632 7633 // As an exception, do not flag errors for variables binding to 7634 // const string literals. 7635 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 7636 bool isConstant = false; 7637 QualType T = DR->getType(); 7638 7639 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 7640 isConstant = AT->getElementType().isConstant(S.Context); 7641 } else if (const PointerType *PT = T->getAs<PointerType>()) { 7642 isConstant = T.isConstant(S.Context) && 7643 PT->getPointeeType().isConstant(S.Context); 7644 } else if (T->isObjCObjectPointerType()) { 7645 // In ObjC, there is usually no "const ObjectPointer" type, 7646 // so don't check if the pointee type is constant. 7647 isConstant = T.isConstant(S.Context); 7648 } 7649 7650 if (isConstant) { 7651 if (const Expr *Init = VD->getAnyInitializer()) { 7652 // Look through initializers like const char c[] = { "foo" } 7653 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 7654 if (InitList->isStringLiteralInit()) 7655 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 7656 } 7657 return checkFormatStringExpr(S, Init, Args, 7658 HasVAListArg, format_idx, 7659 firstDataArg, Type, CallType, 7660 /*InFunctionCall*/ false, CheckedVarArgs, 7661 UncoveredArg, Offset); 7662 } 7663 } 7664 7665 // For vprintf* functions (i.e., HasVAListArg==true), we add a 7666 // special check to see if the format string is a function parameter 7667 // of the function calling the printf function. If the function 7668 // has an attribute indicating it is a printf-like function, then we 7669 // should suppress warnings concerning non-literals being used in a call 7670 // to a vprintf function. For example: 7671 // 7672 // void 7673 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 7674 // va_list ap; 7675 // va_start(ap, fmt); 7676 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 7677 // ... 7678 // } 7679 if (HasVAListArg) { 7680 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 7681 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 7682 int PVIndex = PV->getFunctionScopeIndex() + 1; 7683 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 7684 // adjust for implicit parameter 7685 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 7686 if (MD->isInstance()) 7687 ++PVIndex; 7688 // We also check if the formats are compatible. 7689 // We can't pass a 'scanf' string to a 'printf' function. 7690 if (PVIndex == PVFormat->getFormatIdx() && 7691 Type == S.GetFormatStringType(PVFormat)) 7692 return SLCT_UncheckedLiteral; 7693 } 7694 } 7695 } 7696 } 7697 } 7698 7699 return SLCT_NotALiteral; 7700 } 7701 7702 case Stmt::CallExprClass: 7703 case Stmt::CXXMemberCallExprClass: { 7704 const CallExpr *CE = cast<CallExpr>(E); 7705 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 7706 bool IsFirst = true; 7707 StringLiteralCheckType CommonResult; 7708 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 7709 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 7710 StringLiteralCheckType Result = checkFormatStringExpr( 7711 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7712 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7713 IgnoreStringsWithoutSpecifiers); 7714 if (IsFirst) { 7715 CommonResult = Result; 7716 IsFirst = false; 7717 } 7718 } 7719 if (!IsFirst) 7720 return CommonResult; 7721 7722 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 7723 unsigned BuiltinID = FD->getBuiltinID(); 7724 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 7725 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 7726 const Expr *Arg = CE->getArg(0); 7727 return checkFormatStringExpr(S, Arg, Args, 7728 HasVAListArg, format_idx, 7729 firstDataArg, Type, CallType, 7730 InFunctionCall, CheckedVarArgs, 7731 UncoveredArg, Offset, 7732 IgnoreStringsWithoutSpecifiers); 7733 } 7734 } 7735 } 7736 7737 return SLCT_NotALiteral; 7738 } 7739 case Stmt::ObjCMessageExprClass: { 7740 const auto *ME = cast<ObjCMessageExpr>(E); 7741 if (const auto *MD = ME->getMethodDecl()) { 7742 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 7743 // As a special case heuristic, if we're using the method -[NSBundle 7744 // localizedStringForKey:value:table:], ignore any key strings that lack 7745 // format specifiers. The idea is that if the key doesn't have any 7746 // format specifiers then its probably just a key to map to the 7747 // localized strings. If it does have format specifiers though, then its 7748 // likely that the text of the key is the format string in the 7749 // programmer's language, and should be checked. 7750 const ObjCInterfaceDecl *IFace; 7751 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7752 IFace->getIdentifier()->isStr("NSBundle") && 7753 MD->getSelector().isKeywordSelector( 7754 {"localizedStringForKey", "value", "table"})) { 7755 IgnoreStringsWithoutSpecifiers = true; 7756 } 7757 7758 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7759 return checkFormatStringExpr( 7760 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7761 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7762 IgnoreStringsWithoutSpecifiers); 7763 } 7764 } 7765 7766 return SLCT_NotALiteral; 7767 } 7768 case Stmt::ObjCStringLiteralClass: 7769 case Stmt::StringLiteralClass: { 7770 const StringLiteral *StrE = nullptr; 7771 7772 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7773 StrE = ObjCFExpr->getString(); 7774 else 7775 StrE = cast<StringLiteral>(E); 7776 7777 if (StrE) { 7778 if (Offset.isNegative() || Offset > StrE->getLength()) { 7779 // TODO: It would be better to have an explicit warning for out of 7780 // bounds literals. 7781 return SLCT_NotALiteral; 7782 } 7783 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7784 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7785 firstDataArg, Type, InFunctionCall, CallType, 7786 CheckedVarArgs, UncoveredArg, 7787 IgnoreStringsWithoutSpecifiers); 7788 return SLCT_CheckedLiteral; 7789 } 7790 7791 return SLCT_NotALiteral; 7792 } 7793 case Stmt::BinaryOperatorClass: { 7794 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7795 7796 // A string literal + an int offset is still a string literal. 7797 if (BinOp->isAdditiveOp()) { 7798 Expr::EvalResult LResult, RResult; 7799 7800 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7801 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7802 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7803 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7804 7805 if (LIsInt != RIsInt) { 7806 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7807 7808 if (LIsInt) { 7809 if (BinOpKind == BO_Add) { 7810 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7811 E = BinOp->getRHS(); 7812 goto tryAgain; 7813 } 7814 } else { 7815 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7816 E = BinOp->getLHS(); 7817 goto tryAgain; 7818 } 7819 } 7820 } 7821 7822 return SLCT_NotALiteral; 7823 } 7824 case Stmt::UnaryOperatorClass: { 7825 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7826 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7827 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7828 Expr::EvalResult IndexResult; 7829 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7830 Expr::SE_NoSideEffects, 7831 S.isConstantEvaluated())) { 7832 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7833 /*RHS is int*/ true); 7834 E = ASE->getBase(); 7835 goto tryAgain; 7836 } 7837 } 7838 7839 return SLCT_NotALiteral; 7840 } 7841 7842 default: 7843 return SLCT_NotALiteral; 7844 } 7845 } 7846 7847 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7848 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7849 .Case("scanf", FST_Scanf) 7850 .Cases("printf", "printf0", FST_Printf) 7851 .Cases("NSString", "CFString", FST_NSString) 7852 .Case("strftime", FST_Strftime) 7853 .Case("strfmon", FST_Strfmon) 7854 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7855 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7856 .Case("os_trace", FST_OSLog) 7857 .Case("os_log", FST_OSLog) 7858 .Default(FST_Unknown); 7859 } 7860 7861 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7862 /// functions) for correct use of format strings. 7863 /// Returns true if a format string has been fully checked. 7864 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7865 ArrayRef<const Expr *> Args, 7866 bool IsCXXMember, 7867 VariadicCallType CallType, 7868 SourceLocation Loc, SourceRange Range, 7869 llvm::SmallBitVector &CheckedVarArgs) { 7870 FormatStringInfo FSI; 7871 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7872 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7873 FSI.FirstDataArg, GetFormatStringType(Format), 7874 CallType, Loc, Range, CheckedVarArgs); 7875 return false; 7876 } 7877 7878 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7879 bool HasVAListArg, unsigned format_idx, 7880 unsigned firstDataArg, FormatStringType Type, 7881 VariadicCallType CallType, 7882 SourceLocation Loc, SourceRange Range, 7883 llvm::SmallBitVector &CheckedVarArgs) { 7884 // CHECK: printf/scanf-like function is called with no format string. 7885 if (format_idx >= Args.size()) { 7886 Diag(Loc, diag::warn_missing_format_string) << Range; 7887 return false; 7888 } 7889 7890 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7891 7892 // CHECK: format string is not a string literal. 7893 // 7894 // Dynamically generated format strings are difficult to 7895 // automatically vet at compile time. Requiring that format strings 7896 // are string literals: (1) permits the checking of format strings by 7897 // the compiler and thereby (2) can practically remove the source of 7898 // many format string exploits. 7899 7900 // Format string can be either ObjC string (e.g. @"%d") or 7901 // C string (e.g. "%d") 7902 // ObjC string uses the same format specifiers as C string, so we can use 7903 // the same format string checking logic for both ObjC and C strings. 7904 UncoveredArgHandler UncoveredArg; 7905 StringLiteralCheckType CT = 7906 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7907 format_idx, firstDataArg, Type, CallType, 7908 /*IsFunctionCall*/ true, CheckedVarArgs, 7909 UncoveredArg, 7910 /*no string offset*/ llvm::APSInt(64, false) = 0); 7911 7912 // Generate a diagnostic where an uncovered argument is detected. 7913 if (UncoveredArg.hasUncoveredArg()) { 7914 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7915 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7916 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7917 } 7918 7919 if (CT != SLCT_NotALiteral) 7920 // Literal format string found, check done! 7921 return CT == SLCT_CheckedLiteral; 7922 7923 // Strftime is particular as it always uses a single 'time' argument, 7924 // so it is safe to pass a non-literal string. 7925 if (Type == FST_Strftime) 7926 return false; 7927 7928 // Do not emit diag when the string param is a macro expansion and the 7929 // format is either NSString or CFString. This is a hack to prevent 7930 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7931 // which are usually used in place of NS and CF string literals. 7932 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7933 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7934 return false; 7935 7936 // If there are no arguments specified, warn with -Wformat-security, otherwise 7937 // warn only with -Wformat-nonliteral. 7938 if (Args.size() == firstDataArg) { 7939 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7940 << OrigFormatExpr->getSourceRange(); 7941 switch (Type) { 7942 default: 7943 break; 7944 case FST_Kprintf: 7945 case FST_FreeBSDKPrintf: 7946 case FST_Printf: 7947 Diag(FormatLoc, diag::note_format_security_fixit) 7948 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7949 break; 7950 case FST_NSString: 7951 Diag(FormatLoc, diag::note_format_security_fixit) 7952 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7953 break; 7954 } 7955 } else { 7956 Diag(FormatLoc, diag::warn_format_nonliteral) 7957 << OrigFormatExpr->getSourceRange(); 7958 } 7959 return false; 7960 } 7961 7962 namespace { 7963 7964 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7965 protected: 7966 Sema &S; 7967 const FormatStringLiteral *FExpr; 7968 const Expr *OrigFormatExpr; 7969 const Sema::FormatStringType FSType; 7970 const unsigned FirstDataArg; 7971 const unsigned NumDataArgs; 7972 const char *Beg; // Start of format string. 7973 const bool HasVAListArg; 7974 ArrayRef<const Expr *> Args; 7975 unsigned FormatIdx; 7976 llvm::SmallBitVector CoveredArgs; 7977 bool usesPositionalArgs = false; 7978 bool atFirstArg = true; 7979 bool inFunctionCall; 7980 Sema::VariadicCallType CallType; 7981 llvm::SmallBitVector &CheckedVarArgs; 7982 UncoveredArgHandler &UncoveredArg; 7983 7984 public: 7985 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7986 const Expr *origFormatExpr, 7987 const Sema::FormatStringType type, unsigned firstDataArg, 7988 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7989 ArrayRef<const Expr *> Args, unsigned formatIdx, 7990 bool inFunctionCall, Sema::VariadicCallType callType, 7991 llvm::SmallBitVector &CheckedVarArgs, 7992 UncoveredArgHandler &UncoveredArg) 7993 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7994 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7995 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7996 inFunctionCall(inFunctionCall), CallType(callType), 7997 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7998 CoveredArgs.resize(numDataArgs); 7999 CoveredArgs.reset(); 8000 } 8001 8002 void DoneProcessing(); 8003 8004 void HandleIncompleteSpecifier(const char *startSpecifier, 8005 unsigned specifierLen) override; 8006 8007 void HandleInvalidLengthModifier( 8008 const analyze_format_string::FormatSpecifier &FS, 8009 const analyze_format_string::ConversionSpecifier &CS, 8010 const char *startSpecifier, unsigned specifierLen, 8011 unsigned DiagID); 8012 8013 void HandleNonStandardLengthModifier( 8014 const analyze_format_string::FormatSpecifier &FS, 8015 const char *startSpecifier, unsigned specifierLen); 8016 8017 void HandleNonStandardConversionSpecifier( 8018 const analyze_format_string::ConversionSpecifier &CS, 8019 const char *startSpecifier, unsigned specifierLen); 8020 8021 void HandlePosition(const char *startPos, unsigned posLen) override; 8022 8023 void HandleInvalidPosition(const char *startSpecifier, 8024 unsigned specifierLen, 8025 analyze_format_string::PositionContext p) override; 8026 8027 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 8028 8029 void HandleNullChar(const char *nullCharacter) override; 8030 8031 template <typename Range> 8032 static void 8033 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 8034 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 8035 bool IsStringLocation, Range StringRange, 8036 ArrayRef<FixItHint> Fixit = None); 8037 8038 protected: 8039 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 8040 const char *startSpec, 8041 unsigned specifierLen, 8042 const char *csStart, unsigned csLen); 8043 8044 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 8045 const char *startSpec, 8046 unsigned specifierLen); 8047 8048 SourceRange getFormatStringRange(); 8049 CharSourceRange getSpecifierRange(const char *startSpecifier, 8050 unsigned specifierLen); 8051 SourceLocation getLocationOfByte(const char *x); 8052 8053 const Expr *getDataArg(unsigned i) const; 8054 8055 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 8056 const analyze_format_string::ConversionSpecifier &CS, 8057 const char *startSpecifier, unsigned specifierLen, 8058 unsigned argIndex); 8059 8060 template <typename Range> 8061 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 8062 bool IsStringLocation, Range StringRange, 8063 ArrayRef<FixItHint> Fixit = None); 8064 }; 8065 8066 } // namespace 8067 8068 SourceRange CheckFormatHandler::getFormatStringRange() { 8069 return OrigFormatExpr->getSourceRange(); 8070 } 8071 8072 CharSourceRange CheckFormatHandler:: 8073 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 8074 SourceLocation Start = getLocationOfByte(startSpecifier); 8075 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 8076 8077 // Advance the end SourceLocation by one due to half-open ranges. 8078 End = End.getLocWithOffset(1); 8079 8080 return CharSourceRange::getCharRange(Start, End); 8081 } 8082 8083 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 8084 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 8085 S.getLangOpts(), S.Context.getTargetInfo()); 8086 } 8087 8088 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 8089 unsigned specifierLen){ 8090 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 8091 getLocationOfByte(startSpecifier), 8092 /*IsStringLocation*/true, 8093 getSpecifierRange(startSpecifier, specifierLen)); 8094 } 8095 8096 void CheckFormatHandler::HandleInvalidLengthModifier( 8097 const analyze_format_string::FormatSpecifier &FS, 8098 const analyze_format_string::ConversionSpecifier &CS, 8099 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 8100 using namespace analyze_format_string; 8101 8102 const LengthModifier &LM = FS.getLengthModifier(); 8103 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8104 8105 // See if we know how to fix this length modifier. 8106 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8107 if (FixedLM) { 8108 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8109 getLocationOfByte(LM.getStart()), 8110 /*IsStringLocation*/true, 8111 getSpecifierRange(startSpecifier, specifierLen)); 8112 8113 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8114 << FixedLM->toString() 8115 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8116 8117 } else { 8118 FixItHint Hint; 8119 if (DiagID == diag::warn_format_nonsensical_length) 8120 Hint = FixItHint::CreateRemoval(LMRange); 8121 8122 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 8123 getLocationOfByte(LM.getStart()), 8124 /*IsStringLocation*/true, 8125 getSpecifierRange(startSpecifier, specifierLen), 8126 Hint); 8127 } 8128 } 8129 8130 void CheckFormatHandler::HandleNonStandardLengthModifier( 8131 const analyze_format_string::FormatSpecifier &FS, 8132 const char *startSpecifier, unsigned specifierLen) { 8133 using namespace analyze_format_string; 8134 8135 const LengthModifier &LM = FS.getLengthModifier(); 8136 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 8137 8138 // See if we know how to fix this length modifier. 8139 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 8140 if (FixedLM) { 8141 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8142 << LM.toString() << 0, 8143 getLocationOfByte(LM.getStart()), 8144 /*IsStringLocation*/true, 8145 getSpecifierRange(startSpecifier, specifierLen)); 8146 8147 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 8148 << FixedLM->toString() 8149 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 8150 8151 } else { 8152 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8153 << LM.toString() << 0, 8154 getLocationOfByte(LM.getStart()), 8155 /*IsStringLocation*/true, 8156 getSpecifierRange(startSpecifier, specifierLen)); 8157 } 8158 } 8159 8160 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 8161 const analyze_format_string::ConversionSpecifier &CS, 8162 const char *startSpecifier, unsigned specifierLen) { 8163 using namespace analyze_format_string; 8164 8165 // See if we know how to fix this conversion specifier. 8166 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 8167 if (FixedCS) { 8168 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8169 << CS.toString() << /*conversion specifier*/1, 8170 getLocationOfByte(CS.getStart()), 8171 /*IsStringLocation*/true, 8172 getSpecifierRange(startSpecifier, specifierLen)); 8173 8174 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 8175 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 8176 << FixedCS->toString() 8177 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 8178 } else { 8179 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 8180 << CS.toString() << /*conversion specifier*/1, 8181 getLocationOfByte(CS.getStart()), 8182 /*IsStringLocation*/true, 8183 getSpecifierRange(startSpecifier, specifierLen)); 8184 } 8185 } 8186 8187 void CheckFormatHandler::HandlePosition(const char *startPos, 8188 unsigned posLen) { 8189 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 8190 getLocationOfByte(startPos), 8191 /*IsStringLocation*/true, 8192 getSpecifierRange(startPos, posLen)); 8193 } 8194 8195 void 8196 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 8197 analyze_format_string::PositionContext p) { 8198 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 8199 << (unsigned) p, 8200 getLocationOfByte(startPos), /*IsStringLocation*/true, 8201 getSpecifierRange(startPos, posLen)); 8202 } 8203 8204 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 8205 unsigned posLen) { 8206 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 8207 getLocationOfByte(startPos), 8208 /*IsStringLocation*/true, 8209 getSpecifierRange(startPos, posLen)); 8210 } 8211 8212 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 8213 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 8214 // The presence of a null character is likely an error. 8215 EmitFormatDiagnostic( 8216 S.PDiag(diag::warn_printf_format_string_contains_null_char), 8217 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 8218 getFormatStringRange()); 8219 } 8220 } 8221 8222 // Note that this may return NULL if there was an error parsing or building 8223 // one of the argument expressions. 8224 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 8225 return Args[FirstDataArg + i]; 8226 } 8227 8228 void CheckFormatHandler::DoneProcessing() { 8229 // Does the number of data arguments exceed the number of 8230 // format conversions in the format string? 8231 if (!HasVAListArg) { 8232 // Find any arguments that weren't covered. 8233 CoveredArgs.flip(); 8234 signed notCoveredArg = CoveredArgs.find_first(); 8235 if (notCoveredArg >= 0) { 8236 assert((unsigned)notCoveredArg < NumDataArgs); 8237 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 8238 } else { 8239 UncoveredArg.setAllCovered(); 8240 } 8241 } 8242 } 8243 8244 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 8245 const Expr *ArgExpr) { 8246 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 8247 "Invalid state"); 8248 8249 if (!ArgExpr) 8250 return; 8251 8252 SourceLocation Loc = ArgExpr->getBeginLoc(); 8253 8254 if (S.getSourceManager().isInSystemMacro(Loc)) 8255 return; 8256 8257 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 8258 for (auto E : DiagnosticExprs) 8259 PDiag << E->getSourceRange(); 8260 8261 CheckFormatHandler::EmitFormatDiagnostic( 8262 S, IsFunctionCall, DiagnosticExprs[0], 8263 PDiag, Loc, /*IsStringLocation*/false, 8264 DiagnosticExprs[0]->getSourceRange()); 8265 } 8266 8267 bool 8268 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 8269 SourceLocation Loc, 8270 const char *startSpec, 8271 unsigned specifierLen, 8272 const char *csStart, 8273 unsigned csLen) { 8274 bool keepGoing = true; 8275 if (argIndex < NumDataArgs) { 8276 // Consider the argument coverered, even though the specifier doesn't 8277 // make sense. 8278 CoveredArgs.set(argIndex); 8279 } 8280 else { 8281 // If argIndex exceeds the number of data arguments we 8282 // don't issue a warning because that is just a cascade of warnings (and 8283 // they may have intended '%%' anyway). We don't want to continue processing 8284 // the format string after this point, however, as we will like just get 8285 // gibberish when trying to match arguments. 8286 keepGoing = false; 8287 } 8288 8289 StringRef Specifier(csStart, csLen); 8290 8291 // If the specifier in non-printable, it could be the first byte of a UTF-8 8292 // sequence. In that case, print the UTF-8 code point. If not, print the byte 8293 // hex value. 8294 std::string CodePointStr; 8295 if (!llvm::sys::locale::isPrint(*csStart)) { 8296 llvm::UTF32 CodePoint; 8297 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 8298 const llvm::UTF8 *E = 8299 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 8300 llvm::ConversionResult Result = 8301 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 8302 8303 if (Result != llvm::conversionOK) { 8304 unsigned char FirstChar = *csStart; 8305 CodePoint = (llvm::UTF32)FirstChar; 8306 } 8307 8308 llvm::raw_string_ostream OS(CodePointStr); 8309 if (CodePoint < 256) 8310 OS << "\\x" << llvm::format("%02x", CodePoint); 8311 else if (CodePoint <= 0xFFFF) 8312 OS << "\\u" << llvm::format("%04x", CodePoint); 8313 else 8314 OS << "\\U" << llvm::format("%08x", CodePoint); 8315 OS.flush(); 8316 Specifier = CodePointStr; 8317 } 8318 8319 EmitFormatDiagnostic( 8320 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 8321 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 8322 8323 return keepGoing; 8324 } 8325 8326 void 8327 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 8328 const char *startSpec, 8329 unsigned specifierLen) { 8330 EmitFormatDiagnostic( 8331 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 8332 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 8333 } 8334 8335 bool 8336 CheckFormatHandler::CheckNumArgs( 8337 const analyze_format_string::FormatSpecifier &FS, 8338 const analyze_format_string::ConversionSpecifier &CS, 8339 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 8340 8341 if (argIndex >= NumDataArgs) { 8342 PartialDiagnostic PDiag = FS.usesPositionalArg() 8343 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 8344 << (argIndex+1) << NumDataArgs) 8345 : S.PDiag(diag::warn_printf_insufficient_data_args); 8346 EmitFormatDiagnostic( 8347 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 8348 getSpecifierRange(startSpecifier, specifierLen)); 8349 8350 // Since more arguments than conversion tokens are given, by extension 8351 // all arguments are covered, so mark this as so. 8352 UncoveredArg.setAllCovered(); 8353 return false; 8354 } 8355 return true; 8356 } 8357 8358 template<typename Range> 8359 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 8360 SourceLocation Loc, 8361 bool IsStringLocation, 8362 Range StringRange, 8363 ArrayRef<FixItHint> FixIt) { 8364 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 8365 Loc, IsStringLocation, StringRange, FixIt); 8366 } 8367 8368 /// If the format string is not within the function call, emit a note 8369 /// so that the function call and string are in diagnostic messages. 8370 /// 8371 /// \param InFunctionCall if true, the format string is within the function 8372 /// call and only one diagnostic message will be produced. Otherwise, an 8373 /// extra note will be emitted pointing to location of the format string. 8374 /// 8375 /// \param ArgumentExpr the expression that is passed as the format string 8376 /// argument in the function call. Used for getting locations when two 8377 /// diagnostics are emitted. 8378 /// 8379 /// \param PDiag the callee should already have provided any strings for the 8380 /// diagnostic message. This function only adds locations and fixits 8381 /// to diagnostics. 8382 /// 8383 /// \param Loc primary location for diagnostic. If two diagnostics are 8384 /// required, one will be at Loc and a new SourceLocation will be created for 8385 /// the other one. 8386 /// 8387 /// \param IsStringLocation if true, Loc points to the format string should be 8388 /// used for the note. Otherwise, Loc points to the argument list and will 8389 /// be used with PDiag. 8390 /// 8391 /// \param StringRange some or all of the string to highlight. This is 8392 /// templated so it can accept either a CharSourceRange or a SourceRange. 8393 /// 8394 /// \param FixIt optional fix it hint for the format string. 8395 template <typename Range> 8396 void CheckFormatHandler::EmitFormatDiagnostic( 8397 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 8398 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 8399 Range StringRange, ArrayRef<FixItHint> FixIt) { 8400 if (InFunctionCall) { 8401 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 8402 D << StringRange; 8403 D << FixIt; 8404 } else { 8405 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 8406 << ArgumentExpr->getSourceRange(); 8407 8408 const Sema::SemaDiagnosticBuilder &Note = 8409 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 8410 diag::note_format_string_defined); 8411 8412 Note << StringRange; 8413 Note << FixIt; 8414 } 8415 } 8416 8417 //===--- CHECK: Printf format string checking ------------------------------===// 8418 8419 namespace { 8420 8421 class CheckPrintfHandler : public CheckFormatHandler { 8422 public: 8423 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 8424 const Expr *origFormatExpr, 8425 const Sema::FormatStringType type, unsigned firstDataArg, 8426 unsigned numDataArgs, bool isObjC, const char *beg, 8427 bool hasVAListArg, ArrayRef<const Expr *> Args, 8428 unsigned formatIdx, bool inFunctionCall, 8429 Sema::VariadicCallType CallType, 8430 llvm::SmallBitVector &CheckedVarArgs, 8431 UncoveredArgHandler &UncoveredArg) 8432 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8433 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8434 inFunctionCall, CallType, CheckedVarArgs, 8435 UncoveredArg) {} 8436 8437 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 8438 8439 /// Returns true if '%@' specifiers are allowed in the format string. 8440 bool allowsObjCArg() const { 8441 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 8442 FSType == Sema::FST_OSTrace; 8443 } 8444 8445 bool HandleInvalidPrintfConversionSpecifier( 8446 const analyze_printf::PrintfSpecifier &FS, 8447 const char *startSpecifier, 8448 unsigned specifierLen) override; 8449 8450 void handleInvalidMaskType(StringRef MaskType) override; 8451 8452 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 8453 const char *startSpecifier, 8454 unsigned specifierLen) override; 8455 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8456 const char *StartSpecifier, 8457 unsigned SpecifierLen, 8458 const Expr *E); 8459 8460 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 8461 const char *startSpecifier, unsigned specifierLen); 8462 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 8463 const analyze_printf::OptionalAmount &Amt, 8464 unsigned type, 8465 const char *startSpecifier, unsigned specifierLen); 8466 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8467 const analyze_printf::OptionalFlag &flag, 8468 const char *startSpecifier, unsigned specifierLen); 8469 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 8470 const analyze_printf::OptionalFlag &ignoredFlag, 8471 const analyze_printf::OptionalFlag &flag, 8472 const char *startSpecifier, unsigned specifierLen); 8473 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 8474 const Expr *E); 8475 8476 void HandleEmptyObjCModifierFlag(const char *startFlag, 8477 unsigned flagLen) override; 8478 8479 void HandleInvalidObjCModifierFlag(const char *startFlag, 8480 unsigned flagLen) override; 8481 8482 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 8483 const char *flagsEnd, 8484 const char *conversionPosition) 8485 override; 8486 }; 8487 8488 } // namespace 8489 8490 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 8491 const analyze_printf::PrintfSpecifier &FS, 8492 const char *startSpecifier, 8493 unsigned specifierLen) { 8494 const analyze_printf::PrintfConversionSpecifier &CS = 8495 FS.getConversionSpecifier(); 8496 8497 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8498 getLocationOfByte(CS.getStart()), 8499 startSpecifier, specifierLen, 8500 CS.getStart(), CS.getLength()); 8501 } 8502 8503 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 8504 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 8505 } 8506 8507 bool CheckPrintfHandler::HandleAmount( 8508 const analyze_format_string::OptionalAmount &Amt, 8509 unsigned k, const char *startSpecifier, 8510 unsigned specifierLen) { 8511 if (Amt.hasDataArgument()) { 8512 if (!HasVAListArg) { 8513 unsigned argIndex = Amt.getArgIndex(); 8514 if (argIndex >= NumDataArgs) { 8515 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 8516 << k, 8517 getLocationOfByte(Amt.getStart()), 8518 /*IsStringLocation*/true, 8519 getSpecifierRange(startSpecifier, specifierLen)); 8520 // Don't do any more checking. We will just emit 8521 // spurious errors. 8522 return false; 8523 } 8524 8525 // Type check the data argument. It should be an 'int'. 8526 // Although not in conformance with C99, we also allow the argument to be 8527 // an 'unsigned int' as that is a reasonably safe case. GCC also 8528 // doesn't emit a warning for that case. 8529 CoveredArgs.set(argIndex); 8530 const Expr *Arg = getDataArg(argIndex); 8531 if (!Arg) 8532 return false; 8533 8534 QualType T = Arg->getType(); 8535 8536 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 8537 assert(AT.isValid()); 8538 8539 if (!AT.matchesType(S.Context, T)) { 8540 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 8541 << k << AT.getRepresentativeTypeName(S.Context) 8542 << T << Arg->getSourceRange(), 8543 getLocationOfByte(Amt.getStart()), 8544 /*IsStringLocation*/true, 8545 getSpecifierRange(startSpecifier, specifierLen)); 8546 // Don't do any more checking. We will just emit 8547 // spurious errors. 8548 return false; 8549 } 8550 } 8551 } 8552 return true; 8553 } 8554 8555 void CheckPrintfHandler::HandleInvalidAmount( 8556 const analyze_printf::PrintfSpecifier &FS, 8557 const analyze_printf::OptionalAmount &Amt, 8558 unsigned type, 8559 const char *startSpecifier, 8560 unsigned specifierLen) { 8561 const analyze_printf::PrintfConversionSpecifier &CS = 8562 FS.getConversionSpecifier(); 8563 8564 FixItHint fixit = 8565 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 8566 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 8567 Amt.getConstantLength())) 8568 : FixItHint(); 8569 8570 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 8571 << type << CS.toString(), 8572 getLocationOfByte(Amt.getStart()), 8573 /*IsStringLocation*/true, 8574 getSpecifierRange(startSpecifier, specifierLen), 8575 fixit); 8576 } 8577 8578 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8579 const analyze_printf::OptionalFlag &flag, 8580 const char *startSpecifier, 8581 unsigned specifierLen) { 8582 // Warn about pointless flag with a fixit removal. 8583 const analyze_printf::PrintfConversionSpecifier &CS = 8584 FS.getConversionSpecifier(); 8585 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 8586 << flag.toString() << CS.toString(), 8587 getLocationOfByte(flag.getPosition()), 8588 /*IsStringLocation*/true, 8589 getSpecifierRange(startSpecifier, specifierLen), 8590 FixItHint::CreateRemoval( 8591 getSpecifierRange(flag.getPosition(), 1))); 8592 } 8593 8594 void CheckPrintfHandler::HandleIgnoredFlag( 8595 const analyze_printf::PrintfSpecifier &FS, 8596 const analyze_printf::OptionalFlag &ignoredFlag, 8597 const analyze_printf::OptionalFlag &flag, 8598 const char *startSpecifier, 8599 unsigned specifierLen) { 8600 // Warn about ignored flag with a fixit removal. 8601 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 8602 << ignoredFlag.toString() << flag.toString(), 8603 getLocationOfByte(ignoredFlag.getPosition()), 8604 /*IsStringLocation*/true, 8605 getSpecifierRange(startSpecifier, specifierLen), 8606 FixItHint::CreateRemoval( 8607 getSpecifierRange(ignoredFlag.getPosition(), 1))); 8608 } 8609 8610 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 8611 unsigned flagLen) { 8612 // Warn about an empty flag. 8613 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 8614 getLocationOfByte(startFlag), 8615 /*IsStringLocation*/true, 8616 getSpecifierRange(startFlag, flagLen)); 8617 } 8618 8619 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 8620 unsigned flagLen) { 8621 // Warn about an invalid flag. 8622 auto Range = getSpecifierRange(startFlag, flagLen); 8623 StringRef flag(startFlag, flagLen); 8624 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 8625 getLocationOfByte(startFlag), 8626 /*IsStringLocation*/true, 8627 Range, FixItHint::CreateRemoval(Range)); 8628 } 8629 8630 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 8631 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 8632 // Warn about using '[...]' without a '@' conversion. 8633 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 8634 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 8635 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 8636 getLocationOfByte(conversionPosition), 8637 /*IsStringLocation*/true, 8638 Range, FixItHint::CreateRemoval(Range)); 8639 } 8640 8641 // Determines if the specified is a C++ class or struct containing 8642 // a member with the specified name and kind (e.g. a CXXMethodDecl named 8643 // "c_str()"). 8644 template<typename MemberKind> 8645 static llvm::SmallPtrSet<MemberKind*, 1> 8646 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 8647 const RecordType *RT = Ty->getAs<RecordType>(); 8648 llvm::SmallPtrSet<MemberKind*, 1> Results; 8649 8650 if (!RT) 8651 return Results; 8652 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 8653 if (!RD || !RD->getDefinition()) 8654 return Results; 8655 8656 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 8657 Sema::LookupMemberName); 8658 R.suppressDiagnostics(); 8659 8660 // We just need to include all members of the right kind turned up by the 8661 // filter, at this point. 8662 if (S.LookupQualifiedName(R, RT->getDecl())) 8663 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8664 NamedDecl *decl = (*I)->getUnderlyingDecl(); 8665 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 8666 Results.insert(FK); 8667 } 8668 return Results; 8669 } 8670 8671 /// Check if we could call '.c_str()' on an object. 8672 /// 8673 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 8674 /// allow the call, or if it would be ambiguous). 8675 bool Sema::hasCStrMethod(const Expr *E) { 8676 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8677 8678 MethodSet Results = 8679 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 8680 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8681 MI != ME; ++MI) 8682 if ((*MI)->getMinRequiredArguments() == 0) 8683 return true; 8684 return false; 8685 } 8686 8687 // Check if a (w)string was passed when a (w)char* was needed, and offer a 8688 // better diagnostic if so. AT is assumed to be valid. 8689 // Returns true when a c_str() conversion method is found. 8690 bool CheckPrintfHandler::checkForCStrMembers( 8691 const analyze_printf::ArgType &AT, const Expr *E) { 8692 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8693 8694 MethodSet Results = 8695 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 8696 8697 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8698 MI != ME; ++MI) { 8699 const CXXMethodDecl *Method = *MI; 8700 if (Method->getMinRequiredArguments() == 0 && 8701 AT.matchesType(S.Context, Method->getReturnType())) { 8702 // FIXME: Suggest parens if the expression needs them. 8703 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 8704 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 8705 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 8706 return true; 8707 } 8708 } 8709 8710 return false; 8711 } 8712 8713 bool 8714 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 8715 &FS, 8716 const char *startSpecifier, 8717 unsigned specifierLen) { 8718 using namespace analyze_format_string; 8719 using namespace analyze_printf; 8720 8721 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 8722 8723 if (FS.consumesDataArgument()) { 8724 if (atFirstArg) { 8725 atFirstArg = false; 8726 usesPositionalArgs = FS.usesPositionalArg(); 8727 } 8728 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8729 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8730 startSpecifier, specifierLen); 8731 return false; 8732 } 8733 } 8734 8735 // First check if the field width, precision, and conversion specifier 8736 // have matching data arguments. 8737 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 8738 startSpecifier, specifierLen)) { 8739 return false; 8740 } 8741 8742 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 8743 startSpecifier, specifierLen)) { 8744 return false; 8745 } 8746 8747 if (!CS.consumesDataArgument()) { 8748 // FIXME: Technically specifying a precision or field width here 8749 // makes no sense. Worth issuing a warning at some point. 8750 return true; 8751 } 8752 8753 // Consume the argument. 8754 unsigned argIndex = FS.getArgIndex(); 8755 if (argIndex < NumDataArgs) { 8756 // The check to see if the argIndex is valid will come later. 8757 // We set the bit here because we may exit early from this 8758 // function if we encounter some other error. 8759 CoveredArgs.set(argIndex); 8760 } 8761 8762 // FreeBSD kernel extensions. 8763 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8764 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8765 // We need at least two arguments. 8766 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8767 return false; 8768 8769 // Claim the second argument. 8770 CoveredArgs.set(argIndex + 1); 8771 8772 // Type check the first argument (int for %b, pointer for %D) 8773 const Expr *Ex = getDataArg(argIndex); 8774 const analyze_printf::ArgType &AT = 8775 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8776 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8777 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8778 EmitFormatDiagnostic( 8779 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8780 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8781 << false << Ex->getSourceRange(), 8782 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8783 getSpecifierRange(startSpecifier, specifierLen)); 8784 8785 // Type check the second argument (char * for both %b and %D) 8786 Ex = getDataArg(argIndex + 1); 8787 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8788 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8789 EmitFormatDiagnostic( 8790 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8791 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8792 << false << Ex->getSourceRange(), 8793 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8794 getSpecifierRange(startSpecifier, specifierLen)); 8795 8796 return true; 8797 } 8798 8799 // Check for using an Objective-C specific conversion specifier 8800 // in a non-ObjC literal. 8801 if (!allowsObjCArg() && CS.isObjCArg()) { 8802 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8803 specifierLen); 8804 } 8805 8806 // %P can only be used with os_log. 8807 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8808 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8809 specifierLen); 8810 } 8811 8812 // %n is not allowed with os_log. 8813 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8814 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8815 getLocationOfByte(CS.getStart()), 8816 /*IsStringLocation*/ false, 8817 getSpecifierRange(startSpecifier, specifierLen)); 8818 8819 return true; 8820 } 8821 8822 // Only scalars are allowed for os_trace. 8823 if (FSType == Sema::FST_OSTrace && 8824 (CS.getKind() == ConversionSpecifier::PArg || 8825 CS.getKind() == ConversionSpecifier::sArg || 8826 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8827 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8828 specifierLen); 8829 } 8830 8831 // Check for use of public/private annotation outside of os_log(). 8832 if (FSType != Sema::FST_OSLog) { 8833 if (FS.isPublic().isSet()) { 8834 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8835 << "public", 8836 getLocationOfByte(FS.isPublic().getPosition()), 8837 /*IsStringLocation*/ false, 8838 getSpecifierRange(startSpecifier, specifierLen)); 8839 } 8840 if (FS.isPrivate().isSet()) { 8841 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8842 << "private", 8843 getLocationOfByte(FS.isPrivate().getPosition()), 8844 /*IsStringLocation*/ false, 8845 getSpecifierRange(startSpecifier, specifierLen)); 8846 } 8847 } 8848 8849 // Check for invalid use of field width 8850 if (!FS.hasValidFieldWidth()) { 8851 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8852 startSpecifier, specifierLen); 8853 } 8854 8855 // Check for invalid use of precision 8856 if (!FS.hasValidPrecision()) { 8857 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8858 startSpecifier, specifierLen); 8859 } 8860 8861 // Precision is mandatory for %P specifier. 8862 if (CS.getKind() == ConversionSpecifier::PArg && 8863 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8864 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8865 getLocationOfByte(startSpecifier), 8866 /*IsStringLocation*/ false, 8867 getSpecifierRange(startSpecifier, specifierLen)); 8868 } 8869 8870 // Check each flag does not conflict with any other component. 8871 if (!FS.hasValidThousandsGroupingPrefix()) 8872 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8873 if (!FS.hasValidLeadingZeros()) 8874 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8875 if (!FS.hasValidPlusPrefix()) 8876 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8877 if (!FS.hasValidSpacePrefix()) 8878 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8879 if (!FS.hasValidAlternativeForm()) 8880 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8881 if (!FS.hasValidLeftJustified()) 8882 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8883 8884 // Check that flags are not ignored by another flag 8885 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8886 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8887 startSpecifier, specifierLen); 8888 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8889 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8890 startSpecifier, specifierLen); 8891 8892 // Check the length modifier is valid with the given conversion specifier. 8893 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8894 S.getLangOpts())) 8895 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8896 diag::warn_format_nonsensical_length); 8897 else if (!FS.hasStandardLengthModifier()) 8898 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8899 else if (!FS.hasStandardLengthConversionCombination()) 8900 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8901 diag::warn_format_non_standard_conversion_spec); 8902 8903 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8904 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8905 8906 // The remaining checks depend on the data arguments. 8907 if (HasVAListArg) 8908 return true; 8909 8910 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8911 return false; 8912 8913 const Expr *Arg = getDataArg(argIndex); 8914 if (!Arg) 8915 return true; 8916 8917 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8918 } 8919 8920 static bool requiresParensToAddCast(const Expr *E) { 8921 // FIXME: We should have a general way to reason about operator 8922 // precedence and whether parens are actually needed here. 8923 // Take care of a few common cases where they aren't. 8924 const Expr *Inside = E->IgnoreImpCasts(); 8925 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8926 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8927 8928 switch (Inside->getStmtClass()) { 8929 case Stmt::ArraySubscriptExprClass: 8930 case Stmt::CallExprClass: 8931 case Stmt::CharacterLiteralClass: 8932 case Stmt::CXXBoolLiteralExprClass: 8933 case Stmt::DeclRefExprClass: 8934 case Stmt::FloatingLiteralClass: 8935 case Stmt::IntegerLiteralClass: 8936 case Stmt::MemberExprClass: 8937 case Stmt::ObjCArrayLiteralClass: 8938 case Stmt::ObjCBoolLiteralExprClass: 8939 case Stmt::ObjCBoxedExprClass: 8940 case Stmt::ObjCDictionaryLiteralClass: 8941 case Stmt::ObjCEncodeExprClass: 8942 case Stmt::ObjCIvarRefExprClass: 8943 case Stmt::ObjCMessageExprClass: 8944 case Stmt::ObjCPropertyRefExprClass: 8945 case Stmt::ObjCStringLiteralClass: 8946 case Stmt::ObjCSubscriptRefExprClass: 8947 case Stmt::ParenExprClass: 8948 case Stmt::StringLiteralClass: 8949 case Stmt::UnaryOperatorClass: 8950 return false; 8951 default: 8952 return true; 8953 } 8954 } 8955 8956 static std::pair<QualType, StringRef> 8957 shouldNotPrintDirectly(const ASTContext &Context, 8958 QualType IntendedTy, 8959 const Expr *E) { 8960 // Use a 'while' to peel off layers of typedefs. 8961 QualType TyTy = IntendedTy; 8962 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8963 StringRef Name = UserTy->getDecl()->getName(); 8964 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8965 .Case("CFIndex", Context.getNSIntegerType()) 8966 .Case("NSInteger", Context.getNSIntegerType()) 8967 .Case("NSUInteger", Context.getNSUIntegerType()) 8968 .Case("SInt32", Context.IntTy) 8969 .Case("UInt32", Context.UnsignedIntTy) 8970 .Default(QualType()); 8971 8972 if (!CastTy.isNull()) 8973 return std::make_pair(CastTy, Name); 8974 8975 TyTy = UserTy->desugar(); 8976 } 8977 8978 // Strip parens if necessary. 8979 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8980 return shouldNotPrintDirectly(Context, 8981 PE->getSubExpr()->getType(), 8982 PE->getSubExpr()); 8983 8984 // If this is a conditional expression, then its result type is constructed 8985 // via usual arithmetic conversions and thus there might be no necessary 8986 // typedef sugar there. Recurse to operands to check for NSInteger & 8987 // Co. usage condition. 8988 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8989 QualType TrueTy, FalseTy; 8990 StringRef TrueName, FalseName; 8991 8992 std::tie(TrueTy, TrueName) = 8993 shouldNotPrintDirectly(Context, 8994 CO->getTrueExpr()->getType(), 8995 CO->getTrueExpr()); 8996 std::tie(FalseTy, FalseName) = 8997 shouldNotPrintDirectly(Context, 8998 CO->getFalseExpr()->getType(), 8999 CO->getFalseExpr()); 9000 9001 if (TrueTy == FalseTy) 9002 return std::make_pair(TrueTy, TrueName); 9003 else if (TrueTy.isNull()) 9004 return std::make_pair(FalseTy, FalseName); 9005 else if (FalseTy.isNull()) 9006 return std::make_pair(TrueTy, TrueName); 9007 } 9008 9009 return std::make_pair(QualType(), StringRef()); 9010 } 9011 9012 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 9013 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 9014 /// type do not count. 9015 static bool 9016 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 9017 QualType From = ICE->getSubExpr()->getType(); 9018 QualType To = ICE->getType(); 9019 // It's an integer promotion if the destination type is the promoted 9020 // source type. 9021 if (ICE->getCastKind() == CK_IntegralCast && 9022 From->isPromotableIntegerType() && 9023 S.Context.getPromotedIntegerType(From) == To) 9024 return true; 9025 // Look through vector types, since we do default argument promotion for 9026 // those in OpenCL. 9027 if (const auto *VecTy = From->getAs<ExtVectorType>()) 9028 From = VecTy->getElementType(); 9029 if (const auto *VecTy = To->getAs<ExtVectorType>()) 9030 To = VecTy->getElementType(); 9031 // It's a floating promotion if the source type is a lower rank. 9032 return ICE->getCastKind() == CK_FloatingCast && 9033 S.Context.getFloatingTypeOrder(From, To) < 0; 9034 } 9035 9036 bool 9037 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 9038 const char *StartSpecifier, 9039 unsigned SpecifierLen, 9040 const Expr *E) { 9041 using namespace analyze_format_string; 9042 using namespace analyze_printf; 9043 9044 // Now type check the data expression that matches the 9045 // format specifier. 9046 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 9047 if (!AT.isValid()) 9048 return true; 9049 9050 QualType ExprTy = E->getType(); 9051 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 9052 ExprTy = TET->getUnderlyingExpr()->getType(); 9053 } 9054 9055 // Diagnose attempts to print a boolean value as a character. Unlike other 9056 // -Wformat diagnostics, this is fine from a type perspective, but it still 9057 // doesn't make sense. 9058 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 9059 E->isKnownToHaveBooleanValue()) { 9060 const CharSourceRange &CSR = 9061 getSpecifierRange(StartSpecifier, SpecifierLen); 9062 SmallString<4> FSString; 9063 llvm::raw_svector_ostream os(FSString); 9064 FS.toString(os); 9065 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 9066 << FSString, 9067 E->getExprLoc(), false, CSR); 9068 return true; 9069 } 9070 9071 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 9072 if (Match == analyze_printf::ArgType::Match) 9073 return true; 9074 9075 // Look through argument promotions for our error message's reported type. 9076 // This includes the integral and floating promotions, but excludes array 9077 // and function pointer decay (seeing that an argument intended to be a 9078 // string has type 'char [6]' is probably more confusing than 'char *') and 9079 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 9080 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 9081 if (isArithmeticArgumentPromotion(S, ICE)) { 9082 E = ICE->getSubExpr(); 9083 ExprTy = E->getType(); 9084 9085 // Check if we didn't match because of an implicit cast from a 'char' 9086 // or 'short' to an 'int'. This is done because printf is a varargs 9087 // function. 9088 if (ICE->getType() == S.Context.IntTy || 9089 ICE->getType() == S.Context.UnsignedIntTy) { 9090 // All further checking is done on the subexpression 9091 const analyze_printf::ArgType::MatchKind ImplicitMatch = 9092 AT.matchesType(S.Context, ExprTy); 9093 if (ImplicitMatch == analyze_printf::ArgType::Match) 9094 return true; 9095 if (ImplicitMatch == ArgType::NoMatchPedantic || 9096 ImplicitMatch == ArgType::NoMatchTypeConfusion) 9097 Match = ImplicitMatch; 9098 } 9099 } 9100 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 9101 // Special case for 'a', which has type 'int' in C. 9102 // Note, however, that we do /not/ want to treat multibyte constants like 9103 // 'MooV' as characters! This form is deprecated but still exists. In 9104 // addition, don't treat expressions as of type 'char' if one byte length 9105 // modifier is provided. 9106 if (ExprTy == S.Context.IntTy && 9107 FS.getLengthModifier().getKind() != LengthModifier::AsChar) 9108 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 9109 ExprTy = S.Context.CharTy; 9110 } 9111 9112 // Look through enums to their underlying type. 9113 bool IsEnum = false; 9114 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 9115 ExprTy = EnumTy->getDecl()->getIntegerType(); 9116 IsEnum = true; 9117 } 9118 9119 // %C in an Objective-C context prints a unichar, not a wchar_t. 9120 // If the argument is an integer of some kind, believe the %C and suggest 9121 // a cast instead of changing the conversion specifier. 9122 QualType IntendedTy = ExprTy; 9123 if (isObjCContext() && 9124 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 9125 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 9126 !ExprTy->isCharType()) { 9127 // 'unichar' is defined as a typedef of unsigned short, but we should 9128 // prefer using the typedef if it is visible. 9129 IntendedTy = S.Context.UnsignedShortTy; 9130 9131 // While we are here, check if the value is an IntegerLiteral that happens 9132 // to be within the valid range. 9133 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 9134 const llvm::APInt &V = IL->getValue(); 9135 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 9136 return true; 9137 } 9138 9139 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 9140 Sema::LookupOrdinaryName); 9141 if (S.LookupName(Result, S.getCurScope())) { 9142 NamedDecl *ND = Result.getFoundDecl(); 9143 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 9144 if (TD->getUnderlyingType() == IntendedTy) 9145 IntendedTy = S.Context.getTypedefType(TD); 9146 } 9147 } 9148 } 9149 9150 // Special-case some of Darwin's platform-independence types by suggesting 9151 // casts to primitive types that are known to be large enough. 9152 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 9153 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 9154 QualType CastTy; 9155 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 9156 if (!CastTy.isNull()) { 9157 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 9158 // (long in ASTContext). Only complain to pedants. 9159 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 9160 (AT.isSizeT() || AT.isPtrdiffT()) && 9161 AT.matchesType(S.Context, CastTy)) 9162 Match = ArgType::NoMatchPedantic; 9163 IntendedTy = CastTy; 9164 ShouldNotPrintDirectly = true; 9165 } 9166 } 9167 9168 // We may be able to offer a FixItHint if it is a supported type. 9169 PrintfSpecifier fixedFS = FS; 9170 bool Success = 9171 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 9172 9173 if (Success) { 9174 // Get the fix string from the fixed format specifier 9175 SmallString<16> buf; 9176 llvm::raw_svector_ostream os(buf); 9177 fixedFS.toString(os); 9178 9179 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 9180 9181 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 9182 unsigned Diag; 9183 switch (Match) { 9184 case ArgType::Match: llvm_unreachable("expected non-matching"); 9185 case ArgType::NoMatchPedantic: 9186 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9187 break; 9188 case ArgType::NoMatchTypeConfusion: 9189 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9190 break; 9191 case ArgType::NoMatch: 9192 Diag = diag::warn_format_conversion_argument_type_mismatch; 9193 break; 9194 } 9195 9196 // In this case, the specifier is wrong and should be changed to match 9197 // the argument. 9198 EmitFormatDiagnostic(S.PDiag(Diag) 9199 << AT.getRepresentativeTypeName(S.Context) 9200 << IntendedTy << IsEnum << E->getSourceRange(), 9201 E->getBeginLoc(), 9202 /*IsStringLocation*/ false, SpecRange, 9203 FixItHint::CreateReplacement(SpecRange, os.str())); 9204 } else { 9205 // The canonical type for formatting this value is different from the 9206 // actual type of the expression. (This occurs, for example, with Darwin's 9207 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 9208 // should be printed as 'long' for 64-bit compatibility.) 9209 // Rather than emitting a normal format/argument mismatch, we want to 9210 // add a cast to the recommended type (and correct the format string 9211 // if necessary). 9212 SmallString<16> CastBuf; 9213 llvm::raw_svector_ostream CastFix(CastBuf); 9214 CastFix << "("; 9215 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 9216 CastFix << ")"; 9217 9218 SmallVector<FixItHint,4> Hints; 9219 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 9220 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 9221 9222 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 9223 // If there's already a cast present, just replace it. 9224 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 9225 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 9226 9227 } else if (!requiresParensToAddCast(E)) { 9228 // If the expression has high enough precedence, 9229 // just write the C-style cast. 9230 Hints.push_back( 9231 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9232 } else { 9233 // Otherwise, add parens around the expression as well as the cast. 9234 CastFix << "("; 9235 Hints.push_back( 9236 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 9237 9238 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 9239 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 9240 } 9241 9242 if (ShouldNotPrintDirectly) { 9243 // The expression has a type that should not be printed directly. 9244 // We extract the name from the typedef because we don't want to show 9245 // the underlying type in the diagnostic. 9246 StringRef Name; 9247 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 9248 Name = TypedefTy->getDecl()->getName(); 9249 else 9250 Name = CastTyName; 9251 unsigned Diag = Match == ArgType::NoMatchPedantic 9252 ? diag::warn_format_argument_needs_cast_pedantic 9253 : diag::warn_format_argument_needs_cast; 9254 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 9255 << E->getSourceRange(), 9256 E->getBeginLoc(), /*IsStringLocation=*/false, 9257 SpecRange, Hints); 9258 } else { 9259 // In this case, the expression could be printed using a different 9260 // specifier, but we've decided that the specifier is probably correct 9261 // and we should cast instead. Just use the normal warning message. 9262 EmitFormatDiagnostic( 9263 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 9264 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 9265 << E->getSourceRange(), 9266 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 9267 } 9268 } 9269 } else { 9270 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 9271 SpecifierLen); 9272 // Since the warning for passing non-POD types to variadic functions 9273 // was deferred until now, we emit a warning for non-POD 9274 // arguments here. 9275 switch (S.isValidVarArgType(ExprTy)) { 9276 case Sema::VAK_Valid: 9277 case Sema::VAK_ValidInCXX11: { 9278 unsigned Diag; 9279 switch (Match) { 9280 case ArgType::Match: llvm_unreachable("expected non-matching"); 9281 case ArgType::NoMatchPedantic: 9282 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 9283 break; 9284 case ArgType::NoMatchTypeConfusion: 9285 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 9286 break; 9287 case ArgType::NoMatch: 9288 Diag = diag::warn_format_conversion_argument_type_mismatch; 9289 break; 9290 } 9291 9292 EmitFormatDiagnostic( 9293 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 9294 << IsEnum << CSR << E->getSourceRange(), 9295 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9296 break; 9297 } 9298 case Sema::VAK_Undefined: 9299 case Sema::VAK_MSVCUndefined: 9300 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 9301 << S.getLangOpts().CPlusPlus11 << ExprTy 9302 << CallType 9303 << AT.getRepresentativeTypeName(S.Context) << CSR 9304 << E->getSourceRange(), 9305 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9306 checkForCStrMembers(AT, E); 9307 break; 9308 9309 case Sema::VAK_Invalid: 9310 if (ExprTy->isObjCObjectType()) 9311 EmitFormatDiagnostic( 9312 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 9313 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 9314 << AT.getRepresentativeTypeName(S.Context) << CSR 9315 << E->getSourceRange(), 9316 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 9317 else 9318 // FIXME: If this is an initializer list, suggest removing the braces 9319 // or inserting a cast to the target type. 9320 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 9321 << isa<InitListExpr>(E) << ExprTy << CallType 9322 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 9323 break; 9324 } 9325 9326 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 9327 "format string specifier index out of range"); 9328 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 9329 } 9330 9331 return true; 9332 } 9333 9334 //===--- CHECK: Scanf format string checking ------------------------------===// 9335 9336 namespace { 9337 9338 class CheckScanfHandler : public CheckFormatHandler { 9339 public: 9340 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 9341 const Expr *origFormatExpr, Sema::FormatStringType type, 9342 unsigned firstDataArg, unsigned numDataArgs, 9343 const char *beg, bool hasVAListArg, 9344 ArrayRef<const Expr *> Args, unsigned formatIdx, 9345 bool inFunctionCall, Sema::VariadicCallType CallType, 9346 llvm::SmallBitVector &CheckedVarArgs, 9347 UncoveredArgHandler &UncoveredArg) 9348 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 9349 numDataArgs, beg, hasVAListArg, Args, formatIdx, 9350 inFunctionCall, CallType, CheckedVarArgs, 9351 UncoveredArg) {} 9352 9353 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 9354 const char *startSpecifier, 9355 unsigned specifierLen) override; 9356 9357 bool HandleInvalidScanfConversionSpecifier( 9358 const analyze_scanf::ScanfSpecifier &FS, 9359 const char *startSpecifier, 9360 unsigned specifierLen) override; 9361 9362 void HandleIncompleteScanList(const char *start, const char *end) override; 9363 }; 9364 9365 } // namespace 9366 9367 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 9368 const char *end) { 9369 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 9370 getLocationOfByte(end), /*IsStringLocation*/true, 9371 getSpecifierRange(start, end - start)); 9372 } 9373 9374 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 9375 const analyze_scanf::ScanfSpecifier &FS, 9376 const char *startSpecifier, 9377 unsigned specifierLen) { 9378 const analyze_scanf::ScanfConversionSpecifier &CS = 9379 FS.getConversionSpecifier(); 9380 9381 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 9382 getLocationOfByte(CS.getStart()), 9383 startSpecifier, specifierLen, 9384 CS.getStart(), CS.getLength()); 9385 } 9386 9387 bool CheckScanfHandler::HandleScanfSpecifier( 9388 const analyze_scanf::ScanfSpecifier &FS, 9389 const char *startSpecifier, 9390 unsigned specifierLen) { 9391 using namespace analyze_scanf; 9392 using namespace analyze_format_string; 9393 9394 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 9395 9396 // Handle case where '%' and '*' don't consume an argument. These shouldn't 9397 // be used to decide if we are using positional arguments consistently. 9398 if (FS.consumesDataArgument()) { 9399 if (atFirstArg) { 9400 atFirstArg = false; 9401 usesPositionalArgs = FS.usesPositionalArg(); 9402 } 9403 else if (usesPositionalArgs != FS.usesPositionalArg()) { 9404 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 9405 startSpecifier, specifierLen); 9406 return false; 9407 } 9408 } 9409 9410 // Check if the field with is non-zero. 9411 const OptionalAmount &Amt = FS.getFieldWidth(); 9412 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 9413 if (Amt.getConstantAmount() == 0) { 9414 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 9415 Amt.getConstantLength()); 9416 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 9417 getLocationOfByte(Amt.getStart()), 9418 /*IsStringLocation*/true, R, 9419 FixItHint::CreateRemoval(R)); 9420 } 9421 } 9422 9423 if (!FS.consumesDataArgument()) { 9424 // FIXME: Technically specifying a precision or field width here 9425 // makes no sense. Worth issuing a warning at some point. 9426 return true; 9427 } 9428 9429 // Consume the argument. 9430 unsigned argIndex = FS.getArgIndex(); 9431 if (argIndex < NumDataArgs) { 9432 // The check to see if the argIndex is valid will come later. 9433 // We set the bit here because we may exit early from this 9434 // function if we encounter some other error. 9435 CoveredArgs.set(argIndex); 9436 } 9437 9438 // Check the length modifier is valid with the given conversion specifier. 9439 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 9440 S.getLangOpts())) 9441 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9442 diag::warn_format_nonsensical_length); 9443 else if (!FS.hasStandardLengthModifier()) 9444 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 9445 else if (!FS.hasStandardLengthConversionCombination()) 9446 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 9447 diag::warn_format_non_standard_conversion_spec); 9448 9449 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 9450 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 9451 9452 // The remaining checks depend on the data arguments. 9453 if (HasVAListArg) 9454 return true; 9455 9456 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 9457 return false; 9458 9459 // Check that the argument type matches the format specifier. 9460 const Expr *Ex = getDataArg(argIndex); 9461 if (!Ex) 9462 return true; 9463 9464 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 9465 9466 if (!AT.isValid()) { 9467 return true; 9468 } 9469 9470 analyze_format_string::ArgType::MatchKind Match = 9471 AT.matchesType(S.Context, Ex->getType()); 9472 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 9473 if (Match == analyze_format_string::ArgType::Match) 9474 return true; 9475 9476 ScanfSpecifier fixedFS = FS; 9477 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 9478 S.getLangOpts(), S.Context); 9479 9480 unsigned Diag = 9481 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 9482 : diag::warn_format_conversion_argument_type_mismatch; 9483 9484 if (Success) { 9485 // Get the fix string from the fixed format specifier. 9486 SmallString<128> buf; 9487 llvm::raw_svector_ostream os(buf); 9488 fixedFS.toString(os); 9489 9490 EmitFormatDiagnostic( 9491 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 9492 << Ex->getType() << false << Ex->getSourceRange(), 9493 Ex->getBeginLoc(), 9494 /*IsStringLocation*/ false, 9495 getSpecifierRange(startSpecifier, specifierLen), 9496 FixItHint::CreateReplacement( 9497 getSpecifierRange(startSpecifier, specifierLen), os.str())); 9498 } else { 9499 EmitFormatDiagnostic(S.PDiag(Diag) 9500 << AT.getRepresentativeTypeName(S.Context) 9501 << Ex->getType() << false << Ex->getSourceRange(), 9502 Ex->getBeginLoc(), 9503 /*IsStringLocation*/ false, 9504 getSpecifierRange(startSpecifier, specifierLen)); 9505 } 9506 9507 return true; 9508 } 9509 9510 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 9511 const Expr *OrigFormatExpr, 9512 ArrayRef<const Expr *> Args, 9513 bool HasVAListArg, unsigned format_idx, 9514 unsigned firstDataArg, 9515 Sema::FormatStringType Type, 9516 bool inFunctionCall, 9517 Sema::VariadicCallType CallType, 9518 llvm::SmallBitVector &CheckedVarArgs, 9519 UncoveredArgHandler &UncoveredArg, 9520 bool IgnoreStringsWithoutSpecifiers) { 9521 // CHECK: is the format string a wide literal? 9522 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 9523 CheckFormatHandler::EmitFormatDiagnostic( 9524 S, inFunctionCall, Args[format_idx], 9525 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 9526 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9527 return; 9528 } 9529 9530 // Str - The format string. NOTE: this is NOT null-terminated! 9531 StringRef StrRef = FExpr->getString(); 9532 const char *Str = StrRef.data(); 9533 // Account for cases where the string literal is truncated in a declaration. 9534 const ConstantArrayType *T = 9535 S.Context.getAsConstantArrayType(FExpr->getType()); 9536 assert(T && "String literal not of constant array type!"); 9537 size_t TypeSize = T->getSize().getZExtValue(); 9538 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9539 const unsigned numDataArgs = Args.size() - firstDataArg; 9540 9541 if (IgnoreStringsWithoutSpecifiers && 9542 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 9543 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 9544 return; 9545 9546 // Emit a warning if the string literal is truncated and does not contain an 9547 // embedded null character. 9548 if (TypeSize <= StrRef.size() && 9549 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 9550 CheckFormatHandler::EmitFormatDiagnostic( 9551 S, inFunctionCall, Args[format_idx], 9552 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 9553 FExpr->getBeginLoc(), 9554 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 9555 return; 9556 } 9557 9558 // CHECK: empty format string? 9559 if (StrLen == 0 && numDataArgs > 0) { 9560 CheckFormatHandler::EmitFormatDiagnostic( 9561 S, inFunctionCall, Args[format_idx], 9562 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 9563 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9564 return; 9565 } 9566 9567 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 9568 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 9569 Type == Sema::FST_OSTrace) { 9570 CheckPrintfHandler H( 9571 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 9572 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 9573 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 9574 CheckedVarArgs, UncoveredArg); 9575 9576 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 9577 S.getLangOpts(), 9578 S.Context.getTargetInfo(), 9579 Type == Sema::FST_FreeBSDKPrintf)) 9580 H.DoneProcessing(); 9581 } else if (Type == Sema::FST_Scanf) { 9582 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 9583 numDataArgs, Str, HasVAListArg, Args, format_idx, 9584 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 9585 9586 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 9587 S.getLangOpts(), 9588 S.Context.getTargetInfo())) 9589 H.DoneProcessing(); 9590 } // TODO: handle other formats 9591 } 9592 9593 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 9594 // Str - The format string. NOTE: this is NOT null-terminated! 9595 StringRef StrRef = FExpr->getString(); 9596 const char *Str = StrRef.data(); 9597 // Account for cases where the string literal is truncated in a declaration. 9598 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 9599 assert(T && "String literal not of constant array type!"); 9600 size_t TypeSize = T->getSize().getZExtValue(); 9601 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9602 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 9603 getLangOpts(), 9604 Context.getTargetInfo()); 9605 } 9606 9607 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 9608 9609 // Returns the related absolute value function that is larger, of 0 if one 9610 // does not exist. 9611 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 9612 switch (AbsFunction) { 9613 default: 9614 return 0; 9615 9616 case Builtin::BI__builtin_abs: 9617 return Builtin::BI__builtin_labs; 9618 case Builtin::BI__builtin_labs: 9619 return Builtin::BI__builtin_llabs; 9620 case Builtin::BI__builtin_llabs: 9621 return 0; 9622 9623 case Builtin::BI__builtin_fabsf: 9624 return Builtin::BI__builtin_fabs; 9625 case Builtin::BI__builtin_fabs: 9626 return Builtin::BI__builtin_fabsl; 9627 case Builtin::BI__builtin_fabsl: 9628 return 0; 9629 9630 case Builtin::BI__builtin_cabsf: 9631 return Builtin::BI__builtin_cabs; 9632 case Builtin::BI__builtin_cabs: 9633 return Builtin::BI__builtin_cabsl; 9634 case Builtin::BI__builtin_cabsl: 9635 return 0; 9636 9637 case Builtin::BIabs: 9638 return Builtin::BIlabs; 9639 case Builtin::BIlabs: 9640 return Builtin::BIllabs; 9641 case Builtin::BIllabs: 9642 return 0; 9643 9644 case Builtin::BIfabsf: 9645 return Builtin::BIfabs; 9646 case Builtin::BIfabs: 9647 return Builtin::BIfabsl; 9648 case Builtin::BIfabsl: 9649 return 0; 9650 9651 case Builtin::BIcabsf: 9652 return Builtin::BIcabs; 9653 case Builtin::BIcabs: 9654 return Builtin::BIcabsl; 9655 case Builtin::BIcabsl: 9656 return 0; 9657 } 9658 } 9659 9660 // Returns the argument type of the absolute value function. 9661 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 9662 unsigned AbsType) { 9663 if (AbsType == 0) 9664 return QualType(); 9665 9666 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 9667 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 9668 if (Error != ASTContext::GE_None) 9669 return QualType(); 9670 9671 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 9672 if (!FT) 9673 return QualType(); 9674 9675 if (FT->getNumParams() != 1) 9676 return QualType(); 9677 9678 return FT->getParamType(0); 9679 } 9680 9681 // Returns the best absolute value function, or zero, based on type and 9682 // current absolute value function. 9683 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 9684 unsigned AbsFunctionKind) { 9685 unsigned BestKind = 0; 9686 uint64_t ArgSize = Context.getTypeSize(ArgType); 9687 for (unsigned Kind = AbsFunctionKind; Kind != 0; 9688 Kind = getLargerAbsoluteValueFunction(Kind)) { 9689 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 9690 if (Context.getTypeSize(ParamType) >= ArgSize) { 9691 if (BestKind == 0) 9692 BestKind = Kind; 9693 else if (Context.hasSameType(ParamType, ArgType)) { 9694 BestKind = Kind; 9695 break; 9696 } 9697 } 9698 } 9699 return BestKind; 9700 } 9701 9702 enum AbsoluteValueKind { 9703 AVK_Integer, 9704 AVK_Floating, 9705 AVK_Complex 9706 }; 9707 9708 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 9709 if (T->isIntegralOrEnumerationType()) 9710 return AVK_Integer; 9711 if (T->isRealFloatingType()) 9712 return AVK_Floating; 9713 if (T->isAnyComplexType()) 9714 return AVK_Complex; 9715 9716 llvm_unreachable("Type not integer, floating, or complex"); 9717 } 9718 9719 // Changes the absolute value function to a different type. Preserves whether 9720 // the function is a builtin. 9721 static unsigned changeAbsFunction(unsigned AbsKind, 9722 AbsoluteValueKind ValueKind) { 9723 switch (ValueKind) { 9724 case AVK_Integer: 9725 switch (AbsKind) { 9726 default: 9727 return 0; 9728 case Builtin::BI__builtin_fabsf: 9729 case Builtin::BI__builtin_fabs: 9730 case Builtin::BI__builtin_fabsl: 9731 case Builtin::BI__builtin_cabsf: 9732 case Builtin::BI__builtin_cabs: 9733 case Builtin::BI__builtin_cabsl: 9734 return Builtin::BI__builtin_abs; 9735 case Builtin::BIfabsf: 9736 case Builtin::BIfabs: 9737 case Builtin::BIfabsl: 9738 case Builtin::BIcabsf: 9739 case Builtin::BIcabs: 9740 case Builtin::BIcabsl: 9741 return Builtin::BIabs; 9742 } 9743 case AVK_Floating: 9744 switch (AbsKind) { 9745 default: 9746 return 0; 9747 case Builtin::BI__builtin_abs: 9748 case Builtin::BI__builtin_labs: 9749 case Builtin::BI__builtin_llabs: 9750 case Builtin::BI__builtin_cabsf: 9751 case Builtin::BI__builtin_cabs: 9752 case Builtin::BI__builtin_cabsl: 9753 return Builtin::BI__builtin_fabsf; 9754 case Builtin::BIabs: 9755 case Builtin::BIlabs: 9756 case Builtin::BIllabs: 9757 case Builtin::BIcabsf: 9758 case Builtin::BIcabs: 9759 case Builtin::BIcabsl: 9760 return Builtin::BIfabsf; 9761 } 9762 case AVK_Complex: 9763 switch (AbsKind) { 9764 default: 9765 return 0; 9766 case Builtin::BI__builtin_abs: 9767 case Builtin::BI__builtin_labs: 9768 case Builtin::BI__builtin_llabs: 9769 case Builtin::BI__builtin_fabsf: 9770 case Builtin::BI__builtin_fabs: 9771 case Builtin::BI__builtin_fabsl: 9772 return Builtin::BI__builtin_cabsf; 9773 case Builtin::BIabs: 9774 case Builtin::BIlabs: 9775 case Builtin::BIllabs: 9776 case Builtin::BIfabsf: 9777 case Builtin::BIfabs: 9778 case Builtin::BIfabsl: 9779 return Builtin::BIcabsf; 9780 } 9781 } 9782 llvm_unreachable("Unable to convert function"); 9783 } 9784 9785 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9786 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9787 if (!FnInfo) 9788 return 0; 9789 9790 switch (FDecl->getBuiltinID()) { 9791 default: 9792 return 0; 9793 case Builtin::BI__builtin_abs: 9794 case Builtin::BI__builtin_fabs: 9795 case Builtin::BI__builtin_fabsf: 9796 case Builtin::BI__builtin_fabsl: 9797 case Builtin::BI__builtin_labs: 9798 case Builtin::BI__builtin_llabs: 9799 case Builtin::BI__builtin_cabs: 9800 case Builtin::BI__builtin_cabsf: 9801 case Builtin::BI__builtin_cabsl: 9802 case Builtin::BIabs: 9803 case Builtin::BIlabs: 9804 case Builtin::BIllabs: 9805 case Builtin::BIfabs: 9806 case Builtin::BIfabsf: 9807 case Builtin::BIfabsl: 9808 case Builtin::BIcabs: 9809 case Builtin::BIcabsf: 9810 case Builtin::BIcabsl: 9811 return FDecl->getBuiltinID(); 9812 } 9813 llvm_unreachable("Unknown Builtin type"); 9814 } 9815 9816 // If the replacement is valid, emit a note with replacement function. 9817 // Additionally, suggest including the proper header if not already included. 9818 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9819 unsigned AbsKind, QualType ArgType) { 9820 bool EmitHeaderHint = true; 9821 const char *HeaderName = nullptr; 9822 const char *FunctionName = nullptr; 9823 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9824 FunctionName = "std::abs"; 9825 if (ArgType->isIntegralOrEnumerationType()) { 9826 HeaderName = "cstdlib"; 9827 } else if (ArgType->isRealFloatingType()) { 9828 HeaderName = "cmath"; 9829 } else { 9830 llvm_unreachable("Invalid Type"); 9831 } 9832 9833 // Lookup all std::abs 9834 if (NamespaceDecl *Std = S.getStdNamespace()) { 9835 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9836 R.suppressDiagnostics(); 9837 S.LookupQualifiedName(R, Std); 9838 9839 for (const auto *I : R) { 9840 const FunctionDecl *FDecl = nullptr; 9841 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9842 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9843 } else { 9844 FDecl = dyn_cast<FunctionDecl>(I); 9845 } 9846 if (!FDecl) 9847 continue; 9848 9849 // Found std::abs(), check that they are the right ones. 9850 if (FDecl->getNumParams() != 1) 9851 continue; 9852 9853 // Check that the parameter type can handle the argument. 9854 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9855 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9856 S.Context.getTypeSize(ArgType) <= 9857 S.Context.getTypeSize(ParamType)) { 9858 // Found a function, don't need the header hint. 9859 EmitHeaderHint = false; 9860 break; 9861 } 9862 } 9863 } 9864 } else { 9865 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9866 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9867 9868 if (HeaderName) { 9869 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9870 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9871 R.suppressDiagnostics(); 9872 S.LookupName(R, S.getCurScope()); 9873 9874 if (R.isSingleResult()) { 9875 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9876 if (FD && FD->getBuiltinID() == AbsKind) { 9877 EmitHeaderHint = false; 9878 } else { 9879 return; 9880 } 9881 } else if (!R.empty()) { 9882 return; 9883 } 9884 } 9885 } 9886 9887 S.Diag(Loc, diag::note_replace_abs_function) 9888 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9889 9890 if (!HeaderName) 9891 return; 9892 9893 if (!EmitHeaderHint) 9894 return; 9895 9896 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9897 << FunctionName; 9898 } 9899 9900 template <std::size_t StrLen> 9901 static bool IsStdFunction(const FunctionDecl *FDecl, 9902 const char (&Str)[StrLen]) { 9903 if (!FDecl) 9904 return false; 9905 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9906 return false; 9907 if (!FDecl->isInStdNamespace()) 9908 return false; 9909 9910 return true; 9911 } 9912 9913 // Warn when using the wrong abs() function. 9914 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9915 const FunctionDecl *FDecl) { 9916 if (Call->getNumArgs() != 1) 9917 return; 9918 9919 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9920 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9921 if (AbsKind == 0 && !IsStdAbs) 9922 return; 9923 9924 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9925 QualType ParamType = Call->getArg(0)->getType(); 9926 9927 // Unsigned types cannot be negative. Suggest removing the absolute value 9928 // function call. 9929 if (ArgType->isUnsignedIntegerType()) { 9930 const char *FunctionName = 9931 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9932 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9933 Diag(Call->getExprLoc(), diag::note_remove_abs) 9934 << FunctionName 9935 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9936 return; 9937 } 9938 9939 // Taking the absolute value of a pointer is very suspicious, they probably 9940 // wanted to index into an array, dereference a pointer, call a function, etc. 9941 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9942 unsigned DiagType = 0; 9943 if (ArgType->isFunctionType()) 9944 DiagType = 1; 9945 else if (ArgType->isArrayType()) 9946 DiagType = 2; 9947 9948 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9949 return; 9950 } 9951 9952 // std::abs has overloads which prevent most of the absolute value problems 9953 // from occurring. 9954 if (IsStdAbs) 9955 return; 9956 9957 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9958 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9959 9960 // The argument and parameter are the same kind. Check if they are the right 9961 // size. 9962 if (ArgValueKind == ParamValueKind) { 9963 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9964 return; 9965 9966 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9967 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9968 << FDecl << ArgType << ParamType; 9969 9970 if (NewAbsKind == 0) 9971 return; 9972 9973 emitReplacement(*this, Call->getExprLoc(), 9974 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9975 return; 9976 } 9977 9978 // ArgValueKind != ParamValueKind 9979 // The wrong type of absolute value function was used. Attempt to find the 9980 // proper one. 9981 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9982 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9983 if (NewAbsKind == 0) 9984 return; 9985 9986 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9987 << FDecl << ParamValueKind << ArgValueKind; 9988 9989 emitReplacement(*this, Call->getExprLoc(), 9990 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9991 } 9992 9993 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9994 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9995 const FunctionDecl *FDecl) { 9996 if (!Call || !FDecl) return; 9997 9998 // Ignore template specializations and macros. 9999 if (inTemplateInstantiation()) return; 10000 if (Call->getExprLoc().isMacroID()) return; 10001 10002 // Only care about the one template argument, two function parameter std::max 10003 if (Call->getNumArgs() != 2) return; 10004 if (!IsStdFunction(FDecl, "max")) return; 10005 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 10006 if (!ArgList) return; 10007 if (ArgList->size() != 1) return; 10008 10009 // Check that template type argument is unsigned integer. 10010 const auto& TA = ArgList->get(0); 10011 if (TA.getKind() != TemplateArgument::Type) return; 10012 QualType ArgType = TA.getAsType(); 10013 if (!ArgType->isUnsignedIntegerType()) return; 10014 10015 // See if either argument is a literal zero. 10016 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 10017 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 10018 if (!MTE) return false; 10019 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 10020 if (!Num) return false; 10021 if (Num->getValue() != 0) return false; 10022 return true; 10023 }; 10024 10025 const Expr *FirstArg = Call->getArg(0); 10026 const Expr *SecondArg = Call->getArg(1); 10027 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 10028 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 10029 10030 // Only warn when exactly one argument is zero. 10031 if (IsFirstArgZero == IsSecondArgZero) return; 10032 10033 SourceRange FirstRange = FirstArg->getSourceRange(); 10034 SourceRange SecondRange = SecondArg->getSourceRange(); 10035 10036 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 10037 10038 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 10039 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 10040 10041 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 10042 SourceRange RemovalRange; 10043 if (IsFirstArgZero) { 10044 RemovalRange = SourceRange(FirstRange.getBegin(), 10045 SecondRange.getBegin().getLocWithOffset(-1)); 10046 } else { 10047 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 10048 SecondRange.getEnd()); 10049 } 10050 10051 Diag(Call->getExprLoc(), diag::note_remove_max_call) 10052 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 10053 << FixItHint::CreateRemoval(RemovalRange); 10054 } 10055 10056 //===--- CHECK: Standard memory functions ---------------------------------===// 10057 10058 /// Takes the expression passed to the size_t parameter of functions 10059 /// such as memcmp, strncat, etc and warns if it's a comparison. 10060 /// 10061 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 10062 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 10063 IdentifierInfo *FnName, 10064 SourceLocation FnLoc, 10065 SourceLocation RParenLoc) { 10066 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 10067 if (!Size) 10068 return false; 10069 10070 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 10071 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 10072 return false; 10073 10074 SourceRange SizeRange = Size->getSourceRange(); 10075 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 10076 << SizeRange << FnName; 10077 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 10078 << FnName 10079 << FixItHint::CreateInsertion( 10080 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 10081 << FixItHint::CreateRemoval(RParenLoc); 10082 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 10083 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 10084 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 10085 ")"); 10086 10087 return true; 10088 } 10089 10090 /// Determine whether the given type is or contains a dynamic class type 10091 /// (e.g., whether it has a vtable). 10092 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 10093 bool &IsContained) { 10094 // Look through array types while ignoring qualifiers. 10095 const Type *Ty = T->getBaseElementTypeUnsafe(); 10096 IsContained = false; 10097 10098 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 10099 RD = RD ? RD->getDefinition() : nullptr; 10100 if (!RD || RD->isInvalidDecl()) 10101 return nullptr; 10102 10103 if (RD->isDynamicClass()) 10104 return RD; 10105 10106 // Check all the fields. If any bases were dynamic, the class is dynamic. 10107 // It's impossible for a class to transitively contain itself by value, so 10108 // infinite recursion is impossible. 10109 for (auto *FD : RD->fields()) { 10110 bool SubContained; 10111 if (const CXXRecordDecl *ContainedRD = 10112 getContainedDynamicClass(FD->getType(), SubContained)) { 10113 IsContained = true; 10114 return ContainedRD; 10115 } 10116 } 10117 10118 return nullptr; 10119 } 10120 10121 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 10122 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 10123 if (Unary->getKind() == UETT_SizeOf) 10124 return Unary; 10125 return nullptr; 10126 } 10127 10128 /// If E is a sizeof expression, returns its argument expression, 10129 /// otherwise returns NULL. 10130 static const Expr *getSizeOfExprArg(const Expr *E) { 10131 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10132 if (!SizeOf->isArgumentType()) 10133 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 10134 return nullptr; 10135 } 10136 10137 /// If E is a sizeof expression, returns its argument type. 10138 static QualType getSizeOfArgType(const Expr *E) { 10139 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 10140 return SizeOf->getTypeOfArgument(); 10141 return QualType(); 10142 } 10143 10144 namespace { 10145 10146 struct SearchNonTrivialToInitializeField 10147 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 10148 using Super = 10149 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 10150 10151 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 10152 10153 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 10154 SourceLocation SL) { 10155 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10156 asDerived().visitArray(PDIK, AT, SL); 10157 return; 10158 } 10159 10160 Super::visitWithKind(PDIK, FT, SL); 10161 } 10162 10163 void visitARCStrong(QualType FT, SourceLocation SL) { 10164 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10165 } 10166 void visitARCWeak(QualType FT, SourceLocation SL) { 10167 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 10168 } 10169 void visitStruct(QualType FT, SourceLocation SL) { 10170 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10171 visit(FD->getType(), FD->getLocation()); 10172 } 10173 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 10174 const ArrayType *AT, SourceLocation SL) { 10175 visit(getContext().getBaseElementType(AT), SL); 10176 } 10177 void visitTrivial(QualType FT, SourceLocation SL) {} 10178 10179 static void diag(QualType RT, const Expr *E, Sema &S) { 10180 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 10181 } 10182 10183 ASTContext &getContext() { return S.getASTContext(); } 10184 10185 const Expr *E; 10186 Sema &S; 10187 }; 10188 10189 struct SearchNonTrivialToCopyField 10190 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 10191 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 10192 10193 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 10194 10195 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 10196 SourceLocation SL) { 10197 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 10198 asDerived().visitArray(PCK, AT, SL); 10199 return; 10200 } 10201 10202 Super::visitWithKind(PCK, FT, SL); 10203 } 10204 10205 void visitARCStrong(QualType FT, SourceLocation SL) { 10206 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10207 } 10208 void visitARCWeak(QualType FT, SourceLocation SL) { 10209 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 10210 } 10211 void visitStruct(QualType FT, SourceLocation SL) { 10212 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 10213 visit(FD->getType(), FD->getLocation()); 10214 } 10215 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 10216 SourceLocation SL) { 10217 visit(getContext().getBaseElementType(AT), SL); 10218 } 10219 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 10220 SourceLocation SL) {} 10221 void visitTrivial(QualType FT, SourceLocation SL) {} 10222 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 10223 10224 static void diag(QualType RT, const Expr *E, Sema &S) { 10225 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 10226 } 10227 10228 ASTContext &getContext() { return S.getASTContext(); } 10229 10230 const Expr *E; 10231 Sema &S; 10232 }; 10233 10234 } 10235 10236 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 10237 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 10238 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 10239 10240 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 10241 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 10242 return false; 10243 10244 return doesExprLikelyComputeSize(BO->getLHS()) || 10245 doesExprLikelyComputeSize(BO->getRHS()); 10246 } 10247 10248 return getAsSizeOfExpr(SizeofExpr) != nullptr; 10249 } 10250 10251 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 10252 /// 10253 /// \code 10254 /// #define MACRO 0 10255 /// foo(MACRO); 10256 /// foo(0); 10257 /// \endcode 10258 /// 10259 /// This should return true for the first call to foo, but not for the second 10260 /// (regardless of whether foo is a macro or function). 10261 static bool isArgumentExpandedFromMacro(SourceManager &SM, 10262 SourceLocation CallLoc, 10263 SourceLocation ArgLoc) { 10264 if (!CallLoc.isMacroID()) 10265 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 10266 10267 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 10268 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 10269 } 10270 10271 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 10272 /// last two arguments transposed. 10273 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 10274 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 10275 return; 10276 10277 const Expr *SizeArg = 10278 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 10279 10280 auto isLiteralZero = [](const Expr *E) { 10281 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 10282 }; 10283 10284 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 10285 SourceLocation CallLoc = Call->getRParenLoc(); 10286 SourceManager &SM = S.getSourceManager(); 10287 if (isLiteralZero(SizeArg) && 10288 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 10289 10290 SourceLocation DiagLoc = SizeArg->getExprLoc(); 10291 10292 // Some platforms #define bzero to __builtin_memset. See if this is the 10293 // case, and if so, emit a better diagnostic. 10294 if (BId == Builtin::BIbzero || 10295 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 10296 CallLoc, SM, S.getLangOpts()) == "bzero")) { 10297 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 10298 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 10299 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 10300 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 10301 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 10302 } 10303 return; 10304 } 10305 10306 // If the second argument to a memset is a sizeof expression and the third 10307 // isn't, this is also likely an error. This should catch 10308 // 'memset(buf, sizeof(buf), 0xff)'. 10309 if (BId == Builtin::BImemset && 10310 doesExprLikelyComputeSize(Call->getArg(1)) && 10311 !doesExprLikelyComputeSize(Call->getArg(2))) { 10312 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 10313 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 10314 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 10315 return; 10316 } 10317 } 10318 10319 /// Check for dangerous or invalid arguments to memset(). 10320 /// 10321 /// This issues warnings on known problematic, dangerous or unspecified 10322 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 10323 /// function calls. 10324 /// 10325 /// \param Call The call expression to diagnose. 10326 void Sema::CheckMemaccessArguments(const CallExpr *Call, 10327 unsigned BId, 10328 IdentifierInfo *FnName) { 10329 assert(BId != 0); 10330 10331 // It is possible to have a non-standard definition of memset. Validate 10332 // we have enough arguments, and if not, abort further checking. 10333 unsigned ExpectedNumArgs = 10334 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 10335 if (Call->getNumArgs() < ExpectedNumArgs) 10336 return; 10337 10338 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 10339 BId == Builtin::BIstrndup ? 1 : 2); 10340 unsigned LenArg = 10341 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 10342 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 10343 10344 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 10345 Call->getBeginLoc(), Call->getRParenLoc())) 10346 return; 10347 10348 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 10349 CheckMemaccessSize(*this, BId, Call); 10350 10351 // We have special checking when the length is a sizeof expression. 10352 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 10353 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 10354 llvm::FoldingSetNodeID SizeOfArgID; 10355 10356 // Although widely used, 'bzero' is not a standard function. Be more strict 10357 // with the argument types before allowing diagnostics and only allow the 10358 // form bzero(ptr, sizeof(...)). 10359 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 10360 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 10361 return; 10362 10363 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 10364 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 10365 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 10366 10367 QualType DestTy = Dest->getType(); 10368 QualType PointeeTy; 10369 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 10370 PointeeTy = DestPtrTy->getPointeeType(); 10371 10372 // Never warn about void type pointers. This can be used to suppress 10373 // false positives. 10374 if (PointeeTy->isVoidType()) 10375 continue; 10376 10377 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 10378 // actually comparing the expressions for equality. Because computing the 10379 // expression IDs can be expensive, we only do this if the diagnostic is 10380 // enabled. 10381 if (SizeOfArg && 10382 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 10383 SizeOfArg->getExprLoc())) { 10384 // We only compute IDs for expressions if the warning is enabled, and 10385 // cache the sizeof arg's ID. 10386 if (SizeOfArgID == llvm::FoldingSetNodeID()) 10387 SizeOfArg->Profile(SizeOfArgID, Context, true); 10388 llvm::FoldingSetNodeID DestID; 10389 Dest->Profile(DestID, Context, true); 10390 if (DestID == SizeOfArgID) { 10391 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 10392 // over sizeof(src) as well. 10393 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 10394 StringRef ReadableName = FnName->getName(); 10395 10396 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 10397 if (UnaryOp->getOpcode() == UO_AddrOf) 10398 ActionIdx = 1; // If its an address-of operator, just remove it. 10399 if (!PointeeTy->isIncompleteType() && 10400 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 10401 ActionIdx = 2; // If the pointee's size is sizeof(char), 10402 // suggest an explicit length. 10403 10404 // If the function is defined as a builtin macro, do not show macro 10405 // expansion. 10406 SourceLocation SL = SizeOfArg->getExprLoc(); 10407 SourceRange DSR = Dest->getSourceRange(); 10408 SourceRange SSR = SizeOfArg->getSourceRange(); 10409 SourceManager &SM = getSourceManager(); 10410 10411 if (SM.isMacroArgExpansion(SL)) { 10412 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 10413 SL = SM.getSpellingLoc(SL); 10414 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 10415 SM.getSpellingLoc(DSR.getEnd())); 10416 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 10417 SM.getSpellingLoc(SSR.getEnd())); 10418 } 10419 10420 DiagRuntimeBehavior(SL, SizeOfArg, 10421 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 10422 << ReadableName 10423 << PointeeTy 10424 << DestTy 10425 << DSR 10426 << SSR); 10427 DiagRuntimeBehavior(SL, SizeOfArg, 10428 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 10429 << ActionIdx 10430 << SSR); 10431 10432 break; 10433 } 10434 } 10435 10436 // Also check for cases where the sizeof argument is the exact same 10437 // type as the memory argument, and where it points to a user-defined 10438 // record type. 10439 if (SizeOfArgTy != QualType()) { 10440 if (PointeeTy->isRecordType() && 10441 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 10442 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 10443 PDiag(diag::warn_sizeof_pointer_type_memaccess) 10444 << FnName << SizeOfArgTy << ArgIdx 10445 << PointeeTy << Dest->getSourceRange() 10446 << LenExpr->getSourceRange()); 10447 break; 10448 } 10449 } 10450 } else if (DestTy->isArrayType()) { 10451 PointeeTy = DestTy; 10452 } 10453 10454 if (PointeeTy == QualType()) 10455 continue; 10456 10457 // Always complain about dynamic classes. 10458 bool IsContained; 10459 if (const CXXRecordDecl *ContainedRD = 10460 getContainedDynamicClass(PointeeTy, IsContained)) { 10461 10462 unsigned OperationType = 0; 10463 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 10464 // "overwritten" if we're warning about the destination for any call 10465 // but memcmp; otherwise a verb appropriate to the call. 10466 if (ArgIdx != 0 || IsCmp) { 10467 if (BId == Builtin::BImemcpy) 10468 OperationType = 1; 10469 else if(BId == Builtin::BImemmove) 10470 OperationType = 2; 10471 else if (IsCmp) 10472 OperationType = 3; 10473 } 10474 10475 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10476 PDiag(diag::warn_dyn_class_memaccess) 10477 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 10478 << IsContained << ContainedRD << OperationType 10479 << Call->getCallee()->getSourceRange()); 10480 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 10481 BId != Builtin::BImemset) 10482 DiagRuntimeBehavior( 10483 Dest->getExprLoc(), Dest, 10484 PDiag(diag::warn_arc_object_memaccess) 10485 << ArgIdx << FnName << PointeeTy 10486 << Call->getCallee()->getSourceRange()); 10487 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 10488 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 10489 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 10490 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10491 PDiag(diag::warn_cstruct_memaccess) 10492 << ArgIdx << FnName << PointeeTy << 0); 10493 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 10494 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 10495 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 10496 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10497 PDiag(diag::warn_cstruct_memaccess) 10498 << ArgIdx << FnName << PointeeTy << 1); 10499 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 10500 } else { 10501 continue; 10502 } 10503 } else 10504 continue; 10505 10506 DiagRuntimeBehavior( 10507 Dest->getExprLoc(), Dest, 10508 PDiag(diag::note_bad_memaccess_silence) 10509 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 10510 break; 10511 } 10512 } 10513 10514 // A little helper routine: ignore addition and subtraction of integer literals. 10515 // This intentionally does not ignore all integer constant expressions because 10516 // we don't want to remove sizeof(). 10517 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 10518 Ex = Ex->IgnoreParenCasts(); 10519 10520 while (true) { 10521 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 10522 if (!BO || !BO->isAdditiveOp()) 10523 break; 10524 10525 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 10526 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 10527 10528 if (isa<IntegerLiteral>(RHS)) 10529 Ex = LHS; 10530 else if (isa<IntegerLiteral>(LHS)) 10531 Ex = RHS; 10532 else 10533 break; 10534 } 10535 10536 return Ex; 10537 } 10538 10539 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 10540 ASTContext &Context) { 10541 // Only handle constant-sized or VLAs, but not flexible members. 10542 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 10543 // Only issue the FIXIT for arrays of size > 1. 10544 if (CAT->getSize().getSExtValue() <= 1) 10545 return false; 10546 } else if (!Ty->isVariableArrayType()) { 10547 return false; 10548 } 10549 return true; 10550 } 10551 10552 // Warn if the user has made the 'size' argument to strlcpy or strlcat 10553 // be the size of the source, instead of the destination. 10554 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 10555 IdentifierInfo *FnName) { 10556 10557 // Don't crash if the user has the wrong number of arguments 10558 unsigned NumArgs = Call->getNumArgs(); 10559 if ((NumArgs != 3) && (NumArgs != 4)) 10560 return; 10561 10562 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 10563 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 10564 const Expr *CompareWithSrc = nullptr; 10565 10566 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 10567 Call->getBeginLoc(), Call->getRParenLoc())) 10568 return; 10569 10570 // Look for 'strlcpy(dst, x, sizeof(x))' 10571 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 10572 CompareWithSrc = Ex; 10573 else { 10574 // Look for 'strlcpy(dst, x, strlen(x))' 10575 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 10576 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 10577 SizeCall->getNumArgs() == 1) 10578 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 10579 } 10580 } 10581 10582 if (!CompareWithSrc) 10583 return; 10584 10585 // Determine if the argument to sizeof/strlen is equal to the source 10586 // argument. In principle there's all kinds of things you could do 10587 // here, for instance creating an == expression and evaluating it with 10588 // EvaluateAsBooleanCondition, but this uses a more direct technique: 10589 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 10590 if (!SrcArgDRE) 10591 return; 10592 10593 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 10594 if (!CompareWithSrcDRE || 10595 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 10596 return; 10597 10598 const Expr *OriginalSizeArg = Call->getArg(2); 10599 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 10600 << OriginalSizeArg->getSourceRange() << FnName; 10601 10602 // Output a FIXIT hint if the destination is an array (rather than a 10603 // pointer to an array). This could be enhanced to handle some 10604 // pointers if we know the actual size, like if DstArg is 'array+2' 10605 // we could say 'sizeof(array)-2'. 10606 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 10607 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 10608 return; 10609 10610 SmallString<128> sizeString; 10611 llvm::raw_svector_ostream OS(sizeString); 10612 OS << "sizeof("; 10613 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10614 OS << ")"; 10615 10616 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 10617 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 10618 OS.str()); 10619 } 10620 10621 /// Check if two expressions refer to the same declaration. 10622 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 10623 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 10624 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 10625 return D1->getDecl() == D2->getDecl(); 10626 return false; 10627 } 10628 10629 static const Expr *getStrlenExprArg(const Expr *E) { 10630 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 10631 const FunctionDecl *FD = CE->getDirectCallee(); 10632 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 10633 return nullptr; 10634 return CE->getArg(0)->IgnoreParenCasts(); 10635 } 10636 return nullptr; 10637 } 10638 10639 // Warn on anti-patterns as the 'size' argument to strncat. 10640 // The correct size argument should look like following: 10641 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 10642 void Sema::CheckStrncatArguments(const CallExpr *CE, 10643 IdentifierInfo *FnName) { 10644 // Don't crash if the user has the wrong number of arguments. 10645 if (CE->getNumArgs() < 3) 10646 return; 10647 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 10648 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 10649 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 10650 10651 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 10652 CE->getRParenLoc())) 10653 return; 10654 10655 // Identify common expressions, which are wrongly used as the size argument 10656 // to strncat and may lead to buffer overflows. 10657 unsigned PatternType = 0; 10658 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 10659 // - sizeof(dst) 10660 if (referToTheSameDecl(SizeOfArg, DstArg)) 10661 PatternType = 1; 10662 // - sizeof(src) 10663 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 10664 PatternType = 2; 10665 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 10666 if (BE->getOpcode() == BO_Sub) { 10667 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 10668 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 10669 // - sizeof(dst) - strlen(dst) 10670 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 10671 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 10672 PatternType = 1; 10673 // - sizeof(src) - (anything) 10674 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 10675 PatternType = 2; 10676 } 10677 } 10678 10679 if (PatternType == 0) 10680 return; 10681 10682 // Generate the diagnostic. 10683 SourceLocation SL = LenArg->getBeginLoc(); 10684 SourceRange SR = LenArg->getSourceRange(); 10685 SourceManager &SM = getSourceManager(); 10686 10687 // If the function is defined as a builtin macro, do not show macro expansion. 10688 if (SM.isMacroArgExpansion(SL)) { 10689 SL = SM.getSpellingLoc(SL); 10690 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 10691 SM.getSpellingLoc(SR.getEnd())); 10692 } 10693 10694 // Check if the destination is an array (rather than a pointer to an array). 10695 QualType DstTy = DstArg->getType(); 10696 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 10697 Context); 10698 if (!isKnownSizeArray) { 10699 if (PatternType == 1) 10700 Diag(SL, diag::warn_strncat_wrong_size) << SR; 10701 else 10702 Diag(SL, diag::warn_strncat_src_size) << SR; 10703 return; 10704 } 10705 10706 if (PatternType == 1) 10707 Diag(SL, diag::warn_strncat_large_size) << SR; 10708 else 10709 Diag(SL, diag::warn_strncat_src_size) << SR; 10710 10711 SmallString<128> sizeString; 10712 llvm::raw_svector_ostream OS(sizeString); 10713 OS << "sizeof("; 10714 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10715 OS << ") - "; 10716 OS << "strlen("; 10717 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10718 OS << ") - 1"; 10719 10720 Diag(SL, diag::note_strncat_wrong_size) 10721 << FixItHint::CreateReplacement(SR, OS.str()); 10722 } 10723 10724 namespace { 10725 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10726 const UnaryOperator *UnaryExpr, const Decl *D) { 10727 if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) { 10728 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10729 << CalleeName << 0 /*object: */ << cast<NamedDecl>(D); 10730 return; 10731 } 10732 } 10733 10734 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 10735 const UnaryOperator *UnaryExpr) { 10736 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) { 10737 const Decl *D = Lvalue->getDecl(); 10738 if (isa<DeclaratorDecl>(D)) 10739 if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType()) 10740 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D); 10741 } 10742 10743 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 10744 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 10745 Lvalue->getMemberDecl()); 10746 } 10747 10748 void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName, 10749 const UnaryOperator *UnaryExpr) { 10750 const auto *Lambda = dyn_cast<LambdaExpr>( 10751 UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens()); 10752 if (!Lambda) 10753 return; 10754 10755 S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object) 10756 << CalleeName << 2 /*object: lambda expression*/; 10757 } 10758 10759 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 10760 const DeclRefExpr *Lvalue) { 10761 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 10762 if (Var == nullptr) 10763 return; 10764 10765 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 10766 << CalleeName << 0 /*object: */ << Var; 10767 } 10768 10769 void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName, 10770 const CastExpr *Cast) { 10771 SmallString<128> SizeString; 10772 llvm::raw_svector_ostream OS(SizeString); 10773 10774 clang::CastKind Kind = Cast->getCastKind(); 10775 if (Kind == clang::CK_BitCast && 10776 !Cast->getSubExpr()->getType()->isFunctionPointerType()) 10777 return; 10778 if (Kind == clang::CK_IntegralToPointer && 10779 !isa<IntegerLiteral>( 10780 Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens())) 10781 return; 10782 10783 switch (Cast->getCastKind()) { 10784 case clang::CK_BitCast: 10785 case clang::CK_IntegralToPointer: 10786 case clang::CK_FunctionToPointerDecay: 10787 OS << '\''; 10788 Cast->printPretty(OS, nullptr, S.getPrintingPolicy()); 10789 OS << '\''; 10790 break; 10791 default: 10792 return; 10793 } 10794 10795 S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object) 10796 << CalleeName << 0 /*object: */ << OS.str(); 10797 } 10798 } // namespace 10799 10800 /// Alerts the user that they are attempting to free a non-malloc'd object. 10801 void Sema::CheckFreeArguments(const CallExpr *E) { 10802 const std::string CalleeName = 10803 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 10804 10805 { // Prefer something that doesn't involve a cast to make things simpler. 10806 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 10807 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 10808 switch (UnaryExpr->getOpcode()) { 10809 case UnaryOperator::Opcode::UO_AddrOf: 10810 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 10811 case UnaryOperator::Opcode::UO_Plus: 10812 return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr); 10813 default: 10814 break; 10815 } 10816 10817 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 10818 if (Lvalue->getType()->isArrayType()) 10819 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 10820 10821 if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) { 10822 Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object) 10823 << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier(); 10824 return; 10825 } 10826 10827 if (isa<BlockExpr>(Arg)) { 10828 Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object) 10829 << CalleeName << 1 /*object: block*/; 10830 return; 10831 } 10832 } 10833 // Maybe the cast was important, check after the other cases. 10834 if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0))) 10835 return CheckFreeArgumentsCast(*this, CalleeName, Cast); 10836 } 10837 10838 void 10839 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 10840 SourceLocation ReturnLoc, 10841 bool isObjCMethod, 10842 const AttrVec *Attrs, 10843 const FunctionDecl *FD) { 10844 // Check if the return value is null but should not be. 10845 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 10846 (!isObjCMethod && isNonNullType(Context, lhsType))) && 10847 CheckNonNullExpr(*this, RetValExp)) 10848 Diag(ReturnLoc, diag::warn_null_ret) 10849 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 10850 10851 // C++11 [basic.stc.dynamic.allocation]p4: 10852 // If an allocation function declared with a non-throwing 10853 // exception-specification fails to allocate storage, it shall return 10854 // a null pointer. Any other allocation function that fails to allocate 10855 // storage shall indicate failure only by throwing an exception [...] 10856 if (FD) { 10857 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 10858 if (Op == OO_New || Op == OO_Array_New) { 10859 const FunctionProtoType *Proto 10860 = FD->getType()->castAs<FunctionProtoType>(); 10861 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 10862 CheckNonNullExpr(*this, RetValExp)) 10863 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 10864 << FD << getLangOpts().CPlusPlus11; 10865 } 10866 } 10867 10868 // PPC MMA non-pointer types are not allowed as return type. Checking the type 10869 // here prevent the user from using a PPC MMA type as trailing return type. 10870 if (Context.getTargetInfo().getTriple().isPPC64()) 10871 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 10872 } 10873 10874 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10875 10876 /// Check for comparisons of floating point operands using != and ==. 10877 /// Issue a warning if these are no self-comparisons, as they are not likely 10878 /// to do what the programmer intended. 10879 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10880 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10881 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10882 10883 // Special case: check for x == x (which is OK). 10884 // Do not emit warnings for such cases. 10885 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10886 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10887 if (DRL->getDecl() == DRR->getDecl()) 10888 return; 10889 10890 // Special case: check for comparisons against literals that can be exactly 10891 // represented by APFloat. In such cases, do not emit a warning. This 10892 // is a heuristic: often comparison against such literals are used to 10893 // detect if a value in a variable has not changed. This clearly can 10894 // lead to false negatives. 10895 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10896 if (FLL->isExact()) 10897 return; 10898 } else 10899 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10900 if (FLR->isExact()) 10901 return; 10902 10903 // Check for comparisons with builtin types. 10904 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10905 if (CL->getBuiltinCallee()) 10906 return; 10907 10908 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10909 if (CR->getBuiltinCallee()) 10910 return; 10911 10912 // Emit the diagnostic. 10913 Diag(Loc, diag::warn_floatingpoint_eq) 10914 << LHS->getSourceRange() << RHS->getSourceRange(); 10915 } 10916 10917 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10918 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10919 10920 namespace { 10921 10922 /// Structure recording the 'active' range of an integer-valued 10923 /// expression. 10924 struct IntRange { 10925 /// The number of bits active in the int. Note that this includes exactly one 10926 /// sign bit if !NonNegative. 10927 unsigned Width; 10928 10929 /// True if the int is known not to have negative values. If so, all leading 10930 /// bits before Width are known zero, otherwise they are known to be the 10931 /// same as the MSB within Width. 10932 bool NonNegative; 10933 10934 IntRange(unsigned Width, bool NonNegative) 10935 : Width(Width), NonNegative(NonNegative) {} 10936 10937 /// Number of bits excluding the sign bit. 10938 unsigned valueBits() const { 10939 return NonNegative ? Width : Width - 1; 10940 } 10941 10942 /// Returns the range of the bool type. 10943 static IntRange forBoolType() { 10944 return IntRange(1, true); 10945 } 10946 10947 /// Returns the range of an opaque value of the given integral type. 10948 static IntRange forValueOfType(ASTContext &C, QualType T) { 10949 return forValueOfCanonicalType(C, 10950 T->getCanonicalTypeInternal().getTypePtr()); 10951 } 10952 10953 /// Returns the range of an opaque value of a canonical integral type. 10954 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10955 assert(T->isCanonicalUnqualified()); 10956 10957 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10958 T = VT->getElementType().getTypePtr(); 10959 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10960 T = CT->getElementType().getTypePtr(); 10961 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10962 T = AT->getValueType().getTypePtr(); 10963 10964 if (!C.getLangOpts().CPlusPlus) { 10965 // For enum types in C code, use the underlying datatype. 10966 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10967 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10968 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10969 // For enum types in C++, use the known bit width of the enumerators. 10970 EnumDecl *Enum = ET->getDecl(); 10971 // In C++11, enums can have a fixed underlying type. Use this type to 10972 // compute the range. 10973 if (Enum->isFixed()) { 10974 return IntRange(C.getIntWidth(QualType(T, 0)), 10975 !ET->isSignedIntegerOrEnumerationType()); 10976 } 10977 10978 unsigned NumPositive = Enum->getNumPositiveBits(); 10979 unsigned NumNegative = Enum->getNumNegativeBits(); 10980 10981 if (NumNegative == 0) 10982 return IntRange(NumPositive, true/*NonNegative*/); 10983 else 10984 return IntRange(std::max(NumPositive + 1, NumNegative), 10985 false/*NonNegative*/); 10986 } 10987 10988 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10989 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10990 10991 const BuiltinType *BT = cast<BuiltinType>(T); 10992 assert(BT->isInteger()); 10993 10994 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10995 } 10996 10997 /// Returns the "target" range of a canonical integral type, i.e. 10998 /// the range of values expressible in the type. 10999 /// 11000 /// This matches forValueOfCanonicalType except that enums have the 11001 /// full range of their type, not the range of their enumerators. 11002 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 11003 assert(T->isCanonicalUnqualified()); 11004 11005 if (const VectorType *VT = dyn_cast<VectorType>(T)) 11006 T = VT->getElementType().getTypePtr(); 11007 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 11008 T = CT->getElementType().getTypePtr(); 11009 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 11010 T = AT->getValueType().getTypePtr(); 11011 if (const EnumType *ET = dyn_cast<EnumType>(T)) 11012 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 11013 11014 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 11015 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 11016 11017 const BuiltinType *BT = cast<BuiltinType>(T); 11018 assert(BT->isInteger()); 11019 11020 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 11021 } 11022 11023 /// Returns the supremum of two ranges: i.e. their conservative merge. 11024 static IntRange join(IntRange L, IntRange R) { 11025 bool Unsigned = L.NonNegative && R.NonNegative; 11026 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 11027 L.NonNegative && R.NonNegative); 11028 } 11029 11030 /// Return the range of a bitwise-AND of the two ranges. 11031 static IntRange bit_and(IntRange L, IntRange R) { 11032 unsigned Bits = std::max(L.Width, R.Width); 11033 bool NonNegative = false; 11034 if (L.NonNegative) { 11035 Bits = std::min(Bits, L.Width); 11036 NonNegative = true; 11037 } 11038 if (R.NonNegative) { 11039 Bits = std::min(Bits, R.Width); 11040 NonNegative = true; 11041 } 11042 return IntRange(Bits, NonNegative); 11043 } 11044 11045 /// Return the range of a sum of the two ranges. 11046 static IntRange sum(IntRange L, IntRange R) { 11047 bool Unsigned = L.NonNegative && R.NonNegative; 11048 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 11049 Unsigned); 11050 } 11051 11052 /// Return the range of a difference of the two ranges. 11053 static IntRange difference(IntRange L, IntRange R) { 11054 // We need a 1-bit-wider range if: 11055 // 1) LHS can be negative: least value can be reduced. 11056 // 2) RHS can be negative: greatest value can be increased. 11057 bool CanWiden = !L.NonNegative || !R.NonNegative; 11058 bool Unsigned = L.NonNegative && R.Width == 0; 11059 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 11060 !Unsigned, 11061 Unsigned); 11062 } 11063 11064 /// Return the range of a product of the two ranges. 11065 static IntRange product(IntRange L, IntRange R) { 11066 // If both LHS and RHS can be negative, we can form 11067 // -2^L * -2^R = 2^(L + R) 11068 // which requires L + R + 1 value bits to represent. 11069 bool CanWiden = !L.NonNegative && !R.NonNegative; 11070 bool Unsigned = L.NonNegative && R.NonNegative; 11071 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 11072 Unsigned); 11073 } 11074 11075 /// Return the range of a remainder operation between the two ranges. 11076 static IntRange rem(IntRange L, IntRange R) { 11077 // The result of a remainder can't be larger than the result of 11078 // either side. The sign of the result is the sign of the LHS. 11079 bool Unsigned = L.NonNegative; 11080 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 11081 Unsigned); 11082 } 11083 }; 11084 11085 } // namespace 11086 11087 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 11088 unsigned MaxWidth) { 11089 if (value.isSigned() && value.isNegative()) 11090 return IntRange(value.getMinSignedBits(), false); 11091 11092 if (value.getBitWidth() > MaxWidth) 11093 value = value.trunc(MaxWidth); 11094 11095 // isNonNegative() just checks the sign bit without considering 11096 // signedness. 11097 return IntRange(value.getActiveBits(), true); 11098 } 11099 11100 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 11101 unsigned MaxWidth) { 11102 if (result.isInt()) 11103 return GetValueRange(C, result.getInt(), MaxWidth); 11104 11105 if (result.isVector()) { 11106 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 11107 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 11108 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 11109 R = IntRange::join(R, El); 11110 } 11111 return R; 11112 } 11113 11114 if (result.isComplexInt()) { 11115 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 11116 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 11117 return IntRange::join(R, I); 11118 } 11119 11120 // This can happen with lossless casts to intptr_t of "based" lvalues. 11121 // Assume it might use arbitrary bits. 11122 // FIXME: The only reason we need to pass the type in here is to get 11123 // the sign right on this one case. It would be nice if APValue 11124 // preserved this. 11125 assert(result.isLValue() || result.isAddrLabelDiff()); 11126 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 11127 } 11128 11129 static QualType GetExprType(const Expr *E) { 11130 QualType Ty = E->getType(); 11131 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 11132 Ty = AtomicRHS->getValueType(); 11133 return Ty; 11134 } 11135 11136 /// Pseudo-evaluate the given integer expression, estimating the 11137 /// range of values it might take. 11138 /// 11139 /// \param MaxWidth The width to which the value will be truncated. 11140 /// \param Approximate If \c true, return a likely range for the result: in 11141 /// particular, assume that aritmetic on narrower types doesn't leave 11142 /// those types. If \c false, return a range including all possible 11143 /// result values. 11144 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 11145 bool InConstantContext, bool Approximate) { 11146 E = E->IgnoreParens(); 11147 11148 // Try a full evaluation first. 11149 Expr::EvalResult result; 11150 if (E->EvaluateAsRValue(result, C, InConstantContext)) 11151 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 11152 11153 // I think we only want to look through implicit casts here; if the 11154 // user has an explicit widening cast, we should treat the value as 11155 // being of the new, wider type. 11156 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 11157 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 11158 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 11159 Approximate); 11160 11161 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 11162 11163 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 11164 CE->getCastKind() == CK_BooleanToSignedIntegral; 11165 11166 // Assume that non-integer casts can span the full range of the type. 11167 if (!isIntegerCast) 11168 return OutputTypeRange; 11169 11170 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 11171 std::min(MaxWidth, OutputTypeRange.Width), 11172 InConstantContext, Approximate); 11173 11174 // Bail out if the subexpr's range is as wide as the cast type. 11175 if (SubRange.Width >= OutputTypeRange.Width) 11176 return OutputTypeRange; 11177 11178 // Otherwise, we take the smaller width, and we're non-negative if 11179 // either the output type or the subexpr is. 11180 return IntRange(SubRange.Width, 11181 SubRange.NonNegative || OutputTypeRange.NonNegative); 11182 } 11183 11184 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11185 // If we can fold the condition, just take that operand. 11186 bool CondResult; 11187 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 11188 return GetExprRange(C, 11189 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 11190 MaxWidth, InConstantContext, Approximate); 11191 11192 // Otherwise, conservatively merge. 11193 // GetExprRange requires an integer expression, but a throw expression 11194 // results in a void type. 11195 Expr *E = CO->getTrueExpr(); 11196 IntRange L = E->getType()->isVoidType() 11197 ? IntRange{0, true} 11198 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11199 E = CO->getFalseExpr(); 11200 IntRange R = E->getType()->isVoidType() 11201 ? IntRange{0, true} 11202 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 11203 return IntRange::join(L, R); 11204 } 11205 11206 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11207 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 11208 11209 switch (BO->getOpcode()) { 11210 case BO_Cmp: 11211 llvm_unreachable("builtin <=> should have class type"); 11212 11213 // Boolean-valued operations are single-bit and positive. 11214 case BO_LAnd: 11215 case BO_LOr: 11216 case BO_LT: 11217 case BO_GT: 11218 case BO_LE: 11219 case BO_GE: 11220 case BO_EQ: 11221 case BO_NE: 11222 return IntRange::forBoolType(); 11223 11224 // The type of the assignments is the type of the LHS, so the RHS 11225 // is not necessarily the same type. 11226 case BO_MulAssign: 11227 case BO_DivAssign: 11228 case BO_RemAssign: 11229 case BO_AddAssign: 11230 case BO_SubAssign: 11231 case BO_XorAssign: 11232 case BO_OrAssign: 11233 // TODO: bitfields? 11234 return IntRange::forValueOfType(C, GetExprType(E)); 11235 11236 // Simple assignments just pass through the RHS, which will have 11237 // been coerced to the LHS type. 11238 case BO_Assign: 11239 // TODO: bitfields? 11240 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11241 Approximate); 11242 11243 // Operations with opaque sources are black-listed. 11244 case BO_PtrMemD: 11245 case BO_PtrMemI: 11246 return IntRange::forValueOfType(C, GetExprType(E)); 11247 11248 // Bitwise-and uses the *infinum* of the two source ranges. 11249 case BO_And: 11250 case BO_AndAssign: 11251 Combine = IntRange::bit_and; 11252 break; 11253 11254 // Left shift gets black-listed based on a judgement call. 11255 case BO_Shl: 11256 // ...except that we want to treat '1 << (blah)' as logically 11257 // positive. It's an important idiom. 11258 if (IntegerLiteral *I 11259 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 11260 if (I->getValue() == 1) { 11261 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 11262 return IntRange(R.Width, /*NonNegative*/ true); 11263 } 11264 } 11265 LLVM_FALLTHROUGH; 11266 11267 case BO_ShlAssign: 11268 return IntRange::forValueOfType(C, GetExprType(E)); 11269 11270 // Right shift by a constant can narrow its left argument. 11271 case BO_Shr: 11272 case BO_ShrAssign: { 11273 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 11274 Approximate); 11275 11276 // If the shift amount is a positive constant, drop the width by 11277 // that much. 11278 if (Optional<llvm::APSInt> shift = 11279 BO->getRHS()->getIntegerConstantExpr(C)) { 11280 if (shift->isNonNegative()) { 11281 unsigned zext = shift->getZExtValue(); 11282 if (zext >= L.Width) 11283 L.Width = (L.NonNegative ? 0 : 1); 11284 else 11285 L.Width -= zext; 11286 } 11287 } 11288 11289 return L; 11290 } 11291 11292 // Comma acts as its right operand. 11293 case BO_Comma: 11294 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 11295 Approximate); 11296 11297 case BO_Add: 11298 if (!Approximate) 11299 Combine = IntRange::sum; 11300 break; 11301 11302 case BO_Sub: 11303 if (BO->getLHS()->getType()->isPointerType()) 11304 return IntRange::forValueOfType(C, GetExprType(E)); 11305 if (!Approximate) 11306 Combine = IntRange::difference; 11307 break; 11308 11309 case BO_Mul: 11310 if (!Approximate) 11311 Combine = IntRange::product; 11312 break; 11313 11314 // The width of a division result is mostly determined by the size 11315 // of the LHS. 11316 case BO_Div: { 11317 // Don't 'pre-truncate' the operands. 11318 unsigned opWidth = C.getIntWidth(GetExprType(E)); 11319 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 11320 Approximate); 11321 11322 // If the divisor is constant, use that. 11323 if (Optional<llvm::APSInt> divisor = 11324 BO->getRHS()->getIntegerConstantExpr(C)) { 11325 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 11326 if (log2 >= L.Width) 11327 L.Width = (L.NonNegative ? 0 : 1); 11328 else 11329 L.Width = std::min(L.Width - log2, MaxWidth); 11330 return L; 11331 } 11332 11333 // Otherwise, just use the LHS's width. 11334 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 11335 // could be -1. 11336 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 11337 Approximate); 11338 return IntRange(L.Width, L.NonNegative && R.NonNegative); 11339 } 11340 11341 case BO_Rem: 11342 Combine = IntRange::rem; 11343 break; 11344 11345 // The default behavior is okay for these. 11346 case BO_Xor: 11347 case BO_Or: 11348 break; 11349 } 11350 11351 // Combine the two ranges, but limit the result to the type in which we 11352 // performed the computation. 11353 QualType T = GetExprType(E); 11354 unsigned opWidth = C.getIntWidth(T); 11355 IntRange L = 11356 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 11357 IntRange R = 11358 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 11359 IntRange C = Combine(L, R); 11360 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 11361 C.Width = std::min(C.Width, MaxWidth); 11362 return C; 11363 } 11364 11365 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 11366 switch (UO->getOpcode()) { 11367 // Boolean-valued operations are white-listed. 11368 case UO_LNot: 11369 return IntRange::forBoolType(); 11370 11371 // Operations with opaque sources are black-listed. 11372 case UO_Deref: 11373 case UO_AddrOf: // should be impossible 11374 return IntRange::forValueOfType(C, GetExprType(E)); 11375 11376 default: 11377 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 11378 Approximate); 11379 } 11380 } 11381 11382 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 11383 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 11384 Approximate); 11385 11386 if (const auto *BitField = E->getSourceBitField()) 11387 return IntRange(BitField->getBitWidthValue(C), 11388 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 11389 11390 return IntRange::forValueOfType(C, GetExprType(E)); 11391 } 11392 11393 static IntRange GetExprRange(ASTContext &C, const Expr *E, 11394 bool InConstantContext, bool Approximate) { 11395 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 11396 Approximate); 11397 } 11398 11399 /// Checks whether the given value, which currently has the given 11400 /// source semantics, has the same value when coerced through the 11401 /// target semantics. 11402 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 11403 const llvm::fltSemantics &Src, 11404 const llvm::fltSemantics &Tgt) { 11405 llvm::APFloat truncated = value; 11406 11407 bool ignored; 11408 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 11409 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 11410 11411 return truncated.bitwiseIsEqual(value); 11412 } 11413 11414 /// Checks whether the given value, which currently has the given 11415 /// source semantics, has the same value when coerced through the 11416 /// target semantics. 11417 /// 11418 /// The value might be a vector of floats (or a complex number). 11419 static bool IsSameFloatAfterCast(const APValue &value, 11420 const llvm::fltSemantics &Src, 11421 const llvm::fltSemantics &Tgt) { 11422 if (value.isFloat()) 11423 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 11424 11425 if (value.isVector()) { 11426 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 11427 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 11428 return false; 11429 return true; 11430 } 11431 11432 assert(value.isComplexFloat()); 11433 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 11434 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 11435 } 11436 11437 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 11438 bool IsListInit = false); 11439 11440 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 11441 // Suppress cases where we are comparing against an enum constant. 11442 if (const DeclRefExpr *DR = 11443 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 11444 if (isa<EnumConstantDecl>(DR->getDecl())) 11445 return true; 11446 11447 // Suppress cases where the value is expanded from a macro, unless that macro 11448 // is how a language represents a boolean literal. This is the case in both C 11449 // and Objective-C. 11450 SourceLocation BeginLoc = E->getBeginLoc(); 11451 if (BeginLoc.isMacroID()) { 11452 StringRef MacroName = Lexer::getImmediateMacroName( 11453 BeginLoc, S.getSourceManager(), S.getLangOpts()); 11454 return MacroName != "YES" && MacroName != "NO" && 11455 MacroName != "true" && MacroName != "false"; 11456 } 11457 11458 return false; 11459 } 11460 11461 static bool isKnownToHaveUnsignedValue(Expr *E) { 11462 return E->getType()->isIntegerType() && 11463 (!E->getType()->isSignedIntegerType() || 11464 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 11465 } 11466 11467 namespace { 11468 /// The promoted range of values of a type. In general this has the 11469 /// following structure: 11470 /// 11471 /// |-----------| . . . |-----------| 11472 /// ^ ^ ^ ^ 11473 /// Min HoleMin HoleMax Max 11474 /// 11475 /// ... where there is only a hole if a signed type is promoted to unsigned 11476 /// (in which case Min and Max are the smallest and largest representable 11477 /// values). 11478 struct PromotedRange { 11479 // Min, or HoleMax if there is a hole. 11480 llvm::APSInt PromotedMin; 11481 // Max, or HoleMin if there is a hole. 11482 llvm::APSInt PromotedMax; 11483 11484 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 11485 if (R.Width == 0) 11486 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 11487 else if (R.Width >= BitWidth && !Unsigned) { 11488 // Promotion made the type *narrower*. This happens when promoting 11489 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 11490 // Treat all values of 'signed int' as being in range for now. 11491 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 11492 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 11493 } else { 11494 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 11495 .extOrTrunc(BitWidth); 11496 PromotedMin.setIsUnsigned(Unsigned); 11497 11498 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 11499 .extOrTrunc(BitWidth); 11500 PromotedMax.setIsUnsigned(Unsigned); 11501 } 11502 } 11503 11504 // Determine whether this range is contiguous (has no hole). 11505 bool isContiguous() const { return PromotedMin <= PromotedMax; } 11506 11507 // Where a constant value is within the range. 11508 enum ComparisonResult { 11509 LT = 0x1, 11510 LE = 0x2, 11511 GT = 0x4, 11512 GE = 0x8, 11513 EQ = 0x10, 11514 NE = 0x20, 11515 InRangeFlag = 0x40, 11516 11517 Less = LE | LT | NE, 11518 Min = LE | InRangeFlag, 11519 InRange = InRangeFlag, 11520 Max = GE | InRangeFlag, 11521 Greater = GE | GT | NE, 11522 11523 OnlyValue = LE | GE | EQ | InRangeFlag, 11524 InHole = NE 11525 }; 11526 11527 ComparisonResult compare(const llvm::APSInt &Value) const { 11528 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 11529 Value.isUnsigned() == PromotedMin.isUnsigned()); 11530 if (!isContiguous()) { 11531 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 11532 if (Value.isMinValue()) return Min; 11533 if (Value.isMaxValue()) return Max; 11534 if (Value >= PromotedMin) return InRange; 11535 if (Value <= PromotedMax) return InRange; 11536 return InHole; 11537 } 11538 11539 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 11540 case -1: return Less; 11541 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 11542 case 1: 11543 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 11544 case -1: return InRange; 11545 case 0: return Max; 11546 case 1: return Greater; 11547 } 11548 } 11549 11550 llvm_unreachable("impossible compare result"); 11551 } 11552 11553 static llvm::Optional<StringRef> 11554 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 11555 if (Op == BO_Cmp) { 11556 ComparisonResult LTFlag = LT, GTFlag = GT; 11557 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 11558 11559 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 11560 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 11561 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 11562 return llvm::None; 11563 } 11564 11565 ComparisonResult TrueFlag, FalseFlag; 11566 if (Op == BO_EQ) { 11567 TrueFlag = EQ; 11568 FalseFlag = NE; 11569 } else if (Op == BO_NE) { 11570 TrueFlag = NE; 11571 FalseFlag = EQ; 11572 } else { 11573 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 11574 TrueFlag = LT; 11575 FalseFlag = GE; 11576 } else { 11577 TrueFlag = GT; 11578 FalseFlag = LE; 11579 } 11580 if (Op == BO_GE || Op == BO_LE) 11581 std::swap(TrueFlag, FalseFlag); 11582 } 11583 if (R & TrueFlag) 11584 return StringRef("true"); 11585 if (R & FalseFlag) 11586 return StringRef("false"); 11587 return llvm::None; 11588 } 11589 }; 11590 } 11591 11592 static bool HasEnumType(Expr *E) { 11593 // Strip off implicit integral promotions. 11594 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11595 if (ICE->getCastKind() != CK_IntegralCast && 11596 ICE->getCastKind() != CK_NoOp) 11597 break; 11598 E = ICE->getSubExpr(); 11599 } 11600 11601 return E->getType()->isEnumeralType(); 11602 } 11603 11604 static int classifyConstantValue(Expr *Constant) { 11605 // The values of this enumeration are used in the diagnostics 11606 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 11607 enum ConstantValueKind { 11608 Miscellaneous = 0, 11609 LiteralTrue, 11610 LiteralFalse 11611 }; 11612 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 11613 return BL->getValue() ? ConstantValueKind::LiteralTrue 11614 : ConstantValueKind::LiteralFalse; 11615 return ConstantValueKind::Miscellaneous; 11616 } 11617 11618 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 11619 Expr *Constant, Expr *Other, 11620 const llvm::APSInt &Value, 11621 bool RhsConstant) { 11622 if (S.inTemplateInstantiation()) 11623 return false; 11624 11625 Expr *OriginalOther = Other; 11626 11627 Constant = Constant->IgnoreParenImpCasts(); 11628 Other = Other->IgnoreParenImpCasts(); 11629 11630 // Suppress warnings on tautological comparisons between values of the same 11631 // enumeration type. There are only two ways we could warn on this: 11632 // - If the constant is outside the range of representable values of 11633 // the enumeration. In such a case, we should warn about the cast 11634 // to enumeration type, not about the comparison. 11635 // - If the constant is the maximum / minimum in-range value. For an 11636 // enumeratin type, such comparisons can be meaningful and useful. 11637 if (Constant->getType()->isEnumeralType() && 11638 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 11639 return false; 11640 11641 IntRange OtherValueRange = GetExprRange( 11642 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 11643 11644 QualType OtherT = Other->getType(); 11645 if (const auto *AT = OtherT->getAs<AtomicType>()) 11646 OtherT = AT->getValueType(); 11647 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 11648 11649 // Special case for ObjC BOOL on targets where its a typedef for a signed char 11650 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 11651 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 11652 S.NSAPIObj->isObjCBOOLType(OtherT) && 11653 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 11654 11655 // Whether we're treating Other as being a bool because of the form of 11656 // expression despite it having another type (typically 'int' in C). 11657 bool OtherIsBooleanDespiteType = 11658 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 11659 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 11660 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 11661 11662 // Check if all values in the range of possible values of this expression 11663 // lead to the same comparison outcome. 11664 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 11665 Value.isUnsigned()); 11666 auto Cmp = OtherPromotedValueRange.compare(Value); 11667 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 11668 if (!Result) 11669 return false; 11670 11671 // Also consider the range determined by the type alone. This allows us to 11672 // classify the warning under the proper diagnostic group. 11673 bool TautologicalTypeCompare = false; 11674 { 11675 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 11676 Value.isUnsigned()); 11677 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 11678 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 11679 RhsConstant)) { 11680 TautologicalTypeCompare = true; 11681 Cmp = TypeCmp; 11682 Result = TypeResult; 11683 } 11684 } 11685 11686 // Don't warn if the non-constant operand actually always evaluates to the 11687 // same value. 11688 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 11689 return false; 11690 11691 // Suppress the diagnostic for an in-range comparison if the constant comes 11692 // from a macro or enumerator. We don't want to diagnose 11693 // 11694 // some_long_value <= INT_MAX 11695 // 11696 // when sizeof(int) == sizeof(long). 11697 bool InRange = Cmp & PromotedRange::InRangeFlag; 11698 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 11699 return false; 11700 11701 // A comparison of an unsigned bit-field against 0 is really a type problem, 11702 // even though at the type level the bit-field might promote to 'signed int'. 11703 if (Other->refersToBitField() && InRange && Value == 0 && 11704 Other->getType()->isUnsignedIntegerOrEnumerationType()) 11705 TautologicalTypeCompare = true; 11706 11707 // If this is a comparison to an enum constant, include that 11708 // constant in the diagnostic. 11709 const EnumConstantDecl *ED = nullptr; 11710 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 11711 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 11712 11713 // Should be enough for uint128 (39 decimal digits) 11714 SmallString<64> PrettySourceValue; 11715 llvm::raw_svector_ostream OS(PrettySourceValue); 11716 if (ED) { 11717 OS << '\'' << *ED << "' (" << Value << ")"; 11718 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 11719 Constant->IgnoreParenImpCasts())) { 11720 OS << (BL->getValue() ? "YES" : "NO"); 11721 } else { 11722 OS << Value; 11723 } 11724 11725 if (!TautologicalTypeCompare) { 11726 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 11727 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 11728 << E->getOpcodeStr() << OS.str() << *Result 11729 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11730 return true; 11731 } 11732 11733 if (IsObjCSignedCharBool) { 11734 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11735 S.PDiag(diag::warn_tautological_compare_objc_bool) 11736 << OS.str() << *Result); 11737 return true; 11738 } 11739 11740 // FIXME: We use a somewhat different formatting for the in-range cases and 11741 // cases involving boolean values for historical reasons. We should pick a 11742 // consistent way of presenting these diagnostics. 11743 if (!InRange || Other->isKnownToHaveBooleanValue()) { 11744 11745 S.DiagRuntimeBehavior( 11746 E->getOperatorLoc(), E, 11747 S.PDiag(!InRange ? diag::warn_out_of_range_compare 11748 : diag::warn_tautological_bool_compare) 11749 << OS.str() << classifyConstantValue(Constant) << OtherT 11750 << OtherIsBooleanDespiteType << *Result 11751 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 11752 } else { 11753 bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy; 11754 unsigned Diag = 11755 (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 11756 ? (HasEnumType(OriginalOther) 11757 ? diag::warn_unsigned_enum_always_true_comparison 11758 : IsCharTy ? diag::warn_unsigned_char_always_true_comparison 11759 : diag::warn_unsigned_always_true_comparison) 11760 : diag::warn_tautological_constant_compare; 11761 11762 S.Diag(E->getOperatorLoc(), Diag) 11763 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 11764 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11765 } 11766 11767 return true; 11768 } 11769 11770 /// Analyze the operands of the given comparison. Implements the 11771 /// fallback case from AnalyzeComparison. 11772 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 11773 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11774 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11775 } 11776 11777 /// Implements -Wsign-compare. 11778 /// 11779 /// \param E the binary operator to check for warnings 11780 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 11781 // The type the comparison is being performed in. 11782 QualType T = E->getLHS()->getType(); 11783 11784 // Only analyze comparison operators where both sides have been converted to 11785 // the same type. 11786 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 11787 return AnalyzeImpConvsInComparison(S, E); 11788 11789 // Don't analyze value-dependent comparisons directly. 11790 if (E->isValueDependent()) 11791 return AnalyzeImpConvsInComparison(S, E); 11792 11793 Expr *LHS = E->getLHS(); 11794 Expr *RHS = E->getRHS(); 11795 11796 if (T->isIntegralType(S.Context)) { 11797 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 11798 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 11799 11800 // We don't care about expressions whose result is a constant. 11801 if (RHSValue && LHSValue) 11802 return AnalyzeImpConvsInComparison(S, E); 11803 11804 // We only care about expressions where just one side is literal 11805 if ((bool)RHSValue ^ (bool)LHSValue) { 11806 // Is the constant on the RHS or LHS? 11807 const bool RhsConstant = (bool)RHSValue; 11808 Expr *Const = RhsConstant ? RHS : LHS; 11809 Expr *Other = RhsConstant ? LHS : RHS; 11810 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 11811 11812 // Check whether an integer constant comparison results in a value 11813 // of 'true' or 'false'. 11814 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 11815 return AnalyzeImpConvsInComparison(S, E); 11816 } 11817 } 11818 11819 if (!T->hasUnsignedIntegerRepresentation()) { 11820 // We don't do anything special if this isn't an unsigned integral 11821 // comparison: we're only interested in integral comparisons, and 11822 // signed comparisons only happen in cases we don't care to warn about. 11823 return AnalyzeImpConvsInComparison(S, E); 11824 } 11825 11826 LHS = LHS->IgnoreParenImpCasts(); 11827 RHS = RHS->IgnoreParenImpCasts(); 11828 11829 if (!S.getLangOpts().CPlusPlus) { 11830 // Avoid warning about comparison of integers with different signs when 11831 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 11832 // the type of `E`. 11833 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 11834 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11835 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 11836 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11837 } 11838 11839 // Check to see if one of the (unmodified) operands is of different 11840 // signedness. 11841 Expr *signedOperand, *unsignedOperand; 11842 if (LHS->getType()->hasSignedIntegerRepresentation()) { 11843 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 11844 "unsigned comparison between two signed integer expressions?"); 11845 signedOperand = LHS; 11846 unsignedOperand = RHS; 11847 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 11848 signedOperand = RHS; 11849 unsignedOperand = LHS; 11850 } else { 11851 return AnalyzeImpConvsInComparison(S, E); 11852 } 11853 11854 // Otherwise, calculate the effective range of the signed operand. 11855 IntRange signedRange = GetExprRange( 11856 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 11857 11858 // Go ahead and analyze implicit conversions in the operands. Note 11859 // that we skip the implicit conversions on both sides. 11860 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 11861 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 11862 11863 // If the signed range is non-negative, -Wsign-compare won't fire. 11864 if (signedRange.NonNegative) 11865 return; 11866 11867 // For (in)equality comparisons, if the unsigned operand is a 11868 // constant which cannot collide with a overflowed signed operand, 11869 // then reinterpreting the signed operand as unsigned will not 11870 // change the result of the comparison. 11871 if (E->isEqualityOp()) { 11872 unsigned comparisonWidth = S.Context.getIntWidth(T); 11873 IntRange unsignedRange = 11874 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 11875 /*Approximate*/ true); 11876 11877 // We should never be unable to prove that the unsigned operand is 11878 // non-negative. 11879 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 11880 11881 if (unsignedRange.Width < comparisonWidth) 11882 return; 11883 } 11884 11885 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11886 S.PDiag(diag::warn_mixed_sign_comparison) 11887 << LHS->getType() << RHS->getType() 11888 << LHS->getSourceRange() << RHS->getSourceRange()); 11889 } 11890 11891 /// Analyzes an attempt to assign the given value to a bitfield. 11892 /// 11893 /// Returns true if there was something fishy about the attempt. 11894 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 11895 SourceLocation InitLoc) { 11896 assert(Bitfield->isBitField()); 11897 if (Bitfield->isInvalidDecl()) 11898 return false; 11899 11900 // White-list bool bitfields. 11901 QualType BitfieldType = Bitfield->getType(); 11902 if (BitfieldType->isBooleanType()) 11903 return false; 11904 11905 if (BitfieldType->isEnumeralType()) { 11906 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 11907 // If the underlying enum type was not explicitly specified as an unsigned 11908 // type and the enum contain only positive values, MSVC++ will cause an 11909 // inconsistency by storing this as a signed type. 11910 if (S.getLangOpts().CPlusPlus11 && 11911 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 11912 BitfieldEnumDecl->getNumPositiveBits() > 0 && 11913 BitfieldEnumDecl->getNumNegativeBits() == 0) { 11914 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 11915 << BitfieldEnumDecl; 11916 } 11917 } 11918 11919 if (Bitfield->getType()->isBooleanType()) 11920 return false; 11921 11922 // Ignore value- or type-dependent expressions. 11923 if (Bitfield->getBitWidth()->isValueDependent() || 11924 Bitfield->getBitWidth()->isTypeDependent() || 11925 Init->isValueDependent() || 11926 Init->isTypeDependent()) 11927 return false; 11928 11929 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 11930 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 11931 11932 Expr::EvalResult Result; 11933 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 11934 Expr::SE_AllowSideEffects)) { 11935 // The RHS is not constant. If the RHS has an enum type, make sure the 11936 // bitfield is wide enough to hold all the values of the enum without 11937 // truncation. 11938 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 11939 EnumDecl *ED = EnumTy->getDecl(); 11940 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 11941 11942 // Enum types are implicitly signed on Windows, so check if there are any 11943 // negative enumerators to see if the enum was intended to be signed or 11944 // not. 11945 bool SignedEnum = ED->getNumNegativeBits() > 0; 11946 11947 // Check for surprising sign changes when assigning enum values to a 11948 // bitfield of different signedness. If the bitfield is signed and we 11949 // have exactly the right number of bits to store this unsigned enum, 11950 // suggest changing the enum to an unsigned type. This typically happens 11951 // on Windows where unfixed enums always use an underlying type of 'int'. 11952 unsigned DiagID = 0; 11953 if (SignedEnum && !SignedBitfield) { 11954 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 11955 } else if (SignedBitfield && !SignedEnum && 11956 ED->getNumPositiveBits() == FieldWidth) { 11957 DiagID = diag::warn_signed_bitfield_enum_conversion; 11958 } 11959 11960 if (DiagID) { 11961 S.Diag(InitLoc, DiagID) << Bitfield << ED; 11962 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 11963 SourceRange TypeRange = 11964 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 11965 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 11966 << SignedEnum << TypeRange; 11967 } 11968 11969 // Compute the required bitwidth. If the enum has negative values, we need 11970 // one more bit than the normal number of positive bits to represent the 11971 // sign bit. 11972 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 11973 ED->getNumNegativeBits()) 11974 : ED->getNumPositiveBits(); 11975 11976 // Check the bitwidth. 11977 if (BitsNeeded > FieldWidth) { 11978 Expr *WidthExpr = Bitfield->getBitWidth(); 11979 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 11980 << Bitfield << ED; 11981 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 11982 << BitsNeeded << ED << WidthExpr->getSourceRange(); 11983 } 11984 } 11985 11986 return false; 11987 } 11988 11989 llvm::APSInt Value = Result.Val.getInt(); 11990 11991 unsigned OriginalWidth = Value.getBitWidth(); 11992 11993 if (!Value.isSigned() || Value.isNegative()) 11994 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 11995 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 11996 OriginalWidth = Value.getMinSignedBits(); 11997 11998 if (OriginalWidth <= FieldWidth) 11999 return false; 12000 12001 // Compute the value which the bitfield will contain. 12002 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 12003 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 12004 12005 // Check whether the stored value is equal to the original value. 12006 TruncatedValue = TruncatedValue.extend(OriginalWidth); 12007 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 12008 return false; 12009 12010 // Special-case bitfields of width 1: booleans are naturally 0/1, and 12011 // therefore don't strictly fit into a signed bitfield of width 1. 12012 if (FieldWidth == 1 && Value == 1) 12013 return false; 12014 12015 std::string PrettyValue = toString(Value, 10); 12016 std::string PrettyTrunc = toString(TruncatedValue, 10); 12017 12018 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 12019 << PrettyValue << PrettyTrunc << OriginalInit->getType() 12020 << Init->getSourceRange(); 12021 12022 return true; 12023 } 12024 12025 /// Analyze the given simple or compound assignment for warning-worthy 12026 /// operations. 12027 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 12028 // Just recurse on the LHS. 12029 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12030 12031 // We want to recurse on the RHS as normal unless we're assigning to 12032 // a bitfield. 12033 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 12034 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 12035 E->getOperatorLoc())) { 12036 // Recurse, ignoring any implicit conversions on the RHS. 12037 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 12038 E->getOperatorLoc()); 12039 } 12040 } 12041 12042 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12043 12044 // Diagnose implicitly sequentially-consistent atomic assignment. 12045 if (E->getLHS()->getType()->isAtomicType()) 12046 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12047 } 12048 12049 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12050 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 12051 SourceLocation CContext, unsigned diag, 12052 bool pruneControlFlow = false) { 12053 if (pruneControlFlow) { 12054 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12055 S.PDiag(diag) 12056 << SourceType << T << E->getSourceRange() 12057 << SourceRange(CContext)); 12058 return; 12059 } 12060 S.Diag(E->getExprLoc(), diag) 12061 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 12062 } 12063 12064 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 12065 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 12066 SourceLocation CContext, 12067 unsigned diag, bool pruneControlFlow = false) { 12068 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 12069 } 12070 12071 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 12072 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 12073 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 12074 } 12075 12076 static void adornObjCBoolConversionDiagWithTernaryFixit( 12077 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 12078 Expr *Ignored = SourceExpr->IgnoreImplicit(); 12079 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 12080 Ignored = OVE->getSourceExpr(); 12081 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 12082 isa<BinaryOperator>(Ignored) || 12083 isa<CXXOperatorCallExpr>(Ignored); 12084 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 12085 if (NeedsParens) 12086 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 12087 << FixItHint::CreateInsertion(EndLoc, ")"); 12088 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 12089 } 12090 12091 /// Diagnose an implicit cast from a floating point value to an integer value. 12092 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 12093 SourceLocation CContext) { 12094 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 12095 const bool PruneWarnings = S.inTemplateInstantiation(); 12096 12097 Expr *InnerE = E->IgnoreParenImpCasts(); 12098 // We also want to warn on, e.g., "int i = -1.234" 12099 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 12100 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 12101 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 12102 12103 const bool IsLiteral = 12104 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 12105 12106 llvm::APFloat Value(0.0); 12107 bool IsConstant = 12108 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 12109 if (!IsConstant) { 12110 if (isObjCSignedCharBool(S, T)) { 12111 return adornObjCBoolConversionDiagWithTernaryFixit( 12112 S, E, 12113 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 12114 << E->getType()); 12115 } 12116 12117 return DiagnoseImpCast(S, E, T, CContext, 12118 diag::warn_impcast_float_integer, PruneWarnings); 12119 } 12120 12121 bool isExact = false; 12122 12123 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 12124 T->hasUnsignedIntegerRepresentation()); 12125 llvm::APFloat::opStatus Result = Value.convertToInteger( 12126 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 12127 12128 // FIXME: Force the precision of the source value down so we don't print 12129 // digits which are usually useless (we don't really care here if we 12130 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 12131 // would automatically print the shortest representation, but it's a bit 12132 // tricky to implement. 12133 SmallString<16> PrettySourceValue; 12134 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 12135 precision = (precision * 59 + 195) / 196; 12136 Value.toString(PrettySourceValue, precision); 12137 12138 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 12139 return adornObjCBoolConversionDiagWithTernaryFixit( 12140 S, E, 12141 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 12142 << PrettySourceValue); 12143 } 12144 12145 if (Result == llvm::APFloat::opOK && isExact) { 12146 if (IsLiteral) return; 12147 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 12148 PruneWarnings); 12149 } 12150 12151 // Conversion of a floating-point value to a non-bool integer where the 12152 // integral part cannot be represented by the integer type is undefined. 12153 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 12154 return DiagnoseImpCast( 12155 S, E, T, CContext, 12156 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 12157 : diag::warn_impcast_float_to_integer_out_of_range, 12158 PruneWarnings); 12159 12160 unsigned DiagID = 0; 12161 if (IsLiteral) { 12162 // Warn on floating point literal to integer. 12163 DiagID = diag::warn_impcast_literal_float_to_integer; 12164 } else if (IntegerValue == 0) { 12165 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 12166 return DiagnoseImpCast(S, E, T, CContext, 12167 diag::warn_impcast_float_integer, PruneWarnings); 12168 } 12169 // Warn on non-zero to zero conversion. 12170 DiagID = diag::warn_impcast_float_to_integer_zero; 12171 } else { 12172 if (IntegerValue.isUnsigned()) { 12173 if (!IntegerValue.isMaxValue()) { 12174 return DiagnoseImpCast(S, E, T, CContext, 12175 diag::warn_impcast_float_integer, PruneWarnings); 12176 } 12177 } else { // IntegerValue.isSigned() 12178 if (!IntegerValue.isMaxSignedValue() && 12179 !IntegerValue.isMinSignedValue()) { 12180 return DiagnoseImpCast(S, E, T, CContext, 12181 diag::warn_impcast_float_integer, PruneWarnings); 12182 } 12183 } 12184 // Warn on evaluatable floating point expression to integer conversion. 12185 DiagID = diag::warn_impcast_float_to_integer; 12186 } 12187 12188 SmallString<16> PrettyTargetValue; 12189 if (IsBool) 12190 PrettyTargetValue = Value.isZero() ? "false" : "true"; 12191 else 12192 IntegerValue.toString(PrettyTargetValue); 12193 12194 if (PruneWarnings) { 12195 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12196 S.PDiag(DiagID) 12197 << E->getType() << T.getUnqualifiedType() 12198 << PrettySourceValue << PrettyTargetValue 12199 << E->getSourceRange() << SourceRange(CContext)); 12200 } else { 12201 S.Diag(E->getExprLoc(), DiagID) 12202 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 12203 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 12204 } 12205 } 12206 12207 /// Analyze the given compound assignment for the possible losing of 12208 /// floating-point precision. 12209 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 12210 assert(isa<CompoundAssignOperator>(E) && 12211 "Must be compound assignment operation"); 12212 // Recurse on the LHS and RHS in here 12213 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 12214 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 12215 12216 if (E->getLHS()->getType()->isAtomicType()) 12217 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 12218 12219 // Now check the outermost expression 12220 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 12221 const auto *RBT = cast<CompoundAssignOperator>(E) 12222 ->getComputationResultType() 12223 ->getAs<BuiltinType>(); 12224 12225 // The below checks assume source is floating point. 12226 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 12227 12228 // If source is floating point but target is an integer. 12229 if (ResultBT->isInteger()) 12230 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 12231 E->getExprLoc(), diag::warn_impcast_float_integer); 12232 12233 if (!ResultBT->isFloatingPoint()) 12234 return; 12235 12236 // If both source and target are floating points, warn about losing precision. 12237 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12238 QualType(ResultBT, 0), QualType(RBT, 0)); 12239 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 12240 // warn about dropping FP rank. 12241 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 12242 diag::warn_impcast_float_result_precision); 12243 } 12244 12245 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 12246 IntRange Range) { 12247 if (!Range.Width) return "0"; 12248 12249 llvm::APSInt ValueInRange = Value; 12250 ValueInRange.setIsSigned(!Range.NonNegative); 12251 ValueInRange = ValueInRange.trunc(Range.Width); 12252 return toString(ValueInRange, 10); 12253 } 12254 12255 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 12256 if (!isa<ImplicitCastExpr>(Ex)) 12257 return false; 12258 12259 Expr *InnerE = Ex->IgnoreParenImpCasts(); 12260 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 12261 const Type *Source = 12262 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 12263 if (Target->isDependentType()) 12264 return false; 12265 12266 const BuiltinType *FloatCandidateBT = 12267 dyn_cast<BuiltinType>(ToBool ? Source : Target); 12268 const Type *BoolCandidateType = ToBool ? Target : Source; 12269 12270 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 12271 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 12272 } 12273 12274 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 12275 SourceLocation CC) { 12276 unsigned NumArgs = TheCall->getNumArgs(); 12277 for (unsigned i = 0; i < NumArgs; ++i) { 12278 Expr *CurrA = TheCall->getArg(i); 12279 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 12280 continue; 12281 12282 bool IsSwapped = ((i > 0) && 12283 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 12284 IsSwapped |= ((i < (NumArgs - 1)) && 12285 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 12286 if (IsSwapped) { 12287 // Warn on this floating-point to bool conversion. 12288 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 12289 CurrA->getType(), CC, 12290 diag::warn_impcast_floating_point_to_bool); 12291 } 12292 } 12293 } 12294 12295 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 12296 SourceLocation CC) { 12297 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 12298 E->getExprLoc())) 12299 return; 12300 12301 // Don't warn on functions which have return type nullptr_t. 12302 if (isa<CallExpr>(E)) 12303 return; 12304 12305 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 12306 const Expr::NullPointerConstantKind NullKind = 12307 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 12308 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 12309 return; 12310 12311 // Return if target type is a safe conversion. 12312 if (T->isAnyPointerType() || T->isBlockPointerType() || 12313 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 12314 return; 12315 12316 SourceLocation Loc = E->getSourceRange().getBegin(); 12317 12318 // Venture through the macro stacks to get to the source of macro arguments. 12319 // The new location is a better location than the complete location that was 12320 // passed in. 12321 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 12322 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 12323 12324 // __null is usually wrapped in a macro. Go up a macro if that is the case. 12325 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 12326 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 12327 Loc, S.SourceMgr, S.getLangOpts()); 12328 if (MacroName == "NULL") 12329 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 12330 } 12331 12332 // Only warn if the null and context location are in the same macro expansion. 12333 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 12334 return; 12335 12336 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 12337 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 12338 << FixItHint::CreateReplacement(Loc, 12339 S.getFixItZeroLiteralForType(T, Loc)); 12340 } 12341 12342 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12343 ObjCArrayLiteral *ArrayLiteral); 12344 12345 static void 12346 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12347 ObjCDictionaryLiteral *DictionaryLiteral); 12348 12349 /// Check a single element within a collection literal against the 12350 /// target element type. 12351 static void checkObjCCollectionLiteralElement(Sema &S, 12352 QualType TargetElementType, 12353 Expr *Element, 12354 unsigned ElementKind) { 12355 // Skip a bitcast to 'id' or qualified 'id'. 12356 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 12357 if (ICE->getCastKind() == CK_BitCast && 12358 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 12359 Element = ICE->getSubExpr(); 12360 } 12361 12362 QualType ElementType = Element->getType(); 12363 ExprResult ElementResult(Element); 12364 if (ElementType->getAs<ObjCObjectPointerType>() && 12365 S.CheckSingleAssignmentConstraints(TargetElementType, 12366 ElementResult, 12367 false, false) 12368 != Sema::Compatible) { 12369 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 12370 << ElementType << ElementKind << TargetElementType 12371 << Element->getSourceRange(); 12372 } 12373 12374 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 12375 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 12376 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 12377 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 12378 } 12379 12380 /// Check an Objective-C array literal being converted to the given 12381 /// target type. 12382 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 12383 ObjCArrayLiteral *ArrayLiteral) { 12384 if (!S.NSArrayDecl) 12385 return; 12386 12387 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12388 if (!TargetObjCPtr) 12389 return; 12390 12391 if (TargetObjCPtr->isUnspecialized() || 12392 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12393 != S.NSArrayDecl->getCanonicalDecl()) 12394 return; 12395 12396 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12397 if (TypeArgs.size() != 1) 12398 return; 12399 12400 QualType TargetElementType = TypeArgs[0]; 12401 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 12402 checkObjCCollectionLiteralElement(S, TargetElementType, 12403 ArrayLiteral->getElement(I), 12404 0); 12405 } 12406 } 12407 12408 /// Check an Objective-C dictionary literal being converted to the given 12409 /// target type. 12410 static void 12411 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 12412 ObjCDictionaryLiteral *DictionaryLiteral) { 12413 if (!S.NSDictionaryDecl) 12414 return; 12415 12416 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 12417 if (!TargetObjCPtr) 12418 return; 12419 12420 if (TargetObjCPtr->isUnspecialized() || 12421 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 12422 != S.NSDictionaryDecl->getCanonicalDecl()) 12423 return; 12424 12425 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 12426 if (TypeArgs.size() != 2) 12427 return; 12428 12429 QualType TargetKeyType = TypeArgs[0]; 12430 QualType TargetObjectType = TypeArgs[1]; 12431 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 12432 auto Element = DictionaryLiteral->getKeyValueElement(I); 12433 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 12434 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 12435 } 12436 } 12437 12438 // Helper function to filter out cases for constant width constant conversion. 12439 // Don't warn on char array initialization or for non-decimal values. 12440 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 12441 SourceLocation CC) { 12442 // If initializing from a constant, and the constant starts with '0', 12443 // then it is a binary, octal, or hexadecimal. Allow these constants 12444 // to fill all the bits, even if there is a sign change. 12445 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 12446 const char FirstLiteralCharacter = 12447 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 12448 if (FirstLiteralCharacter == '0') 12449 return false; 12450 } 12451 12452 // If the CC location points to a '{', and the type is char, then assume 12453 // assume it is an array initialization. 12454 if (CC.isValid() && T->isCharType()) { 12455 const char FirstContextCharacter = 12456 S.getSourceManager().getCharacterData(CC)[0]; 12457 if (FirstContextCharacter == '{') 12458 return false; 12459 } 12460 12461 return true; 12462 } 12463 12464 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 12465 const auto *IL = dyn_cast<IntegerLiteral>(E); 12466 if (!IL) { 12467 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 12468 if (UO->getOpcode() == UO_Minus) 12469 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 12470 } 12471 } 12472 12473 return IL; 12474 } 12475 12476 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 12477 E = E->IgnoreParenImpCasts(); 12478 SourceLocation ExprLoc = E->getExprLoc(); 12479 12480 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 12481 BinaryOperator::Opcode Opc = BO->getOpcode(); 12482 Expr::EvalResult Result; 12483 // Do not diagnose unsigned shifts. 12484 if (Opc == BO_Shl) { 12485 const auto *LHS = getIntegerLiteral(BO->getLHS()); 12486 const auto *RHS = getIntegerLiteral(BO->getRHS()); 12487 if (LHS && LHS->getValue() == 0) 12488 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 12489 else if (!E->isValueDependent() && LHS && RHS && 12490 RHS->getValue().isNonNegative() && 12491 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 12492 S.Diag(ExprLoc, diag::warn_left_shift_always) 12493 << (Result.Val.getInt() != 0); 12494 else if (E->getType()->isSignedIntegerType()) 12495 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 12496 } 12497 } 12498 12499 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 12500 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 12501 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 12502 if (!LHS || !RHS) 12503 return; 12504 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 12505 (RHS->getValue() == 0 || RHS->getValue() == 1)) 12506 // Do not diagnose common idioms. 12507 return; 12508 if (LHS->getValue() != 0 && RHS->getValue() != 0) 12509 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 12510 } 12511 } 12512 12513 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 12514 SourceLocation CC, 12515 bool *ICContext = nullptr, 12516 bool IsListInit = false) { 12517 if (E->isTypeDependent() || E->isValueDependent()) return; 12518 12519 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 12520 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 12521 if (Source == Target) return; 12522 if (Target->isDependentType()) return; 12523 12524 // If the conversion context location is invalid don't complain. We also 12525 // don't want to emit a warning if the issue occurs from the expansion of 12526 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 12527 // delay this check as long as possible. Once we detect we are in that 12528 // scenario, we just return. 12529 if (CC.isInvalid()) 12530 return; 12531 12532 if (Source->isAtomicType()) 12533 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 12534 12535 // Diagnose implicit casts to bool. 12536 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 12537 if (isa<StringLiteral>(E)) 12538 // Warn on string literal to bool. Checks for string literals in logical 12539 // and expressions, for instance, assert(0 && "error here"), are 12540 // prevented by a check in AnalyzeImplicitConversions(). 12541 return DiagnoseImpCast(S, E, T, CC, 12542 diag::warn_impcast_string_literal_to_bool); 12543 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 12544 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 12545 // This covers the literal expressions that evaluate to Objective-C 12546 // objects. 12547 return DiagnoseImpCast(S, E, T, CC, 12548 diag::warn_impcast_objective_c_literal_to_bool); 12549 } 12550 if (Source->isPointerType() || Source->canDecayToPointerType()) { 12551 // Warn on pointer to bool conversion that is always true. 12552 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 12553 SourceRange(CC)); 12554 } 12555 } 12556 12557 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 12558 // is a typedef for signed char (macOS), then that constant value has to be 1 12559 // or 0. 12560 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 12561 Expr::EvalResult Result; 12562 if (E->EvaluateAsInt(Result, S.getASTContext(), 12563 Expr::SE_AllowSideEffects)) { 12564 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 12565 adornObjCBoolConversionDiagWithTernaryFixit( 12566 S, E, 12567 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 12568 << toString(Result.Val.getInt(), 10)); 12569 } 12570 return; 12571 } 12572 } 12573 12574 // Check implicit casts from Objective-C collection literals to specialized 12575 // collection types, e.g., NSArray<NSString *> *. 12576 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 12577 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 12578 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 12579 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 12580 12581 // Strip vector types. 12582 if (isa<VectorType>(Source)) { 12583 if (Target->isVLSTBuiltinType() && 12584 (S.Context.areCompatibleSveTypes(QualType(Target, 0), 12585 QualType(Source, 0)) || 12586 S.Context.areLaxCompatibleSveTypes(QualType(Target, 0), 12587 QualType(Source, 0)))) 12588 return; 12589 12590 if (!isa<VectorType>(Target)) { 12591 if (S.SourceMgr.isInSystemMacro(CC)) 12592 return; 12593 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 12594 } 12595 12596 // If the vector cast is cast between two vectors of the same size, it is 12597 // a bitcast, not a conversion. 12598 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 12599 return; 12600 12601 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 12602 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 12603 } 12604 if (auto VecTy = dyn_cast<VectorType>(Target)) 12605 Target = VecTy->getElementType().getTypePtr(); 12606 12607 // Strip complex types. 12608 if (isa<ComplexType>(Source)) { 12609 if (!isa<ComplexType>(Target)) { 12610 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 12611 return; 12612 12613 return DiagnoseImpCast(S, E, T, CC, 12614 S.getLangOpts().CPlusPlus 12615 ? diag::err_impcast_complex_scalar 12616 : diag::warn_impcast_complex_scalar); 12617 } 12618 12619 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 12620 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 12621 } 12622 12623 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 12624 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 12625 12626 // If the source is floating point... 12627 if (SourceBT && SourceBT->isFloatingPoint()) { 12628 // ...and the target is floating point... 12629 if (TargetBT && TargetBT->isFloatingPoint()) { 12630 // ...then warn if we're dropping FP rank. 12631 12632 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12633 QualType(SourceBT, 0), QualType(TargetBT, 0)); 12634 if (Order > 0) { 12635 // Don't warn about float constants that are precisely 12636 // representable in the target type. 12637 Expr::EvalResult result; 12638 if (E->EvaluateAsRValue(result, S.Context)) { 12639 // Value might be a float, a float vector, or a float complex. 12640 if (IsSameFloatAfterCast(result.Val, 12641 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 12642 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 12643 return; 12644 } 12645 12646 if (S.SourceMgr.isInSystemMacro(CC)) 12647 return; 12648 12649 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 12650 } 12651 // ... or possibly if we're increasing rank, too 12652 else if (Order < 0) { 12653 if (S.SourceMgr.isInSystemMacro(CC)) 12654 return; 12655 12656 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 12657 } 12658 return; 12659 } 12660 12661 // If the target is integral, always warn. 12662 if (TargetBT && TargetBT->isInteger()) { 12663 if (S.SourceMgr.isInSystemMacro(CC)) 12664 return; 12665 12666 DiagnoseFloatingImpCast(S, E, T, CC); 12667 } 12668 12669 // Detect the case where a call result is converted from floating-point to 12670 // to bool, and the final argument to the call is converted from bool, to 12671 // discover this typo: 12672 // 12673 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 12674 // 12675 // FIXME: This is an incredibly special case; is there some more general 12676 // way to detect this class of misplaced-parentheses bug? 12677 if (Target->isBooleanType() && isa<CallExpr>(E)) { 12678 // Check last argument of function call to see if it is an 12679 // implicit cast from a type matching the type the result 12680 // is being cast to. 12681 CallExpr *CEx = cast<CallExpr>(E); 12682 if (unsigned NumArgs = CEx->getNumArgs()) { 12683 Expr *LastA = CEx->getArg(NumArgs - 1); 12684 Expr *InnerE = LastA->IgnoreParenImpCasts(); 12685 if (isa<ImplicitCastExpr>(LastA) && 12686 InnerE->getType()->isBooleanType()) { 12687 // Warn on this floating-point to bool conversion 12688 DiagnoseImpCast(S, E, T, CC, 12689 diag::warn_impcast_floating_point_to_bool); 12690 } 12691 } 12692 } 12693 return; 12694 } 12695 12696 // Valid casts involving fixed point types should be accounted for here. 12697 if (Source->isFixedPointType()) { 12698 if (Target->isUnsaturatedFixedPointType()) { 12699 Expr::EvalResult Result; 12700 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 12701 S.isConstantEvaluated())) { 12702 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 12703 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 12704 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 12705 if (Value > MaxVal || Value < MinVal) { 12706 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12707 S.PDiag(diag::warn_impcast_fixed_point_range) 12708 << Value.toString() << T 12709 << E->getSourceRange() 12710 << clang::SourceRange(CC)); 12711 return; 12712 } 12713 } 12714 } else if (Target->isIntegerType()) { 12715 Expr::EvalResult Result; 12716 if (!S.isConstantEvaluated() && 12717 E->EvaluateAsFixedPoint(Result, S.Context, 12718 Expr::SE_AllowSideEffects)) { 12719 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 12720 12721 bool Overflowed; 12722 llvm::APSInt IntResult = FXResult.convertToInt( 12723 S.Context.getIntWidth(T), 12724 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 12725 12726 if (Overflowed) { 12727 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12728 S.PDiag(diag::warn_impcast_fixed_point_range) 12729 << FXResult.toString() << T 12730 << E->getSourceRange() 12731 << clang::SourceRange(CC)); 12732 return; 12733 } 12734 } 12735 } 12736 } else if (Target->isUnsaturatedFixedPointType()) { 12737 if (Source->isIntegerType()) { 12738 Expr::EvalResult Result; 12739 if (!S.isConstantEvaluated() && 12740 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 12741 llvm::APSInt Value = Result.Val.getInt(); 12742 12743 bool Overflowed; 12744 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 12745 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 12746 12747 if (Overflowed) { 12748 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12749 S.PDiag(diag::warn_impcast_fixed_point_range) 12750 << toString(Value, /*Radix=*/10) << T 12751 << E->getSourceRange() 12752 << clang::SourceRange(CC)); 12753 return; 12754 } 12755 } 12756 } 12757 } 12758 12759 // If we are casting an integer type to a floating point type without 12760 // initialization-list syntax, we might lose accuracy if the floating 12761 // point type has a narrower significand than the integer type. 12762 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 12763 TargetBT->isFloatingType() && !IsListInit) { 12764 // Determine the number of precision bits in the source integer type. 12765 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 12766 /*Approximate*/ true); 12767 unsigned int SourcePrecision = SourceRange.Width; 12768 12769 // Determine the number of precision bits in the 12770 // target floating point type. 12771 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 12772 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12773 12774 if (SourcePrecision > 0 && TargetPrecision > 0 && 12775 SourcePrecision > TargetPrecision) { 12776 12777 if (Optional<llvm::APSInt> SourceInt = 12778 E->getIntegerConstantExpr(S.Context)) { 12779 // If the source integer is a constant, convert it to the target 12780 // floating point type. Issue a warning if the value changes 12781 // during the whole conversion. 12782 llvm::APFloat TargetFloatValue( 12783 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12784 llvm::APFloat::opStatus ConversionStatus = 12785 TargetFloatValue.convertFromAPInt( 12786 *SourceInt, SourceBT->isSignedInteger(), 12787 llvm::APFloat::rmNearestTiesToEven); 12788 12789 if (ConversionStatus != llvm::APFloat::opOK) { 12790 SmallString<32> PrettySourceValue; 12791 SourceInt->toString(PrettySourceValue, 10); 12792 SmallString<32> PrettyTargetValue; 12793 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 12794 12795 S.DiagRuntimeBehavior( 12796 E->getExprLoc(), E, 12797 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 12798 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12799 << E->getSourceRange() << clang::SourceRange(CC)); 12800 } 12801 } else { 12802 // Otherwise, the implicit conversion may lose precision. 12803 DiagnoseImpCast(S, E, T, CC, 12804 diag::warn_impcast_integer_float_precision); 12805 } 12806 } 12807 } 12808 12809 DiagnoseNullConversion(S, E, T, CC); 12810 12811 S.DiscardMisalignedMemberAddress(Target, E); 12812 12813 if (Target->isBooleanType()) 12814 DiagnoseIntInBoolContext(S, E); 12815 12816 if (!Source->isIntegerType() || !Target->isIntegerType()) 12817 return; 12818 12819 // TODO: remove this early return once the false positives for constant->bool 12820 // in templates, macros, etc, are reduced or removed. 12821 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 12822 return; 12823 12824 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 12825 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 12826 return adornObjCBoolConversionDiagWithTernaryFixit( 12827 S, E, 12828 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 12829 << E->getType()); 12830 } 12831 12832 IntRange SourceTypeRange = 12833 IntRange::forTargetOfCanonicalType(S.Context, Source); 12834 IntRange LikelySourceRange = 12835 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 12836 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 12837 12838 if (LikelySourceRange.Width > TargetRange.Width) { 12839 // If the source is a constant, use a default-on diagnostic. 12840 // TODO: this should happen for bitfield stores, too. 12841 Expr::EvalResult Result; 12842 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 12843 S.isConstantEvaluated())) { 12844 llvm::APSInt Value(32); 12845 Value = Result.Val.getInt(); 12846 12847 if (S.SourceMgr.isInSystemMacro(CC)) 12848 return; 12849 12850 std::string PrettySourceValue = toString(Value, 10); 12851 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12852 12853 S.DiagRuntimeBehavior( 12854 E->getExprLoc(), E, 12855 S.PDiag(diag::warn_impcast_integer_precision_constant) 12856 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12857 << E->getSourceRange() << SourceRange(CC)); 12858 return; 12859 } 12860 12861 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 12862 if (S.SourceMgr.isInSystemMacro(CC)) 12863 return; 12864 12865 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 12866 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 12867 /* pruneControlFlow */ true); 12868 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 12869 } 12870 12871 if (TargetRange.Width > SourceTypeRange.Width) { 12872 if (auto *UO = dyn_cast<UnaryOperator>(E)) 12873 if (UO->getOpcode() == UO_Minus) 12874 if (Source->isUnsignedIntegerType()) { 12875 if (Target->isUnsignedIntegerType()) 12876 return DiagnoseImpCast(S, E, T, CC, 12877 diag::warn_impcast_high_order_zero_bits); 12878 if (Target->isSignedIntegerType()) 12879 return DiagnoseImpCast(S, E, T, CC, 12880 diag::warn_impcast_nonnegative_result); 12881 } 12882 } 12883 12884 if (TargetRange.Width == LikelySourceRange.Width && 12885 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 12886 Source->isSignedIntegerType()) { 12887 // Warn when doing a signed to signed conversion, warn if the positive 12888 // source value is exactly the width of the target type, which will 12889 // cause a negative value to be stored. 12890 12891 Expr::EvalResult Result; 12892 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 12893 !S.SourceMgr.isInSystemMacro(CC)) { 12894 llvm::APSInt Value = Result.Val.getInt(); 12895 if (isSameWidthConstantConversion(S, E, T, CC)) { 12896 std::string PrettySourceValue = toString(Value, 10); 12897 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12898 12899 S.DiagRuntimeBehavior( 12900 E->getExprLoc(), E, 12901 S.PDiag(diag::warn_impcast_integer_precision_constant) 12902 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12903 << E->getSourceRange() << SourceRange(CC)); 12904 return; 12905 } 12906 } 12907 12908 // Fall through for non-constants to give a sign conversion warning. 12909 } 12910 12911 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 12912 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 12913 LikelySourceRange.Width == TargetRange.Width)) { 12914 if (S.SourceMgr.isInSystemMacro(CC)) 12915 return; 12916 12917 unsigned DiagID = diag::warn_impcast_integer_sign; 12918 12919 // Traditionally, gcc has warned about this under -Wsign-compare. 12920 // We also want to warn about it in -Wconversion. 12921 // So if -Wconversion is off, use a completely identical diagnostic 12922 // in the sign-compare group. 12923 // The conditional-checking code will 12924 if (ICContext) { 12925 DiagID = diag::warn_impcast_integer_sign_conditional; 12926 *ICContext = true; 12927 } 12928 12929 return DiagnoseImpCast(S, E, T, CC, DiagID); 12930 } 12931 12932 // Diagnose conversions between different enumeration types. 12933 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 12934 // type, to give us better diagnostics. 12935 QualType SourceType = E->getType(); 12936 if (!S.getLangOpts().CPlusPlus) { 12937 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12938 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 12939 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 12940 SourceType = S.Context.getTypeDeclType(Enum); 12941 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 12942 } 12943 } 12944 12945 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 12946 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 12947 if (SourceEnum->getDecl()->hasNameForLinkage() && 12948 TargetEnum->getDecl()->hasNameForLinkage() && 12949 SourceEnum != TargetEnum) { 12950 if (S.SourceMgr.isInSystemMacro(CC)) 12951 return; 12952 12953 return DiagnoseImpCast(S, E, SourceType, T, CC, 12954 diag::warn_impcast_different_enum_types); 12955 } 12956 } 12957 12958 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12959 SourceLocation CC, QualType T); 12960 12961 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 12962 SourceLocation CC, bool &ICContext) { 12963 E = E->IgnoreParenImpCasts(); 12964 12965 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 12966 return CheckConditionalOperator(S, CO, CC, T); 12967 12968 AnalyzeImplicitConversions(S, E, CC); 12969 if (E->getType() != T) 12970 return CheckImplicitConversion(S, E, T, CC, &ICContext); 12971 } 12972 12973 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12974 SourceLocation CC, QualType T) { 12975 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 12976 12977 Expr *TrueExpr = E->getTrueExpr(); 12978 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 12979 TrueExpr = BCO->getCommon(); 12980 12981 bool Suspicious = false; 12982 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 12983 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 12984 12985 if (T->isBooleanType()) 12986 DiagnoseIntInBoolContext(S, E); 12987 12988 // If -Wconversion would have warned about either of the candidates 12989 // for a signedness conversion to the context type... 12990 if (!Suspicious) return; 12991 12992 // ...but it's currently ignored... 12993 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 12994 return; 12995 12996 // ...then check whether it would have warned about either of the 12997 // candidates for a signedness conversion to the condition type. 12998 if (E->getType() == T) return; 12999 13000 Suspicious = false; 13001 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 13002 E->getType(), CC, &Suspicious); 13003 if (!Suspicious) 13004 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 13005 E->getType(), CC, &Suspicious); 13006 } 13007 13008 /// Check conversion of given expression to boolean. 13009 /// Input argument E is a logical expression. 13010 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 13011 if (S.getLangOpts().Bool) 13012 return; 13013 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 13014 return; 13015 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 13016 } 13017 13018 namespace { 13019 struct AnalyzeImplicitConversionsWorkItem { 13020 Expr *E; 13021 SourceLocation CC; 13022 bool IsListInit; 13023 }; 13024 } 13025 13026 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 13027 /// that should be visited are added to WorkList. 13028 static void AnalyzeImplicitConversions( 13029 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 13030 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 13031 Expr *OrigE = Item.E; 13032 SourceLocation CC = Item.CC; 13033 13034 QualType T = OrigE->getType(); 13035 Expr *E = OrigE->IgnoreParenImpCasts(); 13036 13037 // Propagate whether we are in a C++ list initialization expression. 13038 // If so, we do not issue warnings for implicit int-float conversion 13039 // precision loss, because C++11 narrowing already handles it. 13040 bool IsListInit = Item.IsListInit || 13041 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 13042 13043 if (E->isTypeDependent() || E->isValueDependent()) 13044 return; 13045 13046 Expr *SourceExpr = E; 13047 // Examine, but don't traverse into the source expression of an 13048 // OpaqueValueExpr, since it may have multiple parents and we don't want to 13049 // emit duplicate diagnostics. Its fine to examine the form or attempt to 13050 // evaluate it in the context of checking the specific conversion to T though. 13051 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 13052 if (auto *Src = OVE->getSourceExpr()) 13053 SourceExpr = Src; 13054 13055 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 13056 if (UO->getOpcode() == UO_Not && 13057 UO->getSubExpr()->isKnownToHaveBooleanValue()) 13058 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 13059 << OrigE->getSourceRange() << T->isBooleanType() 13060 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 13061 13062 // For conditional operators, we analyze the arguments as if they 13063 // were being fed directly into the output. 13064 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 13065 CheckConditionalOperator(S, CO, CC, T); 13066 return; 13067 } 13068 13069 // Check implicit argument conversions for function calls. 13070 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 13071 CheckImplicitArgumentConversions(S, Call, CC); 13072 13073 // Go ahead and check any implicit conversions we might have skipped. 13074 // The non-canonical typecheck is just an optimization; 13075 // CheckImplicitConversion will filter out dead implicit conversions. 13076 if (SourceExpr->getType() != T) 13077 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 13078 13079 // Now continue drilling into this expression. 13080 13081 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 13082 // The bound subexpressions in a PseudoObjectExpr are not reachable 13083 // as transitive children. 13084 // FIXME: Use a more uniform representation for this. 13085 for (auto *SE : POE->semantics()) 13086 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 13087 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 13088 } 13089 13090 // Skip past explicit casts. 13091 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 13092 E = CE->getSubExpr()->IgnoreParenImpCasts(); 13093 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 13094 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 13095 WorkList.push_back({E, CC, IsListInit}); 13096 return; 13097 } 13098 13099 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13100 // Do a somewhat different check with comparison operators. 13101 if (BO->isComparisonOp()) 13102 return AnalyzeComparison(S, BO); 13103 13104 // And with simple assignments. 13105 if (BO->getOpcode() == BO_Assign) 13106 return AnalyzeAssignment(S, BO); 13107 // And with compound assignments. 13108 if (BO->isAssignmentOp()) 13109 return AnalyzeCompoundAssignment(S, BO); 13110 } 13111 13112 // These break the otherwise-useful invariant below. Fortunately, 13113 // we don't really need to recurse into them, because any internal 13114 // expressions should have been analyzed already when they were 13115 // built into statements. 13116 if (isa<StmtExpr>(E)) return; 13117 13118 // Don't descend into unevaluated contexts. 13119 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 13120 13121 // Now just recurse over the expression's children. 13122 CC = E->getExprLoc(); 13123 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 13124 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 13125 for (Stmt *SubStmt : E->children()) { 13126 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 13127 if (!ChildExpr) 13128 continue; 13129 13130 if (IsLogicalAndOperator && 13131 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 13132 // Ignore checking string literals that are in logical and operators. 13133 // This is a common pattern for asserts. 13134 continue; 13135 WorkList.push_back({ChildExpr, CC, IsListInit}); 13136 } 13137 13138 if (BO && BO->isLogicalOp()) { 13139 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 13140 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13141 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13142 13143 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 13144 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 13145 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 13146 } 13147 13148 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 13149 if (U->getOpcode() == UO_LNot) { 13150 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 13151 } else if (U->getOpcode() != UO_AddrOf) { 13152 if (U->getSubExpr()->getType()->isAtomicType()) 13153 S.Diag(U->getSubExpr()->getBeginLoc(), 13154 diag::warn_atomic_implicit_seq_cst); 13155 } 13156 } 13157 } 13158 13159 /// AnalyzeImplicitConversions - Find and report any interesting 13160 /// implicit conversions in the given expression. There are a couple 13161 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 13162 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 13163 bool IsListInit/*= false*/) { 13164 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 13165 WorkList.push_back({OrigE, CC, IsListInit}); 13166 while (!WorkList.empty()) 13167 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 13168 } 13169 13170 /// Diagnose integer type and any valid implicit conversion to it. 13171 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 13172 // Taking into account implicit conversions, 13173 // allow any integer. 13174 if (!E->getType()->isIntegerType()) { 13175 S.Diag(E->getBeginLoc(), 13176 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 13177 return true; 13178 } 13179 // Potentially emit standard warnings for implicit conversions if enabled 13180 // using -Wconversion. 13181 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 13182 return false; 13183 } 13184 13185 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 13186 // Returns true when emitting a warning about taking the address of a reference. 13187 static bool CheckForReference(Sema &SemaRef, const Expr *E, 13188 const PartialDiagnostic &PD) { 13189 E = E->IgnoreParenImpCasts(); 13190 13191 const FunctionDecl *FD = nullptr; 13192 13193 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 13194 if (!DRE->getDecl()->getType()->isReferenceType()) 13195 return false; 13196 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13197 if (!M->getMemberDecl()->getType()->isReferenceType()) 13198 return false; 13199 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 13200 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 13201 return false; 13202 FD = Call->getDirectCallee(); 13203 } else { 13204 return false; 13205 } 13206 13207 SemaRef.Diag(E->getExprLoc(), PD); 13208 13209 // If possible, point to location of function. 13210 if (FD) { 13211 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 13212 } 13213 13214 return true; 13215 } 13216 13217 // Returns true if the SourceLocation is expanded from any macro body. 13218 // Returns false if the SourceLocation is invalid, is from not in a macro 13219 // expansion, or is from expanded from a top-level macro argument. 13220 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 13221 if (Loc.isInvalid()) 13222 return false; 13223 13224 while (Loc.isMacroID()) { 13225 if (SM.isMacroBodyExpansion(Loc)) 13226 return true; 13227 Loc = SM.getImmediateMacroCallerLoc(Loc); 13228 } 13229 13230 return false; 13231 } 13232 13233 /// Diagnose pointers that are always non-null. 13234 /// \param E the expression containing the pointer 13235 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 13236 /// compared to a null pointer 13237 /// \param IsEqual True when the comparison is equal to a null pointer 13238 /// \param Range Extra SourceRange to highlight in the diagnostic 13239 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 13240 Expr::NullPointerConstantKind NullKind, 13241 bool IsEqual, SourceRange Range) { 13242 if (!E) 13243 return; 13244 13245 // Don't warn inside macros. 13246 if (E->getExprLoc().isMacroID()) { 13247 const SourceManager &SM = getSourceManager(); 13248 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 13249 IsInAnyMacroBody(SM, Range.getBegin())) 13250 return; 13251 } 13252 E = E->IgnoreImpCasts(); 13253 13254 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 13255 13256 if (isa<CXXThisExpr>(E)) { 13257 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 13258 : diag::warn_this_bool_conversion; 13259 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 13260 return; 13261 } 13262 13263 bool IsAddressOf = false; 13264 13265 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13266 if (UO->getOpcode() != UO_AddrOf) 13267 return; 13268 IsAddressOf = true; 13269 E = UO->getSubExpr(); 13270 } 13271 13272 if (IsAddressOf) { 13273 unsigned DiagID = IsCompare 13274 ? diag::warn_address_of_reference_null_compare 13275 : diag::warn_address_of_reference_bool_conversion; 13276 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 13277 << IsEqual; 13278 if (CheckForReference(*this, E, PD)) { 13279 return; 13280 } 13281 } 13282 13283 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 13284 bool IsParam = isa<NonNullAttr>(NonnullAttr); 13285 std::string Str; 13286 llvm::raw_string_ostream S(Str); 13287 E->printPretty(S, nullptr, getPrintingPolicy()); 13288 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 13289 : diag::warn_cast_nonnull_to_bool; 13290 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 13291 << E->getSourceRange() << Range << IsEqual; 13292 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 13293 }; 13294 13295 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 13296 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 13297 if (auto *Callee = Call->getDirectCallee()) { 13298 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 13299 ComplainAboutNonnullParamOrCall(A); 13300 return; 13301 } 13302 } 13303 } 13304 13305 // Expect to find a single Decl. Skip anything more complicated. 13306 ValueDecl *D = nullptr; 13307 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 13308 D = R->getDecl(); 13309 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 13310 D = M->getMemberDecl(); 13311 } 13312 13313 // Weak Decls can be null. 13314 if (!D || D->isWeak()) 13315 return; 13316 13317 // Check for parameter decl with nonnull attribute 13318 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 13319 if (getCurFunction() && 13320 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 13321 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 13322 ComplainAboutNonnullParamOrCall(A); 13323 return; 13324 } 13325 13326 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 13327 // Skip function template not specialized yet. 13328 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 13329 return; 13330 auto ParamIter = llvm::find(FD->parameters(), PV); 13331 assert(ParamIter != FD->param_end()); 13332 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 13333 13334 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 13335 if (!NonNull->args_size()) { 13336 ComplainAboutNonnullParamOrCall(NonNull); 13337 return; 13338 } 13339 13340 for (const ParamIdx &ArgNo : NonNull->args()) { 13341 if (ArgNo.getASTIndex() == ParamNo) { 13342 ComplainAboutNonnullParamOrCall(NonNull); 13343 return; 13344 } 13345 } 13346 } 13347 } 13348 } 13349 } 13350 13351 QualType T = D->getType(); 13352 const bool IsArray = T->isArrayType(); 13353 const bool IsFunction = T->isFunctionType(); 13354 13355 // Address of function is used to silence the function warning. 13356 if (IsAddressOf && IsFunction) { 13357 return; 13358 } 13359 13360 // Found nothing. 13361 if (!IsAddressOf && !IsFunction && !IsArray) 13362 return; 13363 13364 // Pretty print the expression for the diagnostic. 13365 std::string Str; 13366 llvm::raw_string_ostream S(Str); 13367 E->printPretty(S, nullptr, getPrintingPolicy()); 13368 13369 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 13370 : diag::warn_impcast_pointer_to_bool; 13371 enum { 13372 AddressOf, 13373 FunctionPointer, 13374 ArrayPointer 13375 } DiagType; 13376 if (IsAddressOf) 13377 DiagType = AddressOf; 13378 else if (IsFunction) 13379 DiagType = FunctionPointer; 13380 else if (IsArray) 13381 DiagType = ArrayPointer; 13382 else 13383 llvm_unreachable("Could not determine diagnostic."); 13384 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 13385 << Range << IsEqual; 13386 13387 if (!IsFunction) 13388 return; 13389 13390 // Suggest '&' to silence the function warning. 13391 Diag(E->getExprLoc(), diag::note_function_warning_silence) 13392 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 13393 13394 // Check to see if '()' fixit should be emitted. 13395 QualType ReturnType; 13396 UnresolvedSet<4> NonTemplateOverloads; 13397 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 13398 if (ReturnType.isNull()) 13399 return; 13400 13401 if (IsCompare) { 13402 // There are two cases here. If there is null constant, the only suggest 13403 // for a pointer return type. If the null is 0, then suggest if the return 13404 // type is a pointer or an integer type. 13405 if (!ReturnType->isPointerType()) { 13406 if (NullKind == Expr::NPCK_ZeroExpression || 13407 NullKind == Expr::NPCK_ZeroLiteral) { 13408 if (!ReturnType->isIntegerType()) 13409 return; 13410 } else { 13411 return; 13412 } 13413 } 13414 } else { // !IsCompare 13415 // For function to bool, only suggest if the function pointer has bool 13416 // return type. 13417 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 13418 return; 13419 } 13420 Diag(E->getExprLoc(), diag::note_function_to_function_call) 13421 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 13422 } 13423 13424 /// Diagnoses "dangerous" implicit conversions within the given 13425 /// expression (which is a full expression). Implements -Wconversion 13426 /// and -Wsign-compare. 13427 /// 13428 /// \param CC the "context" location of the implicit conversion, i.e. 13429 /// the most location of the syntactic entity requiring the implicit 13430 /// conversion 13431 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 13432 // Don't diagnose in unevaluated contexts. 13433 if (isUnevaluatedContext()) 13434 return; 13435 13436 // Don't diagnose for value- or type-dependent expressions. 13437 if (E->isTypeDependent() || E->isValueDependent()) 13438 return; 13439 13440 // Check for array bounds violations in cases where the check isn't triggered 13441 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 13442 // ArraySubscriptExpr is on the RHS of a variable initialization. 13443 CheckArrayAccess(E); 13444 13445 // This is not the right CC for (e.g.) a variable initialization. 13446 AnalyzeImplicitConversions(*this, E, CC); 13447 } 13448 13449 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 13450 /// Input argument E is a logical expression. 13451 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 13452 ::CheckBoolLikeConversion(*this, E, CC); 13453 } 13454 13455 /// Diagnose when expression is an integer constant expression and its evaluation 13456 /// results in integer overflow 13457 void Sema::CheckForIntOverflow (Expr *E) { 13458 // Use a work list to deal with nested struct initializers. 13459 SmallVector<Expr *, 2> Exprs(1, E); 13460 13461 do { 13462 Expr *OriginalE = Exprs.pop_back_val(); 13463 Expr *E = OriginalE->IgnoreParenCasts(); 13464 13465 if (isa<BinaryOperator>(E)) { 13466 E->EvaluateForOverflow(Context); 13467 continue; 13468 } 13469 13470 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 13471 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 13472 else if (isa<ObjCBoxedExpr>(OriginalE)) 13473 E->EvaluateForOverflow(Context); 13474 else if (auto Call = dyn_cast<CallExpr>(E)) 13475 Exprs.append(Call->arg_begin(), Call->arg_end()); 13476 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 13477 Exprs.append(Message->arg_begin(), Message->arg_end()); 13478 } while (!Exprs.empty()); 13479 } 13480 13481 namespace { 13482 13483 /// Visitor for expressions which looks for unsequenced operations on the 13484 /// same object. 13485 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 13486 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 13487 13488 /// A tree of sequenced regions within an expression. Two regions are 13489 /// unsequenced if one is an ancestor or a descendent of the other. When we 13490 /// finish processing an expression with sequencing, such as a comma 13491 /// expression, we fold its tree nodes into its parent, since they are 13492 /// unsequenced with respect to nodes we will visit later. 13493 class SequenceTree { 13494 struct Value { 13495 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 13496 unsigned Parent : 31; 13497 unsigned Merged : 1; 13498 }; 13499 SmallVector<Value, 8> Values; 13500 13501 public: 13502 /// A region within an expression which may be sequenced with respect 13503 /// to some other region. 13504 class Seq { 13505 friend class SequenceTree; 13506 13507 unsigned Index; 13508 13509 explicit Seq(unsigned N) : Index(N) {} 13510 13511 public: 13512 Seq() : Index(0) {} 13513 }; 13514 13515 SequenceTree() { Values.push_back(Value(0)); } 13516 Seq root() const { return Seq(0); } 13517 13518 /// Create a new sequence of operations, which is an unsequenced 13519 /// subset of \p Parent. This sequence of operations is sequenced with 13520 /// respect to other children of \p Parent. 13521 Seq allocate(Seq Parent) { 13522 Values.push_back(Value(Parent.Index)); 13523 return Seq(Values.size() - 1); 13524 } 13525 13526 /// Merge a sequence of operations into its parent. 13527 void merge(Seq S) { 13528 Values[S.Index].Merged = true; 13529 } 13530 13531 /// Determine whether two operations are unsequenced. This operation 13532 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 13533 /// should have been merged into its parent as appropriate. 13534 bool isUnsequenced(Seq Cur, Seq Old) { 13535 unsigned C = representative(Cur.Index); 13536 unsigned Target = representative(Old.Index); 13537 while (C >= Target) { 13538 if (C == Target) 13539 return true; 13540 C = Values[C].Parent; 13541 } 13542 return false; 13543 } 13544 13545 private: 13546 /// Pick a representative for a sequence. 13547 unsigned representative(unsigned K) { 13548 if (Values[K].Merged) 13549 // Perform path compression as we go. 13550 return Values[K].Parent = representative(Values[K].Parent); 13551 return K; 13552 } 13553 }; 13554 13555 /// An object for which we can track unsequenced uses. 13556 using Object = const NamedDecl *; 13557 13558 /// Different flavors of object usage which we track. We only track the 13559 /// least-sequenced usage of each kind. 13560 enum UsageKind { 13561 /// A read of an object. Multiple unsequenced reads are OK. 13562 UK_Use, 13563 13564 /// A modification of an object which is sequenced before the value 13565 /// computation of the expression, such as ++n in C++. 13566 UK_ModAsValue, 13567 13568 /// A modification of an object which is not sequenced before the value 13569 /// computation of the expression, such as n++. 13570 UK_ModAsSideEffect, 13571 13572 UK_Count = UK_ModAsSideEffect + 1 13573 }; 13574 13575 /// Bundle together a sequencing region and the expression corresponding 13576 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 13577 struct Usage { 13578 const Expr *UsageExpr; 13579 SequenceTree::Seq Seq; 13580 13581 Usage() : UsageExpr(nullptr), Seq() {} 13582 }; 13583 13584 struct UsageInfo { 13585 Usage Uses[UK_Count]; 13586 13587 /// Have we issued a diagnostic for this object already? 13588 bool Diagnosed; 13589 13590 UsageInfo() : Uses(), Diagnosed(false) {} 13591 }; 13592 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 13593 13594 Sema &SemaRef; 13595 13596 /// Sequenced regions within the expression. 13597 SequenceTree Tree; 13598 13599 /// Declaration modifications and references which we have seen. 13600 UsageInfoMap UsageMap; 13601 13602 /// The region we are currently within. 13603 SequenceTree::Seq Region; 13604 13605 /// Filled in with declarations which were modified as a side-effect 13606 /// (that is, post-increment operations). 13607 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 13608 13609 /// Expressions to check later. We defer checking these to reduce 13610 /// stack usage. 13611 SmallVectorImpl<const Expr *> &WorkList; 13612 13613 /// RAII object wrapping the visitation of a sequenced subexpression of an 13614 /// expression. At the end of this process, the side-effects of the evaluation 13615 /// become sequenced with respect to the value computation of the result, so 13616 /// we downgrade any UK_ModAsSideEffect within the evaluation to 13617 /// UK_ModAsValue. 13618 struct SequencedSubexpression { 13619 SequencedSubexpression(SequenceChecker &Self) 13620 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 13621 Self.ModAsSideEffect = &ModAsSideEffect; 13622 } 13623 13624 ~SequencedSubexpression() { 13625 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 13626 // Add a new usage with usage kind UK_ModAsValue, and then restore 13627 // the previous usage with UK_ModAsSideEffect (thus clearing it if 13628 // the previous one was empty). 13629 UsageInfo &UI = Self.UsageMap[M.first]; 13630 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 13631 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 13632 SideEffectUsage = M.second; 13633 } 13634 Self.ModAsSideEffect = OldModAsSideEffect; 13635 } 13636 13637 SequenceChecker &Self; 13638 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 13639 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 13640 }; 13641 13642 /// RAII object wrapping the visitation of a subexpression which we might 13643 /// choose to evaluate as a constant. If any subexpression is evaluated and 13644 /// found to be non-constant, this allows us to suppress the evaluation of 13645 /// the outer expression. 13646 class EvaluationTracker { 13647 public: 13648 EvaluationTracker(SequenceChecker &Self) 13649 : Self(Self), Prev(Self.EvalTracker) { 13650 Self.EvalTracker = this; 13651 } 13652 13653 ~EvaluationTracker() { 13654 Self.EvalTracker = Prev; 13655 if (Prev) 13656 Prev->EvalOK &= EvalOK; 13657 } 13658 13659 bool evaluate(const Expr *E, bool &Result) { 13660 if (!EvalOK || E->isValueDependent()) 13661 return false; 13662 EvalOK = E->EvaluateAsBooleanCondition( 13663 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 13664 return EvalOK; 13665 } 13666 13667 private: 13668 SequenceChecker &Self; 13669 EvaluationTracker *Prev; 13670 bool EvalOK = true; 13671 } *EvalTracker = nullptr; 13672 13673 /// Find the object which is produced by the specified expression, 13674 /// if any. 13675 Object getObject(const Expr *E, bool Mod) const { 13676 E = E->IgnoreParenCasts(); 13677 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13678 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 13679 return getObject(UO->getSubExpr(), Mod); 13680 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13681 if (BO->getOpcode() == BO_Comma) 13682 return getObject(BO->getRHS(), Mod); 13683 if (Mod && BO->isAssignmentOp()) 13684 return getObject(BO->getLHS(), Mod); 13685 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 13686 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 13687 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 13688 return ME->getMemberDecl(); 13689 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13690 // FIXME: If this is a reference, map through to its value. 13691 return DRE->getDecl(); 13692 return nullptr; 13693 } 13694 13695 /// Note that an object \p O was modified or used by an expression 13696 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 13697 /// the object \p O as obtained via the \p UsageMap. 13698 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 13699 // Get the old usage for the given object and usage kind. 13700 Usage &U = UI.Uses[UK]; 13701 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 13702 // If we have a modification as side effect and are in a sequenced 13703 // subexpression, save the old Usage so that we can restore it later 13704 // in SequencedSubexpression::~SequencedSubexpression. 13705 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 13706 ModAsSideEffect->push_back(std::make_pair(O, U)); 13707 // Then record the new usage with the current sequencing region. 13708 U.UsageExpr = UsageExpr; 13709 U.Seq = Region; 13710 } 13711 } 13712 13713 /// Check whether a modification or use of an object \p O in an expression 13714 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 13715 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 13716 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 13717 /// usage and false we are checking for a mod-use unsequenced usage. 13718 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 13719 UsageKind OtherKind, bool IsModMod) { 13720 if (UI.Diagnosed) 13721 return; 13722 13723 const Usage &U = UI.Uses[OtherKind]; 13724 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 13725 return; 13726 13727 const Expr *Mod = U.UsageExpr; 13728 const Expr *ModOrUse = UsageExpr; 13729 if (OtherKind == UK_Use) 13730 std::swap(Mod, ModOrUse); 13731 13732 SemaRef.DiagRuntimeBehavior( 13733 Mod->getExprLoc(), {Mod, ModOrUse}, 13734 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 13735 : diag::warn_unsequenced_mod_use) 13736 << O << SourceRange(ModOrUse->getExprLoc())); 13737 UI.Diagnosed = true; 13738 } 13739 13740 // A note on note{Pre, Post}{Use, Mod}: 13741 // 13742 // (It helps to follow the algorithm with an expression such as 13743 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 13744 // operations before C++17 and both are well-defined in C++17). 13745 // 13746 // When visiting a node which uses/modify an object we first call notePreUse 13747 // or notePreMod before visiting its sub-expression(s). At this point the 13748 // children of the current node have not yet been visited and so the eventual 13749 // uses/modifications resulting from the children of the current node have not 13750 // been recorded yet. 13751 // 13752 // We then visit the children of the current node. After that notePostUse or 13753 // notePostMod is called. These will 1) detect an unsequenced modification 13754 // as side effect (as in "k++ + k") and 2) add a new usage with the 13755 // appropriate usage kind. 13756 // 13757 // We also have to be careful that some operation sequences modification as 13758 // side effect as well (for example: || or ,). To account for this we wrap 13759 // the visitation of such a sub-expression (for example: the LHS of || or ,) 13760 // with SequencedSubexpression. SequencedSubexpression is an RAII object 13761 // which record usages which are modifications as side effect, and then 13762 // downgrade them (or more accurately restore the previous usage which was a 13763 // modification as side effect) when exiting the scope of the sequenced 13764 // subexpression. 13765 13766 void notePreUse(Object O, const Expr *UseExpr) { 13767 UsageInfo &UI = UsageMap[O]; 13768 // Uses conflict with other modifications. 13769 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 13770 } 13771 13772 void notePostUse(Object O, const Expr *UseExpr) { 13773 UsageInfo &UI = UsageMap[O]; 13774 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 13775 /*IsModMod=*/false); 13776 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 13777 } 13778 13779 void notePreMod(Object O, const Expr *ModExpr) { 13780 UsageInfo &UI = UsageMap[O]; 13781 // Modifications conflict with other modifications and with uses. 13782 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 13783 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 13784 } 13785 13786 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 13787 UsageInfo &UI = UsageMap[O]; 13788 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 13789 /*IsModMod=*/true); 13790 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 13791 } 13792 13793 public: 13794 SequenceChecker(Sema &S, const Expr *E, 13795 SmallVectorImpl<const Expr *> &WorkList) 13796 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 13797 Visit(E); 13798 // Silence a -Wunused-private-field since WorkList is now unused. 13799 // TODO: Evaluate if it can be used, and if not remove it. 13800 (void)this->WorkList; 13801 } 13802 13803 void VisitStmt(const Stmt *S) { 13804 // Skip all statements which aren't expressions for now. 13805 } 13806 13807 void VisitExpr(const Expr *E) { 13808 // By default, just recurse to evaluated subexpressions. 13809 Base::VisitStmt(E); 13810 } 13811 13812 void VisitCastExpr(const CastExpr *E) { 13813 Object O = Object(); 13814 if (E->getCastKind() == CK_LValueToRValue) 13815 O = getObject(E->getSubExpr(), false); 13816 13817 if (O) 13818 notePreUse(O, E); 13819 VisitExpr(E); 13820 if (O) 13821 notePostUse(O, E); 13822 } 13823 13824 void VisitSequencedExpressions(const Expr *SequencedBefore, 13825 const Expr *SequencedAfter) { 13826 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 13827 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 13828 SequenceTree::Seq OldRegion = Region; 13829 13830 { 13831 SequencedSubexpression SeqBefore(*this); 13832 Region = BeforeRegion; 13833 Visit(SequencedBefore); 13834 } 13835 13836 Region = AfterRegion; 13837 Visit(SequencedAfter); 13838 13839 Region = OldRegion; 13840 13841 Tree.merge(BeforeRegion); 13842 Tree.merge(AfterRegion); 13843 } 13844 13845 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 13846 // C++17 [expr.sub]p1: 13847 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 13848 // expression E1 is sequenced before the expression E2. 13849 if (SemaRef.getLangOpts().CPlusPlus17) 13850 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 13851 else { 13852 Visit(ASE->getLHS()); 13853 Visit(ASE->getRHS()); 13854 } 13855 } 13856 13857 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13858 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13859 void VisitBinPtrMem(const BinaryOperator *BO) { 13860 // C++17 [expr.mptr.oper]p4: 13861 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 13862 // the expression E1 is sequenced before the expression E2. 13863 if (SemaRef.getLangOpts().CPlusPlus17) 13864 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13865 else { 13866 Visit(BO->getLHS()); 13867 Visit(BO->getRHS()); 13868 } 13869 } 13870 13871 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13872 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13873 void VisitBinShlShr(const BinaryOperator *BO) { 13874 // C++17 [expr.shift]p4: 13875 // The expression E1 is sequenced before the expression E2. 13876 if (SemaRef.getLangOpts().CPlusPlus17) 13877 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13878 else { 13879 Visit(BO->getLHS()); 13880 Visit(BO->getRHS()); 13881 } 13882 } 13883 13884 void VisitBinComma(const BinaryOperator *BO) { 13885 // C++11 [expr.comma]p1: 13886 // Every value computation and side effect associated with the left 13887 // expression is sequenced before every value computation and side 13888 // effect associated with the right expression. 13889 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13890 } 13891 13892 void VisitBinAssign(const BinaryOperator *BO) { 13893 SequenceTree::Seq RHSRegion; 13894 SequenceTree::Seq LHSRegion; 13895 if (SemaRef.getLangOpts().CPlusPlus17) { 13896 RHSRegion = Tree.allocate(Region); 13897 LHSRegion = Tree.allocate(Region); 13898 } else { 13899 RHSRegion = Region; 13900 LHSRegion = Region; 13901 } 13902 SequenceTree::Seq OldRegion = Region; 13903 13904 // C++11 [expr.ass]p1: 13905 // [...] the assignment is sequenced after the value computation 13906 // of the right and left operands, [...] 13907 // 13908 // so check it before inspecting the operands and update the 13909 // map afterwards. 13910 Object O = getObject(BO->getLHS(), /*Mod=*/true); 13911 if (O) 13912 notePreMod(O, BO); 13913 13914 if (SemaRef.getLangOpts().CPlusPlus17) { 13915 // C++17 [expr.ass]p1: 13916 // [...] The right operand is sequenced before the left operand. [...] 13917 { 13918 SequencedSubexpression SeqBefore(*this); 13919 Region = RHSRegion; 13920 Visit(BO->getRHS()); 13921 } 13922 13923 Region = LHSRegion; 13924 Visit(BO->getLHS()); 13925 13926 if (O && isa<CompoundAssignOperator>(BO)) 13927 notePostUse(O, BO); 13928 13929 } else { 13930 // C++11 does not specify any sequencing between the LHS and RHS. 13931 Region = LHSRegion; 13932 Visit(BO->getLHS()); 13933 13934 if (O && isa<CompoundAssignOperator>(BO)) 13935 notePostUse(O, BO); 13936 13937 Region = RHSRegion; 13938 Visit(BO->getRHS()); 13939 } 13940 13941 // C++11 [expr.ass]p1: 13942 // the assignment is sequenced [...] before the value computation of the 13943 // assignment expression. 13944 // C11 6.5.16/3 has no such rule. 13945 Region = OldRegion; 13946 if (O) 13947 notePostMod(O, BO, 13948 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13949 : UK_ModAsSideEffect); 13950 if (SemaRef.getLangOpts().CPlusPlus17) { 13951 Tree.merge(RHSRegion); 13952 Tree.merge(LHSRegion); 13953 } 13954 } 13955 13956 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 13957 VisitBinAssign(CAO); 13958 } 13959 13960 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13961 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13962 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 13963 Object O = getObject(UO->getSubExpr(), true); 13964 if (!O) 13965 return VisitExpr(UO); 13966 13967 notePreMod(O, UO); 13968 Visit(UO->getSubExpr()); 13969 // C++11 [expr.pre.incr]p1: 13970 // the expression ++x is equivalent to x+=1 13971 notePostMod(O, UO, 13972 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13973 : UK_ModAsSideEffect); 13974 } 13975 13976 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13977 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13978 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 13979 Object O = getObject(UO->getSubExpr(), true); 13980 if (!O) 13981 return VisitExpr(UO); 13982 13983 notePreMod(O, UO); 13984 Visit(UO->getSubExpr()); 13985 notePostMod(O, UO, UK_ModAsSideEffect); 13986 } 13987 13988 void VisitBinLOr(const BinaryOperator *BO) { 13989 // C++11 [expr.log.or]p2: 13990 // If the second expression is evaluated, every value computation and 13991 // side effect associated with the first expression is sequenced before 13992 // every value computation and side effect associated with the 13993 // second expression. 13994 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13995 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13996 SequenceTree::Seq OldRegion = Region; 13997 13998 EvaluationTracker Eval(*this); 13999 { 14000 SequencedSubexpression Sequenced(*this); 14001 Region = LHSRegion; 14002 Visit(BO->getLHS()); 14003 } 14004 14005 // C++11 [expr.log.or]p1: 14006 // [...] the second operand is not evaluated if the first operand 14007 // evaluates to true. 14008 bool EvalResult = false; 14009 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14010 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 14011 if (ShouldVisitRHS) { 14012 Region = RHSRegion; 14013 Visit(BO->getRHS()); 14014 } 14015 14016 Region = OldRegion; 14017 Tree.merge(LHSRegion); 14018 Tree.merge(RHSRegion); 14019 } 14020 14021 void VisitBinLAnd(const BinaryOperator *BO) { 14022 // C++11 [expr.log.and]p2: 14023 // If the second expression is evaluated, every value computation and 14024 // side effect associated with the first expression is sequenced before 14025 // every value computation and side effect associated with the 14026 // second expression. 14027 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 14028 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 14029 SequenceTree::Seq OldRegion = Region; 14030 14031 EvaluationTracker Eval(*this); 14032 { 14033 SequencedSubexpression Sequenced(*this); 14034 Region = LHSRegion; 14035 Visit(BO->getLHS()); 14036 } 14037 14038 // C++11 [expr.log.and]p1: 14039 // [...] the second operand is not evaluated if the first operand is false. 14040 bool EvalResult = false; 14041 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 14042 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 14043 if (ShouldVisitRHS) { 14044 Region = RHSRegion; 14045 Visit(BO->getRHS()); 14046 } 14047 14048 Region = OldRegion; 14049 Tree.merge(LHSRegion); 14050 Tree.merge(RHSRegion); 14051 } 14052 14053 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 14054 // C++11 [expr.cond]p1: 14055 // [...] Every value computation and side effect associated with the first 14056 // expression is sequenced before every value computation and side effect 14057 // associated with the second or third expression. 14058 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 14059 14060 // No sequencing is specified between the true and false expression. 14061 // However since exactly one of both is going to be evaluated we can 14062 // consider them to be sequenced. This is needed to avoid warning on 14063 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 14064 // both the true and false expressions because we can't evaluate x. 14065 // This will still allow us to detect an expression like (pre C++17) 14066 // "(x ? y += 1 : y += 2) = y". 14067 // 14068 // We don't wrap the visitation of the true and false expression with 14069 // SequencedSubexpression because we don't want to downgrade modifications 14070 // as side effect in the true and false expressions after the visition 14071 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 14072 // not warn between the two "y++", but we should warn between the "y++" 14073 // and the "y". 14074 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 14075 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 14076 SequenceTree::Seq OldRegion = Region; 14077 14078 EvaluationTracker Eval(*this); 14079 { 14080 SequencedSubexpression Sequenced(*this); 14081 Region = ConditionRegion; 14082 Visit(CO->getCond()); 14083 } 14084 14085 // C++11 [expr.cond]p1: 14086 // [...] The first expression is contextually converted to bool (Clause 4). 14087 // It is evaluated and if it is true, the result of the conditional 14088 // expression is the value of the second expression, otherwise that of the 14089 // third expression. Only one of the second and third expressions is 14090 // evaluated. [...] 14091 bool EvalResult = false; 14092 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 14093 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 14094 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 14095 if (ShouldVisitTrueExpr) { 14096 Region = TrueRegion; 14097 Visit(CO->getTrueExpr()); 14098 } 14099 if (ShouldVisitFalseExpr) { 14100 Region = FalseRegion; 14101 Visit(CO->getFalseExpr()); 14102 } 14103 14104 Region = OldRegion; 14105 Tree.merge(ConditionRegion); 14106 Tree.merge(TrueRegion); 14107 Tree.merge(FalseRegion); 14108 } 14109 14110 void VisitCallExpr(const CallExpr *CE) { 14111 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 14112 14113 if (CE->isUnevaluatedBuiltinCall(Context)) 14114 return; 14115 14116 // C++11 [intro.execution]p15: 14117 // When calling a function [...], every value computation and side effect 14118 // associated with any argument expression, or with the postfix expression 14119 // designating the called function, is sequenced before execution of every 14120 // expression or statement in the body of the function [and thus before 14121 // the value computation of its result]. 14122 SequencedSubexpression Sequenced(*this); 14123 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 14124 // C++17 [expr.call]p5 14125 // The postfix-expression is sequenced before each expression in the 14126 // expression-list and any default argument. [...] 14127 SequenceTree::Seq CalleeRegion; 14128 SequenceTree::Seq OtherRegion; 14129 if (SemaRef.getLangOpts().CPlusPlus17) { 14130 CalleeRegion = Tree.allocate(Region); 14131 OtherRegion = Tree.allocate(Region); 14132 } else { 14133 CalleeRegion = Region; 14134 OtherRegion = Region; 14135 } 14136 SequenceTree::Seq OldRegion = Region; 14137 14138 // Visit the callee expression first. 14139 Region = CalleeRegion; 14140 if (SemaRef.getLangOpts().CPlusPlus17) { 14141 SequencedSubexpression Sequenced(*this); 14142 Visit(CE->getCallee()); 14143 } else { 14144 Visit(CE->getCallee()); 14145 } 14146 14147 // Then visit the argument expressions. 14148 Region = OtherRegion; 14149 for (const Expr *Argument : CE->arguments()) 14150 Visit(Argument); 14151 14152 Region = OldRegion; 14153 if (SemaRef.getLangOpts().CPlusPlus17) { 14154 Tree.merge(CalleeRegion); 14155 Tree.merge(OtherRegion); 14156 } 14157 }); 14158 } 14159 14160 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 14161 // C++17 [over.match.oper]p2: 14162 // [...] the operator notation is first transformed to the equivalent 14163 // function-call notation as summarized in Table 12 (where @ denotes one 14164 // of the operators covered in the specified subclause). However, the 14165 // operands are sequenced in the order prescribed for the built-in 14166 // operator (Clause 8). 14167 // 14168 // From the above only overloaded binary operators and overloaded call 14169 // operators have sequencing rules in C++17 that we need to handle 14170 // separately. 14171 if (!SemaRef.getLangOpts().CPlusPlus17 || 14172 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 14173 return VisitCallExpr(CXXOCE); 14174 14175 enum { 14176 NoSequencing, 14177 LHSBeforeRHS, 14178 RHSBeforeLHS, 14179 LHSBeforeRest 14180 } SequencingKind; 14181 switch (CXXOCE->getOperator()) { 14182 case OO_Equal: 14183 case OO_PlusEqual: 14184 case OO_MinusEqual: 14185 case OO_StarEqual: 14186 case OO_SlashEqual: 14187 case OO_PercentEqual: 14188 case OO_CaretEqual: 14189 case OO_AmpEqual: 14190 case OO_PipeEqual: 14191 case OO_LessLessEqual: 14192 case OO_GreaterGreaterEqual: 14193 SequencingKind = RHSBeforeLHS; 14194 break; 14195 14196 case OO_LessLess: 14197 case OO_GreaterGreater: 14198 case OO_AmpAmp: 14199 case OO_PipePipe: 14200 case OO_Comma: 14201 case OO_ArrowStar: 14202 case OO_Subscript: 14203 SequencingKind = LHSBeforeRHS; 14204 break; 14205 14206 case OO_Call: 14207 SequencingKind = LHSBeforeRest; 14208 break; 14209 14210 default: 14211 SequencingKind = NoSequencing; 14212 break; 14213 } 14214 14215 if (SequencingKind == NoSequencing) 14216 return VisitCallExpr(CXXOCE); 14217 14218 // This is a call, so all subexpressions are sequenced before the result. 14219 SequencedSubexpression Sequenced(*this); 14220 14221 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 14222 assert(SemaRef.getLangOpts().CPlusPlus17 && 14223 "Should only get there with C++17 and above!"); 14224 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 14225 "Should only get there with an overloaded binary operator" 14226 " or an overloaded call operator!"); 14227 14228 if (SequencingKind == LHSBeforeRest) { 14229 assert(CXXOCE->getOperator() == OO_Call && 14230 "We should only have an overloaded call operator here!"); 14231 14232 // This is very similar to VisitCallExpr, except that we only have the 14233 // C++17 case. The postfix-expression is the first argument of the 14234 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 14235 // are in the following arguments. 14236 // 14237 // Note that we intentionally do not visit the callee expression since 14238 // it is just a decayed reference to a function. 14239 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 14240 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 14241 SequenceTree::Seq OldRegion = Region; 14242 14243 assert(CXXOCE->getNumArgs() >= 1 && 14244 "An overloaded call operator must have at least one argument" 14245 " for the postfix-expression!"); 14246 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 14247 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 14248 CXXOCE->getNumArgs() - 1); 14249 14250 // Visit the postfix-expression first. 14251 { 14252 Region = PostfixExprRegion; 14253 SequencedSubexpression Sequenced(*this); 14254 Visit(PostfixExpr); 14255 } 14256 14257 // Then visit the argument expressions. 14258 Region = ArgsRegion; 14259 for (const Expr *Arg : Args) 14260 Visit(Arg); 14261 14262 Region = OldRegion; 14263 Tree.merge(PostfixExprRegion); 14264 Tree.merge(ArgsRegion); 14265 } else { 14266 assert(CXXOCE->getNumArgs() == 2 && 14267 "Should only have two arguments here!"); 14268 assert((SequencingKind == LHSBeforeRHS || 14269 SequencingKind == RHSBeforeLHS) && 14270 "Unexpected sequencing kind!"); 14271 14272 // We do not visit the callee expression since it is just a decayed 14273 // reference to a function. 14274 const Expr *E1 = CXXOCE->getArg(0); 14275 const Expr *E2 = CXXOCE->getArg(1); 14276 if (SequencingKind == RHSBeforeLHS) 14277 std::swap(E1, E2); 14278 14279 return VisitSequencedExpressions(E1, E2); 14280 } 14281 }); 14282 } 14283 14284 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 14285 // This is a call, so all subexpressions are sequenced before the result. 14286 SequencedSubexpression Sequenced(*this); 14287 14288 if (!CCE->isListInitialization()) 14289 return VisitExpr(CCE); 14290 14291 // In C++11, list initializations are sequenced. 14292 SmallVector<SequenceTree::Seq, 32> Elts; 14293 SequenceTree::Seq Parent = Region; 14294 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 14295 E = CCE->arg_end(); 14296 I != E; ++I) { 14297 Region = Tree.allocate(Parent); 14298 Elts.push_back(Region); 14299 Visit(*I); 14300 } 14301 14302 // Forget that the initializers are sequenced. 14303 Region = Parent; 14304 for (unsigned I = 0; I < Elts.size(); ++I) 14305 Tree.merge(Elts[I]); 14306 } 14307 14308 void VisitInitListExpr(const InitListExpr *ILE) { 14309 if (!SemaRef.getLangOpts().CPlusPlus11) 14310 return VisitExpr(ILE); 14311 14312 // In C++11, list initializations are sequenced. 14313 SmallVector<SequenceTree::Seq, 32> Elts; 14314 SequenceTree::Seq Parent = Region; 14315 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 14316 const Expr *E = ILE->getInit(I); 14317 if (!E) 14318 continue; 14319 Region = Tree.allocate(Parent); 14320 Elts.push_back(Region); 14321 Visit(E); 14322 } 14323 14324 // Forget that the initializers are sequenced. 14325 Region = Parent; 14326 for (unsigned I = 0; I < Elts.size(); ++I) 14327 Tree.merge(Elts[I]); 14328 } 14329 }; 14330 14331 } // namespace 14332 14333 void Sema::CheckUnsequencedOperations(const Expr *E) { 14334 SmallVector<const Expr *, 8> WorkList; 14335 WorkList.push_back(E); 14336 while (!WorkList.empty()) { 14337 const Expr *Item = WorkList.pop_back_val(); 14338 SequenceChecker(*this, Item, WorkList); 14339 } 14340 } 14341 14342 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 14343 bool IsConstexpr) { 14344 llvm::SaveAndRestore<bool> ConstantContext( 14345 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 14346 CheckImplicitConversions(E, CheckLoc); 14347 if (!E->isInstantiationDependent()) 14348 CheckUnsequencedOperations(E); 14349 if (!IsConstexpr && !E->isValueDependent()) 14350 CheckForIntOverflow(E); 14351 DiagnoseMisalignedMembers(); 14352 } 14353 14354 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 14355 FieldDecl *BitField, 14356 Expr *Init) { 14357 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 14358 } 14359 14360 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 14361 SourceLocation Loc) { 14362 if (!PType->isVariablyModifiedType()) 14363 return; 14364 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 14365 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 14366 return; 14367 } 14368 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 14369 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 14370 return; 14371 } 14372 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 14373 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 14374 return; 14375 } 14376 14377 const ArrayType *AT = S.Context.getAsArrayType(PType); 14378 if (!AT) 14379 return; 14380 14381 if (AT->getSizeModifier() != ArrayType::Star) { 14382 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 14383 return; 14384 } 14385 14386 S.Diag(Loc, diag::err_array_star_in_function_definition); 14387 } 14388 14389 /// CheckParmsForFunctionDef - Check that the parameters of the given 14390 /// function are appropriate for the definition of a function. This 14391 /// takes care of any checks that cannot be performed on the 14392 /// declaration itself, e.g., that the types of each of the function 14393 /// parameters are complete. 14394 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 14395 bool CheckParameterNames) { 14396 bool HasInvalidParm = false; 14397 for (ParmVarDecl *Param : Parameters) { 14398 // C99 6.7.5.3p4: the parameters in a parameter type list in a 14399 // function declarator that is part of a function definition of 14400 // that function shall not have incomplete type. 14401 // 14402 // This is also C++ [dcl.fct]p6. 14403 if (!Param->isInvalidDecl() && 14404 RequireCompleteType(Param->getLocation(), Param->getType(), 14405 diag::err_typecheck_decl_incomplete_type)) { 14406 Param->setInvalidDecl(); 14407 HasInvalidParm = true; 14408 } 14409 14410 // C99 6.9.1p5: If the declarator includes a parameter type list, the 14411 // declaration of each parameter shall include an identifier. 14412 if (CheckParameterNames && Param->getIdentifier() == nullptr && 14413 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 14414 // Diagnose this as an extension in C17 and earlier. 14415 if (!getLangOpts().C2x) 14416 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 14417 } 14418 14419 // C99 6.7.5.3p12: 14420 // If the function declarator is not part of a definition of that 14421 // function, parameters may have incomplete type and may use the [*] 14422 // notation in their sequences of declarator specifiers to specify 14423 // variable length array types. 14424 QualType PType = Param->getOriginalType(); 14425 // FIXME: This diagnostic should point the '[*]' if source-location 14426 // information is added for it. 14427 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 14428 14429 // If the parameter is a c++ class type and it has to be destructed in the 14430 // callee function, declare the destructor so that it can be called by the 14431 // callee function. Do not perform any direct access check on the dtor here. 14432 if (!Param->isInvalidDecl()) { 14433 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 14434 if (!ClassDecl->isInvalidDecl() && 14435 !ClassDecl->hasIrrelevantDestructor() && 14436 !ClassDecl->isDependentContext() && 14437 ClassDecl->isParamDestroyedInCallee()) { 14438 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 14439 MarkFunctionReferenced(Param->getLocation(), Destructor); 14440 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 14441 } 14442 } 14443 } 14444 14445 // Parameters with the pass_object_size attribute only need to be marked 14446 // constant at function definitions. Because we lack information about 14447 // whether we're on a declaration or definition when we're instantiating the 14448 // attribute, we need to check for constness here. 14449 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 14450 if (!Param->getType().isConstQualified()) 14451 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 14452 << Attr->getSpelling() << 1; 14453 14454 // Check for parameter names shadowing fields from the class. 14455 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 14456 // The owning context for the parameter should be the function, but we 14457 // want to see if this function's declaration context is a record. 14458 DeclContext *DC = Param->getDeclContext(); 14459 if (DC && DC->isFunctionOrMethod()) { 14460 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 14461 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 14462 RD, /*DeclIsField*/ false); 14463 } 14464 } 14465 } 14466 14467 return HasInvalidParm; 14468 } 14469 14470 Optional<std::pair<CharUnits, CharUnits>> 14471 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 14472 14473 /// Compute the alignment and offset of the base class object given the 14474 /// derived-to-base cast expression and the alignment and offset of the derived 14475 /// class object. 14476 static std::pair<CharUnits, CharUnits> 14477 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 14478 CharUnits BaseAlignment, CharUnits Offset, 14479 ASTContext &Ctx) { 14480 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 14481 ++PathI) { 14482 const CXXBaseSpecifier *Base = *PathI; 14483 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 14484 if (Base->isVirtual()) { 14485 // The complete object may have a lower alignment than the non-virtual 14486 // alignment of the base, in which case the base may be misaligned. Choose 14487 // the smaller of the non-virtual alignment and BaseAlignment, which is a 14488 // conservative lower bound of the complete object alignment. 14489 CharUnits NonVirtualAlignment = 14490 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 14491 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 14492 Offset = CharUnits::Zero(); 14493 } else { 14494 const ASTRecordLayout &RL = 14495 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 14496 Offset += RL.getBaseClassOffset(BaseDecl); 14497 } 14498 DerivedType = Base->getType(); 14499 } 14500 14501 return std::make_pair(BaseAlignment, Offset); 14502 } 14503 14504 /// Compute the alignment and offset of a binary additive operator. 14505 static Optional<std::pair<CharUnits, CharUnits>> 14506 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 14507 bool IsSub, ASTContext &Ctx) { 14508 QualType PointeeType = PtrE->getType()->getPointeeType(); 14509 14510 if (!PointeeType->isConstantSizeType()) 14511 return llvm::None; 14512 14513 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 14514 14515 if (!P) 14516 return llvm::None; 14517 14518 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 14519 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 14520 CharUnits Offset = EltSize * IdxRes->getExtValue(); 14521 if (IsSub) 14522 Offset = -Offset; 14523 return std::make_pair(P->first, P->second + Offset); 14524 } 14525 14526 // If the integer expression isn't a constant expression, compute the lower 14527 // bound of the alignment using the alignment and offset of the pointer 14528 // expression and the element size. 14529 return std::make_pair( 14530 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 14531 CharUnits::Zero()); 14532 } 14533 14534 /// This helper function takes an lvalue expression and returns the alignment of 14535 /// a VarDecl and a constant offset from the VarDecl. 14536 Optional<std::pair<CharUnits, CharUnits>> 14537 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 14538 E = E->IgnoreParens(); 14539 switch (E->getStmtClass()) { 14540 default: 14541 break; 14542 case Stmt::CStyleCastExprClass: 14543 case Stmt::CXXStaticCastExprClass: 14544 case Stmt::ImplicitCastExprClass: { 14545 auto *CE = cast<CastExpr>(E); 14546 const Expr *From = CE->getSubExpr(); 14547 switch (CE->getCastKind()) { 14548 default: 14549 break; 14550 case CK_NoOp: 14551 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14552 case CK_UncheckedDerivedToBase: 14553 case CK_DerivedToBase: { 14554 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14555 if (!P) 14556 break; 14557 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 14558 P->second, Ctx); 14559 } 14560 } 14561 break; 14562 } 14563 case Stmt::ArraySubscriptExprClass: { 14564 auto *ASE = cast<ArraySubscriptExpr>(E); 14565 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 14566 false, Ctx); 14567 } 14568 case Stmt::DeclRefExprClass: { 14569 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 14570 // FIXME: If VD is captured by copy or is an escaping __block variable, 14571 // use the alignment of VD's type. 14572 if (!VD->getType()->isReferenceType()) 14573 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 14574 if (VD->hasInit()) 14575 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 14576 } 14577 break; 14578 } 14579 case Stmt::MemberExprClass: { 14580 auto *ME = cast<MemberExpr>(E); 14581 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 14582 if (!FD || FD->getType()->isReferenceType() || 14583 FD->getParent()->isInvalidDecl()) 14584 break; 14585 Optional<std::pair<CharUnits, CharUnits>> P; 14586 if (ME->isArrow()) 14587 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 14588 else 14589 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 14590 if (!P) 14591 break; 14592 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 14593 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 14594 return std::make_pair(P->first, 14595 P->second + CharUnits::fromQuantity(Offset)); 14596 } 14597 case Stmt::UnaryOperatorClass: { 14598 auto *UO = cast<UnaryOperator>(E); 14599 switch (UO->getOpcode()) { 14600 default: 14601 break; 14602 case UO_Deref: 14603 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 14604 } 14605 break; 14606 } 14607 case Stmt::BinaryOperatorClass: { 14608 auto *BO = cast<BinaryOperator>(E); 14609 auto Opcode = BO->getOpcode(); 14610 switch (Opcode) { 14611 default: 14612 break; 14613 case BO_Comma: 14614 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 14615 } 14616 break; 14617 } 14618 } 14619 return llvm::None; 14620 } 14621 14622 /// This helper function takes a pointer expression and returns the alignment of 14623 /// a VarDecl and a constant offset from the VarDecl. 14624 Optional<std::pair<CharUnits, CharUnits>> 14625 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 14626 E = E->IgnoreParens(); 14627 switch (E->getStmtClass()) { 14628 default: 14629 break; 14630 case Stmt::CStyleCastExprClass: 14631 case Stmt::CXXStaticCastExprClass: 14632 case Stmt::ImplicitCastExprClass: { 14633 auto *CE = cast<CastExpr>(E); 14634 const Expr *From = CE->getSubExpr(); 14635 switch (CE->getCastKind()) { 14636 default: 14637 break; 14638 case CK_NoOp: 14639 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14640 case CK_ArrayToPointerDecay: 14641 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14642 case CK_UncheckedDerivedToBase: 14643 case CK_DerivedToBase: { 14644 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14645 if (!P) 14646 break; 14647 return getDerivedToBaseAlignmentAndOffset( 14648 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 14649 } 14650 } 14651 break; 14652 } 14653 case Stmt::CXXThisExprClass: { 14654 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 14655 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 14656 return std::make_pair(Alignment, CharUnits::Zero()); 14657 } 14658 case Stmt::UnaryOperatorClass: { 14659 auto *UO = cast<UnaryOperator>(E); 14660 if (UO->getOpcode() == UO_AddrOf) 14661 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 14662 break; 14663 } 14664 case Stmt::BinaryOperatorClass: { 14665 auto *BO = cast<BinaryOperator>(E); 14666 auto Opcode = BO->getOpcode(); 14667 switch (Opcode) { 14668 default: 14669 break; 14670 case BO_Add: 14671 case BO_Sub: { 14672 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 14673 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 14674 std::swap(LHS, RHS); 14675 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 14676 Ctx); 14677 } 14678 case BO_Comma: 14679 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 14680 } 14681 break; 14682 } 14683 } 14684 return llvm::None; 14685 } 14686 14687 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 14688 // See if we can compute the alignment of a VarDecl and an offset from it. 14689 Optional<std::pair<CharUnits, CharUnits>> P = 14690 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 14691 14692 if (P) 14693 return P->first.alignmentAtOffset(P->second); 14694 14695 // If that failed, return the type's alignment. 14696 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 14697 } 14698 14699 /// CheckCastAlign - Implements -Wcast-align, which warns when a 14700 /// pointer cast increases the alignment requirements. 14701 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 14702 // This is actually a lot of work to potentially be doing on every 14703 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 14704 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 14705 return; 14706 14707 // Ignore dependent types. 14708 if (T->isDependentType() || Op->getType()->isDependentType()) 14709 return; 14710 14711 // Require that the destination be a pointer type. 14712 const PointerType *DestPtr = T->getAs<PointerType>(); 14713 if (!DestPtr) return; 14714 14715 // If the destination has alignment 1, we're done. 14716 QualType DestPointee = DestPtr->getPointeeType(); 14717 if (DestPointee->isIncompleteType()) return; 14718 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 14719 if (DestAlign.isOne()) return; 14720 14721 // Require that the source be a pointer type. 14722 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 14723 if (!SrcPtr) return; 14724 QualType SrcPointee = SrcPtr->getPointeeType(); 14725 14726 // Explicitly allow casts from cv void*. We already implicitly 14727 // allowed casts to cv void*, since they have alignment 1. 14728 // Also allow casts involving incomplete types, which implicitly 14729 // includes 'void'. 14730 if (SrcPointee->isIncompleteType()) return; 14731 14732 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 14733 14734 if (SrcAlign >= DestAlign) return; 14735 14736 Diag(TRange.getBegin(), diag::warn_cast_align) 14737 << Op->getType() << T 14738 << static_cast<unsigned>(SrcAlign.getQuantity()) 14739 << static_cast<unsigned>(DestAlign.getQuantity()) 14740 << TRange << Op->getSourceRange(); 14741 } 14742 14743 /// Check whether this array fits the idiom of a size-one tail padded 14744 /// array member of a struct. 14745 /// 14746 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 14747 /// commonly used to emulate flexible arrays in C89 code. 14748 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 14749 const NamedDecl *ND) { 14750 if (Size != 1 || !ND) return false; 14751 14752 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 14753 if (!FD) return false; 14754 14755 // Don't consider sizes resulting from macro expansions or template argument 14756 // substitution to form C89 tail-padded arrays. 14757 14758 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 14759 while (TInfo) { 14760 TypeLoc TL = TInfo->getTypeLoc(); 14761 // Look through typedefs. 14762 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 14763 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 14764 TInfo = TDL->getTypeSourceInfo(); 14765 continue; 14766 } 14767 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 14768 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 14769 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 14770 return false; 14771 } 14772 break; 14773 } 14774 14775 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 14776 if (!RD) return false; 14777 if (RD->isUnion()) return false; 14778 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 14779 if (!CRD->isStandardLayout()) return false; 14780 } 14781 14782 // See if this is the last field decl in the record. 14783 const Decl *D = FD; 14784 while ((D = D->getNextDeclInContext())) 14785 if (isa<FieldDecl>(D)) 14786 return false; 14787 return true; 14788 } 14789 14790 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 14791 const ArraySubscriptExpr *ASE, 14792 bool AllowOnePastEnd, bool IndexNegated) { 14793 // Already diagnosed by the constant evaluator. 14794 if (isConstantEvaluated()) 14795 return; 14796 14797 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 14798 if (IndexExpr->isValueDependent()) 14799 return; 14800 14801 const Type *EffectiveType = 14802 BaseExpr->getType()->getPointeeOrArrayElementType(); 14803 BaseExpr = BaseExpr->IgnoreParenCasts(); 14804 const ConstantArrayType *ArrayTy = 14805 Context.getAsConstantArrayType(BaseExpr->getType()); 14806 14807 const Type *BaseType = 14808 ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr(); 14809 bool IsUnboundedArray = (BaseType == nullptr); 14810 if (EffectiveType->isDependentType() || 14811 (!IsUnboundedArray && BaseType->isDependentType())) 14812 return; 14813 14814 Expr::EvalResult Result; 14815 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 14816 return; 14817 14818 llvm::APSInt index = Result.Val.getInt(); 14819 if (IndexNegated) { 14820 index.setIsUnsigned(false); 14821 index = -index; 14822 } 14823 14824 const NamedDecl *ND = nullptr; 14825 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14826 ND = DRE->getDecl(); 14827 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14828 ND = ME->getMemberDecl(); 14829 14830 if (IsUnboundedArray) { 14831 if (index.isUnsigned() || !index.isNegative()) { 14832 const auto &ASTC = getASTContext(); 14833 unsigned AddrBits = 14834 ASTC.getTargetInfo().getPointerWidth(ASTC.getTargetAddressSpace( 14835 EffectiveType->getCanonicalTypeInternal())); 14836 if (index.getBitWidth() < AddrBits) 14837 index = index.zext(AddrBits); 14838 Optional<CharUnits> ElemCharUnits = 14839 ASTC.getTypeSizeInCharsIfKnown(EffectiveType); 14840 // PR50741 - If EffectiveType has unknown size (e.g., if it's a void 14841 // pointer) bounds-checking isn't meaningful. 14842 if (!ElemCharUnits) 14843 return; 14844 llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity()); 14845 // If index has more active bits than address space, we already know 14846 // we have a bounds violation to warn about. Otherwise, compute 14847 // address of (index + 1)th element, and warn about bounds violation 14848 // only if that address exceeds address space. 14849 if (index.getActiveBits() <= AddrBits) { 14850 bool Overflow; 14851 llvm::APInt Product(index); 14852 Product += 1; 14853 Product = Product.umul_ov(ElemBytes, Overflow); 14854 if (!Overflow && Product.getActiveBits() <= AddrBits) 14855 return; 14856 } 14857 14858 // Need to compute max possible elements in address space, since that 14859 // is included in diag message. 14860 llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits); 14861 MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth())); 14862 MaxElems += 1; 14863 ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth()); 14864 MaxElems = MaxElems.udiv(ElemBytes); 14865 14866 unsigned DiagID = 14867 ASE ? diag::warn_array_index_exceeds_max_addressable_bounds 14868 : diag::warn_ptr_arith_exceeds_max_addressable_bounds; 14869 14870 // Diag message shows element size in bits and in "bytes" (platform- 14871 // dependent CharUnits) 14872 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14873 PDiag(DiagID) 14874 << toString(index, 10, true) << AddrBits 14875 << (unsigned)ASTC.toBits(*ElemCharUnits) 14876 << toString(ElemBytes, 10, false) 14877 << toString(MaxElems, 10, false) 14878 << (unsigned)MaxElems.getLimitedValue(~0U) 14879 << IndexExpr->getSourceRange()); 14880 14881 if (!ND) { 14882 // Try harder to find a NamedDecl to point at in the note. 14883 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 14884 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 14885 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14886 ND = DRE->getDecl(); 14887 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 14888 ND = ME->getMemberDecl(); 14889 } 14890 14891 if (ND) 14892 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 14893 PDiag(diag::note_array_declared_here) << ND); 14894 } 14895 return; 14896 } 14897 14898 if (index.isUnsigned() || !index.isNegative()) { 14899 // It is possible that the type of the base expression after 14900 // IgnoreParenCasts is incomplete, even though the type of the base 14901 // expression before IgnoreParenCasts is complete (see PR39746 for an 14902 // example). In this case we have no information about whether the array 14903 // access exceeds the array bounds. However we can still diagnose an array 14904 // access which precedes the array bounds. 14905 if (BaseType->isIncompleteType()) 14906 return; 14907 14908 llvm::APInt size = ArrayTy->getSize(); 14909 if (!size.isStrictlyPositive()) 14910 return; 14911 14912 if (BaseType != EffectiveType) { 14913 // Make sure we're comparing apples to apples when comparing index to size 14914 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 14915 uint64_t array_typesize = Context.getTypeSize(BaseType); 14916 // Handle ptrarith_typesize being zero, such as when casting to void* 14917 if (!ptrarith_typesize) ptrarith_typesize = 1; 14918 if (ptrarith_typesize != array_typesize) { 14919 // There's a cast to a different size type involved 14920 uint64_t ratio = array_typesize / ptrarith_typesize; 14921 // TODO: Be smarter about handling cases where array_typesize is not a 14922 // multiple of ptrarith_typesize 14923 if (ptrarith_typesize * ratio == array_typesize) 14924 size *= llvm::APInt(size.getBitWidth(), ratio); 14925 } 14926 } 14927 14928 if (size.getBitWidth() > index.getBitWidth()) 14929 index = index.zext(size.getBitWidth()); 14930 else if (size.getBitWidth() < index.getBitWidth()) 14931 size = size.zext(index.getBitWidth()); 14932 14933 // For array subscripting the index must be less than size, but for pointer 14934 // arithmetic also allow the index (offset) to be equal to size since 14935 // computing the next address after the end of the array is legal and 14936 // commonly done e.g. in C++ iterators and range-based for loops. 14937 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 14938 return; 14939 14940 // Also don't warn for arrays of size 1 which are members of some 14941 // structure. These are often used to approximate flexible arrays in C89 14942 // code. 14943 if (IsTailPaddedMemberArray(*this, size, ND)) 14944 return; 14945 14946 // Suppress the warning if the subscript expression (as identified by the 14947 // ']' location) and the index expression are both from macro expansions 14948 // within a system header. 14949 if (ASE) { 14950 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 14951 ASE->getRBracketLoc()); 14952 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 14953 SourceLocation IndexLoc = 14954 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 14955 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 14956 return; 14957 } 14958 } 14959 14960 unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds 14961 : diag::warn_ptr_arith_exceeds_bounds; 14962 14963 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14964 PDiag(DiagID) << toString(index, 10, true) 14965 << toString(size, 10, true) 14966 << (unsigned)size.getLimitedValue(~0U) 14967 << IndexExpr->getSourceRange()); 14968 } else { 14969 unsigned DiagID = diag::warn_array_index_precedes_bounds; 14970 if (!ASE) { 14971 DiagID = diag::warn_ptr_arith_precedes_bounds; 14972 if (index.isNegative()) index = -index; 14973 } 14974 14975 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14976 PDiag(DiagID) << toString(index, 10, true) 14977 << IndexExpr->getSourceRange()); 14978 } 14979 14980 if (!ND) { 14981 // Try harder to find a NamedDecl to point at in the note. 14982 while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr)) 14983 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 14984 if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14985 ND = DRE->getDecl(); 14986 if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr)) 14987 ND = ME->getMemberDecl(); 14988 } 14989 14990 if (ND) 14991 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 14992 PDiag(diag::note_array_declared_here) << ND); 14993 } 14994 14995 void Sema::CheckArrayAccess(const Expr *expr) { 14996 int AllowOnePastEnd = 0; 14997 while (expr) { 14998 expr = expr->IgnoreParenImpCasts(); 14999 switch (expr->getStmtClass()) { 15000 case Stmt::ArraySubscriptExprClass: { 15001 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 15002 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 15003 AllowOnePastEnd > 0); 15004 expr = ASE->getBase(); 15005 break; 15006 } 15007 case Stmt::MemberExprClass: { 15008 expr = cast<MemberExpr>(expr)->getBase(); 15009 break; 15010 } 15011 case Stmt::OMPArraySectionExprClass: { 15012 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 15013 if (ASE->getLowerBound()) 15014 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 15015 /*ASE=*/nullptr, AllowOnePastEnd > 0); 15016 return; 15017 } 15018 case Stmt::UnaryOperatorClass: { 15019 // Only unwrap the * and & unary operators 15020 const UnaryOperator *UO = cast<UnaryOperator>(expr); 15021 expr = UO->getSubExpr(); 15022 switch (UO->getOpcode()) { 15023 case UO_AddrOf: 15024 AllowOnePastEnd++; 15025 break; 15026 case UO_Deref: 15027 AllowOnePastEnd--; 15028 break; 15029 default: 15030 return; 15031 } 15032 break; 15033 } 15034 case Stmt::ConditionalOperatorClass: { 15035 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 15036 if (const Expr *lhs = cond->getLHS()) 15037 CheckArrayAccess(lhs); 15038 if (const Expr *rhs = cond->getRHS()) 15039 CheckArrayAccess(rhs); 15040 return; 15041 } 15042 case Stmt::CXXOperatorCallExprClass: { 15043 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 15044 for (const auto *Arg : OCE->arguments()) 15045 CheckArrayAccess(Arg); 15046 return; 15047 } 15048 default: 15049 return; 15050 } 15051 } 15052 } 15053 15054 //===--- CHECK: Objective-C retain cycles ----------------------------------// 15055 15056 namespace { 15057 15058 struct RetainCycleOwner { 15059 VarDecl *Variable = nullptr; 15060 SourceRange Range; 15061 SourceLocation Loc; 15062 bool Indirect = false; 15063 15064 RetainCycleOwner() = default; 15065 15066 void setLocsFrom(Expr *e) { 15067 Loc = e->getExprLoc(); 15068 Range = e->getSourceRange(); 15069 } 15070 }; 15071 15072 } // namespace 15073 15074 /// Consider whether capturing the given variable can possibly lead to 15075 /// a retain cycle. 15076 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 15077 // In ARC, it's captured strongly iff the variable has __strong 15078 // lifetime. In MRR, it's captured strongly if the variable is 15079 // __block and has an appropriate type. 15080 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15081 return false; 15082 15083 owner.Variable = var; 15084 if (ref) 15085 owner.setLocsFrom(ref); 15086 return true; 15087 } 15088 15089 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 15090 while (true) { 15091 e = e->IgnoreParens(); 15092 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 15093 switch (cast->getCastKind()) { 15094 case CK_BitCast: 15095 case CK_LValueBitCast: 15096 case CK_LValueToRValue: 15097 case CK_ARCReclaimReturnedObject: 15098 e = cast->getSubExpr(); 15099 continue; 15100 15101 default: 15102 return false; 15103 } 15104 } 15105 15106 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 15107 ObjCIvarDecl *ivar = ref->getDecl(); 15108 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 15109 return false; 15110 15111 // Try to find a retain cycle in the base. 15112 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 15113 return false; 15114 15115 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 15116 owner.Indirect = true; 15117 return true; 15118 } 15119 15120 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 15121 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 15122 if (!var) return false; 15123 return considerVariable(var, ref, owner); 15124 } 15125 15126 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 15127 if (member->isArrow()) return false; 15128 15129 // Don't count this as an indirect ownership. 15130 e = member->getBase(); 15131 continue; 15132 } 15133 15134 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 15135 // Only pay attention to pseudo-objects on property references. 15136 ObjCPropertyRefExpr *pre 15137 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 15138 ->IgnoreParens()); 15139 if (!pre) return false; 15140 if (pre->isImplicitProperty()) return false; 15141 ObjCPropertyDecl *property = pre->getExplicitProperty(); 15142 if (!property->isRetaining() && 15143 !(property->getPropertyIvarDecl() && 15144 property->getPropertyIvarDecl()->getType() 15145 .getObjCLifetime() == Qualifiers::OCL_Strong)) 15146 return false; 15147 15148 owner.Indirect = true; 15149 if (pre->isSuperReceiver()) { 15150 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 15151 if (!owner.Variable) 15152 return false; 15153 owner.Loc = pre->getLocation(); 15154 owner.Range = pre->getSourceRange(); 15155 return true; 15156 } 15157 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 15158 ->getSourceExpr()); 15159 continue; 15160 } 15161 15162 // Array ivars? 15163 15164 return false; 15165 } 15166 } 15167 15168 namespace { 15169 15170 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 15171 ASTContext &Context; 15172 VarDecl *Variable; 15173 Expr *Capturer = nullptr; 15174 bool VarWillBeReased = false; 15175 15176 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 15177 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 15178 Context(Context), Variable(variable) {} 15179 15180 void VisitDeclRefExpr(DeclRefExpr *ref) { 15181 if (ref->getDecl() == Variable && !Capturer) 15182 Capturer = ref; 15183 } 15184 15185 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 15186 if (Capturer) return; 15187 Visit(ref->getBase()); 15188 if (Capturer && ref->isFreeIvar()) 15189 Capturer = ref; 15190 } 15191 15192 void VisitBlockExpr(BlockExpr *block) { 15193 // Look inside nested blocks 15194 if (block->getBlockDecl()->capturesVariable(Variable)) 15195 Visit(block->getBlockDecl()->getBody()); 15196 } 15197 15198 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 15199 if (Capturer) return; 15200 if (OVE->getSourceExpr()) 15201 Visit(OVE->getSourceExpr()); 15202 } 15203 15204 void VisitBinaryOperator(BinaryOperator *BinOp) { 15205 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 15206 return; 15207 Expr *LHS = BinOp->getLHS(); 15208 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 15209 if (DRE->getDecl() != Variable) 15210 return; 15211 if (Expr *RHS = BinOp->getRHS()) { 15212 RHS = RHS->IgnoreParenCasts(); 15213 Optional<llvm::APSInt> Value; 15214 VarWillBeReased = 15215 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 15216 *Value == 0); 15217 } 15218 } 15219 } 15220 }; 15221 15222 } // namespace 15223 15224 /// Check whether the given argument is a block which captures a 15225 /// variable. 15226 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 15227 assert(owner.Variable && owner.Loc.isValid()); 15228 15229 e = e->IgnoreParenCasts(); 15230 15231 // Look through [^{...} copy] and Block_copy(^{...}). 15232 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 15233 Selector Cmd = ME->getSelector(); 15234 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 15235 e = ME->getInstanceReceiver(); 15236 if (!e) 15237 return nullptr; 15238 e = e->IgnoreParenCasts(); 15239 } 15240 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 15241 if (CE->getNumArgs() == 1) { 15242 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 15243 if (Fn) { 15244 const IdentifierInfo *FnI = Fn->getIdentifier(); 15245 if (FnI && FnI->isStr("_Block_copy")) { 15246 e = CE->getArg(0)->IgnoreParenCasts(); 15247 } 15248 } 15249 } 15250 } 15251 15252 BlockExpr *block = dyn_cast<BlockExpr>(e); 15253 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 15254 return nullptr; 15255 15256 FindCaptureVisitor visitor(S.Context, owner.Variable); 15257 visitor.Visit(block->getBlockDecl()->getBody()); 15258 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 15259 } 15260 15261 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 15262 RetainCycleOwner &owner) { 15263 assert(capturer); 15264 assert(owner.Variable && owner.Loc.isValid()); 15265 15266 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 15267 << owner.Variable << capturer->getSourceRange(); 15268 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 15269 << owner.Indirect << owner.Range; 15270 } 15271 15272 /// Check for a keyword selector that starts with the word 'add' or 15273 /// 'set'. 15274 static bool isSetterLikeSelector(Selector sel) { 15275 if (sel.isUnarySelector()) return false; 15276 15277 StringRef str = sel.getNameForSlot(0); 15278 while (!str.empty() && str.front() == '_') str = str.substr(1); 15279 if (str.startswith("set")) 15280 str = str.substr(3); 15281 else if (str.startswith("add")) { 15282 // Specially allow 'addOperationWithBlock:'. 15283 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 15284 return false; 15285 str = str.substr(3); 15286 } 15287 else 15288 return false; 15289 15290 if (str.empty()) return true; 15291 return !isLowercase(str.front()); 15292 } 15293 15294 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 15295 ObjCMessageExpr *Message) { 15296 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 15297 Message->getReceiverInterface(), 15298 NSAPI::ClassId_NSMutableArray); 15299 if (!IsMutableArray) { 15300 return None; 15301 } 15302 15303 Selector Sel = Message->getSelector(); 15304 15305 Optional<NSAPI::NSArrayMethodKind> MKOpt = 15306 S.NSAPIObj->getNSArrayMethodKind(Sel); 15307 if (!MKOpt) { 15308 return None; 15309 } 15310 15311 NSAPI::NSArrayMethodKind MK = *MKOpt; 15312 15313 switch (MK) { 15314 case NSAPI::NSMutableArr_addObject: 15315 case NSAPI::NSMutableArr_insertObjectAtIndex: 15316 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 15317 return 0; 15318 case NSAPI::NSMutableArr_replaceObjectAtIndex: 15319 return 1; 15320 15321 default: 15322 return None; 15323 } 15324 15325 return None; 15326 } 15327 15328 static 15329 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 15330 ObjCMessageExpr *Message) { 15331 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 15332 Message->getReceiverInterface(), 15333 NSAPI::ClassId_NSMutableDictionary); 15334 if (!IsMutableDictionary) { 15335 return None; 15336 } 15337 15338 Selector Sel = Message->getSelector(); 15339 15340 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 15341 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 15342 if (!MKOpt) { 15343 return None; 15344 } 15345 15346 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 15347 15348 switch (MK) { 15349 case NSAPI::NSMutableDict_setObjectForKey: 15350 case NSAPI::NSMutableDict_setValueForKey: 15351 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 15352 return 0; 15353 15354 default: 15355 return None; 15356 } 15357 15358 return None; 15359 } 15360 15361 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 15362 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 15363 Message->getReceiverInterface(), 15364 NSAPI::ClassId_NSMutableSet); 15365 15366 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 15367 Message->getReceiverInterface(), 15368 NSAPI::ClassId_NSMutableOrderedSet); 15369 if (!IsMutableSet && !IsMutableOrderedSet) { 15370 return None; 15371 } 15372 15373 Selector Sel = Message->getSelector(); 15374 15375 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 15376 if (!MKOpt) { 15377 return None; 15378 } 15379 15380 NSAPI::NSSetMethodKind MK = *MKOpt; 15381 15382 switch (MK) { 15383 case NSAPI::NSMutableSet_addObject: 15384 case NSAPI::NSOrderedSet_setObjectAtIndex: 15385 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 15386 case NSAPI::NSOrderedSet_insertObjectAtIndex: 15387 return 0; 15388 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 15389 return 1; 15390 } 15391 15392 return None; 15393 } 15394 15395 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 15396 if (!Message->isInstanceMessage()) { 15397 return; 15398 } 15399 15400 Optional<int> ArgOpt; 15401 15402 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 15403 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 15404 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 15405 return; 15406 } 15407 15408 int ArgIndex = *ArgOpt; 15409 15410 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 15411 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 15412 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 15413 } 15414 15415 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 15416 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15417 if (ArgRE->isObjCSelfExpr()) { 15418 Diag(Message->getSourceRange().getBegin(), 15419 diag::warn_objc_circular_container) 15420 << ArgRE->getDecl() << StringRef("'super'"); 15421 } 15422 } 15423 } else { 15424 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 15425 15426 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 15427 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 15428 } 15429 15430 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 15431 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 15432 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 15433 ValueDecl *Decl = ReceiverRE->getDecl(); 15434 Diag(Message->getSourceRange().getBegin(), 15435 diag::warn_objc_circular_container) 15436 << Decl << Decl; 15437 if (!ArgRE->isObjCSelfExpr()) { 15438 Diag(Decl->getLocation(), 15439 diag::note_objc_circular_container_declared_here) 15440 << Decl; 15441 } 15442 } 15443 } 15444 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 15445 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 15446 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 15447 ObjCIvarDecl *Decl = IvarRE->getDecl(); 15448 Diag(Message->getSourceRange().getBegin(), 15449 diag::warn_objc_circular_container) 15450 << Decl << Decl; 15451 Diag(Decl->getLocation(), 15452 diag::note_objc_circular_container_declared_here) 15453 << Decl; 15454 } 15455 } 15456 } 15457 } 15458 } 15459 15460 /// Check a message send to see if it's likely to cause a retain cycle. 15461 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 15462 // Only check instance methods whose selector looks like a setter. 15463 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 15464 return; 15465 15466 // Try to find a variable that the receiver is strongly owned by. 15467 RetainCycleOwner owner; 15468 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 15469 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 15470 return; 15471 } else { 15472 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 15473 owner.Variable = getCurMethodDecl()->getSelfDecl(); 15474 owner.Loc = msg->getSuperLoc(); 15475 owner.Range = msg->getSuperLoc(); 15476 } 15477 15478 // Check whether the receiver is captured by any of the arguments. 15479 const ObjCMethodDecl *MD = msg->getMethodDecl(); 15480 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 15481 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 15482 // noescape blocks should not be retained by the method. 15483 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 15484 continue; 15485 return diagnoseRetainCycle(*this, capturer, owner); 15486 } 15487 } 15488 } 15489 15490 /// Check a property assign to see if it's likely to cause a retain cycle. 15491 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 15492 RetainCycleOwner owner; 15493 if (!findRetainCycleOwner(*this, receiver, owner)) 15494 return; 15495 15496 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 15497 diagnoseRetainCycle(*this, capturer, owner); 15498 } 15499 15500 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 15501 RetainCycleOwner Owner; 15502 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 15503 return; 15504 15505 // Because we don't have an expression for the variable, we have to set the 15506 // location explicitly here. 15507 Owner.Loc = Var->getLocation(); 15508 Owner.Range = Var->getSourceRange(); 15509 15510 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 15511 diagnoseRetainCycle(*this, Capturer, Owner); 15512 } 15513 15514 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 15515 Expr *RHS, bool isProperty) { 15516 // Check if RHS is an Objective-C object literal, which also can get 15517 // immediately zapped in a weak reference. Note that we explicitly 15518 // allow ObjCStringLiterals, since those are designed to never really die. 15519 RHS = RHS->IgnoreParenImpCasts(); 15520 15521 // This enum needs to match with the 'select' in 15522 // warn_objc_arc_literal_assign (off-by-1). 15523 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 15524 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 15525 return false; 15526 15527 S.Diag(Loc, diag::warn_arc_literal_assign) 15528 << (unsigned) Kind 15529 << (isProperty ? 0 : 1) 15530 << RHS->getSourceRange(); 15531 15532 return true; 15533 } 15534 15535 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 15536 Qualifiers::ObjCLifetime LT, 15537 Expr *RHS, bool isProperty) { 15538 // Strip off any implicit cast added to get to the one ARC-specific. 15539 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15540 if (cast->getCastKind() == CK_ARCConsumeObject) { 15541 S.Diag(Loc, diag::warn_arc_retained_assign) 15542 << (LT == Qualifiers::OCL_ExplicitNone) 15543 << (isProperty ? 0 : 1) 15544 << RHS->getSourceRange(); 15545 return true; 15546 } 15547 RHS = cast->getSubExpr(); 15548 } 15549 15550 if (LT == Qualifiers::OCL_Weak && 15551 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 15552 return true; 15553 15554 return false; 15555 } 15556 15557 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 15558 QualType LHS, Expr *RHS) { 15559 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 15560 15561 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 15562 return false; 15563 15564 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 15565 return true; 15566 15567 return false; 15568 } 15569 15570 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 15571 Expr *LHS, Expr *RHS) { 15572 QualType LHSType; 15573 // PropertyRef on LHS type need be directly obtained from 15574 // its declaration as it has a PseudoType. 15575 ObjCPropertyRefExpr *PRE 15576 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 15577 if (PRE && !PRE->isImplicitProperty()) { 15578 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15579 if (PD) 15580 LHSType = PD->getType(); 15581 } 15582 15583 if (LHSType.isNull()) 15584 LHSType = LHS->getType(); 15585 15586 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 15587 15588 if (LT == Qualifiers::OCL_Weak) { 15589 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 15590 getCurFunction()->markSafeWeakUse(LHS); 15591 } 15592 15593 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 15594 return; 15595 15596 // FIXME. Check for other life times. 15597 if (LT != Qualifiers::OCL_None) 15598 return; 15599 15600 if (PRE) { 15601 if (PRE->isImplicitProperty()) 15602 return; 15603 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 15604 if (!PD) 15605 return; 15606 15607 unsigned Attributes = PD->getPropertyAttributes(); 15608 if (Attributes & ObjCPropertyAttribute::kind_assign) { 15609 // when 'assign' attribute was not explicitly specified 15610 // by user, ignore it and rely on property type itself 15611 // for lifetime info. 15612 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 15613 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 15614 LHSType->isObjCRetainableType()) 15615 return; 15616 15617 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15618 if (cast->getCastKind() == CK_ARCConsumeObject) { 15619 Diag(Loc, diag::warn_arc_retained_property_assign) 15620 << RHS->getSourceRange(); 15621 return; 15622 } 15623 RHS = cast->getSubExpr(); 15624 } 15625 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 15626 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 15627 return; 15628 } 15629 } 15630 } 15631 15632 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 15633 15634 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 15635 SourceLocation StmtLoc, 15636 const NullStmt *Body) { 15637 // Do not warn if the body is a macro that expands to nothing, e.g: 15638 // 15639 // #define CALL(x) 15640 // if (condition) 15641 // CALL(0); 15642 if (Body->hasLeadingEmptyMacro()) 15643 return false; 15644 15645 // Get line numbers of statement and body. 15646 bool StmtLineInvalid; 15647 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 15648 &StmtLineInvalid); 15649 if (StmtLineInvalid) 15650 return false; 15651 15652 bool BodyLineInvalid; 15653 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 15654 &BodyLineInvalid); 15655 if (BodyLineInvalid) 15656 return false; 15657 15658 // Warn if null statement and body are on the same line. 15659 if (StmtLine != BodyLine) 15660 return false; 15661 15662 return true; 15663 } 15664 15665 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 15666 const Stmt *Body, 15667 unsigned DiagID) { 15668 // Since this is a syntactic check, don't emit diagnostic for template 15669 // instantiations, this just adds noise. 15670 if (CurrentInstantiationScope) 15671 return; 15672 15673 // The body should be a null statement. 15674 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15675 if (!NBody) 15676 return; 15677 15678 // Do the usual checks. 15679 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15680 return; 15681 15682 Diag(NBody->getSemiLoc(), DiagID); 15683 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15684 } 15685 15686 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 15687 const Stmt *PossibleBody) { 15688 assert(!CurrentInstantiationScope); // Ensured by caller 15689 15690 SourceLocation StmtLoc; 15691 const Stmt *Body; 15692 unsigned DiagID; 15693 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 15694 StmtLoc = FS->getRParenLoc(); 15695 Body = FS->getBody(); 15696 DiagID = diag::warn_empty_for_body; 15697 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 15698 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 15699 Body = WS->getBody(); 15700 DiagID = diag::warn_empty_while_body; 15701 } else 15702 return; // Neither `for' nor `while'. 15703 15704 // The body should be a null statement. 15705 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15706 if (!NBody) 15707 return; 15708 15709 // Skip expensive checks if diagnostic is disabled. 15710 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 15711 return; 15712 15713 // Do the usual checks. 15714 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15715 return; 15716 15717 // `for(...);' and `while(...);' are popular idioms, so in order to keep 15718 // noise level low, emit diagnostics only if for/while is followed by a 15719 // CompoundStmt, e.g.: 15720 // for (int i = 0; i < n; i++); 15721 // { 15722 // a(i); 15723 // } 15724 // or if for/while is followed by a statement with more indentation 15725 // than for/while itself: 15726 // for (int i = 0; i < n; i++); 15727 // a(i); 15728 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 15729 if (!ProbableTypo) { 15730 bool BodyColInvalid; 15731 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 15732 PossibleBody->getBeginLoc(), &BodyColInvalid); 15733 if (BodyColInvalid) 15734 return; 15735 15736 bool StmtColInvalid; 15737 unsigned StmtCol = 15738 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 15739 if (StmtColInvalid) 15740 return; 15741 15742 if (BodyCol > StmtCol) 15743 ProbableTypo = true; 15744 } 15745 15746 if (ProbableTypo) { 15747 Diag(NBody->getSemiLoc(), DiagID); 15748 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15749 } 15750 } 15751 15752 //===--- CHECK: Warn on self move with std::move. -------------------------===// 15753 15754 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 15755 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 15756 SourceLocation OpLoc) { 15757 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 15758 return; 15759 15760 if (inTemplateInstantiation()) 15761 return; 15762 15763 // Strip parens and casts away. 15764 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 15765 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 15766 15767 // Check for a call expression 15768 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 15769 if (!CE || CE->getNumArgs() != 1) 15770 return; 15771 15772 // Check for a call to std::move 15773 if (!CE->isCallToStdMove()) 15774 return; 15775 15776 // Get argument from std::move 15777 RHSExpr = CE->getArg(0); 15778 15779 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 15780 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 15781 15782 // Two DeclRefExpr's, check that the decls are the same. 15783 if (LHSDeclRef && RHSDeclRef) { 15784 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15785 return; 15786 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15787 RHSDeclRef->getDecl()->getCanonicalDecl()) 15788 return; 15789 15790 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15791 << LHSExpr->getSourceRange() 15792 << RHSExpr->getSourceRange(); 15793 return; 15794 } 15795 15796 // Member variables require a different approach to check for self moves. 15797 // MemberExpr's are the same if every nested MemberExpr refers to the same 15798 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 15799 // the base Expr's are CXXThisExpr's. 15800 const Expr *LHSBase = LHSExpr; 15801 const Expr *RHSBase = RHSExpr; 15802 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 15803 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 15804 if (!LHSME || !RHSME) 15805 return; 15806 15807 while (LHSME && RHSME) { 15808 if (LHSME->getMemberDecl()->getCanonicalDecl() != 15809 RHSME->getMemberDecl()->getCanonicalDecl()) 15810 return; 15811 15812 LHSBase = LHSME->getBase(); 15813 RHSBase = RHSME->getBase(); 15814 LHSME = dyn_cast<MemberExpr>(LHSBase); 15815 RHSME = dyn_cast<MemberExpr>(RHSBase); 15816 } 15817 15818 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 15819 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 15820 if (LHSDeclRef && RHSDeclRef) { 15821 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15822 return; 15823 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15824 RHSDeclRef->getDecl()->getCanonicalDecl()) 15825 return; 15826 15827 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15828 << LHSExpr->getSourceRange() 15829 << RHSExpr->getSourceRange(); 15830 return; 15831 } 15832 15833 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 15834 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15835 << LHSExpr->getSourceRange() 15836 << RHSExpr->getSourceRange(); 15837 } 15838 15839 //===--- Layout compatibility ----------------------------------------------// 15840 15841 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 15842 15843 /// Check if two enumeration types are layout-compatible. 15844 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 15845 // C++11 [dcl.enum] p8: 15846 // Two enumeration types are layout-compatible if they have the same 15847 // underlying type. 15848 return ED1->isComplete() && ED2->isComplete() && 15849 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 15850 } 15851 15852 /// Check if two fields are layout-compatible. 15853 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 15854 FieldDecl *Field2) { 15855 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 15856 return false; 15857 15858 if (Field1->isBitField() != Field2->isBitField()) 15859 return false; 15860 15861 if (Field1->isBitField()) { 15862 // Make sure that the bit-fields are the same length. 15863 unsigned Bits1 = Field1->getBitWidthValue(C); 15864 unsigned Bits2 = Field2->getBitWidthValue(C); 15865 15866 if (Bits1 != Bits2) 15867 return false; 15868 } 15869 15870 return true; 15871 } 15872 15873 /// Check if two standard-layout structs are layout-compatible. 15874 /// (C++11 [class.mem] p17) 15875 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 15876 RecordDecl *RD2) { 15877 // If both records are C++ classes, check that base classes match. 15878 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 15879 // If one of records is a CXXRecordDecl we are in C++ mode, 15880 // thus the other one is a CXXRecordDecl, too. 15881 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 15882 // Check number of base classes. 15883 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 15884 return false; 15885 15886 // Check the base classes. 15887 for (CXXRecordDecl::base_class_const_iterator 15888 Base1 = D1CXX->bases_begin(), 15889 BaseEnd1 = D1CXX->bases_end(), 15890 Base2 = D2CXX->bases_begin(); 15891 Base1 != BaseEnd1; 15892 ++Base1, ++Base2) { 15893 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 15894 return false; 15895 } 15896 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 15897 // If only RD2 is a C++ class, it should have zero base classes. 15898 if (D2CXX->getNumBases() > 0) 15899 return false; 15900 } 15901 15902 // Check the fields. 15903 RecordDecl::field_iterator Field2 = RD2->field_begin(), 15904 Field2End = RD2->field_end(), 15905 Field1 = RD1->field_begin(), 15906 Field1End = RD1->field_end(); 15907 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 15908 if (!isLayoutCompatible(C, *Field1, *Field2)) 15909 return false; 15910 } 15911 if (Field1 != Field1End || Field2 != Field2End) 15912 return false; 15913 15914 return true; 15915 } 15916 15917 /// Check if two standard-layout unions are layout-compatible. 15918 /// (C++11 [class.mem] p18) 15919 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 15920 RecordDecl *RD2) { 15921 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 15922 for (auto *Field2 : RD2->fields()) 15923 UnmatchedFields.insert(Field2); 15924 15925 for (auto *Field1 : RD1->fields()) { 15926 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 15927 I = UnmatchedFields.begin(), 15928 E = UnmatchedFields.end(); 15929 15930 for ( ; I != E; ++I) { 15931 if (isLayoutCompatible(C, Field1, *I)) { 15932 bool Result = UnmatchedFields.erase(*I); 15933 (void) Result; 15934 assert(Result); 15935 break; 15936 } 15937 } 15938 if (I == E) 15939 return false; 15940 } 15941 15942 return UnmatchedFields.empty(); 15943 } 15944 15945 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 15946 RecordDecl *RD2) { 15947 if (RD1->isUnion() != RD2->isUnion()) 15948 return false; 15949 15950 if (RD1->isUnion()) 15951 return isLayoutCompatibleUnion(C, RD1, RD2); 15952 else 15953 return isLayoutCompatibleStruct(C, RD1, RD2); 15954 } 15955 15956 /// Check if two types are layout-compatible in C++11 sense. 15957 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 15958 if (T1.isNull() || T2.isNull()) 15959 return false; 15960 15961 // C++11 [basic.types] p11: 15962 // If two types T1 and T2 are the same type, then T1 and T2 are 15963 // layout-compatible types. 15964 if (C.hasSameType(T1, T2)) 15965 return true; 15966 15967 T1 = T1.getCanonicalType().getUnqualifiedType(); 15968 T2 = T2.getCanonicalType().getUnqualifiedType(); 15969 15970 const Type::TypeClass TC1 = T1->getTypeClass(); 15971 const Type::TypeClass TC2 = T2->getTypeClass(); 15972 15973 if (TC1 != TC2) 15974 return false; 15975 15976 if (TC1 == Type::Enum) { 15977 return isLayoutCompatible(C, 15978 cast<EnumType>(T1)->getDecl(), 15979 cast<EnumType>(T2)->getDecl()); 15980 } else if (TC1 == Type::Record) { 15981 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 15982 return false; 15983 15984 return isLayoutCompatible(C, 15985 cast<RecordType>(T1)->getDecl(), 15986 cast<RecordType>(T2)->getDecl()); 15987 } 15988 15989 return false; 15990 } 15991 15992 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 15993 15994 /// Given a type tag expression find the type tag itself. 15995 /// 15996 /// \param TypeExpr Type tag expression, as it appears in user's code. 15997 /// 15998 /// \param VD Declaration of an identifier that appears in a type tag. 15999 /// 16000 /// \param MagicValue Type tag magic value. 16001 /// 16002 /// \param isConstantEvaluated wether the evalaution should be performed in 16003 16004 /// constant context. 16005 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 16006 const ValueDecl **VD, uint64_t *MagicValue, 16007 bool isConstantEvaluated) { 16008 while(true) { 16009 if (!TypeExpr) 16010 return false; 16011 16012 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 16013 16014 switch (TypeExpr->getStmtClass()) { 16015 case Stmt::UnaryOperatorClass: { 16016 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 16017 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 16018 TypeExpr = UO->getSubExpr(); 16019 continue; 16020 } 16021 return false; 16022 } 16023 16024 case Stmt::DeclRefExprClass: { 16025 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 16026 *VD = DRE->getDecl(); 16027 return true; 16028 } 16029 16030 case Stmt::IntegerLiteralClass: { 16031 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 16032 llvm::APInt MagicValueAPInt = IL->getValue(); 16033 if (MagicValueAPInt.getActiveBits() <= 64) { 16034 *MagicValue = MagicValueAPInt.getZExtValue(); 16035 return true; 16036 } else 16037 return false; 16038 } 16039 16040 case Stmt::BinaryConditionalOperatorClass: 16041 case Stmt::ConditionalOperatorClass: { 16042 const AbstractConditionalOperator *ACO = 16043 cast<AbstractConditionalOperator>(TypeExpr); 16044 bool Result; 16045 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 16046 isConstantEvaluated)) { 16047 if (Result) 16048 TypeExpr = ACO->getTrueExpr(); 16049 else 16050 TypeExpr = ACO->getFalseExpr(); 16051 continue; 16052 } 16053 return false; 16054 } 16055 16056 case Stmt::BinaryOperatorClass: { 16057 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 16058 if (BO->getOpcode() == BO_Comma) { 16059 TypeExpr = BO->getRHS(); 16060 continue; 16061 } 16062 return false; 16063 } 16064 16065 default: 16066 return false; 16067 } 16068 } 16069 } 16070 16071 /// Retrieve the C type corresponding to type tag TypeExpr. 16072 /// 16073 /// \param TypeExpr Expression that specifies a type tag. 16074 /// 16075 /// \param MagicValues Registered magic values. 16076 /// 16077 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 16078 /// kind. 16079 /// 16080 /// \param TypeInfo Information about the corresponding C type. 16081 /// 16082 /// \param isConstantEvaluated wether the evalaution should be performed in 16083 /// constant context. 16084 /// 16085 /// \returns true if the corresponding C type was found. 16086 static bool GetMatchingCType( 16087 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 16088 const ASTContext &Ctx, 16089 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 16090 *MagicValues, 16091 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 16092 bool isConstantEvaluated) { 16093 FoundWrongKind = false; 16094 16095 // Variable declaration that has type_tag_for_datatype attribute. 16096 const ValueDecl *VD = nullptr; 16097 16098 uint64_t MagicValue; 16099 16100 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 16101 return false; 16102 16103 if (VD) { 16104 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 16105 if (I->getArgumentKind() != ArgumentKind) { 16106 FoundWrongKind = true; 16107 return false; 16108 } 16109 TypeInfo.Type = I->getMatchingCType(); 16110 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 16111 TypeInfo.MustBeNull = I->getMustBeNull(); 16112 return true; 16113 } 16114 return false; 16115 } 16116 16117 if (!MagicValues) 16118 return false; 16119 16120 llvm::DenseMap<Sema::TypeTagMagicValue, 16121 Sema::TypeTagData>::const_iterator I = 16122 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 16123 if (I == MagicValues->end()) 16124 return false; 16125 16126 TypeInfo = I->second; 16127 return true; 16128 } 16129 16130 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 16131 uint64_t MagicValue, QualType Type, 16132 bool LayoutCompatible, 16133 bool MustBeNull) { 16134 if (!TypeTagForDatatypeMagicValues) 16135 TypeTagForDatatypeMagicValues.reset( 16136 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 16137 16138 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 16139 (*TypeTagForDatatypeMagicValues)[Magic] = 16140 TypeTagData(Type, LayoutCompatible, MustBeNull); 16141 } 16142 16143 static bool IsSameCharType(QualType T1, QualType T2) { 16144 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 16145 if (!BT1) 16146 return false; 16147 16148 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 16149 if (!BT2) 16150 return false; 16151 16152 BuiltinType::Kind T1Kind = BT1->getKind(); 16153 BuiltinType::Kind T2Kind = BT2->getKind(); 16154 16155 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 16156 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 16157 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 16158 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 16159 } 16160 16161 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 16162 const ArrayRef<const Expr *> ExprArgs, 16163 SourceLocation CallSiteLoc) { 16164 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 16165 bool IsPointerAttr = Attr->getIsPointer(); 16166 16167 // Retrieve the argument representing the 'type_tag'. 16168 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 16169 if (TypeTagIdxAST >= ExprArgs.size()) { 16170 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16171 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 16172 return; 16173 } 16174 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 16175 bool FoundWrongKind; 16176 TypeTagData TypeInfo; 16177 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 16178 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 16179 TypeInfo, isConstantEvaluated())) { 16180 if (FoundWrongKind) 16181 Diag(TypeTagExpr->getExprLoc(), 16182 diag::warn_type_tag_for_datatype_wrong_kind) 16183 << TypeTagExpr->getSourceRange(); 16184 return; 16185 } 16186 16187 // Retrieve the argument representing the 'arg_idx'. 16188 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 16189 if (ArgumentIdxAST >= ExprArgs.size()) { 16190 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 16191 << 1 << Attr->getArgumentIdx().getSourceIndex(); 16192 return; 16193 } 16194 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 16195 if (IsPointerAttr) { 16196 // Skip implicit cast of pointer to `void *' (as a function argument). 16197 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 16198 if (ICE->getType()->isVoidPointerType() && 16199 ICE->getCastKind() == CK_BitCast) 16200 ArgumentExpr = ICE->getSubExpr(); 16201 } 16202 QualType ArgumentType = ArgumentExpr->getType(); 16203 16204 // Passing a `void*' pointer shouldn't trigger a warning. 16205 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 16206 return; 16207 16208 if (TypeInfo.MustBeNull) { 16209 // Type tag with matching void type requires a null pointer. 16210 if (!ArgumentExpr->isNullPointerConstant(Context, 16211 Expr::NPC_ValueDependentIsNotNull)) { 16212 Diag(ArgumentExpr->getExprLoc(), 16213 diag::warn_type_safety_null_pointer_required) 16214 << ArgumentKind->getName() 16215 << ArgumentExpr->getSourceRange() 16216 << TypeTagExpr->getSourceRange(); 16217 } 16218 return; 16219 } 16220 16221 QualType RequiredType = TypeInfo.Type; 16222 if (IsPointerAttr) 16223 RequiredType = Context.getPointerType(RequiredType); 16224 16225 bool mismatch = false; 16226 if (!TypeInfo.LayoutCompatible) { 16227 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 16228 16229 // C++11 [basic.fundamental] p1: 16230 // Plain char, signed char, and unsigned char are three distinct types. 16231 // 16232 // But we treat plain `char' as equivalent to `signed char' or `unsigned 16233 // char' depending on the current char signedness mode. 16234 if (mismatch) 16235 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 16236 RequiredType->getPointeeType())) || 16237 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 16238 mismatch = false; 16239 } else 16240 if (IsPointerAttr) 16241 mismatch = !isLayoutCompatible(Context, 16242 ArgumentType->getPointeeType(), 16243 RequiredType->getPointeeType()); 16244 else 16245 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 16246 16247 if (mismatch) 16248 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 16249 << ArgumentType << ArgumentKind 16250 << TypeInfo.LayoutCompatible << RequiredType 16251 << ArgumentExpr->getSourceRange() 16252 << TypeTagExpr->getSourceRange(); 16253 } 16254 16255 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 16256 CharUnits Alignment) { 16257 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 16258 } 16259 16260 void Sema::DiagnoseMisalignedMembers() { 16261 for (MisalignedMember &m : MisalignedMembers) { 16262 const NamedDecl *ND = m.RD; 16263 if (ND->getName().empty()) { 16264 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 16265 ND = TD; 16266 } 16267 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 16268 << m.MD << ND << m.E->getSourceRange(); 16269 } 16270 MisalignedMembers.clear(); 16271 } 16272 16273 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 16274 E = E->IgnoreParens(); 16275 if (!T->isPointerType() && !T->isIntegerType()) 16276 return; 16277 if (isa<UnaryOperator>(E) && 16278 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 16279 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 16280 if (isa<MemberExpr>(Op)) { 16281 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 16282 if (MA != MisalignedMembers.end() && 16283 (T->isIntegerType() || 16284 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 16285 Context.getTypeAlignInChars( 16286 T->getPointeeType()) <= MA->Alignment)))) 16287 MisalignedMembers.erase(MA); 16288 } 16289 } 16290 } 16291 16292 void Sema::RefersToMemberWithReducedAlignment( 16293 Expr *E, 16294 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 16295 Action) { 16296 const auto *ME = dyn_cast<MemberExpr>(E); 16297 if (!ME) 16298 return; 16299 16300 // No need to check expressions with an __unaligned-qualified type. 16301 if (E->getType().getQualifiers().hasUnaligned()) 16302 return; 16303 16304 // For a chain of MemberExpr like "a.b.c.d" this list 16305 // will keep FieldDecl's like [d, c, b]. 16306 SmallVector<FieldDecl *, 4> ReverseMemberChain; 16307 const MemberExpr *TopME = nullptr; 16308 bool AnyIsPacked = false; 16309 do { 16310 QualType BaseType = ME->getBase()->getType(); 16311 if (BaseType->isDependentType()) 16312 return; 16313 if (ME->isArrow()) 16314 BaseType = BaseType->getPointeeType(); 16315 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 16316 if (RD->isInvalidDecl()) 16317 return; 16318 16319 ValueDecl *MD = ME->getMemberDecl(); 16320 auto *FD = dyn_cast<FieldDecl>(MD); 16321 // We do not care about non-data members. 16322 if (!FD || FD->isInvalidDecl()) 16323 return; 16324 16325 AnyIsPacked = 16326 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 16327 ReverseMemberChain.push_back(FD); 16328 16329 TopME = ME; 16330 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 16331 } while (ME); 16332 assert(TopME && "We did not compute a topmost MemberExpr!"); 16333 16334 // Not the scope of this diagnostic. 16335 if (!AnyIsPacked) 16336 return; 16337 16338 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 16339 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 16340 // TODO: The innermost base of the member expression may be too complicated. 16341 // For now, just disregard these cases. This is left for future 16342 // improvement. 16343 if (!DRE && !isa<CXXThisExpr>(TopBase)) 16344 return; 16345 16346 // Alignment expected by the whole expression. 16347 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 16348 16349 // No need to do anything else with this case. 16350 if (ExpectedAlignment.isOne()) 16351 return; 16352 16353 // Synthesize offset of the whole access. 16354 CharUnits Offset; 16355 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 16356 I++) { 16357 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 16358 } 16359 16360 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 16361 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 16362 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 16363 16364 // The base expression of the innermost MemberExpr may give 16365 // stronger guarantees than the class containing the member. 16366 if (DRE && !TopME->isArrow()) { 16367 const ValueDecl *VD = DRE->getDecl(); 16368 if (!VD->getType()->isReferenceType()) 16369 CompleteObjectAlignment = 16370 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 16371 } 16372 16373 // Check if the synthesized offset fulfills the alignment. 16374 if (Offset % ExpectedAlignment != 0 || 16375 // It may fulfill the offset it but the effective alignment may still be 16376 // lower than the expected expression alignment. 16377 CompleteObjectAlignment < ExpectedAlignment) { 16378 // If this happens, we want to determine a sensible culprit of this. 16379 // Intuitively, watching the chain of member expressions from right to 16380 // left, we start with the required alignment (as required by the field 16381 // type) but some packed attribute in that chain has reduced the alignment. 16382 // It may happen that another packed structure increases it again. But if 16383 // we are here such increase has not been enough. So pointing the first 16384 // FieldDecl that either is packed or else its RecordDecl is, 16385 // seems reasonable. 16386 FieldDecl *FD = nullptr; 16387 CharUnits Alignment; 16388 for (FieldDecl *FDI : ReverseMemberChain) { 16389 if (FDI->hasAttr<PackedAttr>() || 16390 FDI->getParent()->hasAttr<PackedAttr>()) { 16391 FD = FDI; 16392 Alignment = std::min( 16393 Context.getTypeAlignInChars(FD->getType()), 16394 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 16395 break; 16396 } 16397 } 16398 assert(FD && "We did not find a packed FieldDecl!"); 16399 Action(E, FD->getParent(), FD, Alignment); 16400 } 16401 } 16402 16403 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 16404 using namespace std::placeholders; 16405 16406 RefersToMemberWithReducedAlignment( 16407 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 16408 _2, _3, _4)); 16409 } 16410 16411 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 16412 ExprResult CallResult) { 16413 if (checkArgCount(*this, TheCall, 1)) 16414 return ExprError(); 16415 16416 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 16417 if (MatrixArg.isInvalid()) 16418 return MatrixArg; 16419 Expr *Matrix = MatrixArg.get(); 16420 16421 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 16422 if (!MType) { 16423 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 16424 return ExprError(); 16425 } 16426 16427 // Create returned matrix type by swapping rows and columns of the argument 16428 // matrix type. 16429 QualType ResultType = Context.getConstantMatrixType( 16430 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 16431 16432 // Change the return type to the type of the returned matrix. 16433 TheCall->setType(ResultType); 16434 16435 // Update call argument to use the possibly converted matrix argument. 16436 TheCall->setArg(0, Matrix); 16437 return CallResult; 16438 } 16439 16440 // Get and verify the matrix dimensions. 16441 static llvm::Optional<unsigned> 16442 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 16443 SourceLocation ErrorPos; 16444 Optional<llvm::APSInt> Value = 16445 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 16446 if (!Value) { 16447 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 16448 << Name; 16449 return {}; 16450 } 16451 uint64_t Dim = Value->getZExtValue(); 16452 if (!ConstantMatrixType::isDimensionValid(Dim)) { 16453 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 16454 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 16455 return {}; 16456 } 16457 return Dim; 16458 } 16459 16460 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 16461 ExprResult CallResult) { 16462 if (!getLangOpts().MatrixTypes) { 16463 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 16464 return ExprError(); 16465 } 16466 16467 if (checkArgCount(*this, TheCall, 4)) 16468 return ExprError(); 16469 16470 unsigned PtrArgIdx = 0; 16471 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16472 Expr *RowsExpr = TheCall->getArg(1); 16473 Expr *ColumnsExpr = TheCall->getArg(2); 16474 Expr *StrideExpr = TheCall->getArg(3); 16475 16476 bool ArgError = false; 16477 16478 // Check pointer argument. 16479 { 16480 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16481 if (PtrConv.isInvalid()) 16482 return PtrConv; 16483 PtrExpr = PtrConv.get(); 16484 TheCall->setArg(0, PtrExpr); 16485 if (PtrExpr->isTypeDependent()) { 16486 TheCall->setType(Context.DependentTy); 16487 return TheCall; 16488 } 16489 } 16490 16491 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16492 QualType ElementTy; 16493 if (!PtrTy) { 16494 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16495 << PtrArgIdx + 1; 16496 ArgError = true; 16497 } else { 16498 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 16499 16500 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 16501 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16502 << PtrArgIdx + 1; 16503 ArgError = true; 16504 } 16505 } 16506 16507 // Apply default Lvalue conversions and convert the expression to size_t. 16508 auto ApplyArgumentConversions = [this](Expr *E) { 16509 ExprResult Conv = DefaultLvalueConversion(E); 16510 if (Conv.isInvalid()) 16511 return Conv; 16512 16513 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 16514 }; 16515 16516 // Apply conversion to row and column expressions. 16517 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 16518 if (!RowsConv.isInvalid()) { 16519 RowsExpr = RowsConv.get(); 16520 TheCall->setArg(1, RowsExpr); 16521 } else 16522 RowsExpr = nullptr; 16523 16524 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 16525 if (!ColumnsConv.isInvalid()) { 16526 ColumnsExpr = ColumnsConv.get(); 16527 TheCall->setArg(2, ColumnsExpr); 16528 } else 16529 ColumnsExpr = nullptr; 16530 16531 // If any any part of the result matrix type is still pending, just use 16532 // Context.DependentTy, until all parts are resolved. 16533 if ((RowsExpr && RowsExpr->isTypeDependent()) || 16534 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 16535 TheCall->setType(Context.DependentTy); 16536 return CallResult; 16537 } 16538 16539 // Check row and column dimenions. 16540 llvm::Optional<unsigned> MaybeRows; 16541 if (RowsExpr) 16542 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 16543 16544 llvm::Optional<unsigned> MaybeColumns; 16545 if (ColumnsExpr) 16546 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 16547 16548 // Check stride argument. 16549 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 16550 if (StrideConv.isInvalid()) 16551 return ExprError(); 16552 StrideExpr = StrideConv.get(); 16553 TheCall->setArg(3, StrideExpr); 16554 16555 if (MaybeRows) { 16556 if (Optional<llvm::APSInt> Value = 16557 StrideExpr->getIntegerConstantExpr(Context)) { 16558 uint64_t Stride = Value->getZExtValue(); 16559 if (Stride < *MaybeRows) { 16560 Diag(StrideExpr->getBeginLoc(), 16561 diag::err_builtin_matrix_stride_too_small); 16562 ArgError = true; 16563 } 16564 } 16565 } 16566 16567 if (ArgError || !MaybeRows || !MaybeColumns) 16568 return ExprError(); 16569 16570 TheCall->setType( 16571 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 16572 return CallResult; 16573 } 16574 16575 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 16576 ExprResult CallResult) { 16577 if (checkArgCount(*this, TheCall, 3)) 16578 return ExprError(); 16579 16580 unsigned PtrArgIdx = 1; 16581 Expr *MatrixExpr = TheCall->getArg(0); 16582 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 16583 Expr *StrideExpr = TheCall->getArg(2); 16584 16585 bool ArgError = false; 16586 16587 { 16588 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 16589 if (MatrixConv.isInvalid()) 16590 return MatrixConv; 16591 MatrixExpr = MatrixConv.get(); 16592 TheCall->setArg(0, MatrixExpr); 16593 } 16594 if (MatrixExpr->isTypeDependent()) { 16595 TheCall->setType(Context.DependentTy); 16596 return TheCall; 16597 } 16598 16599 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 16600 if (!MatrixTy) { 16601 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 16602 ArgError = true; 16603 } 16604 16605 { 16606 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16607 if (PtrConv.isInvalid()) 16608 return PtrConv; 16609 PtrExpr = PtrConv.get(); 16610 TheCall->setArg(1, PtrExpr); 16611 if (PtrExpr->isTypeDependent()) { 16612 TheCall->setType(Context.DependentTy); 16613 return TheCall; 16614 } 16615 } 16616 16617 // Check pointer argument. 16618 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16619 if (!PtrTy) { 16620 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16621 << PtrArgIdx + 1; 16622 ArgError = true; 16623 } else { 16624 QualType ElementTy = PtrTy->getPointeeType(); 16625 if (ElementTy.isConstQualified()) { 16626 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 16627 ArgError = true; 16628 } 16629 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 16630 if (MatrixTy && 16631 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 16632 Diag(PtrExpr->getBeginLoc(), 16633 diag::err_builtin_matrix_pointer_arg_mismatch) 16634 << ElementTy << MatrixTy->getElementType(); 16635 ArgError = true; 16636 } 16637 } 16638 16639 // Apply default Lvalue conversions and convert the stride expression to 16640 // size_t. 16641 { 16642 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 16643 if (StrideConv.isInvalid()) 16644 return StrideConv; 16645 16646 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 16647 if (StrideConv.isInvalid()) 16648 return StrideConv; 16649 StrideExpr = StrideConv.get(); 16650 TheCall->setArg(2, StrideExpr); 16651 } 16652 16653 // Check stride argument. 16654 if (MatrixTy) { 16655 if (Optional<llvm::APSInt> Value = 16656 StrideExpr->getIntegerConstantExpr(Context)) { 16657 uint64_t Stride = Value->getZExtValue(); 16658 if (Stride < MatrixTy->getNumRows()) { 16659 Diag(StrideExpr->getBeginLoc(), 16660 diag::err_builtin_matrix_stride_too_small); 16661 ArgError = true; 16662 } 16663 } 16664 } 16665 16666 if (ArgError) 16667 return ExprError(); 16668 16669 return CallResult; 16670 } 16671 16672 /// \brief Enforce the bounds of a TCB 16673 /// CheckTCBEnforcement - Enforces that every function in a named TCB only 16674 /// directly calls other functions in the same TCB as marked by the enforce_tcb 16675 /// and enforce_tcb_leaf attributes. 16676 void Sema::CheckTCBEnforcement(const CallExpr *TheCall, 16677 const FunctionDecl *Callee) { 16678 const FunctionDecl *Caller = getCurFunctionDecl(); 16679 16680 // Calls to builtins are not enforced. 16681 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() || 16682 Callee->getBuiltinID() != 0) 16683 return; 16684 16685 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find 16686 // all TCBs the callee is a part of. 16687 llvm::StringSet<> CalleeTCBs; 16688 for_each(Callee->specific_attrs<EnforceTCBAttr>(), 16689 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16690 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(), 16691 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16692 16693 // Go through the TCBs the caller is a part of and emit warnings if Caller 16694 // is in a TCB that the Callee is not. 16695 for_each( 16696 Caller->specific_attrs<EnforceTCBAttr>(), 16697 [&](const auto *A) { 16698 StringRef CallerTCB = A->getTCBName(); 16699 if (CalleeTCBs.count(CallerTCB) == 0) { 16700 this->Diag(TheCall->getExprLoc(), 16701 diag::warn_tcb_enforcement_violation) << Callee 16702 << CallerTCB; 16703 } 16704 }); 16705 } 16706