1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/Stmt.h" 34 #include "clang/AST/TemplateBase.h" 35 #include "clang/AST/Type.h" 36 #include "clang/AST/TypeLoc.h" 37 #include "clang/AST/UnresolvedSet.h" 38 #include "clang/Basic/AddressSpaces.h" 39 #include "clang/Basic/CharInfo.h" 40 #include "clang/Basic/Diagnostic.h" 41 #include "clang/Basic/IdentifierTable.h" 42 #include "clang/Basic/LLVM.h" 43 #include "clang/Basic/LangOptions.h" 44 #include "clang/Basic/OpenCLOptions.h" 45 #include "clang/Basic/OperatorKinds.h" 46 #include "clang/Basic/PartialDiagnostic.h" 47 #include "clang/Basic/SourceLocation.h" 48 #include "clang/Basic/SourceManager.h" 49 #include "clang/Basic/Specifiers.h" 50 #include "clang/Basic/SyncScope.h" 51 #include "clang/Basic/TargetBuiltins.h" 52 #include "clang/Basic/TargetCXXABI.h" 53 #include "clang/Basic/TargetInfo.h" 54 #include "clang/Basic/TypeTraits.h" 55 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 56 #include "clang/Sema/Initialization.h" 57 #include "clang/Sema/Lookup.h" 58 #include "clang/Sema/Ownership.h" 59 #include "clang/Sema/Scope.h" 60 #include "clang/Sema/ScopeInfo.h" 61 #include "clang/Sema/Sema.h" 62 #include "clang/Sema/SemaInternal.h" 63 #include "llvm/ADT/APFloat.h" 64 #include "llvm/ADT/APInt.h" 65 #include "llvm/ADT/APSInt.h" 66 #include "llvm/ADT/ArrayRef.h" 67 #include "llvm/ADT/DenseMap.h" 68 #include "llvm/ADT/FoldingSet.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SmallBitVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallString.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/StringSwitch.h" 78 #include "llvm/ADT/Triple.h" 79 #include "llvm/Support/AtomicOrdering.h" 80 #include "llvm/Support/Casting.h" 81 #include "llvm/Support/Compiler.h" 82 #include "llvm/Support/ConvertUTF.h" 83 #include "llvm/Support/ErrorHandling.h" 84 #include "llvm/Support/Format.h" 85 #include "llvm/Support/Locale.h" 86 #include "llvm/Support/MathExtras.h" 87 #include "llvm/Support/SaveAndRestore.h" 88 #include "llvm/Support/raw_ostream.h" 89 #include <algorithm> 90 #include <cassert> 91 #include <cstddef> 92 #include <cstdint> 93 #include <functional> 94 #include <limits> 95 #include <string> 96 #include <tuple> 97 #include <utility> 98 99 using namespace clang; 100 using namespace sema; 101 102 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 103 unsigned ByteNo) const { 104 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 105 Context.getTargetInfo()); 106 } 107 108 /// Checks that a call expression's argument count is the desired number. 109 /// This is useful when doing custom type-checking. Returns true on error. 110 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 111 unsigned argCount = call->getNumArgs(); 112 if (argCount == desiredArgCount) return false; 113 114 if (argCount < desiredArgCount) 115 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 116 << 0 /*function call*/ << desiredArgCount << argCount 117 << call->getSourceRange(); 118 119 // Highlight all the excess arguments. 120 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 121 call->getArg(argCount - 1)->getEndLoc()); 122 123 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 124 << 0 /*function call*/ << desiredArgCount << argCount 125 << call->getArg(1)->getSourceRange(); 126 } 127 128 /// Check that the first argument to __builtin_annotation is an integer 129 /// and the second argument is a non-wide string literal. 130 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 131 if (checkArgCount(S, TheCall, 2)) 132 return true; 133 134 // First argument should be an integer. 135 Expr *ValArg = TheCall->getArg(0); 136 QualType Ty = ValArg->getType(); 137 if (!Ty->isIntegerType()) { 138 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 139 << ValArg->getSourceRange(); 140 return true; 141 } 142 143 // Second argument should be a constant string. 144 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 145 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 146 if (!Literal || !Literal->isAscii()) { 147 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 148 << StrArg->getSourceRange(); 149 return true; 150 } 151 152 TheCall->setType(Ty); 153 return false; 154 } 155 156 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 157 // We need at least one argument. 158 if (TheCall->getNumArgs() < 1) { 159 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 160 << 0 << 1 << TheCall->getNumArgs() 161 << TheCall->getCallee()->getSourceRange(); 162 return true; 163 } 164 165 // All arguments should be wide string literals. 166 for (Expr *Arg : TheCall->arguments()) { 167 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 168 if (!Literal || !Literal->isWide()) { 169 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 170 << Arg->getSourceRange(); 171 return true; 172 } 173 } 174 175 return false; 176 } 177 178 /// Check that the argument to __builtin_addressof is a glvalue, and set the 179 /// result type to the corresponding pointer type. 180 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 181 if (checkArgCount(S, TheCall, 1)) 182 return true; 183 184 ExprResult Arg(TheCall->getArg(0)); 185 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 186 if (ResultType.isNull()) 187 return true; 188 189 TheCall->setArg(0, Arg.get()); 190 TheCall->setType(ResultType); 191 return false; 192 } 193 194 /// Check the number of arguments and set the result type to 195 /// the argument type. 196 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 197 if (checkArgCount(S, TheCall, 1)) 198 return true; 199 200 TheCall->setType(TheCall->getArg(0)->getType()); 201 return false; 202 } 203 204 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) { 205 if (checkArgCount(S, TheCall, 3)) 206 return true; 207 208 // First two arguments should be integers. 209 for (unsigned I = 0; I < 2; ++I) { 210 ExprResult Arg = TheCall->getArg(I); 211 QualType Ty = Arg.get()->getType(); 212 if (!Ty->isIntegerType()) { 213 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 214 << Ty << Arg.get()->getSourceRange(); 215 return true; 216 } 217 InitializedEntity Entity = InitializedEntity::InitializeParameter( 218 S.getASTContext(), Ty, /*consume*/ false); 219 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 220 if (Arg.isInvalid()) 221 return true; 222 TheCall->setArg(I, Arg.get()); 223 } 224 225 // Third argument should be a pointer to a non-const integer. 226 // IRGen correctly handles volatile, restrict, and address spaces, and 227 // the other qualifiers aren't possible. 228 { 229 ExprResult Arg = TheCall->getArg(2); 230 QualType Ty = Arg.get()->getType(); 231 const auto *PtrTy = Ty->getAs<PointerType>(); 232 if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() && 233 !PtrTy->getPointeeType().isConstQualified())) { 234 S.Diag(Arg.get()->getBeginLoc(), 235 diag::err_overflow_builtin_must_be_ptr_int) 236 << Ty << Arg.get()->getSourceRange(); 237 return true; 238 } 239 InitializedEntity Entity = InitializedEntity::InitializeParameter( 240 S.getASTContext(), Ty, /*consume*/ false); 241 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 242 if (Arg.isInvalid()) 243 return true; 244 TheCall->setArg(2, Arg.get()); 245 } 246 return false; 247 } 248 249 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 250 if (checkArgCount(S, BuiltinCall, 2)) 251 return true; 252 253 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 254 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 255 Expr *Call = BuiltinCall->getArg(0); 256 Expr *Chain = BuiltinCall->getArg(1); 257 258 if (Call->getStmtClass() != Stmt::CallExprClass) { 259 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 260 << Call->getSourceRange(); 261 return true; 262 } 263 264 auto CE = cast<CallExpr>(Call); 265 if (CE->getCallee()->getType()->isBlockPointerType()) { 266 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 267 << Call->getSourceRange(); 268 return true; 269 } 270 271 const Decl *TargetDecl = CE->getCalleeDecl(); 272 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 273 if (FD->getBuiltinID()) { 274 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 275 << Call->getSourceRange(); 276 return true; 277 } 278 279 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 280 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 281 << Call->getSourceRange(); 282 return true; 283 } 284 285 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 286 if (ChainResult.isInvalid()) 287 return true; 288 if (!ChainResult.get()->getType()->isPointerType()) { 289 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 290 << Chain->getSourceRange(); 291 return true; 292 } 293 294 QualType ReturnTy = CE->getCallReturnType(S.Context); 295 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 296 QualType BuiltinTy = S.Context.getFunctionType( 297 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 298 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 299 300 Builtin = 301 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 302 303 BuiltinCall->setType(CE->getType()); 304 BuiltinCall->setValueKind(CE->getValueKind()); 305 BuiltinCall->setObjectKind(CE->getObjectKind()); 306 BuiltinCall->setCallee(Builtin); 307 BuiltinCall->setArg(1, ChainResult.get()); 308 309 return false; 310 } 311 312 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 313 /// __builtin_*_chk function, then use the object size argument specified in the 314 /// source. Otherwise, infer the object size using __builtin_object_size. 315 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 316 CallExpr *TheCall) { 317 // FIXME: There are some more useful checks we could be doing here: 318 // - Analyze the format string of sprintf to see how much of buffer is used. 319 // - Evaluate strlen of strcpy arguments, use as object size. 320 321 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 322 isConstantEvaluated()) 323 return; 324 325 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 326 if (!BuiltinID) 327 return; 328 329 unsigned DiagID = 0; 330 bool IsChkVariant = false; 331 unsigned SizeIndex, ObjectIndex; 332 switch (BuiltinID) { 333 default: 334 return; 335 case Builtin::BI__builtin___memcpy_chk: 336 case Builtin::BI__builtin___memmove_chk: 337 case Builtin::BI__builtin___memset_chk: 338 case Builtin::BI__builtin___strlcat_chk: 339 case Builtin::BI__builtin___strlcpy_chk: 340 case Builtin::BI__builtin___strncat_chk: 341 case Builtin::BI__builtin___strncpy_chk: 342 case Builtin::BI__builtin___stpncpy_chk: 343 case Builtin::BI__builtin___memccpy_chk: { 344 DiagID = diag::warn_builtin_chk_overflow; 345 IsChkVariant = true; 346 SizeIndex = TheCall->getNumArgs() - 2; 347 ObjectIndex = TheCall->getNumArgs() - 1; 348 break; 349 } 350 351 case Builtin::BI__builtin___snprintf_chk: 352 case Builtin::BI__builtin___vsnprintf_chk: { 353 DiagID = diag::warn_builtin_chk_overflow; 354 IsChkVariant = true; 355 SizeIndex = 1; 356 ObjectIndex = 3; 357 break; 358 } 359 360 case Builtin::BIstrncat: 361 case Builtin::BI__builtin_strncat: 362 case Builtin::BIstrncpy: 363 case Builtin::BI__builtin_strncpy: 364 case Builtin::BIstpncpy: 365 case Builtin::BI__builtin_stpncpy: { 366 // Whether these functions overflow depends on the runtime strlen of the 367 // string, not just the buffer size, so emitting the "always overflow" 368 // diagnostic isn't quite right. We should still diagnose passing a buffer 369 // size larger than the destination buffer though; this is a runtime abort 370 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 371 DiagID = diag::warn_fortify_source_size_mismatch; 372 SizeIndex = TheCall->getNumArgs() - 1; 373 ObjectIndex = 0; 374 break; 375 } 376 377 case Builtin::BImemcpy: 378 case Builtin::BI__builtin_memcpy: 379 case Builtin::BImemmove: 380 case Builtin::BI__builtin_memmove: 381 case Builtin::BImemset: 382 case Builtin::BI__builtin_memset: { 383 DiagID = diag::warn_fortify_source_overflow; 384 SizeIndex = TheCall->getNumArgs() - 1; 385 ObjectIndex = 0; 386 break; 387 } 388 case Builtin::BIsnprintf: 389 case Builtin::BI__builtin_snprintf: 390 case Builtin::BIvsnprintf: 391 case Builtin::BI__builtin_vsnprintf: { 392 DiagID = diag::warn_fortify_source_size_mismatch; 393 SizeIndex = 1; 394 ObjectIndex = 0; 395 break; 396 } 397 } 398 399 llvm::APSInt ObjectSize; 400 // For __builtin___*_chk, the object size is explicitly provided by the caller 401 // (usually using __builtin_object_size). Use that value to check this call. 402 if (IsChkVariant) { 403 Expr::EvalResult Result; 404 Expr *SizeArg = TheCall->getArg(ObjectIndex); 405 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 406 return; 407 ObjectSize = Result.Val.getInt(); 408 409 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 410 } else { 411 // If the parameter has a pass_object_size attribute, then we should use its 412 // (potentially) more strict checking mode. Otherwise, conservatively assume 413 // type 0. 414 int BOSType = 0; 415 if (const auto *POS = 416 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 417 BOSType = POS->getType(); 418 419 Expr *ObjArg = TheCall->getArg(ObjectIndex); 420 uint64_t Result; 421 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 422 return; 423 // Get the object size in the target's size_t width. 424 const TargetInfo &TI = getASTContext().getTargetInfo(); 425 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 426 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 427 } 428 429 // Evaluate the number of bytes of the object that this call will use. 430 Expr::EvalResult Result; 431 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 432 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 433 return; 434 llvm::APSInt UsedSize = Result.Val.getInt(); 435 436 if (UsedSize.ule(ObjectSize)) 437 return; 438 439 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 440 // Skim off the details of whichever builtin was called to produce a better 441 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 442 if (IsChkVariant) { 443 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 444 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 445 } else if (FunctionName.startswith("__builtin_")) { 446 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 447 } 448 449 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 450 PDiag(DiagID) 451 << FunctionName << ObjectSize.toString(/*Radix=*/10) 452 << UsedSize.toString(/*Radix=*/10)); 453 } 454 455 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 456 Scope::ScopeFlags NeededScopeFlags, 457 unsigned DiagID) { 458 // Scopes aren't available during instantiation. Fortunately, builtin 459 // functions cannot be template args so they cannot be formed through template 460 // instantiation. Therefore checking once during the parse is sufficient. 461 if (SemaRef.inTemplateInstantiation()) 462 return false; 463 464 Scope *S = SemaRef.getCurScope(); 465 while (S && !S->isSEHExceptScope()) 466 S = S->getParent(); 467 if (!S || !(S->getFlags() & NeededScopeFlags)) { 468 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 469 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 470 << DRE->getDecl()->getIdentifier(); 471 return true; 472 } 473 474 return false; 475 } 476 477 static inline bool isBlockPointer(Expr *Arg) { 478 return Arg->getType()->isBlockPointerType(); 479 } 480 481 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 482 /// void*, which is a requirement of device side enqueue. 483 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 484 const BlockPointerType *BPT = 485 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 486 ArrayRef<QualType> Params = 487 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 488 unsigned ArgCounter = 0; 489 bool IllegalParams = false; 490 // Iterate through the block parameters until either one is found that is not 491 // a local void*, or the block is valid. 492 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 493 I != E; ++I, ++ArgCounter) { 494 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 495 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 496 LangAS::opencl_local) { 497 // Get the location of the error. If a block literal has been passed 498 // (BlockExpr) then we can point straight to the offending argument, 499 // else we just point to the variable reference. 500 SourceLocation ErrorLoc; 501 if (isa<BlockExpr>(BlockArg)) { 502 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 503 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 504 } else if (isa<DeclRefExpr>(BlockArg)) { 505 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 506 } 507 S.Diag(ErrorLoc, 508 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 509 IllegalParams = true; 510 } 511 } 512 513 return IllegalParams; 514 } 515 516 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 517 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 518 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 519 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 520 return true; 521 } 522 return false; 523 } 524 525 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 526 if (checkArgCount(S, TheCall, 2)) 527 return true; 528 529 if (checkOpenCLSubgroupExt(S, TheCall)) 530 return true; 531 532 // First argument is an ndrange_t type. 533 Expr *NDRangeArg = TheCall->getArg(0); 534 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 535 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 536 << TheCall->getDirectCallee() << "'ndrange_t'"; 537 return true; 538 } 539 540 Expr *BlockArg = TheCall->getArg(1); 541 if (!isBlockPointer(BlockArg)) { 542 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 543 << TheCall->getDirectCallee() << "block"; 544 return true; 545 } 546 return checkOpenCLBlockArgs(S, BlockArg); 547 } 548 549 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 550 /// get_kernel_work_group_size 551 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 552 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 553 if (checkArgCount(S, TheCall, 1)) 554 return true; 555 556 Expr *BlockArg = TheCall->getArg(0); 557 if (!isBlockPointer(BlockArg)) { 558 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 559 << TheCall->getDirectCallee() << "block"; 560 return true; 561 } 562 return checkOpenCLBlockArgs(S, BlockArg); 563 } 564 565 /// Diagnose integer type and any valid implicit conversion to it. 566 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 567 const QualType &IntType); 568 569 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 570 unsigned Start, unsigned End) { 571 bool IllegalParams = false; 572 for (unsigned I = Start; I <= End; ++I) 573 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 574 S.Context.getSizeType()); 575 return IllegalParams; 576 } 577 578 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 579 /// 'local void*' parameter of passed block. 580 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 581 Expr *BlockArg, 582 unsigned NumNonVarArgs) { 583 const BlockPointerType *BPT = 584 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 585 unsigned NumBlockParams = 586 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 587 unsigned TotalNumArgs = TheCall->getNumArgs(); 588 589 // For each argument passed to the block, a corresponding uint needs to 590 // be passed to describe the size of the local memory. 591 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 592 S.Diag(TheCall->getBeginLoc(), 593 diag::err_opencl_enqueue_kernel_local_size_args); 594 return true; 595 } 596 597 // Check that the sizes of the local memory are specified by integers. 598 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 599 TotalNumArgs - 1); 600 } 601 602 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 603 /// overload formats specified in Table 6.13.17.1. 604 /// int enqueue_kernel(queue_t queue, 605 /// kernel_enqueue_flags_t flags, 606 /// const ndrange_t ndrange, 607 /// void (^block)(void)) 608 /// int enqueue_kernel(queue_t queue, 609 /// kernel_enqueue_flags_t flags, 610 /// const ndrange_t ndrange, 611 /// uint num_events_in_wait_list, 612 /// clk_event_t *event_wait_list, 613 /// clk_event_t *event_ret, 614 /// void (^block)(void)) 615 /// int enqueue_kernel(queue_t queue, 616 /// kernel_enqueue_flags_t flags, 617 /// const ndrange_t ndrange, 618 /// void (^block)(local void*, ...), 619 /// uint size0, ...) 620 /// int enqueue_kernel(queue_t queue, 621 /// kernel_enqueue_flags_t flags, 622 /// const ndrange_t ndrange, 623 /// uint num_events_in_wait_list, 624 /// clk_event_t *event_wait_list, 625 /// clk_event_t *event_ret, 626 /// void (^block)(local void*, ...), 627 /// uint size0, ...) 628 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 629 unsigned NumArgs = TheCall->getNumArgs(); 630 631 if (NumArgs < 4) { 632 S.Diag(TheCall->getBeginLoc(), 633 diag::err_typecheck_call_too_few_args_at_least) 634 << 0 << 4 << NumArgs; 635 return true; 636 } 637 638 Expr *Arg0 = TheCall->getArg(0); 639 Expr *Arg1 = TheCall->getArg(1); 640 Expr *Arg2 = TheCall->getArg(2); 641 Expr *Arg3 = TheCall->getArg(3); 642 643 // First argument always needs to be a queue_t type. 644 if (!Arg0->getType()->isQueueT()) { 645 S.Diag(TheCall->getArg(0)->getBeginLoc(), 646 diag::err_opencl_builtin_expected_type) 647 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 648 return true; 649 } 650 651 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 652 if (!Arg1->getType()->isIntegerType()) { 653 S.Diag(TheCall->getArg(1)->getBeginLoc(), 654 diag::err_opencl_builtin_expected_type) 655 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 656 return true; 657 } 658 659 // Third argument is always an ndrange_t type. 660 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 661 S.Diag(TheCall->getArg(2)->getBeginLoc(), 662 diag::err_opencl_builtin_expected_type) 663 << TheCall->getDirectCallee() << "'ndrange_t'"; 664 return true; 665 } 666 667 // With four arguments, there is only one form that the function could be 668 // called in: no events and no variable arguments. 669 if (NumArgs == 4) { 670 // check that the last argument is the right block type. 671 if (!isBlockPointer(Arg3)) { 672 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 673 << TheCall->getDirectCallee() << "block"; 674 return true; 675 } 676 // we have a block type, check the prototype 677 const BlockPointerType *BPT = 678 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 679 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 680 S.Diag(Arg3->getBeginLoc(), 681 diag::err_opencl_enqueue_kernel_blocks_no_args); 682 return true; 683 } 684 return false; 685 } 686 // we can have block + varargs. 687 if (isBlockPointer(Arg3)) 688 return (checkOpenCLBlockArgs(S, Arg3) || 689 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 690 // last two cases with either exactly 7 args or 7 args and varargs. 691 if (NumArgs >= 7) { 692 // check common block argument. 693 Expr *Arg6 = TheCall->getArg(6); 694 if (!isBlockPointer(Arg6)) { 695 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 696 << TheCall->getDirectCallee() << "block"; 697 return true; 698 } 699 if (checkOpenCLBlockArgs(S, Arg6)) 700 return true; 701 702 // Forth argument has to be any integer type. 703 if (!Arg3->getType()->isIntegerType()) { 704 S.Diag(TheCall->getArg(3)->getBeginLoc(), 705 diag::err_opencl_builtin_expected_type) 706 << TheCall->getDirectCallee() << "integer"; 707 return true; 708 } 709 // check remaining common arguments. 710 Expr *Arg4 = TheCall->getArg(4); 711 Expr *Arg5 = TheCall->getArg(5); 712 713 // Fifth argument is always passed as a pointer to clk_event_t. 714 if (!Arg4->isNullPointerConstant(S.Context, 715 Expr::NPC_ValueDependentIsNotNull) && 716 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 717 S.Diag(TheCall->getArg(4)->getBeginLoc(), 718 diag::err_opencl_builtin_expected_type) 719 << TheCall->getDirectCallee() 720 << S.Context.getPointerType(S.Context.OCLClkEventTy); 721 return true; 722 } 723 724 // Sixth argument is always passed as a pointer to clk_event_t. 725 if (!Arg5->isNullPointerConstant(S.Context, 726 Expr::NPC_ValueDependentIsNotNull) && 727 !(Arg5->getType()->isPointerType() && 728 Arg5->getType()->getPointeeType()->isClkEventT())) { 729 S.Diag(TheCall->getArg(5)->getBeginLoc(), 730 diag::err_opencl_builtin_expected_type) 731 << TheCall->getDirectCallee() 732 << S.Context.getPointerType(S.Context.OCLClkEventTy); 733 return true; 734 } 735 736 if (NumArgs == 7) 737 return false; 738 739 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 740 } 741 742 // None of the specific case has been detected, give generic error 743 S.Diag(TheCall->getBeginLoc(), 744 diag::err_opencl_enqueue_kernel_incorrect_args); 745 return true; 746 } 747 748 /// Returns OpenCL access qual. 749 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 750 return D->getAttr<OpenCLAccessAttr>(); 751 } 752 753 /// Returns true if pipe element type is different from the pointer. 754 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 755 const Expr *Arg0 = Call->getArg(0); 756 // First argument type should always be pipe. 757 if (!Arg0->getType()->isPipeType()) { 758 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 759 << Call->getDirectCallee() << Arg0->getSourceRange(); 760 return true; 761 } 762 OpenCLAccessAttr *AccessQual = 763 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 764 // Validates the access qualifier is compatible with the call. 765 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 766 // read_only and write_only, and assumed to be read_only if no qualifier is 767 // specified. 768 switch (Call->getDirectCallee()->getBuiltinID()) { 769 case Builtin::BIread_pipe: 770 case Builtin::BIreserve_read_pipe: 771 case Builtin::BIcommit_read_pipe: 772 case Builtin::BIwork_group_reserve_read_pipe: 773 case Builtin::BIsub_group_reserve_read_pipe: 774 case Builtin::BIwork_group_commit_read_pipe: 775 case Builtin::BIsub_group_commit_read_pipe: 776 if (!(!AccessQual || AccessQual->isReadOnly())) { 777 S.Diag(Arg0->getBeginLoc(), 778 diag::err_opencl_builtin_pipe_invalid_access_modifier) 779 << "read_only" << Arg0->getSourceRange(); 780 return true; 781 } 782 break; 783 case Builtin::BIwrite_pipe: 784 case Builtin::BIreserve_write_pipe: 785 case Builtin::BIcommit_write_pipe: 786 case Builtin::BIwork_group_reserve_write_pipe: 787 case Builtin::BIsub_group_reserve_write_pipe: 788 case Builtin::BIwork_group_commit_write_pipe: 789 case Builtin::BIsub_group_commit_write_pipe: 790 if (!(AccessQual && AccessQual->isWriteOnly())) { 791 S.Diag(Arg0->getBeginLoc(), 792 diag::err_opencl_builtin_pipe_invalid_access_modifier) 793 << "write_only" << Arg0->getSourceRange(); 794 return true; 795 } 796 break; 797 default: 798 break; 799 } 800 return false; 801 } 802 803 /// Returns true if pipe element type is different from the pointer. 804 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 805 const Expr *Arg0 = Call->getArg(0); 806 const Expr *ArgIdx = Call->getArg(Idx); 807 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 808 const QualType EltTy = PipeTy->getElementType(); 809 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 810 // The Idx argument should be a pointer and the type of the pointer and 811 // the type of pipe element should also be the same. 812 if (!ArgTy || 813 !S.Context.hasSameType( 814 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 815 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 816 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 817 << ArgIdx->getType() << ArgIdx->getSourceRange(); 818 return true; 819 } 820 return false; 821 } 822 823 // Performs semantic analysis for the read/write_pipe call. 824 // \param S Reference to the semantic analyzer. 825 // \param Call A pointer to the builtin call. 826 // \return True if a semantic error has been found, false otherwise. 827 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 828 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 829 // functions have two forms. 830 switch (Call->getNumArgs()) { 831 case 2: 832 if (checkOpenCLPipeArg(S, Call)) 833 return true; 834 // The call with 2 arguments should be 835 // read/write_pipe(pipe T, T*). 836 // Check packet type T. 837 if (checkOpenCLPipePacketType(S, Call, 1)) 838 return true; 839 break; 840 841 case 4: { 842 if (checkOpenCLPipeArg(S, Call)) 843 return true; 844 // The call with 4 arguments should be 845 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 846 // Check reserve_id_t. 847 if (!Call->getArg(1)->getType()->isReserveIDT()) { 848 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 849 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 850 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 851 return true; 852 } 853 854 // Check the index. 855 const Expr *Arg2 = Call->getArg(2); 856 if (!Arg2->getType()->isIntegerType() && 857 !Arg2->getType()->isUnsignedIntegerType()) { 858 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 859 << Call->getDirectCallee() << S.Context.UnsignedIntTy 860 << Arg2->getType() << Arg2->getSourceRange(); 861 return true; 862 } 863 864 // Check packet type T. 865 if (checkOpenCLPipePacketType(S, Call, 3)) 866 return true; 867 } break; 868 default: 869 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 870 << Call->getDirectCallee() << Call->getSourceRange(); 871 return true; 872 } 873 874 return false; 875 } 876 877 // Performs a semantic analysis on the {work_group_/sub_group_ 878 // /_}reserve_{read/write}_pipe 879 // \param S Reference to the semantic analyzer. 880 // \param Call The call to the builtin function to be analyzed. 881 // \return True if a semantic error was found, false otherwise. 882 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 883 if (checkArgCount(S, Call, 2)) 884 return true; 885 886 if (checkOpenCLPipeArg(S, Call)) 887 return true; 888 889 // Check the reserve size. 890 if (!Call->getArg(1)->getType()->isIntegerType() && 891 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 892 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 893 << Call->getDirectCallee() << S.Context.UnsignedIntTy 894 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 895 return true; 896 } 897 898 // Since return type of reserve_read/write_pipe built-in function is 899 // reserve_id_t, which is not defined in the builtin def file , we used int 900 // as return type and need to override the return type of these functions. 901 Call->setType(S.Context.OCLReserveIDTy); 902 903 return false; 904 } 905 906 // Performs a semantic analysis on {work_group_/sub_group_ 907 // /_}commit_{read/write}_pipe 908 // \param S Reference to the semantic analyzer. 909 // \param Call The call to the builtin function to be analyzed. 910 // \return True if a semantic error was found, false otherwise. 911 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 912 if (checkArgCount(S, Call, 2)) 913 return true; 914 915 if (checkOpenCLPipeArg(S, Call)) 916 return true; 917 918 // Check reserve_id_t. 919 if (!Call->getArg(1)->getType()->isReserveIDT()) { 920 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 921 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 922 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 923 return true; 924 } 925 926 return false; 927 } 928 929 // Performs a semantic analysis on the call to built-in Pipe 930 // Query Functions. 931 // \param S Reference to the semantic analyzer. 932 // \param Call The call to the builtin function to be analyzed. 933 // \return True if a semantic error was found, false otherwise. 934 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 935 if (checkArgCount(S, Call, 1)) 936 return true; 937 938 if (!Call->getArg(0)->getType()->isPipeType()) { 939 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 940 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 941 return true; 942 } 943 944 return false; 945 } 946 947 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 948 // Performs semantic analysis for the to_global/local/private call. 949 // \param S Reference to the semantic analyzer. 950 // \param BuiltinID ID of the builtin function. 951 // \param Call A pointer to the builtin call. 952 // \return True if a semantic error has been found, false otherwise. 953 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 954 CallExpr *Call) { 955 if (Call->getNumArgs() != 1) { 956 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) 957 << Call->getDirectCallee() << Call->getSourceRange(); 958 return true; 959 } 960 961 auto RT = Call->getArg(0)->getType(); 962 if (!RT->isPointerType() || RT->getPointeeType() 963 .getAddressSpace() == LangAS::opencl_constant) { 964 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 965 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 966 return true; 967 } 968 969 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 970 S.Diag(Call->getArg(0)->getBeginLoc(), 971 diag::warn_opencl_generic_address_space_arg) 972 << Call->getDirectCallee()->getNameInfo().getAsString() 973 << Call->getArg(0)->getSourceRange(); 974 } 975 976 RT = RT->getPointeeType(); 977 auto Qual = RT.getQualifiers(); 978 switch (BuiltinID) { 979 case Builtin::BIto_global: 980 Qual.setAddressSpace(LangAS::opencl_global); 981 break; 982 case Builtin::BIto_local: 983 Qual.setAddressSpace(LangAS::opencl_local); 984 break; 985 case Builtin::BIto_private: 986 Qual.setAddressSpace(LangAS::opencl_private); 987 break; 988 default: 989 llvm_unreachable("Invalid builtin function"); 990 } 991 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 992 RT.getUnqualifiedType(), Qual))); 993 994 return false; 995 } 996 997 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 998 if (checkArgCount(S, TheCall, 1)) 999 return ExprError(); 1000 1001 // Compute __builtin_launder's parameter type from the argument. 1002 // The parameter type is: 1003 // * The type of the argument if it's not an array or function type, 1004 // Otherwise, 1005 // * The decayed argument type. 1006 QualType ParamTy = [&]() { 1007 QualType ArgTy = TheCall->getArg(0)->getType(); 1008 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1009 return S.Context.getPointerType(Ty->getElementType()); 1010 if (ArgTy->isFunctionType()) { 1011 return S.Context.getPointerType(ArgTy); 1012 } 1013 return ArgTy; 1014 }(); 1015 1016 TheCall->setType(ParamTy); 1017 1018 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1019 if (!ParamTy->isPointerType()) 1020 return 0; 1021 if (ParamTy->isFunctionPointerType()) 1022 return 1; 1023 if (ParamTy->isVoidPointerType()) 1024 return 2; 1025 return llvm::Optional<unsigned>{}; 1026 }(); 1027 if (DiagSelect.hasValue()) { 1028 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1029 << DiagSelect.getValue() << TheCall->getSourceRange(); 1030 return ExprError(); 1031 } 1032 1033 // We either have an incomplete class type, or we have a class template 1034 // whose instantiation has not been forced. Example: 1035 // 1036 // template <class T> struct Foo { T value; }; 1037 // Foo<int> *p = nullptr; 1038 // auto *d = __builtin_launder(p); 1039 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1040 diag::err_incomplete_type)) 1041 return ExprError(); 1042 1043 assert(ParamTy->getPointeeType()->isObjectType() && 1044 "Unhandled non-object pointer case"); 1045 1046 InitializedEntity Entity = 1047 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1048 ExprResult Arg = 1049 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1050 if (Arg.isInvalid()) 1051 return ExprError(); 1052 TheCall->setArg(0, Arg.get()); 1053 1054 return TheCall; 1055 } 1056 1057 // Emit an error and return true if the current architecture is not in the list 1058 // of supported architectures. 1059 static bool 1060 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1061 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1062 llvm::Triple::ArchType CurArch = 1063 S.getASTContext().getTargetInfo().getTriple().getArch(); 1064 if (llvm::is_contained(SupportedArchs, CurArch)) 1065 return false; 1066 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1067 << TheCall->getSourceRange(); 1068 return true; 1069 } 1070 1071 ExprResult 1072 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1073 CallExpr *TheCall) { 1074 ExprResult TheCallResult(TheCall); 1075 1076 // Find out if any arguments are required to be integer constant expressions. 1077 unsigned ICEArguments = 0; 1078 ASTContext::GetBuiltinTypeError Error; 1079 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1080 if (Error != ASTContext::GE_None) 1081 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1082 1083 // If any arguments are required to be ICE's, check and diagnose. 1084 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1085 // Skip arguments not required to be ICE's. 1086 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1087 1088 llvm::APSInt Result; 1089 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1090 return true; 1091 ICEArguments &= ~(1 << ArgNo); 1092 } 1093 1094 switch (BuiltinID) { 1095 case Builtin::BI__builtin___CFStringMakeConstantString: 1096 assert(TheCall->getNumArgs() == 1 && 1097 "Wrong # arguments to builtin CFStringMakeConstantString"); 1098 if (CheckObjCString(TheCall->getArg(0))) 1099 return ExprError(); 1100 break; 1101 case Builtin::BI__builtin_ms_va_start: 1102 case Builtin::BI__builtin_stdarg_start: 1103 case Builtin::BI__builtin_va_start: 1104 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1105 return ExprError(); 1106 break; 1107 case Builtin::BI__va_start: { 1108 switch (Context.getTargetInfo().getTriple().getArch()) { 1109 case llvm::Triple::aarch64: 1110 case llvm::Triple::arm: 1111 case llvm::Triple::thumb: 1112 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1113 return ExprError(); 1114 break; 1115 default: 1116 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1117 return ExprError(); 1118 break; 1119 } 1120 break; 1121 } 1122 1123 // The acquire, release, and no fence variants are ARM and AArch64 only. 1124 case Builtin::BI_interlockedbittestandset_acq: 1125 case Builtin::BI_interlockedbittestandset_rel: 1126 case Builtin::BI_interlockedbittestandset_nf: 1127 case Builtin::BI_interlockedbittestandreset_acq: 1128 case Builtin::BI_interlockedbittestandreset_rel: 1129 case Builtin::BI_interlockedbittestandreset_nf: 1130 if (CheckBuiltinTargetSupport( 1131 *this, BuiltinID, TheCall, 1132 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1133 return ExprError(); 1134 break; 1135 1136 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1137 case Builtin::BI_bittest64: 1138 case Builtin::BI_bittestandcomplement64: 1139 case Builtin::BI_bittestandreset64: 1140 case Builtin::BI_bittestandset64: 1141 case Builtin::BI_interlockedbittestandreset64: 1142 case Builtin::BI_interlockedbittestandset64: 1143 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1144 {llvm::Triple::x86_64, llvm::Triple::arm, 1145 llvm::Triple::thumb, llvm::Triple::aarch64})) 1146 return ExprError(); 1147 break; 1148 1149 case Builtin::BI__builtin_isgreater: 1150 case Builtin::BI__builtin_isgreaterequal: 1151 case Builtin::BI__builtin_isless: 1152 case Builtin::BI__builtin_islessequal: 1153 case Builtin::BI__builtin_islessgreater: 1154 case Builtin::BI__builtin_isunordered: 1155 if (SemaBuiltinUnorderedCompare(TheCall)) 1156 return ExprError(); 1157 break; 1158 case Builtin::BI__builtin_fpclassify: 1159 if (SemaBuiltinFPClassification(TheCall, 6)) 1160 return ExprError(); 1161 break; 1162 case Builtin::BI__builtin_isfinite: 1163 case Builtin::BI__builtin_isinf: 1164 case Builtin::BI__builtin_isinf_sign: 1165 case Builtin::BI__builtin_isnan: 1166 case Builtin::BI__builtin_isnormal: 1167 case Builtin::BI__builtin_signbit: 1168 case Builtin::BI__builtin_signbitf: 1169 case Builtin::BI__builtin_signbitl: 1170 if (SemaBuiltinFPClassification(TheCall, 1)) 1171 return ExprError(); 1172 break; 1173 case Builtin::BI__builtin_shufflevector: 1174 return SemaBuiltinShuffleVector(TheCall); 1175 // TheCall will be freed by the smart pointer here, but that's fine, since 1176 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1177 case Builtin::BI__builtin_prefetch: 1178 if (SemaBuiltinPrefetch(TheCall)) 1179 return ExprError(); 1180 break; 1181 case Builtin::BI__builtin_alloca_with_align: 1182 if (SemaBuiltinAllocaWithAlign(TheCall)) 1183 return ExprError(); 1184 LLVM_FALLTHROUGH; 1185 case Builtin::BI__builtin_alloca: 1186 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1187 << TheCall->getDirectCallee(); 1188 break; 1189 case Builtin::BI__assume: 1190 case Builtin::BI__builtin_assume: 1191 if (SemaBuiltinAssume(TheCall)) 1192 return ExprError(); 1193 break; 1194 case Builtin::BI__builtin_assume_aligned: 1195 if (SemaBuiltinAssumeAligned(TheCall)) 1196 return ExprError(); 1197 break; 1198 case Builtin::BI__builtin_dynamic_object_size: 1199 case Builtin::BI__builtin_object_size: 1200 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1201 return ExprError(); 1202 break; 1203 case Builtin::BI__builtin_longjmp: 1204 if (SemaBuiltinLongjmp(TheCall)) 1205 return ExprError(); 1206 break; 1207 case Builtin::BI__builtin_setjmp: 1208 if (SemaBuiltinSetjmp(TheCall)) 1209 return ExprError(); 1210 break; 1211 case Builtin::BI_setjmp: 1212 case Builtin::BI_setjmpex: 1213 if (checkArgCount(*this, TheCall, 1)) 1214 return true; 1215 break; 1216 case Builtin::BI__builtin_classify_type: 1217 if (checkArgCount(*this, TheCall, 1)) return true; 1218 TheCall->setType(Context.IntTy); 1219 break; 1220 case Builtin::BI__builtin_constant_p: { 1221 if (checkArgCount(*this, TheCall, 1)) return true; 1222 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1223 if (Arg.isInvalid()) return true; 1224 TheCall->setArg(0, Arg.get()); 1225 TheCall->setType(Context.IntTy); 1226 break; 1227 } 1228 case Builtin::BI__builtin_launder: 1229 return SemaBuiltinLaunder(*this, TheCall); 1230 case Builtin::BI__sync_fetch_and_add: 1231 case Builtin::BI__sync_fetch_and_add_1: 1232 case Builtin::BI__sync_fetch_and_add_2: 1233 case Builtin::BI__sync_fetch_and_add_4: 1234 case Builtin::BI__sync_fetch_and_add_8: 1235 case Builtin::BI__sync_fetch_and_add_16: 1236 case Builtin::BI__sync_fetch_and_sub: 1237 case Builtin::BI__sync_fetch_and_sub_1: 1238 case Builtin::BI__sync_fetch_and_sub_2: 1239 case Builtin::BI__sync_fetch_and_sub_4: 1240 case Builtin::BI__sync_fetch_and_sub_8: 1241 case Builtin::BI__sync_fetch_and_sub_16: 1242 case Builtin::BI__sync_fetch_and_or: 1243 case Builtin::BI__sync_fetch_and_or_1: 1244 case Builtin::BI__sync_fetch_and_or_2: 1245 case Builtin::BI__sync_fetch_and_or_4: 1246 case Builtin::BI__sync_fetch_and_or_8: 1247 case Builtin::BI__sync_fetch_and_or_16: 1248 case Builtin::BI__sync_fetch_and_and: 1249 case Builtin::BI__sync_fetch_and_and_1: 1250 case Builtin::BI__sync_fetch_and_and_2: 1251 case Builtin::BI__sync_fetch_and_and_4: 1252 case Builtin::BI__sync_fetch_and_and_8: 1253 case Builtin::BI__sync_fetch_and_and_16: 1254 case Builtin::BI__sync_fetch_and_xor: 1255 case Builtin::BI__sync_fetch_and_xor_1: 1256 case Builtin::BI__sync_fetch_and_xor_2: 1257 case Builtin::BI__sync_fetch_and_xor_4: 1258 case Builtin::BI__sync_fetch_and_xor_8: 1259 case Builtin::BI__sync_fetch_and_xor_16: 1260 case Builtin::BI__sync_fetch_and_nand: 1261 case Builtin::BI__sync_fetch_and_nand_1: 1262 case Builtin::BI__sync_fetch_and_nand_2: 1263 case Builtin::BI__sync_fetch_and_nand_4: 1264 case Builtin::BI__sync_fetch_and_nand_8: 1265 case Builtin::BI__sync_fetch_and_nand_16: 1266 case Builtin::BI__sync_add_and_fetch: 1267 case Builtin::BI__sync_add_and_fetch_1: 1268 case Builtin::BI__sync_add_and_fetch_2: 1269 case Builtin::BI__sync_add_and_fetch_4: 1270 case Builtin::BI__sync_add_and_fetch_8: 1271 case Builtin::BI__sync_add_and_fetch_16: 1272 case Builtin::BI__sync_sub_and_fetch: 1273 case Builtin::BI__sync_sub_and_fetch_1: 1274 case Builtin::BI__sync_sub_and_fetch_2: 1275 case Builtin::BI__sync_sub_and_fetch_4: 1276 case Builtin::BI__sync_sub_and_fetch_8: 1277 case Builtin::BI__sync_sub_and_fetch_16: 1278 case Builtin::BI__sync_and_and_fetch: 1279 case Builtin::BI__sync_and_and_fetch_1: 1280 case Builtin::BI__sync_and_and_fetch_2: 1281 case Builtin::BI__sync_and_and_fetch_4: 1282 case Builtin::BI__sync_and_and_fetch_8: 1283 case Builtin::BI__sync_and_and_fetch_16: 1284 case Builtin::BI__sync_or_and_fetch: 1285 case Builtin::BI__sync_or_and_fetch_1: 1286 case Builtin::BI__sync_or_and_fetch_2: 1287 case Builtin::BI__sync_or_and_fetch_4: 1288 case Builtin::BI__sync_or_and_fetch_8: 1289 case Builtin::BI__sync_or_and_fetch_16: 1290 case Builtin::BI__sync_xor_and_fetch: 1291 case Builtin::BI__sync_xor_and_fetch_1: 1292 case Builtin::BI__sync_xor_and_fetch_2: 1293 case Builtin::BI__sync_xor_and_fetch_4: 1294 case Builtin::BI__sync_xor_and_fetch_8: 1295 case Builtin::BI__sync_xor_and_fetch_16: 1296 case Builtin::BI__sync_nand_and_fetch: 1297 case Builtin::BI__sync_nand_and_fetch_1: 1298 case Builtin::BI__sync_nand_and_fetch_2: 1299 case Builtin::BI__sync_nand_and_fetch_4: 1300 case Builtin::BI__sync_nand_and_fetch_8: 1301 case Builtin::BI__sync_nand_and_fetch_16: 1302 case Builtin::BI__sync_val_compare_and_swap: 1303 case Builtin::BI__sync_val_compare_and_swap_1: 1304 case Builtin::BI__sync_val_compare_and_swap_2: 1305 case Builtin::BI__sync_val_compare_and_swap_4: 1306 case Builtin::BI__sync_val_compare_and_swap_8: 1307 case Builtin::BI__sync_val_compare_and_swap_16: 1308 case Builtin::BI__sync_bool_compare_and_swap: 1309 case Builtin::BI__sync_bool_compare_and_swap_1: 1310 case Builtin::BI__sync_bool_compare_and_swap_2: 1311 case Builtin::BI__sync_bool_compare_and_swap_4: 1312 case Builtin::BI__sync_bool_compare_and_swap_8: 1313 case Builtin::BI__sync_bool_compare_and_swap_16: 1314 case Builtin::BI__sync_lock_test_and_set: 1315 case Builtin::BI__sync_lock_test_and_set_1: 1316 case Builtin::BI__sync_lock_test_and_set_2: 1317 case Builtin::BI__sync_lock_test_and_set_4: 1318 case Builtin::BI__sync_lock_test_and_set_8: 1319 case Builtin::BI__sync_lock_test_and_set_16: 1320 case Builtin::BI__sync_lock_release: 1321 case Builtin::BI__sync_lock_release_1: 1322 case Builtin::BI__sync_lock_release_2: 1323 case Builtin::BI__sync_lock_release_4: 1324 case Builtin::BI__sync_lock_release_8: 1325 case Builtin::BI__sync_lock_release_16: 1326 case Builtin::BI__sync_swap: 1327 case Builtin::BI__sync_swap_1: 1328 case Builtin::BI__sync_swap_2: 1329 case Builtin::BI__sync_swap_4: 1330 case Builtin::BI__sync_swap_8: 1331 case Builtin::BI__sync_swap_16: 1332 return SemaBuiltinAtomicOverloaded(TheCallResult); 1333 case Builtin::BI__sync_synchronize: 1334 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1335 << TheCall->getCallee()->getSourceRange(); 1336 break; 1337 case Builtin::BI__builtin_nontemporal_load: 1338 case Builtin::BI__builtin_nontemporal_store: 1339 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1340 #define BUILTIN(ID, TYPE, ATTRS) 1341 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1342 case Builtin::BI##ID: \ 1343 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1344 #include "clang/Basic/Builtins.def" 1345 case Builtin::BI__annotation: 1346 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1347 return ExprError(); 1348 break; 1349 case Builtin::BI__builtin_annotation: 1350 if (SemaBuiltinAnnotation(*this, TheCall)) 1351 return ExprError(); 1352 break; 1353 case Builtin::BI__builtin_addressof: 1354 if (SemaBuiltinAddressof(*this, TheCall)) 1355 return ExprError(); 1356 break; 1357 case Builtin::BI__builtin_add_overflow: 1358 case Builtin::BI__builtin_sub_overflow: 1359 case Builtin::BI__builtin_mul_overflow: 1360 if (SemaBuiltinOverflow(*this, TheCall)) 1361 return ExprError(); 1362 break; 1363 case Builtin::BI__builtin_operator_new: 1364 case Builtin::BI__builtin_operator_delete: { 1365 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1366 ExprResult Res = 1367 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1368 if (Res.isInvalid()) 1369 CorrectDelayedTyposInExpr(TheCallResult.get()); 1370 return Res; 1371 } 1372 case Builtin::BI__builtin_dump_struct: { 1373 // We first want to ensure we are called with 2 arguments 1374 if (checkArgCount(*this, TheCall, 2)) 1375 return ExprError(); 1376 // Ensure that the first argument is of type 'struct XX *' 1377 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1378 const QualType PtrArgType = PtrArg->getType(); 1379 if (!PtrArgType->isPointerType() || 1380 !PtrArgType->getPointeeType()->isRecordType()) { 1381 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1382 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1383 << "structure pointer"; 1384 return ExprError(); 1385 } 1386 1387 // Ensure that the second argument is of type 'FunctionType' 1388 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1389 const QualType FnPtrArgType = FnPtrArg->getType(); 1390 if (!FnPtrArgType->isPointerType()) { 1391 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1392 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1393 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1394 return ExprError(); 1395 } 1396 1397 const auto *FuncType = 1398 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1399 1400 if (!FuncType) { 1401 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1402 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1403 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1404 return ExprError(); 1405 } 1406 1407 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1408 if (!FT->getNumParams()) { 1409 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1410 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1411 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1412 return ExprError(); 1413 } 1414 QualType PT = FT->getParamType(0); 1415 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1416 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1417 !PT->getPointeeType().isConstQualified()) { 1418 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1419 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1420 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1421 return ExprError(); 1422 } 1423 } 1424 1425 TheCall->setType(Context.IntTy); 1426 break; 1427 } 1428 case Builtin::BI__builtin_preserve_access_index: 1429 if (SemaBuiltinPreserveAI(*this, TheCall)) 1430 return ExprError(); 1431 break; 1432 case Builtin::BI__builtin_call_with_static_chain: 1433 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1434 return ExprError(); 1435 break; 1436 case Builtin::BI__exception_code: 1437 case Builtin::BI_exception_code: 1438 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1439 diag::err_seh___except_block)) 1440 return ExprError(); 1441 break; 1442 case Builtin::BI__exception_info: 1443 case Builtin::BI_exception_info: 1444 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1445 diag::err_seh___except_filter)) 1446 return ExprError(); 1447 break; 1448 case Builtin::BI__GetExceptionInfo: 1449 if (checkArgCount(*this, TheCall, 1)) 1450 return ExprError(); 1451 1452 if (CheckCXXThrowOperand( 1453 TheCall->getBeginLoc(), 1454 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1455 TheCall)) 1456 return ExprError(); 1457 1458 TheCall->setType(Context.VoidPtrTy); 1459 break; 1460 // OpenCL v2.0, s6.13.16 - Pipe functions 1461 case Builtin::BIread_pipe: 1462 case Builtin::BIwrite_pipe: 1463 // Since those two functions are declared with var args, we need a semantic 1464 // check for the argument. 1465 if (SemaBuiltinRWPipe(*this, TheCall)) 1466 return ExprError(); 1467 break; 1468 case Builtin::BIreserve_read_pipe: 1469 case Builtin::BIreserve_write_pipe: 1470 case Builtin::BIwork_group_reserve_read_pipe: 1471 case Builtin::BIwork_group_reserve_write_pipe: 1472 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1473 return ExprError(); 1474 break; 1475 case Builtin::BIsub_group_reserve_read_pipe: 1476 case Builtin::BIsub_group_reserve_write_pipe: 1477 if (checkOpenCLSubgroupExt(*this, TheCall) || 1478 SemaBuiltinReserveRWPipe(*this, TheCall)) 1479 return ExprError(); 1480 break; 1481 case Builtin::BIcommit_read_pipe: 1482 case Builtin::BIcommit_write_pipe: 1483 case Builtin::BIwork_group_commit_read_pipe: 1484 case Builtin::BIwork_group_commit_write_pipe: 1485 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1486 return ExprError(); 1487 break; 1488 case Builtin::BIsub_group_commit_read_pipe: 1489 case Builtin::BIsub_group_commit_write_pipe: 1490 if (checkOpenCLSubgroupExt(*this, TheCall) || 1491 SemaBuiltinCommitRWPipe(*this, TheCall)) 1492 return ExprError(); 1493 break; 1494 case Builtin::BIget_pipe_num_packets: 1495 case Builtin::BIget_pipe_max_packets: 1496 if (SemaBuiltinPipePackets(*this, TheCall)) 1497 return ExprError(); 1498 break; 1499 case Builtin::BIto_global: 1500 case Builtin::BIto_local: 1501 case Builtin::BIto_private: 1502 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1503 return ExprError(); 1504 break; 1505 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1506 case Builtin::BIenqueue_kernel: 1507 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1508 return ExprError(); 1509 break; 1510 case Builtin::BIget_kernel_work_group_size: 1511 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1512 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1513 return ExprError(); 1514 break; 1515 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1516 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1517 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1518 return ExprError(); 1519 break; 1520 case Builtin::BI__builtin_os_log_format: 1521 case Builtin::BI__builtin_os_log_format_buffer_size: 1522 if (SemaBuiltinOSLogFormat(TheCall)) 1523 return ExprError(); 1524 break; 1525 } 1526 1527 // Since the target specific builtins for each arch overlap, only check those 1528 // of the arch we are compiling for. 1529 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1530 switch (Context.getTargetInfo().getTriple().getArch()) { 1531 case llvm::Triple::arm: 1532 case llvm::Triple::armeb: 1533 case llvm::Triple::thumb: 1534 case llvm::Triple::thumbeb: 1535 if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall)) 1536 return ExprError(); 1537 break; 1538 case llvm::Triple::aarch64: 1539 case llvm::Triple::aarch64_be: 1540 if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall)) 1541 return ExprError(); 1542 break; 1543 case llvm::Triple::bpfeb: 1544 case llvm::Triple::bpfel: 1545 if (CheckBPFBuiltinFunctionCall(BuiltinID, TheCall)) 1546 return ExprError(); 1547 break; 1548 case llvm::Triple::hexagon: 1549 if (CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall)) 1550 return ExprError(); 1551 break; 1552 case llvm::Triple::mips: 1553 case llvm::Triple::mipsel: 1554 case llvm::Triple::mips64: 1555 case llvm::Triple::mips64el: 1556 if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall)) 1557 return ExprError(); 1558 break; 1559 case llvm::Triple::systemz: 1560 if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall)) 1561 return ExprError(); 1562 break; 1563 case llvm::Triple::x86: 1564 case llvm::Triple::x86_64: 1565 if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall)) 1566 return ExprError(); 1567 break; 1568 case llvm::Triple::ppc: 1569 case llvm::Triple::ppc64: 1570 case llvm::Triple::ppc64le: 1571 if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall)) 1572 return ExprError(); 1573 break; 1574 default: 1575 break; 1576 } 1577 } 1578 1579 return TheCallResult; 1580 } 1581 1582 // Get the valid immediate range for the specified NEON type code. 1583 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1584 NeonTypeFlags Type(t); 1585 int IsQuad = ForceQuad ? true : Type.isQuad(); 1586 switch (Type.getEltType()) { 1587 case NeonTypeFlags::Int8: 1588 case NeonTypeFlags::Poly8: 1589 return shift ? 7 : (8 << IsQuad) - 1; 1590 case NeonTypeFlags::Int16: 1591 case NeonTypeFlags::Poly16: 1592 return shift ? 15 : (4 << IsQuad) - 1; 1593 case NeonTypeFlags::Int32: 1594 return shift ? 31 : (2 << IsQuad) - 1; 1595 case NeonTypeFlags::Int64: 1596 case NeonTypeFlags::Poly64: 1597 return shift ? 63 : (1 << IsQuad) - 1; 1598 case NeonTypeFlags::Poly128: 1599 return shift ? 127 : (1 << IsQuad) - 1; 1600 case NeonTypeFlags::Float16: 1601 assert(!shift && "cannot shift float types!"); 1602 return (4 << IsQuad) - 1; 1603 case NeonTypeFlags::Float32: 1604 assert(!shift && "cannot shift float types!"); 1605 return (2 << IsQuad) - 1; 1606 case NeonTypeFlags::Float64: 1607 assert(!shift && "cannot shift float types!"); 1608 return (1 << IsQuad) - 1; 1609 } 1610 llvm_unreachable("Invalid NeonTypeFlag!"); 1611 } 1612 1613 /// getNeonEltType - Return the QualType corresponding to the elements of 1614 /// the vector type specified by the NeonTypeFlags. This is used to check 1615 /// the pointer arguments for Neon load/store intrinsics. 1616 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 1617 bool IsPolyUnsigned, bool IsInt64Long) { 1618 switch (Flags.getEltType()) { 1619 case NeonTypeFlags::Int8: 1620 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 1621 case NeonTypeFlags::Int16: 1622 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 1623 case NeonTypeFlags::Int32: 1624 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 1625 case NeonTypeFlags::Int64: 1626 if (IsInt64Long) 1627 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 1628 else 1629 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 1630 : Context.LongLongTy; 1631 case NeonTypeFlags::Poly8: 1632 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 1633 case NeonTypeFlags::Poly16: 1634 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 1635 case NeonTypeFlags::Poly64: 1636 if (IsInt64Long) 1637 return Context.UnsignedLongTy; 1638 else 1639 return Context.UnsignedLongLongTy; 1640 case NeonTypeFlags::Poly128: 1641 break; 1642 case NeonTypeFlags::Float16: 1643 return Context.HalfTy; 1644 case NeonTypeFlags::Float32: 1645 return Context.FloatTy; 1646 case NeonTypeFlags::Float64: 1647 return Context.DoubleTy; 1648 } 1649 llvm_unreachable("Invalid NeonTypeFlag!"); 1650 } 1651 1652 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 1653 llvm::APSInt Result; 1654 uint64_t mask = 0; 1655 unsigned TV = 0; 1656 int PtrArgNum = -1; 1657 bool HasConstPtr = false; 1658 switch (BuiltinID) { 1659 #define GET_NEON_OVERLOAD_CHECK 1660 #include "clang/Basic/arm_neon.inc" 1661 #include "clang/Basic/arm_fp16.inc" 1662 #undef GET_NEON_OVERLOAD_CHECK 1663 } 1664 1665 // For NEON intrinsics which are overloaded on vector element type, validate 1666 // the immediate which specifies which variant to emit. 1667 unsigned ImmArg = TheCall->getNumArgs()-1; 1668 if (mask) { 1669 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 1670 return true; 1671 1672 TV = Result.getLimitedValue(64); 1673 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 1674 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 1675 << TheCall->getArg(ImmArg)->getSourceRange(); 1676 } 1677 1678 if (PtrArgNum >= 0) { 1679 // Check that pointer arguments have the specified type. 1680 Expr *Arg = TheCall->getArg(PtrArgNum); 1681 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 1682 Arg = ICE->getSubExpr(); 1683 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 1684 QualType RHSTy = RHS.get()->getType(); 1685 1686 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 1687 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 1688 Arch == llvm::Triple::aarch64_be; 1689 bool IsInt64Long = 1690 Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong; 1691 QualType EltTy = 1692 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 1693 if (HasConstPtr) 1694 EltTy = EltTy.withConst(); 1695 QualType LHSTy = Context.getPointerType(EltTy); 1696 AssignConvertType ConvTy; 1697 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 1698 if (RHS.isInvalid()) 1699 return true; 1700 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 1701 RHS.get(), AA_Assigning)) 1702 return true; 1703 } 1704 1705 // For NEON intrinsics which take an immediate value as part of the 1706 // instruction, range check them here. 1707 unsigned i = 0, l = 0, u = 0; 1708 switch (BuiltinID) { 1709 default: 1710 return false; 1711 #define GET_NEON_IMMEDIATE_CHECK 1712 #include "clang/Basic/arm_neon.inc" 1713 #include "clang/Basic/arm_fp16.inc" 1714 #undef GET_NEON_IMMEDIATE_CHECK 1715 } 1716 1717 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 1718 } 1719 1720 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 1721 unsigned MaxWidth) { 1722 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 1723 BuiltinID == ARM::BI__builtin_arm_ldaex || 1724 BuiltinID == ARM::BI__builtin_arm_strex || 1725 BuiltinID == ARM::BI__builtin_arm_stlex || 1726 BuiltinID == AArch64::BI__builtin_arm_ldrex || 1727 BuiltinID == AArch64::BI__builtin_arm_ldaex || 1728 BuiltinID == AArch64::BI__builtin_arm_strex || 1729 BuiltinID == AArch64::BI__builtin_arm_stlex) && 1730 "unexpected ARM builtin"); 1731 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 1732 BuiltinID == ARM::BI__builtin_arm_ldaex || 1733 BuiltinID == AArch64::BI__builtin_arm_ldrex || 1734 BuiltinID == AArch64::BI__builtin_arm_ldaex; 1735 1736 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 1737 1738 // Ensure that we have the proper number of arguments. 1739 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 1740 return true; 1741 1742 // Inspect the pointer argument of the atomic builtin. This should always be 1743 // a pointer type, whose element is an integral scalar or pointer type. 1744 // Because it is a pointer type, we don't have to worry about any implicit 1745 // casts here. 1746 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 1747 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 1748 if (PointerArgRes.isInvalid()) 1749 return true; 1750 PointerArg = PointerArgRes.get(); 1751 1752 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 1753 if (!pointerType) { 1754 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 1755 << PointerArg->getType() << PointerArg->getSourceRange(); 1756 return true; 1757 } 1758 1759 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 1760 // task is to insert the appropriate casts into the AST. First work out just 1761 // what the appropriate type is. 1762 QualType ValType = pointerType->getPointeeType(); 1763 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 1764 if (IsLdrex) 1765 AddrType.addConst(); 1766 1767 // Issue a warning if the cast is dodgy. 1768 CastKind CastNeeded = CK_NoOp; 1769 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 1770 CastNeeded = CK_BitCast; 1771 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 1772 << PointerArg->getType() << Context.getPointerType(AddrType) 1773 << AA_Passing << PointerArg->getSourceRange(); 1774 } 1775 1776 // Finally, do the cast and replace the argument with the corrected version. 1777 AddrType = Context.getPointerType(AddrType); 1778 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 1779 if (PointerArgRes.isInvalid()) 1780 return true; 1781 PointerArg = PointerArgRes.get(); 1782 1783 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 1784 1785 // In general, we allow ints, floats and pointers to be loaded and stored. 1786 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 1787 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 1788 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 1789 << PointerArg->getType() << PointerArg->getSourceRange(); 1790 return true; 1791 } 1792 1793 // But ARM doesn't have instructions to deal with 128-bit versions. 1794 if (Context.getTypeSize(ValType) > MaxWidth) { 1795 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 1796 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 1797 << PointerArg->getType() << PointerArg->getSourceRange(); 1798 return true; 1799 } 1800 1801 switch (ValType.getObjCLifetime()) { 1802 case Qualifiers::OCL_None: 1803 case Qualifiers::OCL_ExplicitNone: 1804 // okay 1805 break; 1806 1807 case Qualifiers::OCL_Weak: 1808 case Qualifiers::OCL_Strong: 1809 case Qualifiers::OCL_Autoreleasing: 1810 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 1811 << ValType << PointerArg->getSourceRange(); 1812 return true; 1813 } 1814 1815 if (IsLdrex) { 1816 TheCall->setType(ValType); 1817 return false; 1818 } 1819 1820 // Initialize the argument to be stored. 1821 ExprResult ValArg = TheCall->getArg(0); 1822 InitializedEntity Entity = InitializedEntity::InitializeParameter( 1823 Context, ValType, /*consume*/ false); 1824 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 1825 if (ValArg.isInvalid()) 1826 return true; 1827 TheCall->setArg(0, ValArg.get()); 1828 1829 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 1830 // but the custom checker bypasses all default analysis. 1831 TheCall->setType(Context.IntTy); 1832 return false; 1833 } 1834 1835 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 1836 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 1837 BuiltinID == ARM::BI__builtin_arm_ldaex || 1838 BuiltinID == ARM::BI__builtin_arm_strex || 1839 BuiltinID == ARM::BI__builtin_arm_stlex) { 1840 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 1841 } 1842 1843 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 1844 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 1845 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 1846 } 1847 1848 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 1849 BuiltinID == ARM::BI__builtin_arm_wsr64) 1850 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 1851 1852 if (BuiltinID == ARM::BI__builtin_arm_rsr || 1853 BuiltinID == ARM::BI__builtin_arm_rsrp || 1854 BuiltinID == ARM::BI__builtin_arm_wsr || 1855 BuiltinID == ARM::BI__builtin_arm_wsrp) 1856 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1857 1858 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 1859 return true; 1860 1861 // For intrinsics which take an immediate value as part of the instruction, 1862 // range check them here. 1863 // FIXME: VFP Intrinsics should error if VFP not present. 1864 switch (BuiltinID) { 1865 default: return false; 1866 case ARM::BI__builtin_arm_ssat: 1867 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 1868 case ARM::BI__builtin_arm_usat: 1869 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 1870 case ARM::BI__builtin_arm_ssat16: 1871 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 1872 case ARM::BI__builtin_arm_usat16: 1873 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 1874 case ARM::BI__builtin_arm_vcvtr_f: 1875 case ARM::BI__builtin_arm_vcvtr_d: 1876 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 1877 case ARM::BI__builtin_arm_dmb: 1878 case ARM::BI__builtin_arm_dsb: 1879 case ARM::BI__builtin_arm_isb: 1880 case ARM::BI__builtin_arm_dbg: 1881 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 1882 } 1883 } 1884 1885 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID, 1886 CallExpr *TheCall) { 1887 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 1888 BuiltinID == AArch64::BI__builtin_arm_ldaex || 1889 BuiltinID == AArch64::BI__builtin_arm_strex || 1890 BuiltinID == AArch64::BI__builtin_arm_stlex) { 1891 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 1892 } 1893 1894 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 1895 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 1896 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 1897 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 1898 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 1899 } 1900 1901 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 1902 BuiltinID == AArch64::BI__builtin_arm_wsr64) 1903 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1904 1905 // Memory Tagging Extensions (MTE) Intrinsics 1906 if (BuiltinID == AArch64::BI__builtin_arm_irg || 1907 BuiltinID == AArch64::BI__builtin_arm_addg || 1908 BuiltinID == AArch64::BI__builtin_arm_gmi || 1909 BuiltinID == AArch64::BI__builtin_arm_ldg || 1910 BuiltinID == AArch64::BI__builtin_arm_stg || 1911 BuiltinID == AArch64::BI__builtin_arm_subp) { 1912 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 1913 } 1914 1915 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 1916 BuiltinID == AArch64::BI__builtin_arm_rsrp || 1917 BuiltinID == AArch64::BI__builtin_arm_wsr || 1918 BuiltinID == AArch64::BI__builtin_arm_wsrp) 1919 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 1920 1921 // Only check the valid encoding range. Any constant in this range would be 1922 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 1923 // an exception for incorrect registers. This matches MSVC behavior. 1924 if (BuiltinID == AArch64::BI_ReadStatusReg || 1925 BuiltinID == AArch64::BI_WriteStatusReg) 1926 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 1927 1928 if (BuiltinID == AArch64::BI__getReg) 1929 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 1930 1931 if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall)) 1932 return true; 1933 1934 // For intrinsics which take an immediate value as part of the instruction, 1935 // range check them here. 1936 unsigned i = 0, l = 0, u = 0; 1937 switch (BuiltinID) { 1938 default: return false; 1939 case AArch64::BI__builtin_arm_dmb: 1940 case AArch64::BI__builtin_arm_dsb: 1941 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 1942 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 1943 } 1944 1945 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 1946 } 1947 1948 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 1949 CallExpr *TheCall) { 1950 assert(BuiltinID == BPF::BI__builtin_preserve_field_info && 1951 "unexpected ARM builtin"); 1952 1953 if (checkArgCount(*this, TheCall, 2)) 1954 return true; 1955 1956 // The first argument needs to be a record field access. 1957 // If it is an array element access, we delay decision 1958 // to BPF backend to check whether the access is a 1959 // field access or not. 1960 Expr *Arg = TheCall->getArg(0); 1961 if (Arg->getType()->getAsPlaceholderType() || 1962 (Arg->IgnoreParens()->getObjectKind() != OK_BitField && 1963 !dyn_cast<MemberExpr>(Arg->IgnoreParens()) && 1964 !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) { 1965 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field) 1966 << 1 << Arg->getSourceRange(); 1967 return true; 1968 } 1969 1970 // The second argument needs to be a constant int 1971 llvm::APSInt Value; 1972 if (!TheCall->getArg(1)->isIntegerConstantExpr(Value, Context)) { 1973 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const) 1974 << 2 << Arg->getSourceRange(); 1975 return true; 1976 } 1977 1978 TheCall->setType(Context.UnsignedIntTy); 1979 return false; 1980 } 1981 1982 bool Sema::CheckHexagonBuiltinCpu(unsigned BuiltinID, CallExpr *TheCall) { 1983 struct BuiltinAndString { 1984 unsigned BuiltinID; 1985 const char *Str; 1986 }; 1987 1988 static BuiltinAndString ValidCPU[] = { 1989 { Hexagon::BI__builtin_HEXAGON_A6_vcmpbeq_notany, "v65,v66" }, 1990 { Hexagon::BI__builtin_HEXAGON_A6_vminub_RdP, "v62,v65,v66" }, 1991 { Hexagon::BI__builtin_HEXAGON_F2_dfadd, "v66" }, 1992 { Hexagon::BI__builtin_HEXAGON_F2_dfsub, "v66" }, 1993 { Hexagon::BI__builtin_HEXAGON_M2_mnaci, "v66" }, 1994 { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffb, "v62,v65,v66" }, 1995 { Hexagon::BI__builtin_HEXAGON_M6_vabsdiffub, "v62,v65,v66" }, 1996 { Hexagon::BI__builtin_HEXAGON_S2_mask, "v66" }, 1997 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, "v60,v62,v65,v66" }, 1998 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, "v60,v62,v65,v66" }, 1999 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, "v60,v62,v65,v66" }, 2000 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, "v60,v62,v65,v66" }, 2001 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, "v60,v62,v65,v66" }, 2002 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, "v60,v62,v65,v66" }, 2003 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, "v60,v62,v65,v66" }, 2004 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, "v60,v62,v65,v66" }, 2005 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, "v60,v62,v65,v66" }, 2006 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, "v60,v62,v65,v66" }, 2007 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, "v60,v62,v65,v66" }, 2008 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, "v60,v62,v65,v66" }, 2009 { Hexagon::BI__builtin_HEXAGON_S6_vsplatrbp, "v62,v65,v66" }, 2010 { Hexagon::BI__builtin_HEXAGON_S6_vtrunehb_ppp, "v62,v65,v66" }, 2011 { Hexagon::BI__builtin_HEXAGON_S6_vtrunohb_ppp, "v62,v65,v66" }, 2012 }; 2013 2014 static BuiltinAndString ValidHVX[] = { 2015 { Hexagon::BI__builtin_HEXAGON_V6_hi, "v60,v62,v65,v66" }, 2016 { Hexagon::BI__builtin_HEXAGON_V6_hi_128B, "v60,v62,v65,v66" }, 2017 { Hexagon::BI__builtin_HEXAGON_V6_lo, "v60,v62,v65,v66" }, 2018 { Hexagon::BI__builtin_HEXAGON_V6_lo_128B, "v60,v62,v65,v66" }, 2019 { Hexagon::BI__builtin_HEXAGON_V6_extractw, "v60,v62,v65,v66" }, 2020 { Hexagon::BI__builtin_HEXAGON_V6_extractw_128B, "v60,v62,v65,v66" }, 2021 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb, "v62,v65,v66" }, 2022 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatb_128B, "v62,v65,v66" }, 2023 { Hexagon::BI__builtin_HEXAGON_V6_lvsplath, "v62,v65,v66" }, 2024 { Hexagon::BI__builtin_HEXAGON_V6_lvsplath_128B, "v62,v65,v66" }, 2025 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw, "v60,v62,v65,v66" }, 2026 { Hexagon::BI__builtin_HEXAGON_V6_lvsplatw_128B, "v60,v62,v65,v66" }, 2027 { Hexagon::BI__builtin_HEXAGON_V6_pred_and, "v60,v62,v65,v66" }, 2028 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_128B, "v60,v62,v65,v66" }, 2029 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n, "v60,v62,v65,v66" }, 2030 { Hexagon::BI__builtin_HEXAGON_V6_pred_and_n_128B, "v60,v62,v65,v66" }, 2031 { Hexagon::BI__builtin_HEXAGON_V6_pred_not, "v60,v62,v65,v66" }, 2032 { Hexagon::BI__builtin_HEXAGON_V6_pred_not_128B, "v60,v62,v65,v66" }, 2033 { Hexagon::BI__builtin_HEXAGON_V6_pred_or, "v60,v62,v65,v66" }, 2034 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_128B, "v60,v62,v65,v66" }, 2035 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n, "v60,v62,v65,v66" }, 2036 { Hexagon::BI__builtin_HEXAGON_V6_pred_or_n_128B, "v60,v62,v65,v66" }, 2037 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2, "v60,v62,v65,v66" }, 2038 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2_128B, "v60,v62,v65,v66" }, 2039 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2, "v62,v65,v66" }, 2040 { Hexagon::BI__builtin_HEXAGON_V6_pred_scalar2v2_128B, "v62,v65,v66" }, 2041 { Hexagon::BI__builtin_HEXAGON_V6_pred_xor, "v60,v62,v65,v66" }, 2042 { Hexagon::BI__builtin_HEXAGON_V6_pred_xor_128B, "v60,v62,v65,v66" }, 2043 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh, "v62,v65,v66" }, 2044 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqh_128B, "v62,v65,v66" }, 2045 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw, "v62,v65,v66" }, 2046 { Hexagon::BI__builtin_HEXAGON_V6_shuffeqw_128B, "v62,v65,v66" }, 2047 { Hexagon::BI__builtin_HEXAGON_V6_vabsb, "v65,v66" }, 2048 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_128B, "v65,v66" }, 2049 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat, "v65,v66" }, 2050 { Hexagon::BI__builtin_HEXAGON_V6_vabsb_sat_128B, "v65,v66" }, 2051 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh, "v60,v62,v65,v66" }, 2052 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffh_128B, "v60,v62,v65,v66" }, 2053 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub, "v60,v62,v65,v66" }, 2054 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffub_128B, "v60,v62,v65,v66" }, 2055 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh, "v60,v62,v65,v66" }, 2056 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffuh_128B, "v60,v62,v65,v66" }, 2057 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw, "v60,v62,v65,v66" }, 2058 { Hexagon::BI__builtin_HEXAGON_V6_vabsdiffw_128B, "v60,v62,v65,v66" }, 2059 { Hexagon::BI__builtin_HEXAGON_V6_vabsh, "v60,v62,v65,v66" }, 2060 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_128B, "v60,v62,v65,v66" }, 2061 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat, "v60,v62,v65,v66" }, 2062 { Hexagon::BI__builtin_HEXAGON_V6_vabsh_sat_128B, "v60,v62,v65,v66" }, 2063 { Hexagon::BI__builtin_HEXAGON_V6_vabsw, "v60,v62,v65,v66" }, 2064 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_128B, "v60,v62,v65,v66" }, 2065 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat, "v60,v62,v65,v66" }, 2066 { Hexagon::BI__builtin_HEXAGON_V6_vabsw_sat_128B, "v60,v62,v65,v66" }, 2067 { Hexagon::BI__builtin_HEXAGON_V6_vaddb, "v60,v62,v65,v66" }, 2068 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_128B, "v60,v62,v65,v66" }, 2069 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv, "v60,v62,v65,v66" }, 2070 { Hexagon::BI__builtin_HEXAGON_V6_vaddb_dv_128B, "v60,v62,v65,v66" }, 2071 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat, "v62,v65,v66" }, 2072 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_128B, "v62,v65,v66" }, 2073 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv, "v62,v65,v66" }, 2074 { Hexagon::BI__builtin_HEXAGON_V6_vaddbsat_dv_128B, "v62,v65,v66" }, 2075 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry, "v62,v65,v66" }, 2076 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B, "v62,v65,v66" }, 2077 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat, "v66" }, 2078 { Hexagon::BI__builtin_HEXAGON_V6_vaddcarrysat_128B, "v66" }, 2079 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh, "v62,v65,v66" }, 2080 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbh_128B, "v62,v65,v66" }, 2081 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw, "v62,v65,v66" }, 2082 { Hexagon::BI__builtin_HEXAGON_V6_vaddclbw_128B, "v62,v65,v66" }, 2083 { Hexagon::BI__builtin_HEXAGON_V6_vaddh, "v60,v62,v65,v66" }, 2084 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_128B, "v60,v62,v65,v66" }, 2085 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv, "v60,v62,v65,v66" }, 2086 { Hexagon::BI__builtin_HEXAGON_V6_vaddh_dv_128B, "v60,v62,v65,v66" }, 2087 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat, "v60,v62,v65,v66" }, 2088 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_128B, "v60,v62,v65,v66" }, 2089 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv, "v60,v62,v65,v66" }, 2090 { Hexagon::BI__builtin_HEXAGON_V6_vaddhsat_dv_128B, "v60,v62,v65,v66" }, 2091 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw, "v60,v62,v65,v66" }, 2092 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_128B, "v60,v62,v65,v66" }, 2093 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc, "v62,v65,v66" }, 2094 { Hexagon::BI__builtin_HEXAGON_V6_vaddhw_acc_128B, "v62,v65,v66" }, 2095 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh, "v60,v62,v65,v66" }, 2096 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_128B, "v60,v62,v65,v66" }, 2097 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc, "v62,v65,v66" }, 2098 { Hexagon::BI__builtin_HEXAGON_V6_vaddubh_acc_128B, "v62,v65,v66" }, 2099 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat, "v60,v62,v65,v66" }, 2100 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_128B, "v60,v62,v65,v66" }, 2101 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv, "v60,v62,v65,v66" }, 2102 { Hexagon::BI__builtin_HEXAGON_V6_vaddubsat_dv_128B, "v60,v62,v65,v66" }, 2103 { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat, "v62,v65,v66" }, 2104 { Hexagon::BI__builtin_HEXAGON_V6_vaddububb_sat_128B, "v62,v65,v66" }, 2105 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat, "v60,v62,v65,v66" }, 2106 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_128B, "v60,v62,v65,v66" }, 2107 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv, "v60,v62,v65,v66" }, 2108 { Hexagon::BI__builtin_HEXAGON_V6_vadduhsat_dv_128B, "v60,v62,v65,v66" }, 2109 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw, "v60,v62,v65,v66" }, 2110 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_128B, "v60,v62,v65,v66" }, 2111 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc, "v62,v65,v66" }, 2112 { Hexagon::BI__builtin_HEXAGON_V6_vadduhw_acc_128B, "v62,v65,v66" }, 2113 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat, "v62,v65,v66" }, 2114 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_128B, "v62,v65,v66" }, 2115 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv, "v62,v65,v66" }, 2116 { Hexagon::BI__builtin_HEXAGON_V6_vadduwsat_dv_128B, "v62,v65,v66" }, 2117 { Hexagon::BI__builtin_HEXAGON_V6_vaddw, "v60,v62,v65,v66" }, 2118 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_128B, "v60,v62,v65,v66" }, 2119 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv, "v60,v62,v65,v66" }, 2120 { Hexagon::BI__builtin_HEXAGON_V6_vaddw_dv_128B, "v60,v62,v65,v66" }, 2121 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat, "v60,v62,v65,v66" }, 2122 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_128B, "v60,v62,v65,v66" }, 2123 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv, "v60,v62,v65,v66" }, 2124 { Hexagon::BI__builtin_HEXAGON_V6_vaddwsat_dv_128B, "v60,v62,v65,v66" }, 2125 { Hexagon::BI__builtin_HEXAGON_V6_valignb, "v60,v62,v65,v66" }, 2126 { Hexagon::BI__builtin_HEXAGON_V6_valignb_128B, "v60,v62,v65,v66" }, 2127 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, "v60,v62,v65,v66" }, 2128 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, "v60,v62,v65,v66" }, 2129 { Hexagon::BI__builtin_HEXAGON_V6_vand, "v60,v62,v65,v66" }, 2130 { Hexagon::BI__builtin_HEXAGON_V6_vand_128B, "v60,v62,v65,v66" }, 2131 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt, "v62,v65,v66" }, 2132 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_128B, "v62,v65,v66" }, 2133 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc, "v62,v65,v66" }, 2134 { Hexagon::BI__builtin_HEXAGON_V6_vandnqrt_acc_128B, "v62,v65,v66" }, 2135 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt, "v60,v62,v65,v66" }, 2136 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_128B, "v60,v62,v65,v66" }, 2137 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc, "v60,v62,v65,v66" }, 2138 { Hexagon::BI__builtin_HEXAGON_V6_vandqrt_acc_128B, "v60,v62,v65,v66" }, 2139 { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv, "v62,v65,v66" }, 2140 { Hexagon::BI__builtin_HEXAGON_V6_vandvnqv_128B, "v62,v65,v66" }, 2141 { Hexagon::BI__builtin_HEXAGON_V6_vandvqv, "v62,v65,v66" }, 2142 { Hexagon::BI__builtin_HEXAGON_V6_vandvqv_128B, "v62,v65,v66" }, 2143 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt, "v60,v62,v65,v66" }, 2144 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_128B, "v60,v62,v65,v66" }, 2145 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc, "v60,v62,v65,v66" }, 2146 { Hexagon::BI__builtin_HEXAGON_V6_vandvrt_acc_128B, "v60,v62,v65,v66" }, 2147 { Hexagon::BI__builtin_HEXAGON_V6_vaslh, "v60,v62,v65,v66" }, 2148 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_128B, "v60,v62,v65,v66" }, 2149 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc, "v65,v66" }, 2150 { Hexagon::BI__builtin_HEXAGON_V6_vaslh_acc_128B, "v65,v66" }, 2151 { Hexagon::BI__builtin_HEXAGON_V6_vaslhv, "v60,v62,v65,v66" }, 2152 { Hexagon::BI__builtin_HEXAGON_V6_vaslhv_128B, "v60,v62,v65,v66" }, 2153 { Hexagon::BI__builtin_HEXAGON_V6_vaslw, "v60,v62,v65,v66" }, 2154 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_128B, "v60,v62,v65,v66" }, 2155 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc, "v60,v62,v65,v66" }, 2156 { Hexagon::BI__builtin_HEXAGON_V6_vaslw_acc_128B, "v60,v62,v65,v66" }, 2157 { Hexagon::BI__builtin_HEXAGON_V6_vaslwv, "v60,v62,v65,v66" }, 2158 { Hexagon::BI__builtin_HEXAGON_V6_vaslwv_128B, "v60,v62,v65,v66" }, 2159 { Hexagon::BI__builtin_HEXAGON_V6_vasrh, "v60,v62,v65,v66" }, 2160 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_128B, "v60,v62,v65,v66" }, 2161 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc, "v65,v66" }, 2162 { Hexagon::BI__builtin_HEXAGON_V6_vasrh_acc_128B, "v65,v66" }, 2163 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat, "v60,v62,v65,v66" }, 2164 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbrndsat_128B, "v60,v62,v65,v66" }, 2165 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat, "v62,v65,v66" }, 2166 { Hexagon::BI__builtin_HEXAGON_V6_vasrhbsat_128B, "v62,v65,v66" }, 2167 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat, "v60,v62,v65,v66" }, 2168 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubrndsat_128B, "v60,v62,v65,v66" }, 2169 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat, "v60,v62,v65,v66" }, 2170 { Hexagon::BI__builtin_HEXAGON_V6_vasrhubsat_128B, "v60,v62,v65,v66" }, 2171 { Hexagon::BI__builtin_HEXAGON_V6_vasrhv, "v60,v62,v65,v66" }, 2172 { Hexagon::BI__builtin_HEXAGON_V6_vasrhv_128B, "v60,v62,v65,v66" }, 2173 { Hexagon::BI__builtin_HEXAGON_V6_vasr_into, "v66" }, 2174 { Hexagon::BI__builtin_HEXAGON_V6_vasr_into_128B, "v66" }, 2175 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat, "v65,v66" }, 2176 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubrndsat_128B, "v65,v66" }, 2177 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat, "v65,v66" }, 2178 { Hexagon::BI__builtin_HEXAGON_V6_vasruhubsat_128B, "v65,v66" }, 2179 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat, "v62,v65,v66" }, 2180 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhrndsat_128B, "v62,v65,v66" }, 2181 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat, "v65,v66" }, 2182 { Hexagon::BI__builtin_HEXAGON_V6_vasruwuhsat_128B, "v65,v66" }, 2183 { Hexagon::BI__builtin_HEXAGON_V6_vasrw, "v60,v62,v65,v66" }, 2184 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_128B, "v60,v62,v65,v66" }, 2185 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc, "v60,v62,v65,v66" }, 2186 { Hexagon::BI__builtin_HEXAGON_V6_vasrw_acc_128B, "v60,v62,v65,v66" }, 2187 { Hexagon::BI__builtin_HEXAGON_V6_vasrwh, "v60,v62,v65,v66" }, 2188 { Hexagon::BI__builtin_HEXAGON_V6_vasrwh_128B, "v60,v62,v65,v66" }, 2189 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat, "v60,v62,v65,v66" }, 2190 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhrndsat_128B, "v60,v62,v65,v66" }, 2191 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat, "v60,v62,v65,v66" }, 2192 { Hexagon::BI__builtin_HEXAGON_V6_vasrwhsat_128B, "v60,v62,v65,v66" }, 2193 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat, "v62,v65,v66" }, 2194 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhrndsat_128B, "v62,v65,v66" }, 2195 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat, "v60,v62,v65,v66" }, 2196 { Hexagon::BI__builtin_HEXAGON_V6_vasrwuhsat_128B, "v60,v62,v65,v66" }, 2197 { Hexagon::BI__builtin_HEXAGON_V6_vasrwv, "v60,v62,v65,v66" }, 2198 { Hexagon::BI__builtin_HEXAGON_V6_vasrwv_128B, "v60,v62,v65,v66" }, 2199 { Hexagon::BI__builtin_HEXAGON_V6_vassign, "v60,v62,v65,v66" }, 2200 { Hexagon::BI__builtin_HEXAGON_V6_vassign_128B, "v60,v62,v65,v66" }, 2201 { Hexagon::BI__builtin_HEXAGON_V6_vassignp, "v60,v62,v65,v66" }, 2202 { Hexagon::BI__builtin_HEXAGON_V6_vassignp_128B, "v60,v62,v65,v66" }, 2203 { Hexagon::BI__builtin_HEXAGON_V6_vavgb, "v65,v66" }, 2204 { Hexagon::BI__builtin_HEXAGON_V6_vavgb_128B, "v65,v66" }, 2205 { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd, "v65,v66" }, 2206 { Hexagon::BI__builtin_HEXAGON_V6_vavgbrnd_128B, "v65,v66" }, 2207 { Hexagon::BI__builtin_HEXAGON_V6_vavgh, "v60,v62,v65,v66" }, 2208 { Hexagon::BI__builtin_HEXAGON_V6_vavgh_128B, "v60,v62,v65,v66" }, 2209 { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd, "v60,v62,v65,v66" }, 2210 { Hexagon::BI__builtin_HEXAGON_V6_vavghrnd_128B, "v60,v62,v65,v66" }, 2211 { Hexagon::BI__builtin_HEXAGON_V6_vavgub, "v60,v62,v65,v66" }, 2212 { Hexagon::BI__builtin_HEXAGON_V6_vavgub_128B, "v60,v62,v65,v66" }, 2213 { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd, "v60,v62,v65,v66" }, 2214 { Hexagon::BI__builtin_HEXAGON_V6_vavgubrnd_128B, "v60,v62,v65,v66" }, 2215 { Hexagon::BI__builtin_HEXAGON_V6_vavguh, "v60,v62,v65,v66" }, 2216 { Hexagon::BI__builtin_HEXAGON_V6_vavguh_128B, "v60,v62,v65,v66" }, 2217 { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd, "v60,v62,v65,v66" }, 2218 { Hexagon::BI__builtin_HEXAGON_V6_vavguhrnd_128B, "v60,v62,v65,v66" }, 2219 { Hexagon::BI__builtin_HEXAGON_V6_vavguw, "v65,v66" }, 2220 { Hexagon::BI__builtin_HEXAGON_V6_vavguw_128B, "v65,v66" }, 2221 { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd, "v65,v66" }, 2222 { Hexagon::BI__builtin_HEXAGON_V6_vavguwrnd_128B, "v65,v66" }, 2223 { Hexagon::BI__builtin_HEXAGON_V6_vavgw, "v60,v62,v65,v66" }, 2224 { Hexagon::BI__builtin_HEXAGON_V6_vavgw_128B, "v60,v62,v65,v66" }, 2225 { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd, "v60,v62,v65,v66" }, 2226 { Hexagon::BI__builtin_HEXAGON_V6_vavgwrnd_128B, "v60,v62,v65,v66" }, 2227 { Hexagon::BI__builtin_HEXAGON_V6_vcl0h, "v60,v62,v65,v66" }, 2228 { Hexagon::BI__builtin_HEXAGON_V6_vcl0h_128B, "v60,v62,v65,v66" }, 2229 { Hexagon::BI__builtin_HEXAGON_V6_vcl0w, "v60,v62,v65,v66" }, 2230 { Hexagon::BI__builtin_HEXAGON_V6_vcl0w_128B, "v60,v62,v65,v66" }, 2231 { Hexagon::BI__builtin_HEXAGON_V6_vcombine, "v60,v62,v65,v66" }, 2232 { Hexagon::BI__builtin_HEXAGON_V6_vcombine_128B, "v60,v62,v65,v66" }, 2233 { Hexagon::BI__builtin_HEXAGON_V6_vd0, "v60,v62,v65,v66" }, 2234 { Hexagon::BI__builtin_HEXAGON_V6_vd0_128B, "v60,v62,v65,v66" }, 2235 { Hexagon::BI__builtin_HEXAGON_V6_vdd0, "v65,v66" }, 2236 { Hexagon::BI__builtin_HEXAGON_V6_vdd0_128B, "v65,v66" }, 2237 { Hexagon::BI__builtin_HEXAGON_V6_vdealb, "v60,v62,v65,v66" }, 2238 { Hexagon::BI__builtin_HEXAGON_V6_vdealb_128B, "v60,v62,v65,v66" }, 2239 { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w, "v60,v62,v65,v66" }, 2240 { Hexagon::BI__builtin_HEXAGON_V6_vdealb4w_128B, "v60,v62,v65,v66" }, 2241 { Hexagon::BI__builtin_HEXAGON_V6_vdealh, "v60,v62,v65,v66" }, 2242 { Hexagon::BI__builtin_HEXAGON_V6_vdealh_128B, "v60,v62,v65,v66" }, 2243 { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd, "v60,v62,v65,v66" }, 2244 { Hexagon::BI__builtin_HEXAGON_V6_vdealvdd_128B, "v60,v62,v65,v66" }, 2245 { Hexagon::BI__builtin_HEXAGON_V6_vdelta, "v60,v62,v65,v66" }, 2246 { Hexagon::BI__builtin_HEXAGON_V6_vdelta_128B, "v60,v62,v65,v66" }, 2247 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus, "v60,v62,v65,v66" }, 2248 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_128B, "v60,v62,v65,v66" }, 2249 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc, "v60,v62,v65,v66" }, 2250 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_acc_128B, "v60,v62,v65,v66" }, 2251 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv, "v60,v62,v65,v66" }, 2252 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_128B, "v60,v62,v65,v66" }, 2253 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc, "v60,v62,v65,v66" }, 2254 { Hexagon::BI__builtin_HEXAGON_V6_vdmpybus_dv_acc_128B, "v60,v62,v65,v66" }, 2255 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb, "v60,v62,v65,v66" }, 2256 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_128B, "v60,v62,v65,v66" }, 2257 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc, "v60,v62,v65,v66" }, 2258 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_acc_128B, "v60,v62,v65,v66" }, 2259 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv, "v60,v62,v65,v66" }, 2260 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_128B, "v60,v62,v65,v66" }, 2261 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc, "v60,v62,v65,v66" }, 2262 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhb_dv_acc_128B, "v60,v62,v65,v66" }, 2263 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat, "v60,v62,v65,v66" }, 2264 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_128B, "v60,v62,v65,v66" }, 2265 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc, "v60,v62,v65,v66" }, 2266 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhisat_acc_128B, "v60,v62,v65,v66" }, 2267 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat, "v60,v62,v65,v66" }, 2268 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_128B, "v60,v62,v65,v66" }, 2269 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc, "v60,v62,v65,v66" }, 2270 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsat_acc_128B, "v60,v62,v65,v66" }, 2271 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat, "v60,v62,v65,v66" }, 2272 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_128B, "v60,v62,v65,v66" }, 2273 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc, "v60,v62,v65,v66" }, 2274 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsuisat_acc_128B, "v60,v62,v65,v66" }, 2275 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat, "v60,v62,v65,v66" }, 2276 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_128B, "v60,v62,v65,v66" }, 2277 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc, "v60,v62,v65,v66" }, 2278 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhsusat_acc_128B, "v60,v62,v65,v66" }, 2279 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat, "v60,v62,v65,v66" }, 2280 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_128B, "v60,v62,v65,v66" }, 2281 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc, "v60,v62,v65,v66" }, 2282 { Hexagon::BI__builtin_HEXAGON_V6_vdmpyhvsat_acc_128B, "v60,v62,v65,v66" }, 2283 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh, "v60,v62,v65,v66" }, 2284 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_128B, "v60,v62,v65,v66" }, 2285 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc, "v60,v62,v65,v66" }, 2286 { Hexagon::BI__builtin_HEXAGON_V6_vdsaduh_acc_128B, "v60,v62,v65,v66" }, 2287 { Hexagon::BI__builtin_HEXAGON_V6_veqb, "v60,v62,v65,v66" }, 2288 { Hexagon::BI__builtin_HEXAGON_V6_veqb_128B, "v60,v62,v65,v66" }, 2289 { Hexagon::BI__builtin_HEXAGON_V6_veqb_and, "v60,v62,v65,v66" }, 2290 { Hexagon::BI__builtin_HEXAGON_V6_veqb_and_128B, "v60,v62,v65,v66" }, 2291 { Hexagon::BI__builtin_HEXAGON_V6_veqb_or, "v60,v62,v65,v66" }, 2292 { Hexagon::BI__builtin_HEXAGON_V6_veqb_or_128B, "v60,v62,v65,v66" }, 2293 { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor, "v60,v62,v65,v66" }, 2294 { Hexagon::BI__builtin_HEXAGON_V6_veqb_xor_128B, "v60,v62,v65,v66" }, 2295 { Hexagon::BI__builtin_HEXAGON_V6_veqh, "v60,v62,v65,v66" }, 2296 { Hexagon::BI__builtin_HEXAGON_V6_veqh_128B, "v60,v62,v65,v66" }, 2297 { Hexagon::BI__builtin_HEXAGON_V6_veqh_and, "v60,v62,v65,v66" }, 2298 { Hexagon::BI__builtin_HEXAGON_V6_veqh_and_128B, "v60,v62,v65,v66" }, 2299 { Hexagon::BI__builtin_HEXAGON_V6_veqh_or, "v60,v62,v65,v66" }, 2300 { Hexagon::BI__builtin_HEXAGON_V6_veqh_or_128B, "v60,v62,v65,v66" }, 2301 { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor, "v60,v62,v65,v66" }, 2302 { Hexagon::BI__builtin_HEXAGON_V6_veqh_xor_128B, "v60,v62,v65,v66" }, 2303 { Hexagon::BI__builtin_HEXAGON_V6_veqw, "v60,v62,v65,v66" }, 2304 { Hexagon::BI__builtin_HEXAGON_V6_veqw_128B, "v60,v62,v65,v66" }, 2305 { Hexagon::BI__builtin_HEXAGON_V6_veqw_and, "v60,v62,v65,v66" }, 2306 { Hexagon::BI__builtin_HEXAGON_V6_veqw_and_128B, "v60,v62,v65,v66" }, 2307 { Hexagon::BI__builtin_HEXAGON_V6_veqw_or, "v60,v62,v65,v66" }, 2308 { Hexagon::BI__builtin_HEXAGON_V6_veqw_or_128B, "v60,v62,v65,v66" }, 2309 { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor, "v60,v62,v65,v66" }, 2310 { Hexagon::BI__builtin_HEXAGON_V6_veqw_xor_128B, "v60,v62,v65,v66" }, 2311 { Hexagon::BI__builtin_HEXAGON_V6_vgtb, "v60,v62,v65,v66" }, 2312 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_128B, "v60,v62,v65,v66" }, 2313 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and, "v60,v62,v65,v66" }, 2314 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_and_128B, "v60,v62,v65,v66" }, 2315 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or, "v60,v62,v65,v66" }, 2316 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_or_128B, "v60,v62,v65,v66" }, 2317 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor, "v60,v62,v65,v66" }, 2318 { Hexagon::BI__builtin_HEXAGON_V6_vgtb_xor_128B, "v60,v62,v65,v66" }, 2319 { Hexagon::BI__builtin_HEXAGON_V6_vgth, "v60,v62,v65,v66" }, 2320 { Hexagon::BI__builtin_HEXAGON_V6_vgth_128B, "v60,v62,v65,v66" }, 2321 { Hexagon::BI__builtin_HEXAGON_V6_vgth_and, "v60,v62,v65,v66" }, 2322 { Hexagon::BI__builtin_HEXAGON_V6_vgth_and_128B, "v60,v62,v65,v66" }, 2323 { Hexagon::BI__builtin_HEXAGON_V6_vgth_or, "v60,v62,v65,v66" }, 2324 { Hexagon::BI__builtin_HEXAGON_V6_vgth_or_128B, "v60,v62,v65,v66" }, 2325 { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor, "v60,v62,v65,v66" }, 2326 { Hexagon::BI__builtin_HEXAGON_V6_vgth_xor_128B, "v60,v62,v65,v66" }, 2327 { Hexagon::BI__builtin_HEXAGON_V6_vgtub, "v60,v62,v65,v66" }, 2328 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_128B, "v60,v62,v65,v66" }, 2329 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and, "v60,v62,v65,v66" }, 2330 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_and_128B, "v60,v62,v65,v66" }, 2331 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or, "v60,v62,v65,v66" }, 2332 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_or_128B, "v60,v62,v65,v66" }, 2333 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor, "v60,v62,v65,v66" }, 2334 { Hexagon::BI__builtin_HEXAGON_V6_vgtub_xor_128B, "v60,v62,v65,v66" }, 2335 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh, "v60,v62,v65,v66" }, 2336 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_128B, "v60,v62,v65,v66" }, 2337 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and, "v60,v62,v65,v66" }, 2338 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_and_128B, "v60,v62,v65,v66" }, 2339 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or, "v60,v62,v65,v66" }, 2340 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_or_128B, "v60,v62,v65,v66" }, 2341 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor, "v60,v62,v65,v66" }, 2342 { Hexagon::BI__builtin_HEXAGON_V6_vgtuh_xor_128B, "v60,v62,v65,v66" }, 2343 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw, "v60,v62,v65,v66" }, 2344 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_128B, "v60,v62,v65,v66" }, 2345 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and, "v60,v62,v65,v66" }, 2346 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_and_128B, "v60,v62,v65,v66" }, 2347 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or, "v60,v62,v65,v66" }, 2348 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_or_128B, "v60,v62,v65,v66" }, 2349 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor, "v60,v62,v65,v66" }, 2350 { Hexagon::BI__builtin_HEXAGON_V6_vgtuw_xor_128B, "v60,v62,v65,v66" }, 2351 { Hexagon::BI__builtin_HEXAGON_V6_vgtw, "v60,v62,v65,v66" }, 2352 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_128B, "v60,v62,v65,v66" }, 2353 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and, "v60,v62,v65,v66" }, 2354 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_and_128B, "v60,v62,v65,v66" }, 2355 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or, "v60,v62,v65,v66" }, 2356 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_or_128B, "v60,v62,v65,v66" }, 2357 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor, "v60,v62,v65,v66" }, 2358 { Hexagon::BI__builtin_HEXAGON_V6_vgtw_xor_128B, "v60,v62,v65,v66" }, 2359 { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr, "v60,v62,v65,v66" }, 2360 { Hexagon::BI__builtin_HEXAGON_V6_vinsertwr_128B, "v60,v62,v65,v66" }, 2361 { Hexagon::BI__builtin_HEXAGON_V6_vlalignb, "v60,v62,v65,v66" }, 2362 { Hexagon::BI__builtin_HEXAGON_V6_vlalignb_128B, "v60,v62,v65,v66" }, 2363 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, "v60,v62,v65,v66" }, 2364 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, "v60,v62,v65,v66" }, 2365 { Hexagon::BI__builtin_HEXAGON_V6_vlsrb, "v62,v65,v66" }, 2366 { Hexagon::BI__builtin_HEXAGON_V6_vlsrb_128B, "v62,v65,v66" }, 2367 { Hexagon::BI__builtin_HEXAGON_V6_vlsrh, "v60,v62,v65,v66" }, 2368 { Hexagon::BI__builtin_HEXAGON_V6_vlsrh_128B, "v60,v62,v65,v66" }, 2369 { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv, "v60,v62,v65,v66" }, 2370 { Hexagon::BI__builtin_HEXAGON_V6_vlsrhv_128B, "v60,v62,v65,v66" }, 2371 { Hexagon::BI__builtin_HEXAGON_V6_vlsrw, "v60,v62,v65,v66" }, 2372 { Hexagon::BI__builtin_HEXAGON_V6_vlsrw_128B, "v60,v62,v65,v66" }, 2373 { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv, "v60,v62,v65,v66" }, 2374 { Hexagon::BI__builtin_HEXAGON_V6_vlsrwv_128B, "v60,v62,v65,v66" }, 2375 { Hexagon::BI__builtin_HEXAGON_V6_vlut4, "v65,v66" }, 2376 { Hexagon::BI__builtin_HEXAGON_V6_vlut4_128B, "v65,v66" }, 2377 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb, "v60,v62,v65,v66" }, 2378 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_128B, "v60,v62,v65,v66" }, 2379 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi, "v62,v65,v66" }, 2380 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B, "v62,v65,v66" }, 2381 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm, "v62,v65,v66" }, 2382 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_nm_128B, "v62,v65,v66" }, 2383 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc, "v60,v62,v65,v66" }, 2384 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracc_128B, "v60,v62,v65,v66" }, 2385 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, "v62,v65,v66" }, 2386 { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B, "v62,v65,v66" }, 2387 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh, "v60,v62,v65,v66" }, 2388 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_128B, "v60,v62,v65,v66" }, 2389 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi, "v62,v65,v66" }, 2390 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B, "v62,v65,v66" }, 2391 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm, "v62,v65,v66" }, 2392 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_nm_128B, "v62,v65,v66" }, 2393 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc, "v60,v62,v65,v66" }, 2394 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracc_128B, "v60,v62,v65,v66" }, 2395 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, "v62,v65,v66" }, 2396 { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B, "v62,v65,v66" }, 2397 { Hexagon::BI__builtin_HEXAGON_V6_vmaxb, "v62,v65,v66" }, 2398 { Hexagon::BI__builtin_HEXAGON_V6_vmaxb_128B, "v62,v65,v66" }, 2399 { Hexagon::BI__builtin_HEXAGON_V6_vmaxh, "v60,v62,v65,v66" }, 2400 { Hexagon::BI__builtin_HEXAGON_V6_vmaxh_128B, "v60,v62,v65,v66" }, 2401 { Hexagon::BI__builtin_HEXAGON_V6_vmaxub, "v60,v62,v65,v66" }, 2402 { Hexagon::BI__builtin_HEXAGON_V6_vmaxub_128B, "v60,v62,v65,v66" }, 2403 { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh, "v60,v62,v65,v66" }, 2404 { Hexagon::BI__builtin_HEXAGON_V6_vmaxuh_128B, "v60,v62,v65,v66" }, 2405 { Hexagon::BI__builtin_HEXAGON_V6_vmaxw, "v60,v62,v65,v66" }, 2406 { Hexagon::BI__builtin_HEXAGON_V6_vmaxw_128B, "v60,v62,v65,v66" }, 2407 { Hexagon::BI__builtin_HEXAGON_V6_vminb, "v62,v65,v66" }, 2408 { Hexagon::BI__builtin_HEXAGON_V6_vminb_128B, "v62,v65,v66" }, 2409 { Hexagon::BI__builtin_HEXAGON_V6_vminh, "v60,v62,v65,v66" }, 2410 { Hexagon::BI__builtin_HEXAGON_V6_vminh_128B, "v60,v62,v65,v66" }, 2411 { Hexagon::BI__builtin_HEXAGON_V6_vminub, "v60,v62,v65,v66" }, 2412 { Hexagon::BI__builtin_HEXAGON_V6_vminub_128B, "v60,v62,v65,v66" }, 2413 { Hexagon::BI__builtin_HEXAGON_V6_vminuh, "v60,v62,v65,v66" }, 2414 { Hexagon::BI__builtin_HEXAGON_V6_vminuh_128B, "v60,v62,v65,v66" }, 2415 { Hexagon::BI__builtin_HEXAGON_V6_vminw, "v60,v62,v65,v66" }, 2416 { Hexagon::BI__builtin_HEXAGON_V6_vminw_128B, "v60,v62,v65,v66" }, 2417 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus, "v60,v62,v65,v66" }, 2418 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_128B, "v60,v62,v65,v66" }, 2419 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc, "v60,v62,v65,v66" }, 2420 { Hexagon::BI__builtin_HEXAGON_V6_vmpabus_acc_128B, "v60,v62,v65,v66" }, 2421 { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv, "v60,v62,v65,v66" }, 2422 { Hexagon::BI__builtin_HEXAGON_V6_vmpabusv_128B, "v60,v62,v65,v66" }, 2423 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu, "v65,v66" }, 2424 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_128B, "v65,v66" }, 2425 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc, "v65,v66" }, 2426 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuu_acc_128B, "v65,v66" }, 2427 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv, "v60,v62,v65,v66" }, 2428 { Hexagon::BI__builtin_HEXAGON_V6_vmpabuuv_128B, "v60,v62,v65,v66" }, 2429 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb, "v60,v62,v65,v66" }, 2430 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_128B, "v60,v62,v65,v66" }, 2431 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc, "v60,v62,v65,v66" }, 2432 { Hexagon::BI__builtin_HEXAGON_V6_vmpahb_acc_128B, "v60,v62,v65,v66" }, 2433 { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat, "v65,v66" }, 2434 { Hexagon::BI__builtin_HEXAGON_V6_vmpahhsat_128B, "v65,v66" }, 2435 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb, "v62,v65,v66" }, 2436 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_128B, "v62,v65,v66" }, 2437 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc, "v62,v65,v66" }, 2438 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhb_acc_128B, "v62,v65,v66" }, 2439 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat, "v65,v66" }, 2440 { Hexagon::BI__builtin_HEXAGON_V6_vmpauhuhsat_128B, "v65,v66" }, 2441 { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat, "v65,v66" }, 2442 { Hexagon::BI__builtin_HEXAGON_V6_vmpsuhuhsat_128B, "v65,v66" }, 2443 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus, "v60,v62,v65,v66" }, 2444 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_128B, "v60,v62,v65,v66" }, 2445 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc, "v60,v62,v65,v66" }, 2446 { Hexagon::BI__builtin_HEXAGON_V6_vmpybus_acc_128B, "v60,v62,v65,v66" }, 2447 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv, "v60,v62,v65,v66" }, 2448 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_128B, "v60,v62,v65,v66" }, 2449 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc, "v60,v62,v65,v66" }, 2450 { Hexagon::BI__builtin_HEXAGON_V6_vmpybusv_acc_128B, "v60,v62,v65,v66" }, 2451 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv, "v60,v62,v65,v66" }, 2452 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_128B, "v60,v62,v65,v66" }, 2453 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc, "v60,v62,v65,v66" }, 2454 { Hexagon::BI__builtin_HEXAGON_V6_vmpybv_acc_128B, "v60,v62,v65,v66" }, 2455 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh, "v60,v62,v65,v66" }, 2456 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_128B, "v60,v62,v65,v66" }, 2457 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64, "v62,v65,v66" }, 2458 { Hexagon::BI__builtin_HEXAGON_V6_vmpyewuh_64_128B, "v62,v65,v66" }, 2459 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh, "v60,v62,v65,v66" }, 2460 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_128B, "v60,v62,v65,v66" }, 2461 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc, "v65,v66" }, 2462 { Hexagon::BI__builtin_HEXAGON_V6_vmpyh_acc_128B, "v65,v66" }, 2463 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc, "v60,v62,v65,v66" }, 2464 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsat_acc_128B, "v60,v62,v65,v66" }, 2465 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs, "v60,v62,v65,v66" }, 2466 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhsrs_128B, "v60,v62,v65,v66" }, 2467 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss, "v60,v62,v65,v66" }, 2468 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhss_128B, "v60,v62,v65,v66" }, 2469 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus, "v60,v62,v65,v66" }, 2470 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_128B, "v60,v62,v65,v66" }, 2471 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc, "v60,v62,v65,v66" }, 2472 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhus_acc_128B, "v60,v62,v65,v66" }, 2473 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv, "v60,v62,v65,v66" }, 2474 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_128B, "v60,v62,v65,v66" }, 2475 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc, "v60,v62,v65,v66" }, 2476 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhv_acc_128B, "v60,v62,v65,v66" }, 2477 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs, "v60,v62,v65,v66" }, 2478 { Hexagon::BI__builtin_HEXAGON_V6_vmpyhvsrs_128B, "v60,v62,v65,v66" }, 2479 { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh, "v60,v62,v65,v66" }, 2480 { Hexagon::BI__builtin_HEXAGON_V6_vmpyieoh_128B, "v60,v62,v65,v66" }, 2481 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc, "v60,v62,v65,v66" }, 2482 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewh_acc_128B, "v60,v62,v65,v66" }, 2483 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh, "v60,v62,v65,v66" }, 2484 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_128B, "v60,v62,v65,v66" }, 2485 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc, "v60,v62,v65,v66" }, 2486 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiewuh_acc_128B, "v60,v62,v65,v66" }, 2487 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih, "v60,v62,v65,v66" }, 2488 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_128B, "v60,v62,v65,v66" }, 2489 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc, "v60,v62,v65,v66" }, 2490 { Hexagon::BI__builtin_HEXAGON_V6_vmpyih_acc_128B, "v60,v62,v65,v66" }, 2491 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb, "v60,v62,v65,v66" }, 2492 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_128B, "v60,v62,v65,v66" }, 2493 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc, "v60,v62,v65,v66" }, 2494 { Hexagon::BI__builtin_HEXAGON_V6_vmpyihb_acc_128B, "v60,v62,v65,v66" }, 2495 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh, "v60,v62,v65,v66" }, 2496 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiowh_128B, "v60,v62,v65,v66" }, 2497 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb, "v60,v62,v65,v66" }, 2498 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_128B, "v60,v62,v65,v66" }, 2499 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc, "v60,v62,v65,v66" }, 2500 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwb_acc_128B, "v60,v62,v65,v66" }, 2501 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh, "v60,v62,v65,v66" }, 2502 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_128B, "v60,v62,v65,v66" }, 2503 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc, "v60,v62,v65,v66" }, 2504 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwh_acc_128B, "v60,v62,v65,v66" }, 2505 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub, "v62,v65,v66" }, 2506 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_128B, "v62,v65,v66" }, 2507 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc, "v62,v65,v66" }, 2508 { Hexagon::BI__builtin_HEXAGON_V6_vmpyiwub_acc_128B, "v62,v65,v66" }, 2509 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh, "v60,v62,v65,v66" }, 2510 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_128B, "v60,v62,v65,v66" }, 2511 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc, "v62,v65,v66" }, 2512 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_64_acc_128B, "v62,v65,v66" }, 2513 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd, "v60,v62,v65,v66" }, 2514 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_128B, "v60,v62,v65,v66" }, 2515 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc, "v60,v62,v65,v66" }, 2516 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_rnd_sacc_128B, "v60,v62,v65,v66" }, 2517 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc, "v60,v62,v65,v66" }, 2518 { Hexagon::BI__builtin_HEXAGON_V6_vmpyowh_sacc_128B, "v60,v62,v65,v66" }, 2519 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub, "v60,v62,v65,v66" }, 2520 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_128B, "v60,v62,v65,v66" }, 2521 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc, "v60,v62,v65,v66" }, 2522 { Hexagon::BI__builtin_HEXAGON_V6_vmpyub_acc_128B, "v60,v62,v65,v66" }, 2523 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv, "v60,v62,v65,v66" }, 2524 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_128B, "v60,v62,v65,v66" }, 2525 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc, "v60,v62,v65,v66" }, 2526 { Hexagon::BI__builtin_HEXAGON_V6_vmpyubv_acc_128B, "v60,v62,v65,v66" }, 2527 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh, "v60,v62,v65,v66" }, 2528 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_128B, "v60,v62,v65,v66" }, 2529 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc, "v60,v62,v65,v66" }, 2530 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuh_acc_128B, "v60,v62,v65,v66" }, 2531 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe, "v65,v66" }, 2532 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_128B, "v65,v66" }, 2533 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc, "v65,v66" }, 2534 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhe_acc_128B, "v65,v66" }, 2535 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv, "v60,v62,v65,v66" }, 2536 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_128B, "v60,v62,v65,v66" }, 2537 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc, "v60,v62,v65,v66" }, 2538 { Hexagon::BI__builtin_HEXAGON_V6_vmpyuhv_acc_128B, "v60,v62,v65,v66" }, 2539 { Hexagon::BI__builtin_HEXAGON_V6_vmux, "v60,v62,v65,v66" }, 2540 { Hexagon::BI__builtin_HEXAGON_V6_vmux_128B, "v60,v62,v65,v66" }, 2541 { Hexagon::BI__builtin_HEXAGON_V6_vnavgb, "v65,v66" }, 2542 { Hexagon::BI__builtin_HEXAGON_V6_vnavgb_128B, "v65,v66" }, 2543 { Hexagon::BI__builtin_HEXAGON_V6_vnavgh, "v60,v62,v65,v66" }, 2544 { Hexagon::BI__builtin_HEXAGON_V6_vnavgh_128B, "v60,v62,v65,v66" }, 2545 { Hexagon::BI__builtin_HEXAGON_V6_vnavgub, "v60,v62,v65,v66" }, 2546 { Hexagon::BI__builtin_HEXAGON_V6_vnavgub_128B, "v60,v62,v65,v66" }, 2547 { Hexagon::BI__builtin_HEXAGON_V6_vnavgw, "v60,v62,v65,v66" }, 2548 { Hexagon::BI__builtin_HEXAGON_V6_vnavgw_128B, "v60,v62,v65,v66" }, 2549 { Hexagon::BI__builtin_HEXAGON_V6_vnormamth, "v60,v62,v65,v66" }, 2550 { Hexagon::BI__builtin_HEXAGON_V6_vnormamth_128B, "v60,v62,v65,v66" }, 2551 { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw, "v60,v62,v65,v66" }, 2552 { Hexagon::BI__builtin_HEXAGON_V6_vnormamtw_128B, "v60,v62,v65,v66" }, 2553 { Hexagon::BI__builtin_HEXAGON_V6_vnot, "v60,v62,v65,v66" }, 2554 { Hexagon::BI__builtin_HEXAGON_V6_vnot_128B, "v60,v62,v65,v66" }, 2555 { Hexagon::BI__builtin_HEXAGON_V6_vor, "v60,v62,v65,v66" }, 2556 { Hexagon::BI__builtin_HEXAGON_V6_vor_128B, "v60,v62,v65,v66" }, 2557 { Hexagon::BI__builtin_HEXAGON_V6_vpackeb, "v60,v62,v65,v66" }, 2558 { Hexagon::BI__builtin_HEXAGON_V6_vpackeb_128B, "v60,v62,v65,v66" }, 2559 { Hexagon::BI__builtin_HEXAGON_V6_vpackeh, "v60,v62,v65,v66" }, 2560 { Hexagon::BI__builtin_HEXAGON_V6_vpackeh_128B, "v60,v62,v65,v66" }, 2561 { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat, "v60,v62,v65,v66" }, 2562 { Hexagon::BI__builtin_HEXAGON_V6_vpackhb_sat_128B, "v60,v62,v65,v66" }, 2563 { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat, "v60,v62,v65,v66" }, 2564 { Hexagon::BI__builtin_HEXAGON_V6_vpackhub_sat_128B, "v60,v62,v65,v66" }, 2565 { Hexagon::BI__builtin_HEXAGON_V6_vpackob, "v60,v62,v65,v66" }, 2566 { Hexagon::BI__builtin_HEXAGON_V6_vpackob_128B, "v60,v62,v65,v66" }, 2567 { Hexagon::BI__builtin_HEXAGON_V6_vpackoh, "v60,v62,v65,v66" }, 2568 { Hexagon::BI__builtin_HEXAGON_V6_vpackoh_128B, "v60,v62,v65,v66" }, 2569 { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat, "v60,v62,v65,v66" }, 2570 { Hexagon::BI__builtin_HEXAGON_V6_vpackwh_sat_128B, "v60,v62,v65,v66" }, 2571 { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat, "v60,v62,v65,v66" }, 2572 { Hexagon::BI__builtin_HEXAGON_V6_vpackwuh_sat_128B, "v60,v62,v65,v66" }, 2573 { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth, "v60,v62,v65,v66" }, 2574 { Hexagon::BI__builtin_HEXAGON_V6_vpopcounth_128B, "v60,v62,v65,v66" }, 2575 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb, "v65,v66" }, 2576 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqb_128B, "v65,v66" }, 2577 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh, "v65,v66" }, 2578 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqh_128B, "v65,v66" }, 2579 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw, "v65,v66" }, 2580 { Hexagon::BI__builtin_HEXAGON_V6_vprefixqw_128B, "v65,v66" }, 2581 { Hexagon::BI__builtin_HEXAGON_V6_vrdelta, "v60,v62,v65,v66" }, 2582 { Hexagon::BI__builtin_HEXAGON_V6_vrdelta_128B, "v60,v62,v65,v66" }, 2583 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt, "v65" }, 2584 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_128B, "v65" }, 2585 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc, "v65" }, 2586 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybub_rtt_acc_128B, "v65" }, 2587 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus, "v60,v62,v65,v66" }, 2588 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_128B, "v60,v62,v65,v66" }, 2589 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc, "v60,v62,v65,v66" }, 2590 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybus_acc_128B, "v60,v62,v65,v66" }, 2591 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, "v60,v62,v65,v66" }, 2592 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, "v60,v62,v65,v66" }, 2593 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, "v60,v62,v65,v66" }, 2594 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, "v60,v62,v65,v66" }, 2595 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv, "v60,v62,v65,v66" }, 2596 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_128B, "v60,v62,v65,v66" }, 2597 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc, "v60,v62,v65,v66" }, 2598 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusv_acc_128B, "v60,v62,v65,v66" }, 2599 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv, "v60,v62,v65,v66" }, 2600 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_128B, "v60,v62,v65,v66" }, 2601 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc, "v60,v62,v65,v66" }, 2602 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybv_acc_128B, "v60,v62,v65,v66" }, 2603 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub, "v60,v62,v65,v66" }, 2604 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_128B, "v60,v62,v65,v66" }, 2605 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc, "v60,v62,v65,v66" }, 2606 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_acc_128B, "v60,v62,v65,v66" }, 2607 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, "v60,v62,v65,v66" }, 2608 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, "v60,v62,v65,v66" }, 2609 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, "v60,v62,v65,v66" }, 2610 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, "v60,v62,v65,v66" }, 2611 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt, "v65" }, 2612 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_128B, "v65" }, 2613 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc, "v65" }, 2614 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyub_rtt_acc_128B, "v65" }, 2615 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv, "v60,v62,v65,v66" }, 2616 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_128B, "v60,v62,v65,v66" }, 2617 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc, "v60,v62,v65,v66" }, 2618 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubv_acc_128B, "v60,v62,v65,v66" }, 2619 { Hexagon::BI__builtin_HEXAGON_V6_vror, "v60,v62,v65,v66" }, 2620 { Hexagon::BI__builtin_HEXAGON_V6_vror_128B, "v60,v62,v65,v66" }, 2621 { Hexagon::BI__builtin_HEXAGON_V6_vrotr, "v66" }, 2622 { Hexagon::BI__builtin_HEXAGON_V6_vrotr_128B, "v66" }, 2623 { Hexagon::BI__builtin_HEXAGON_V6_vroundhb, "v60,v62,v65,v66" }, 2624 { Hexagon::BI__builtin_HEXAGON_V6_vroundhb_128B, "v60,v62,v65,v66" }, 2625 { Hexagon::BI__builtin_HEXAGON_V6_vroundhub, "v60,v62,v65,v66" }, 2626 { Hexagon::BI__builtin_HEXAGON_V6_vroundhub_128B, "v60,v62,v65,v66" }, 2627 { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub, "v62,v65,v66" }, 2628 { Hexagon::BI__builtin_HEXAGON_V6_vrounduhub_128B, "v62,v65,v66" }, 2629 { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh, "v62,v65,v66" }, 2630 { Hexagon::BI__builtin_HEXAGON_V6_vrounduwuh_128B, "v62,v65,v66" }, 2631 { Hexagon::BI__builtin_HEXAGON_V6_vroundwh, "v60,v62,v65,v66" }, 2632 { Hexagon::BI__builtin_HEXAGON_V6_vroundwh_128B, "v60,v62,v65,v66" }, 2633 { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh, "v60,v62,v65,v66" }, 2634 { Hexagon::BI__builtin_HEXAGON_V6_vroundwuh_128B, "v60,v62,v65,v66" }, 2635 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, "v60,v62,v65,v66" }, 2636 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, "v60,v62,v65,v66" }, 2637 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, "v60,v62,v65,v66" }, 2638 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, "v60,v62,v65,v66" }, 2639 { Hexagon::BI__builtin_HEXAGON_V6_vsatdw, "v66" }, 2640 { Hexagon::BI__builtin_HEXAGON_V6_vsatdw_128B, "v66" }, 2641 { Hexagon::BI__builtin_HEXAGON_V6_vsathub, "v60,v62,v65,v66" }, 2642 { Hexagon::BI__builtin_HEXAGON_V6_vsathub_128B, "v60,v62,v65,v66" }, 2643 { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh, "v62,v65,v66" }, 2644 { Hexagon::BI__builtin_HEXAGON_V6_vsatuwuh_128B, "v62,v65,v66" }, 2645 { Hexagon::BI__builtin_HEXAGON_V6_vsatwh, "v60,v62,v65,v66" }, 2646 { Hexagon::BI__builtin_HEXAGON_V6_vsatwh_128B, "v60,v62,v65,v66" }, 2647 { Hexagon::BI__builtin_HEXAGON_V6_vsb, "v60,v62,v65,v66" }, 2648 { Hexagon::BI__builtin_HEXAGON_V6_vsb_128B, "v60,v62,v65,v66" }, 2649 { Hexagon::BI__builtin_HEXAGON_V6_vsh, "v60,v62,v65,v66" }, 2650 { Hexagon::BI__builtin_HEXAGON_V6_vsh_128B, "v60,v62,v65,v66" }, 2651 { Hexagon::BI__builtin_HEXAGON_V6_vshufeh, "v60,v62,v65,v66" }, 2652 { Hexagon::BI__builtin_HEXAGON_V6_vshufeh_128B, "v60,v62,v65,v66" }, 2653 { Hexagon::BI__builtin_HEXAGON_V6_vshuffb, "v60,v62,v65,v66" }, 2654 { Hexagon::BI__builtin_HEXAGON_V6_vshuffb_128B, "v60,v62,v65,v66" }, 2655 { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb, "v60,v62,v65,v66" }, 2656 { Hexagon::BI__builtin_HEXAGON_V6_vshuffeb_128B, "v60,v62,v65,v66" }, 2657 { Hexagon::BI__builtin_HEXAGON_V6_vshuffh, "v60,v62,v65,v66" }, 2658 { Hexagon::BI__builtin_HEXAGON_V6_vshuffh_128B, "v60,v62,v65,v66" }, 2659 { Hexagon::BI__builtin_HEXAGON_V6_vshuffob, "v60,v62,v65,v66" }, 2660 { Hexagon::BI__builtin_HEXAGON_V6_vshuffob_128B, "v60,v62,v65,v66" }, 2661 { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd, "v60,v62,v65,v66" }, 2662 { Hexagon::BI__builtin_HEXAGON_V6_vshuffvdd_128B, "v60,v62,v65,v66" }, 2663 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb, "v60,v62,v65,v66" }, 2664 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeb_128B, "v60,v62,v65,v66" }, 2665 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh, "v60,v62,v65,v66" }, 2666 { Hexagon::BI__builtin_HEXAGON_V6_vshufoeh_128B, "v60,v62,v65,v66" }, 2667 { Hexagon::BI__builtin_HEXAGON_V6_vshufoh, "v60,v62,v65,v66" }, 2668 { Hexagon::BI__builtin_HEXAGON_V6_vshufoh_128B, "v60,v62,v65,v66" }, 2669 { Hexagon::BI__builtin_HEXAGON_V6_vsubb, "v60,v62,v65,v66" }, 2670 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_128B, "v60,v62,v65,v66" }, 2671 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv, "v60,v62,v65,v66" }, 2672 { Hexagon::BI__builtin_HEXAGON_V6_vsubb_dv_128B, "v60,v62,v65,v66" }, 2673 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat, "v62,v65,v66" }, 2674 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_128B, "v62,v65,v66" }, 2675 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv, "v62,v65,v66" }, 2676 { Hexagon::BI__builtin_HEXAGON_V6_vsubbsat_dv_128B, "v62,v65,v66" }, 2677 { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry, "v62,v65,v66" }, 2678 { Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B, "v62,v65,v66" }, 2679 { Hexagon::BI__builtin_HEXAGON_V6_vsubh, "v60,v62,v65,v66" }, 2680 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_128B, "v60,v62,v65,v66" }, 2681 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv, "v60,v62,v65,v66" }, 2682 { Hexagon::BI__builtin_HEXAGON_V6_vsubh_dv_128B, "v60,v62,v65,v66" }, 2683 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat, "v60,v62,v65,v66" }, 2684 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_128B, "v60,v62,v65,v66" }, 2685 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv, "v60,v62,v65,v66" }, 2686 { Hexagon::BI__builtin_HEXAGON_V6_vsubhsat_dv_128B, "v60,v62,v65,v66" }, 2687 { Hexagon::BI__builtin_HEXAGON_V6_vsubhw, "v60,v62,v65,v66" }, 2688 { Hexagon::BI__builtin_HEXAGON_V6_vsubhw_128B, "v60,v62,v65,v66" }, 2689 { Hexagon::BI__builtin_HEXAGON_V6_vsububh, "v60,v62,v65,v66" }, 2690 { Hexagon::BI__builtin_HEXAGON_V6_vsububh_128B, "v60,v62,v65,v66" }, 2691 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat, "v60,v62,v65,v66" }, 2692 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_128B, "v60,v62,v65,v66" }, 2693 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv, "v60,v62,v65,v66" }, 2694 { Hexagon::BI__builtin_HEXAGON_V6_vsububsat_dv_128B, "v60,v62,v65,v66" }, 2695 { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat, "v62,v65,v66" }, 2696 { Hexagon::BI__builtin_HEXAGON_V6_vsubububb_sat_128B, "v62,v65,v66" }, 2697 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat, "v60,v62,v65,v66" }, 2698 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_128B, "v60,v62,v65,v66" }, 2699 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv, "v60,v62,v65,v66" }, 2700 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhsat_dv_128B, "v60,v62,v65,v66" }, 2701 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw, "v60,v62,v65,v66" }, 2702 { Hexagon::BI__builtin_HEXAGON_V6_vsubuhw_128B, "v60,v62,v65,v66" }, 2703 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat, "v62,v65,v66" }, 2704 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_128B, "v62,v65,v66" }, 2705 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv, "v62,v65,v66" }, 2706 { Hexagon::BI__builtin_HEXAGON_V6_vsubuwsat_dv_128B, "v62,v65,v66" }, 2707 { Hexagon::BI__builtin_HEXAGON_V6_vsubw, "v60,v62,v65,v66" }, 2708 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_128B, "v60,v62,v65,v66" }, 2709 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv, "v60,v62,v65,v66" }, 2710 { Hexagon::BI__builtin_HEXAGON_V6_vsubw_dv_128B, "v60,v62,v65,v66" }, 2711 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat, "v60,v62,v65,v66" }, 2712 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_128B, "v60,v62,v65,v66" }, 2713 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv, "v60,v62,v65,v66" }, 2714 { Hexagon::BI__builtin_HEXAGON_V6_vsubwsat_dv_128B, "v60,v62,v65,v66" }, 2715 { Hexagon::BI__builtin_HEXAGON_V6_vswap, "v60,v62,v65,v66" }, 2716 { Hexagon::BI__builtin_HEXAGON_V6_vswap_128B, "v60,v62,v65,v66" }, 2717 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb, "v60,v62,v65,v66" }, 2718 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_128B, "v60,v62,v65,v66" }, 2719 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc, "v60,v62,v65,v66" }, 2720 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyb_acc_128B, "v60,v62,v65,v66" }, 2721 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus, "v60,v62,v65,v66" }, 2722 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_128B, "v60,v62,v65,v66" }, 2723 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc, "v60,v62,v65,v66" }, 2724 { Hexagon::BI__builtin_HEXAGON_V6_vtmpybus_acc_128B, "v60,v62,v65,v66" }, 2725 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb, "v60,v62,v65,v66" }, 2726 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_128B, "v60,v62,v65,v66" }, 2727 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc, "v60,v62,v65,v66" }, 2728 { Hexagon::BI__builtin_HEXAGON_V6_vtmpyhb_acc_128B, "v60,v62,v65,v66" }, 2729 { Hexagon::BI__builtin_HEXAGON_V6_vunpackb, "v60,v62,v65,v66" }, 2730 { Hexagon::BI__builtin_HEXAGON_V6_vunpackb_128B, "v60,v62,v65,v66" }, 2731 { Hexagon::BI__builtin_HEXAGON_V6_vunpackh, "v60,v62,v65,v66" }, 2732 { Hexagon::BI__builtin_HEXAGON_V6_vunpackh_128B, "v60,v62,v65,v66" }, 2733 { Hexagon::BI__builtin_HEXAGON_V6_vunpackob, "v60,v62,v65,v66" }, 2734 { Hexagon::BI__builtin_HEXAGON_V6_vunpackob_128B, "v60,v62,v65,v66" }, 2735 { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh, "v60,v62,v65,v66" }, 2736 { Hexagon::BI__builtin_HEXAGON_V6_vunpackoh_128B, "v60,v62,v65,v66" }, 2737 { Hexagon::BI__builtin_HEXAGON_V6_vunpackub, "v60,v62,v65,v66" }, 2738 { Hexagon::BI__builtin_HEXAGON_V6_vunpackub_128B, "v60,v62,v65,v66" }, 2739 { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh, "v60,v62,v65,v66" }, 2740 { Hexagon::BI__builtin_HEXAGON_V6_vunpackuh_128B, "v60,v62,v65,v66" }, 2741 { Hexagon::BI__builtin_HEXAGON_V6_vxor, "v60,v62,v65,v66" }, 2742 { Hexagon::BI__builtin_HEXAGON_V6_vxor_128B, "v60,v62,v65,v66" }, 2743 { Hexagon::BI__builtin_HEXAGON_V6_vzb, "v60,v62,v65,v66" }, 2744 { Hexagon::BI__builtin_HEXAGON_V6_vzb_128B, "v60,v62,v65,v66" }, 2745 { Hexagon::BI__builtin_HEXAGON_V6_vzh, "v60,v62,v65,v66" }, 2746 { Hexagon::BI__builtin_HEXAGON_V6_vzh_128B, "v60,v62,v65,v66" }, 2747 }; 2748 2749 // Sort the tables on first execution so we can binary search them. 2750 auto SortCmp = [](const BuiltinAndString &LHS, const BuiltinAndString &RHS) { 2751 return LHS.BuiltinID < RHS.BuiltinID; 2752 }; 2753 static const bool SortOnce = 2754 (llvm::sort(ValidCPU, SortCmp), 2755 llvm::sort(ValidHVX, SortCmp), true); 2756 (void)SortOnce; 2757 auto LowerBoundCmp = [](const BuiltinAndString &BI, unsigned BuiltinID) { 2758 return BI.BuiltinID < BuiltinID; 2759 }; 2760 2761 const TargetInfo &TI = Context.getTargetInfo(); 2762 2763 const BuiltinAndString *FC = 2764 llvm::lower_bound(ValidCPU, BuiltinID, LowerBoundCmp); 2765 if (FC != std::end(ValidCPU) && FC->BuiltinID == BuiltinID) { 2766 const TargetOptions &Opts = TI.getTargetOpts(); 2767 StringRef CPU = Opts.CPU; 2768 if (!CPU.empty()) { 2769 assert(CPU.startswith("hexagon") && "Unexpected CPU name"); 2770 CPU.consume_front("hexagon"); 2771 SmallVector<StringRef, 3> CPUs; 2772 StringRef(FC->Str).split(CPUs, ','); 2773 if (llvm::none_of(CPUs, [CPU](StringRef S) { return S == CPU; })) 2774 return Diag(TheCall->getBeginLoc(), 2775 diag::err_hexagon_builtin_unsupported_cpu); 2776 } 2777 } 2778 2779 const BuiltinAndString *FH = 2780 llvm::lower_bound(ValidHVX, BuiltinID, LowerBoundCmp); 2781 if (FH != std::end(ValidHVX) && FH->BuiltinID == BuiltinID) { 2782 if (!TI.hasFeature("hvx")) 2783 return Diag(TheCall->getBeginLoc(), 2784 diag::err_hexagon_builtin_requires_hvx); 2785 2786 SmallVector<StringRef, 3> HVXs; 2787 StringRef(FH->Str).split(HVXs, ','); 2788 bool IsValid = llvm::any_of(HVXs, 2789 [&TI] (StringRef V) { 2790 std::string F = "hvx" + V.str(); 2791 return TI.hasFeature(F); 2792 }); 2793 if (!IsValid) 2794 return Diag(TheCall->getBeginLoc(), 2795 diag::err_hexagon_builtin_unsupported_hvx); 2796 } 2797 2798 return false; 2799 } 2800 2801 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2802 struct ArgInfo { 2803 uint8_t OpNum; 2804 bool IsSigned; 2805 uint8_t BitWidth; 2806 uint8_t Align; 2807 }; 2808 struct BuiltinInfo { 2809 unsigned BuiltinID; 2810 ArgInfo Infos[2]; 2811 }; 2812 2813 static BuiltinInfo Infos[] = { 2814 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2815 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2816 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2817 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 0 }} }, 2818 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2819 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2820 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2821 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2822 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2823 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2824 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2825 2826 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2828 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2830 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2834 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2837 2838 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2842 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2843 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2845 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2846 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2847 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2848 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2849 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2851 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2852 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2853 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2854 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2855 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2857 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2859 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2864 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2866 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2867 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2868 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2869 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2871 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2872 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2873 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2874 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2875 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2876 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2877 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2878 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2879 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2880 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2881 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2882 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2883 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2885 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2886 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2890 {{ 1, false, 6, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2892 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2894 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2896 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2898 {{ 1, false, 5, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2900 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2902 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2903 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2905 { 2, false, 5, 0 }} }, 2906 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2907 { 2, false, 6, 0 }} }, 2908 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2909 { 3, false, 5, 0 }} }, 2910 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2911 { 3, false, 6, 0 }} }, 2912 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2913 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2914 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2915 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2916 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2917 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2918 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2919 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2920 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2921 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2922 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2923 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2924 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2925 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2926 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2927 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2928 {{ 2, false, 4, 0 }, 2929 { 3, false, 5, 0 }} }, 2930 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2931 {{ 2, false, 4, 0 }, 2932 { 3, false, 5, 0 }} }, 2933 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2934 {{ 2, false, 4, 0 }, 2935 { 3, false, 5, 0 }} }, 2936 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2937 {{ 2, false, 4, 0 }, 2938 { 3, false, 5, 0 }} }, 2939 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2940 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2941 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2942 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2943 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2944 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2945 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2946 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2947 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2948 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2949 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2950 { 2, false, 5, 0 }} }, 2951 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2952 { 2, false, 6, 0 }} }, 2953 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2954 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2955 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2956 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2957 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2958 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2959 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2960 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2961 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2962 {{ 1, false, 4, 0 }} }, 2963 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2964 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2965 {{ 1, false, 4, 0 }} }, 2966 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2967 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2968 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2969 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2970 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2971 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2972 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2973 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2974 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2975 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2976 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2977 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2978 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2979 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2980 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2981 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2982 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2983 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2984 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2985 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2986 {{ 3, false, 1, 0 }} }, 2987 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2988 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2989 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2990 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2991 {{ 3, false, 1, 0 }} }, 2992 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2993 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2994 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2995 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2996 {{ 3, false, 1, 0 }} }, 2997 }; 2998 2999 // Use a dynamically initialized static to sort the table exactly once on 3000 // first run. 3001 static const bool SortOnce = 3002 (llvm::sort(Infos, 3003 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 3004 return LHS.BuiltinID < RHS.BuiltinID; 3005 }), 3006 true); 3007 (void)SortOnce; 3008 3009 const BuiltinInfo *F = llvm::partition_point( 3010 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 3011 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 3012 return false; 3013 3014 bool Error = false; 3015 3016 for (const ArgInfo &A : F->Infos) { 3017 // Ignore empty ArgInfo elements. 3018 if (A.BitWidth == 0) 3019 continue; 3020 3021 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 3022 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 3023 if (!A.Align) { 3024 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 3025 } else { 3026 unsigned M = 1 << A.Align; 3027 Min *= M; 3028 Max *= M; 3029 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 3030 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 3031 } 3032 } 3033 return Error; 3034 } 3035 3036 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 3037 CallExpr *TheCall) { 3038 return CheckHexagonBuiltinCpu(BuiltinID, TheCall) || 3039 CheckHexagonBuiltinArgument(BuiltinID, TheCall); 3040 } 3041 3042 3043 // CheckMipsBuiltinFunctionCall - Checks the constant value passed to the 3044 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 3045 // ordering for DSP is unspecified. MSA is ordered by the data format used 3046 // by the underlying instruction i.e., df/m, df/n and then by size. 3047 // 3048 // FIXME: The size tests here should instead be tablegen'd along with the 3049 // definitions from include/clang/Basic/BuiltinsMips.def. 3050 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 3051 // be too. 3052 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3053 unsigned i = 0, l = 0, u = 0, m = 0; 3054 switch (BuiltinID) { 3055 default: return false; 3056 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3057 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3058 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3059 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3060 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3061 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3062 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3063 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3064 // df/m field. 3065 // These intrinsics take an unsigned 3 bit immediate. 3066 case Mips::BI__builtin_msa_bclri_b: 3067 case Mips::BI__builtin_msa_bnegi_b: 3068 case Mips::BI__builtin_msa_bseti_b: 3069 case Mips::BI__builtin_msa_sat_s_b: 3070 case Mips::BI__builtin_msa_sat_u_b: 3071 case Mips::BI__builtin_msa_slli_b: 3072 case Mips::BI__builtin_msa_srai_b: 3073 case Mips::BI__builtin_msa_srari_b: 3074 case Mips::BI__builtin_msa_srli_b: 3075 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3076 case Mips::BI__builtin_msa_binsli_b: 3077 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3078 // These intrinsics take an unsigned 4 bit immediate. 3079 case Mips::BI__builtin_msa_bclri_h: 3080 case Mips::BI__builtin_msa_bnegi_h: 3081 case Mips::BI__builtin_msa_bseti_h: 3082 case Mips::BI__builtin_msa_sat_s_h: 3083 case Mips::BI__builtin_msa_sat_u_h: 3084 case Mips::BI__builtin_msa_slli_h: 3085 case Mips::BI__builtin_msa_srai_h: 3086 case Mips::BI__builtin_msa_srari_h: 3087 case Mips::BI__builtin_msa_srli_h: 3088 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3089 case Mips::BI__builtin_msa_binsli_h: 3090 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3091 // These intrinsics take an unsigned 5 bit immediate. 3092 // The first block of intrinsics actually have an unsigned 5 bit field, 3093 // not a df/n field. 3094 case Mips::BI__builtin_msa_cfcmsa: 3095 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3096 case Mips::BI__builtin_msa_clei_u_b: 3097 case Mips::BI__builtin_msa_clei_u_h: 3098 case Mips::BI__builtin_msa_clei_u_w: 3099 case Mips::BI__builtin_msa_clei_u_d: 3100 case Mips::BI__builtin_msa_clti_u_b: 3101 case Mips::BI__builtin_msa_clti_u_h: 3102 case Mips::BI__builtin_msa_clti_u_w: 3103 case Mips::BI__builtin_msa_clti_u_d: 3104 case Mips::BI__builtin_msa_maxi_u_b: 3105 case Mips::BI__builtin_msa_maxi_u_h: 3106 case Mips::BI__builtin_msa_maxi_u_w: 3107 case Mips::BI__builtin_msa_maxi_u_d: 3108 case Mips::BI__builtin_msa_mini_u_b: 3109 case Mips::BI__builtin_msa_mini_u_h: 3110 case Mips::BI__builtin_msa_mini_u_w: 3111 case Mips::BI__builtin_msa_mini_u_d: 3112 case Mips::BI__builtin_msa_addvi_b: 3113 case Mips::BI__builtin_msa_addvi_h: 3114 case Mips::BI__builtin_msa_addvi_w: 3115 case Mips::BI__builtin_msa_addvi_d: 3116 case Mips::BI__builtin_msa_bclri_w: 3117 case Mips::BI__builtin_msa_bnegi_w: 3118 case Mips::BI__builtin_msa_bseti_w: 3119 case Mips::BI__builtin_msa_sat_s_w: 3120 case Mips::BI__builtin_msa_sat_u_w: 3121 case Mips::BI__builtin_msa_slli_w: 3122 case Mips::BI__builtin_msa_srai_w: 3123 case Mips::BI__builtin_msa_srari_w: 3124 case Mips::BI__builtin_msa_srli_w: 3125 case Mips::BI__builtin_msa_srlri_w: 3126 case Mips::BI__builtin_msa_subvi_b: 3127 case Mips::BI__builtin_msa_subvi_h: 3128 case Mips::BI__builtin_msa_subvi_w: 3129 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3130 case Mips::BI__builtin_msa_binsli_w: 3131 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3132 // These intrinsics take an unsigned 6 bit immediate. 3133 case Mips::BI__builtin_msa_bclri_d: 3134 case Mips::BI__builtin_msa_bnegi_d: 3135 case Mips::BI__builtin_msa_bseti_d: 3136 case Mips::BI__builtin_msa_sat_s_d: 3137 case Mips::BI__builtin_msa_sat_u_d: 3138 case Mips::BI__builtin_msa_slli_d: 3139 case Mips::BI__builtin_msa_srai_d: 3140 case Mips::BI__builtin_msa_srari_d: 3141 case Mips::BI__builtin_msa_srli_d: 3142 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3143 case Mips::BI__builtin_msa_binsli_d: 3144 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3145 // These intrinsics take a signed 5 bit immediate. 3146 case Mips::BI__builtin_msa_ceqi_b: 3147 case Mips::BI__builtin_msa_ceqi_h: 3148 case Mips::BI__builtin_msa_ceqi_w: 3149 case Mips::BI__builtin_msa_ceqi_d: 3150 case Mips::BI__builtin_msa_clti_s_b: 3151 case Mips::BI__builtin_msa_clti_s_h: 3152 case Mips::BI__builtin_msa_clti_s_w: 3153 case Mips::BI__builtin_msa_clti_s_d: 3154 case Mips::BI__builtin_msa_clei_s_b: 3155 case Mips::BI__builtin_msa_clei_s_h: 3156 case Mips::BI__builtin_msa_clei_s_w: 3157 case Mips::BI__builtin_msa_clei_s_d: 3158 case Mips::BI__builtin_msa_maxi_s_b: 3159 case Mips::BI__builtin_msa_maxi_s_h: 3160 case Mips::BI__builtin_msa_maxi_s_w: 3161 case Mips::BI__builtin_msa_maxi_s_d: 3162 case Mips::BI__builtin_msa_mini_s_b: 3163 case Mips::BI__builtin_msa_mini_s_h: 3164 case Mips::BI__builtin_msa_mini_s_w: 3165 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3166 // These intrinsics take an unsigned 8 bit immediate. 3167 case Mips::BI__builtin_msa_andi_b: 3168 case Mips::BI__builtin_msa_nori_b: 3169 case Mips::BI__builtin_msa_ori_b: 3170 case Mips::BI__builtin_msa_shf_b: 3171 case Mips::BI__builtin_msa_shf_h: 3172 case Mips::BI__builtin_msa_shf_w: 3173 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3174 case Mips::BI__builtin_msa_bseli_b: 3175 case Mips::BI__builtin_msa_bmnzi_b: 3176 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3177 // df/n format 3178 // These intrinsics take an unsigned 4 bit immediate. 3179 case Mips::BI__builtin_msa_copy_s_b: 3180 case Mips::BI__builtin_msa_copy_u_b: 3181 case Mips::BI__builtin_msa_insve_b: 3182 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3183 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3184 // These intrinsics take an unsigned 3 bit immediate. 3185 case Mips::BI__builtin_msa_copy_s_h: 3186 case Mips::BI__builtin_msa_copy_u_h: 3187 case Mips::BI__builtin_msa_insve_h: 3188 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3189 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3190 // These intrinsics take an unsigned 2 bit immediate. 3191 case Mips::BI__builtin_msa_copy_s_w: 3192 case Mips::BI__builtin_msa_copy_u_w: 3193 case Mips::BI__builtin_msa_insve_w: 3194 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3195 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3196 // These intrinsics take an unsigned 1 bit immediate. 3197 case Mips::BI__builtin_msa_copy_s_d: 3198 case Mips::BI__builtin_msa_copy_u_d: 3199 case Mips::BI__builtin_msa_insve_d: 3200 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3201 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3202 // Memory offsets and immediate loads. 3203 // These intrinsics take a signed 10 bit immediate. 3204 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3205 case Mips::BI__builtin_msa_ldi_h: 3206 case Mips::BI__builtin_msa_ldi_w: 3207 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3208 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3209 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3210 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3211 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3212 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3213 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3214 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3215 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3216 } 3217 3218 if (!m) 3219 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3220 3221 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3222 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3223 } 3224 3225 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3226 unsigned i = 0, l = 0, u = 0; 3227 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3228 BuiltinID == PPC::BI__builtin_divdeu || 3229 BuiltinID == PPC::BI__builtin_bpermd; 3230 bool IsTarget64Bit = Context.getTargetInfo() 3231 .getTypeWidth(Context 3232 .getTargetInfo() 3233 .getIntPtrType()) == 64; 3234 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3235 BuiltinID == PPC::BI__builtin_divweu || 3236 BuiltinID == PPC::BI__builtin_divde || 3237 BuiltinID == PPC::BI__builtin_divdeu; 3238 3239 if (Is64BitBltin && !IsTarget64Bit) 3240 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3241 << TheCall->getSourceRange(); 3242 3243 if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) || 3244 (BuiltinID == PPC::BI__builtin_bpermd && 3245 !Context.getTargetInfo().hasFeature("bpermd"))) 3246 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3247 << TheCall->getSourceRange(); 3248 3249 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3250 if (!Context.getTargetInfo().hasFeature("vsx")) 3251 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3252 << TheCall->getSourceRange(); 3253 return false; 3254 }; 3255 3256 switch (BuiltinID) { 3257 default: return false; 3258 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3259 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3260 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3261 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3262 case PPC::BI__builtin_altivec_dss: 3263 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3264 case PPC::BI__builtin_tbegin: 3265 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3266 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3267 case PPC::BI__builtin_tabortwc: 3268 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3269 case PPC::BI__builtin_tabortwci: 3270 case PPC::BI__builtin_tabortdci: 3271 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3272 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3273 case PPC::BI__builtin_altivec_dst: 3274 case PPC::BI__builtin_altivec_dstt: 3275 case PPC::BI__builtin_altivec_dstst: 3276 case PPC::BI__builtin_altivec_dststt: 3277 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3278 case PPC::BI__builtin_vsx_xxpermdi: 3279 case PPC::BI__builtin_vsx_xxsldwi: 3280 return SemaBuiltinVSX(TheCall); 3281 case PPC::BI__builtin_unpack_vector_int128: 3282 return SemaVSXCheck(TheCall) || 3283 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3284 case PPC::BI__builtin_pack_vector_int128: 3285 return SemaVSXCheck(TheCall); 3286 } 3287 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3288 } 3289 3290 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3291 CallExpr *TheCall) { 3292 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3293 Expr *Arg = TheCall->getArg(0); 3294 llvm::APSInt AbortCode(32); 3295 if (Arg->isIntegerConstantExpr(AbortCode, Context) && 3296 AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) 3297 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3298 << Arg->getSourceRange(); 3299 } 3300 3301 // For intrinsics which take an immediate value as part of the instruction, 3302 // range check them here. 3303 unsigned i = 0, l = 0, u = 0; 3304 switch (BuiltinID) { 3305 default: return false; 3306 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3307 case SystemZ::BI__builtin_s390_verimb: 3308 case SystemZ::BI__builtin_s390_verimh: 3309 case SystemZ::BI__builtin_s390_verimf: 3310 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3311 case SystemZ::BI__builtin_s390_vfaeb: 3312 case SystemZ::BI__builtin_s390_vfaeh: 3313 case SystemZ::BI__builtin_s390_vfaef: 3314 case SystemZ::BI__builtin_s390_vfaebs: 3315 case SystemZ::BI__builtin_s390_vfaehs: 3316 case SystemZ::BI__builtin_s390_vfaefs: 3317 case SystemZ::BI__builtin_s390_vfaezb: 3318 case SystemZ::BI__builtin_s390_vfaezh: 3319 case SystemZ::BI__builtin_s390_vfaezf: 3320 case SystemZ::BI__builtin_s390_vfaezbs: 3321 case SystemZ::BI__builtin_s390_vfaezhs: 3322 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3323 case SystemZ::BI__builtin_s390_vfisb: 3324 case SystemZ::BI__builtin_s390_vfidb: 3325 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3326 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3327 case SystemZ::BI__builtin_s390_vftcisb: 3328 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3329 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3330 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3331 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3332 case SystemZ::BI__builtin_s390_vstrcb: 3333 case SystemZ::BI__builtin_s390_vstrch: 3334 case SystemZ::BI__builtin_s390_vstrcf: 3335 case SystemZ::BI__builtin_s390_vstrczb: 3336 case SystemZ::BI__builtin_s390_vstrczh: 3337 case SystemZ::BI__builtin_s390_vstrczf: 3338 case SystemZ::BI__builtin_s390_vstrcbs: 3339 case SystemZ::BI__builtin_s390_vstrchs: 3340 case SystemZ::BI__builtin_s390_vstrcfs: 3341 case SystemZ::BI__builtin_s390_vstrczbs: 3342 case SystemZ::BI__builtin_s390_vstrczhs: 3343 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3344 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3345 case SystemZ::BI__builtin_s390_vfminsb: 3346 case SystemZ::BI__builtin_s390_vfmaxsb: 3347 case SystemZ::BI__builtin_s390_vfmindb: 3348 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3349 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3350 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3351 } 3352 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3353 } 3354 3355 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3356 /// This checks that the target supports __builtin_cpu_supports and 3357 /// that the string argument is constant and valid. 3358 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) { 3359 Expr *Arg = TheCall->getArg(0); 3360 3361 // Check if the argument is a string literal. 3362 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3363 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3364 << Arg->getSourceRange(); 3365 3366 // Check the contents of the string. 3367 StringRef Feature = 3368 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3369 if (!S.Context.getTargetInfo().validateCpuSupports(Feature)) 3370 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3371 << Arg->getSourceRange(); 3372 return false; 3373 } 3374 3375 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3376 /// This checks that the target supports __builtin_cpu_is and 3377 /// that the string argument is constant and valid. 3378 static bool SemaBuiltinCpuIs(Sema &S, CallExpr *TheCall) { 3379 Expr *Arg = TheCall->getArg(0); 3380 3381 // Check if the argument is a string literal. 3382 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3383 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3384 << Arg->getSourceRange(); 3385 3386 // Check the contents of the string. 3387 StringRef Feature = 3388 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3389 if (!S.Context.getTargetInfo().validateCpuIs(Feature)) 3390 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3391 << Arg->getSourceRange(); 3392 return false; 3393 } 3394 3395 // Check if the rounding mode is legal. 3396 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3397 // Indicates if this instruction has rounding control or just SAE. 3398 bool HasRC = false; 3399 3400 unsigned ArgNum = 0; 3401 switch (BuiltinID) { 3402 default: 3403 return false; 3404 case X86::BI__builtin_ia32_vcvttsd2si32: 3405 case X86::BI__builtin_ia32_vcvttsd2si64: 3406 case X86::BI__builtin_ia32_vcvttsd2usi32: 3407 case X86::BI__builtin_ia32_vcvttsd2usi64: 3408 case X86::BI__builtin_ia32_vcvttss2si32: 3409 case X86::BI__builtin_ia32_vcvttss2si64: 3410 case X86::BI__builtin_ia32_vcvttss2usi32: 3411 case X86::BI__builtin_ia32_vcvttss2usi64: 3412 ArgNum = 1; 3413 break; 3414 case X86::BI__builtin_ia32_maxpd512: 3415 case X86::BI__builtin_ia32_maxps512: 3416 case X86::BI__builtin_ia32_minpd512: 3417 case X86::BI__builtin_ia32_minps512: 3418 ArgNum = 2; 3419 break; 3420 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3421 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3422 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3423 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3424 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3425 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3426 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3427 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3428 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3429 case X86::BI__builtin_ia32_exp2pd_mask: 3430 case X86::BI__builtin_ia32_exp2ps_mask: 3431 case X86::BI__builtin_ia32_getexppd512_mask: 3432 case X86::BI__builtin_ia32_getexpps512_mask: 3433 case X86::BI__builtin_ia32_rcp28pd_mask: 3434 case X86::BI__builtin_ia32_rcp28ps_mask: 3435 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3436 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3437 case X86::BI__builtin_ia32_vcomisd: 3438 case X86::BI__builtin_ia32_vcomiss: 3439 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3440 ArgNum = 3; 3441 break; 3442 case X86::BI__builtin_ia32_cmppd512_mask: 3443 case X86::BI__builtin_ia32_cmpps512_mask: 3444 case X86::BI__builtin_ia32_cmpsd_mask: 3445 case X86::BI__builtin_ia32_cmpss_mask: 3446 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3447 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3448 case X86::BI__builtin_ia32_getexpss128_round_mask: 3449 case X86::BI__builtin_ia32_getmantpd512_mask: 3450 case X86::BI__builtin_ia32_getmantps512_mask: 3451 case X86::BI__builtin_ia32_maxsd_round_mask: 3452 case X86::BI__builtin_ia32_maxss_round_mask: 3453 case X86::BI__builtin_ia32_minsd_round_mask: 3454 case X86::BI__builtin_ia32_minss_round_mask: 3455 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3456 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3457 case X86::BI__builtin_ia32_reducepd512_mask: 3458 case X86::BI__builtin_ia32_reduceps512_mask: 3459 case X86::BI__builtin_ia32_rndscalepd_mask: 3460 case X86::BI__builtin_ia32_rndscaleps_mask: 3461 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3462 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3463 ArgNum = 4; 3464 break; 3465 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3466 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3467 case X86::BI__builtin_ia32_fixupimmps512_mask: 3468 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3469 case X86::BI__builtin_ia32_fixupimmsd_mask: 3470 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3471 case X86::BI__builtin_ia32_fixupimmss_mask: 3472 case X86::BI__builtin_ia32_fixupimmss_maskz: 3473 case X86::BI__builtin_ia32_getmantsd_round_mask: 3474 case X86::BI__builtin_ia32_getmantss_round_mask: 3475 case X86::BI__builtin_ia32_rangepd512_mask: 3476 case X86::BI__builtin_ia32_rangeps512_mask: 3477 case X86::BI__builtin_ia32_rangesd128_round_mask: 3478 case X86::BI__builtin_ia32_rangess128_round_mask: 3479 case X86::BI__builtin_ia32_reducesd_mask: 3480 case X86::BI__builtin_ia32_reducess_mask: 3481 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3482 case X86::BI__builtin_ia32_rndscaless_round_mask: 3483 ArgNum = 5; 3484 break; 3485 case X86::BI__builtin_ia32_vcvtsd2si64: 3486 case X86::BI__builtin_ia32_vcvtsd2si32: 3487 case X86::BI__builtin_ia32_vcvtsd2usi32: 3488 case X86::BI__builtin_ia32_vcvtsd2usi64: 3489 case X86::BI__builtin_ia32_vcvtss2si32: 3490 case X86::BI__builtin_ia32_vcvtss2si64: 3491 case X86::BI__builtin_ia32_vcvtss2usi32: 3492 case X86::BI__builtin_ia32_vcvtss2usi64: 3493 case X86::BI__builtin_ia32_sqrtpd512: 3494 case X86::BI__builtin_ia32_sqrtps512: 3495 ArgNum = 1; 3496 HasRC = true; 3497 break; 3498 case X86::BI__builtin_ia32_addpd512: 3499 case X86::BI__builtin_ia32_addps512: 3500 case X86::BI__builtin_ia32_divpd512: 3501 case X86::BI__builtin_ia32_divps512: 3502 case X86::BI__builtin_ia32_mulpd512: 3503 case X86::BI__builtin_ia32_mulps512: 3504 case X86::BI__builtin_ia32_subpd512: 3505 case X86::BI__builtin_ia32_subps512: 3506 case X86::BI__builtin_ia32_cvtsi2sd64: 3507 case X86::BI__builtin_ia32_cvtsi2ss32: 3508 case X86::BI__builtin_ia32_cvtsi2ss64: 3509 case X86::BI__builtin_ia32_cvtusi2sd64: 3510 case X86::BI__builtin_ia32_cvtusi2ss32: 3511 case X86::BI__builtin_ia32_cvtusi2ss64: 3512 ArgNum = 2; 3513 HasRC = true; 3514 break; 3515 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3516 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3517 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3518 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3519 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3520 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3521 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3522 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3523 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3524 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3525 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3526 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3527 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3528 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3529 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3530 ArgNum = 3; 3531 HasRC = true; 3532 break; 3533 case X86::BI__builtin_ia32_addss_round_mask: 3534 case X86::BI__builtin_ia32_addsd_round_mask: 3535 case X86::BI__builtin_ia32_divss_round_mask: 3536 case X86::BI__builtin_ia32_divsd_round_mask: 3537 case X86::BI__builtin_ia32_mulss_round_mask: 3538 case X86::BI__builtin_ia32_mulsd_round_mask: 3539 case X86::BI__builtin_ia32_subss_round_mask: 3540 case X86::BI__builtin_ia32_subsd_round_mask: 3541 case X86::BI__builtin_ia32_scalefpd512_mask: 3542 case X86::BI__builtin_ia32_scalefps512_mask: 3543 case X86::BI__builtin_ia32_scalefsd_round_mask: 3544 case X86::BI__builtin_ia32_scalefss_round_mask: 3545 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3546 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3547 case X86::BI__builtin_ia32_sqrtss_round_mask: 3548 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3549 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3550 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3551 case X86::BI__builtin_ia32_vfmaddss3_mask: 3552 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3553 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3554 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3555 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3556 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3557 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3558 case X86::BI__builtin_ia32_vfmaddps512_mask: 3559 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3560 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3561 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3562 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3563 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3564 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3565 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3566 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3567 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3568 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3569 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3570 ArgNum = 4; 3571 HasRC = true; 3572 break; 3573 } 3574 3575 llvm::APSInt Result; 3576 3577 // We can't check the value of a dependent argument. 3578 Expr *Arg = TheCall->getArg(ArgNum); 3579 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3580 return false; 3581 3582 // Check constant-ness first. 3583 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3584 return true; 3585 3586 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3587 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3588 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3589 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3590 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3591 Result == 8/*ROUND_NO_EXC*/ || 3592 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3593 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3594 return false; 3595 3596 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3597 << Arg->getSourceRange(); 3598 } 3599 3600 // Check if the gather/scatter scale is legal. 3601 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3602 CallExpr *TheCall) { 3603 unsigned ArgNum = 0; 3604 switch (BuiltinID) { 3605 default: 3606 return false; 3607 case X86::BI__builtin_ia32_gatherpfdpd: 3608 case X86::BI__builtin_ia32_gatherpfdps: 3609 case X86::BI__builtin_ia32_gatherpfqpd: 3610 case X86::BI__builtin_ia32_gatherpfqps: 3611 case X86::BI__builtin_ia32_scatterpfdpd: 3612 case X86::BI__builtin_ia32_scatterpfdps: 3613 case X86::BI__builtin_ia32_scatterpfqpd: 3614 case X86::BI__builtin_ia32_scatterpfqps: 3615 ArgNum = 3; 3616 break; 3617 case X86::BI__builtin_ia32_gatherd_pd: 3618 case X86::BI__builtin_ia32_gatherd_pd256: 3619 case X86::BI__builtin_ia32_gatherq_pd: 3620 case X86::BI__builtin_ia32_gatherq_pd256: 3621 case X86::BI__builtin_ia32_gatherd_ps: 3622 case X86::BI__builtin_ia32_gatherd_ps256: 3623 case X86::BI__builtin_ia32_gatherq_ps: 3624 case X86::BI__builtin_ia32_gatherq_ps256: 3625 case X86::BI__builtin_ia32_gatherd_q: 3626 case X86::BI__builtin_ia32_gatherd_q256: 3627 case X86::BI__builtin_ia32_gatherq_q: 3628 case X86::BI__builtin_ia32_gatherq_q256: 3629 case X86::BI__builtin_ia32_gatherd_d: 3630 case X86::BI__builtin_ia32_gatherd_d256: 3631 case X86::BI__builtin_ia32_gatherq_d: 3632 case X86::BI__builtin_ia32_gatherq_d256: 3633 case X86::BI__builtin_ia32_gather3div2df: 3634 case X86::BI__builtin_ia32_gather3div2di: 3635 case X86::BI__builtin_ia32_gather3div4df: 3636 case X86::BI__builtin_ia32_gather3div4di: 3637 case X86::BI__builtin_ia32_gather3div4sf: 3638 case X86::BI__builtin_ia32_gather3div4si: 3639 case X86::BI__builtin_ia32_gather3div8sf: 3640 case X86::BI__builtin_ia32_gather3div8si: 3641 case X86::BI__builtin_ia32_gather3siv2df: 3642 case X86::BI__builtin_ia32_gather3siv2di: 3643 case X86::BI__builtin_ia32_gather3siv4df: 3644 case X86::BI__builtin_ia32_gather3siv4di: 3645 case X86::BI__builtin_ia32_gather3siv4sf: 3646 case X86::BI__builtin_ia32_gather3siv4si: 3647 case X86::BI__builtin_ia32_gather3siv8sf: 3648 case X86::BI__builtin_ia32_gather3siv8si: 3649 case X86::BI__builtin_ia32_gathersiv8df: 3650 case X86::BI__builtin_ia32_gathersiv16sf: 3651 case X86::BI__builtin_ia32_gatherdiv8df: 3652 case X86::BI__builtin_ia32_gatherdiv16sf: 3653 case X86::BI__builtin_ia32_gathersiv8di: 3654 case X86::BI__builtin_ia32_gathersiv16si: 3655 case X86::BI__builtin_ia32_gatherdiv8di: 3656 case X86::BI__builtin_ia32_gatherdiv16si: 3657 case X86::BI__builtin_ia32_scatterdiv2df: 3658 case X86::BI__builtin_ia32_scatterdiv2di: 3659 case X86::BI__builtin_ia32_scatterdiv4df: 3660 case X86::BI__builtin_ia32_scatterdiv4di: 3661 case X86::BI__builtin_ia32_scatterdiv4sf: 3662 case X86::BI__builtin_ia32_scatterdiv4si: 3663 case X86::BI__builtin_ia32_scatterdiv8sf: 3664 case X86::BI__builtin_ia32_scatterdiv8si: 3665 case X86::BI__builtin_ia32_scattersiv2df: 3666 case X86::BI__builtin_ia32_scattersiv2di: 3667 case X86::BI__builtin_ia32_scattersiv4df: 3668 case X86::BI__builtin_ia32_scattersiv4di: 3669 case X86::BI__builtin_ia32_scattersiv4sf: 3670 case X86::BI__builtin_ia32_scattersiv4si: 3671 case X86::BI__builtin_ia32_scattersiv8sf: 3672 case X86::BI__builtin_ia32_scattersiv8si: 3673 case X86::BI__builtin_ia32_scattersiv8df: 3674 case X86::BI__builtin_ia32_scattersiv16sf: 3675 case X86::BI__builtin_ia32_scatterdiv8df: 3676 case X86::BI__builtin_ia32_scatterdiv16sf: 3677 case X86::BI__builtin_ia32_scattersiv8di: 3678 case X86::BI__builtin_ia32_scattersiv16si: 3679 case X86::BI__builtin_ia32_scatterdiv8di: 3680 case X86::BI__builtin_ia32_scatterdiv16si: 3681 ArgNum = 4; 3682 break; 3683 } 3684 3685 llvm::APSInt Result; 3686 3687 // We can't check the value of a dependent argument. 3688 Expr *Arg = TheCall->getArg(ArgNum); 3689 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3690 return false; 3691 3692 // Check constant-ness first. 3693 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3694 return true; 3695 3696 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3697 return false; 3698 3699 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3700 << Arg->getSourceRange(); 3701 } 3702 3703 static bool isX86_32Builtin(unsigned BuiltinID) { 3704 // These builtins only work on x86-32 targets. 3705 switch (BuiltinID) { 3706 case X86::BI__builtin_ia32_readeflags_u32: 3707 case X86::BI__builtin_ia32_writeeflags_u32: 3708 return true; 3709 } 3710 3711 return false; 3712 } 3713 3714 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 3715 if (BuiltinID == X86::BI__builtin_cpu_supports) 3716 return SemaBuiltinCpuSupports(*this, TheCall); 3717 3718 if (BuiltinID == X86::BI__builtin_cpu_is) 3719 return SemaBuiltinCpuIs(*this, TheCall); 3720 3721 // Check for 32-bit only builtins on a 64-bit target. 3722 const llvm::Triple &TT = Context.getTargetInfo().getTriple(); 3723 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3724 return Diag(TheCall->getCallee()->getBeginLoc(), 3725 diag::err_32_bit_builtin_64_bit_tgt); 3726 3727 // If the intrinsic has rounding or SAE make sure its valid. 3728 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3729 return true; 3730 3731 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3732 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3733 return true; 3734 3735 // For intrinsics which take an immediate value as part of the instruction, 3736 // range check them here. 3737 int i = 0, l = 0, u = 0; 3738 switch (BuiltinID) { 3739 default: 3740 return false; 3741 case X86::BI__builtin_ia32_vec_ext_v2si: 3742 case X86::BI__builtin_ia32_vec_ext_v2di: 3743 case X86::BI__builtin_ia32_vextractf128_pd256: 3744 case X86::BI__builtin_ia32_vextractf128_ps256: 3745 case X86::BI__builtin_ia32_vextractf128_si256: 3746 case X86::BI__builtin_ia32_extract128i256: 3747 case X86::BI__builtin_ia32_extractf64x4_mask: 3748 case X86::BI__builtin_ia32_extracti64x4_mask: 3749 case X86::BI__builtin_ia32_extractf32x8_mask: 3750 case X86::BI__builtin_ia32_extracti32x8_mask: 3751 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3752 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3753 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3754 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3755 i = 1; l = 0; u = 1; 3756 break; 3757 case X86::BI__builtin_ia32_vec_set_v2di: 3758 case X86::BI__builtin_ia32_vinsertf128_pd256: 3759 case X86::BI__builtin_ia32_vinsertf128_ps256: 3760 case X86::BI__builtin_ia32_vinsertf128_si256: 3761 case X86::BI__builtin_ia32_insert128i256: 3762 case X86::BI__builtin_ia32_insertf32x8: 3763 case X86::BI__builtin_ia32_inserti32x8: 3764 case X86::BI__builtin_ia32_insertf64x4: 3765 case X86::BI__builtin_ia32_inserti64x4: 3766 case X86::BI__builtin_ia32_insertf64x2_256: 3767 case X86::BI__builtin_ia32_inserti64x2_256: 3768 case X86::BI__builtin_ia32_insertf32x4_256: 3769 case X86::BI__builtin_ia32_inserti32x4_256: 3770 i = 2; l = 0; u = 1; 3771 break; 3772 case X86::BI__builtin_ia32_vpermilpd: 3773 case X86::BI__builtin_ia32_vec_ext_v4hi: 3774 case X86::BI__builtin_ia32_vec_ext_v4si: 3775 case X86::BI__builtin_ia32_vec_ext_v4sf: 3776 case X86::BI__builtin_ia32_vec_ext_v4di: 3777 case X86::BI__builtin_ia32_extractf32x4_mask: 3778 case X86::BI__builtin_ia32_extracti32x4_mask: 3779 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3780 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3781 i = 1; l = 0; u = 3; 3782 break; 3783 case X86::BI_mm_prefetch: 3784 case X86::BI__builtin_ia32_vec_ext_v8hi: 3785 case X86::BI__builtin_ia32_vec_ext_v8si: 3786 i = 1; l = 0; u = 7; 3787 break; 3788 case X86::BI__builtin_ia32_sha1rnds4: 3789 case X86::BI__builtin_ia32_blendpd: 3790 case X86::BI__builtin_ia32_shufpd: 3791 case X86::BI__builtin_ia32_vec_set_v4hi: 3792 case X86::BI__builtin_ia32_vec_set_v4si: 3793 case X86::BI__builtin_ia32_vec_set_v4di: 3794 case X86::BI__builtin_ia32_shuf_f32x4_256: 3795 case X86::BI__builtin_ia32_shuf_f64x2_256: 3796 case X86::BI__builtin_ia32_shuf_i32x4_256: 3797 case X86::BI__builtin_ia32_shuf_i64x2_256: 3798 case X86::BI__builtin_ia32_insertf64x2_512: 3799 case X86::BI__builtin_ia32_inserti64x2_512: 3800 case X86::BI__builtin_ia32_insertf32x4: 3801 case X86::BI__builtin_ia32_inserti32x4: 3802 i = 2; l = 0; u = 3; 3803 break; 3804 case X86::BI__builtin_ia32_vpermil2pd: 3805 case X86::BI__builtin_ia32_vpermil2pd256: 3806 case X86::BI__builtin_ia32_vpermil2ps: 3807 case X86::BI__builtin_ia32_vpermil2ps256: 3808 i = 3; l = 0; u = 3; 3809 break; 3810 case X86::BI__builtin_ia32_cmpb128_mask: 3811 case X86::BI__builtin_ia32_cmpw128_mask: 3812 case X86::BI__builtin_ia32_cmpd128_mask: 3813 case X86::BI__builtin_ia32_cmpq128_mask: 3814 case X86::BI__builtin_ia32_cmpb256_mask: 3815 case X86::BI__builtin_ia32_cmpw256_mask: 3816 case X86::BI__builtin_ia32_cmpd256_mask: 3817 case X86::BI__builtin_ia32_cmpq256_mask: 3818 case X86::BI__builtin_ia32_cmpb512_mask: 3819 case X86::BI__builtin_ia32_cmpw512_mask: 3820 case X86::BI__builtin_ia32_cmpd512_mask: 3821 case X86::BI__builtin_ia32_cmpq512_mask: 3822 case X86::BI__builtin_ia32_ucmpb128_mask: 3823 case X86::BI__builtin_ia32_ucmpw128_mask: 3824 case X86::BI__builtin_ia32_ucmpd128_mask: 3825 case X86::BI__builtin_ia32_ucmpq128_mask: 3826 case X86::BI__builtin_ia32_ucmpb256_mask: 3827 case X86::BI__builtin_ia32_ucmpw256_mask: 3828 case X86::BI__builtin_ia32_ucmpd256_mask: 3829 case X86::BI__builtin_ia32_ucmpq256_mask: 3830 case X86::BI__builtin_ia32_ucmpb512_mask: 3831 case X86::BI__builtin_ia32_ucmpw512_mask: 3832 case X86::BI__builtin_ia32_ucmpd512_mask: 3833 case X86::BI__builtin_ia32_ucmpq512_mask: 3834 case X86::BI__builtin_ia32_vpcomub: 3835 case X86::BI__builtin_ia32_vpcomuw: 3836 case X86::BI__builtin_ia32_vpcomud: 3837 case X86::BI__builtin_ia32_vpcomuq: 3838 case X86::BI__builtin_ia32_vpcomb: 3839 case X86::BI__builtin_ia32_vpcomw: 3840 case X86::BI__builtin_ia32_vpcomd: 3841 case X86::BI__builtin_ia32_vpcomq: 3842 case X86::BI__builtin_ia32_vec_set_v8hi: 3843 case X86::BI__builtin_ia32_vec_set_v8si: 3844 i = 2; l = 0; u = 7; 3845 break; 3846 case X86::BI__builtin_ia32_vpermilpd256: 3847 case X86::BI__builtin_ia32_roundps: 3848 case X86::BI__builtin_ia32_roundpd: 3849 case X86::BI__builtin_ia32_roundps256: 3850 case X86::BI__builtin_ia32_roundpd256: 3851 case X86::BI__builtin_ia32_getmantpd128_mask: 3852 case X86::BI__builtin_ia32_getmantpd256_mask: 3853 case X86::BI__builtin_ia32_getmantps128_mask: 3854 case X86::BI__builtin_ia32_getmantps256_mask: 3855 case X86::BI__builtin_ia32_getmantpd512_mask: 3856 case X86::BI__builtin_ia32_getmantps512_mask: 3857 case X86::BI__builtin_ia32_vec_ext_v16qi: 3858 case X86::BI__builtin_ia32_vec_ext_v16hi: 3859 i = 1; l = 0; u = 15; 3860 break; 3861 case X86::BI__builtin_ia32_pblendd128: 3862 case X86::BI__builtin_ia32_blendps: 3863 case X86::BI__builtin_ia32_blendpd256: 3864 case X86::BI__builtin_ia32_shufpd256: 3865 case X86::BI__builtin_ia32_roundss: 3866 case X86::BI__builtin_ia32_roundsd: 3867 case X86::BI__builtin_ia32_rangepd128_mask: 3868 case X86::BI__builtin_ia32_rangepd256_mask: 3869 case X86::BI__builtin_ia32_rangepd512_mask: 3870 case X86::BI__builtin_ia32_rangeps128_mask: 3871 case X86::BI__builtin_ia32_rangeps256_mask: 3872 case X86::BI__builtin_ia32_rangeps512_mask: 3873 case X86::BI__builtin_ia32_getmantsd_round_mask: 3874 case X86::BI__builtin_ia32_getmantss_round_mask: 3875 case X86::BI__builtin_ia32_vec_set_v16qi: 3876 case X86::BI__builtin_ia32_vec_set_v16hi: 3877 i = 2; l = 0; u = 15; 3878 break; 3879 case X86::BI__builtin_ia32_vec_ext_v32qi: 3880 i = 1; l = 0; u = 31; 3881 break; 3882 case X86::BI__builtin_ia32_cmpps: 3883 case X86::BI__builtin_ia32_cmpss: 3884 case X86::BI__builtin_ia32_cmppd: 3885 case X86::BI__builtin_ia32_cmpsd: 3886 case X86::BI__builtin_ia32_cmpps256: 3887 case X86::BI__builtin_ia32_cmppd256: 3888 case X86::BI__builtin_ia32_cmpps128_mask: 3889 case X86::BI__builtin_ia32_cmppd128_mask: 3890 case X86::BI__builtin_ia32_cmpps256_mask: 3891 case X86::BI__builtin_ia32_cmppd256_mask: 3892 case X86::BI__builtin_ia32_cmpps512_mask: 3893 case X86::BI__builtin_ia32_cmppd512_mask: 3894 case X86::BI__builtin_ia32_cmpsd_mask: 3895 case X86::BI__builtin_ia32_cmpss_mask: 3896 case X86::BI__builtin_ia32_vec_set_v32qi: 3897 i = 2; l = 0; u = 31; 3898 break; 3899 case X86::BI__builtin_ia32_permdf256: 3900 case X86::BI__builtin_ia32_permdi256: 3901 case X86::BI__builtin_ia32_permdf512: 3902 case X86::BI__builtin_ia32_permdi512: 3903 case X86::BI__builtin_ia32_vpermilps: 3904 case X86::BI__builtin_ia32_vpermilps256: 3905 case X86::BI__builtin_ia32_vpermilpd512: 3906 case X86::BI__builtin_ia32_vpermilps512: 3907 case X86::BI__builtin_ia32_pshufd: 3908 case X86::BI__builtin_ia32_pshufd256: 3909 case X86::BI__builtin_ia32_pshufd512: 3910 case X86::BI__builtin_ia32_pshufhw: 3911 case X86::BI__builtin_ia32_pshufhw256: 3912 case X86::BI__builtin_ia32_pshufhw512: 3913 case X86::BI__builtin_ia32_pshuflw: 3914 case X86::BI__builtin_ia32_pshuflw256: 3915 case X86::BI__builtin_ia32_pshuflw512: 3916 case X86::BI__builtin_ia32_vcvtps2ph: 3917 case X86::BI__builtin_ia32_vcvtps2ph_mask: 3918 case X86::BI__builtin_ia32_vcvtps2ph256: 3919 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 3920 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 3921 case X86::BI__builtin_ia32_rndscaleps_128_mask: 3922 case X86::BI__builtin_ia32_rndscalepd_128_mask: 3923 case X86::BI__builtin_ia32_rndscaleps_256_mask: 3924 case X86::BI__builtin_ia32_rndscalepd_256_mask: 3925 case X86::BI__builtin_ia32_rndscaleps_mask: 3926 case X86::BI__builtin_ia32_rndscalepd_mask: 3927 case X86::BI__builtin_ia32_reducepd128_mask: 3928 case X86::BI__builtin_ia32_reducepd256_mask: 3929 case X86::BI__builtin_ia32_reducepd512_mask: 3930 case X86::BI__builtin_ia32_reduceps128_mask: 3931 case X86::BI__builtin_ia32_reduceps256_mask: 3932 case X86::BI__builtin_ia32_reduceps512_mask: 3933 case X86::BI__builtin_ia32_prold512: 3934 case X86::BI__builtin_ia32_prolq512: 3935 case X86::BI__builtin_ia32_prold128: 3936 case X86::BI__builtin_ia32_prold256: 3937 case X86::BI__builtin_ia32_prolq128: 3938 case X86::BI__builtin_ia32_prolq256: 3939 case X86::BI__builtin_ia32_prord512: 3940 case X86::BI__builtin_ia32_prorq512: 3941 case X86::BI__builtin_ia32_prord128: 3942 case X86::BI__builtin_ia32_prord256: 3943 case X86::BI__builtin_ia32_prorq128: 3944 case X86::BI__builtin_ia32_prorq256: 3945 case X86::BI__builtin_ia32_fpclasspd128_mask: 3946 case X86::BI__builtin_ia32_fpclasspd256_mask: 3947 case X86::BI__builtin_ia32_fpclassps128_mask: 3948 case X86::BI__builtin_ia32_fpclassps256_mask: 3949 case X86::BI__builtin_ia32_fpclassps512_mask: 3950 case X86::BI__builtin_ia32_fpclasspd512_mask: 3951 case X86::BI__builtin_ia32_fpclasssd_mask: 3952 case X86::BI__builtin_ia32_fpclassss_mask: 3953 case X86::BI__builtin_ia32_pslldqi128_byteshift: 3954 case X86::BI__builtin_ia32_pslldqi256_byteshift: 3955 case X86::BI__builtin_ia32_pslldqi512_byteshift: 3956 case X86::BI__builtin_ia32_psrldqi128_byteshift: 3957 case X86::BI__builtin_ia32_psrldqi256_byteshift: 3958 case X86::BI__builtin_ia32_psrldqi512_byteshift: 3959 case X86::BI__builtin_ia32_kshiftliqi: 3960 case X86::BI__builtin_ia32_kshiftlihi: 3961 case X86::BI__builtin_ia32_kshiftlisi: 3962 case X86::BI__builtin_ia32_kshiftlidi: 3963 case X86::BI__builtin_ia32_kshiftriqi: 3964 case X86::BI__builtin_ia32_kshiftrihi: 3965 case X86::BI__builtin_ia32_kshiftrisi: 3966 case X86::BI__builtin_ia32_kshiftridi: 3967 i = 1; l = 0; u = 255; 3968 break; 3969 case X86::BI__builtin_ia32_vperm2f128_pd256: 3970 case X86::BI__builtin_ia32_vperm2f128_ps256: 3971 case X86::BI__builtin_ia32_vperm2f128_si256: 3972 case X86::BI__builtin_ia32_permti256: 3973 case X86::BI__builtin_ia32_pblendw128: 3974 case X86::BI__builtin_ia32_pblendw256: 3975 case X86::BI__builtin_ia32_blendps256: 3976 case X86::BI__builtin_ia32_pblendd256: 3977 case X86::BI__builtin_ia32_palignr128: 3978 case X86::BI__builtin_ia32_palignr256: 3979 case X86::BI__builtin_ia32_palignr512: 3980 case X86::BI__builtin_ia32_alignq512: 3981 case X86::BI__builtin_ia32_alignd512: 3982 case X86::BI__builtin_ia32_alignd128: 3983 case X86::BI__builtin_ia32_alignd256: 3984 case X86::BI__builtin_ia32_alignq128: 3985 case X86::BI__builtin_ia32_alignq256: 3986 case X86::BI__builtin_ia32_vcomisd: 3987 case X86::BI__builtin_ia32_vcomiss: 3988 case X86::BI__builtin_ia32_shuf_f32x4: 3989 case X86::BI__builtin_ia32_shuf_f64x2: 3990 case X86::BI__builtin_ia32_shuf_i32x4: 3991 case X86::BI__builtin_ia32_shuf_i64x2: 3992 case X86::BI__builtin_ia32_shufpd512: 3993 case X86::BI__builtin_ia32_shufps: 3994 case X86::BI__builtin_ia32_shufps256: 3995 case X86::BI__builtin_ia32_shufps512: 3996 case X86::BI__builtin_ia32_dbpsadbw128: 3997 case X86::BI__builtin_ia32_dbpsadbw256: 3998 case X86::BI__builtin_ia32_dbpsadbw512: 3999 case X86::BI__builtin_ia32_vpshldd128: 4000 case X86::BI__builtin_ia32_vpshldd256: 4001 case X86::BI__builtin_ia32_vpshldd512: 4002 case X86::BI__builtin_ia32_vpshldq128: 4003 case X86::BI__builtin_ia32_vpshldq256: 4004 case X86::BI__builtin_ia32_vpshldq512: 4005 case X86::BI__builtin_ia32_vpshldw128: 4006 case X86::BI__builtin_ia32_vpshldw256: 4007 case X86::BI__builtin_ia32_vpshldw512: 4008 case X86::BI__builtin_ia32_vpshrdd128: 4009 case X86::BI__builtin_ia32_vpshrdd256: 4010 case X86::BI__builtin_ia32_vpshrdd512: 4011 case X86::BI__builtin_ia32_vpshrdq128: 4012 case X86::BI__builtin_ia32_vpshrdq256: 4013 case X86::BI__builtin_ia32_vpshrdq512: 4014 case X86::BI__builtin_ia32_vpshrdw128: 4015 case X86::BI__builtin_ia32_vpshrdw256: 4016 case X86::BI__builtin_ia32_vpshrdw512: 4017 i = 2; l = 0; u = 255; 4018 break; 4019 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4020 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4021 case X86::BI__builtin_ia32_fixupimmps512_mask: 4022 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4023 case X86::BI__builtin_ia32_fixupimmsd_mask: 4024 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4025 case X86::BI__builtin_ia32_fixupimmss_mask: 4026 case X86::BI__builtin_ia32_fixupimmss_maskz: 4027 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4028 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4029 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4030 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4031 case X86::BI__builtin_ia32_fixupimmps128_mask: 4032 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4033 case X86::BI__builtin_ia32_fixupimmps256_mask: 4034 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4035 case X86::BI__builtin_ia32_pternlogd512_mask: 4036 case X86::BI__builtin_ia32_pternlogd512_maskz: 4037 case X86::BI__builtin_ia32_pternlogq512_mask: 4038 case X86::BI__builtin_ia32_pternlogq512_maskz: 4039 case X86::BI__builtin_ia32_pternlogd128_mask: 4040 case X86::BI__builtin_ia32_pternlogd128_maskz: 4041 case X86::BI__builtin_ia32_pternlogd256_mask: 4042 case X86::BI__builtin_ia32_pternlogd256_maskz: 4043 case X86::BI__builtin_ia32_pternlogq128_mask: 4044 case X86::BI__builtin_ia32_pternlogq128_maskz: 4045 case X86::BI__builtin_ia32_pternlogq256_mask: 4046 case X86::BI__builtin_ia32_pternlogq256_maskz: 4047 i = 3; l = 0; u = 255; 4048 break; 4049 case X86::BI__builtin_ia32_gatherpfdpd: 4050 case X86::BI__builtin_ia32_gatherpfdps: 4051 case X86::BI__builtin_ia32_gatherpfqpd: 4052 case X86::BI__builtin_ia32_gatherpfqps: 4053 case X86::BI__builtin_ia32_scatterpfdpd: 4054 case X86::BI__builtin_ia32_scatterpfdps: 4055 case X86::BI__builtin_ia32_scatterpfqpd: 4056 case X86::BI__builtin_ia32_scatterpfqps: 4057 i = 4; l = 2; u = 3; 4058 break; 4059 case X86::BI__builtin_ia32_reducesd_mask: 4060 case X86::BI__builtin_ia32_reducess_mask: 4061 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4062 case X86::BI__builtin_ia32_rndscaless_round_mask: 4063 i = 4; l = 0; u = 255; 4064 break; 4065 } 4066 4067 // Note that we don't force a hard error on the range check here, allowing 4068 // template-generated or macro-generated dead code to potentially have out-of- 4069 // range values. These need to code generate, but don't need to necessarily 4070 // make any sense. We use a warning that defaults to an error. 4071 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4072 } 4073 4074 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4075 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4076 /// Returns true when the format fits the function and the FormatStringInfo has 4077 /// been populated. 4078 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4079 FormatStringInfo *FSI) { 4080 FSI->HasVAListArg = Format->getFirstArg() == 0; 4081 FSI->FormatIdx = Format->getFormatIdx() - 1; 4082 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4083 4084 // The way the format attribute works in GCC, the implicit this argument 4085 // of member functions is counted. However, it doesn't appear in our own 4086 // lists, so decrement format_idx in that case. 4087 if (IsCXXMember) { 4088 if(FSI->FormatIdx == 0) 4089 return false; 4090 --FSI->FormatIdx; 4091 if (FSI->FirstDataArg != 0) 4092 --FSI->FirstDataArg; 4093 } 4094 return true; 4095 } 4096 4097 /// Checks if a the given expression evaluates to null. 4098 /// 4099 /// Returns true if the value evaluates to null. 4100 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4101 // If the expression has non-null type, it doesn't evaluate to null. 4102 if (auto nullability 4103 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4104 if (*nullability == NullabilityKind::NonNull) 4105 return false; 4106 } 4107 4108 // As a special case, transparent unions initialized with zero are 4109 // considered null for the purposes of the nonnull attribute. 4110 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4111 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4112 if (const CompoundLiteralExpr *CLE = 4113 dyn_cast<CompoundLiteralExpr>(Expr)) 4114 if (const InitListExpr *ILE = 4115 dyn_cast<InitListExpr>(CLE->getInitializer())) 4116 Expr = ILE->getInit(0); 4117 } 4118 4119 bool Result; 4120 return (!Expr->isValueDependent() && 4121 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4122 !Result); 4123 } 4124 4125 static void CheckNonNullArgument(Sema &S, 4126 const Expr *ArgExpr, 4127 SourceLocation CallSiteLoc) { 4128 if (CheckNonNullExpr(S, ArgExpr)) 4129 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4130 S.PDiag(diag::warn_null_arg) 4131 << ArgExpr->getSourceRange()); 4132 } 4133 4134 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4135 FormatStringInfo FSI; 4136 if ((GetFormatStringType(Format) == FST_NSString) && 4137 getFormatStringInfo(Format, false, &FSI)) { 4138 Idx = FSI.FormatIdx; 4139 return true; 4140 } 4141 return false; 4142 } 4143 4144 /// Diagnose use of %s directive in an NSString which is being passed 4145 /// as formatting string to formatting method. 4146 static void 4147 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4148 const NamedDecl *FDecl, 4149 Expr **Args, 4150 unsigned NumArgs) { 4151 unsigned Idx = 0; 4152 bool Format = false; 4153 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4154 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4155 Idx = 2; 4156 Format = true; 4157 } 4158 else 4159 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4160 if (S.GetFormatNSStringIdx(I, Idx)) { 4161 Format = true; 4162 break; 4163 } 4164 } 4165 if (!Format || NumArgs <= Idx) 4166 return; 4167 const Expr *FormatExpr = Args[Idx]; 4168 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4169 FormatExpr = CSCE->getSubExpr(); 4170 const StringLiteral *FormatString; 4171 if (const ObjCStringLiteral *OSL = 4172 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4173 FormatString = OSL->getString(); 4174 else 4175 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4176 if (!FormatString) 4177 return; 4178 if (S.FormatStringHasSArg(FormatString)) { 4179 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4180 << "%s" << 1 << 1; 4181 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4182 << FDecl->getDeclName(); 4183 } 4184 } 4185 4186 /// Determine whether the given type has a non-null nullability annotation. 4187 static bool isNonNullType(ASTContext &ctx, QualType type) { 4188 if (auto nullability = type->getNullability(ctx)) 4189 return *nullability == NullabilityKind::NonNull; 4190 4191 return false; 4192 } 4193 4194 static void CheckNonNullArguments(Sema &S, 4195 const NamedDecl *FDecl, 4196 const FunctionProtoType *Proto, 4197 ArrayRef<const Expr *> Args, 4198 SourceLocation CallSiteLoc) { 4199 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4200 4201 // Already checked by by constant evaluator. 4202 if (S.isConstantEvaluated()) 4203 return; 4204 // Check the attributes attached to the method/function itself. 4205 llvm::SmallBitVector NonNullArgs; 4206 if (FDecl) { 4207 // Handle the nonnull attribute on the function/method declaration itself. 4208 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4209 if (!NonNull->args_size()) { 4210 // Easy case: all pointer arguments are nonnull. 4211 for (const auto *Arg : Args) 4212 if (S.isValidPointerAttrType(Arg->getType())) 4213 CheckNonNullArgument(S, Arg, CallSiteLoc); 4214 return; 4215 } 4216 4217 for (const ParamIdx &Idx : NonNull->args()) { 4218 unsigned IdxAST = Idx.getASTIndex(); 4219 if (IdxAST >= Args.size()) 4220 continue; 4221 if (NonNullArgs.empty()) 4222 NonNullArgs.resize(Args.size()); 4223 NonNullArgs.set(IdxAST); 4224 } 4225 } 4226 } 4227 4228 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4229 // Handle the nonnull attribute on the parameters of the 4230 // function/method. 4231 ArrayRef<ParmVarDecl*> parms; 4232 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4233 parms = FD->parameters(); 4234 else 4235 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4236 4237 unsigned ParamIndex = 0; 4238 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4239 I != E; ++I, ++ParamIndex) { 4240 const ParmVarDecl *PVD = *I; 4241 if (PVD->hasAttr<NonNullAttr>() || 4242 isNonNullType(S.Context, PVD->getType())) { 4243 if (NonNullArgs.empty()) 4244 NonNullArgs.resize(Args.size()); 4245 4246 NonNullArgs.set(ParamIndex); 4247 } 4248 } 4249 } else { 4250 // If we have a non-function, non-method declaration but no 4251 // function prototype, try to dig out the function prototype. 4252 if (!Proto) { 4253 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4254 QualType type = VD->getType().getNonReferenceType(); 4255 if (auto pointerType = type->getAs<PointerType>()) 4256 type = pointerType->getPointeeType(); 4257 else if (auto blockType = type->getAs<BlockPointerType>()) 4258 type = blockType->getPointeeType(); 4259 // FIXME: data member pointers? 4260 4261 // Dig out the function prototype, if there is one. 4262 Proto = type->getAs<FunctionProtoType>(); 4263 } 4264 } 4265 4266 // Fill in non-null argument information from the nullability 4267 // information on the parameter types (if we have them). 4268 if (Proto) { 4269 unsigned Index = 0; 4270 for (auto paramType : Proto->getParamTypes()) { 4271 if (isNonNullType(S.Context, paramType)) { 4272 if (NonNullArgs.empty()) 4273 NonNullArgs.resize(Args.size()); 4274 4275 NonNullArgs.set(Index); 4276 } 4277 4278 ++Index; 4279 } 4280 } 4281 } 4282 4283 // Check for non-null arguments. 4284 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4285 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4286 if (NonNullArgs[ArgIndex]) 4287 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4288 } 4289 } 4290 4291 /// Handles the checks for format strings, non-POD arguments to vararg 4292 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4293 /// attributes. 4294 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4295 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4296 bool IsMemberFunction, SourceLocation Loc, 4297 SourceRange Range, VariadicCallType CallType) { 4298 // FIXME: We should check as much as we can in the template definition. 4299 if (CurContext->isDependentContext()) 4300 return; 4301 4302 // Printf and scanf checking. 4303 llvm::SmallBitVector CheckedVarArgs; 4304 if (FDecl) { 4305 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4306 // Only create vector if there are format attributes. 4307 CheckedVarArgs.resize(Args.size()); 4308 4309 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4310 CheckedVarArgs); 4311 } 4312 } 4313 4314 // Refuse POD arguments that weren't caught by the format string 4315 // checks above. 4316 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4317 if (CallType != VariadicDoesNotApply && 4318 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4319 unsigned NumParams = Proto ? Proto->getNumParams() 4320 : FDecl && isa<FunctionDecl>(FDecl) 4321 ? cast<FunctionDecl>(FDecl)->getNumParams() 4322 : FDecl && isa<ObjCMethodDecl>(FDecl) 4323 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4324 : 0; 4325 4326 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4327 // Args[ArgIdx] can be null in malformed code. 4328 if (const Expr *Arg = Args[ArgIdx]) { 4329 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4330 checkVariadicArgument(Arg, CallType); 4331 } 4332 } 4333 } 4334 4335 if (FDecl || Proto) { 4336 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4337 4338 // Type safety checking. 4339 if (FDecl) { 4340 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4341 CheckArgumentWithTypeTag(I, Args, Loc); 4342 } 4343 } 4344 4345 if (FD) 4346 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4347 } 4348 4349 /// CheckConstructorCall - Check a constructor call for correctness and safety 4350 /// properties not enforced by the C type system. 4351 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4352 ArrayRef<const Expr *> Args, 4353 const FunctionProtoType *Proto, 4354 SourceLocation Loc) { 4355 VariadicCallType CallType = 4356 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4357 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4358 Loc, SourceRange(), CallType); 4359 } 4360 4361 /// CheckFunctionCall - Check a direct function call for various correctness 4362 /// and safety properties not strictly enforced by the C type system. 4363 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4364 const FunctionProtoType *Proto) { 4365 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4366 isa<CXXMethodDecl>(FDecl); 4367 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4368 IsMemberOperatorCall; 4369 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4370 TheCall->getCallee()); 4371 Expr** Args = TheCall->getArgs(); 4372 unsigned NumArgs = TheCall->getNumArgs(); 4373 4374 Expr *ImplicitThis = nullptr; 4375 if (IsMemberOperatorCall) { 4376 // If this is a call to a member operator, hide the first argument 4377 // from checkCall. 4378 // FIXME: Our choice of AST representation here is less than ideal. 4379 ImplicitThis = Args[0]; 4380 ++Args; 4381 --NumArgs; 4382 } else if (IsMemberFunction) 4383 ImplicitThis = 4384 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4385 4386 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4387 IsMemberFunction, TheCall->getRParenLoc(), 4388 TheCall->getCallee()->getSourceRange(), CallType); 4389 4390 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4391 // None of the checks below are needed for functions that don't have 4392 // simple names (e.g., C++ conversion functions). 4393 if (!FnInfo) 4394 return false; 4395 4396 CheckAbsoluteValueFunction(TheCall, FDecl); 4397 CheckMaxUnsignedZero(TheCall, FDecl); 4398 4399 if (getLangOpts().ObjC) 4400 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4401 4402 unsigned CMId = FDecl->getMemoryFunctionKind(); 4403 if (CMId == 0) 4404 return false; 4405 4406 // Handle memory setting and copying functions. 4407 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) 4408 CheckStrlcpycatArguments(TheCall, FnInfo); 4409 else if (CMId == Builtin::BIstrncat) 4410 CheckStrncatArguments(TheCall, FnInfo); 4411 else 4412 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4413 4414 return false; 4415 } 4416 4417 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4418 ArrayRef<const Expr *> Args) { 4419 VariadicCallType CallType = 4420 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4421 4422 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4423 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4424 CallType); 4425 4426 return false; 4427 } 4428 4429 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4430 const FunctionProtoType *Proto) { 4431 QualType Ty; 4432 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4433 Ty = V->getType().getNonReferenceType(); 4434 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4435 Ty = F->getType().getNonReferenceType(); 4436 else 4437 return false; 4438 4439 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4440 !Ty->isFunctionProtoType()) 4441 return false; 4442 4443 VariadicCallType CallType; 4444 if (!Proto || !Proto->isVariadic()) { 4445 CallType = VariadicDoesNotApply; 4446 } else if (Ty->isBlockPointerType()) { 4447 CallType = VariadicBlock; 4448 } else { // Ty->isFunctionPointerType() 4449 CallType = VariadicFunction; 4450 } 4451 4452 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4453 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4454 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4455 TheCall->getCallee()->getSourceRange(), CallType); 4456 4457 return false; 4458 } 4459 4460 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4461 /// such as function pointers returned from functions. 4462 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4463 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4464 TheCall->getCallee()); 4465 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4466 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4467 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4468 TheCall->getCallee()->getSourceRange(), CallType); 4469 4470 return false; 4471 } 4472 4473 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4474 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4475 return false; 4476 4477 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4478 switch (Op) { 4479 case AtomicExpr::AO__c11_atomic_init: 4480 case AtomicExpr::AO__opencl_atomic_init: 4481 llvm_unreachable("There is no ordering argument for an init"); 4482 4483 case AtomicExpr::AO__c11_atomic_load: 4484 case AtomicExpr::AO__opencl_atomic_load: 4485 case AtomicExpr::AO__atomic_load_n: 4486 case AtomicExpr::AO__atomic_load: 4487 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4488 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4489 4490 case AtomicExpr::AO__c11_atomic_store: 4491 case AtomicExpr::AO__opencl_atomic_store: 4492 case AtomicExpr::AO__atomic_store: 4493 case AtomicExpr::AO__atomic_store_n: 4494 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4495 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4496 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4497 4498 default: 4499 return true; 4500 } 4501 } 4502 4503 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4504 AtomicExpr::AtomicOp Op) { 4505 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4506 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4507 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4508 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4509 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4510 Op); 4511 } 4512 4513 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4514 SourceLocation RParenLoc, MultiExprArg Args, 4515 AtomicExpr::AtomicOp Op, 4516 AtomicArgumentOrder ArgOrder) { 4517 // All the non-OpenCL operations take one of the following forms. 4518 // The OpenCL operations take the __c11 forms with one extra argument for 4519 // synchronization scope. 4520 enum { 4521 // C __c11_atomic_init(A *, C) 4522 Init, 4523 4524 // C __c11_atomic_load(A *, int) 4525 Load, 4526 4527 // void __atomic_load(A *, CP, int) 4528 LoadCopy, 4529 4530 // void __atomic_store(A *, CP, int) 4531 Copy, 4532 4533 // C __c11_atomic_add(A *, M, int) 4534 Arithmetic, 4535 4536 // C __atomic_exchange_n(A *, CP, int) 4537 Xchg, 4538 4539 // void __atomic_exchange(A *, C *, CP, int) 4540 GNUXchg, 4541 4542 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4543 C11CmpXchg, 4544 4545 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4546 GNUCmpXchg 4547 } Form = Init; 4548 4549 const unsigned NumForm = GNUCmpXchg + 1; 4550 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4551 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4552 // where: 4553 // C is an appropriate type, 4554 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4555 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4556 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4557 // the int parameters are for orderings. 4558 4559 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4560 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4561 "need to update code for modified forms"); 4562 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4563 AtomicExpr::AO__c11_atomic_fetch_xor + 1 == 4564 AtomicExpr::AO__atomic_load, 4565 "need to update code for modified C11 atomics"); 4566 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4567 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4568 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4569 Op <= AtomicExpr::AO__c11_atomic_fetch_xor) || 4570 IsOpenCL; 4571 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4572 Op == AtomicExpr::AO__atomic_store_n || 4573 Op == AtomicExpr::AO__atomic_exchange_n || 4574 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4575 bool IsAddSub = false; 4576 bool IsMinMax = false; 4577 4578 switch (Op) { 4579 case AtomicExpr::AO__c11_atomic_init: 4580 case AtomicExpr::AO__opencl_atomic_init: 4581 Form = Init; 4582 break; 4583 4584 case AtomicExpr::AO__c11_atomic_load: 4585 case AtomicExpr::AO__opencl_atomic_load: 4586 case AtomicExpr::AO__atomic_load_n: 4587 Form = Load; 4588 break; 4589 4590 case AtomicExpr::AO__atomic_load: 4591 Form = LoadCopy; 4592 break; 4593 4594 case AtomicExpr::AO__c11_atomic_store: 4595 case AtomicExpr::AO__opencl_atomic_store: 4596 case AtomicExpr::AO__atomic_store: 4597 case AtomicExpr::AO__atomic_store_n: 4598 Form = Copy; 4599 break; 4600 4601 case AtomicExpr::AO__c11_atomic_fetch_add: 4602 case AtomicExpr::AO__c11_atomic_fetch_sub: 4603 case AtomicExpr::AO__opencl_atomic_fetch_add: 4604 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4605 case AtomicExpr::AO__opencl_atomic_fetch_min: 4606 case AtomicExpr::AO__opencl_atomic_fetch_max: 4607 case AtomicExpr::AO__atomic_fetch_add: 4608 case AtomicExpr::AO__atomic_fetch_sub: 4609 case AtomicExpr::AO__atomic_add_fetch: 4610 case AtomicExpr::AO__atomic_sub_fetch: 4611 IsAddSub = true; 4612 LLVM_FALLTHROUGH; 4613 case AtomicExpr::AO__c11_atomic_fetch_and: 4614 case AtomicExpr::AO__c11_atomic_fetch_or: 4615 case AtomicExpr::AO__c11_atomic_fetch_xor: 4616 case AtomicExpr::AO__opencl_atomic_fetch_and: 4617 case AtomicExpr::AO__opencl_atomic_fetch_or: 4618 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4619 case AtomicExpr::AO__atomic_fetch_and: 4620 case AtomicExpr::AO__atomic_fetch_or: 4621 case AtomicExpr::AO__atomic_fetch_xor: 4622 case AtomicExpr::AO__atomic_fetch_nand: 4623 case AtomicExpr::AO__atomic_and_fetch: 4624 case AtomicExpr::AO__atomic_or_fetch: 4625 case AtomicExpr::AO__atomic_xor_fetch: 4626 case AtomicExpr::AO__atomic_nand_fetch: 4627 Form = Arithmetic; 4628 break; 4629 4630 case AtomicExpr::AO__atomic_fetch_min: 4631 case AtomicExpr::AO__atomic_fetch_max: 4632 IsMinMax = true; 4633 Form = Arithmetic; 4634 break; 4635 4636 case AtomicExpr::AO__c11_atomic_exchange: 4637 case AtomicExpr::AO__opencl_atomic_exchange: 4638 case AtomicExpr::AO__atomic_exchange_n: 4639 Form = Xchg; 4640 break; 4641 4642 case AtomicExpr::AO__atomic_exchange: 4643 Form = GNUXchg; 4644 break; 4645 4646 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4647 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4648 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4649 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4650 Form = C11CmpXchg; 4651 break; 4652 4653 case AtomicExpr::AO__atomic_compare_exchange: 4654 case AtomicExpr::AO__atomic_compare_exchange_n: 4655 Form = GNUCmpXchg; 4656 break; 4657 } 4658 4659 unsigned AdjustedNumArgs = NumArgs[Form]; 4660 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4661 ++AdjustedNumArgs; 4662 // Check we have the right number of arguments. 4663 if (Args.size() < AdjustedNumArgs) { 4664 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4665 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4666 << ExprRange; 4667 return ExprError(); 4668 } else if (Args.size() > AdjustedNumArgs) { 4669 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4670 diag::err_typecheck_call_too_many_args) 4671 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4672 << ExprRange; 4673 return ExprError(); 4674 } 4675 4676 // Inspect the first argument of the atomic operation. 4677 Expr *Ptr = Args[0]; 4678 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4679 if (ConvertedPtr.isInvalid()) 4680 return ExprError(); 4681 4682 Ptr = ConvertedPtr.get(); 4683 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4684 if (!pointerType) { 4685 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4686 << Ptr->getType() << Ptr->getSourceRange(); 4687 return ExprError(); 4688 } 4689 4690 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4691 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4692 QualType ValType = AtomTy; // 'C' 4693 if (IsC11) { 4694 if (!AtomTy->isAtomicType()) { 4695 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4696 << Ptr->getType() << Ptr->getSourceRange(); 4697 return ExprError(); 4698 } 4699 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4700 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4701 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4702 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4703 << Ptr->getSourceRange(); 4704 return ExprError(); 4705 } 4706 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4707 } else if (Form != Load && Form != LoadCopy) { 4708 if (ValType.isConstQualified()) { 4709 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4710 << Ptr->getType() << Ptr->getSourceRange(); 4711 return ExprError(); 4712 } 4713 } 4714 4715 // For an arithmetic operation, the implied arithmetic must be well-formed. 4716 if (Form == Arithmetic) { 4717 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4718 if (IsAddSub && !ValType->isIntegerType() 4719 && !ValType->isPointerType()) { 4720 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4721 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4722 return ExprError(); 4723 } 4724 if (IsMinMax) { 4725 const BuiltinType *BT = ValType->getAs<BuiltinType>(); 4726 if (!BT || (BT->getKind() != BuiltinType::Int && 4727 BT->getKind() != BuiltinType::UInt)) { 4728 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_int32_or_ptr); 4729 return ExprError(); 4730 } 4731 } 4732 if (!IsAddSub && !IsMinMax && !ValType->isIntegerType()) { 4733 Diag(ExprRange.getBegin(), diag::err_atomic_op_bitwise_needs_atomic_int) 4734 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4735 return ExprError(); 4736 } 4737 if (IsC11 && ValType->isPointerType() && 4738 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4739 diag::err_incomplete_type)) { 4740 return ExprError(); 4741 } 4742 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4743 // For __atomic_*_n operations, the value type must be a scalar integral or 4744 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4745 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4746 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4747 return ExprError(); 4748 } 4749 4750 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4751 !AtomTy->isScalarType()) { 4752 // For GNU atomics, require a trivially-copyable type. This is not part of 4753 // the GNU atomics specification, but we enforce it for sanity. 4754 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4755 << Ptr->getType() << Ptr->getSourceRange(); 4756 return ExprError(); 4757 } 4758 4759 switch (ValType.getObjCLifetime()) { 4760 case Qualifiers::OCL_None: 4761 case Qualifiers::OCL_ExplicitNone: 4762 // okay 4763 break; 4764 4765 case Qualifiers::OCL_Weak: 4766 case Qualifiers::OCL_Strong: 4767 case Qualifiers::OCL_Autoreleasing: 4768 // FIXME: Can this happen? By this point, ValType should be known 4769 // to be trivially copyable. 4770 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4771 << ValType << Ptr->getSourceRange(); 4772 return ExprError(); 4773 } 4774 4775 // All atomic operations have an overload which takes a pointer to a volatile 4776 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4777 // into the result or the other operands. Similarly atomic_load takes a 4778 // pointer to a const 'A'. 4779 ValType.removeLocalVolatile(); 4780 ValType.removeLocalConst(); 4781 QualType ResultType = ValType; 4782 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4783 Form == Init) 4784 ResultType = Context.VoidTy; 4785 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4786 ResultType = Context.BoolTy; 4787 4788 // The type of a parameter passed 'by value'. In the GNU atomics, such 4789 // arguments are actually passed as pointers. 4790 QualType ByValType = ValType; // 'CP' 4791 bool IsPassedByAddress = false; 4792 if (!IsC11 && !IsN) { 4793 ByValType = Ptr->getType(); 4794 IsPassedByAddress = true; 4795 } 4796 4797 SmallVector<Expr *, 5> APIOrderedArgs; 4798 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4799 APIOrderedArgs.push_back(Args[0]); 4800 switch (Form) { 4801 case Init: 4802 case Load: 4803 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4804 break; 4805 case LoadCopy: 4806 case Copy: 4807 case Arithmetic: 4808 case Xchg: 4809 APIOrderedArgs.push_back(Args[2]); // Val1 4810 APIOrderedArgs.push_back(Args[1]); // Order 4811 break; 4812 case GNUXchg: 4813 APIOrderedArgs.push_back(Args[2]); // Val1 4814 APIOrderedArgs.push_back(Args[3]); // Val2 4815 APIOrderedArgs.push_back(Args[1]); // Order 4816 break; 4817 case C11CmpXchg: 4818 APIOrderedArgs.push_back(Args[2]); // Val1 4819 APIOrderedArgs.push_back(Args[4]); // Val2 4820 APIOrderedArgs.push_back(Args[1]); // Order 4821 APIOrderedArgs.push_back(Args[3]); // OrderFail 4822 break; 4823 case GNUCmpXchg: 4824 APIOrderedArgs.push_back(Args[2]); // Val1 4825 APIOrderedArgs.push_back(Args[4]); // Val2 4826 APIOrderedArgs.push_back(Args[5]); // Weak 4827 APIOrderedArgs.push_back(Args[1]); // Order 4828 APIOrderedArgs.push_back(Args[3]); // OrderFail 4829 break; 4830 } 4831 } else 4832 APIOrderedArgs.append(Args.begin(), Args.end()); 4833 4834 // The first argument's non-CV pointer type is used to deduce the type of 4835 // subsequent arguments, except for: 4836 // - weak flag (always converted to bool) 4837 // - memory order (always converted to int) 4838 // - scope (always converted to int) 4839 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 4840 QualType Ty; 4841 if (i < NumVals[Form] + 1) { 4842 switch (i) { 4843 case 0: 4844 // The first argument is always a pointer. It has a fixed type. 4845 // It is always dereferenced, a nullptr is undefined. 4846 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4847 // Nothing else to do: we already know all we want about this pointer. 4848 continue; 4849 case 1: 4850 // The second argument is the non-atomic operand. For arithmetic, this 4851 // is always passed by value, and for a compare_exchange it is always 4852 // passed by address. For the rest, GNU uses by-address and C11 uses 4853 // by-value. 4854 assert(Form != Load); 4855 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 4856 Ty = ValType; 4857 else if (Form == Copy || Form == Xchg) { 4858 if (IsPassedByAddress) { 4859 // The value pointer is always dereferenced, a nullptr is undefined. 4860 CheckNonNullArgument(*this, APIOrderedArgs[i], 4861 ExprRange.getBegin()); 4862 } 4863 Ty = ByValType; 4864 } else if (Form == Arithmetic) 4865 Ty = Context.getPointerDiffType(); 4866 else { 4867 Expr *ValArg = APIOrderedArgs[i]; 4868 // The value pointer is always dereferenced, a nullptr is undefined. 4869 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 4870 LangAS AS = LangAS::Default; 4871 // Keep address space of non-atomic pointer type. 4872 if (const PointerType *PtrTy = 4873 ValArg->getType()->getAs<PointerType>()) { 4874 AS = PtrTy->getPointeeType().getAddressSpace(); 4875 } 4876 Ty = Context.getPointerType( 4877 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 4878 } 4879 break; 4880 case 2: 4881 // The third argument to compare_exchange / GNU exchange is the desired 4882 // value, either by-value (for the C11 and *_n variant) or as a pointer. 4883 if (IsPassedByAddress) 4884 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4885 Ty = ByValType; 4886 break; 4887 case 3: 4888 // The fourth argument to GNU compare_exchange is a 'weak' flag. 4889 Ty = Context.BoolTy; 4890 break; 4891 } 4892 } else { 4893 // The order(s) and scope are always converted to int. 4894 Ty = Context.IntTy; 4895 } 4896 4897 InitializedEntity Entity = 4898 InitializedEntity::InitializeParameter(Context, Ty, false); 4899 ExprResult Arg = APIOrderedArgs[i]; 4900 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 4901 if (Arg.isInvalid()) 4902 return true; 4903 APIOrderedArgs[i] = Arg.get(); 4904 } 4905 4906 // Permute the arguments into a 'consistent' order. 4907 SmallVector<Expr*, 5> SubExprs; 4908 SubExprs.push_back(Ptr); 4909 switch (Form) { 4910 case Init: 4911 // Note, AtomicExpr::getVal1() has a special case for this atomic. 4912 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4913 break; 4914 case Load: 4915 SubExprs.push_back(APIOrderedArgs[1]); // Order 4916 break; 4917 case LoadCopy: 4918 case Copy: 4919 case Arithmetic: 4920 case Xchg: 4921 SubExprs.push_back(APIOrderedArgs[2]); // Order 4922 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4923 break; 4924 case GNUXchg: 4925 // Note, AtomicExpr::getVal2() has a special case for this atomic. 4926 SubExprs.push_back(APIOrderedArgs[3]); // Order 4927 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4928 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4929 break; 4930 case C11CmpXchg: 4931 SubExprs.push_back(APIOrderedArgs[3]); // Order 4932 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4933 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 4934 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4935 break; 4936 case GNUCmpXchg: 4937 SubExprs.push_back(APIOrderedArgs[4]); // Order 4938 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4939 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 4940 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4941 SubExprs.push_back(APIOrderedArgs[3]); // Weak 4942 break; 4943 } 4944 4945 if (SubExprs.size() >= 2 && Form != Init) { 4946 llvm::APSInt Result(32); 4947 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && 4948 !isValidOrderingForOp(Result.getSExtValue(), Op)) 4949 Diag(SubExprs[1]->getBeginLoc(), 4950 diag::warn_atomic_op_has_invalid_memory_order) 4951 << SubExprs[1]->getSourceRange(); 4952 } 4953 4954 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 4955 auto *Scope = Args[Args.size() - 1]; 4956 llvm::APSInt Result(32); 4957 if (Scope->isIntegerConstantExpr(Result, Context) && 4958 !ScopeModel->isValid(Result.getZExtValue())) { 4959 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 4960 << Scope->getSourceRange(); 4961 } 4962 SubExprs.push_back(Scope); 4963 } 4964 4965 AtomicExpr *AE = new (Context) 4966 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 4967 4968 if ((Op == AtomicExpr::AO__c11_atomic_load || 4969 Op == AtomicExpr::AO__c11_atomic_store || 4970 Op == AtomicExpr::AO__opencl_atomic_load || 4971 Op == AtomicExpr::AO__opencl_atomic_store ) && 4972 Context.AtomicUsesUnsupportedLibcall(AE)) 4973 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 4974 << ((Op == AtomicExpr::AO__c11_atomic_load || 4975 Op == AtomicExpr::AO__opencl_atomic_load) 4976 ? 0 4977 : 1); 4978 4979 return AE; 4980 } 4981 4982 /// checkBuiltinArgument - Given a call to a builtin function, perform 4983 /// normal type-checking on the given argument, updating the call in 4984 /// place. This is useful when a builtin function requires custom 4985 /// type-checking for some of its arguments but not necessarily all of 4986 /// them. 4987 /// 4988 /// Returns true on error. 4989 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 4990 FunctionDecl *Fn = E->getDirectCallee(); 4991 assert(Fn && "builtin call without direct callee!"); 4992 4993 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 4994 InitializedEntity Entity = 4995 InitializedEntity::InitializeParameter(S.Context, Param); 4996 4997 ExprResult Arg = E->getArg(0); 4998 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 4999 if (Arg.isInvalid()) 5000 return true; 5001 5002 E->setArg(ArgIndex, Arg.get()); 5003 return false; 5004 } 5005 5006 /// We have a call to a function like __sync_fetch_and_add, which is an 5007 /// overloaded function based on the pointer type of its first argument. 5008 /// The main BuildCallExpr routines have already promoted the types of 5009 /// arguments because all of these calls are prototyped as void(...). 5010 /// 5011 /// This function goes through and does final semantic checking for these 5012 /// builtins, as well as generating any warnings. 5013 ExprResult 5014 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5015 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5016 Expr *Callee = TheCall->getCallee(); 5017 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5018 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5019 5020 // Ensure that we have at least one argument to do type inference from. 5021 if (TheCall->getNumArgs() < 1) { 5022 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5023 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5024 return ExprError(); 5025 } 5026 5027 // Inspect the first argument of the atomic builtin. This should always be 5028 // a pointer type, whose element is an integral scalar or pointer type. 5029 // Because it is a pointer type, we don't have to worry about any implicit 5030 // casts here. 5031 // FIXME: We don't allow floating point scalars as input. 5032 Expr *FirstArg = TheCall->getArg(0); 5033 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5034 if (FirstArgResult.isInvalid()) 5035 return ExprError(); 5036 FirstArg = FirstArgResult.get(); 5037 TheCall->setArg(0, FirstArg); 5038 5039 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5040 if (!pointerType) { 5041 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5042 << FirstArg->getType() << FirstArg->getSourceRange(); 5043 return ExprError(); 5044 } 5045 5046 QualType ValType = pointerType->getPointeeType(); 5047 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5048 !ValType->isBlockPointerType()) { 5049 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5050 << FirstArg->getType() << FirstArg->getSourceRange(); 5051 return ExprError(); 5052 } 5053 5054 if (ValType.isConstQualified()) { 5055 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5056 << FirstArg->getType() << FirstArg->getSourceRange(); 5057 return ExprError(); 5058 } 5059 5060 switch (ValType.getObjCLifetime()) { 5061 case Qualifiers::OCL_None: 5062 case Qualifiers::OCL_ExplicitNone: 5063 // okay 5064 break; 5065 5066 case Qualifiers::OCL_Weak: 5067 case Qualifiers::OCL_Strong: 5068 case Qualifiers::OCL_Autoreleasing: 5069 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5070 << ValType << FirstArg->getSourceRange(); 5071 return ExprError(); 5072 } 5073 5074 // Strip any qualifiers off ValType. 5075 ValType = ValType.getUnqualifiedType(); 5076 5077 // The majority of builtins return a value, but a few have special return 5078 // types, so allow them to override appropriately below. 5079 QualType ResultType = ValType; 5080 5081 // We need to figure out which concrete builtin this maps onto. For example, 5082 // __sync_fetch_and_add with a 2 byte object turns into 5083 // __sync_fetch_and_add_2. 5084 #define BUILTIN_ROW(x) \ 5085 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5086 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5087 5088 static const unsigned BuiltinIndices[][5] = { 5089 BUILTIN_ROW(__sync_fetch_and_add), 5090 BUILTIN_ROW(__sync_fetch_and_sub), 5091 BUILTIN_ROW(__sync_fetch_and_or), 5092 BUILTIN_ROW(__sync_fetch_and_and), 5093 BUILTIN_ROW(__sync_fetch_and_xor), 5094 BUILTIN_ROW(__sync_fetch_and_nand), 5095 5096 BUILTIN_ROW(__sync_add_and_fetch), 5097 BUILTIN_ROW(__sync_sub_and_fetch), 5098 BUILTIN_ROW(__sync_and_and_fetch), 5099 BUILTIN_ROW(__sync_or_and_fetch), 5100 BUILTIN_ROW(__sync_xor_and_fetch), 5101 BUILTIN_ROW(__sync_nand_and_fetch), 5102 5103 BUILTIN_ROW(__sync_val_compare_and_swap), 5104 BUILTIN_ROW(__sync_bool_compare_and_swap), 5105 BUILTIN_ROW(__sync_lock_test_and_set), 5106 BUILTIN_ROW(__sync_lock_release), 5107 BUILTIN_ROW(__sync_swap) 5108 }; 5109 #undef BUILTIN_ROW 5110 5111 // Determine the index of the size. 5112 unsigned SizeIndex; 5113 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5114 case 1: SizeIndex = 0; break; 5115 case 2: SizeIndex = 1; break; 5116 case 4: SizeIndex = 2; break; 5117 case 8: SizeIndex = 3; break; 5118 case 16: SizeIndex = 4; break; 5119 default: 5120 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5121 << FirstArg->getType() << FirstArg->getSourceRange(); 5122 return ExprError(); 5123 } 5124 5125 // Each of these builtins has one pointer argument, followed by some number of 5126 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5127 // that we ignore. Find out which row of BuiltinIndices to read from as well 5128 // as the number of fixed args. 5129 unsigned BuiltinID = FDecl->getBuiltinID(); 5130 unsigned BuiltinIndex, NumFixed = 1; 5131 bool WarnAboutSemanticsChange = false; 5132 switch (BuiltinID) { 5133 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5134 case Builtin::BI__sync_fetch_and_add: 5135 case Builtin::BI__sync_fetch_and_add_1: 5136 case Builtin::BI__sync_fetch_and_add_2: 5137 case Builtin::BI__sync_fetch_and_add_4: 5138 case Builtin::BI__sync_fetch_and_add_8: 5139 case Builtin::BI__sync_fetch_and_add_16: 5140 BuiltinIndex = 0; 5141 break; 5142 5143 case Builtin::BI__sync_fetch_and_sub: 5144 case Builtin::BI__sync_fetch_and_sub_1: 5145 case Builtin::BI__sync_fetch_and_sub_2: 5146 case Builtin::BI__sync_fetch_and_sub_4: 5147 case Builtin::BI__sync_fetch_and_sub_8: 5148 case Builtin::BI__sync_fetch_and_sub_16: 5149 BuiltinIndex = 1; 5150 break; 5151 5152 case Builtin::BI__sync_fetch_and_or: 5153 case Builtin::BI__sync_fetch_and_or_1: 5154 case Builtin::BI__sync_fetch_and_or_2: 5155 case Builtin::BI__sync_fetch_and_or_4: 5156 case Builtin::BI__sync_fetch_and_or_8: 5157 case Builtin::BI__sync_fetch_and_or_16: 5158 BuiltinIndex = 2; 5159 break; 5160 5161 case Builtin::BI__sync_fetch_and_and: 5162 case Builtin::BI__sync_fetch_and_and_1: 5163 case Builtin::BI__sync_fetch_and_and_2: 5164 case Builtin::BI__sync_fetch_and_and_4: 5165 case Builtin::BI__sync_fetch_and_and_8: 5166 case Builtin::BI__sync_fetch_and_and_16: 5167 BuiltinIndex = 3; 5168 break; 5169 5170 case Builtin::BI__sync_fetch_and_xor: 5171 case Builtin::BI__sync_fetch_and_xor_1: 5172 case Builtin::BI__sync_fetch_and_xor_2: 5173 case Builtin::BI__sync_fetch_and_xor_4: 5174 case Builtin::BI__sync_fetch_and_xor_8: 5175 case Builtin::BI__sync_fetch_and_xor_16: 5176 BuiltinIndex = 4; 5177 break; 5178 5179 case Builtin::BI__sync_fetch_and_nand: 5180 case Builtin::BI__sync_fetch_and_nand_1: 5181 case Builtin::BI__sync_fetch_and_nand_2: 5182 case Builtin::BI__sync_fetch_and_nand_4: 5183 case Builtin::BI__sync_fetch_and_nand_8: 5184 case Builtin::BI__sync_fetch_and_nand_16: 5185 BuiltinIndex = 5; 5186 WarnAboutSemanticsChange = true; 5187 break; 5188 5189 case Builtin::BI__sync_add_and_fetch: 5190 case Builtin::BI__sync_add_and_fetch_1: 5191 case Builtin::BI__sync_add_and_fetch_2: 5192 case Builtin::BI__sync_add_and_fetch_4: 5193 case Builtin::BI__sync_add_and_fetch_8: 5194 case Builtin::BI__sync_add_and_fetch_16: 5195 BuiltinIndex = 6; 5196 break; 5197 5198 case Builtin::BI__sync_sub_and_fetch: 5199 case Builtin::BI__sync_sub_and_fetch_1: 5200 case Builtin::BI__sync_sub_and_fetch_2: 5201 case Builtin::BI__sync_sub_and_fetch_4: 5202 case Builtin::BI__sync_sub_and_fetch_8: 5203 case Builtin::BI__sync_sub_and_fetch_16: 5204 BuiltinIndex = 7; 5205 break; 5206 5207 case Builtin::BI__sync_and_and_fetch: 5208 case Builtin::BI__sync_and_and_fetch_1: 5209 case Builtin::BI__sync_and_and_fetch_2: 5210 case Builtin::BI__sync_and_and_fetch_4: 5211 case Builtin::BI__sync_and_and_fetch_8: 5212 case Builtin::BI__sync_and_and_fetch_16: 5213 BuiltinIndex = 8; 5214 break; 5215 5216 case Builtin::BI__sync_or_and_fetch: 5217 case Builtin::BI__sync_or_and_fetch_1: 5218 case Builtin::BI__sync_or_and_fetch_2: 5219 case Builtin::BI__sync_or_and_fetch_4: 5220 case Builtin::BI__sync_or_and_fetch_8: 5221 case Builtin::BI__sync_or_and_fetch_16: 5222 BuiltinIndex = 9; 5223 break; 5224 5225 case Builtin::BI__sync_xor_and_fetch: 5226 case Builtin::BI__sync_xor_and_fetch_1: 5227 case Builtin::BI__sync_xor_and_fetch_2: 5228 case Builtin::BI__sync_xor_and_fetch_4: 5229 case Builtin::BI__sync_xor_and_fetch_8: 5230 case Builtin::BI__sync_xor_and_fetch_16: 5231 BuiltinIndex = 10; 5232 break; 5233 5234 case Builtin::BI__sync_nand_and_fetch: 5235 case Builtin::BI__sync_nand_and_fetch_1: 5236 case Builtin::BI__sync_nand_and_fetch_2: 5237 case Builtin::BI__sync_nand_and_fetch_4: 5238 case Builtin::BI__sync_nand_and_fetch_8: 5239 case Builtin::BI__sync_nand_and_fetch_16: 5240 BuiltinIndex = 11; 5241 WarnAboutSemanticsChange = true; 5242 break; 5243 5244 case Builtin::BI__sync_val_compare_and_swap: 5245 case Builtin::BI__sync_val_compare_and_swap_1: 5246 case Builtin::BI__sync_val_compare_and_swap_2: 5247 case Builtin::BI__sync_val_compare_and_swap_4: 5248 case Builtin::BI__sync_val_compare_and_swap_8: 5249 case Builtin::BI__sync_val_compare_and_swap_16: 5250 BuiltinIndex = 12; 5251 NumFixed = 2; 5252 break; 5253 5254 case Builtin::BI__sync_bool_compare_and_swap: 5255 case Builtin::BI__sync_bool_compare_and_swap_1: 5256 case Builtin::BI__sync_bool_compare_and_swap_2: 5257 case Builtin::BI__sync_bool_compare_and_swap_4: 5258 case Builtin::BI__sync_bool_compare_and_swap_8: 5259 case Builtin::BI__sync_bool_compare_and_swap_16: 5260 BuiltinIndex = 13; 5261 NumFixed = 2; 5262 ResultType = Context.BoolTy; 5263 break; 5264 5265 case Builtin::BI__sync_lock_test_and_set: 5266 case Builtin::BI__sync_lock_test_and_set_1: 5267 case Builtin::BI__sync_lock_test_and_set_2: 5268 case Builtin::BI__sync_lock_test_and_set_4: 5269 case Builtin::BI__sync_lock_test_and_set_8: 5270 case Builtin::BI__sync_lock_test_and_set_16: 5271 BuiltinIndex = 14; 5272 break; 5273 5274 case Builtin::BI__sync_lock_release: 5275 case Builtin::BI__sync_lock_release_1: 5276 case Builtin::BI__sync_lock_release_2: 5277 case Builtin::BI__sync_lock_release_4: 5278 case Builtin::BI__sync_lock_release_8: 5279 case Builtin::BI__sync_lock_release_16: 5280 BuiltinIndex = 15; 5281 NumFixed = 0; 5282 ResultType = Context.VoidTy; 5283 break; 5284 5285 case Builtin::BI__sync_swap: 5286 case Builtin::BI__sync_swap_1: 5287 case Builtin::BI__sync_swap_2: 5288 case Builtin::BI__sync_swap_4: 5289 case Builtin::BI__sync_swap_8: 5290 case Builtin::BI__sync_swap_16: 5291 BuiltinIndex = 16; 5292 break; 5293 } 5294 5295 // Now that we know how many fixed arguments we expect, first check that we 5296 // have at least that many. 5297 if (TheCall->getNumArgs() < 1+NumFixed) { 5298 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5299 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5300 << Callee->getSourceRange(); 5301 return ExprError(); 5302 } 5303 5304 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5305 << Callee->getSourceRange(); 5306 5307 if (WarnAboutSemanticsChange) { 5308 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5309 << Callee->getSourceRange(); 5310 } 5311 5312 // Get the decl for the concrete builtin from this, we can tell what the 5313 // concrete integer type we should convert to is. 5314 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5315 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5316 FunctionDecl *NewBuiltinDecl; 5317 if (NewBuiltinID == BuiltinID) 5318 NewBuiltinDecl = FDecl; 5319 else { 5320 // Perform builtin lookup to avoid redeclaring it. 5321 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5322 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5323 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5324 assert(Res.getFoundDecl()); 5325 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5326 if (!NewBuiltinDecl) 5327 return ExprError(); 5328 } 5329 5330 // The first argument --- the pointer --- has a fixed type; we 5331 // deduce the types of the rest of the arguments accordingly. Walk 5332 // the remaining arguments, converting them to the deduced value type. 5333 for (unsigned i = 0; i != NumFixed; ++i) { 5334 ExprResult Arg = TheCall->getArg(i+1); 5335 5336 // GCC does an implicit conversion to the pointer or integer ValType. This 5337 // can fail in some cases (1i -> int**), check for this error case now. 5338 // Initialize the argument. 5339 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5340 ValType, /*consume*/ false); 5341 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5342 if (Arg.isInvalid()) 5343 return ExprError(); 5344 5345 // Okay, we have something that *can* be converted to the right type. Check 5346 // to see if there is a potentially weird extension going on here. This can 5347 // happen when you do an atomic operation on something like an char* and 5348 // pass in 42. The 42 gets converted to char. This is even more strange 5349 // for things like 45.123 -> char, etc. 5350 // FIXME: Do this check. 5351 TheCall->setArg(i+1, Arg.get()); 5352 } 5353 5354 // Create a new DeclRefExpr to refer to the new decl. 5355 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5356 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5357 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5358 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5359 5360 // Set the callee in the CallExpr. 5361 // FIXME: This loses syntactic information. 5362 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5363 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5364 CK_BuiltinFnToFnPtr); 5365 TheCall->setCallee(PromotedCall.get()); 5366 5367 // Change the result type of the call to match the original value type. This 5368 // is arbitrary, but the codegen for these builtins ins design to handle it 5369 // gracefully. 5370 TheCall->setType(ResultType); 5371 5372 return TheCallResult; 5373 } 5374 5375 /// SemaBuiltinNontemporalOverloaded - We have a call to 5376 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5377 /// overloaded function based on the pointer type of its last argument. 5378 /// 5379 /// This function goes through and does final semantic checking for these 5380 /// builtins. 5381 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5382 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5383 DeclRefExpr *DRE = 5384 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5385 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5386 unsigned BuiltinID = FDecl->getBuiltinID(); 5387 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5388 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5389 "Unexpected nontemporal load/store builtin!"); 5390 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5391 unsigned numArgs = isStore ? 2 : 1; 5392 5393 // Ensure that we have the proper number of arguments. 5394 if (checkArgCount(*this, TheCall, numArgs)) 5395 return ExprError(); 5396 5397 // Inspect the last argument of the nontemporal builtin. This should always 5398 // be a pointer type, from which we imply the type of the memory access. 5399 // Because it is a pointer type, we don't have to worry about any implicit 5400 // casts here. 5401 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5402 ExprResult PointerArgResult = 5403 DefaultFunctionArrayLvalueConversion(PointerArg); 5404 5405 if (PointerArgResult.isInvalid()) 5406 return ExprError(); 5407 PointerArg = PointerArgResult.get(); 5408 TheCall->setArg(numArgs - 1, PointerArg); 5409 5410 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5411 if (!pointerType) { 5412 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5413 << PointerArg->getType() << PointerArg->getSourceRange(); 5414 return ExprError(); 5415 } 5416 5417 QualType ValType = pointerType->getPointeeType(); 5418 5419 // Strip any qualifiers off ValType. 5420 ValType = ValType.getUnqualifiedType(); 5421 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5422 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5423 !ValType->isVectorType()) { 5424 Diag(DRE->getBeginLoc(), 5425 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5426 << PointerArg->getType() << PointerArg->getSourceRange(); 5427 return ExprError(); 5428 } 5429 5430 if (!isStore) { 5431 TheCall->setType(ValType); 5432 return TheCallResult; 5433 } 5434 5435 ExprResult ValArg = TheCall->getArg(0); 5436 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5437 Context, ValType, /*consume*/ false); 5438 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5439 if (ValArg.isInvalid()) 5440 return ExprError(); 5441 5442 TheCall->setArg(0, ValArg.get()); 5443 TheCall->setType(Context.VoidTy); 5444 return TheCallResult; 5445 } 5446 5447 /// CheckObjCString - Checks that the argument to the builtin 5448 /// CFString constructor is correct 5449 /// Note: It might also make sense to do the UTF-16 conversion here (would 5450 /// simplify the backend). 5451 bool Sema::CheckObjCString(Expr *Arg) { 5452 Arg = Arg->IgnoreParenCasts(); 5453 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5454 5455 if (!Literal || !Literal->isAscii()) { 5456 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5457 << Arg->getSourceRange(); 5458 return true; 5459 } 5460 5461 if (Literal->containsNonAsciiOrNull()) { 5462 StringRef String = Literal->getString(); 5463 unsigned NumBytes = String.size(); 5464 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5465 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5466 llvm::UTF16 *ToPtr = &ToBuf[0]; 5467 5468 llvm::ConversionResult Result = 5469 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5470 ToPtr + NumBytes, llvm::strictConversion); 5471 // Check for conversion failure. 5472 if (Result != llvm::conversionOK) 5473 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5474 << Arg->getSourceRange(); 5475 } 5476 return false; 5477 } 5478 5479 /// CheckObjCString - Checks that the format string argument to the os_log() 5480 /// and os_trace() functions is correct, and converts it to const char *. 5481 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5482 Arg = Arg->IgnoreParenCasts(); 5483 auto *Literal = dyn_cast<StringLiteral>(Arg); 5484 if (!Literal) { 5485 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5486 Literal = ObjcLiteral->getString(); 5487 } 5488 } 5489 5490 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5491 return ExprError( 5492 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5493 << Arg->getSourceRange()); 5494 } 5495 5496 ExprResult Result(Literal); 5497 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5498 InitializedEntity Entity = 5499 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5500 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5501 return Result; 5502 } 5503 5504 /// Check that the user is calling the appropriate va_start builtin for the 5505 /// target and calling convention. 5506 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5507 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5508 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5509 bool IsAArch64 = TT.getArch() == llvm::Triple::aarch64; 5510 bool IsWindows = TT.isOSWindows(); 5511 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5512 if (IsX64 || IsAArch64) { 5513 CallingConv CC = CC_C; 5514 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5515 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5516 if (IsMSVAStart) { 5517 // Don't allow this in System V ABI functions. 5518 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5519 return S.Diag(Fn->getBeginLoc(), 5520 diag::err_ms_va_start_used_in_sysv_function); 5521 } else { 5522 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5523 // On x64 Windows, don't allow this in System V ABI functions. 5524 // (Yes, that means there's no corresponding way to support variadic 5525 // System V ABI functions on Windows.) 5526 if ((IsWindows && CC == CC_X86_64SysV) || 5527 (!IsWindows && CC == CC_Win64)) 5528 return S.Diag(Fn->getBeginLoc(), 5529 diag::err_va_start_used_in_wrong_abi_function) 5530 << !IsWindows; 5531 } 5532 return false; 5533 } 5534 5535 if (IsMSVAStart) 5536 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5537 return false; 5538 } 5539 5540 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5541 ParmVarDecl **LastParam = nullptr) { 5542 // Determine whether the current function, block, or obj-c method is variadic 5543 // and get its parameter list. 5544 bool IsVariadic = false; 5545 ArrayRef<ParmVarDecl *> Params; 5546 DeclContext *Caller = S.CurContext; 5547 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5548 IsVariadic = Block->isVariadic(); 5549 Params = Block->parameters(); 5550 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5551 IsVariadic = FD->isVariadic(); 5552 Params = FD->parameters(); 5553 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5554 IsVariadic = MD->isVariadic(); 5555 // FIXME: This isn't correct for methods (results in bogus warning). 5556 Params = MD->parameters(); 5557 } else if (isa<CapturedDecl>(Caller)) { 5558 // We don't support va_start in a CapturedDecl. 5559 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5560 return true; 5561 } else { 5562 // This must be some other declcontext that parses exprs. 5563 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5564 return true; 5565 } 5566 5567 if (!IsVariadic) { 5568 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5569 return true; 5570 } 5571 5572 if (LastParam) 5573 *LastParam = Params.empty() ? nullptr : Params.back(); 5574 5575 return false; 5576 } 5577 5578 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5579 /// for validity. Emit an error and return true on failure; return false 5580 /// on success. 5581 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5582 Expr *Fn = TheCall->getCallee(); 5583 5584 if (checkVAStartABI(*this, BuiltinID, Fn)) 5585 return true; 5586 5587 if (TheCall->getNumArgs() > 2) { 5588 Diag(TheCall->getArg(2)->getBeginLoc(), 5589 diag::err_typecheck_call_too_many_args) 5590 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5591 << Fn->getSourceRange() 5592 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5593 (*(TheCall->arg_end() - 1))->getEndLoc()); 5594 return true; 5595 } 5596 5597 if (TheCall->getNumArgs() < 2) { 5598 return Diag(TheCall->getEndLoc(), 5599 diag::err_typecheck_call_too_few_args_at_least) 5600 << 0 /*function call*/ << 2 << TheCall->getNumArgs(); 5601 } 5602 5603 // Type-check the first argument normally. 5604 if (checkBuiltinArgument(*this, TheCall, 0)) 5605 return true; 5606 5607 // Check that the current function is variadic, and get its last parameter. 5608 ParmVarDecl *LastParam; 5609 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5610 return true; 5611 5612 // Verify that the second argument to the builtin is the last argument of the 5613 // current function or method. 5614 bool SecondArgIsLastNamedArgument = false; 5615 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5616 5617 // These are valid if SecondArgIsLastNamedArgument is false after the next 5618 // block. 5619 QualType Type; 5620 SourceLocation ParamLoc; 5621 bool IsCRegister = false; 5622 5623 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5624 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5625 SecondArgIsLastNamedArgument = PV == LastParam; 5626 5627 Type = PV->getType(); 5628 ParamLoc = PV->getLocation(); 5629 IsCRegister = 5630 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5631 } 5632 } 5633 5634 if (!SecondArgIsLastNamedArgument) 5635 Diag(TheCall->getArg(1)->getBeginLoc(), 5636 diag::warn_second_arg_of_va_start_not_last_named_param); 5637 else if (IsCRegister || Type->isReferenceType() || 5638 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5639 // Promotable integers are UB, but enumerations need a bit of 5640 // extra checking to see what their promotable type actually is. 5641 if (!Type->isPromotableIntegerType()) 5642 return false; 5643 if (!Type->isEnumeralType()) 5644 return true; 5645 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5646 return !(ED && 5647 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5648 }()) { 5649 unsigned Reason = 0; 5650 if (Type->isReferenceType()) Reason = 1; 5651 else if (IsCRegister) Reason = 2; 5652 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5653 Diag(ParamLoc, diag::note_parameter_type) << Type; 5654 } 5655 5656 TheCall->setType(Context.VoidTy); 5657 return false; 5658 } 5659 5660 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5661 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5662 // const char *named_addr); 5663 5664 Expr *Func = Call->getCallee(); 5665 5666 if (Call->getNumArgs() < 3) 5667 return Diag(Call->getEndLoc(), 5668 diag::err_typecheck_call_too_few_args_at_least) 5669 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5670 5671 // Type-check the first argument normally. 5672 if (checkBuiltinArgument(*this, Call, 0)) 5673 return true; 5674 5675 // Check that the current function is variadic. 5676 if (checkVAStartIsInVariadicFunction(*this, Func)) 5677 return true; 5678 5679 // __va_start on Windows does not validate the parameter qualifiers 5680 5681 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5682 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5683 5684 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5685 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5686 5687 const QualType &ConstCharPtrTy = 5688 Context.getPointerType(Context.CharTy.withConst()); 5689 if (!Arg1Ty->isPointerType() || 5690 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5691 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5692 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5693 << 0 /* qualifier difference */ 5694 << 3 /* parameter mismatch */ 5695 << 2 << Arg1->getType() << ConstCharPtrTy; 5696 5697 const QualType SizeTy = Context.getSizeType(); 5698 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5699 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5700 << Arg2->getType() << SizeTy << 1 /* different class */ 5701 << 0 /* qualifier difference */ 5702 << 3 /* parameter mismatch */ 5703 << 3 << Arg2->getType() << SizeTy; 5704 5705 return false; 5706 } 5707 5708 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5709 /// friends. This is declared to take (...), so we have to check everything. 5710 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5711 if (TheCall->getNumArgs() < 2) 5712 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5713 << 0 << 2 << TheCall->getNumArgs() /*function call*/; 5714 if (TheCall->getNumArgs() > 2) 5715 return Diag(TheCall->getArg(2)->getBeginLoc(), 5716 diag::err_typecheck_call_too_many_args) 5717 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5718 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5719 (*(TheCall->arg_end() - 1))->getEndLoc()); 5720 5721 ExprResult OrigArg0 = TheCall->getArg(0); 5722 ExprResult OrigArg1 = TheCall->getArg(1); 5723 5724 // Do standard promotions between the two arguments, returning their common 5725 // type. 5726 QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false); 5727 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5728 return true; 5729 5730 // Make sure any conversions are pushed back into the call; this is 5731 // type safe since unordered compare builtins are declared as "_Bool 5732 // foo(...)". 5733 TheCall->setArg(0, OrigArg0.get()); 5734 TheCall->setArg(1, OrigArg1.get()); 5735 5736 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5737 return false; 5738 5739 // If the common type isn't a real floating type, then the arguments were 5740 // invalid for this operation. 5741 if (Res.isNull() || !Res->isRealFloatingType()) 5742 return Diag(OrigArg0.get()->getBeginLoc(), 5743 diag::err_typecheck_call_invalid_ordered_compare) 5744 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5745 << SourceRange(OrigArg0.get()->getBeginLoc(), 5746 OrigArg1.get()->getEndLoc()); 5747 5748 return false; 5749 } 5750 5751 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5752 /// __builtin_isnan and friends. This is declared to take (...), so we have 5753 /// to check everything. We expect the last argument to be a floating point 5754 /// value. 5755 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5756 if (TheCall->getNumArgs() < NumArgs) 5757 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5758 << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; 5759 if (TheCall->getNumArgs() > NumArgs) 5760 return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), 5761 diag::err_typecheck_call_too_many_args) 5762 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() 5763 << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), 5764 (*(TheCall->arg_end() - 1))->getEndLoc()); 5765 5766 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5767 5768 if (OrigArg->isTypeDependent()) 5769 return false; 5770 5771 // This operation requires a non-_Complex floating-point number. 5772 if (!OrigArg->getType()->isRealFloatingType()) 5773 return Diag(OrigArg->getBeginLoc(), 5774 diag::err_typecheck_call_invalid_unary_fp) 5775 << OrigArg->getType() << OrigArg->getSourceRange(); 5776 5777 // If this is an implicit conversion from float -> float, double, or 5778 // long double, remove it. 5779 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) { 5780 // Only remove standard FloatCasts, leaving other casts inplace 5781 if (Cast->getCastKind() == CK_FloatingCast) { 5782 Expr *CastArg = Cast->getSubExpr(); 5783 if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) { 5784 assert( 5785 (Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) || 5786 Cast->getType()->isSpecificBuiltinType(BuiltinType::Float) || 5787 Cast->getType()->isSpecificBuiltinType(BuiltinType::LongDouble)) && 5788 "promotion from float to either float, double, or long double is " 5789 "the only expected cast here"); 5790 Cast->setSubExpr(nullptr); 5791 TheCall->setArg(NumArgs-1, CastArg); 5792 } 5793 } 5794 } 5795 5796 return false; 5797 } 5798 5799 // Customized Sema Checking for VSX builtins that have the following signature: 5800 // vector [...] builtinName(vector [...], vector [...], const int); 5801 // Which takes the same type of vectors (any legal vector type) for the first 5802 // two arguments and takes compile time constant for the third argument. 5803 // Example builtins are : 5804 // vector double vec_xxpermdi(vector double, vector double, int); 5805 // vector short vec_xxsldwi(vector short, vector short, int); 5806 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 5807 unsigned ExpectedNumArgs = 3; 5808 if (TheCall->getNumArgs() < ExpectedNumArgs) 5809 return Diag(TheCall->getEndLoc(), 5810 diag::err_typecheck_call_too_few_args_at_least) 5811 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5812 << TheCall->getSourceRange(); 5813 5814 if (TheCall->getNumArgs() > ExpectedNumArgs) 5815 return Diag(TheCall->getEndLoc(), 5816 diag::err_typecheck_call_too_many_args_at_most) 5817 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5818 << TheCall->getSourceRange(); 5819 5820 // Check the third argument is a compile time constant 5821 llvm::APSInt Value; 5822 if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) 5823 return Diag(TheCall->getBeginLoc(), 5824 diag::err_vsx_builtin_nonconstant_argument) 5825 << 3 /* argument index */ << TheCall->getDirectCallee() 5826 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5827 TheCall->getArg(2)->getEndLoc()); 5828 5829 QualType Arg1Ty = TheCall->getArg(0)->getType(); 5830 QualType Arg2Ty = TheCall->getArg(1)->getType(); 5831 5832 // Check the type of argument 1 and argument 2 are vectors. 5833 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 5834 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 5835 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 5836 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 5837 << TheCall->getDirectCallee() 5838 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5839 TheCall->getArg(1)->getEndLoc()); 5840 } 5841 5842 // Check the first two arguments are the same type. 5843 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 5844 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 5845 << TheCall->getDirectCallee() 5846 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5847 TheCall->getArg(1)->getEndLoc()); 5848 } 5849 5850 // When default clang type checking is turned off and the customized type 5851 // checking is used, the returning type of the function must be explicitly 5852 // set. Otherwise it is _Bool by default. 5853 TheCall->setType(Arg1Ty); 5854 5855 return false; 5856 } 5857 5858 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 5859 // This is declared to take (...), so we have to check everything. 5860 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 5861 if (TheCall->getNumArgs() < 2) 5862 return ExprError(Diag(TheCall->getEndLoc(), 5863 diag::err_typecheck_call_too_few_args_at_least) 5864 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5865 << TheCall->getSourceRange()); 5866 5867 // Determine which of the following types of shufflevector we're checking: 5868 // 1) unary, vector mask: (lhs, mask) 5869 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 5870 QualType resType = TheCall->getArg(0)->getType(); 5871 unsigned numElements = 0; 5872 5873 if (!TheCall->getArg(0)->isTypeDependent() && 5874 !TheCall->getArg(1)->isTypeDependent()) { 5875 QualType LHSType = TheCall->getArg(0)->getType(); 5876 QualType RHSType = TheCall->getArg(1)->getType(); 5877 5878 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 5879 return ExprError( 5880 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 5881 << TheCall->getDirectCallee() 5882 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5883 TheCall->getArg(1)->getEndLoc())); 5884 5885 numElements = LHSType->castAs<VectorType>()->getNumElements(); 5886 unsigned numResElements = TheCall->getNumArgs() - 2; 5887 5888 // Check to see if we have a call with 2 vector arguments, the unary shuffle 5889 // with mask. If so, verify that RHS is an integer vector type with the 5890 // same number of elts as lhs. 5891 if (TheCall->getNumArgs() == 2) { 5892 if (!RHSType->hasIntegerRepresentation() || 5893 RHSType->castAs<VectorType>()->getNumElements() != numElements) 5894 return ExprError(Diag(TheCall->getBeginLoc(), 5895 diag::err_vec_builtin_incompatible_vector) 5896 << TheCall->getDirectCallee() 5897 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 5898 TheCall->getArg(1)->getEndLoc())); 5899 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 5900 return ExprError(Diag(TheCall->getBeginLoc(), 5901 diag::err_vec_builtin_incompatible_vector) 5902 << TheCall->getDirectCallee() 5903 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5904 TheCall->getArg(1)->getEndLoc())); 5905 } else if (numElements != numResElements) { 5906 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 5907 resType = Context.getVectorType(eltType, numResElements, 5908 VectorType::GenericVector); 5909 } 5910 } 5911 5912 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 5913 if (TheCall->getArg(i)->isTypeDependent() || 5914 TheCall->getArg(i)->isValueDependent()) 5915 continue; 5916 5917 llvm::APSInt Result(32); 5918 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) 5919 return ExprError(Diag(TheCall->getBeginLoc(), 5920 diag::err_shufflevector_nonconstant_argument) 5921 << TheCall->getArg(i)->getSourceRange()); 5922 5923 // Allow -1 which will be translated to undef in the IR. 5924 if (Result.isSigned() && Result.isAllOnesValue()) 5925 continue; 5926 5927 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) 5928 return ExprError(Diag(TheCall->getBeginLoc(), 5929 diag::err_shufflevector_argument_too_large) 5930 << TheCall->getArg(i)->getSourceRange()); 5931 } 5932 5933 SmallVector<Expr*, 32> exprs; 5934 5935 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 5936 exprs.push_back(TheCall->getArg(i)); 5937 TheCall->setArg(i, nullptr); 5938 } 5939 5940 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 5941 TheCall->getCallee()->getBeginLoc(), 5942 TheCall->getRParenLoc()); 5943 } 5944 5945 /// SemaConvertVectorExpr - Handle __builtin_convertvector 5946 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 5947 SourceLocation BuiltinLoc, 5948 SourceLocation RParenLoc) { 5949 ExprValueKind VK = VK_RValue; 5950 ExprObjectKind OK = OK_Ordinary; 5951 QualType DstTy = TInfo->getType(); 5952 QualType SrcTy = E->getType(); 5953 5954 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 5955 return ExprError(Diag(BuiltinLoc, 5956 diag::err_convertvector_non_vector) 5957 << E->getSourceRange()); 5958 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 5959 return ExprError(Diag(BuiltinLoc, 5960 diag::err_convertvector_non_vector_type)); 5961 5962 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 5963 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 5964 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 5965 if (SrcElts != DstElts) 5966 return ExprError(Diag(BuiltinLoc, 5967 diag::err_convertvector_incompatible_vector) 5968 << E->getSourceRange()); 5969 } 5970 5971 return new (Context) 5972 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 5973 } 5974 5975 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 5976 // This is declared to take (const void*, ...) and can take two 5977 // optional constant int args. 5978 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 5979 unsigned NumArgs = TheCall->getNumArgs(); 5980 5981 if (NumArgs > 3) 5982 return Diag(TheCall->getEndLoc(), 5983 diag::err_typecheck_call_too_many_args_at_most) 5984 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5985 5986 // Argument 0 is checked for us and the remaining arguments must be 5987 // constant integers. 5988 for (unsigned i = 1; i != NumArgs; ++i) 5989 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 5990 return true; 5991 5992 return false; 5993 } 5994 5995 /// SemaBuiltinAssume - Handle __assume (MS Extension). 5996 // __assume does not evaluate its arguments, and should warn if its argument 5997 // has side effects. 5998 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 5999 Expr *Arg = TheCall->getArg(0); 6000 if (Arg->isInstantiationDependent()) return false; 6001 6002 if (Arg->HasSideEffects(Context)) 6003 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6004 << Arg->getSourceRange() 6005 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6006 6007 return false; 6008 } 6009 6010 /// Handle __builtin_alloca_with_align. This is declared 6011 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6012 /// than 8. 6013 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6014 // The alignment must be a constant integer. 6015 Expr *Arg = TheCall->getArg(1); 6016 6017 // We can't check the value of a dependent argument. 6018 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6019 if (const auto *UE = 6020 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6021 if (UE->getKind() == UETT_AlignOf || 6022 UE->getKind() == UETT_PreferredAlignOf) 6023 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6024 << Arg->getSourceRange(); 6025 6026 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6027 6028 if (!Result.isPowerOf2()) 6029 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6030 << Arg->getSourceRange(); 6031 6032 if (Result < Context.getCharWidth()) 6033 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6034 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6035 6036 if (Result > std::numeric_limits<int32_t>::max()) 6037 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6038 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6039 } 6040 6041 return false; 6042 } 6043 6044 /// Handle __builtin_assume_aligned. This is declared 6045 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6046 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6047 unsigned NumArgs = TheCall->getNumArgs(); 6048 6049 if (NumArgs > 3) 6050 return Diag(TheCall->getEndLoc(), 6051 diag::err_typecheck_call_too_many_args_at_most) 6052 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6053 6054 // The alignment must be a constant integer. 6055 Expr *Arg = TheCall->getArg(1); 6056 6057 // We can't check the value of a dependent argument. 6058 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6059 llvm::APSInt Result; 6060 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6061 return true; 6062 6063 if (!Result.isPowerOf2()) 6064 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6065 << Arg->getSourceRange(); 6066 6067 // Alignment calculations can wrap around if it's greater than 2**29. 6068 unsigned MaximumAlignment = 536870912; 6069 if (Result > MaximumAlignment) 6070 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6071 << Arg->getSourceRange() << MaximumAlignment; 6072 } 6073 6074 if (NumArgs > 2) { 6075 ExprResult Arg(TheCall->getArg(2)); 6076 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6077 Context.getSizeType(), false); 6078 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6079 if (Arg.isInvalid()) return true; 6080 TheCall->setArg(2, Arg.get()); 6081 } 6082 6083 return false; 6084 } 6085 6086 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6087 unsigned BuiltinID = 6088 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6089 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6090 6091 unsigned NumArgs = TheCall->getNumArgs(); 6092 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6093 if (NumArgs < NumRequiredArgs) { 6094 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6095 << 0 /* function call */ << NumRequiredArgs << NumArgs 6096 << TheCall->getSourceRange(); 6097 } 6098 if (NumArgs >= NumRequiredArgs + 0x100) { 6099 return Diag(TheCall->getEndLoc(), 6100 diag::err_typecheck_call_too_many_args_at_most) 6101 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6102 << TheCall->getSourceRange(); 6103 } 6104 unsigned i = 0; 6105 6106 // For formatting call, check buffer arg. 6107 if (!IsSizeCall) { 6108 ExprResult Arg(TheCall->getArg(i)); 6109 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6110 Context, Context.VoidPtrTy, false); 6111 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6112 if (Arg.isInvalid()) 6113 return true; 6114 TheCall->setArg(i, Arg.get()); 6115 i++; 6116 } 6117 6118 // Check string literal arg. 6119 unsigned FormatIdx = i; 6120 { 6121 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6122 if (Arg.isInvalid()) 6123 return true; 6124 TheCall->setArg(i, Arg.get()); 6125 i++; 6126 } 6127 6128 // Make sure variadic args are scalar. 6129 unsigned FirstDataArg = i; 6130 while (i < NumArgs) { 6131 ExprResult Arg = DefaultVariadicArgumentPromotion( 6132 TheCall->getArg(i), VariadicFunction, nullptr); 6133 if (Arg.isInvalid()) 6134 return true; 6135 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6136 if (ArgSize.getQuantity() >= 0x100) { 6137 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6138 << i << (int)ArgSize.getQuantity() << 0xff 6139 << TheCall->getSourceRange(); 6140 } 6141 TheCall->setArg(i, Arg.get()); 6142 i++; 6143 } 6144 6145 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6146 // call to avoid duplicate diagnostics. 6147 if (!IsSizeCall) { 6148 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6149 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6150 bool Success = CheckFormatArguments( 6151 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6152 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6153 CheckedVarArgs); 6154 if (!Success) 6155 return true; 6156 } 6157 6158 if (IsSizeCall) { 6159 TheCall->setType(Context.getSizeType()); 6160 } else { 6161 TheCall->setType(Context.VoidPtrTy); 6162 } 6163 return false; 6164 } 6165 6166 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6167 /// TheCall is a constant expression. 6168 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6169 llvm::APSInt &Result) { 6170 Expr *Arg = TheCall->getArg(ArgNum); 6171 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6172 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6173 6174 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6175 6176 if (!Arg->isIntegerConstantExpr(Result, Context)) 6177 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6178 << FDecl->getDeclName() << Arg->getSourceRange(); 6179 6180 return false; 6181 } 6182 6183 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6184 /// TheCall is a constant expression in the range [Low, High]. 6185 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6186 int Low, int High, bool RangeIsError) { 6187 if (isConstantEvaluated()) 6188 return false; 6189 llvm::APSInt Result; 6190 6191 // We can't check the value of a dependent argument. 6192 Expr *Arg = TheCall->getArg(ArgNum); 6193 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6194 return false; 6195 6196 // Check constant-ness first. 6197 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6198 return true; 6199 6200 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6201 if (RangeIsError) 6202 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6203 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6204 else 6205 // Defer the warning until we know if the code will be emitted so that 6206 // dead code can ignore this. 6207 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6208 PDiag(diag::warn_argument_invalid_range) 6209 << Result.toString(10) << Low << High 6210 << Arg->getSourceRange()); 6211 } 6212 6213 return false; 6214 } 6215 6216 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6217 /// TheCall is a constant expression is a multiple of Num.. 6218 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6219 unsigned Num) { 6220 llvm::APSInt Result; 6221 6222 // We can't check the value of a dependent argument. 6223 Expr *Arg = TheCall->getArg(ArgNum); 6224 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6225 return false; 6226 6227 // Check constant-ness first. 6228 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6229 return true; 6230 6231 if (Result.getSExtValue() % Num != 0) 6232 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6233 << Num << Arg->getSourceRange(); 6234 6235 return false; 6236 } 6237 6238 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6239 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6240 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6241 if (checkArgCount(*this, TheCall, 2)) 6242 return true; 6243 Expr *Arg0 = TheCall->getArg(0); 6244 Expr *Arg1 = TheCall->getArg(1); 6245 6246 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6247 if (FirstArg.isInvalid()) 6248 return true; 6249 QualType FirstArgType = FirstArg.get()->getType(); 6250 if (!FirstArgType->isAnyPointerType()) 6251 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6252 << "first" << FirstArgType << Arg0->getSourceRange(); 6253 TheCall->setArg(0, FirstArg.get()); 6254 6255 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6256 if (SecArg.isInvalid()) 6257 return true; 6258 QualType SecArgType = SecArg.get()->getType(); 6259 if (!SecArgType->isIntegerType()) 6260 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6261 << "second" << SecArgType << Arg1->getSourceRange(); 6262 6263 // Derive the return type from the pointer argument. 6264 TheCall->setType(FirstArgType); 6265 return false; 6266 } 6267 6268 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6269 if (checkArgCount(*this, TheCall, 2)) 6270 return true; 6271 6272 Expr *Arg0 = TheCall->getArg(0); 6273 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6274 if (FirstArg.isInvalid()) 6275 return true; 6276 QualType FirstArgType = FirstArg.get()->getType(); 6277 if (!FirstArgType->isAnyPointerType()) 6278 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6279 << "first" << FirstArgType << Arg0->getSourceRange(); 6280 TheCall->setArg(0, FirstArg.get()); 6281 6282 // Derive the return type from the pointer argument. 6283 TheCall->setType(FirstArgType); 6284 6285 // Second arg must be an constant in range [0,15] 6286 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6287 } 6288 6289 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6290 if (checkArgCount(*this, TheCall, 2)) 6291 return true; 6292 Expr *Arg0 = TheCall->getArg(0); 6293 Expr *Arg1 = TheCall->getArg(1); 6294 6295 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6296 if (FirstArg.isInvalid()) 6297 return true; 6298 QualType FirstArgType = FirstArg.get()->getType(); 6299 if (!FirstArgType->isAnyPointerType()) 6300 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6301 << "first" << FirstArgType << Arg0->getSourceRange(); 6302 6303 QualType SecArgType = Arg1->getType(); 6304 if (!SecArgType->isIntegerType()) 6305 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6306 << "second" << SecArgType << Arg1->getSourceRange(); 6307 TheCall->setType(Context.IntTy); 6308 return false; 6309 } 6310 6311 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6312 BuiltinID == AArch64::BI__builtin_arm_stg) { 6313 if (checkArgCount(*this, TheCall, 1)) 6314 return true; 6315 Expr *Arg0 = TheCall->getArg(0); 6316 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6317 if (FirstArg.isInvalid()) 6318 return true; 6319 6320 QualType FirstArgType = FirstArg.get()->getType(); 6321 if (!FirstArgType->isAnyPointerType()) 6322 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6323 << "first" << FirstArgType << Arg0->getSourceRange(); 6324 TheCall->setArg(0, FirstArg.get()); 6325 6326 // Derive the return type from the pointer argument. 6327 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6328 TheCall->setType(FirstArgType); 6329 return false; 6330 } 6331 6332 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6333 Expr *ArgA = TheCall->getArg(0); 6334 Expr *ArgB = TheCall->getArg(1); 6335 6336 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6337 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6338 6339 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6340 return true; 6341 6342 QualType ArgTypeA = ArgExprA.get()->getType(); 6343 QualType ArgTypeB = ArgExprB.get()->getType(); 6344 6345 auto isNull = [&] (Expr *E) -> bool { 6346 return E->isNullPointerConstant( 6347 Context, Expr::NPC_ValueDependentIsNotNull); }; 6348 6349 // argument should be either a pointer or null 6350 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6351 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6352 << "first" << ArgTypeA << ArgA->getSourceRange(); 6353 6354 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6355 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6356 << "second" << ArgTypeB << ArgB->getSourceRange(); 6357 6358 // Ensure Pointee types are compatible 6359 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6360 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6361 QualType pointeeA = ArgTypeA->getPointeeType(); 6362 QualType pointeeB = ArgTypeB->getPointeeType(); 6363 if (!Context.typesAreCompatible( 6364 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6365 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6366 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6367 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6368 << ArgB->getSourceRange(); 6369 } 6370 } 6371 6372 // at least one argument should be pointer type 6373 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6374 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6375 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6376 6377 if (isNull(ArgA)) // adopt type of the other pointer 6378 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6379 6380 if (isNull(ArgB)) 6381 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6382 6383 TheCall->setArg(0, ArgExprA.get()); 6384 TheCall->setArg(1, ArgExprB.get()); 6385 TheCall->setType(Context.LongLongTy); 6386 return false; 6387 } 6388 assert(false && "Unhandled ARM MTE intrinsic"); 6389 return true; 6390 } 6391 6392 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6393 /// TheCall is an ARM/AArch64 special register string literal. 6394 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6395 int ArgNum, unsigned ExpectedFieldNum, 6396 bool AllowName) { 6397 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6398 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6399 BuiltinID == ARM::BI__builtin_arm_rsr || 6400 BuiltinID == ARM::BI__builtin_arm_rsrp || 6401 BuiltinID == ARM::BI__builtin_arm_wsr || 6402 BuiltinID == ARM::BI__builtin_arm_wsrp; 6403 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6404 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6405 BuiltinID == AArch64::BI__builtin_arm_rsr || 6406 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6407 BuiltinID == AArch64::BI__builtin_arm_wsr || 6408 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6409 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6410 6411 // We can't check the value of a dependent argument. 6412 Expr *Arg = TheCall->getArg(ArgNum); 6413 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6414 return false; 6415 6416 // Check if the argument is a string literal. 6417 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6418 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6419 << Arg->getSourceRange(); 6420 6421 // Check the type of special register given. 6422 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6423 SmallVector<StringRef, 6> Fields; 6424 Reg.split(Fields, ":"); 6425 6426 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6427 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6428 << Arg->getSourceRange(); 6429 6430 // If the string is the name of a register then we cannot check that it is 6431 // valid here but if the string is of one the forms described in ACLE then we 6432 // can check that the supplied fields are integers and within the valid 6433 // ranges. 6434 if (Fields.size() > 1) { 6435 bool FiveFields = Fields.size() == 5; 6436 6437 bool ValidString = true; 6438 if (IsARMBuiltin) { 6439 ValidString &= Fields[0].startswith_lower("cp") || 6440 Fields[0].startswith_lower("p"); 6441 if (ValidString) 6442 Fields[0] = 6443 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6444 6445 ValidString &= Fields[2].startswith_lower("c"); 6446 if (ValidString) 6447 Fields[2] = Fields[2].drop_front(1); 6448 6449 if (FiveFields) { 6450 ValidString &= Fields[3].startswith_lower("c"); 6451 if (ValidString) 6452 Fields[3] = Fields[3].drop_front(1); 6453 } 6454 } 6455 6456 SmallVector<int, 5> Ranges; 6457 if (FiveFields) 6458 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6459 else 6460 Ranges.append({15, 7, 15}); 6461 6462 for (unsigned i=0; i<Fields.size(); ++i) { 6463 int IntField; 6464 ValidString &= !Fields[i].getAsInteger(10, IntField); 6465 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6466 } 6467 6468 if (!ValidString) 6469 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6470 << Arg->getSourceRange(); 6471 } else if (IsAArch64Builtin && Fields.size() == 1) { 6472 // If the register name is one of those that appear in the condition below 6473 // and the special register builtin being used is one of the write builtins, 6474 // then we require that the argument provided for writing to the register 6475 // is an integer constant expression. This is because it will be lowered to 6476 // an MSR (immediate) instruction, so we need to know the immediate at 6477 // compile time. 6478 if (TheCall->getNumArgs() != 2) 6479 return false; 6480 6481 std::string RegLower = Reg.lower(); 6482 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6483 RegLower != "pan" && RegLower != "uao") 6484 return false; 6485 6486 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6487 } 6488 6489 return false; 6490 } 6491 6492 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6493 /// This checks that the target supports __builtin_longjmp and 6494 /// that val is a constant 1. 6495 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6496 if (!Context.getTargetInfo().hasSjLjLowering()) 6497 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6498 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6499 6500 Expr *Arg = TheCall->getArg(1); 6501 llvm::APSInt Result; 6502 6503 // TODO: This is less than ideal. Overload this to take a value. 6504 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6505 return true; 6506 6507 if (Result != 1) 6508 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6509 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6510 6511 return false; 6512 } 6513 6514 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6515 /// This checks that the target supports __builtin_setjmp. 6516 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6517 if (!Context.getTargetInfo().hasSjLjLowering()) 6518 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6519 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6520 return false; 6521 } 6522 6523 namespace { 6524 6525 class UncoveredArgHandler { 6526 enum { Unknown = -1, AllCovered = -2 }; 6527 6528 signed FirstUncoveredArg = Unknown; 6529 SmallVector<const Expr *, 4> DiagnosticExprs; 6530 6531 public: 6532 UncoveredArgHandler() = default; 6533 6534 bool hasUncoveredArg() const { 6535 return (FirstUncoveredArg >= 0); 6536 } 6537 6538 unsigned getUncoveredArg() const { 6539 assert(hasUncoveredArg() && "no uncovered argument"); 6540 return FirstUncoveredArg; 6541 } 6542 6543 void setAllCovered() { 6544 // A string has been found with all arguments covered, so clear out 6545 // the diagnostics. 6546 DiagnosticExprs.clear(); 6547 FirstUncoveredArg = AllCovered; 6548 } 6549 6550 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6551 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6552 6553 // Don't update if a previous string covers all arguments. 6554 if (FirstUncoveredArg == AllCovered) 6555 return; 6556 6557 // UncoveredArgHandler tracks the highest uncovered argument index 6558 // and with it all the strings that match this index. 6559 if (NewFirstUncoveredArg == FirstUncoveredArg) 6560 DiagnosticExprs.push_back(StrExpr); 6561 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6562 DiagnosticExprs.clear(); 6563 DiagnosticExprs.push_back(StrExpr); 6564 FirstUncoveredArg = NewFirstUncoveredArg; 6565 } 6566 } 6567 6568 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6569 }; 6570 6571 enum StringLiteralCheckType { 6572 SLCT_NotALiteral, 6573 SLCT_UncheckedLiteral, 6574 SLCT_CheckedLiteral 6575 }; 6576 6577 } // namespace 6578 6579 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6580 BinaryOperatorKind BinOpKind, 6581 bool AddendIsRight) { 6582 unsigned BitWidth = Offset.getBitWidth(); 6583 unsigned AddendBitWidth = Addend.getBitWidth(); 6584 // There might be negative interim results. 6585 if (Addend.isUnsigned()) { 6586 Addend = Addend.zext(++AddendBitWidth); 6587 Addend.setIsSigned(true); 6588 } 6589 // Adjust the bit width of the APSInts. 6590 if (AddendBitWidth > BitWidth) { 6591 Offset = Offset.sext(AddendBitWidth); 6592 BitWidth = AddendBitWidth; 6593 } else if (BitWidth > AddendBitWidth) { 6594 Addend = Addend.sext(BitWidth); 6595 } 6596 6597 bool Ov = false; 6598 llvm::APSInt ResOffset = Offset; 6599 if (BinOpKind == BO_Add) 6600 ResOffset = Offset.sadd_ov(Addend, Ov); 6601 else { 6602 assert(AddendIsRight && BinOpKind == BO_Sub && 6603 "operator must be add or sub with addend on the right"); 6604 ResOffset = Offset.ssub_ov(Addend, Ov); 6605 } 6606 6607 // We add an offset to a pointer here so we should support an offset as big as 6608 // possible. 6609 if (Ov) { 6610 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6611 "index (intermediate) result too big"); 6612 Offset = Offset.sext(2 * BitWidth); 6613 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6614 return; 6615 } 6616 6617 Offset = ResOffset; 6618 } 6619 6620 namespace { 6621 6622 // This is a wrapper class around StringLiteral to support offsetted string 6623 // literals as format strings. It takes the offset into account when returning 6624 // the string and its length or the source locations to display notes correctly. 6625 class FormatStringLiteral { 6626 const StringLiteral *FExpr; 6627 int64_t Offset; 6628 6629 public: 6630 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 6631 : FExpr(fexpr), Offset(Offset) {} 6632 6633 StringRef getString() const { 6634 return FExpr->getString().drop_front(Offset); 6635 } 6636 6637 unsigned getByteLength() const { 6638 return FExpr->getByteLength() - getCharByteWidth() * Offset; 6639 } 6640 6641 unsigned getLength() const { return FExpr->getLength() - Offset; } 6642 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 6643 6644 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 6645 6646 QualType getType() const { return FExpr->getType(); } 6647 6648 bool isAscii() const { return FExpr->isAscii(); } 6649 bool isWide() const { return FExpr->isWide(); } 6650 bool isUTF8() const { return FExpr->isUTF8(); } 6651 bool isUTF16() const { return FExpr->isUTF16(); } 6652 bool isUTF32() const { return FExpr->isUTF32(); } 6653 bool isPascal() const { return FExpr->isPascal(); } 6654 6655 SourceLocation getLocationOfByte( 6656 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 6657 const TargetInfo &Target, unsigned *StartToken = nullptr, 6658 unsigned *StartTokenByteOffset = nullptr) const { 6659 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 6660 StartToken, StartTokenByteOffset); 6661 } 6662 6663 SourceLocation getBeginLoc() const LLVM_READONLY { 6664 return FExpr->getBeginLoc().getLocWithOffset(Offset); 6665 } 6666 6667 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 6668 }; 6669 6670 } // namespace 6671 6672 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 6673 const Expr *OrigFormatExpr, 6674 ArrayRef<const Expr *> Args, 6675 bool HasVAListArg, unsigned format_idx, 6676 unsigned firstDataArg, 6677 Sema::FormatStringType Type, 6678 bool inFunctionCall, 6679 Sema::VariadicCallType CallType, 6680 llvm::SmallBitVector &CheckedVarArgs, 6681 UncoveredArgHandler &UncoveredArg, 6682 bool IgnoreStringsWithoutSpecifiers); 6683 6684 // Determine if an expression is a string literal or constant string. 6685 // If this function returns false on the arguments to a function expecting a 6686 // format string, we will usually need to emit a warning. 6687 // True string literals are then checked by CheckFormatString. 6688 static StringLiteralCheckType 6689 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 6690 bool HasVAListArg, unsigned format_idx, 6691 unsigned firstDataArg, Sema::FormatStringType Type, 6692 Sema::VariadicCallType CallType, bool InFunctionCall, 6693 llvm::SmallBitVector &CheckedVarArgs, 6694 UncoveredArgHandler &UncoveredArg, 6695 llvm::APSInt Offset, 6696 bool IgnoreStringsWithoutSpecifiers = false) { 6697 if (S.isConstantEvaluated()) 6698 return SLCT_NotALiteral; 6699 tryAgain: 6700 assert(Offset.isSigned() && "invalid offset"); 6701 6702 if (E->isTypeDependent() || E->isValueDependent()) 6703 return SLCT_NotALiteral; 6704 6705 E = E->IgnoreParenCasts(); 6706 6707 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6708 // Technically -Wformat-nonliteral does not warn about this case. 6709 // The behavior of printf and friends in this case is implementation 6710 // dependent. Ideally if the format string cannot be null then 6711 // it should have a 'nonnull' attribute in the function prototype. 6712 return SLCT_UncheckedLiteral; 6713 6714 switch (E->getStmtClass()) { 6715 case Stmt::BinaryConditionalOperatorClass: 6716 case Stmt::ConditionalOperatorClass: { 6717 // The expression is a literal if both sub-expressions were, and it was 6718 // completely checked only if both sub-expressions were checked. 6719 const AbstractConditionalOperator *C = 6720 cast<AbstractConditionalOperator>(E); 6721 6722 // Determine whether it is necessary to check both sub-expressions, for 6723 // example, because the condition expression is a constant that can be 6724 // evaluated at compile time. 6725 bool CheckLeft = true, CheckRight = true; 6726 6727 bool Cond; 6728 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 6729 S.isConstantEvaluated())) { 6730 if (Cond) 6731 CheckRight = false; 6732 else 6733 CheckLeft = false; 6734 } 6735 6736 // We need to maintain the offsets for the right and the left hand side 6737 // separately to check if every possible indexed expression is a valid 6738 // string literal. They might have different offsets for different string 6739 // literals in the end. 6740 StringLiteralCheckType Left; 6741 if (!CheckLeft) 6742 Left = SLCT_UncheckedLiteral; 6743 else { 6744 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 6745 HasVAListArg, format_idx, firstDataArg, 6746 Type, CallType, InFunctionCall, 6747 CheckedVarArgs, UncoveredArg, Offset, 6748 IgnoreStringsWithoutSpecifiers); 6749 if (Left == SLCT_NotALiteral || !CheckRight) { 6750 return Left; 6751 } 6752 } 6753 6754 StringLiteralCheckType Right = checkFormatStringExpr( 6755 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 6756 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6757 IgnoreStringsWithoutSpecifiers); 6758 6759 return (CheckLeft && Left < Right) ? Left : Right; 6760 } 6761 6762 case Stmt::ImplicitCastExprClass: 6763 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 6764 goto tryAgain; 6765 6766 case Stmt::OpaqueValueExprClass: 6767 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 6768 E = src; 6769 goto tryAgain; 6770 } 6771 return SLCT_NotALiteral; 6772 6773 case Stmt::PredefinedExprClass: 6774 // While __func__, etc., are technically not string literals, they 6775 // cannot contain format specifiers and thus are not a security 6776 // liability. 6777 return SLCT_UncheckedLiteral; 6778 6779 case Stmt::DeclRefExprClass: { 6780 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 6781 6782 // As an exception, do not flag errors for variables binding to 6783 // const string literals. 6784 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 6785 bool isConstant = false; 6786 QualType T = DR->getType(); 6787 6788 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 6789 isConstant = AT->getElementType().isConstant(S.Context); 6790 } else if (const PointerType *PT = T->getAs<PointerType>()) { 6791 isConstant = T.isConstant(S.Context) && 6792 PT->getPointeeType().isConstant(S.Context); 6793 } else if (T->isObjCObjectPointerType()) { 6794 // In ObjC, there is usually no "const ObjectPointer" type, 6795 // so don't check if the pointee type is constant. 6796 isConstant = T.isConstant(S.Context); 6797 } 6798 6799 if (isConstant) { 6800 if (const Expr *Init = VD->getAnyInitializer()) { 6801 // Look through initializers like const char c[] = { "foo" } 6802 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 6803 if (InitList->isStringLiteralInit()) 6804 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 6805 } 6806 return checkFormatStringExpr(S, Init, Args, 6807 HasVAListArg, format_idx, 6808 firstDataArg, Type, CallType, 6809 /*InFunctionCall*/ false, CheckedVarArgs, 6810 UncoveredArg, Offset); 6811 } 6812 } 6813 6814 // For vprintf* functions (i.e., HasVAListArg==true), we add a 6815 // special check to see if the format string is a function parameter 6816 // of the function calling the printf function. If the function 6817 // has an attribute indicating it is a printf-like function, then we 6818 // should suppress warnings concerning non-literals being used in a call 6819 // to a vprintf function. For example: 6820 // 6821 // void 6822 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 6823 // va_list ap; 6824 // va_start(ap, fmt); 6825 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 6826 // ... 6827 // } 6828 if (HasVAListArg) { 6829 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 6830 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 6831 int PVIndex = PV->getFunctionScopeIndex() + 1; 6832 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 6833 // adjust for implicit parameter 6834 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6835 if (MD->isInstance()) 6836 ++PVIndex; 6837 // We also check if the formats are compatible. 6838 // We can't pass a 'scanf' string to a 'printf' function. 6839 if (PVIndex == PVFormat->getFormatIdx() && 6840 Type == S.GetFormatStringType(PVFormat)) 6841 return SLCT_UncheckedLiteral; 6842 } 6843 } 6844 } 6845 } 6846 } 6847 6848 return SLCT_NotALiteral; 6849 } 6850 6851 case Stmt::CallExprClass: 6852 case Stmt::CXXMemberCallExprClass: { 6853 const CallExpr *CE = cast<CallExpr>(E); 6854 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 6855 bool IsFirst = true; 6856 StringLiteralCheckType CommonResult; 6857 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 6858 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 6859 StringLiteralCheckType Result = checkFormatStringExpr( 6860 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6861 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6862 IgnoreStringsWithoutSpecifiers); 6863 if (IsFirst) { 6864 CommonResult = Result; 6865 IsFirst = false; 6866 } 6867 } 6868 if (!IsFirst) 6869 return CommonResult; 6870 6871 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 6872 unsigned BuiltinID = FD->getBuiltinID(); 6873 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 6874 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 6875 const Expr *Arg = CE->getArg(0); 6876 return checkFormatStringExpr(S, Arg, Args, 6877 HasVAListArg, format_idx, 6878 firstDataArg, Type, CallType, 6879 InFunctionCall, CheckedVarArgs, 6880 UncoveredArg, Offset, 6881 IgnoreStringsWithoutSpecifiers); 6882 } 6883 } 6884 } 6885 6886 return SLCT_NotALiteral; 6887 } 6888 case Stmt::ObjCMessageExprClass: { 6889 const auto *ME = cast<ObjCMessageExpr>(E); 6890 if (const auto *MD = ME->getMethodDecl()) { 6891 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 6892 // As a special case heuristic, if we're using the method -[NSBundle 6893 // localizedStringForKey:value:table:], ignore any key strings that lack 6894 // format specifiers. The idea is that if the key doesn't have any 6895 // format specifiers then its probably just a key to map to the 6896 // localized strings. If it does have format specifiers though, then its 6897 // likely that the text of the key is the format string in the 6898 // programmer's language, and should be checked. 6899 const ObjCInterfaceDecl *IFace; 6900 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 6901 IFace->getIdentifier()->isStr("NSBundle") && 6902 MD->getSelector().isKeywordSelector( 6903 {"localizedStringForKey", "value", "table"})) { 6904 IgnoreStringsWithoutSpecifiers = true; 6905 } 6906 6907 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 6908 return checkFormatStringExpr( 6909 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6910 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6911 IgnoreStringsWithoutSpecifiers); 6912 } 6913 } 6914 6915 return SLCT_NotALiteral; 6916 } 6917 case Stmt::ObjCStringLiteralClass: 6918 case Stmt::StringLiteralClass: { 6919 const StringLiteral *StrE = nullptr; 6920 6921 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 6922 StrE = ObjCFExpr->getString(); 6923 else 6924 StrE = cast<StringLiteral>(E); 6925 6926 if (StrE) { 6927 if (Offset.isNegative() || Offset > StrE->getLength()) { 6928 // TODO: It would be better to have an explicit warning for out of 6929 // bounds literals. 6930 return SLCT_NotALiteral; 6931 } 6932 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 6933 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 6934 firstDataArg, Type, InFunctionCall, CallType, 6935 CheckedVarArgs, UncoveredArg, 6936 IgnoreStringsWithoutSpecifiers); 6937 return SLCT_CheckedLiteral; 6938 } 6939 6940 return SLCT_NotALiteral; 6941 } 6942 case Stmt::BinaryOperatorClass: { 6943 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 6944 6945 // A string literal + an int offset is still a string literal. 6946 if (BinOp->isAdditiveOp()) { 6947 Expr::EvalResult LResult, RResult; 6948 6949 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 6950 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 6951 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 6952 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 6953 6954 if (LIsInt != RIsInt) { 6955 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 6956 6957 if (LIsInt) { 6958 if (BinOpKind == BO_Add) { 6959 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 6960 E = BinOp->getRHS(); 6961 goto tryAgain; 6962 } 6963 } else { 6964 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 6965 E = BinOp->getLHS(); 6966 goto tryAgain; 6967 } 6968 } 6969 } 6970 6971 return SLCT_NotALiteral; 6972 } 6973 case Stmt::UnaryOperatorClass: { 6974 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 6975 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 6976 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 6977 Expr::EvalResult IndexResult; 6978 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 6979 Expr::SE_NoSideEffects, 6980 S.isConstantEvaluated())) { 6981 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 6982 /*RHS is int*/ true); 6983 E = ASE->getBase(); 6984 goto tryAgain; 6985 } 6986 } 6987 6988 return SLCT_NotALiteral; 6989 } 6990 6991 default: 6992 return SLCT_NotALiteral; 6993 } 6994 } 6995 6996 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 6997 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 6998 .Case("scanf", FST_Scanf) 6999 .Cases("printf", "printf0", FST_Printf) 7000 .Cases("NSString", "CFString", FST_NSString) 7001 .Case("strftime", FST_Strftime) 7002 .Case("strfmon", FST_Strfmon) 7003 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7004 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7005 .Case("os_trace", FST_OSLog) 7006 .Case("os_log", FST_OSLog) 7007 .Default(FST_Unknown); 7008 } 7009 7010 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7011 /// functions) for correct use of format strings. 7012 /// Returns true if a format string has been fully checked. 7013 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7014 ArrayRef<const Expr *> Args, 7015 bool IsCXXMember, 7016 VariadicCallType CallType, 7017 SourceLocation Loc, SourceRange Range, 7018 llvm::SmallBitVector &CheckedVarArgs) { 7019 FormatStringInfo FSI; 7020 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7021 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7022 FSI.FirstDataArg, GetFormatStringType(Format), 7023 CallType, Loc, Range, CheckedVarArgs); 7024 return false; 7025 } 7026 7027 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7028 bool HasVAListArg, unsigned format_idx, 7029 unsigned firstDataArg, FormatStringType Type, 7030 VariadicCallType CallType, 7031 SourceLocation Loc, SourceRange Range, 7032 llvm::SmallBitVector &CheckedVarArgs) { 7033 // CHECK: printf/scanf-like function is called with no format string. 7034 if (format_idx >= Args.size()) { 7035 Diag(Loc, diag::warn_missing_format_string) << Range; 7036 return false; 7037 } 7038 7039 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7040 7041 // CHECK: format string is not a string literal. 7042 // 7043 // Dynamically generated format strings are difficult to 7044 // automatically vet at compile time. Requiring that format strings 7045 // are string literals: (1) permits the checking of format strings by 7046 // the compiler and thereby (2) can practically remove the source of 7047 // many format string exploits. 7048 7049 // Format string can be either ObjC string (e.g. @"%d") or 7050 // C string (e.g. "%d") 7051 // ObjC string uses the same format specifiers as C string, so we can use 7052 // the same format string checking logic for both ObjC and C strings. 7053 UncoveredArgHandler UncoveredArg; 7054 StringLiteralCheckType CT = 7055 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7056 format_idx, firstDataArg, Type, CallType, 7057 /*IsFunctionCall*/ true, CheckedVarArgs, 7058 UncoveredArg, 7059 /*no string offset*/ llvm::APSInt(64, false) = 0); 7060 7061 // Generate a diagnostic where an uncovered argument is detected. 7062 if (UncoveredArg.hasUncoveredArg()) { 7063 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7064 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7065 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7066 } 7067 7068 if (CT != SLCT_NotALiteral) 7069 // Literal format string found, check done! 7070 return CT == SLCT_CheckedLiteral; 7071 7072 // Strftime is particular as it always uses a single 'time' argument, 7073 // so it is safe to pass a non-literal string. 7074 if (Type == FST_Strftime) 7075 return false; 7076 7077 // Do not emit diag when the string param is a macro expansion and the 7078 // format is either NSString or CFString. This is a hack to prevent 7079 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7080 // which are usually used in place of NS and CF string literals. 7081 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7082 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7083 return false; 7084 7085 // If there are no arguments specified, warn with -Wformat-security, otherwise 7086 // warn only with -Wformat-nonliteral. 7087 if (Args.size() == firstDataArg) { 7088 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7089 << OrigFormatExpr->getSourceRange(); 7090 switch (Type) { 7091 default: 7092 break; 7093 case FST_Kprintf: 7094 case FST_FreeBSDKPrintf: 7095 case FST_Printf: 7096 Diag(FormatLoc, diag::note_format_security_fixit) 7097 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7098 break; 7099 case FST_NSString: 7100 Diag(FormatLoc, diag::note_format_security_fixit) 7101 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7102 break; 7103 } 7104 } else { 7105 Diag(FormatLoc, diag::warn_format_nonliteral) 7106 << OrigFormatExpr->getSourceRange(); 7107 } 7108 return false; 7109 } 7110 7111 namespace { 7112 7113 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7114 protected: 7115 Sema &S; 7116 const FormatStringLiteral *FExpr; 7117 const Expr *OrigFormatExpr; 7118 const Sema::FormatStringType FSType; 7119 const unsigned FirstDataArg; 7120 const unsigned NumDataArgs; 7121 const char *Beg; // Start of format string. 7122 const bool HasVAListArg; 7123 ArrayRef<const Expr *> Args; 7124 unsigned FormatIdx; 7125 llvm::SmallBitVector CoveredArgs; 7126 bool usesPositionalArgs = false; 7127 bool atFirstArg = true; 7128 bool inFunctionCall; 7129 Sema::VariadicCallType CallType; 7130 llvm::SmallBitVector &CheckedVarArgs; 7131 UncoveredArgHandler &UncoveredArg; 7132 7133 public: 7134 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7135 const Expr *origFormatExpr, 7136 const Sema::FormatStringType type, unsigned firstDataArg, 7137 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7138 ArrayRef<const Expr *> Args, unsigned formatIdx, 7139 bool inFunctionCall, Sema::VariadicCallType callType, 7140 llvm::SmallBitVector &CheckedVarArgs, 7141 UncoveredArgHandler &UncoveredArg) 7142 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7143 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7144 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7145 inFunctionCall(inFunctionCall), CallType(callType), 7146 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7147 CoveredArgs.resize(numDataArgs); 7148 CoveredArgs.reset(); 7149 } 7150 7151 void DoneProcessing(); 7152 7153 void HandleIncompleteSpecifier(const char *startSpecifier, 7154 unsigned specifierLen) override; 7155 7156 void HandleInvalidLengthModifier( 7157 const analyze_format_string::FormatSpecifier &FS, 7158 const analyze_format_string::ConversionSpecifier &CS, 7159 const char *startSpecifier, unsigned specifierLen, 7160 unsigned DiagID); 7161 7162 void HandleNonStandardLengthModifier( 7163 const analyze_format_string::FormatSpecifier &FS, 7164 const char *startSpecifier, unsigned specifierLen); 7165 7166 void HandleNonStandardConversionSpecifier( 7167 const analyze_format_string::ConversionSpecifier &CS, 7168 const char *startSpecifier, unsigned specifierLen); 7169 7170 void HandlePosition(const char *startPos, unsigned posLen) override; 7171 7172 void HandleInvalidPosition(const char *startSpecifier, 7173 unsigned specifierLen, 7174 analyze_format_string::PositionContext p) override; 7175 7176 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7177 7178 void HandleNullChar(const char *nullCharacter) override; 7179 7180 template <typename Range> 7181 static void 7182 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7183 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7184 bool IsStringLocation, Range StringRange, 7185 ArrayRef<FixItHint> Fixit = None); 7186 7187 protected: 7188 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7189 const char *startSpec, 7190 unsigned specifierLen, 7191 const char *csStart, unsigned csLen); 7192 7193 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7194 const char *startSpec, 7195 unsigned specifierLen); 7196 7197 SourceRange getFormatStringRange(); 7198 CharSourceRange getSpecifierRange(const char *startSpecifier, 7199 unsigned specifierLen); 7200 SourceLocation getLocationOfByte(const char *x); 7201 7202 const Expr *getDataArg(unsigned i) const; 7203 7204 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7205 const analyze_format_string::ConversionSpecifier &CS, 7206 const char *startSpecifier, unsigned specifierLen, 7207 unsigned argIndex); 7208 7209 template <typename Range> 7210 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7211 bool IsStringLocation, Range StringRange, 7212 ArrayRef<FixItHint> Fixit = None); 7213 }; 7214 7215 } // namespace 7216 7217 SourceRange CheckFormatHandler::getFormatStringRange() { 7218 return OrigFormatExpr->getSourceRange(); 7219 } 7220 7221 CharSourceRange CheckFormatHandler:: 7222 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7223 SourceLocation Start = getLocationOfByte(startSpecifier); 7224 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7225 7226 // Advance the end SourceLocation by one due to half-open ranges. 7227 End = End.getLocWithOffset(1); 7228 7229 return CharSourceRange::getCharRange(Start, End); 7230 } 7231 7232 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7233 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7234 S.getLangOpts(), S.Context.getTargetInfo()); 7235 } 7236 7237 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7238 unsigned specifierLen){ 7239 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7240 getLocationOfByte(startSpecifier), 7241 /*IsStringLocation*/true, 7242 getSpecifierRange(startSpecifier, specifierLen)); 7243 } 7244 7245 void CheckFormatHandler::HandleInvalidLengthModifier( 7246 const analyze_format_string::FormatSpecifier &FS, 7247 const analyze_format_string::ConversionSpecifier &CS, 7248 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7249 using namespace analyze_format_string; 7250 7251 const LengthModifier &LM = FS.getLengthModifier(); 7252 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7253 7254 // See if we know how to fix this length modifier. 7255 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7256 if (FixedLM) { 7257 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7258 getLocationOfByte(LM.getStart()), 7259 /*IsStringLocation*/true, 7260 getSpecifierRange(startSpecifier, specifierLen)); 7261 7262 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7263 << FixedLM->toString() 7264 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7265 7266 } else { 7267 FixItHint Hint; 7268 if (DiagID == diag::warn_format_nonsensical_length) 7269 Hint = FixItHint::CreateRemoval(LMRange); 7270 7271 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7272 getLocationOfByte(LM.getStart()), 7273 /*IsStringLocation*/true, 7274 getSpecifierRange(startSpecifier, specifierLen), 7275 Hint); 7276 } 7277 } 7278 7279 void CheckFormatHandler::HandleNonStandardLengthModifier( 7280 const analyze_format_string::FormatSpecifier &FS, 7281 const char *startSpecifier, unsigned specifierLen) { 7282 using namespace analyze_format_string; 7283 7284 const LengthModifier &LM = FS.getLengthModifier(); 7285 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7286 7287 // See if we know how to fix this length modifier. 7288 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7289 if (FixedLM) { 7290 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7291 << LM.toString() << 0, 7292 getLocationOfByte(LM.getStart()), 7293 /*IsStringLocation*/true, 7294 getSpecifierRange(startSpecifier, specifierLen)); 7295 7296 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7297 << FixedLM->toString() 7298 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7299 7300 } else { 7301 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7302 << LM.toString() << 0, 7303 getLocationOfByte(LM.getStart()), 7304 /*IsStringLocation*/true, 7305 getSpecifierRange(startSpecifier, specifierLen)); 7306 } 7307 } 7308 7309 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7310 const analyze_format_string::ConversionSpecifier &CS, 7311 const char *startSpecifier, unsigned specifierLen) { 7312 using namespace analyze_format_string; 7313 7314 // See if we know how to fix this conversion specifier. 7315 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7316 if (FixedCS) { 7317 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7318 << CS.toString() << /*conversion specifier*/1, 7319 getLocationOfByte(CS.getStart()), 7320 /*IsStringLocation*/true, 7321 getSpecifierRange(startSpecifier, specifierLen)); 7322 7323 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7324 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7325 << FixedCS->toString() 7326 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7327 } else { 7328 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7329 << CS.toString() << /*conversion specifier*/1, 7330 getLocationOfByte(CS.getStart()), 7331 /*IsStringLocation*/true, 7332 getSpecifierRange(startSpecifier, specifierLen)); 7333 } 7334 } 7335 7336 void CheckFormatHandler::HandlePosition(const char *startPos, 7337 unsigned posLen) { 7338 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7339 getLocationOfByte(startPos), 7340 /*IsStringLocation*/true, 7341 getSpecifierRange(startPos, posLen)); 7342 } 7343 7344 void 7345 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7346 analyze_format_string::PositionContext p) { 7347 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7348 << (unsigned) p, 7349 getLocationOfByte(startPos), /*IsStringLocation*/true, 7350 getSpecifierRange(startPos, posLen)); 7351 } 7352 7353 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7354 unsigned posLen) { 7355 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7356 getLocationOfByte(startPos), 7357 /*IsStringLocation*/true, 7358 getSpecifierRange(startPos, posLen)); 7359 } 7360 7361 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7362 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7363 // The presence of a null character is likely an error. 7364 EmitFormatDiagnostic( 7365 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7366 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7367 getFormatStringRange()); 7368 } 7369 } 7370 7371 // Note that this may return NULL if there was an error parsing or building 7372 // one of the argument expressions. 7373 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7374 return Args[FirstDataArg + i]; 7375 } 7376 7377 void CheckFormatHandler::DoneProcessing() { 7378 // Does the number of data arguments exceed the number of 7379 // format conversions in the format string? 7380 if (!HasVAListArg) { 7381 // Find any arguments that weren't covered. 7382 CoveredArgs.flip(); 7383 signed notCoveredArg = CoveredArgs.find_first(); 7384 if (notCoveredArg >= 0) { 7385 assert((unsigned)notCoveredArg < NumDataArgs); 7386 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7387 } else { 7388 UncoveredArg.setAllCovered(); 7389 } 7390 } 7391 } 7392 7393 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7394 const Expr *ArgExpr) { 7395 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7396 "Invalid state"); 7397 7398 if (!ArgExpr) 7399 return; 7400 7401 SourceLocation Loc = ArgExpr->getBeginLoc(); 7402 7403 if (S.getSourceManager().isInSystemMacro(Loc)) 7404 return; 7405 7406 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7407 for (auto E : DiagnosticExprs) 7408 PDiag << E->getSourceRange(); 7409 7410 CheckFormatHandler::EmitFormatDiagnostic( 7411 S, IsFunctionCall, DiagnosticExprs[0], 7412 PDiag, Loc, /*IsStringLocation*/false, 7413 DiagnosticExprs[0]->getSourceRange()); 7414 } 7415 7416 bool 7417 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7418 SourceLocation Loc, 7419 const char *startSpec, 7420 unsigned specifierLen, 7421 const char *csStart, 7422 unsigned csLen) { 7423 bool keepGoing = true; 7424 if (argIndex < NumDataArgs) { 7425 // Consider the argument coverered, even though the specifier doesn't 7426 // make sense. 7427 CoveredArgs.set(argIndex); 7428 } 7429 else { 7430 // If argIndex exceeds the number of data arguments we 7431 // don't issue a warning because that is just a cascade of warnings (and 7432 // they may have intended '%%' anyway). We don't want to continue processing 7433 // the format string after this point, however, as we will like just get 7434 // gibberish when trying to match arguments. 7435 keepGoing = false; 7436 } 7437 7438 StringRef Specifier(csStart, csLen); 7439 7440 // If the specifier in non-printable, it could be the first byte of a UTF-8 7441 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7442 // hex value. 7443 std::string CodePointStr; 7444 if (!llvm::sys::locale::isPrint(*csStart)) { 7445 llvm::UTF32 CodePoint; 7446 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7447 const llvm::UTF8 *E = 7448 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7449 llvm::ConversionResult Result = 7450 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7451 7452 if (Result != llvm::conversionOK) { 7453 unsigned char FirstChar = *csStart; 7454 CodePoint = (llvm::UTF32)FirstChar; 7455 } 7456 7457 llvm::raw_string_ostream OS(CodePointStr); 7458 if (CodePoint < 256) 7459 OS << "\\x" << llvm::format("%02x", CodePoint); 7460 else if (CodePoint <= 0xFFFF) 7461 OS << "\\u" << llvm::format("%04x", CodePoint); 7462 else 7463 OS << "\\U" << llvm::format("%08x", CodePoint); 7464 OS.flush(); 7465 Specifier = CodePointStr; 7466 } 7467 7468 EmitFormatDiagnostic( 7469 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7470 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7471 7472 return keepGoing; 7473 } 7474 7475 void 7476 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7477 const char *startSpec, 7478 unsigned specifierLen) { 7479 EmitFormatDiagnostic( 7480 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7481 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7482 } 7483 7484 bool 7485 CheckFormatHandler::CheckNumArgs( 7486 const analyze_format_string::FormatSpecifier &FS, 7487 const analyze_format_string::ConversionSpecifier &CS, 7488 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7489 7490 if (argIndex >= NumDataArgs) { 7491 PartialDiagnostic PDiag = FS.usesPositionalArg() 7492 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7493 << (argIndex+1) << NumDataArgs) 7494 : S.PDiag(diag::warn_printf_insufficient_data_args); 7495 EmitFormatDiagnostic( 7496 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7497 getSpecifierRange(startSpecifier, specifierLen)); 7498 7499 // Since more arguments than conversion tokens are given, by extension 7500 // all arguments are covered, so mark this as so. 7501 UncoveredArg.setAllCovered(); 7502 return false; 7503 } 7504 return true; 7505 } 7506 7507 template<typename Range> 7508 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7509 SourceLocation Loc, 7510 bool IsStringLocation, 7511 Range StringRange, 7512 ArrayRef<FixItHint> FixIt) { 7513 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7514 Loc, IsStringLocation, StringRange, FixIt); 7515 } 7516 7517 /// If the format string is not within the function call, emit a note 7518 /// so that the function call and string are in diagnostic messages. 7519 /// 7520 /// \param InFunctionCall if true, the format string is within the function 7521 /// call and only one diagnostic message will be produced. Otherwise, an 7522 /// extra note will be emitted pointing to location of the format string. 7523 /// 7524 /// \param ArgumentExpr the expression that is passed as the format string 7525 /// argument in the function call. Used for getting locations when two 7526 /// diagnostics are emitted. 7527 /// 7528 /// \param PDiag the callee should already have provided any strings for the 7529 /// diagnostic message. This function only adds locations and fixits 7530 /// to diagnostics. 7531 /// 7532 /// \param Loc primary location for diagnostic. If two diagnostics are 7533 /// required, one will be at Loc and a new SourceLocation will be created for 7534 /// the other one. 7535 /// 7536 /// \param IsStringLocation if true, Loc points to the format string should be 7537 /// used for the note. Otherwise, Loc points to the argument list and will 7538 /// be used with PDiag. 7539 /// 7540 /// \param StringRange some or all of the string to highlight. This is 7541 /// templated so it can accept either a CharSourceRange or a SourceRange. 7542 /// 7543 /// \param FixIt optional fix it hint for the format string. 7544 template <typename Range> 7545 void CheckFormatHandler::EmitFormatDiagnostic( 7546 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7547 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7548 Range StringRange, ArrayRef<FixItHint> FixIt) { 7549 if (InFunctionCall) { 7550 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7551 D << StringRange; 7552 D << FixIt; 7553 } else { 7554 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7555 << ArgumentExpr->getSourceRange(); 7556 7557 const Sema::SemaDiagnosticBuilder &Note = 7558 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7559 diag::note_format_string_defined); 7560 7561 Note << StringRange; 7562 Note << FixIt; 7563 } 7564 } 7565 7566 //===--- CHECK: Printf format string checking ------------------------------===// 7567 7568 namespace { 7569 7570 class CheckPrintfHandler : public CheckFormatHandler { 7571 public: 7572 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7573 const Expr *origFormatExpr, 7574 const Sema::FormatStringType type, unsigned firstDataArg, 7575 unsigned numDataArgs, bool isObjC, const char *beg, 7576 bool hasVAListArg, ArrayRef<const Expr *> Args, 7577 unsigned formatIdx, bool inFunctionCall, 7578 Sema::VariadicCallType CallType, 7579 llvm::SmallBitVector &CheckedVarArgs, 7580 UncoveredArgHandler &UncoveredArg) 7581 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7582 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7583 inFunctionCall, CallType, CheckedVarArgs, 7584 UncoveredArg) {} 7585 7586 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7587 7588 /// Returns true if '%@' specifiers are allowed in the format string. 7589 bool allowsObjCArg() const { 7590 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7591 FSType == Sema::FST_OSTrace; 7592 } 7593 7594 bool HandleInvalidPrintfConversionSpecifier( 7595 const analyze_printf::PrintfSpecifier &FS, 7596 const char *startSpecifier, 7597 unsigned specifierLen) override; 7598 7599 void handleInvalidMaskType(StringRef MaskType) override; 7600 7601 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7602 const char *startSpecifier, 7603 unsigned specifierLen) override; 7604 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7605 const char *StartSpecifier, 7606 unsigned SpecifierLen, 7607 const Expr *E); 7608 7609 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7610 const char *startSpecifier, unsigned specifierLen); 7611 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7612 const analyze_printf::OptionalAmount &Amt, 7613 unsigned type, 7614 const char *startSpecifier, unsigned specifierLen); 7615 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7616 const analyze_printf::OptionalFlag &flag, 7617 const char *startSpecifier, unsigned specifierLen); 7618 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7619 const analyze_printf::OptionalFlag &ignoredFlag, 7620 const analyze_printf::OptionalFlag &flag, 7621 const char *startSpecifier, unsigned specifierLen); 7622 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7623 const Expr *E); 7624 7625 void HandleEmptyObjCModifierFlag(const char *startFlag, 7626 unsigned flagLen) override; 7627 7628 void HandleInvalidObjCModifierFlag(const char *startFlag, 7629 unsigned flagLen) override; 7630 7631 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 7632 const char *flagsEnd, 7633 const char *conversionPosition) 7634 override; 7635 }; 7636 7637 } // namespace 7638 7639 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 7640 const analyze_printf::PrintfSpecifier &FS, 7641 const char *startSpecifier, 7642 unsigned specifierLen) { 7643 const analyze_printf::PrintfConversionSpecifier &CS = 7644 FS.getConversionSpecifier(); 7645 7646 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 7647 getLocationOfByte(CS.getStart()), 7648 startSpecifier, specifierLen, 7649 CS.getStart(), CS.getLength()); 7650 } 7651 7652 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 7653 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 7654 } 7655 7656 bool CheckPrintfHandler::HandleAmount( 7657 const analyze_format_string::OptionalAmount &Amt, 7658 unsigned k, const char *startSpecifier, 7659 unsigned specifierLen) { 7660 if (Amt.hasDataArgument()) { 7661 if (!HasVAListArg) { 7662 unsigned argIndex = Amt.getArgIndex(); 7663 if (argIndex >= NumDataArgs) { 7664 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 7665 << k, 7666 getLocationOfByte(Amt.getStart()), 7667 /*IsStringLocation*/true, 7668 getSpecifierRange(startSpecifier, specifierLen)); 7669 // Don't do any more checking. We will just emit 7670 // spurious errors. 7671 return false; 7672 } 7673 7674 // Type check the data argument. It should be an 'int'. 7675 // Although not in conformance with C99, we also allow the argument to be 7676 // an 'unsigned int' as that is a reasonably safe case. GCC also 7677 // doesn't emit a warning for that case. 7678 CoveredArgs.set(argIndex); 7679 const Expr *Arg = getDataArg(argIndex); 7680 if (!Arg) 7681 return false; 7682 7683 QualType T = Arg->getType(); 7684 7685 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 7686 assert(AT.isValid()); 7687 7688 if (!AT.matchesType(S.Context, T)) { 7689 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 7690 << k << AT.getRepresentativeTypeName(S.Context) 7691 << T << Arg->getSourceRange(), 7692 getLocationOfByte(Amt.getStart()), 7693 /*IsStringLocation*/true, 7694 getSpecifierRange(startSpecifier, specifierLen)); 7695 // Don't do any more checking. We will just emit 7696 // spurious errors. 7697 return false; 7698 } 7699 } 7700 } 7701 return true; 7702 } 7703 7704 void CheckPrintfHandler::HandleInvalidAmount( 7705 const analyze_printf::PrintfSpecifier &FS, 7706 const analyze_printf::OptionalAmount &Amt, 7707 unsigned type, 7708 const char *startSpecifier, 7709 unsigned specifierLen) { 7710 const analyze_printf::PrintfConversionSpecifier &CS = 7711 FS.getConversionSpecifier(); 7712 7713 FixItHint fixit = 7714 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 7715 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 7716 Amt.getConstantLength())) 7717 : FixItHint(); 7718 7719 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 7720 << type << CS.toString(), 7721 getLocationOfByte(Amt.getStart()), 7722 /*IsStringLocation*/true, 7723 getSpecifierRange(startSpecifier, specifierLen), 7724 fixit); 7725 } 7726 7727 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7728 const analyze_printf::OptionalFlag &flag, 7729 const char *startSpecifier, 7730 unsigned specifierLen) { 7731 // Warn about pointless flag with a fixit removal. 7732 const analyze_printf::PrintfConversionSpecifier &CS = 7733 FS.getConversionSpecifier(); 7734 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 7735 << flag.toString() << CS.toString(), 7736 getLocationOfByte(flag.getPosition()), 7737 /*IsStringLocation*/true, 7738 getSpecifierRange(startSpecifier, specifierLen), 7739 FixItHint::CreateRemoval( 7740 getSpecifierRange(flag.getPosition(), 1))); 7741 } 7742 7743 void CheckPrintfHandler::HandleIgnoredFlag( 7744 const analyze_printf::PrintfSpecifier &FS, 7745 const analyze_printf::OptionalFlag &ignoredFlag, 7746 const analyze_printf::OptionalFlag &flag, 7747 const char *startSpecifier, 7748 unsigned specifierLen) { 7749 // Warn about ignored flag with a fixit removal. 7750 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 7751 << ignoredFlag.toString() << flag.toString(), 7752 getLocationOfByte(ignoredFlag.getPosition()), 7753 /*IsStringLocation*/true, 7754 getSpecifierRange(startSpecifier, specifierLen), 7755 FixItHint::CreateRemoval( 7756 getSpecifierRange(ignoredFlag.getPosition(), 1))); 7757 } 7758 7759 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 7760 unsigned flagLen) { 7761 // Warn about an empty flag. 7762 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 7763 getLocationOfByte(startFlag), 7764 /*IsStringLocation*/true, 7765 getSpecifierRange(startFlag, flagLen)); 7766 } 7767 7768 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 7769 unsigned flagLen) { 7770 // Warn about an invalid flag. 7771 auto Range = getSpecifierRange(startFlag, flagLen); 7772 StringRef flag(startFlag, flagLen); 7773 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 7774 getLocationOfByte(startFlag), 7775 /*IsStringLocation*/true, 7776 Range, FixItHint::CreateRemoval(Range)); 7777 } 7778 7779 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 7780 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 7781 // Warn about using '[...]' without a '@' conversion. 7782 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 7783 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 7784 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 7785 getLocationOfByte(conversionPosition), 7786 /*IsStringLocation*/true, 7787 Range, FixItHint::CreateRemoval(Range)); 7788 } 7789 7790 // Determines if the specified is a C++ class or struct containing 7791 // a member with the specified name and kind (e.g. a CXXMethodDecl named 7792 // "c_str()"). 7793 template<typename MemberKind> 7794 static llvm::SmallPtrSet<MemberKind*, 1> 7795 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 7796 const RecordType *RT = Ty->getAs<RecordType>(); 7797 llvm::SmallPtrSet<MemberKind*, 1> Results; 7798 7799 if (!RT) 7800 return Results; 7801 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 7802 if (!RD || !RD->getDefinition()) 7803 return Results; 7804 7805 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 7806 Sema::LookupMemberName); 7807 R.suppressDiagnostics(); 7808 7809 // We just need to include all members of the right kind turned up by the 7810 // filter, at this point. 7811 if (S.LookupQualifiedName(R, RT->getDecl())) 7812 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 7813 NamedDecl *decl = (*I)->getUnderlyingDecl(); 7814 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 7815 Results.insert(FK); 7816 } 7817 return Results; 7818 } 7819 7820 /// Check if we could call '.c_str()' on an object. 7821 /// 7822 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 7823 /// allow the call, or if it would be ambiguous). 7824 bool Sema::hasCStrMethod(const Expr *E) { 7825 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7826 7827 MethodSet Results = 7828 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 7829 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7830 MI != ME; ++MI) 7831 if ((*MI)->getMinRequiredArguments() == 0) 7832 return true; 7833 return false; 7834 } 7835 7836 // Check if a (w)string was passed when a (w)char* was needed, and offer a 7837 // better diagnostic if so. AT is assumed to be valid. 7838 // Returns true when a c_str() conversion method is found. 7839 bool CheckPrintfHandler::checkForCStrMembers( 7840 const analyze_printf::ArgType &AT, const Expr *E) { 7841 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7842 7843 MethodSet Results = 7844 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 7845 7846 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7847 MI != ME; ++MI) { 7848 const CXXMethodDecl *Method = *MI; 7849 if (Method->getMinRequiredArguments() == 0 && 7850 AT.matchesType(S.Context, Method->getReturnType())) { 7851 // FIXME: Suggest parens if the expression needs them. 7852 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 7853 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 7854 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 7855 return true; 7856 } 7857 } 7858 7859 return false; 7860 } 7861 7862 bool 7863 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 7864 &FS, 7865 const char *startSpecifier, 7866 unsigned specifierLen) { 7867 using namespace analyze_format_string; 7868 using namespace analyze_printf; 7869 7870 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 7871 7872 if (FS.consumesDataArgument()) { 7873 if (atFirstArg) { 7874 atFirstArg = false; 7875 usesPositionalArgs = FS.usesPositionalArg(); 7876 } 7877 else if (usesPositionalArgs != FS.usesPositionalArg()) { 7878 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 7879 startSpecifier, specifierLen); 7880 return false; 7881 } 7882 } 7883 7884 // First check if the field width, precision, and conversion specifier 7885 // have matching data arguments. 7886 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 7887 startSpecifier, specifierLen)) { 7888 return false; 7889 } 7890 7891 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 7892 startSpecifier, specifierLen)) { 7893 return false; 7894 } 7895 7896 if (!CS.consumesDataArgument()) { 7897 // FIXME: Technically specifying a precision or field width here 7898 // makes no sense. Worth issuing a warning at some point. 7899 return true; 7900 } 7901 7902 // Consume the argument. 7903 unsigned argIndex = FS.getArgIndex(); 7904 if (argIndex < NumDataArgs) { 7905 // The check to see if the argIndex is valid will come later. 7906 // We set the bit here because we may exit early from this 7907 // function if we encounter some other error. 7908 CoveredArgs.set(argIndex); 7909 } 7910 7911 // FreeBSD kernel extensions. 7912 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 7913 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 7914 // We need at least two arguments. 7915 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 7916 return false; 7917 7918 // Claim the second argument. 7919 CoveredArgs.set(argIndex + 1); 7920 7921 // Type check the first argument (int for %b, pointer for %D) 7922 const Expr *Ex = getDataArg(argIndex); 7923 const analyze_printf::ArgType &AT = 7924 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 7925 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 7926 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 7927 EmitFormatDiagnostic( 7928 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7929 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 7930 << false << Ex->getSourceRange(), 7931 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7932 getSpecifierRange(startSpecifier, specifierLen)); 7933 7934 // Type check the second argument (char * for both %b and %D) 7935 Ex = getDataArg(argIndex + 1); 7936 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 7937 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 7938 EmitFormatDiagnostic( 7939 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 7940 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 7941 << false << Ex->getSourceRange(), 7942 Ex->getBeginLoc(), /*IsStringLocation*/ false, 7943 getSpecifierRange(startSpecifier, specifierLen)); 7944 7945 return true; 7946 } 7947 7948 // Check for using an Objective-C specific conversion specifier 7949 // in a non-ObjC literal. 7950 if (!allowsObjCArg() && CS.isObjCArg()) { 7951 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7952 specifierLen); 7953 } 7954 7955 // %P can only be used with os_log. 7956 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 7957 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7958 specifierLen); 7959 } 7960 7961 // %n is not allowed with os_log. 7962 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 7963 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 7964 getLocationOfByte(CS.getStart()), 7965 /*IsStringLocation*/ false, 7966 getSpecifierRange(startSpecifier, specifierLen)); 7967 7968 return true; 7969 } 7970 7971 // Only scalars are allowed for os_trace. 7972 if (FSType == Sema::FST_OSTrace && 7973 (CS.getKind() == ConversionSpecifier::PArg || 7974 CS.getKind() == ConversionSpecifier::sArg || 7975 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 7976 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 7977 specifierLen); 7978 } 7979 7980 // Check for use of public/private annotation outside of os_log(). 7981 if (FSType != Sema::FST_OSLog) { 7982 if (FS.isPublic().isSet()) { 7983 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7984 << "public", 7985 getLocationOfByte(FS.isPublic().getPosition()), 7986 /*IsStringLocation*/ false, 7987 getSpecifierRange(startSpecifier, specifierLen)); 7988 } 7989 if (FS.isPrivate().isSet()) { 7990 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 7991 << "private", 7992 getLocationOfByte(FS.isPrivate().getPosition()), 7993 /*IsStringLocation*/ false, 7994 getSpecifierRange(startSpecifier, specifierLen)); 7995 } 7996 } 7997 7998 // Check for invalid use of field width 7999 if (!FS.hasValidFieldWidth()) { 8000 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8001 startSpecifier, specifierLen); 8002 } 8003 8004 // Check for invalid use of precision 8005 if (!FS.hasValidPrecision()) { 8006 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8007 startSpecifier, specifierLen); 8008 } 8009 8010 // Precision is mandatory for %P specifier. 8011 if (CS.getKind() == ConversionSpecifier::PArg && 8012 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8013 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8014 getLocationOfByte(startSpecifier), 8015 /*IsStringLocation*/ false, 8016 getSpecifierRange(startSpecifier, specifierLen)); 8017 } 8018 8019 // Check each flag does not conflict with any other component. 8020 if (!FS.hasValidThousandsGroupingPrefix()) 8021 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8022 if (!FS.hasValidLeadingZeros()) 8023 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8024 if (!FS.hasValidPlusPrefix()) 8025 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8026 if (!FS.hasValidSpacePrefix()) 8027 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8028 if (!FS.hasValidAlternativeForm()) 8029 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8030 if (!FS.hasValidLeftJustified()) 8031 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8032 8033 // Check that flags are not ignored by another flag 8034 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8035 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8036 startSpecifier, specifierLen); 8037 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8038 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8039 startSpecifier, specifierLen); 8040 8041 // Check the length modifier is valid with the given conversion specifier. 8042 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8043 S.getLangOpts())) 8044 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8045 diag::warn_format_nonsensical_length); 8046 else if (!FS.hasStandardLengthModifier()) 8047 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8048 else if (!FS.hasStandardLengthConversionCombination()) 8049 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8050 diag::warn_format_non_standard_conversion_spec); 8051 8052 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8053 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8054 8055 // The remaining checks depend on the data arguments. 8056 if (HasVAListArg) 8057 return true; 8058 8059 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8060 return false; 8061 8062 const Expr *Arg = getDataArg(argIndex); 8063 if (!Arg) 8064 return true; 8065 8066 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8067 } 8068 8069 static bool requiresParensToAddCast(const Expr *E) { 8070 // FIXME: We should have a general way to reason about operator 8071 // precedence and whether parens are actually needed here. 8072 // Take care of a few common cases where they aren't. 8073 const Expr *Inside = E->IgnoreImpCasts(); 8074 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8075 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8076 8077 switch (Inside->getStmtClass()) { 8078 case Stmt::ArraySubscriptExprClass: 8079 case Stmt::CallExprClass: 8080 case Stmt::CharacterLiteralClass: 8081 case Stmt::CXXBoolLiteralExprClass: 8082 case Stmt::DeclRefExprClass: 8083 case Stmt::FloatingLiteralClass: 8084 case Stmt::IntegerLiteralClass: 8085 case Stmt::MemberExprClass: 8086 case Stmt::ObjCArrayLiteralClass: 8087 case Stmt::ObjCBoolLiteralExprClass: 8088 case Stmt::ObjCBoxedExprClass: 8089 case Stmt::ObjCDictionaryLiteralClass: 8090 case Stmt::ObjCEncodeExprClass: 8091 case Stmt::ObjCIvarRefExprClass: 8092 case Stmt::ObjCMessageExprClass: 8093 case Stmt::ObjCPropertyRefExprClass: 8094 case Stmt::ObjCStringLiteralClass: 8095 case Stmt::ObjCSubscriptRefExprClass: 8096 case Stmt::ParenExprClass: 8097 case Stmt::StringLiteralClass: 8098 case Stmt::UnaryOperatorClass: 8099 return false; 8100 default: 8101 return true; 8102 } 8103 } 8104 8105 static std::pair<QualType, StringRef> 8106 shouldNotPrintDirectly(const ASTContext &Context, 8107 QualType IntendedTy, 8108 const Expr *E) { 8109 // Use a 'while' to peel off layers of typedefs. 8110 QualType TyTy = IntendedTy; 8111 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8112 StringRef Name = UserTy->getDecl()->getName(); 8113 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8114 .Case("CFIndex", Context.getNSIntegerType()) 8115 .Case("NSInteger", Context.getNSIntegerType()) 8116 .Case("NSUInteger", Context.getNSUIntegerType()) 8117 .Case("SInt32", Context.IntTy) 8118 .Case("UInt32", Context.UnsignedIntTy) 8119 .Default(QualType()); 8120 8121 if (!CastTy.isNull()) 8122 return std::make_pair(CastTy, Name); 8123 8124 TyTy = UserTy->desugar(); 8125 } 8126 8127 // Strip parens if necessary. 8128 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8129 return shouldNotPrintDirectly(Context, 8130 PE->getSubExpr()->getType(), 8131 PE->getSubExpr()); 8132 8133 // If this is a conditional expression, then its result type is constructed 8134 // via usual arithmetic conversions and thus there might be no necessary 8135 // typedef sugar there. Recurse to operands to check for NSInteger & 8136 // Co. usage condition. 8137 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8138 QualType TrueTy, FalseTy; 8139 StringRef TrueName, FalseName; 8140 8141 std::tie(TrueTy, TrueName) = 8142 shouldNotPrintDirectly(Context, 8143 CO->getTrueExpr()->getType(), 8144 CO->getTrueExpr()); 8145 std::tie(FalseTy, FalseName) = 8146 shouldNotPrintDirectly(Context, 8147 CO->getFalseExpr()->getType(), 8148 CO->getFalseExpr()); 8149 8150 if (TrueTy == FalseTy) 8151 return std::make_pair(TrueTy, TrueName); 8152 else if (TrueTy.isNull()) 8153 return std::make_pair(FalseTy, FalseName); 8154 else if (FalseTy.isNull()) 8155 return std::make_pair(TrueTy, TrueName); 8156 } 8157 8158 return std::make_pair(QualType(), StringRef()); 8159 } 8160 8161 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8162 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8163 /// type do not count. 8164 static bool 8165 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8166 QualType From = ICE->getSubExpr()->getType(); 8167 QualType To = ICE->getType(); 8168 // It's an integer promotion if the destination type is the promoted 8169 // source type. 8170 if (ICE->getCastKind() == CK_IntegralCast && 8171 From->isPromotableIntegerType() && 8172 S.Context.getPromotedIntegerType(From) == To) 8173 return true; 8174 // Look through vector types, since we do default argument promotion for 8175 // those in OpenCL. 8176 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8177 From = VecTy->getElementType(); 8178 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8179 To = VecTy->getElementType(); 8180 // It's a floating promotion if the source type is a lower rank. 8181 return ICE->getCastKind() == CK_FloatingCast && 8182 S.Context.getFloatingTypeOrder(From, To) < 0; 8183 } 8184 8185 bool 8186 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8187 const char *StartSpecifier, 8188 unsigned SpecifierLen, 8189 const Expr *E) { 8190 using namespace analyze_format_string; 8191 using namespace analyze_printf; 8192 8193 // Now type check the data expression that matches the 8194 // format specifier. 8195 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8196 if (!AT.isValid()) 8197 return true; 8198 8199 QualType ExprTy = E->getType(); 8200 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8201 ExprTy = TET->getUnderlyingExpr()->getType(); 8202 } 8203 8204 // Diagnose attempts to print a boolean value as a character. Unlike other 8205 // -Wformat diagnostics, this is fine from a type perspective, but it still 8206 // doesn't make sense. 8207 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8208 E->isKnownToHaveBooleanValue()) { 8209 const CharSourceRange &CSR = 8210 getSpecifierRange(StartSpecifier, SpecifierLen); 8211 SmallString<4> FSString; 8212 llvm::raw_svector_ostream os(FSString); 8213 FS.toString(os); 8214 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8215 << FSString, 8216 E->getExprLoc(), false, CSR); 8217 return true; 8218 } 8219 8220 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8221 if (Match == analyze_printf::ArgType::Match) 8222 return true; 8223 8224 // Look through argument promotions for our error message's reported type. 8225 // This includes the integral and floating promotions, but excludes array 8226 // and function pointer decay (seeing that an argument intended to be a 8227 // string has type 'char [6]' is probably more confusing than 'char *') and 8228 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8229 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8230 if (isArithmeticArgumentPromotion(S, ICE)) { 8231 E = ICE->getSubExpr(); 8232 ExprTy = E->getType(); 8233 8234 // Check if we didn't match because of an implicit cast from a 'char' 8235 // or 'short' to an 'int'. This is done because printf is a varargs 8236 // function. 8237 if (ICE->getType() == S.Context.IntTy || 8238 ICE->getType() == S.Context.UnsignedIntTy) { 8239 // All further checking is done on the subexpression 8240 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8241 AT.matchesType(S.Context, ExprTy); 8242 if (ImplicitMatch == analyze_printf::ArgType::Match) 8243 return true; 8244 if (ImplicitMatch == ArgType::NoMatchPedantic || 8245 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8246 Match = ImplicitMatch; 8247 } 8248 } 8249 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8250 // Special case for 'a', which has type 'int' in C. 8251 // Note, however, that we do /not/ want to treat multibyte constants like 8252 // 'MooV' as characters! This form is deprecated but still exists. 8253 if (ExprTy == S.Context.IntTy) 8254 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8255 ExprTy = S.Context.CharTy; 8256 } 8257 8258 // Look through enums to their underlying type. 8259 bool IsEnum = false; 8260 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8261 ExprTy = EnumTy->getDecl()->getIntegerType(); 8262 IsEnum = true; 8263 } 8264 8265 // %C in an Objective-C context prints a unichar, not a wchar_t. 8266 // If the argument is an integer of some kind, believe the %C and suggest 8267 // a cast instead of changing the conversion specifier. 8268 QualType IntendedTy = ExprTy; 8269 if (isObjCContext() && 8270 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8271 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8272 !ExprTy->isCharType()) { 8273 // 'unichar' is defined as a typedef of unsigned short, but we should 8274 // prefer using the typedef if it is visible. 8275 IntendedTy = S.Context.UnsignedShortTy; 8276 8277 // While we are here, check if the value is an IntegerLiteral that happens 8278 // to be within the valid range. 8279 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8280 const llvm::APInt &V = IL->getValue(); 8281 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8282 return true; 8283 } 8284 8285 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8286 Sema::LookupOrdinaryName); 8287 if (S.LookupName(Result, S.getCurScope())) { 8288 NamedDecl *ND = Result.getFoundDecl(); 8289 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8290 if (TD->getUnderlyingType() == IntendedTy) 8291 IntendedTy = S.Context.getTypedefType(TD); 8292 } 8293 } 8294 } 8295 8296 // Special-case some of Darwin's platform-independence types by suggesting 8297 // casts to primitive types that are known to be large enough. 8298 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8299 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8300 QualType CastTy; 8301 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8302 if (!CastTy.isNull()) { 8303 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8304 // (long in ASTContext). Only complain to pedants. 8305 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8306 (AT.isSizeT() || AT.isPtrdiffT()) && 8307 AT.matchesType(S.Context, CastTy)) 8308 Match = ArgType::NoMatchPedantic; 8309 IntendedTy = CastTy; 8310 ShouldNotPrintDirectly = true; 8311 } 8312 } 8313 8314 // We may be able to offer a FixItHint if it is a supported type. 8315 PrintfSpecifier fixedFS = FS; 8316 bool Success = 8317 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8318 8319 if (Success) { 8320 // Get the fix string from the fixed format specifier 8321 SmallString<16> buf; 8322 llvm::raw_svector_ostream os(buf); 8323 fixedFS.toString(os); 8324 8325 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8326 8327 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8328 unsigned Diag; 8329 switch (Match) { 8330 case ArgType::Match: llvm_unreachable("expected non-matching"); 8331 case ArgType::NoMatchPedantic: 8332 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8333 break; 8334 case ArgType::NoMatchTypeConfusion: 8335 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8336 break; 8337 case ArgType::NoMatch: 8338 Diag = diag::warn_format_conversion_argument_type_mismatch; 8339 break; 8340 } 8341 8342 // In this case, the specifier is wrong and should be changed to match 8343 // the argument. 8344 EmitFormatDiagnostic(S.PDiag(Diag) 8345 << AT.getRepresentativeTypeName(S.Context) 8346 << IntendedTy << IsEnum << E->getSourceRange(), 8347 E->getBeginLoc(), 8348 /*IsStringLocation*/ false, SpecRange, 8349 FixItHint::CreateReplacement(SpecRange, os.str())); 8350 } else { 8351 // The canonical type for formatting this value is different from the 8352 // actual type of the expression. (This occurs, for example, with Darwin's 8353 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8354 // should be printed as 'long' for 64-bit compatibility.) 8355 // Rather than emitting a normal format/argument mismatch, we want to 8356 // add a cast to the recommended type (and correct the format string 8357 // if necessary). 8358 SmallString<16> CastBuf; 8359 llvm::raw_svector_ostream CastFix(CastBuf); 8360 CastFix << "("; 8361 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8362 CastFix << ")"; 8363 8364 SmallVector<FixItHint,4> Hints; 8365 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8366 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8367 8368 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8369 // If there's already a cast present, just replace it. 8370 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8371 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8372 8373 } else if (!requiresParensToAddCast(E)) { 8374 // If the expression has high enough precedence, 8375 // just write the C-style cast. 8376 Hints.push_back( 8377 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8378 } else { 8379 // Otherwise, add parens around the expression as well as the cast. 8380 CastFix << "("; 8381 Hints.push_back( 8382 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8383 8384 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8385 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8386 } 8387 8388 if (ShouldNotPrintDirectly) { 8389 // The expression has a type that should not be printed directly. 8390 // We extract the name from the typedef because we don't want to show 8391 // the underlying type in the diagnostic. 8392 StringRef Name; 8393 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8394 Name = TypedefTy->getDecl()->getName(); 8395 else 8396 Name = CastTyName; 8397 unsigned Diag = Match == ArgType::NoMatchPedantic 8398 ? diag::warn_format_argument_needs_cast_pedantic 8399 : diag::warn_format_argument_needs_cast; 8400 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8401 << E->getSourceRange(), 8402 E->getBeginLoc(), /*IsStringLocation=*/false, 8403 SpecRange, Hints); 8404 } else { 8405 // In this case, the expression could be printed using a different 8406 // specifier, but we've decided that the specifier is probably correct 8407 // and we should cast instead. Just use the normal warning message. 8408 EmitFormatDiagnostic( 8409 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8410 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8411 << E->getSourceRange(), 8412 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8413 } 8414 } 8415 } else { 8416 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8417 SpecifierLen); 8418 // Since the warning for passing non-POD types to variadic functions 8419 // was deferred until now, we emit a warning for non-POD 8420 // arguments here. 8421 switch (S.isValidVarArgType(ExprTy)) { 8422 case Sema::VAK_Valid: 8423 case Sema::VAK_ValidInCXX11: { 8424 unsigned Diag; 8425 switch (Match) { 8426 case ArgType::Match: llvm_unreachable("expected non-matching"); 8427 case ArgType::NoMatchPedantic: 8428 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8429 break; 8430 case ArgType::NoMatchTypeConfusion: 8431 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8432 break; 8433 case ArgType::NoMatch: 8434 Diag = diag::warn_format_conversion_argument_type_mismatch; 8435 break; 8436 } 8437 8438 EmitFormatDiagnostic( 8439 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8440 << IsEnum << CSR << E->getSourceRange(), 8441 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8442 break; 8443 } 8444 case Sema::VAK_Undefined: 8445 case Sema::VAK_MSVCUndefined: 8446 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8447 << S.getLangOpts().CPlusPlus11 << ExprTy 8448 << CallType 8449 << AT.getRepresentativeTypeName(S.Context) << CSR 8450 << E->getSourceRange(), 8451 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8452 checkForCStrMembers(AT, E); 8453 break; 8454 8455 case Sema::VAK_Invalid: 8456 if (ExprTy->isObjCObjectType()) 8457 EmitFormatDiagnostic( 8458 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8459 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8460 << AT.getRepresentativeTypeName(S.Context) << CSR 8461 << E->getSourceRange(), 8462 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8463 else 8464 // FIXME: If this is an initializer list, suggest removing the braces 8465 // or inserting a cast to the target type. 8466 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8467 << isa<InitListExpr>(E) << ExprTy << CallType 8468 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8469 break; 8470 } 8471 8472 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8473 "format string specifier index out of range"); 8474 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8475 } 8476 8477 return true; 8478 } 8479 8480 //===--- CHECK: Scanf format string checking ------------------------------===// 8481 8482 namespace { 8483 8484 class CheckScanfHandler : public CheckFormatHandler { 8485 public: 8486 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8487 const Expr *origFormatExpr, Sema::FormatStringType type, 8488 unsigned firstDataArg, unsigned numDataArgs, 8489 const char *beg, bool hasVAListArg, 8490 ArrayRef<const Expr *> Args, unsigned formatIdx, 8491 bool inFunctionCall, Sema::VariadicCallType CallType, 8492 llvm::SmallBitVector &CheckedVarArgs, 8493 UncoveredArgHandler &UncoveredArg) 8494 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8495 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8496 inFunctionCall, CallType, CheckedVarArgs, 8497 UncoveredArg) {} 8498 8499 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8500 const char *startSpecifier, 8501 unsigned specifierLen) override; 8502 8503 bool HandleInvalidScanfConversionSpecifier( 8504 const analyze_scanf::ScanfSpecifier &FS, 8505 const char *startSpecifier, 8506 unsigned specifierLen) override; 8507 8508 void HandleIncompleteScanList(const char *start, const char *end) override; 8509 }; 8510 8511 } // namespace 8512 8513 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8514 const char *end) { 8515 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8516 getLocationOfByte(end), /*IsStringLocation*/true, 8517 getSpecifierRange(start, end - start)); 8518 } 8519 8520 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8521 const analyze_scanf::ScanfSpecifier &FS, 8522 const char *startSpecifier, 8523 unsigned specifierLen) { 8524 const analyze_scanf::ScanfConversionSpecifier &CS = 8525 FS.getConversionSpecifier(); 8526 8527 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8528 getLocationOfByte(CS.getStart()), 8529 startSpecifier, specifierLen, 8530 CS.getStart(), CS.getLength()); 8531 } 8532 8533 bool CheckScanfHandler::HandleScanfSpecifier( 8534 const analyze_scanf::ScanfSpecifier &FS, 8535 const char *startSpecifier, 8536 unsigned specifierLen) { 8537 using namespace analyze_scanf; 8538 using namespace analyze_format_string; 8539 8540 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8541 8542 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8543 // be used to decide if we are using positional arguments consistently. 8544 if (FS.consumesDataArgument()) { 8545 if (atFirstArg) { 8546 atFirstArg = false; 8547 usesPositionalArgs = FS.usesPositionalArg(); 8548 } 8549 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8550 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8551 startSpecifier, specifierLen); 8552 return false; 8553 } 8554 } 8555 8556 // Check if the field with is non-zero. 8557 const OptionalAmount &Amt = FS.getFieldWidth(); 8558 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8559 if (Amt.getConstantAmount() == 0) { 8560 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8561 Amt.getConstantLength()); 8562 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8563 getLocationOfByte(Amt.getStart()), 8564 /*IsStringLocation*/true, R, 8565 FixItHint::CreateRemoval(R)); 8566 } 8567 } 8568 8569 if (!FS.consumesDataArgument()) { 8570 // FIXME: Technically specifying a precision or field width here 8571 // makes no sense. Worth issuing a warning at some point. 8572 return true; 8573 } 8574 8575 // Consume the argument. 8576 unsigned argIndex = FS.getArgIndex(); 8577 if (argIndex < NumDataArgs) { 8578 // The check to see if the argIndex is valid will come later. 8579 // We set the bit here because we may exit early from this 8580 // function if we encounter some other error. 8581 CoveredArgs.set(argIndex); 8582 } 8583 8584 // Check the length modifier is valid with the given conversion specifier. 8585 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8586 S.getLangOpts())) 8587 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8588 diag::warn_format_nonsensical_length); 8589 else if (!FS.hasStandardLengthModifier()) 8590 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8591 else if (!FS.hasStandardLengthConversionCombination()) 8592 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8593 diag::warn_format_non_standard_conversion_spec); 8594 8595 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8596 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8597 8598 // The remaining checks depend on the data arguments. 8599 if (HasVAListArg) 8600 return true; 8601 8602 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8603 return false; 8604 8605 // Check that the argument type matches the format specifier. 8606 const Expr *Ex = getDataArg(argIndex); 8607 if (!Ex) 8608 return true; 8609 8610 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8611 8612 if (!AT.isValid()) { 8613 return true; 8614 } 8615 8616 analyze_format_string::ArgType::MatchKind Match = 8617 AT.matchesType(S.Context, Ex->getType()); 8618 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8619 if (Match == analyze_format_string::ArgType::Match) 8620 return true; 8621 8622 ScanfSpecifier fixedFS = FS; 8623 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 8624 S.getLangOpts(), S.Context); 8625 8626 unsigned Diag = 8627 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8628 : diag::warn_format_conversion_argument_type_mismatch; 8629 8630 if (Success) { 8631 // Get the fix string from the fixed format specifier. 8632 SmallString<128> buf; 8633 llvm::raw_svector_ostream os(buf); 8634 fixedFS.toString(os); 8635 8636 EmitFormatDiagnostic( 8637 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 8638 << Ex->getType() << false << Ex->getSourceRange(), 8639 Ex->getBeginLoc(), 8640 /*IsStringLocation*/ false, 8641 getSpecifierRange(startSpecifier, specifierLen), 8642 FixItHint::CreateReplacement( 8643 getSpecifierRange(startSpecifier, specifierLen), os.str())); 8644 } else { 8645 EmitFormatDiagnostic(S.PDiag(Diag) 8646 << AT.getRepresentativeTypeName(S.Context) 8647 << Ex->getType() << false << Ex->getSourceRange(), 8648 Ex->getBeginLoc(), 8649 /*IsStringLocation*/ false, 8650 getSpecifierRange(startSpecifier, specifierLen)); 8651 } 8652 8653 return true; 8654 } 8655 8656 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8657 const Expr *OrigFormatExpr, 8658 ArrayRef<const Expr *> Args, 8659 bool HasVAListArg, unsigned format_idx, 8660 unsigned firstDataArg, 8661 Sema::FormatStringType Type, 8662 bool inFunctionCall, 8663 Sema::VariadicCallType CallType, 8664 llvm::SmallBitVector &CheckedVarArgs, 8665 UncoveredArgHandler &UncoveredArg, 8666 bool IgnoreStringsWithoutSpecifiers) { 8667 // CHECK: is the format string a wide literal? 8668 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 8669 CheckFormatHandler::EmitFormatDiagnostic( 8670 S, inFunctionCall, Args[format_idx], 8671 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 8672 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8673 return; 8674 } 8675 8676 // Str - The format string. NOTE: this is NOT null-terminated! 8677 StringRef StrRef = FExpr->getString(); 8678 const char *Str = StrRef.data(); 8679 // Account for cases where the string literal is truncated in a declaration. 8680 const ConstantArrayType *T = 8681 S.Context.getAsConstantArrayType(FExpr->getType()); 8682 assert(T && "String literal not of constant array type!"); 8683 size_t TypeSize = T->getSize().getZExtValue(); 8684 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8685 const unsigned numDataArgs = Args.size() - firstDataArg; 8686 8687 if (IgnoreStringsWithoutSpecifiers && 8688 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 8689 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 8690 return; 8691 8692 // Emit a warning if the string literal is truncated and does not contain an 8693 // embedded null character. 8694 if (TypeSize <= StrRef.size() && 8695 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 8696 CheckFormatHandler::EmitFormatDiagnostic( 8697 S, inFunctionCall, Args[format_idx], 8698 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 8699 FExpr->getBeginLoc(), 8700 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 8701 return; 8702 } 8703 8704 // CHECK: empty format string? 8705 if (StrLen == 0 && numDataArgs > 0) { 8706 CheckFormatHandler::EmitFormatDiagnostic( 8707 S, inFunctionCall, Args[format_idx], 8708 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 8709 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8710 return; 8711 } 8712 8713 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 8714 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 8715 Type == Sema::FST_OSTrace) { 8716 CheckPrintfHandler H( 8717 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 8718 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 8719 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 8720 CheckedVarArgs, UncoveredArg); 8721 8722 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 8723 S.getLangOpts(), 8724 S.Context.getTargetInfo(), 8725 Type == Sema::FST_FreeBSDKPrintf)) 8726 H.DoneProcessing(); 8727 } else if (Type == Sema::FST_Scanf) { 8728 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 8729 numDataArgs, Str, HasVAListArg, Args, format_idx, 8730 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 8731 8732 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 8733 S.getLangOpts(), 8734 S.Context.getTargetInfo())) 8735 H.DoneProcessing(); 8736 } // TODO: handle other formats 8737 } 8738 8739 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 8740 // Str - The format string. NOTE: this is NOT null-terminated! 8741 StringRef StrRef = FExpr->getString(); 8742 const char *Str = StrRef.data(); 8743 // Account for cases where the string literal is truncated in a declaration. 8744 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 8745 assert(T && "String literal not of constant array type!"); 8746 size_t TypeSize = T->getSize().getZExtValue(); 8747 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8748 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 8749 getLangOpts(), 8750 Context.getTargetInfo()); 8751 } 8752 8753 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 8754 8755 // Returns the related absolute value function that is larger, of 0 if one 8756 // does not exist. 8757 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 8758 switch (AbsFunction) { 8759 default: 8760 return 0; 8761 8762 case Builtin::BI__builtin_abs: 8763 return Builtin::BI__builtin_labs; 8764 case Builtin::BI__builtin_labs: 8765 return Builtin::BI__builtin_llabs; 8766 case Builtin::BI__builtin_llabs: 8767 return 0; 8768 8769 case Builtin::BI__builtin_fabsf: 8770 return Builtin::BI__builtin_fabs; 8771 case Builtin::BI__builtin_fabs: 8772 return Builtin::BI__builtin_fabsl; 8773 case Builtin::BI__builtin_fabsl: 8774 return 0; 8775 8776 case Builtin::BI__builtin_cabsf: 8777 return Builtin::BI__builtin_cabs; 8778 case Builtin::BI__builtin_cabs: 8779 return Builtin::BI__builtin_cabsl; 8780 case Builtin::BI__builtin_cabsl: 8781 return 0; 8782 8783 case Builtin::BIabs: 8784 return Builtin::BIlabs; 8785 case Builtin::BIlabs: 8786 return Builtin::BIllabs; 8787 case Builtin::BIllabs: 8788 return 0; 8789 8790 case Builtin::BIfabsf: 8791 return Builtin::BIfabs; 8792 case Builtin::BIfabs: 8793 return Builtin::BIfabsl; 8794 case Builtin::BIfabsl: 8795 return 0; 8796 8797 case Builtin::BIcabsf: 8798 return Builtin::BIcabs; 8799 case Builtin::BIcabs: 8800 return Builtin::BIcabsl; 8801 case Builtin::BIcabsl: 8802 return 0; 8803 } 8804 } 8805 8806 // Returns the argument type of the absolute value function. 8807 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 8808 unsigned AbsType) { 8809 if (AbsType == 0) 8810 return QualType(); 8811 8812 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 8813 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 8814 if (Error != ASTContext::GE_None) 8815 return QualType(); 8816 8817 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 8818 if (!FT) 8819 return QualType(); 8820 8821 if (FT->getNumParams() != 1) 8822 return QualType(); 8823 8824 return FT->getParamType(0); 8825 } 8826 8827 // Returns the best absolute value function, or zero, based on type and 8828 // current absolute value function. 8829 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 8830 unsigned AbsFunctionKind) { 8831 unsigned BestKind = 0; 8832 uint64_t ArgSize = Context.getTypeSize(ArgType); 8833 for (unsigned Kind = AbsFunctionKind; Kind != 0; 8834 Kind = getLargerAbsoluteValueFunction(Kind)) { 8835 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 8836 if (Context.getTypeSize(ParamType) >= ArgSize) { 8837 if (BestKind == 0) 8838 BestKind = Kind; 8839 else if (Context.hasSameType(ParamType, ArgType)) { 8840 BestKind = Kind; 8841 break; 8842 } 8843 } 8844 } 8845 return BestKind; 8846 } 8847 8848 enum AbsoluteValueKind { 8849 AVK_Integer, 8850 AVK_Floating, 8851 AVK_Complex 8852 }; 8853 8854 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 8855 if (T->isIntegralOrEnumerationType()) 8856 return AVK_Integer; 8857 if (T->isRealFloatingType()) 8858 return AVK_Floating; 8859 if (T->isAnyComplexType()) 8860 return AVK_Complex; 8861 8862 llvm_unreachable("Type not integer, floating, or complex"); 8863 } 8864 8865 // Changes the absolute value function to a different type. Preserves whether 8866 // the function is a builtin. 8867 static unsigned changeAbsFunction(unsigned AbsKind, 8868 AbsoluteValueKind ValueKind) { 8869 switch (ValueKind) { 8870 case AVK_Integer: 8871 switch (AbsKind) { 8872 default: 8873 return 0; 8874 case Builtin::BI__builtin_fabsf: 8875 case Builtin::BI__builtin_fabs: 8876 case Builtin::BI__builtin_fabsl: 8877 case Builtin::BI__builtin_cabsf: 8878 case Builtin::BI__builtin_cabs: 8879 case Builtin::BI__builtin_cabsl: 8880 return Builtin::BI__builtin_abs; 8881 case Builtin::BIfabsf: 8882 case Builtin::BIfabs: 8883 case Builtin::BIfabsl: 8884 case Builtin::BIcabsf: 8885 case Builtin::BIcabs: 8886 case Builtin::BIcabsl: 8887 return Builtin::BIabs; 8888 } 8889 case AVK_Floating: 8890 switch (AbsKind) { 8891 default: 8892 return 0; 8893 case Builtin::BI__builtin_abs: 8894 case Builtin::BI__builtin_labs: 8895 case Builtin::BI__builtin_llabs: 8896 case Builtin::BI__builtin_cabsf: 8897 case Builtin::BI__builtin_cabs: 8898 case Builtin::BI__builtin_cabsl: 8899 return Builtin::BI__builtin_fabsf; 8900 case Builtin::BIabs: 8901 case Builtin::BIlabs: 8902 case Builtin::BIllabs: 8903 case Builtin::BIcabsf: 8904 case Builtin::BIcabs: 8905 case Builtin::BIcabsl: 8906 return Builtin::BIfabsf; 8907 } 8908 case AVK_Complex: 8909 switch (AbsKind) { 8910 default: 8911 return 0; 8912 case Builtin::BI__builtin_abs: 8913 case Builtin::BI__builtin_labs: 8914 case Builtin::BI__builtin_llabs: 8915 case Builtin::BI__builtin_fabsf: 8916 case Builtin::BI__builtin_fabs: 8917 case Builtin::BI__builtin_fabsl: 8918 return Builtin::BI__builtin_cabsf; 8919 case Builtin::BIabs: 8920 case Builtin::BIlabs: 8921 case Builtin::BIllabs: 8922 case Builtin::BIfabsf: 8923 case Builtin::BIfabs: 8924 case Builtin::BIfabsl: 8925 return Builtin::BIcabsf; 8926 } 8927 } 8928 llvm_unreachable("Unable to convert function"); 8929 } 8930 8931 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 8932 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 8933 if (!FnInfo) 8934 return 0; 8935 8936 switch (FDecl->getBuiltinID()) { 8937 default: 8938 return 0; 8939 case Builtin::BI__builtin_abs: 8940 case Builtin::BI__builtin_fabs: 8941 case Builtin::BI__builtin_fabsf: 8942 case Builtin::BI__builtin_fabsl: 8943 case Builtin::BI__builtin_labs: 8944 case Builtin::BI__builtin_llabs: 8945 case Builtin::BI__builtin_cabs: 8946 case Builtin::BI__builtin_cabsf: 8947 case Builtin::BI__builtin_cabsl: 8948 case Builtin::BIabs: 8949 case Builtin::BIlabs: 8950 case Builtin::BIllabs: 8951 case Builtin::BIfabs: 8952 case Builtin::BIfabsf: 8953 case Builtin::BIfabsl: 8954 case Builtin::BIcabs: 8955 case Builtin::BIcabsf: 8956 case Builtin::BIcabsl: 8957 return FDecl->getBuiltinID(); 8958 } 8959 llvm_unreachable("Unknown Builtin type"); 8960 } 8961 8962 // If the replacement is valid, emit a note with replacement function. 8963 // Additionally, suggest including the proper header if not already included. 8964 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 8965 unsigned AbsKind, QualType ArgType) { 8966 bool EmitHeaderHint = true; 8967 const char *HeaderName = nullptr; 8968 const char *FunctionName = nullptr; 8969 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 8970 FunctionName = "std::abs"; 8971 if (ArgType->isIntegralOrEnumerationType()) { 8972 HeaderName = "cstdlib"; 8973 } else if (ArgType->isRealFloatingType()) { 8974 HeaderName = "cmath"; 8975 } else { 8976 llvm_unreachable("Invalid Type"); 8977 } 8978 8979 // Lookup all std::abs 8980 if (NamespaceDecl *Std = S.getStdNamespace()) { 8981 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 8982 R.suppressDiagnostics(); 8983 S.LookupQualifiedName(R, Std); 8984 8985 for (const auto *I : R) { 8986 const FunctionDecl *FDecl = nullptr; 8987 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 8988 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 8989 } else { 8990 FDecl = dyn_cast<FunctionDecl>(I); 8991 } 8992 if (!FDecl) 8993 continue; 8994 8995 // Found std::abs(), check that they are the right ones. 8996 if (FDecl->getNumParams() != 1) 8997 continue; 8998 8999 // Check that the parameter type can handle the argument. 9000 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9001 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9002 S.Context.getTypeSize(ArgType) <= 9003 S.Context.getTypeSize(ParamType)) { 9004 // Found a function, don't need the header hint. 9005 EmitHeaderHint = false; 9006 break; 9007 } 9008 } 9009 } 9010 } else { 9011 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9012 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9013 9014 if (HeaderName) { 9015 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9016 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9017 R.suppressDiagnostics(); 9018 S.LookupName(R, S.getCurScope()); 9019 9020 if (R.isSingleResult()) { 9021 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9022 if (FD && FD->getBuiltinID() == AbsKind) { 9023 EmitHeaderHint = false; 9024 } else { 9025 return; 9026 } 9027 } else if (!R.empty()) { 9028 return; 9029 } 9030 } 9031 } 9032 9033 S.Diag(Loc, diag::note_replace_abs_function) 9034 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9035 9036 if (!HeaderName) 9037 return; 9038 9039 if (!EmitHeaderHint) 9040 return; 9041 9042 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9043 << FunctionName; 9044 } 9045 9046 template <std::size_t StrLen> 9047 static bool IsStdFunction(const FunctionDecl *FDecl, 9048 const char (&Str)[StrLen]) { 9049 if (!FDecl) 9050 return false; 9051 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9052 return false; 9053 if (!FDecl->isInStdNamespace()) 9054 return false; 9055 9056 return true; 9057 } 9058 9059 // Warn when using the wrong abs() function. 9060 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9061 const FunctionDecl *FDecl) { 9062 if (Call->getNumArgs() != 1) 9063 return; 9064 9065 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9066 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9067 if (AbsKind == 0 && !IsStdAbs) 9068 return; 9069 9070 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9071 QualType ParamType = Call->getArg(0)->getType(); 9072 9073 // Unsigned types cannot be negative. Suggest removing the absolute value 9074 // function call. 9075 if (ArgType->isUnsignedIntegerType()) { 9076 const char *FunctionName = 9077 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9078 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9079 Diag(Call->getExprLoc(), diag::note_remove_abs) 9080 << FunctionName 9081 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9082 return; 9083 } 9084 9085 // Taking the absolute value of a pointer is very suspicious, they probably 9086 // wanted to index into an array, dereference a pointer, call a function, etc. 9087 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9088 unsigned DiagType = 0; 9089 if (ArgType->isFunctionType()) 9090 DiagType = 1; 9091 else if (ArgType->isArrayType()) 9092 DiagType = 2; 9093 9094 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9095 return; 9096 } 9097 9098 // std::abs has overloads which prevent most of the absolute value problems 9099 // from occurring. 9100 if (IsStdAbs) 9101 return; 9102 9103 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9104 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9105 9106 // The argument and parameter are the same kind. Check if they are the right 9107 // size. 9108 if (ArgValueKind == ParamValueKind) { 9109 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9110 return; 9111 9112 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9113 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9114 << FDecl << ArgType << ParamType; 9115 9116 if (NewAbsKind == 0) 9117 return; 9118 9119 emitReplacement(*this, Call->getExprLoc(), 9120 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9121 return; 9122 } 9123 9124 // ArgValueKind != ParamValueKind 9125 // The wrong type of absolute value function was used. Attempt to find the 9126 // proper one. 9127 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9128 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9129 if (NewAbsKind == 0) 9130 return; 9131 9132 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9133 << FDecl << ParamValueKind << ArgValueKind; 9134 9135 emitReplacement(*this, Call->getExprLoc(), 9136 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9137 } 9138 9139 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9140 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9141 const FunctionDecl *FDecl) { 9142 if (!Call || !FDecl) return; 9143 9144 // Ignore template specializations and macros. 9145 if (inTemplateInstantiation()) return; 9146 if (Call->getExprLoc().isMacroID()) return; 9147 9148 // Only care about the one template argument, two function parameter std::max 9149 if (Call->getNumArgs() != 2) return; 9150 if (!IsStdFunction(FDecl, "max")) return; 9151 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9152 if (!ArgList) return; 9153 if (ArgList->size() != 1) return; 9154 9155 // Check that template type argument is unsigned integer. 9156 const auto& TA = ArgList->get(0); 9157 if (TA.getKind() != TemplateArgument::Type) return; 9158 QualType ArgType = TA.getAsType(); 9159 if (!ArgType->isUnsignedIntegerType()) return; 9160 9161 // See if either argument is a literal zero. 9162 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9163 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9164 if (!MTE) return false; 9165 const auto *Num = dyn_cast<IntegerLiteral>(MTE->GetTemporaryExpr()); 9166 if (!Num) return false; 9167 if (Num->getValue() != 0) return false; 9168 return true; 9169 }; 9170 9171 const Expr *FirstArg = Call->getArg(0); 9172 const Expr *SecondArg = Call->getArg(1); 9173 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9174 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9175 9176 // Only warn when exactly one argument is zero. 9177 if (IsFirstArgZero == IsSecondArgZero) return; 9178 9179 SourceRange FirstRange = FirstArg->getSourceRange(); 9180 SourceRange SecondRange = SecondArg->getSourceRange(); 9181 9182 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9183 9184 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9185 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9186 9187 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9188 SourceRange RemovalRange; 9189 if (IsFirstArgZero) { 9190 RemovalRange = SourceRange(FirstRange.getBegin(), 9191 SecondRange.getBegin().getLocWithOffset(-1)); 9192 } else { 9193 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9194 SecondRange.getEnd()); 9195 } 9196 9197 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9198 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9199 << FixItHint::CreateRemoval(RemovalRange); 9200 } 9201 9202 //===--- CHECK: Standard memory functions ---------------------------------===// 9203 9204 /// Takes the expression passed to the size_t parameter of functions 9205 /// such as memcmp, strncat, etc and warns if it's a comparison. 9206 /// 9207 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9208 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9209 IdentifierInfo *FnName, 9210 SourceLocation FnLoc, 9211 SourceLocation RParenLoc) { 9212 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9213 if (!Size) 9214 return false; 9215 9216 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9217 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9218 return false; 9219 9220 SourceRange SizeRange = Size->getSourceRange(); 9221 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9222 << SizeRange << FnName; 9223 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9224 << FnName 9225 << FixItHint::CreateInsertion( 9226 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9227 << FixItHint::CreateRemoval(RParenLoc); 9228 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9229 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9230 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9231 ")"); 9232 9233 return true; 9234 } 9235 9236 /// Determine whether the given type is or contains a dynamic class type 9237 /// (e.g., whether it has a vtable). 9238 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9239 bool &IsContained) { 9240 // Look through array types while ignoring qualifiers. 9241 const Type *Ty = T->getBaseElementTypeUnsafe(); 9242 IsContained = false; 9243 9244 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9245 RD = RD ? RD->getDefinition() : nullptr; 9246 if (!RD || RD->isInvalidDecl()) 9247 return nullptr; 9248 9249 if (RD->isDynamicClass()) 9250 return RD; 9251 9252 // Check all the fields. If any bases were dynamic, the class is dynamic. 9253 // It's impossible for a class to transitively contain itself by value, so 9254 // infinite recursion is impossible. 9255 for (auto *FD : RD->fields()) { 9256 bool SubContained; 9257 if (const CXXRecordDecl *ContainedRD = 9258 getContainedDynamicClass(FD->getType(), SubContained)) { 9259 IsContained = true; 9260 return ContainedRD; 9261 } 9262 } 9263 9264 return nullptr; 9265 } 9266 9267 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9268 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9269 if (Unary->getKind() == UETT_SizeOf) 9270 return Unary; 9271 return nullptr; 9272 } 9273 9274 /// If E is a sizeof expression, returns its argument expression, 9275 /// otherwise returns NULL. 9276 static const Expr *getSizeOfExprArg(const Expr *E) { 9277 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9278 if (!SizeOf->isArgumentType()) 9279 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9280 return nullptr; 9281 } 9282 9283 /// If E is a sizeof expression, returns its argument type. 9284 static QualType getSizeOfArgType(const Expr *E) { 9285 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9286 return SizeOf->getTypeOfArgument(); 9287 return QualType(); 9288 } 9289 9290 namespace { 9291 9292 struct SearchNonTrivialToInitializeField 9293 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9294 using Super = 9295 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9296 9297 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9298 9299 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9300 SourceLocation SL) { 9301 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9302 asDerived().visitArray(PDIK, AT, SL); 9303 return; 9304 } 9305 9306 Super::visitWithKind(PDIK, FT, SL); 9307 } 9308 9309 void visitARCStrong(QualType FT, SourceLocation SL) { 9310 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9311 } 9312 void visitARCWeak(QualType FT, SourceLocation SL) { 9313 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9314 } 9315 void visitStruct(QualType FT, SourceLocation SL) { 9316 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9317 visit(FD->getType(), FD->getLocation()); 9318 } 9319 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9320 const ArrayType *AT, SourceLocation SL) { 9321 visit(getContext().getBaseElementType(AT), SL); 9322 } 9323 void visitTrivial(QualType FT, SourceLocation SL) {} 9324 9325 static void diag(QualType RT, const Expr *E, Sema &S) { 9326 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9327 } 9328 9329 ASTContext &getContext() { return S.getASTContext(); } 9330 9331 const Expr *E; 9332 Sema &S; 9333 }; 9334 9335 struct SearchNonTrivialToCopyField 9336 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9337 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9338 9339 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9340 9341 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9342 SourceLocation SL) { 9343 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9344 asDerived().visitArray(PCK, AT, SL); 9345 return; 9346 } 9347 9348 Super::visitWithKind(PCK, FT, SL); 9349 } 9350 9351 void visitARCStrong(QualType FT, SourceLocation SL) { 9352 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9353 } 9354 void visitARCWeak(QualType FT, SourceLocation SL) { 9355 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9356 } 9357 void visitStruct(QualType FT, SourceLocation SL) { 9358 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9359 visit(FD->getType(), FD->getLocation()); 9360 } 9361 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9362 SourceLocation SL) { 9363 visit(getContext().getBaseElementType(AT), SL); 9364 } 9365 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9366 SourceLocation SL) {} 9367 void visitTrivial(QualType FT, SourceLocation SL) {} 9368 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9369 9370 static void diag(QualType RT, const Expr *E, Sema &S) { 9371 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9372 } 9373 9374 ASTContext &getContext() { return S.getASTContext(); } 9375 9376 const Expr *E; 9377 Sema &S; 9378 }; 9379 9380 } 9381 9382 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9383 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9384 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9385 9386 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9387 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9388 return false; 9389 9390 return doesExprLikelyComputeSize(BO->getLHS()) || 9391 doesExprLikelyComputeSize(BO->getRHS()); 9392 } 9393 9394 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9395 } 9396 9397 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9398 /// 9399 /// \code 9400 /// #define MACRO 0 9401 /// foo(MACRO); 9402 /// foo(0); 9403 /// \endcode 9404 /// 9405 /// This should return true for the first call to foo, but not for the second 9406 /// (regardless of whether foo is a macro or function). 9407 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9408 SourceLocation CallLoc, 9409 SourceLocation ArgLoc) { 9410 if (!CallLoc.isMacroID()) 9411 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9412 9413 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9414 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9415 } 9416 9417 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9418 /// last two arguments transposed. 9419 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9420 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9421 return; 9422 9423 const Expr *SizeArg = 9424 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9425 9426 auto isLiteralZero = [](const Expr *E) { 9427 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9428 }; 9429 9430 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9431 SourceLocation CallLoc = Call->getRParenLoc(); 9432 SourceManager &SM = S.getSourceManager(); 9433 if (isLiteralZero(SizeArg) && 9434 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9435 9436 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9437 9438 // Some platforms #define bzero to __builtin_memset. See if this is the 9439 // case, and if so, emit a better diagnostic. 9440 if (BId == Builtin::BIbzero || 9441 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9442 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9443 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9444 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9445 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9446 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9447 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9448 } 9449 return; 9450 } 9451 9452 // If the second argument to a memset is a sizeof expression and the third 9453 // isn't, this is also likely an error. This should catch 9454 // 'memset(buf, sizeof(buf), 0xff)'. 9455 if (BId == Builtin::BImemset && 9456 doesExprLikelyComputeSize(Call->getArg(1)) && 9457 !doesExprLikelyComputeSize(Call->getArg(2))) { 9458 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9459 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9460 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9461 return; 9462 } 9463 } 9464 9465 /// Check for dangerous or invalid arguments to memset(). 9466 /// 9467 /// This issues warnings on known problematic, dangerous or unspecified 9468 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9469 /// function calls. 9470 /// 9471 /// \param Call The call expression to diagnose. 9472 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9473 unsigned BId, 9474 IdentifierInfo *FnName) { 9475 assert(BId != 0); 9476 9477 // It is possible to have a non-standard definition of memset. Validate 9478 // we have enough arguments, and if not, abort further checking. 9479 unsigned ExpectedNumArgs = 9480 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9481 if (Call->getNumArgs() < ExpectedNumArgs) 9482 return; 9483 9484 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9485 BId == Builtin::BIstrndup ? 1 : 2); 9486 unsigned LenArg = 9487 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9488 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9489 9490 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9491 Call->getBeginLoc(), Call->getRParenLoc())) 9492 return; 9493 9494 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9495 CheckMemaccessSize(*this, BId, Call); 9496 9497 // We have special checking when the length is a sizeof expression. 9498 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9499 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9500 llvm::FoldingSetNodeID SizeOfArgID; 9501 9502 // Although widely used, 'bzero' is not a standard function. Be more strict 9503 // with the argument types before allowing diagnostics and only allow the 9504 // form bzero(ptr, sizeof(...)). 9505 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9506 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9507 return; 9508 9509 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9510 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9511 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9512 9513 QualType DestTy = Dest->getType(); 9514 QualType PointeeTy; 9515 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9516 PointeeTy = DestPtrTy->getPointeeType(); 9517 9518 // Never warn about void type pointers. This can be used to suppress 9519 // false positives. 9520 if (PointeeTy->isVoidType()) 9521 continue; 9522 9523 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9524 // actually comparing the expressions for equality. Because computing the 9525 // expression IDs can be expensive, we only do this if the diagnostic is 9526 // enabled. 9527 if (SizeOfArg && 9528 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9529 SizeOfArg->getExprLoc())) { 9530 // We only compute IDs for expressions if the warning is enabled, and 9531 // cache the sizeof arg's ID. 9532 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9533 SizeOfArg->Profile(SizeOfArgID, Context, true); 9534 llvm::FoldingSetNodeID DestID; 9535 Dest->Profile(DestID, Context, true); 9536 if (DestID == SizeOfArgID) { 9537 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9538 // over sizeof(src) as well. 9539 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9540 StringRef ReadableName = FnName->getName(); 9541 9542 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9543 if (UnaryOp->getOpcode() == UO_AddrOf) 9544 ActionIdx = 1; // If its an address-of operator, just remove it. 9545 if (!PointeeTy->isIncompleteType() && 9546 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9547 ActionIdx = 2; // If the pointee's size is sizeof(char), 9548 // suggest an explicit length. 9549 9550 // If the function is defined as a builtin macro, do not show macro 9551 // expansion. 9552 SourceLocation SL = SizeOfArg->getExprLoc(); 9553 SourceRange DSR = Dest->getSourceRange(); 9554 SourceRange SSR = SizeOfArg->getSourceRange(); 9555 SourceManager &SM = getSourceManager(); 9556 9557 if (SM.isMacroArgExpansion(SL)) { 9558 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9559 SL = SM.getSpellingLoc(SL); 9560 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9561 SM.getSpellingLoc(DSR.getEnd())); 9562 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9563 SM.getSpellingLoc(SSR.getEnd())); 9564 } 9565 9566 DiagRuntimeBehavior(SL, SizeOfArg, 9567 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9568 << ReadableName 9569 << PointeeTy 9570 << DestTy 9571 << DSR 9572 << SSR); 9573 DiagRuntimeBehavior(SL, SizeOfArg, 9574 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9575 << ActionIdx 9576 << SSR); 9577 9578 break; 9579 } 9580 } 9581 9582 // Also check for cases where the sizeof argument is the exact same 9583 // type as the memory argument, and where it points to a user-defined 9584 // record type. 9585 if (SizeOfArgTy != QualType()) { 9586 if (PointeeTy->isRecordType() && 9587 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9588 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9589 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9590 << FnName << SizeOfArgTy << ArgIdx 9591 << PointeeTy << Dest->getSourceRange() 9592 << LenExpr->getSourceRange()); 9593 break; 9594 } 9595 } 9596 } else if (DestTy->isArrayType()) { 9597 PointeeTy = DestTy; 9598 } 9599 9600 if (PointeeTy == QualType()) 9601 continue; 9602 9603 // Always complain about dynamic classes. 9604 bool IsContained; 9605 if (const CXXRecordDecl *ContainedRD = 9606 getContainedDynamicClass(PointeeTy, IsContained)) { 9607 9608 unsigned OperationType = 0; 9609 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9610 // "overwritten" if we're warning about the destination for any call 9611 // but memcmp; otherwise a verb appropriate to the call. 9612 if (ArgIdx != 0 || IsCmp) { 9613 if (BId == Builtin::BImemcpy) 9614 OperationType = 1; 9615 else if(BId == Builtin::BImemmove) 9616 OperationType = 2; 9617 else if (IsCmp) 9618 OperationType = 3; 9619 } 9620 9621 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9622 PDiag(diag::warn_dyn_class_memaccess) 9623 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 9624 << IsContained << ContainedRD << OperationType 9625 << Call->getCallee()->getSourceRange()); 9626 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 9627 BId != Builtin::BImemset) 9628 DiagRuntimeBehavior( 9629 Dest->getExprLoc(), Dest, 9630 PDiag(diag::warn_arc_object_memaccess) 9631 << ArgIdx << FnName << PointeeTy 9632 << Call->getCallee()->getSourceRange()); 9633 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 9634 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 9635 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 9636 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9637 PDiag(diag::warn_cstruct_memaccess) 9638 << ArgIdx << FnName << PointeeTy << 0); 9639 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 9640 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 9641 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 9642 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9643 PDiag(diag::warn_cstruct_memaccess) 9644 << ArgIdx << FnName << PointeeTy << 1); 9645 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 9646 } else { 9647 continue; 9648 } 9649 } else 9650 continue; 9651 9652 DiagRuntimeBehavior( 9653 Dest->getExprLoc(), Dest, 9654 PDiag(diag::note_bad_memaccess_silence) 9655 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 9656 break; 9657 } 9658 } 9659 9660 // A little helper routine: ignore addition and subtraction of integer literals. 9661 // This intentionally does not ignore all integer constant expressions because 9662 // we don't want to remove sizeof(). 9663 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 9664 Ex = Ex->IgnoreParenCasts(); 9665 9666 while (true) { 9667 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 9668 if (!BO || !BO->isAdditiveOp()) 9669 break; 9670 9671 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 9672 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 9673 9674 if (isa<IntegerLiteral>(RHS)) 9675 Ex = LHS; 9676 else if (isa<IntegerLiteral>(LHS)) 9677 Ex = RHS; 9678 else 9679 break; 9680 } 9681 9682 return Ex; 9683 } 9684 9685 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 9686 ASTContext &Context) { 9687 // Only handle constant-sized or VLAs, but not flexible members. 9688 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 9689 // Only issue the FIXIT for arrays of size > 1. 9690 if (CAT->getSize().getSExtValue() <= 1) 9691 return false; 9692 } else if (!Ty->isVariableArrayType()) { 9693 return false; 9694 } 9695 return true; 9696 } 9697 9698 // Warn if the user has made the 'size' argument to strlcpy or strlcat 9699 // be the size of the source, instead of the destination. 9700 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 9701 IdentifierInfo *FnName) { 9702 9703 // Don't crash if the user has the wrong number of arguments 9704 unsigned NumArgs = Call->getNumArgs(); 9705 if ((NumArgs != 3) && (NumArgs != 4)) 9706 return; 9707 9708 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 9709 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 9710 const Expr *CompareWithSrc = nullptr; 9711 9712 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 9713 Call->getBeginLoc(), Call->getRParenLoc())) 9714 return; 9715 9716 // Look for 'strlcpy(dst, x, sizeof(x))' 9717 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 9718 CompareWithSrc = Ex; 9719 else { 9720 // Look for 'strlcpy(dst, x, strlen(x))' 9721 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 9722 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 9723 SizeCall->getNumArgs() == 1) 9724 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 9725 } 9726 } 9727 9728 if (!CompareWithSrc) 9729 return; 9730 9731 // Determine if the argument to sizeof/strlen is equal to the source 9732 // argument. In principle there's all kinds of things you could do 9733 // here, for instance creating an == expression and evaluating it with 9734 // EvaluateAsBooleanCondition, but this uses a more direct technique: 9735 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 9736 if (!SrcArgDRE) 9737 return; 9738 9739 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 9740 if (!CompareWithSrcDRE || 9741 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 9742 return; 9743 9744 const Expr *OriginalSizeArg = Call->getArg(2); 9745 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 9746 << OriginalSizeArg->getSourceRange() << FnName; 9747 9748 // Output a FIXIT hint if the destination is an array (rather than a 9749 // pointer to an array). This could be enhanced to handle some 9750 // pointers if we know the actual size, like if DstArg is 'array+2' 9751 // we could say 'sizeof(array)-2'. 9752 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 9753 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 9754 return; 9755 9756 SmallString<128> sizeString; 9757 llvm::raw_svector_ostream OS(sizeString); 9758 OS << "sizeof("; 9759 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9760 OS << ")"; 9761 9762 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 9763 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 9764 OS.str()); 9765 } 9766 9767 /// Check if two expressions refer to the same declaration. 9768 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 9769 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 9770 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 9771 return D1->getDecl() == D2->getDecl(); 9772 return false; 9773 } 9774 9775 static const Expr *getStrlenExprArg(const Expr *E) { 9776 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 9777 const FunctionDecl *FD = CE->getDirectCallee(); 9778 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 9779 return nullptr; 9780 return CE->getArg(0)->IgnoreParenCasts(); 9781 } 9782 return nullptr; 9783 } 9784 9785 // Warn on anti-patterns as the 'size' argument to strncat. 9786 // The correct size argument should look like following: 9787 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 9788 void Sema::CheckStrncatArguments(const CallExpr *CE, 9789 IdentifierInfo *FnName) { 9790 // Don't crash if the user has the wrong number of arguments. 9791 if (CE->getNumArgs() < 3) 9792 return; 9793 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 9794 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 9795 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 9796 9797 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 9798 CE->getRParenLoc())) 9799 return; 9800 9801 // Identify common expressions, which are wrongly used as the size argument 9802 // to strncat and may lead to buffer overflows. 9803 unsigned PatternType = 0; 9804 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 9805 // - sizeof(dst) 9806 if (referToTheSameDecl(SizeOfArg, DstArg)) 9807 PatternType = 1; 9808 // - sizeof(src) 9809 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 9810 PatternType = 2; 9811 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 9812 if (BE->getOpcode() == BO_Sub) { 9813 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 9814 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 9815 // - sizeof(dst) - strlen(dst) 9816 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 9817 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 9818 PatternType = 1; 9819 // - sizeof(src) - (anything) 9820 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 9821 PatternType = 2; 9822 } 9823 } 9824 9825 if (PatternType == 0) 9826 return; 9827 9828 // Generate the diagnostic. 9829 SourceLocation SL = LenArg->getBeginLoc(); 9830 SourceRange SR = LenArg->getSourceRange(); 9831 SourceManager &SM = getSourceManager(); 9832 9833 // If the function is defined as a builtin macro, do not show macro expansion. 9834 if (SM.isMacroArgExpansion(SL)) { 9835 SL = SM.getSpellingLoc(SL); 9836 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 9837 SM.getSpellingLoc(SR.getEnd())); 9838 } 9839 9840 // Check if the destination is an array (rather than a pointer to an array). 9841 QualType DstTy = DstArg->getType(); 9842 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 9843 Context); 9844 if (!isKnownSizeArray) { 9845 if (PatternType == 1) 9846 Diag(SL, diag::warn_strncat_wrong_size) << SR; 9847 else 9848 Diag(SL, diag::warn_strncat_src_size) << SR; 9849 return; 9850 } 9851 9852 if (PatternType == 1) 9853 Diag(SL, diag::warn_strncat_large_size) << SR; 9854 else 9855 Diag(SL, diag::warn_strncat_src_size) << SR; 9856 9857 SmallString<128> sizeString; 9858 llvm::raw_svector_ostream OS(sizeString); 9859 OS << "sizeof("; 9860 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9861 OS << ") - "; 9862 OS << "strlen("; 9863 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9864 OS << ") - 1"; 9865 9866 Diag(SL, diag::note_strncat_wrong_size) 9867 << FixItHint::CreateReplacement(SR, OS.str()); 9868 } 9869 9870 void 9871 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 9872 SourceLocation ReturnLoc, 9873 bool isObjCMethod, 9874 const AttrVec *Attrs, 9875 const FunctionDecl *FD) { 9876 // Check if the return value is null but should not be. 9877 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 9878 (!isObjCMethod && isNonNullType(Context, lhsType))) && 9879 CheckNonNullExpr(*this, RetValExp)) 9880 Diag(ReturnLoc, diag::warn_null_ret) 9881 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 9882 9883 // C++11 [basic.stc.dynamic.allocation]p4: 9884 // If an allocation function declared with a non-throwing 9885 // exception-specification fails to allocate storage, it shall return 9886 // a null pointer. Any other allocation function that fails to allocate 9887 // storage shall indicate failure only by throwing an exception [...] 9888 if (FD) { 9889 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 9890 if (Op == OO_New || Op == OO_Array_New) { 9891 const FunctionProtoType *Proto 9892 = FD->getType()->castAs<FunctionProtoType>(); 9893 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 9894 CheckNonNullExpr(*this, RetValExp)) 9895 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 9896 << FD << getLangOpts().CPlusPlus11; 9897 } 9898 } 9899 } 9900 9901 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 9902 9903 /// Check for comparisons of floating point operands using != and ==. 9904 /// Issue a warning if these are no self-comparisons, as they are not likely 9905 /// to do what the programmer intended. 9906 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 9907 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 9908 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 9909 9910 // Special case: check for x == x (which is OK). 9911 // Do not emit warnings for such cases. 9912 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 9913 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 9914 if (DRL->getDecl() == DRR->getDecl()) 9915 return; 9916 9917 // Special case: check for comparisons against literals that can be exactly 9918 // represented by APFloat. In such cases, do not emit a warning. This 9919 // is a heuristic: often comparison against such literals are used to 9920 // detect if a value in a variable has not changed. This clearly can 9921 // lead to false negatives. 9922 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 9923 if (FLL->isExact()) 9924 return; 9925 } else 9926 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 9927 if (FLR->isExact()) 9928 return; 9929 9930 // Check for comparisons with builtin types. 9931 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 9932 if (CL->getBuiltinCallee()) 9933 return; 9934 9935 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 9936 if (CR->getBuiltinCallee()) 9937 return; 9938 9939 // Emit the diagnostic. 9940 Diag(Loc, diag::warn_floatingpoint_eq) 9941 << LHS->getSourceRange() << RHS->getSourceRange(); 9942 } 9943 9944 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 9945 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 9946 9947 namespace { 9948 9949 /// Structure recording the 'active' range of an integer-valued 9950 /// expression. 9951 struct IntRange { 9952 /// The number of bits active in the int. 9953 unsigned Width; 9954 9955 /// True if the int is known not to have negative values. 9956 bool NonNegative; 9957 9958 IntRange(unsigned Width, bool NonNegative) 9959 : Width(Width), NonNegative(NonNegative) {} 9960 9961 /// Returns the range of the bool type. 9962 static IntRange forBoolType() { 9963 return IntRange(1, true); 9964 } 9965 9966 /// Returns the range of an opaque value of the given integral type. 9967 static IntRange forValueOfType(ASTContext &C, QualType T) { 9968 return forValueOfCanonicalType(C, 9969 T->getCanonicalTypeInternal().getTypePtr()); 9970 } 9971 9972 /// Returns the range of an opaque value of a canonical integral type. 9973 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 9974 assert(T->isCanonicalUnqualified()); 9975 9976 if (const VectorType *VT = dyn_cast<VectorType>(T)) 9977 T = VT->getElementType().getTypePtr(); 9978 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 9979 T = CT->getElementType().getTypePtr(); 9980 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 9981 T = AT->getValueType().getTypePtr(); 9982 9983 if (!C.getLangOpts().CPlusPlus) { 9984 // For enum types in C code, use the underlying datatype. 9985 if (const EnumType *ET = dyn_cast<EnumType>(T)) 9986 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 9987 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 9988 // For enum types in C++, use the known bit width of the enumerators. 9989 EnumDecl *Enum = ET->getDecl(); 9990 // In C++11, enums can have a fixed underlying type. Use this type to 9991 // compute the range. 9992 if (Enum->isFixed()) { 9993 return IntRange(C.getIntWidth(QualType(T, 0)), 9994 !ET->isSignedIntegerOrEnumerationType()); 9995 } 9996 9997 unsigned NumPositive = Enum->getNumPositiveBits(); 9998 unsigned NumNegative = Enum->getNumNegativeBits(); 9999 10000 if (NumNegative == 0) 10001 return IntRange(NumPositive, true/*NonNegative*/); 10002 else 10003 return IntRange(std::max(NumPositive + 1, NumNegative), 10004 false/*NonNegative*/); 10005 } 10006 10007 const BuiltinType *BT = cast<BuiltinType>(T); 10008 assert(BT->isInteger()); 10009 10010 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10011 } 10012 10013 /// Returns the "target" range of a canonical integral type, i.e. 10014 /// the range of values expressible in the type. 10015 /// 10016 /// This matches forValueOfCanonicalType except that enums have the 10017 /// full range of their type, not the range of their enumerators. 10018 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10019 assert(T->isCanonicalUnqualified()); 10020 10021 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10022 T = VT->getElementType().getTypePtr(); 10023 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10024 T = CT->getElementType().getTypePtr(); 10025 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10026 T = AT->getValueType().getTypePtr(); 10027 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10028 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10029 10030 const BuiltinType *BT = cast<BuiltinType>(T); 10031 assert(BT->isInteger()); 10032 10033 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10034 } 10035 10036 /// Returns the supremum of two ranges: i.e. their conservative merge. 10037 static IntRange join(IntRange L, IntRange R) { 10038 return IntRange(std::max(L.Width, R.Width), 10039 L.NonNegative && R.NonNegative); 10040 } 10041 10042 /// Returns the infinum of two ranges: i.e. their aggressive merge. 10043 static IntRange meet(IntRange L, IntRange R) { 10044 return IntRange(std::min(L.Width, R.Width), 10045 L.NonNegative || R.NonNegative); 10046 } 10047 }; 10048 10049 } // namespace 10050 10051 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10052 unsigned MaxWidth) { 10053 if (value.isSigned() && value.isNegative()) 10054 return IntRange(value.getMinSignedBits(), false); 10055 10056 if (value.getBitWidth() > MaxWidth) 10057 value = value.trunc(MaxWidth); 10058 10059 // isNonNegative() just checks the sign bit without considering 10060 // signedness. 10061 return IntRange(value.getActiveBits(), true); 10062 } 10063 10064 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10065 unsigned MaxWidth) { 10066 if (result.isInt()) 10067 return GetValueRange(C, result.getInt(), MaxWidth); 10068 10069 if (result.isVector()) { 10070 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10071 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10072 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10073 R = IntRange::join(R, El); 10074 } 10075 return R; 10076 } 10077 10078 if (result.isComplexInt()) { 10079 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10080 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10081 return IntRange::join(R, I); 10082 } 10083 10084 // This can happen with lossless casts to intptr_t of "based" lvalues. 10085 // Assume it might use arbitrary bits. 10086 // FIXME: The only reason we need to pass the type in here is to get 10087 // the sign right on this one case. It would be nice if APValue 10088 // preserved this. 10089 assert(result.isLValue() || result.isAddrLabelDiff()); 10090 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10091 } 10092 10093 static QualType GetExprType(const Expr *E) { 10094 QualType Ty = E->getType(); 10095 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10096 Ty = AtomicRHS->getValueType(); 10097 return Ty; 10098 } 10099 10100 /// Pseudo-evaluate the given integer expression, estimating the 10101 /// range of values it might take. 10102 /// 10103 /// \param MaxWidth - the width to which the value will be truncated 10104 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10105 bool InConstantContext) { 10106 E = E->IgnoreParens(); 10107 10108 // Try a full evaluation first. 10109 Expr::EvalResult result; 10110 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10111 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10112 10113 // I think we only want to look through implicit casts here; if the 10114 // user has an explicit widening cast, we should treat the value as 10115 // being of the new, wider type. 10116 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10117 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10118 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext); 10119 10120 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10121 10122 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10123 CE->getCastKind() == CK_BooleanToSignedIntegral; 10124 10125 // Assume that non-integer casts can span the full range of the type. 10126 if (!isIntegerCast) 10127 return OutputTypeRange; 10128 10129 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10130 std::min(MaxWidth, OutputTypeRange.Width), 10131 InConstantContext); 10132 10133 // Bail out if the subexpr's range is as wide as the cast type. 10134 if (SubRange.Width >= OutputTypeRange.Width) 10135 return OutputTypeRange; 10136 10137 // Otherwise, we take the smaller width, and we're non-negative if 10138 // either the output type or the subexpr is. 10139 return IntRange(SubRange.Width, 10140 SubRange.NonNegative || OutputTypeRange.NonNegative); 10141 } 10142 10143 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10144 // If we can fold the condition, just take that operand. 10145 bool CondResult; 10146 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10147 return GetExprRange(C, 10148 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10149 MaxWidth, InConstantContext); 10150 10151 // Otherwise, conservatively merge. 10152 IntRange L = 10153 GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext); 10154 IntRange R = 10155 GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext); 10156 return IntRange::join(L, R); 10157 } 10158 10159 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10160 switch (BO->getOpcode()) { 10161 case BO_Cmp: 10162 llvm_unreachable("builtin <=> should have class type"); 10163 10164 // Boolean-valued operations are single-bit and positive. 10165 case BO_LAnd: 10166 case BO_LOr: 10167 case BO_LT: 10168 case BO_GT: 10169 case BO_LE: 10170 case BO_GE: 10171 case BO_EQ: 10172 case BO_NE: 10173 return IntRange::forBoolType(); 10174 10175 // The type of the assignments is the type of the LHS, so the RHS 10176 // is not necessarily the same type. 10177 case BO_MulAssign: 10178 case BO_DivAssign: 10179 case BO_RemAssign: 10180 case BO_AddAssign: 10181 case BO_SubAssign: 10182 case BO_XorAssign: 10183 case BO_OrAssign: 10184 // TODO: bitfields? 10185 return IntRange::forValueOfType(C, GetExprType(E)); 10186 10187 // Simple assignments just pass through the RHS, which will have 10188 // been coerced to the LHS type. 10189 case BO_Assign: 10190 // TODO: bitfields? 10191 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10192 10193 // Operations with opaque sources are black-listed. 10194 case BO_PtrMemD: 10195 case BO_PtrMemI: 10196 return IntRange::forValueOfType(C, GetExprType(E)); 10197 10198 // Bitwise-and uses the *infinum* of the two source ranges. 10199 case BO_And: 10200 case BO_AndAssign: 10201 return IntRange::meet( 10202 GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext), 10203 GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext)); 10204 10205 // Left shift gets black-listed based on a judgement call. 10206 case BO_Shl: 10207 // ...except that we want to treat '1 << (blah)' as logically 10208 // positive. It's an important idiom. 10209 if (IntegerLiteral *I 10210 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10211 if (I->getValue() == 1) { 10212 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10213 return IntRange(R.Width, /*NonNegative*/ true); 10214 } 10215 } 10216 LLVM_FALLTHROUGH; 10217 10218 case BO_ShlAssign: 10219 return IntRange::forValueOfType(C, GetExprType(E)); 10220 10221 // Right shift by a constant can narrow its left argument. 10222 case BO_Shr: 10223 case BO_ShrAssign: { 10224 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10225 10226 // If the shift amount is a positive constant, drop the width by 10227 // that much. 10228 llvm::APSInt shift; 10229 if (BO->getRHS()->isIntegerConstantExpr(shift, C) && 10230 shift.isNonNegative()) { 10231 unsigned zext = shift.getZExtValue(); 10232 if (zext >= L.Width) 10233 L.Width = (L.NonNegative ? 0 : 1); 10234 else 10235 L.Width -= zext; 10236 } 10237 10238 return L; 10239 } 10240 10241 // Comma acts as its right operand. 10242 case BO_Comma: 10243 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10244 10245 // Black-list pointer subtractions. 10246 case BO_Sub: 10247 if (BO->getLHS()->getType()->isPointerType()) 10248 return IntRange::forValueOfType(C, GetExprType(E)); 10249 break; 10250 10251 // The width of a division result is mostly determined by the size 10252 // of the LHS. 10253 case BO_Div: { 10254 // Don't 'pre-truncate' the operands. 10255 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10256 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10257 10258 // If the divisor is constant, use that. 10259 llvm::APSInt divisor; 10260 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { 10261 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) 10262 if (log2 >= L.Width) 10263 L.Width = (L.NonNegative ? 0 : 1); 10264 else 10265 L.Width = std::min(L.Width - log2, MaxWidth); 10266 return L; 10267 } 10268 10269 // Otherwise, just use the LHS's width. 10270 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10271 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10272 } 10273 10274 // The result of a remainder can't be larger than the result of 10275 // either side. 10276 case BO_Rem: { 10277 // Don't 'pre-truncate' the operands. 10278 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10279 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10280 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10281 10282 IntRange meet = IntRange::meet(L, R); 10283 meet.Width = std::min(meet.Width, MaxWidth); 10284 return meet; 10285 } 10286 10287 // The default behavior is okay for these. 10288 case BO_Mul: 10289 case BO_Add: 10290 case BO_Xor: 10291 case BO_Or: 10292 break; 10293 } 10294 10295 // The default case is to treat the operation as if it were closed 10296 // on the narrowest type that encompasses both operands. 10297 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10298 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10299 return IntRange::join(L, R); 10300 } 10301 10302 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10303 switch (UO->getOpcode()) { 10304 // Boolean-valued operations are white-listed. 10305 case UO_LNot: 10306 return IntRange::forBoolType(); 10307 10308 // Operations with opaque sources are black-listed. 10309 case UO_Deref: 10310 case UO_AddrOf: // should be impossible 10311 return IntRange::forValueOfType(C, GetExprType(E)); 10312 10313 default: 10314 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext); 10315 } 10316 } 10317 10318 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10319 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext); 10320 10321 if (const auto *BitField = E->getSourceBitField()) 10322 return IntRange(BitField->getBitWidthValue(C), 10323 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10324 10325 return IntRange::forValueOfType(C, GetExprType(E)); 10326 } 10327 10328 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10329 bool InConstantContext) { 10330 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext); 10331 } 10332 10333 /// Checks whether the given value, which currently has the given 10334 /// source semantics, has the same value when coerced through the 10335 /// target semantics. 10336 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10337 const llvm::fltSemantics &Src, 10338 const llvm::fltSemantics &Tgt) { 10339 llvm::APFloat truncated = value; 10340 10341 bool ignored; 10342 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10343 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10344 10345 return truncated.bitwiseIsEqual(value); 10346 } 10347 10348 /// Checks whether the given value, which currently has the given 10349 /// source semantics, has the same value when coerced through the 10350 /// target semantics. 10351 /// 10352 /// The value might be a vector of floats (or a complex number). 10353 static bool IsSameFloatAfterCast(const APValue &value, 10354 const llvm::fltSemantics &Src, 10355 const llvm::fltSemantics &Tgt) { 10356 if (value.isFloat()) 10357 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10358 10359 if (value.isVector()) { 10360 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10361 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10362 return false; 10363 return true; 10364 } 10365 10366 assert(value.isComplexFloat()); 10367 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10368 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10369 } 10370 10371 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10372 bool IsListInit = false); 10373 10374 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10375 // Suppress cases where we are comparing against an enum constant. 10376 if (const DeclRefExpr *DR = 10377 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10378 if (isa<EnumConstantDecl>(DR->getDecl())) 10379 return true; 10380 10381 // Suppress cases where the value is expanded from a macro, unless that macro 10382 // is how a language represents a boolean literal. This is the case in both C 10383 // and Objective-C. 10384 SourceLocation BeginLoc = E->getBeginLoc(); 10385 if (BeginLoc.isMacroID()) { 10386 StringRef MacroName = Lexer::getImmediateMacroName( 10387 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10388 return MacroName != "YES" && MacroName != "NO" && 10389 MacroName != "true" && MacroName != "false"; 10390 } 10391 10392 return false; 10393 } 10394 10395 static bool isKnownToHaveUnsignedValue(Expr *E) { 10396 return E->getType()->isIntegerType() && 10397 (!E->getType()->isSignedIntegerType() || 10398 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10399 } 10400 10401 namespace { 10402 /// The promoted range of values of a type. In general this has the 10403 /// following structure: 10404 /// 10405 /// |-----------| . . . |-----------| 10406 /// ^ ^ ^ ^ 10407 /// Min HoleMin HoleMax Max 10408 /// 10409 /// ... where there is only a hole if a signed type is promoted to unsigned 10410 /// (in which case Min and Max are the smallest and largest representable 10411 /// values). 10412 struct PromotedRange { 10413 // Min, or HoleMax if there is a hole. 10414 llvm::APSInt PromotedMin; 10415 // Max, or HoleMin if there is a hole. 10416 llvm::APSInt PromotedMax; 10417 10418 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10419 if (R.Width == 0) 10420 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10421 else if (R.Width >= BitWidth && !Unsigned) { 10422 // Promotion made the type *narrower*. This happens when promoting 10423 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10424 // Treat all values of 'signed int' as being in range for now. 10425 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10426 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10427 } else { 10428 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10429 .extOrTrunc(BitWidth); 10430 PromotedMin.setIsUnsigned(Unsigned); 10431 10432 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10433 .extOrTrunc(BitWidth); 10434 PromotedMax.setIsUnsigned(Unsigned); 10435 } 10436 } 10437 10438 // Determine whether this range is contiguous (has no hole). 10439 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10440 10441 // Where a constant value is within the range. 10442 enum ComparisonResult { 10443 LT = 0x1, 10444 LE = 0x2, 10445 GT = 0x4, 10446 GE = 0x8, 10447 EQ = 0x10, 10448 NE = 0x20, 10449 InRangeFlag = 0x40, 10450 10451 Less = LE | LT | NE, 10452 Min = LE | InRangeFlag, 10453 InRange = InRangeFlag, 10454 Max = GE | InRangeFlag, 10455 Greater = GE | GT | NE, 10456 10457 OnlyValue = LE | GE | EQ | InRangeFlag, 10458 InHole = NE 10459 }; 10460 10461 ComparisonResult compare(const llvm::APSInt &Value) const { 10462 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10463 Value.isUnsigned() == PromotedMin.isUnsigned()); 10464 if (!isContiguous()) { 10465 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 10466 if (Value.isMinValue()) return Min; 10467 if (Value.isMaxValue()) return Max; 10468 if (Value >= PromotedMin) return InRange; 10469 if (Value <= PromotedMax) return InRange; 10470 return InHole; 10471 } 10472 10473 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 10474 case -1: return Less; 10475 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 10476 case 1: 10477 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 10478 case -1: return InRange; 10479 case 0: return Max; 10480 case 1: return Greater; 10481 } 10482 } 10483 10484 llvm_unreachable("impossible compare result"); 10485 } 10486 10487 static llvm::Optional<StringRef> 10488 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 10489 if (Op == BO_Cmp) { 10490 ComparisonResult LTFlag = LT, GTFlag = GT; 10491 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 10492 10493 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 10494 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 10495 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 10496 return llvm::None; 10497 } 10498 10499 ComparisonResult TrueFlag, FalseFlag; 10500 if (Op == BO_EQ) { 10501 TrueFlag = EQ; 10502 FalseFlag = NE; 10503 } else if (Op == BO_NE) { 10504 TrueFlag = NE; 10505 FalseFlag = EQ; 10506 } else { 10507 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 10508 TrueFlag = LT; 10509 FalseFlag = GE; 10510 } else { 10511 TrueFlag = GT; 10512 FalseFlag = LE; 10513 } 10514 if (Op == BO_GE || Op == BO_LE) 10515 std::swap(TrueFlag, FalseFlag); 10516 } 10517 if (R & TrueFlag) 10518 return StringRef("true"); 10519 if (R & FalseFlag) 10520 return StringRef("false"); 10521 return llvm::None; 10522 } 10523 }; 10524 } 10525 10526 static bool HasEnumType(Expr *E) { 10527 // Strip off implicit integral promotions. 10528 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10529 if (ICE->getCastKind() != CK_IntegralCast && 10530 ICE->getCastKind() != CK_NoOp) 10531 break; 10532 E = ICE->getSubExpr(); 10533 } 10534 10535 return E->getType()->isEnumeralType(); 10536 } 10537 10538 static int classifyConstantValue(Expr *Constant) { 10539 // The values of this enumeration are used in the diagnostics 10540 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 10541 enum ConstantValueKind { 10542 Miscellaneous = 0, 10543 LiteralTrue, 10544 LiteralFalse 10545 }; 10546 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 10547 return BL->getValue() ? ConstantValueKind::LiteralTrue 10548 : ConstantValueKind::LiteralFalse; 10549 return ConstantValueKind::Miscellaneous; 10550 } 10551 10552 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 10553 Expr *Constant, Expr *Other, 10554 const llvm::APSInt &Value, 10555 bool RhsConstant) { 10556 if (S.inTemplateInstantiation()) 10557 return false; 10558 10559 Expr *OriginalOther = Other; 10560 10561 Constant = Constant->IgnoreParenImpCasts(); 10562 Other = Other->IgnoreParenImpCasts(); 10563 10564 // Suppress warnings on tautological comparisons between values of the same 10565 // enumeration type. There are only two ways we could warn on this: 10566 // - If the constant is outside the range of representable values of 10567 // the enumeration. In such a case, we should warn about the cast 10568 // to enumeration type, not about the comparison. 10569 // - If the constant is the maximum / minimum in-range value. For an 10570 // enumeratin type, such comparisons can be meaningful and useful. 10571 if (Constant->getType()->isEnumeralType() && 10572 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 10573 return false; 10574 10575 // TODO: Investigate using GetExprRange() to get tighter bounds 10576 // on the bit ranges. 10577 QualType OtherT = Other->getType(); 10578 if (const auto *AT = OtherT->getAs<AtomicType>()) 10579 OtherT = AT->getValueType(); 10580 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); 10581 10582 // Special case for ObjC BOOL on targets where its a typedef for a signed char 10583 // (Namely, macOS). 10584 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 10585 S.NSAPIObj->isObjCBOOLType(OtherT) && 10586 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 10587 10588 // Whether we're treating Other as being a bool because of the form of 10589 // expression despite it having another type (typically 'int' in C). 10590 bool OtherIsBooleanDespiteType = 10591 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 10592 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 10593 OtherRange = IntRange::forBoolType(); 10594 10595 // Determine the promoted range of the other type and see if a comparison of 10596 // the constant against that range is tautological. 10597 PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), 10598 Value.isUnsigned()); 10599 auto Cmp = OtherPromotedRange.compare(Value); 10600 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 10601 if (!Result) 10602 return false; 10603 10604 // Suppress the diagnostic for an in-range comparison if the constant comes 10605 // from a macro or enumerator. We don't want to diagnose 10606 // 10607 // some_long_value <= INT_MAX 10608 // 10609 // when sizeof(int) == sizeof(long). 10610 bool InRange = Cmp & PromotedRange::InRangeFlag; 10611 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 10612 return false; 10613 10614 // If this is a comparison to an enum constant, include that 10615 // constant in the diagnostic. 10616 const EnumConstantDecl *ED = nullptr; 10617 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 10618 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 10619 10620 // Should be enough for uint128 (39 decimal digits) 10621 SmallString<64> PrettySourceValue; 10622 llvm::raw_svector_ostream OS(PrettySourceValue); 10623 if (ED) { 10624 OS << '\'' << *ED << "' (" << Value << ")"; 10625 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 10626 Constant->IgnoreParenImpCasts())) { 10627 OS << (BL->getValue() ? "YES" : "NO"); 10628 } else { 10629 OS << Value; 10630 } 10631 10632 if (IsObjCSignedCharBool) { 10633 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10634 S.PDiag(diag::warn_tautological_compare_objc_bool) 10635 << OS.str() << *Result); 10636 return true; 10637 } 10638 10639 // FIXME: We use a somewhat different formatting for the in-range cases and 10640 // cases involving boolean values for historical reasons. We should pick a 10641 // consistent way of presenting these diagnostics. 10642 if (!InRange || Other->isKnownToHaveBooleanValue()) { 10643 10644 S.DiagRuntimeBehavior( 10645 E->getOperatorLoc(), E, 10646 S.PDiag(!InRange ? diag::warn_out_of_range_compare 10647 : diag::warn_tautological_bool_compare) 10648 << OS.str() << classifyConstantValue(Constant) << OtherT 10649 << OtherIsBooleanDespiteType << *Result 10650 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 10651 } else { 10652 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 10653 ? (HasEnumType(OriginalOther) 10654 ? diag::warn_unsigned_enum_always_true_comparison 10655 : diag::warn_unsigned_always_true_comparison) 10656 : diag::warn_tautological_constant_compare; 10657 10658 S.Diag(E->getOperatorLoc(), Diag) 10659 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 10660 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 10661 } 10662 10663 return true; 10664 } 10665 10666 /// Analyze the operands of the given comparison. Implements the 10667 /// fallback case from AnalyzeComparison. 10668 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 10669 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10670 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10671 } 10672 10673 /// Implements -Wsign-compare. 10674 /// 10675 /// \param E the binary operator to check for warnings 10676 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 10677 // The type the comparison is being performed in. 10678 QualType T = E->getLHS()->getType(); 10679 10680 // Only analyze comparison operators where both sides have been converted to 10681 // the same type. 10682 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 10683 return AnalyzeImpConvsInComparison(S, E); 10684 10685 // Don't analyze value-dependent comparisons directly. 10686 if (E->isValueDependent()) 10687 return AnalyzeImpConvsInComparison(S, E); 10688 10689 Expr *LHS = E->getLHS(); 10690 Expr *RHS = E->getRHS(); 10691 10692 if (T->isIntegralType(S.Context)) { 10693 llvm::APSInt RHSValue; 10694 llvm::APSInt LHSValue; 10695 10696 bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); 10697 bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); 10698 10699 // We don't care about expressions whose result is a constant. 10700 if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) 10701 return AnalyzeImpConvsInComparison(S, E); 10702 10703 // We only care about expressions where just one side is literal 10704 if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { 10705 // Is the constant on the RHS or LHS? 10706 const bool RhsConstant = IsRHSIntegralLiteral; 10707 Expr *Const = RhsConstant ? RHS : LHS; 10708 Expr *Other = RhsConstant ? LHS : RHS; 10709 const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; 10710 10711 // Check whether an integer constant comparison results in a value 10712 // of 'true' or 'false'. 10713 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 10714 return AnalyzeImpConvsInComparison(S, E); 10715 } 10716 } 10717 10718 if (!T->hasUnsignedIntegerRepresentation()) { 10719 // We don't do anything special if this isn't an unsigned integral 10720 // comparison: we're only interested in integral comparisons, and 10721 // signed comparisons only happen in cases we don't care to warn about. 10722 return AnalyzeImpConvsInComparison(S, E); 10723 } 10724 10725 LHS = LHS->IgnoreParenImpCasts(); 10726 RHS = RHS->IgnoreParenImpCasts(); 10727 10728 if (!S.getLangOpts().CPlusPlus) { 10729 // Avoid warning about comparison of integers with different signs when 10730 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 10731 // the type of `E`. 10732 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 10733 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10734 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 10735 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10736 } 10737 10738 // Check to see if one of the (unmodified) operands is of different 10739 // signedness. 10740 Expr *signedOperand, *unsignedOperand; 10741 if (LHS->getType()->hasSignedIntegerRepresentation()) { 10742 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 10743 "unsigned comparison between two signed integer expressions?"); 10744 signedOperand = LHS; 10745 unsignedOperand = RHS; 10746 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 10747 signedOperand = RHS; 10748 unsignedOperand = LHS; 10749 } else { 10750 return AnalyzeImpConvsInComparison(S, E); 10751 } 10752 10753 // Otherwise, calculate the effective range of the signed operand. 10754 IntRange signedRange = 10755 GetExprRange(S.Context, signedOperand, S.isConstantEvaluated()); 10756 10757 // Go ahead and analyze implicit conversions in the operands. Note 10758 // that we skip the implicit conversions on both sides. 10759 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 10760 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 10761 10762 // If the signed range is non-negative, -Wsign-compare won't fire. 10763 if (signedRange.NonNegative) 10764 return; 10765 10766 // For (in)equality comparisons, if the unsigned operand is a 10767 // constant which cannot collide with a overflowed signed operand, 10768 // then reinterpreting the signed operand as unsigned will not 10769 // change the result of the comparison. 10770 if (E->isEqualityOp()) { 10771 unsigned comparisonWidth = S.Context.getIntWidth(T); 10772 IntRange unsignedRange = 10773 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated()); 10774 10775 // We should never be unable to prove that the unsigned operand is 10776 // non-negative. 10777 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 10778 10779 if (unsignedRange.Width < comparisonWidth) 10780 return; 10781 } 10782 10783 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10784 S.PDiag(diag::warn_mixed_sign_comparison) 10785 << LHS->getType() << RHS->getType() 10786 << LHS->getSourceRange() << RHS->getSourceRange()); 10787 } 10788 10789 /// Analyzes an attempt to assign the given value to a bitfield. 10790 /// 10791 /// Returns true if there was something fishy about the attempt. 10792 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 10793 SourceLocation InitLoc) { 10794 assert(Bitfield->isBitField()); 10795 if (Bitfield->isInvalidDecl()) 10796 return false; 10797 10798 // White-list bool bitfields. 10799 QualType BitfieldType = Bitfield->getType(); 10800 if (BitfieldType->isBooleanType()) 10801 return false; 10802 10803 if (BitfieldType->isEnumeralType()) { 10804 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 10805 // If the underlying enum type was not explicitly specified as an unsigned 10806 // type and the enum contain only positive values, MSVC++ will cause an 10807 // inconsistency by storing this as a signed type. 10808 if (S.getLangOpts().CPlusPlus11 && 10809 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 10810 BitfieldEnumDecl->getNumPositiveBits() > 0 && 10811 BitfieldEnumDecl->getNumNegativeBits() == 0) { 10812 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 10813 << BitfieldEnumDecl->getNameAsString(); 10814 } 10815 } 10816 10817 if (Bitfield->getType()->isBooleanType()) 10818 return false; 10819 10820 // Ignore value- or type-dependent expressions. 10821 if (Bitfield->getBitWidth()->isValueDependent() || 10822 Bitfield->getBitWidth()->isTypeDependent() || 10823 Init->isValueDependent() || 10824 Init->isTypeDependent()) 10825 return false; 10826 10827 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 10828 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 10829 10830 Expr::EvalResult Result; 10831 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 10832 Expr::SE_AllowSideEffects)) { 10833 // The RHS is not constant. If the RHS has an enum type, make sure the 10834 // bitfield is wide enough to hold all the values of the enum without 10835 // truncation. 10836 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 10837 EnumDecl *ED = EnumTy->getDecl(); 10838 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 10839 10840 // Enum types are implicitly signed on Windows, so check if there are any 10841 // negative enumerators to see if the enum was intended to be signed or 10842 // not. 10843 bool SignedEnum = ED->getNumNegativeBits() > 0; 10844 10845 // Check for surprising sign changes when assigning enum values to a 10846 // bitfield of different signedness. If the bitfield is signed and we 10847 // have exactly the right number of bits to store this unsigned enum, 10848 // suggest changing the enum to an unsigned type. This typically happens 10849 // on Windows where unfixed enums always use an underlying type of 'int'. 10850 unsigned DiagID = 0; 10851 if (SignedEnum && !SignedBitfield) { 10852 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 10853 } else if (SignedBitfield && !SignedEnum && 10854 ED->getNumPositiveBits() == FieldWidth) { 10855 DiagID = diag::warn_signed_bitfield_enum_conversion; 10856 } 10857 10858 if (DiagID) { 10859 S.Diag(InitLoc, DiagID) << Bitfield << ED; 10860 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 10861 SourceRange TypeRange = 10862 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 10863 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 10864 << SignedEnum << TypeRange; 10865 } 10866 10867 // Compute the required bitwidth. If the enum has negative values, we need 10868 // one more bit than the normal number of positive bits to represent the 10869 // sign bit. 10870 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 10871 ED->getNumNegativeBits()) 10872 : ED->getNumPositiveBits(); 10873 10874 // Check the bitwidth. 10875 if (BitsNeeded > FieldWidth) { 10876 Expr *WidthExpr = Bitfield->getBitWidth(); 10877 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 10878 << Bitfield << ED; 10879 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 10880 << BitsNeeded << ED << WidthExpr->getSourceRange(); 10881 } 10882 } 10883 10884 return false; 10885 } 10886 10887 llvm::APSInt Value = Result.Val.getInt(); 10888 10889 unsigned OriginalWidth = Value.getBitWidth(); 10890 10891 if (!Value.isSigned() || Value.isNegative()) 10892 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 10893 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 10894 OriginalWidth = Value.getMinSignedBits(); 10895 10896 if (OriginalWidth <= FieldWidth) 10897 return false; 10898 10899 // Compute the value which the bitfield will contain. 10900 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 10901 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 10902 10903 // Check whether the stored value is equal to the original value. 10904 TruncatedValue = TruncatedValue.extend(OriginalWidth); 10905 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 10906 return false; 10907 10908 // Special-case bitfields of width 1: booleans are naturally 0/1, and 10909 // therefore don't strictly fit into a signed bitfield of width 1. 10910 if (FieldWidth == 1 && Value == 1) 10911 return false; 10912 10913 std::string PrettyValue = Value.toString(10); 10914 std::string PrettyTrunc = TruncatedValue.toString(10); 10915 10916 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 10917 << PrettyValue << PrettyTrunc << OriginalInit->getType() 10918 << Init->getSourceRange(); 10919 10920 return true; 10921 } 10922 10923 /// Analyze the given simple or compound assignment for warning-worthy 10924 /// operations. 10925 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 10926 // Just recurse on the LHS. 10927 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10928 10929 // We want to recurse on the RHS as normal unless we're assigning to 10930 // a bitfield. 10931 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 10932 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 10933 E->getOperatorLoc())) { 10934 // Recurse, ignoring any implicit conversions on the RHS. 10935 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 10936 E->getOperatorLoc()); 10937 } 10938 } 10939 10940 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10941 10942 // Diagnose implicitly sequentially-consistent atomic assignment. 10943 if (E->getLHS()->getType()->isAtomicType()) 10944 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 10945 } 10946 10947 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10948 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 10949 SourceLocation CContext, unsigned diag, 10950 bool pruneControlFlow = false) { 10951 if (pruneControlFlow) { 10952 S.DiagRuntimeBehavior(E->getExprLoc(), E, 10953 S.PDiag(diag) 10954 << SourceType << T << E->getSourceRange() 10955 << SourceRange(CContext)); 10956 return; 10957 } 10958 S.Diag(E->getExprLoc(), diag) 10959 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 10960 } 10961 10962 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 10963 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 10964 SourceLocation CContext, 10965 unsigned diag, bool pruneControlFlow = false) { 10966 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 10967 } 10968 10969 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 10970 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 10971 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 10972 } 10973 10974 static void adornObjCBoolConversionDiagWithTernaryFixit( 10975 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 10976 Expr *Ignored = SourceExpr->IgnoreImplicit(); 10977 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 10978 Ignored = OVE->getSourceExpr(); 10979 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 10980 isa<BinaryOperator>(Ignored) || 10981 isa<CXXOperatorCallExpr>(Ignored); 10982 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 10983 if (NeedsParens) 10984 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 10985 << FixItHint::CreateInsertion(EndLoc, ")"); 10986 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 10987 } 10988 10989 /// Diagnose an implicit cast from a floating point value to an integer value. 10990 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 10991 SourceLocation CContext) { 10992 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 10993 const bool PruneWarnings = S.inTemplateInstantiation(); 10994 10995 Expr *InnerE = E->IgnoreParenImpCasts(); 10996 // We also want to warn on, e.g., "int i = -1.234" 10997 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 10998 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 10999 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11000 11001 const bool IsLiteral = 11002 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11003 11004 llvm::APFloat Value(0.0); 11005 bool IsConstant = 11006 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11007 if (!IsConstant) { 11008 if (isObjCSignedCharBool(S, T)) { 11009 return adornObjCBoolConversionDiagWithTernaryFixit( 11010 S, E, 11011 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11012 << E->getType()); 11013 } 11014 11015 return DiagnoseImpCast(S, E, T, CContext, 11016 diag::warn_impcast_float_integer, PruneWarnings); 11017 } 11018 11019 bool isExact = false; 11020 11021 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11022 T->hasUnsignedIntegerRepresentation()); 11023 llvm::APFloat::opStatus Result = Value.convertToInteger( 11024 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11025 11026 // FIXME: Force the precision of the source value down so we don't print 11027 // digits which are usually useless (we don't really care here if we 11028 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11029 // would automatically print the shortest representation, but it's a bit 11030 // tricky to implement. 11031 SmallString<16> PrettySourceValue; 11032 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11033 precision = (precision * 59 + 195) / 196; 11034 Value.toString(PrettySourceValue, precision); 11035 11036 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11037 return adornObjCBoolConversionDiagWithTernaryFixit( 11038 S, E, 11039 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11040 << PrettySourceValue); 11041 } 11042 11043 if (Result == llvm::APFloat::opOK && isExact) { 11044 if (IsLiteral) return; 11045 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11046 PruneWarnings); 11047 } 11048 11049 // Conversion of a floating-point value to a non-bool integer where the 11050 // integral part cannot be represented by the integer type is undefined. 11051 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11052 return DiagnoseImpCast( 11053 S, E, T, CContext, 11054 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11055 : diag::warn_impcast_float_to_integer_out_of_range, 11056 PruneWarnings); 11057 11058 unsigned DiagID = 0; 11059 if (IsLiteral) { 11060 // Warn on floating point literal to integer. 11061 DiagID = diag::warn_impcast_literal_float_to_integer; 11062 } else if (IntegerValue == 0) { 11063 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11064 return DiagnoseImpCast(S, E, T, CContext, 11065 diag::warn_impcast_float_integer, PruneWarnings); 11066 } 11067 // Warn on non-zero to zero conversion. 11068 DiagID = diag::warn_impcast_float_to_integer_zero; 11069 } else { 11070 if (IntegerValue.isUnsigned()) { 11071 if (!IntegerValue.isMaxValue()) { 11072 return DiagnoseImpCast(S, E, T, CContext, 11073 diag::warn_impcast_float_integer, PruneWarnings); 11074 } 11075 } else { // IntegerValue.isSigned() 11076 if (!IntegerValue.isMaxSignedValue() && 11077 !IntegerValue.isMinSignedValue()) { 11078 return DiagnoseImpCast(S, E, T, CContext, 11079 diag::warn_impcast_float_integer, PruneWarnings); 11080 } 11081 } 11082 // Warn on evaluatable floating point expression to integer conversion. 11083 DiagID = diag::warn_impcast_float_to_integer; 11084 } 11085 11086 SmallString<16> PrettyTargetValue; 11087 if (IsBool) 11088 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11089 else 11090 IntegerValue.toString(PrettyTargetValue); 11091 11092 if (PruneWarnings) { 11093 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11094 S.PDiag(DiagID) 11095 << E->getType() << T.getUnqualifiedType() 11096 << PrettySourceValue << PrettyTargetValue 11097 << E->getSourceRange() << SourceRange(CContext)); 11098 } else { 11099 S.Diag(E->getExprLoc(), DiagID) 11100 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11101 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11102 } 11103 } 11104 11105 /// Analyze the given compound assignment for the possible losing of 11106 /// floating-point precision. 11107 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11108 assert(isa<CompoundAssignOperator>(E) && 11109 "Must be compound assignment operation"); 11110 // Recurse on the LHS and RHS in here 11111 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11112 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11113 11114 if (E->getLHS()->getType()->isAtomicType()) 11115 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11116 11117 // Now check the outermost expression 11118 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11119 const auto *RBT = cast<CompoundAssignOperator>(E) 11120 ->getComputationResultType() 11121 ->getAs<BuiltinType>(); 11122 11123 // The below checks assume source is floating point. 11124 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11125 11126 // If source is floating point but target is an integer. 11127 if (ResultBT->isInteger()) 11128 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11129 E->getExprLoc(), diag::warn_impcast_float_integer); 11130 11131 if (!ResultBT->isFloatingPoint()) 11132 return; 11133 11134 // If both source and target are floating points, warn about losing precision. 11135 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11136 QualType(ResultBT, 0), QualType(RBT, 0)); 11137 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11138 // warn about dropping FP rank. 11139 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11140 diag::warn_impcast_float_result_precision); 11141 } 11142 11143 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11144 IntRange Range) { 11145 if (!Range.Width) return "0"; 11146 11147 llvm::APSInt ValueInRange = Value; 11148 ValueInRange.setIsSigned(!Range.NonNegative); 11149 ValueInRange = ValueInRange.trunc(Range.Width); 11150 return ValueInRange.toString(10); 11151 } 11152 11153 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11154 if (!isa<ImplicitCastExpr>(Ex)) 11155 return false; 11156 11157 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11158 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11159 const Type *Source = 11160 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11161 if (Target->isDependentType()) 11162 return false; 11163 11164 const BuiltinType *FloatCandidateBT = 11165 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11166 const Type *BoolCandidateType = ToBool ? Target : Source; 11167 11168 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11169 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11170 } 11171 11172 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11173 SourceLocation CC) { 11174 unsigned NumArgs = TheCall->getNumArgs(); 11175 for (unsigned i = 0; i < NumArgs; ++i) { 11176 Expr *CurrA = TheCall->getArg(i); 11177 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11178 continue; 11179 11180 bool IsSwapped = ((i > 0) && 11181 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11182 IsSwapped |= ((i < (NumArgs - 1)) && 11183 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11184 if (IsSwapped) { 11185 // Warn on this floating-point to bool conversion. 11186 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11187 CurrA->getType(), CC, 11188 diag::warn_impcast_floating_point_to_bool); 11189 } 11190 } 11191 } 11192 11193 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11194 SourceLocation CC) { 11195 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11196 E->getExprLoc())) 11197 return; 11198 11199 // Don't warn on functions which have return type nullptr_t. 11200 if (isa<CallExpr>(E)) 11201 return; 11202 11203 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11204 const Expr::NullPointerConstantKind NullKind = 11205 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11206 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11207 return; 11208 11209 // Return if target type is a safe conversion. 11210 if (T->isAnyPointerType() || T->isBlockPointerType() || 11211 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11212 return; 11213 11214 SourceLocation Loc = E->getSourceRange().getBegin(); 11215 11216 // Venture through the macro stacks to get to the source of macro arguments. 11217 // The new location is a better location than the complete location that was 11218 // passed in. 11219 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11220 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11221 11222 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11223 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11224 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11225 Loc, S.SourceMgr, S.getLangOpts()); 11226 if (MacroName == "NULL") 11227 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11228 } 11229 11230 // Only warn if the null and context location are in the same macro expansion. 11231 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11232 return; 11233 11234 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11235 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11236 << FixItHint::CreateReplacement(Loc, 11237 S.getFixItZeroLiteralForType(T, Loc)); 11238 } 11239 11240 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11241 ObjCArrayLiteral *ArrayLiteral); 11242 11243 static void 11244 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11245 ObjCDictionaryLiteral *DictionaryLiteral); 11246 11247 /// Check a single element within a collection literal against the 11248 /// target element type. 11249 static void checkObjCCollectionLiteralElement(Sema &S, 11250 QualType TargetElementType, 11251 Expr *Element, 11252 unsigned ElementKind) { 11253 // Skip a bitcast to 'id' or qualified 'id'. 11254 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11255 if (ICE->getCastKind() == CK_BitCast && 11256 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11257 Element = ICE->getSubExpr(); 11258 } 11259 11260 QualType ElementType = Element->getType(); 11261 ExprResult ElementResult(Element); 11262 if (ElementType->getAs<ObjCObjectPointerType>() && 11263 S.CheckSingleAssignmentConstraints(TargetElementType, 11264 ElementResult, 11265 false, false) 11266 != Sema::Compatible) { 11267 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11268 << ElementType << ElementKind << TargetElementType 11269 << Element->getSourceRange(); 11270 } 11271 11272 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11273 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11274 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11275 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11276 } 11277 11278 /// Check an Objective-C array literal being converted to the given 11279 /// target type. 11280 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11281 ObjCArrayLiteral *ArrayLiteral) { 11282 if (!S.NSArrayDecl) 11283 return; 11284 11285 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11286 if (!TargetObjCPtr) 11287 return; 11288 11289 if (TargetObjCPtr->isUnspecialized() || 11290 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11291 != S.NSArrayDecl->getCanonicalDecl()) 11292 return; 11293 11294 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11295 if (TypeArgs.size() != 1) 11296 return; 11297 11298 QualType TargetElementType = TypeArgs[0]; 11299 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11300 checkObjCCollectionLiteralElement(S, TargetElementType, 11301 ArrayLiteral->getElement(I), 11302 0); 11303 } 11304 } 11305 11306 /// Check an Objective-C dictionary literal being converted to the given 11307 /// target type. 11308 static void 11309 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11310 ObjCDictionaryLiteral *DictionaryLiteral) { 11311 if (!S.NSDictionaryDecl) 11312 return; 11313 11314 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11315 if (!TargetObjCPtr) 11316 return; 11317 11318 if (TargetObjCPtr->isUnspecialized() || 11319 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11320 != S.NSDictionaryDecl->getCanonicalDecl()) 11321 return; 11322 11323 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11324 if (TypeArgs.size() != 2) 11325 return; 11326 11327 QualType TargetKeyType = TypeArgs[0]; 11328 QualType TargetObjectType = TypeArgs[1]; 11329 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11330 auto Element = DictionaryLiteral->getKeyValueElement(I); 11331 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11332 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11333 } 11334 } 11335 11336 // Helper function to filter out cases for constant width constant conversion. 11337 // Don't warn on char array initialization or for non-decimal values. 11338 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11339 SourceLocation CC) { 11340 // If initializing from a constant, and the constant starts with '0', 11341 // then it is a binary, octal, or hexadecimal. Allow these constants 11342 // to fill all the bits, even if there is a sign change. 11343 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11344 const char FirstLiteralCharacter = 11345 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11346 if (FirstLiteralCharacter == '0') 11347 return false; 11348 } 11349 11350 // If the CC location points to a '{', and the type is char, then assume 11351 // assume it is an array initialization. 11352 if (CC.isValid() && T->isCharType()) { 11353 const char FirstContextCharacter = 11354 S.getSourceManager().getCharacterData(CC)[0]; 11355 if (FirstContextCharacter == '{') 11356 return false; 11357 } 11358 11359 return true; 11360 } 11361 11362 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11363 const auto *IL = dyn_cast<IntegerLiteral>(E); 11364 if (!IL) { 11365 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11366 if (UO->getOpcode() == UO_Minus) 11367 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11368 } 11369 } 11370 11371 return IL; 11372 } 11373 11374 static void CheckConditionalWithEnumTypes(Sema &S, SourceLocation Loc, 11375 Expr *LHS, Expr *RHS) { 11376 QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType(); 11377 QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType(); 11378 11379 const auto *LHSEnumType = LHSStrippedType->getAs<EnumType>(); 11380 if (!LHSEnumType) 11381 return; 11382 const auto *RHSEnumType = RHSStrippedType->getAs<EnumType>(); 11383 if (!RHSEnumType) 11384 return; 11385 11386 // Ignore anonymous enums. 11387 if (!LHSEnumType->getDecl()->hasNameForLinkage()) 11388 return; 11389 if (!RHSEnumType->getDecl()->hasNameForLinkage()) 11390 return; 11391 11392 if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) 11393 return; 11394 11395 S.Diag(Loc, diag::warn_conditional_mixed_enum_types) 11396 << LHSStrippedType << RHSStrippedType << LHS->getSourceRange() 11397 << RHS->getSourceRange(); 11398 } 11399 11400 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11401 E = E->IgnoreParenImpCasts(); 11402 SourceLocation ExprLoc = E->getExprLoc(); 11403 11404 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11405 BinaryOperator::Opcode Opc = BO->getOpcode(); 11406 Expr::EvalResult Result; 11407 // Do not diagnose unsigned shifts. 11408 if (Opc == BO_Shl) { 11409 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11410 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11411 if (LHS && LHS->getValue() == 0) 11412 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11413 else if (!E->isValueDependent() && LHS && RHS && 11414 RHS->getValue().isNonNegative() && 11415 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11416 S.Diag(ExprLoc, diag::warn_left_shift_always) 11417 << (Result.Val.getInt() != 0); 11418 else if (E->getType()->isSignedIntegerType()) 11419 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11420 } 11421 } 11422 11423 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11424 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11425 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11426 if (!LHS || !RHS) 11427 return; 11428 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11429 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11430 // Do not diagnose common idioms. 11431 return; 11432 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11433 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11434 } 11435 } 11436 11437 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11438 SourceLocation CC, 11439 bool *ICContext = nullptr, 11440 bool IsListInit = false) { 11441 if (E->isTypeDependent() || E->isValueDependent()) return; 11442 11443 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11444 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11445 if (Source == Target) return; 11446 if (Target->isDependentType()) return; 11447 11448 // If the conversion context location is invalid don't complain. We also 11449 // don't want to emit a warning if the issue occurs from the expansion of 11450 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11451 // delay this check as long as possible. Once we detect we are in that 11452 // scenario, we just return. 11453 if (CC.isInvalid()) 11454 return; 11455 11456 if (Source->isAtomicType()) 11457 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 11458 11459 // Diagnose implicit casts to bool. 11460 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 11461 if (isa<StringLiteral>(E)) 11462 // Warn on string literal to bool. Checks for string literals in logical 11463 // and expressions, for instance, assert(0 && "error here"), are 11464 // prevented by a check in AnalyzeImplicitConversions(). 11465 return DiagnoseImpCast(S, E, T, CC, 11466 diag::warn_impcast_string_literal_to_bool); 11467 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 11468 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 11469 // This covers the literal expressions that evaluate to Objective-C 11470 // objects. 11471 return DiagnoseImpCast(S, E, T, CC, 11472 diag::warn_impcast_objective_c_literal_to_bool); 11473 } 11474 if (Source->isPointerType() || Source->canDecayToPointerType()) { 11475 // Warn on pointer to bool conversion that is always true. 11476 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 11477 SourceRange(CC)); 11478 } 11479 } 11480 11481 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 11482 // is a typedef for signed char (macOS), then that constant value has to be 1 11483 // or 0. 11484 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 11485 Expr::EvalResult Result; 11486 if (E->EvaluateAsInt(Result, S.getASTContext(), 11487 Expr::SE_AllowSideEffects)) { 11488 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 11489 adornObjCBoolConversionDiagWithTernaryFixit( 11490 S, E, 11491 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 11492 << Result.Val.getInt().toString(10)); 11493 } 11494 return; 11495 } 11496 } 11497 11498 // Check implicit casts from Objective-C collection literals to specialized 11499 // collection types, e.g., NSArray<NSString *> *. 11500 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 11501 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 11502 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 11503 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 11504 11505 // Strip vector types. 11506 if (isa<VectorType>(Source)) { 11507 if (!isa<VectorType>(Target)) { 11508 if (S.SourceMgr.isInSystemMacro(CC)) 11509 return; 11510 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 11511 } 11512 11513 // If the vector cast is cast between two vectors of the same size, it is 11514 // a bitcast, not a conversion. 11515 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 11516 return; 11517 11518 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 11519 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 11520 } 11521 if (auto VecTy = dyn_cast<VectorType>(Target)) 11522 Target = VecTy->getElementType().getTypePtr(); 11523 11524 // Strip complex types. 11525 if (isa<ComplexType>(Source)) { 11526 if (!isa<ComplexType>(Target)) { 11527 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 11528 return; 11529 11530 return DiagnoseImpCast(S, E, T, CC, 11531 S.getLangOpts().CPlusPlus 11532 ? diag::err_impcast_complex_scalar 11533 : diag::warn_impcast_complex_scalar); 11534 } 11535 11536 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 11537 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 11538 } 11539 11540 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 11541 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 11542 11543 // If the source is floating point... 11544 if (SourceBT && SourceBT->isFloatingPoint()) { 11545 // ...and the target is floating point... 11546 if (TargetBT && TargetBT->isFloatingPoint()) { 11547 // ...then warn if we're dropping FP rank. 11548 11549 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11550 QualType(SourceBT, 0), QualType(TargetBT, 0)); 11551 if (Order > 0) { 11552 // Don't warn about float constants that are precisely 11553 // representable in the target type. 11554 Expr::EvalResult result; 11555 if (E->EvaluateAsRValue(result, S.Context)) { 11556 // Value might be a float, a float vector, or a float complex. 11557 if (IsSameFloatAfterCast(result.Val, 11558 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 11559 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 11560 return; 11561 } 11562 11563 if (S.SourceMgr.isInSystemMacro(CC)) 11564 return; 11565 11566 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 11567 } 11568 // ... or possibly if we're increasing rank, too 11569 else if (Order < 0) { 11570 if (S.SourceMgr.isInSystemMacro(CC)) 11571 return; 11572 11573 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 11574 } 11575 return; 11576 } 11577 11578 // If the target is integral, always warn. 11579 if (TargetBT && TargetBT->isInteger()) { 11580 if (S.SourceMgr.isInSystemMacro(CC)) 11581 return; 11582 11583 DiagnoseFloatingImpCast(S, E, T, CC); 11584 } 11585 11586 // Detect the case where a call result is converted from floating-point to 11587 // to bool, and the final argument to the call is converted from bool, to 11588 // discover this typo: 11589 // 11590 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 11591 // 11592 // FIXME: This is an incredibly special case; is there some more general 11593 // way to detect this class of misplaced-parentheses bug? 11594 if (Target->isBooleanType() && isa<CallExpr>(E)) { 11595 // Check last argument of function call to see if it is an 11596 // implicit cast from a type matching the type the result 11597 // is being cast to. 11598 CallExpr *CEx = cast<CallExpr>(E); 11599 if (unsigned NumArgs = CEx->getNumArgs()) { 11600 Expr *LastA = CEx->getArg(NumArgs - 1); 11601 Expr *InnerE = LastA->IgnoreParenImpCasts(); 11602 if (isa<ImplicitCastExpr>(LastA) && 11603 InnerE->getType()->isBooleanType()) { 11604 // Warn on this floating-point to bool conversion 11605 DiagnoseImpCast(S, E, T, CC, 11606 diag::warn_impcast_floating_point_to_bool); 11607 } 11608 } 11609 } 11610 return; 11611 } 11612 11613 // Valid casts involving fixed point types should be accounted for here. 11614 if (Source->isFixedPointType()) { 11615 if (Target->isUnsaturatedFixedPointType()) { 11616 Expr::EvalResult Result; 11617 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 11618 S.isConstantEvaluated())) { 11619 APFixedPoint Value = Result.Val.getFixedPoint(); 11620 APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 11621 APFixedPoint MinVal = S.Context.getFixedPointMin(T); 11622 if (Value > MaxVal || Value < MinVal) { 11623 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11624 S.PDiag(diag::warn_impcast_fixed_point_range) 11625 << Value.toString() << T 11626 << E->getSourceRange() 11627 << clang::SourceRange(CC)); 11628 return; 11629 } 11630 } 11631 } else if (Target->isIntegerType()) { 11632 Expr::EvalResult Result; 11633 if (!S.isConstantEvaluated() && 11634 E->EvaluateAsFixedPoint(Result, S.Context, 11635 Expr::SE_AllowSideEffects)) { 11636 APFixedPoint FXResult = Result.Val.getFixedPoint(); 11637 11638 bool Overflowed; 11639 llvm::APSInt IntResult = FXResult.convertToInt( 11640 S.Context.getIntWidth(T), 11641 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 11642 11643 if (Overflowed) { 11644 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11645 S.PDiag(diag::warn_impcast_fixed_point_range) 11646 << FXResult.toString() << T 11647 << E->getSourceRange() 11648 << clang::SourceRange(CC)); 11649 return; 11650 } 11651 } 11652 } 11653 } else if (Target->isUnsaturatedFixedPointType()) { 11654 if (Source->isIntegerType()) { 11655 Expr::EvalResult Result; 11656 if (!S.isConstantEvaluated() && 11657 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11658 llvm::APSInt Value = Result.Val.getInt(); 11659 11660 bool Overflowed; 11661 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 11662 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 11663 11664 if (Overflowed) { 11665 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11666 S.PDiag(diag::warn_impcast_fixed_point_range) 11667 << Value.toString(/*Radix=*/10) << T 11668 << E->getSourceRange() 11669 << clang::SourceRange(CC)); 11670 return; 11671 } 11672 } 11673 } 11674 } 11675 11676 // If we are casting an integer type to a floating point type without 11677 // initialization-list syntax, we might lose accuracy if the floating 11678 // point type has a narrower significand than the integer type. 11679 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 11680 TargetBT->isFloatingType() && !IsListInit) { 11681 // Determine the number of precision bits in the source integer type. 11682 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11683 unsigned int SourcePrecision = SourceRange.Width; 11684 11685 // Determine the number of precision bits in the 11686 // target floating point type. 11687 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 11688 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11689 11690 if (SourcePrecision > 0 && TargetPrecision > 0 && 11691 SourcePrecision > TargetPrecision) { 11692 11693 llvm::APSInt SourceInt; 11694 if (E->isIntegerConstantExpr(SourceInt, S.Context)) { 11695 // If the source integer is a constant, convert it to the target 11696 // floating point type. Issue a warning if the value changes 11697 // during the whole conversion. 11698 llvm::APFloat TargetFloatValue( 11699 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11700 llvm::APFloat::opStatus ConversionStatus = 11701 TargetFloatValue.convertFromAPInt( 11702 SourceInt, SourceBT->isSignedInteger(), 11703 llvm::APFloat::rmNearestTiesToEven); 11704 11705 if (ConversionStatus != llvm::APFloat::opOK) { 11706 std::string PrettySourceValue = SourceInt.toString(10); 11707 SmallString<32> PrettyTargetValue; 11708 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 11709 11710 S.DiagRuntimeBehavior( 11711 E->getExprLoc(), E, 11712 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 11713 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11714 << E->getSourceRange() << clang::SourceRange(CC)); 11715 } 11716 } else { 11717 // Otherwise, the implicit conversion may lose precision. 11718 DiagnoseImpCast(S, E, T, CC, 11719 diag::warn_impcast_integer_float_precision); 11720 } 11721 } 11722 } 11723 11724 DiagnoseNullConversion(S, E, T, CC); 11725 11726 S.DiscardMisalignedMemberAddress(Target, E); 11727 11728 if (Target->isBooleanType()) 11729 DiagnoseIntInBoolContext(S, E); 11730 11731 if (!Source->isIntegerType() || !Target->isIntegerType()) 11732 return; 11733 11734 // TODO: remove this early return once the false positives for constant->bool 11735 // in templates, macros, etc, are reduced or removed. 11736 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 11737 return; 11738 11739 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 11740 !E->isKnownToHaveBooleanValue()) { 11741 return adornObjCBoolConversionDiagWithTernaryFixit( 11742 S, E, 11743 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 11744 << E->getType()); 11745 } 11746 11747 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11748 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 11749 11750 if (SourceRange.Width > TargetRange.Width) { 11751 // If the source is a constant, use a default-on diagnostic. 11752 // TODO: this should happen for bitfield stores, too. 11753 Expr::EvalResult Result; 11754 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 11755 S.isConstantEvaluated())) { 11756 llvm::APSInt Value(32); 11757 Value = Result.Val.getInt(); 11758 11759 if (S.SourceMgr.isInSystemMacro(CC)) 11760 return; 11761 11762 std::string PrettySourceValue = Value.toString(10); 11763 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11764 11765 S.DiagRuntimeBehavior( 11766 E->getExprLoc(), E, 11767 S.PDiag(diag::warn_impcast_integer_precision_constant) 11768 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11769 << E->getSourceRange() << clang::SourceRange(CC)); 11770 return; 11771 } 11772 11773 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 11774 if (S.SourceMgr.isInSystemMacro(CC)) 11775 return; 11776 11777 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 11778 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 11779 /* pruneControlFlow */ true); 11780 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 11781 } 11782 11783 if (TargetRange.Width > SourceRange.Width) { 11784 if (auto *UO = dyn_cast<UnaryOperator>(E)) 11785 if (UO->getOpcode() == UO_Minus) 11786 if (Source->isUnsignedIntegerType()) { 11787 if (Target->isUnsignedIntegerType()) 11788 return DiagnoseImpCast(S, E, T, CC, 11789 diag::warn_impcast_high_order_zero_bits); 11790 if (Target->isSignedIntegerType()) 11791 return DiagnoseImpCast(S, E, T, CC, 11792 diag::warn_impcast_nonnegative_result); 11793 } 11794 } 11795 11796 if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && 11797 SourceRange.NonNegative && Source->isSignedIntegerType()) { 11798 // Warn when doing a signed to signed conversion, warn if the positive 11799 // source value is exactly the width of the target type, which will 11800 // cause a negative value to be stored. 11801 11802 Expr::EvalResult Result; 11803 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 11804 !S.SourceMgr.isInSystemMacro(CC)) { 11805 llvm::APSInt Value = Result.Val.getInt(); 11806 if (isSameWidthConstantConversion(S, E, T, CC)) { 11807 std::string PrettySourceValue = Value.toString(10); 11808 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11809 11810 S.DiagRuntimeBehavior( 11811 E->getExprLoc(), E, 11812 S.PDiag(diag::warn_impcast_integer_precision_constant) 11813 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11814 << E->getSourceRange() << clang::SourceRange(CC)); 11815 return; 11816 } 11817 } 11818 11819 // Fall through for non-constants to give a sign conversion warning. 11820 } 11821 11822 if ((TargetRange.NonNegative && !SourceRange.NonNegative) || 11823 (!TargetRange.NonNegative && SourceRange.NonNegative && 11824 SourceRange.Width == TargetRange.Width)) { 11825 if (S.SourceMgr.isInSystemMacro(CC)) 11826 return; 11827 11828 unsigned DiagID = diag::warn_impcast_integer_sign; 11829 11830 // Traditionally, gcc has warned about this under -Wsign-compare. 11831 // We also want to warn about it in -Wconversion. 11832 // So if -Wconversion is off, use a completely identical diagnostic 11833 // in the sign-compare group. 11834 // The conditional-checking code will 11835 if (ICContext) { 11836 DiagID = diag::warn_impcast_integer_sign_conditional; 11837 *ICContext = true; 11838 } 11839 11840 return DiagnoseImpCast(S, E, T, CC, DiagID); 11841 } 11842 11843 // Diagnose conversions between different enumeration types. 11844 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 11845 // type, to give us better diagnostics. 11846 QualType SourceType = E->getType(); 11847 if (!S.getLangOpts().CPlusPlus) { 11848 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 11849 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 11850 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 11851 SourceType = S.Context.getTypeDeclType(Enum); 11852 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 11853 } 11854 } 11855 11856 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 11857 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 11858 if (SourceEnum->getDecl()->hasNameForLinkage() && 11859 TargetEnum->getDecl()->hasNameForLinkage() && 11860 SourceEnum != TargetEnum) { 11861 if (S.SourceMgr.isInSystemMacro(CC)) 11862 return; 11863 11864 return DiagnoseImpCast(S, E, SourceType, T, CC, 11865 diag::warn_impcast_different_enum_types); 11866 } 11867 } 11868 11869 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11870 SourceLocation CC, QualType T); 11871 11872 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 11873 SourceLocation CC, bool &ICContext) { 11874 E = E->IgnoreParenImpCasts(); 11875 11876 if (isa<ConditionalOperator>(E)) 11877 return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T); 11878 11879 AnalyzeImplicitConversions(S, E, CC); 11880 if (E->getType() != T) 11881 return CheckImplicitConversion(S, E, T, CC, &ICContext); 11882 } 11883 11884 static void CheckConditionalOperator(Sema &S, ConditionalOperator *E, 11885 SourceLocation CC, QualType T) { 11886 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 11887 11888 bool Suspicious = false; 11889 CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious); 11890 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 11891 CheckConditionalWithEnumTypes(S, E->getBeginLoc(), E->getTrueExpr(), 11892 E->getFalseExpr()); 11893 11894 if (T->isBooleanType()) 11895 DiagnoseIntInBoolContext(S, E); 11896 11897 // If -Wconversion would have warned about either of the candidates 11898 // for a signedness conversion to the context type... 11899 if (!Suspicious) return; 11900 11901 // ...but it's currently ignored... 11902 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 11903 return; 11904 11905 // ...then check whether it would have warned about either of the 11906 // candidates for a signedness conversion to the condition type. 11907 if (E->getType() == T) return; 11908 11909 Suspicious = false; 11910 CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(), 11911 E->getType(), CC, &Suspicious); 11912 if (!Suspicious) 11913 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 11914 E->getType(), CC, &Suspicious); 11915 } 11916 11917 /// Check conversion of given expression to boolean. 11918 /// Input argument E is a logical expression. 11919 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 11920 if (S.getLangOpts().Bool) 11921 return; 11922 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 11923 return; 11924 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 11925 } 11926 11927 /// AnalyzeImplicitConversions - Find and report any interesting 11928 /// implicit conversions in the given expression. There are a couple 11929 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 11930 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 11931 bool IsListInit/*= false*/) { 11932 QualType T = OrigE->getType(); 11933 Expr *E = OrigE->IgnoreParenImpCasts(); 11934 11935 // Propagate whether we are in a C++ list initialization expression. 11936 // If so, we do not issue warnings for implicit int-float conversion 11937 // precision loss, because C++11 narrowing already handles it. 11938 IsListInit = 11939 IsListInit || (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 11940 11941 if (E->isTypeDependent() || E->isValueDependent()) 11942 return; 11943 11944 if (const auto *UO = dyn_cast<UnaryOperator>(E)) 11945 if (UO->getOpcode() == UO_Not && 11946 UO->getSubExpr()->isKnownToHaveBooleanValue()) 11947 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 11948 << OrigE->getSourceRange() << T->isBooleanType() 11949 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 11950 11951 // For conditional operators, we analyze the arguments as if they 11952 // were being fed directly into the output. 11953 if (isa<ConditionalOperator>(E)) { 11954 ConditionalOperator *CO = cast<ConditionalOperator>(E); 11955 CheckConditionalOperator(S, CO, CC, T); 11956 return; 11957 } 11958 11959 // Check implicit argument conversions for function calls. 11960 if (CallExpr *Call = dyn_cast<CallExpr>(E)) 11961 CheckImplicitArgumentConversions(S, Call, CC); 11962 11963 // Go ahead and check any implicit conversions we might have skipped. 11964 // The non-canonical typecheck is just an optimization; 11965 // CheckImplicitConversion will filter out dead implicit conversions. 11966 if (E->getType() != T) 11967 CheckImplicitConversion(S, E, T, CC, nullptr, IsListInit); 11968 11969 // Now continue drilling into this expression. 11970 11971 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 11972 // The bound subexpressions in a PseudoObjectExpr are not reachable 11973 // as transitive children. 11974 // FIXME: Use a more uniform representation for this. 11975 for (auto *SE : POE->semantics()) 11976 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 11977 AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC, IsListInit); 11978 } 11979 11980 // Skip past explicit casts. 11981 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 11982 E = CE->getSubExpr()->IgnoreParenImpCasts(); 11983 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 11984 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11985 return AnalyzeImplicitConversions(S, E, CC, IsListInit); 11986 } 11987 11988 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11989 // Do a somewhat different check with comparison operators. 11990 if (BO->isComparisonOp()) 11991 return AnalyzeComparison(S, BO); 11992 11993 // And with simple assignments. 11994 if (BO->getOpcode() == BO_Assign) 11995 return AnalyzeAssignment(S, BO); 11996 // And with compound assignments. 11997 if (BO->isAssignmentOp()) 11998 return AnalyzeCompoundAssignment(S, BO); 11999 } 12000 12001 // These break the otherwise-useful invariant below. Fortunately, 12002 // we don't really need to recurse into them, because any internal 12003 // expressions should have been analyzed already when they were 12004 // built into statements. 12005 if (isa<StmtExpr>(E)) return; 12006 12007 // Don't descend into unevaluated contexts. 12008 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12009 12010 // Now just recurse over the expression's children. 12011 CC = E->getExprLoc(); 12012 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12013 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12014 for (Stmt *SubStmt : E->children()) { 12015 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12016 if (!ChildExpr) 12017 continue; 12018 12019 if (IsLogicalAndOperator && 12020 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12021 // Ignore checking string literals that are in logical and operators. 12022 // This is a common pattern for asserts. 12023 continue; 12024 AnalyzeImplicitConversions(S, ChildExpr, CC, IsListInit); 12025 } 12026 12027 if (BO && BO->isLogicalOp()) { 12028 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12029 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12030 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12031 12032 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12033 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12034 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12035 } 12036 12037 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12038 if (U->getOpcode() == UO_LNot) { 12039 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12040 } else if (U->getOpcode() != UO_AddrOf) { 12041 if (U->getSubExpr()->getType()->isAtomicType()) 12042 S.Diag(U->getSubExpr()->getBeginLoc(), 12043 diag::warn_atomic_implicit_seq_cst); 12044 } 12045 } 12046 } 12047 12048 /// Diagnose integer type and any valid implicit conversion to it. 12049 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12050 // Taking into account implicit conversions, 12051 // allow any integer. 12052 if (!E->getType()->isIntegerType()) { 12053 S.Diag(E->getBeginLoc(), 12054 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12055 return true; 12056 } 12057 // Potentially emit standard warnings for implicit conversions if enabled 12058 // using -Wconversion. 12059 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12060 return false; 12061 } 12062 12063 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12064 // Returns true when emitting a warning about taking the address of a reference. 12065 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12066 const PartialDiagnostic &PD) { 12067 E = E->IgnoreParenImpCasts(); 12068 12069 const FunctionDecl *FD = nullptr; 12070 12071 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12072 if (!DRE->getDecl()->getType()->isReferenceType()) 12073 return false; 12074 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12075 if (!M->getMemberDecl()->getType()->isReferenceType()) 12076 return false; 12077 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12078 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12079 return false; 12080 FD = Call->getDirectCallee(); 12081 } else { 12082 return false; 12083 } 12084 12085 SemaRef.Diag(E->getExprLoc(), PD); 12086 12087 // If possible, point to location of function. 12088 if (FD) { 12089 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12090 } 12091 12092 return true; 12093 } 12094 12095 // Returns true if the SourceLocation is expanded from any macro body. 12096 // Returns false if the SourceLocation is invalid, is from not in a macro 12097 // expansion, or is from expanded from a top-level macro argument. 12098 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12099 if (Loc.isInvalid()) 12100 return false; 12101 12102 while (Loc.isMacroID()) { 12103 if (SM.isMacroBodyExpansion(Loc)) 12104 return true; 12105 Loc = SM.getImmediateMacroCallerLoc(Loc); 12106 } 12107 12108 return false; 12109 } 12110 12111 /// Diagnose pointers that are always non-null. 12112 /// \param E the expression containing the pointer 12113 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12114 /// compared to a null pointer 12115 /// \param IsEqual True when the comparison is equal to a null pointer 12116 /// \param Range Extra SourceRange to highlight in the diagnostic 12117 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12118 Expr::NullPointerConstantKind NullKind, 12119 bool IsEqual, SourceRange Range) { 12120 if (!E) 12121 return; 12122 12123 // Don't warn inside macros. 12124 if (E->getExprLoc().isMacroID()) { 12125 const SourceManager &SM = getSourceManager(); 12126 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12127 IsInAnyMacroBody(SM, Range.getBegin())) 12128 return; 12129 } 12130 E = E->IgnoreImpCasts(); 12131 12132 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12133 12134 if (isa<CXXThisExpr>(E)) { 12135 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12136 : diag::warn_this_bool_conversion; 12137 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12138 return; 12139 } 12140 12141 bool IsAddressOf = false; 12142 12143 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12144 if (UO->getOpcode() != UO_AddrOf) 12145 return; 12146 IsAddressOf = true; 12147 E = UO->getSubExpr(); 12148 } 12149 12150 if (IsAddressOf) { 12151 unsigned DiagID = IsCompare 12152 ? diag::warn_address_of_reference_null_compare 12153 : diag::warn_address_of_reference_bool_conversion; 12154 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12155 << IsEqual; 12156 if (CheckForReference(*this, E, PD)) { 12157 return; 12158 } 12159 } 12160 12161 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12162 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12163 std::string Str; 12164 llvm::raw_string_ostream S(Str); 12165 E->printPretty(S, nullptr, getPrintingPolicy()); 12166 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12167 : diag::warn_cast_nonnull_to_bool; 12168 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12169 << E->getSourceRange() << Range << IsEqual; 12170 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12171 }; 12172 12173 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12174 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12175 if (auto *Callee = Call->getDirectCallee()) { 12176 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12177 ComplainAboutNonnullParamOrCall(A); 12178 return; 12179 } 12180 } 12181 } 12182 12183 // Expect to find a single Decl. Skip anything more complicated. 12184 ValueDecl *D = nullptr; 12185 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12186 D = R->getDecl(); 12187 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12188 D = M->getMemberDecl(); 12189 } 12190 12191 // Weak Decls can be null. 12192 if (!D || D->isWeak()) 12193 return; 12194 12195 // Check for parameter decl with nonnull attribute 12196 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12197 if (getCurFunction() && 12198 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12199 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12200 ComplainAboutNonnullParamOrCall(A); 12201 return; 12202 } 12203 12204 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12205 // Skip function template not specialized yet. 12206 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12207 return; 12208 auto ParamIter = llvm::find(FD->parameters(), PV); 12209 assert(ParamIter != FD->param_end()); 12210 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12211 12212 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12213 if (!NonNull->args_size()) { 12214 ComplainAboutNonnullParamOrCall(NonNull); 12215 return; 12216 } 12217 12218 for (const ParamIdx &ArgNo : NonNull->args()) { 12219 if (ArgNo.getASTIndex() == ParamNo) { 12220 ComplainAboutNonnullParamOrCall(NonNull); 12221 return; 12222 } 12223 } 12224 } 12225 } 12226 } 12227 } 12228 12229 QualType T = D->getType(); 12230 const bool IsArray = T->isArrayType(); 12231 const bool IsFunction = T->isFunctionType(); 12232 12233 // Address of function is used to silence the function warning. 12234 if (IsAddressOf && IsFunction) { 12235 return; 12236 } 12237 12238 // Found nothing. 12239 if (!IsAddressOf && !IsFunction && !IsArray) 12240 return; 12241 12242 // Pretty print the expression for the diagnostic. 12243 std::string Str; 12244 llvm::raw_string_ostream S(Str); 12245 E->printPretty(S, nullptr, getPrintingPolicy()); 12246 12247 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12248 : diag::warn_impcast_pointer_to_bool; 12249 enum { 12250 AddressOf, 12251 FunctionPointer, 12252 ArrayPointer 12253 } DiagType; 12254 if (IsAddressOf) 12255 DiagType = AddressOf; 12256 else if (IsFunction) 12257 DiagType = FunctionPointer; 12258 else if (IsArray) 12259 DiagType = ArrayPointer; 12260 else 12261 llvm_unreachable("Could not determine diagnostic."); 12262 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12263 << Range << IsEqual; 12264 12265 if (!IsFunction) 12266 return; 12267 12268 // Suggest '&' to silence the function warning. 12269 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12270 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12271 12272 // Check to see if '()' fixit should be emitted. 12273 QualType ReturnType; 12274 UnresolvedSet<4> NonTemplateOverloads; 12275 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12276 if (ReturnType.isNull()) 12277 return; 12278 12279 if (IsCompare) { 12280 // There are two cases here. If there is null constant, the only suggest 12281 // for a pointer return type. If the null is 0, then suggest if the return 12282 // type is a pointer or an integer type. 12283 if (!ReturnType->isPointerType()) { 12284 if (NullKind == Expr::NPCK_ZeroExpression || 12285 NullKind == Expr::NPCK_ZeroLiteral) { 12286 if (!ReturnType->isIntegerType()) 12287 return; 12288 } else { 12289 return; 12290 } 12291 } 12292 } else { // !IsCompare 12293 // For function to bool, only suggest if the function pointer has bool 12294 // return type. 12295 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12296 return; 12297 } 12298 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12299 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12300 } 12301 12302 /// Diagnoses "dangerous" implicit conversions within the given 12303 /// expression (which is a full expression). Implements -Wconversion 12304 /// and -Wsign-compare. 12305 /// 12306 /// \param CC the "context" location of the implicit conversion, i.e. 12307 /// the most location of the syntactic entity requiring the implicit 12308 /// conversion 12309 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12310 // Don't diagnose in unevaluated contexts. 12311 if (isUnevaluatedContext()) 12312 return; 12313 12314 // Don't diagnose for value- or type-dependent expressions. 12315 if (E->isTypeDependent() || E->isValueDependent()) 12316 return; 12317 12318 // Check for array bounds violations in cases where the check isn't triggered 12319 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12320 // ArraySubscriptExpr is on the RHS of a variable initialization. 12321 CheckArrayAccess(E); 12322 12323 // This is not the right CC for (e.g.) a variable initialization. 12324 AnalyzeImplicitConversions(*this, E, CC); 12325 } 12326 12327 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12328 /// Input argument E is a logical expression. 12329 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12330 ::CheckBoolLikeConversion(*this, E, CC); 12331 } 12332 12333 /// Diagnose when expression is an integer constant expression and its evaluation 12334 /// results in integer overflow 12335 void Sema::CheckForIntOverflow (Expr *E) { 12336 // Use a work list to deal with nested struct initializers. 12337 SmallVector<Expr *, 2> Exprs(1, E); 12338 12339 do { 12340 Expr *OriginalE = Exprs.pop_back_val(); 12341 Expr *E = OriginalE->IgnoreParenCasts(); 12342 12343 if (isa<BinaryOperator>(E)) { 12344 E->EvaluateForOverflow(Context); 12345 continue; 12346 } 12347 12348 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12349 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12350 else if (isa<ObjCBoxedExpr>(OriginalE)) 12351 E->EvaluateForOverflow(Context); 12352 else if (auto Call = dyn_cast<CallExpr>(E)) 12353 Exprs.append(Call->arg_begin(), Call->arg_end()); 12354 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12355 Exprs.append(Message->arg_begin(), Message->arg_end()); 12356 } while (!Exprs.empty()); 12357 } 12358 12359 namespace { 12360 12361 /// Visitor for expressions which looks for unsequenced operations on the 12362 /// same object. 12363 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> { 12364 using Base = EvaluatedExprVisitor<SequenceChecker>; 12365 12366 /// A tree of sequenced regions within an expression. Two regions are 12367 /// unsequenced if one is an ancestor or a descendent of the other. When we 12368 /// finish processing an expression with sequencing, such as a comma 12369 /// expression, we fold its tree nodes into its parent, since they are 12370 /// unsequenced with respect to nodes we will visit later. 12371 class SequenceTree { 12372 struct Value { 12373 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12374 unsigned Parent : 31; 12375 unsigned Merged : 1; 12376 }; 12377 SmallVector<Value, 8> Values; 12378 12379 public: 12380 /// A region within an expression which may be sequenced with respect 12381 /// to some other region. 12382 class Seq { 12383 friend class SequenceTree; 12384 12385 unsigned Index; 12386 12387 explicit Seq(unsigned N) : Index(N) {} 12388 12389 public: 12390 Seq() : Index(0) {} 12391 }; 12392 12393 SequenceTree() { Values.push_back(Value(0)); } 12394 Seq root() const { return Seq(0); } 12395 12396 /// Create a new sequence of operations, which is an unsequenced 12397 /// subset of \p Parent. This sequence of operations is sequenced with 12398 /// respect to other children of \p Parent. 12399 Seq allocate(Seq Parent) { 12400 Values.push_back(Value(Parent.Index)); 12401 return Seq(Values.size() - 1); 12402 } 12403 12404 /// Merge a sequence of operations into its parent. 12405 void merge(Seq S) { 12406 Values[S.Index].Merged = true; 12407 } 12408 12409 /// Determine whether two operations are unsequenced. This operation 12410 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12411 /// should have been merged into its parent as appropriate. 12412 bool isUnsequenced(Seq Cur, Seq Old) { 12413 unsigned C = representative(Cur.Index); 12414 unsigned Target = representative(Old.Index); 12415 while (C >= Target) { 12416 if (C == Target) 12417 return true; 12418 C = Values[C].Parent; 12419 } 12420 return false; 12421 } 12422 12423 private: 12424 /// Pick a representative for a sequence. 12425 unsigned representative(unsigned K) { 12426 if (Values[K].Merged) 12427 // Perform path compression as we go. 12428 return Values[K].Parent = representative(Values[K].Parent); 12429 return K; 12430 } 12431 }; 12432 12433 /// An object for which we can track unsequenced uses. 12434 using Object = NamedDecl *; 12435 12436 /// Different flavors of object usage which we track. We only track the 12437 /// least-sequenced usage of each kind. 12438 enum UsageKind { 12439 /// A read of an object. Multiple unsequenced reads are OK. 12440 UK_Use, 12441 12442 /// A modification of an object which is sequenced before the value 12443 /// computation of the expression, such as ++n in C++. 12444 UK_ModAsValue, 12445 12446 /// A modification of an object which is not sequenced before the value 12447 /// computation of the expression, such as n++. 12448 UK_ModAsSideEffect, 12449 12450 UK_Count = UK_ModAsSideEffect + 1 12451 }; 12452 12453 struct Usage { 12454 Expr *Use; 12455 SequenceTree::Seq Seq; 12456 12457 Usage() : Use(nullptr), Seq() {} 12458 }; 12459 12460 struct UsageInfo { 12461 Usage Uses[UK_Count]; 12462 12463 /// Have we issued a diagnostic for this variable already? 12464 bool Diagnosed; 12465 12466 UsageInfo() : Uses(), Diagnosed(false) {} 12467 }; 12468 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 12469 12470 Sema &SemaRef; 12471 12472 /// Sequenced regions within the expression. 12473 SequenceTree Tree; 12474 12475 /// Declaration modifications and references which we have seen. 12476 UsageInfoMap UsageMap; 12477 12478 /// The region we are currently within. 12479 SequenceTree::Seq Region; 12480 12481 /// Filled in with declarations which were modified as a side-effect 12482 /// (that is, post-increment operations). 12483 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 12484 12485 /// Expressions to check later. We defer checking these to reduce 12486 /// stack usage. 12487 SmallVectorImpl<Expr *> &WorkList; 12488 12489 /// RAII object wrapping the visitation of a sequenced subexpression of an 12490 /// expression. At the end of this process, the side-effects of the evaluation 12491 /// become sequenced with respect to the value computation of the result, so 12492 /// we downgrade any UK_ModAsSideEffect within the evaluation to 12493 /// UK_ModAsValue. 12494 struct SequencedSubexpression { 12495 SequencedSubexpression(SequenceChecker &Self) 12496 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 12497 Self.ModAsSideEffect = &ModAsSideEffect; 12498 } 12499 12500 ~SequencedSubexpression() { 12501 for (auto &M : llvm::reverse(ModAsSideEffect)) { 12502 UsageInfo &U = Self.UsageMap[M.first]; 12503 auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect]; 12504 Self.addUsage(U, M.first, SideEffectUsage.Use, UK_ModAsValue); 12505 SideEffectUsage = M.second; 12506 } 12507 Self.ModAsSideEffect = OldModAsSideEffect; 12508 } 12509 12510 SequenceChecker &Self; 12511 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 12512 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 12513 }; 12514 12515 /// RAII object wrapping the visitation of a subexpression which we might 12516 /// choose to evaluate as a constant. If any subexpression is evaluated and 12517 /// found to be non-constant, this allows us to suppress the evaluation of 12518 /// the outer expression. 12519 class EvaluationTracker { 12520 public: 12521 EvaluationTracker(SequenceChecker &Self) 12522 : Self(Self), Prev(Self.EvalTracker) { 12523 Self.EvalTracker = this; 12524 } 12525 12526 ~EvaluationTracker() { 12527 Self.EvalTracker = Prev; 12528 if (Prev) 12529 Prev->EvalOK &= EvalOK; 12530 } 12531 12532 bool evaluate(const Expr *E, bool &Result) { 12533 if (!EvalOK || E->isValueDependent()) 12534 return false; 12535 EvalOK = E->EvaluateAsBooleanCondition( 12536 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 12537 return EvalOK; 12538 } 12539 12540 private: 12541 SequenceChecker &Self; 12542 EvaluationTracker *Prev; 12543 bool EvalOK = true; 12544 } *EvalTracker = nullptr; 12545 12546 /// Find the object which is produced by the specified expression, 12547 /// if any. 12548 Object getObject(Expr *E, bool Mod) const { 12549 E = E->IgnoreParenCasts(); 12550 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12551 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 12552 return getObject(UO->getSubExpr(), Mod); 12553 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12554 if (BO->getOpcode() == BO_Comma) 12555 return getObject(BO->getRHS(), Mod); 12556 if (Mod && BO->isAssignmentOp()) 12557 return getObject(BO->getLHS(), Mod); 12558 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 12559 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 12560 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 12561 return ME->getMemberDecl(); 12562 } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12563 // FIXME: If this is a reference, map through to its value. 12564 return DRE->getDecl(); 12565 return nullptr; 12566 } 12567 12568 /// Note that an object was modified or used by an expression. 12569 void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) { 12570 Usage &U = UI.Uses[UK]; 12571 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) { 12572 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 12573 ModAsSideEffect->push_back(std::make_pair(O, U)); 12574 U.Use = Ref; 12575 U.Seq = Region; 12576 } 12577 } 12578 12579 /// Check whether a modification or use conflicts with a prior usage. 12580 void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind, 12581 bool IsModMod) { 12582 if (UI.Diagnosed) 12583 return; 12584 12585 const Usage &U = UI.Uses[OtherKind]; 12586 if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) 12587 return; 12588 12589 Expr *Mod = U.Use; 12590 Expr *ModOrUse = Ref; 12591 if (OtherKind == UK_Use) 12592 std::swap(Mod, ModOrUse); 12593 12594 SemaRef.DiagRuntimeBehavior( 12595 Mod->getExprLoc(), {Mod, ModOrUse}, 12596 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 12597 : diag::warn_unsequenced_mod_use) 12598 << O << SourceRange(ModOrUse->getExprLoc())); 12599 UI.Diagnosed = true; 12600 } 12601 12602 void notePreUse(Object O, Expr *Use) { 12603 UsageInfo &U = UsageMap[O]; 12604 // Uses conflict with other modifications. 12605 checkUsage(O, U, Use, UK_ModAsValue, false); 12606 } 12607 12608 void notePostUse(Object O, Expr *Use) { 12609 UsageInfo &U = UsageMap[O]; 12610 checkUsage(O, U, Use, UK_ModAsSideEffect, false); 12611 addUsage(U, O, Use, UK_Use); 12612 } 12613 12614 void notePreMod(Object O, Expr *Mod) { 12615 UsageInfo &U = UsageMap[O]; 12616 // Modifications conflict with other modifications and with uses. 12617 checkUsage(O, U, Mod, UK_ModAsValue, true); 12618 checkUsage(O, U, Mod, UK_Use, false); 12619 } 12620 12621 void notePostMod(Object O, Expr *Use, UsageKind UK) { 12622 UsageInfo &U = UsageMap[O]; 12623 checkUsage(O, U, Use, UK_ModAsSideEffect, true); 12624 addUsage(U, O, Use, UK); 12625 } 12626 12627 public: 12628 SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList) 12629 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 12630 Visit(E); 12631 } 12632 12633 void VisitStmt(Stmt *S) { 12634 // Skip all statements which aren't expressions for now. 12635 } 12636 12637 void VisitExpr(Expr *E) { 12638 // By default, just recurse to evaluated subexpressions. 12639 Base::VisitStmt(E); 12640 } 12641 12642 void VisitCastExpr(CastExpr *E) { 12643 Object O = Object(); 12644 if (E->getCastKind() == CK_LValueToRValue) 12645 O = getObject(E->getSubExpr(), false); 12646 12647 if (O) 12648 notePreUse(O, E); 12649 VisitExpr(E); 12650 if (O) 12651 notePostUse(O, E); 12652 } 12653 12654 void VisitSequencedExpressions(Expr *SequencedBefore, Expr *SequencedAfter) { 12655 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 12656 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 12657 SequenceTree::Seq OldRegion = Region; 12658 12659 { 12660 SequencedSubexpression SeqBefore(*this); 12661 Region = BeforeRegion; 12662 Visit(SequencedBefore); 12663 } 12664 12665 Region = AfterRegion; 12666 Visit(SequencedAfter); 12667 12668 Region = OldRegion; 12669 12670 Tree.merge(BeforeRegion); 12671 Tree.merge(AfterRegion); 12672 } 12673 12674 void VisitArraySubscriptExpr(ArraySubscriptExpr *ASE) { 12675 // C++17 [expr.sub]p1: 12676 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 12677 // expression E1 is sequenced before the expression E2. 12678 if (SemaRef.getLangOpts().CPlusPlus17) 12679 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 12680 else 12681 Base::VisitStmt(ASE); 12682 } 12683 12684 void VisitBinComma(BinaryOperator *BO) { 12685 // C++11 [expr.comma]p1: 12686 // Every value computation and side effect associated with the left 12687 // expression is sequenced before every value computation and side 12688 // effect associated with the right expression. 12689 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12690 } 12691 12692 void VisitBinAssign(BinaryOperator *BO) { 12693 // The modification is sequenced after the value computation of the LHS 12694 // and RHS, so check it before inspecting the operands and update the 12695 // map afterwards. 12696 Object O = getObject(BO->getLHS(), true); 12697 if (!O) 12698 return VisitExpr(BO); 12699 12700 notePreMod(O, BO); 12701 12702 // C++11 [expr.ass]p7: 12703 // E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated 12704 // only once. 12705 // 12706 // Therefore, for a compound assignment operator, O is considered used 12707 // everywhere except within the evaluation of E1 itself. 12708 if (isa<CompoundAssignOperator>(BO)) 12709 notePreUse(O, BO); 12710 12711 Visit(BO->getLHS()); 12712 12713 if (isa<CompoundAssignOperator>(BO)) 12714 notePostUse(O, BO); 12715 12716 Visit(BO->getRHS()); 12717 12718 // C++11 [expr.ass]p1: 12719 // the assignment is sequenced [...] before the value computation of the 12720 // assignment expression. 12721 // C11 6.5.16/3 has no such rule. 12722 notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12723 : UK_ModAsSideEffect); 12724 } 12725 12726 void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) { 12727 VisitBinAssign(CAO); 12728 } 12729 12730 void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12731 void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12732 void VisitUnaryPreIncDec(UnaryOperator *UO) { 12733 Object O = getObject(UO->getSubExpr(), true); 12734 if (!O) 12735 return VisitExpr(UO); 12736 12737 notePreMod(O, UO); 12738 Visit(UO->getSubExpr()); 12739 // C++11 [expr.pre.incr]p1: 12740 // the expression ++x is equivalent to x+=1 12741 notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12742 : UK_ModAsSideEffect); 12743 } 12744 12745 void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12746 void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12747 void VisitUnaryPostIncDec(UnaryOperator *UO) { 12748 Object O = getObject(UO->getSubExpr(), true); 12749 if (!O) 12750 return VisitExpr(UO); 12751 12752 notePreMod(O, UO); 12753 Visit(UO->getSubExpr()); 12754 notePostMod(O, UO, UK_ModAsSideEffect); 12755 } 12756 12757 /// Don't visit the RHS of '&&' or '||' if it might not be evaluated. 12758 void VisitBinLOr(BinaryOperator *BO) { 12759 // The side-effects of the LHS of an '&&' are sequenced before the 12760 // value computation of the RHS, and hence before the value computation 12761 // of the '&&' itself, unless the LHS evaluates to zero. We treat them 12762 // as if they were unconditionally sequenced. 12763 EvaluationTracker Eval(*this); 12764 { 12765 SequencedSubexpression Sequenced(*this); 12766 Visit(BO->getLHS()); 12767 } 12768 12769 bool Result; 12770 if (Eval.evaluate(BO->getLHS(), Result)) { 12771 if (!Result) 12772 Visit(BO->getRHS()); 12773 } else { 12774 // Check for unsequenced operations in the RHS, treating it as an 12775 // entirely separate evaluation. 12776 // 12777 // FIXME: If there are operations in the RHS which are unsequenced 12778 // with respect to operations outside the RHS, and those operations 12779 // are unconditionally evaluated, diagnose them. 12780 WorkList.push_back(BO->getRHS()); 12781 } 12782 } 12783 void VisitBinLAnd(BinaryOperator *BO) { 12784 EvaluationTracker Eval(*this); 12785 { 12786 SequencedSubexpression Sequenced(*this); 12787 Visit(BO->getLHS()); 12788 } 12789 12790 bool Result; 12791 if (Eval.evaluate(BO->getLHS(), Result)) { 12792 if (Result) 12793 Visit(BO->getRHS()); 12794 } else { 12795 WorkList.push_back(BO->getRHS()); 12796 } 12797 } 12798 12799 // Only visit the condition, unless we can be sure which subexpression will 12800 // be chosen. 12801 void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) { 12802 EvaluationTracker Eval(*this); 12803 { 12804 SequencedSubexpression Sequenced(*this); 12805 Visit(CO->getCond()); 12806 } 12807 12808 bool Result; 12809 if (Eval.evaluate(CO->getCond(), Result)) 12810 Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr()); 12811 else { 12812 WorkList.push_back(CO->getTrueExpr()); 12813 WorkList.push_back(CO->getFalseExpr()); 12814 } 12815 } 12816 12817 void VisitCallExpr(CallExpr *CE) { 12818 // C++11 [intro.execution]p15: 12819 // When calling a function [...], every value computation and side effect 12820 // associated with any argument expression, or with the postfix expression 12821 // designating the called function, is sequenced before execution of every 12822 // expression or statement in the body of the function [and thus before 12823 // the value computation of its result]. 12824 SequencedSubexpression Sequenced(*this); 12825 Base::VisitCallExpr(CE); 12826 12827 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 12828 } 12829 12830 void VisitCXXConstructExpr(CXXConstructExpr *CCE) { 12831 // This is a call, so all subexpressions are sequenced before the result. 12832 SequencedSubexpression Sequenced(*this); 12833 12834 if (!CCE->isListInitialization()) 12835 return VisitExpr(CCE); 12836 12837 // In C++11, list initializations are sequenced. 12838 SmallVector<SequenceTree::Seq, 32> Elts; 12839 SequenceTree::Seq Parent = Region; 12840 for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(), 12841 E = CCE->arg_end(); 12842 I != E; ++I) { 12843 Region = Tree.allocate(Parent); 12844 Elts.push_back(Region); 12845 Visit(*I); 12846 } 12847 12848 // Forget that the initializers are sequenced. 12849 Region = Parent; 12850 for (unsigned I = 0; I < Elts.size(); ++I) 12851 Tree.merge(Elts[I]); 12852 } 12853 12854 void VisitInitListExpr(InitListExpr *ILE) { 12855 if (!SemaRef.getLangOpts().CPlusPlus11) 12856 return VisitExpr(ILE); 12857 12858 // In C++11, list initializations are sequenced. 12859 SmallVector<SequenceTree::Seq, 32> Elts; 12860 SequenceTree::Seq Parent = Region; 12861 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 12862 Expr *E = ILE->getInit(I); 12863 if (!E) continue; 12864 Region = Tree.allocate(Parent); 12865 Elts.push_back(Region); 12866 Visit(E); 12867 } 12868 12869 // Forget that the initializers are sequenced. 12870 Region = Parent; 12871 for (unsigned I = 0; I < Elts.size(); ++I) 12872 Tree.merge(Elts[I]); 12873 } 12874 }; 12875 12876 } // namespace 12877 12878 void Sema::CheckUnsequencedOperations(Expr *E) { 12879 SmallVector<Expr *, 8> WorkList; 12880 WorkList.push_back(E); 12881 while (!WorkList.empty()) { 12882 Expr *Item = WorkList.pop_back_val(); 12883 SequenceChecker(*this, Item, WorkList); 12884 } 12885 } 12886 12887 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 12888 bool IsConstexpr) { 12889 llvm::SaveAndRestore<bool> ConstantContext( 12890 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 12891 CheckImplicitConversions(E, CheckLoc); 12892 if (!E->isInstantiationDependent()) 12893 CheckUnsequencedOperations(E); 12894 if (!IsConstexpr && !E->isValueDependent()) 12895 CheckForIntOverflow(E); 12896 DiagnoseMisalignedMembers(); 12897 } 12898 12899 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 12900 FieldDecl *BitField, 12901 Expr *Init) { 12902 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 12903 } 12904 12905 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 12906 SourceLocation Loc) { 12907 if (!PType->isVariablyModifiedType()) 12908 return; 12909 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 12910 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 12911 return; 12912 } 12913 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 12914 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 12915 return; 12916 } 12917 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 12918 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 12919 return; 12920 } 12921 12922 const ArrayType *AT = S.Context.getAsArrayType(PType); 12923 if (!AT) 12924 return; 12925 12926 if (AT->getSizeModifier() != ArrayType::Star) { 12927 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 12928 return; 12929 } 12930 12931 S.Diag(Loc, diag::err_array_star_in_function_definition); 12932 } 12933 12934 /// CheckParmsForFunctionDef - Check that the parameters of the given 12935 /// function are appropriate for the definition of a function. This 12936 /// takes care of any checks that cannot be performed on the 12937 /// declaration itself, e.g., that the types of each of the function 12938 /// parameters are complete. 12939 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 12940 bool CheckParameterNames) { 12941 bool HasInvalidParm = false; 12942 for (ParmVarDecl *Param : Parameters) { 12943 // C99 6.7.5.3p4: the parameters in a parameter type list in a 12944 // function declarator that is part of a function definition of 12945 // that function shall not have incomplete type. 12946 // 12947 // This is also C++ [dcl.fct]p6. 12948 if (!Param->isInvalidDecl() && 12949 RequireCompleteType(Param->getLocation(), Param->getType(), 12950 diag::err_typecheck_decl_incomplete_type)) { 12951 Param->setInvalidDecl(); 12952 HasInvalidParm = true; 12953 } 12954 12955 // C99 6.9.1p5: If the declarator includes a parameter type list, the 12956 // declaration of each parameter shall include an identifier. 12957 if (CheckParameterNames && 12958 Param->getIdentifier() == nullptr && 12959 !Param->isImplicit() && 12960 !getLangOpts().CPlusPlus) 12961 Diag(Param->getLocation(), diag::err_parameter_name_omitted); 12962 12963 // C99 6.7.5.3p12: 12964 // If the function declarator is not part of a definition of that 12965 // function, parameters may have incomplete type and may use the [*] 12966 // notation in their sequences of declarator specifiers to specify 12967 // variable length array types. 12968 QualType PType = Param->getOriginalType(); 12969 // FIXME: This diagnostic should point the '[*]' if source-location 12970 // information is added for it. 12971 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 12972 12973 // If the parameter is a c++ class type and it has to be destructed in the 12974 // callee function, declare the destructor so that it can be called by the 12975 // callee function. Do not perform any direct access check on the dtor here. 12976 if (!Param->isInvalidDecl()) { 12977 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 12978 if (!ClassDecl->isInvalidDecl() && 12979 !ClassDecl->hasIrrelevantDestructor() && 12980 !ClassDecl->isDependentContext() && 12981 ClassDecl->isParamDestroyedInCallee()) { 12982 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 12983 MarkFunctionReferenced(Param->getLocation(), Destructor); 12984 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 12985 } 12986 } 12987 } 12988 12989 // Parameters with the pass_object_size attribute only need to be marked 12990 // constant at function definitions. Because we lack information about 12991 // whether we're on a declaration or definition when we're instantiating the 12992 // attribute, we need to check for constness here. 12993 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 12994 if (!Param->getType().isConstQualified()) 12995 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 12996 << Attr->getSpelling() << 1; 12997 12998 // Check for parameter names shadowing fields from the class. 12999 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13000 // The owning context for the parameter should be the function, but we 13001 // want to see if this function's declaration context is a record. 13002 DeclContext *DC = Param->getDeclContext(); 13003 if (DC && DC->isFunctionOrMethod()) { 13004 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13005 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13006 RD, /*DeclIsField*/ false); 13007 } 13008 } 13009 } 13010 13011 return HasInvalidParm; 13012 } 13013 13014 /// A helper function to get the alignment of a Decl referred to by DeclRefExpr 13015 /// or MemberExpr. 13016 static CharUnits getDeclAlign(Expr *E, CharUnits TypeAlign, 13017 ASTContext &Context) { 13018 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) 13019 return Context.getDeclAlign(DRE->getDecl()); 13020 13021 if (const auto *ME = dyn_cast<MemberExpr>(E)) 13022 return Context.getDeclAlign(ME->getMemberDecl()); 13023 13024 return TypeAlign; 13025 } 13026 13027 /// CheckCastAlign - Implements -Wcast-align, which warns when a 13028 /// pointer cast increases the alignment requirements. 13029 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 13030 // This is actually a lot of work to potentially be doing on every 13031 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 13032 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 13033 return; 13034 13035 // Ignore dependent types. 13036 if (T->isDependentType() || Op->getType()->isDependentType()) 13037 return; 13038 13039 // Require that the destination be a pointer type. 13040 const PointerType *DestPtr = T->getAs<PointerType>(); 13041 if (!DestPtr) return; 13042 13043 // If the destination has alignment 1, we're done. 13044 QualType DestPointee = DestPtr->getPointeeType(); 13045 if (DestPointee->isIncompleteType()) return; 13046 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 13047 if (DestAlign.isOne()) return; 13048 13049 // Require that the source be a pointer type. 13050 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 13051 if (!SrcPtr) return; 13052 QualType SrcPointee = SrcPtr->getPointeeType(); 13053 13054 // Whitelist casts from cv void*. We already implicitly 13055 // whitelisted casts to cv void*, since they have alignment 1. 13056 // Also whitelist casts involving incomplete types, which implicitly 13057 // includes 'void'. 13058 if (SrcPointee->isIncompleteType()) return; 13059 13060 CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee); 13061 13062 if (auto *CE = dyn_cast<CastExpr>(Op)) { 13063 if (CE->getCastKind() == CK_ArrayToPointerDecay) 13064 SrcAlign = getDeclAlign(CE->getSubExpr(), SrcAlign, Context); 13065 } else if (auto *UO = dyn_cast<UnaryOperator>(Op)) { 13066 if (UO->getOpcode() == UO_AddrOf) 13067 SrcAlign = getDeclAlign(UO->getSubExpr(), SrcAlign, Context); 13068 } 13069 13070 if (SrcAlign >= DestAlign) return; 13071 13072 Diag(TRange.getBegin(), diag::warn_cast_align) 13073 << Op->getType() << T 13074 << static_cast<unsigned>(SrcAlign.getQuantity()) 13075 << static_cast<unsigned>(DestAlign.getQuantity()) 13076 << TRange << Op->getSourceRange(); 13077 } 13078 13079 /// Check whether this array fits the idiom of a size-one tail padded 13080 /// array member of a struct. 13081 /// 13082 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 13083 /// commonly used to emulate flexible arrays in C89 code. 13084 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 13085 const NamedDecl *ND) { 13086 if (Size != 1 || !ND) return false; 13087 13088 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 13089 if (!FD) return false; 13090 13091 // Don't consider sizes resulting from macro expansions or template argument 13092 // substitution to form C89 tail-padded arrays. 13093 13094 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 13095 while (TInfo) { 13096 TypeLoc TL = TInfo->getTypeLoc(); 13097 // Look through typedefs. 13098 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 13099 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 13100 TInfo = TDL->getTypeSourceInfo(); 13101 continue; 13102 } 13103 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 13104 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 13105 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 13106 return false; 13107 } 13108 break; 13109 } 13110 13111 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 13112 if (!RD) return false; 13113 if (RD->isUnion()) return false; 13114 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 13115 if (!CRD->isStandardLayout()) return false; 13116 } 13117 13118 // See if this is the last field decl in the record. 13119 const Decl *D = FD; 13120 while ((D = D->getNextDeclInContext())) 13121 if (isa<FieldDecl>(D)) 13122 return false; 13123 return true; 13124 } 13125 13126 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 13127 const ArraySubscriptExpr *ASE, 13128 bool AllowOnePastEnd, bool IndexNegated) { 13129 // Already diagnosed by the constant evaluator. 13130 if (isConstantEvaluated()) 13131 return; 13132 13133 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 13134 if (IndexExpr->isValueDependent()) 13135 return; 13136 13137 const Type *EffectiveType = 13138 BaseExpr->getType()->getPointeeOrArrayElementType(); 13139 BaseExpr = BaseExpr->IgnoreParenCasts(); 13140 const ConstantArrayType *ArrayTy = 13141 Context.getAsConstantArrayType(BaseExpr->getType()); 13142 13143 if (!ArrayTy) 13144 return; 13145 13146 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 13147 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 13148 return; 13149 13150 Expr::EvalResult Result; 13151 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 13152 return; 13153 13154 llvm::APSInt index = Result.Val.getInt(); 13155 if (IndexNegated) 13156 index = -index; 13157 13158 const NamedDecl *ND = nullptr; 13159 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13160 ND = DRE->getDecl(); 13161 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13162 ND = ME->getMemberDecl(); 13163 13164 if (index.isUnsigned() || !index.isNegative()) { 13165 // It is possible that the type of the base expression after 13166 // IgnoreParenCasts is incomplete, even though the type of the base 13167 // expression before IgnoreParenCasts is complete (see PR39746 for an 13168 // example). In this case we have no information about whether the array 13169 // access exceeds the array bounds. However we can still diagnose an array 13170 // access which precedes the array bounds. 13171 if (BaseType->isIncompleteType()) 13172 return; 13173 13174 llvm::APInt size = ArrayTy->getSize(); 13175 if (!size.isStrictlyPositive()) 13176 return; 13177 13178 if (BaseType != EffectiveType) { 13179 // Make sure we're comparing apples to apples when comparing index to size 13180 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 13181 uint64_t array_typesize = Context.getTypeSize(BaseType); 13182 // Handle ptrarith_typesize being zero, such as when casting to void* 13183 if (!ptrarith_typesize) ptrarith_typesize = 1; 13184 if (ptrarith_typesize != array_typesize) { 13185 // There's a cast to a different size type involved 13186 uint64_t ratio = array_typesize / ptrarith_typesize; 13187 // TODO: Be smarter about handling cases where array_typesize is not a 13188 // multiple of ptrarith_typesize 13189 if (ptrarith_typesize * ratio == array_typesize) 13190 size *= llvm::APInt(size.getBitWidth(), ratio); 13191 } 13192 } 13193 13194 if (size.getBitWidth() > index.getBitWidth()) 13195 index = index.zext(size.getBitWidth()); 13196 else if (size.getBitWidth() < index.getBitWidth()) 13197 size = size.zext(index.getBitWidth()); 13198 13199 // For array subscripting the index must be less than size, but for pointer 13200 // arithmetic also allow the index (offset) to be equal to size since 13201 // computing the next address after the end of the array is legal and 13202 // commonly done e.g. in C++ iterators and range-based for loops. 13203 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 13204 return; 13205 13206 // Also don't warn for arrays of size 1 which are members of some 13207 // structure. These are often used to approximate flexible arrays in C89 13208 // code. 13209 if (IsTailPaddedMemberArray(*this, size, ND)) 13210 return; 13211 13212 // Suppress the warning if the subscript expression (as identified by the 13213 // ']' location) and the index expression are both from macro expansions 13214 // within a system header. 13215 if (ASE) { 13216 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 13217 ASE->getRBracketLoc()); 13218 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 13219 SourceLocation IndexLoc = 13220 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 13221 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 13222 return; 13223 } 13224 } 13225 13226 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 13227 if (ASE) 13228 DiagID = diag::warn_array_index_exceeds_bounds; 13229 13230 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13231 PDiag(DiagID) << index.toString(10, true) 13232 << size.toString(10, true) 13233 << (unsigned)size.getLimitedValue(~0U) 13234 << IndexExpr->getSourceRange()); 13235 } else { 13236 unsigned DiagID = diag::warn_array_index_precedes_bounds; 13237 if (!ASE) { 13238 DiagID = diag::warn_ptr_arith_precedes_bounds; 13239 if (index.isNegative()) index = -index; 13240 } 13241 13242 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13243 PDiag(DiagID) << index.toString(10, true) 13244 << IndexExpr->getSourceRange()); 13245 } 13246 13247 if (!ND) { 13248 // Try harder to find a NamedDecl to point at in the note. 13249 while (const ArraySubscriptExpr *ASE = 13250 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 13251 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 13252 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13253 ND = DRE->getDecl(); 13254 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13255 ND = ME->getMemberDecl(); 13256 } 13257 13258 if (ND) 13259 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 13260 PDiag(diag::note_array_declared_here) 13261 << ND->getDeclName()); 13262 } 13263 13264 void Sema::CheckArrayAccess(const Expr *expr) { 13265 int AllowOnePastEnd = 0; 13266 while (expr) { 13267 expr = expr->IgnoreParenImpCasts(); 13268 switch (expr->getStmtClass()) { 13269 case Stmt::ArraySubscriptExprClass: { 13270 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 13271 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 13272 AllowOnePastEnd > 0); 13273 expr = ASE->getBase(); 13274 break; 13275 } 13276 case Stmt::MemberExprClass: { 13277 expr = cast<MemberExpr>(expr)->getBase(); 13278 break; 13279 } 13280 case Stmt::OMPArraySectionExprClass: { 13281 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 13282 if (ASE->getLowerBound()) 13283 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 13284 /*ASE=*/nullptr, AllowOnePastEnd > 0); 13285 return; 13286 } 13287 case Stmt::UnaryOperatorClass: { 13288 // Only unwrap the * and & unary operators 13289 const UnaryOperator *UO = cast<UnaryOperator>(expr); 13290 expr = UO->getSubExpr(); 13291 switch (UO->getOpcode()) { 13292 case UO_AddrOf: 13293 AllowOnePastEnd++; 13294 break; 13295 case UO_Deref: 13296 AllowOnePastEnd--; 13297 break; 13298 default: 13299 return; 13300 } 13301 break; 13302 } 13303 case Stmt::ConditionalOperatorClass: { 13304 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 13305 if (const Expr *lhs = cond->getLHS()) 13306 CheckArrayAccess(lhs); 13307 if (const Expr *rhs = cond->getRHS()) 13308 CheckArrayAccess(rhs); 13309 return; 13310 } 13311 case Stmt::CXXOperatorCallExprClass: { 13312 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 13313 for (const auto *Arg : OCE->arguments()) 13314 CheckArrayAccess(Arg); 13315 return; 13316 } 13317 default: 13318 return; 13319 } 13320 } 13321 } 13322 13323 //===--- CHECK: Objective-C retain cycles ----------------------------------// 13324 13325 namespace { 13326 13327 struct RetainCycleOwner { 13328 VarDecl *Variable = nullptr; 13329 SourceRange Range; 13330 SourceLocation Loc; 13331 bool Indirect = false; 13332 13333 RetainCycleOwner() = default; 13334 13335 void setLocsFrom(Expr *e) { 13336 Loc = e->getExprLoc(); 13337 Range = e->getSourceRange(); 13338 } 13339 }; 13340 13341 } // namespace 13342 13343 /// Consider whether capturing the given variable can possibly lead to 13344 /// a retain cycle. 13345 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 13346 // In ARC, it's captured strongly iff the variable has __strong 13347 // lifetime. In MRR, it's captured strongly if the variable is 13348 // __block and has an appropriate type. 13349 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 13350 return false; 13351 13352 owner.Variable = var; 13353 if (ref) 13354 owner.setLocsFrom(ref); 13355 return true; 13356 } 13357 13358 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 13359 while (true) { 13360 e = e->IgnoreParens(); 13361 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 13362 switch (cast->getCastKind()) { 13363 case CK_BitCast: 13364 case CK_LValueBitCast: 13365 case CK_LValueToRValue: 13366 case CK_ARCReclaimReturnedObject: 13367 e = cast->getSubExpr(); 13368 continue; 13369 13370 default: 13371 return false; 13372 } 13373 } 13374 13375 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 13376 ObjCIvarDecl *ivar = ref->getDecl(); 13377 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 13378 return false; 13379 13380 // Try to find a retain cycle in the base. 13381 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 13382 return false; 13383 13384 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 13385 owner.Indirect = true; 13386 return true; 13387 } 13388 13389 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 13390 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 13391 if (!var) return false; 13392 return considerVariable(var, ref, owner); 13393 } 13394 13395 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 13396 if (member->isArrow()) return false; 13397 13398 // Don't count this as an indirect ownership. 13399 e = member->getBase(); 13400 continue; 13401 } 13402 13403 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 13404 // Only pay attention to pseudo-objects on property references. 13405 ObjCPropertyRefExpr *pre 13406 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 13407 ->IgnoreParens()); 13408 if (!pre) return false; 13409 if (pre->isImplicitProperty()) return false; 13410 ObjCPropertyDecl *property = pre->getExplicitProperty(); 13411 if (!property->isRetaining() && 13412 !(property->getPropertyIvarDecl() && 13413 property->getPropertyIvarDecl()->getType() 13414 .getObjCLifetime() == Qualifiers::OCL_Strong)) 13415 return false; 13416 13417 owner.Indirect = true; 13418 if (pre->isSuperReceiver()) { 13419 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 13420 if (!owner.Variable) 13421 return false; 13422 owner.Loc = pre->getLocation(); 13423 owner.Range = pre->getSourceRange(); 13424 return true; 13425 } 13426 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 13427 ->getSourceExpr()); 13428 continue; 13429 } 13430 13431 // Array ivars? 13432 13433 return false; 13434 } 13435 } 13436 13437 namespace { 13438 13439 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 13440 ASTContext &Context; 13441 VarDecl *Variable; 13442 Expr *Capturer = nullptr; 13443 bool VarWillBeReased = false; 13444 13445 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 13446 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 13447 Context(Context), Variable(variable) {} 13448 13449 void VisitDeclRefExpr(DeclRefExpr *ref) { 13450 if (ref->getDecl() == Variable && !Capturer) 13451 Capturer = ref; 13452 } 13453 13454 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 13455 if (Capturer) return; 13456 Visit(ref->getBase()); 13457 if (Capturer && ref->isFreeIvar()) 13458 Capturer = ref; 13459 } 13460 13461 void VisitBlockExpr(BlockExpr *block) { 13462 // Look inside nested blocks 13463 if (block->getBlockDecl()->capturesVariable(Variable)) 13464 Visit(block->getBlockDecl()->getBody()); 13465 } 13466 13467 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 13468 if (Capturer) return; 13469 if (OVE->getSourceExpr()) 13470 Visit(OVE->getSourceExpr()); 13471 } 13472 13473 void VisitBinaryOperator(BinaryOperator *BinOp) { 13474 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 13475 return; 13476 Expr *LHS = BinOp->getLHS(); 13477 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 13478 if (DRE->getDecl() != Variable) 13479 return; 13480 if (Expr *RHS = BinOp->getRHS()) { 13481 RHS = RHS->IgnoreParenCasts(); 13482 llvm::APSInt Value; 13483 VarWillBeReased = 13484 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); 13485 } 13486 } 13487 } 13488 }; 13489 13490 } // namespace 13491 13492 /// Check whether the given argument is a block which captures a 13493 /// variable. 13494 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 13495 assert(owner.Variable && owner.Loc.isValid()); 13496 13497 e = e->IgnoreParenCasts(); 13498 13499 // Look through [^{...} copy] and Block_copy(^{...}). 13500 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 13501 Selector Cmd = ME->getSelector(); 13502 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 13503 e = ME->getInstanceReceiver(); 13504 if (!e) 13505 return nullptr; 13506 e = e->IgnoreParenCasts(); 13507 } 13508 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 13509 if (CE->getNumArgs() == 1) { 13510 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 13511 if (Fn) { 13512 const IdentifierInfo *FnI = Fn->getIdentifier(); 13513 if (FnI && FnI->isStr("_Block_copy")) { 13514 e = CE->getArg(0)->IgnoreParenCasts(); 13515 } 13516 } 13517 } 13518 } 13519 13520 BlockExpr *block = dyn_cast<BlockExpr>(e); 13521 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 13522 return nullptr; 13523 13524 FindCaptureVisitor visitor(S.Context, owner.Variable); 13525 visitor.Visit(block->getBlockDecl()->getBody()); 13526 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 13527 } 13528 13529 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 13530 RetainCycleOwner &owner) { 13531 assert(capturer); 13532 assert(owner.Variable && owner.Loc.isValid()); 13533 13534 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 13535 << owner.Variable << capturer->getSourceRange(); 13536 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 13537 << owner.Indirect << owner.Range; 13538 } 13539 13540 /// Check for a keyword selector that starts with the word 'add' or 13541 /// 'set'. 13542 static bool isSetterLikeSelector(Selector sel) { 13543 if (sel.isUnarySelector()) return false; 13544 13545 StringRef str = sel.getNameForSlot(0); 13546 while (!str.empty() && str.front() == '_') str = str.substr(1); 13547 if (str.startswith("set")) 13548 str = str.substr(3); 13549 else if (str.startswith("add")) { 13550 // Specially whitelist 'addOperationWithBlock:'. 13551 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 13552 return false; 13553 str = str.substr(3); 13554 } 13555 else 13556 return false; 13557 13558 if (str.empty()) return true; 13559 return !isLowercase(str.front()); 13560 } 13561 13562 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 13563 ObjCMessageExpr *Message) { 13564 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 13565 Message->getReceiverInterface(), 13566 NSAPI::ClassId_NSMutableArray); 13567 if (!IsMutableArray) { 13568 return None; 13569 } 13570 13571 Selector Sel = Message->getSelector(); 13572 13573 Optional<NSAPI::NSArrayMethodKind> MKOpt = 13574 S.NSAPIObj->getNSArrayMethodKind(Sel); 13575 if (!MKOpt) { 13576 return None; 13577 } 13578 13579 NSAPI::NSArrayMethodKind MK = *MKOpt; 13580 13581 switch (MK) { 13582 case NSAPI::NSMutableArr_addObject: 13583 case NSAPI::NSMutableArr_insertObjectAtIndex: 13584 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 13585 return 0; 13586 case NSAPI::NSMutableArr_replaceObjectAtIndex: 13587 return 1; 13588 13589 default: 13590 return None; 13591 } 13592 13593 return None; 13594 } 13595 13596 static 13597 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 13598 ObjCMessageExpr *Message) { 13599 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 13600 Message->getReceiverInterface(), 13601 NSAPI::ClassId_NSMutableDictionary); 13602 if (!IsMutableDictionary) { 13603 return None; 13604 } 13605 13606 Selector Sel = Message->getSelector(); 13607 13608 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 13609 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 13610 if (!MKOpt) { 13611 return None; 13612 } 13613 13614 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 13615 13616 switch (MK) { 13617 case NSAPI::NSMutableDict_setObjectForKey: 13618 case NSAPI::NSMutableDict_setValueForKey: 13619 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 13620 return 0; 13621 13622 default: 13623 return None; 13624 } 13625 13626 return None; 13627 } 13628 13629 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 13630 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 13631 Message->getReceiverInterface(), 13632 NSAPI::ClassId_NSMutableSet); 13633 13634 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 13635 Message->getReceiverInterface(), 13636 NSAPI::ClassId_NSMutableOrderedSet); 13637 if (!IsMutableSet && !IsMutableOrderedSet) { 13638 return None; 13639 } 13640 13641 Selector Sel = Message->getSelector(); 13642 13643 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 13644 if (!MKOpt) { 13645 return None; 13646 } 13647 13648 NSAPI::NSSetMethodKind MK = *MKOpt; 13649 13650 switch (MK) { 13651 case NSAPI::NSMutableSet_addObject: 13652 case NSAPI::NSOrderedSet_setObjectAtIndex: 13653 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 13654 case NSAPI::NSOrderedSet_insertObjectAtIndex: 13655 return 0; 13656 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 13657 return 1; 13658 } 13659 13660 return None; 13661 } 13662 13663 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 13664 if (!Message->isInstanceMessage()) { 13665 return; 13666 } 13667 13668 Optional<int> ArgOpt; 13669 13670 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 13671 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 13672 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 13673 return; 13674 } 13675 13676 int ArgIndex = *ArgOpt; 13677 13678 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 13679 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 13680 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 13681 } 13682 13683 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 13684 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13685 if (ArgRE->isObjCSelfExpr()) { 13686 Diag(Message->getSourceRange().getBegin(), 13687 diag::warn_objc_circular_container) 13688 << ArgRE->getDecl() << StringRef("'super'"); 13689 } 13690 } 13691 } else { 13692 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 13693 13694 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 13695 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 13696 } 13697 13698 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 13699 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 13700 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 13701 ValueDecl *Decl = ReceiverRE->getDecl(); 13702 Diag(Message->getSourceRange().getBegin(), 13703 diag::warn_objc_circular_container) 13704 << Decl << Decl; 13705 if (!ArgRE->isObjCSelfExpr()) { 13706 Diag(Decl->getLocation(), 13707 diag::note_objc_circular_container_declared_here) 13708 << Decl; 13709 } 13710 } 13711 } 13712 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 13713 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 13714 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 13715 ObjCIvarDecl *Decl = IvarRE->getDecl(); 13716 Diag(Message->getSourceRange().getBegin(), 13717 diag::warn_objc_circular_container) 13718 << Decl << Decl; 13719 Diag(Decl->getLocation(), 13720 diag::note_objc_circular_container_declared_here) 13721 << Decl; 13722 } 13723 } 13724 } 13725 } 13726 } 13727 13728 /// Check a message send to see if it's likely to cause a retain cycle. 13729 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 13730 // Only check instance methods whose selector looks like a setter. 13731 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 13732 return; 13733 13734 // Try to find a variable that the receiver is strongly owned by. 13735 RetainCycleOwner owner; 13736 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 13737 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 13738 return; 13739 } else { 13740 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 13741 owner.Variable = getCurMethodDecl()->getSelfDecl(); 13742 owner.Loc = msg->getSuperLoc(); 13743 owner.Range = msg->getSuperLoc(); 13744 } 13745 13746 // Check whether the receiver is captured by any of the arguments. 13747 const ObjCMethodDecl *MD = msg->getMethodDecl(); 13748 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 13749 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 13750 // noescape blocks should not be retained by the method. 13751 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 13752 continue; 13753 return diagnoseRetainCycle(*this, capturer, owner); 13754 } 13755 } 13756 } 13757 13758 /// Check a property assign to see if it's likely to cause a retain cycle. 13759 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 13760 RetainCycleOwner owner; 13761 if (!findRetainCycleOwner(*this, receiver, owner)) 13762 return; 13763 13764 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 13765 diagnoseRetainCycle(*this, capturer, owner); 13766 } 13767 13768 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 13769 RetainCycleOwner Owner; 13770 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 13771 return; 13772 13773 // Because we don't have an expression for the variable, we have to set the 13774 // location explicitly here. 13775 Owner.Loc = Var->getLocation(); 13776 Owner.Range = Var->getSourceRange(); 13777 13778 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 13779 diagnoseRetainCycle(*this, Capturer, Owner); 13780 } 13781 13782 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 13783 Expr *RHS, bool isProperty) { 13784 // Check if RHS is an Objective-C object literal, which also can get 13785 // immediately zapped in a weak reference. Note that we explicitly 13786 // allow ObjCStringLiterals, since those are designed to never really die. 13787 RHS = RHS->IgnoreParenImpCasts(); 13788 13789 // This enum needs to match with the 'select' in 13790 // warn_objc_arc_literal_assign (off-by-1). 13791 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 13792 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 13793 return false; 13794 13795 S.Diag(Loc, diag::warn_arc_literal_assign) 13796 << (unsigned) Kind 13797 << (isProperty ? 0 : 1) 13798 << RHS->getSourceRange(); 13799 13800 return true; 13801 } 13802 13803 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 13804 Qualifiers::ObjCLifetime LT, 13805 Expr *RHS, bool isProperty) { 13806 // Strip off any implicit cast added to get to the one ARC-specific. 13807 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13808 if (cast->getCastKind() == CK_ARCConsumeObject) { 13809 S.Diag(Loc, diag::warn_arc_retained_assign) 13810 << (LT == Qualifiers::OCL_ExplicitNone) 13811 << (isProperty ? 0 : 1) 13812 << RHS->getSourceRange(); 13813 return true; 13814 } 13815 RHS = cast->getSubExpr(); 13816 } 13817 13818 if (LT == Qualifiers::OCL_Weak && 13819 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 13820 return true; 13821 13822 return false; 13823 } 13824 13825 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 13826 QualType LHS, Expr *RHS) { 13827 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 13828 13829 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 13830 return false; 13831 13832 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 13833 return true; 13834 13835 return false; 13836 } 13837 13838 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 13839 Expr *LHS, Expr *RHS) { 13840 QualType LHSType; 13841 // PropertyRef on LHS type need be directly obtained from 13842 // its declaration as it has a PseudoType. 13843 ObjCPropertyRefExpr *PRE 13844 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 13845 if (PRE && !PRE->isImplicitProperty()) { 13846 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13847 if (PD) 13848 LHSType = PD->getType(); 13849 } 13850 13851 if (LHSType.isNull()) 13852 LHSType = LHS->getType(); 13853 13854 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 13855 13856 if (LT == Qualifiers::OCL_Weak) { 13857 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 13858 getCurFunction()->markSafeWeakUse(LHS); 13859 } 13860 13861 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 13862 return; 13863 13864 // FIXME. Check for other life times. 13865 if (LT != Qualifiers::OCL_None) 13866 return; 13867 13868 if (PRE) { 13869 if (PRE->isImplicitProperty()) 13870 return; 13871 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 13872 if (!PD) 13873 return; 13874 13875 unsigned Attributes = PD->getPropertyAttributes(); 13876 if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) { 13877 // when 'assign' attribute was not explicitly specified 13878 // by user, ignore it and rely on property type itself 13879 // for lifetime info. 13880 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 13881 if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) && 13882 LHSType->isObjCRetainableType()) 13883 return; 13884 13885 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 13886 if (cast->getCastKind() == CK_ARCConsumeObject) { 13887 Diag(Loc, diag::warn_arc_retained_property_assign) 13888 << RHS->getSourceRange(); 13889 return; 13890 } 13891 RHS = cast->getSubExpr(); 13892 } 13893 } 13894 else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) { 13895 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 13896 return; 13897 } 13898 } 13899 } 13900 13901 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 13902 13903 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 13904 SourceLocation StmtLoc, 13905 const NullStmt *Body) { 13906 // Do not warn if the body is a macro that expands to nothing, e.g: 13907 // 13908 // #define CALL(x) 13909 // if (condition) 13910 // CALL(0); 13911 if (Body->hasLeadingEmptyMacro()) 13912 return false; 13913 13914 // Get line numbers of statement and body. 13915 bool StmtLineInvalid; 13916 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 13917 &StmtLineInvalid); 13918 if (StmtLineInvalid) 13919 return false; 13920 13921 bool BodyLineInvalid; 13922 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 13923 &BodyLineInvalid); 13924 if (BodyLineInvalid) 13925 return false; 13926 13927 // Warn if null statement and body are on the same line. 13928 if (StmtLine != BodyLine) 13929 return false; 13930 13931 return true; 13932 } 13933 13934 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 13935 const Stmt *Body, 13936 unsigned DiagID) { 13937 // Since this is a syntactic check, don't emit diagnostic for template 13938 // instantiations, this just adds noise. 13939 if (CurrentInstantiationScope) 13940 return; 13941 13942 // The body should be a null statement. 13943 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 13944 if (!NBody) 13945 return; 13946 13947 // Do the usual checks. 13948 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 13949 return; 13950 13951 Diag(NBody->getSemiLoc(), DiagID); 13952 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 13953 } 13954 13955 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 13956 const Stmt *PossibleBody) { 13957 assert(!CurrentInstantiationScope); // Ensured by caller 13958 13959 SourceLocation StmtLoc; 13960 const Stmt *Body; 13961 unsigned DiagID; 13962 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 13963 StmtLoc = FS->getRParenLoc(); 13964 Body = FS->getBody(); 13965 DiagID = diag::warn_empty_for_body; 13966 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 13967 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 13968 Body = WS->getBody(); 13969 DiagID = diag::warn_empty_while_body; 13970 } else 13971 return; // Neither `for' nor `while'. 13972 13973 // The body should be a null statement. 13974 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 13975 if (!NBody) 13976 return; 13977 13978 // Skip expensive checks if diagnostic is disabled. 13979 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 13980 return; 13981 13982 // Do the usual checks. 13983 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 13984 return; 13985 13986 // `for(...);' and `while(...);' are popular idioms, so in order to keep 13987 // noise level low, emit diagnostics only if for/while is followed by a 13988 // CompoundStmt, e.g.: 13989 // for (int i = 0; i < n; i++); 13990 // { 13991 // a(i); 13992 // } 13993 // or if for/while is followed by a statement with more indentation 13994 // than for/while itself: 13995 // for (int i = 0; i < n; i++); 13996 // a(i); 13997 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 13998 if (!ProbableTypo) { 13999 bool BodyColInvalid; 14000 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 14001 PossibleBody->getBeginLoc(), &BodyColInvalid); 14002 if (BodyColInvalid) 14003 return; 14004 14005 bool StmtColInvalid; 14006 unsigned StmtCol = 14007 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 14008 if (StmtColInvalid) 14009 return; 14010 14011 if (BodyCol > StmtCol) 14012 ProbableTypo = true; 14013 } 14014 14015 if (ProbableTypo) { 14016 Diag(NBody->getSemiLoc(), DiagID); 14017 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14018 } 14019 } 14020 14021 //===--- CHECK: Warn on self move with std::move. -------------------------===// 14022 14023 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 14024 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 14025 SourceLocation OpLoc) { 14026 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 14027 return; 14028 14029 if (inTemplateInstantiation()) 14030 return; 14031 14032 // Strip parens and casts away. 14033 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 14034 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 14035 14036 // Check for a call expression 14037 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 14038 if (!CE || CE->getNumArgs() != 1) 14039 return; 14040 14041 // Check for a call to std::move 14042 if (!CE->isCallToStdMove()) 14043 return; 14044 14045 // Get argument from std::move 14046 RHSExpr = CE->getArg(0); 14047 14048 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 14049 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 14050 14051 // Two DeclRefExpr's, check that the decls are the same. 14052 if (LHSDeclRef && RHSDeclRef) { 14053 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14054 return; 14055 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14056 RHSDeclRef->getDecl()->getCanonicalDecl()) 14057 return; 14058 14059 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14060 << LHSExpr->getSourceRange() 14061 << RHSExpr->getSourceRange(); 14062 return; 14063 } 14064 14065 // Member variables require a different approach to check for self moves. 14066 // MemberExpr's are the same if every nested MemberExpr refers to the same 14067 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 14068 // the base Expr's are CXXThisExpr's. 14069 const Expr *LHSBase = LHSExpr; 14070 const Expr *RHSBase = RHSExpr; 14071 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 14072 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 14073 if (!LHSME || !RHSME) 14074 return; 14075 14076 while (LHSME && RHSME) { 14077 if (LHSME->getMemberDecl()->getCanonicalDecl() != 14078 RHSME->getMemberDecl()->getCanonicalDecl()) 14079 return; 14080 14081 LHSBase = LHSME->getBase(); 14082 RHSBase = RHSME->getBase(); 14083 LHSME = dyn_cast<MemberExpr>(LHSBase); 14084 RHSME = dyn_cast<MemberExpr>(RHSBase); 14085 } 14086 14087 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 14088 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 14089 if (LHSDeclRef && RHSDeclRef) { 14090 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14091 return; 14092 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14093 RHSDeclRef->getDecl()->getCanonicalDecl()) 14094 return; 14095 14096 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14097 << LHSExpr->getSourceRange() 14098 << RHSExpr->getSourceRange(); 14099 return; 14100 } 14101 14102 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 14103 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14104 << LHSExpr->getSourceRange() 14105 << RHSExpr->getSourceRange(); 14106 } 14107 14108 //===--- Layout compatibility ----------------------------------------------// 14109 14110 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 14111 14112 /// Check if two enumeration types are layout-compatible. 14113 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 14114 // C++11 [dcl.enum] p8: 14115 // Two enumeration types are layout-compatible if they have the same 14116 // underlying type. 14117 return ED1->isComplete() && ED2->isComplete() && 14118 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 14119 } 14120 14121 /// Check if two fields are layout-compatible. 14122 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 14123 FieldDecl *Field2) { 14124 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 14125 return false; 14126 14127 if (Field1->isBitField() != Field2->isBitField()) 14128 return false; 14129 14130 if (Field1->isBitField()) { 14131 // Make sure that the bit-fields are the same length. 14132 unsigned Bits1 = Field1->getBitWidthValue(C); 14133 unsigned Bits2 = Field2->getBitWidthValue(C); 14134 14135 if (Bits1 != Bits2) 14136 return false; 14137 } 14138 14139 return true; 14140 } 14141 14142 /// Check if two standard-layout structs are layout-compatible. 14143 /// (C++11 [class.mem] p17) 14144 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 14145 RecordDecl *RD2) { 14146 // If both records are C++ classes, check that base classes match. 14147 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 14148 // If one of records is a CXXRecordDecl we are in C++ mode, 14149 // thus the other one is a CXXRecordDecl, too. 14150 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 14151 // Check number of base classes. 14152 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 14153 return false; 14154 14155 // Check the base classes. 14156 for (CXXRecordDecl::base_class_const_iterator 14157 Base1 = D1CXX->bases_begin(), 14158 BaseEnd1 = D1CXX->bases_end(), 14159 Base2 = D2CXX->bases_begin(); 14160 Base1 != BaseEnd1; 14161 ++Base1, ++Base2) { 14162 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 14163 return false; 14164 } 14165 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 14166 // If only RD2 is a C++ class, it should have zero base classes. 14167 if (D2CXX->getNumBases() > 0) 14168 return false; 14169 } 14170 14171 // Check the fields. 14172 RecordDecl::field_iterator Field2 = RD2->field_begin(), 14173 Field2End = RD2->field_end(), 14174 Field1 = RD1->field_begin(), 14175 Field1End = RD1->field_end(); 14176 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 14177 if (!isLayoutCompatible(C, *Field1, *Field2)) 14178 return false; 14179 } 14180 if (Field1 != Field1End || Field2 != Field2End) 14181 return false; 14182 14183 return true; 14184 } 14185 14186 /// Check if two standard-layout unions are layout-compatible. 14187 /// (C++11 [class.mem] p18) 14188 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 14189 RecordDecl *RD2) { 14190 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 14191 for (auto *Field2 : RD2->fields()) 14192 UnmatchedFields.insert(Field2); 14193 14194 for (auto *Field1 : RD1->fields()) { 14195 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 14196 I = UnmatchedFields.begin(), 14197 E = UnmatchedFields.end(); 14198 14199 for ( ; I != E; ++I) { 14200 if (isLayoutCompatible(C, Field1, *I)) { 14201 bool Result = UnmatchedFields.erase(*I); 14202 (void) Result; 14203 assert(Result); 14204 break; 14205 } 14206 } 14207 if (I == E) 14208 return false; 14209 } 14210 14211 return UnmatchedFields.empty(); 14212 } 14213 14214 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 14215 RecordDecl *RD2) { 14216 if (RD1->isUnion() != RD2->isUnion()) 14217 return false; 14218 14219 if (RD1->isUnion()) 14220 return isLayoutCompatibleUnion(C, RD1, RD2); 14221 else 14222 return isLayoutCompatibleStruct(C, RD1, RD2); 14223 } 14224 14225 /// Check if two types are layout-compatible in C++11 sense. 14226 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 14227 if (T1.isNull() || T2.isNull()) 14228 return false; 14229 14230 // C++11 [basic.types] p11: 14231 // If two types T1 and T2 are the same type, then T1 and T2 are 14232 // layout-compatible types. 14233 if (C.hasSameType(T1, T2)) 14234 return true; 14235 14236 T1 = T1.getCanonicalType().getUnqualifiedType(); 14237 T2 = T2.getCanonicalType().getUnqualifiedType(); 14238 14239 const Type::TypeClass TC1 = T1->getTypeClass(); 14240 const Type::TypeClass TC2 = T2->getTypeClass(); 14241 14242 if (TC1 != TC2) 14243 return false; 14244 14245 if (TC1 == Type::Enum) { 14246 return isLayoutCompatible(C, 14247 cast<EnumType>(T1)->getDecl(), 14248 cast<EnumType>(T2)->getDecl()); 14249 } else if (TC1 == Type::Record) { 14250 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 14251 return false; 14252 14253 return isLayoutCompatible(C, 14254 cast<RecordType>(T1)->getDecl(), 14255 cast<RecordType>(T2)->getDecl()); 14256 } 14257 14258 return false; 14259 } 14260 14261 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 14262 14263 /// Given a type tag expression find the type tag itself. 14264 /// 14265 /// \param TypeExpr Type tag expression, as it appears in user's code. 14266 /// 14267 /// \param VD Declaration of an identifier that appears in a type tag. 14268 /// 14269 /// \param MagicValue Type tag magic value. 14270 /// 14271 /// \param isConstantEvaluated wether the evalaution should be performed in 14272 14273 /// constant context. 14274 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 14275 const ValueDecl **VD, uint64_t *MagicValue, 14276 bool isConstantEvaluated) { 14277 while(true) { 14278 if (!TypeExpr) 14279 return false; 14280 14281 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 14282 14283 switch (TypeExpr->getStmtClass()) { 14284 case Stmt::UnaryOperatorClass: { 14285 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 14286 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 14287 TypeExpr = UO->getSubExpr(); 14288 continue; 14289 } 14290 return false; 14291 } 14292 14293 case Stmt::DeclRefExprClass: { 14294 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 14295 *VD = DRE->getDecl(); 14296 return true; 14297 } 14298 14299 case Stmt::IntegerLiteralClass: { 14300 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 14301 llvm::APInt MagicValueAPInt = IL->getValue(); 14302 if (MagicValueAPInt.getActiveBits() <= 64) { 14303 *MagicValue = MagicValueAPInt.getZExtValue(); 14304 return true; 14305 } else 14306 return false; 14307 } 14308 14309 case Stmt::BinaryConditionalOperatorClass: 14310 case Stmt::ConditionalOperatorClass: { 14311 const AbstractConditionalOperator *ACO = 14312 cast<AbstractConditionalOperator>(TypeExpr); 14313 bool Result; 14314 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 14315 isConstantEvaluated)) { 14316 if (Result) 14317 TypeExpr = ACO->getTrueExpr(); 14318 else 14319 TypeExpr = ACO->getFalseExpr(); 14320 continue; 14321 } 14322 return false; 14323 } 14324 14325 case Stmt::BinaryOperatorClass: { 14326 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 14327 if (BO->getOpcode() == BO_Comma) { 14328 TypeExpr = BO->getRHS(); 14329 continue; 14330 } 14331 return false; 14332 } 14333 14334 default: 14335 return false; 14336 } 14337 } 14338 } 14339 14340 /// Retrieve the C type corresponding to type tag TypeExpr. 14341 /// 14342 /// \param TypeExpr Expression that specifies a type tag. 14343 /// 14344 /// \param MagicValues Registered magic values. 14345 /// 14346 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 14347 /// kind. 14348 /// 14349 /// \param TypeInfo Information about the corresponding C type. 14350 /// 14351 /// \param isConstantEvaluated wether the evalaution should be performed in 14352 /// constant context. 14353 /// 14354 /// \returns true if the corresponding C type was found. 14355 static bool GetMatchingCType( 14356 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 14357 const ASTContext &Ctx, 14358 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 14359 *MagicValues, 14360 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 14361 bool isConstantEvaluated) { 14362 FoundWrongKind = false; 14363 14364 // Variable declaration that has type_tag_for_datatype attribute. 14365 const ValueDecl *VD = nullptr; 14366 14367 uint64_t MagicValue; 14368 14369 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 14370 return false; 14371 14372 if (VD) { 14373 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 14374 if (I->getArgumentKind() != ArgumentKind) { 14375 FoundWrongKind = true; 14376 return false; 14377 } 14378 TypeInfo.Type = I->getMatchingCType(); 14379 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 14380 TypeInfo.MustBeNull = I->getMustBeNull(); 14381 return true; 14382 } 14383 return false; 14384 } 14385 14386 if (!MagicValues) 14387 return false; 14388 14389 llvm::DenseMap<Sema::TypeTagMagicValue, 14390 Sema::TypeTagData>::const_iterator I = 14391 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 14392 if (I == MagicValues->end()) 14393 return false; 14394 14395 TypeInfo = I->second; 14396 return true; 14397 } 14398 14399 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 14400 uint64_t MagicValue, QualType Type, 14401 bool LayoutCompatible, 14402 bool MustBeNull) { 14403 if (!TypeTagForDatatypeMagicValues) 14404 TypeTagForDatatypeMagicValues.reset( 14405 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 14406 14407 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 14408 (*TypeTagForDatatypeMagicValues)[Magic] = 14409 TypeTagData(Type, LayoutCompatible, MustBeNull); 14410 } 14411 14412 static bool IsSameCharType(QualType T1, QualType T2) { 14413 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 14414 if (!BT1) 14415 return false; 14416 14417 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 14418 if (!BT2) 14419 return false; 14420 14421 BuiltinType::Kind T1Kind = BT1->getKind(); 14422 BuiltinType::Kind T2Kind = BT2->getKind(); 14423 14424 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 14425 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 14426 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 14427 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 14428 } 14429 14430 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 14431 const ArrayRef<const Expr *> ExprArgs, 14432 SourceLocation CallSiteLoc) { 14433 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 14434 bool IsPointerAttr = Attr->getIsPointer(); 14435 14436 // Retrieve the argument representing the 'type_tag'. 14437 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 14438 if (TypeTagIdxAST >= ExprArgs.size()) { 14439 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 14440 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 14441 return; 14442 } 14443 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 14444 bool FoundWrongKind; 14445 TypeTagData TypeInfo; 14446 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 14447 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 14448 TypeInfo, isConstantEvaluated())) { 14449 if (FoundWrongKind) 14450 Diag(TypeTagExpr->getExprLoc(), 14451 diag::warn_type_tag_for_datatype_wrong_kind) 14452 << TypeTagExpr->getSourceRange(); 14453 return; 14454 } 14455 14456 // Retrieve the argument representing the 'arg_idx'. 14457 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 14458 if (ArgumentIdxAST >= ExprArgs.size()) { 14459 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 14460 << 1 << Attr->getArgumentIdx().getSourceIndex(); 14461 return; 14462 } 14463 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 14464 if (IsPointerAttr) { 14465 // Skip implicit cast of pointer to `void *' (as a function argument). 14466 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 14467 if (ICE->getType()->isVoidPointerType() && 14468 ICE->getCastKind() == CK_BitCast) 14469 ArgumentExpr = ICE->getSubExpr(); 14470 } 14471 QualType ArgumentType = ArgumentExpr->getType(); 14472 14473 // Passing a `void*' pointer shouldn't trigger a warning. 14474 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 14475 return; 14476 14477 if (TypeInfo.MustBeNull) { 14478 // Type tag with matching void type requires a null pointer. 14479 if (!ArgumentExpr->isNullPointerConstant(Context, 14480 Expr::NPC_ValueDependentIsNotNull)) { 14481 Diag(ArgumentExpr->getExprLoc(), 14482 diag::warn_type_safety_null_pointer_required) 14483 << ArgumentKind->getName() 14484 << ArgumentExpr->getSourceRange() 14485 << TypeTagExpr->getSourceRange(); 14486 } 14487 return; 14488 } 14489 14490 QualType RequiredType = TypeInfo.Type; 14491 if (IsPointerAttr) 14492 RequiredType = Context.getPointerType(RequiredType); 14493 14494 bool mismatch = false; 14495 if (!TypeInfo.LayoutCompatible) { 14496 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 14497 14498 // C++11 [basic.fundamental] p1: 14499 // Plain char, signed char, and unsigned char are three distinct types. 14500 // 14501 // But we treat plain `char' as equivalent to `signed char' or `unsigned 14502 // char' depending on the current char signedness mode. 14503 if (mismatch) 14504 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 14505 RequiredType->getPointeeType())) || 14506 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 14507 mismatch = false; 14508 } else 14509 if (IsPointerAttr) 14510 mismatch = !isLayoutCompatible(Context, 14511 ArgumentType->getPointeeType(), 14512 RequiredType->getPointeeType()); 14513 else 14514 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 14515 14516 if (mismatch) 14517 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 14518 << ArgumentType << ArgumentKind 14519 << TypeInfo.LayoutCompatible << RequiredType 14520 << ArgumentExpr->getSourceRange() 14521 << TypeTagExpr->getSourceRange(); 14522 } 14523 14524 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 14525 CharUnits Alignment) { 14526 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 14527 } 14528 14529 void Sema::DiagnoseMisalignedMembers() { 14530 for (MisalignedMember &m : MisalignedMembers) { 14531 const NamedDecl *ND = m.RD; 14532 if (ND->getName().empty()) { 14533 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 14534 ND = TD; 14535 } 14536 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 14537 << m.MD << ND << m.E->getSourceRange(); 14538 } 14539 MisalignedMembers.clear(); 14540 } 14541 14542 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 14543 E = E->IgnoreParens(); 14544 if (!T->isPointerType() && !T->isIntegerType()) 14545 return; 14546 if (isa<UnaryOperator>(E) && 14547 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 14548 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 14549 if (isa<MemberExpr>(Op)) { 14550 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 14551 if (MA != MisalignedMembers.end() && 14552 (T->isIntegerType() || 14553 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 14554 Context.getTypeAlignInChars( 14555 T->getPointeeType()) <= MA->Alignment)))) 14556 MisalignedMembers.erase(MA); 14557 } 14558 } 14559 } 14560 14561 void Sema::RefersToMemberWithReducedAlignment( 14562 Expr *E, 14563 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 14564 Action) { 14565 const auto *ME = dyn_cast<MemberExpr>(E); 14566 if (!ME) 14567 return; 14568 14569 // No need to check expressions with an __unaligned-qualified type. 14570 if (E->getType().getQualifiers().hasUnaligned()) 14571 return; 14572 14573 // For a chain of MemberExpr like "a.b.c.d" this list 14574 // will keep FieldDecl's like [d, c, b]. 14575 SmallVector<FieldDecl *, 4> ReverseMemberChain; 14576 const MemberExpr *TopME = nullptr; 14577 bool AnyIsPacked = false; 14578 do { 14579 QualType BaseType = ME->getBase()->getType(); 14580 if (ME->isArrow()) 14581 BaseType = BaseType->getPointeeType(); 14582 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 14583 if (RD->isInvalidDecl()) 14584 return; 14585 14586 ValueDecl *MD = ME->getMemberDecl(); 14587 auto *FD = dyn_cast<FieldDecl>(MD); 14588 // We do not care about non-data members. 14589 if (!FD || FD->isInvalidDecl()) 14590 return; 14591 14592 AnyIsPacked = 14593 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 14594 ReverseMemberChain.push_back(FD); 14595 14596 TopME = ME; 14597 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 14598 } while (ME); 14599 assert(TopME && "We did not compute a topmost MemberExpr!"); 14600 14601 // Not the scope of this diagnostic. 14602 if (!AnyIsPacked) 14603 return; 14604 14605 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 14606 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 14607 // TODO: The innermost base of the member expression may be too complicated. 14608 // For now, just disregard these cases. This is left for future 14609 // improvement. 14610 if (!DRE && !isa<CXXThisExpr>(TopBase)) 14611 return; 14612 14613 // Alignment expected by the whole expression. 14614 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 14615 14616 // No need to do anything else with this case. 14617 if (ExpectedAlignment.isOne()) 14618 return; 14619 14620 // Synthesize offset of the whole access. 14621 CharUnits Offset; 14622 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 14623 I++) { 14624 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 14625 } 14626 14627 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 14628 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 14629 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 14630 14631 // The base expression of the innermost MemberExpr may give 14632 // stronger guarantees than the class containing the member. 14633 if (DRE && !TopME->isArrow()) { 14634 const ValueDecl *VD = DRE->getDecl(); 14635 if (!VD->getType()->isReferenceType()) 14636 CompleteObjectAlignment = 14637 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 14638 } 14639 14640 // Check if the synthesized offset fulfills the alignment. 14641 if (Offset % ExpectedAlignment != 0 || 14642 // It may fulfill the offset it but the effective alignment may still be 14643 // lower than the expected expression alignment. 14644 CompleteObjectAlignment < ExpectedAlignment) { 14645 // If this happens, we want to determine a sensible culprit of this. 14646 // Intuitively, watching the chain of member expressions from right to 14647 // left, we start with the required alignment (as required by the field 14648 // type) but some packed attribute in that chain has reduced the alignment. 14649 // It may happen that another packed structure increases it again. But if 14650 // we are here such increase has not been enough. So pointing the first 14651 // FieldDecl that either is packed or else its RecordDecl is, 14652 // seems reasonable. 14653 FieldDecl *FD = nullptr; 14654 CharUnits Alignment; 14655 for (FieldDecl *FDI : ReverseMemberChain) { 14656 if (FDI->hasAttr<PackedAttr>() || 14657 FDI->getParent()->hasAttr<PackedAttr>()) { 14658 FD = FDI; 14659 Alignment = std::min( 14660 Context.getTypeAlignInChars(FD->getType()), 14661 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 14662 break; 14663 } 14664 } 14665 assert(FD && "We did not find a packed FieldDecl!"); 14666 Action(E, FD->getParent(), FD, Alignment); 14667 } 14668 } 14669 14670 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 14671 using namespace std::placeholders; 14672 14673 RefersToMemberWithReducedAlignment( 14674 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 14675 _2, _3, _4)); 14676 } 14677