1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSwitch.h" 79 #include "llvm/ADT/Triple.h" 80 #include "llvm/Support/AtomicOrdering.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/ConvertUTF.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/Locale.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/SaveAndRestore.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include <algorithm> 91 #include <bitset> 92 #include <cassert> 93 #include <cstddef> 94 #include <cstdint> 95 #include <functional> 96 #include <limits> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 101 using namespace clang; 102 using namespace sema; 103 104 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 105 unsigned ByteNo) const { 106 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 107 Context.getTargetInfo()); 108 } 109 110 /// Checks that a call expression's argument count is the desired number. 111 /// This is useful when doing custom type-checking. Returns true on error. 112 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 113 unsigned argCount = call->getNumArgs(); 114 if (argCount == desiredArgCount) return false; 115 116 if (argCount < desiredArgCount) 117 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 118 << 0 /*function call*/ << desiredArgCount << argCount 119 << call->getSourceRange(); 120 121 // Highlight all the excess arguments. 122 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 123 call->getArg(argCount - 1)->getEndLoc()); 124 125 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 126 << 0 /*function call*/ << desiredArgCount << argCount 127 << call->getArg(1)->getSourceRange(); 128 } 129 130 /// Check that the first argument to __builtin_annotation is an integer 131 /// and the second argument is a non-wide string literal. 132 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 133 if (checkArgCount(S, TheCall, 2)) 134 return true; 135 136 // First argument should be an integer. 137 Expr *ValArg = TheCall->getArg(0); 138 QualType Ty = ValArg->getType(); 139 if (!Ty->isIntegerType()) { 140 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 141 << ValArg->getSourceRange(); 142 return true; 143 } 144 145 // Second argument should be a constant string. 146 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 147 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 148 if (!Literal || !Literal->isAscii()) { 149 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 150 << StrArg->getSourceRange(); 151 return true; 152 } 153 154 TheCall->setType(Ty); 155 return false; 156 } 157 158 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 159 // We need at least one argument. 160 if (TheCall->getNumArgs() < 1) { 161 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 162 << 0 << 1 << TheCall->getNumArgs() 163 << TheCall->getCallee()->getSourceRange(); 164 return true; 165 } 166 167 // All arguments should be wide string literals. 168 for (Expr *Arg : TheCall->arguments()) { 169 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 170 if (!Literal || !Literal->isWide()) { 171 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 172 << Arg->getSourceRange(); 173 return true; 174 } 175 } 176 177 return false; 178 } 179 180 /// Check that the argument to __builtin_addressof is a glvalue, and set the 181 /// result type to the corresponding pointer type. 182 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 183 if (checkArgCount(S, TheCall, 1)) 184 return true; 185 186 ExprResult Arg(TheCall->getArg(0)); 187 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 188 if (ResultType.isNull()) 189 return true; 190 191 TheCall->setArg(0, Arg.get()); 192 TheCall->setType(ResultType); 193 return false; 194 } 195 196 /// Check the number of arguments and set the result type to 197 /// the argument type. 198 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 199 if (checkArgCount(S, TheCall, 1)) 200 return true; 201 202 TheCall->setType(TheCall->getArg(0)->getType()); 203 return false; 204 } 205 206 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 207 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 208 /// type (but not a function pointer) and that the alignment is a power-of-two. 209 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 210 if (checkArgCount(S, TheCall, 2)) 211 return true; 212 213 clang::Expr *Source = TheCall->getArg(0); 214 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 215 216 auto IsValidIntegerType = [](QualType Ty) { 217 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 218 }; 219 QualType SrcTy = Source->getType(); 220 // We should also be able to use it with arrays (but not functions!). 221 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 222 SrcTy = S.Context.getDecayedType(SrcTy); 223 } 224 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 225 SrcTy->isFunctionPointerType()) { 226 // FIXME: this is not quite the right error message since we don't allow 227 // floating point types, or member pointers. 228 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 229 << SrcTy; 230 return true; 231 } 232 233 clang::Expr *AlignOp = TheCall->getArg(1); 234 if (!IsValidIntegerType(AlignOp->getType())) { 235 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 236 << AlignOp->getType(); 237 return true; 238 } 239 Expr::EvalResult AlignResult; 240 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 241 // We can't check validity of alignment if it is value dependent. 242 if (!AlignOp->isValueDependent() && 243 AlignOp->EvaluateAsInt(AlignResult, S.Context, 244 Expr::SE_AllowSideEffects)) { 245 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 246 llvm::APSInt MaxValue( 247 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 248 if (AlignValue < 1) { 249 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 250 return true; 251 } 252 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 253 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 254 << MaxValue.toString(10); 255 return true; 256 } 257 if (!AlignValue.isPowerOf2()) { 258 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 259 return true; 260 } 261 if (AlignValue == 1) { 262 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 263 << IsBooleanAlignBuiltin; 264 } 265 } 266 267 ExprResult SrcArg = S.PerformCopyInitialization( 268 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 269 SourceLocation(), Source); 270 if (SrcArg.isInvalid()) 271 return true; 272 TheCall->setArg(0, SrcArg.get()); 273 ExprResult AlignArg = 274 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 275 S.Context, AlignOp->getType(), false), 276 SourceLocation(), AlignOp); 277 if (AlignArg.isInvalid()) 278 return true; 279 TheCall->setArg(1, AlignArg.get()); 280 // For align_up/align_down, the return type is the same as the (potentially 281 // decayed) argument type including qualifiers. For is_aligned(), the result 282 // is always bool. 283 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 284 return false; 285 } 286 287 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 288 unsigned BuiltinID) { 289 if (checkArgCount(S, TheCall, 3)) 290 return true; 291 292 // First two arguments should be integers. 293 for (unsigned I = 0; I < 2; ++I) { 294 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 295 if (Arg.isInvalid()) return true; 296 TheCall->setArg(I, Arg.get()); 297 298 QualType Ty = Arg.get()->getType(); 299 if (!Ty->isIntegerType()) { 300 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 301 << Ty << Arg.get()->getSourceRange(); 302 return true; 303 } 304 } 305 306 // Third argument should be a pointer to a non-const integer. 307 // IRGen correctly handles volatile, restrict, and address spaces, and 308 // the other qualifiers aren't possible. 309 { 310 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 311 if (Arg.isInvalid()) return true; 312 TheCall->setArg(2, Arg.get()); 313 314 QualType Ty = Arg.get()->getType(); 315 const auto *PtrTy = Ty->getAs<PointerType>(); 316 if (!PtrTy || 317 !PtrTy->getPointeeType()->isIntegerType() || 318 PtrTy->getPointeeType().isConstQualified()) { 319 S.Diag(Arg.get()->getBeginLoc(), 320 diag::err_overflow_builtin_must_be_ptr_int) 321 << Ty << Arg.get()->getSourceRange(); 322 return true; 323 } 324 } 325 326 // Disallow signed ExtIntType args larger than 128 bits to mul function until 327 // we improve backend support. 328 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 329 for (unsigned I = 0; I < 3; ++I) { 330 const auto Arg = TheCall->getArg(I); 331 // Third argument will be a pointer. 332 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 333 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 334 S.getASTContext().getIntWidth(Ty) > 128) 335 return S.Diag(Arg->getBeginLoc(), 336 diag::err_overflow_builtin_ext_int_max_size) 337 << 128; 338 } 339 } 340 341 return false; 342 } 343 344 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 345 if (checkArgCount(S, BuiltinCall, 2)) 346 return true; 347 348 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 349 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 350 Expr *Call = BuiltinCall->getArg(0); 351 Expr *Chain = BuiltinCall->getArg(1); 352 353 if (Call->getStmtClass() != Stmt::CallExprClass) { 354 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 355 << Call->getSourceRange(); 356 return true; 357 } 358 359 auto CE = cast<CallExpr>(Call); 360 if (CE->getCallee()->getType()->isBlockPointerType()) { 361 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 362 << Call->getSourceRange(); 363 return true; 364 } 365 366 const Decl *TargetDecl = CE->getCalleeDecl(); 367 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 368 if (FD->getBuiltinID()) { 369 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 370 << Call->getSourceRange(); 371 return true; 372 } 373 374 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 375 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 376 << Call->getSourceRange(); 377 return true; 378 } 379 380 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 381 if (ChainResult.isInvalid()) 382 return true; 383 if (!ChainResult.get()->getType()->isPointerType()) { 384 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 385 << Chain->getSourceRange(); 386 return true; 387 } 388 389 QualType ReturnTy = CE->getCallReturnType(S.Context); 390 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 391 QualType BuiltinTy = S.Context.getFunctionType( 392 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 393 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 394 395 Builtin = 396 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 397 398 BuiltinCall->setType(CE->getType()); 399 BuiltinCall->setValueKind(CE->getValueKind()); 400 BuiltinCall->setObjectKind(CE->getObjectKind()); 401 BuiltinCall->setCallee(Builtin); 402 BuiltinCall->setArg(1, ChainResult.get()); 403 404 return false; 405 } 406 407 namespace { 408 409 class EstimateSizeFormatHandler 410 : public analyze_format_string::FormatStringHandler { 411 size_t Size; 412 413 public: 414 EstimateSizeFormatHandler(StringRef Format) 415 : Size(std::min(Format.find(0), Format.size()) + 416 1 /* null byte always written by sprintf */) {} 417 418 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 419 const char *, unsigned SpecifierLen) override { 420 421 const size_t FieldWidth = computeFieldWidth(FS); 422 const size_t Precision = computePrecision(FS); 423 424 // The actual format. 425 switch (FS.getConversionSpecifier().getKind()) { 426 // Just a char. 427 case analyze_format_string::ConversionSpecifier::cArg: 428 case analyze_format_string::ConversionSpecifier::CArg: 429 Size += std::max(FieldWidth, (size_t)1); 430 break; 431 // Just an integer. 432 case analyze_format_string::ConversionSpecifier::dArg: 433 case analyze_format_string::ConversionSpecifier::DArg: 434 case analyze_format_string::ConversionSpecifier::iArg: 435 case analyze_format_string::ConversionSpecifier::oArg: 436 case analyze_format_string::ConversionSpecifier::OArg: 437 case analyze_format_string::ConversionSpecifier::uArg: 438 case analyze_format_string::ConversionSpecifier::UArg: 439 case analyze_format_string::ConversionSpecifier::xArg: 440 case analyze_format_string::ConversionSpecifier::XArg: 441 Size += std::max(FieldWidth, Precision); 442 break; 443 444 // %g style conversion switches between %f or %e style dynamically. 445 // %f always takes less space, so default to it. 446 case analyze_format_string::ConversionSpecifier::gArg: 447 case analyze_format_string::ConversionSpecifier::GArg: 448 449 // Floating point number in the form '[+]ddd.ddd'. 450 case analyze_format_string::ConversionSpecifier::fArg: 451 case analyze_format_string::ConversionSpecifier::FArg: 452 Size += std::max(FieldWidth, 1 /* integer part */ + 453 (Precision ? 1 + Precision 454 : 0) /* period + decimal */); 455 break; 456 457 // Floating point number in the form '[-]d.ddde[+-]dd'. 458 case analyze_format_string::ConversionSpecifier::eArg: 459 case analyze_format_string::ConversionSpecifier::EArg: 460 Size += 461 std::max(FieldWidth, 462 1 /* integer part */ + 463 (Precision ? 1 + Precision : 0) /* period + decimal */ + 464 1 /* e or E letter */ + 2 /* exponent */); 465 break; 466 467 // Floating point number in the form '[-]0xh.hhhhp±dd'. 468 case analyze_format_string::ConversionSpecifier::aArg: 469 case analyze_format_string::ConversionSpecifier::AArg: 470 Size += 471 std::max(FieldWidth, 472 2 /* 0x */ + 1 /* integer part */ + 473 (Precision ? 1 + Precision : 0) /* period + decimal */ + 474 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 475 break; 476 477 // Just a string. 478 case analyze_format_string::ConversionSpecifier::sArg: 479 case analyze_format_string::ConversionSpecifier::SArg: 480 Size += FieldWidth; 481 break; 482 483 // Just a pointer in the form '0xddd'. 484 case analyze_format_string::ConversionSpecifier::pArg: 485 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 486 break; 487 488 // A plain percent. 489 case analyze_format_string::ConversionSpecifier::PercentArg: 490 Size += 1; 491 break; 492 493 default: 494 break; 495 } 496 497 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 498 499 if (FS.hasAlternativeForm()) { 500 switch (FS.getConversionSpecifier().getKind()) { 501 default: 502 break; 503 // Force a leading '0'. 504 case analyze_format_string::ConversionSpecifier::oArg: 505 Size += 1; 506 break; 507 // Force a leading '0x'. 508 case analyze_format_string::ConversionSpecifier::xArg: 509 case analyze_format_string::ConversionSpecifier::XArg: 510 Size += 2; 511 break; 512 // Force a period '.' before decimal, even if precision is 0. 513 case analyze_format_string::ConversionSpecifier::aArg: 514 case analyze_format_string::ConversionSpecifier::AArg: 515 case analyze_format_string::ConversionSpecifier::eArg: 516 case analyze_format_string::ConversionSpecifier::EArg: 517 case analyze_format_string::ConversionSpecifier::fArg: 518 case analyze_format_string::ConversionSpecifier::FArg: 519 case analyze_format_string::ConversionSpecifier::gArg: 520 case analyze_format_string::ConversionSpecifier::GArg: 521 Size += (Precision ? 0 : 1); 522 break; 523 } 524 } 525 assert(SpecifierLen <= Size && "no underflow"); 526 Size -= SpecifierLen; 527 return true; 528 } 529 530 size_t getSizeLowerBound() const { return Size; } 531 532 private: 533 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 534 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 535 size_t FieldWidth = 0; 536 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 537 FieldWidth = FW.getConstantAmount(); 538 return FieldWidth; 539 } 540 541 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 542 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 543 size_t Precision = 0; 544 545 // See man 3 printf for default precision value based on the specifier. 546 switch (FW.getHowSpecified()) { 547 case analyze_format_string::OptionalAmount::NotSpecified: 548 switch (FS.getConversionSpecifier().getKind()) { 549 default: 550 break; 551 case analyze_format_string::ConversionSpecifier::dArg: // %d 552 case analyze_format_string::ConversionSpecifier::DArg: // %D 553 case analyze_format_string::ConversionSpecifier::iArg: // %i 554 Precision = 1; 555 break; 556 case analyze_format_string::ConversionSpecifier::oArg: // %d 557 case analyze_format_string::ConversionSpecifier::OArg: // %D 558 case analyze_format_string::ConversionSpecifier::uArg: // %d 559 case analyze_format_string::ConversionSpecifier::UArg: // %D 560 case analyze_format_string::ConversionSpecifier::xArg: // %d 561 case analyze_format_string::ConversionSpecifier::XArg: // %D 562 Precision = 1; 563 break; 564 case analyze_format_string::ConversionSpecifier::fArg: // %f 565 case analyze_format_string::ConversionSpecifier::FArg: // %F 566 case analyze_format_string::ConversionSpecifier::eArg: // %e 567 case analyze_format_string::ConversionSpecifier::EArg: // %E 568 case analyze_format_string::ConversionSpecifier::gArg: // %g 569 case analyze_format_string::ConversionSpecifier::GArg: // %G 570 Precision = 6; 571 break; 572 case analyze_format_string::ConversionSpecifier::pArg: // %d 573 Precision = 1; 574 break; 575 } 576 break; 577 case analyze_format_string::OptionalAmount::Constant: 578 Precision = FW.getConstantAmount(); 579 break; 580 default: 581 break; 582 } 583 return Precision; 584 } 585 }; 586 587 } // namespace 588 589 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 590 /// __builtin_*_chk function, then use the object size argument specified in the 591 /// source. Otherwise, infer the object size using __builtin_object_size. 592 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 593 CallExpr *TheCall) { 594 // FIXME: There are some more useful checks we could be doing here: 595 // - Evaluate strlen of strcpy arguments, use as object size. 596 597 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 598 isConstantEvaluated()) 599 return; 600 601 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 602 if (!BuiltinID) 603 return; 604 605 const TargetInfo &TI = getASTContext().getTargetInfo(); 606 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 607 608 unsigned DiagID = 0; 609 bool IsChkVariant = false; 610 Optional<llvm::APSInt> UsedSize; 611 unsigned SizeIndex, ObjectIndex; 612 switch (BuiltinID) { 613 default: 614 return; 615 case Builtin::BIsprintf: 616 case Builtin::BI__builtin___sprintf_chk: { 617 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 618 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 619 620 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 621 622 if (!Format->isAscii() && !Format->isUTF8()) 623 return; 624 625 StringRef FormatStrRef = Format->getString(); 626 EstimateSizeFormatHandler H(FormatStrRef); 627 const char *FormatBytes = FormatStrRef.data(); 628 const ConstantArrayType *T = 629 Context.getAsConstantArrayType(Format->getType()); 630 assert(T && "String literal not of constant array type!"); 631 size_t TypeSize = T->getSize().getZExtValue(); 632 633 // In case there's a null byte somewhere. 634 size_t StrLen = 635 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 636 if (!analyze_format_string::ParsePrintfString( 637 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 638 Context.getTargetInfo(), false)) { 639 DiagID = diag::warn_fortify_source_format_overflow; 640 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 641 .extOrTrunc(SizeTypeWidth); 642 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 643 IsChkVariant = true; 644 ObjectIndex = 2; 645 } else { 646 IsChkVariant = false; 647 ObjectIndex = 0; 648 } 649 break; 650 } 651 } 652 return; 653 } 654 case Builtin::BI__builtin___memcpy_chk: 655 case Builtin::BI__builtin___memmove_chk: 656 case Builtin::BI__builtin___memset_chk: 657 case Builtin::BI__builtin___strlcat_chk: 658 case Builtin::BI__builtin___strlcpy_chk: 659 case Builtin::BI__builtin___strncat_chk: 660 case Builtin::BI__builtin___strncpy_chk: 661 case Builtin::BI__builtin___stpncpy_chk: 662 case Builtin::BI__builtin___memccpy_chk: 663 case Builtin::BI__builtin___mempcpy_chk: { 664 DiagID = diag::warn_builtin_chk_overflow; 665 IsChkVariant = true; 666 SizeIndex = TheCall->getNumArgs() - 2; 667 ObjectIndex = TheCall->getNumArgs() - 1; 668 break; 669 } 670 671 case Builtin::BI__builtin___snprintf_chk: 672 case Builtin::BI__builtin___vsnprintf_chk: { 673 DiagID = diag::warn_builtin_chk_overflow; 674 IsChkVariant = true; 675 SizeIndex = 1; 676 ObjectIndex = 3; 677 break; 678 } 679 680 case Builtin::BIstrncat: 681 case Builtin::BI__builtin_strncat: 682 case Builtin::BIstrncpy: 683 case Builtin::BI__builtin_strncpy: 684 case Builtin::BIstpncpy: 685 case Builtin::BI__builtin_stpncpy: { 686 // Whether these functions overflow depends on the runtime strlen of the 687 // string, not just the buffer size, so emitting the "always overflow" 688 // diagnostic isn't quite right. We should still diagnose passing a buffer 689 // size larger than the destination buffer though; this is a runtime abort 690 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 691 DiagID = diag::warn_fortify_source_size_mismatch; 692 SizeIndex = TheCall->getNumArgs() - 1; 693 ObjectIndex = 0; 694 break; 695 } 696 697 case Builtin::BImemcpy: 698 case Builtin::BI__builtin_memcpy: 699 case Builtin::BImemmove: 700 case Builtin::BI__builtin_memmove: 701 case Builtin::BImemset: 702 case Builtin::BI__builtin_memset: 703 case Builtin::BImempcpy: 704 case Builtin::BI__builtin_mempcpy: { 705 DiagID = diag::warn_fortify_source_overflow; 706 SizeIndex = TheCall->getNumArgs() - 1; 707 ObjectIndex = 0; 708 break; 709 } 710 case Builtin::BIsnprintf: 711 case Builtin::BI__builtin_snprintf: 712 case Builtin::BIvsnprintf: 713 case Builtin::BI__builtin_vsnprintf: { 714 DiagID = diag::warn_fortify_source_size_mismatch; 715 SizeIndex = 1; 716 ObjectIndex = 0; 717 break; 718 } 719 } 720 721 llvm::APSInt ObjectSize; 722 // For __builtin___*_chk, the object size is explicitly provided by the caller 723 // (usually using __builtin_object_size). Use that value to check this call. 724 if (IsChkVariant) { 725 Expr::EvalResult Result; 726 Expr *SizeArg = TheCall->getArg(ObjectIndex); 727 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 728 return; 729 ObjectSize = Result.Val.getInt(); 730 731 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 732 } else { 733 // If the parameter has a pass_object_size attribute, then we should use its 734 // (potentially) more strict checking mode. Otherwise, conservatively assume 735 // type 0. 736 int BOSType = 0; 737 if (const auto *POS = 738 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 739 BOSType = POS->getType(); 740 741 Expr *ObjArg = TheCall->getArg(ObjectIndex); 742 uint64_t Result; 743 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 744 return; 745 // Get the object size in the target's size_t width. 746 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 747 } 748 749 // Evaluate the number of bytes of the object that this call will use. 750 if (!UsedSize) { 751 Expr::EvalResult Result; 752 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 753 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 754 return; 755 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 756 } 757 758 if (UsedSize.getValue().ule(ObjectSize)) 759 return; 760 761 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 762 // Skim off the details of whichever builtin was called to produce a better 763 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 764 if (IsChkVariant) { 765 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 766 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 767 } else if (FunctionName.startswith("__builtin_")) { 768 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 769 } 770 771 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 772 PDiag(DiagID) 773 << FunctionName << ObjectSize.toString(/*Radix=*/10) 774 << UsedSize.getValue().toString(/*Radix=*/10)); 775 } 776 777 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 778 Scope::ScopeFlags NeededScopeFlags, 779 unsigned DiagID) { 780 // Scopes aren't available during instantiation. Fortunately, builtin 781 // functions cannot be template args so they cannot be formed through template 782 // instantiation. Therefore checking once during the parse is sufficient. 783 if (SemaRef.inTemplateInstantiation()) 784 return false; 785 786 Scope *S = SemaRef.getCurScope(); 787 while (S && !S->isSEHExceptScope()) 788 S = S->getParent(); 789 if (!S || !(S->getFlags() & NeededScopeFlags)) { 790 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 791 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 792 << DRE->getDecl()->getIdentifier(); 793 return true; 794 } 795 796 return false; 797 } 798 799 static inline bool isBlockPointer(Expr *Arg) { 800 return Arg->getType()->isBlockPointerType(); 801 } 802 803 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 804 /// void*, which is a requirement of device side enqueue. 805 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 806 const BlockPointerType *BPT = 807 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 808 ArrayRef<QualType> Params = 809 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 810 unsigned ArgCounter = 0; 811 bool IllegalParams = false; 812 // Iterate through the block parameters until either one is found that is not 813 // a local void*, or the block is valid. 814 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 815 I != E; ++I, ++ArgCounter) { 816 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 817 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 818 LangAS::opencl_local) { 819 // Get the location of the error. If a block literal has been passed 820 // (BlockExpr) then we can point straight to the offending argument, 821 // else we just point to the variable reference. 822 SourceLocation ErrorLoc; 823 if (isa<BlockExpr>(BlockArg)) { 824 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 825 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 826 } else if (isa<DeclRefExpr>(BlockArg)) { 827 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 828 } 829 S.Diag(ErrorLoc, 830 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 831 IllegalParams = true; 832 } 833 } 834 835 return IllegalParams; 836 } 837 838 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 839 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 840 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 841 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 842 return true; 843 } 844 return false; 845 } 846 847 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 848 if (checkArgCount(S, TheCall, 2)) 849 return true; 850 851 if (checkOpenCLSubgroupExt(S, TheCall)) 852 return true; 853 854 // First argument is an ndrange_t type. 855 Expr *NDRangeArg = TheCall->getArg(0); 856 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 857 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 858 << TheCall->getDirectCallee() << "'ndrange_t'"; 859 return true; 860 } 861 862 Expr *BlockArg = TheCall->getArg(1); 863 if (!isBlockPointer(BlockArg)) { 864 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 865 << TheCall->getDirectCallee() << "block"; 866 return true; 867 } 868 return checkOpenCLBlockArgs(S, BlockArg); 869 } 870 871 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 872 /// get_kernel_work_group_size 873 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 874 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 875 if (checkArgCount(S, TheCall, 1)) 876 return true; 877 878 Expr *BlockArg = TheCall->getArg(0); 879 if (!isBlockPointer(BlockArg)) { 880 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 881 << TheCall->getDirectCallee() << "block"; 882 return true; 883 } 884 return checkOpenCLBlockArgs(S, BlockArg); 885 } 886 887 /// Diagnose integer type and any valid implicit conversion to it. 888 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 889 const QualType &IntType); 890 891 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 892 unsigned Start, unsigned End) { 893 bool IllegalParams = false; 894 for (unsigned I = Start; I <= End; ++I) 895 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 896 S.Context.getSizeType()); 897 return IllegalParams; 898 } 899 900 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 901 /// 'local void*' parameter of passed block. 902 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 903 Expr *BlockArg, 904 unsigned NumNonVarArgs) { 905 const BlockPointerType *BPT = 906 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 907 unsigned NumBlockParams = 908 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 909 unsigned TotalNumArgs = TheCall->getNumArgs(); 910 911 // For each argument passed to the block, a corresponding uint needs to 912 // be passed to describe the size of the local memory. 913 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 914 S.Diag(TheCall->getBeginLoc(), 915 diag::err_opencl_enqueue_kernel_local_size_args); 916 return true; 917 } 918 919 // Check that the sizes of the local memory are specified by integers. 920 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 921 TotalNumArgs - 1); 922 } 923 924 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 925 /// overload formats specified in Table 6.13.17.1. 926 /// int enqueue_kernel(queue_t queue, 927 /// kernel_enqueue_flags_t flags, 928 /// const ndrange_t ndrange, 929 /// void (^block)(void)) 930 /// int enqueue_kernel(queue_t queue, 931 /// kernel_enqueue_flags_t flags, 932 /// const ndrange_t ndrange, 933 /// uint num_events_in_wait_list, 934 /// clk_event_t *event_wait_list, 935 /// clk_event_t *event_ret, 936 /// void (^block)(void)) 937 /// int enqueue_kernel(queue_t queue, 938 /// kernel_enqueue_flags_t flags, 939 /// const ndrange_t ndrange, 940 /// void (^block)(local void*, ...), 941 /// uint size0, ...) 942 /// int enqueue_kernel(queue_t queue, 943 /// kernel_enqueue_flags_t flags, 944 /// const ndrange_t ndrange, 945 /// uint num_events_in_wait_list, 946 /// clk_event_t *event_wait_list, 947 /// clk_event_t *event_ret, 948 /// void (^block)(local void*, ...), 949 /// uint size0, ...) 950 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 951 unsigned NumArgs = TheCall->getNumArgs(); 952 953 if (NumArgs < 4) { 954 S.Diag(TheCall->getBeginLoc(), 955 diag::err_typecheck_call_too_few_args_at_least) 956 << 0 << 4 << NumArgs; 957 return true; 958 } 959 960 Expr *Arg0 = TheCall->getArg(0); 961 Expr *Arg1 = TheCall->getArg(1); 962 Expr *Arg2 = TheCall->getArg(2); 963 Expr *Arg3 = TheCall->getArg(3); 964 965 // First argument always needs to be a queue_t type. 966 if (!Arg0->getType()->isQueueT()) { 967 S.Diag(TheCall->getArg(0)->getBeginLoc(), 968 diag::err_opencl_builtin_expected_type) 969 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 970 return true; 971 } 972 973 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 974 if (!Arg1->getType()->isIntegerType()) { 975 S.Diag(TheCall->getArg(1)->getBeginLoc(), 976 diag::err_opencl_builtin_expected_type) 977 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 978 return true; 979 } 980 981 // Third argument is always an ndrange_t type. 982 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 983 S.Diag(TheCall->getArg(2)->getBeginLoc(), 984 diag::err_opencl_builtin_expected_type) 985 << TheCall->getDirectCallee() << "'ndrange_t'"; 986 return true; 987 } 988 989 // With four arguments, there is only one form that the function could be 990 // called in: no events and no variable arguments. 991 if (NumArgs == 4) { 992 // check that the last argument is the right block type. 993 if (!isBlockPointer(Arg3)) { 994 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 995 << TheCall->getDirectCallee() << "block"; 996 return true; 997 } 998 // we have a block type, check the prototype 999 const BlockPointerType *BPT = 1000 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1001 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1002 S.Diag(Arg3->getBeginLoc(), 1003 diag::err_opencl_enqueue_kernel_blocks_no_args); 1004 return true; 1005 } 1006 return false; 1007 } 1008 // we can have block + varargs. 1009 if (isBlockPointer(Arg3)) 1010 return (checkOpenCLBlockArgs(S, Arg3) || 1011 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1012 // last two cases with either exactly 7 args or 7 args and varargs. 1013 if (NumArgs >= 7) { 1014 // check common block argument. 1015 Expr *Arg6 = TheCall->getArg(6); 1016 if (!isBlockPointer(Arg6)) { 1017 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1018 << TheCall->getDirectCallee() << "block"; 1019 return true; 1020 } 1021 if (checkOpenCLBlockArgs(S, Arg6)) 1022 return true; 1023 1024 // Forth argument has to be any integer type. 1025 if (!Arg3->getType()->isIntegerType()) { 1026 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1027 diag::err_opencl_builtin_expected_type) 1028 << TheCall->getDirectCallee() << "integer"; 1029 return true; 1030 } 1031 // check remaining common arguments. 1032 Expr *Arg4 = TheCall->getArg(4); 1033 Expr *Arg5 = TheCall->getArg(5); 1034 1035 // Fifth argument is always passed as a pointer to clk_event_t. 1036 if (!Arg4->isNullPointerConstant(S.Context, 1037 Expr::NPC_ValueDependentIsNotNull) && 1038 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1039 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1040 diag::err_opencl_builtin_expected_type) 1041 << TheCall->getDirectCallee() 1042 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1043 return true; 1044 } 1045 1046 // Sixth argument is always passed as a pointer to clk_event_t. 1047 if (!Arg5->isNullPointerConstant(S.Context, 1048 Expr::NPC_ValueDependentIsNotNull) && 1049 !(Arg5->getType()->isPointerType() && 1050 Arg5->getType()->getPointeeType()->isClkEventT())) { 1051 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1052 diag::err_opencl_builtin_expected_type) 1053 << TheCall->getDirectCallee() 1054 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1055 return true; 1056 } 1057 1058 if (NumArgs == 7) 1059 return false; 1060 1061 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1062 } 1063 1064 // None of the specific case has been detected, give generic error 1065 S.Diag(TheCall->getBeginLoc(), 1066 diag::err_opencl_enqueue_kernel_incorrect_args); 1067 return true; 1068 } 1069 1070 /// Returns OpenCL access qual. 1071 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1072 return D->getAttr<OpenCLAccessAttr>(); 1073 } 1074 1075 /// Returns true if pipe element type is different from the pointer. 1076 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1077 const Expr *Arg0 = Call->getArg(0); 1078 // First argument type should always be pipe. 1079 if (!Arg0->getType()->isPipeType()) { 1080 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1081 << Call->getDirectCallee() << Arg0->getSourceRange(); 1082 return true; 1083 } 1084 OpenCLAccessAttr *AccessQual = 1085 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1086 // Validates the access qualifier is compatible with the call. 1087 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1088 // read_only and write_only, and assumed to be read_only if no qualifier is 1089 // specified. 1090 switch (Call->getDirectCallee()->getBuiltinID()) { 1091 case Builtin::BIread_pipe: 1092 case Builtin::BIreserve_read_pipe: 1093 case Builtin::BIcommit_read_pipe: 1094 case Builtin::BIwork_group_reserve_read_pipe: 1095 case Builtin::BIsub_group_reserve_read_pipe: 1096 case Builtin::BIwork_group_commit_read_pipe: 1097 case Builtin::BIsub_group_commit_read_pipe: 1098 if (!(!AccessQual || AccessQual->isReadOnly())) { 1099 S.Diag(Arg0->getBeginLoc(), 1100 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1101 << "read_only" << Arg0->getSourceRange(); 1102 return true; 1103 } 1104 break; 1105 case Builtin::BIwrite_pipe: 1106 case Builtin::BIreserve_write_pipe: 1107 case Builtin::BIcommit_write_pipe: 1108 case Builtin::BIwork_group_reserve_write_pipe: 1109 case Builtin::BIsub_group_reserve_write_pipe: 1110 case Builtin::BIwork_group_commit_write_pipe: 1111 case Builtin::BIsub_group_commit_write_pipe: 1112 if (!(AccessQual && AccessQual->isWriteOnly())) { 1113 S.Diag(Arg0->getBeginLoc(), 1114 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1115 << "write_only" << Arg0->getSourceRange(); 1116 return true; 1117 } 1118 break; 1119 default: 1120 break; 1121 } 1122 return false; 1123 } 1124 1125 /// Returns true if pipe element type is different from the pointer. 1126 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1127 const Expr *Arg0 = Call->getArg(0); 1128 const Expr *ArgIdx = Call->getArg(Idx); 1129 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1130 const QualType EltTy = PipeTy->getElementType(); 1131 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1132 // The Idx argument should be a pointer and the type of the pointer and 1133 // the type of pipe element should also be the same. 1134 if (!ArgTy || 1135 !S.Context.hasSameType( 1136 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1137 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1138 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1139 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1140 return true; 1141 } 1142 return false; 1143 } 1144 1145 // Performs semantic analysis for the read/write_pipe call. 1146 // \param S Reference to the semantic analyzer. 1147 // \param Call A pointer to the builtin call. 1148 // \return True if a semantic error has been found, false otherwise. 1149 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1150 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1151 // functions have two forms. 1152 switch (Call->getNumArgs()) { 1153 case 2: 1154 if (checkOpenCLPipeArg(S, Call)) 1155 return true; 1156 // The call with 2 arguments should be 1157 // read/write_pipe(pipe T, T*). 1158 // Check packet type T. 1159 if (checkOpenCLPipePacketType(S, Call, 1)) 1160 return true; 1161 break; 1162 1163 case 4: { 1164 if (checkOpenCLPipeArg(S, Call)) 1165 return true; 1166 // The call with 4 arguments should be 1167 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1168 // Check reserve_id_t. 1169 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1170 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1171 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1172 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1173 return true; 1174 } 1175 1176 // Check the index. 1177 const Expr *Arg2 = Call->getArg(2); 1178 if (!Arg2->getType()->isIntegerType() && 1179 !Arg2->getType()->isUnsignedIntegerType()) { 1180 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1181 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1182 << Arg2->getType() << Arg2->getSourceRange(); 1183 return true; 1184 } 1185 1186 // Check packet type T. 1187 if (checkOpenCLPipePacketType(S, Call, 3)) 1188 return true; 1189 } break; 1190 default: 1191 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1192 << Call->getDirectCallee() << Call->getSourceRange(); 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 // Performs a semantic analysis on the {work_group_/sub_group_ 1200 // /_}reserve_{read/write}_pipe 1201 // \param S Reference to the semantic analyzer. 1202 // \param Call The call to the builtin function to be analyzed. 1203 // \return True if a semantic error was found, false otherwise. 1204 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1205 if (checkArgCount(S, Call, 2)) 1206 return true; 1207 1208 if (checkOpenCLPipeArg(S, Call)) 1209 return true; 1210 1211 // Check the reserve size. 1212 if (!Call->getArg(1)->getType()->isIntegerType() && 1213 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1214 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1215 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1216 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1217 return true; 1218 } 1219 1220 // Since return type of reserve_read/write_pipe built-in function is 1221 // reserve_id_t, which is not defined in the builtin def file , we used int 1222 // as return type and need to override the return type of these functions. 1223 Call->setType(S.Context.OCLReserveIDTy); 1224 1225 return false; 1226 } 1227 1228 // Performs a semantic analysis on {work_group_/sub_group_ 1229 // /_}commit_{read/write}_pipe 1230 // \param S Reference to the semantic analyzer. 1231 // \param Call The call to the builtin function to be analyzed. 1232 // \return True if a semantic error was found, false otherwise. 1233 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1234 if (checkArgCount(S, Call, 2)) 1235 return true; 1236 1237 if (checkOpenCLPipeArg(S, Call)) 1238 return true; 1239 1240 // Check reserve_id_t. 1241 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1242 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1243 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1244 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1245 return true; 1246 } 1247 1248 return false; 1249 } 1250 1251 // Performs a semantic analysis on the call to built-in Pipe 1252 // Query Functions. 1253 // \param S Reference to the semantic analyzer. 1254 // \param Call The call to the builtin function to be analyzed. 1255 // \return True if a semantic error was found, false otherwise. 1256 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1257 if (checkArgCount(S, Call, 1)) 1258 return true; 1259 1260 if (!Call->getArg(0)->getType()->isPipeType()) { 1261 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1262 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1263 return true; 1264 } 1265 1266 return false; 1267 } 1268 1269 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1270 // Performs semantic analysis for the to_global/local/private call. 1271 // \param S Reference to the semantic analyzer. 1272 // \param BuiltinID ID of the builtin function. 1273 // \param Call A pointer to the builtin call. 1274 // \return True if a semantic error has been found, false otherwise. 1275 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1276 CallExpr *Call) { 1277 if (Call->getNumArgs() != 1) { 1278 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) 1279 << Call->getDirectCallee() << Call->getSourceRange(); 1280 return true; 1281 } 1282 1283 auto RT = Call->getArg(0)->getType(); 1284 if (!RT->isPointerType() || RT->getPointeeType() 1285 .getAddressSpace() == LangAS::opencl_constant) { 1286 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1287 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1288 return true; 1289 } 1290 1291 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1292 S.Diag(Call->getArg(0)->getBeginLoc(), 1293 diag::warn_opencl_generic_address_space_arg) 1294 << Call->getDirectCallee()->getNameInfo().getAsString() 1295 << Call->getArg(0)->getSourceRange(); 1296 } 1297 1298 RT = RT->getPointeeType(); 1299 auto Qual = RT.getQualifiers(); 1300 switch (BuiltinID) { 1301 case Builtin::BIto_global: 1302 Qual.setAddressSpace(LangAS::opencl_global); 1303 break; 1304 case Builtin::BIto_local: 1305 Qual.setAddressSpace(LangAS::opencl_local); 1306 break; 1307 case Builtin::BIto_private: 1308 Qual.setAddressSpace(LangAS::opencl_private); 1309 break; 1310 default: 1311 llvm_unreachable("Invalid builtin function"); 1312 } 1313 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1314 RT.getUnqualifiedType(), Qual))); 1315 1316 return false; 1317 } 1318 1319 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1320 if (checkArgCount(S, TheCall, 1)) 1321 return ExprError(); 1322 1323 // Compute __builtin_launder's parameter type from the argument. 1324 // The parameter type is: 1325 // * The type of the argument if it's not an array or function type, 1326 // Otherwise, 1327 // * The decayed argument type. 1328 QualType ParamTy = [&]() { 1329 QualType ArgTy = TheCall->getArg(0)->getType(); 1330 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1331 return S.Context.getPointerType(Ty->getElementType()); 1332 if (ArgTy->isFunctionType()) { 1333 return S.Context.getPointerType(ArgTy); 1334 } 1335 return ArgTy; 1336 }(); 1337 1338 TheCall->setType(ParamTy); 1339 1340 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1341 if (!ParamTy->isPointerType()) 1342 return 0; 1343 if (ParamTy->isFunctionPointerType()) 1344 return 1; 1345 if (ParamTy->isVoidPointerType()) 1346 return 2; 1347 return llvm::Optional<unsigned>{}; 1348 }(); 1349 if (DiagSelect.hasValue()) { 1350 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1351 << DiagSelect.getValue() << TheCall->getSourceRange(); 1352 return ExprError(); 1353 } 1354 1355 // We either have an incomplete class type, or we have a class template 1356 // whose instantiation has not been forced. Example: 1357 // 1358 // template <class T> struct Foo { T value; }; 1359 // Foo<int> *p = nullptr; 1360 // auto *d = __builtin_launder(p); 1361 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1362 diag::err_incomplete_type)) 1363 return ExprError(); 1364 1365 assert(ParamTy->getPointeeType()->isObjectType() && 1366 "Unhandled non-object pointer case"); 1367 1368 InitializedEntity Entity = 1369 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1370 ExprResult Arg = 1371 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1372 if (Arg.isInvalid()) 1373 return ExprError(); 1374 TheCall->setArg(0, Arg.get()); 1375 1376 return TheCall; 1377 } 1378 1379 // Emit an error and return true if the current architecture is not in the list 1380 // of supported architectures. 1381 static bool 1382 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1383 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1384 llvm::Triple::ArchType CurArch = 1385 S.getASTContext().getTargetInfo().getTriple().getArch(); 1386 if (llvm::is_contained(SupportedArchs, CurArch)) 1387 return false; 1388 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1389 << TheCall->getSourceRange(); 1390 return true; 1391 } 1392 1393 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1394 SourceLocation CallSiteLoc); 1395 1396 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1397 CallExpr *TheCall) { 1398 switch (TI.getTriple().getArch()) { 1399 default: 1400 // Some builtins don't require additional checking, so just consider these 1401 // acceptable. 1402 return false; 1403 case llvm::Triple::arm: 1404 case llvm::Triple::armeb: 1405 case llvm::Triple::thumb: 1406 case llvm::Triple::thumbeb: 1407 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1408 case llvm::Triple::aarch64: 1409 case llvm::Triple::aarch64_32: 1410 case llvm::Triple::aarch64_be: 1411 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1412 case llvm::Triple::bpfeb: 1413 case llvm::Triple::bpfel: 1414 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1415 case llvm::Triple::hexagon: 1416 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1417 case llvm::Triple::mips: 1418 case llvm::Triple::mipsel: 1419 case llvm::Triple::mips64: 1420 case llvm::Triple::mips64el: 1421 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1422 case llvm::Triple::systemz: 1423 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1424 case llvm::Triple::x86: 1425 case llvm::Triple::x86_64: 1426 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1427 case llvm::Triple::ppc: 1428 case llvm::Triple::ppc64: 1429 case llvm::Triple::ppc64le: 1430 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1431 case llvm::Triple::amdgcn: 1432 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1433 } 1434 } 1435 1436 ExprResult 1437 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1438 CallExpr *TheCall) { 1439 ExprResult TheCallResult(TheCall); 1440 1441 // Find out if any arguments are required to be integer constant expressions. 1442 unsigned ICEArguments = 0; 1443 ASTContext::GetBuiltinTypeError Error; 1444 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1445 if (Error != ASTContext::GE_None) 1446 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1447 1448 // If any arguments are required to be ICE's, check and diagnose. 1449 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1450 // Skip arguments not required to be ICE's. 1451 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1452 1453 llvm::APSInt Result; 1454 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1455 return true; 1456 ICEArguments &= ~(1 << ArgNo); 1457 } 1458 1459 switch (BuiltinID) { 1460 case Builtin::BI__builtin___CFStringMakeConstantString: 1461 assert(TheCall->getNumArgs() == 1 && 1462 "Wrong # arguments to builtin CFStringMakeConstantString"); 1463 if (CheckObjCString(TheCall->getArg(0))) 1464 return ExprError(); 1465 break; 1466 case Builtin::BI__builtin_ms_va_start: 1467 case Builtin::BI__builtin_stdarg_start: 1468 case Builtin::BI__builtin_va_start: 1469 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1470 return ExprError(); 1471 break; 1472 case Builtin::BI__va_start: { 1473 switch (Context.getTargetInfo().getTriple().getArch()) { 1474 case llvm::Triple::aarch64: 1475 case llvm::Triple::arm: 1476 case llvm::Triple::thumb: 1477 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1478 return ExprError(); 1479 break; 1480 default: 1481 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1482 return ExprError(); 1483 break; 1484 } 1485 break; 1486 } 1487 1488 // The acquire, release, and no fence variants are ARM and AArch64 only. 1489 case Builtin::BI_interlockedbittestandset_acq: 1490 case Builtin::BI_interlockedbittestandset_rel: 1491 case Builtin::BI_interlockedbittestandset_nf: 1492 case Builtin::BI_interlockedbittestandreset_acq: 1493 case Builtin::BI_interlockedbittestandreset_rel: 1494 case Builtin::BI_interlockedbittestandreset_nf: 1495 if (CheckBuiltinTargetSupport( 1496 *this, BuiltinID, TheCall, 1497 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1498 return ExprError(); 1499 break; 1500 1501 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1502 case Builtin::BI_bittest64: 1503 case Builtin::BI_bittestandcomplement64: 1504 case Builtin::BI_bittestandreset64: 1505 case Builtin::BI_bittestandset64: 1506 case Builtin::BI_interlockedbittestandreset64: 1507 case Builtin::BI_interlockedbittestandset64: 1508 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1509 {llvm::Triple::x86_64, llvm::Triple::arm, 1510 llvm::Triple::thumb, llvm::Triple::aarch64})) 1511 return ExprError(); 1512 break; 1513 1514 case Builtin::BI__builtin_isgreater: 1515 case Builtin::BI__builtin_isgreaterequal: 1516 case Builtin::BI__builtin_isless: 1517 case Builtin::BI__builtin_islessequal: 1518 case Builtin::BI__builtin_islessgreater: 1519 case Builtin::BI__builtin_isunordered: 1520 if (SemaBuiltinUnorderedCompare(TheCall)) 1521 return ExprError(); 1522 break; 1523 case Builtin::BI__builtin_fpclassify: 1524 if (SemaBuiltinFPClassification(TheCall, 6)) 1525 return ExprError(); 1526 break; 1527 case Builtin::BI__builtin_isfinite: 1528 case Builtin::BI__builtin_isinf: 1529 case Builtin::BI__builtin_isinf_sign: 1530 case Builtin::BI__builtin_isnan: 1531 case Builtin::BI__builtin_isnormal: 1532 case Builtin::BI__builtin_signbit: 1533 case Builtin::BI__builtin_signbitf: 1534 case Builtin::BI__builtin_signbitl: 1535 if (SemaBuiltinFPClassification(TheCall, 1)) 1536 return ExprError(); 1537 break; 1538 case Builtin::BI__builtin_shufflevector: 1539 return SemaBuiltinShuffleVector(TheCall); 1540 // TheCall will be freed by the smart pointer here, but that's fine, since 1541 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1542 case Builtin::BI__builtin_prefetch: 1543 if (SemaBuiltinPrefetch(TheCall)) 1544 return ExprError(); 1545 break; 1546 case Builtin::BI__builtin_alloca_with_align: 1547 if (SemaBuiltinAllocaWithAlign(TheCall)) 1548 return ExprError(); 1549 LLVM_FALLTHROUGH; 1550 case Builtin::BI__builtin_alloca: 1551 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1552 << TheCall->getDirectCallee(); 1553 break; 1554 case Builtin::BI__assume: 1555 case Builtin::BI__builtin_assume: 1556 if (SemaBuiltinAssume(TheCall)) 1557 return ExprError(); 1558 break; 1559 case Builtin::BI__builtin_assume_aligned: 1560 if (SemaBuiltinAssumeAligned(TheCall)) 1561 return ExprError(); 1562 break; 1563 case Builtin::BI__builtin_dynamic_object_size: 1564 case Builtin::BI__builtin_object_size: 1565 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1566 return ExprError(); 1567 break; 1568 case Builtin::BI__builtin_longjmp: 1569 if (SemaBuiltinLongjmp(TheCall)) 1570 return ExprError(); 1571 break; 1572 case Builtin::BI__builtin_setjmp: 1573 if (SemaBuiltinSetjmp(TheCall)) 1574 return ExprError(); 1575 break; 1576 case Builtin::BI__builtin_classify_type: 1577 if (checkArgCount(*this, TheCall, 1)) return true; 1578 TheCall->setType(Context.IntTy); 1579 break; 1580 case Builtin::BI__builtin_constant_p: { 1581 if (checkArgCount(*this, TheCall, 1)) return true; 1582 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1583 if (Arg.isInvalid()) return true; 1584 TheCall->setArg(0, Arg.get()); 1585 TheCall->setType(Context.IntTy); 1586 break; 1587 } 1588 case Builtin::BI__builtin_launder: 1589 return SemaBuiltinLaunder(*this, TheCall); 1590 case Builtin::BI__sync_fetch_and_add: 1591 case Builtin::BI__sync_fetch_and_add_1: 1592 case Builtin::BI__sync_fetch_and_add_2: 1593 case Builtin::BI__sync_fetch_and_add_4: 1594 case Builtin::BI__sync_fetch_and_add_8: 1595 case Builtin::BI__sync_fetch_and_add_16: 1596 case Builtin::BI__sync_fetch_and_sub: 1597 case Builtin::BI__sync_fetch_and_sub_1: 1598 case Builtin::BI__sync_fetch_and_sub_2: 1599 case Builtin::BI__sync_fetch_and_sub_4: 1600 case Builtin::BI__sync_fetch_and_sub_8: 1601 case Builtin::BI__sync_fetch_and_sub_16: 1602 case Builtin::BI__sync_fetch_and_or: 1603 case Builtin::BI__sync_fetch_and_or_1: 1604 case Builtin::BI__sync_fetch_and_or_2: 1605 case Builtin::BI__sync_fetch_and_or_4: 1606 case Builtin::BI__sync_fetch_and_or_8: 1607 case Builtin::BI__sync_fetch_and_or_16: 1608 case Builtin::BI__sync_fetch_and_and: 1609 case Builtin::BI__sync_fetch_and_and_1: 1610 case Builtin::BI__sync_fetch_and_and_2: 1611 case Builtin::BI__sync_fetch_and_and_4: 1612 case Builtin::BI__sync_fetch_and_and_8: 1613 case Builtin::BI__sync_fetch_and_and_16: 1614 case Builtin::BI__sync_fetch_and_xor: 1615 case Builtin::BI__sync_fetch_and_xor_1: 1616 case Builtin::BI__sync_fetch_and_xor_2: 1617 case Builtin::BI__sync_fetch_and_xor_4: 1618 case Builtin::BI__sync_fetch_and_xor_8: 1619 case Builtin::BI__sync_fetch_and_xor_16: 1620 case Builtin::BI__sync_fetch_and_nand: 1621 case Builtin::BI__sync_fetch_and_nand_1: 1622 case Builtin::BI__sync_fetch_and_nand_2: 1623 case Builtin::BI__sync_fetch_and_nand_4: 1624 case Builtin::BI__sync_fetch_and_nand_8: 1625 case Builtin::BI__sync_fetch_and_nand_16: 1626 case Builtin::BI__sync_add_and_fetch: 1627 case Builtin::BI__sync_add_and_fetch_1: 1628 case Builtin::BI__sync_add_and_fetch_2: 1629 case Builtin::BI__sync_add_and_fetch_4: 1630 case Builtin::BI__sync_add_and_fetch_8: 1631 case Builtin::BI__sync_add_and_fetch_16: 1632 case Builtin::BI__sync_sub_and_fetch: 1633 case Builtin::BI__sync_sub_and_fetch_1: 1634 case Builtin::BI__sync_sub_and_fetch_2: 1635 case Builtin::BI__sync_sub_and_fetch_4: 1636 case Builtin::BI__sync_sub_and_fetch_8: 1637 case Builtin::BI__sync_sub_and_fetch_16: 1638 case Builtin::BI__sync_and_and_fetch: 1639 case Builtin::BI__sync_and_and_fetch_1: 1640 case Builtin::BI__sync_and_and_fetch_2: 1641 case Builtin::BI__sync_and_and_fetch_4: 1642 case Builtin::BI__sync_and_and_fetch_8: 1643 case Builtin::BI__sync_and_and_fetch_16: 1644 case Builtin::BI__sync_or_and_fetch: 1645 case Builtin::BI__sync_or_and_fetch_1: 1646 case Builtin::BI__sync_or_and_fetch_2: 1647 case Builtin::BI__sync_or_and_fetch_4: 1648 case Builtin::BI__sync_or_and_fetch_8: 1649 case Builtin::BI__sync_or_and_fetch_16: 1650 case Builtin::BI__sync_xor_and_fetch: 1651 case Builtin::BI__sync_xor_and_fetch_1: 1652 case Builtin::BI__sync_xor_and_fetch_2: 1653 case Builtin::BI__sync_xor_and_fetch_4: 1654 case Builtin::BI__sync_xor_and_fetch_8: 1655 case Builtin::BI__sync_xor_and_fetch_16: 1656 case Builtin::BI__sync_nand_and_fetch: 1657 case Builtin::BI__sync_nand_and_fetch_1: 1658 case Builtin::BI__sync_nand_and_fetch_2: 1659 case Builtin::BI__sync_nand_and_fetch_4: 1660 case Builtin::BI__sync_nand_and_fetch_8: 1661 case Builtin::BI__sync_nand_and_fetch_16: 1662 case Builtin::BI__sync_val_compare_and_swap: 1663 case Builtin::BI__sync_val_compare_and_swap_1: 1664 case Builtin::BI__sync_val_compare_and_swap_2: 1665 case Builtin::BI__sync_val_compare_and_swap_4: 1666 case Builtin::BI__sync_val_compare_and_swap_8: 1667 case Builtin::BI__sync_val_compare_and_swap_16: 1668 case Builtin::BI__sync_bool_compare_and_swap: 1669 case Builtin::BI__sync_bool_compare_and_swap_1: 1670 case Builtin::BI__sync_bool_compare_and_swap_2: 1671 case Builtin::BI__sync_bool_compare_and_swap_4: 1672 case Builtin::BI__sync_bool_compare_and_swap_8: 1673 case Builtin::BI__sync_bool_compare_and_swap_16: 1674 case Builtin::BI__sync_lock_test_and_set: 1675 case Builtin::BI__sync_lock_test_and_set_1: 1676 case Builtin::BI__sync_lock_test_and_set_2: 1677 case Builtin::BI__sync_lock_test_and_set_4: 1678 case Builtin::BI__sync_lock_test_and_set_8: 1679 case Builtin::BI__sync_lock_test_and_set_16: 1680 case Builtin::BI__sync_lock_release: 1681 case Builtin::BI__sync_lock_release_1: 1682 case Builtin::BI__sync_lock_release_2: 1683 case Builtin::BI__sync_lock_release_4: 1684 case Builtin::BI__sync_lock_release_8: 1685 case Builtin::BI__sync_lock_release_16: 1686 case Builtin::BI__sync_swap: 1687 case Builtin::BI__sync_swap_1: 1688 case Builtin::BI__sync_swap_2: 1689 case Builtin::BI__sync_swap_4: 1690 case Builtin::BI__sync_swap_8: 1691 case Builtin::BI__sync_swap_16: 1692 return SemaBuiltinAtomicOverloaded(TheCallResult); 1693 case Builtin::BI__sync_synchronize: 1694 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1695 << TheCall->getCallee()->getSourceRange(); 1696 break; 1697 case Builtin::BI__builtin_nontemporal_load: 1698 case Builtin::BI__builtin_nontemporal_store: 1699 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1700 case Builtin::BI__builtin_memcpy_inline: { 1701 clang::Expr *SizeOp = TheCall->getArg(2); 1702 // We warn about copying to or from `nullptr` pointers when `size` is 1703 // greater than 0. When `size` is value dependent we cannot evaluate its 1704 // value so we bail out. 1705 if (SizeOp->isValueDependent()) 1706 break; 1707 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1708 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1709 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1710 } 1711 break; 1712 } 1713 #define BUILTIN(ID, TYPE, ATTRS) 1714 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1715 case Builtin::BI##ID: \ 1716 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1717 #include "clang/Basic/Builtins.def" 1718 case Builtin::BI__annotation: 1719 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1720 return ExprError(); 1721 break; 1722 case Builtin::BI__builtin_annotation: 1723 if (SemaBuiltinAnnotation(*this, TheCall)) 1724 return ExprError(); 1725 break; 1726 case Builtin::BI__builtin_addressof: 1727 if (SemaBuiltinAddressof(*this, TheCall)) 1728 return ExprError(); 1729 break; 1730 case Builtin::BI__builtin_is_aligned: 1731 case Builtin::BI__builtin_align_up: 1732 case Builtin::BI__builtin_align_down: 1733 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1734 return ExprError(); 1735 break; 1736 case Builtin::BI__builtin_add_overflow: 1737 case Builtin::BI__builtin_sub_overflow: 1738 case Builtin::BI__builtin_mul_overflow: 1739 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1740 return ExprError(); 1741 break; 1742 case Builtin::BI__builtin_operator_new: 1743 case Builtin::BI__builtin_operator_delete: { 1744 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1745 ExprResult Res = 1746 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1747 if (Res.isInvalid()) 1748 CorrectDelayedTyposInExpr(TheCallResult.get()); 1749 return Res; 1750 } 1751 case Builtin::BI__builtin_dump_struct: { 1752 // We first want to ensure we are called with 2 arguments 1753 if (checkArgCount(*this, TheCall, 2)) 1754 return ExprError(); 1755 // Ensure that the first argument is of type 'struct XX *' 1756 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1757 const QualType PtrArgType = PtrArg->getType(); 1758 if (!PtrArgType->isPointerType() || 1759 !PtrArgType->getPointeeType()->isRecordType()) { 1760 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1761 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1762 << "structure pointer"; 1763 return ExprError(); 1764 } 1765 1766 // Ensure that the second argument is of type 'FunctionType' 1767 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1768 const QualType FnPtrArgType = FnPtrArg->getType(); 1769 if (!FnPtrArgType->isPointerType()) { 1770 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1771 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1772 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1773 return ExprError(); 1774 } 1775 1776 const auto *FuncType = 1777 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1778 1779 if (!FuncType) { 1780 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1781 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1782 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1783 return ExprError(); 1784 } 1785 1786 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1787 if (!FT->getNumParams()) { 1788 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1789 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1790 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1791 return ExprError(); 1792 } 1793 QualType PT = FT->getParamType(0); 1794 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1795 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1796 !PT->getPointeeType().isConstQualified()) { 1797 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1798 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1799 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1800 return ExprError(); 1801 } 1802 } 1803 1804 TheCall->setType(Context.IntTy); 1805 break; 1806 } 1807 case Builtin::BI__builtin_expect_with_probability: { 1808 // We first want to ensure we are called with 3 arguments 1809 if (checkArgCount(*this, TheCall, 3)) 1810 return ExprError(); 1811 // then check probability is constant float in range [0.0, 1.0] 1812 const Expr *ProbArg = TheCall->getArg(2); 1813 SmallVector<PartialDiagnosticAt, 8> Notes; 1814 Expr::EvalResult Eval; 1815 Eval.Diag = &Notes; 1816 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen, 1817 Context)) || 1818 !Eval.Val.isFloat()) { 1819 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1820 << ProbArg->getSourceRange(); 1821 for (const PartialDiagnosticAt &PDiag : Notes) 1822 Diag(PDiag.first, PDiag.second); 1823 return ExprError(); 1824 } 1825 llvm::APFloat Probability = Eval.Val.getFloat(); 1826 bool LoseInfo = false; 1827 Probability.convert(llvm::APFloat::IEEEdouble(), 1828 llvm::RoundingMode::Dynamic, &LoseInfo); 1829 if (!(Probability >= llvm::APFloat(0.0) && 1830 Probability <= llvm::APFloat(1.0))) { 1831 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1832 << ProbArg->getSourceRange(); 1833 return ExprError(); 1834 } 1835 break; 1836 } 1837 case Builtin::BI__builtin_preserve_access_index: 1838 if (SemaBuiltinPreserveAI(*this, TheCall)) 1839 return ExprError(); 1840 break; 1841 case Builtin::BI__builtin_call_with_static_chain: 1842 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1843 return ExprError(); 1844 break; 1845 case Builtin::BI__exception_code: 1846 case Builtin::BI_exception_code: 1847 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1848 diag::err_seh___except_block)) 1849 return ExprError(); 1850 break; 1851 case Builtin::BI__exception_info: 1852 case Builtin::BI_exception_info: 1853 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1854 diag::err_seh___except_filter)) 1855 return ExprError(); 1856 break; 1857 case Builtin::BI__GetExceptionInfo: 1858 if (checkArgCount(*this, TheCall, 1)) 1859 return ExprError(); 1860 1861 if (CheckCXXThrowOperand( 1862 TheCall->getBeginLoc(), 1863 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1864 TheCall)) 1865 return ExprError(); 1866 1867 TheCall->setType(Context.VoidPtrTy); 1868 break; 1869 // OpenCL v2.0, s6.13.16 - Pipe functions 1870 case Builtin::BIread_pipe: 1871 case Builtin::BIwrite_pipe: 1872 // Since those two functions are declared with var args, we need a semantic 1873 // check for the argument. 1874 if (SemaBuiltinRWPipe(*this, TheCall)) 1875 return ExprError(); 1876 break; 1877 case Builtin::BIreserve_read_pipe: 1878 case Builtin::BIreserve_write_pipe: 1879 case Builtin::BIwork_group_reserve_read_pipe: 1880 case Builtin::BIwork_group_reserve_write_pipe: 1881 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1882 return ExprError(); 1883 break; 1884 case Builtin::BIsub_group_reserve_read_pipe: 1885 case Builtin::BIsub_group_reserve_write_pipe: 1886 if (checkOpenCLSubgroupExt(*this, TheCall) || 1887 SemaBuiltinReserveRWPipe(*this, TheCall)) 1888 return ExprError(); 1889 break; 1890 case Builtin::BIcommit_read_pipe: 1891 case Builtin::BIcommit_write_pipe: 1892 case Builtin::BIwork_group_commit_read_pipe: 1893 case Builtin::BIwork_group_commit_write_pipe: 1894 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1895 return ExprError(); 1896 break; 1897 case Builtin::BIsub_group_commit_read_pipe: 1898 case Builtin::BIsub_group_commit_write_pipe: 1899 if (checkOpenCLSubgroupExt(*this, TheCall) || 1900 SemaBuiltinCommitRWPipe(*this, TheCall)) 1901 return ExprError(); 1902 break; 1903 case Builtin::BIget_pipe_num_packets: 1904 case Builtin::BIget_pipe_max_packets: 1905 if (SemaBuiltinPipePackets(*this, TheCall)) 1906 return ExprError(); 1907 break; 1908 case Builtin::BIto_global: 1909 case Builtin::BIto_local: 1910 case Builtin::BIto_private: 1911 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1912 return ExprError(); 1913 break; 1914 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1915 case Builtin::BIenqueue_kernel: 1916 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1917 return ExprError(); 1918 break; 1919 case Builtin::BIget_kernel_work_group_size: 1920 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1921 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1922 return ExprError(); 1923 break; 1924 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1925 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1926 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1927 return ExprError(); 1928 break; 1929 case Builtin::BI__builtin_os_log_format: 1930 Cleanup.setExprNeedsCleanups(true); 1931 LLVM_FALLTHROUGH; 1932 case Builtin::BI__builtin_os_log_format_buffer_size: 1933 if (SemaBuiltinOSLogFormat(TheCall)) 1934 return ExprError(); 1935 break; 1936 case Builtin::BI__builtin_frame_address: 1937 case Builtin::BI__builtin_return_address: { 1938 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1939 return ExprError(); 1940 1941 // -Wframe-address warning if non-zero passed to builtin 1942 // return/frame address. 1943 Expr::EvalResult Result; 1944 if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1945 Result.Val.getInt() != 0) 1946 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1947 << ((BuiltinID == Builtin::BI__builtin_return_address) 1948 ? "__builtin_return_address" 1949 : "__builtin_frame_address") 1950 << TheCall->getSourceRange(); 1951 break; 1952 } 1953 1954 case Builtin::BI__builtin_matrix_transpose: 1955 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1956 1957 case Builtin::BI__builtin_matrix_column_major_load: 1958 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1959 1960 case Builtin::BI__builtin_matrix_column_major_store: 1961 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1962 } 1963 1964 // Since the target specific builtins for each arch overlap, only check those 1965 // of the arch we are compiling for. 1966 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1967 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1968 assert(Context.getAuxTargetInfo() && 1969 "Aux Target Builtin, but not an aux target?"); 1970 1971 if (CheckTSBuiltinFunctionCall( 1972 *Context.getAuxTargetInfo(), 1973 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 1974 return ExprError(); 1975 } else { 1976 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 1977 TheCall)) 1978 return ExprError(); 1979 } 1980 } 1981 1982 return TheCallResult; 1983 } 1984 1985 // Get the valid immediate range for the specified NEON type code. 1986 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1987 NeonTypeFlags Type(t); 1988 int IsQuad = ForceQuad ? true : Type.isQuad(); 1989 switch (Type.getEltType()) { 1990 case NeonTypeFlags::Int8: 1991 case NeonTypeFlags::Poly8: 1992 return shift ? 7 : (8 << IsQuad) - 1; 1993 case NeonTypeFlags::Int16: 1994 case NeonTypeFlags::Poly16: 1995 return shift ? 15 : (4 << IsQuad) - 1; 1996 case NeonTypeFlags::Int32: 1997 return shift ? 31 : (2 << IsQuad) - 1; 1998 case NeonTypeFlags::Int64: 1999 case NeonTypeFlags::Poly64: 2000 return shift ? 63 : (1 << IsQuad) - 1; 2001 case NeonTypeFlags::Poly128: 2002 return shift ? 127 : (1 << IsQuad) - 1; 2003 case NeonTypeFlags::Float16: 2004 assert(!shift && "cannot shift float types!"); 2005 return (4 << IsQuad) - 1; 2006 case NeonTypeFlags::Float32: 2007 assert(!shift && "cannot shift float types!"); 2008 return (2 << IsQuad) - 1; 2009 case NeonTypeFlags::Float64: 2010 assert(!shift && "cannot shift float types!"); 2011 return (1 << IsQuad) - 1; 2012 case NeonTypeFlags::BFloat16: 2013 assert(!shift && "cannot shift float types!"); 2014 return (4 << IsQuad) - 1; 2015 } 2016 llvm_unreachable("Invalid NeonTypeFlag!"); 2017 } 2018 2019 /// getNeonEltType - Return the QualType corresponding to the elements of 2020 /// the vector type specified by the NeonTypeFlags. This is used to check 2021 /// the pointer arguments for Neon load/store intrinsics. 2022 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2023 bool IsPolyUnsigned, bool IsInt64Long) { 2024 switch (Flags.getEltType()) { 2025 case NeonTypeFlags::Int8: 2026 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2027 case NeonTypeFlags::Int16: 2028 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2029 case NeonTypeFlags::Int32: 2030 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2031 case NeonTypeFlags::Int64: 2032 if (IsInt64Long) 2033 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2034 else 2035 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2036 : Context.LongLongTy; 2037 case NeonTypeFlags::Poly8: 2038 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2039 case NeonTypeFlags::Poly16: 2040 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2041 case NeonTypeFlags::Poly64: 2042 if (IsInt64Long) 2043 return Context.UnsignedLongTy; 2044 else 2045 return Context.UnsignedLongLongTy; 2046 case NeonTypeFlags::Poly128: 2047 break; 2048 case NeonTypeFlags::Float16: 2049 return Context.HalfTy; 2050 case NeonTypeFlags::Float32: 2051 return Context.FloatTy; 2052 case NeonTypeFlags::Float64: 2053 return Context.DoubleTy; 2054 case NeonTypeFlags::BFloat16: 2055 return Context.BFloat16Ty; 2056 } 2057 llvm_unreachable("Invalid NeonTypeFlag!"); 2058 } 2059 2060 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2061 // Range check SVE intrinsics that take immediate values. 2062 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2063 2064 switch (BuiltinID) { 2065 default: 2066 return false; 2067 #define GET_SVE_IMMEDIATE_CHECK 2068 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2069 #undef GET_SVE_IMMEDIATE_CHECK 2070 } 2071 2072 // Perform all the immediate checks for this builtin call. 2073 bool HasError = false; 2074 for (auto &I : ImmChecks) { 2075 int ArgNum, CheckTy, ElementSizeInBits; 2076 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2077 2078 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2079 2080 // Function that checks whether the operand (ArgNum) is an immediate 2081 // that is one of the predefined values. 2082 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2083 int ErrDiag) -> bool { 2084 // We can't check the value of a dependent argument. 2085 Expr *Arg = TheCall->getArg(ArgNum); 2086 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2087 return false; 2088 2089 // Check constant-ness first. 2090 llvm::APSInt Imm; 2091 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2092 return true; 2093 2094 if (!CheckImm(Imm.getSExtValue())) 2095 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2096 return false; 2097 }; 2098 2099 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2100 case SVETypeFlags::ImmCheck0_31: 2101 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2102 HasError = true; 2103 break; 2104 case SVETypeFlags::ImmCheck0_13: 2105 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2106 HasError = true; 2107 break; 2108 case SVETypeFlags::ImmCheck1_16: 2109 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2110 HasError = true; 2111 break; 2112 case SVETypeFlags::ImmCheck0_7: 2113 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2114 HasError = true; 2115 break; 2116 case SVETypeFlags::ImmCheckExtract: 2117 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2118 (2048 / ElementSizeInBits) - 1)) 2119 HasError = true; 2120 break; 2121 case SVETypeFlags::ImmCheckShiftRight: 2122 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2123 HasError = true; 2124 break; 2125 case SVETypeFlags::ImmCheckShiftRightNarrow: 2126 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2127 ElementSizeInBits / 2)) 2128 HasError = true; 2129 break; 2130 case SVETypeFlags::ImmCheckShiftLeft: 2131 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2132 ElementSizeInBits - 1)) 2133 HasError = true; 2134 break; 2135 case SVETypeFlags::ImmCheckLaneIndex: 2136 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2137 (128 / (1 * ElementSizeInBits)) - 1)) 2138 HasError = true; 2139 break; 2140 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2141 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2142 (128 / (2 * ElementSizeInBits)) - 1)) 2143 HasError = true; 2144 break; 2145 case SVETypeFlags::ImmCheckLaneIndexDot: 2146 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2147 (128 / (4 * ElementSizeInBits)) - 1)) 2148 HasError = true; 2149 break; 2150 case SVETypeFlags::ImmCheckComplexRot90_270: 2151 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2152 diag::err_rotation_argument_to_cadd)) 2153 HasError = true; 2154 break; 2155 case SVETypeFlags::ImmCheckComplexRotAll90: 2156 if (CheckImmediateInSet( 2157 [](int64_t V) { 2158 return V == 0 || V == 90 || V == 180 || V == 270; 2159 }, 2160 diag::err_rotation_argument_to_cmla)) 2161 HasError = true; 2162 break; 2163 case SVETypeFlags::ImmCheck0_1: 2164 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2165 HasError = true; 2166 break; 2167 case SVETypeFlags::ImmCheck0_2: 2168 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2169 HasError = true; 2170 break; 2171 case SVETypeFlags::ImmCheck0_3: 2172 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2173 HasError = true; 2174 break; 2175 } 2176 } 2177 2178 return HasError; 2179 } 2180 2181 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2182 unsigned BuiltinID, CallExpr *TheCall) { 2183 llvm::APSInt Result; 2184 uint64_t mask = 0; 2185 unsigned TV = 0; 2186 int PtrArgNum = -1; 2187 bool HasConstPtr = false; 2188 switch (BuiltinID) { 2189 #define GET_NEON_OVERLOAD_CHECK 2190 #include "clang/Basic/arm_neon.inc" 2191 #include "clang/Basic/arm_fp16.inc" 2192 #undef GET_NEON_OVERLOAD_CHECK 2193 } 2194 2195 // For NEON intrinsics which are overloaded on vector element type, validate 2196 // the immediate which specifies which variant to emit. 2197 unsigned ImmArg = TheCall->getNumArgs()-1; 2198 if (mask) { 2199 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2200 return true; 2201 2202 TV = Result.getLimitedValue(64); 2203 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2204 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2205 << TheCall->getArg(ImmArg)->getSourceRange(); 2206 } 2207 2208 if (PtrArgNum >= 0) { 2209 // Check that pointer arguments have the specified type. 2210 Expr *Arg = TheCall->getArg(PtrArgNum); 2211 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2212 Arg = ICE->getSubExpr(); 2213 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2214 QualType RHSTy = RHS.get()->getType(); 2215 2216 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2217 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2218 Arch == llvm::Triple::aarch64_32 || 2219 Arch == llvm::Triple::aarch64_be; 2220 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2221 QualType EltTy = 2222 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2223 if (HasConstPtr) 2224 EltTy = EltTy.withConst(); 2225 QualType LHSTy = Context.getPointerType(EltTy); 2226 AssignConvertType ConvTy; 2227 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2228 if (RHS.isInvalid()) 2229 return true; 2230 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2231 RHS.get(), AA_Assigning)) 2232 return true; 2233 } 2234 2235 // For NEON intrinsics which take an immediate value as part of the 2236 // instruction, range check them here. 2237 unsigned i = 0, l = 0, u = 0; 2238 switch (BuiltinID) { 2239 default: 2240 return false; 2241 #define GET_NEON_IMMEDIATE_CHECK 2242 #include "clang/Basic/arm_neon.inc" 2243 #include "clang/Basic/arm_fp16.inc" 2244 #undef GET_NEON_IMMEDIATE_CHECK 2245 } 2246 2247 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2248 } 2249 2250 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2251 switch (BuiltinID) { 2252 default: 2253 return false; 2254 #include "clang/Basic/arm_mve_builtin_sema.inc" 2255 } 2256 } 2257 2258 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2259 CallExpr *TheCall) { 2260 bool Err = false; 2261 switch (BuiltinID) { 2262 default: 2263 return false; 2264 #include "clang/Basic/arm_cde_builtin_sema.inc" 2265 } 2266 2267 if (Err) 2268 return true; 2269 2270 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2271 } 2272 2273 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2274 const Expr *CoprocArg, bool WantCDE) { 2275 if (isConstantEvaluated()) 2276 return false; 2277 2278 // We can't check the value of a dependent argument. 2279 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2280 return false; 2281 2282 llvm::APSInt CoprocNoAP; 2283 bool IsICE = CoprocArg->isIntegerConstantExpr(CoprocNoAP, Context); 2284 (void)IsICE; 2285 assert(IsICE && "Coprocossor immediate is not a constant expression"); 2286 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2287 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2288 2289 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2290 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2291 2292 if (IsCDECoproc != WantCDE) 2293 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2294 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2295 2296 return false; 2297 } 2298 2299 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2300 unsigned MaxWidth) { 2301 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2302 BuiltinID == ARM::BI__builtin_arm_ldaex || 2303 BuiltinID == ARM::BI__builtin_arm_strex || 2304 BuiltinID == ARM::BI__builtin_arm_stlex || 2305 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2306 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2307 BuiltinID == AArch64::BI__builtin_arm_strex || 2308 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2309 "unexpected ARM builtin"); 2310 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2311 BuiltinID == ARM::BI__builtin_arm_ldaex || 2312 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2313 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2314 2315 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2316 2317 // Ensure that we have the proper number of arguments. 2318 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2319 return true; 2320 2321 // Inspect the pointer argument of the atomic builtin. This should always be 2322 // a pointer type, whose element is an integral scalar or pointer type. 2323 // Because it is a pointer type, we don't have to worry about any implicit 2324 // casts here. 2325 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2326 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2327 if (PointerArgRes.isInvalid()) 2328 return true; 2329 PointerArg = PointerArgRes.get(); 2330 2331 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2332 if (!pointerType) { 2333 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2334 << PointerArg->getType() << PointerArg->getSourceRange(); 2335 return true; 2336 } 2337 2338 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2339 // task is to insert the appropriate casts into the AST. First work out just 2340 // what the appropriate type is. 2341 QualType ValType = pointerType->getPointeeType(); 2342 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2343 if (IsLdrex) 2344 AddrType.addConst(); 2345 2346 // Issue a warning if the cast is dodgy. 2347 CastKind CastNeeded = CK_NoOp; 2348 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2349 CastNeeded = CK_BitCast; 2350 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2351 << PointerArg->getType() << Context.getPointerType(AddrType) 2352 << AA_Passing << PointerArg->getSourceRange(); 2353 } 2354 2355 // Finally, do the cast and replace the argument with the corrected version. 2356 AddrType = Context.getPointerType(AddrType); 2357 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2358 if (PointerArgRes.isInvalid()) 2359 return true; 2360 PointerArg = PointerArgRes.get(); 2361 2362 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2363 2364 // In general, we allow ints, floats and pointers to be loaded and stored. 2365 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2366 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2367 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2368 << PointerArg->getType() << PointerArg->getSourceRange(); 2369 return true; 2370 } 2371 2372 // But ARM doesn't have instructions to deal with 128-bit versions. 2373 if (Context.getTypeSize(ValType) > MaxWidth) { 2374 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2375 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2376 << PointerArg->getType() << PointerArg->getSourceRange(); 2377 return true; 2378 } 2379 2380 switch (ValType.getObjCLifetime()) { 2381 case Qualifiers::OCL_None: 2382 case Qualifiers::OCL_ExplicitNone: 2383 // okay 2384 break; 2385 2386 case Qualifiers::OCL_Weak: 2387 case Qualifiers::OCL_Strong: 2388 case Qualifiers::OCL_Autoreleasing: 2389 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2390 << ValType << PointerArg->getSourceRange(); 2391 return true; 2392 } 2393 2394 if (IsLdrex) { 2395 TheCall->setType(ValType); 2396 return false; 2397 } 2398 2399 // Initialize the argument to be stored. 2400 ExprResult ValArg = TheCall->getArg(0); 2401 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2402 Context, ValType, /*consume*/ false); 2403 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2404 if (ValArg.isInvalid()) 2405 return true; 2406 TheCall->setArg(0, ValArg.get()); 2407 2408 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2409 // but the custom checker bypasses all default analysis. 2410 TheCall->setType(Context.IntTy); 2411 return false; 2412 } 2413 2414 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2415 CallExpr *TheCall) { 2416 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2417 BuiltinID == ARM::BI__builtin_arm_ldaex || 2418 BuiltinID == ARM::BI__builtin_arm_strex || 2419 BuiltinID == ARM::BI__builtin_arm_stlex) { 2420 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2421 } 2422 2423 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2424 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2425 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2426 } 2427 2428 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2429 BuiltinID == ARM::BI__builtin_arm_wsr64) 2430 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2431 2432 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2433 BuiltinID == ARM::BI__builtin_arm_rsrp || 2434 BuiltinID == ARM::BI__builtin_arm_wsr || 2435 BuiltinID == ARM::BI__builtin_arm_wsrp) 2436 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2437 2438 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2439 return true; 2440 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2441 return true; 2442 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2443 return true; 2444 2445 // For intrinsics which take an immediate value as part of the instruction, 2446 // range check them here. 2447 // FIXME: VFP Intrinsics should error if VFP not present. 2448 switch (BuiltinID) { 2449 default: return false; 2450 case ARM::BI__builtin_arm_ssat: 2451 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2452 case ARM::BI__builtin_arm_usat: 2453 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2454 case ARM::BI__builtin_arm_ssat16: 2455 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2456 case ARM::BI__builtin_arm_usat16: 2457 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2458 case ARM::BI__builtin_arm_vcvtr_f: 2459 case ARM::BI__builtin_arm_vcvtr_d: 2460 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2461 case ARM::BI__builtin_arm_dmb: 2462 case ARM::BI__builtin_arm_dsb: 2463 case ARM::BI__builtin_arm_isb: 2464 case ARM::BI__builtin_arm_dbg: 2465 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2466 case ARM::BI__builtin_arm_cdp: 2467 case ARM::BI__builtin_arm_cdp2: 2468 case ARM::BI__builtin_arm_mcr: 2469 case ARM::BI__builtin_arm_mcr2: 2470 case ARM::BI__builtin_arm_mrc: 2471 case ARM::BI__builtin_arm_mrc2: 2472 case ARM::BI__builtin_arm_mcrr: 2473 case ARM::BI__builtin_arm_mcrr2: 2474 case ARM::BI__builtin_arm_mrrc: 2475 case ARM::BI__builtin_arm_mrrc2: 2476 case ARM::BI__builtin_arm_ldc: 2477 case ARM::BI__builtin_arm_ldcl: 2478 case ARM::BI__builtin_arm_ldc2: 2479 case ARM::BI__builtin_arm_ldc2l: 2480 case ARM::BI__builtin_arm_stc: 2481 case ARM::BI__builtin_arm_stcl: 2482 case ARM::BI__builtin_arm_stc2: 2483 case ARM::BI__builtin_arm_stc2l: 2484 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2485 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2486 /*WantCDE*/ false); 2487 } 2488 } 2489 2490 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2491 unsigned BuiltinID, 2492 CallExpr *TheCall) { 2493 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2494 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2495 BuiltinID == AArch64::BI__builtin_arm_strex || 2496 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2497 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2498 } 2499 2500 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2501 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2502 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2503 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2504 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2505 } 2506 2507 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2508 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2509 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2510 2511 // Memory Tagging Extensions (MTE) Intrinsics 2512 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2513 BuiltinID == AArch64::BI__builtin_arm_addg || 2514 BuiltinID == AArch64::BI__builtin_arm_gmi || 2515 BuiltinID == AArch64::BI__builtin_arm_ldg || 2516 BuiltinID == AArch64::BI__builtin_arm_stg || 2517 BuiltinID == AArch64::BI__builtin_arm_subp) { 2518 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2519 } 2520 2521 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2522 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2523 BuiltinID == AArch64::BI__builtin_arm_wsr || 2524 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2525 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2526 2527 // Only check the valid encoding range. Any constant in this range would be 2528 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2529 // an exception for incorrect registers. This matches MSVC behavior. 2530 if (BuiltinID == AArch64::BI_ReadStatusReg || 2531 BuiltinID == AArch64::BI_WriteStatusReg) 2532 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2533 2534 if (BuiltinID == AArch64::BI__getReg) 2535 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2536 2537 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2538 return true; 2539 2540 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2541 return true; 2542 2543 // For intrinsics which take an immediate value as part of the instruction, 2544 // range check them here. 2545 unsigned i = 0, l = 0, u = 0; 2546 switch (BuiltinID) { 2547 default: return false; 2548 case AArch64::BI__builtin_arm_dmb: 2549 case AArch64::BI__builtin_arm_dsb: 2550 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2551 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2552 } 2553 2554 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2555 } 2556 2557 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2558 CallExpr *TheCall) { 2559 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2560 BuiltinID == BPF::BI__builtin_btf_type_id) && 2561 "unexpected ARM builtin"); 2562 2563 if (checkArgCount(*this, TheCall, 2)) 2564 return true; 2565 2566 Expr *Arg; 2567 if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2568 // The second argument needs to be a constant int 2569 llvm::APSInt Value; 2570 Arg = TheCall->getArg(1); 2571 if (!Arg->isIntegerConstantExpr(Value, Context)) { 2572 Diag(Arg->getBeginLoc(), diag::err_btf_type_id_not_const) 2573 << 2 << Arg->getSourceRange(); 2574 return true; 2575 } 2576 2577 TheCall->setType(Context.UnsignedIntTy); 2578 return false; 2579 } 2580 2581 // The first argument needs to be a record field access. 2582 // If it is an array element access, we delay decision 2583 // to BPF backend to check whether the access is a 2584 // field access or not. 2585 Arg = TheCall->getArg(0); 2586 if (Arg->getType()->getAsPlaceholderType() || 2587 (Arg->IgnoreParens()->getObjectKind() != OK_BitField && 2588 !dyn_cast<MemberExpr>(Arg->IgnoreParens()) && 2589 !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) { 2590 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field) 2591 << 1 << Arg->getSourceRange(); 2592 return true; 2593 } 2594 2595 // The second argument needs to be a constant int 2596 Arg = TheCall->getArg(1); 2597 llvm::APSInt Value; 2598 if (!Arg->isIntegerConstantExpr(Value, Context)) { 2599 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const) 2600 << 2 << Arg->getSourceRange(); 2601 return true; 2602 } 2603 2604 TheCall->setType(Context.UnsignedIntTy); 2605 return false; 2606 } 2607 2608 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2609 struct ArgInfo { 2610 uint8_t OpNum; 2611 bool IsSigned; 2612 uint8_t BitWidth; 2613 uint8_t Align; 2614 }; 2615 struct BuiltinInfo { 2616 unsigned BuiltinID; 2617 ArgInfo Infos[2]; 2618 }; 2619 2620 static BuiltinInfo Infos[] = { 2621 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2622 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2623 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2624 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2625 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2626 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2627 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2628 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2629 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2630 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2631 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2632 2633 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2634 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2635 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2636 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2637 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2638 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2639 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2640 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2641 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2642 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2643 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2644 2645 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2646 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2647 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2648 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2649 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2650 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2651 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2652 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2653 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2654 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2655 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2656 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2657 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2658 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2659 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2660 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2661 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2662 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2663 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2664 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2665 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2666 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2667 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2668 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2669 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2670 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2671 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2672 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2673 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2674 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2675 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2676 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2677 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2678 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2679 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2680 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2681 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2682 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2683 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2684 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2685 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2686 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2687 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2688 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2689 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2690 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2691 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2692 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2693 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2694 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2695 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2696 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2697 {{ 1, false, 6, 0 }} }, 2698 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2699 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2700 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2701 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2702 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2703 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2704 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2705 {{ 1, false, 5, 0 }} }, 2706 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2707 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2708 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2709 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2710 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2711 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2712 { 2, false, 5, 0 }} }, 2713 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2714 { 2, false, 6, 0 }} }, 2715 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2716 { 3, false, 5, 0 }} }, 2717 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2718 { 3, false, 6, 0 }} }, 2719 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2720 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2721 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2722 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2723 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2724 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2725 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2726 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2727 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2728 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2729 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2730 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2731 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2732 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2733 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2734 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2735 {{ 2, false, 4, 0 }, 2736 { 3, false, 5, 0 }} }, 2737 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2738 {{ 2, false, 4, 0 }, 2739 { 3, false, 5, 0 }} }, 2740 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2741 {{ 2, false, 4, 0 }, 2742 { 3, false, 5, 0 }} }, 2743 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2744 {{ 2, false, 4, 0 }, 2745 { 3, false, 5, 0 }} }, 2746 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2747 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2748 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2749 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2750 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2751 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2752 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2753 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2754 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2755 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2756 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2757 { 2, false, 5, 0 }} }, 2758 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2759 { 2, false, 6, 0 }} }, 2760 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2761 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2762 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2763 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2764 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2765 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2766 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2767 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2768 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2769 {{ 1, false, 4, 0 }} }, 2770 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2772 {{ 1, false, 4, 0 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2774 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2777 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2793 {{ 3, false, 1, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2798 {{ 3, false, 1, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2803 {{ 3, false, 1, 0 }} }, 2804 }; 2805 2806 // Use a dynamically initialized static to sort the table exactly once on 2807 // first run. 2808 static const bool SortOnce = 2809 (llvm::sort(Infos, 2810 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2811 return LHS.BuiltinID < RHS.BuiltinID; 2812 }), 2813 true); 2814 (void)SortOnce; 2815 2816 const BuiltinInfo *F = llvm::partition_point( 2817 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2818 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2819 return false; 2820 2821 bool Error = false; 2822 2823 for (const ArgInfo &A : F->Infos) { 2824 // Ignore empty ArgInfo elements. 2825 if (A.BitWidth == 0) 2826 continue; 2827 2828 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2829 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2830 if (!A.Align) { 2831 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2832 } else { 2833 unsigned M = 1 << A.Align; 2834 Min *= M; 2835 Max *= M; 2836 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2837 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2838 } 2839 } 2840 return Error; 2841 } 2842 2843 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2844 CallExpr *TheCall) { 2845 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2846 } 2847 2848 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2849 unsigned BuiltinID, CallExpr *TheCall) { 2850 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2851 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2852 } 2853 2854 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2855 CallExpr *TheCall) { 2856 2857 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2858 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2859 if (!TI.hasFeature("dsp")) 2860 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2861 } 2862 2863 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 2864 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 2865 if (!TI.hasFeature("dspr2")) 2866 return Diag(TheCall->getBeginLoc(), 2867 diag::err_mips_builtin_requires_dspr2); 2868 } 2869 2870 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 2871 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 2872 if (!TI.hasFeature("msa")) 2873 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 2874 } 2875 2876 return false; 2877 } 2878 2879 // CheckMipsBuiltinArgument - Checks the constant value passed to the 2880 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2881 // ordering for DSP is unspecified. MSA is ordered by the data format used 2882 // by the underlying instruction i.e., df/m, df/n and then by size. 2883 // 2884 // FIXME: The size tests here should instead be tablegen'd along with the 2885 // definitions from include/clang/Basic/BuiltinsMips.def. 2886 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2887 // be too. 2888 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2889 unsigned i = 0, l = 0, u = 0, m = 0; 2890 switch (BuiltinID) { 2891 default: return false; 2892 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 2893 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 2894 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 2895 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 2896 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 2897 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 2898 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 2899 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 2900 // df/m field. 2901 // These intrinsics take an unsigned 3 bit immediate. 2902 case Mips::BI__builtin_msa_bclri_b: 2903 case Mips::BI__builtin_msa_bnegi_b: 2904 case Mips::BI__builtin_msa_bseti_b: 2905 case Mips::BI__builtin_msa_sat_s_b: 2906 case Mips::BI__builtin_msa_sat_u_b: 2907 case Mips::BI__builtin_msa_slli_b: 2908 case Mips::BI__builtin_msa_srai_b: 2909 case Mips::BI__builtin_msa_srari_b: 2910 case Mips::BI__builtin_msa_srli_b: 2911 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 2912 case Mips::BI__builtin_msa_binsli_b: 2913 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 2914 // These intrinsics take an unsigned 4 bit immediate. 2915 case Mips::BI__builtin_msa_bclri_h: 2916 case Mips::BI__builtin_msa_bnegi_h: 2917 case Mips::BI__builtin_msa_bseti_h: 2918 case Mips::BI__builtin_msa_sat_s_h: 2919 case Mips::BI__builtin_msa_sat_u_h: 2920 case Mips::BI__builtin_msa_slli_h: 2921 case Mips::BI__builtin_msa_srai_h: 2922 case Mips::BI__builtin_msa_srari_h: 2923 case Mips::BI__builtin_msa_srli_h: 2924 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 2925 case Mips::BI__builtin_msa_binsli_h: 2926 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 2927 // These intrinsics take an unsigned 5 bit immediate. 2928 // The first block of intrinsics actually have an unsigned 5 bit field, 2929 // not a df/n field. 2930 case Mips::BI__builtin_msa_cfcmsa: 2931 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 2932 case Mips::BI__builtin_msa_clei_u_b: 2933 case Mips::BI__builtin_msa_clei_u_h: 2934 case Mips::BI__builtin_msa_clei_u_w: 2935 case Mips::BI__builtin_msa_clei_u_d: 2936 case Mips::BI__builtin_msa_clti_u_b: 2937 case Mips::BI__builtin_msa_clti_u_h: 2938 case Mips::BI__builtin_msa_clti_u_w: 2939 case Mips::BI__builtin_msa_clti_u_d: 2940 case Mips::BI__builtin_msa_maxi_u_b: 2941 case Mips::BI__builtin_msa_maxi_u_h: 2942 case Mips::BI__builtin_msa_maxi_u_w: 2943 case Mips::BI__builtin_msa_maxi_u_d: 2944 case Mips::BI__builtin_msa_mini_u_b: 2945 case Mips::BI__builtin_msa_mini_u_h: 2946 case Mips::BI__builtin_msa_mini_u_w: 2947 case Mips::BI__builtin_msa_mini_u_d: 2948 case Mips::BI__builtin_msa_addvi_b: 2949 case Mips::BI__builtin_msa_addvi_h: 2950 case Mips::BI__builtin_msa_addvi_w: 2951 case Mips::BI__builtin_msa_addvi_d: 2952 case Mips::BI__builtin_msa_bclri_w: 2953 case Mips::BI__builtin_msa_bnegi_w: 2954 case Mips::BI__builtin_msa_bseti_w: 2955 case Mips::BI__builtin_msa_sat_s_w: 2956 case Mips::BI__builtin_msa_sat_u_w: 2957 case Mips::BI__builtin_msa_slli_w: 2958 case Mips::BI__builtin_msa_srai_w: 2959 case Mips::BI__builtin_msa_srari_w: 2960 case Mips::BI__builtin_msa_srli_w: 2961 case Mips::BI__builtin_msa_srlri_w: 2962 case Mips::BI__builtin_msa_subvi_b: 2963 case Mips::BI__builtin_msa_subvi_h: 2964 case Mips::BI__builtin_msa_subvi_w: 2965 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 2966 case Mips::BI__builtin_msa_binsli_w: 2967 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 2968 // These intrinsics take an unsigned 6 bit immediate. 2969 case Mips::BI__builtin_msa_bclri_d: 2970 case Mips::BI__builtin_msa_bnegi_d: 2971 case Mips::BI__builtin_msa_bseti_d: 2972 case Mips::BI__builtin_msa_sat_s_d: 2973 case Mips::BI__builtin_msa_sat_u_d: 2974 case Mips::BI__builtin_msa_slli_d: 2975 case Mips::BI__builtin_msa_srai_d: 2976 case Mips::BI__builtin_msa_srari_d: 2977 case Mips::BI__builtin_msa_srli_d: 2978 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 2979 case Mips::BI__builtin_msa_binsli_d: 2980 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 2981 // These intrinsics take a signed 5 bit immediate. 2982 case Mips::BI__builtin_msa_ceqi_b: 2983 case Mips::BI__builtin_msa_ceqi_h: 2984 case Mips::BI__builtin_msa_ceqi_w: 2985 case Mips::BI__builtin_msa_ceqi_d: 2986 case Mips::BI__builtin_msa_clti_s_b: 2987 case Mips::BI__builtin_msa_clti_s_h: 2988 case Mips::BI__builtin_msa_clti_s_w: 2989 case Mips::BI__builtin_msa_clti_s_d: 2990 case Mips::BI__builtin_msa_clei_s_b: 2991 case Mips::BI__builtin_msa_clei_s_h: 2992 case Mips::BI__builtin_msa_clei_s_w: 2993 case Mips::BI__builtin_msa_clei_s_d: 2994 case Mips::BI__builtin_msa_maxi_s_b: 2995 case Mips::BI__builtin_msa_maxi_s_h: 2996 case Mips::BI__builtin_msa_maxi_s_w: 2997 case Mips::BI__builtin_msa_maxi_s_d: 2998 case Mips::BI__builtin_msa_mini_s_b: 2999 case Mips::BI__builtin_msa_mini_s_h: 3000 case Mips::BI__builtin_msa_mini_s_w: 3001 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3002 // These intrinsics take an unsigned 8 bit immediate. 3003 case Mips::BI__builtin_msa_andi_b: 3004 case Mips::BI__builtin_msa_nori_b: 3005 case Mips::BI__builtin_msa_ori_b: 3006 case Mips::BI__builtin_msa_shf_b: 3007 case Mips::BI__builtin_msa_shf_h: 3008 case Mips::BI__builtin_msa_shf_w: 3009 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3010 case Mips::BI__builtin_msa_bseli_b: 3011 case Mips::BI__builtin_msa_bmnzi_b: 3012 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3013 // df/n format 3014 // These intrinsics take an unsigned 4 bit immediate. 3015 case Mips::BI__builtin_msa_copy_s_b: 3016 case Mips::BI__builtin_msa_copy_u_b: 3017 case Mips::BI__builtin_msa_insve_b: 3018 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3019 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3020 // These intrinsics take an unsigned 3 bit immediate. 3021 case Mips::BI__builtin_msa_copy_s_h: 3022 case Mips::BI__builtin_msa_copy_u_h: 3023 case Mips::BI__builtin_msa_insve_h: 3024 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3025 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3026 // These intrinsics take an unsigned 2 bit immediate. 3027 case Mips::BI__builtin_msa_copy_s_w: 3028 case Mips::BI__builtin_msa_copy_u_w: 3029 case Mips::BI__builtin_msa_insve_w: 3030 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3031 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3032 // These intrinsics take an unsigned 1 bit immediate. 3033 case Mips::BI__builtin_msa_copy_s_d: 3034 case Mips::BI__builtin_msa_copy_u_d: 3035 case Mips::BI__builtin_msa_insve_d: 3036 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3037 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3038 // Memory offsets and immediate loads. 3039 // These intrinsics take a signed 10 bit immediate. 3040 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3041 case Mips::BI__builtin_msa_ldi_h: 3042 case Mips::BI__builtin_msa_ldi_w: 3043 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3044 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3045 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3046 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3047 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3048 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3049 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3050 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3051 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3052 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3053 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3054 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3055 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3056 } 3057 3058 if (!m) 3059 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3060 3061 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3062 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3063 } 3064 3065 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3066 CallExpr *TheCall) { 3067 unsigned i = 0, l = 0, u = 0; 3068 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3069 BuiltinID == PPC::BI__builtin_divdeu || 3070 BuiltinID == PPC::BI__builtin_bpermd; 3071 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3072 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3073 BuiltinID == PPC::BI__builtin_divweu || 3074 BuiltinID == PPC::BI__builtin_divde || 3075 BuiltinID == PPC::BI__builtin_divdeu; 3076 3077 if (Is64BitBltin && !IsTarget64Bit) 3078 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3079 << TheCall->getSourceRange(); 3080 3081 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || 3082 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) 3083 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3084 << TheCall->getSourceRange(); 3085 3086 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3087 if (!TI.hasFeature("vsx")) 3088 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3089 << TheCall->getSourceRange(); 3090 return false; 3091 }; 3092 3093 switch (BuiltinID) { 3094 default: return false; 3095 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3096 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3097 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3098 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3099 case PPC::BI__builtin_altivec_dss: 3100 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3101 case PPC::BI__builtin_tbegin: 3102 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3103 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3104 case PPC::BI__builtin_tabortwc: 3105 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3106 case PPC::BI__builtin_tabortwci: 3107 case PPC::BI__builtin_tabortdci: 3108 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3109 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3110 case PPC::BI__builtin_altivec_dst: 3111 case PPC::BI__builtin_altivec_dstt: 3112 case PPC::BI__builtin_altivec_dstst: 3113 case PPC::BI__builtin_altivec_dststt: 3114 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3115 case PPC::BI__builtin_vsx_xxpermdi: 3116 case PPC::BI__builtin_vsx_xxsldwi: 3117 return SemaBuiltinVSX(TheCall); 3118 case PPC::BI__builtin_unpack_vector_int128: 3119 return SemaVSXCheck(TheCall) || 3120 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3121 case PPC::BI__builtin_pack_vector_int128: 3122 return SemaVSXCheck(TheCall); 3123 case PPC::BI__builtin_altivec_vgnb: 3124 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3125 case PPC::BI__builtin_vsx_xxeval: 3126 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3127 case PPC::BI__builtin_altivec_vsldbi: 3128 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3129 case PPC::BI__builtin_altivec_vsrdbi: 3130 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3131 case PPC::BI__builtin_vsx_xxpermx: 3132 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3133 } 3134 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3135 } 3136 3137 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3138 CallExpr *TheCall) { 3139 // position of memory order and scope arguments in the builtin 3140 unsigned OrderIndex, ScopeIndex; 3141 switch (BuiltinID) { 3142 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3143 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3144 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3145 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3146 OrderIndex = 2; 3147 ScopeIndex = 3; 3148 break; 3149 case AMDGPU::BI__builtin_amdgcn_fence: 3150 OrderIndex = 0; 3151 ScopeIndex = 1; 3152 break; 3153 default: 3154 return false; 3155 } 3156 3157 ExprResult Arg = TheCall->getArg(OrderIndex); 3158 auto ArgExpr = Arg.get(); 3159 Expr::EvalResult ArgResult; 3160 3161 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3162 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3163 << ArgExpr->getType(); 3164 int ord = ArgResult.Val.getInt().getZExtValue(); 3165 3166 // Check valididty of memory ordering as per C11 / C++11's memody model. 3167 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 3168 case llvm::AtomicOrderingCABI::acquire: 3169 case llvm::AtomicOrderingCABI::release: 3170 case llvm::AtomicOrderingCABI::acq_rel: 3171 case llvm::AtomicOrderingCABI::seq_cst: 3172 break; 3173 default: { 3174 return Diag(ArgExpr->getBeginLoc(), 3175 diag::warn_atomic_op_has_invalid_memory_order) 3176 << ArgExpr->getSourceRange(); 3177 } 3178 } 3179 3180 Arg = TheCall->getArg(ScopeIndex); 3181 ArgExpr = Arg.get(); 3182 Expr::EvalResult ArgResult1; 3183 // Check that sync scope is a constant literal 3184 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Expr::EvaluateForCodeGen, 3185 Context)) 3186 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3187 << ArgExpr->getType(); 3188 3189 return false; 3190 } 3191 3192 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3193 CallExpr *TheCall) { 3194 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3195 Expr *Arg = TheCall->getArg(0); 3196 llvm::APSInt AbortCode(32); 3197 if (Arg->isIntegerConstantExpr(AbortCode, Context) && 3198 AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) 3199 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3200 << Arg->getSourceRange(); 3201 } 3202 3203 // For intrinsics which take an immediate value as part of the instruction, 3204 // range check them here. 3205 unsigned i = 0, l = 0, u = 0; 3206 switch (BuiltinID) { 3207 default: return false; 3208 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3209 case SystemZ::BI__builtin_s390_verimb: 3210 case SystemZ::BI__builtin_s390_verimh: 3211 case SystemZ::BI__builtin_s390_verimf: 3212 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3213 case SystemZ::BI__builtin_s390_vfaeb: 3214 case SystemZ::BI__builtin_s390_vfaeh: 3215 case SystemZ::BI__builtin_s390_vfaef: 3216 case SystemZ::BI__builtin_s390_vfaebs: 3217 case SystemZ::BI__builtin_s390_vfaehs: 3218 case SystemZ::BI__builtin_s390_vfaefs: 3219 case SystemZ::BI__builtin_s390_vfaezb: 3220 case SystemZ::BI__builtin_s390_vfaezh: 3221 case SystemZ::BI__builtin_s390_vfaezf: 3222 case SystemZ::BI__builtin_s390_vfaezbs: 3223 case SystemZ::BI__builtin_s390_vfaezhs: 3224 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3225 case SystemZ::BI__builtin_s390_vfisb: 3226 case SystemZ::BI__builtin_s390_vfidb: 3227 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3228 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3229 case SystemZ::BI__builtin_s390_vftcisb: 3230 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3231 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3232 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3233 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3234 case SystemZ::BI__builtin_s390_vstrcb: 3235 case SystemZ::BI__builtin_s390_vstrch: 3236 case SystemZ::BI__builtin_s390_vstrcf: 3237 case SystemZ::BI__builtin_s390_vstrczb: 3238 case SystemZ::BI__builtin_s390_vstrczh: 3239 case SystemZ::BI__builtin_s390_vstrczf: 3240 case SystemZ::BI__builtin_s390_vstrcbs: 3241 case SystemZ::BI__builtin_s390_vstrchs: 3242 case SystemZ::BI__builtin_s390_vstrcfs: 3243 case SystemZ::BI__builtin_s390_vstrczbs: 3244 case SystemZ::BI__builtin_s390_vstrczhs: 3245 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3246 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3247 case SystemZ::BI__builtin_s390_vfminsb: 3248 case SystemZ::BI__builtin_s390_vfmaxsb: 3249 case SystemZ::BI__builtin_s390_vfmindb: 3250 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3251 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3252 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3253 } 3254 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3255 } 3256 3257 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3258 /// This checks that the target supports __builtin_cpu_supports and 3259 /// that the string argument is constant and valid. 3260 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3261 CallExpr *TheCall) { 3262 Expr *Arg = TheCall->getArg(0); 3263 3264 // Check if the argument is a string literal. 3265 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3266 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3267 << Arg->getSourceRange(); 3268 3269 // Check the contents of the string. 3270 StringRef Feature = 3271 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3272 if (!TI.validateCpuSupports(Feature)) 3273 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3274 << Arg->getSourceRange(); 3275 return false; 3276 } 3277 3278 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3279 /// This checks that the target supports __builtin_cpu_is and 3280 /// that the string argument is constant and valid. 3281 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3282 Expr *Arg = TheCall->getArg(0); 3283 3284 // Check if the argument is a string literal. 3285 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3286 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3287 << Arg->getSourceRange(); 3288 3289 // Check the contents of the string. 3290 StringRef Feature = 3291 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3292 if (!TI.validateCpuIs(Feature)) 3293 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3294 << Arg->getSourceRange(); 3295 return false; 3296 } 3297 3298 // Check if the rounding mode is legal. 3299 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3300 // Indicates if this instruction has rounding control or just SAE. 3301 bool HasRC = false; 3302 3303 unsigned ArgNum = 0; 3304 switch (BuiltinID) { 3305 default: 3306 return false; 3307 case X86::BI__builtin_ia32_vcvttsd2si32: 3308 case X86::BI__builtin_ia32_vcvttsd2si64: 3309 case X86::BI__builtin_ia32_vcvttsd2usi32: 3310 case X86::BI__builtin_ia32_vcvttsd2usi64: 3311 case X86::BI__builtin_ia32_vcvttss2si32: 3312 case X86::BI__builtin_ia32_vcvttss2si64: 3313 case X86::BI__builtin_ia32_vcvttss2usi32: 3314 case X86::BI__builtin_ia32_vcvttss2usi64: 3315 ArgNum = 1; 3316 break; 3317 case X86::BI__builtin_ia32_maxpd512: 3318 case X86::BI__builtin_ia32_maxps512: 3319 case X86::BI__builtin_ia32_minpd512: 3320 case X86::BI__builtin_ia32_minps512: 3321 ArgNum = 2; 3322 break; 3323 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3324 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3325 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3326 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3327 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3328 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3329 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3330 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3331 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3332 case X86::BI__builtin_ia32_exp2pd_mask: 3333 case X86::BI__builtin_ia32_exp2ps_mask: 3334 case X86::BI__builtin_ia32_getexppd512_mask: 3335 case X86::BI__builtin_ia32_getexpps512_mask: 3336 case X86::BI__builtin_ia32_rcp28pd_mask: 3337 case X86::BI__builtin_ia32_rcp28ps_mask: 3338 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3339 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3340 case X86::BI__builtin_ia32_vcomisd: 3341 case X86::BI__builtin_ia32_vcomiss: 3342 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3343 ArgNum = 3; 3344 break; 3345 case X86::BI__builtin_ia32_cmppd512_mask: 3346 case X86::BI__builtin_ia32_cmpps512_mask: 3347 case X86::BI__builtin_ia32_cmpsd_mask: 3348 case X86::BI__builtin_ia32_cmpss_mask: 3349 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3350 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3351 case X86::BI__builtin_ia32_getexpss128_round_mask: 3352 case X86::BI__builtin_ia32_getmantpd512_mask: 3353 case X86::BI__builtin_ia32_getmantps512_mask: 3354 case X86::BI__builtin_ia32_maxsd_round_mask: 3355 case X86::BI__builtin_ia32_maxss_round_mask: 3356 case X86::BI__builtin_ia32_minsd_round_mask: 3357 case X86::BI__builtin_ia32_minss_round_mask: 3358 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3359 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3360 case X86::BI__builtin_ia32_reducepd512_mask: 3361 case X86::BI__builtin_ia32_reduceps512_mask: 3362 case X86::BI__builtin_ia32_rndscalepd_mask: 3363 case X86::BI__builtin_ia32_rndscaleps_mask: 3364 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3365 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3366 ArgNum = 4; 3367 break; 3368 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3369 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3370 case X86::BI__builtin_ia32_fixupimmps512_mask: 3371 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3372 case X86::BI__builtin_ia32_fixupimmsd_mask: 3373 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3374 case X86::BI__builtin_ia32_fixupimmss_mask: 3375 case X86::BI__builtin_ia32_fixupimmss_maskz: 3376 case X86::BI__builtin_ia32_getmantsd_round_mask: 3377 case X86::BI__builtin_ia32_getmantss_round_mask: 3378 case X86::BI__builtin_ia32_rangepd512_mask: 3379 case X86::BI__builtin_ia32_rangeps512_mask: 3380 case X86::BI__builtin_ia32_rangesd128_round_mask: 3381 case X86::BI__builtin_ia32_rangess128_round_mask: 3382 case X86::BI__builtin_ia32_reducesd_mask: 3383 case X86::BI__builtin_ia32_reducess_mask: 3384 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3385 case X86::BI__builtin_ia32_rndscaless_round_mask: 3386 ArgNum = 5; 3387 break; 3388 case X86::BI__builtin_ia32_vcvtsd2si64: 3389 case X86::BI__builtin_ia32_vcvtsd2si32: 3390 case X86::BI__builtin_ia32_vcvtsd2usi32: 3391 case X86::BI__builtin_ia32_vcvtsd2usi64: 3392 case X86::BI__builtin_ia32_vcvtss2si32: 3393 case X86::BI__builtin_ia32_vcvtss2si64: 3394 case X86::BI__builtin_ia32_vcvtss2usi32: 3395 case X86::BI__builtin_ia32_vcvtss2usi64: 3396 case X86::BI__builtin_ia32_sqrtpd512: 3397 case X86::BI__builtin_ia32_sqrtps512: 3398 ArgNum = 1; 3399 HasRC = true; 3400 break; 3401 case X86::BI__builtin_ia32_addpd512: 3402 case X86::BI__builtin_ia32_addps512: 3403 case X86::BI__builtin_ia32_divpd512: 3404 case X86::BI__builtin_ia32_divps512: 3405 case X86::BI__builtin_ia32_mulpd512: 3406 case X86::BI__builtin_ia32_mulps512: 3407 case X86::BI__builtin_ia32_subpd512: 3408 case X86::BI__builtin_ia32_subps512: 3409 case X86::BI__builtin_ia32_cvtsi2sd64: 3410 case X86::BI__builtin_ia32_cvtsi2ss32: 3411 case X86::BI__builtin_ia32_cvtsi2ss64: 3412 case X86::BI__builtin_ia32_cvtusi2sd64: 3413 case X86::BI__builtin_ia32_cvtusi2ss32: 3414 case X86::BI__builtin_ia32_cvtusi2ss64: 3415 ArgNum = 2; 3416 HasRC = true; 3417 break; 3418 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3419 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3420 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3421 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3422 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3423 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3424 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3425 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3426 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3427 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3428 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3429 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3430 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3431 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3432 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3433 ArgNum = 3; 3434 HasRC = true; 3435 break; 3436 case X86::BI__builtin_ia32_addss_round_mask: 3437 case X86::BI__builtin_ia32_addsd_round_mask: 3438 case X86::BI__builtin_ia32_divss_round_mask: 3439 case X86::BI__builtin_ia32_divsd_round_mask: 3440 case X86::BI__builtin_ia32_mulss_round_mask: 3441 case X86::BI__builtin_ia32_mulsd_round_mask: 3442 case X86::BI__builtin_ia32_subss_round_mask: 3443 case X86::BI__builtin_ia32_subsd_round_mask: 3444 case X86::BI__builtin_ia32_scalefpd512_mask: 3445 case X86::BI__builtin_ia32_scalefps512_mask: 3446 case X86::BI__builtin_ia32_scalefsd_round_mask: 3447 case X86::BI__builtin_ia32_scalefss_round_mask: 3448 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3449 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3450 case X86::BI__builtin_ia32_sqrtss_round_mask: 3451 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3452 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3453 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3454 case X86::BI__builtin_ia32_vfmaddss3_mask: 3455 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3456 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3457 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3458 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3459 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3460 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3461 case X86::BI__builtin_ia32_vfmaddps512_mask: 3462 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3463 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3464 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3465 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3466 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3467 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3468 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3469 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3470 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3471 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3472 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3473 ArgNum = 4; 3474 HasRC = true; 3475 break; 3476 } 3477 3478 llvm::APSInt Result; 3479 3480 // We can't check the value of a dependent argument. 3481 Expr *Arg = TheCall->getArg(ArgNum); 3482 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3483 return false; 3484 3485 // Check constant-ness first. 3486 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3487 return true; 3488 3489 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3490 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3491 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3492 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3493 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3494 Result == 8/*ROUND_NO_EXC*/ || 3495 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3496 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3497 return false; 3498 3499 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3500 << Arg->getSourceRange(); 3501 } 3502 3503 // Check if the gather/scatter scale is legal. 3504 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3505 CallExpr *TheCall) { 3506 unsigned ArgNum = 0; 3507 switch (BuiltinID) { 3508 default: 3509 return false; 3510 case X86::BI__builtin_ia32_gatherpfdpd: 3511 case X86::BI__builtin_ia32_gatherpfdps: 3512 case X86::BI__builtin_ia32_gatherpfqpd: 3513 case X86::BI__builtin_ia32_gatherpfqps: 3514 case X86::BI__builtin_ia32_scatterpfdpd: 3515 case X86::BI__builtin_ia32_scatterpfdps: 3516 case X86::BI__builtin_ia32_scatterpfqpd: 3517 case X86::BI__builtin_ia32_scatterpfqps: 3518 ArgNum = 3; 3519 break; 3520 case X86::BI__builtin_ia32_gatherd_pd: 3521 case X86::BI__builtin_ia32_gatherd_pd256: 3522 case X86::BI__builtin_ia32_gatherq_pd: 3523 case X86::BI__builtin_ia32_gatherq_pd256: 3524 case X86::BI__builtin_ia32_gatherd_ps: 3525 case X86::BI__builtin_ia32_gatherd_ps256: 3526 case X86::BI__builtin_ia32_gatherq_ps: 3527 case X86::BI__builtin_ia32_gatherq_ps256: 3528 case X86::BI__builtin_ia32_gatherd_q: 3529 case X86::BI__builtin_ia32_gatherd_q256: 3530 case X86::BI__builtin_ia32_gatherq_q: 3531 case X86::BI__builtin_ia32_gatherq_q256: 3532 case X86::BI__builtin_ia32_gatherd_d: 3533 case X86::BI__builtin_ia32_gatherd_d256: 3534 case X86::BI__builtin_ia32_gatherq_d: 3535 case X86::BI__builtin_ia32_gatherq_d256: 3536 case X86::BI__builtin_ia32_gather3div2df: 3537 case X86::BI__builtin_ia32_gather3div2di: 3538 case X86::BI__builtin_ia32_gather3div4df: 3539 case X86::BI__builtin_ia32_gather3div4di: 3540 case X86::BI__builtin_ia32_gather3div4sf: 3541 case X86::BI__builtin_ia32_gather3div4si: 3542 case X86::BI__builtin_ia32_gather3div8sf: 3543 case X86::BI__builtin_ia32_gather3div8si: 3544 case X86::BI__builtin_ia32_gather3siv2df: 3545 case X86::BI__builtin_ia32_gather3siv2di: 3546 case X86::BI__builtin_ia32_gather3siv4df: 3547 case X86::BI__builtin_ia32_gather3siv4di: 3548 case X86::BI__builtin_ia32_gather3siv4sf: 3549 case X86::BI__builtin_ia32_gather3siv4si: 3550 case X86::BI__builtin_ia32_gather3siv8sf: 3551 case X86::BI__builtin_ia32_gather3siv8si: 3552 case X86::BI__builtin_ia32_gathersiv8df: 3553 case X86::BI__builtin_ia32_gathersiv16sf: 3554 case X86::BI__builtin_ia32_gatherdiv8df: 3555 case X86::BI__builtin_ia32_gatherdiv16sf: 3556 case X86::BI__builtin_ia32_gathersiv8di: 3557 case X86::BI__builtin_ia32_gathersiv16si: 3558 case X86::BI__builtin_ia32_gatherdiv8di: 3559 case X86::BI__builtin_ia32_gatherdiv16si: 3560 case X86::BI__builtin_ia32_scatterdiv2df: 3561 case X86::BI__builtin_ia32_scatterdiv2di: 3562 case X86::BI__builtin_ia32_scatterdiv4df: 3563 case X86::BI__builtin_ia32_scatterdiv4di: 3564 case X86::BI__builtin_ia32_scatterdiv4sf: 3565 case X86::BI__builtin_ia32_scatterdiv4si: 3566 case X86::BI__builtin_ia32_scatterdiv8sf: 3567 case X86::BI__builtin_ia32_scatterdiv8si: 3568 case X86::BI__builtin_ia32_scattersiv2df: 3569 case X86::BI__builtin_ia32_scattersiv2di: 3570 case X86::BI__builtin_ia32_scattersiv4df: 3571 case X86::BI__builtin_ia32_scattersiv4di: 3572 case X86::BI__builtin_ia32_scattersiv4sf: 3573 case X86::BI__builtin_ia32_scattersiv4si: 3574 case X86::BI__builtin_ia32_scattersiv8sf: 3575 case X86::BI__builtin_ia32_scattersiv8si: 3576 case X86::BI__builtin_ia32_scattersiv8df: 3577 case X86::BI__builtin_ia32_scattersiv16sf: 3578 case X86::BI__builtin_ia32_scatterdiv8df: 3579 case X86::BI__builtin_ia32_scatterdiv16sf: 3580 case X86::BI__builtin_ia32_scattersiv8di: 3581 case X86::BI__builtin_ia32_scattersiv16si: 3582 case X86::BI__builtin_ia32_scatterdiv8di: 3583 case X86::BI__builtin_ia32_scatterdiv16si: 3584 ArgNum = 4; 3585 break; 3586 } 3587 3588 llvm::APSInt Result; 3589 3590 // We can't check the value of a dependent argument. 3591 Expr *Arg = TheCall->getArg(ArgNum); 3592 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3593 return false; 3594 3595 // Check constant-ness first. 3596 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3597 return true; 3598 3599 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3600 return false; 3601 3602 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3603 << Arg->getSourceRange(); 3604 } 3605 3606 enum { TileRegLow = 0, TileRegHigh = 7 }; 3607 3608 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 3609 ArrayRef<int> ArgNums) { 3610 for (int ArgNum : ArgNums) { 3611 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 3612 return true; 3613 } 3614 return false; 3615 } 3616 3617 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, int ArgNum) { 3618 return SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh); 3619 } 3620 3621 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 3622 ArrayRef<int> ArgNums) { 3623 // Because the max number of tile register is TileRegHigh + 1, so here we use 3624 // each bit to represent the usage of them in bitset. 3625 std::bitset<TileRegHigh + 1> ArgValues; 3626 for (int ArgNum : ArgNums) { 3627 llvm::APSInt Arg; 3628 SemaBuiltinConstantArg(TheCall, ArgNum, Arg); 3629 int ArgExtValue = Arg.getExtValue(); 3630 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 3631 "Incorrect tile register num."); 3632 if (ArgValues.test(ArgExtValue)) 3633 return Diag(TheCall->getBeginLoc(), 3634 diag::err_x86_builtin_tile_arg_duplicate) 3635 << TheCall->getArg(ArgNum)->getSourceRange(); 3636 ArgValues.set(ArgExtValue); 3637 } 3638 return false; 3639 } 3640 3641 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 3642 ArrayRef<int> ArgNums) { 3643 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 3644 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 3645 } 3646 3647 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 3648 switch (BuiltinID) { 3649 default: 3650 return false; 3651 case X86::BI__builtin_ia32_tileloadd64: 3652 case X86::BI__builtin_ia32_tileloaddt164: 3653 case X86::BI__builtin_ia32_tilestored64: 3654 case X86::BI__builtin_ia32_tilezero: 3655 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 3656 case X86::BI__builtin_ia32_tdpbssd: 3657 case X86::BI__builtin_ia32_tdpbsud: 3658 case X86::BI__builtin_ia32_tdpbusd: 3659 case X86::BI__builtin_ia32_tdpbuud: 3660 case X86::BI__builtin_ia32_tdpbf16ps: 3661 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 3662 } 3663 } 3664 static bool isX86_32Builtin(unsigned BuiltinID) { 3665 // These builtins only work on x86-32 targets. 3666 switch (BuiltinID) { 3667 case X86::BI__builtin_ia32_readeflags_u32: 3668 case X86::BI__builtin_ia32_writeeflags_u32: 3669 return true; 3670 } 3671 3672 return false; 3673 } 3674 3675 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3676 CallExpr *TheCall) { 3677 if (BuiltinID == X86::BI__builtin_cpu_supports) 3678 return SemaBuiltinCpuSupports(*this, TI, TheCall); 3679 3680 if (BuiltinID == X86::BI__builtin_cpu_is) 3681 return SemaBuiltinCpuIs(*this, TI, TheCall); 3682 3683 // Check for 32-bit only builtins on a 64-bit target. 3684 const llvm::Triple &TT = TI.getTriple(); 3685 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3686 return Diag(TheCall->getCallee()->getBeginLoc(), 3687 diag::err_32_bit_builtin_64_bit_tgt); 3688 3689 // If the intrinsic has rounding or SAE make sure its valid. 3690 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3691 return true; 3692 3693 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3694 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3695 return true; 3696 3697 // If the intrinsic has a tile arguments, make sure they are valid. 3698 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 3699 return true; 3700 3701 // For intrinsics which take an immediate value as part of the instruction, 3702 // range check them here. 3703 int i = 0, l = 0, u = 0; 3704 switch (BuiltinID) { 3705 default: 3706 return false; 3707 case X86::BI__builtin_ia32_vec_ext_v2si: 3708 case X86::BI__builtin_ia32_vec_ext_v2di: 3709 case X86::BI__builtin_ia32_vextractf128_pd256: 3710 case X86::BI__builtin_ia32_vextractf128_ps256: 3711 case X86::BI__builtin_ia32_vextractf128_si256: 3712 case X86::BI__builtin_ia32_extract128i256: 3713 case X86::BI__builtin_ia32_extractf64x4_mask: 3714 case X86::BI__builtin_ia32_extracti64x4_mask: 3715 case X86::BI__builtin_ia32_extractf32x8_mask: 3716 case X86::BI__builtin_ia32_extracti32x8_mask: 3717 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3718 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3719 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3720 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3721 i = 1; l = 0; u = 1; 3722 break; 3723 case X86::BI__builtin_ia32_vec_set_v2di: 3724 case X86::BI__builtin_ia32_vinsertf128_pd256: 3725 case X86::BI__builtin_ia32_vinsertf128_ps256: 3726 case X86::BI__builtin_ia32_vinsertf128_si256: 3727 case X86::BI__builtin_ia32_insert128i256: 3728 case X86::BI__builtin_ia32_insertf32x8: 3729 case X86::BI__builtin_ia32_inserti32x8: 3730 case X86::BI__builtin_ia32_insertf64x4: 3731 case X86::BI__builtin_ia32_inserti64x4: 3732 case X86::BI__builtin_ia32_insertf64x2_256: 3733 case X86::BI__builtin_ia32_inserti64x2_256: 3734 case X86::BI__builtin_ia32_insertf32x4_256: 3735 case X86::BI__builtin_ia32_inserti32x4_256: 3736 i = 2; l = 0; u = 1; 3737 break; 3738 case X86::BI__builtin_ia32_vpermilpd: 3739 case X86::BI__builtin_ia32_vec_ext_v4hi: 3740 case X86::BI__builtin_ia32_vec_ext_v4si: 3741 case X86::BI__builtin_ia32_vec_ext_v4sf: 3742 case X86::BI__builtin_ia32_vec_ext_v4di: 3743 case X86::BI__builtin_ia32_extractf32x4_mask: 3744 case X86::BI__builtin_ia32_extracti32x4_mask: 3745 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3746 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3747 i = 1; l = 0; u = 3; 3748 break; 3749 case X86::BI_mm_prefetch: 3750 case X86::BI__builtin_ia32_vec_ext_v8hi: 3751 case X86::BI__builtin_ia32_vec_ext_v8si: 3752 i = 1; l = 0; u = 7; 3753 break; 3754 case X86::BI__builtin_ia32_sha1rnds4: 3755 case X86::BI__builtin_ia32_blendpd: 3756 case X86::BI__builtin_ia32_shufpd: 3757 case X86::BI__builtin_ia32_vec_set_v4hi: 3758 case X86::BI__builtin_ia32_vec_set_v4si: 3759 case X86::BI__builtin_ia32_vec_set_v4di: 3760 case X86::BI__builtin_ia32_shuf_f32x4_256: 3761 case X86::BI__builtin_ia32_shuf_f64x2_256: 3762 case X86::BI__builtin_ia32_shuf_i32x4_256: 3763 case X86::BI__builtin_ia32_shuf_i64x2_256: 3764 case X86::BI__builtin_ia32_insertf64x2_512: 3765 case X86::BI__builtin_ia32_inserti64x2_512: 3766 case X86::BI__builtin_ia32_insertf32x4: 3767 case X86::BI__builtin_ia32_inserti32x4: 3768 i = 2; l = 0; u = 3; 3769 break; 3770 case X86::BI__builtin_ia32_vpermil2pd: 3771 case X86::BI__builtin_ia32_vpermil2pd256: 3772 case X86::BI__builtin_ia32_vpermil2ps: 3773 case X86::BI__builtin_ia32_vpermil2ps256: 3774 i = 3; l = 0; u = 3; 3775 break; 3776 case X86::BI__builtin_ia32_cmpb128_mask: 3777 case X86::BI__builtin_ia32_cmpw128_mask: 3778 case X86::BI__builtin_ia32_cmpd128_mask: 3779 case X86::BI__builtin_ia32_cmpq128_mask: 3780 case X86::BI__builtin_ia32_cmpb256_mask: 3781 case X86::BI__builtin_ia32_cmpw256_mask: 3782 case X86::BI__builtin_ia32_cmpd256_mask: 3783 case X86::BI__builtin_ia32_cmpq256_mask: 3784 case X86::BI__builtin_ia32_cmpb512_mask: 3785 case X86::BI__builtin_ia32_cmpw512_mask: 3786 case X86::BI__builtin_ia32_cmpd512_mask: 3787 case X86::BI__builtin_ia32_cmpq512_mask: 3788 case X86::BI__builtin_ia32_ucmpb128_mask: 3789 case X86::BI__builtin_ia32_ucmpw128_mask: 3790 case X86::BI__builtin_ia32_ucmpd128_mask: 3791 case X86::BI__builtin_ia32_ucmpq128_mask: 3792 case X86::BI__builtin_ia32_ucmpb256_mask: 3793 case X86::BI__builtin_ia32_ucmpw256_mask: 3794 case X86::BI__builtin_ia32_ucmpd256_mask: 3795 case X86::BI__builtin_ia32_ucmpq256_mask: 3796 case X86::BI__builtin_ia32_ucmpb512_mask: 3797 case X86::BI__builtin_ia32_ucmpw512_mask: 3798 case X86::BI__builtin_ia32_ucmpd512_mask: 3799 case X86::BI__builtin_ia32_ucmpq512_mask: 3800 case X86::BI__builtin_ia32_vpcomub: 3801 case X86::BI__builtin_ia32_vpcomuw: 3802 case X86::BI__builtin_ia32_vpcomud: 3803 case X86::BI__builtin_ia32_vpcomuq: 3804 case X86::BI__builtin_ia32_vpcomb: 3805 case X86::BI__builtin_ia32_vpcomw: 3806 case X86::BI__builtin_ia32_vpcomd: 3807 case X86::BI__builtin_ia32_vpcomq: 3808 case X86::BI__builtin_ia32_vec_set_v8hi: 3809 case X86::BI__builtin_ia32_vec_set_v8si: 3810 i = 2; l = 0; u = 7; 3811 break; 3812 case X86::BI__builtin_ia32_vpermilpd256: 3813 case X86::BI__builtin_ia32_roundps: 3814 case X86::BI__builtin_ia32_roundpd: 3815 case X86::BI__builtin_ia32_roundps256: 3816 case X86::BI__builtin_ia32_roundpd256: 3817 case X86::BI__builtin_ia32_getmantpd128_mask: 3818 case X86::BI__builtin_ia32_getmantpd256_mask: 3819 case X86::BI__builtin_ia32_getmantps128_mask: 3820 case X86::BI__builtin_ia32_getmantps256_mask: 3821 case X86::BI__builtin_ia32_getmantpd512_mask: 3822 case X86::BI__builtin_ia32_getmantps512_mask: 3823 case X86::BI__builtin_ia32_vec_ext_v16qi: 3824 case X86::BI__builtin_ia32_vec_ext_v16hi: 3825 i = 1; l = 0; u = 15; 3826 break; 3827 case X86::BI__builtin_ia32_pblendd128: 3828 case X86::BI__builtin_ia32_blendps: 3829 case X86::BI__builtin_ia32_blendpd256: 3830 case X86::BI__builtin_ia32_shufpd256: 3831 case X86::BI__builtin_ia32_roundss: 3832 case X86::BI__builtin_ia32_roundsd: 3833 case X86::BI__builtin_ia32_rangepd128_mask: 3834 case X86::BI__builtin_ia32_rangepd256_mask: 3835 case X86::BI__builtin_ia32_rangepd512_mask: 3836 case X86::BI__builtin_ia32_rangeps128_mask: 3837 case X86::BI__builtin_ia32_rangeps256_mask: 3838 case X86::BI__builtin_ia32_rangeps512_mask: 3839 case X86::BI__builtin_ia32_getmantsd_round_mask: 3840 case X86::BI__builtin_ia32_getmantss_round_mask: 3841 case X86::BI__builtin_ia32_vec_set_v16qi: 3842 case X86::BI__builtin_ia32_vec_set_v16hi: 3843 i = 2; l = 0; u = 15; 3844 break; 3845 case X86::BI__builtin_ia32_vec_ext_v32qi: 3846 i = 1; l = 0; u = 31; 3847 break; 3848 case X86::BI__builtin_ia32_cmpps: 3849 case X86::BI__builtin_ia32_cmpss: 3850 case X86::BI__builtin_ia32_cmppd: 3851 case X86::BI__builtin_ia32_cmpsd: 3852 case X86::BI__builtin_ia32_cmpps256: 3853 case X86::BI__builtin_ia32_cmppd256: 3854 case X86::BI__builtin_ia32_cmpps128_mask: 3855 case X86::BI__builtin_ia32_cmppd128_mask: 3856 case X86::BI__builtin_ia32_cmpps256_mask: 3857 case X86::BI__builtin_ia32_cmppd256_mask: 3858 case X86::BI__builtin_ia32_cmpps512_mask: 3859 case X86::BI__builtin_ia32_cmppd512_mask: 3860 case X86::BI__builtin_ia32_cmpsd_mask: 3861 case X86::BI__builtin_ia32_cmpss_mask: 3862 case X86::BI__builtin_ia32_vec_set_v32qi: 3863 i = 2; l = 0; u = 31; 3864 break; 3865 case X86::BI__builtin_ia32_permdf256: 3866 case X86::BI__builtin_ia32_permdi256: 3867 case X86::BI__builtin_ia32_permdf512: 3868 case X86::BI__builtin_ia32_permdi512: 3869 case X86::BI__builtin_ia32_vpermilps: 3870 case X86::BI__builtin_ia32_vpermilps256: 3871 case X86::BI__builtin_ia32_vpermilpd512: 3872 case X86::BI__builtin_ia32_vpermilps512: 3873 case X86::BI__builtin_ia32_pshufd: 3874 case X86::BI__builtin_ia32_pshufd256: 3875 case X86::BI__builtin_ia32_pshufd512: 3876 case X86::BI__builtin_ia32_pshufhw: 3877 case X86::BI__builtin_ia32_pshufhw256: 3878 case X86::BI__builtin_ia32_pshufhw512: 3879 case X86::BI__builtin_ia32_pshuflw: 3880 case X86::BI__builtin_ia32_pshuflw256: 3881 case X86::BI__builtin_ia32_pshuflw512: 3882 case X86::BI__builtin_ia32_vcvtps2ph: 3883 case X86::BI__builtin_ia32_vcvtps2ph_mask: 3884 case X86::BI__builtin_ia32_vcvtps2ph256: 3885 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 3886 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 3887 case X86::BI__builtin_ia32_rndscaleps_128_mask: 3888 case X86::BI__builtin_ia32_rndscalepd_128_mask: 3889 case X86::BI__builtin_ia32_rndscaleps_256_mask: 3890 case X86::BI__builtin_ia32_rndscalepd_256_mask: 3891 case X86::BI__builtin_ia32_rndscaleps_mask: 3892 case X86::BI__builtin_ia32_rndscalepd_mask: 3893 case X86::BI__builtin_ia32_reducepd128_mask: 3894 case X86::BI__builtin_ia32_reducepd256_mask: 3895 case X86::BI__builtin_ia32_reducepd512_mask: 3896 case X86::BI__builtin_ia32_reduceps128_mask: 3897 case X86::BI__builtin_ia32_reduceps256_mask: 3898 case X86::BI__builtin_ia32_reduceps512_mask: 3899 case X86::BI__builtin_ia32_prold512: 3900 case X86::BI__builtin_ia32_prolq512: 3901 case X86::BI__builtin_ia32_prold128: 3902 case X86::BI__builtin_ia32_prold256: 3903 case X86::BI__builtin_ia32_prolq128: 3904 case X86::BI__builtin_ia32_prolq256: 3905 case X86::BI__builtin_ia32_prord512: 3906 case X86::BI__builtin_ia32_prorq512: 3907 case X86::BI__builtin_ia32_prord128: 3908 case X86::BI__builtin_ia32_prord256: 3909 case X86::BI__builtin_ia32_prorq128: 3910 case X86::BI__builtin_ia32_prorq256: 3911 case X86::BI__builtin_ia32_fpclasspd128_mask: 3912 case X86::BI__builtin_ia32_fpclasspd256_mask: 3913 case X86::BI__builtin_ia32_fpclassps128_mask: 3914 case X86::BI__builtin_ia32_fpclassps256_mask: 3915 case X86::BI__builtin_ia32_fpclassps512_mask: 3916 case X86::BI__builtin_ia32_fpclasspd512_mask: 3917 case X86::BI__builtin_ia32_fpclasssd_mask: 3918 case X86::BI__builtin_ia32_fpclassss_mask: 3919 case X86::BI__builtin_ia32_pslldqi128_byteshift: 3920 case X86::BI__builtin_ia32_pslldqi256_byteshift: 3921 case X86::BI__builtin_ia32_pslldqi512_byteshift: 3922 case X86::BI__builtin_ia32_psrldqi128_byteshift: 3923 case X86::BI__builtin_ia32_psrldqi256_byteshift: 3924 case X86::BI__builtin_ia32_psrldqi512_byteshift: 3925 case X86::BI__builtin_ia32_kshiftliqi: 3926 case X86::BI__builtin_ia32_kshiftlihi: 3927 case X86::BI__builtin_ia32_kshiftlisi: 3928 case X86::BI__builtin_ia32_kshiftlidi: 3929 case X86::BI__builtin_ia32_kshiftriqi: 3930 case X86::BI__builtin_ia32_kshiftrihi: 3931 case X86::BI__builtin_ia32_kshiftrisi: 3932 case X86::BI__builtin_ia32_kshiftridi: 3933 i = 1; l = 0; u = 255; 3934 break; 3935 case X86::BI__builtin_ia32_vperm2f128_pd256: 3936 case X86::BI__builtin_ia32_vperm2f128_ps256: 3937 case X86::BI__builtin_ia32_vperm2f128_si256: 3938 case X86::BI__builtin_ia32_permti256: 3939 case X86::BI__builtin_ia32_pblendw128: 3940 case X86::BI__builtin_ia32_pblendw256: 3941 case X86::BI__builtin_ia32_blendps256: 3942 case X86::BI__builtin_ia32_pblendd256: 3943 case X86::BI__builtin_ia32_palignr128: 3944 case X86::BI__builtin_ia32_palignr256: 3945 case X86::BI__builtin_ia32_palignr512: 3946 case X86::BI__builtin_ia32_alignq512: 3947 case X86::BI__builtin_ia32_alignd512: 3948 case X86::BI__builtin_ia32_alignd128: 3949 case X86::BI__builtin_ia32_alignd256: 3950 case X86::BI__builtin_ia32_alignq128: 3951 case X86::BI__builtin_ia32_alignq256: 3952 case X86::BI__builtin_ia32_vcomisd: 3953 case X86::BI__builtin_ia32_vcomiss: 3954 case X86::BI__builtin_ia32_shuf_f32x4: 3955 case X86::BI__builtin_ia32_shuf_f64x2: 3956 case X86::BI__builtin_ia32_shuf_i32x4: 3957 case X86::BI__builtin_ia32_shuf_i64x2: 3958 case X86::BI__builtin_ia32_shufpd512: 3959 case X86::BI__builtin_ia32_shufps: 3960 case X86::BI__builtin_ia32_shufps256: 3961 case X86::BI__builtin_ia32_shufps512: 3962 case X86::BI__builtin_ia32_dbpsadbw128: 3963 case X86::BI__builtin_ia32_dbpsadbw256: 3964 case X86::BI__builtin_ia32_dbpsadbw512: 3965 case X86::BI__builtin_ia32_vpshldd128: 3966 case X86::BI__builtin_ia32_vpshldd256: 3967 case X86::BI__builtin_ia32_vpshldd512: 3968 case X86::BI__builtin_ia32_vpshldq128: 3969 case X86::BI__builtin_ia32_vpshldq256: 3970 case X86::BI__builtin_ia32_vpshldq512: 3971 case X86::BI__builtin_ia32_vpshldw128: 3972 case X86::BI__builtin_ia32_vpshldw256: 3973 case X86::BI__builtin_ia32_vpshldw512: 3974 case X86::BI__builtin_ia32_vpshrdd128: 3975 case X86::BI__builtin_ia32_vpshrdd256: 3976 case X86::BI__builtin_ia32_vpshrdd512: 3977 case X86::BI__builtin_ia32_vpshrdq128: 3978 case X86::BI__builtin_ia32_vpshrdq256: 3979 case X86::BI__builtin_ia32_vpshrdq512: 3980 case X86::BI__builtin_ia32_vpshrdw128: 3981 case X86::BI__builtin_ia32_vpshrdw256: 3982 case X86::BI__builtin_ia32_vpshrdw512: 3983 i = 2; l = 0; u = 255; 3984 break; 3985 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3986 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3987 case X86::BI__builtin_ia32_fixupimmps512_mask: 3988 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3989 case X86::BI__builtin_ia32_fixupimmsd_mask: 3990 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3991 case X86::BI__builtin_ia32_fixupimmss_mask: 3992 case X86::BI__builtin_ia32_fixupimmss_maskz: 3993 case X86::BI__builtin_ia32_fixupimmpd128_mask: 3994 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 3995 case X86::BI__builtin_ia32_fixupimmpd256_mask: 3996 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 3997 case X86::BI__builtin_ia32_fixupimmps128_mask: 3998 case X86::BI__builtin_ia32_fixupimmps128_maskz: 3999 case X86::BI__builtin_ia32_fixupimmps256_mask: 4000 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4001 case X86::BI__builtin_ia32_pternlogd512_mask: 4002 case X86::BI__builtin_ia32_pternlogd512_maskz: 4003 case X86::BI__builtin_ia32_pternlogq512_mask: 4004 case X86::BI__builtin_ia32_pternlogq512_maskz: 4005 case X86::BI__builtin_ia32_pternlogd128_mask: 4006 case X86::BI__builtin_ia32_pternlogd128_maskz: 4007 case X86::BI__builtin_ia32_pternlogd256_mask: 4008 case X86::BI__builtin_ia32_pternlogd256_maskz: 4009 case X86::BI__builtin_ia32_pternlogq128_mask: 4010 case X86::BI__builtin_ia32_pternlogq128_maskz: 4011 case X86::BI__builtin_ia32_pternlogq256_mask: 4012 case X86::BI__builtin_ia32_pternlogq256_maskz: 4013 i = 3; l = 0; u = 255; 4014 break; 4015 case X86::BI__builtin_ia32_gatherpfdpd: 4016 case X86::BI__builtin_ia32_gatherpfdps: 4017 case X86::BI__builtin_ia32_gatherpfqpd: 4018 case X86::BI__builtin_ia32_gatherpfqps: 4019 case X86::BI__builtin_ia32_scatterpfdpd: 4020 case X86::BI__builtin_ia32_scatterpfdps: 4021 case X86::BI__builtin_ia32_scatterpfqpd: 4022 case X86::BI__builtin_ia32_scatterpfqps: 4023 i = 4; l = 2; u = 3; 4024 break; 4025 case X86::BI__builtin_ia32_reducesd_mask: 4026 case X86::BI__builtin_ia32_reducess_mask: 4027 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4028 case X86::BI__builtin_ia32_rndscaless_round_mask: 4029 i = 4; l = 0; u = 255; 4030 break; 4031 } 4032 4033 // Note that we don't force a hard error on the range check here, allowing 4034 // template-generated or macro-generated dead code to potentially have out-of- 4035 // range values. These need to code generate, but don't need to necessarily 4036 // make any sense. We use a warning that defaults to an error. 4037 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4038 } 4039 4040 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4041 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4042 /// Returns true when the format fits the function and the FormatStringInfo has 4043 /// been populated. 4044 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4045 FormatStringInfo *FSI) { 4046 FSI->HasVAListArg = Format->getFirstArg() == 0; 4047 FSI->FormatIdx = Format->getFormatIdx() - 1; 4048 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4049 4050 // The way the format attribute works in GCC, the implicit this argument 4051 // of member functions is counted. However, it doesn't appear in our own 4052 // lists, so decrement format_idx in that case. 4053 if (IsCXXMember) { 4054 if(FSI->FormatIdx == 0) 4055 return false; 4056 --FSI->FormatIdx; 4057 if (FSI->FirstDataArg != 0) 4058 --FSI->FirstDataArg; 4059 } 4060 return true; 4061 } 4062 4063 /// Checks if a the given expression evaluates to null. 4064 /// 4065 /// Returns true if the value evaluates to null. 4066 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4067 // If the expression has non-null type, it doesn't evaluate to null. 4068 if (auto nullability 4069 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4070 if (*nullability == NullabilityKind::NonNull) 4071 return false; 4072 } 4073 4074 // As a special case, transparent unions initialized with zero are 4075 // considered null for the purposes of the nonnull attribute. 4076 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4077 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4078 if (const CompoundLiteralExpr *CLE = 4079 dyn_cast<CompoundLiteralExpr>(Expr)) 4080 if (const InitListExpr *ILE = 4081 dyn_cast<InitListExpr>(CLE->getInitializer())) 4082 Expr = ILE->getInit(0); 4083 } 4084 4085 bool Result; 4086 return (!Expr->isValueDependent() && 4087 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4088 !Result); 4089 } 4090 4091 static void CheckNonNullArgument(Sema &S, 4092 const Expr *ArgExpr, 4093 SourceLocation CallSiteLoc) { 4094 if (CheckNonNullExpr(S, ArgExpr)) 4095 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4096 S.PDiag(diag::warn_null_arg) 4097 << ArgExpr->getSourceRange()); 4098 } 4099 4100 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4101 FormatStringInfo FSI; 4102 if ((GetFormatStringType(Format) == FST_NSString) && 4103 getFormatStringInfo(Format, false, &FSI)) { 4104 Idx = FSI.FormatIdx; 4105 return true; 4106 } 4107 return false; 4108 } 4109 4110 /// Diagnose use of %s directive in an NSString which is being passed 4111 /// as formatting string to formatting method. 4112 static void 4113 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4114 const NamedDecl *FDecl, 4115 Expr **Args, 4116 unsigned NumArgs) { 4117 unsigned Idx = 0; 4118 bool Format = false; 4119 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4120 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4121 Idx = 2; 4122 Format = true; 4123 } 4124 else 4125 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4126 if (S.GetFormatNSStringIdx(I, Idx)) { 4127 Format = true; 4128 break; 4129 } 4130 } 4131 if (!Format || NumArgs <= Idx) 4132 return; 4133 const Expr *FormatExpr = Args[Idx]; 4134 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4135 FormatExpr = CSCE->getSubExpr(); 4136 const StringLiteral *FormatString; 4137 if (const ObjCStringLiteral *OSL = 4138 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4139 FormatString = OSL->getString(); 4140 else 4141 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4142 if (!FormatString) 4143 return; 4144 if (S.FormatStringHasSArg(FormatString)) { 4145 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4146 << "%s" << 1 << 1; 4147 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4148 << FDecl->getDeclName(); 4149 } 4150 } 4151 4152 /// Determine whether the given type has a non-null nullability annotation. 4153 static bool isNonNullType(ASTContext &ctx, QualType type) { 4154 if (auto nullability = type->getNullability(ctx)) 4155 return *nullability == NullabilityKind::NonNull; 4156 4157 return false; 4158 } 4159 4160 static void CheckNonNullArguments(Sema &S, 4161 const NamedDecl *FDecl, 4162 const FunctionProtoType *Proto, 4163 ArrayRef<const Expr *> Args, 4164 SourceLocation CallSiteLoc) { 4165 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4166 4167 // Already checked by by constant evaluator. 4168 if (S.isConstantEvaluated()) 4169 return; 4170 // Check the attributes attached to the method/function itself. 4171 llvm::SmallBitVector NonNullArgs; 4172 if (FDecl) { 4173 // Handle the nonnull attribute on the function/method declaration itself. 4174 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4175 if (!NonNull->args_size()) { 4176 // Easy case: all pointer arguments are nonnull. 4177 for (const auto *Arg : Args) 4178 if (S.isValidPointerAttrType(Arg->getType())) 4179 CheckNonNullArgument(S, Arg, CallSiteLoc); 4180 return; 4181 } 4182 4183 for (const ParamIdx &Idx : NonNull->args()) { 4184 unsigned IdxAST = Idx.getASTIndex(); 4185 if (IdxAST >= Args.size()) 4186 continue; 4187 if (NonNullArgs.empty()) 4188 NonNullArgs.resize(Args.size()); 4189 NonNullArgs.set(IdxAST); 4190 } 4191 } 4192 } 4193 4194 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4195 // Handle the nonnull attribute on the parameters of the 4196 // function/method. 4197 ArrayRef<ParmVarDecl*> parms; 4198 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4199 parms = FD->parameters(); 4200 else 4201 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4202 4203 unsigned ParamIndex = 0; 4204 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4205 I != E; ++I, ++ParamIndex) { 4206 const ParmVarDecl *PVD = *I; 4207 if (PVD->hasAttr<NonNullAttr>() || 4208 isNonNullType(S.Context, PVD->getType())) { 4209 if (NonNullArgs.empty()) 4210 NonNullArgs.resize(Args.size()); 4211 4212 NonNullArgs.set(ParamIndex); 4213 } 4214 } 4215 } else { 4216 // If we have a non-function, non-method declaration but no 4217 // function prototype, try to dig out the function prototype. 4218 if (!Proto) { 4219 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4220 QualType type = VD->getType().getNonReferenceType(); 4221 if (auto pointerType = type->getAs<PointerType>()) 4222 type = pointerType->getPointeeType(); 4223 else if (auto blockType = type->getAs<BlockPointerType>()) 4224 type = blockType->getPointeeType(); 4225 // FIXME: data member pointers? 4226 4227 // Dig out the function prototype, if there is one. 4228 Proto = type->getAs<FunctionProtoType>(); 4229 } 4230 } 4231 4232 // Fill in non-null argument information from the nullability 4233 // information on the parameter types (if we have them). 4234 if (Proto) { 4235 unsigned Index = 0; 4236 for (auto paramType : Proto->getParamTypes()) { 4237 if (isNonNullType(S.Context, paramType)) { 4238 if (NonNullArgs.empty()) 4239 NonNullArgs.resize(Args.size()); 4240 4241 NonNullArgs.set(Index); 4242 } 4243 4244 ++Index; 4245 } 4246 } 4247 } 4248 4249 // Check for non-null arguments. 4250 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4251 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4252 if (NonNullArgs[ArgIndex]) 4253 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4254 } 4255 } 4256 4257 /// Handles the checks for format strings, non-POD arguments to vararg 4258 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4259 /// attributes. 4260 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4261 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4262 bool IsMemberFunction, SourceLocation Loc, 4263 SourceRange Range, VariadicCallType CallType) { 4264 // FIXME: We should check as much as we can in the template definition. 4265 if (CurContext->isDependentContext()) 4266 return; 4267 4268 // Printf and scanf checking. 4269 llvm::SmallBitVector CheckedVarArgs; 4270 if (FDecl) { 4271 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4272 // Only create vector if there are format attributes. 4273 CheckedVarArgs.resize(Args.size()); 4274 4275 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4276 CheckedVarArgs); 4277 } 4278 } 4279 4280 // Refuse POD arguments that weren't caught by the format string 4281 // checks above. 4282 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4283 if (CallType != VariadicDoesNotApply && 4284 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4285 unsigned NumParams = Proto ? Proto->getNumParams() 4286 : FDecl && isa<FunctionDecl>(FDecl) 4287 ? cast<FunctionDecl>(FDecl)->getNumParams() 4288 : FDecl && isa<ObjCMethodDecl>(FDecl) 4289 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4290 : 0; 4291 4292 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4293 // Args[ArgIdx] can be null in malformed code. 4294 if (const Expr *Arg = Args[ArgIdx]) { 4295 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4296 checkVariadicArgument(Arg, CallType); 4297 } 4298 } 4299 } 4300 4301 if (FDecl || Proto) { 4302 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4303 4304 // Type safety checking. 4305 if (FDecl) { 4306 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4307 CheckArgumentWithTypeTag(I, Args, Loc); 4308 } 4309 } 4310 4311 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4312 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4313 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4314 if (!Arg->isValueDependent()) { 4315 Expr::EvalResult Align; 4316 if (Arg->EvaluateAsInt(Align, Context)) { 4317 const llvm::APSInt &I = Align.Val.getInt(); 4318 if (!I.isPowerOf2()) 4319 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4320 << Arg->getSourceRange(); 4321 4322 if (I > Sema::MaximumAlignment) 4323 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4324 << Arg->getSourceRange() << Sema::MaximumAlignment; 4325 } 4326 } 4327 } 4328 4329 if (FD) 4330 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4331 } 4332 4333 /// CheckConstructorCall - Check a constructor call for correctness and safety 4334 /// properties not enforced by the C type system. 4335 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4336 ArrayRef<const Expr *> Args, 4337 const FunctionProtoType *Proto, 4338 SourceLocation Loc) { 4339 VariadicCallType CallType = 4340 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4341 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4342 Loc, SourceRange(), CallType); 4343 } 4344 4345 /// CheckFunctionCall - Check a direct function call for various correctness 4346 /// and safety properties not strictly enforced by the C type system. 4347 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4348 const FunctionProtoType *Proto) { 4349 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4350 isa<CXXMethodDecl>(FDecl); 4351 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4352 IsMemberOperatorCall; 4353 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4354 TheCall->getCallee()); 4355 Expr** Args = TheCall->getArgs(); 4356 unsigned NumArgs = TheCall->getNumArgs(); 4357 4358 Expr *ImplicitThis = nullptr; 4359 if (IsMemberOperatorCall) { 4360 // If this is a call to a member operator, hide the first argument 4361 // from checkCall. 4362 // FIXME: Our choice of AST representation here is less than ideal. 4363 ImplicitThis = Args[0]; 4364 ++Args; 4365 --NumArgs; 4366 } else if (IsMemberFunction) 4367 ImplicitThis = 4368 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4369 4370 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4371 IsMemberFunction, TheCall->getRParenLoc(), 4372 TheCall->getCallee()->getSourceRange(), CallType); 4373 4374 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4375 // None of the checks below are needed for functions that don't have 4376 // simple names (e.g., C++ conversion functions). 4377 if (!FnInfo) 4378 return false; 4379 4380 CheckAbsoluteValueFunction(TheCall, FDecl); 4381 CheckMaxUnsignedZero(TheCall, FDecl); 4382 4383 if (getLangOpts().ObjC) 4384 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4385 4386 unsigned CMId = FDecl->getMemoryFunctionKind(); 4387 if (CMId == 0) 4388 return false; 4389 4390 // Handle memory setting and copying functions. 4391 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) 4392 CheckStrlcpycatArguments(TheCall, FnInfo); 4393 else if (CMId == Builtin::BIstrncat) 4394 CheckStrncatArguments(TheCall, FnInfo); 4395 else 4396 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4397 4398 return false; 4399 } 4400 4401 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4402 ArrayRef<const Expr *> Args) { 4403 VariadicCallType CallType = 4404 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4405 4406 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4407 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4408 CallType); 4409 4410 return false; 4411 } 4412 4413 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4414 const FunctionProtoType *Proto) { 4415 QualType Ty; 4416 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4417 Ty = V->getType().getNonReferenceType(); 4418 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4419 Ty = F->getType().getNonReferenceType(); 4420 else 4421 return false; 4422 4423 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4424 !Ty->isFunctionProtoType()) 4425 return false; 4426 4427 VariadicCallType CallType; 4428 if (!Proto || !Proto->isVariadic()) { 4429 CallType = VariadicDoesNotApply; 4430 } else if (Ty->isBlockPointerType()) { 4431 CallType = VariadicBlock; 4432 } else { // Ty->isFunctionPointerType() 4433 CallType = VariadicFunction; 4434 } 4435 4436 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4437 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4438 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4439 TheCall->getCallee()->getSourceRange(), CallType); 4440 4441 return false; 4442 } 4443 4444 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4445 /// such as function pointers returned from functions. 4446 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4447 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4448 TheCall->getCallee()); 4449 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4450 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4451 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4452 TheCall->getCallee()->getSourceRange(), CallType); 4453 4454 return false; 4455 } 4456 4457 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4458 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4459 return false; 4460 4461 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4462 switch (Op) { 4463 case AtomicExpr::AO__c11_atomic_init: 4464 case AtomicExpr::AO__opencl_atomic_init: 4465 llvm_unreachable("There is no ordering argument for an init"); 4466 4467 case AtomicExpr::AO__c11_atomic_load: 4468 case AtomicExpr::AO__opencl_atomic_load: 4469 case AtomicExpr::AO__atomic_load_n: 4470 case AtomicExpr::AO__atomic_load: 4471 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4472 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4473 4474 case AtomicExpr::AO__c11_atomic_store: 4475 case AtomicExpr::AO__opencl_atomic_store: 4476 case AtomicExpr::AO__atomic_store: 4477 case AtomicExpr::AO__atomic_store_n: 4478 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4479 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4480 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4481 4482 default: 4483 return true; 4484 } 4485 } 4486 4487 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4488 AtomicExpr::AtomicOp Op) { 4489 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4490 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4491 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4492 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4493 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4494 Op); 4495 } 4496 4497 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4498 SourceLocation RParenLoc, MultiExprArg Args, 4499 AtomicExpr::AtomicOp Op, 4500 AtomicArgumentOrder ArgOrder) { 4501 // All the non-OpenCL operations take one of the following forms. 4502 // The OpenCL operations take the __c11 forms with one extra argument for 4503 // synchronization scope. 4504 enum { 4505 // C __c11_atomic_init(A *, C) 4506 Init, 4507 4508 // C __c11_atomic_load(A *, int) 4509 Load, 4510 4511 // void __atomic_load(A *, CP, int) 4512 LoadCopy, 4513 4514 // void __atomic_store(A *, CP, int) 4515 Copy, 4516 4517 // C __c11_atomic_add(A *, M, int) 4518 Arithmetic, 4519 4520 // C __atomic_exchange_n(A *, CP, int) 4521 Xchg, 4522 4523 // void __atomic_exchange(A *, C *, CP, int) 4524 GNUXchg, 4525 4526 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4527 C11CmpXchg, 4528 4529 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4530 GNUCmpXchg 4531 } Form = Init; 4532 4533 const unsigned NumForm = GNUCmpXchg + 1; 4534 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4535 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4536 // where: 4537 // C is an appropriate type, 4538 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4539 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4540 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4541 // the int parameters are for orderings. 4542 4543 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4544 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4545 "need to update code for modified forms"); 4546 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4547 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4548 AtomicExpr::AO__atomic_load, 4549 "need to update code for modified C11 atomics"); 4550 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4551 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4552 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4553 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4554 IsOpenCL; 4555 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4556 Op == AtomicExpr::AO__atomic_store_n || 4557 Op == AtomicExpr::AO__atomic_exchange_n || 4558 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4559 bool IsAddSub = false; 4560 4561 switch (Op) { 4562 case AtomicExpr::AO__c11_atomic_init: 4563 case AtomicExpr::AO__opencl_atomic_init: 4564 Form = Init; 4565 break; 4566 4567 case AtomicExpr::AO__c11_atomic_load: 4568 case AtomicExpr::AO__opencl_atomic_load: 4569 case AtomicExpr::AO__atomic_load_n: 4570 Form = Load; 4571 break; 4572 4573 case AtomicExpr::AO__atomic_load: 4574 Form = LoadCopy; 4575 break; 4576 4577 case AtomicExpr::AO__c11_atomic_store: 4578 case AtomicExpr::AO__opencl_atomic_store: 4579 case AtomicExpr::AO__atomic_store: 4580 case AtomicExpr::AO__atomic_store_n: 4581 Form = Copy; 4582 break; 4583 4584 case AtomicExpr::AO__c11_atomic_fetch_add: 4585 case AtomicExpr::AO__c11_atomic_fetch_sub: 4586 case AtomicExpr::AO__opencl_atomic_fetch_add: 4587 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4588 case AtomicExpr::AO__atomic_fetch_add: 4589 case AtomicExpr::AO__atomic_fetch_sub: 4590 case AtomicExpr::AO__atomic_add_fetch: 4591 case AtomicExpr::AO__atomic_sub_fetch: 4592 IsAddSub = true; 4593 LLVM_FALLTHROUGH; 4594 case AtomicExpr::AO__c11_atomic_fetch_and: 4595 case AtomicExpr::AO__c11_atomic_fetch_or: 4596 case AtomicExpr::AO__c11_atomic_fetch_xor: 4597 case AtomicExpr::AO__opencl_atomic_fetch_and: 4598 case AtomicExpr::AO__opencl_atomic_fetch_or: 4599 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4600 case AtomicExpr::AO__atomic_fetch_and: 4601 case AtomicExpr::AO__atomic_fetch_or: 4602 case AtomicExpr::AO__atomic_fetch_xor: 4603 case AtomicExpr::AO__atomic_fetch_nand: 4604 case AtomicExpr::AO__atomic_and_fetch: 4605 case AtomicExpr::AO__atomic_or_fetch: 4606 case AtomicExpr::AO__atomic_xor_fetch: 4607 case AtomicExpr::AO__atomic_nand_fetch: 4608 case AtomicExpr::AO__c11_atomic_fetch_min: 4609 case AtomicExpr::AO__c11_atomic_fetch_max: 4610 case AtomicExpr::AO__opencl_atomic_fetch_min: 4611 case AtomicExpr::AO__opencl_atomic_fetch_max: 4612 case AtomicExpr::AO__atomic_min_fetch: 4613 case AtomicExpr::AO__atomic_max_fetch: 4614 case AtomicExpr::AO__atomic_fetch_min: 4615 case AtomicExpr::AO__atomic_fetch_max: 4616 Form = Arithmetic; 4617 break; 4618 4619 case AtomicExpr::AO__c11_atomic_exchange: 4620 case AtomicExpr::AO__opencl_atomic_exchange: 4621 case AtomicExpr::AO__atomic_exchange_n: 4622 Form = Xchg; 4623 break; 4624 4625 case AtomicExpr::AO__atomic_exchange: 4626 Form = GNUXchg; 4627 break; 4628 4629 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4630 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4631 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4632 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4633 Form = C11CmpXchg; 4634 break; 4635 4636 case AtomicExpr::AO__atomic_compare_exchange: 4637 case AtomicExpr::AO__atomic_compare_exchange_n: 4638 Form = GNUCmpXchg; 4639 break; 4640 } 4641 4642 unsigned AdjustedNumArgs = NumArgs[Form]; 4643 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4644 ++AdjustedNumArgs; 4645 // Check we have the right number of arguments. 4646 if (Args.size() < AdjustedNumArgs) { 4647 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4648 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4649 << ExprRange; 4650 return ExprError(); 4651 } else if (Args.size() > AdjustedNumArgs) { 4652 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4653 diag::err_typecheck_call_too_many_args) 4654 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4655 << ExprRange; 4656 return ExprError(); 4657 } 4658 4659 // Inspect the first argument of the atomic operation. 4660 Expr *Ptr = Args[0]; 4661 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4662 if (ConvertedPtr.isInvalid()) 4663 return ExprError(); 4664 4665 Ptr = ConvertedPtr.get(); 4666 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4667 if (!pointerType) { 4668 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4669 << Ptr->getType() << Ptr->getSourceRange(); 4670 return ExprError(); 4671 } 4672 4673 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4674 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4675 QualType ValType = AtomTy; // 'C' 4676 if (IsC11) { 4677 if (!AtomTy->isAtomicType()) { 4678 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4679 << Ptr->getType() << Ptr->getSourceRange(); 4680 return ExprError(); 4681 } 4682 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4683 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4684 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4685 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4686 << Ptr->getSourceRange(); 4687 return ExprError(); 4688 } 4689 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4690 } else if (Form != Load && Form != LoadCopy) { 4691 if (ValType.isConstQualified()) { 4692 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4693 << Ptr->getType() << Ptr->getSourceRange(); 4694 return ExprError(); 4695 } 4696 } 4697 4698 // For an arithmetic operation, the implied arithmetic must be well-formed. 4699 if (Form == Arithmetic) { 4700 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4701 if (IsAddSub && !ValType->isIntegerType() 4702 && !ValType->isPointerType()) { 4703 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4704 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4705 return ExprError(); 4706 } 4707 if (!IsAddSub && !ValType->isIntegerType()) { 4708 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 4709 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4710 return ExprError(); 4711 } 4712 if (IsC11 && ValType->isPointerType() && 4713 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4714 diag::err_incomplete_type)) { 4715 return ExprError(); 4716 } 4717 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4718 // For __atomic_*_n operations, the value type must be a scalar integral or 4719 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4720 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4721 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4722 return ExprError(); 4723 } 4724 4725 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4726 !AtomTy->isScalarType()) { 4727 // For GNU atomics, require a trivially-copyable type. This is not part of 4728 // the GNU atomics specification, but we enforce it for sanity. 4729 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4730 << Ptr->getType() << Ptr->getSourceRange(); 4731 return ExprError(); 4732 } 4733 4734 switch (ValType.getObjCLifetime()) { 4735 case Qualifiers::OCL_None: 4736 case Qualifiers::OCL_ExplicitNone: 4737 // okay 4738 break; 4739 4740 case Qualifiers::OCL_Weak: 4741 case Qualifiers::OCL_Strong: 4742 case Qualifiers::OCL_Autoreleasing: 4743 // FIXME: Can this happen? By this point, ValType should be known 4744 // to be trivially copyable. 4745 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4746 << ValType << Ptr->getSourceRange(); 4747 return ExprError(); 4748 } 4749 4750 // All atomic operations have an overload which takes a pointer to a volatile 4751 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4752 // into the result or the other operands. Similarly atomic_load takes a 4753 // pointer to a const 'A'. 4754 ValType.removeLocalVolatile(); 4755 ValType.removeLocalConst(); 4756 QualType ResultType = ValType; 4757 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4758 Form == Init) 4759 ResultType = Context.VoidTy; 4760 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4761 ResultType = Context.BoolTy; 4762 4763 // The type of a parameter passed 'by value'. In the GNU atomics, such 4764 // arguments are actually passed as pointers. 4765 QualType ByValType = ValType; // 'CP' 4766 bool IsPassedByAddress = false; 4767 if (!IsC11 && !IsN) { 4768 ByValType = Ptr->getType(); 4769 IsPassedByAddress = true; 4770 } 4771 4772 SmallVector<Expr *, 5> APIOrderedArgs; 4773 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4774 APIOrderedArgs.push_back(Args[0]); 4775 switch (Form) { 4776 case Init: 4777 case Load: 4778 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4779 break; 4780 case LoadCopy: 4781 case Copy: 4782 case Arithmetic: 4783 case Xchg: 4784 APIOrderedArgs.push_back(Args[2]); // Val1 4785 APIOrderedArgs.push_back(Args[1]); // Order 4786 break; 4787 case GNUXchg: 4788 APIOrderedArgs.push_back(Args[2]); // Val1 4789 APIOrderedArgs.push_back(Args[3]); // Val2 4790 APIOrderedArgs.push_back(Args[1]); // Order 4791 break; 4792 case C11CmpXchg: 4793 APIOrderedArgs.push_back(Args[2]); // Val1 4794 APIOrderedArgs.push_back(Args[4]); // Val2 4795 APIOrderedArgs.push_back(Args[1]); // Order 4796 APIOrderedArgs.push_back(Args[3]); // OrderFail 4797 break; 4798 case GNUCmpXchg: 4799 APIOrderedArgs.push_back(Args[2]); // Val1 4800 APIOrderedArgs.push_back(Args[4]); // Val2 4801 APIOrderedArgs.push_back(Args[5]); // Weak 4802 APIOrderedArgs.push_back(Args[1]); // Order 4803 APIOrderedArgs.push_back(Args[3]); // OrderFail 4804 break; 4805 } 4806 } else 4807 APIOrderedArgs.append(Args.begin(), Args.end()); 4808 4809 // The first argument's non-CV pointer type is used to deduce the type of 4810 // subsequent arguments, except for: 4811 // - weak flag (always converted to bool) 4812 // - memory order (always converted to int) 4813 // - scope (always converted to int) 4814 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 4815 QualType Ty; 4816 if (i < NumVals[Form] + 1) { 4817 switch (i) { 4818 case 0: 4819 // The first argument is always a pointer. It has a fixed type. 4820 // It is always dereferenced, a nullptr is undefined. 4821 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4822 // Nothing else to do: we already know all we want about this pointer. 4823 continue; 4824 case 1: 4825 // The second argument is the non-atomic operand. For arithmetic, this 4826 // is always passed by value, and for a compare_exchange it is always 4827 // passed by address. For the rest, GNU uses by-address and C11 uses 4828 // by-value. 4829 assert(Form != Load); 4830 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 4831 Ty = ValType; 4832 else if (Form == Copy || Form == Xchg) { 4833 if (IsPassedByAddress) { 4834 // The value pointer is always dereferenced, a nullptr is undefined. 4835 CheckNonNullArgument(*this, APIOrderedArgs[i], 4836 ExprRange.getBegin()); 4837 } 4838 Ty = ByValType; 4839 } else if (Form == Arithmetic) 4840 Ty = Context.getPointerDiffType(); 4841 else { 4842 Expr *ValArg = APIOrderedArgs[i]; 4843 // The value pointer is always dereferenced, a nullptr is undefined. 4844 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 4845 LangAS AS = LangAS::Default; 4846 // Keep address space of non-atomic pointer type. 4847 if (const PointerType *PtrTy = 4848 ValArg->getType()->getAs<PointerType>()) { 4849 AS = PtrTy->getPointeeType().getAddressSpace(); 4850 } 4851 Ty = Context.getPointerType( 4852 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 4853 } 4854 break; 4855 case 2: 4856 // The third argument to compare_exchange / GNU exchange is the desired 4857 // value, either by-value (for the C11 and *_n variant) or as a pointer. 4858 if (IsPassedByAddress) 4859 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4860 Ty = ByValType; 4861 break; 4862 case 3: 4863 // The fourth argument to GNU compare_exchange is a 'weak' flag. 4864 Ty = Context.BoolTy; 4865 break; 4866 } 4867 } else { 4868 // The order(s) and scope are always converted to int. 4869 Ty = Context.IntTy; 4870 } 4871 4872 InitializedEntity Entity = 4873 InitializedEntity::InitializeParameter(Context, Ty, false); 4874 ExprResult Arg = APIOrderedArgs[i]; 4875 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 4876 if (Arg.isInvalid()) 4877 return true; 4878 APIOrderedArgs[i] = Arg.get(); 4879 } 4880 4881 // Permute the arguments into a 'consistent' order. 4882 SmallVector<Expr*, 5> SubExprs; 4883 SubExprs.push_back(Ptr); 4884 switch (Form) { 4885 case Init: 4886 // Note, AtomicExpr::getVal1() has a special case for this atomic. 4887 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4888 break; 4889 case Load: 4890 SubExprs.push_back(APIOrderedArgs[1]); // Order 4891 break; 4892 case LoadCopy: 4893 case Copy: 4894 case Arithmetic: 4895 case Xchg: 4896 SubExprs.push_back(APIOrderedArgs[2]); // Order 4897 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4898 break; 4899 case GNUXchg: 4900 // Note, AtomicExpr::getVal2() has a special case for this atomic. 4901 SubExprs.push_back(APIOrderedArgs[3]); // Order 4902 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4903 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4904 break; 4905 case C11CmpXchg: 4906 SubExprs.push_back(APIOrderedArgs[3]); // Order 4907 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4908 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 4909 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4910 break; 4911 case GNUCmpXchg: 4912 SubExprs.push_back(APIOrderedArgs[4]); // Order 4913 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4914 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 4915 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4916 SubExprs.push_back(APIOrderedArgs[3]); // Weak 4917 break; 4918 } 4919 4920 if (SubExprs.size() >= 2 && Form != Init) { 4921 llvm::APSInt Result(32); 4922 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && 4923 !isValidOrderingForOp(Result.getSExtValue(), Op)) 4924 Diag(SubExprs[1]->getBeginLoc(), 4925 diag::warn_atomic_op_has_invalid_memory_order) 4926 << SubExprs[1]->getSourceRange(); 4927 } 4928 4929 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 4930 auto *Scope = Args[Args.size() - 1]; 4931 llvm::APSInt Result(32); 4932 if (Scope->isIntegerConstantExpr(Result, Context) && 4933 !ScopeModel->isValid(Result.getZExtValue())) { 4934 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 4935 << Scope->getSourceRange(); 4936 } 4937 SubExprs.push_back(Scope); 4938 } 4939 4940 AtomicExpr *AE = new (Context) 4941 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 4942 4943 if ((Op == AtomicExpr::AO__c11_atomic_load || 4944 Op == AtomicExpr::AO__c11_atomic_store || 4945 Op == AtomicExpr::AO__opencl_atomic_load || 4946 Op == AtomicExpr::AO__opencl_atomic_store ) && 4947 Context.AtomicUsesUnsupportedLibcall(AE)) 4948 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 4949 << ((Op == AtomicExpr::AO__c11_atomic_load || 4950 Op == AtomicExpr::AO__opencl_atomic_load) 4951 ? 0 4952 : 1); 4953 4954 if (ValType->isExtIntType()) { 4955 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 4956 return ExprError(); 4957 } 4958 4959 return AE; 4960 } 4961 4962 /// checkBuiltinArgument - Given a call to a builtin function, perform 4963 /// normal type-checking on the given argument, updating the call in 4964 /// place. This is useful when a builtin function requires custom 4965 /// type-checking for some of its arguments but not necessarily all of 4966 /// them. 4967 /// 4968 /// Returns true on error. 4969 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 4970 FunctionDecl *Fn = E->getDirectCallee(); 4971 assert(Fn && "builtin call without direct callee!"); 4972 4973 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 4974 InitializedEntity Entity = 4975 InitializedEntity::InitializeParameter(S.Context, Param); 4976 4977 ExprResult Arg = E->getArg(0); 4978 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 4979 if (Arg.isInvalid()) 4980 return true; 4981 4982 E->setArg(ArgIndex, Arg.get()); 4983 return false; 4984 } 4985 4986 /// We have a call to a function like __sync_fetch_and_add, which is an 4987 /// overloaded function based on the pointer type of its first argument. 4988 /// The main BuildCallExpr routines have already promoted the types of 4989 /// arguments because all of these calls are prototyped as void(...). 4990 /// 4991 /// This function goes through and does final semantic checking for these 4992 /// builtins, as well as generating any warnings. 4993 ExprResult 4994 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 4995 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 4996 Expr *Callee = TheCall->getCallee(); 4997 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 4998 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 4999 5000 // Ensure that we have at least one argument to do type inference from. 5001 if (TheCall->getNumArgs() < 1) { 5002 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5003 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5004 return ExprError(); 5005 } 5006 5007 // Inspect the first argument of the atomic builtin. This should always be 5008 // a pointer type, whose element is an integral scalar or pointer type. 5009 // Because it is a pointer type, we don't have to worry about any implicit 5010 // casts here. 5011 // FIXME: We don't allow floating point scalars as input. 5012 Expr *FirstArg = TheCall->getArg(0); 5013 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5014 if (FirstArgResult.isInvalid()) 5015 return ExprError(); 5016 FirstArg = FirstArgResult.get(); 5017 TheCall->setArg(0, FirstArg); 5018 5019 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5020 if (!pointerType) { 5021 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5022 << FirstArg->getType() << FirstArg->getSourceRange(); 5023 return ExprError(); 5024 } 5025 5026 QualType ValType = pointerType->getPointeeType(); 5027 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5028 !ValType->isBlockPointerType()) { 5029 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5030 << FirstArg->getType() << FirstArg->getSourceRange(); 5031 return ExprError(); 5032 } 5033 5034 if (ValType.isConstQualified()) { 5035 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5036 << FirstArg->getType() << FirstArg->getSourceRange(); 5037 return ExprError(); 5038 } 5039 5040 switch (ValType.getObjCLifetime()) { 5041 case Qualifiers::OCL_None: 5042 case Qualifiers::OCL_ExplicitNone: 5043 // okay 5044 break; 5045 5046 case Qualifiers::OCL_Weak: 5047 case Qualifiers::OCL_Strong: 5048 case Qualifiers::OCL_Autoreleasing: 5049 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5050 << ValType << FirstArg->getSourceRange(); 5051 return ExprError(); 5052 } 5053 5054 // Strip any qualifiers off ValType. 5055 ValType = ValType.getUnqualifiedType(); 5056 5057 // The majority of builtins return a value, but a few have special return 5058 // types, so allow them to override appropriately below. 5059 QualType ResultType = ValType; 5060 5061 // We need to figure out which concrete builtin this maps onto. For example, 5062 // __sync_fetch_and_add with a 2 byte object turns into 5063 // __sync_fetch_and_add_2. 5064 #define BUILTIN_ROW(x) \ 5065 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5066 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5067 5068 static const unsigned BuiltinIndices[][5] = { 5069 BUILTIN_ROW(__sync_fetch_and_add), 5070 BUILTIN_ROW(__sync_fetch_and_sub), 5071 BUILTIN_ROW(__sync_fetch_and_or), 5072 BUILTIN_ROW(__sync_fetch_and_and), 5073 BUILTIN_ROW(__sync_fetch_and_xor), 5074 BUILTIN_ROW(__sync_fetch_and_nand), 5075 5076 BUILTIN_ROW(__sync_add_and_fetch), 5077 BUILTIN_ROW(__sync_sub_and_fetch), 5078 BUILTIN_ROW(__sync_and_and_fetch), 5079 BUILTIN_ROW(__sync_or_and_fetch), 5080 BUILTIN_ROW(__sync_xor_and_fetch), 5081 BUILTIN_ROW(__sync_nand_and_fetch), 5082 5083 BUILTIN_ROW(__sync_val_compare_and_swap), 5084 BUILTIN_ROW(__sync_bool_compare_and_swap), 5085 BUILTIN_ROW(__sync_lock_test_and_set), 5086 BUILTIN_ROW(__sync_lock_release), 5087 BUILTIN_ROW(__sync_swap) 5088 }; 5089 #undef BUILTIN_ROW 5090 5091 // Determine the index of the size. 5092 unsigned SizeIndex; 5093 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5094 case 1: SizeIndex = 0; break; 5095 case 2: SizeIndex = 1; break; 5096 case 4: SizeIndex = 2; break; 5097 case 8: SizeIndex = 3; break; 5098 case 16: SizeIndex = 4; break; 5099 default: 5100 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5101 << FirstArg->getType() << FirstArg->getSourceRange(); 5102 return ExprError(); 5103 } 5104 5105 // Each of these builtins has one pointer argument, followed by some number of 5106 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5107 // that we ignore. Find out which row of BuiltinIndices to read from as well 5108 // as the number of fixed args. 5109 unsigned BuiltinID = FDecl->getBuiltinID(); 5110 unsigned BuiltinIndex, NumFixed = 1; 5111 bool WarnAboutSemanticsChange = false; 5112 switch (BuiltinID) { 5113 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5114 case Builtin::BI__sync_fetch_and_add: 5115 case Builtin::BI__sync_fetch_and_add_1: 5116 case Builtin::BI__sync_fetch_and_add_2: 5117 case Builtin::BI__sync_fetch_and_add_4: 5118 case Builtin::BI__sync_fetch_and_add_8: 5119 case Builtin::BI__sync_fetch_and_add_16: 5120 BuiltinIndex = 0; 5121 break; 5122 5123 case Builtin::BI__sync_fetch_and_sub: 5124 case Builtin::BI__sync_fetch_and_sub_1: 5125 case Builtin::BI__sync_fetch_and_sub_2: 5126 case Builtin::BI__sync_fetch_and_sub_4: 5127 case Builtin::BI__sync_fetch_and_sub_8: 5128 case Builtin::BI__sync_fetch_and_sub_16: 5129 BuiltinIndex = 1; 5130 break; 5131 5132 case Builtin::BI__sync_fetch_and_or: 5133 case Builtin::BI__sync_fetch_and_or_1: 5134 case Builtin::BI__sync_fetch_and_or_2: 5135 case Builtin::BI__sync_fetch_and_or_4: 5136 case Builtin::BI__sync_fetch_and_or_8: 5137 case Builtin::BI__sync_fetch_and_or_16: 5138 BuiltinIndex = 2; 5139 break; 5140 5141 case Builtin::BI__sync_fetch_and_and: 5142 case Builtin::BI__sync_fetch_and_and_1: 5143 case Builtin::BI__sync_fetch_and_and_2: 5144 case Builtin::BI__sync_fetch_and_and_4: 5145 case Builtin::BI__sync_fetch_and_and_8: 5146 case Builtin::BI__sync_fetch_and_and_16: 5147 BuiltinIndex = 3; 5148 break; 5149 5150 case Builtin::BI__sync_fetch_and_xor: 5151 case Builtin::BI__sync_fetch_and_xor_1: 5152 case Builtin::BI__sync_fetch_and_xor_2: 5153 case Builtin::BI__sync_fetch_and_xor_4: 5154 case Builtin::BI__sync_fetch_and_xor_8: 5155 case Builtin::BI__sync_fetch_and_xor_16: 5156 BuiltinIndex = 4; 5157 break; 5158 5159 case Builtin::BI__sync_fetch_and_nand: 5160 case Builtin::BI__sync_fetch_and_nand_1: 5161 case Builtin::BI__sync_fetch_and_nand_2: 5162 case Builtin::BI__sync_fetch_and_nand_4: 5163 case Builtin::BI__sync_fetch_and_nand_8: 5164 case Builtin::BI__sync_fetch_and_nand_16: 5165 BuiltinIndex = 5; 5166 WarnAboutSemanticsChange = true; 5167 break; 5168 5169 case Builtin::BI__sync_add_and_fetch: 5170 case Builtin::BI__sync_add_and_fetch_1: 5171 case Builtin::BI__sync_add_and_fetch_2: 5172 case Builtin::BI__sync_add_and_fetch_4: 5173 case Builtin::BI__sync_add_and_fetch_8: 5174 case Builtin::BI__sync_add_and_fetch_16: 5175 BuiltinIndex = 6; 5176 break; 5177 5178 case Builtin::BI__sync_sub_and_fetch: 5179 case Builtin::BI__sync_sub_and_fetch_1: 5180 case Builtin::BI__sync_sub_and_fetch_2: 5181 case Builtin::BI__sync_sub_and_fetch_4: 5182 case Builtin::BI__sync_sub_and_fetch_8: 5183 case Builtin::BI__sync_sub_and_fetch_16: 5184 BuiltinIndex = 7; 5185 break; 5186 5187 case Builtin::BI__sync_and_and_fetch: 5188 case Builtin::BI__sync_and_and_fetch_1: 5189 case Builtin::BI__sync_and_and_fetch_2: 5190 case Builtin::BI__sync_and_and_fetch_4: 5191 case Builtin::BI__sync_and_and_fetch_8: 5192 case Builtin::BI__sync_and_and_fetch_16: 5193 BuiltinIndex = 8; 5194 break; 5195 5196 case Builtin::BI__sync_or_and_fetch: 5197 case Builtin::BI__sync_or_and_fetch_1: 5198 case Builtin::BI__sync_or_and_fetch_2: 5199 case Builtin::BI__sync_or_and_fetch_4: 5200 case Builtin::BI__sync_or_and_fetch_8: 5201 case Builtin::BI__sync_or_and_fetch_16: 5202 BuiltinIndex = 9; 5203 break; 5204 5205 case Builtin::BI__sync_xor_and_fetch: 5206 case Builtin::BI__sync_xor_and_fetch_1: 5207 case Builtin::BI__sync_xor_and_fetch_2: 5208 case Builtin::BI__sync_xor_and_fetch_4: 5209 case Builtin::BI__sync_xor_and_fetch_8: 5210 case Builtin::BI__sync_xor_and_fetch_16: 5211 BuiltinIndex = 10; 5212 break; 5213 5214 case Builtin::BI__sync_nand_and_fetch: 5215 case Builtin::BI__sync_nand_and_fetch_1: 5216 case Builtin::BI__sync_nand_and_fetch_2: 5217 case Builtin::BI__sync_nand_and_fetch_4: 5218 case Builtin::BI__sync_nand_and_fetch_8: 5219 case Builtin::BI__sync_nand_and_fetch_16: 5220 BuiltinIndex = 11; 5221 WarnAboutSemanticsChange = true; 5222 break; 5223 5224 case Builtin::BI__sync_val_compare_and_swap: 5225 case Builtin::BI__sync_val_compare_and_swap_1: 5226 case Builtin::BI__sync_val_compare_and_swap_2: 5227 case Builtin::BI__sync_val_compare_and_swap_4: 5228 case Builtin::BI__sync_val_compare_and_swap_8: 5229 case Builtin::BI__sync_val_compare_and_swap_16: 5230 BuiltinIndex = 12; 5231 NumFixed = 2; 5232 break; 5233 5234 case Builtin::BI__sync_bool_compare_and_swap: 5235 case Builtin::BI__sync_bool_compare_and_swap_1: 5236 case Builtin::BI__sync_bool_compare_and_swap_2: 5237 case Builtin::BI__sync_bool_compare_and_swap_4: 5238 case Builtin::BI__sync_bool_compare_and_swap_8: 5239 case Builtin::BI__sync_bool_compare_and_swap_16: 5240 BuiltinIndex = 13; 5241 NumFixed = 2; 5242 ResultType = Context.BoolTy; 5243 break; 5244 5245 case Builtin::BI__sync_lock_test_and_set: 5246 case Builtin::BI__sync_lock_test_and_set_1: 5247 case Builtin::BI__sync_lock_test_and_set_2: 5248 case Builtin::BI__sync_lock_test_and_set_4: 5249 case Builtin::BI__sync_lock_test_and_set_8: 5250 case Builtin::BI__sync_lock_test_and_set_16: 5251 BuiltinIndex = 14; 5252 break; 5253 5254 case Builtin::BI__sync_lock_release: 5255 case Builtin::BI__sync_lock_release_1: 5256 case Builtin::BI__sync_lock_release_2: 5257 case Builtin::BI__sync_lock_release_4: 5258 case Builtin::BI__sync_lock_release_8: 5259 case Builtin::BI__sync_lock_release_16: 5260 BuiltinIndex = 15; 5261 NumFixed = 0; 5262 ResultType = Context.VoidTy; 5263 break; 5264 5265 case Builtin::BI__sync_swap: 5266 case Builtin::BI__sync_swap_1: 5267 case Builtin::BI__sync_swap_2: 5268 case Builtin::BI__sync_swap_4: 5269 case Builtin::BI__sync_swap_8: 5270 case Builtin::BI__sync_swap_16: 5271 BuiltinIndex = 16; 5272 break; 5273 } 5274 5275 // Now that we know how many fixed arguments we expect, first check that we 5276 // have at least that many. 5277 if (TheCall->getNumArgs() < 1+NumFixed) { 5278 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5279 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5280 << Callee->getSourceRange(); 5281 return ExprError(); 5282 } 5283 5284 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5285 << Callee->getSourceRange(); 5286 5287 if (WarnAboutSemanticsChange) { 5288 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5289 << Callee->getSourceRange(); 5290 } 5291 5292 // Get the decl for the concrete builtin from this, we can tell what the 5293 // concrete integer type we should convert to is. 5294 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5295 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5296 FunctionDecl *NewBuiltinDecl; 5297 if (NewBuiltinID == BuiltinID) 5298 NewBuiltinDecl = FDecl; 5299 else { 5300 // Perform builtin lookup to avoid redeclaring it. 5301 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5302 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5303 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5304 assert(Res.getFoundDecl()); 5305 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5306 if (!NewBuiltinDecl) 5307 return ExprError(); 5308 } 5309 5310 // The first argument --- the pointer --- has a fixed type; we 5311 // deduce the types of the rest of the arguments accordingly. Walk 5312 // the remaining arguments, converting them to the deduced value type. 5313 for (unsigned i = 0; i != NumFixed; ++i) { 5314 ExprResult Arg = TheCall->getArg(i+1); 5315 5316 // GCC does an implicit conversion to the pointer or integer ValType. This 5317 // can fail in some cases (1i -> int**), check for this error case now. 5318 // Initialize the argument. 5319 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5320 ValType, /*consume*/ false); 5321 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5322 if (Arg.isInvalid()) 5323 return ExprError(); 5324 5325 // Okay, we have something that *can* be converted to the right type. Check 5326 // to see if there is a potentially weird extension going on here. This can 5327 // happen when you do an atomic operation on something like an char* and 5328 // pass in 42. The 42 gets converted to char. This is even more strange 5329 // for things like 45.123 -> char, etc. 5330 // FIXME: Do this check. 5331 TheCall->setArg(i+1, Arg.get()); 5332 } 5333 5334 // Create a new DeclRefExpr to refer to the new decl. 5335 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5336 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5337 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5338 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5339 5340 // Set the callee in the CallExpr. 5341 // FIXME: This loses syntactic information. 5342 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5343 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5344 CK_BuiltinFnToFnPtr); 5345 TheCall->setCallee(PromotedCall.get()); 5346 5347 // Change the result type of the call to match the original value type. This 5348 // is arbitrary, but the codegen for these builtins ins design to handle it 5349 // gracefully. 5350 TheCall->setType(ResultType); 5351 5352 // Prohibit use of _ExtInt with atomic builtins. 5353 // The arguments would have already been converted to the first argument's 5354 // type, so only need to check the first argument. 5355 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 5356 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 5357 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 5358 return ExprError(); 5359 } 5360 5361 return TheCallResult; 5362 } 5363 5364 /// SemaBuiltinNontemporalOverloaded - We have a call to 5365 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5366 /// overloaded function based on the pointer type of its last argument. 5367 /// 5368 /// This function goes through and does final semantic checking for these 5369 /// builtins. 5370 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5371 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5372 DeclRefExpr *DRE = 5373 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5374 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5375 unsigned BuiltinID = FDecl->getBuiltinID(); 5376 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5377 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5378 "Unexpected nontemporal load/store builtin!"); 5379 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5380 unsigned numArgs = isStore ? 2 : 1; 5381 5382 // Ensure that we have the proper number of arguments. 5383 if (checkArgCount(*this, TheCall, numArgs)) 5384 return ExprError(); 5385 5386 // Inspect the last argument of the nontemporal builtin. This should always 5387 // be a pointer type, from which we imply the type of the memory access. 5388 // Because it is a pointer type, we don't have to worry about any implicit 5389 // casts here. 5390 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5391 ExprResult PointerArgResult = 5392 DefaultFunctionArrayLvalueConversion(PointerArg); 5393 5394 if (PointerArgResult.isInvalid()) 5395 return ExprError(); 5396 PointerArg = PointerArgResult.get(); 5397 TheCall->setArg(numArgs - 1, PointerArg); 5398 5399 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5400 if (!pointerType) { 5401 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5402 << PointerArg->getType() << PointerArg->getSourceRange(); 5403 return ExprError(); 5404 } 5405 5406 QualType ValType = pointerType->getPointeeType(); 5407 5408 // Strip any qualifiers off ValType. 5409 ValType = ValType.getUnqualifiedType(); 5410 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5411 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5412 !ValType->isVectorType()) { 5413 Diag(DRE->getBeginLoc(), 5414 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5415 << PointerArg->getType() << PointerArg->getSourceRange(); 5416 return ExprError(); 5417 } 5418 5419 if (!isStore) { 5420 TheCall->setType(ValType); 5421 return TheCallResult; 5422 } 5423 5424 ExprResult ValArg = TheCall->getArg(0); 5425 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5426 Context, ValType, /*consume*/ false); 5427 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5428 if (ValArg.isInvalid()) 5429 return ExprError(); 5430 5431 TheCall->setArg(0, ValArg.get()); 5432 TheCall->setType(Context.VoidTy); 5433 return TheCallResult; 5434 } 5435 5436 /// CheckObjCString - Checks that the argument to the builtin 5437 /// CFString constructor is correct 5438 /// Note: It might also make sense to do the UTF-16 conversion here (would 5439 /// simplify the backend). 5440 bool Sema::CheckObjCString(Expr *Arg) { 5441 Arg = Arg->IgnoreParenCasts(); 5442 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5443 5444 if (!Literal || !Literal->isAscii()) { 5445 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5446 << Arg->getSourceRange(); 5447 return true; 5448 } 5449 5450 if (Literal->containsNonAsciiOrNull()) { 5451 StringRef String = Literal->getString(); 5452 unsigned NumBytes = String.size(); 5453 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5454 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5455 llvm::UTF16 *ToPtr = &ToBuf[0]; 5456 5457 llvm::ConversionResult Result = 5458 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5459 ToPtr + NumBytes, llvm::strictConversion); 5460 // Check for conversion failure. 5461 if (Result != llvm::conversionOK) 5462 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5463 << Arg->getSourceRange(); 5464 } 5465 return false; 5466 } 5467 5468 /// CheckObjCString - Checks that the format string argument to the os_log() 5469 /// and os_trace() functions is correct, and converts it to const char *. 5470 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5471 Arg = Arg->IgnoreParenCasts(); 5472 auto *Literal = dyn_cast<StringLiteral>(Arg); 5473 if (!Literal) { 5474 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5475 Literal = ObjcLiteral->getString(); 5476 } 5477 } 5478 5479 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5480 return ExprError( 5481 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5482 << Arg->getSourceRange()); 5483 } 5484 5485 ExprResult Result(Literal); 5486 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5487 InitializedEntity Entity = 5488 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5489 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5490 return Result; 5491 } 5492 5493 /// Check that the user is calling the appropriate va_start builtin for the 5494 /// target and calling convention. 5495 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5496 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5497 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5498 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5499 TT.getArch() == llvm::Triple::aarch64_32); 5500 bool IsWindows = TT.isOSWindows(); 5501 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5502 if (IsX64 || IsAArch64) { 5503 CallingConv CC = CC_C; 5504 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5505 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5506 if (IsMSVAStart) { 5507 // Don't allow this in System V ABI functions. 5508 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5509 return S.Diag(Fn->getBeginLoc(), 5510 diag::err_ms_va_start_used_in_sysv_function); 5511 } else { 5512 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5513 // On x64 Windows, don't allow this in System V ABI functions. 5514 // (Yes, that means there's no corresponding way to support variadic 5515 // System V ABI functions on Windows.) 5516 if ((IsWindows && CC == CC_X86_64SysV) || 5517 (!IsWindows && CC == CC_Win64)) 5518 return S.Diag(Fn->getBeginLoc(), 5519 diag::err_va_start_used_in_wrong_abi_function) 5520 << !IsWindows; 5521 } 5522 return false; 5523 } 5524 5525 if (IsMSVAStart) 5526 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5527 return false; 5528 } 5529 5530 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5531 ParmVarDecl **LastParam = nullptr) { 5532 // Determine whether the current function, block, or obj-c method is variadic 5533 // and get its parameter list. 5534 bool IsVariadic = false; 5535 ArrayRef<ParmVarDecl *> Params; 5536 DeclContext *Caller = S.CurContext; 5537 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5538 IsVariadic = Block->isVariadic(); 5539 Params = Block->parameters(); 5540 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5541 IsVariadic = FD->isVariadic(); 5542 Params = FD->parameters(); 5543 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5544 IsVariadic = MD->isVariadic(); 5545 // FIXME: This isn't correct for methods (results in bogus warning). 5546 Params = MD->parameters(); 5547 } else if (isa<CapturedDecl>(Caller)) { 5548 // We don't support va_start in a CapturedDecl. 5549 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5550 return true; 5551 } else { 5552 // This must be some other declcontext that parses exprs. 5553 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5554 return true; 5555 } 5556 5557 if (!IsVariadic) { 5558 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5559 return true; 5560 } 5561 5562 if (LastParam) 5563 *LastParam = Params.empty() ? nullptr : Params.back(); 5564 5565 return false; 5566 } 5567 5568 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5569 /// for validity. Emit an error and return true on failure; return false 5570 /// on success. 5571 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5572 Expr *Fn = TheCall->getCallee(); 5573 5574 if (checkVAStartABI(*this, BuiltinID, Fn)) 5575 return true; 5576 5577 if (TheCall->getNumArgs() > 2) { 5578 Diag(TheCall->getArg(2)->getBeginLoc(), 5579 diag::err_typecheck_call_too_many_args) 5580 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5581 << Fn->getSourceRange() 5582 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5583 (*(TheCall->arg_end() - 1))->getEndLoc()); 5584 return true; 5585 } 5586 5587 if (TheCall->getNumArgs() < 2) { 5588 return Diag(TheCall->getEndLoc(), 5589 diag::err_typecheck_call_too_few_args_at_least) 5590 << 0 /*function call*/ << 2 << TheCall->getNumArgs(); 5591 } 5592 5593 // Type-check the first argument normally. 5594 if (checkBuiltinArgument(*this, TheCall, 0)) 5595 return true; 5596 5597 // Check that the current function is variadic, and get its last parameter. 5598 ParmVarDecl *LastParam; 5599 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5600 return true; 5601 5602 // Verify that the second argument to the builtin is the last argument of the 5603 // current function or method. 5604 bool SecondArgIsLastNamedArgument = false; 5605 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5606 5607 // These are valid if SecondArgIsLastNamedArgument is false after the next 5608 // block. 5609 QualType Type; 5610 SourceLocation ParamLoc; 5611 bool IsCRegister = false; 5612 5613 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5614 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5615 SecondArgIsLastNamedArgument = PV == LastParam; 5616 5617 Type = PV->getType(); 5618 ParamLoc = PV->getLocation(); 5619 IsCRegister = 5620 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5621 } 5622 } 5623 5624 if (!SecondArgIsLastNamedArgument) 5625 Diag(TheCall->getArg(1)->getBeginLoc(), 5626 diag::warn_second_arg_of_va_start_not_last_named_param); 5627 else if (IsCRegister || Type->isReferenceType() || 5628 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5629 // Promotable integers are UB, but enumerations need a bit of 5630 // extra checking to see what their promotable type actually is. 5631 if (!Type->isPromotableIntegerType()) 5632 return false; 5633 if (!Type->isEnumeralType()) 5634 return true; 5635 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5636 return !(ED && 5637 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5638 }()) { 5639 unsigned Reason = 0; 5640 if (Type->isReferenceType()) Reason = 1; 5641 else if (IsCRegister) Reason = 2; 5642 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5643 Diag(ParamLoc, diag::note_parameter_type) << Type; 5644 } 5645 5646 TheCall->setType(Context.VoidTy); 5647 return false; 5648 } 5649 5650 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5651 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5652 // const char *named_addr); 5653 5654 Expr *Func = Call->getCallee(); 5655 5656 if (Call->getNumArgs() < 3) 5657 return Diag(Call->getEndLoc(), 5658 diag::err_typecheck_call_too_few_args_at_least) 5659 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5660 5661 // Type-check the first argument normally. 5662 if (checkBuiltinArgument(*this, Call, 0)) 5663 return true; 5664 5665 // Check that the current function is variadic. 5666 if (checkVAStartIsInVariadicFunction(*this, Func)) 5667 return true; 5668 5669 // __va_start on Windows does not validate the parameter qualifiers 5670 5671 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5672 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5673 5674 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5675 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5676 5677 const QualType &ConstCharPtrTy = 5678 Context.getPointerType(Context.CharTy.withConst()); 5679 if (!Arg1Ty->isPointerType() || 5680 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5681 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5682 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5683 << 0 /* qualifier difference */ 5684 << 3 /* parameter mismatch */ 5685 << 2 << Arg1->getType() << ConstCharPtrTy; 5686 5687 const QualType SizeTy = Context.getSizeType(); 5688 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5689 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5690 << Arg2->getType() << SizeTy << 1 /* different class */ 5691 << 0 /* qualifier difference */ 5692 << 3 /* parameter mismatch */ 5693 << 3 << Arg2->getType() << SizeTy; 5694 5695 return false; 5696 } 5697 5698 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5699 /// friends. This is declared to take (...), so we have to check everything. 5700 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5701 if (TheCall->getNumArgs() < 2) 5702 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5703 << 0 << 2 << TheCall->getNumArgs() /*function call*/; 5704 if (TheCall->getNumArgs() > 2) 5705 return Diag(TheCall->getArg(2)->getBeginLoc(), 5706 diag::err_typecheck_call_too_many_args) 5707 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5708 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5709 (*(TheCall->arg_end() - 1))->getEndLoc()); 5710 5711 ExprResult OrigArg0 = TheCall->getArg(0); 5712 ExprResult OrigArg1 = TheCall->getArg(1); 5713 5714 // Do standard promotions between the two arguments, returning their common 5715 // type. 5716 QualType Res = UsualArithmeticConversions( 5717 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 5718 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5719 return true; 5720 5721 // Make sure any conversions are pushed back into the call; this is 5722 // type safe since unordered compare builtins are declared as "_Bool 5723 // foo(...)". 5724 TheCall->setArg(0, OrigArg0.get()); 5725 TheCall->setArg(1, OrigArg1.get()); 5726 5727 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5728 return false; 5729 5730 // If the common type isn't a real floating type, then the arguments were 5731 // invalid for this operation. 5732 if (Res.isNull() || !Res->isRealFloatingType()) 5733 return Diag(OrigArg0.get()->getBeginLoc(), 5734 diag::err_typecheck_call_invalid_ordered_compare) 5735 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5736 << SourceRange(OrigArg0.get()->getBeginLoc(), 5737 OrigArg1.get()->getEndLoc()); 5738 5739 return false; 5740 } 5741 5742 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5743 /// __builtin_isnan and friends. This is declared to take (...), so we have 5744 /// to check everything. We expect the last argument to be a floating point 5745 /// value. 5746 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5747 if (TheCall->getNumArgs() < NumArgs) 5748 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5749 << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; 5750 if (TheCall->getNumArgs() > NumArgs) 5751 return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), 5752 diag::err_typecheck_call_too_many_args) 5753 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() 5754 << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), 5755 (*(TheCall->arg_end() - 1))->getEndLoc()); 5756 5757 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 5758 // on all preceding parameters just being int. Try all of those. 5759 for (unsigned i = 0; i < NumArgs - 1; ++i) { 5760 Expr *Arg = TheCall->getArg(i); 5761 5762 if (Arg->isTypeDependent()) 5763 return false; 5764 5765 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 5766 5767 if (Res.isInvalid()) 5768 return true; 5769 TheCall->setArg(i, Res.get()); 5770 } 5771 5772 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5773 5774 if (OrigArg->isTypeDependent()) 5775 return false; 5776 5777 // Usual Unary Conversions will convert half to float, which we want for 5778 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 5779 // type how it is, but do normal L->Rvalue conversions. 5780 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 5781 OrigArg = UsualUnaryConversions(OrigArg).get(); 5782 else 5783 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 5784 TheCall->setArg(NumArgs - 1, OrigArg); 5785 5786 // This operation requires a non-_Complex floating-point number. 5787 if (!OrigArg->getType()->isRealFloatingType()) 5788 return Diag(OrigArg->getBeginLoc(), 5789 diag::err_typecheck_call_invalid_unary_fp) 5790 << OrigArg->getType() << OrigArg->getSourceRange(); 5791 5792 return false; 5793 } 5794 5795 // Customized Sema Checking for VSX builtins that have the following signature: 5796 // vector [...] builtinName(vector [...], vector [...], const int); 5797 // Which takes the same type of vectors (any legal vector type) for the first 5798 // two arguments and takes compile time constant for the third argument. 5799 // Example builtins are : 5800 // vector double vec_xxpermdi(vector double, vector double, int); 5801 // vector short vec_xxsldwi(vector short, vector short, int); 5802 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 5803 unsigned ExpectedNumArgs = 3; 5804 if (TheCall->getNumArgs() < ExpectedNumArgs) 5805 return Diag(TheCall->getEndLoc(), 5806 diag::err_typecheck_call_too_few_args_at_least) 5807 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5808 << TheCall->getSourceRange(); 5809 5810 if (TheCall->getNumArgs() > ExpectedNumArgs) 5811 return Diag(TheCall->getEndLoc(), 5812 diag::err_typecheck_call_too_many_args_at_most) 5813 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5814 << TheCall->getSourceRange(); 5815 5816 // Check the third argument is a compile time constant 5817 llvm::APSInt Value; 5818 if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) 5819 return Diag(TheCall->getBeginLoc(), 5820 diag::err_vsx_builtin_nonconstant_argument) 5821 << 3 /* argument index */ << TheCall->getDirectCallee() 5822 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5823 TheCall->getArg(2)->getEndLoc()); 5824 5825 QualType Arg1Ty = TheCall->getArg(0)->getType(); 5826 QualType Arg2Ty = TheCall->getArg(1)->getType(); 5827 5828 // Check the type of argument 1 and argument 2 are vectors. 5829 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 5830 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 5831 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 5832 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 5833 << TheCall->getDirectCallee() 5834 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5835 TheCall->getArg(1)->getEndLoc()); 5836 } 5837 5838 // Check the first two arguments are the same type. 5839 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 5840 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 5841 << TheCall->getDirectCallee() 5842 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5843 TheCall->getArg(1)->getEndLoc()); 5844 } 5845 5846 // When default clang type checking is turned off and the customized type 5847 // checking is used, the returning type of the function must be explicitly 5848 // set. Otherwise it is _Bool by default. 5849 TheCall->setType(Arg1Ty); 5850 5851 return false; 5852 } 5853 5854 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 5855 // This is declared to take (...), so we have to check everything. 5856 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 5857 if (TheCall->getNumArgs() < 2) 5858 return ExprError(Diag(TheCall->getEndLoc(), 5859 diag::err_typecheck_call_too_few_args_at_least) 5860 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5861 << TheCall->getSourceRange()); 5862 5863 // Determine which of the following types of shufflevector we're checking: 5864 // 1) unary, vector mask: (lhs, mask) 5865 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 5866 QualType resType = TheCall->getArg(0)->getType(); 5867 unsigned numElements = 0; 5868 5869 if (!TheCall->getArg(0)->isTypeDependent() && 5870 !TheCall->getArg(1)->isTypeDependent()) { 5871 QualType LHSType = TheCall->getArg(0)->getType(); 5872 QualType RHSType = TheCall->getArg(1)->getType(); 5873 5874 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 5875 return ExprError( 5876 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 5877 << TheCall->getDirectCallee() 5878 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5879 TheCall->getArg(1)->getEndLoc())); 5880 5881 numElements = LHSType->castAs<VectorType>()->getNumElements(); 5882 unsigned numResElements = TheCall->getNumArgs() - 2; 5883 5884 // Check to see if we have a call with 2 vector arguments, the unary shuffle 5885 // with mask. If so, verify that RHS is an integer vector type with the 5886 // same number of elts as lhs. 5887 if (TheCall->getNumArgs() == 2) { 5888 if (!RHSType->hasIntegerRepresentation() || 5889 RHSType->castAs<VectorType>()->getNumElements() != numElements) 5890 return ExprError(Diag(TheCall->getBeginLoc(), 5891 diag::err_vec_builtin_incompatible_vector) 5892 << TheCall->getDirectCallee() 5893 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 5894 TheCall->getArg(1)->getEndLoc())); 5895 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 5896 return ExprError(Diag(TheCall->getBeginLoc(), 5897 diag::err_vec_builtin_incompatible_vector) 5898 << TheCall->getDirectCallee() 5899 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5900 TheCall->getArg(1)->getEndLoc())); 5901 } else if (numElements != numResElements) { 5902 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 5903 resType = Context.getVectorType(eltType, numResElements, 5904 VectorType::GenericVector); 5905 } 5906 } 5907 5908 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 5909 if (TheCall->getArg(i)->isTypeDependent() || 5910 TheCall->getArg(i)->isValueDependent()) 5911 continue; 5912 5913 llvm::APSInt Result(32); 5914 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) 5915 return ExprError(Diag(TheCall->getBeginLoc(), 5916 diag::err_shufflevector_nonconstant_argument) 5917 << TheCall->getArg(i)->getSourceRange()); 5918 5919 // Allow -1 which will be translated to undef in the IR. 5920 if (Result.isSigned() && Result.isAllOnesValue()) 5921 continue; 5922 5923 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) 5924 return ExprError(Diag(TheCall->getBeginLoc(), 5925 diag::err_shufflevector_argument_too_large) 5926 << TheCall->getArg(i)->getSourceRange()); 5927 } 5928 5929 SmallVector<Expr*, 32> exprs; 5930 5931 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 5932 exprs.push_back(TheCall->getArg(i)); 5933 TheCall->setArg(i, nullptr); 5934 } 5935 5936 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 5937 TheCall->getCallee()->getBeginLoc(), 5938 TheCall->getRParenLoc()); 5939 } 5940 5941 /// SemaConvertVectorExpr - Handle __builtin_convertvector 5942 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 5943 SourceLocation BuiltinLoc, 5944 SourceLocation RParenLoc) { 5945 ExprValueKind VK = VK_RValue; 5946 ExprObjectKind OK = OK_Ordinary; 5947 QualType DstTy = TInfo->getType(); 5948 QualType SrcTy = E->getType(); 5949 5950 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 5951 return ExprError(Diag(BuiltinLoc, 5952 diag::err_convertvector_non_vector) 5953 << E->getSourceRange()); 5954 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 5955 return ExprError(Diag(BuiltinLoc, 5956 diag::err_convertvector_non_vector_type)); 5957 5958 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 5959 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 5960 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 5961 if (SrcElts != DstElts) 5962 return ExprError(Diag(BuiltinLoc, 5963 diag::err_convertvector_incompatible_vector) 5964 << E->getSourceRange()); 5965 } 5966 5967 return new (Context) 5968 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 5969 } 5970 5971 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 5972 // This is declared to take (const void*, ...) and can take two 5973 // optional constant int args. 5974 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 5975 unsigned NumArgs = TheCall->getNumArgs(); 5976 5977 if (NumArgs > 3) 5978 return Diag(TheCall->getEndLoc(), 5979 diag::err_typecheck_call_too_many_args_at_most) 5980 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5981 5982 // Argument 0 is checked for us and the remaining arguments must be 5983 // constant integers. 5984 for (unsigned i = 1; i != NumArgs; ++i) 5985 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 5986 return true; 5987 5988 return false; 5989 } 5990 5991 /// SemaBuiltinAssume - Handle __assume (MS Extension). 5992 // __assume does not evaluate its arguments, and should warn if its argument 5993 // has side effects. 5994 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 5995 Expr *Arg = TheCall->getArg(0); 5996 if (Arg->isInstantiationDependent()) return false; 5997 5998 if (Arg->HasSideEffects(Context)) 5999 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6000 << Arg->getSourceRange() 6001 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6002 6003 return false; 6004 } 6005 6006 /// Handle __builtin_alloca_with_align. This is declared 6007 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6008 /// than 8. 6009 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6010 // The alignment must be a constant integer. 6011 Expr *Arg = TheCall->getArg(1); 6012 6013 // We can't check the value of a dependent argument. 6014 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6015 if (const auto *UE = 6016 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6017 if (UE->getKind() == UETT_AlignOf || 6018 UE->getKind() == UETT_PreferredAlignOf) 6019 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6020 << Arg->getSourceRange(); 6021 6022 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6023 6024 if (!Result.isPowerOf2()) 6025 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6026 << Arg->getSourceRange(); 6027 6028 if (Result < Context.getCharWidth()) 6029 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6030 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6031 6032 if (Result > std::numeric_limits<int32_t>::max()) 6033 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6034 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6035 } 6036 6037 return false; 6038 } 6039 6040 /// Handle __builtin_assume_aligned. This is declared 6041 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6042 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6043 unsigned NumArgs = TheCall->getNumArgs(); 6044 6045 if (NumArgs > 3) 6046 return Diag(TheCall->getEndLoc(), 6047 diag::err_typecheck_call_too_many_args_at_most) 6048 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6049 6050 // The alignment must be a constant integer. 6051 Expr *Arg = TheCall->getArg(1); 6052 6053 // We can't check the value of a dependent argument. 6054 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6055 llvm::APSInt Result; 6056 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6057 return true; 6058 6059 if (!Result.isPowerOf2()) 6060 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6061 << Arg->getSourceRange(); 6062 6063 if (Result > Sema::MaximumAlignment) 6064 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6065 << Arg->getSourceRange() << Sema::MaximumAlignment; 6066 } 6067 6068 if (NumArgs > 2) { 6069 ExprResult Arg(TheCall->getArg(2)); 6070 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6071 Context.getSizeType(), false); 6072 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6073 if (Arg.isInvalid()) return true; 6074 TheCall->setArg(2, Arg.get()); 6075 } 6076 6077 return false; 6078 } 6079 6080 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6081 unsigned BuiltinID = 6082 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6083 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6084 6085 unsigned NumArgs = TheCall->getNumArgs(); 6086 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6087 if (NumArgs < NumRequiredArgs) { 6088 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6089 << 0 /* function call */ << NumRequiredArgs << NumArgs 6090 << TheCall->getSourceRange(); 6091 } 6092 if (NumArgs >= NumRequiredArgs + 0x100) { 6093 return Diag(TheCall->getEndLoc(), 6094 diag::err_typecheck_call_too_many_args_at_most) 6095 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6096 << TheCall->getSourceRange(); 6097 } 6098 unsigned i = 0; 6099 6100 // For formatting call, check buffer arg. 6101 if (!IsSizeCall) { 6102 ExprResult Arg(TheCall->getArg(i)); 6103 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6104 Context, Context.VoidPtrTy, false); 6105 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6106 if (Arg.isInvalid()) 6107 return true; 6108 TheCall->setArg(i, Arg.get()); 6109 i++; 6110 } 6111 6112 // Check string literal arg. 6113 unsigned FormatIdx = i; 6114 { 6115 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6116 if (Arg.isInvalid()) 6117 return true; 6118 TheCall->setArg(i, Arg.get()); 6119 i++; 6120 } 6121 6122 // Make sure variadic args are scalar. 6123 unsigned FirstDataArg = i; 6124 while (i < NumArgs) { 6125 ExprResult Arg = DefaultVariadicArgumentPromotion( 6126 TheCall->getArg(i), VariadicFunction, nullptr); 6127 if (Arg.isInvalid()) 6128 return true; 6129 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6130 if (ArgSize.getQuantity() >= 0x100) { 6131 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6132 << i << (int)ArgSize.getQuantity() << 0xff 6133 << TheCall->getSourceRange(); 6134 } 6135 TheCall->setArg(i, Arg.get()); 6136 i++; 6137 } 6138 6139 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6140 // call to avoid duplicate diagnostics. 6141 if (!IsSizeCall) { 6142 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6143 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6144 bool Success = CheckFormatArguments( 6145 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6146 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6147 CheckedVarArgs); 6148 if (!Success) 6149 return true; 6150 } 6151 6152 if (IsSizeCall) { 6153 TheCall->setType(Context.getSizeType()); 6154 } else { 6155 TheCall->setType(Context.VoidPtrTy); 6156 } 6157 return false; 6158 } 6159 6160 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6161 /// TheCall is a constant expression. 6162 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6163 llvm::APSInt &Result) { 6164 Expr *Arg = TheCall->getArg(ArgNum); 6165 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6166 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6167 6168 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6169 6170 if (!Arg->isIntegerConstantExpr(Result, Context)) 6171 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6172 << FDecl->getDeclName() << Arg->getSourceRange(); 6173 6174 return false; 6175 } 6176 6177 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6178 /// TheCall is a constant expression in the range [Low, High]. 6179 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6180 int Low, int High, bool RangeIsError) { 6181 if (isConstantEvaluated()) 6182 return false; 6183 llvm::APSInt Result; 6184 6185 // We can't check the value of a dependent argument. 6186 Expr *Arg = TheCall->getArg(ArgNum); 6187 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6188 return false; 6189 6190 // Check constant-ness first. 6191 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6192 return true; 6193 6194 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6195 if (RangeIsError) 6196 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6197 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6198 else 6199 // Defer the warning until we know if the code will be emitted so that 6200 // dead code can ignore this. 6201 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6202 PDiag(diag::warn_argument_invalid_range) 6203 << Result.toString(10) << Low << High 6204 << Arg->getSourceRange()); 6205 } 6206 6207 return false; 6208 } 6209 6210 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6211 /// TheCall is a constant expression is a multiple of Num.. 6212 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6213 unsigned Num) { 6214 llvm::APSInt Result; 6215 6216 // We can't check the value of a dependent argument. 6217 Expr *Arg = TheCall->getArg(ArgNum); 6218 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6219 return false; 6220 6221 // Check constant-ness first. 6222 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6223 return true; 6224 6225 if (Result.getSExtValue() % Num != 0) 6226 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6227 << Num << Arg->getSourceRange(); 6228 6229 return false; 6230 } 6231 6232 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6233 /// constant expression representing a power of 2. 6234 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6235 llvm::APSInt Result; 6236 6237 // We can't check the value of a dependent argument. 6238 Expr *Arg = TheCall->getArg(ArgNum); 6239 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6240 return false; 6241 6242 // Check constant-ness first. 6243 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6244 return true; 6245 6246 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6247 // and only if x is a power of 2. 6248 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6249 return false; 6250 6251 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6252 << Arg->getSourceRange(); 6253 } 6254 6255 static bool IsShiftedByte(llvm::APSInt Value) { 6256 if (Value.isNegative()) 6257 return false; 6258 6259 // Check if it's a shifted byte, by shifting it down 6260 while (true) { 6261 // If the value fits in the bottom byte, the check passes. 6262 if (Value < 0x100) 6263 return true; 6264 6265 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6266 // fails. 6267 if ((Value & 0xFF) != 0) 6268 return false; 6269 6270 // If the bottom 8 bits are all 0, but something above that is nonzero, 6271 // then shifting the value right by 8 bits won't affect whether it's a 6272 // shifted byte or not. So do that, and go round again. 6273 Value >>= 8; 6274 } 6275 } 6276 6277 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6278 /// a constant expression representing an arbitrary byte value shifted left by 6279 /// a multiple of 8 bits. 6280 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6281 unsigned ArgBits) { 6282 llvm::APSInt Result; 6283 6284 // We can't check the value of a dependent argument. 6285 Expr *Arg = TheCall->getArg(ArgNum); 6286 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6287 return false; 6288 6289 // Check constant-ness first. 6290 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6291 return true; 6292 6293 // Truncate to the given size. 6294 Result = Result.getLoBits(ArgBits); 6295 Result.setIsUnsigned(true); 6296 6297 if (IsShiftedByte(Result)) 6298 return false; 6299 6300 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6301 << Arg->getSourceRange(); 6302 } 6303 6304 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6305 /// TheCall is a constant expression representing either a shifted byte value, 6306 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6307 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6308 /// Arm MVE intrinsics. 6309 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6310 int ArgNum, 6311 unsigned ArgBits) { 6312 llvm::APSInt Result; 6313 6314 // We can't check the value of a dependent argument. 6315 Expr *Arg = TheCall->getArg(ArgNum); 6316 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6317 return false; 6318 6319 // Check constant-ness first. 6320 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6321 return true; 6322 6323 // Truncate to the given size. 6324 Result = Result.getLoBits(ArgBits); 6325 Result.setIsUnsigned(true); 6326 6327 // Check to see if it's in either of the required forms. 6328 if (IsShiftedByte(Result) || 6329 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6330 return false; 6331 6332 return Diag(TheCall->getBeginLoc(), 6333 diag::err_argument_not_shifted_byte_or_xxff) 6334 << Arg->getSourceRange(); 6335 } 6336 6337 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6338 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6339 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6340 if (checkArgCount(*this, TheCall, 2)) 6341 return true; 6342 Expr *Arg0 = TheCall->getArg(0); 6343 Expr *Arg1 = TheCall->getArg(1); 6344 6345 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6346 if (FirstArg.isInvalid()) 6347 return true; 6348 QualType FirstArgType = FirstArg.get()->getType(); 6349 if (!FirstArgType->isAnyPointerType()) 6350 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6351 << "first" << FirstArgType << Arg0->getSourceRange(); 6352 TheCall->setArg(0, FirstArg.get()); 6353 6354 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6355 if (SecArg.isInvalid()) 6356 return true; 6357 QualType SecArgType = SecArg.get()->getType(); 6358 if (!SecArgType->isIntegerType()) 6359 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6360 << "second" << SecArgType << Arg1->getSourceRange(); 6361 6362 // Derive the return type from the pointer argument. 6363 TheCall->setType(FirstArgType); 6364 return false; 6365 } 6366 6367 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6368 if (checkArgCount(*this, TheCall, 2)) 6369 return true; 6370 6371 Expr *Arg0 = TheCall->getArg(0); 6372 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6373 if (FirstArg.isInvalid()) 6374 return true; 6375 QualType FirstArgType = FirstArg.get()->getType(); 6376 if (!FirstArgType->isAnyPointerType()) 6377 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6378 << "first" << FirstArgType << Arg0->getSourceRange(); 6379 TheCall->setArg(0, FirstArg.get()); 6380 6381 // Derive the return type from the pointer argument. 6382 TheCall->setType(FirstArgType); 6383 6384 // Second arg must be an constant in range [0,15] 6385 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6386 } 6387 6388 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6389 if (checkArgCount(*this, TheCall, 2)) 6390 return true; 6391 Expr *Arg0 = TheCall->getArg(0); 6392 Expr *Arg1 = TheCall->getArg(1); 6393 6394 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6395 if (FirstArg.isInvalid()) 6396 return true; 6397 QualType FirstArgType = FirstArg.get()->getType(); 6398 if (!FirstArgType->isAnyPointerType()) 6399 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6400 << "first" << FirstArgType << Arg0->getSourceRange(); 6401 6402 QualType SecArgType = Arg1->getType(); 6403 if (!SecArgType->isIntegerType()) 6404 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6405 << "second" << SecArgType << Arg1->getSourceRange(); 6406 TheCall->setType(Context.IntTy); 6407 return false; 6408 } 6409 6410 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6411 BuiltinID == AArch64::BI__builtin_arm_stg) { 6412 if (checkArgCount(*this, TheCall, 1)) 6413 return true; 6414 Expr *Arg0 = TheCall->getArg(0); 6415 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6416 if (FirstArg.isInvalid()) 6417 return true; 6418 6419 QualType FirstArgType = FirstArg.get()->getType(); 6420 if (!FirstArgType->isAnyPointerType()) 6421 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6422 << "first" << FirstArgType << Arg0->getSourceRange(); 6423 TheCall->setArg(0, FirstArg.get()); 6424 6425 // Derive the return type from the pointer argument. 6426 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6427 TheCall->setType(FirstArgType); 6428 return false; 6429 } 6430 6431 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6432 Expr *ArgA = TheCall->getArg(0); 6433 Expr *ArgB = TheCall->getArg(1); 6434 6435 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6436 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6437 6438 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6439 return true; 6440 6441 QualType ArgTypeA = ArgExprA.get()->getType(); 6442 QualType ArgTypeB = ArgExprB.get()->getType(); 6443 6444 auto isNull = [&] (Expr *E) -> bool { 6445 return E->isNullPointerConstant( 6446 Context, Expr::NPC_ValueDependentIsNotNull); }; 6447 6448 // argument should be either a pointer or null 6449 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6450 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6451 << "first" << ArgTypeA << ArgA->getSourceRange(); 6452 6453 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6454 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6455 << "second" << ArgTypeB << ArgB->getSourceRange(); 6456 6457 // Ensure Pointee types are compatible 6458 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6459 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6460 QualType pointeeA = ArgTypeA->getPointeeType(); 6461 QualType pointeeB = ArgTypeB->getPointeeType(); 6462 if (!Context.typesAreCompatible( 6463 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6464 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6465 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6466 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6467 << ArgB->getSourceRange(); 6468 } 6469 } 6470 6471 // at least one argument should be pointer type 6472 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6473 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6474 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6475 6476 if (isNull(ArgA)) // adopt type of the other pointer 6477 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6478 6479 if (isNull(ArgB)) 6480 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6481 6482 TheCall->setArg(0, ArgExprA.get()); 6483 TheCall->setArg(1, ArgExprB.get()); 6484 TheCall->setType(Context.LongLongTy); 6485 return false; 6486 } 6487 assert(false && "Unhandled ARM MTE intrinsic"); 6488 return true; 6489 } 6490 6491 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6492 /// TheCall is an ARM/AArch64 special register string literal. 6493 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6494 int ArgNum, unsigned ExpectedFieldNum, 6495 bool AllowName) { 6496 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6497 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6498 BuiltinID == ARM::BI__builtin_arm_rsr || 6499 BuiltinID == ARM::BI__builtin_arm_rsrp || 6500 BuiltinID == ARM::BI__builtin_arm_wsr || 6501 BuiltinID == ARM::BI__builtin_arm_wsrp; 6502 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6503 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6504 BuiltinID == AArch64::BI__builtin_arm_rsr || 6505 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6506 BuiltinID == AArch64::BI__builtin_arm_wsr || 6507 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6508 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6509 6510 // We can't check the value of a dependent argument. 6511 Expr *Arg = TheCall->getArg(ArgNum); 6512 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6513 return false; 6514 6515 // Check if the argument is a string literal. 6516 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6517 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6518 << Arg->getSourceRange(); 6519 6520 // Check the type of special register given. 6521 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6522 SmallVector<StringRef, 6> Fields; 6523 Reg.split(Fields, ":"); 6524 6525 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6526 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6527 << Arg->getSourceRange(); 6528 6529 // If the string is the name of a register then we cannot check that it is 6530 // valid here but if the string is of one the forms described in ACLE then we 6531 // can check that the supplied fields are integers and within the valid 6532 // ranges. 6533 if (Fields.size() > 1) { 6534 bool FiveFields = Fields.size() == 5; 6535 6536 bool ValidString = true; 6537 if (IsARMBuiltin) { 6538 ValidString &= Fields[0].startswith_lower("cp") || 6539 Fields[0].startswith_lower("p"); 6540 if (ValidString) 6541 Fields[0] = 6542 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6543 6544 ValidString &= Fields[2].startswith_lower("c"); 6545 if (ValidString) 6546 Fields[2] = Fields[2].drop_front(1); 6547 6548 if (FiveFields) { 6549 ValidString &= Fields[3].startswith_lower("c"); 6550 if (ValidString) 6551 Fields[3] = Fields[3].drop_front(1); 6552 } 6553 } 6554 6555 SmallVector<int, 5> Ranges; 6556 if (FiveFields) 6557 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6558 else 6559 Ranges.append({15, 7, 15}); 6560 6561 for (unsigned i=0; i<Fields.size(); ++i) { 6562 int IntField; 6563 ValidString &= !Fields[i].getAsInteger(10, IntField); 6564 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6565 } 6566 6567 if (!ValidString) 6568 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6569 << Arg->getSourceRange(); 6570 } else if (IsAArch64Builtin && Fields.size() == 1) { 6571 // If the register name is one of those that appear in the condition below 6572 // and the special register builtin being used is one of the write builtins, 6573 // then we require that the argument provided for writing to the register 6574 // is an integer constant expression. This is because it will be lowered to 6575 // an MSR (immediate) instruction, so we need to know the immediate at 6576 // compile time. 6577 if (TheCall->getNumArgs() != 2) 6578 return false; 6579 6580 std::string RegLower = Reg.lower(); 6581 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6582 RegLower != "pan" && RegLower != "uao") 6583 return false; 6584 6585 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6586 } 6587 6588 return false; 6589 } 6590 6591 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6592 /// This checks that the target supports __builtin_longjmp and 6593 /// that val is a constant 1. 6594 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6595 if (!Context.getTargetInfo().hasSjLjLowering()) 6596 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6597 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6598 6599 Expr *Arg = TheCall->getArg(1); 6600 llvm::APSInt Result; 6601 6602 // TODO: This is less than ideal. Overload this to take a value. 6603 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6604 return true; 6605 6606 if (Result != 1) 6607 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6608 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6609 6610 return false; 6611 } 6612 6613 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6614 /// This checks that the target supports __builtin_setjmp. 6615 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6616 if (!Context.getTargetInfo().hasSjLjLowering()) 6617 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6618 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6619 return false; 6620 } 6621 6622 namespace { 6623 6624 class UncoveredArgHandler { 6625 enum { Unknown = -1, AllCovered = -2 }; 6626 6627 signed FirstUncoveredArg = Unknown; 6628 SmallVector<const Expr *, 4> DiagnosticExprs; 6629 6630 public: 6631 UncoveredArgHandler() = default; 6632 6633 bool hasUncoveredArg() const { 6634 return (FirstUncoveredArg >= 0); 6635 } 6636 6637 unsigned getUncoveredArg() const { 6638 assert(hasUncoveredArg() && "no uncovered argument"); 6639 return FirstUncoveredArg; 6640 } 6641 6642 void setAllCovered() { 6643 // A string has been found with all arguments covered, so clear out 6644 // the diagnostics. 6645 DiagnosticExprs.clear(); 6646 FirstUncoveredArg = AllCovered; 6647 } 6648 6649 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6650 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6651 6652 // Don't update if a previous string covers all arguments. 6653 if (FirstUncoveredArg == AllCovered) 6654 return; 6655 6656 // UncoveredArgHandler tracks the highest uncovered argument index 6657 // and with it all the strings that match this index. 6658 if (NewFirstUncoveredArg == FirstUncoveredArg) 6659 DiagnosticExprs.push_back(StrExpr); 6660 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6661 DiagnosticExprs.clear(); 6662 DiagnosticExprs.push_back(StrExpr); 6663 FirstUncoveredArg = NewFirstUncoveredArg; 6664 } 6665 } 6666 6667 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6668 }; 6669 6670 enum StringLiteralCheckType { 6671 SLCT_NotALiteral, 6672 SLCT_UncheckedLiteral, 6673 SLCT_CheckedLiteral 6674 }; 6675 6676 } // namespace 6677 6678 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6679 BinaryOperatorKind BinOpKind, 6680 bool AddendIsRight) { 6681 unsigned BitWidth = Offset.getBitWidth(); 6682 unsigned AddendBitWidth = Addend.getBitWidth(); 6683 // There might be negative interim results. 6684 if (Addend.isUnsigned()) { 6685 Addend = Addend.zext(++AddendBitWidth); 6686 Addend.setIsSigned(true); 6687 } 6688 // Adjust the bit width of the APSInts. 6689 if (AddendBitWidth > BitWidth) { 6690 Offset = Offset.sext(AddendBitWidth); 6691 BitWidth = AddendBitWidth; 6692 } else if (BitWidth > AddendBitWidth) { 6693 Addend = Addend.sext(BitWidth); 6694 } 6695 6696 bool Ov = false; 6697 llvm::APSInt ResOffset = Offset; 6698 if (BinOpKind == BO_Add) 6699 ResOffset = Offset.sadd_ov(Addend, Ov); 6700 else { 6701 assert(AddendIsRight && BinOpKind == BO_Sub && 6702 "operator must be add or sub with addend on the right"); 6703 ResOffset = Offset.ssub_ov(Addend, Ov); 6704 } 6705 6706 // We add an offset to a pointer here so we should support an offset as big as 6707 // possible. 6708 if (Ov) { 6709 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6710 "index (intermediate) result too big"); 6711 Offset = Offset.sext(2 * BitWidth); 6712 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6713 return; 6714 } 6715 6716 Offset = ResOffset; 6717 } 6718 6719 namespace { 6720 6721 // This is a wrapper class around StringLiteral to support offsetted string 6722 // literals as format strings. It takes the offset into account when returning 6723 // the string and its length or the source locations to display notes correctly. 6724 class FormatStringLiteral { 6725 const StringLiteral *FExpr; 6726 int64_t Offset; 6727 6728 public: 6729 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 6730 : FExpr(fexpr), Offset(Offset) {} 6731 6732 StringRef getString() const { 6733 return FExpr->getString().drop_front(Offset); 6734 } 6735 6736 unsigned getByteLength() const { 6737 return FExpr->getByteLength() - getCharByteWidth() * Offset; 6738 } 6739 6740 unsigned getLength() const { return FExpr->getLength() - Offset; } 6741 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 6742 6743 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 6744 6745 QualType getType() const { return FExpr->getType(); } 6746 6747 bool isAscii() const { return FExpr->isAscii(); } 6748 bool isWide() const { return FExpr->isWide(); } 6749 bool isUTF8() const { return FExpr->isUTF8(); } 6750 bool isUTF16() const { return FExpr->isUTF16(); } 6751 bool isUTF32() const { return FExpr->isUTF32(); } 6752 bool isPascal() const { return FExpr->isPascal(); } 6753 6754 SourceLocation getLocationOfByte( 6755 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 6756 const TargetInfo &Target, unsigned *StartToken = nullptr, 6757 unsigned *StartTokenByteOffset = nullptr) const { 6758 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 6759 StartToken, StartTokenByteOffset); 6760 } 6761 6762 SourceLocation getBeginLoc() const LLVM_READONLY { 6763 return FExpr->getBeginLoc().getLocWithOffset(Offset); 6764 } 6765 6766 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 6767 }; 6768 6769 } // namespace 6770 6771 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 6772 const Expr *OrigFormatExpr, 6773 ArrayRef<const Expr *> Args, 6774 bool HasVAListArg, unsigned format_idx, 6775 unsigned firstDataArg, 6776 Sema::FormatStringType Type, 6777 bool inFunctionCall, 6778 Sema::VariadicCallType CallType, 6779 llvm::SmallBitVector &CheckedVarArgs, 6780 UncoveredArgHandler &UncoveredArg, 6781 bool IgnoreStringsWithoutSpecifiers); 6782 6783 // Determine if an expression is a string literal or constant string. 6784 // If this function returns false on the arguments to a function expecting a 6785 // format string, we will usually need to emit a warning. 6786 // True string literals are then checked by CheckFormatString. 6787 static StringLiteralCheckType 6788 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 6789 bool HasVAListArg, unsigned format_idx, 6790 unsigned firstDataArg, Sema::FormatStringType Type, 6791 Sema::VariadicCallType CallType, bool InFunctionCall, 6792 llvm::SmallBitVector &CheckedVarArgs, 6793 UncoveredArgHandler &UncoveredArg, 6794 llvm::APSInt Offset, 6795 bool IgnoreStringsWithoutSpecifiers = false) { 6796 if (S.isConstantEvaluated()) 6797 return SLCT_NotALiteral; 6798 tryAgain: 6799 assert(Offset.isSigned() && "invalid offset"); 6800 6801 if (E->isTypeDependent() || E->isValueDependent()) 6802 return SLCT_NotALiteral; 6803 6804 E = E->IgnoreParenCasts(); 6805 6806 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6807 // Technically -Wformat-nonliteral does not warn about this case. 6808 // The behavior of printf and friends in this case is implementation 6809 // dependent. Ideally if the format string cannot be null then 6810 // it should have a 'nonnull' attribute in the function prototype. 6811 return SLCT_UncheckedLiteral; 6812 6813 switch (E->getStmtClass()) { 6814 case Stmt::BinaryConditionalOperatorClass: 6815 case Stmt::ConditionalOperatorClass: { 6816 // The expression is a literal if both sub-expressions were, and it was 6817 // completely checked only if both sub-expressions were checked. 6818 const AbstractConditionalOperator *C = 6819 cast<AbstractConditionalOperator>(E); 6820 6821 // Determine whether it is necessary to check both sub-expressions, for 6822 // example, because the condition expression is a constant that can be 6823 // evaluated at compile time. 6824 bool CheckLeft = true, CheckRight = true; 6825 6826 bool Cond; 6827 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 6828 S.isConstantEvaluated())) { 6829 if (Cond) 6830 CheckRight = false; 6831 else 6832 CheckLeft = false; 6833 } 6834 6835 // We need to maintain the offsets for the right and the left hand side 6836 // separately to check if every possible indexed expression is a valid 6837 // string literal. They might have different offsets for different string 6838 // literals in the end. 6839 StringLiteralCheckType Left; 6840 if (!CheckLeft) 6841 Left = SLCT_UncheckedLiteral; 6842 else { 6843 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 6844 HasVAListArg, format_idx, firstDataArg, 6845 Type, CallType, InFunctionCall, 6846 CheckedVarArgs, UncoveredArg, Offset, 6847 IgnoreStringsWithoutSpecifiers); 6848 if (Left == SLCT_NotALiteral || !CheckRight) { 6849 return Left; 6850 } 6851 } 6852 6853 StringLiteralCheckType Right = checkFormatStringExpr( 6854 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 6855 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6856 IgnoreStringsWithoutSpecifiers); 6857 6858 return (CheckLeft && Left < Right) ? Left : Right; 6859 } 6860 6861 case Stmt::ImplicitCastExprClass: 6862 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 6863 goto tryAgain; 6864 6865 case Stmt::OpaqueValueExprClass: 6866 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 6867 E = src; 6868 goto tryAgain; 6869 } 6870 return SLCT_NotALiteral; 6871 6872 case Stmt::PredefinedExprClass: 6873 // While __func__, etc., are technically not string literals, they 6874 // cannot contain format specifiers and thus are not a security 6875 // liability. 6876 return SLCT_UncheckedLiteral; 6877 6878 case Stmt::DeclRefExprClass: { 6879 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 6880 6881 // As an exception, do not flag errors for variables binding to 6882 // const string literals. 6883 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 6884 bool isConstant = false; 6885 QualType T = DR->getType(); 6886 6887 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 6888 isConstant = AT->getElementType().isConstant(S.Context); 6889 } else if (const PointerType *PT = T->getAs<PointerType>()) { 6890 isConstant = T.isConstant(S.Context) && 6891 PT->getPointeeType().isConstant(S.Context); 6892 } else if (T->isObjCObjectPointerType()) { 6893 // In ObjC, there is usually no "const ObjectPointer" type, 6894 // so don't check if the pointee type is constant. 6895 isConstant = T.isConstant(S.Context); 6896 } 6897 6898 if (isConstant) { 6899 if (const Expr *Init = VD->getAnyInitializer()) { 6900 // Look through initializers like const char c[] = { "foo" } 6901 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 6902 if (InitList->isStringLiteralInit()) 6903 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 6904 } 6905 return checkFormatStringExpr(S, Init, Args, 6906 HasVAListArg, format_idx, 6907 firstDataArg, Type, CallType, 6908 /*InFunctionCall*/ false, CheckedVarArgs, 6909 UncoveredArg, Offset); 6910 } 6911 } 6912 6913 // For vprintf* functions (i.e., HasVAListArg==true), we add a 6914 // special check to see if the format string is a function parameter 6915 // of the function calling the printf function. If the function 6916 // has an attribute indicating it is a printf-like function, then we 6917 // should suppress warnings concerning non-literals being used in a call 6918 // to a vprintf function. For example: 6919 // 6920 // void 6921 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 6922 // va_list ap; 6923 // va_start(ap, fmt); 6924 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 6925 // ... 6926 // } 6927 if (HasVAListArg) { 6928 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 6929 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 6930 int PVIndex = PV->getFunctionScopeIndex() + 1; 6931 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 6932 // adjust for implicit parameter 6933 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6934 if (MD->isInstance()) 6935 ++PVIndex; 6936 // We also check if the formats are compatible. 6937 // We can't pass a 'scanf' string to a 'printf' function. 6938 if (PVIndex == PVFormat->getFormatIdx() && 6939 Type == S.GetFormatStringType(PVFormat)) 6940 return SLCT_UncheckedLiteral; 6941 } 6942 } 6943 } 6944 } 6945 } 6946 6947 return SLCT_NotALiteral; 6948 } 6949 6950 case Stmt::CallExprClass: 6951 case Stmt::CXXMemberCallExprClass: { 6952 const CallExpr *CE = cast<CallExpr>(E); 6953 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 6954 bool IsFirst = true; 6955 StringLiteralCheckType CommonResult; 6956 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 6957 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 6958 StringLiteralCheckType Result = checkFormatStringExpr( 6959 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6960 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6961 IgnoreStringsWithoutSpecifiers); 6962 if (IsFirst) { 6963 CommonResult = Result; 6964 IsFirst = false; 6965 } 6966 } 6967 if (!IsFirst) 6968 return CommonResult; 6969 6970 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 6971 unsigned BuiltinID = FD->getBuiltinID(); 6972 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 6973 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 6974 const Expr *Arg = CE->getArg(0); 6975 return checkFormatStringExpr(S, Arg, Args, 6976 HasVAListArg, format_idx, 6977 firstDataArg, Type, CallType, 6978 InFunctionCall, CheckedVarArgs, 6979 UncoveredArg, Offset, 6980 IgnoreStringsWithoutSpecifiers); 6981 } 6982 } 6983 } 6984 6985 return SLCT_NotALiteral; 6986 } 6987 case Stmt::ObjCMessageExprClass: { 6988 const auto *ME = cast<ObjCMessageExpr>(E); 6989 if (const auto *MD = ME->getMethodDecl()) { 6990 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 6991 // As a special case heuristic, if we're using the method -[NSBundle 6992 // localizedStringForKey:value:table:], ignore any key strings that lack 6993 // format specifiers. The idea is that if the key doesn't have any 6994 // format specifiers then its probably just a key to map to the 6995 // localized strings. If it does have format specifiers though, then its 6996 // likely that the text of the key is the format string in the 6997 // programmer's language, and should be checked. 6998 const ObjCInterfaceDecl *IFace; 6999 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7000 IFace->getIdentifier()->isStr("NSBundle") && 7001 MD->getSelector().isKeywordSelector( 7002 {"localizedStringForKey", "value", "table"})) { 7003 IgnoreStringsWithoutSpecifiers = true; 7004 } 7005 7006 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7007 return checkFormatStringExpr( 7008 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7009 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7010 IgnoreStringsWithoutSpecifiers); 7011 } 7012 } 7013 7014 return SLCT_NotALiteral; 7015 } 7016 case Stmt::ObjCStringLiteralClass: 7017 case Stmt::StringLiteralClass: { 7018 const StringLiteral *StrE = nullptr; 7019 7020 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7021 StrE = ObjCFExpr->getString(); 7022 else 7023 StrE = cast<StringLiteral>(E); 7024 7025 if (StrE) { 7026 if (Offset.isNegative() || Offset > StrE->getLength()) { 7027 // TODO: It would be better to have an explicit warning for out of 7028 // bounds literals. 7029 return SLCT_NotALiteral; 7030 } 7031 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7032 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7033 firstDataArg, Type, InFunctionCall, CallType, 7034 CheckedVarArgs, UncoveredArg, 7035 IgnoreStringsWithoutSpecifiers); 7036 return SLCT_CheckedLiteral; 7037 } 7038 7039 return SLCT_NotALiteral; 7040 } 7041 case Stmt::BinaryOperatorClass: { 7042 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7043 7044 // A string literal + an int offset is still a string literal. 7045 if (BinOp->isAdditiveOp()) { 7046 Expr::EvalResult LResult, RResult; 7047 7048 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7049 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7050 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7051 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7052 7053 if (LIsInt != RIsInt) { 7054 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7055 7056 if (LIsInt) { 7057 if (BinOpKind == BO_Add) { 7058 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7059 E = BinOp->getRHS(); 7060 goto tryAgain; 7061 } 7062 } else { 7063 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7064 E = BinOp->getLHS(); 7065 goto tryAgain; 7066 } 7067 } 7068 } 7069 7070 return SLCT_NotALiteral; 7071 } 7072 case Stmt::UnaryOperatorClass: { 7073 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7074 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7075 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7076 Expr::EvalResult IndexResult; 7077 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7078 Expr::SE_NoSideEffects, 7079 S.isConstantEvaluated())) { 7080 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7081 /*RHS is int*/ true); 7082 E = ASE->getBase(); 7083 goto tryAgain; 7084 } 7085 } 7086 7087 return SLCT_NotALiteral; 7088 } 7089 7090 default: 7091 return SLCT_NotALiteral; 7092 } 7093 } 7094 7095 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7096 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7097 .Case("scanf", FST_Scanf) 7098 .Cases("printf", "printf0", FST_Printf) 7099 .Cases("NSString", "CFString", FST_NSString) 7100 .Case("strftime", FST_Strftime) 7101 .Case("strfmon", FST_Strfmon) 7102 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7103 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7104 .Case("os_trace", FST_OSLog) 7105 .Case("os_log", FST_OSLog) 7106 .Default(FST_Unknown); 7107 } 7108 7109 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7110 /// functions) for correct use of format strings. 7111 /// Returns true if a format string has been fully checked. 7112 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7113 ArrayRef<const Expr *> Args, 7114 bool IsCXXMember, 7115 VariadicCallType CallType, 7116 SourceLocation Loc, SourceRange Range, 7117 llvm::SmallBitVector &CheckedVarArgs) { 7118 FormatStringInfo FSI; 7119 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7120 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7121 FSI.FirstDataArg, GetFormatStringType(Format), 7122 CallType, Loc, Range, CheckedVarArgs); 7123 return false; 7124 } 7125 7126 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7127 bool HasVAListArg, unsigned format_idx, 7128 unsigned firstDataArg, FormatStringType Type, 7129 VariadicCallType CallType, 7130 SourceLocation Loc, SourceRange Range, 7131 llvm::SmallBitVector &CheckedVarArgs) { 7132 // CHECK: printf/scanf-like function is called with no format string. 7133 if (format_idx >= Args.size()) { 7134 Diag(Loc, diag::warn_missing_format_string) << Range; 7135 return false; 7136 } 7137 7138 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7139 7140 // CHECK: format string is not a string literal. 7141 // 7142 // Dynamically generated format strings are difficult to 7143 // automatically vet at compile time. Requiring that format strings 7144 // are string literals: (1) permits the checking of format strings by 7145 // the compiler and thereby (2) can practically remove the source of 7146 // many format string exploits. 7147 7148 // Format string can be either ObjC string (e.g. @"%d") or 7149 // C string (e.g. "%d") 7150 // ObjC string uses the same format specifiers as C string, so we can use 7151 // the same format string checking logic for both ObjC and C strings. 7152 UncoveredArgHandler UncoveredArg; 7153 StringLiteralCheckType CT = 7154 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7155 format_idx, firstDataArg, Type, CallType, 7156 /*IsFunctionCall*/ true, CheckedVarArgs, 7157 UncoveredArg, 7158 /*no string offset*/ llvm::APSInt(64, false) = 0); 7159 7160 // Generate a diagnostic where an uncovered argument is detected. 7161 if (UncoveredArg.hasUncoveredArg()) { 7162 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7163 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7164 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7165 } 7166 7167 if (CT != SLCT_NotALiteral) 7168 // Literal format string found, check done! 7169 return CT == SLCT_CheckedLiteral; 7170 7171 // Strftime is particular as it always uses a single 'time' argument, 7172 // so it is safe to pass a non-literal string. 7173 if (Type == FST_Strftime) 7174 return false; 7175 7176 // Do not emit diag when the string param is a macro expansion and the 7177 // format is either NSString or CFString. This is a hack to prevent 7178 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7179 // which are usually used in place of NS and CF string literals. 7180 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7181 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7182 return false; 7183 7184 // If there are no arguments specified, warn with -Wformat-security, otherwise 7185 // warn only with -Wformat-nonliteral. 7186 if (Args.size() == firstDataArg) { 7187 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7188 << OrigFormatExpr->getSourceRange(); 7189 switch (Type) { 7190 default: 7191 break; 7192 case FST_Kprintf: 7193 case FST_FreeBSDKPrintf: 7194 case FST_Printf: 7195 Diag(FormatLoc, diag::note_format_security_fixit) 7196 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7197 break; 7198 case FST_NSString: 7199 Diag(FormatLoc, diag::note_format_security_fixit) 7200 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7201 break; 7202 } 7203 } else { 7204 Diag(FormatLoc, diag::warn_format_nonliteral) 7205 << OrigFormatExpr->getSourceRange(); 7206 } 7207 return false; 7208 } 7209 7210 namespace { 7211 7212 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7213 protected: 7214 Sema &S; 7215 const FormatStringLiteral *FExpr; 7216 const Expr *OrigFormatExpr; 7217 const Sema::FormatStringType FSType; 7218 const unsigned FirstDataArg; 7219 const unsigned NumDataArgs; 7220 const char *Beg; // Start of format string. 7221 const bool HasVAListArg; 7222 ArrayRef<const Expr *> Args; 7223 unsigned FormatIdx; 7224 llvm::SmallBitVector CoveredArgs; 7225 bool usesPositionalArgs = false; 7226 bool atFirstArg = true; 7227 bool inFunctionCall; 7228 Sema::VariadicCallType CallType; 7229 llvm::SmallBitVector &CheckedVarArgs; 7230 UncoveredArgHandler &UncoveredArg; 7231 7232 public: 7233 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7234 const Expr *origFormatExpr, 7235 const Sema::FormatStringType type, unsigned firstDataArg, 7236 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7237 ArrayRef<const Expr *> Args, unsigned formatIdx, 7238 bool inFunctionCall, Sema::VariadicCallType callType, 7239 llvm::SmallBitVector &CheckedVarArgs, 7240 UncoveredArgHandler &UncoveredArg) 7241 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7242 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7243 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7244 inFunctionCall(inFunctionCall), CallType(callType), 7245 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7246 CoveredArgs.resize(numDataArgs); 7247 CoveredArgs.reset(); 7248 } 7249 7250 void DoneProcessing(); 7251 7252 void HandleIncompleteSpecifier(const char *startSpecifier, 7253 unsigned specifierLen) override; 7254 7255 void HandleInvalidLengthModifier( 7256 const analyze_format_string::FormatSpecifier &FS, 7257 const analyze_format_string::ConversionSpecifier &CS, 7258 const char *startSpecifier, unsigned specifierLen, 7259 unsigned DiagID); 7260 7261 void HandleNonStandardLengthModifier( 7262 const analyze_format_string::FormatSpecifier &FS, 7263 const char *startSpecifier, unsigned specifierLen); 7264 7265 void HandleNonStandardConversionSpecifier( 7266 const analyze_format_string::ConversionSpecifier &CS, 7267 const char *startSpecifier, unsigned specifierLen); 7268 7269 void HandlePosition(const char *startPos, unsigned posLen) override; 7270 7271 void HandleInvalidPosition(const char *startSpecifier, 7272 unsigned specifierLen, 7273 analyze_format_string::PositionContext p) override; 7274 7275 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7276 7277 void HandleNullChar(const char *nullCharacter) override; 7278 7279 template <typename Range> 7280 static void 7281 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7282 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7283 bool IsStringLocation, Range StringRange, 7284 ArrayRef<FixItHint> Fixit = None); 7285 7286 protected: 7287 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7288 const char *startSpec, 7289 unsigned specifierLen, 7290 const char *csStart, unsigned csLen); 7291 7292 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7293 const char *startSpec, 7294 unsigned specifierLen); 7295 7296 SourceRange getFormatStringRange(); 7297 CharSourceRange getSpecifierRange(const char *startSpecifier, 7298 unsigned specifierLen); 7299 SourceLocation getLocationOfByte(const char *x); 7300 7301 const Expr *getDataArg(unsigned i) const; 7302 7303 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7304 const analyze_format_string::ConversionSpecifier &CS, 7305 const char *startSpecifier, unsigned specifierLen, 7306 unsigned argIndex); 7307 7308 template <typename Range> 7309 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7310 bool IsStringLocation, Range StringRange, 7311 ArrayRef<FixItHint> Fixit = None); 7312 }; 7313 7314 } // namespace 7315 7316 SourceRange CheckFormatHandler::getFormatStringRange() { 7317 return OrigFormatExpr->getSourceRange(); 7318 } 7319 7320 CharSourceRange CheckFormatHandler:: 7321 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7322 SourceLocation Start = getLocationOfByte(startSpecifier); 7323 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7324 7325 // Advance the end SourceLocation by one due to half-open ranges. 7326 End = End.getLocWithOffset(1); 7327 7328 return CharSourceRange::getCharRange(Start, End); 7329 } 7330 7331 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7332 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7333 S.getLangOpts(), S.Context.getTargetInfo()); 7334 } 7335 7336 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7337 unsigned specifierLen){ 7338 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7339 getLocationOfByte(startSpecifier), 7340 /*IsStringLocation*/true, 7341 getSpecifierRange(startSpecifier, specifierLen)); 7342 } 7343 7344 void CheckFormatHandler::HandleInvalidLengthModifier( 7345 const analyze_format_string::FormatSpecifier &FS, 7346 const analyze_format_string::ConversionSpecifier &CS, 7347 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7348 using namespace analyze_format_string; 7349 7350 const LengthModifier &LM = FS.getLengthModifier(); 7351 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7352 7353 // See if we know how to fix this length modifier. 7354 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7355 if (FixedLM) { 7356 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7357 getLocationOfByte(LM.getStart()), 7358 /*IsStringLocation*/true, 7359 getSpecifierRange(startSpecifier, specifierLen)); 7360 7361 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7362 << FixedLM->toString() 7363 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7364 7365 } else { 7366 FixItHint Hint; 7367 if (DiagID == diag::warn_format_nonsensical_length) 7368 Hint = FixItHint::CreateRemoval(LMRange); 7369 7370 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7371 getLocationOfByte(LM.getStart()), 7372 /*IsStringLocation*/true, 7373 getSpecifierRange(startSpecifier, specifierLen), 7374 Hint); 7375 } 7376 } 7377 7378 void CheckFormatHandler::HandleNonStandardLengthModifier( 7379 const analyze_format_string::FormatSpecifier &FS, 7380 const char *startSpecifier, unsigned specifierLen) { 7381 using namespace analyze_format_string; 7382 7383 const LengthModifier &LM = FS.getLengthModifier(); 7384 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7385 7386 // See if we know how to fix this length modifier. 7387 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7388 if (FixedLM) { 7389 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7390 << LM.toString() << 0, 7391 getLocationOfByte(LM.getStart()), 7392 /*IsStringLocation*/true, 7393 getSpecifierRange(startSpecifier, specifierLen)); 7394 7395 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7396 << FixedLM->toString() 7397 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7398 7399 } else { 7400 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7401 << LM.toString() << 0, 7402 getLocationOfByte(LM.getStart()), 7403 /*IsStringLocation*/true, 7404 getSpecifierRange(startSpecifier, specifierLen)); 7405 } 7406 } 7407 7408 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7409 const analyze_format_string::ConversionSpecifier &CS, 7410 const char *startSpecifier, unsigned specifierLen) { 7411 using namespace analyze_format_string; 7412 7413 // See if we know how to fix this conversion specifier. 7414 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7415 if (FixedCS) { 7416 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7417 << CS.toString() << /*conversion specifier*/1, 7418 getLocationOfByte(CS.getStart()), 7419 /*IsStringLocation*/true, 7420 getSpecifierRange(startSpecifier, specifierLen)); 7421 7422 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7423 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7424 << FixedCS->toString() 7425 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7426 } else { 7427 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7428 << CS.toString() << /*conversion specifier*/1, 7429 getLocationOfByte(CS.getStart()), 7430 /*IsStringLocation*/true, 7431 getSpecifierRange(startSpecifier, specifierLen)); 7432 } 7433 } 7434 7435 void CheckFormatHandler::HandlePosition(const char *startPos, 7436 unsigned posLen) { 7437 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7438 getLocationOfByte(startPos), 7439 /*IsStringLocation*/true, 7440 getSpecifierRange(startPos, posLen)); 7441 } 7442 7443 void 7444 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7445 analyze_format_string::PositionContext p) { 7446 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7447 << (unsigned) p, 7448 getLocationOfByte(startPos), /*IsStringLocation*/true, 7449 getSpecifierRange(startPos, posLen)); 7450 } 7451 7452 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7453 unsigned posLen) { 7454 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7455 getLocationOfByte(startPos), 7456 /*IsStringLocation*/true, 7457 getSpecifierRange(startPos, posLen)); 7458 } 7459 7460 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7461 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7462 // The presence of a null character is likely an error. 7463 EmitFormatDiagnostic( 7464 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7465 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7466 getFormatStringRange()); 7467 } 7468 } 7469 7470 // Note that this may return NULL if there was an error parsing or building 7471 // one of the argument expressions. 7472 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7473 return Args[FirstDataArg + i]; 7474 } 7475 7476 void CheckFormatHandler::DoneProcessing() { 7477 // Does the number of data arguments exceed the number of 7478 // format conversions in the format string? 7479 if (!HasVAListArg) { 7480 // Find any arguments that weren't covered. 7481 CoveredArgs.flip(); 7482 signed notCoveredArg = CoveredArgs.find_first(); 7483 if (notCoveredArg >= 0) { 7484 assert((unsigned)notCoveredArg < NumDataArgs); 7485 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7486 } else { 7487 UncoveredArg.setAllCovered(); 7488 } 7489 } 7490 } 7491 7492 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7493 const Expr *ArgExpr) { 7494 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7495 "Invalid state"); 7496 7497 if (!ArgExpr) 7498 return; 7499 7500 SourceLocation Loc = ArgExpr->getBeginLoc(); 7501 7502 if (S.getSourceManager().isInSystemMacro(Loc)) 7503 return; 7504 7505 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7506 for (auto E : DiagnosticExprs) 7507 PDiag << E->getSourceRange(); 7508 7509 CheckFormatHandler::EmitFormatDiagnostic( 7510 S, IsFunctionCall, DiagnosticExprs[0], 7511 PDiag, Loc, /*IsStringLocation*/false, 7512 DiagnosticExprs[0]->getSourceRange()); 7513 } 7514 7515 bool 7516 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7517 SourceLocation Loc, 7518 const char *startSpec, 7519 unsigned specifierLen, 7520 const char *csStart, 7521 unsigned csLen) { 7522 bool keepGoing = true; 7523 if (argIndex < NumDataArgs) { 7524 // Consider the argument coverered, even though the specifier doesn't 7525 // make sense. 7526 CoveredArgs.set(argIndex); 7527 } 7528 else { 7529 // If argIndex exceeds the number of data arguments we 7530 // don't issue a warning because that is just a cascade of warnings (and 7531 // they may have intended '%%' anyway). We don't want to continue processing 7532 // the format string after this point, however, as we will like just get 7533 // gibberish when trying to match arguments. 7534 keepGoing = false; 7535 } 7536 7537 StringRef Specifier(csStart, csLen); 7538 7539 // If the specifier in non-printable, it could be the first byte of a UTF-8 7540 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7541 // hex value. 7542 std::string CodePointStr; 7543 if (!llvm::sys::locale::isPrint(*csStart)) { 7544 llvm::UTF32 CodePoint; 7545 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7546 const llvm::UTF8 *E = 7547 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7548 llvm::ConversionResult Result = 7549 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7550 7551 if (Result != llvm::conversionOK) { 7552 unsigned char FirstChar = *csStart; 7553 CodePoint = (llvm::UTF32)FirstChar; 7554 } 7555 7556 llvm::raw_string_ostream OS(CodePointStr); 7557 if (CodePoint < 256) 7558 OS << "\\x" << llvm::format("%02x", CodePoint); 7559 else if (CodePoint <= 0xFFFF) 7560 OS << "\\u" << llvm::format("%04x", CodePoint); 7561 else 7562 OS << "\\U" << llvm::format("%08x", CodePoint); 7563 OS.flush(); 7564 Specifier = CodePointStr; 7565 } 7566 7567 EmitFormatDiagnostic( 7568 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7569 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7570 7571 return keepGoing; 7572 } 7573 7574 void 7575 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7576 const char *startSpec, 7577 unsigned specifierLen) { 7578 EmitFormatDiagnostic( 7579 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7580 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7581 } 7582 7583 bool 7584 CheckFormatHandler::CheckNumArgs( 7585 const analyze_format_string::FormatSpecifier &FS, 7586 const analyze_format_string::ConversionSpecifier &CS, 7587 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7588 7589 if (argIndex >= NumDataArgs) { 7590 PartialDiagnostic PDiag = FS.usesPositionalArg() 7591 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7592 << (argIndex+1) << NumDataArgs) 7593 : S.PDiag(diag::warn_printf_insufficient_data_args); 7594 EmitFormatDiagnostic( 7595 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7596 getSpecifierRange(startSpecifier, specifierLen)); 7597 7598 // Since more arguments than conversion tokens are given, by extension 7599 // all arguments are covered, so mark this as so. 7600 UncoveredArg.setAllCovered(); 7601 return false; 7602 } 7603 return true; 7604 } 7605 7606 template<typename Range> 7607 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7608 SourceLocation Loc, 7609 bool IsStringLocation, 7610 Range StringRange, 7611 ArrayRef<FixItHint> FixIt) { 7612 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7613 Loc, IsStringLocation, StringRange, FixIt); 7614 } 7615 7616 /// If the format string is not within the function call, emit a note 7617 /// so that the function call and string are in diagnostic messages. 7618 /// 7619 /// \param InFunctionCall if true, the format string is within the function 7620 /// call and only one diagnostic message will be produced. Otherwise, an 7621 /// extra note will be emitted pointing to location of the format string. 7622 /// 7623 /// \param ArgumentExpr the expression that is passed as the format string 7624 /// argument in the function call. Used for getting locations when two 7625 /// diagnostics are emitted. 7626 /// 7627 /// \param PDiag the callee should already have provided any strings for the 7628 /// diagnostic message. This function only adds locations and fixits 7629 /// to diagnostics. 7630 /// 7631 /// \param Loc primary location for diagnostic. If two diagnostics are 7632 /// required, one will be at Loc and a new SourceLocation will be created for 7633 /// the other one. 7634 /// 7635 /// \param IsStringLocation if true, Loc points to the format string should be 7636 /// used for the note. Otherwise, Loc points to the argument list and will 7637 /// be used with PDiag. 7638 /// 7639 /// \param StringRange some or all of the string to highlight. This is 7640 /// templated so it can accept either a CharSourceRange or a SourceRange. 7641 /// 7642 /// \param FixIt optional fix it hint for the format string. 7643 template <typename Range> 7644 void CheckFormatHandler::EmitFormatDiagnostic( 7645 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7646 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7647 Range StringRange, ArrayRef<FixItHint> FixIt) { 7648 if (InFunctionCall) { 7649 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7650 D << StringRange; 7651 D << FixIt; 7652 } else { 7653 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7654 << ArgumentExpr->getSourceRange(); 7655 7656 const Sema::SemaDiagnosticBuilder &Note = 7657 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7658 diag::note_format_string_defined); 7659 7660 Note << StringRange; 7661 Note << FixIt; 7662 } 7663 } 7664 7665 //===--- CHECK: Printf format string checking ------------------------------===// 7666 7667 namespace { 7668 7669 class CheckPrintfHandler : public CheckFormatHandler { 7670 public: 7671 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7672 const Expr *origFormatExpr, 7673 const Sema::FormatStringType type, unsigned firstDataArg, 7674 unsigned numDataArgs, bool isObjC, const char *beg, 7675 bool hasVAListArg, ArrayRef<const Expr *> Args, 7676 unsigned formatIdx, bool inFunctionCall, 7677 Sema::VariadicCallType CallType, 7678 llvm::SmallBitVector &CheckedVarArgs, 7679 UncoveredArgHandler &UncoveredArg) 7680 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7681 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7682 inFunctionCall, CallType, CheckedVarArgs, 7683 UncoveredArg) {} 7684 7685 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7686 7687 /// Returns true if '%@' specifiers are allowed in the format string. 7688 bool allowsObjCArg() const { 7689 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7690 FSType == Sema::FST_OSTrace; 7691 } 7692 7693 bool HandleInvalidPrintfConversionSpecifier( 7694 const analyze_printf::PrintfSpecifier &FS, 7695 const char *startSpecifier, 7696 unsigned specifierLen) override; 7697 7698 void handleInvalidMaskType(StringRef MaskType) override; 7699 7700 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7701 const char *startSpecifier, 7702 unsigned specifierLen) override; 7703 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7704 const char *StartSpecifier, 7705 unsigned SpecifierLen, 7706 const Expr *E); 7707 7708 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7709 const char *startSpecifier, unsigned specifierLen); 7710 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7711 const analyze_printf::OptionalAmount &Amt, 7712 unsigned type, 7713 const char *startSpecifier, unsigned specifierLen); 7714 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7715 const analyze_printf::OptionalFlag &flag, 7716 const char *startSpecifier, unsigned specifierLen); 7717 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7718 const analyze_printf::OptionalFlag &ignoredFlag, 7719 const analyze_printf::OptionalFlag &flag, 7720 const char *startSpecifier, unsigned specifierLen); 7721 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7722 const Expr *E); 7723 7724 void HandleEmptyObjCModifierFlag(const char *startFlag, 7725 unsigned flagLen) override; 7726 7727 void HandleInvalidObjCModifierFlag(const char *startFlag, 7728 unsigned flagLen) override; 7729 7730 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 7731 const char *flagsEnd, 7732 const char *conversionPosition) 7733 override; 7734 }; 7735 7736 } // namespace 7737 7738 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 7739 const analyze_printf::PrintfSpecifier &FS, 7740 const char *startSpecifier, 7741 unsigned specifierLen) { 7742 const analyze_printf::PrintfConversionSpecifier &CS = 7743 FS.getConversionSpecifier(); 7744 7745 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 7746 getLocationOfByte(CS.getStart()), 7747 startSpecifier, specifierLen, 7748 CS.getStart(), CS.getLength()); 7749 } 7750 7751 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 7752 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 7753 } 7754 7755 bool CheckPrintfHandler::HandleAmount( 7756 const analyze_format_string::OptionalAmount &Amt, 7757 unsigned k, const char *startSpecifier, 7758 unsigned specifierLen) { 7759 if (Amt.hasDataArgument()) { 7760 if (!HasVAListArg) { 7761 unsigned argIndex = Amt.getArgIndex(); 7762 if (argIndex >= NumDataArgs) { 7763 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 7764 << k, 7765 getLocationOfByte(Amt.getStart()), 7766 /*IsStringLocation*/true, 7767 getSpecifierRange(startSpecifier, specifierLen)); 7768 // Don't do any more checking. We will just emit 7769 // spurious errors. 7770 return false; 7771 } 7772 7773 // Type check the data argument. It should be an 'int'. 7774 // Although not in conformance with C99, we also allow the argument to be 7775 // an 'unsigned int' as that is a reasonably safe case. GCC also 7776 // doesn't emit a warning for that case. 7777 CoveredArgs.set(argIndex); 7778 const Expr *Arg = getDataArg(argIndex); 7779 if (!Arg) 7780 return false; 7781 7782 QualType T = Arg->getType(); 7783 7784 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 7785 assert(AT.isValid()); 7786 7787 if (!AT.matchesType(S.Context, T)) { 7788 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 7789 << k << AT.getRepresentativeTypeName(S.Context) 7790 << T << Arg->getSourceRange(), 7791 getLocationOfByte(Amt.getStart()), 7792 /*IsStringLocation*/true, 7793 getSpecifierRange(startSpecifier, specifierLen)); 7794 // Don't do any more checking. We will just emit 7795 // spurious errors. 7796 return false; 7797 } 7798 } 7799 } 7800 return true; 7801 } 7802 7803 void CheckPrintfHandler::HandleInvalidAmount( 7804 const analyze_printf::PrintfSpecifier &FS, 7805 const analyze_printf::OptionalAmount &Amt, 7806 unsigned type, 7807 const char *startSpecifier, 7808 unsigned specifierLen) { 7809 const analyze_printf::PrintfConversionSpecifier &CS = 7810 FS.getConversionSpecifier(); 7811 7812 FixItHint fixit = 7813 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 7814 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 7815 Amt.getConstantLength())) 7816 : FixItHint(); 7817 7818 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 7819 << type << CS.toString(), 7820 getLocationOfByte(Amt.getStart()), 7821 /*IsStringLocation*/true, 7822 getSpecifierRange(startSpecifier, specifierLen), 7823 fixit); 7824 } 7825 7826 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7827 const analyze_printf::OptionalFlag &flag, 7828 const char *startSpecifier, 7829 unsigned specifierLen) { 7830 // Warn about pointless flag with a fixit removal. 7831 const analyze_printf::PrintfConversionSpecifier &CS = 7832 FS.getConversionSpecifier(); 7833 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 7834 << flag.toString() << CS.toString(), 7835 getLocationOfByte(flag.getPosition()), 7836 /*IsStringLocation*/true, 7837 getSpecifierRange(startSpecifier, specifierLen), 7838 FixItHint::CreateRemoval( 7839 getSpecifierRange(flag.getPosition(), 1))); 7840 } 7841 7842 void CheckPrintfHandler::HandleIgnoredFlag( 7843 const analyze_printf::PrintfSpecifier &FS, 7844 const analyze_printf::OptionalFlag &ignoredFlag, 7845 const analyze_printf::OptionalFlag &flag, 7846 const char *startSpecifier, 7847 unsigned specifierLen) { 7848 // Warn about ignored flag with a fixit removal. 7849 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 7850 << ignoredFlag.toString() << flag.toString(), 7851 getLocationOfByte(ignoredFlag.getPosition()), 7852 /*IsStringLocation*/true, 7853 getSpecifierRange(startSpecifier, specifierLen), 7854 FixItHint::CreateRemoval( 7855 getSpecifierRange(ignoredFlag.getPosition(), 1))); 7856 } 7857 7858 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 7859 unsigned flagLen) { 7860 // Warn about an empty flag. 7861 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 7862 getLocationOfByte(startFlag), 7863 /*IsStringLocation*/true, 7864 getSpecifierRange(startFlag, flagLen)); 7865 } 7866 7867 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 7868 unsigned flagLen) { 7869 // Warn about an invalid flag. 7870 auto Range = getSpecifierRange(startFlag, flagLen); 7871 StringRef flag(startFlag, flagLen); 7872 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 7873 getLocationOfByte(startFlag), 7874 /*IsStringLocation*/true, 7875 Range, FixItHint::CreateRemoval(Range)); 7876 } 7877 7878 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 7879 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 7880 // Warn about using '[...]' without a '@' conversion. 7881 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 7882 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 7883 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 7884 getLocationOfByte(conversionPosition), 7885 /*IsStringLocation*/true, 7886 Range, FixItHint::CreateRemoval(Range)); 7887 } 7888 7889 // Determines if the specified is a C++ class or struct containing 7890 // a member with the specified name and kind (e.g. a CXXMethodDecl named 7891 // "c_str()"). 7892 template<typename MemberKind> 7893 static llvm::SmallPtrSet<MemberKind*, 1> 7894 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 7895 const RecordType *RT = Ty->getAs<RecordType>(); 7896 llvm::SmallPtrSet<MemberKind*, 1> Results; 7897 7898 if (!RT) 7899 return Results; 7900 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 7901 if (!RD || !RD->getDefinition()) 7902 return Results; 7903 7904 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 7905 Sema::LookupMemberName); 7906 R.suppressDiagnostics(); 7907 7908 // We just need to include all members of the right kind turned up by the 7909 // filter, at this point. 7910 if (S.LookupQualifiedName(R, RT->getDecl())) 7911 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 7912 NamedDecl *decl = (*I)->getUnderlyingDecl(); 7913 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 7914 Results.insert(FK); 7915 } 7916 return Results; 7917 } 7918 7919 /// Check if we could call '.c_str()' on an object. 7920 /// 7921 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 7922 /// allow the call, or if it would be ambiguous). 7923 bool Sema::hasCStrMethod(const Expr *E) { 7924 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7925 7926 MethodSet Results = 7927 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 7928 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7929 MI != ME; ++MI) 7930 if ((*MI)->getMinRequiredArguments() == 0) 7931 return true; 7932 return false; 7933 } 7934 7935 // Check if a (w)string was passed when a (w)char* was needed, and offer a 7936 // better diagnostic if so. AT is assumed to be valid. 7937 // Returns true when a c_str() conversion method is found. 7938 bool CheckPrintfHandler::checkForCStrMembers( 7939 const analyze_printf::ArgType &AT, const Expr *E) { 7940 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7941 7942 MethodSet Results = 7943 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 7944 7945 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7946 MI != ME; ++MI) { 7947 const CXXMethodDecl *Method = *MI; 7948 if (Method->getMinRequiredArguments() == 0 && 7949 AT.matchesType(S.Context, Method->getReturnType())) { 7950 // FIXME: Suggest parens if the expression needs them. 7951 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 7952 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 7953 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 7954 return true; 7955 } 7956 } 7957 7958 return false; 7959 } 7960 7961 bool 7962 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 7963 &FS, 7964 const char *startSpecifier, 7965 unsigned specifierLen) { 7966 using namespace analyze_format_string; 7967 using namespace analyze_printf; 7968 7969 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 7970 7971 if (FS.consumesDataArgument()) { 7972 if (atFirstArg) { 7973 atFirstArg = false; 7974 usesPositionalArgs = FS.usesPositionalArg(); 7975 } 7976 else if (usesPositionalArgs != FS.usesPositionalArg()) { 7977 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 7978 startSpecifier, specifierLen); 7979 return false; 7980 } 7981 } 7982 7983 // First check if the field width, precision, and conversion specifier 7984 // have matching data arguments. 7985 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 7986 startSpecifier, specifierLen)) { 7987 return false; 7988 } 7989 7990 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 7991 startSpecifier, specifierLen)) { 7992 return false; 7993 } 7994 7995 if (!CS.consumesDataArgument()) { 7996 // FIXME: Technically specifying a precision or field width here 7997 // makes no sense. Worth issuing a warning at some point. 7998 return true; 7999 } 8000 8001 // Consume the argument. 8002 unsigned argIndex = FS.getArgIndex(); 8003 if (argIndex < NumDataArgs) { 8004 // The check to see if the argIndex is valid will come later. 8005 // We set the bit here because we may exit early from this 8006 // function if we encounter some other error. 8007 CoveredArgs.set(argIndex); 8008 } 8009 8010 // FreeBSD kernel extensions. 8011 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8012 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8013 // We need at least two arguments. 8014 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8015 return false; 8016 8017 // Claim the second argument. 8018 CoveredArgs.set(argIndex + 1); 8019 8020 // Type check the first argument (int for %b, pointer for %D) 8021 const Expr *Ex = getDataArg(argIndex); 8022 const analyze_printf::ArgType &AT = 8023 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8024 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8025 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8026 EmitFormatDiagnostic( 8027 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8028 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8029 << false << Ex->getSourceRange(), 8030 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8031 getSpecifierRange(startSpecifier, specifierLen)); 8032 8033 // Type check the second argument (char * for both %b and %D) 8034 Ex = getDataArg(argIndex + 1); 8035 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8036 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8037 EmitFormatDiagnostic( 8038 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8039 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8040 << false << Ex->getSourceRange(), 8041 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8042 getSpecifierRange(startSpecifier, specifierLen)); 8043 8044 return true; 8045 } 8046 8047 // Check for using an Objective-C specific conversion specifier 8048 // in a non-ObjC literal. 8049 if (!allowsObjCArg() && CS.isObjCArg()) { 8050 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8051 specifierLen); 8052 } 8053 8054 // %P can only be used with os_log. 8055 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8056 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8057 specifierLen); 8058 } 8059 8060 // %n is not allowed with os_log. 8061 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8062 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8063 getLocationOfByte(CS.getStart()), 8064 /*IsStringLocation*/ false, 8065 getSpecifierRange(startSpecifier, specifierLen)); 8066 8067 return true; 8068 } 8069 8070 // Only scalars are allowed for os_trace. 8071 if (FSType == Sema::FST_OSTrace && 8072 (CS.getKind() == ConversionSpecifier::PArg || 8073 CS.getKind() == ConversionSpecifier::sArg || 8074 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8075 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8076 specifierLen); 8077 } 8078 8079 // Check for use of public/private annotation outside of os_log(). 8080 if (FSType != Sema::FST_OSLog) { 8081 if (FS.isPublic().isSet()) { 8082 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8083 << "public", 8084 getLocationOfByte(FS.isPublic().getPosition()), 8085 /*IsStringLocation*/ false, 8086 getSpecifierRange(startSpecifier, specifierLen)); 8087 } 8088 if (FS.isPrivate().isSet()) { 8089 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8090 << "private", 8091 getLocationOfByte(FS.isPrivate().getPosition()), 8092 /*IsStringLocation*/ false, 8093 getSpecifierRange(startSpecifier, specifierLen)); 8094 } 8095 } 8096 8097 // Check for invalid use of field width 8098 if (!FS.hasValidFieldWidth()) { 8099 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8100 startSpecifier, specifierLen); 8101 } 8102 8103 // Check for invalid use of precision 8104 if (!FS.hasValidPrecision()) { 8105 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8106 startSpecifier, specifierLen); 8107 } 8108 8109 // Precision is mandatory for %P specifier. 8110 if (CS.getKind() == ConversionSpecifier::PArg && 8111 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8112 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8113 getLocationOfByte(startSpecifier), 8114 /*IsStringLocation*/ false, 8115 getSpecifierRange(startSpecifier, specifierLen)); 8116 } 8117 8118 // Check each flag does not conflict with any other component. 8119 if (!FS.hasValidThousandsGroupingPrefix()) 8120 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8121 if (!FS.hasValidLeadingZeros()) 8122 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8123 if (!FS.hasValidPlusPrefix()) 8124 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8125 if (!FS.hasValidSpacePrefix()) 8126 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8127 if (!FS.hasValidAlternativeForm()) 8128 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8129 if (!FS.hasValidLeftJustified()) 8130 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8131 8132 // Check that flags are not ignored by another flag 8133 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8134 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8135 startSpecifier, specifierLen); 8136 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8137 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8138 startSpecifier, specifierLen); 8139 8140 // Check the length modifier is valid with the given conversion specifier. 8141 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8142 S.getLangOpts())) 8143 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8144 diag::warn_format_nonsensical_length); 8145 else if (!FS.hasStandardLengthModifier()) 8146 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8147 else if (!FS.hasStandardLengthConversionCombination()) 8148 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8149 diag::warn_format_non_standard_conversion_spec); 8150 8151 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8152 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8153 8154 // The remaining checks depend on the data arguments. 8155 if (HasVAListArg) 8156 return true; 8157 8158 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8159 return false; 8160 8161 const Expr *Arg = getDataArg(argIndex); 8162 if (!Arg) 8163 return true; 8164 8165 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8166 } 8167 8168 static bool requiresParensToAddCast(const Expr *E) { 8169 // FIXME: We should have a general way to reason about operator 8170 // precedence and whether parens are actually needed here. 8171 // Take care of a few common cases where they aren't. 8172 const Expr *Inside = E->IgnoreImpCasts(); 8173 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8174 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8175 8176 switch (Inside->getStmtClass()) { 8177 case Stmt::ArraySubscriptExprClass: 8178 case Stmt::CallExprClass: 8179 case Stmt::CharacterLiteralClass: 8180 case Stmt::CXXBoolLiteralExprClass: 8181 case Stmt::DeclRefExprClass: 8182 case Stmt::FloatingLiteralClass: 8183 case Stmt::IntegerLiteralClass: 8184 case Stmt::MemberExprClass: 8185 case Stmt::ObjCArrayLiteralClass: 8186 case Stmt::ObjCBoolLiteralExprClass: 8187 case Stmt::ObjCBoxedExprClass: 8188 case Stmt::ObjCDictionaryLiteralClass: 8189 case Stmt::ObjCEncodeExprClass: 8190 case Stmt::ObjCIvarRefExprClass: 8191 case Stmt::ObjCMessageExprClass: 8192 case Stmt::ObjCPropertyRefExprClass: 8193 case Stmt::ObjCStringLiteralClass: 8194 case Stmt::ObjCSubscriptRefExprClass: 8195 case Stmt::ParenExprClass: 8196 case Stmt::StringLiteralClass: 8197 case Stmt::UnaryOperatorClass: 8198 return false; 8199 default: 8200 return true; 8201 } 8202 } 8203 8204 static std::pair<QualType, StringRef> 8205 shouldNotPrintDirectly(const ASTContext &Context, 8206 QualType IntendedTy, 8207 const Expr *E) { 8208 // Use a 'while' to peel off layers of typedefs. 8209 QualType TyTy = IntendedTy; 8210 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8211 StringRef Name = UserTy->getDecl()->getName(); 8212 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8213 .Case("CFIndex", Context.getNSIntegerType()) 8214 .Case("NSInteger", Context.getNSIntegerType()) 8215 .Case("NSUInteger", Context.getNSUIntegerType()) 8216 .Case("SInt32", Context.IntTy) 8217 .Case("UInt32", Context.UnsignedIntTy) 8218 .Default(QualType()); 8219 8220 if (!CastTy.isNull()) 8221 return std::make_pair(CastTy, Name); 8222 8223 TyTy = UserTy->desugar(); 8224 } 8225 8226 // Strip parens if necessary. 8227 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8228 return shouldNotPrintDirectly(Context, 8229 PE->getSubExpr()->getType(), 8230 PE->getSubExpr()); 8231 8232 // If this is a conditional expression, then its result type is constructed 8233 // via usual arithmetic conversions and thus there might be no necessary 8234 // typedef sugar there. Recurse to operands to check for NSInteger & 8235 // Co. usage condition. 8236 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8237 QualType TrueTy, FalseTy; 8238 StringRef TrueName, FalseName; 8239 8240 std::tie(TrueTy, TrueName) = 8241 shouldNotPrintDirectly(Context, 8242 CO->getTrueExpr()->getType(), 8243 CO->getTrueExpr()); 8244 std::tie(FalseTy, FalseName) = 8245 shouldNotPrintDirectly(Context, 8246 CO->getFalseExpr()->getType(), 8247 CO->getFalseExpr()); 8248 8249 if (TrueTy == FalseTy) 8250 return std::make_pair(TrueTy, TrueName); 8251 else if (TrueTy.isNull()) 8252 return std::make_pair(FalseTy, FalseName); 8253 else if (FalseTy.isNull()) 8254 return std::make_pair(TrueTy, TrueName); 8255 } 8256 8257 return std::make_pair(QualType(), StringRef()); 8258 } 8259 8260 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8261 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8262 /// type do not count. 8263 static bool 8264 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8265 QualType From = ICE->getSubExpr()->getType(); 8266 QualType To = ICE->getType(); 8267 // It's an integer promotion if the destination type is the promoted 8268 // source type. 8269 if (ICE->getCastKind() == CK_IntegralCast && 8270 From->isPromotableIntegerType() && 8271 S.Context.getPromotedIntegerType(From) == To) 8272 return true; 8273 // Look through vector types, since we do default argument promotion for 8274 // those in OpenCL. 8275 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8276 From = VecTy->getElementType(); 8277 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8278 To = VecTy->getElementType(); 8279 // It's a floating promotion if the source type is a lower rank. 8280 return ICE->getCastKind() == CK_FloatingCast && 8281 S.Context.getFloatingTypeOrder(From, To) < 0; 8282 } 8283 8284 bool 8285 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8286 const char *StartSpecifier, 8287 unsigned SpecifierLen, 8288 const Expr *E) { 8289 using namespace analyze_format_string; 8290 using namespace analyze_printf; 8291 8292 // Now type check the data expression that matches the 8293 // format specifier. 8294 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8295 if (!AT.isValid()) 8296 return true; 8297 8298 QualType ExprTy = E->getType(); 8299 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8300 ExprTy = TET->getUnderlyingExpr()->getType(); 8301 } 8302 8303 // Diagnose attempts to print a boolean value as a character. Unlike other 8304 // -Wformat diagnostics, this is fine from a type perspective, but it still 8305 // doesn't make sense. 8306 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8307 E->isKnownToHaveBooleanValue()) { 8308 const CharSourceRange &CSR = 8309 getSpecifierRange(StartSpecifier, SpecifierLen); 8310 SmallString<4> FSString; 8311 llvm::raw_svector_ostream os(FSString); 8312 FS.toString(os); 8313 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8314 << FSString, 8315 E->getExprLoc(), false, CSR); 8316 return true; 8317 } 8318 8319 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8320 if (Match == analyze_printf::ArgType::Match) 8321 return true; 8322 8323 // Look through argument promotions for our error message's reported type. 8324 // This includes the integral and floating promotions, but excludes array 8325 // and function pointer decay (seeing that an argument intended to be a 8326 // string has type 'char [6]' is probably more confusing than 'char *') and 8327 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8328 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8329 if (isArithmeticArgumentPromotion(S, ICE)) { 8330 E = ICE->getSubExpr(); 8331 ExprTy = E->getType(); 8332 8333 // Check if we didn't match because of an implicit cast from a 'char' 8334 // or 'short' to an 'int'. This is done because printf is a varargs 8335 // function. 8336 if (ICE->getType() == S.Context.IntTy || 8337 ICE->getType() == S.Context.UnsignedIntTy) { 8338 // All further checking is done on the subexpression 8339 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8340 AT.matchesType(S.Context, ExprTy); 8341 if (ImplicitMatch == analyze_printf::ArgType::Match) 8342 return true; 8343 if (ImplicitMatch == ArgType::NoMatchPedantic || 8344 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8345 Match = ImplicitMatch; 8346 } 8347 } 8348 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8349 // Special case for 'a', which has type 'int' in C. 8350 // Note, however, that we do /not/ want to treat multibyte constants like 8351 // 'MooV' as characters! This form is deprecated but still exists. 8352 if (ExprTy == S.Context.IntTy) 8353 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8354 ExprTy = S.Context.CharTy; 8355 } 8356 8357 // Look through enums to their underlying type. 8358 bool IsEnum = false; 8359 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8360 ExprTy = EnumTy->getDecl()->getIntegerType(); 8361 IsEnum = true; 8362 } 8363 8364 // %C in an Objective-C context prints a unichar, not a wchar_t. 8365 // If the argument is an integer of some kind, believe the %C and suggest 8366 // a cast instead of changing the conversion specifier. 8367 QualType IntendedTy = ExprTy; 8368 if (isObjCContext() && 8369 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8370 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8371 !ExprTy->isCharType()) { 8372 // 'unichar' is defined as a typedef of unsigned short, but we should 8373 // prefer using the typedef if it is visible. 8374 IntendedTy = S.Context.UnsignedShortTy; 8375 8376 // While we are here, check if the value is an IntegerLiteral that happens 8377 // to be within the valid range. 8378 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8379 const llvm::APInt &V = IL->getValue(); 8380 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8381 return true; 8382 } 8383 8384 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8385 Sema::LookupOrdinaryName); 8386 if (S.LookupName(Result, S.getCurScope())) { 8387 NamedDecl *ND = Result.getFoundDecl(); 8388 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8389 if (TD->getUnderlyingType() == IntendedTy) 8390 IntendedTy = S.Context.getTypedefType(TD); 8391 } 8392 } 8393 } 8394 8395 // Special-case some of Darwin's platform-independence types by suggesting 8396 // casts to primitive types that are known to be large enough. 8397 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8398 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8399 QualType CastTy; 8400 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8401 if (!CastTy.isNull()) { 8402 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8403 // (long in ASTContext). Only complain to pedants. 8404 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8405 (AT.isSizeT() || AT.isPtrdiffT()) && 8406 AT.matchesType(S.Context, CastTy)) 8407 Match = ArgType::NoMatchPedantic; 8408 IntendedTy = CastTy; 8409 ShouldNotPrintDirectly = true; 8410 } 8411 } 8412 8413 // We may be able to offer a FixItHint if it is a supported type. 8414 PrintfSpecifier fixedFS = FS; 8415 bool Success = 8416 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8417 8418 if (Success) { 8419 // Get the fix string from the fixed format specifier 8420 SmallString<16> buf; 8421 llvm::raw_svector_ostream os(buf); 8422 fixedFS.toString(os); 8423 8424 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8425 8426 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8427 unsigned Diag; 8428 switch (Match) { 8429 case ArgType::Match: llvm_unreachable("expected non-matching"); 8430 case ArgType::NoMatchPedantic: 8431 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8432 break; 8433 case ArgType::NoMatchTypeConfusion: 8434 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8435 break; 8436 case ArgType::NoMatch: 8437 Diag = diag::warn_format_conversion_argument_type_mismatch; 8438 break; 8439 } 8440 8441 // In this case, the specifier is wrong and should be changed to match 8442 // the argument. 8443 EmitFormatDiagnostic(S.PDiag(Diag) 8444 << AT.getRepresentativeTypeName(S.Context) 8445 << IntendedTy << IsEnum << E->getSourceRange(), 8446 E->getBeginLoc(), 8447 /*IsStringLocation*/ false, SpecRange, 8448 FixItHint::CreateReplacement(SpecRange, os.str())); 8449 } else { 8450 // The canonical type for formatting this value is different from the 8451 // actual type of the expression. (This occurs, for example, with Darwin's 8452 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8453 // should be printed as 'long' for 64-bit compatibility.) 8454 // Rather than emitting a normal format/argument mismatch, we want to 8455 // add a cast to the recommended type (and correct the format string 8456 // if necessary). 8457 SmallString<16> CastBuf; 8458 llvm::raw_svector_ostream CastFix(CastBuf); 8459 CastFix << "("; 8460 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8461 CastFix << ")"; 8462 8463 SmallVector<FixItHint,4> Hints; 8464 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8465 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8466 8467 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8468 // If there's already a cast present, just replace it. 8469 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8470 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8471 8472 } else if (!requiresParensToAddCast(E)) { 8473 // If the expression has high enough precedence, 8474 // just write the C-style cast. 8475 Hints.push_back( 8476 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8477 } else { 8478 // Otherwise, add parens around the expression as well as the cast. 8479 CastFix << "("; 8480 Hints.push_back( 8481 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8482 8483 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8484 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8485 } 8486 8487 if (ShouldNotPrintDirectly) { 8488 // The expression has a type that should not be printed directly. 8489 // We extract the name from the typedef because we don't want to show 8490 // the underlying type in the diagnostic. 8491 StringRef Name; 8492 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8493 Name = TypedefTy->getDecl()->getName(); 8494 else 8495 Name = CastTyName; 8496 unsigned Diag = Match == ArgType::NoMatchPedantic 8497 ? diag::warn_format_argument_needs_cast_pedantic 8498 : diag::warn_format_argument_needs_cast; 8499 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8500 << E->getSourceRange(), 8501 E->getBeginLoc(), /*IsStringLocation=*/false, 8502 SpecRange, Hints); 8503 } else { 8504 // In this case, the expression could be printed using a different 8505 // specifier, but we've decided that the specifier is probably correct 8506 // and we should cast instead. Just use the normal warning message. 8507 EmitFormatDiagnostic( 8508 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8509 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8510 << E->getSourceRange(), 8511 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8512 } 8513 } 8514 } else { 8515 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8516 SpecifierLen); 8517 // Since the warning for passing non-POD types to variadic functions 8518 // was deferred until now, we emit a warning for non-POD 8519 // arguments here. 8520 switch (S.isValidVarArgType(ExprTy)) { 8521 case Sema::VAK_Valid: 8522 case Sema::VAK_ValidInCXX11: { 8523 unsigned Diag; 8524 switch (Match) { 8525 case ArgType::Match: llvm_unreachable("expected non-matching"); 8526 case ArgType::NoMatchPedantic: 8527 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8528 break; 8529 case ArgType::NoMatchTypeConfusion: 8530 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8531 break; 8532 case ArgType::NoMatch: 8533 Diag = diag::warn_format_conversion_argument_type_mismatch; 8534 break; 8535 } 8536 8537 EmitFormatDiagnostic( 8538 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8539 << IsEnum << CSR << E->getSourceRange(), 8540 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8541 break; 8542 } 8543 case Sema::VAK_Undefined: 8544 case Sema::VAK_MSVCUndefined: 8545 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8546 << S.getLangOpts().CPlusPlus11 << ExprTy 8547 << CallType 8548 << AT.getRepresentativeTypeName(S.Context) << CSR 8549 << E->getSourceRange(), 8550 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8551 checkForCStrMembers(AT, E); 8552 break; 8553 8554 case Sema::VAK_Invalid: 8555 if (ExprTy->isObjCObjectType()) 8556 EmitFormatDiagnostic( 8557 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8558 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8559 << AT.getRepresentativeTypeName(S.Context) << CSR 8560 << E->getSourceRange(), 8561 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8562 else 8563 // FIXME: If this is an initializer list, suggest removing the braces 8564 // or inserting a cast to the target type. 8565 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8566 << isa<InitListExpr>(E) << ExprTy << CallType 8567 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8568 break; 8569 } 8570 8571 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8572 "format string specifier index out of range"); 8573 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8574 } 8575 8576 return true; 8577 } 8578 8579 //===--- CHECK: Scanf format string checking ------------------------------===// 8580 8581 namespace { 8582 8583 class CheckScanfHandler : public CheckFormatHandler { 8584 public: 8585 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8586 const Expr *origFormatExpr, Sema::FormatStringType type, 8587 unsigned firstDataArg, unsigned numDataArgs, 8588 const char *beg, bool hasVAListArg, 8589 ArrayRef<const Expr *> Args, unsigned formatIdx, 8590 bool inFunctionCall, Sema::VariadicCallType CallType, 8591 llvm::SmallBitVector &CheckedVarArgs, 8592 UncoveredArgHandler &UncoveredArg) 8593 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8594 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8595 inFunctionCall, CallType, CheckedVarArgs, 8596 UncoveredArg) {} 8597 8598 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8599 const char *startSpecifier, 8600 unsigned specifierLen) override; 8601 8602 bool HandleInvalidScanfConversionSpecifier( 8603 const analyze_scanf::ScanfSpecifier &FS, 8604 const char *startSpecifier, 8605 unsigned specifierLen) override; 8606 8607 void HandleIncompleteScanList(const char *start, const char *end) override; 8608 }; 8609 8610 } // namespace 8611 8612 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8613 const char *end) { 8614 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8615 getLocationOfByte(end), /*IsStringLocation*/true, 8616 getSpecifierRange(start, end - start)); 8617 } 8618 8619 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8620 const analyze_scanf::ScanfSpecifier &FS, 8621 const char *startSpecifier, 8622 unsigned specifierLen) { 8623 const analyze_scanf::ScanfConversionSpecifier &CS = 8624 FS.getConversionSpecifier(); 8625 8626 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8627 getLocationOfByte(CS.getStart()), 8628 startSpecifier, specifierLen, 8629 CS.getStart(), CS.getLength()); 8630 } 8631 8632 bool CheckScanfHandler::HandleScanfSpecifier( 8633 const analyze_scanf::ScanfSpecifier &FS, 8634 const char *startSpecifier, 8635 unsigned specifierLen) { 8636 using namespace analyze_scanf; 8637 using namespace analyze_format_string; 8638 8639 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8640 8641 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8642 // be used to decide if we are using positional arguments consistently. 8643 if (FS.consumesDataArgument()) { 8644 if (atFirstArg) { 8645 atFirstArg = false; 8646 usesPositionalArgs = FS.usesPositionalArg(); 8647 } 8648 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8649 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8650 startSpecifier, specifierLen); 8651 return false; 8652 } 8653 } 8654 8655 // Check if the field with is non-zero. 8656 const OptionalAmount &Amt = FS.getFieldWidth(); 8657 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8658 if (Amt.getConstantAmount() == 0) { 8659 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8660 Amt.getConstantLength()); 8661 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8662 getLocationOfByte(Amt.getStart()), 8663 /*IsStringLocation*/true, R, 8664 FixItHint::CreateRemoval(R)); 8665 } 8666 } 8667 8668 if (!FS.consumesDataArgument()) { 8669 // FIXME: Technically specifying a precision or field width here 8670 // makes no sense. Worth issuing a warning at some point. 8671 return true; 8672 } 8673 8674 // Consume the argument. 8675 unsigned argIndex = FS.getArgIndex(); 8676 if (argIndex < NumDataArgs) { 8677 // The check to see if the argIndex is valid will come later. 8678 // We set the bit here because we may exit early from this 8679 // function if we encounter some other error. 8680 CoveredArgs.set(argIndex); 8681 } 8682 8683 // Check the length modifier is valid with the given conversion specifier. 8684 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8685 S.getLangOpts())) 8686 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8687 diag::warn_format_nonsensical_length); 8688 else if (!FS.hasStandardLengthModifier()) 8689 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8690 else if (!FS.hasStandardLengthConversionCombination()) 8691 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8692 diag::warn_format_non_standard_conversion_spec); 8693 8694 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8695 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8696 8697 // The remaining checks depend on the data arguments. 8698 if (HasVAListArg) 8699 return true; 8700 8701 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8702 return false; 8703 8704 // Check that the argument type matches the format specifier. 8705 const Expr *Ex = getDataArg(argIndex); 8706 if (!Ex) 8707 return true; 8708 8709 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8710 8711 if (!AT.isValid()) { 8712 return true; 8713 } 8714 8715 analyze_format_string::ArgType::MatchKind Match = 8716 AT.matchesType(S.Context, Ex->getType()); 8717 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8718 if (Match == analyze_format_string::ArgType::Match) 8719 return true; 8720 8721 ScanfSpecifier fixedFS = FS; 8722 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 8723 S.getLangOpts(), S.Context); 8724 8725 unsigned Diag = 8726 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8727 : diag::warn_format_conversion_argument_type_mismatch; 8728 8729 if (Success) { 8730 // Get the fix string from the fixed format specifier. 8731 SmallString<128> buf; 8732 llvm::raw_svector_ostream os(buf); 8733 fixedFS.toString(os); 8734 8735 EmitFormatDiagnostic( 8736 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 8737 << Ex->getType() << false << Ex->getSourceRange(), 8738 Ex->getBeginLoc(), 8739 /*IsStringLocation*/ false, 8740 getSpecifierRange(startSpecifier, specifierLen), 8741 FixItHint::CreateReplacement( 8742 getSpecifierRange(startSpecifier, specifierLen), os.str())); 8743 } else { 8744 EmitFormatDiagnostic(S.PDiag(Diag) 8745 << AT.getRepresentativeTypeName(S.Context) 8746 << Ex->getType() << false << Ex->getSourceRange(), 8747 Ex->getBeginLoc(), 8748 /*IsStringLocation*/ false, 8749 getSpecifierRange(startSpecifier, specifierLen)); 8750 } 8751 8752 return true; 8753 } 8754 8755 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8756 const Expr *OrigFormatExpr, 8757 ArrayRef<const Expr *> Args, 8758 bool HasVAListArg, unsigned format_idx, 8759 unsigned firstDataArg, 8760 Sema::FormatStringType Type, 8761 bool inFunctionCall, 8762 Sema::VariadicCallType CallType, 8763 llvm::SmallBitVector &CheckedVarArgs, 8764 UncoveredArgHandler &UncoveredArg, 8765 bool IgnoreStringsWithoutSpecifiers) { 8766 // CHECK: is the format string a wide literal? 8767 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 8768 CheckFormatHandler::EmitFormatDiagnostic( 8769 S, inFunctionCall, Args[format_idx], 8770 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 8771 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8772 return; 8773 } 8774 8775 // Str - The format string. NOTE: this is NOT null-terminated! 8776 StringRef StrRef = FExpr->getString(); 8777 const char *Str = StrRef.data(); 8778 // Account for cases where the string literal is truncated in a declaration. 8779 const ConstantArrayType *T = 8780 S.Context.getAsConstantArrayType(FExpr->getType()); 8781 assert(T && "String literal not of constant array type!"); 8782 size_t TypeSize = T->getSize().getZExtValue(); 8783 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8784 const unsigned numDataArgs = Args.size() - firstDataArg; 8785 8786 if (IgnoreStringsWithoutSpecifiers && 8787 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 8788 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 8789 return; 8790 8791 // Emit a warning if the string literal is truncated and does not contain an 8792 // embedded null character. 8793 if (TypeSize <= StrRef.size() && 8794 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 8795 CheckFormatHandler::EmitFormatDiagnostic( 8796 S, inFunctionCall, Args[format_idx], 8797 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 8798 FExpr->getBeginLoc(), 8799 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 8800 return; 8801 } 8802 8803 // CHECK: empty format string? 8804 if (StrLen == 0 && numDataArgs > 0) { 8805 CheckFormatHandler::EmitFormatDiagnostic( 8806 S, inFunctionCall, Args[format_idx], 8807 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 8808 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8809 return; 8810 } 8811 8812 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 8813 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 8814 Type == Sema::FST_OSTrace) { 8815 CheckPrintfHandler H( 8816 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 8817 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 8818 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 8819 CheckedVarArgs, UncoveredArg); 8820 8821 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 8822 S.getLangOpts(), 8823 S.Context.getTargetInfo(), 8824 Type == Sema::FST_FreeBSDKPrintf)) 8825 H.DoneProcessing(); 8826 } else if (Type == Sema::FST_Scanf) { 8827 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 8828 numDataArgs, Str, HasVAListArg, Args, format_idx, 8829 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 8830 8831 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 8832 S.getLangOpts(), 8833 S.Context.getTargetInfo())) 8834 H.DoneProcessing(); 8835 } // TODO: handle other formats 8836 } 8837 8838 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 8839 // Str - The format string. NOTE: this is NOT null-terminated! 8840 StringRef StrRef = FExpr->getString(); 8841 const char *Str = StrRef.data(); 8842 // Account for cases where the string literal is truncated in a declaration. 8843 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 8844 assert(T && "String literal not of constant array type!"); 8845 size_t TypeSize = T->getSize().getZExtValue(); 8846 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8847 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 8848 getLangOpts(), 8849 Context.getTargetInfo()); 8850 } 8851 8852 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 8853 8854 // Returns the related absolute value function that is larger, of 0 if one 8855 // does not exist. 8856 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 8857 switch (AbsFunction) { 8858 default: 8859 return 0; 8860 8861 case Builtin::BI__builtin_abs: 8862 return Builtin::BI__builtin_labs; 8863 case Builtin::BI__builtin_labs: 8864 return Builtin::BI__builtin_llabs; 8865 case Builtin::BI__builtin_llabs: 8866 return 0; 8867 8868 case Builtin::BI__builtin_fabsf: 8869 return Builtin::BI__builtin_fabs; 8870 case Builtin::BI__builtin_fabs: 8871 return Builtin::BI__builtin_fabsl; 8872 case Builtin::BI__builtin_fabsl: 8873 return 0; 8874 8875 case Builtin::BI__builtin_cabsf: 8876 return Builtin::BI__builtin_cabs; 8877 case Builtin::BI__builtin_cabs: 8878 return Builtin::BI__builtin_cabsl; 8879 case Builtin::BI__builtin_cabsl: 8880 return 0; 8881 8882 case Builtin::BIabs: 8883 return Builtin::BIlabs; 8884 case Builtin::BIlabs: 8885 return Builtin::BIllabs; 8886 case Builtin::BIllabs: 8887 return 0; 8888 8889 case Builtin::BIfabsf: 8890 return Builtin::BIfabs; 8891 case Builtin::BIfabs: 8892 return Builtin::BIfabsl; 8893 case Builtin::BIfabsl: 8894 return 0; 8895 8896 case Builtin::BIcabsf: 8897 return Builtin::BIcabs; 8898 case Builtin::BIcabs: 8899 return Builtin::BIcabsl; 8900 case Builtin::BIcabsl: 8901 return 0; 8902 } 8903 } 8904 8905 // Returns the argument type of the absolute value function. 8906 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 8907 unsigned AbsType) { 8908 if (AbsType == 0) 8909 return QualType(); 8910 8911 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 8912 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 8913 if (Error != ASTContext::GE_None) 8914 return QualType(); 8915 8916 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 8917 if (!FT) 8918 return QualType(); 8919 8920 if (FT->getNumParams() != 1) 8921 return QualType(); 8922 8923 return FT->getParamType(0); 8924 } 8925 8926 // Returns the best absolute value function, or zero, based on type and 8927 // current absolute value function. 8928 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 8929 unsigned AbsFunctionKind) { 8930 unsigned BestKind = 0; 8931 uint64_t ArgSize = Context.getTypeSize(ArgType); 8932 for (unsigned Kind = AbsFunctionKind; Kind != 0; 8933 Kind = getLargerAbsoluteValueFunction(Kind)) { 8934 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 8935 if (Context.getTypeSize(ParamType) >= ArgSize) { 8936 if (BestKind == 0) 8937 BestKind = Kind; 8938 else if (Context.hasSameType(ParamType, ArgType)) { 8939 BestKind = Kind; 8940 break; 8941 } 8942 } 8943 } 8944 return BestKind; 8945 } 8946 8947 enum AbsoluteValueKind { 8948 AVK_Integer, 8949 AVK_Floating, 8950 AVK_Complex 8951 }; 8952 8953 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 8954 if (T->isIntegralOrEnumerationType()) 8955 return AVK_Integer; 8956 if (T->isRealFloatingType()) 8957 return AVK_Floating; 8958 if (T->isAnyComplexType()) 8959 return AVK_Complex; 8960 8961 llvm_unreachable("Type not integer, floating, or complex"); 8962 } 8963 8964 // Changes the absolute value function to a different type. Preserves whether 8965 // the function is a builtin. 8966 static unsigned changeAbsFunction(unsigned AbsKind, 8967 AbsoluteValueKind ValueKind) { 8968 switch (ValueKind) { 8969 case AVK_Integer: 8970 switch (AbsKind) { 8971 default: 8972 return 0; 8973 case Builtin::BI__builtin_fabsf: 8974 case Builtin::BI__builtin_fabs: 8975 case Builtin::BI__builtin_fabsl: 8976 case Builtin::BI__builtin_cabsf: 8977 case Builtin::BI__builtin_cabs: 8978 case Builtin::BI__builtin_cabsl: 8979 return Builtin::BI__builtin_abs; 8980 case Builtin::BIfabsf: 8981 case Builtin::BIfabs: 8982 case Builtin::BIfabsl: 8983 case Builtin::BIcabsf: 8984 case Builtin::BIcabs: 8985 case Builtin::BIcabsl: 8986 return Builtin::BIabs; 8987 } 8988 case AVK_Floating: 8989 switch (AbsKind) { 8990 default: 8991 return 0; 8992 case Builtin::BI__builtin_abs: 8993 case Builtin::BI__builtin_labs: 8994 case Builtin::BI__builtin_llabs: 8995 case Builtin::BI__builtin_cabsf: 8996 case Builtin::BI__builtin_cabs: 8997 case Builtin::BI__builtin_cabsl: 8998 return Builtin::BI__builtin_fabsf; 8999 case Builtin::BIabs: 9000 case Builtin::BIlabs: 9001 case Builtin::BIllabs: 9002 case Builtin::BIcabsf: 9003 case Builtin::BIcabs: 9004 case Builtin::BIcabsl: 9005 return Builtin::BIfabsf; 9006 } 9007 case AVK_Complex: 9008 switch (AbsKind) { 9009 default: 9010 return 0; 9011 case Builtin::BI__builtin_abs: 9012 case Builtin::BI__builtin_labs: 9013 case Builtin::BI__builtin_llabs: 9014 case Builtin::BI__builtin_fabsf: 9015 case Builtin::BI__builtin_fabs: 9016 case Builtin::BI__builtin_fabsl: 9017 return Builtin::BI__builtin_cabsf; 9018 case Builtin::BIabs: 9019 case Builtin::BIlabs: 9020 case Builtin::BIllabs: 9021 case Builtin::BIfabsf: 9022 case Builtin::BIfabs: 9023 case Builtin::BIfabsl: 9024 return Builtin::BIcabsf; 9025 } 9026 } 9027 llvm_unreachable("Unable to convert function"); 9028 } 9029 9030 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9031 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9032 if (!FnInfo) 9033 return 0; 9034 9035 switch (FDecl->getBuiltinID()) { 9036 default: 9037 return 0; 9038 case Builtin::BI__builtin_abs: 9039 case Builtin::BI__builtin_fabs: 9040 case Builtin::BI__builtin_fabsf: 9041 case Builtin::BI__builtin_fabsl: 9042 case Builtin::BI__builtin_labs: 9043 case Builtin::BI__builtin_llabs: 9044 case Builtin::BI__builtin_cabs: 9045 case Builtin::BI__builtin_cabsf: 9046 case Builtin::BI__builtin_cabsl: 9047 case Builtin::BIabs: 9048 case Builtin::BIlabs: 9049 case Builtin::BIllabs: 9050 case Builtin::BIfabs: 9051 case Builtin::BIfabsf: 9052 case Builtin::BIfabsl: 9053 case Builtin::BIcabs: 9054 case Builtin::BIcabsf: 9055 case Builtin::BIcabsl: 9056 return FDecl->getBuiltinID(); 9057 } 9058 llvm_unreachable("Unknown Builtin type"); 9059 } 9060 9061 // If the replacement is valid, emit a note with replacement function. 9062 // Additionally, suggest including the proper header if not already included. 9063 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9064 unsigned AbsKind, QualType ArgType) { 9065 bool EmitHeaderHint = true; 9066 const char *HeaderName = nullptr; 9067 const char *FunctionName = nullptr; 9068 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9069 FunctionName = "std::abs"; 9070 if (ArgType->isIntegralOrEnumerationType()) { 9071 HeaderName = "cstdlib"; 9072 } else if (ArgType->isRealFloatingType()) { 9073 HeaderName = "cmath"; 9074 } else { 9075 llvm_unreachable("Invalid Type"); 9076 } 9077 9078 // Lookup all std::abs 9079 if (NamespaceDecl *Std = S.getStdNamespace()) { 9080 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9081 R.suppressDiagnostics(); 9082 S.LookupQualifiedName(R, Std); 9083 9084 for (const auto *I : R) { 9085 const FunctionDecl *FDecl = nullptr; 9086 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9087 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9088 } else { 9089 FDecl = dyn_cast<FunctionDecl>(I); 9090 } 9091 if (!FDecl) 9092 continue; 9093 9094 // Found std::abs(), check that they are the right ones. 9095 if (FDecl->getNumParams() != 1) 9096 continue; 9097 9098 // Check that the parameter type can handle the argument. 9099 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9100 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9101 S.Context.getTypeSize(ArgType) <= 9102 S.Context.getTypeSize(ParamType)) { 9103 // Found a function, don't need the header hint. 9104 EmitHeaderHint = false; 9105 break; 9106 } 9107 } 9108 } 9109 } else { 9110 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9111 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9112 9113 if (HeaderName) { 9114 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9115 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9116 R.suppressDiagnostics(); 9117 S.LookupName(R, S.getCurScope()); 9118 9119 if (R.isSingleResult()) { 9120 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9121 if (FD && FD->getBuiltinID() == AbsKind) { 9122 EmitHeaderHint = false; 9123 } else { 9124 return; 9125 } 9126 } else if (!R.empty()) { 9127 return; 9128 } 9129 } 9130 } 9131 9132 S.Diag(Loc, diag::note_replace_abs_function) 9133 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9134 9135 if (!HeaderName) 9136 return; 9137 9138 if (!EmitHeaderHint) 9139 return; 9140 9141 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9142 << FunctionName; 9143 } 9144 9145 template <std::size_t StrLen> 9146 static bool IsStdFunction(const FunctionDecl *FDecl, 9147 const char (&Str)[StrLen]) { 9148 if (!FDecl) 9149 return false; 9150 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9151 return false; 9152 if (!FDecl->isInStdNamespace()) 9153 return false; 9154 9155 return true; 9156 } 9157 9158 // Warn when using the wrong abs() function. 9159 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9160 const FunctionDecl *FDecl) { 9161 if (Call->getNumArgs() != 1) 9162 return; 9163 9164 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9165 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9166 if (AbsKind == 0 && !IsStdAbs) 9167 return; 9168 9169 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9170 QualType ParamType = Call->getArg(0)->getType(); 9171 9172 // Unsigned types cannot be negative. Suggest removing the absolute value 9173 // function call. 9174 if (ArgType->isUnsignedIntegerType()) { 9175 const char *FunctionName = 9176 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9177 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9178 Diag(Call->getExprLoc(), diag::note_remove_abs) 9179 << FunctionName 9180 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9181 return; 9182 } 9183 9184 // Taking the absolute value of a pointer is very suspicious, they probably 9185 // wanted to index into an array, dereference a pointer, call a function, etc. 9186 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9187 unsigned DiagType = 0; 9188 if (ArgType->isFunctionType()) 9189 DiagType = 1; 9190 else if (ArgType->isArrayType()) 9191 DiagType = 2; 9192 9193 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9194 return; 9195 } 9196 9197 // std::abs has overloads which prevent most of the absolute value problems 9198 // from occurring. 9199 if (IsStdAbs) 9200 return; 9201 9202 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9203 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9204 9205 // The argument and parameter are the same kind. Check if they are the right 9206 // size. 9207 if (ArgValueKind == ParamValueKind) { 9208 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9209 return; 9210 9211 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9212 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9213 << FDecl << ArgType << ParamType; 9214 9215 if (NewAbsKind == 0) 9216 return; 9217 9218 emitReplacement(*this, Call->getExprLoc(), 9219 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9220 return; 9221 } 9222 9223 // ArgValueKind != ParamValueKind 9224 // The wrong type of absolute value function was used. Attempt to find the 9225 // proper one. 9226 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9227 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9228 if (NewAbsKind == 0) 9229 return; 9230 9231 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9232 << FDecl << ParamValueKind << ArgValueKind; 9233 9234 emitReplacement(*this, Call->getExprLoc(), 9235 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9236 } 9237 9238 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9239 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9240 const FunctionDecl *FDecl) { 9241 if (!Call || !FDecl) return; 9242 9243 // Ignore template specializations and macros. 9244 if (inTemplateInstantiation()) return; 9245 if (Call->getExprLoc().isMacroID()) return; 9246 9247 // Only care about the one template argument, two function parameter std::max 9248 if (Call->getNumArgs() != 2) return; 9249 if (!IsStdFunction(FDecl, "max")) return; 9250 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9251 if (!ArgList) return; 9252 if (ArgList->size() != 1) return; 9253 9254 // Check that template type argument is unsigned integer. 9255 const auto& TA = ArgList->get(0); 9256 if (TA.getKind() != TemplateArgument::Type) return; 9257 QualType ArgType = TA.getAsType(); 9258 if (!ArgType->isUnsignedIntegerType()) return; 9259 9260 // See if either argument is a literal zero. 9261 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9262 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9263 if (!MTE) return false; 9264 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9265 if (!Num) return false; 9266 if (Num->getValue() != 0) return false; 9267 return true; 9268 }; 9269 9270 const Expr *FirstArg = Call->getArg(0); 9271 const Expr *SecondArg = Call->getArg(1); 9272 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9273 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9274 9275 // Only warn when exactly one argument is zero. 9276 if (IsFirstArgZero == IsSecondArgZero) return; 9277 9278 SourceRange FirstRange = FirstArg->getSourceRange(); 9279 SourceRange SecondRange = SecondArg->getSourceRange(); 9280 9281 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9282 9283 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9284 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9285 9286 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9287 SourceRange RemovalRange; 9288 if (IsFirstArgZero) { 9289 RemovalRange = SourceRange(FirstRange.getBegin(), 9290 SecondRange.getBegin().getLocWithOffset(-1)); 9291 } else { 9292 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9293 SecondRange.getEnd()); 9294 } 9295 9296 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9297 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9298 << FixItHint::CreateRemoval(RemovalRange); 9299 } 9300 9301 //===--- CHECK: Standard memory functions ---------------------------------===// 9302 9303 /// Takes the expression passed to the size_t parameter of functions 9304 /// such as memcmp, strncat, etc and warns if it's a comparison. 9305 /// 9306 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9307 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9308 IdentifierInfo *FnName, 9309 SourceLocation FnLoc, 9310 SourceLocation RParenLoc) { 9311 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9312 if (!Size) 9313 return false; 9314 9315 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9316 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9317 return false; 9318 9319 SourceRange SizeRange = Size->getSourceRange(); 9320 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9321 << SizeRange << FnName; 9322 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9323 << FnName 9324 << FixItHint::CreateInsertion( 9325 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9326 << FixItHint::CreateRemoval(RParenLoc); 9327 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9328 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9329 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9330 ")"); 9331 9332 return true; 9333 } 9334 9335 /// Determine whether the given type is or contains a dynamic class type 9336 /// (e.g., whether it has a vtable). 9337 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9338 bool &IsContained) { 9339 // Look through array types while ignoring qualifiers. 9340 const Type *Ty = T->getBaseElementTypeUnsafe(); 9341 IsContained = false; 9342 9343 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9344 RD = RD ? RD->getDefinition() : nullptr; 9345 if (!RD || RD->isInvalidDecl()) 9346 return nullptr; 9347 9348 if (RD->isDynamicClass()) 9349 return RD; 9350 9351 // Check all the fields. If any bases were dynamic, the class is dynamic. 9352 // It's impossible for a class to transitively contain itself by value, so 9353 // infinite recursion is impossible. 9354 for (auto *FD : RD->fields()) { 9355 bool SubContained; 9356 if (const CXXRecordDecl *ContainedRD = 9357 getContainedDynamicClass(FD->getType(), SubContained)) { 9358 IsContained = true; 9359 return ContainedRD; 9360 } 9361 } 9362 9363 return nullptr; 9364 } 9365 9366 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9367 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9368 if (Unary->getKind() == UETT_SizeOf) 9369 return Unary; 9370 return nullptr; 9371 } 9372 9373 /// If E is a sizeof expression, returns its argument expression, 9374 /// otherwise returns NULL. 9375 static const Expr *getSizeOfExprArg(const Expr *E) { 9376 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9377 if (!SizeOf->isArgumentType()) 9378 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9379 return nullptr; 9380 } 9381 9382 /// If E is a sizeof expression, returns its argument type. 9383 static QualType getSizeOfArgType(const Expr *E) { 9384 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9385 return SizeOf->getTypeOfArgument(); 9386 return QualType(); 9387 } 9388 9389 namespace { 9390 9391 struct SearchNonTrivialToInitializeField 9392 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9393 using Super = 9394 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9395 9396 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9397 9398 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9399 SourceLocation SL) { 9400 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9401 asDerived().visitArray(PDIK, AT, SL); 9402 return; 9403 } 9404 9405 Super::visitWithKind(PDIK, FT, SL); 9406 } 9407 9408 void visitARCStrong(QualType FT, SourceLocation SL) { 9409 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9410 } 9411 void visitARCWeak(QualType FT, SourceLocation SL) { 9412 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9413 } 9414 void visitStruct(QualType FT, SourceLocation SL) { 9415 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9416 visit(FD->getType(), FD->getLocation()); 9417 } 9418 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9419 const ArrayType *AT, SourceLocation SL) { 9420 visit(getContext().getBaseElementType(AT), SL); 9421 } 9422 void visitTrivial(QualType FT, SourceLocation SL) {} 9423 9424 static void diag(QualType RT, const Expr *E, Sema &S) { 9425 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9426 } 9427 9428 ASTContext &getContext() { return S.getASTContext(); } 9429 9430 const Expr *E; 9431 Sema &S; 9432 }; 9433 9434 struct SearchNonTrivialToCopyField 9435 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9436 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9437 9438 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9439 9440 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9441 SourceLocation SL) { 9442 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9443 asDerived().visitArray(PCK, AT, SL); 9444 return; 9445 } 9446 9447 Super::visitWithKind(PCK, FT, SL); 9448 } 9449 9450 void visitARCStrong(QualType FT, SourceLocation SL) { 9451 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9452 } 9453 void visitARCWeak(QualType FT, SourceLocation SL) { 9454 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9455 } 9456 void visitStruct(QualType FT, SourceLocation SL) { 9457 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9458 visit(FD->getType(), FD->getLocation()); 9459 } 9460 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9461 SourceLocation SL) { 9462 visit(getContext().getBaseElementType(AT), SL); 9463 } 9464 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9465 SourceLocation SL) {} 9466 void visitTrivial(QualType FT, SourceLocation SL) {} 9467 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9468 9469 static void diag(QualType RT, const Expr *E, Sema &S) { 9470 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9471 } 9472 9473 ASTContext &getContext() { return S.getASTContext(); } 9474 9475 const Expr *E; 9476 Sema &S; 9477 }; 9478 9479 } 9480 9481 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9482 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9483 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9484 9485 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9486 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9487 return false; 9488 9489 return doesExprLikelyComputeSize(BO->getLHS()) || 9490 doesExprLikelyComputeSize(BO->getRHS()); 9491 } 9492 9493 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9494 } 9495 9496 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9497 /// 9498 /// \code 9499 /// #define MACRO 0 9500 /// foo(MACRO); 9501 /// foo(0); 9502 /// \endcode 9503 /// 9504 /// This should return true for the first call to foo, but not for the second 9505 /// (regardless of whether foo is a macro or function). 9506 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9507 SourceLocation CallLoc, 9508 SourceLocation ArgLoc) { 9509 if (!CallLoc.isMacroID()) 9510 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9511 9512 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9513 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9514 } 9515 9516 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9517 /// last two arguments transposed. 9518 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9519 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9520 return; 9521 9522 const Expr *SizeArg = 9523 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9524 9525 auto isLiteralZero = [](const Expr *E) { 9526 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9527 }; 9528 9529 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9530 SourceLocation CallLoc = Call->getRParenLoc(); 9531 SourceManager &SM = S.getSourceManager(); 9532 if (isLiteralZero(SizeArg) && 9533 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9534 9535 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9536 9537 // Some platforms #define bzero to __builtin_memset. See if this is the 9538 // case, and if so, emit a better diagnostic. 9539 if (BId == Builtin::BIbzero || 9540 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9541 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9542 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9543 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9544 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9545 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9546 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9547 } 9548 return; 9549 } 9550 9551 // If the second argument to a memset is a sizeof expression and the third 9552 // isn't, this is also likely an error. This should catch 9553 // 'memset(buf, sizeof(buf), 0xff)'. 9554 if (BId == Builtin::BImemset && 9555 doesExprLikelyComputeSize(Call->getArg(1)) && 9556 !doesExprLikelyComputeSize(Call->getArg(2))) { 9557 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9558 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9559 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9560 return; 9561 } 9562 } 9563 9564 /// Check for dangerous or invalid arguments to memset(). 9565 /// 9566 /// This issues warnings on known problematic, dangerous or unspecified 9567 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9568 /// function calls. 9569 /// 9570 /// \param Call The call expression to diagnose. 9571 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9572 unsigned BId, 9573 IdentifierInfo *FnName) { 9574 assert(BId != 0); 9575 9576 // It is possible to have a non-standard definition of memset. Validate 9577 // we have enough arguments, and if not, abort further checking. 9578 unsigned ExpectedNumArgs = 9579 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9580 if (Call->getNumArgs() < ExpectedNumArgs) 9581 return; 9582 9583 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9584 BId == Builtin::BIstrndup ? 1 : 2); 9585 unsigned LenArg = 9586 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9587 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9588 9589 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9590 Call->getBeginLoc(), Call->getRParenLoc())) 9591 return; 9592 9593 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9594 CheckMemaccessSize(*this, BId, Call); 9595 9596 // We have special checking when the length is a sizeof expression. 9597 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9598 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9599 llvm::FoldingSetNodeID SizeOfArgID; 9600 9601 // Although widely used, 'bzero' is not a standard function. Be more strict 9602 // with the argument types before allowing diagnostics and only allow the 9603 // form bzero(ptr, sizeof(...)). 9604 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9605 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9606 return; 9607 9608 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9609 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9610 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9611 9612 QualType DestTy = Dest->getType(); 9613 QualType PointeeTy; 9614 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9615 PointeeTy = DestPtrTy->getPointeeType(); 9616 9617 // Never warn about void type pointers. This can be used to suppress 9618 // false positives. 9619 if (PointeeTy->isVoidType()) 9620 continue; 9621 9622 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9623 // actually comparing the expressions for equality. Because computing the 9624 // expression IDs can be expensive, we only do this if the diagnostic is 9625 // enabled. 9626 if (SizeOfArg && 9627 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9628 SizeOfArg->getExprLoc())) { 9629 // We only compute IDs for expressions if the warning is enabled, and 9630 // cache the sizeof arg's ID. 9631 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9632 SizeOfArg->Profile(SizeOfArgID, Context, true); 9633 llvm::FoldingSetNodeID DestID; 9634 Dest->Profile(DestID, Context, true); 9635 if (DestID == SizeOfArgID) { 9636 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9637 // over sizeof(src) as well. 9638 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9639 StringRef ReadableName = FnName->getName(); 9640 9641 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9642 if (UnaryOp->getOpcode() == UO_AddrOf) 9643 ActionIdx = 1; // If its an address-of operator, just remove it. 9644 if (!PointeeTy->isIncompleteType() && 9645 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9646 ActionIdx = 2; // If the pointee's size is sizeof(char), 9647 // suggest an explicit length. 9648 9649 // If the function is defined as a builtin macro, do not show macro 9650 // expansion. 9651 SourceLocation SL = SizeOfArg->getExprLoc(); 9652 SourceRange DSR = Dest->getSourceRange(); 9653 SourceRange SSR = SizeOfArg->getSourceRange(); 9654 SourceManager &SM = getSourceManager(); 9655 9656 if (SM.isMacroArgExpansion(SL)) { 9657 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9658 SL = SM.getSpellingLoc(SL); 9659 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9660 SM.getSpellingLoc(DSR.getEnd())); 9661 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9662 SM.getSpellingLoc(SSR.getEnd())); 9663 } 9664 9665 DiagRuntimeBehavior(SL, SizeOfArg, 9666 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9667 << ReadableName 9668 << PointeeTy 9669 << DestTy 9670 << DSR 9671 << SSR); 9672 DiagRuntimeBehavior(SL, SizeOfArg, 9673 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9674 << ActionIdx 9675 << SSR); 9676 9677 break; 9678 } 9679 } 9680 9681 // Also check for cases where the sizeof argument is the exact same 9682 // type as the memory argument, and where it points to a user-defined 9683 // record type. 9684 if (SizeOfArgTy != QualType()) { 9685 if (PointeeTy->isRecordType() && 9686 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9687 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9688 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9689 << FnName << SizeOfArgTy << ArgIdx 9690 << PointeeTy << Dest->getSourceRange() 9691 << LenExpr->getSourceRange()); 9692 break; 9693 } 9694 } 9695 } else if (DestTy->isArrayType()) { 9696 PointeeTy = DestTy; 9697 } 9698 9699 if (PointeeTy == QualType()) 9700 continue; 9701 9702 // Always complain about dynamic classes. 9703 bool IsContained; 9704 if (const CXXRecordDecl *ContainedRD = 9705 getContainedDynamicClass(PointeeTy, IsContained)) { 9706 9707 unsigned OperationType = 0; 9708 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9709 // "overwritten" if we're warning about the destination for any call 9710 // but memcmp; otherwise a verb appropriate to the call. 9711 if (ArgIdx != 0 || IsCmp) { 9712 if (BId == Builtin::BImemcpy) 9713 OperationType = 1; 9714 else if(BId == Builtin::BImemmove) 9715 OperationType = 2; 9716 else if (IsCmp) 9717 OperationType = 3; 9718 } 9719 9720 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9721 PDiag(diag::warn_dyn_class_memaccess) 9722 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 9723 << IsContained << ContainedRD << OperationType 9724 << Call->getCallee()->getSourceRange()); 9725 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 9726 BId != Builtin::BImemset) 9727 DiagRuntimeBehavior( 9728 Dest->getExprLoc(), Dest, 9729 PDiag(diag::warn_arc_object_memaccess) 9730 << ArgIdx << FnName << PointeeTy 9731 << Call->getCallee()->getSourceRange()); 9732 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 9733 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 9734 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 9735 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9736 PDiag(diag::warn_cstruct_memaccess) 9737 << ArgIdx << FnName << PointeeTy << 0); 9738 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 9739 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 9740 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 9741 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9742 PDiag(diag::warn_cstruct_memaccess) 9743 << ArgIdx << FnName << PointeeTy << 1); 9744 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 9745 } else { 9746 continue; 9747 } 9748 } else 9749 continue; 9750 9751 DiagRuntimeBehavior( 9752 Dest->getExprLoc(), Dest, 9753 PDiag(diag::note_bad_memaccess_silence) 9754 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 9755 break; 9756 } 9757 } 9758 9759 // A little helper routine: ignore addition and subtraction of integer literals. 9760 // This intentionally does not ignore all integer constant expressions because 9761 // we don't want to remove sizeof(). 9762 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 9763 Ex = Ex->IgnoreParenCasts(); 9764 9765 while (true) { 9766 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 9767 if (!BO || !BO->isAdditiveOp()) 9768 break; 9769 9770 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 9771 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 9772 9773 if (isa<IntegerLiteral>(RHS)) 9774 Ex = LHS; 9775 else if (isa<IntegerLiteral>(LHS)) 9776 Ex = RHS; 9777 else 9778 break; 9779 } 9780 9781 return Ex; 9782 } 9783 9784 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 9785 ASTContext &Context) { 9786 // Only handle constant-sized or VLAs, but not flexible members. 9787 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 9788 // Only issue the FIXIT for arrays of size > 1. 9789 if (CAT->getSize().getSExtValue() <= 1) 9790 return false; 9791 } else if (!Ty->isVariableArrayType()) { 9792 return false; 9793 } 9794 return true; 9795 } 9796 9797 // Warn if the user has made the 'size' argument to strlcpy or strlcat 9798 // be the size of the source, instead of the destination. 9799 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 9800 IdentifierInfo *FnName) { 9801 9802 // Don't crash if the user has the wrong number of arguments 9803 unsigned NumArgs = Call->getNumArgs(); 9804 if ((NumArgs != 3) && (NumArgs != 4)) 9805 return; 9806 9807 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 9808 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 9809 const Expr *CompareWithSrc = nullptr; 9810 9811 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 9812 Call->getBeginLoc(), Call->getRParenLoc())) 9813 return; 9814 9815 // Look for 'strlcpy(dst, x, sizeof(x))' 9816 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 9817 CompareWithSrc = Ex; 9818 else { 9819 // Look for 'strlcpy(dst, x, strlen(x))' 9820 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 9821 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 9822 SizeCall->getNumArgs() == 1) 9823 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 9824 } 9825 } 9826 9827 if (!CompareWithSrc) 9828 return; 9829 9830 // Determine if the argument to sizeof/strlen is equal to the source 9831 // argument. In principle there's all kinds of things you could do 9832 // here, for instance creating an == expression and evaluating it with 9833 // EvaluateAsBooleanCondition, but this uses a more direct technique: 9834 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 9835 if (!SrcArgDRE) 9836 return; 9837 9838 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 9839 if (!CompareWithSrcDRE || 9840 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 9841 return; 9842 9843 const Expr *OriginalSizeArg = Call->getArg(2); 9844 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 9845 << OriginalSizeArg->getSourceRange() << FnName; 9846 9847 // Output a FIXIT hint if the destination is an array (rather than a 9848 // pointer to an array). This could be enhanced to handle some 9849 // pointers if we know the actual size, like if DstArg is 'array+2' 9850 // we could say 'sizeof(array)-2'. 9851 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 9852 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 9853 return; 9854 9855 SmallString<128> sizeString; 9856 llvm::raw_svector_ostream OS(sizeString); 9857 OS << "sizeof("; 9858 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9859 OS << ")"; 9860 9861 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 9862 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 9863 OS.str()); 9864 } 9865 9866 /// Check if two expressions refer to the same declaration. 9867 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 9868 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 9869 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 9870 return D1->getDecl() == D2->getDecl(); 9871 return false; 9872 } 9873 9874 static const Expr *getStrlenExprArg(const Expr *E) { 9875 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 9876 const FunctionDecl *FD = CE->getDirectCallee(); 9877 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 9878 return nullptr; 9879 return CE->getArg(0)->IgnoreParenCasts(); 9880 } 9881 return nullptr; 9882 } 9883 9884 // Warn on anti-patterns as the 'size' argument to strncat. 9885 // The correct size argument should look like following: 9886 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 9887 void Sema::CheckStrncatArguments(const CallExpr *CE, 9888 IdentifierInfo *FnName) { 9889 // Don't crash if the user has the wrong number of arguments. 9890 if (CE->getNumArgs() < 3) 9891 return; 9892 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 9893 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 9894 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 9895 9896 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 9897 CE->getRParenLoc())) 9898 return; 9899 9900 // Identify common expressions, which are wrongly used as the size argument 9901 // to strncat and may lead to buffer overflows. 9902 unsigned PatternType = 0; 9903 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 9904 // - sizeof(dst) 9905 if (referToTheSameDecl(SizeOfArg, DstArg)) 9906 PatternType = 1; 9907 // - sizeof(src) 9908 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 9909 PatternType = 2; 9910 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 9911 if (BE->getOpcode() == BO_Sub) { 9912 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 9913 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 9914 // - sizeof(dst) - strlen(dst) 9915 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 9916 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 9917 PatternType = 1; 9918 // - sizeof(src) - (anything) 9919 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 9920 PatternType = 2; 9921 } 9922 } 9923 9924 if (PatternType == 0) 9925 return; 9926 9927 // Generate the diagnostic. 9928 SourceLocation SL = LenArg->getBeginLoc(); 9929 SourceRange SR = LenArg->getSourceRange(); 9930 SourceManager &SM = getSourceManager(); 9931 9932 // If the function is defined as a builtin macro, do not show macro expansion. 9933 if (SM.isMacroArgExpansion(SL)) { 9934 SL = SM.getSpellingLoc(SL); 9935 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 9936 SM.getSpellingLoc(SR.getEnd())); 9937 } 9938 9939 // Check if the destination is an array (rather than a pointer to an array). 9940 QualType DstTy = DstArg->getType(); 9941 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 9942 Context); 9943 if (!isKnownSizeArray) { 9944 if (PatternType == 1) 9945 Diag(SL, diag::warn_strncat_wrong_size) << SR; 9946 else 9947 Diag(SL, diag::warn_strncat_src_size) << SR; 9948 return; 9949 } 9950 9951 if (PatternType == 1) 9952 Diag(SL, diag::warn_strncat_large_size) << SR; 9953 else 9954 Diag(SL, diag::warn_strncat_src_size) << SR; 9955 9956 SmallString<128> sizeString; 9957 llvm::raw_svector_ostream OS(sizeString); 9958 OS << "sizeof("; 9959 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9960 OS << ") - "; 9961 OS << "strlen("; 9962 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9963 OS << ") - 1"; 9964 9965 Diag(SL, diag::note_strncat_wrong_size) 9966 << FixItHint::CreateReplacement(SR, OS.str()); 9967 } 9968 9969 void 9970 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 9971 SourceLocation ReturnLoc, 9972 bool isObjCMethod, 9973 const AttrVec *Attrs, 9974 const FunctionDecl *FD) { 9975 // Check if the return value is null but should not be. 9976 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 9977 (!isObjCMethod && isNonNullType(Context, lhsType))) && 9978 CheckNonNullExpr(*this, RetValExp)) 9979 Diag(ReturnLoc, diag::warn_null_ret) 9980 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 9981 9982 // C++11 [basic.stc.dynamic.allocation]p4: 9983 // If an allocation function declared with a non-throwing 9984 // exception-specification fails to allocate storage, it shall return 9985 // a null pointer. Any other allocation function that fails to allocate 9986 // storage shall indicate failure only by throwing an exception [...] 9987 if (FD) { 9988 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 9989 if (Op == OO_New || Op == OO_Array_New) { 9990 const FunctionProtoType *Proto 9991 = FD->getType()->castAs<FunctionProtoType>(); 9992 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 9993 CheckNonNullExpr(*this, RetValExp)) 9994 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 9995 << FD << getLangOpts().CPlusPlus11; 9996 } 9997 } 9998 } 9999 10000 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10001 10002 /// Check for comparisons of floating point operands using != and ==. 10003 /// Issue a warning if these are no self-comparisons, as they are not likely 10004 /// to do what the programmer intended. 10005 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10006 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10007 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10008 10009 // Special case: check for x == x (which is OK). 10010 // Do not emit warnings for such cases. 10011 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10012 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10013 if (DRL->getDecl() == DRR->getDecl()) 10014 return; 10015 10016 // Special case: check for comparisons against literals that can be exactly 10017 // represented by APFloat. In such cases, do not emit a warning. This 10018 // is a heuristic: often comparison against such literals are used to 10019 // detect if a value in a variable has not changed. This clearly can 10020 // lead to false negatives. 10021 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10022 if (FLL->isExact()) 10023 return; 10024 } else 10025 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10026 if (FLR->isExact()) 10027 return; 10028 10029 // Check for comparisons with builtin types. 10030 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10031 if (CL->getBuiltinCallee()) 10032 return; 10033 10034 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10035 if (CR->getBuiltinCallee()) 10036 return; 10037 10038 // Emit the diagnostic. 10039 Diag(Loc, diag::warn_floatingpoint_eq) 10040 << LHS->getSourceRange() << RHS->getSourceRange(); 10041 } 10042 10043 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10044 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10045 10046 namespace { 10047 10048 /// Structure recording the 'active' range of an integer-valued 10049 /// expression. 10050 struct IntRange { 10051 /// The number of bits active in the int. 10052 unsigned Width; 10053 10054 /// True if the int is known not to have negative values. 10055 bool NonNegative; 10056 10057 IntRange(unsigned Width, bool NonNegative) 10058 : Width(Width), NonNegative(NonNegative) {} 10059 10060 /// Returns the range of the bool type. 10061 static IntRange forBoolType() { 10062 return IntRange(1, true); 10063 } 10064 10065 /// Returns the range of an opaque value of the given integral type. 10066 static IntRange forValueOfType(ASTContext &C, QualType T) { 10067 return forValueOfCanonicalType(C, 10068 T->getCanonicalTypeInternal().getTypePtr()); 10069 } 10070 10071 /// Returns the range of an opaque value of a canonical integral type. 10072 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10073 assert(T->isCanonicalUnqualified()); 10074 10075 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10076 T = VT->getElementType().getTypePtr(); 10077 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10078 T = CT->getElementType().getTypePtr(); 10079 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10080 T = AT->getValueType().getTypePtr(); 10081 10082 if (!C.getLangOpts().CPlusPlus) { 10083 // For enum types in C code, use the underlying datatype. 10084 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10085 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10086 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10087 // For enum types in C++, use the known bit width of the enumerators. 10088 EnumDecl *Enum = ET->getDecl(); 10089 // In C++11, enums can have a fixed underlying type. Use this type to 10090 // compute the range. 10091 if (Enum->isFixed()) { 10092 return IntRange(C.getIntWidth(QualType(T, 0)), 10093 !ET->isSignedIntegerOrEnumerationType()); 10094 } 10095 10096 unsigned NumPositive = Enum->getNumPositiveBits(); 10097 unsigned NumNegative = Enum->getNumNegativeBits(); 10098 10099 if (NumNegative == 0) 10100 return IntRange(NumPositive, true/*NonNegative*/); 10101 else 10102 return IntRange(std::max(NumPositive + 1, NumNegative), 10103 false/*NonNegative*/); 10104 } 10105 10106 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10107 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10108 10109 const BuiltinType *BT = cast<BuiltinType>(T); 10110 assert(BT->isInteger()); 10111 10112 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10113 } 10114 10115 /// Returns the "target" range of a canonical integral type, i.e. 10116 /// the range of values expressible in the type. 10117 /// 10118 /// This matches forValueOfCanonicalType except that enums have the 10119 /// full range of their type, not the range of their enumerators. 10120 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10121 assert(T->isCanonicalUnqualified()); 10122 10123 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10124 T = VT->getElementType().getTypePtr(); 10125 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10126 T = CT->getElementType().getTypePtr(); 10127 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10128 T = AT->getValueType().getTypePtr(); 10129 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10130 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10131 10132 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10133 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10134 10135 const BuiltinType *BT = cast<BuiltinType>(T); 10136 assert(BT->isInteger()); 10137 10138 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10139 } 10140 10141 /// Returns the supremum of two ranges: i.e. their conservative merge. 10142 static IntRange join(IntRange L, IntRange R) { 10143 return IntRange(std::max(L.Width, R.Width), 10144 L.NonNegative && R.NonNegative); 10145 } 10146 10147 /// Returns the infinum of two ranges: i.e. their aggressive merge. 10148 static IntRange meet(IntRange L, IntRange R) { 10149 return IntRange(std::min(L.Width, R.Width), 10150 L.NonNegative || R.NonNegative); 10151 } 10152 }; 10153 10154 } // namespace 10155 10156 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10157 unsigned MaxWidth) { 10158 if (value.isSigned() && value.isNegative()) 10159 return IntRange(value.getMinSignedBits(), false); 10160 10161 if (value.getBitWidth() > MaxWidth) 10162 value = value.trunc(MaxWidth); 10163 10164 // isNonNegative() just checks the sign bit without considering 10165 // signedness. 10166 return IntRange(value.getActiveBits(), true); 10167 } 10168 10169 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10170 unsigned MaxWidth) { 10171 if (result.isInt()) 10172 return GetValueRange(C, result.getInt(), MaxWidth); 10173 10174 if (result.isVector()) { 10175 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10176 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10177 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10178 R = IntRange::join(R, El); 10179 } 10180 return R; 10181 } 10182 10183 if (result.isComplexInt()) { 10184 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10185 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10186 return IntRange::join(R, I); 10187 } 10188 10189 // This can happen with lossless casts to intptr_t of "based" lvalues. 10190 // Assume it might use arbitrary bits. 10191 // FIXME: The only reason we need to pass the type in here is to get 10192 // the sign right on this one case. It would be nice if APValue 10193 // preserved this. 10194 assert(result.isLValue() || result.isAddrLabelDiff()); 10195 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10196 } 10197 10198 static QualType GetExprType(const Expr *E) { 10199 QualType Ty = E->getType(); 10200 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10201 Ty = AtomicRHS->getValueType(); 10202 return Ty; 10203 } 10204 10205 /// Pseudo-evaluate the given integer expression, estimating the 10206 /// range of values it might take. 10207 /// 10208 /// \param MaxWidth - the width to which the value will be truncated 10209 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10210 bool InConstantContext) { 10211 E = E->IgnoreParens(); 10212 10213 // Try a full evaluation first. 10214 Expr::EvalResult result; 10215 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10216 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10217 10218 // I think we only want to look through implicit casts here; if the 10219 // user has an explicit widening cast, we should treat the value as 10220 // being of the new, wider type. 10221 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10222 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10223 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext); 10224 10225 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10226 10227 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10228 CE->getCastKind() == CK_BooleanToSignedIntegral; 10229 10230 // Assume that non-integer casts can span the full range of the type. 10231 if (!isIntegerCast) 10232 return OutputTypeRange; 10233 10234 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10235 std::min(MaxWidth, OutputTypeRange.Width), 10236 InConstantContext); 10237 10238 // Bail out if the subexpr's range is as wide as the cast type. 10239 if (SubRange.Width >= OutputTypeRange.Width) 10240 return OutputTypeRange; 10241 10242 // Otherwise, we take the smaller width, and we're non-negative if 10243 // either the output type or the subexpr is. 10244 return IntRange(SubRange.Width, 10245 SubRange.NonNegative || OutputTypeRange.NonNegative); 10246 } 10247 10248 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10249 // If we can fold the condition, just take that operand. 10250 bool CondResult; 10251 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10252 return GetExprRange(C, 10253 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10254 MaxWidth, InConstantContext); 10255 10256 // Otherwise, conservatively merge. 10257 IntRange L = 10258 GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext); 10259 IntRange R = 10260 GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext); 10261 return IntRange::join(L, R); 10262 } 10263 10264 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10265 switch (BO->getOpcode()) { 10266 case BO_Cmp: 10267 llvm_unreachable("builtin <=> should have class type"); 10268 10269 // Boolean-valued operations are single-bit and positive. 10270 case BO_LAnd: 10271 case BO_LOr: 10272 case BO_LT: 10273 case BO_GT: 10274 case BO_LE: 10275 case BO_GE: 10276 case BO_EQ: 10277 case BO_NE: 10278 return IntRange::forBoolType(); 10279 10280 // The type of the assignments is the type of the LHS, so the RHS 10281 // is not necessarily the same type. 10282 case BO_MulAssign: 10283 case BO_DivAssign: 10284 case BO_RemAssign: 10285 case BO_AddAssign: 10286 case BO_SubAssign: 10287 case BO_XorAssign: 10288 case BO_OrAssign: 10289 // TODO: bitfields? 10290 return IntRange::forValueOfType(C, GetExprType(E)); 10291 10292 // Simple assignments just pass through the RHS, which will have 10293 // been coerced to the LHS type. 10294 case BO_Assign: 10295 // TODO: bitfields? 10296 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10297 10298 // Operations with opaque sources are black-listed. 10299 case BO_PtrMemD: 10300 case BO_PtrMemI: 10301 return IntRange::forValueOfType(C, GetExprType(E)); 10302 10303 // Bitwise-and uses the *infinum* of the two source ranges. 10304 case BO_And: 10305 case BO_AndAssign: 10306 return IntRange::meet( 10307 GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext), 10308 GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext)); 10309 10310 // Left shift gets black-listed based on a judgement call. 10311 case BO_Shl: 10312 // ...except that we want to treat '1 << (blah)' as logically 10313 // positive. It's an important idiom. 10314 if (IntegerLiteral *I 10315 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10316 if (I->getValue() == 1) { 10317 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10318 return IntRange(R.Width, /*NonNegative*/ true); 10319 } 10320 } 10321 LLVM_FALLTHROUGH; 10322 10323 case BO_ShlAssign: 10324 return IntRange::forValueOfType(C, GetExprType(E)); 10325 10326 // Right shift by a constant can narrow its left argument. 10327 case BO_Shr: 10328 case BO_ShrAssign: { 10329 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10330 10331 // If the shift amount is a positive constant, drop the width by 10332 // that much. 10333 llvm::APSInt shift; 10334 if (BO->getRHS()->isIntegerConstantExpr(shift, C) && 10335 shift.isNonNegative()) { 10336 unsigned zext = shift.getZExtValue(); 10337 if (zext >= L.Width) 10338 L.Width = (L.NonNegative ? 0 : 1); 10339 else 10340 L.Width -= zext; 10341 } 10342 10343 return L; 10344 } 10345 10346 // Comma acts as its right operand. 10347 case BO_Comma: 10348 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10349 10350 // Black-list pointer subtractions. 10351 case BO_Sub: 10352 if (BO->getLHS()->getType()->isPointerType()) 10353 return IntRange::forValueOfType(C, GetExprType(E)); 10354 break; 10355 10356 // The width of a division result is mostly determined by the size 10357 // of the LHS. 10358 case BO_Div: { 10359 // Don't 'pre-truncate' the operands. 10360 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10361 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10362 10363 // If the divisor is constant, use that. 10364 llvm::APSInt divisor; 10365 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { 10366 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) 10367 if (log2 >= L.Width) 10368 L.Width = (L.NonNegative ? 0 : 1); 10369 else 10370 L.Width = std::min(L.Width - log2, MaxWidth); 10371 return L; 10372 } 10373 10374 // Otherwise, just use the LHS's width. 10375 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10376 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10377 } 10378 10379 // The result of a remainder can't be larger than the result of 10380 // either side. 10381 case BO_Rem: { 10382 // Don't 'pre-truncate' the operands. 10383 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10384 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10385 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10386 10387 IntRange meet = IntRange::meet(L, R); 10388 meet.Width = std::min(meet.Width, MaxWidth); 10389 return meet; 10390 } 10391 10392 // The default behavior is okay for these. 10393 case BO_Mul: 10394 case BO_Add: 10395 case BO_Xor: 10396 case BO_Or: 10397 break; 10398 } 10399 10400 // The default case is to treat the operation as if it were closed 10401 // on the narrowest type that encompasses both operands. 10402 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10403 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10404 return IntRange::join(L, R); 10405 } 10406 10407 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10408 switch (UO->getOpcode()) { 10409 // Boolean-valued operations are white-listed. 10410 case UO_LNot: 10411 return IntRange::forBoolType(); 10412 10413 // Operations with opaque sources are black-listed. 10414 case UO_Deref: 10415 case UO_AddrOf: // should be impossible 10416 return IntRange::forValueOfType(C, GetExprType(E)); 10417 10418 default: 10419 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext); 10420 } 10421 } 10422 10423 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10424 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext); 10425 10426 if (const auto *BitField = E->getSourceBitField()) 10427 return IntRange(BitField->getBitWidthValue(C), 10428 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10429 10430 return IntRange::forValueOfType(C, GetExprType(E)); 10431 } 10432 10433 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10434 bool InConstantContext) { 10435 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext); 10436 } 10437 10438 /// Checks whether the given value, which currently has the given 10439 /// source semantics, has the same value when coerced through the 10440 /// target semantics. 10441 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10442 const llvm::fltSemantics &Src, 10443 const llvm::fltSemantics &Tgt) { 10444 llvm::APFloat truncated = value; 10445 10446 bool ignored; 10447 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10448 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10449 10450 return truncated.bitwiseIsEqual(value); 10451 } 10452 10453 /// Checks whether the given value, which currently has the given 10454 /// source semantics, has the same value when coerced through the 10455 /// target semantics. 10456 /// 10457 /// The value might be a vector of floats (or a complex number). 10458 static bool IsSameFloatAfterCast(const APValue &value, 10459 const llvm::fltSemantics &Src, 10460 const llvm::fltSemantics &Tgt) { 10461 if (value.isFloat()) 10462 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10463 10464 if (value.isVector()) { 10465 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10466 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10467 return false; 10468 return true; 10469 } 10470 10471 assert(value.isComplexFloat()); 10472 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10473 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10474 } 10475 10476 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10477 bool IsListInit = false); 10478 10479 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10480 // Suppress cases where we are comparing against an enum constant. 10481 if (const DeclRefExpr *DR = 10482 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10483 if (isa<EnumConstantDecl>(DR->getDecl())) 10484 return true; 10485 10486 // Suppress cases where the value is expanded from a macro, unless that macro 10487 // is how a language represents a boolean literal. This is the case in both C 10488 // and Objective-C. 10489 SourceLocation BeginLoc = E->getBeginLoc(); 10490 if (BeginLoc.isMacroID()) { 10491 StringRef MacroName = Lexer::getImmediateMacroName( 10492 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10493 return MacroName != "YES" && MacroName != "NO" && 10494 MacroName != "true" && MacroName != "false"; 10495 } 10496 10497 return false; 10498 } 10499 10500 static bool isKnownToHaveUnsignedValue(Expr *E) { 10501 return E->getType()->isIntegerType() && 10502 (!E->getType()->isSignedIntegerType() || 10503 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10504 } 10505 10506 namespace { 10507 /// The promoted range of values of a type. In general this has the 10508 /// following structure: 10509 /// 10510 /// |-----------| . . . |-----------| 10511 /// ^ ^ ^ ^ 10512 /// Min HoleMin HoleMax Max 10513 /// 10514 /// ... where there is only a hole if a signed type is promoted to unsigned 10515 /// (in which case Min and Max are the smallest and largest representable 10516 /// values). 10517 struct PromotedRange { 10518 // Min, or HoleMax if there is a hole. 10519 llvm::APSInt PromotedMin; 10520 // Max, or HoleMin if there is a hole. 10521 llvm::APSInt PromotedMax; 10522 10523 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10524 if (R.Width == 0) 10525 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10526 else if (R.Width >= BitWidth && !Unsigned) { 10527 // Promotion made the type *narrower*. This happens when promoting 10528 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10529 // Treat all values of 'signed int' as being in range for now. 10530 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10531 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10532 } else { 10533 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10534 .extOrTrunc(BitWidth); 10535 PromotedMin.setIsUnsigned(Unsigned); 10536 10537 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10538 .extOrTrunc(BitWidth); 10539 PromotedMax.setIsUnsigned(Unsigned); 10540 } 10541 } 10542 10543 // Determine whether this range is contiguous (has no hole). 10544 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10545 10546 // Where a constant value is within the range. 10547 enum ComparisonResult { 10548 LT = 0x1, 10549 LE = 0x2, 10550 GT = 0x4, 10551 GE = 0x8, 10552 EQ = 0x10, 10553 NE = 0x20, 10554 InRangeFlag = 0x40, 10555 10556 Less = LE | LT | NE, 10557 Min = LE | InRangeFlag, 10558 InRange = InRangeFlag, 10559 Max = GE | InRangeFlag, 10560 Greater = GE | GT | NE, 10561 10562 OnlyValue = LE | GE | EQ | InRangeFlag, 10563 InHole = NE 10564 }; 10565 10566 ComparisonResult compare(const llvm::APSInt &Value) const { 10567 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10568 Value.isUnsigned() == PromotedMin.isUnsigned()); 10569 if (!isContiguous()) { 10570 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 10571 if (Value.isMinValue()) return Min; 10572 if (Value.isMaxValue()) return Max; 10573 if (Value >= PromotedMin) return InRange; 10574 if (Value <= PromotedMax) return InRange; 10575 return InHole; 10576 } 10577 10578 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 10579 case -1: return Less; 10580 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 10581 case 1: 10582 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 10583 case -1: return InRange; 10584 case 0: return Max; 10585 case 1: return Greater; 10586 } 10587 } 10588 10589 llvm_unreachable("impossible compare result"); 10590 } 10591 10592 static llvm::Optional<StringRef> 10593 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 10594 if (Op == BO_Cmp) { 10595 ComparisonResult LTFlag = LT, GTFlag = GT; 10596 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 10597 10598 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 10599 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 10600 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 10601 return llvm::None; 10602 } 10603 10604 ComparisonResult TrueFlag, FalseFlag; 10605 if (Op == BO_EQ) { 10606 TrueFlag = EQ; 10607 FalseFlag = NE; 10608 } else if (Op == BO_NE) { 10609 TrueFlag = NE; 10610 FalseFlag = EQ; 10611 } else { 10612 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 10613 TrueFlag = LT; 10614 FalseFlag = GE; 10615 } else { 10616 TrueFlag = GT; 10617 FalseFlag = LE; 10618 } 10619 if (Op == BO_GE || Op == BO_LE) 10620 std::swap(TrueFlag, FalseFlag); 10621 } 10622 if (R & TrueFlag) 10623 return StringRef("true"); 10624 if (R & FalseFlag) 10625 return StringRef("false"); 10626 return llvm::None; 10627 } 10628 }; 10629 } 10630 10631 static bool HasEnumType(Expr *E) { 10632 // Strip off implicit integral promotions. 10633 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10634 if (ICE->getCastKind() != CK_IntegralCast && 10635 ICE->getCastKind() != CK_NoOp) 10636 break; 10637 E = ICE->getSubExpr(); 10638 } 10639 10640 return E->getType()->isEnumeralType(); 10641 } 10642 10643 static int classifyConstantValue(Expr *Constant) { 10644 // The values of this enumeration are used in the diagnostics 10645 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 10646 enum ConstantValueKind { 10647 Miscellaneous = 0, 10648 LiteralTrue, 10649 LiteralFalse 10650 }; 10651 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 10652 return BL->getValue() ? ConstantValueKind::LiteralTrue 10653 : ConstantValueKind::LiteralFalse; 10654 return ConstantValueKind::Miscellaneous; 10655 } 10656 10657 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 10658 Expr *Constant, Expr *Other, 10659 const llvm::APSInt &Value, 10660 bool RhsConstant) { 10661 if (S.inTemplateInstantiation()) 10662 return false; 10663 10664 Expr *OriginalOther = Other; 10665 10666 Constant = Constant->IgnoreParenImpCasts(); 10667 Other = Other->IgnoreParenImpCasts(); 10668 10669 // Suppress warnings on tautological comparisons between values of the same 10670 // enumeration type. There are only two ways we could warn on this: 10671 // - If the constant is outside the range of representable values of 10672 // the enumeration. In such a case, we should warn about the cast 10673 // to enumeration type, not about the comparison. 10674 // - If the constant is the maximum / minimum in-range value. For an 10675 // enumeratin type, such comparisons can be meaningful and useful. 10676 if (Constant->getType()->isEnumeralType() && 10677 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 10678 return false; 10679 10680 // TODO: Investigate using GetExprRange() to get tighter bounds 10681 // on the bit ranges. 10682 QualType OtherT = Other->getType(); 10683 if (const auto *AT = OtherT->getAs<AtomicType>()) 10684 OtherT = AT->getValueType(); 10685 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); 10686 10687 // Special case for ObjC BOOL on targets where its a typedef for a signed char 10688 // (Namely, macOS). 10689 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 10690 S.NSAPIObj->isObjCBOOLType(OtherT) && 10691 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 10692 10693 // Whether we're treating Other as being a bool because of the form of 10694 // expression despite it having another type (typically 'int' in C). 10695 bool OtherIsBooleanDespiteType = 10696 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 10697 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 10698 OtherRange = IntRange::forBoolType(); 10699 10700 // Determine the promoted range of the other type and see if a comparison of 10701 // the constant against that range is tautological. 10702 PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), 10703 Value.isUnsigned()); 10704 auto Cmp = OtherPromotedRange.compare(Value); 10705 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 10706 if (!Result) 10707 return false; 10708 10709 // Suppress the diagnostic for an in-range comparison if the constant comes 10710 // from a macro or enumerator. We don't want to diagnose 10711 // 10712 // some_long_value <= INT_MAX 10713 // 10714 // when sizeof(int) == sizeof(long). 10715 bool InRange = Cmp & PromotedRange::InRangeFlag; 10716 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 10717 return false; 10718 10719 // If this is a comparison to an enum constant, include that 10720 // constant in the diagnostic. 10721 const EnumConstantDecl *ED = nullptr; 10722 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 10723 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 10724 10725 // Should be enough for uint128 (39 decimal digits) 10726 SmallString<64> PrettySourceValue; 10727 llvm::raw_svector_ostream OS(PrettySourceValue); 10728 if (ED) { 10729 OS << '\'' << *ED << "' (" << Value << ")"; 10730 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 10731 Constant->IgnoreParenImpCasts())) { 10732 OS << (BL->getValue() ? "YES" : "NO"); 10733 } else { 10734 OS << Value; 10735 } 10736 10737 if (IsObjCSignedCharBool) { 10738 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10739 S.PDiag(diag::warn_tautological_compare_objc_bool) 10740 << OS.str() << *Result); 10741 return true; 10742 } 10743 10744 // FIXME: We use a somewhat different formatting for the in-range cases and 10745 // cases involving boolean values for historical reasons. We should pick a 10746 // consistent way of presenting these diagnostics. 10747 if (!InRange || Other->isKnownToHaveBooleanValue()) { 10748 10749 S.DiagRuntimeBehavior( 10750 E->getOperatorLoc(), E, 10751 S.PDiag(!InRange ? diag::warn_out_of_range_compare 10752 : diag::warn_tautological_bool_compare) 10753 << OS.str() << classifyConstantValue(Constant) << OtherT 10754 << OtherIsBooleanDespiteType << *Result 10755 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 10756 } else { 10757 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 10758 ? (HasEnumType(OriginalOther) 10759 ? diag::warn_unsigned_enum_always_true_comparison 10760 : diag::warn_unsigned_always_true_comparison) 10761 : diag::warn_tautological_constant_compare; 10762 10763 S.Diag(E->getOperatorLoc(), Diag) 10764 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 10765 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 10766 } 10767 10768 return true; 10769 } 10770 10771 /// Analyze the operands of the given comparison. Implements the 10772 /// fallback case from AnalyzeComparison. 10773 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 10774 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10775 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10776 } 10777 10778 /// Implements -Wsign-compare. 10779 /// 10780 /// \param E the binary operator to check for warnings 10781 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 10782 // The type the comparison is being performed in. 10783 QualType T = E->getLHS()->getType(); 10784 10785 // Only analyze comparison operators where both sides have been converted to 10786 // the same type. 10787 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 10788 return AnalyzeImpConvsInComparison(S, E); 10789 10790 // Don't analyze value-dependent comparisons directly. 10791 if (E->isValueDependent()) 10792 return AnalyzeImpConvsInComparison(S, E); 10793 10794 Expr *LHS = E->getLHS(); 10795 Expr *RHS = E->getRHS(); 10796 10797 if (T->isIntegralType(S.Context)) { 10798 llvm::APSInt RHSValue; 10799 llvm::APSInt LHSValue; 10800 10801 bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); 10802 bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); 10803 10804 // We don't care about expressions whose result is a constant. 10805 if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) 10806 return AnalyzeImpConvsInComparison(S, E); 10807 10808 // We only care about expressions where just one side is literal 10809 if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { 10810 // Is the constant on the RHS or LHS? 10811 const bool RhsConstant = IsRHSIntegralLiteral; 10812 Expr *Const = RhsConstant ? RHS : LHS; 10813 Expr *Other = RhsConstant ? LHS : RHS; 10814 const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; 10815 10816 // Check whether an integer constant comparison results in a value 10817 // of 'true' or 'false'. 10818 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 10819 return AnalyzeImpConvsInComparison(S, E); 10820 } 10821 } 10822 10823 if (!T->hasUnsignedIntegerRepresentation()) { 10824 // We don't do anything special if this isn't an unsigned integral 10825 // comparison: we're only interested in integral comparisons, and 10826 // signed comparisons only happen in cases we don't care to warn about. 10827 return AnalyzeImpConvsInComparison(S, E); 10828 } 10829 10830 LHS = LHS->IgnoreParenImpCasts(); 10831 RHS = RHS->IgnoreParenImpCasts(); 10832 10833 if (!S.getLangOpts().CPlusPlus) { 10834 // Avoid warning about comparison of integers with different signs when 10835 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 10836 // the type of `E`. 10837 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 10838 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10839 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 10840 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10841 } 10842 10843 // Check to see if one of the (unmodified) operands is of different 10844 // signedness. 10845 Expr *signedOperand, *unsignedOperand; 10846 if (LHS->getType()->hasSignedIntegerRepresentation()) { 10847 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 10848 "unsigned comparison between two signed integer expressions?"); 10849 signedOperand = LHS; 10850 unsignedOperand = RHS; 10851 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 10852 signedOperand = RHS; 10853 unsignedOperand = LHS; 10854 } else { 10855 return AnalyzeImpConvsInComparison(S, E); 10856 } 10857 10858 // Otherwise, calculate the effective range of the signed operand. 10859 IntRange signedRange = 10860 GetExprRange(S.Context, signedOperand, S.isConstantEvaluated()); 10861 10862 // Go ahead and analyze implicit conversions in the operands. Note 10863 // that we skip the implicit conversions on both sides. 10864 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 10865 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 10866 10867 // If the signed range is non-negative, -Wsign-compare won't fire. 10868 if (signedRange.NonNegative) 10869 return; 10870 10871 // For (in)equality comparisons, if the unsigned operand is a 10872 // constant which cannot collide with a overflowed signed operand, 10873 // then reinterpreting the signed operand as unsigned will not 10874 // change the result of the comparison. 10875 if (E->isEqualityOp()) { 10876 unsigned comparisonWidth = S.Context.getIntWidth(T); 10877 IntRange unsignedRange = 10878 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated()); 10879 10880 // We should never be unable to prove that the unsigned operand is 10881 // non-negative. 10882 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 10883 10884 if (unsignedRange.Width < comparisonWidth) 10885 return; 10886 } 10887 10888 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10889 S.PDiag(diag::warn_mixed_sign_comparison) 10890 << LHS->getType() << RHS->getType() 10891 << LHS->getSourceRange() << RHS->getSourceRange()); 10892 } 10893 10894 /// Analyzes an attempt to assign the given value to a bitfield. 10895 /// 10896 /// Returns true if there was something fishy about the attempt. 10897 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 10898 SourceLocation InitLoc) { 10899 assert(Bitfield->isBitField()); 10900 if (Bitfield->isInvalidDecl()) 10901 return false; 10902 10903 // White-list bool bitfields. 10904 QualType BitfieldType = Bitfield->getType(); 10905 if (BitfieldType->isBooleanType()) 10906 return false; 10907 10908 if (BitfieldType->isEnumeralType()) { 10909 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 10910 // If the underlying enum type was not explicitly specified as an unsigned 10911 // type and the enum contain only positive values, MSVC++ will cause an 10912 // inconsistency by storing this as a signed type. 10913 if (S.getLangOpts().CPlusPlus11 && 10914 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 10915 BitfieldEnumDecl->getNumPositiveBits() > 0 && 10916 BitfieldEnumDecl->getNumNegativeBits() == 0) { 10917 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 10918 << BitfieldEnumDecl->getNameAsString(); 10919 } 10920 } 10921 10922 if (Bitfield->getType()->isBooleanType()) 10923 return false; 10924 10925 // Ignore value- or type-dependent expressions. 10926 if (Bitfield->getBitWidth()->isValueDependent() || 10927 Bitfield->getBitWidth()->isTypeDependent() || 10928 Init->isValueDependent() || 10929 Init->isTypeDependent()) 10930 return false; 10931 10932 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 10933 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 10934 10935 Expr::EvalResult Result; 10936 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 10937 Expr::SE_AllowSideEffects)) { 10938 // The RHS is not constant. If the RHS has an enum type, make sure the 10939 // bitfield is wide enough to hold all the values of the enum without 10940 // truncation. 10941 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 10942 EnumDecl *ED = EnumTy->getDecl(); 10943 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 10944 10945 // Enum types are implicitly signed on Windows, so check if there are any 10946 // negative enumerators to see if the enum was intended to be signed or 10947 // not. 10948 bool SignedEnum = ED->getNumNegativeBits() > 0; 10949 10950 // Check for surprising sign changes when assigning enum values to a 10951 // bitfield of different signedness. If the bitfield is signed and we 10952 // have exactly the right number of bits to store this unsigned enum, 10953 // suggest changing the enum to an unsigned type. This typically happens 10954 // on Windows where unfixed enums always use an underlying type of 'int'. 10955 unsigned DiagID = 0; 10956 if (SignedEnum && !SignedBitfield) { 10957 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 10958 } else if (SignedBitfield && !SignedEnum && 10959 ED->getNumPositiveBits() == FieldWidth) { 10960 DiagID = diag::warn_signed_bitfield_enum_conversion; 10961 } 10962 10963 if (DiagID) { 10964 S.Diag(InitLoc, DiagID) << Bitfield << ED; 10965 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 10966 SourceRange TypeRange = 10967 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 10968 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 10969 << SignedEnum << TypeRange; 10970 } 10971 10972 // Compute the required bitwidth. If the enum has negative values, we need 10973 // one more bit than the normal number of positive bits to represent the 10974 // sign bit. 10975 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 10976 ED->getNumNegativeBits()) 10977 : ED->getNumPositiveBits(); 10978 10979 // Check the bitwidth. 10980 if (BitsNeeded > FieldWidth) { 10981 Expr *WidthExpr = Bitfield->getBitWidth(); 10982 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 10983 << Bitfield << ED; 10984 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 10985 << BitsNeeded << ED << WidthExpr->getSourceRange(); 10986 } 10987 } 10988 10989 return false; 10990 } 10991 10992 llvm::APSInt Value = Result.Val.getInt(); 10993 10994 unsigned OriginalWidth = Value.getBitWidth(); 10995 10996 if (!Value.isSigned() || Value.isNegative()) 10997 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 10998 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 10999 OriginalWidth = Value.getMinSignedBits(); 11000 11001 if (OriginalWidth <= FieldWidth) 11002 return false; 11003 11004 // Compute the value which the bitfield will contain. 11005 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 11006 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 11007 11008 // Check whether the stored value is equal to the original value. 11009 TruncatedValue = TruncatedValue.extend(OriginalWidth); 11010 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 11011 return false; 11012 11013 // Special-case bitfields of width 1: booleans are naturally 0/1, and 11014 // therefore don't strictly fit into a signed bitfield of width 1. 11015 if (FieldWidth == 1 && Value == 1) 11016 return false; 11017 11018 std::string PrettyValue = Value.toString(10); 11019 std::string PrettyTrunc = TruncatedValue.toString(10); 11020 11021 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 11022 << PrettyValue << PrettyTrunc << OriginalInit->getType() 11023 << Init->getSourceRange(); 11024 11025 return true; 11026 } 11027 11028 /// Analyze the given simple or compound assignment for warning-worthy 11029 /// operations. 11030 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 11031 // Just recurse on the LHS. 11032 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11033 11034 // We want to recurse on the RHS as normal unless we're assigning to 11035 // a bitfield. 11036 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 11037 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 11038 E->getOperatorLoc())) { 11039 // Recurse, ignoring any implicit conversions on the RHS. 11040 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 11041 E->getOperatorLoc()); 11042 } 11043 } 11044 11045 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11046 11047 // Diagnose implicitly sequentially-consistent atomic assignment. 11048 if (E->getLHS()->getType()->isAtomicType()) 11049 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11050 } 11051 11052 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11053 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 11054 SourceLocation CContext, unsigned diag, 11055 bool pruneControlFlow = false) { 11056 if (pruneControlFlow) { 11057 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11058 S.PDiag(diag) 11059 << SourceType << T << E->getSourceRange() 11060 << SourceRange(CContext)); 11061 return; 11062 } 11063 S.Diag(E->getExprLoc(), diag) 11064 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 11065 } 11066 11067 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11068 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 11069 SourceLocation CContext, 11070 unsigned diag, bool pruneControlFlow = false) { 11071 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 11072 } 11073 11074 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 11075 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 11076 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 11077 } 11078 11079 static void adornObjCBoolConversionDiagWithTernaryFixit( 11080 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 11081 Expr *Ignored = SourceExpr->IgnoreImplicit(); 11082 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 11083 Ignored = OVE->getSourceExpr(); 11084 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 11085 isa<BinaryOperator>(Ignored) || 11086 isa<CXXOperatorCallExpr>(Ignored); 11087 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 11088 if (NeedsParens) 11089 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 11090 << FixItHint::CreateInsertion(EndLoc, ")"); 11091 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 11092 } 11093 11094 /// Diagnose an implicit cast from a floating point value to an integer value. 11095 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 11096 SourceLocation CContext) { 11097 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 11098 const bool PruneWarnings = S.inTemplateInstantiation(); 11099 11100 Expr *InnerE = E->IgnoreParenImpCasts(); 11101 // We also want to warn on, e.g., "int i = -1.234" 11102 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 11103 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 11104 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11105 11106 const bool IsLiteral = 11107 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11108 11109 llvm::APFloat Value(0.0); 11110 bool IsConstant = 11111 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11112 if (!IsConstant) { 11113 if (isObjCSignedCharBool(S, T)) { 11114 return adornObjCBoolConversionDiagWithTernaryFixit( 11115 S, E, 11116 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11117 << E->getType()); 11118 } 11119 11120 return DiagnoseImpCast(S, E, T, CContext, 11121 diag::warn_impcast_float_integer, PruneWarnings); 11122 } 11123 11124 bool isExact = false; 11125 11126 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11127 T->hasUnsignedIntegerRepresentation()); 11128 llvm::APFloat::opStatus Result = Value.convertToInteger( 11129 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11130 11131 // FIXME: Force the precision of the source value down so we don't print 11132 // digits which are usually useless (we don't really care here if we 11133 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11134 // would automatically print the shortest representation, but it's a bit 11135 // tricky to implement. 11136 SmallString<16> PrettySourceValue; 11137 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11138 precision = (precision * 59 + 195) / 196; 11139 Value.toString(PrettySourceValue, precision); 11140 11141 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11142 return adornObjCBoolConversionDiagWithTernaryFixit( 11143 S, E, 11144 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11145 << PrettySourceValue); 11146 } 11147 11148 if (Result == llvm::APFloat::opOK && isExact) { 11149 if (IsLiteral) return; 11150 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11151 PruneWarnings); 11152 } 11153 11154 // Conversion of a floating-point value to a non-bool integer where the 11155 // integral part cannot be represented by the integer type is undefined. 11156 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11157 return DiagnoseImpCast( 11158 S, E, T, CContext, 11159 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11160 : diag::warn_impcast_float_to_integer_out_of_range, 11161 PruneWarnings); 11162 11163 unsigned DiagID = 0; 11164 if (IsLiteral) { 11165 // Warn on floating point literal to integer. 11166 DiagID = diag::warn_impcast_literal_float_to_integer; 11167 } else if (IntegerValue == 0) { 11168 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11169 return DiagnoseImpCast(S, E, T, CContext, 11170 diag::warn_impcast_float_integer, PruneWarnings); 11171 } 11172 // Warn on non-zero to zero conversion. 11173 DiagID = diag::warn_impcast_float_to_integer_zero; 11174 } else { 11175 if (IntegerValue.isUnsigned()) { 11176 if (!IntegerValue.isMaxValue()) { 11177 return DiagnoseImpCast(S, E, T, CContext, 11178 diag::warn_impcast_float_integer, PruneWarnings); 11179 } 11180 } else { // IntegerValue.isSigned() 11181 if (!IntegerValue.isMaxSignedValue() && 11182 !IntegerValue.isMinSignedValue()) { 11183 return DiagnoseImpCast(S, E, T, CContext, 11184 diag::warn_impcast_float_integer, PruneWarnings); 11185 } 11186 } 11187 // Warn on evaluatable floating point expression to integer conversion. 11188 DiagID = diag::warn_impcast_float_to_integer; 11189 } 11190 11191 SmallString<16> PrettyTargetValue; 11192 if (IsBool) 11193 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11194 else 11195 IntegerValue.toString(PrettyTargetValue); 11196 11197 if (PruneWarnings) { 11198 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11199 S.PDiag(DiagID) 11200 << E->getType() << T.getUnqualifiedType() 11201 << PrettySourceValue << PrettyTargetValue 11202 << E->getSourceRange() << SourceRange(CContext)); 11203 } else { 11204 S.Diag(E->getExprLoc(), DiagID) 11205 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11206 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11207 } 11208 } 11209 11210 /// Analyze the given compound assignment for the possible losing of 11211 /// floating-point precision. 11212 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11213 assert(isa<CompoundAssignOperator>(E) && 11214 "Must be compound assignment operation"); 11215 // Recurse on the LHS and RHS in here 11216 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11217 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11218 11219 if (E->getLHS()->getType()->isAtomicType()) 11220 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11221 11222 // Now check the outermost expression 11223 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11224 const auto *RBT = cast<CompoundAssignOperator>(E) 11225 ->getComputationResultType() 11226 ->getAs<BuiltinType>(); 11227 11228 // The below checks assume source is floating point. 11229 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11230 11231 // If source is floating point but target is an integer. 11232 if (ResultBT->isInteger()) 11233 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11234 E->getExprLoc(), diag::warn_impcast_float_integer); 11235 11236 if (!ResultBT->isFloatingPoint()) 11237 return; 11238 11239 // If both source and target are floating points, warn about losing precision. 11240 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11241 QualType(ResultBT, 0), QualType(RBT, 0)); 11242 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11243 // warn about dropping FP rank. 11244 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11245 diag::warn_impcast_float_result_precision); 11246 } 11247 11248 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11249 IntRange Range) { 11250 if (!Range.Width) return "0"; 11251 11252 llvm::APSInt ValueInRange = Value; 11253 ValueInRange.setIsSigned(!Range.NonNegative); 11254 ValueInRange = ValueInRange.trunc(Range.Width); 11255 return ValueInRange.toString(10); 11256 } 11257 11258 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11259 if (!isa<ImplicitCastExpr>(Ex)) 11260 return false; 11261 11262 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11263 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11264 const Type *Source = 11265 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11266 if (Target->isDependentType()) 11267 return false; 11268 11269 const BuiltinType *FloatCandidateBT = 11270 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11271 const Type *BoolCandidateType = ToBool ? Target : Source; 11272 11273 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11274 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11275 } 11276 11277 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11278 SourceLocation CC) { 11279 unsigned NumArgs = TheCall->getNumArgs(); 11280 for (unsigned i = 0; i < NumArgs; ++i) { 11281 Expr *CurrA = TheCall->getArg(i); 11282 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11283 continue; 11284 11285 bool IsSwapped = ((i > 0) && 11286 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11287 IsSwapped |= ((i < (NumArgs - 1)) && 11288 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11289 if (IsSwapped) { 11290 // Warn on this floating-point to bool conversion. 11291 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11292 CurrA->getType(), CC, 11293 diag::warn_impcast_floating_point_to_bool); 11294 } 11295 } 11296 } 11297 11298 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11299 SourceLocation CC) { 11300 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11301 E->getExprLoc())) 11302 return; 11303 11304 // Don't warn on functions which have return type nullptr_t. 11305 if (isa<CallExpr>(E)) 11306 return; 11307 11308 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11309 const Expr::NullPointerConstantKind NullKind = 11310 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11311 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11312 return; 11313 11314 // Return if target type is a safe conversion. 11315 if (T->isAnyPointerType() || T->isBlockPointerType() || 11316 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11317 return; 11318 11319 SourceLocation Loc = E->getSourceRange().getBegin(); 11320 11321 // Venture through the macro stacks to get to the source of macro arguments. 11322 // The new location is a better location than the complete location that was 11323 // passed in. 11324 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11325 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11326 11327 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11328 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11329 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11330 Loc, S.SourceMgr, S.getLangOpts()); 11331 if (MacroName == "NULL") 11332 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11333 } 11334 11335 // Only warn if the null and context location are in the same macro expansion. 11336 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11337 return; 11338 11339 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11340 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11341 << FixItHint::CreateReplacement(Loc, 11342 S.getFixItZeroLiteralForType(T, Loc)); 11343 } 11344 11345 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11346 ObjCArrayLiteral *ArrayLiteral); 11347 11348 static void 11349 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11350 ObjCDictionaryLiteral *DictionaryLiteral); 11351 11352 /// Check a single element within a collection literal against the 11353 /// target element type. 11354 static void checkObjCCollectionLiteralElement(Sema &S, 11355 QualType TargetElementType, 11356 Expr *Element, 11357 unsigned ElementKind) { 11358 // Skip a bitcast to 'id' or qualified 'id'. 11359 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11360 if (ICE->getCastKind() == CK_BitCast && 11361 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11362 Element = ICE->getSubExpr(); 11363 } 11364 11365 QualType ElementType = Element->getType(); 11366 ExprResult ElementResult(Element); 11367 if (ElementType->getAs<ObjCObjectPointerType>() && 11368 S.CheckSingleAssignmentConstraints(TargetElementType, 11369 ElementResult, 11370 false, false) 11371 != Sema::Compatible) { 11372 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11373 << ElementType << ElementKind << TargetElementType 11374 << Element->getSourceRange(); 11375 } 11376 11377 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11378 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11379 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11380 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11381 } 11382 11383 /// Check an Objective-C array literal being converted to the given 11384 /// target type. 11385 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11386 ObjCArrayLiteral *ArrayLiteral) { 11387 if (!S.NSArrayDecl) 11388 return; 11389 11390 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11391 if (!TargetObjCPtr) 11392 return; 11393 11394 if (TargetObjCPtr->isUnspecialized() || 11395 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11396 != S.NSArrayDecl->getCanonicalDecl()) 11397 return; 11398 11399 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11400 if (TypeArgs.size() != 1) 11401 return; 11402 11403 QualType TargetElementType = TypeArgs[0]; 11404 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11405 checkObjCCollectionLiteralElement(S, TargetElementType, 11406 ArrayLiteral->getElement(I), 11407 0); 11408 } 11409 } 11410 11411 /// Check an Objective-C dictionary literal being converted to the given 11412 /// target type. 11413 static void 11414 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11415 ObjCDictionaryLiteral *DictionaryLiteral) { 11416 if (!S.NSDictionaryDecl) 11417 return; 11418 11419 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11420 if (!TargetObjCPtr) 11421 return; 11422 11423 if (TargetObjCPtr->isUnspecialized() || 11424 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11425 != S.NSDictionaryDecl->getCanonicalDecl()) 11426 return; 11427 11428 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11429 if (TypeArgs.size() != 2) 11430 return; 11431 11432 QualType TargetKeyType = TypeArgs[0]; 11433 QualType TargetObjectType = TypeArgs[1]; 11434 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11435 auto Element = DictionaryLiteral->getKeyValueElement(I); 11436 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11437 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11438 } 11439 } 11440 11441 // Helper function to filter out cases for constant width constant conversion. 11442 // Don't warn on char array initialization or for non-decimal values. 11443 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11444 SourceLocation CC) { 11445 // If initializing from a constant, and the constant starts with '0', 11446 // then it is a binary, octal, or hexadecimal. Allow these constants 11447 // to fill all the bits, even if there is a sign change. 11448 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11449 const char FirstLiteralCharacter = 11450 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11451 if (FirstLiteralCharacter == '0') 11452 return false; 11453 } 11454 11455 // If the CC location points to a '{', and the type is char, then assume 11456 // assume it is an array initialization. 11457 if (CC.isValid() && T->isCharType()) { 11458 const char FirstContextCharacter = 11459 S.getSourceManager().getCharacterData(CC)[0]; 11460 if (FirstContextCharacter == '{') 11461 return false; 11462 } 11463 11464 return true; 11465 } 11466 11467 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11468 const auto *IL = dyn_cast<IntegerLiteral>(E); 11469 if (!IL) { 11470 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11471 if (UO->getOpcode() == UO_Minus) 11472 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11473 } 11474 } 11475 11476 return IL; 11477 } 11478 11479 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11480 E = E->IgnoreParenImpCasts(); 11481 SourceLocation ExprLoc = E->getExprLoc(); 11482 11483 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11484 BinaryOperator::Opcode Opc = BO->getOpcode(); 11485 Expr::EvalResult Result; 11486 // Do not diagnose unsigned shifts. 11487 if (Opc == BO_Shl) { 11488 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11489 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11490 if (LHS && LHS->getValue() == 0) 11491 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11492 else if (!E->isValueDependent() && LHS && RHS && 11493 RHS->getValue().isNonNegative() && 11494 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11495 S.Diag(ExprLoc, diag::warn_left_shift_always) 11496 << (Result.Val.getInt() != 0); 11497 else if (E->getType()->isSignedIntegerType()) 11498 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11499 } 11500 } 11501 11502 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11503 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11504 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11505 if (!LHS || !RHS) 11506 return; 11507 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11508 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11509 // Do not diagnose common idioms. 11510 return; 11511 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11512 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11513 } 11514 } 11515 11516 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11517 SourceLocation CC, 11518 bool *ICContext = nullptr, 11519 bool IsListInit = false) { 11520 if (E->isTypeDependent() || E->isValueDependent()) return; 11521 11522 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11523 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11524 if (Source == Target) return; 11525 if (Target->isDependentType()) return; 11526 11527 // If the conversion context location is invalid don't complain. We also 11528 // don't want to emit a warning if the issue occurs from the expansion of 11529 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11530 // delay this check as long as possible. Once we detect we are in that 11531 // scenario, we just return. 11532 if (CC.isInvalid()) 11533 return; 11534 11535 if (Source->isAtomicType()) 11536 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 11537 11538 // Diagnose implicit casts to bool. 11539 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 11540 if (isa<StringLiteral>(E)) 11541 // Warn on string literal to bool. Checks for string literals in logical 11542 // and expressions, for instance, assert(0 && "error here"), are 11543 // prevented by a check in AnalyzeImplicitConversions(). 11544 return DiagnoseImpCast(S, E, T, CC, 11545 diag::warn_impcast_string_literal_to_bool); 11546 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 11547 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 11548 // This covers the literal expressions that evaluate to Objective-C 11549 // objects. 11550 return DiagnoseImpCast(S, E, T, CC, 11551 diag::warn_impcast_objective_c_literal_to_bool); 11552 } 11553 if (Source->isPointerType() || Source->canDecayToPointerType()) { 11554 // Warn on pointer to bool conversion that is always true. 11555 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 11556 SourceRange(CC)); 11557 } 11558 } 11559 11560 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 11561 // is a typedef for signed char (macOS), then that constant value has to be 1 11562 // or 0. 11563 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 11564 Expr::EvalResult Result; 11565 if (E->EvaluateAsInt(Result, S.getASTContext(), 11566 Expr::SE_AllowSideEffects)) { 11567 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 11568 adornObjCBoolConversionDiagWithTernaryFixit( 11569 S, E, 11570 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 11571 << Result.Val.getInt().toString(10)); 11572 } 11573 return; 11574 } 11575 } 11576 11577 // Check implicit casts from Objective-C collection literals to specialized 11578 // collection types, e.g., NSArray<NSString *> *. 11579 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 11580 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 11581 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 11582 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 11583 11584 // Strip vector types. 11585 if (isa<VectorType>(Source)) { 11586 if (!isa<VectorType>(Target)) { 11587 if (S.SourceMgr.isInSystemMacro(CC)) 11588 return; 11589 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 11590 } 11591 11592 // If the vector cast is cast between two vectors of the same size, it is 11593 // a bitcast, not a conversion. 11594 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 11595 return; 11596 11597 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 11598 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 11599 } 11600 if (auto VecTy = dyn_cast<VectorType>(Target)) 11601 Target = VecTy->getElementType().getTypePtr(); 11602 11603 // Strip complex types. 11604 if (isa<ComplexType>(Source)) { 11605 if (!isa<ComplexType>(Target)) { 11606 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 11607 return; 11608 11609 return DiagnoseImpCast(S, E, T, CC, 11610 S.getLangOpts().CPlusPlus 11611 ? diag::err_impcast_complex_scalar 11612 : diag::warn_impcast_complex_scalar); 11613 } 11614 11615 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 11616 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 11617 } 11618 11619 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 11620 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 11621 11622 // If the source is floating point... 11623 if (SourceBT && SourceBT->isFloatingPoint()) { 11624 // ...and the target is floating point... 11625 if (TargetBT && TargetBT->isFloatingPoint()) { 11626 // ...then warn if we're dropping FP rank. 11627 11628 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11629 QualType(SourceBT, 0), QualType(TargetBT, 0)); 11630 if (Order > 0) { 11631 // Don't warn about float constants that are precisely 11632 // representable in the target type. 11633 Expr::EvalResult result; 11634 if (E->EvaluateAsRValue(result, S.Context)) { 11635 // Value might be a float, a float vector, or a float complex. 11636 if (IsSameFloatAfterCast(result.Val, 11637 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 11638 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 11639 return; 11640 } 11641 11642 if (S.SourceMgr.isInSystemMacro(CC)) 11643 return; 11644 11645 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 11646 } 11647 // ... or possibly if we're increasing rank, too 11648 else if (Order < 0) { 11649 if (S.SourceMgr.isInSystemMacro(CC)) 11650 return; 11651 11652 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 11653 } 11654 return; 11655 } 11656 11657 // If the target is integral, always warn. 11658 if (TargetBT && TargetBT->isInteger()) { 11659 if (S.SourceMgr.isInSystemMacro(CC)) 11660 return; 11661 11662 DiagnoseFloatingImpCast(S, E, T, CC); 11663 } 11664 11665 // Detect the case where a call result is converted from floating-point to 11666 // to bool, and the final argument to the call is converted from bool, to 11667 // discover this typo: 11668 // 11669 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 11670 // 11671 // FIXME: This is an incredibly special case; is there some more general 11672 // way to detect this class of misplaced-parentheses bug? 11673 if (Target->isBooleanType() && isa<CallExpr>(E)) { 11674 // Check last argument of function call to see if it is an 11675 // implicit cast from a type matching the type the result 11676 // is being cast to. 11677 CallExpr *CEx = cast<CallExpr>(E); 11678 if (unsigned NumArgs = CEx->getNumArgs()) { 11679 Expr *LastA = CEx->getArg(NumArgs - 1); 11680 Expr *InnerE = LastA->IgnoreParenImpCasts(); 11681 if (isa<ImplicitCastExpr>(LastA) && 11682 InnerE->getType()->isBooleanType()) { 11683 // Warn on this floating-point to bool conversion 11684 DiagnoseImpCast(S, E, T, CC, 11685 diag::warn_impcast_floating_point_to_bool); 11686 } 11687 } 11688 } 11689 return; 11690 } 11691 11692 // Valid casts involving fixed point types should be accounted for here. 11693 if (Source->isFixedPointType()) { 11694 if (Target->isUnsaturatedFixedPointType()) { 11695 Expr::EvalResult Result; 11696 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 11697 S.isConstantEvaluated())) { 11698 APFixedPoint Value = Result.Val.getFixedPoint(); 11699 APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 11700 APFixedPoint MinVal = S.Context.getFixedPointMin(T); 11701 if (Value > MaxVal || Value < MinVal) { 11702 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11703 S.PDiag(diag::warn_impcast_fixed_point_range) 11704 << Value.toString() << T 11705 << E->getSourceRange() 11706 << clang::SourceRange(CC)); 11707 return; 11708 } 11709 } 11710 } else if (Target->isIntegerType()) { 11711 Expr::EvalResult Result; 11712 if (!S.isConstantEvaluated() && 11713 E->EvaluateAsFixedPoint(Result, S.Context, 11714 Expr::SE_AllowSideEffects)) { 11715 APFixedPoint FXResult = Result.Val.getFixedPoint(); 11716 11717 bool Overflowed; 11718 llvm::APSInt IntResult = FXResult.convertToInt( 11719 S.Context.getIntWidth(T), 11720 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 11721 11722 if (Overflowed) { 11723 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11724 S.PDiag(diag::warn_impcast_fixed_point_range) 11725 << FXResult.toString() << T 11726 << E->getSourceRange() 11727 << clang::SourceRange(CC)); 11728 return; 11729 } 11730 } 11731 } 11732 } else if (Target->isUnsaturatedFixedPointType()) { 11733 if (Source->isIntegerType()) { 11734 Expr::EvalResult Result; 11735 if (!S.isConstantEvaluated() && 11736 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11737 llvm::APSInt Value = Result.Val.getInt(); 11738 11739 bool Overflowed; 11740 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 11741 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 11742 11743 if (Overflowed) { 11744 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11745 S.PDiag(diag::warn_impcast_fixed_point_range) 11746 << Value.toString(/*Radix=*/10) << T 11747 << E->getSourceRange() 11748 << clang::SourceRange(CC)); 11749 return; 11750 } 11751 } 11752 } 11753 } 11754 11755 // If we are casting an integer type to a floating point type without 11756 // initialization-list syntax, we might lose accuracy if the floating 11757 // point type has a narrower significand than the integer type. 11758 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 11759 TargetBT->isFloatingType() && !IsListInit) { 11760 // Determine the number of precision bits in the source integer type. 11761 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11762 unsigned int SourcePrecision = SourceRange.Width; 11763 11764 // Determine the number of precision bits in the 11765 // target floating point type. 11766 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 11767 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11768 11769 if (SourcePrecision > 0 && TargetPrecision > 0 && 11770 SourcePrecision > TargetPrecision) { 11771 11772 llvm::APSInt SourceInt; 11773 if (E->isIntegerConstantExpr(SourceInt, S.Context)) { 11774 // If the source integer is a constant, convert it to the target 11775 // floating point type. Issue a warning if the value changes 11776 // during the whole conversion. 11777 llvm::APFloat TargetFloatValue( 11778 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11779 llvm::APFloat::opStatus ConversionStatus = 11780 TargetFloatValue.convertFromAPInt( 11781 SourceInt, SourceBT->isSignedInteger(), 11782 llvm::APFloat::rmNearestTiesToEven); 11783 11784 if (ConversionStatus != llvm::APFloat::opOK) { 11785 std::string PrettySourceValue = SourceInt.toString(10); 11786 SmallString<32> PrettyTargetValue; 11787 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 11788 11789 S.DiagRuntimeBehavior( 11790 E->getExprLoc(), E, 11791 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 11792 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11793 << E->getSourceRange() << clang::SourceRange(CC)); 11794 } 11795 } else { 11796 // Otherwise, the implicit conversion may lose precision. 11797 DiagnoseImpCast(S, E, T, CC, 11798 diag::warn_impcast_integer_float_precision); 11799 } 11800 } 11801 } 11802 11803 DiagnoseNullConversion(S, E, T, CC); 11804 11805 S.DiscardMisalignedMemberAddress(Target, E); 11806 11807 if (Target->isBooleanType()) 11808 DiagnoseIntInBoolContext(S, E); 11809 11810 if (!Source->isIntegerType() || !Target->isIntegerType()) 11811 return; 11812 11813 // TODO: remove this early return once the false positives for constant->bool 11814 // in templates, macros, etc, are reduced or removed. 11815 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 11816 return; 11817 11818 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 11819 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 11820 return adornObjCBoolConversionDiagWithTernaryFixit( 11821 S, E, 11822 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 11823 << E->getType()); 11824 } 11825 11826 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11827 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 11828 11829 if (SourceRange.Width > TargetRange.Width) { 11830 // If the source is a constant, use a default-on diagnostic. 11831 // TODO: this should happen for bitfield stores, too. 11832 Expr::EvalResult Result; 11833 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 11834 S.isConstantEvaluated())) { 11835 llvm::APSInt Value(32); 11836 Value = Result.Val.getInt(); 11837 11838 if (S.SourceMgr.isInSystemMacro(CC)) 11839 return; 11840 11841 std::string PrettySourceValue = Value.toString(10); 11842 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11843 11844 S.DiagRuntimeBehavior( 11845 E->getExprLoc(), E, 11846 S.PDiag(diag::warn_impcast_integer_precision_constant) 11847 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11848 << E->getSourceRange() << clang::SourceRange(CC)); 11849 return; 11850 } 11851 11852 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 11853 if (S.SourceMgr.isInSystemMacro(CC)) 11854 return; 11855 11856 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 11857 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 11858 /* pruneControlFlow */ true); 11859 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 11860 } 11861 11862 if (TargetRange.Width > SourceRange.Width) { 11863 if (auto *UO = dyn_cast<UnaryOperator>(E)) 11864 if (UO->getOpcode() == UO_Minus) 11865 if (Source->isUnsignedIntegerType()) { 11866 if (Target->isUnsignedIntegerType()) 11867 return DiagnoseImpCast(S, E, T, CC, 11868 diag::warn_impcast_high_order_zero_bits); 11869 if (Target->isSignedIntegerType()) 11870 return DiagnoseImpCast(S, E, T, CC, 11871 diag::warn_impcast_nonnegative_result); 11872 } 11873 } 11874 11875 if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && 11876 SourceRange.NonNegative && Source->isSignedIntegerType()) { 11877 // Warn when doing a signed to signed conversion, warn if the positive 11878 // source value is exactly the width of the target type, which will 11879 // cause a negative value to be stored. 11880 11881 Expr::EvalResult Result; 11882 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 11883 !S.SourceMgr.isInSystemMacro(CC)) { 11884 llvm::APSInt Value = Result.Val.getInt(); 11885 if (isSameWidthConstantConversion(S, E, T, CC)) { 11886 std::string PrettySourceValue = Value.toString(10); 11887 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11888 11889 S.DiagRuntimeBehavior( 11890 E->getExprLoc(), E, 11891 S.PDiag(diag::warn_impcast_integer_precision_constant) 11892 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11893 << E->getSourceRange() << clang::SourceRange(CC)); 11894 return; 11895 } 11896 } 11897 11898 // Fall through for non-constants to give a sign conversion warning. 11899 } 11900 11901 if ((TargetRange.NonNegative && !SourceRange.NonNegative) || 11902 (!TargetRange.NonNegative && SourceRange.NonNegative && 11903 SourceRange.Width == TargetRange.Width)) { 11904 if (S.SourceMgr.isInSystemMacro(CC)) 11905 return; 11906 11907 unsigned DiagID = diag::warn_impcast_integer_sign; 11908 11909 // Traditionally, gcc has warned about this under -Wsign-compare. 11910 // We also want to warn about it in -Wconversion. 11911 // So if -Wconversion is off, use a completely identical diagnostic 11912 // in the sign-compare group. 11913 // The conditional-checking code will 11914 if (ICContext) { 11915 DiagID = diag::warn_impcast_integer_sign_conditional; 11916 *ICContext = true; 11917 } 11918 11919 return DiagnoseImpCast(S, E, T, CC, DiagID); 11920 } 11921 11922 // Diagnose conversions between different enumeration types. 11923 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 11924 // type, to give us better diagnostics. 11925 QualType SourceType = E->getType(); 11926 if (!S.getLangOpts().CPlusPlus) { 11927 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 11928 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 11929 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 11930 SourceType = S.Context.getTypeDeclType(Enum); 11931 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 11932 } 11933 } 11934 11935 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 11936 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 11937 if (SourceEnum->getDecl()->hasNameForLinkage() && 11938 TargetEnum->getDecl()->hasNameForLinkage() && 11939 SourceEnum != TargetEnum) { 11940 if (S.SourceMgr.isInSystemMacro(CC)) 11941 return; 11942 11943 return DiagnoseImpCast(S, E, SourceType, T, CC, 11944 diag::warn_impcast_different_enum_types); 11945 } 11946 } 11947 11948 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 11949 SourceLocation CC, QualType T); 11950 11951 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 11952 SourceLocation CC, bool &ICContext) { 11953 E = E->IgnoreParenImpCasts(); 11954 11955 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 11956 return CheckConditionalOperator(S, CO, CC, T); 11957 11958 AnalyzeImplicitConversions(S, E, CC); 11959 if (E->getType() != T) 11960 return CheckImplicitConversion(S, E, T, CC, &ICContext); 11961 } 11962 11963 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 11964 SourceLocation CC, QualType T) { 11965 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 11966 11967 Expr *TrueExpr = E->getTrueExpr(); 11968 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 11969 TrueExpr = BCO->getCommon(); 11970 11971 bool Suspicious = false; 11972 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 11973 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 11974 11975 if (T->isBooleanType()) 11976 DiagnoseIntInBoolContext(S, E); 11977 11978 // If -Wconversion would have warned about either of the candidates 11979 // for a signedness conversion to the context type... 11980 if (!Suspicious) return; 11981 11982 // ...but it's currently ignored... 11983 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 11984 return; 11985 11986 // ...then check whether it would have warned about either of the 11987 // candidates for a signedness conversion to the condition type. 11988 if (E->getType() == T) return; 11989 11990 Suspicious = false; 11991 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 11992 E->getType(), CC, &Suspicious); 11993 if (!Suspicious) 11994 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 11995 E->getType(), CC, &Suspicious); 11996 } 11997 11998 /// Check conversion of given expression to boolean. 11999 /// Input argument E is a logical expression. 12000 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 12001 if (S.getLangOpts().Bool) 12002 return; 12003 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 12004 return; 12005 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 12006 } 12007 12008 namespace { 12009 struct AnalyzeImplicitConversionsWorkItem { 12010 Expr *E; 12011 SourceLocation CC; 12012 bool IsListInit; 12013 }; 12014 } 12015 12016 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 12017 /// that should be visited are added to WorkList. 12018 static void AnalyzeImplicitConversions( 12019 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 12020 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 12021 Expr *OrigE = Item.E; 12022 SourceLocation CC = Item.CC; 12023 12024 QualType T = OrigE->getType(); 12025 Expr *E = OrigE->IgnoreParenImpCasts(); 12026 12027 // Propagate whether we are in a C++ list initialization expression. 12028 // If so, we do not issue warnings for implicit int-float conversion 12029 // precision loss, because C++11 narrowing already handles it. 12030 bool IsListInit = Item.IsListInit || 12031 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 12032 12033 if (E->isTypeDependent() || E->isValueDependent()) 12034 return; 12035 12036 Expr *SourceExpr = E; 12037 // Examine, but don't traverse into the source expression of an 12038 // OpaqueValueExpr, since it may have multiple parents and we don't want to 12039 // emit duplicate diagnostics. Its fine to examine the form or attempt to 12040 // evaluate it in the context of checking the specific conversion to T though. 12041 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 12042 if (auto *Src = OVE->getSourceExpr()) 12043 SourceExpr = Src; 12044 12045 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 12046 if (UO->getOpcode() == UO_Not && 12047 UO->getSubExpr()->isKnownToHaveBooleanValue()) 12048 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 12049 << OrigE->getSourceRange() << T->isBooleanType() 12050 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 12051 12052 // For conditional operators, we analyze the arguments as if they 12053 // were being fed directly into the output. 12054 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 12055 CheckConditionalOperator(S, CO, CC, T); 12056 return; 12057 } 12058 12059 // Check implicit argument conversions for function calls. 12060 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 12061 CheckImplicitArgumentConversions(S, Call, CC); 12062 12063 // Go ahead and check any implicit conversions we might have skipped. 12064 // The non-canonical typecheck is just an optimization; 12065 // CheckImplicitConversion will filter out dead implicit conversions. 12066 if (SourceExpr->getType() != T) 12067 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 12068 12069 // Now continue drilling into this expression. 12070 12071 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 12072 // The bound subexpressions in a PseudoObjectExpr are not reachable 12073 // as transitive children. 12074 // FIXME: Use a more uniform representation for this. 12075 for (auto *SE : POE->semantics()) 12076 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 12077 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 12078 } 12079 12080 // Skip past explicit casts. 12081 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 12082 E = CE->getSubExpr()->IgnoreParenImpCasts(); 12083 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 12084 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12085 WorkList.push_back({E, CC, IsListInit}); 12086 return; 12087 } 12088 12089 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12090 // Do a somewhat different check with comparison operators. 12091 if (BO->isComparisonOp()) 12092 return AnalyzeComparison(S, BO); 12093 12094 // And with simple assignments. 12095 if (BO->getOpcode() == BO_Assign) 12096 return AnalyzeAssignment(S, BO); 12097 // And with compound assignments. 12098 if (BO->isAssignmentOp()) 12099 return AnalyzeCompoundAssignment(S, BO); 12100 } 12101 12102 // These break the otherwise-useful invariant below. Fortunately, 12103 // we don't really need to recurse into them, because any internal 12104 // expressions should have been analyzed already when they were 12105 // built into statements. 12106 if (isa<StmtExpr>(E)) return; 12107 12108 // Don't descend into unevaluated contexts. 12109 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12110 12111 // Now just recurse over the expression's children. 12112 CC = E->getExprLoc(); 12113 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12114 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12115 for (Stmt *SubStmt : E->children()) { 12116 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12117 if (!ChildExpr) 12118 continue; 12119 12120 if (IsLogicalAndOperator && 12121 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12122 // Ignore checking string literals that are in logical and operators. 12123 // This is a common pattern for asserts. 12124 continue; 12125 WorkList.push_back({ChildExpr, CC, IsListInit}); 12126 } 12127 12128 if (BO && BO->isLogicalOp()) { 12129 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12130 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12131 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12132 12133 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12134 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12135 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12136 } 12137 12138 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12139 if (U->getOpcode() == UO_LNot) { 12140 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12141 } else if (U->getOpcode() != UO_AddrOf) { 12142 if (U->getSubExpr()->getType()->isAtomicType()) 12143 S.Diag(U->getSubExpr()->getBeginLoc(), 12144 diag::warn_atomic_implicit_seq_cst); 12145 } 12146 } 12147 } 12148 12149 /// AnalyzeImplicitConversions - Find and report any interesting 12150 /// implicit conversions in the given expression. There are a couple 12151 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 12152 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 12153 bool IsListInit/*= false*/) { 12154 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 12155 WorkList.push_back({OrigE, CC, IsListInit}); 12156 while (!WorkList.empty()) 12157 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 12158 } 12159 12160 /// Diagnose integer type and any valid implicit conversion to it. 12161 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12162 // Taking into account implicit conversions, 12163 // allow any integer. 12164 if (!E->getType()->isIntegerType()) { 12165 S.Diag(E->getBeginLoc(), 12166 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12167 return true; 12168 } 12169 // Potentially emit standard warnings for implicit conversions if enabled 12170 // using -Wconversion. 12171 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12172 return false; 12173 } 12174 12175 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12176 // Returns true when emitting a warning about taking the address of a reference. 12177 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12178 const PartialDiagnostic &PD) { 12179 E = E->IgnoreParenImpCasts(); 12180 12181 const FunctionDecl *FD = nullptr; 12182 12183 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12184 if (!DRE->getDecl()->getType()->isReferenceType()) 12185 return false; 12186 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12187 if (!M->getMemberDecl()->getType()->isReferenceType()) 12188 return false; 12189 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12190 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12191 return false; 12192 FD = Call->getDirectCallee(); 12193 } else { 12194 return false; 12195 } 12196 12197 SemaRef.Diag(E->getExprLoc(), PD); 12198 12199 // If possible, point to location of function. 12200 if (FD) { 12201 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12202 } 12203 12204 return true; 12205 } 12206 12207 // Returns true if the SourceLocation is expanded from any macro body. 12208 // Returns false if the SourceLocation is invalid, is from not in a macro 12209 // expansion, or is from expanded from a top-level macro argument. 12210 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12211 if (Loc.isInvalid()) 12212 return false; 12213 12214 while (Loc.isMacroID()) { 12215 if (SM.isMacroBodyExpansion(Loc)) 12216 return true; 12217 Loc = SM.getImmediateMacroCallerLoc(Loc); 12218 } 12219 12220 return false; 12221 } 12222 12223 /// Diagnose pointers that are always non-null. 12224 /// \param E the expression containing the pointer 12225 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12226 /// compared to a null pointer 12227 /// \param IsEqual True when the comparison is equal to a null pointer 12228 /// \param Range Extra SourceRange to highlight in the diagnostic 12229 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12230 Expr::NullPointerConstantKind NullKind, 12231 bool IsEqual, SourceRange Range) { 12232 if (!E) 12233 return; 12234 12235 // Don't warn inside macros. 12236 if (E->getExprLoc().isMacroID()) { 12237 const SourceManager &SM = getSourceManager(); 12238 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12239 IsInAnyMacroBody(SM, Range.getBegin())) 12240 return; 12241 } 12242 E = E->IgnoreImpCasts(); 12243 12244 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12245 12246 if (isa<CXXThisExpr>(E)) { 12247 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12248 : diag::warn_this_bool_conversion; 12249 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12250 return; 12251 } 12252 12253 bool IsAddressOf = false; 12254 12255 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12256 if (UO->getOpcode() != UO_AddrOf) 12257 return; 12258 IsAddressOf = true; 12259 E = UO->getSubExpr(); 12260 } 12261 12262 if (IsAddressOf) { 12263 unsigned DiagID = IsCompare 12264 ? diag::warn_address_of_reference_null_compare 12265 : diag::warn_address_of_reference_bool_conversion; 12266 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12267 << IsEqual; 12268 if (CheckForReference(*this, E, PD)) { 12269 return; 12270 } 12271 } 12272 12273 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12274 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12275 std::string Str; 12276 llvm::raw_string_ostream S(Str); 12277 E->printPretty(S, nullptr, getPrintingPolicy()); 12278 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12279 : diag::warn_cast_nonnull_to_bool; 12280 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12281 << E->getSourceRange() << Range << IsEqual; 12282 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12283 }; 12284 12285 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12286 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12287 if (auto *Callee = Call->getDirectCallee()) { 12288 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12289 ComplainAboutNonnullParamOrCall(A); 12290 return; 12291 } 12292 } 12293 } 12294 12295 // Expect to find a single Decl. Skip anything more complicated. 12296 ValueDecl *D = nullptr; 12297 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12298 D = R->getDecl(); 12299 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12300 D = M->getMemberDecl(); 12301 } 12302 12303 // Weak Decls can be null. 12304 if (!D || D->isWeak()) 12305 return; 12306 12307 // Check for parameter decl with nonnull attribute 12308 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12309 if (getCurFunction() && 12310 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12311 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12312 ComplainAboutNonnullParamOrCall(A); 12313 return; 12314 } 12315 12316 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12317 // Skip function template not specialized yet. 12318 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12319 return; 12320 auto ParamIter = llvm::find(FD->parameters(), PV); 12321 assert(ParamIter != FD->param_end()); 12322 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12323 12324 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12325 if (!NonNull->args_size()) { 12326 ComplainAboutNonnullParamOrCall(NonNull); 12327 return; 12328 } 12329 12330 for (const ParamIdx &ArgNo : NonNull->args()) { 12331 if (ArgNo.getASTIndex() == ParamNo) { 12332 ComplainAboutNonnullParamOrCall(NonNull); 12333 return; 12334 } 12335 } 12336 } 12337 } 12338 } 12339 } 12340 12341 QualType T = D->getType(); 12342 const bool IsArray = T->isArrayType(); 12343 const bool IsFunction = T->isFunctionType(); 12344 12345 // Address of function is used to silence the function warning. 12346 if (IsAddressOf && IsFunction) { 12347 return; 12348 } 12349 12350 // Found nothing. 12351 if (!IsAddressOf && !IsFunction && !IsArray) 12352 return; 12353 12354 // Pretty print the expression for the diagnostic. 12355 std::string Str; 12356 llvm::raw_string_ostream S(Str); 12357 E->printPretty(S, nullptr, getPrintingPolicy()); 12358 12359 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12360 : diag::warn_impcast_pointer_to_bool; 12361 enum { 12362 AddressOf, 12363 FunctionPointer, 12364 ArrayPointer 12365 } DiagType; 12366 if (IsAddressOf) 12367 DiagType = AddressOf; 12368 else if (IsFunction) 12369 DiagType = FunctionPointer; 12370 else if (IsArray) 12371 DiagType = ArrayPointer; 12372 else 12373 llvm_unreachable("Could not determine diagnostic."); 12374 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12375 << Range << IsEqual; 12376 12377 if (!IsFunction) 12378 return; 12379 12380 // Suggest '&' to silence the function warning. 12381 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12382 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12383 12384 // Check to see if '()' fixit should be emitted. 12385 QualType ReturnType; 12386 UnresolvedSet<4> NonTemplateOverloads; 12387 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12388 if (ReturnType.isNull()) 12389 return; 12390 12391 if (IsCompare) { 12392 // There are two cases here. If there is null constant, the only suggest 12393 // for a pointer return type. If the null is 0, then suggest if the return 12394 // type is a pointer or an integer type. 12395 if (!ReturnType->isPointerType()) { 12396 if (NullKind == Expr::NPCK_ZeroExpression || 12397 NullKind == Expr::NPCK_ZeroLiteral) { 12398 if (!ReturnType->isIntegerType()) 12399 return; 12400 } else { 12401 return; 12402 } 12403 } 12404 } else { // !IsCompare 12405 // For function to bool, only suggest if the function pointer has bool 12406 // return type. 12407 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12408 return; 12409 } 12410 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12411 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12412 } 12413 12414 /// Diagnoses "dangerous" implicit conversions within the given 12415 /// expression (which is a full expression). Implements -Wconversion 12416 /// and -Wsign-compare. 12417 /// 12418 /// \param CC the "context" location of the implicit conversion, i.e. 12419 /// the most location of the syntactic entity requiring the implicit 12420 /// conversion 12421 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12422 // Don't diagnose in unevaluated contexts. 12423 if (isUnevaluatedContext()) 12424 return; 12425 12426 // Don't diagnose for value- or type-dependent expressions. 12427 if (E->isTypeDependent() || E->isValueDependent()) 12428 return; 12429 12430 // Check for array bounds violations in cases where the check isn't triggered 12431 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12432 // ArraySubscriptExpr is on the RHS of a variable initialization. 12433 CheckArrayAccess(E); 12434 12435 // This is not the right CC for (e.g.) a variable initialization. 12436 AnalyzeImplicitConversions(*this, E, CC); 12437 } 12438 12439 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12440 /// Input argument E is a logical expression. 12441 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12442 ::CheckBoolLikeConversion(*this, E, CC); 12443 } 12444 12445 /// Diagnose when expression is an integer constant expression and its evaluation 12446 /// results in integer overflow 12447 void Sema::CheckForIntOverflow (Expr *E) { 12448 // Use a work list to deal with nested struct initializers. 12449 SmallVector<Expr *, 2> Exprs(1, E); 12450 12451 do { 12452 Expr *OriginalE = Exprs.pop_back_val(); 12453 Expr *E = OriginalE->IgnoreParenCasts(); 12454 12455 if (isa<BinaryOperator>(E)) { 12456 E->EvaluateForOverflow(Context); 12457 continue; 12458 } 12459 12460 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12461 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12462 else if (isa<ObjCBoxedExpr>(OriginalE)) 12463 E->EvaluateForOverflow(Context); 12464 else if (auto Call = dyn_cast<CallExpr>(E)) 12465 Exprs.append(Call->arg_begin(), Call->arg_end()); 12466 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12467 Exprs.append(Message->arg_begin(), Message->arg_end()); 12468 } while (!Exprs.empty()); 12469 } 12470 12471 namespace { 12472 12473 /// Visitor for expressions which looks for unsequenced operations on the 12474 /// same object. 12475 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 12476 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 12477 12478 /// A tree of sequenced regions within an expression. Two regions are 12479 /// unsequenced if one is an ancestor or a descendent of the other. When we 12480 /// finish processing an expression with sequencing, such as a comma 12481 /// expression, we fold its tree nodes into its parent, since they are 12482 /// unsequenced with respect to nodes we will visit later. 12483 class SequenceTree { 12484 struct Value { 12485 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12486 unsigned Parent : 31; 12487 unsigned Merged : 1; 12488 }; 12489 SmallVector<Value, 8> Values; 12490 12491 public: 12492 /// A region within an expression which may be sequenced with respect 12493 /// to some other region. 12494 class Seq { 12495 friend class SequenceTree; 12496 12497 unsigned Index; 12498 12499 explicit Seq(unsigned N) : Index(N) {} 12500 12501 public: 12502 Seq() : Index(0) {} 12503 }; 12504 12505 SequenceTree() { Values.push_back(Value(0)); } 12506 Seq root() const { return Seq(0); } 12507 12508 /// Create a new sequence of operations, which is an unsequenced 12509 /// subset of \p Parent. This sequence of operations is sequenced with 12510 /// respect to other children of \p Parent. 12511 Seq allocate(Seq Parent) { 12512 Values.push_back(Value(Parent.Index)); 12513 return Seq(Values.size() - 1); 12514 } 12515 12516 /// Merge a sequence of operations into its parent. 12517 void merge(Seq S) { 12518 Values[S.Index].Merged = true; 12519 } 12520 12521 /// Determine whether two operations are unsequenced. This operation 12522 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12523 /// should have been merged into its parent as appropriate. 12524 bool isUnsequenced(Seq Cur, Seq Old) { 12525 unsigned C = representative(Cur.Index); 12526 unsigned Target = representative(Old.Index); 12527 while (C >= Target) { 12528 if (C == Target) 12529 return true; 12530 C = Values[C].Parent; 12531 } 12532 return false; 12533 } 12534 12535 private: 12536 /// Pick a representative for a sequence. 12537 unsigned representative(unsigned K) { 12538 if (Values[K].Merged) 12539 // Perform path compression as we go. 12540 return Values[K].Parent = representative(Values[K].Parent); 12541 return K; 12542 } 12543 }; 12544 12545 /// An object for which we can track unsequenced uses. 12546 using Object = const NamedDecl *; 12547 12548 /// Different flavors of object usage which we track. We only track the 12549 /// least-sequenced usage of each kind. 12550 enum UsageKind { 12551 /// A read of an object. Multiple unsequenced reads are OK. 12552 UK_Use, 12553 12554 /// A modification of an object which is sequenced before the value 12555 /// computation of the expression, such as ++n in C++. 12556 UK_ModAsValue, 12557 12558 /// A modification of an object which is not sequenced before the value 12559 /// computation of the expression, such as n++. 12560 UK_ModAsSideEffect, 12561 12562 UK_Count = UK_ModAsSideEffect + 1 12563 }; 12564 12565 /// Bundle together a sequencing region and the expression corresponding 12566 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 12567 struct Usage { 12568 const Expr *UsageExpr; 12569 SequenceTree::Seq Seq; 12570 12571 Usage() : UsageExpr(nullptr), Seq() {} 12572 }; 12573 12574 struct UsageInfo { 12575 Usage Uses[UK_Count]; 12576 12577 /// Have we issued a diagnostic for this object already? 12578 bool Diagnosed; 12579 12580 UsageInfo() : Uses(), Diagnosed(false) {} 12581 }; 12582 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 12583 12584 Sema &SemaRef; 12585 12586 /// Sequenced regions within the expression. 12587 SequenceTree Tree; 12588 12589 /// Declaration modifications and references which we have seen. 12590 UsageInfoMap UsageMap; 12591 12592 /// The region we are currently within. 12593 SequenceTree::Seq Region; 12594 12595 /// Filled in with declarations which were modified as a side-effect 12596 /// (that is, post-increment operations). 12597 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 12598 12599 /// Expressions to check later. We defer checking these to reduce 12600 /// stack usage. 12601 SmallVectorImpl<const Expr *> &WorkList; 12602 12603 /// RAII object wrapping the visitation of a sequenced subexpression of an 12604 /// expression. At the end of this process, the side-effects of the evaluation 12605 /// become sequenced with respect to the value computation of the result, so 12606 /// we downgrade any UK_ModAsSideEffect within the evaluation to 12607 /// UK_ModAsValue. 12608 struct SequencedSubexpression { 12609 SequencedSubexpression(SequenceChecker &Self) 12610 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 12611 Self.ModAsSideEffect = &ModAsSideEffect; 12612 } 12613 12614 ~SequencedSubexpression() { 12615 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 12616 // Add a new usage with usage kind UK_ModAsValue, and then restore 12617 // the previous usage with UK_ModAsSideEffect (thus clearing it if 12618 // the previous one was empty). 12619 UsageInfo &UI = Self.UsageMap[M.first]; 12620 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 12621 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 12622 SideEffectUsage = M.second; 12623 } 12624 Self.ModAsSideEffect = OldModAsSideEffect; 12625 } 12626 12627 SequenceChecker &Self; 12628 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 12629 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 12630 }; 12631 12632 /// RAII object wrapping the visitation of a subexpression which we might 12633 /// choose to evaluate as a constant. If any subexpression is evaluated and 12634 /// found to be non-constant, this allows us to suppress the evaluation of 12635 /// the outer expression. 12636 class EvaluationTracker { 12637 public: 12638 EvaluationTracker(SequenceChecker &Self) 12639 : Self(Self), Prev(Self.EvalTracker) { 12640 Self.EvalTracker = this; 12641 } 12642 12643 ~EvaluationTracker() { 12644 Self.EvalTracker = Prev; 12645 if (Prev) 12646 Prev->EvalOK &= EvalOK; 12647 } 12648 12649 bool evaluate(const Expr *E, bool &Result) { 12650 if (!EvalOK || E->isValueDependent()) 12651 return false; 12652 EvalOK = E->EvaluateAsBooleanCondition( 12653 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 12654 return EvalOK; 12655 } 12656 12657 private: 12658 SequenceChecker &Self; 12659 EvaluationTracker *Prev; 12660 bool EvalOK = true; 12661 } *EvalTracker = nullptr; 12662 12663 /// Find the object which is produced by the specified expression, 12664 /// if any. 12665 Object getObject(const Expr *E, bool Mod) const { 12666 E = E->IgnoreParenCasts(); 12667 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12668 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 12669 return getObject(UO->getSubExpr(), Mod); 12670 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12671 if (BO->getOpcode() == BO_Comma) 12672 return getObject(BO->getRHS(), Mod); 12673 if (Mod && BO->isAssignmentOp()) 12674 return getObject(BO->getLHS(), Mod); 12675 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 12676 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 12677 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 12678 return ME->getMemberDecl(); 12679 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12680 // FIXME: If this is a reference, map through to its value. 12681 return DRE->getDecl(); 12682 return nullptr; 12683 } 12684 12685 /// Note that an object \p O was modified or used by an expression 12686 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 12687 /// the object \p O as obtained via the \p UsageMap. 12688 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 12689 // Get the old usage for the given object and usage kind. 12690 Usage &U = UI.Uses[UK]; 12691 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 12692 // If we have a modification as side effect and are in a sequenced 12693 // subexpression, save the old Usage so that we can restore it later 12694 // in SequencedSubexpression::~SequencedSubexpression. 12695 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 12696 ModAsSideEffect->push_back(std::make_pair(O, U)); 12697 // Then record the new usage with the current sequencing region. 12698 U.UsageExpr = UsageExpr; 12699 U.Seq = Region; 12700 } 12701 } 12702 12703 /// Check whether a modification or use of an object \p O in an expression 12704 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 12705 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 12706 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 12707 /// usage and false we are checking for a mod-use unsequenced usage. 12708 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 12709 UsageKind OtherKind, bool IsModMod) { 12710 if (UI.Diagnosed) 12711 return; 12712 12713 const Usage &U = UI.Uses[OtherKind]; 12714 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 12715 return; 12716 12717 const Expr *Mod = U.UsageExpr; 12718 const Expr *ModOrUse = UsageExpr; 12719 if (OtherKind == UK_Use) 12720 std::swap(Mod, ModOrUse); 12721 12722 SemaRef.DiagRuntimeBehavior( 12723 Mod->getExprLoc(), {Mod, ModOrUse}, 12724 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 12725 : diag::warn_unsequenced_mod_use) 12726 << O << SourceRange(ModOrUse->getExprLoc())); 12727 UI.Diagnosed = true; 12728 } 12729 12730 // A note on note{Pre, Post}{Use, Mod}: 12731 // 12732 // (It helps to follow the algorithm with an expression such as 12733 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 12734 // operations before C++17 and both are well-defined in C++17). 12735 // 12736 // When visiting a node which uses/modify an object we first call notePreUse 12737 // or notePreMod before visiting its sub-expression(s). At this point the 12738 // children of the current node have not yet been visited and so the eventual 12739 // uses/modifications resulting from the children of the current node have not 12740 // been recorded yet. 12741 // 12742 // We then visit the children of the current node. After that notePostUse or 12743 // notePostMod is called. These will 1) detect an unsequenced modification 12744 // as side effect (as in "k++ + k") and 2) add a new usage with the 12745 // appropriate usage kind. 12746 // 12747 // We also have to be careful that some operation sequences modification as 12748 // side effect as well (for example: || or ,). To account for this we wrap 12749 // the visitation of such a sub-expression (for example: the LHS of || or ,) 12750 // with SequencedSubexpression. SequencedSubexpression is an RAII object 12751 // which record usages which are modifications as side effect, and then 12752 // downgrade them (or more accurately restore the previous usage which was a 12753 // modification as side effect) when exiting the scope of the sequenced 12754 // subexpression. 12755 12756 void notePreUse(Object O, const Expr *UseExpr) { 12757 UsageInfo &UI = UsageMap[O]; 12758 // Uses conflict with other modifications. 12759 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 12760 } 12761 12762 void notePostUse(Object O, const Expr *UseExpr) { 12763 UsageInfo &UI = UsageMap[O]; 12764 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 12765 /*IsModMod=*/false); 12766 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 12767 } 12768 12769 void notePreMod(Object O, const Expr *ModExpr) { 12770 UsageInfo &UI = UsageMap[O]; 12771 // Modifications conflict with other modifications and with uses. 12772 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 12773 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 12774 } 12775 12776 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 12777 UsageInfo &UI = UsageMap[O]; 12778 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 12779 /*IsModMod=*/true); 12780 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 12781 } 12782 12783 public: 12784 SequenceChecker(Sema &S, const Expr *E, 12785 SmallVectorImpl<const Expr *> &WorkList) 12786 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 12787 Visit(E); 12788 // Silence a -Wunused-private-field since WorkList is now unused. 12789 // TODO: Evaluate if it can be used, and if not remove it. 12790 (void)this->WorkList; 12791 } 12792 12793 void VisitStmt(const Stmt *S) { 12794 // Skip all statements which aren't expressions for now. 12795 } 12796 12797 void VisitExpr(const Expr *E) { 12798 // By default, just recurse to evaluated subexpressions. 12799 Base::VisitStmt(E); 12800 } 12801 12802 void VisitCastExpr(const CastExpr *E) { 12803 Object O = Object(); 12804 if (E->getCastKind() == CK_LValueToRValue) 12805 O = getObject(E->getSubExpr(), false); 12806 12807 if (O) 12808 notePreUse(O, E); 12809 VisitExpr(E); 12810 if (O) 12811 notePostUse(O, E); 12812 } 12813 12814 void VisitSequencedExpressions(const Expr *SequencedBefore, 12815 const Expr *SequencedAfter) { 12816 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 12817 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 12818 SequenceTree::Seq OldRegion = Region; 12819 12820 { 12821 SequencedSubexpression SeqBefore(*this); 12822 Region = BeforeRegion; 12823 Visit(SequencedBefore); 12824 } 12825 12826 Region = AfterRegion; 12827 Visit(SequencedAfter); 12828 12829 Region = OldRegion; 12830 12831 Tree.merge(BeforeRegion); 12832 Tree.merge(AfterRegion); 12833 } 12834 12835 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 12836 // C++17 [expr.sub]p1: 12837 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 12838 // expression E1 is sequenced before the expression E2. 12839 if (SemaRef.getLangOpts().CPlusPlus17) 12840 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 12841 else { 12842 Visit(ASE->getLHS()); 12843 Visit(ASE->getRHS()); 12844 } 12845 } 12846 12847 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12848 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12849 void VisitBinPtrMem(const BinaryOperator *BO) { 12850 // C++17 [expr.mptr.oper]p4: 12851 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 12852 // the expression E1 is sequenced before the expression E2. 12853 if (SemaRef.getLangOpts().CPlusPlus17) 12854 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12855 else { 12856 Visit(BO->getLHS()); 12857 Visit(BO->getRHS()); 12858 } 12859 } 12860 12861 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12862 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12863 void VisitBinShlShr(const BinaryOperator *BO) { 12864 // C++17 [expr.shift]p4: 12865 // The expression E1 is sequenced before the expression E2. 12866 if (SemaRef.getLangOpts().CPlusPlus17) 12867 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12868 else { 12869 Visit(BO->getLHS()); 12870 Visit(BO->getRHS()); 12871 } 12872 } 12873 12874 void VisitBinComma(const BinaryOperator *BO) { 12875 // C++11 [expr.comma]p1: 12876 // Every value computation and side effect associated with the left 12877 // expression is sequenced before every value computation and side 12878 // effect associated with the right expression. 12879 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12880 } 12881 12882 void VisitBinAssign(const BinaryOperator *BO) { 12883 SequenceTree::Seq RHSRegion; 12884 SequenceTree::Seq LHSRegion; 12885 if (SemaRef.getLangOpts().CPlusPlus17) { 12886 RHSRegion = Tree.allocate(Region); 12887 LHSRegion = Tree.allocate(Region); 12888 } else { 12889 RHSRegion = Region; 12890 LHSRegion = Region; 12891 } 12892 SequenceTree::Seq OldRegion = Region; 12893 12894 // C++11 [expr.ass]p1: 12895 // [...] the assignment is sequenced after the value computation 12896 // of the right and left operands, [...] 12897 // 12898 // so check it before inspecting the operands and update the 12899 // map afterwards. 12900 Object O = getObject(BO->getLHS(), /*Mod=*/true); 12901 if (O) 12902 notePreMod(O, BO); 12903 12904 if (SemaRef.getLangOpts().CPlusPlus17) { 12905 // C++17 [expr.ass]p1: 12906 // [...] The right operand is sequenced before the left operand. [...] 12907 { 12908 SequencedSubexpression SeqBefore(*this); 12909 Region = RHSRegion; 12910 Visit(BO->getRHS()); 12911 } 12912 12913 Region = LHSRegion; 12914 Visit(BO->getLHS()); 12915 12916 if (O && isa<CompoundAssignOperator>(BO)) 12917 notePostUse(O, BO); 12918 12919 } else { 12920 // C++11 does not specify any sequencing between the LHS and RHS. 12921 Region = LHSRegion; 12922 Visit(BO->getLHS()); 12923 12924 if (O && isa<CompoundAssignOperator>(BO)) 12925 notePostUse(O, BO); 12926 12927 Region = RHSRegion; 12928 Visit(BO->getRHS()); 12929 } 12930 12931 // C++11 [expr.ass]p1: 12932 // the assignment is sequenced [...] before the value computation of the 12933 // assignment expression. 12934 // C11 6.5.16/3 has no such rule. 12935 Region = OldRegion; 12936 if (O) 12937 notePostMod(O, BO, 12938 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12939 : UK_ModAsSideEffect); 12940 if (SemaRef.getLangOpts().CPlusPlus17) { 12941 Tree.merge(RHSRegion); 12942 Tree.merge(LHSRegion); 12943 } 12944 } 12945 12946 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 12947 VisitBinAssign(CAO); 12948 } 12949 12950 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12951 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12952 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 12953 Object O = getObject(UO->getSubExpr(), true); 12954 if (!O) 12955 return VisitExpr(UO); 12956 12957 notePreMod(O, UO); 12958 Visit(UO->getSubExpr()); 12959 // C++11 [expr.pre.incr]p1: 12960 // the expression ++x is equivalent to x+=1 12961 notePostMod(O, UO, 12962 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12963 : UK_ModAsSideEffect); 12964 } 12965 12966 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12967 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12968 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 12969 Object O = getObject(UO->getSubExpr(), true); 12970 if (!O) 12971 return VisitExpr(UO); 12972 12973 notePreMod(O, UO); 12974 Visit(UO->getSubExpr()); 12975 notePostMod(O, UO, UK_ModAsSideEffect); 12976 } 12977 12978 void VisitBinLOr(const BinaryOperator *BO) { 12979 // C++11 [expr.log.or]p2: 12980 // If the second expression is evaluated, every value computation and 12981 // side effect associated with the first expression is sequenced before 12982 // every value computation and side effect associated with the 12983 // second expression. 12984 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 12985 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 12986 SequenceTree::Seq OldRegion = Region; 12987 12988 EvaluationTracker Eval(*this); 12989 { 12990 SequencedSubexpression Sequenced(*this); 12991 Region = LHSRegion; 12992 Visit(BO->getLHS()); 12993 } 12994 12995 // C++11 [expr.log.or]p1: 12996 // [...] the second operand is not evaluated if the first operand 12997 // evaluates to true. 12998 bool EvalResult = false; 12999 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13000 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 13001 if (ShouldVisitRHS) { 13002 Region = RHSRegion; 13003 Visit(BO->getRHS()); 13004 } 13005 13006 Region = OldRegion; 13007 Tree.merge(LHSRegion); 13008 Tree.merge(RHSRegion); 13009 } 13010 13011 void VisitBinLAnd(const BinaryOperator *BO) { 13012 // C++11 [expr.log.and]p2: 13013 // If the second expression is evaluated, every value computation and 13014 // side effect associated with the first expression is sequenced before 13015 // every value computation and side effect associated with the 13016 // second expression. 13017 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13018 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13019 SequenceTree::Seq OldRegion = Region; 13020 13021 EvaluationTracker Eval(*this); 13022 { 13023 SequencedSubexpression Sequenced(*this); 13024 Region = LHSRegion; 13025 Visit(BO->getLHS()); 13026 } 13027 13028 // C++11 [expr.log.and]p1: 13029 // [...] the second operand is not evaluated if the first operand is false. 13030 bool EvalResult = false; 13031 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13032 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 13033 if (ShouldVisitRHS) { 13034 Region = RHSRegion; 13035 Visit(BO->getRHS()); 13036 } 13037 13038 Region = OldRegion; 13039 Tree.merge(LHSRegion); 13040 Tree.merge(RHSRegion); 13041 } 13042 13043 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 13044 // C++11 [expr.cond]p1: 13045 // [...] Every value computation and side effect associated with the first 13046 // expression is sequenced before every value computation and side effect 13047 // associated with the second or third expression. 13048 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 13049 13050 // No sequencing is specified between the true and false expression. 13051 // However since exactly one of both is going to be evaluated we can 13052 // consider them to be sequenced. This is needed to avoid warning on 13053 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 13054 // both the true and false expressions because we can't evaluate x. 13055 // This will still allow us to detect an expression like (pre C++17) 13056 // "(x ? y += 1 : y += 2) = y". 13057 // 13058 // We don't wrap the visitation of the true and false expression with 13059 // SequencedSubexpression because we don't want to downgrade modifications 13060 // as side effect in the true and false expressions after the visition 13061 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 13062 // not warn between the two "y++", but we should warn between the "y++" 13063 // and the "y". 13064 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 13065 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 13066 SequenceTree::Seq OldRegion = Region; 13067 13068 EvaluationTracker Eval(*this); 13069 { 13070 SequencedSubexpression Sequenced(*this); 13071 Region = ConditionRegion; 13072 Visit(CO->getCond()); 13073 } 13074 13075 // C++11 [expr.cond]p1: 13076 // [...] The first expression is contextually converted to bool (Clause 4). 13077 // It is evaluated and if it is true, the result of the conditional 13078 // expression is the value of the second expression, otherwise that of the 13079 // third expression. Only one of the second and third expressions is 13080 // evaluated. [...] 13081 bool EvalResult = false; 13082 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 13083 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 13084 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 13085 if (ShouldVisitTrueExpr) { 13086 Region = TrueRegion; 13087 Visit(CO->getTrueExpr()); 13088 } 13089 if (ShouldVisitFalseExpr) { 13090 Region = FalseRegion; 13091 Visit(CO->getFalseExpr()); 13092 } 13093 13094 Region = OldRegion; 13095 Tree.merge(ConditionRegion); 13096 Tree.merge(TrueRegion); 13097 Tree.merge(FalseRegion); 13098 } 13099 13100 void VisitCallExpr(const CallExpr *CE) { 13101 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 13102 13103 if (CE->isUnevaluatedBuiltinCall(Context)) 13104 return; 13105 13106 // C++11 [intro.execution]p15: 13107 // When calling a function [...], every value computation and side effect 13108 // associated with any argument expression, or with the postfix expression 13109 // designating the called function, is sequenced before execution of every 13110 // expression or statement in the body of the function [and thus before 13111 // the value computation of its result]. 13112 SequencedSubexpression Sequenced(*this); 13113 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 13114 // C++17 [expr.call]p5 13115 // The postfix-expression is sequenced before each expression in the 13116 // expression-list and any default argument. [...] 13117 SequenceTree::Seq CalleeRegion; 13118 SequenceTree::Seq OtherRegion; 13119 if (SemaRef.getLangOpts().CPlusPlus17) { 13120 CalleeRegion = Tree.allocate(Region); 13121 OtherRegion = Tree.allocate(Region); 13122 } else { 13123 CalleeRegion = Region; 13124 OtherRegion = Region; 13125 } 13126 SequenceTree::Seq OldRegion = Region; 13127 13128 // Visit the callee expression first. 13129 Region = CalleeRegion; 13130 if (SemaRef.getLangOpts().CPlusPlus17) { 13131 SequencedSubexpression Sequenced(*this); 13132 Visit(CE->getCallee()); 13133 } else { 13134 Visit(CE->getCallee()); 13135 } 13136 13137 // Then visit the argument expressions. 13138 Region = OtherRegion; 13139 for (const Expr *Argument : CE->arguments()) 13140 Visit(Argument); 13141 13142 Region = OldRegion; 13143 if (SemaRef.getLangOpts().CPlusPlus17) { 13144 Tree.merge(CalleeRegion); 13145 Tree.merge(OtherRegion); 13146 } 13147 }); 13148 } 13149 13150 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 13151 // C++17 [over.match.oper]p2: 13152 // [...] the operator notation is first transformed to the equivalent 13153 // function-call notation as summarized in Table 12 (where @ denotes one 13154 // of the operators covered in the specified subclause). However, the 13155 // operands are sequenced in the order prescribed for the built-in 13156 // operator (Clause 8). 13157 // 13158 // From the above only overloaded binary operators and overloaded call 13159 // operators have sequencing rules in C++17 that we need to handle 13160 // separately. 13161 if (!SemaRef.getLangOpts().CPlusPlus17 || 13162 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 13163 return VisitCallExpr(CXXOCE); 13164 13165 enum { 13166 NoSequencing, 13167 LHSBeforeRHS, 13168 RHSBeforeLHS, 13169 LHSBeforeRest 13170 } SequencingKind; 13171 switch (CXXOCE->getOperator()) { 13172 case OO_Equal: 13173 case OO_PlusEqual: 13174 case OO_MinusEqual: 13175 case OO_StarEqual: 13176 case OO_SlashEqual: 13177 case OO_PercentEqual: 13178 case OO_CaretEqual: 13179 case OO_AmpEqual: 13180 case OO_PipeEqual: 13181 case OO_LessLessEqual: 13182 case OO_GreaterGreaterEqual: 13183 SequencingKind = RHSBeforeLHS; 13184 break; 13185 13186 case OO_LessLess: 13187 case OO_GreaterGreater: 13188 case OO_AmpAmp: 13189 case OO_PipePipe: 13190 case OO_Comma: 13191 case OO_ArrowStar: 13192 case OO_Subscript: 13193 SequencingKind = LHSBeforeRHS; 13194 break; 13195 13196 case OO_Call: 13197 SequencingKind = LHSBeforeRest; 13198 break; 13199 13200 default: 13201 SequencingKind = NoSequencing; 13202 break; 13203 } 13204 13205 if (SequencingKind == NoSequencing) 13206 return VisitCallExpr(CXXOCE); 13207 13208 // This is a call, so all subexpressions are sequenced before the result. 13209 SequencedSubexpression Sequenced(*this); 13210 13211 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 13212 assert(SemaRef.getLangOpts().CPlusPlus17 && 13213 "Should only get there with C++17 and above!"); 13214 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 13215 "Should only get there with an overloaded binary operator" 13216 " or an overloaded call operator!"); 13217 13218 if (SequencingKind == LHSBeforeRest) { 13219 assert(CXXOCE->getOperator() == OO_Call && 13220 "We should only have an overloaded call operator here!"); 13221 13222 // This is very similar to VisitCallExpr, except that we only have the 13223 // C++17 case. The postfix-expression is the first argument of the 13224 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 13225 // are in the following arguments. 13226 // 13227 // Note that we intentionally do not visit the callee expression since 13228 // it is just a decayed reference to a function. 13229 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 13230 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 13231 SequenceTree::Seq OldRegion = Region; 13232 13233 assert(CXXOCE->getNumArgs() >= 1 && 13234 "An overloaded call operator must have at least one argument" 13235 " for the postfix-expression!"); 13236 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 13237 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 13238 CXXOCE->getNumArgs() - 1); 13239 13240 // Visit the postfix-expression first. 13241 { 13242 Region = PostfixExprRegion; 13243 SequencedSubexpression Sequenced(*this); 13244 Visit(PostfixExpr); 13245 } 13246 13247 // Then visit the argument expressions. 13248 Region = ArgsRegion; 13249 for (const Expr *Arg : Args) 13250 Visit(Arg); 13251 13252 Region = OldRegion; 13253 Tree.merge(PostfixExprRegion); 13254 Tree.merge(ArgsRegion); 13255 } else { 13256 assert(CXXOCE->getNumArgs() == 2 && 13257 "Should only have two arguments here!"); 13258 assert((SequencingKind == LHSBeforeRHS || 13259 SequencingKind == RHSBeforeLHS) && 13260 "Unexpected sequencing kind!"); 13261 13262 // We do not visit the callee expression since it is just a decayed 13263 // reference to a function. 13264 const Expr *E1 = CXXOCE->getArg(0); 13265 const Expr *E2 = CXXOCE->getArg(1); 13266 if (SequencingKind == RHSBeforeLHS) 13267 std::swap(E1, E2); 13268 13269 return VisitSequencedExpressions(E1, E2); 13270 } 13271 }); 13272 } 13273 13274 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 13275 // This is a call, so all subexpressions are sequenced before the result. 13276 SequencedSubexpression Sequenced(*this); 13277 13278 if (!CCE->isListInitialization()) 13279 return VisitExpr(CCE); 13280 13281 // In C++11, list initializations are sequenced. 13282 SmallVector<SequenceTree::Seq, 32> Elts; 13283 SequenceTree::Seq Parent = Region; 13284 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 13285 E = CCE->arg_end(); 13286 I != E; ++I) { 13287 Region = Tree.allocate(Parent); 13288 Elts.push_back(Region); 13289 Visit(*I); 13290 } 13291 13292 // Forget that the initializers are sequenced. 13293 Region = Parent; 13294 for (unsigned I = 0; I < Elts.size(); ++I) 13295 Tree.merge(Elts[I]); 13296 } 13297 13298 void VisitInitListExpr(const InitListExpr *ILE) { 13299 if (!SemaRef.getLangOpts().CPlusPlus11) 13300 return VisitExpr(ILE); 13301 13302 // In C++11, list initializations are sequenced. 13303 SmallVector<SequenceTree::Seq, 32> Elts; 13304 SequenceTree::Seq Parent = Region; 13305 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 13306 const Expr *E = ILE->getInit(I); 13307 if (!E) 13308 continue; 13309 Region = Tree.allocate(Parent); 13310 Elts.push_back(Region); 13311 Visit(E); 13312 } 13313 13314 // Forget that the initializers are sequenced. 13315 Region = Parent; 13316 for (unsigned I = 0; I < Elts.size(); ++I) 13317 Tree.merge(Elts[I]); 13318 } 13319 }; 13320 13321 } // namespace 13322 13323 void Sema::CheckUnsequencedOperations(const Expr *E) { 13324 SmallVector<const Expr *, 8> WorkList; 13325 WorkList.push_back(E); 13326 while (!WorkList.empty()) { 13327 const Expr *Item = WorkList.pop_back_val(); 13328 SequenceChecker(*this, Item, WorkList); 13329 } 13330 } 13331 13332 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 13333 bool IsConstexpr) { 13334 llvm::SaveAndRestore<bool> ConstantContext( 13335 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 13336 CheckImplicitConversions(E, CheckLoc); 13337 if (!E->isInstantiationDependent()) 13338 CheckUnsequencedOperations(E); 13339 if (!IsConstexpr && !E->isValueDependent()) 13340 CheckForIntOverflow(E); 13341 DiagnoseMisalignedMembers(); 13342 } 13343 13344 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 13345 FieldDecl *BitField, 13346 Expr *Init) { 13347 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 13348 } 13349 13350 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 13351 SourceLocation Loc) { 13352 if (!PType->isVariablyModifiedType()) 13353 return; 13354 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 13355 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 13356 return; 13357 } 13358 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 13359 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 13360 return; 13361 } 13362 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 13363 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 13364 return; 13365 } 13366 13367 const ArrayType *AT = S.Context.getAsArrayType(PType); 13368 if (!AT) 13369 return; 13370 13371 if (AT->getSizeModifier() != ArrayType::Star) { 13372 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 13373 return; 13374 } 13375 13376 S.Diag(Loc, diag::err_array_star_in_function_definition); 13377 } 13378 13379 /// CheckParmsForFunctionDef - Check that the parameters of the given 13380 /// function are appropriate for the definition of a function. This 13381 /// takes care of any checks that cannot be performed on the 13382 /// declaration itself, e.g., that the types of each of the function 13383 /// parameters are complete. 13384 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 13385 bool CheckParameterNames) { 13386 bool HasInvalidParm = false; 13387 for (ParmVarDecl *Param : Parameters) { 13388 // C99 6.7.5.3p4: the parameters in a parameter type list in a 13389 // function declarator that is part of a function definition of 13390 // that function shall not have incomplete type. 13391 // 13392 // This is also C++ [dcl.fct]p6. 13393 if (!Param->isInvalidDecl() && 13394 RequireCompleteType(Param->getLocation(), Param->getType(), 13395 diag::err_typecheck_decl_incomplete_type)) { 13396 Param->setInvalidDecl(); 13397 HasInvalidParm = true; 13398 } 13399 13400 // C99 6.9.1p5: If the declarator includes a parameter type list, the 13401 // declaration of each parameter shall include an identifier. 13402 if (CheckParameterNames && Param->getIdentifier() == nullptr && 13403 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 13404 // Diagnose this as an extension in C17 and earlier. 13405 if (!getLangOpts().C2x) 13406 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 13407 } 13408 13409 // C99 6.7.5.3p12: 13410 // If the function declarator is not part of a definition of that 13411 // function, parameters may have incomplete type and may use the [*] 13412 // notation in their sequences of declarator specifiers to specify 13413 // variable length array types. 13414 QualType PType = Param->getOriginalType(); 13415 // FIXME: This diagnostic should point the '[*]' if source-location 13416 // information is added for it. 13417 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 13418 13419 // If the parameter is a c++ class type and it has to be destructed in the 13420 // callee function, declare the destructor so that it can be called by the 13421 // callee function. Do not perform any direct access check on the dtor here. 13422 if (!Param->isInvalidDecl()) { 13423 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 13424 if (!ClassDecl->isInvalidDecl() && 13425 !ClassDecl->hasIrrelevantDestructor() && 13426 !ClassDecl->isDependentContext() && 13427 ClassDecl->isParamDestroyedInCallee()) { 13428 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13429 MarkFunctionReferenced(Param->getLocation(), Destructor); 13430 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 13431 } 13432 } 13433 } 13434 13435 // Parameters with the pass_object_size attribute only need to be marked 13436 // constant at function definitions. Because we lack information about 13437 // whether we're on a declaration or definition when we're instantiating the 13438 // attribute, we need to check for constness here. 13439 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 13440 if (!Param->getType().isConstQualified()) 13441 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 13442 << Attr->getSpelling() << 1; 13443 13444 // Check for parameter names shadowing fields from the class. 13445 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13446 // The owning context for the parameter should be the function, but we 13447 // want to see if this function's declaration context is a record. 13448 DeclContext *DC = Param->getDeclContext(); 13449 if (DC && DC->isFunctionOrMethod()) { 13450 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13451 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13452 RD, /*DeclIsField*/ false); 13453 } 13454 } 13455 } 13456 13457 return HasInvalidParm; 13458 } 13459 13460 Optional<std::pair<CharUnits, CharUnits>> 13461 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 13462 13463 /// Compute the alignment and offset of the base class object given the 13464 /// derived-to-base cast expression and the alignment and offset of the derived 13465 /// class object. 13466 static std::pair<CharUnits, CharUnits> 13467 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 13468 CharUnits BaseAlignment, CharUnits Offset, 13469 ASTContext &Ctx) { 13470 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 13471 ++PathI) { 13472 const CXXBaseSpecifier *Base = *PathI; 13473 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 13474 if (Base->isVirtual()) { 13475 // The complete object may have a lower alignment than the non-virtual 13476 // alignment of the base, in which case the base may be misaligned. Choose 13477 // the smaller of the non-virtual alignment and BaseAlignment, which is a 13478 // conservative lower bound of the complete object alignment. 13479 CharUnits NonVirtualAlignment = 13480 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 13481 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 13482 Offset = CharUnits::Zero(); 13483 } else { 13484 const ASTRecordLayout &RL = 13485 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 13486 Offset += RL.getBaseClassOffset(BaseDecl); 13487 } 13488 DerivedType = Base->getType(); 13489 } 13490 13491 return std::make_pair(BaseAlignment, Offset); 13492 } 13493 13494 /// Compute the alignment and offset of a binary additive operator. 13495 static Optional<std::pair<CharUnits, CharUnits>> 13496 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 13497 bool IsSub, ASTContext &Ctx) { 13498 QualType PointeeType = PtrE->getType()->getPointeeType(); 13499 13500 if (!PointeeType->isConstantSizeType()) 13501 return llvm::None; 13502 13503 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 13504 13505 if (!P) 13506 return llvm::None; 13507 13508 llvm::APSInt IdxRes; 13509 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 13510 if (IntE->isIntegerConstantExpr(IdxRes, Ctx)) { 13511 CharUnits Offset = EltSize * IdxRes.getExtValue(); 13512 if (IsSub) 13513 Offset = -Offset; 13514 return std::make_pair(P->first, P->second + Offset); 13515 } 13516 13517 // If the integer expression isn't a constant expression, compute the lower 13518 // bound of the alignment using the alignment and offset of the pointer 13519 // expression and the element size. 13520 return std::make_pair( 13521 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 13522 CharUnits::Zero()); 13523 } 13524 13525 /// This helper function takes an lvalue expression and returns the alignment of 13526 /// a VarDecl and a constant offset from the VarDecl. 13527 Optional<std::pair<CharUnits, CharUnits>> 13528 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 13529 E = E->IgnoreParens(); 13530 switch (E->getStmtClass()) { 13531 default: 13532 break; 13533 case Stmt::CStyleCastExprClass: 13534 case Stmt::CXXStaticCastExprClass: 13535 case Stmt::ImplicitCastExprClass: { 13536 auto *CE = cast<CastExpr>(E); 13537 const Expr *From = CE->getSubExpr(); 13538 switch (CE->getCastKind()) { 13539 default: 13540 break; 13541 case CK_NoOp: 13542 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13543 case CK_UncheckedDerivedToBase: 13544 case CK_DerivedToBase: { 13545 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13546 if (!P) 13547 break; 13548 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 13549 P->second, Ctx); 13550 } 13551 } 13552 break; 13553 } 13554 case Stmt::ArraySubscriptExprClass: { 13555 auto *ASE = cast<ArraySubscriptExpr>(E); 13556 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 13557 false, Ctx); 13558 } 13559 case Stmt::DeclRefExprClass: { 13560 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 13561 // FIXME: If VD is captured by copy or is an escaping __block variable, 13562 // use the alignment of VD's type. 13563 if (!VD->getType()->isReferenceType()) 13564 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 13565 if (VD->hasInit()) 13566 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 13567 } 13568 break; 13569 } 13570 case Stmt::MemberExprClass: { 13571 auto *ME = cast<MemberExpr>(E); 13572 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 13573 if (!FD || FD->getType()->isReferenceType()) 13574 break; 13575 Optional<std::pair<CharUnits, CharUnits>> P; 13576 if (ME->isArrow()) 13577 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 13578 else 13579 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 13580 if (!P) 13581 break; 13582 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 13583 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 13584 return std::make_pair(P->first, 13585 P->second + CharUnits::fromQuantity(Offset)); 13586 } 13587 case Stmt::UnaryOperatorClass: { 13588 auto *UO = cast<UnaryOperator>(E); 13589 switch (UO->getOpcode()) { 13590 default: 13591 break; 13592 case UO_Deref: 13593 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 13594 } 13595 break; 13596 } 13597 case Stmt::BinaryOperatorClass: { 13598 auto *BO = cast<BinaryOperator>(E); 13599 auto Opcode = BO->getOpcode(); 13600 switch (Opcode) { 13601 default: 13602 break; 13603 case BO_Comma: 13604 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 13605 } 13606 break; 13607 } 13608 } 13609 return llvm::None; 13610 } 13611 13612 /// This helper function takes a pointer expression and returns the alignment of 13613 /// a VarDecl and a constant offset from the VarDecl. 13614 Optional<std::pair<CharUnits, CharUnits>> 13615 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 13616 E = E->IgnoreParens(); 13617 switch (E->getStmtClass()) { 13618 default: 13619 break; 13620 case Stmt::CStyleCastExprClass: 13621 case Stmt::CXXStaticCastExprClass: 13622 case Stmt::ImplicitCastExprClass: { 13623 auto *CE = cast<CastExpr>(E); 13624 const Expr *From = CE->getSubExpr(); 13625 switch (CE->getCastKind()) { 13626 default: 13627 break; 13628 case CK_NoOp: 13629 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 13630 case CK_ArrayToPointerDecay: 13631 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13632 case CK_UncheckedDerivedToBase: 13633 case CK_DerivedToBase: { 13634 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 13635 if (!P) 13636 break; 13637 return getDerivedToBaseAlignmentAndOffset( 13638 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 13639 } 13640 } 13641 break; 13642 } 13643 case Stmt::CXXThisExprClass: { 13644 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 13645 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 13646 return std::make_pair(Alignment, CharUnits::Zero()); 13647 } 13648 case Stmt::UnaryOperatorClass: { 13649 auto *UO = cast<UnaryOperator>(E); 13650 if (UO->getOpcode() == UO_AddrOf) 13651 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 13652 break; 13653 } 13654 case Stmt::BinaryOperatorClass: { 13655 auto *BO = cast<BinaryOperator>(E); 13656 auto Opcode = BO->getOpcode(); 13657 switch (Opcode) { 13658 default: 13659 break; 13660 case BO_Add: 13661 case BO_Sub: { 13662 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 13663 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 13664 std::swap(LHS, RHS); 13665 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 13666 Ctx); 13667 } 13668 case BO_Comma: 13669 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 13670 } 13671 break; 13672 } 13673 } 13674 return llvm::None; 13675 } 13676 13677 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 13678 // See if we can compute the alignment of a VarDecl and an offset from it. 13679 Optional<std::pair<CharUnits, CharUnits>> P = 13680 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 13681 13682 if (P) 13683 return P->first.alignmentAtOffset(P->second); 13684 13685 // If that failed, return the type's alignment. 13686 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 13687 } 13688 13689 /// CheckCastAlign - Implements -Wcast-align, which warns when a 13690 /// pointer cast increases the alignment requirements. 13691 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 13692 // This is actually a lot of work to potentially be doing on every 13693 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 13694 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 13695 return; 13696 13697 // Ignore dependent types. 13698 if (T->isDependentType() || Op->getType()->isDependentType()) 13699 return; 13700 13701 // Require that the destination be a pointer type. 13702 const PointerType *DestPtr = T->getAs<PointerType>(); 13703 if (!DestPtr) return; 13704 13705 // If the destination has alignment 1, we're done. 13706 QualType DestPointee = DestPtr->getPointeeType(); 13707 if (DestPointee->isIncompleteType()) return; 13708 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 13709 if (DestAlign.isOne()) return; 13710 13711 // Require that the source be a pointer type. 13712 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 13713 if (!SrcPtr) return; 13714 QualType SrcPointee = SrcPtr->getPointeeType(); 13715 13716 // Explicitly allow casts from cv void*. We already implicitly 13717 // allowed casts to cv void*, since they have alignment 1. 13718 // Also allow casts involving incomplete types, which implicitly 13719 // includes 'void'. 13720 if (SrcPointee->isIncompleteType()) return; 13721 13722 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 13723 13724 if (SrcAlign >= DestAlign) return; 13725 13726 Diag(TRange.getBegin(), diag::warn_cast_align) 13727 << Op->getType() << T 13728 << static_cast<unsigned>(SrcAlign.getQuantity()) 13729 << static_cast<unsigned>(DestAlign.getQuantity()) 13730 << TRange << Op->getSourceRange(); 13731 } 13732 13733 /// Check whether this array fits the idiom of a size-one tail padded 13734 /// array member of a struct. 13735 /// 13736 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 13737 /// commonly used to emulate flexible arrays in C89 code. 13738 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 13739 const NamedDecl *ND) { 13740 if (Size != 1 || !ND) return false; 13741 13742 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 13743 if (!FD) return false; 13744 13745 // Don't consider sizes resulting from macro expansions or template argument 13746 // substitution to form C89 tail-padded arrays. 13747 13748 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 13749 while (TInfo) { 13750 TypeLoc TL = TInfo->getTypeLoc(); 13751 // Look through typedefs. 13752 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 13753 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 13754 TInfo = TDL->getTypeSourceInfo(); 13755 continue; 13756 } 13757 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 13758 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 13759 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 13760 return false; 13761 } 13762 break; 13763 } 13764 13765 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 13766 if (!RD) return false; 13767 if (RD->isUnion()) return false; 13768 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 13769 if (!CRD->isStandardLayout()) return false; 13770 } 13771 13772 // See if this is the last field decl in the record. 13773 const Decl *D = FD; 13774 while ((D = D->getNextDeclInContext())) 13775 if (isa<FieldDecl>(D)) 13776 return false; 13777 return true; 13778 } 13779 13780 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 13781 const ArraySubscriptExpr *ASE, 13782 bool AllowOnePastEnd, bool IndexNegated) { 13783 // Already diagnosed by the constant evaluator. 13784 if (isConstantEvaluated()) 13785 return; 13786 13787 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 13788 if (IndexExpr->isValueDependent()) 13789 return; 13790 13791 const Type *EffectiveType = 13792 BaseExpr->getType()->getPointeeOrArrayElementType(); 13793 BaseExpr = BaseExpr->IgnoreParenCasts(); 13794 const ConstantArrayType *ArrayTy = 13795 Context.getAsConstantArrayType(BaseExpr->getType()); 13796 13797 if (!ArrayTy) 13798 return; 13799 13800 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 13801 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 13802 return; 13803 13804 Expr::EvalResult Result; 13805 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 13806 return; 13807 13808 llvm::APSInt index = Result.Val.getInt(); 13809 if (IndexNegated) 13810 index = -index; 13811 13812 const NamedDecl *ND = nullptr; 13813 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13814 ND = DRE->getDecl(); 13815 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13816 ND = ME->getMemberDecl(); 13817 13818 if (index.isUnsigned() || !index.isNegative()) { 13819 // It is possible that the type of the base expression after 13820 // IgnoreParenCasts is incomplete, even though the type of the base 13821 // expression before IgnoreParenCasts is complete (see PR39746 for an 13822 // example). In this case we have no information about whether the array 13823 // access exceeds the array bounds. However we can still diagnose an array 13824 // access which precedes the array bounds. 13825 if (BaseType->isIncompleteType()) 13826 return; 13827 13828 llvm::APInt size = ArrayTy->getSize(); 13829 if (!size.isStrictlyPositive()) 13830 return; 13831 13832 if (BaseType != EffectiveType) { 13833 // Make sure we're comparing apples to apples when comparing index to size 13834 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 13835 uint64_t array_typesize = Context.getTypeSize(BaseType); 13836 // Handle ptrarith_typesize being zero, such as when casting to void* 13837 if (!ptrarith_typesize) ptrarith_typesize = 1; 13838 if (ptrarith_typesize != array_typesize) { 13839 // There's a cast to a different size type involved 13840 uint64_t ratio = array_typesize / ptrarith_typesize; 13841 // TODO: Be smarter about handling cases where array_typesize is not a 13842 // multiple of ptrarith_typesize 13843 if (ptrarith_typesize * ratio == array_typesize) 13844 size *= llvm::APInt(size.getBitWidth(), ratio); 13845 } 13846 } 13847 13848 if (size.getBitWidth() > index.getBitWidth()) 13849 index = index.zext(size.getBitWidth()); 13850 else if (size.getBitWidth() < index.getBitWidth()) 13851 size = size.zext(index.getBitWidth()); 13852 13853 // For array subscripting the index must be less than size, but for pointer 13854 // arithmetic also allow the index (offset) to be equal to size since 13855 // computing the next address after the end of the array is legal and 13856 // commonly done e.g. in C++ iterators and range-based for loops. 13857 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 13858 return; 13859 13860 // Also don't warn for arrays of size 1 which are members of some 13861 // structure. These are often used to approximate flexible arrays in C89 13862 // code. 13863 if (IsTailPaddedMemberArray(*this, size, ND)) 13864 return; 13865 13866 // Suppress the warning if the subscript expression (as identified by the 13867 // ']' location) and the index expression are both from macro expansions 13868 // within a system header. 13869 if (ASE) { 13870 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 13871 ASE->getRBracketLoc()); 13872 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 13873 SourceLocation IndexLoc = 13874 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 13875 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 13876 return; 13877 } 13878 } 13879 13880 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 13881 if (ASE) 13882 DiagID = diag::warn_array_index_exceeds_bounds; 13883 13884 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13885 PDiag(DiagID) << index.toString(10, true) 13886 << size.toString(10, true) 13887 << (unsigned)size.getLimitedValue(~0U) 13888 << IndexExpr->getSourceRange()); 13889 } else { 13890 unsigned DiagID = diag::warn_array_index_precedes_bounds; 13891 if (!ASE) { 13892 DiagID = diag::warn_ptr_arith_precedes_bounds; 13893 if (index.isNegative()) index = -index; 13894 } 13895 13896 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13897 PDiag(DiagID) << index.toString(10, true) 13898 << IndexExpr->getSourceRange()); 13899 } 13900 13901 if (!ND) { 13902 // Try harder to find a NamedDecl to point at in the note. 13903 while (const ArraySubscriptExpr *ASE = 13904 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 13905 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 13906 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13907 ND = DRE->getDecl(); 13908 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13909 ND = ME->getMemberDecl(); 13910 } 13911 13912 if (ND) 13913 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 13914 PDiag(diag::note_array_declared_here) 13915 << ND->getDeclName()); 13916 } 13917 13918 void Sema::CheckArrayAccess(const Expr *expr) { 13919 int AllowOnePastEnd = 0; 13920 while (expr) { 13921 expr = expr->IgnoreParenImpCasts(); 13922 switch (expr->getStmtClass()) { 13923 case Stmt::ArraySubscriptExprClass: { 13924 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 13925 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 13926 AllowOnePastEnd > 0); 13927 expr = ASE->getBase(); 13928 break; 13929 } 13930 case Stmt::MemberExprClass: { 13931 expr = cast<MemberExpr>(expr)->getBase(); 13932 break; 13933 } 13934 case Stmt::OMPArraySectionExprClass: { 13935 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 13936 if (ASE->getLowerBound()) 13937 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 13938 /*ASE=*/nullptr, AllowOnePastEnd > 0); 13939 return; 13940 } 13941 case Stmt::UnaryOperatorClass: { 13942 // Only unwrap the * and & unary operators 13943 const UnaryOperator *UO = cast<UnaryOperator>(expr); 13944 expr = UO->getSubExpr(); 13945 switch (UO->getOpcode()) { 13946 case UO_AddrOf: 13947 AllowOnePastEnd++; 13948 break; 13949 case UO_Deref: 13950 AllowOnePastEnd--; 13951 break; 13952 default: 13953 return; 13954 } 13955 break; 13956 } 13957 case Stmt::ConditionalOperatorClass: { 13958 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 13959 if (const Expr *lhs = cond->getLHS()) 13960 CheckArrayAccess(lhs); 13961 if (const Expr *rhs = cond->getRHS()) 13962 CheckArrayAccess(rhs); 13963 return; 13964 } 13965 case Stmt::CXXOperatorCallExprClass: { 13966 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 13967 for (const auto *Arg : OCE->arguments()) 13968 CheckArrayAccess(Arg); 13969 return; 13970 } 13971 default: 13972 return; 13973 } 13974 } 13975 } 13976 13977 //===--- CHECK: Objective-C retain cycles ----------------------------------// 13978 13979 namespace { 13980 13981 struct RetainCycleOwner { 13982 VarDecl *Variable = nullptr; 13983 SourceRange Range; 13984 SourceLocation Loc; 13985 bool Indirect = false; 13986 13987 RetainCycleOwner() = default; 13988 13989 void setLocsFrom(Expr *e) { 13990 Loc = e->getExprLoc(); 13991 Range = e->getSourceRange(); 13992 } 13993 }; 13994 13995 } // namespace 13996 13997 /// Consider whether capturing the given variable can possibly lead to 13998 /// a retain cycle. 13999 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 14000 // In ARC, it's captured strongly iff the variable has __strong 14001 // lifetime. In MRR, it's captured strongly if the variable is 14002 // __block and has an appropriate type. 14003 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14004 return false; 14005 14006 owner.Variable = var; 14007 if (ref) 14008 owner.setLocsFrom(ref); 14009 return true; 14010 } 14011 14012 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 14013 while (true) { 14014 e = e->IgnoreParens(); 14015 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 14016 switch (cast->getCastKind()) { 14017 case CK_BitCast: 14018 case CK_LValueBitCast: 14019 case CK_LValueToRValue: 14020 case CK_ARCReclaimReturnedObject: 14021 e = cast->getSubExpr(); 14022 continue; 14023 14024 default: 14025 return false; 14026 } 14027 } 14028 14029 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 14030 ObjCIvarDecl *ivar = ref->getDecl(); 14031 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14032 return false; 14033 14034 // Try to find a retain cycle in the base. 14035 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 14036 return false; 14037 14038 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 14039 owner.Indirect = true; 14040 return true; 14041 } 14042 14043 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 14044 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 14045 if (!var) return false; 14046 return considerVariable(var, ref, owner); 14047 } 14048 14049 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 14050 if (member->isArrow()) return false; 14051 14052 // Don't count this as an indirect ownership. 14053 e = member->getBase(); 14054 continue; 14055 } 14056 14057 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 14058 // Only pay attention to pseudo-objects on property references. 14059 ObjCPropertyRefExpr *pre 14060 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 14061 ->IgnoreParens()); 14062 if (!pre) return false; 14063 if (pre->isImplicitProperty()) return false; 14064 ObjCPropertyDecl *property = pre->getExplicitProperty(); 14065 if (!property->isRetaining() && 14066 !(property->getPropertyIvarDecl() && 14067 property->getPropertyIvarDecl()->getType() 14068 .getObjCLifetime() == Qualifiers::OCL_Strong)) 14069 return false; 14070 14071 owner.Indirect = true; 14072 if (pre->isSuperReceiver()) { 14073 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 14074 if (!owner.Variable) 14075 return false; 14076 owner.Loc = pre->getLocation(); 14077 owner.Range = pre->getSourceRange(); 14078 return true; 14079 } 14080 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 14081 ->getSourceExpr()); 14082 continue; 14083 } 14084 14085 // Array ivars? 14086 14087 return false; 14088 } 14089 } 14090 14091 namespace { 14092 14093 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 14094 ASTContext &Context; 14095 VarDecl *Variable; 14096 Expr *Capturer = nullptr; 14097 bool VarWillBeReased = false; 14098 14099 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 14100 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 14101 Context(Context), Variable(variable) {} 14102 14103 void VisitDeclRefExpr(DeclRefExpr *ref) { 14104 if (ref->getDecl() == Variable && !Capturer) 14105 Capturer = ref; 14106 } 14107 14108 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 14109 if (Capturer) return; 14110 Visit(ref->getBase()); 14111 if (Capturer && ref->isFreeIvar()) 14112 Capturer = ref; 14113 } 14114 14115 void VisitBlockExpr(BlockExpr *block) { 14116 // Look inside nested blocks 14117 if (block->getBlockDecl()->capturesVariable(Variable)) 14118 Visit(block->getBlockDecl()->getBody()); 14119 } 14120 14121 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 14122 if (Capturer) return; 14123 if (OVE->getSourceExpr()) 14124 Visit(OVE->getSourceExpr()); 14125 } 14126 14127 void VisitBinaryOperator(BinaryOperator *BinOp) { 14128 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 14129 return; 14130 Expr *LHS = BinOp->getLHS(); 14131 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 14132 if (DRE->getDecl() != Variable) 14133 return; 14134 if (Expr *RHS = BinOp->getRHS()) { 14135 RHS = RHS->IgnoreParenCasts(); 14136 llvm::APSInt Value; 14137 VarWillBeReased = 14138 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); 14139 } 14140 } 14141 } 14142 }; 14143 14144 } // namespace 14145 14146 /// Check whether the given argument is a block which captures a 14147 /// variable. 14148 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 14149 assert(owner.Variable && owner.Loc.isValid()); 14150 14151 e = e->IgnoreParenCasts(); 14152 14153 // Look through [^{...} copy] and Block_copy(^{...}). 14154 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 14155 Selector Cmd = ME->getSelector(); 14156 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 14157 e = ME->getInstanceReceiver(); 14158 if (!e) 14159 return nullptr; 14160 e = e->IgnoreParenCasts(); 14161 } 14162 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 14163 if (CE->getNumArgs() == 1) { 14164 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 14165 if (Fn) { 14166 const IdentifierInfo *FnI = Fn->getIdentifier(); 14167 if (FnI && FnI->isStr("_Block_copy")) { 14168 e = CE->getArg(0)->IgnoreParenCasts(); 14169 } 14170 } 14171 } 14172 } 14173 14174 BlockExpr *block = dyn_cast<BlockExpr>(e); 14175 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 14176 return nullptr; 14177 14178 FindCaptureVisitor visitor(S.Context, owner.Variable); 14179 visitor.Visit(block->getBlockDecl()->getBody()); 14180 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 14181 } 14182 14183 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 14184 RetainCycleOwner &owner) { 14185 assert(capturer); 14186 assert(owner.Variable && owner.Loc.isValid()); 14187 14188 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 14189 << owner.Variable << capturer->getSourceRange(); 14190 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 14191 << owner.Indirect << owner.Range; 14192 } 14193 14194 /// Check for a keyword selector that starts with the word 'add' or 14195 /// 'set'. 14196 static bool isSetterLikeSelector(Selector sel) { 14197 if (sel.isUnarySelector()) return false; 14198 14199 StringRef str = sel.getNameForSlot(0); 14200 while (!str.empty() && str.front() == '_') str = str.substr(1); 14201 if (str.startswith("set")) 14202 str = str.substr(3); 14203 else if (str.startswith("add")) { 14204 // Specially allow 'addOperationWithBlock:'. 14205 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 14206 return false; 14207 str = str.substr(3); 14208 } 14209 else 14210 return false; 14211 14212 if (str.empty()) return true; 14213 return !isLowercase(str.front()); 14214 } 14215 14216 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 14217 ObjCMessageExpr *Message) { 14218 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 14219 Message->getReceiverInterface(), 14220 NSAPI::ClassId_NSMutableArray); 14221 if (!IsMutableArray) { 14222 return None; 14223 } 14224 14225 Selector Sel = Message->getSelector(); 14226 14227 Optional<NSAPI::NSArrayMethodKind> MKOpt = 14228 S.NSAPIObj->getNSArrayMethodKind(Sel); 14229 if (!MKOpt) { 14230 return None; 14231 } 14232 14233 NSAPI::NSArrayMethodKind MK = *MKOpt; 14234 14235 switch (MK) { 14236 case NSAPI::NSMutableArr_addObject: 14237 case NSAPI::NSMutableArr_insertObjectAtIndex: 14238 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 14239 return 0; 14240 case NSAPI::NSMutableArr_replaceObjectAtIndex: 14241 return 1; 14242 14243 default: 14244 return None; 14245 } 14246 14247 return None; 14248 } 14249 14250 static 14251 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 14252 ObjCMessageExpr *Message) { 14253 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 14254 Message->getReceiverInterface(), 14255 NSAPI::ClassId_NSMutableDictionary); 14256 if (!IsMutableDictionary) { 14257 return None; 14258 } 14259 14260 Selector Sel = Message->getSelector(); 14261 14262 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 14263 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 14264 if (!MKOpt) { 14265 return None; 14266 } 14267 14268 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 14269 14270 switch (MK) { 14271 case NSAPI::NSMutableDict_setObjectForKey: 14272 case NSAPI::NSMutableDict_setValueForKey: 14273 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 14274 return 0; 14275 14276 default: 14277 return None; 14278 } 14279 14280 return None; 14281 } 14282 14283 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 14284 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 14285 Message->getReceiverInterface(), 14286 NSAPI::ClassId_NSMutableSet); 14287 14288 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 14289 Message->getReceiverInterface(), 14290 NSAPI::ClassId_NSMutableOrderedSet); 14291 if (!IsMutableSet && !IsMutableOrderedSet) { 14292 return None; 14293 } 14294 14295 Selector Sel = Message->getSelector(); 14296 14297 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 14298 if (!MKOpt) { 14299 return None; 14300 } 14301 14302 NSAPI::NSSetMethodKind MK = *MKOpt; 14303 14304 switch (MK) { 14305 case NSAPI::NSMutableSet_addObject: 14306 case NSAPI::NSOrderedSet_setObjectAtIndex: 14307 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 14308 case NSAPI::NSOrderedSet_insertObjectAtIndex: 14309 return 0; 14310 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 14311 return 1; 14312 } 14313 14314 return None; 14315 } 14316 14317 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 14318 if (!Message->isInstanceMessage()) { 14319 return; 14320 } 14321 14322 Optional<int> ArgOpt; 14323 14324 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 14325 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 14326 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 14327 return; 14328 } 14329 14330 int ArgIndex = *ArgOpt; 14331 14332 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 14333 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 14334 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 14335 } 14336 14337 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 14338 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14339 if (ArgRE->isObjCSelfExpr()) { 14340 Diag(Message->getSourceRange().getBegin(), 14341 diag::warn_objc_circular_container) 14342 << ArgRE->getDecl() << StringRef("'super'"); 14343 } 14344 } 14345 } else { 14346 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 14347 14348 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 14349 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 14350 } 14351 14352 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 14353 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14354 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 14355 ValueDecl *Decl = ReceiverRE->getDecl(); 14356 Diag(Message->getSourceRange().getBegin(), 14357 diag::warn_objc_circular_container) 14358 << Decl << Decl; 14359 if (!ArgRE->isObjCSelfExpr()) { 14360 Diag(Decl->getLocation(), 14361 diag::note_objc_circular_container_declared_here) 14362 << Decl; 14363 } 14364 } 14365 } 14366 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 14367 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 14368 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 14369 ObjCIvarDecl *Decl = IvarRE->getDecl(); 14370 Diag(Message->getSourceRange().getBegin(), 14371 diag::warn_objc_circular_container) 14372 << Decl << Decl; 14373 Diag(Decl->getLocation(), 14374 diag::note_objc_circular_container_declared_here) 14375 << Decl; 14376 } 14377 } 14378 } 14379 } 14380 } 14381 14382 /// Check a message send to see if it's likely to cause a retain cycle. 14383 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 14384 // Only check instance methods whose selector looks like a setter. 14385 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 14386 return; 14387 14388 // Try to find a variable that the receiver is strongly owned by. 14389 RetainCycleOwner owner; 14390 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 14391 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 14392 return; 14393 } else { 14394 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 14395 owner.Variable = getCurMethodDecl()->getSelfDecl(); 14396 owner.Loc = msg->getSuperLoc(); 14397 owner.Range = msg->getSuperLoc(); 14398 } 14399 14400 // Check whether the receiver is captured by any of the arguments. 14401 const ObjCMethodDecl *MD = msg->getMethodDecl(); 14402 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 14403 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 14404 // noescape blocks should not be retained by the method. 14405 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 14406 continue; 14407 return diagnoseRetainCycle(*this, capturer, owner); 14408 } 14409 } 14410 } 14411 14412 /// Check a property assign to see if it's likely to cause a retain cycle. 14413 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 14414 RetainCycleOwner owner; 14415 if (!findRetainCycleOwner(*this, receiver, owner)) 14416 return; 14417 14418 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 14419 diagnoseRetainCycle(*this, capturer, owner); 14420 } 14421 14422 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 14423 RetainCycleOwner Owner; 14424 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 14425 return; 14426 14427 // Because we don't have an expression for the variable, we have to set the 14428 // location explicitly here. 14429 Owner.Loc = Var->getLocation(); 14430 Owner.Range = Var->getSourceRange(); 14431 14432 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 14433 diagnoseRetainCycle(*this, Capturer, Owner); 14434 } 14435 14436 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 14437 Expr *RHS, bool isProperty) { 14438 // Check if RHS is an Objective-C object literal, which also can get 14439 // immediately zapped in a weak reference. Note that we explicitly 14440 // allow ObjCStringLiterals, since those are designed to never really die. 14441 RHS = RHS->IgnoreParenImpCasts(); 14442 14443 // This enum needs to match with the 'select' in 14444 // warn_objc_arc_literal_assign (off-by-1). 14445 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 14446 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 14447 return false; 14448 14449 S.Diag(Loc, diag::warn_arc_literal_assign) 14450 << (unsigned) Kind 14451 << (isProperty ? 0 : 1) 14452 << RHS->getSourceRange(); 14453 14454 return true; 14455 } 14456 14457 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 14458 Qualifiers::ObjCLifetime LT, 14459 Expr *RHS, bool isProperty) { 14460 // Strip off any implicit cast added to get to the one ARC-specific. 14461 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14462 if (cast->getCastKind() == CK_ARCConsumeObject) { 14463 S.Diag(Loc, diag::warn_arc_retained_assign) 14464 << (LT == Qualifiers::OCL_ExplicitNone) 14465 << (isProperty ? 0 : 1) 14466 << RHS->getSourceRange(); 14467 return true; 14468 } 14469 RHS = cast->getSubExpr(); 14470 } 14471 14472 if (LT == Qualifiers::OCL_Weak && 14473 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 14474 return true; 14475 14476 return false; 14477 } 14478 14479 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 14480 QualType LHS, Expr *RHS) { 14481 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 14482 14483 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 14484 return false; 14485 14486 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 14487 return true; 14488 14489 return false; 14490 } 14491 14492 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 14493 Expr *LHS, Expr *RHS) { 14494 QualType LHSType; 14495 // PropertyRef on LHS type need be directly obtained from 14496 // its declaration as it has a PseudoType. 14497 ObjCPropertyRefExpr *PRE 14498 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 14499 if (PRE && !PRE->isImplicitProperty()) { 14500 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14501 if (PD) 14502 LHSType = PD->getType(); 14503 } 14504 14505 if (LHSType.isNull()) 14506 LHSType = LHS->getType(); 14507 14508 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 14509 14510 if (LT == Qualifiers::OCL_Weak) { 14511 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 14512 getCurFunction()->markSafeWeakUse(LHS); 14513 } 14514 14515 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 14516 return; 14517 14518 // FIXME. Check for other life times. 14519 if (LT != Qualifiers::OCL_None) 14520 return; 14521 14522 if (PRE) { 14523 if (PRE->isImplicitProperty()) 14524 return; 14525 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14526 if (!PD) 14527 return; 14528 14529 unsigned Attributes = PD->getPropertyAttributes(); 14530 if (Attributes & ObjCPropertyAttribute::kind_assign) { 14531 // when 'assign' attribute was not explicitly specified 14532 // by user, ignore it and rely on property type itself 14533 // for lifetime info. 14534 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 14535 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 14536 LHSType->isObjCRetainableType()) 14537 return; 14538 14539 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14540 if (cast->getCastKind() == CK_ARCConsumeObject) { 14541 Diag(Loc, diag::warn_arc_retained_property_assign) 14542 << RHS->getSourceRange(); 14543 return; 14544 } 14545 RHS = cast->getSubExpr(); 14546 } 14547 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 14548 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 14549 return; 14550 } 14551 } 14552 } 14553 14554 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 14555 14556 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 14557 SourceLocation StmtLoc, 14558 const NullStmt *Body) { 14559 // Do not warn if the body is a macro that expands to nothing, e.g: 14560 // 14561 // #define CALL(x) 14562 // if (condition) 14563 // CALL(0); 14564 if (Body->hasLeadingEmptyMacro()) 14565 return false; 14566 14567 // Get line numbers of statement and body. 14568 bool StmtLineInvalid; 14569 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 14570 &StmtLineInvalid); 14571 if (StmtLineInvalid) 14572 return false; 14573 14574 bool BodyLineInvalid; 14575 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 14576 &BodyLineInvalid); 14577 if (BodyLineInvalid) 14578 return false; 14579 14580 // Warn if null statement and body are on the same line. 14581 if (StmtLine != BodyLine) 14582 return false; 14583 14584 return true; 14585 } 14586 14587 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 14588 const Stmt *Body, 14589 unsigned DiagID) { 14590 // Since this is a syntactic check, don't emit diagnostic for template 14591 // instantiations, this just adds noise. 14592 if (CurrentInstantiationScope) 14593 return; 14594 14595 // The body should be a null statement. 14596 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14597 if (!NBody) 14598 return; 14599 14600 // Do the usual checks. 14601 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14602 return; 14603 14604 Diag(NBody->getSemiLoc(), DiagID); 14605 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14606 } 14607 14608 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 14609 const Stmt *PossibleBody) { 14610 assert(!CurrentInstantiationScope); // Ensured by caller 14611 14612 SourceLocation StmtLoc; 14613 const Stmt *Body; 14614 unsigned DiagID; 14615 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 14616 StmtLoc = FS->getRParenLoc(); 14617 Body = FS->getBody(); 14618 DiagID = diag::warn_empty_for_body; 14619 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 14620 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 14621 Body = WS->getBody(); 14622 DiagID = diag::warn_empty_while_body; 14623 } else 14624 return; // Neither `for' nor `while'. 14625 14626 // The body should be a null statement. 14627 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14628 if (!NBody) 14629 return; 14630 14631 // Skip expensive checks if diagnostic is disabled. 14632 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 14633 return; 14634 14635 // Do the usual checks. 14636 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14637 return; 14638 14639 // `for(...);' and `while(...);' are popular idioms, so in order to keep 14640 // noise level low, emit diagnostics only if for/while is followed by a 14641 // CompoundStmt, e.g.: 14642 // for (int i = 0; i < n; i++); 14643 // { 14644 // a(i); 14645 // } 14646 // or if for/while is followed by a statement with more indentation 14647 // than for/while itself: 14648 // for (int i = 0; i < n; i++); 14649 // a(i); 14650 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 14651 if (!ProbableTypo) { 14652 bool BodyColInvalid; 14653 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 14654 PossibleBody->getBeginLoc(), &BodyColInvalid); 14655 if (BodyColInvalid) 14656 return; 14657 14658 bool StmtColInvalid; 14659 unsigned StmtCol = 14660 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 14661 if (StmtColInvalid) 14662 return; 14663 14664 if (BodyCol > StmtCol) 14665 ProbableTypo = true; 14666 } 14667 14668 if (ProbableTypo) { 14669 Diag(NBody->getSemiLoc(), DiagID); 14670 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14671 } 14672 } 14673 14674 //===--- CHECK: Warn on self move with std::move. -------------------------===// 14675 14676 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 14677 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 14678 SourceLocation OpLoc) { 14679 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 14680 return; 14681 14682 if (inTemplateInstantiation()) 14683 return; 14684 14685 // Strip parens and casts away. 14686 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 14687 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 14688 14689 // Check for a call expression 14690 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 14691 if (!CE || CE->getNumArgs() != 1) 14692 return; 14693 14694 // Check for a call to std::move 14695 if (!CE->isCallToStdMove()) 14696 return; 14697 14698 // Get argument from std::move 14699 RHSExpr = CE->getArg(0); 14700 14701 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 14702 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 14703 14704 // Two DeclRefExpr's, check that the decls are the same. 14705 if (LHSDeclRef && RHSDeclRef) { 14706 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14707 return; 14708 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14709 RHSDeclRef->getDecl()->getCanonicalDecl()) 14710 return; 14711 14712 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14713 << LHSExpr->getSourceRange() 14714 << RHSExpr->getSourceRange(); 14715 return; 14716 } 14717 14718 // Member variables require a different approach to check for self moves. 14719 // MemberExpr's are the same if every nested MemberExpr refers to the same 14720 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 14721 // the base Expr's are CXXThisExpr's. 14722 const Expr *LHSBase = LHSExpr; 14723 const Expr *RHSBase = RHSExpr; 14724 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 14725 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 14726 if (!LHSME || !RHSME) 14727 return; 14728 14729 while (LHSME && RHSME) { 14730 if (LHSME->getMemberDecl()->getCanonicalDecl() != 14731 RHSME->getMemberDecl()->getCanonicalDecl()) 14732 return; 14733 14734 LHSBase = LHSME->getBase(); 14735 RHSBase = RHSME->getBase(); 14736 LHSME = dyn_cast<MemberExpr>(LHSBase); 14737 RHSME = dyn_cast<MemberExpr>(RHSBase); 14738 } 14739 14740 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 14741 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 14742 if (LHSDeclRef && RHSDeclRef) { 14743 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14744 return; 14745 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14746 RHSDeclRef->getDecl()->getCanonicalDecl()) 14747 return; 14748 14749 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14750 << LHSExpr->getSourceRange() 14751 << RHSExpr->getSourceRange(); 14752 return; 14753 } 14754 14755 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 14756 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14757 << LHSExpr->getSourceRange() 14758 << RHSExpr->getSourceRange(); 14759 } 14760 14761 //===--- Layout compatibility ----------------------------------------------// 14762 14763 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 14764 14765 /// Check if two enumeration types are layout-compatible. 14766 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 14767 // C++11 [dcl.enum] p8: 14768 // Two enumeration types are layout-compatible if they have the same 14769 // underlying type. 14770 return ED1->isComplete() && ED2->isComplete() && 14771 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 14772 } 14773 14774 /// Check if two fields are layout-compatible. 14775 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 14776 FieldDecl *Field2) { 14777 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 14778 return false; 14779 14780 if (Field1->isBitField() != Field2->isBitField()) 14781 return false; 14782 14783 if (Field1->isBitField()) { 14784 // Make sure that the bit-fields are the same length. 14785 unsigned Bits1 = Field1->getBitWidthValue(C); 14786 unsigned Bits2 = Field2->getBitWidthValue(C); 14787 14788 if (Bits1 != Bits2) 14789 return false; 14790 } 14791 14792 return true; 14793 } 14794 14795 /// Check if two standard-layout structs are layout-compatible. 14796 /// (C++11 [class.mem] p17) 14797 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 14798 RecordDecl *RD2) { 14799 // If both records are C++ classes, check that base classes match. 14800 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 14801 // If one of records is a CXXRecordDecl we are in C++ mode, 14802 // thus the other one is a CXXRecordDecl, too. 14803 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 14804 // Check number of base classes. 14805 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 14806 return false; 14807 14808 // Check the base classes. 14809 for (CXXRecordDecl::base_class_const_iterator 14810 Base1 = D1CXX->bases_begin(), 14811 BaseEnd1 = D1CXX->bases_end(), 14812 Base2 = D2CXX->bases_begin(); 14813 Base1 != BaseEnd1; 14814 ++Base1, ++Base2) { 14815 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 14816 return false; 14817 } 14818 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 14819 // If only RD2 is a C++ class, it should have zero base classes. 14820 if (D2CXX->getNumBases() > 0) 14821 return false; 14822 } 14823 14824 // Check the fields. 14825 RecordDecl::field_iterator Field2 = RD2->field_begin(), 14826 Field2End = RD2->field_end(), 14827 Field1 = RD1->field_begin(), 14828 Field1End = RD1->field_end(); 14829 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 14830 if (!isLayoutCompatible(C, *Field1, *Field2)) 14831 return false; 14832 } 14833 if (Field1 != Field1End || Field2 != Field2End) 14834 return false; 14835 14836 return true; 14837 } 14838 14839 /// Check if two standard-layout unions are layout-compatible. 14840 /// (C++11 [class.mem] p18) 14841 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 14842 RecordDecl *RD2) { 14843 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 14844 for (auto *Field2 : RD2->fields()) 14845 UnmatchedFields.insert(Field2); 14846 14847 for (auto *Field1 : RD1->fields()) { 14848 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 14849 I = UnmatchedFields.begin(), 14850 E = UnmatchedFields.end(); 14851 14852 for ( ; I != E; ++I) { 14853 if (isLayoutCompatible(C, Field1, *I)) { 14854 bool Result = UnmatchedFields.erase(*I); 14855 (void) Result; 14856 assert(Result); 14857 break; 14858 } 14859 } 14860 if (I == E) 14861 return false; 14862 } 14863 14864 return UnmatchedFields.empty(); 14865 } 14866 14867 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 14868 RecordDecl *RD2) { 14869 if (RD1->isUnion() != RD2->isUnion()) 14870 return false; 14871 14872 if (RD1->isUnion()) 14873 return isLayoutCompatibleUnion(C, RD1, RD2); 14874 else 14875 return isLayoutCompatibleStruct(C, RD1, RD2); 14876 } 14877 14878 /// Check if two types are layout-compatible in C++11 sense. 14879 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 14880 if (T1.isNull() || T2.isNull()) 14881 return false; 14882 14883 // C++11 [basic.types] p11: 14884 // If two types T1 and T2 are the same type, then T1 and T2 are 14885 // layout-compatible types. 14886 if (C.hasSameType(T1, T2)) 14887 return true; 14888 14889 T1 = T1.getCanonicalType().getUnqualifiedType(); 14890 T2 = T2.getCanonicalType().getUnqualifiedType(); 14891 14892 const Type::TypeClass TC1 = T1->getTypeClass(); 14893 const Type::TypeClass TC2 = T2->getTypeClass(); 14894 14895 if (TC1 != TC2) 14896 return false; 14897 14898 if (TC1 == Type::Enum) { 14899 return isLayoutCompatible(C, 14900 cast<EnumType>(T1)->getDecl(), 14901 cast<EnumType>(T2)->getDecl()); 14902 } else if (TC1 == Type::Record) { 14903 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 14904 return false; 14905 14906 return isLayoutCompatible(C, 14907 cast<RecordType>(T1)->getDecl(), 14908 cast<RecordType>(T2)->getDecl()); 14909 } 14910 14911 return false; 14912 } 14913 14914 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 14915 14916 /// Given a type tag expression find the type tag itself. 14917 /// 14918 /// \param TypeExpr Type tag expression, as it appears in user's code. 14919 /// 14920 /// \param VD Declaration of an identifier that appears in a type tag. 14921 /// 14922 /// \param MagicValue Type tag magic value. 14923 /// 14924 /// \param isConstantEvaluated wether the evalaution should be performed in 14925 14926 /// constant context. 14927 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 14928 const ValueDecl **VD, uint64_t *MagicValue, 14929 bool isConstantEvaluated) { 14930 while(true) { 14931 if (!TypeExpr) 14932 return false; 14933 14934 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 14935 14936 switch (TypeExpr->getStmtClass()) { 14937 case Stmt::UnaryOperatorClass: { 14938 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 14939 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 14940 TypeExpr = UO->getSubExpr(); 14941 continue; 14942 } 14943 return false; 14944 } 14945 14946 case Stmt::DeclRefExprClass: { 14947 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 14948 *VD = DRE->getDecl(); 14949 return true; 14950 } 14951 14952 case Stmt::IntegerLiteralClass: { 14953 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 14954 llvm::APInt MagicValueAPInt = IL->getValue(); 14955 if (MagicValueAPInt.getActiveBits() <= 64) { 14956 *MagicValue = MagicValueAPInt.getZExtValue(); 14957 return true; 14958 } else 14959 return false; 14960 } 14961 14962 case Stmt::BinaryConditionalOperatorClass: 14963 case Stmt::ConditionalOperatorClass: { 14964 const AbstractConditionalOperator *ACO = 14965 cast<AbstractConditionalOperator>(TypeExpr); 14966 bool Result; 14967 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 14968 isConstantEvaluated)) { 14969 if (Result) 14970 TypeExpr = ACO->getTrueExpr(); 14971 else 14972 TypeExpr = ACO->getFalseExpr(); 14973 continue; 14974 } 14975 return false; 14976 } 14977 14978 case Stmt::BinaryOperatorClass: { 14979 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 14980 if (BO->getOpcode() == BO_Comma) { 14981 TypeExpr = BO->getRHS(); 14982 continue; 14983 } 14984 return false; 14985 } 14986 14987 default: 14988 return false; 14989 } 14990 } 14991 } 14992 14993 /// Retrieve the C type corresponding to type tag TypeExpr. 14994 /// 14995 /// \param TypeExpr Expression that specifies a type tag. 14996 /// 14997 /// \param MagicValues Registered magic values. 14998 /// 14999 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 15000 /// kind. 15001 /// 15002 /// \param TypeInfo Information about the corresponding C type. 15003 /// 15004 /// \param isConstantEvaluated wether the evalaution should be performed in 15005 /// constant context. 15006 /// 15007 /// \returns true if the corresponding C type was found. 15008 static bool GetMatchingCType( 15009 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 15010 const ASTContext &Ctx, 15011 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 15012 *MagicValues, 15013 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 15014 bool isConstantEvaluated) { 15015 FoundWrongKind = false; 15016 15017 // Variable declaration that has type_tag_for_datatype attribute. 15018 const ValueDecl *VD = nullptr; 15019 15020 uint64_t MagicValue; 15021 15022 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 15023 return false; 15024 15025 if (VD) { 15026 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 15027 if (I->getArgumentKind() != ArgumentKind) { 15028 FoundWrongKind = true; 15029 return false; 15030 } 15031 TypeInfo.Type = I->getMatchingCType(); 15032 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 15033 TypeInfo.MustBeNull = I->getMustBeNull(); 15034 return true; 15035 } 15036 return false; 15037 } 15038 15039 if (!MagicValues) 15040 return false; 15041 15042 llvm::DenseMap<Sema::TypeTagMagicValue, 15043 Sema::TypeTagData>::const_iterator I = 15044 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 15045 if (I == MagicValues->end()) 15046 return false; 15047 15048 TypeInfo = I->second; 15049 return true; 15050 } 15051 15052 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 15053 uint64_t MagicValue, QualType Type, 15054 bool LayoutCompatible, 15055 bool MustBeNull) { 15056 if (!TypeTagForDatatypeMagicValues) 15057 TypeTagForDatatypeMagicValues.reset( 15058 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 15059 15060 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 15061 (*TypeTagForDatatypeMagicValues)[Magic] = 15062 TypeTagData(Type, LayoutCompatible, MustBeNull); 15063 } 15064 15065 static bool IsSameCharType(QualType T1, QualType T2) { 15066 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 15067 if (!BT1) 15068 return false; 15069 15070 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 15071 if (!BT2) 15072 return false; 15073 15074 BuiltinType::Kind T1Kind = BT1->getKind(); 15075 BuiltinType::Kind T2Kind = BT2->getKind(); 15076 15077 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 15078 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 15079 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 15080 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 15081 } 15082 15083 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 15084 const ArrayRef<const Expr *> ExprArgs, 15085 SourceLocation CallSiteLoc) { 15086 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 15087 bool IsPointerAttr = Attr->getIsPointer(); 15088 15089 // Retrieve the argument representing the 'type_tag'. 15090 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 15091 if (TypeTagIdxAST >= ExprArgs.size()) { 15092 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15093 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 15094 return; 15095 } 15096 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 15097 bool FoundWrongKind; 15098 TypeTagData TypeInfo; 15099 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 15100 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 15101 TypeInfo, isConstantEvaluated())) { 15102 if (FoundWrongKind) 15103 Diag(TypeTagExpr->getExprLoc(), 15104 diag::warn_type_tag_for_datatype_wrong_kind) 15105 << TypeTagExpr->getSourceRange(); 15106 return; 15107 } 15108 15109 // Retrieve the argument representing the 'arg_idx'. 15110 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 15111 if (ArgumentIdxAST >= ExprArgs.size()) { 15112 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15113 << 1 << Attr->getArgumentIdx().getSourceIndex(); 15114 return; 15115 } 15116 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 15117 if (IsPointerAttr) { 15118 // Skip implicit cast of pointer to `void *' (as a function argument). 15119 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 15120 if (ICE->getType()->isVoidPointerType() && 15121 ICE->getCastKind() == CK_BitCast) 15122 ArgumentExpr = ICE->getSubExpr(); 15123 } 15124 QualType ArgumentType = ArgumentExpr->getType(); 15125 15126 // Passing a `void*' pointer shouldn't trigger a warning. 15127 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 15128 return; 15129 15130 if (TypeInfo.MustBeNull) { 15131 // Type tag with matching void type requires a null pointer. 15132 if (!ArgumentExpr->isNullPointerConstant(Context, 15133 Expr::NPC_ValueDependentIsNotNull)) { 15134 Diag(ArgumentExpr->getExprLoc(), 15135 diag::warn_type_safety_null_pointer_required) 15136 << ArgumentKind->getName() 15137 << ArgumentExpr->getSourceRange() 15138 << TypeTagExpr->getSourceRange(); 15139 } 15140 return; 15141 } 15142 15143 QualType RequiredType = TypeInfo.Type; 15144 if (IsPointerAttr) 15145 RequiredType = Context.getPointerType(RequiredType); 15146 15147 bool mismatch = false; 15148 if (!TypeInfo.LayoutCompatible) { 15149 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 15150 15151 // C++11 [basic.fundamental] p1: 15152 // Plain char, signed char, and unsigned char are three distinct types. 15153 // 15154 // But we treat plain `char' as equivalent to `signed char' or `unsigned 15155 // char' depending on the current char signedness mode. 15156 if (mismatch) 15157 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 15158 RequiredType->getPointeeType())) || 15159 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 15160 mismatch = false; 15161 } else 15162 if (IsPointerAttr) 15163 mismatch = !isLayoutCompatible(Context, 15164 ArgumentType->getPointeeType(), 15165 RequiredType->getPointeeType()); 15166 else 15167 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 15168 15169 if (mismatch) 15170 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 15171 << ArgumentType << ArgumentKind 15172 << TypeInfo.LayoutCompatible << RequiredType 15173 << ArgumentExpr->getSourceRange() 15174 << TypeTagExpr->getSourceRange(); 15175 } 15176 15177 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 15178 CharUnits Alignment) { 15179 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 15180 } 15181 15182 void Sema::DiagnoseMisalignedMembers() { 15183 for (MisalignedMember &m : MisalignedMembers) { 15184 const NamedDecl *ND = m.RD; 15185 if (ND->getName().empty()) { 15186 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 15187 ND = TD; 15188 } 15189 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 15190 << m.MD << ND << m.E->getSourceRange(); 15191 } 15192 MisalignedMembers.clear(); 15193 } 15194 15195 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 15196 E = E->IgnoreParens(); 15197 if (!T->isPointerType() && !T->isIntegerType()) 15198 return; 15199 if (isa<UnaryOperator>(E) && 15200 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 15201 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 15202 if (isa<MemberExpr>(Op)) { 15203 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 15204 if (MA != MisalignedMembers.end() && 15205 (T->isIntegerType() || 15206 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 15207 Context.getTypeAlignInChars( 15208 T->getPointeeType()) <= MA->Alignment)))) 15209 MisalignedMembers.erase(MA); 15210 } 15211 } 15212 } 15213 15214 void Sema::RefersToMemberWithReducedAlignment( 15215 Expr *E, 15216 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 15217 Action) { 15218 const auto *ME = dyn_cast<MemberExpr>(E); 15219 if (!ME) 15220 return; 15221 15222 // No need to check expressions with an __unaligned-qualified type. 15223 if (E->getType().getQualifiers().hasUnaligned()) 15224 return; 15225 15226 // For a chain of MemberExpr like "a.b.c.d" this list 15227 // will keep FieldDecl's like [d, c, b]. 15228 SmallVector<FieldDecl *, 4> ReverseMemberChain; 15229 const MemberExpr *TopME = nullptr; 15230 bool AnyIsPacked = false; 15231 do { 15232 QualType BaseType = ME->getBase()->getType(); 15233 if (BaseType->isDependentType()) 15234 return; 15235 if (ME->isArrow()) 15236 BaseType = BaseType->getPointeeType(); 15237 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 15238 if (RD->isInvalidDecl()) 15239 return; 15240 15241 ValueDecl *MD = ME->getMemberDecl(); 15242 auto *FD = dyn_cast<FieldDecl>(MD); 15243 // We do not care about non-data members. 15244 if (!FD || FD->isInvalidDecl()) 15245 return; 15246 15247 AnyIsPacked = 15248 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 15249 ReverseMemberChain.push_back(FD); 15250 15251 TopME = ME; 15252 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 15253 } while (ME); 15254 assert(TopME && "We did not compute a topmost MemberExpr!"); 15255 15256 // Not the scope of this diagnostic. 15257 if (!AnyIsPacked) 15258 return; 15259 15260 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 15261 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 15262 // TODO: The innermost base of the member expression may be too complicated. 15263 // For now, just disregard these cases. This is left for future 15264 // improvement. 15265 if (!DRE && !isa<CXXThisExpr>(TopBase)) 15266 return; 15267 15268 // Alignment expected by the whole expression. 15269 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 15270 15271 // No need to do anything else with this case. 15272 if (ExpectedAlignment.isOne()) 15273 return; 15274 15275 // Synthesize offset of the whole access. 15276 CharUnits Offset; 15277 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 15278 I++) { 15279 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 15280 } 15281 15282 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 15283 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 15284 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 15285 15286 // The base expression of the innermost MemberExpr may give 15287 // stronger guarantees than the class containing the member. 15288 if (DRE && !TopME->isArrow()) { 15289 const ValueDecl *VD = DRE->getDecl(); 15290 if (!VD->getType()->isReferenceType()) 15291 CompleteObjectAlignment = 15292 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 15293 } 15294 15295 // Check if the synthesized offset fulfills the alignment. 15296 if (Offset % ExpectedAlignment != 0 || 15297 // It may fulfill the offset it but the effective alignment may still be 15298 // lower than the expected expression alignment. 15299 CompleteObjectAlignment < ExpectedAlignment) { 15300 // If this happens, we want to determine a sensible culprit of this. 15301 // Intuitively, watching the chain of member expressions from right to 15302 // left, we start with the required alignment (as required by the field 15303 // type) but some packed attribute in that chain has reduced the alignment. 15304 // It may happen that another packed structure increases it again. But if 15305 // we are here such increase has not been enough. So pointing the first 15306 // FieldDecl that either is packed or else its RecordDecl is, 15307 // seems reasonable. 15308 FieldDecl *FD = nullptr; 15309 CharUnits Alignment; 15310 for (FieldDecl *FDI : ReverseMemberChain) { 15311 if (FDI->hasAttr<PackedAttr>() || 15312 FDI->getParent()->hasAttr<PackedAttr>()) { 15313 FD = FDI; 15314 Alignment = std::min( 15315 Context.getTypeAlignInChars(FD->getType()), 15316 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 15317 break; 15318 } 15319 } 15320 assert(FD && "We did not find a packed FieldDecl!"); 15321 Action(E, FD->getParent(), FD, Alignment); 15322 } 15323 } 15324 15325 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 15326 using namespace std::placeholders; 15327 15328 RefersToMemberWithReducedAlignment( 15329 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 15330 _2, _3, _4)); 15331 } 15332 15333 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 15334 ExprResult CallResult) { 15335 if (checkArgCount(*this, TheCall, 1)) 15336 return ExprError(); 15337 15338 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 15339 if (MatrixArg.isInvalid()) 15340 return MatrixArg; 15341 Expr *Matrix = MatrixArg.get(); 15342 15343 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 15344 if (!MType) { 15345 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 15346 return ExprError(); 15347 } 15348 15349 // Create returned matrix type by swapping rows and columns of the argument 15350 // matrix type. 15351 QualType ResultType = Context.getConstantMatrixType( 15352 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 15353 15354 // Change the return type to the type of the returned matrix. 15355 TheCall->setType(ResultType); 15356 15357 // Update call argument to use the possibly converted matrix argument. 15358 TheCall->setArg(0, Matrix); 15359 return CallResult; 15360 } 15361 15362 // Get and verify the matrix dimensions. 15363 static llvm::Optional<unsigned> 15364 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 15365 llvm::APSInt Value(64); 15366 SourceLocation ErrorPos; 15367 if (!Expr->isIntegerConstantExpr(Value, S.Context, &ErrorPos)) { 15368 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 15369 << Name; 15370 return {}; 15371 } 15372 uint64_t Dim = Value.getZExtValue(); 15373 if (!ConstantMatrixType::isDimensionValid(Dim)) { 15374 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 15375 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 15376 return {}; 15377 } 15378 return Dim; 15379 } 15380 15381 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 15382 ExprResult CallResult) { 15383 if (!getLangOpts().MatrixTypes) { 15384 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 15385 return ExprError(); 15386 } 15387 15388 if (checkArgCount(*this, TheCall, 4)) 15389 return ExprError(); 15390 15391 unsigned PtrArgIdx = 0; 15392 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15393 Expr *RowsExpr = TheCall->getArg(1); 15394 Expr *ColumnsExpr = TheCall->getArg(2); 15395 Expr *StrideExpr = TheCall->getArg(3); 15396 15397 bool ArgError = false; 15398 15399 // Check pointer argument. 15400 { 15401 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15402 if (PtrConv.isInvalid()) 15403 return PtrConv; 15404 PtrExpr = PtrConv.get(); 15405 TheCall->setArg(0, PtrExpr); 15406 if (PtrExpr->isTypeDependent()) { 15407 TheCall->setType(Context.DependentTy); 15408 return TheCall; 15409 } 15410 } 15411 15412 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15413 QualType ElementTy; 15414 if (!PtrTy) { 15415 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15416 << PtrArgIdx + 1; 15417 ArgError = true; 15418 } else { 15419 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 15420 15421 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 15422 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15423 << PtrArgIdx + 1; 15424 ArgError = true; 15425 } 15426 } 15427 15428 // Apply default Lvalue conversions and convert the expression to size_t. 15429 auto ApplyArgumentConversions = [this](Expr *E) { 15430 ExprResult Conv = DefaultLvalueConversion(E); 15431 if (Conv.isInvalid()) 15432 return Conv; 15433 15434 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 15435 }; 15436 15437 // Apply conversion to row and column expressions. 15438 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 15439 if (!RowsConv.isInvalid()) { 15440 RowsExpr = RowsConv.get(); 15441 TheCall->setArg(1, RowsExpr); 15442 } else 15443 RowsExpr = nullptr; 15444 15445 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 15446 if (!ColumnsConv.isInvalid()) { 15447 ColumnsExpr = ColumnsConv.get(); 15448 TheCall->setArg(2, ColumnsExpr); 15449 } else 15450 ColumnsExpr = nullptr; 15451 15452 // If any any part of the result matrix type is still pending, just use 15453 // Context.DependentTy, until all parts are resolved. 15454 if ((RowsExpr && RowsExpr->isTypeDependent()) || 15455 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 15456 TheCall->setType(Context.DependentTy); 15457 return CallResult; 15458 } 15459 15460 // Check row and column dimenions. 15461 llvm::Optional<unsigned> MaybeRows; 15462 if (RowsExpr) 15463 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 15464 15465 llvm::Optional<unsigned> MaybeColumns; 15466 if (ColumnsExpr) 15467 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 15468 15469 // Check stride argument. 15470 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 15471 if (StrideConv.isInvalid()) 15472 return ExprError(); 15473 StrideExpr = StrideConv.get(); 15474 TheCall->setArg(3, StrideExpr); 15475 15476 llvm::APSInt Value(64); 15477 if (MaybeRows && StrideExpr->isIntegerConstantExpr(Value, Context)) { 15478 uint64_t Stride = Value.getZExtValue(); 15479 if (Stride < *MaybeRows) { 15480 Diag(StrideExpr->getBeginLoc(), 15481 diag::err_builtin_matrix_stride_too_small); 15482 ArgError = true; 15483 } 15484 } 15485 15486 if (ArgError || !MaybeRows || !MaybeColumns) 15487 return ExprError(); 15488 15489 TheCall->setType( 15490 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 15491 return CallResult; 15492 } 15493 15494 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 15495 ExprResult CallResult) { 15496 if (checkArgCount(*this, TheCall, 3)) 15497 return ExprError(); 15498 15499 unsigned PtrArgIdx = 1; 15500 Expr *MatrixExpr = TheCall->getArg(0); 15501 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15502 Expr *StrideExpr = TheCall->getArg(2); 15503 15504 bool ArgError = false; 15505 15506 { 15507 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 15508 if (MatrixConv.isInvalid()) 15509 return MatrixConv; 15510 MatrixExpr = MatrixConv.get(); 15511 TheCall->setArg(0, MatrixExpr); 15512 } 15513 if (MatrixExpr->isTypeDependent()) { 15514 TheCall->setType(Context.DependentTy); 15515 return TheCall; 15516 } 15517 15518 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 15519 if (!MatrixTy) { 15520 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 15521 ArgError = true; 15522 } 15523 15524 { 15525 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15526 if (PtrConv.isInvalid()) 15527 return PtrConv; 15528 PtrExpr = PtrConv.get(); 15529 TheCall->setArg(1, PtrExpr); 15530 if (PtrExpr->isTypeDependent()) { 15531 TheCall->setType(Context.DependentTy); 15532 return TheCall; 15533 } 15534 } 15535 15536 // Check pointer argument. 15537 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15538 if (!PtrTy) { 15539 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15540 << PtrArgIdx + 1; 15541 ArgError = true; 15542 } else { 15543 QualType ElementTy = PtrTy->getPointeeType(); 15544 if (ElementTy.isConstQualified()) { 15545 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 15546 ArgError = true; 15547 } 15548 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 15549 if (MatrixTy && 15550 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 15551 Diag(PtrExpr->getBeginLoc(), 15552 diag::err_builtin_matrix_pointer_arg_mismatch) 15553 << ElementTy << MatrixTy->getElementType(); 15554 ArgError = true; 15555 } 15556 } 15557 15558 // Apply default Lvalue conversions and convert the stride expression to 15559 // size_t. 15560 { 15561 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 15562 if (StrideConv.isInvalid()) 15563 return StrideConv; 15564 15565 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 15566 if (StrideConv.isInvalid()) 15567 return StrideConv; 15568 StrideExpr = StrideConv.get(); 15569 TheCall->setArg(2, StrideExpr); 15570 } 15571 15572 // Check stride argument. 15573 llvm::APSInt Value(64); 15574 if (MatrixTy && StrideExpr->isIntegerConstantExpr(Value, Context)) { 15575 uint64_t Stride = Value.getZExtValue(); 15576 if (Stride < MatrixTy->getNumRows()) { 15577 Diag(StrideExpr->getBeginLoc(), 15578 diag::err_builtin_matrix_stride_too_small); 15579 ArgError = true; 15580 } 15581 } 15582 15583 if (ArgError) 15584 return ExprError(); 15585 15586 return CallResult; 15587 } 15588