1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSwitch.h" 79 #include "llvm/ADT/Triple.h" 80 #include "llvm/Support/AtomicOrdering.h" 81 #include "llvm/Support/Casting.h" 82 #include "llvm/Support/Compiler.h" 83 #include "llvm/Support/ConvertUTF.h" 84 #include "llvm/Support/ErrorHandling.h" 85 #include "llvm/Support/Format.h" 86 #include "llvm/Support/Locale.h" 87 #include "llvm/Support/MathExtras.h" 88 #include "llvm/Support/SaveAndRestore.h" 89 #include "llvm/Support/raw_ostream.h" 90 #include <algorithm> 91 #include <bitset> 92 #include <cassert> 93 #include <cstddef> 94 #include <cstdint> 95 #include <functional> 96 #include <limits> 97 #include <string> 98 #include <tuple> 99 #include <utility> 100 101 using namespace clang; 102 using namespace sema; 103 104 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 105 unsigned ByteNo) const { 106 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 107 Context.getTargetInfo()); 108 } 109 110 /// Checks that a call expression's argument count is the desired number. 111 /// This is useful when doing custom type-checking. Returns true on error. 112 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 113 unsigned argCount = call->getNumArgs(); 114 if (argCount == desiredArgCount) return false; 115 116 if (argCount < desiredArgCount) 117 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 118 << 0 /*function call*/ << desiredArgCount << argCount 119 << call->getSourceRange(); 120 121 // Highlight all the excess arguments. 122 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 123 call->getArg(argCount - 1)->getEndLoc()); 124 125 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 126 << 0 /*function call*/ << desiredArgCount << argCount 127 << call->getArg(1)->getSourceRange(); 128 } 129 130 /// Check that the first argument to __builtin_annotation is an integer 131 /// and the second argument is a non-wide string literal. 132 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 133 if (checkArgCount(S, TheCall, 2)) 134 return true; 135 136 // First argument should be an integer. 137 Expr *ValArg = TheCall->getArg(0); 138 QualType Ty = ValArg->getType(); 139 if (!Ty->isIntegerType()) { 140 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 141 << ValArg->getSourceRange(); 142 return true; 143 } 144 145 // Second argument should be a constant string. 146 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 147 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 148 if (!Literal || !Literal->isAscii()) { 149 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 150 << StrArg->getSourceRange(); 151 return true; 152 } 153 154 TheCall->setType(Ty); 155 return false; 156 } 157 158 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 159 // We need at least one argument. 160 if (TheCall->getNumArgs() < 1) { 161 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 162 << 0 << 1 << TheCall->getNumArgs() 163 << TheCall->getCallee()->getSourceRange(); 164 return true; 165 } 166 167 // All arguments should be wide string literals. 168 for (Expr *Arg : TheCall->arguments()) { 169 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 170 if (!Literal || !Literal->isWide()) { 171 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 172 << Arg->getSourceRange(); 173 return true; 174 } 175 } 176 177 return false; 178 } 179 180 /// Check that the argument to __builtin_addressof is a glvalue, and set the 181 /// result type to the corresponding pointer type. 182 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 183 if (checkArgCount(S, TheCall, 1)) 184 return true; 185 186 ExprResult Arg(TheCall->getArg(0)); 187 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 188 if (ResultType.isNull()) 189 return true; 190 191 TheCall->setArg(0, Arg.get()); 192 TheCall->setType(ResultType); 193 return false; 194 } 195 196 /// Check the number of arguments and set the result type to 197 /// the argument type. 198 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 199 if (checkArgCount(S, TheCall, 1)) 200 return true; 201 202 TheCall->setType(TheCall->getArg(0)->getType()); 203 return false; 204 } 205 206 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 207 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 208 /// type (but not a function pointer) and that the alignment is a power-of-two. 209 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 210 if (checkArgCount(S, TheCall, 2)) 211 return true; 212 213 clang::Expr *Source = TheCall->getArg(0); 214 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 215 216 auto IsValidIntegerType = [](QualType Ty) { 217 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 218 }; 219 QualType SrcTy = Source->getType(); 220 // We should also be able to use it with arrays (but not functions!). 221 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 222 SrcTy = S.Context.getDecayedType(SrcTy); 223 } 224 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 225 SrcTy->isFunctionPointerType()) { 226 // FIXME: this is not quite the right error message since we don't allow 227 // floating point types, or member pointers. 228 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 229 << SrcTy; 230 return true; 231 } 232 233 clang::Expr *AlignOp = TheCall->getArg(1); 234 if (!IsValidIntegerType(AlignOp->getType())) { 235 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 236 << AlignOp->getType(); 237 return true; 238 } 239 Expr::EvalResult AlignResult; 240 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 241 // We can't check validity of alignment if it is value dependent. 242 if (!AlignOp->isValueDependent() && 243 AlignOp->EvaluateAsInt(AlignResult, S.Context, 244 Expr::SE_AllowSideEffects)) { 245 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 246 llvm::APSInt MaxValue( 247 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 248 if (AlignValue < 1) { 249 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 250 return true; 251 } 252 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 253 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 254 << MaxValue.toString(10); 255 return true; 256 } 257 if (!AlignValue.isPowerOf2()) { 258 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 259 return true; 260 } 261 if (AlignValue == 1) { 262 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 263 << IsBooleanAlignBuiltin; 264 } 265 } 266 267 ExprResult SrcArg = S.PerformCopyInitialization( 268 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 269 SourceLocation(), Source); 270 if (SrcArg.isInvalid()) 271 return true; 272 TheCall->setArg(0, SrcArg.get()); 273 ExprResult AlignArg = 274 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 275 S.Context, AlignOp->getType(), false), 276 SourceLocation(), AlignOp); 277 if (AlignArg.isInvalid()) 278 return true; 279 TheCall->setArg(1, AlignArg.get()); 280 // For align_up/align_down, the return type is the same as the (potentially 281 // decayed) argument type including qualifiers. For is_aligned(), the result 282 // is always bool. 283 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 284 return false; 285 } 286 287 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 288 unsigned BuiltinID) { 289 if (checkArgCount(S, TheCall, 3)) 290 return true; 291 292 // First two arguments should be integers. 293 for (unsigned I = 0; I < 2; ++I) { 294 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 295 if (Arg.isInvalid()) return true; 296 TheCall->setArg(I, Arg.get()); 297 298 QualType Ty = Arg.get()->getType(); 299 if (!Ty->isIntegerType()) { 300 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 301 << Ty << Arg.get()->getSourceRange(); 302 return true; 303 } 304 } 305 306 // Third argument should be a pointer to a non-const integer. 307 // IRGen correctly handles volatile, restrict, and address spaces, and 308 // the other qualifiers aren't possible. 309 { 310 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 311 if (Arg.isInvalid()) return true; 312 TheCall->setArg(2, Arg.get()); 313 314 QualType Ty = Arg.get()->getType(); 315 const auto *PtrTy = Ty->getAs<PointerType>(); 316 if (!PtrTy || 317 !PtrTy->getPointeeType()->isIntegerType() || 318 PtrTy->getPointeeType().isConstQualified()) { 319 S.Diag(Arg.get()->getBeginLoc(), 320 diag::err_overflow_builtin_must_be_ptr_int) 321 << Ty << Arg.get()->getSourceRange(); 322 return true; 323 } 324 } 325 326 // Disallow signed ExtIntType args larger than 128 bits to mul function until 327 // we improve backend support. 328 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 329 for (unsigned I = 0; I < 3; ++I) { 330 const auto Arg = TheCall->getArg(I); 331 // Third argument will be a pointer. 332 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 333 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 334 S.getASTContext().getIntWidth(Ty) > 128) 335 return S.Diag(Arg->getBeginLoc(), 336 diag::err_overflow_builtin_ext_int_max_size) 337 << 128; 338 } 339 } 340 341 return false; 342 } 343 344 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 345 if (checkArgCount(S, BuiltinCall, 2)) 346 return true; 347 348 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 349 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 350 Expr *Call = BuiltinCall->getArg(0); 351 Expr *Chain = BuiltinCall->getArg(1); 352 353 if (Call->getStmtClass() != Stmt::CallExprClass) { 354 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 355 << Call->getSourceRange(); 356 return true; 357 } 358 359 auto CE = cast<CallExpr>(Call); 360 if (CE->getCallee()->getType()->isBlockPointerType()) { 361 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 362 << Call->getSourceRange(); 363 return true; 364 } 365 366 const Decl *TargetDecl = CE->getCalleeDecl(); 367 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 368 if (FD->getBuiltinID()) { 369 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 370 << Call->getSourceRange(); 371 return true; 372 } 373 374 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 375 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 376 << Call->getSourceRange(); 377 return true; 378 } 379 380 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 381 if (ChainResult.isInvalid()) 382 return true; 383 if (!ChainResult.get()->getType()->isPointerType()) { 384 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 385 << Chain->getSourceRange(); 386 return true; 387 } 388 389 QualType ReturnTy = CE->getCallReturnType(S.Context); 390 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 391 QualType BuiltinTy = S.Context.getFunctionType( 392 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 393 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 394 395 Builtin = 396 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 397 398 BuiltinCall->setType(CE->getType()); 399 BuiltinCall->setValueKind(CE->getValueKind()); 400 BuiltinCall->setObjectKind(CE->getObjectKind()); 401 BuiltinCall->setCallee(Builtin); 402 BuiltinCall->setArg(1, ChainResult.get()); 403 404 return false; 405 } 406 407 namespace { 408 409 class EstimateSizeFormatHandler 410 : public analyze_format_string::FormatStringHandler { 411 size_t Size; 412 413 public: 414 EstimateSizeFormatHandler(StringRef Format) 415 : Size(std::min(Format.find(0), Format.size()) + 416 1 /* null byte always written by sprintf */) {} 417 418 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 419 const char *, unsigned SpecifierLen) override { 420 421 const size_t FieldWidth = computeFieldWidth(FS); 422 const size_t Precision = computePrecision(FS); 423 424 // The actual format. 425 switch (FS.getConversionSpecifier().getKind()) { 426 // Just a char. 427 case analyze_format_string::ConversionSpecifier::cArg: 428 case analyze_format_string::ConversionSpecifier::CArg: 429 Size += std::max(FieldWidth, (size_t)1); 430 break; 431 // Just an integer. 432 case analyze_format_string::ConversionSpecifier::dArg: 433 case analyze_format_string::ConversionSpecifier::DArg: 434 case analyze_format_string::ConversionSpecifier::iArg: 435 case analyze_format_string::ConversionSpecifier::oArg: 436 case analyze_format_string::ConversionSpecifier::OArg: 437 case analyze_format_string::ConversionSpecifier::uArg: 438 case analyze_format_string::ConversionSpecifier::UArg: 439 case analyze_format_string::ConversionSpecifier::xArg: 440 case analyze_format_string::ConversionSpecifier::XArg: 441 Size += std::max(FieldWidth, Precision); 442 break; 443 444 // %g style conversion switches between %f or %e style dynamically. 445 // %f always takes less space, so default to it. 446 case analyze_format_string::ConversionSpecifier::gArg: 447 case analyze_format_string::ConversionSpecifier::GArg: 448 449 // Floating point number in the form '[+]ddd.ddd'. 450 case analyze_format_string::ConversionSpecifier::fArg: 451 case analyze_format_string::ConversionSpecifier::FArg: 452 Size += std::max(FieldWidth, 1 /* integer part */ + 453 (Precision ? 1 + Precision 454 : 0) /* period + decimal */); 455 break; 456 457 // Floating point number in the form '[-]d.ddde[+-]dd'. 458 case analyze_format_string::ConversionSpecifier::eArg: 459 case analyze_format_string::ConversionSpecifier::EArg: 460 Size += 461 std::max(FieldWidth, 462 1 /* integer part */ + 463 (Precision ? 1 + Precision : 0) /* period + decimal */ + 464 1 /* e or E letter */ + 2 /* exponent */); 465 break; 466 467 // Floating point number in the form '[-]0xh.hhhhp±dd'. 468 case analyze_format_string::ConversionSpecifier::aArg: 469 case analyze_format_string::ConversionSpecifier::AArg: 470 Size += 471 std::max(FieldWidth, 472 2 /* 0x */ + 1 /* integer part */ + 473 (Precision ? 1 + Precision : 0) /* period + decimal */ + 474 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 475 break; 476 477 // Just a string. 478 case analyze_format_string::ConversionSpecifier::sArg: 479 case analyze_format_string::ConversionSpecifier::SArg: 480 Size += FieldWidth; 481 break; 482 483 // Just a pointer in the form '0xddd'. 484 case analyze_format_string::ConversionSpecifier::pArg: 485 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 486 break; 487 488 // A plain percent. 489 case analyze_format_string::ConversionSpecifier::PercentArg: 490 Size += 1; 491 break; 492 493 default: 494 break; 495 } 496 497 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 498 499 if (FS.hasAlternativeForm()) { 500 switch (FS.getConversionSpecifier().getKind()) { 501 default: 502 break; 503 // Force a leading '0'. 504 case analyze_format_string::ConversionSpecifier::oArg: 505 Size += 1; 506 break; 507 // Force a leading '0x'. 508 case analyze_format_string::ConversionSpecifier::xArg: 509 case analyze_format_string::ConversionSpecifier::XArg: 510 Size += 2; 511 break; 512 // Force a period '.' before decimal, even if precision is 0. 513 case analyze_format_string::ConversionSpecifier::aArg: 514 case analyze_format_string::ConversionSpecifier::AArg: 515 case analyze_format_string::ConversionSpecifier::eArg: 516 case analyze_format_string::ConversionSpecifier::EArg: 517 case analyze_format_string::ConversionSpecifier::fArg: 518 case analyze_format_string::ConversionSpecifier::FArg: 519 case analyze_format_string::ConversionSpecifier::gArg: 520 case analyze_format_string::ConversionSpecifier::GArg: 521 Size += (Precision ? 0 : 1); 522 break; 523 } 524 } 525 assert(SpecifierLen <= Size && "no underflow"); 526 Size -= SpecifierLen; 527 return true; 528 } 529 530 size_t getSizeLowerBound() const { return Size; } 531 532 private: 533 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 534 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 535 size_t FieldWidth = 0; 536 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 537 FieldWidth = FW.getConstantAmount(); 538 return FieldWidth; 539 } 540 541 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 542 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 543 size_t Precision = 0; 544 545 // See man 3 printf for default precision value based on the specifier. 546 switch (FW.getHowSpecified()) { 547 case analyze_format_string::OptionalAmount::NotSpecified: 548 switch (FS.getConversionSpecifier().getKind()) { 549 default: 550 break; 551 case analyze_format_string::ConversionSpecifier::dArg: // %d 552 case analyze_format_string::ConversionSpecifier::DArg: // %D 553 case analyze_format_string::ConversionSpecifier::iArg: // %i 554 Precision = 1; 555 break; 556 case analyze_format_string::ConversionSpecifier::oArg: // %d 557 case analyze_format_string::ConversionSpecifier::OArg: // %D 558 case analyze_format_string::ConversionSpecifier::uArg: // %d 559 case analyze_format_string::ConversionSpecifier::UArg: // %D 560 case analyze_format_string::ConversionSpecifier::xArg: // %d 561 case analyze_format_string::ConversionSpecifier::XArg: // %D 562 Precision = 1; 563 break; 564 case analyze_format_string::ConversionSpecifier::fArg: // %f 565 case analyze_format_string::ConversionSpecifier::FArg: // %F 566 case analyze_format_string::ConversionSpecifier::eArg: // %e 567 case analyze_format_string::ConversionSpecifier::EArg: // %E 568 case analyze_format_string::ConversionSpecifier::gArg: // %g 569 case analyze_format_string::ConversionSpecifier::GArg: // %G 570 Precision = 6; 571 break; 572 case analyze_format_string::ConversionSpecifier::pArg: // %d 573 Precision = 1; 574 break; 575 } 576 break; 577 case analyze_format_string::OptionalAmount::Constant: 578 Precision = FW.getConstantAmount(); 579 break; 580 default: 581 break; 582 } 583 return Precision; 584 } 585 }; 586 587 } // namespace 588 589 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 590 /// __builtin_*_chk function, then use the object size argument specified in the 591 /// source. Otherwise, infer the object size using __builtin_object_size. 592 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 593 CallExpr *TheCall) { 594 // FIXME: There are some more useful checks we could be doing here: 595 // - Evaluate strlen of strcpy arguments, use as object size. 596 597 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 598 isConstantEvaluated()) 599 return; 600 601 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 602 if (!BuiltinID) 603 return; 604 605 const TargetInfo &TI = getASTContext().getTargetInfo(); 606 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 607 608 unsigned DiagID = 0; 609 bool IsChkVariant = false; 610 Optional<llvm::APSInt> UsedSize; 611 unsigned SizeIndex, ObjectIndex; 612 switch (BuiltinID) { 613 default: 614 return; 615 case Builtin::BIsprintf: 616 case Builtin::BI__builtin___sprintf_chk: { 617 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 618 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 619 620 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 621 622 if (!Format->isAscii() && !Format->isUTF8()) 623 return; 624 625 StringRef FormatStrRef = Format->getString(); 626 EstimateSizeFormatHandler H(FormatStrRef); 627 const char *FormatBytes = FormatStrRef.data(); 628 const ConstantArrayType *T = 629 Context.getAsConstantArrayType(Format->getType()); 630 assert(T && "String literal not of constant array type!"); 631 size_t TypeSize = T->getSize().getZExtValue(); 632 633 // In case there's a null byte somewhere. 634 size_t StrLen = 635 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 636 if (!analyze_format_string::ParsePrintfString( 637 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 638 Context.getTargetInfo(), false)) { 639 DiagID = diag::warn_fortify_source_format_overflow; 640 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 641 .extOrTrunc(SizeTypeWidth); 642 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 643 IsChkVariant = true; 644 ObjectIndex = 2; 645 } else { 646 IsChkVariant = false; 647 ObjectIndex = 0; 648 } 649 break; 650 } 651 } 652 return; 653 } 654 case Builtin::BI__builtin___memcpy_chk: 655 case Builtin::BI__builtin___memmove_chk: 656 case Builtin::BI__builtin___memset_chk: 657 case Builtin::BI__builtin___strlcat_chk: 658 case Builtin::BI__builtin___strlcpy_chk: 659 case Builtin::BI__builtin___strncat_chk: 660 case Builtin::BI__builtin___strncpy_chk: 661 case Builtin::BI__builtin___stpncpy_chk: 662 case Builtin::BI__builtin___memccpy_chk: 663 case Builtin::BI__builtin___mempcpy_chk: { 664 DiagID = diag::warn_builtin_chk_overflow; 665 IsChkVariant = true; 666 SizeIndex = TheCall->getNumArgs() - 2; 667 ObjectIndex = TheCall->getNumArgs() - 1; 668 break; 669 } 670 671 case Builtin::BI__builtin___snprintf_chk: 672 case Builtin::BI__builtin___vsnprintf_chk: { 673 DiagID = diag::warn_builtin_chk_overflow; 674 IsChkVariant = true; 675 SizeIndex = 1; 676 ObjectIndex = 3; 677 break; 678 } 679 680 case Builtin::BIstrncat: 681 case Builtin::BI__builtin_strncat: 682 case Builtin::BIstrncpy: 683 case Builtin::BI__builtin_strncpy: 684 case Builtin::BIstpncpy: 685 case Builtin::BI__builtin_stpncpy: { 686 // Whether these functions overflow depends on the runtime strlen of the 687 // string, not just the buffer size, so emitting the "always overflow" 688 // diagnostic isn't quite right. We should still diagnose passing a buffer 689 // size larger than the destination buffer though; this is a runtime abort 690 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 691 DiagID = diag::warn_fortify_source_size_mismatch; 692 SizeIndex = TheCall->getNumArgs() - 1; 693 ObjectIndex = 0; 694 break; 695 } 696 697 case Builtin::BImemcpy: 698 case Builtin::BI__builtin_memcpy: 699 case Builtin::BImemmove: 700 case Builtin::BI__builtin_memmove: 701 case Builtin::BImemset: 702 case Builtin::BI__builtin_memset: 703 case Builtin::BImempcpy: 704 case Builtin::BI__builtin_mempcpy: { 705 DiagID = diag::warn_fortify_source_overflow; 706 SizeIndex = TheCall->getNumArgs() - 1; 707 ObjectIndex = 0; 708 break; 709 } 710 case Builtin::BIsnprintf: 711 case Builtin::BI__builtin_snprintf: 712 case Builtin::BIvsnprintf: 713 case Builtin::BI__builtin_vsnprintf: { 714 DiagID = diag::warn_fortify_source_size_mismatch; 715 SizeIndex = 1; 716 ObjectIndex = 0; 717 break; 718 } 719 } 720 721 llvm::APSInt ObjectSize; 722 // For __builtin___*_chk, the object size is explicitly provided by the caller 723 // (usually using __builtin_object_size). Use that value to check this call. 724 if (IsChkVariant) { 725 Expr::EvalResult Result; 726 Expr *SizeArg = TheCall->getArg(ObjectIndex); 727 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 728 return; 729 ObjectSize = Result.Val.getInt(); 730 731 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 732 } else { 733 // If the parameter has a pass_object_size attribute, then we should use its 734 // (potentially) more strict checking mode. Otherwise, conservatively assume 735 // type 0. 736 int BOSType = 0; 737 if (const auto *POS = 738 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 739 BOSType = POS->getType(); 740 741 Expr *ObjArg = TheCall->getArg(ObjectIndex); 742 uint64_t Result; 743 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 744 return; 745 // Get the object size in the target's size_t width. 746 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 747 } 748 749 // Evaluate the number of bytes of the object that this call will use. 750 if (!UsedSize) { 751 Expr::EvalResult Result; 752 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 753 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 754 return; 755 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 756 } 757 758 if (UsedSize.getValue().ule(ObjectSize)) 759 return; 760 761 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 762 // Skim off the details of whichever builtin was called to produce a better 763 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 764 if (IsChkVariant) { 765 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 766 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 767 } else if (FunctionName.startswith("__builtin_")) { 768 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 769 } 770 771 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 772 PDiag(DiagID) 773 << FunctionName << ObjectSize.toString(/*Radix=*/10) 774 << UsedSize.getValue().toString(/*Radix=*/10)); 775 } 776 777 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 778 Scope::ScopeFlags NeededScopeFlags, 779 unsigned DiagID) { 780 // Scopes aren't available during instantiation. Fortunately, builtin 781 // functions cannot be template args so they cannot be formed through template 782 // instantiation. Therefore checking once during the parse is sufficient. 783 if (SemaRef.inTemplateInstantiation()) 784 return false; 785 786 Scope *S = SemaRef.getCurScope(); 787 while (S && !S->isSEHExceptScope()) 788 S = S->getParent(); 789 if (!S || !(S->getFlags() & NeededScopeFlags)) { 790 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 791 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 792 << DRE->getDecl()->getIdentifier(); 793 return true; 794 } 795 796 return false; 797 } 798 799 static inline bool isBlockPointer(Expr *Arg) { 800 return Arg->getType()->isBlockPointerType(); 801 } 802 803 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 804 /// void*, which is a requirement of device side enqueue. 805 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 806 const BlockPointerType *BPT = 807 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 808 ArrayRef<QualType> Params = 809 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 810 unsigned ArgCounter = 0; 811 bool IllegalParams = false; 812 // Iterate through the block parameters until either one is found that is not 813 // a local void*, or the block is valid. 814 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 815 I != E; ++I, ++ArgCounter) { 816 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 817 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 818 LangAS::opencl_local) { 819 // Get the location of the error. If a block literal has been passed 820 // (BlockExpr) then we can point straight to the offending argument, 821 // else we just point to the variable reference. 822 SourceLocation ErrorLoc; 823 if (isa<BlockExpr>(BlockArg)) { 824 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 825 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 826 } else if (isa<DeclRefExpr>(BlockArg)) { 827 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 828 } 829 S.Diag(ErrorLoc, 830 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 831 IllegalParams = true; 832 } 833 } 834 835 return IllegalParams; 836 } 837 838 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 839 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 840 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 841 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 842 return true; 843 } 844 return false; 845 } 846 847 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 848 if (checkArgCount(S, TheCall, 2)) 849 return true; 850 851 if (checkOpenCLSubgroupExt(S, TheCall)) 852 return true; 853 854 // First argument is an ndrange_t type. 855 Expr *NDRangeArg = TheCall->getArg(0); 856 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 857 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 858 << TheCall->getDirectCallee() << "'ndrange_t'"; 859 return true; 860 } 861 862 Expr *BlockArg = TheCall->getArg(1); 863 if (!isBlockPointer(BlockArg)) { 864 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 865 << TheCall->getDirectCallee() << "block"; 866 return true; 867 } 868 return checkOpenCLBlockArgs(S, BlockArg); 869 } 870 871 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 872 /// get_kernel_work_group_size 873 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 874 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 875 if (checkArgCount(S, TheCall, 1)) 876 return true; 877 878 Expr *BlockArg = TheCall->getArg(0); 879 if (!isBlockPointer(BlockArg)) { 880 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 881 << TheCall->getDirectCallee() << "block"; 882 return true; 883 } 884 return checkOpenCLBlockArgs(S, BlockArg); 885 } 886 887 /// Diagnose integer type and any valid implicit conversion to it. 888 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 889 const QualType &IntType); 890 891 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 892 unsigned Start, unsigned End) { 893 bool IllegalParams = false; 894 for (unsigned I = Start; I <= End; ++I) 895 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 896 S.Context.getSizeType()); 897 return IllegalParams; 898 } 899 900 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 901 /// 'local void*' parameter of passed block. 902 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 903 Expr *BlockArg, 904 unsigned NumNonVarArgs) { 905 const BlockPointerType *BPT = 906 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 907 unsigned NumBlockParams = 908 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 909 unsigned TotalNumArgs = TheCall->getNumArgs(); 910 911 // For each argument passed to the block, a corresponding uint needs to 912 // be passed to describe the size of the local memory. 913 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 914 S.Diag(TheCall->getBeginLoc(), 915 diag::err_opencl_enqueue_kernel_local_size_args); 916 return true; 917 } 918 919 // Check that the sizes of the local memory are specified by integers. 920 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 921 TotalNumArgs - 1); 922 } 923 924 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 925 /// overload formats specified in Table 6.13.17.1. 926 /// int enqueue_kernel(queue_t queue, 927 /// kernel_enqueue_flags_t flags, 928 /// const ndrange_t ndrange, 929 /// void (^block)(void)) 930 /// int enqueue_kernel(queue_t queue, 931 /// kernel_enqueue_flags_t flags, 932 /// const ndrange_t ndrange, 933 /// uint num_events_in_wait_list, 934 /// clk_event_t *event_wait_list, 935 /// clk_event_t *event_ret, 936 /// void (^block)(void)) 937 /// int enqueue_kernel(queue_t queue, 938 /// kernel_enqueue_flags_t flags, 939 /// const ndrange_t ndrange, 940 /// void (^block)(local void*, ...), 941 /// uint size0, ...) 942 /// int enqueue_kernel(queue_t queue, 943 /// kernel_enqueue_flags_t flags, 944 /// const ndrange_t ndrange, 945 /// uint num_events_in_wait_list, 946 /// clk_event_t *event_wait_list, 947 /// clk_event_t *event_ret, 948 /// void (^block)(local void*, ...), 949 /// uint size0, ...) 950 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 951 unsigned NumArgs = TheCall->getNumArgs(); 952 953 if (NumArgs < 4) { 954 S.Diag(TheCall->getBeginLoc(), 955 diag::err_typecheck_call_too_few_args_at_least) 956 << 0 << 4 << NumArgs; 957 return true; 958 } 959 960 Expr *Arg0 = TheCall->getArg(0); 961 Expr *Arg1 = TheCall->getArg(1); 962 Expr *Arg2 = TheCall->getArg(2); 963 Expr *Arg3 = TheCall->getArg(3); 964 965 // First argument always needs to be a queue_t type. 966 if (!Arg0->getType()->isQueueT()) { 967 S.Diag(TheCall->getArg(0)->getBeginLoc(), 968 diag::err_opencl_builtin_expected_type) 969 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 970 return true; 971 } 972 973 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 974 if (!Arg1->getType()->isIntegerType()) { 975 S.Diag(TheCall->getArg(1)->getBeginLoc(), 976 diag::err_opencl_builtin_expected_type) 977 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 978 return true; 979 } 980 981 // Third argument is always an ndrange_t type. 982 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 983 S.Diag(TheCall->getArg(2)->getBeginLoc(), 984 diag::err_opencl_builtin_expected_type) 985 << TheCall->getDirectCallee() << "'ndrange_t'"; 986 return true; 987 } 988 989 // With four arguments, there is only one form that the function could be 990 // called in: no events and no variable arguments. 991 if (NumArgs == 4) { 992 // check that the last argument is the right block type. 993 if (!isBlockPointer(Arg3)) { 994 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 995 << TheCall->getDirectCallee() << "block"; 996 return true; 997 } 998 // we have a block type, check the prototype 999 const BlockPointerType *BPT = 1000 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1001 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1002 S.Diag(Arg3->getBeginLoc(), 1003 diag::err_opencl_enqueue_kernel_blocks_no_args); 1004 return true; 1005 } 1006 return false; 1007 } 1008 // we can have block + varargs. 1009 if (isBlockPointer(Arg3)) 1010 return (checkOpenCLBlockArgs(S, Arg3) || 1011 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1012 // last two cases with either exactly 7 args or 7 args and varargs. 1013 if (NumArgs >= 7) { 1014 // check common block argument. 1015 Expr *Arg6 = TheCall->getArg(6); 1016 if (!isBlockPointer(Arg6)) { 1017 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1018 << TheCall->getDirectCallee() << "block"; 1019 return true; 1020 } 1021 if (checkOpenCLBlockArgs(S, Arg6)) 1022 return true; 1023 1024 // Forth argument has to be any integer type. 1025 if (!Arg3->getType()->isIntegerType()) { 1026 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1027 diag::err_opencl_builtin_expected_type) 1028 << TheCall->getDirectCallee() << "integer"; 1029 return true; 1030 } 1031 // check remaining common arguments. 1032 Expr *Arg4 = TheCall->getArg(4); 1033 Expr *Arg5 = TheCall->getArg(5); 1034 1035 // Fifth argument is always passed as a pointer to clk_event_t. 1036 if (!Arg4->isNullPointerConstant(S.Context, 1037 Expr::NPC_ValueDependentIsNotNull) && 1038 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1039 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1040 diag::err_opencl_builtin_expected_type) 1041 << TheCall->getDirectCallee() 1042 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1043 return true; 1044 } 1045 1046 // Sixth argument is always passed as a pointer to clk_event_t. 1047 if (!Arg5->isNullPointerConstant(S.Context, 1048 Expr::NPC_ValueDependentIsNotNull) && 1049 !(Arg5->getType()->isPointerType() && 1050 Arg5->getType()->getPointeeType()->isClkEventT())) { 1051 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1052 diag::err_opencl_builtin_expected_type) 1053 << TheCall->getDirectCallee() 1054 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1055 return true; 1056 } 1057 1058 if (NumArgs == 7) 1059 return false; 1060 1061 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1062 } 1063 1064 // None of the specific case has been detected, give generic error 1065 S.Diag(TheCall->getBeginLoc(), 1066 diag::err_opencl_enqueue_kernel_incorrect_args); 1067 return true; 1068 } 1069 1070 /// Returns OpenCL access qual. 1071 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1072 return D->getAttr<OpenCLAccessAttr>(); 1073 } 1074 1075 /// Returns true if pipe element type is different from the pointer. 1076 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1077 const Expr *Arg0 = Call->getArg(0); 1078 // First argument type should always be pipe. 1079 if (!Arg0->getType()->isPipeType()) { 1080 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1081 << Call->getDirectCallee() << Arg0->getSourceRange(); 1082 return true; 1083 } 1084 OpenCLAccessAttr *AccessQual = 1085 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1086 // Validates the access qualifier is compatible with the call. 1087 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1088 // read_only and write_only, and assumed to be read_only if no qualifier is 1089 // specified. 1090 switch (Call->getDirectCallee()->getBuiltinID()) { 1091 case Builtin::BIread_pipe: 1092 case Builtin::BIreserve_read_pipe: 1093 case Builtin::BIcommit_read_pipe: 1094 case Builtin::BIwork_group_reserve_read_pipe: 1095 case Builtin::BIsub_group_reserve_read_pipe: 1096 case Builtin::BIwork_group_commit_read_pipe: 1097 case Builtin::BIsub_group_commit_read_pipe: 1098 if (!(!AccessQual || AccessQual->isReadOnly())) { 1099 S.Diag(Arg0->getBeginLoc(), 1100 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1101 << "read_only" << Arg0->getSourceRange(); 1102 return true; 1103 } 1104 break; 1105 case Builtin::BIwrite_pipe: 1106 case Builtin::BIreserve_write_pipe: 1107 case Builtin::BIcommit_write_pipe: 1108 case Builtin::BIwork_group_reserve_write_pipe: 1109 case Builtin::BIsub_group_reserve_write_pipe: 1110 case Builtin::BIwork_group_commit_write_pipe: 1111 case Builtin::BIsub_group_commit_write_pipe: 1112 if (!(AccessQual && AccessQual->isWriteOnly())) { 1113 S.Diag(Arg0->getBeginLoc(), 1114 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1115 << "write_only" << Arg0->getSourceRange(); 1116 return true; 1117 } 1118 break; 1119 default: 1120 break; 1121 } 1122 return false; 1123 } 1124 1125 /// Returns true if pipe element type is different from the pointer. 1126 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1127 const Expr *Arg0 = Call->getArg(0); 1128 const Expr *ArgIdx = Call->getArg(Idx); 1129 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1130 const QualType EltTy = PipeTy->getElementType(); 1131 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1132 // The Idx argument should be a pointer and the type of the pointer and 1133 // the type of pipe element should also be the same. 1134 if (!ArgTy || 1135 !S.Context.hasSameType( 1136 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1137 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1138 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1139 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1140 return true; 1141 } 1142 return false; 1143 } 1144 1145 // Performs semantic analysis for the read/write_pipe call. 1146 // \param S Reference to the semantic analyzer. 1147 // \param Call A pointer to the builtin call. 1148 // \return True if a semantic error has been found, false otherwise. 1149 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1150 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1151 // functions have two forms. 1152 switch (Call->getNumArgs()) { 1153 case 2: 1154 if (checkOpenCLPipeArg(S, Call)) 1155 return true; 1156 // The call with 2 arguments should be 1157 // read/write_pipe(pipe T, T*). 1158 // Check packet type T. 1159 if (checkOpenCLPipePacketType(S, Call, 1)) 1160 return true; 1161 break; 1162 1163 case 4: { 1164 if (checkOpenCLPipeArg(S, Call)) 1165 return true; 1166 // The call with 4 arguments should be 1167 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1168 // Check reserve_id_t. 1169 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1170 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1171 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1172 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1173 return true; 1174 } 1175 1176 // Check the index. 1177 const Expr *Arg2 = Call->getArg(2); 1178 if (!Arg2->getType()->isIntegerType() && 1179 !Arg2->getType()->isUnsignedIntegerType()) { 1180 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1181 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1182 << Arg2->getType() << Arg2->getSourceRange(); 1183 return true; 1184 } 1185 1186 // Check packet type T. 1187 if (checkOpenCLPipePacketType(S, Call, 3)) 1188 return true; 1189 } break; 1190 default: 1191 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1192 << Call->getDirectCallee() << Call->getSourceRange(); 1193 return true; 1194 } 1195 1196 return false; 1197 } 1198 1199 // Performs a semantic analysis on the {work_group_/sub_group_ 1200 // /_}reserve_{read/write}_pipe 1201 // \param S Reference to the semantic analyzer. 1202 // \param Call The call to the builtin function to be analyzed. 1203 // \return True if a semantic error was found, false otherwise. 1204 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1205 if (checkArgCount(S, Call, 2)) 1206 return true; 1207 1208 if (checkOpenCLPipeArg(S, Call)) 1209 return true; 1210 1211 // Check the reserve size. 1212 if (!Call->getArg(1)->getType()->isIntegerType() && 1213 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1214 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1215 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1216 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1217 return true; 1218 } 1219 1220 // Since return type of reserve_read/write_pipe built-in function is 1221 // reserve_id_t, which is not defined in the builtin def file , we used int 1222 // as return type and need to override the return type of these functions. 1223 Call->setType(S.Context.OCLReserveIDTy); 1224 1225 return false; 1226 } 1227 1228 // Performs a semantic analysis on {work_group_/sub_group_ 1229 // /_}commit_{read/write}_pipe 1230 // \param S Reference to the semantic analyzer. 1231 // \param Call The call to the builtin function to be analyzed. 1232 // \return True if a semantic error was found, false otherwise. 1233 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1234 if (checkArgCount(S, Call, 2)) 1235 return true; 1236 1237 if (checkOpenCLPipeArg(S, Call)) 1238 return true; 1239 1240 // Check reserve_id_t. 1241 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1242 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1243 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1244 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1245 return true; 1246 } 1247 1248 return false; 1249 } 1250 1251 // Performs a semantic analysis on the call to built-in Pipe 1252 // Query Functions. 1253 // \param S Reference to the semantic analyzer. 1254 // \param Call The call to the builtin function to be analyzed. 1255 // \return True if a semantic error was found, false otherwise. 1256 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1257 if (checkArgCount(S, Call, 1)) 1258 return true; 1259 1260 if (!Call->getArg(0)->getType()->isPipeType()) { 1261 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1262 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1263 return true; 1264 } 1265 1266 return false; 1267 } 1268 1269 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1270 // Performs semantic analysis for the to_global/local/private call. 1271 // \param S Reference to the semantic analyzer. 1272 // \param BuiltinID ID of the builtin function. 1273 // \param Call A pointer to the builtin call. 1274 // \return True if a semantic error has been found, false otherwise. 1275 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1276 CallExpr *Call) { 1277 if (Call->getNumArgs() != 1) { 1278 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_arg_num) 1279 << Call->getDirectCallee() << Call->getSourceRange(); 1280 return true; 1281 } 1282 1283 auto RT = Call->getArg(0)->getType(); 1284 if (!RT->isPointerType() || RT->getPointeeType() 1285 .getAddressSpace() == LangAS::opencl_constant) { 1286 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1287 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1288 return true; 1289 } 1290 1291 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1292 S.Diag(Call->getArg(0)->getBeginLoc(), 1293 diag::warn_opencl_generic_address_space_arg) 1294 << Call->getDirectCallee()->getNameInfo().getAsString() 1295 << Call->getArg(0)->getSourceRange(); 1296 } 1297 1298 RT = RT->getPointeeType(); 1299 auto Qual = RT.getQualifiers(); 1300 switch (BuiltinID) { 1301 case Builtin::BIto_global: 1302 Qual.setAddressSpace(LangAS::opencl_global); 1303 break; 1304 case Builtin::BIto_local: 1305 Qual.setAddressSpace(LangAS::opencl_local); 1306 break; 1307 case Builtin::BIto_private: 1308 Qual.setAddressSpace(LangAS::opencl_private); 1309 break; 1310 default: 1311 llvm_unreachable("Invalid builtin function"); 1312 } 1313 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1314 RT.getUnqualifiedType(), Qual))); 1315 1316 return false; 1317 } 1318 1319 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1320 if (checkArgCount(S, TheCall, 1)) 1321 return ExprError(); 1322 1323 // Compute __builtin_launder's parameter type from the argument. 1324 // The parameter type is: 1325 // * The type of the argument if it's not an array or function type, 1326 // Otherwise, 1327 // * The decayed argument type. 1328 QualType ParamTy = [&]() { 1329 QualType ArgTy = TheCall->getArg(0)->getType(); 1330 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1331 return S.Context.getPointerType(Ty->getElementType()); 1332 if (ArgTy->isFunctionType()) { 1333 return S.Context.getPointerType(ArgTy); 1334 } 1335 return ArgTy; 1336 }(); 1337 1338 TheCall->setType(ParamTy); 1339 1340 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1341 if (!ParamTy->isPointerType()) 1342 return 0; 1343 if (ParamTy->isFunctionPointerType()) 1344 return 1; 1345 if (ParamTy->isVoidPointerType()) 1346 return 2; 1347 return llvm::Optional<unsigned>{}; 1348 }(); 1349 if (DiagSelect.hasValue()) { 1350 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1351 << DiagSelect.getValue() << TheCall->getSourceRange(); 1352 return ExprError(); 1353 } 1354 1355 // We either have an incomplete class type, or we have a class template 1356 // whose instantiation has not been forced. Example: 1357 // 1358 // template <class T> struct Foo { T value; }; 1359 // Foo<int> *p = nullptr; 1360 // auto *d = __builtin_launder(p); 1361 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1362 diag::err_incomplete_type)) 1363 return ExprError(); 1364 1365 assert(ParamTy->getPointeeType()->isObjectType() && 1366 "Unhandled non-object pointer case"); 1367 1368 InitializedEntity Entity = 1369 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1370 ExprResult Arg = 1371 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1372 if (Arg.isInvalid()) 1373 return ExprError(); 1374 TheCall->setArg(0, Arg.get()); 1375 1376 return TheCall; 1377 } 1378 1379 // Emit an error and return true if the current architecture is not in the list 1380 // of supported architectures. 1381 static bool 1382 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1383 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1384 llvm::Triple::ArchType CurArch = 1385 S.getASTContext().getTargetInfo().getTriple().getArch(); 1386 if (llvm::is_contained(SupportedArchs, CurArch)) 1387 return false; 1388 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1389 << TheCall->getSourceRange(); 1390 return true; 1391 } 1392 1393 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1394 SourceLocation CallSiteLoc); 1395 1396 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1397 CallExpr *TheCall) { 1398 switch (TI.getTriple().getArch()) { 1399 default: 1400 // Some builtins don't require additional checking, so just consider these 1401 // acceptable. 1402 return false; 1403 case llvm::Triple::arm: 1404 case llvm::Triple::armeb: 1405 case llvm::Triple::thumb: 1406 case llvm::Triple::thumbeb: 1407 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1408 case llvm::Triple::aarch64: 1409 case llvm::Triple::aarch64_32: 1410 case llvm::Triple::aarch64_be: 1411 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1412 case llvm::Triple::bpfeb: 1413 case llvm::Triple::bpfel: 1414 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1415 case llvm::Triple::hexagon: 1416 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1417 case llvm::Triple::mips: 1418 case llvm::Triple::mipsel: 1419 case llvm::Triple::mips64: 1420 case llvm::Triple::mips64el: 1421 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1422 case llvm::Triple::systemz: 1423 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1424 case llvm::Triple::x86: 1425 case llvm::Triple::x86_64: 1426 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1427 case llvm::Triple::ppc: 1428 case llvm::Triple::ppc64: 1429 case llvm::Triple::ppc64le: 1430 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1431 case llvm::Triple::amdgcn: 1432 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1433 } 1434 } 1435 1436 ExprResult 1437 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1438 CallExpr *TheCall) { 1439 ExprResult TheCallResult(TheCall); 1440 1441 // Find out if any arguments are required to be integer constant expressions. 1442 unsigned ICEArguments = 0; 1443 ASTContext::GetBuiltinTypeError Error; 1444 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1445 if (Error != ASTContext::GE_None) 1446 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1447 1448 // If any arguments are required to be ICE's, check and diagnose. 1449 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1450 // Skip arguments not required to be ICE's. 1451 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1452 1453 llvm::APSInt Result; 1454 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1455 return true; 1456 ICEArguments &= ~(1 << ArgNo); 1457 } 1458 1459 switch (BuiltinID) { 1460 case Builtin::BI__builtin___CFStringMakeConstantString: 1461 assert(TheCall->getNumArgs() == 1 && 1462 "Wrong # arguments to builtin CFStringMakeConstantString"); 1463 if (CheckObjCString(TheCall->getArg(0))) 1464 return ExprError(); 1465 break; 1466 case Builtin::BI__builtin_ms_va_start: 1467 case Builtin::BI__builtin_stdarg_start: 1468 case Builtin::BI__builtin_va_start: 1469 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1470 return ExprError(); 1471 break; 1472 case Builtin::BI__va_start: { 1473 switch (Context.getTargetInfo().getTriple().getArch()) { 1474 case llvm::Triple::aarch64: 1475 case llvm::Triple::arm: 1476 case llvm::Triple::thumb: 1477 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1478 return ExprError(); 1479 break; 1480 default: 1481 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1482 return ExprError(); 1483 break; 1484 } 1485 break; 1486 } 1487 1488 // The acquire, release, and no fence variants are ARM and AArch64 only. 1489 case Builtin::BI_interlockedbittestandset_acq: 1490 case Builtin::BI_interlockedbittestandset_rel: 1491 case Builtin::BI_interlockedbittestandset_nf: 1492 case Builtin::BI_interlockedbittestandreset_acq: 1493 case Builtin::BI_interlockedbittestandreset_rel: 1494 case Builtin::BI_interlockedbittestandreset_nf: 1495 if (CheckBuiltinTargetSupport( 1496 *this, BuiltinID, TheCall, 1497 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1498 return ExprError(); 1499 break; 1500 1501 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1502 case Builtin::BI_bittest64: 1503 case Builtin::BI_bittestandcomplement64: 1504 case Builtin::BI_bittestandreset64: 1505 case Builtin::BI_bittestandset64: 1506 case Builtin::BI_interlockedbittestandreset64: 1507 case Builtin::BI_interlockedbittestandset64: 1508 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1509 {llvm::Triple::x86_64, llvm::Triple::arm, 1510 llvm::Triple::thumb, llvm::Triple::aarch64})) 1511 return ExprError(); 1512 break; 1513 1514 case Builtin::BI__builtin_isgreater: 1515 case Builtin::BI__builtin_isgreaterequal: 1516 case Builtin::BI__builtin_isless: 1517 case Builtin::BI__builtin_islessequal: 1518 case Builtin::BI__builtin_islessgreater: 1519 case Builtin::BI__builtin_isunordered: 1520 if (SemaBuiltinUnorderedCompare(TheCall)) 1521 return ExprError(); 1522 break; 1523 case Builtin::BI__builtin_fpclassify: 1524 if (SemaBuiltinFPClassification(TheCall, 6)) 1525 return ExprError(); 1526 break; 1527 case Builtin::BI__builtin_isfinite: 1528 case Builtin::BI__builtin_isinf: 1529 case Builtin::BI__builtin_isinf_sign: 1530 case Builtin::BI__builtin_isnan: 1531 case Builtin::BI__builtin_isnormal: 1532 case Builtin::BI__builtin_signbit: 1533 case Builtin::BI__builtin_signbitf: 1534 case Builtin::BI__builtin_signbitl: 1535 if (SemaBuiltinFPClassification(TheCall, 1)) 1536 return ExprError(); 1537 break; 1538 case Builtin::BI__builtin_shufflevector: 1539 return SemaBuiltinShuffleVector(TheCall); 1540 // TheCall will be freed by the smart pointer here, but that's fine, since 1541 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1542 case Builtin::BI__builtin_prefetch: 1543 if (SemaBuiltinPrefetch(TheCall)) 1544 return ExprError(); 1545 break; 1546 case Builtin::BI__builtin_alloca_with_align: 1547 if (SemaBuiltinAllocaWithAlign(TheCall)) 1548 return ExprError(); 1549 LLVM_FALLTHROUGH; 1550 case Builtin::BI__builtin_alloca: 1551 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1552 << TheCall->getDirectCallee(); 1553 break; 1554 case Builtin::BI__assume: 1555 case Builtin::BI__builtin_assume: 1556 if (SemaBuiltinAssume(TheCall)) 1557 return ExprError(); 1558 break; 1559 case Builtin::BI__builtin_assume_aligned: 1560 if (SemaBuiltinAssumeAligned(TheCall)) 1561 return ExprError(); 1562 break; 1563 case Builtin::BI__builtin_dynamic_object_size: 1564 case Builtin::BI__builtin_object_size: 1565 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1566 return ExprError(); 1567 break; 1568 case Builtin::BI__builtin_longjmp: 1569 if (SemaBuiltinLongjmp(TheCall)) 1570 return ExprError(); 1571 break; 1572 case Builtin::BI__builtin_setjmp: 1573 if (SemaBuiltinSetjmp(TheCall)) 1574 return ExprError(); 1575 break; 1576 case Builtin::BI_setjmp: 1577 case Builtin::BI_setjmpex: 1578 if (checkArgCount(*this, TheCall, 1)) 1579 return true; 1580 break; 1581 case Builtin::BI__builtin_classify_type: 1582 if (checkArgCount(*this, TheCall, 1)) return true; 1583 TheCall->setType(Context.IntTy); 1584 break; 1585 case Builtin::BI__builtin_constant_p: { 1586 if (checkArgCount(*this, TheCall, 1)) return true; 1587 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1588 if (Arg.isInvalid()) return true; 1589 TheCall->setArg(0, Arg.get()); 1590 TheCall->setType(Context.IntTy); 1591 break; 1592 } 1593 case Builtin::BI__builtin_launder: 1594 return SemaBuiltinLaunder(*this, TheCall); 1595 case Builtin::BI__sync_fetch_and_add: 1596 case Builtin::BI__sync_fetch_and_add_1: 1597 case Builtin::BI__sync_fetch_and_add_2: 1598 case Builtin::BI__sync_fetch_and_add_4: 1599 case Builtin::BI__sync_fetch_and_add_8: 1600 case Builtin::BI__sync_fetch_and_add_16: 1601 case Builtin::BI__sync_fetch_and_sub: 1602 case Builtin::BI__sync_fetch_and_sub_1: 1603 case Builtin::BI__sync_fetch_and_sub_2: 1604 case Builtin::BI__sync_fetch_and_sub_4: 1605 case Builtin::BI__sync_fetch_and_sub_8: 1606 case Builtin::BI__sync_fetch_and_sub_16: 1607 case Builtin::BI__sync_fetch_and_or: 1608 case Builtin::BI__sync_fetch_and_or_1: 1609 case Builtin::BI__sync_fetch_and_or_2: 1610 case Builtin::BI__sync_fetch_and_or_4: 1611 case Builtin::BI__sync_fetch_and_or_8: 1612 case Builtin::BI__sync_fetch_and_or_16: 1613 case Builtin::BI__sync_fetch_and_and: 1614 case Builtin::BI__sync_fetch_and_and_1: 1615 case Builtin::BI__sync_fetch_and_and_2: 1616 case Builtin::BI__sync_fetch_and_and_4: 1617 case Builtin::BI__sync_fetch_and_and_8: 1618 case Builtin::BI__sync_fetch_and_and_16: 1619 case Builtin::BI__sync_fetch_and_xor: 1620 case Builtin::BI__sync_fetch_and_xor_1: 1621 case Builtin::BI__sync_fetch_and_xor_2: 1622 case Builtin::BI__sync_fetch_and_xor_4: 1623 case Builtin::BI__sync_fetch_and_xor_8: 1624 case Builtin::BI__sync_fetch_and_xor_16: 1625 case Builtin::BI__sync_fetch_and_nand: 1626 case Builtin::BI__sync_fetch_and_nand_1: 1627 case Builtin::BI__sync_fetch_and_nand_2: 1628 case Builtin::BI__sync_fetch_and_nand_4: 1629 case Builtin::BI__sync_fetch_and_nand_8: 1630 case Builtin::BI__sync_fetch_and_nand_16: 1631 case Builtin::BI__sync_add_and_fetch: 1632 case Builtin::BI__sync_add_and_fetch_1: 1633 case Builtin::BI__sync_add_and_fetch_2: 1634 case Builtin::BI__sync_add_and_fetch_4: 1635 case Builtin::BI__sync_add_and_fetch_8: 1636 case Builtin::BI__sync_add_and_fetch_16: 1637 case Builtin::BI__sync_sub_and_fetch: 1638 case Builtin::BI__sync_sub_and_fetch_1: 1639 case Builtin::BI__sync_sub_and_fetch_2: 1640 case Builtin::BI__sync_sub_and_fetch_4: 1641 case Builtin::BI__sync_sub_and_fetch_8: 1642 case Builtin::BI__sync_sub_and_fetch_16: 1643 case Builtin::BI__sync_and_and_fetch: 1644 case Builtin::BI__sync_and_and_fetch_1: 1645 case Builtin::BI__sync_and_and_fetch_2: 1646 case Builtin::BI__sync_and_and_fetch_4: 1647 case Builtin::BI__sync_and_and_fetch_8: 1648 case Builtin::BI__sync_and_and_fetch_16: 1649 case Builtin::BI__sync_or_and_fetch: 1650 case Builtin::BI__sync_or_and_fetch_1: 1651 case Builtin::BI__sync_or_and_fetch_2: 1652 case Builtin::BI__sync_or_and_fetch_4: 1653 case Builtin::BI__sync_or_and_fetch_8: 1654 case Builtin::BI__sync_or_and_fetch_16: 1655 case Builtin::BI__sync_xor_and_fetch: 1656 case Builtin::BI__sync_xor_and_fetch_1: 1657 case Builtin::BI__sync_xor_and_fetch_2: 1658 case Builtin::BI__sync_xor_and_fetch_4: 1659 case Builtin::BI__sync_xor_and_fetch_8: 1660 case Builtin::BI__sync_xor_and_fetch_16: 1661 case Builtin::BI__sync_nand_and_fetch: 1662 case Builtin::BI__sync_nand_and_fetch_1: 1663 case Builtin::BI__sync_nand_and_fetch_2: 1664 case Builtin::BI__sync_nand_and_fetch_4: 1665 case Builtin::BI__sync_nand_and_fetch_8: 1666 case Builtin::BI__sync_nand_and_fetch_16: 1667 case Builtin::BI__sync_val_compare_and_swap: 1668 case Builtin::BI__sync_val_compare_and_swap_1: 1669 case Builtin::BI__sync_val_compare_and_swap_2: 1670 case Builtin::BI__sync_val_compare_and_swap_4: 1671 case Builtin::BI__sync_val_compare_and_swap_8: 1672 case Builtin::BI__sync_val_compare_and_swap_16: 1673 case Builtin::BI__sync_bool_compare_and_swap: 1674 case Builtin::BI__sync_bool_compare_and_swap_1: 1675 case Builtin::BI__sync_bool_compare_and_swap_2: 1676 case Builtin::BI__sync_bool_compare_and_swap_4: 1677 case Builtin::BI__sync_bool_compare_and_swap_8: 1678 case Builtin::BI__sync_bool_compare_and_swap_16: 1679 case Builtin::BI__sync_lock_test_and_set: 1680 case Builtin::BI__sync_lock_test_and_set_1: 1681 case Builtin::BI__sync_lock_test_and_set_2: 1682 case Builtin::BI__sync_lock_test_and_set_4: 1683 case Builtin::BI__sync_lock_test_and_set_8: 1684 case Builtin::BI__sync_lock_test_and_set_16: 1685 case Builtin::BI__sync_lock_release: 1686 case Builtin::BI__sync_lock_release_1: 1687 case Builtin::BI__sync_lock_release_2: 1688 case Builtin::BI__sync_lock_release_4: 1689 case Builtin::BI__sync_lock_release_8: 1690 case Builtin::BI__sync_lock_release_16: 1691 case Builtin::BI__sync_swap: 1692 case Builtin::BI__sync_swap_1: 1693 case Builtin::BI__sync_swap_2: 1694 case Builtin::BI__sync_swap_4: 1695 case Builtin::BI__sync_swap_8: 1696 case Builtin::BI__sync_swap_16: 1697 return SemaBuiltinAtomicOverloaded(TheCallResult); 1698 case Builtin::BI__sync_synchronize: 1699 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1700 << TheCall->getCallee()->getSourceRange(); 1701 break; 1702 case Builtin::BI__builtin_nontemporal_load: 1703 case Builtin::BI__builtin_nontemporal_store: 1704 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1705 case Builtin::BI__builtin_memcpy_inline: { 1706 clang::Expr *SizeOp = TheCall->getArg(2); 1707 // We warn about copying to or from `nullptr` pointers when `size` is 1708 // greater than 0. When `size` is value dependent we cannot evaluate its 1709 // value so we bail out. 1710 if (SizeOp->isValueDependent()) 1711 break; 1712 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1713 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1714 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1715 } 1716 break; 1717 } 1718 #define BUILTIN(ID, TYPE, ATTRS) 1719 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1720 case Builtin::BI##ID: \ 1721 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1722 #include "clang/Basic/Builtins.def" 1723 case Builtin::BI__annotation: 1724 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1725 return ExprError(); 1726 break; 1727 case Builtin::BI__builtin_annotation: 1728 if (SemaBuiltinAnnotation(*this, TheCall)) 1729 return ExprError(); 1730 break; 1731 case Builtin::BI__builtin_addressof: 1732 if (SemaBuiltinAddressof(*this, TheCall)) 1733 return ExprError(); 1734 break; 1735 case Builtin::BI__builtin_is_aligned: 1736 case Builtin::BI__builtin_align_up: 1737 case Builtin::BI__builtin_align_down: 1738 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1739 return ExprError(); 1740 break; 1741 case Builtin::BI__builtin_add_overflow: 1742 case Builtin::BI__builtin_sub_overflow: 1743 case Builtin::BI__builtin_mul_overflow: 1744 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1745 return ExprError(); 1746 break; 1747 case Builtin::BI__builtin_operator_new: 1748 case Builtin::BI__builtin_operator_delete: { 1749 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1750 ExprResult Res = 1751 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1752 if (Res.isInvalid()) 1753 CorrectDelayedTyposInExpr(TheCallResult.get()); 1754 return Res; 1755 } 1756 case Builtin::BI__builtin_dump_struct: { 1757 // We first want to ensure we are called with 2 arguments 1758 if (checkArgCount(*this, TheCall, 2)) 1759 return ExprError(); 1760 // Ensure that the first argument is of type 'struct XX *' 1761 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1762 const QualType PtrArgType = PtrArg->getType(); 1763 if (!PtrArgType->isPointerType() || 1764 !PtrArgType->getPointeeType()->isRecordType()) { 1765 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1766 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1767 << "structure pointer"; 1768 return ExprError(); 1769 } 1770 1771 // Ensure that the second argument is of type 'FunctionType' 1772 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1773 const QualType FnPtrArgType = FnPtrArg->getType(); 1774 if (!FnPtrArgType->isPointerType()) { 1775 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1776 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1777 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1778 return ExprError(); 1779 } 1780 1781 const auto *FuncType = 1782 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1783 1784 if (!FuncType) { 1785 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1786 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1787 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1788 return ExprError(); 1789 } 1790 1791 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1792 if (!FT->getNumParams()) { 1793 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1794 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1795 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1796 return ExprError(); 1797 } 1798 QualType PT = FT->getParamType(0); 1799 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1800 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1801 !PT->getPointeeType().isConstQualified()) { 1802 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1803 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1804 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1805 return ExprError(); 1806 } 1807 } 1808 1809 TheCall->setType(Context.IntTy); 1810 break; 1811 } 1812 case Builtin::BI__builtin_expect_with_probability: { 1813 // We first want to ensure we are called with 3 arguments 1814 if (checkArgCount(*this, TheCall, 3)) 1815 return ExprError(); 1816 // then check probability is constant float in range [0.0, 1.0] 1817 const Expr *ProbArg = TheCall->getArg(2); 1818 SmallVector<PartialDiagnosticAt, 8> Notes; 1819 Expr::EvalResult Eval; 1820 Eval.Diag = &Notes; 1821 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Expr::EvaluateForCodeGen, 1822 Context)) || 1823 !Eval.Val.isFloat()) { 1824 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1825 << ProbArg->getSourceRange(); 1826 for (const PartialDiagnosticAt &PDiag : Notes) 1827 Diag(PDiag.first, PDiag.second); 1828 return ExprError(); 1829 } 1830 llvm::APFloat Probability = Eval.Val.getFloat(); 1831 bool LoseInfo = false; 1832 Probability.convert(llvm::APFloat::IEEEdouble(), 1833 llvm::RoundingMode::Dynamic, &LoseInfo); 1834 if (!(Probability >= llvm::APFloat(0.0) && 1835 Probability <= llvm::APFloat(1.0))) { 1836 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1837 << ProbArg->getSourceRange(); 1838 return ExprError(); 1839 } 1840 break; 1841 } 1842 case Builtin::BI__builtin_preserve_access_index: 1843 if (SemaBuiltinPreserveAI(*this, TheCall)) 1844 return ExprError(); 1845 break; 1846 case Builtin::BI__builtin_call_with_static_chain: 1847 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1848 return ExprError(); 1849 break; 1850 case Builtin::BI__exception_code: 1851 case Builtin::BI_exception_code: 1852 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1853 diag::err_seh___except_block)) 1854 return ExprError(); 1855 break; 1856 case Builtin::BI__exception_info: 1857 case Builtin::BI_exception_info: 1858 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1859 diag::err_seh___except_filter)) 1860 return ExprError(); 1861 break; 1862 case Builtin::BI__GetExceptionInfo: 1863 if (checkArgCount(*this, TheCall, 1)) 1864 return ExprError(); 1865 1866 if (CheckCXXThrowOperand( 1867 TheCall->getBeginLoc(), 1868 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1869 TheCall)) 1870 return ExprError(); 1871 1872 TheCall->setType(Context.VoidPtrTy); 1873 break; 1874 // OpenCL v2.0, s6.13.16 - Pipe functions 1875 case Builtin::BIread_pipe: 1876 case Builtin::BIwrite_pipe: 1877 // Since those two functions are declared with var args, we need a semantic 1878 // check for the argument. 1879 if (SemaBuiltinRWPipe(*this, TheCall)) 1880 return ExprError(); 1881 break; 1882 case Builtin::BIreserve_read_pipe: 1883 case Builtin::BIreserve_write_pipe: 1884 case Builtin::BIwork_group_reserve_read_pipe: 1885 case Builtin::BIwork_group_reserve_write_pipe: 1886 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1887 return ExprError(); 1888 break; 1889 case Builtin::BIsub_group_reserve_read_pipe: 1890 case Builtin::BIsub_group_reserve_write_pipe: 1891 if (checkOpenCLSubgroupExt(*this, TheCall) || 1892 SemaBuiltinReserveRWPipe(*this, TheCall)) 1893 return ExprError(); 1894 break; 1895 case Builtin::BIcommit_read_pipe: 1896 case Builtin::BIcommit_write_pipe: 1897 case Builtin::BIwork_group_commit_read_pipe: 1898 case Builtin::BIwork_group_commit_write_pipe: 1899 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1900 return ExprError(); 1901 break; 1902 case Builtin::BIsub_group_commit_read_pipe: 1903 case Builtin::BIsub_group_commit_write_pipe: 1904 if (checkOpenCLSubgroupExt(*this, TheCall) || 1905 SemaBuiltinCommitRWPipe(*this, TheCall)) 1906 return ExprError(); 1907 break; 1908 case Builtin::BIget_pipe_num_packets: 1909 case Builtin::BIget_pipe_max_packets: 1910 if (SemaBuiltinPipePackets(*this, TheCall)) 1911 return ExprError(); 1912 break; 1913 case Builtin::BIto_global: 1914 case Builtin::BIto_local: 1915 case Builtin::BIto_private: 1916 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1917 return ExprError(); 1918 break; 1919 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1920 case Builtin::BIenqueue_kernel: 1921 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1922 return ExprError(); 1923 break; 1924 case Builtin::BIget_kernel_work_group_size: 1925 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1926 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1927 return ExprError(); 1928 break; 1929 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1930 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1931 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1932 return ExprError(); 1933 break; 1934 case Builtin::BI__builtin_os_log_format: 1935 Cleanup.setExprNeedsCleanups(true); 1936 LLVM_FALLTHROUGH; 1937 case Builtin::BI__builtin_os_log_format_buffer_size: 1938 if (SemaBuiltinOSLogFormat(TheCall)) 1939 return ExprError(); 1940 break; 1941 case Builtin::BI__builtin_frame_address: 1942 case Builtin::BI__builtin_return_address: { 1943 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1944 return ExprError(); 1945 1946 // -Wframe-address warning if non-zero passed to builtin 1947 // return/frame address. 1948 Expr::EvalResult Result; 1949 if (TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1950 Result.Val.getInt() != 0) 1951 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1952 << ((BuiltinID == Builtin::BI__builtin_return_address) 1953 ? "__builtin_return_address" 1954 : "__builtin_frame_address") 1955 << TheCall->getSourceRange(); 1956 break; 1957 } 1958 1959 case Builtin::BI__builtin_matrix_transpose: 1960 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1961 1962 case Builtin::BI__builtin_matrix_column_major_load: 1963 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1964 1965 case Builtin::BI__builtin_matrix_column_major_store: 1966 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1967 } 1968 1969 // Since the target specific builtins for each arch overlap, only check those 1970 // of the arch we are compiling for. 1971 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1972 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1973 assert(Context.getAuxTargetInfo() && 1974 "Aux Target Builtin, but not an aux target?"); 1975 1976 if (CheckTSBuiltinFunctionCall( 1977 *Context.getAuxTargetInfo(), 1978 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 1979 return ExprError(); 1980 } else { 1981 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 1982 TheCall)) 1983 return ExprError(); 1984 } 1985 } 1986 1987 return TheCallResult; 1988 } 1989 1990 // Get the valid immediate range for the specified NEON type code. 1991 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1992 NeonTypeFlags Type(t); 1993 int IsQuad = ForceQuad ? true : Type.isQuad(); 1994 switch (Type.getEltType()) { 1995 case NeonTypeFlags::Int8: 1996 case NeonTypeFlags::Poly8: 1997 return shift ? 7 : (8 << IsQuad) - 1; 1998 case NeonTypeFlags::Int16: 1999 case NeonTypeFlags::Poly16: 2000 return shift ? 15 : (4 << IsQuad) - 1; 2001 case NeonTypeFlags::Int32: 2002 return shift ? 31 : (2 << IsQuad) - 1; 2003 case NeonTypeFlags::Int64: 2004 case NeonTypeFlags::Poly64: 2005 return shift ? 63 : (1 << IsQuad) - 1; 2006 case NeonTypeFlags::Poly128: 2007 return shift ? 127 : (1 << IsQuad) - 1; 2008 case NeonTypeFlags::Float16: 2009 assert(!shift && "cannot shift float types!"); 2010 return (4 << IsQuad) - 1; 2011 case NeonTypeFlags::Float32: 2012 assert(!shift && "cannot shift float types!"); 2013 return (2 << IsQuad) - 1; 2014 case NeonTypeFlags::Float64: 2015 assert(!shift && "cannot shift float types!"); 2016 return (1 << IsQuad) - 1; 2017 case NeonTypeFlags::BFloat16: 2018 assert(!shift && "cannot shift float types!"); 2019 return (4 << IsQuad) - 1; 2020 } 2021 llvm_unreachable("Invalid NeonTypeFlag!"); 2022 } 2023 2024 /// getNeonEltType - Return the QualType corresponding to the elements of 2025 /// the vector type specified by the NeonTypeFlags. This is used to check 2026 /// the pointer arguments for Neon load/store intrinsics. 2027 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2028 bool IsPolyUnsigned, bool IsInt64Long) { 2029 switch (Flags.getEltType()) { 2030 case NeonTypeFlags::Int8: 2031 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2032 case NeonTypeFlags::Int16: 2033 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2034 case NeonTypeFlags::Int32: 2035 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2036 case NeonTypeFlags::Int64: 2037 if (IsInt64Long) 2038 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2039 else 2040 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2041 : Context.LongLongTy; 2042 case NeonTypeFlags::Poly8: 2043 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2044 case NeonTypeFlags::Poly16: 2045 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2046 case NeonTypeFlags::Poly64: 2047 if (IsInt64Long) 2048 return Context.UnsignedLongTy; 2049 else 2050 return Context.UnsignedLongLongTy; 2051 case NeonTypeFlags::Poly128: 2052 break; 2053 case NeonTypeFlags::Float16: 2054 return Context.HalfTy; 2055 case NeonTypeFlags::Float32: 2056 return Context.FloatTy; 2057 case NeonTypeFlags::Float64: 2058 return Context.DoubleTy; 2059 case NeonTypeFlags::BFloat16: 2060 return Context.BFloat16Ty; 2061 } 2062 llvm_unreachable("Invalid NeonTypeFlag!"); 2063 } 2064 2065 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2066 // Range check SVE intrinsics that take immediate values. 2067 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2068 2069 switch (BuiltinID) { 2070 default: 2071 return false; 2072 #define GET_SVE_IMMEDIATE_CHECK 2073 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2074 #undef GET_SVE_IMMEDIATE_CHECK 2075 } 2076 2077 // Perform all the immediate checks for this builtin call. 2078 bool HasError = false; 2079 for (auto &I : ImmChecks) { 2080 int ArgNum, CheckTy, ElementSizeInBits; 2081 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2082 2083 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2084 2085 // Function that checks whether the operand (ArgNum) is an immediate 2086 // that is one of the predefined values. 2087 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2088 int ErrDiag) -> bool { 2089 // We can't check the value of a dependent argument. 2090 Expr *Arg = TheCall->getArg(ArgNum); 2091 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2092 return false; 2093 2094 // Check constant-ness first. 2095 llvm::APSInt Imm; 2096 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2097 return true; 2098 2099 if (!CheckImm(Imm.getSExtValue())) 2100 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2101 return false; 2102 }; 2103 2104 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2105 case SVETypeFlags::ImmCheck0_31: 2106 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2107 HasError = true; 2108 break; 2109 case SVETypeFlags::ImmCheck0_13: 2110 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2111 HasError = true; 2112 break; 2113 case SVETypeFlags::ImmCheck1_16: 2114 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2115 HasError = true; 2116 break; 2117 case SVETypeFlags::ImmCheck0_7: 2118 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2119 HasError = true; 2120 break; 2121 case SVETypeFlags::ImmCheckExtract: 2122 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2123 (2048 / ElementSizeInBits) - 1)) 2124 HasError = true; 2125 break; 2126 case SVETypeFlags::ImmCheckShiftRight: 2127 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2128 HasError = true; 2129 break; 2130 case SVETypeFlags::ImmCheckShiftRightNarrow: 2131 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2132 ElementSizeInBits / 2)) 2133 HasError = true; 2134 break; 2135 case SVETypeFlags::ImmCheckShiftLeft: 2136 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2137 ElementSizeInBits - 1)) 2138 HasError = true; 2139 break; 2140 case SVETypeFlags::ImmCheckLaneIndex: 2141 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2142 (128 / (1 * ElementSizeInBits)) - 1)) 2143 HasError = true; 2144 break; 2145 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2146 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2147 (128 / (2 * ElementSizeInBits)) - 1)) 2148 HasError = true; 2149 break; 2150 case SVETypeFlags::ImmCheckLaneIndexDot: 2151 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2152 (128 / (4 * ElementSizeInBits)) - 1)) 2153 HasError = true; 2154 break; 2155 case SVETypeFlags::ImmCheckComplexRot90_270: 2156 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2157 diag::err_rotation_argument_to_cadd)) 2158 HasError = true; 2159 break; 2160 case SVETypeFlags::ImmCheckComplexRotAll90: 2161 if (CheckImmediateInSet( 2162 [](int64_t V) { 2163 return V == 0 || V == 90 || V == 180 || V == 270; 2164 }, 2165 diag::err_rotation_argument_to_cmla)) 2166 HasError = true; 2167 break; 2168 case SVETypeFlags::ImmCheck0_1: 2169 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2170 HasError = true; 2171 break; 2172 case SVETypeFlags::ImmCheck0_2: 2173 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2174 HasError = true; 2175 break; 2176 case SVETypeFlags::ImmCheck0_3: 2177 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2178 HasError = true; 2179 break; 2180 } 2181 } 2182 2183 return HasError; 2184 } 2185 2186 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2187 unsigned BuiltinID, CallExpr *TheCall) { 2188 llvm::APSInt Result; 2189 uint64_t mask = 0; 2190 unsigned TV = 0; 2191 int PtrArgNum = -1; 2192 bool HasConstPtr = false; 2193 switch (BuiltinID) { 2194 #define GET_NEON_OVERLOAD_CHECK 2195 #include "clang/Basic/arm_neon.inc" 2196 #include "clang/Basic/arm_fp16.inc" 2197 #undef GET_NEON_OVERLOAD_CHECK 2198 } 2199 2200 // For NEON intrinsics which are overloaded on vector element type, validate 2201 // the immediate which specifies which variant to emit. 2202 unsigned ImmArg = TheCall->getNumArgs()-1; 2203 if (mask) { 2204 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2205 return true; 2206 2207 TV = Result.getLimitedValue(64); 2208 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2209 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2210 << TheCall->getArg(ImmArg)->getSourceRange(); 2211 } 2212 2213 if (PtrArgNum >= 0) { 2214 // Check that pointer arguments have the specified type. 2215 Expr *Arg = TheCall->getArg(PtrArgNum); 2216 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2217 Arg = ICE->getSubExpr(); 2218 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2219 QualType RHSTy = RHS.get()->getType(); 2220 2221 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2222 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2223 Arch == llvm::Triple::aarch64_32 || 2224 Arch == llvm::Triple::aarch64_be; 2225 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2226 QualType EltTy = 2227 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2228 if (HasConstPtr) 2229 EltTy = EltTy.withConst(); 2230 QualType LHSTy = Context.getPointerType(EltTy); 2231 AssignConvertType ConvTy; 2232 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2233 if (RHS.isInvalid()) 2234 return true; 2235 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2236 RHS.get(), AA_Assigning)) 2237 return true; 2238 } 2239 2240 // For NEON intrinsics which take an immediate value as part of the 2241 // instruction, range check them here. 2242 unsigned i = 0, l = 0, u = 0; 2243 switch (BuiltinID) { 2244 default: 2245 return false; 2246 #define GET_NEON_IMMEDIATE_CHECK 2247 #include "clang/Basic/arm_neon.inc" 2248 #include "clang/Basic/arm_fp16.inc" 2249 #undef GET_NEON_IMMEDIATE_CHECK 2250 } 2251 2252 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2253 } 2254 2255 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2256 switch (BuiltinID) { 2257 default: 2258 return false; 2259 #include "clang/Basic/arm_mve_builtin_sema.inc" 2260 } 2261 } 2262 2263 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2264 CallExpr *TheCall) { 2265 bool Err = false; 2266 switch (BuiltinID) { 2267 default: 2268 return false; 2269 #include "clang/Basic/arm_cde_builtin_sema.inc" 2270 } 2271 2272 if (Err) 2273 return true; 2274 2275 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2276 } 2277 2278 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2279 const Expr *CoprocArg, bool WantCDE) { 2280 if (isConstantEvaluated()) 2281 return false; 2282 2283 // We can't check the value of a dependent argument. 2284 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2285 return false; 2286 2287 llvm::APSInt CoprocNoAP; 2288 bool IsICE = CoprocArg->isIntegerConstantExpr(CoprocNoAP, Context); 2289 (void)IsICE; 2290 assert(IsICE && "Coprocossor immediate is not a constant expression"); 2291 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2292 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2293 2294 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2295 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2296 2297 if (IsCDECoproc != WantCDE) 2298 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2299 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2300 2301 return false; 2302 } 2303 2304 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2305 unsigned MaxWidth) { 2306 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2307 BuiltinID == ARM::BI__builtin_arm_ldaex || 2308 BuiltinID == ARM::BI__builtin_arm_strex || 2309 BuiltinID == ARM::BI__builtin_arm_stlex || 2310 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2311 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2312 BuiltinID == AArch64::BI__builtin_arm_strex || 2313 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2314 "unexpected ARM builtin"); 2315 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2316 BuiltinID == ARM::BI__builtin_arm_ldaex || 2317 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2318 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2319 2320 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2321 2322 // Ensure that we have the proper number of arguments. 2323 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2324 return true; 2325 2326 // Inspect the pointer argument of the atomic builtin. This should always be 2327 // a pointer type, whose element is an integral scalar or pointer type. 2328 // Because it is a pointer type, we don't have to worry about any implicit 2329 // casts here. 2330 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2331 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2332 if (PointerArgRes.isInvalid()) 2333 return true; 2334 PointerArg = PointerArgRes.get(); 2335 2336 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2337 if (!pointerType) { 2338 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2339 << PointerArg->getType() << PointerArg->getSourceRange(); 2340 return true; 2341 } 2342 2343 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2344 // task is to insert the appropriate casts into the AST. First work out just 2345 // what the appropriate type is. 2346 QualType ValType = pointerType->getPointeeType(); 2347 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2348 if (IsLdrex) 2349 AddrType.addConst(); 2350 2351 // Issue a warning if the cast is dodgy. 2352 CastKind CastNeeded = CK_NoOp; 2353 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2354 CastNeeded = CK_BitCast; 2355 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2356 << PointerArg->getType() << Context.getPointerType(AddrType) 2357 << AA_Passing << PointerArg->getSourceRange(); 2358 } 2359 2360 // Finally, do the cast and replace the argument with the corrected version. 2361 AddrType = Context.getPointerType(AddrType); 2362 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2363 if (PointerArgRes.isInvalid()) 2364 return true; 2365 PointerArg = PointerArgRes.get(); 2366 2367 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2368 2369 // In general, we allow ints, floats and pointers to be loaded and stored. 2370 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2371 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2372 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2373 << PointerArg->getType() << PointerArg->getSourceRange(); 2374 return true; 2375 } 2376 2377 // But ARM doesn't have instructions to deal with 128-bit versions. 2378 if (Context.getTypeSize(ValType) > MaxWidth) { 2379 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2380 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2381 << PointerArg->getType() << PointerArg->getSourceRange(); 2382 return true; 2383 } 2384 2385 switch (ValType.getObjCLifetime()) { 2386 case Qualifiers::OCL_None: 2387 case Qualifiers::OCL_ExplicitNone: 2388 // okay 2389 break; 2390 2391 case Qualifiers::OCL_Weak: 2392 case Qualifiers::OCL_Strong: 2393 case Qualifiers::OCL_Autoreleasing: 2394 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2395 << ValType << PointerArg->getSourceRange(); 2396 return true; 2397 } 2398 2399 if (IsLdrex) { 2400 TheCall->setType(ValType); 2401 return false; 2402 } 2403 2404 // Initialize the argument to be stored. 2405 ExprResult ValArg = TheCall->getArg(0); 2406 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2407 Context, ValType, /*consume*/ false); 2408 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2409 if (ValArg.isInvalid()) 2410 return true; 2411 TheCall->setArg(0, ValArg.get()); 2412 2413 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2414 // but the custom checker bypasses all default analysis. 2415 TheCall->setType(Context.IntTy); 2416 return false; 2417 } 2418 2419 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2420 CallExpr *TheCall) { 2421 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2422 BuiltinID == ARM::BI__builtin_arm_ldaex || 2423 BuiltinID == ARM::BI__builtin_arm_strex || 2424 BuiltinID == ARM::BI__builtin_arm_stlex) { 2425 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2426 } 2427 2428 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2429 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2430 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2431 } 2432 2433 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2434 BuiltinID == ARM::BI__builtin_arm_wsr64) 2435 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2436 2437 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2438 BuiltinID == ARM::BI__builtin_arm_rsrp || 2439 BuiltinID == ARM::BI__builtin_arm_wsr || 2440 BuiltinID == ARM::BI__builtin_arm_wsrp) 2441 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2442 2443 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2444 return true; 2445 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2446 return true; 2447 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2448 return true; 2449 2450 // For intrinsics which take an immediate value as part of the instruction, 2451 // range check them here. 2452 // FIXME: VFP Intrinsics should error if VFP not present. 2453 switch (BuiltinID) { 2454 default: return false; 2455 case ARM::BI__builtin_arm_ssat: 2456 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2457 case ARM::BI__builtin_arm_usat: 2458 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2459 case ARM::BI__builtin_arm_ssat16: 2460 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2461 case ARM::BI__builtin_arm_usat16: 2462 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2463 case ARM::BI__builtin_arm_vcvtr_f: 2464 case ARM::BI__builtin_arm_vcvtr_d: 2465 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2466 case ARM::BI__builtin_arm_dmb: 2467 case ARM::BI__builtin_arm_dsb: 2468 case ARM::BI__builtin_arm_isb: 2469 case ARM::BI__builtin_arm_dbg: 2470 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2471 case ARM::BI__builtin_arm_cdp: 2472 case ARM::BI__builtin_arm_cdp2: 2473 case ARM::BI__builtin_arm_mcr: 2474 case ARM::BI__builtin_arm_mcr2: 2475 case ARM::BI__builtin_arm_mrc: 2476 case ARM::BI__builtin_arm_mrc2: 2477 case ARM::BI__builtin_arm_mcrr: 2478 case ARM::BI__builtin_arm_mcrr2: 2479 case ARM::BI__builtin_arm_mrrc: 2480 case ARM::BI__builtin_arm_mrrc2: 2481 case ARM::BI__builtin_arm_ldc: 2482 case ARM::BI__builtin_arm_ldcl: 2483 case ARM::BI__builtin_arm_ldc2: 2484 case ARM::BI__builtin_arm_ldc2l: 2485 case ARM::BI__builtin_arm_stc: 2486 case ARM::BI__builtin_arm_stcl: 2487 case ARM::BI__builtin_arm_stc2: 2488 case ARM::BI__builtin_arm_stc2l: 2489 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2490 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2491 /*WantCDE*/ false); 2492 } 2493 } 2494 2495 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2496 unsigned BuiltinID, 2497 CallExpr *TheCall) { 2498 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2499 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2500 BuiltinID == AArch64::BI__builtin_arm_strex || 2501 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2502 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2503 } 2504 2505 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2506 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2507 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2508 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2509 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2510 } 2511 2512 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2513 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2514 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2515 2516 // Memory Tagging Extensions (MTE) Intrinsics 2517 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2518 BuiltinID == AArch64::BI__builtin_arm_addg || 2519 BuiltinID == AArch64::BI__builtin_arm_gmi || 2520 BuiltinID == AArch64::BI__builtin_arm_ldg || 2521 BuiltinID == AArch64::BI__builtin_arm_stg || 2522 BuiltinID == AArch64::BI__builtin_arm_subp) { 2523 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2524 } 2525 2526 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2527 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2528 BuiltinID == AArch64::BI__builtin_arm_wsr || 2529 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2530 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2531 2532 // Only check the valid encoding range. Any constant in this range would be 2533 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2534 // an exception for incorrect registers. This matches MSVC behavior. 2535 if (BuiltinID == AArch64::BI_ReadStatusReg || 2536 BuiltinID == AArch64::BI_WriteStatusReg) 2537 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2538 2539 if (BuiltinID == AArch64::BI__getReg) 2540 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2541 2542 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2543 return true; 2544 2545 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2546 return true; 2547 2548 // For intrinsics which take an immediate value as part of the instruction, 2549 // range check them here. 2550 unsigned i = 0, l = 0, u = 0; 2551 switch (BuiltinID) { 2552 default: return false; 2553 case AArch64::BI__builtin_arm_dmb: 2554 case AArch64::BI__builtin_arm_dsb: 2555 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2556 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2557 } 2558 2559 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2560 } 2561 2562 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2563 CallExpr *TheCall) { 2564 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2565 BuiltinID == BPF::BI__builtin_btf_type_id) && 2566 "unexpected ARM builtin"); 2567 2568 if (checkArgCount(*this, TheCall, 2)) 2569 return true; 2570 2571 Expr *Arg; 2572 if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2573 // The second argument needs to be a constant int 2574 llvm::APSInt Value; 2575 Arg = TheCall->getArg(1); 2576 if (!Arg->isIntegerConstantExpr(Value, Context)) { 2577 Diag(Arg->getBeginLoc(), diag::err_btf_type_id_not_const) 2578 << 2 << Arg->getSourceRange(); 2579 return true; 2580 } 2581 2582 TheCall->setType(Context.UnsignedIntTy); 2583 return false; 2584 } 2585 2586 // The first argument needs to be a record field access. 2587 // If it is an array element access, we delay decision 2588 // to BPF backend to check whether the access is a 2589 // field access or not. 2590 Arg = TheCall->getArg(0); 2591 if (Arg->getType()->getAsPlaceholderType() || 2592 (Arg->IgnoreParens()->getObjectKind() != OK_BitField && 2593 !dyn_cast<MemberExpr>(Arg->IgnoreParens()) && 2594 !dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()))) { 2595 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_field) 2596 << 1 << Arg->getSourceRange(); 2597 return true; 2598 } 2599 2600 // The second argument needs to be a constant int 2601 Arg = TheCall->getArg(1); 2602 llvm::APSInt Value; 2603 if (!Arg->isIntegerConstantExpr(Value, Context)) { 2604 Diag(Arg->getBeginLoc(), diag::err_preserve_field_info_not_const) 2605 << 2 << Arg->getSourceRange(); 2606 return true; 2607 } 2608 2609 TheCall->setType(Context.UnsignedIntTy); 2610 return false; 2611 } 2612 2613 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2614 struct ArgInfo { 2615 uint8_t OpNum; 2616 bool IsSigned; 2617 uint8_t BitWidth; 2618 uint8_t Align; 2619 }; 2620 struct BuiltinInfo { 2621 unsigned BuiltinID; 2622 ArgInfo Infos[2]; 2623 }; 2624 2625 static BuiltinInfo Infos[] = { 2626 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2627 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2628 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2629 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2630 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2631 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2632 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2633 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2634 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2635 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2636 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2637 2638 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2639 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2640 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2641 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2642 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2643 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2644 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2645 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2646 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2647 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2648 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2649 2650 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2651 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2652 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2653 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2654 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2655 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2656 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2657 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2658 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2659 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2660 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2661 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2662 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2663 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2664 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2665 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2666 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2667 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2668 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2669 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2670 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2671 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2672 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2673 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2674 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2675 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2676 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2677 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2678 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2679 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2680 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2681 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2682 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2683 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2684 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2685 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2686 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2687 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2688 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2689 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2690 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2691 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2692 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2693 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2694 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2695 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2696 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2697 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2698 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2699 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2700 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2701 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2702 {{ 1, false, 6, 0 }} }, 2703 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2704 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2705 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2706 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2707 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2708 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2709 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2710 {{ 1, false, 5, 0 }} }, 2711 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2712 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2713 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2714 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2715 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2716 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2717 { 2, false, 5, 0 }} }, 2718 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2719 { 2, false, 6, 0 }} }, 2720 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2721 { 3, false, 5, 0 }} }, 2722 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2723 { 3, false, 6, 0 }} }, 2724 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2725 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2726 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2727 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2728 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2729 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2730 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2731 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2732 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2733 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2734 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2735 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2736 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2737 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2738 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2739 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2740 {{ 2, false, 4, 0 }, 2741 { 3, false, 5, 0 }} }, 2742 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2743 {{ 2, false, 4, 0 }, 2744 { 3, false, 5, 0 }} }, 2745 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2746 {{ 2, false, 4, 0 }, 2747 { 3, false, 5, 0 }} }, 2748 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2749 {{ 2, false, 4, 0 }, 2750 { 3, false, 5, 0 }} }, 2751 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2752 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2753 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2754 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2755 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2756 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2757 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2758 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2759 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2760 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2761 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2762 { 2, false, 5, 0 }} }, 2763 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2764 { 2, false, 6, 0 }} }, 2765 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2766 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2767 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2768 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2769 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2770 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2772 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2774 {{ 1, false, 4, 0 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2777 {{ 1, false, 4, 0 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2798 {{ 3, false, 1, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2803 {{ 3, false, 1, 0 }} }, 2804 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2807 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2808 {{ 3, false, 1, 0 }} }, 2809 }; 2810 2811 // Use a dynamically initialized static to sort the table exactly once on 2812 // first run. 2813 static const bool SortOnce = 2814 (llvm::sort(Infos, 2815 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2816 return LHS.BuiltinID < RHS.BuiltinID; 2817 }), 2818 true); 2819 (void)SortOnce; 2820 2821 const BuiltinInfo *F = llvm::partition_point( 2822 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2823 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2824 return false; 2825 2826 bool Error = false; 2827 2828 for (const ArgInfo &A : F->Infos) { 2829 // Ignore empty ArgInfo elements. 2830 if (A.BitWidth == 0) 2831 continue; 2832 2833 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2834 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2835 if (!A.Align) { 2836 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2837 } else { 2838 unsigned M = 1 << A.Align; 2839 Min *= M; 2840 Max *= M; 2841 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2842 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2843 } 2844 } 2845 return Error; 2846 } 2847 2848 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2849 CallExpr *TheCall) { 2850 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2851 } 2852 2853 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2854 unsigned BuiltinID, CallExpr *TheCall) { 2855 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2856 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2857 } 2858 2859 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2860 CallExpr *TheCall) { 2861 2862 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2863 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2864 if (!TI.hasFeature("dsp")) 2865 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2866 } 2867 2868 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 2869 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 2870 if (!TI.hasFeature("dspr2")) 2871 return Diag(TheCall->getBeginLoc(), 2872 diag::err_mips_builtin_requires_dspr2); 2873 } 2874 2875 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 2876 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 2877 if (!TI.hasFeature("msa")) 2878 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 2879 } 2880 2881 return false; 2882 } 2883 2884 // CheckMipsBuiltinArgument - Checks the constant value passed to the 2885 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2886 // ordering for DSP is unspecified. MSA is ordered by the data format used 2887 // by the underlying instruction i.e., df/m, df/n and then by size. 2888 // 2889 // FIXME: The size tests here should instead be tablegen'd along with the 2890 // definitions from include/clang/Basic/BuiltinsMips.def. 2891 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2892 // be too. 2893 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2894 unsigned i = 0, l = 0, u = 0, m = 0; 2895 switch (BuiltinID) { 2896 default: return false; 2897 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 2898 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 2899 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 2900 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 2901 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 2902 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 2903 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 2904 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 2905 // df/m field. 2906 // These intrinsics take an unsigned 3 bit immediate. 2907 case Mips::BI__builtin_msa_bclri_b: 2908 case Mips::BI__builtin_msa_bnegi_b: 2909 case Mips::BI__builtin_msa_bseti_b: 2910 case Mips::BI__builtin_msa_sat_s_b: 2911 case Mips::BI__builtin_msa_sat_u_b: 2912 case Mips::BI__builtin_msa_slli_b: 2913 case Mips::BI__builtin_msa_srai_b: 2914 case Mips::BI__builtin_msa_srari_b: 2915 case Mips::BI__builtin_msa_srli_b: 2916 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 2917 case Mips::BI__builtin_msa_binsli_b: 2918 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 2919 // These intrinsics take an unsigned 4 bit immediate. 2920 case Mips::BI__builtin_msa_bclri_h: 2921 case Mips::BI__builtin_msa_bnegi_h: 2922 case Mips::BI__builtin_msa_bseti_h: 2923 case Mips::BI__builtin_msa_sat_s_h: 2924 case Mips::BI__builtin_msa_sat_u_h: 2925 case Mips::BI__builtin_msa_slli_h: 2926 case Mips::BI__builtin_msa_srai_h: 2927 case Mips::BI__builtin_msa_srari_h: 2928 case Mips::BI__builtin_msa_srli_h: 2929 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 2930 case Mips::BI__builtin_msa_binsli_h: 2931 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 2932 // These intrinsics take an unsigned 5 bit immediate. 2933 // The first block of intrinsics actually have an unsigned 5 bit field, 2934 // not a df/n field. 2935 case Mips::BI__builtin_msa_cfcmsa: 2936 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 2937 case Mips::BI__builtin_msa_clei_u_b: 2938 case Mips::BI__builtin_msa_clei_u_h: 2939 case Mips::BI__builtin_msa_clei_u_w: 2940 case Mips::BI__builtin_msa_clei_u_d: 2941 case Mips::BI__builtin_msa_clti_u_b: 2942 case Mips::BI__builtin_msa_clti_u_h: 2943 case Mips::BI__builtin_msa_clti_u_w: 2944 case Mips::BI__builtin_msa_clti_u_d: 2945 case Mips::BI__builtin_msa_maxi_u_b: 2946 case Mips::BI__builtin_msa_maxi_u_h: 2947 case Mips::BI__builtin_msa_maxi_u_w: 2948 case Mips::BI__builtin_msa_maxi_u_d: 2949 case Mips::BI__builtin_msa_mini_u_b: 2950 case Mips::BI__builtin_msa_mini_u_h: 2951 case Mips::BI__builtin_msa_mini_u_w: 2952 case Mips::BI__builtin_msa_mini_u_d: 2953 case Mips::BI__builtin_msa_addvi_b: 2954 case Mips::BI__builtin_msa_addvi_h: 2955 case Mips::BI__builtin_msa_addvi_w: 2956 case Mips::BI__builtin_msa_addvi_d: 2957 case Mips::BI__builtin_msa_bclri_w: 2958 case Mips::BI__builtin_msa_bnegi_w: 2959 case Mips::BI__builtin_msa_bseti_w: 2960 case Mips::BI__builtin_msa_sat_s_w: 2961 case Mips::BI__builtin_msa_sat_u_w: 2962 case Mips::BI__builtin_msa_slli_w: 2963 case Mips::BI__builtin_msa_srai_w: 2964 case Mips::BI__builtin_msa_srari_w: 2965 case Mips::BI__builtin_msa_srli_w: 2966 case Mips::BI__builtin_msa_srlri_w: 2967 case Mips::BI__builtin_msa_subvi_b: 2968 case Mips::BI__builtin_msa_subvi_h: 2969 case Mips::BI__builtin_msa_subvi_w: 2970 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 2971 case Mips::BI__builtin_msa_binsli_w: 2972 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 2973 // These intrinsics take an unsigned 6 bit immediate. 2974 case Mips::BI__builtin_msa_bclri_d: 2975 case Mips::BI__builtin_msa_bnegi_d: 2976 case Mips::BI__builtin_msa_bseti_d: 2977 case Mips::BI__builtin_msa_sat_s_d: 2978 case Mips::BI__builtin_msa_sat_u_d: 2979 case Mips::BI__builtin_msa_slli_d: 2980 case Mips::BI__builtin_msa_srai_d: 2981 case Mips::BI__builtin_msa_srari_d: 2982 case Mips::BI__builtin_msa_srli_d: 2983 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 2984 case Mips::BI__builtin_msa_binsli_d: 2985 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 2986 // These intrinsics take a signed 5 bit immediate. 2987 case Mips::BI__builtin_msa_ceqi_b: 2988 case Mips::BI__builtin_msa_ceqi_h: 2989 case Mips::BI__builtin_msa_ceqi_w: 2990 case Mips::BI__builtin_msa_ceqi_d: 2991 case Mips::BI__builtin_msa_clti_s_b: 2992 case Mips::BI__builtin_msa_clti_s_h: 2993 case Mips::BI__builtin_msa_clti_s_w: 2994 case Mips::BI__builtin_msa_clti_s_d: 2995 case Mips::BI__builtin_msa_clei_s_b: 2996 case Mips::BI__builtin_msa_clei_s_h: 2997 case Mips::BI__builtin_msa_clei_s_w: 2998 case Mips::BI__builtin_msa_clei_s_d: 2999 case Mips::BI__builtin_msa_maxi_s_b: 3000 case Mips::BI__builtin_msa_maxi_s_h: 3001 case Mips::BI__builtin_msa_maxi_s_w: 3002 case Mips::BI__builtin_msa_maxi_s_d: 3003 case Mips::BI__builtin_msa_mini_s_b: 3004 case Mips::BI__builtin_msa_mini_s_h: 3005 case Mips::BI__builtin_msa_mini_s_w: 3006 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3007 // These intrinsics take an unsigned 8 bit immediate. 3008 case Mips::BI__builtin_msa_andi_b: 3009 case Mips::BI__builtin_msa_nori_b: 3010 case Mips::BI__builtin_msa_ori_b: 3011 case Mips::BI__builtin_msa_shf_b: 3012 case Mips::BI__builtin_msa_shf_h: 3013 case Mips::BI__builtin_msa_shf_w: 3014 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3015 case Mips::BI__builtin_msa_bseli_b: 3016 case Mips::BI__builtin_msa_bmnzi_b: 3017 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3018 // df/n format 3019 // These intrinsics take an unsigned 4 bit immediate. 3020 case Mips::BI__builtin_msa_copy_s_b: 3021 case Mips::BI__builtin_msa_copy_u_b: 3022 case Mips::BI__builtin_msa_insve_b: 3023 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3024 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3025 // These intrinsics take an unsigned 3 bit immediate. 3026 case Mips::BI__builtin_msa_copy_s_h: 3027 case Mips::BI__builtin_msa_copy_u_h: 3028 case Mips::BI__builtin_msa_insve_h: 3029 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3030 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3031 // These intrinsics take an unsigned 2 bit immediate. 3032 case Mips::BI__builtin_msa_copy_s_w: 3033 case Mips::BI__builtin_msa_copy_u_w: 3034 case Mips::BI__builtin_msa_insve_w: 3035 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3036 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3037 // These intrinsics take an unsigned 1 bit immediate. 3038 case Mips::BI__builtin_msa_copy_s_d: 3039 case Mips::BI__builtin_msa_copy_u_d: 3040 case Mips::BI__builtin_msa_insve_d: 3041 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3042 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3043 // Memory offsets and immediate loads. 3044 // These intrinsics take a signed 10 bit immediate. 3045 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3046 case Mips::BI__builtin_msa_ldi_h: 3047 case Mips::BI__builtin_msa_ldi_w: 3048 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3049 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3050 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3051 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3052 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3053 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3054 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3055 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3056 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3057 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3058 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3059 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3060 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3061 } 3062 3063 if (!m) 3064 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3065 3066 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3067 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3068 } 3069 3070 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3071 CallExpr *TheCall) { 3072 unsigned i = 0, l = 0, u = 0; 3073 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3074 BuiltinID == PPC::BI__builtin_divdeu || 3075 BuiltinID == PPC::BI__builtin_bpermd; 3076 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3077 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3078 BuiltinID == PPC::BI__builtin_divweu || 3079 BuiltinID == PPC::BI__builtin_divde || 3080 BuiltinID == PPC::BI__builtin_divdeu; 3081 3082 if (Is64BitBltin && !IsTarget64Bit) 3083 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3084 << TheCall->getSourceRange(); 3085 3086 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || 3087 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) 3088 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3089 << TheCall->getSourceRange(); 3090 3091 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3092 if (!TI.hasFeature("vsx")) 3093 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3094 << TheCall->getSourceRange(); 3095 return false; 3096 }; 3097 3098 switch (BuiltinID) { 3099 default: return false; 3100 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3101 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3102 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3103 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3104 case PPC::BI__builtin_altivec_dss: 3105 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3106 case PPC::BI__builtin_tbegin: 3107 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3108 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3109 case PPC::BI__builtin_tabortwc: 3110 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3111 case PPC::BI__builtin_tabortwci: 3112 case PPC::BI__builtin_tabortdci: 3113 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3114 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3115 case PPC::BI__builtin_altivec_dst: 3116 case PPC::BI__builtin_altivec_dstt: 3117 case PPC::BI__builtin_altivec_dstst: 3118 case PPC::BI__builtin_altivec_dststt: 3119 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3120 case PPC::BI__builtin_vsx_xxpermdi: 3121 case PPC::BI__builtin_vsx_xxsldwi: 3122 return SemaBuiltinVSX(TheCall); 3123 case PPC::BI__builtin_unpack_vector_int128: 3124 return SemaVSXCheck(TheCall) || 3125 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3126 case PPC::BI__builtin_pack_vector_int128: 3127 return SemaVSXCheck(TheCall); 3128 case PPC::BI__builtin_altivec_vgnb: 3129 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3130 case PPC::BI__builtin_vsx_xxeval: 3131 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3132 case PPC::BI__builtin_altivec_vsldbi: 3133 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3134 case PPC::BI__builtin_altivec_vsrdbi: 3135 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3136 case PPC::BI__builtin_vsx_xxpermx: 3137 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3138 } 3139 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3140 } 3141 3142 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3143 CallExpr *TheCall) { 3144 // position of memory order and scope arguments in the builtin 3145 unsigned OrderIndex, ScopeIndex; 3146 switch (BuiltinID) { 3147 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3148 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3149 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3150 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3151 OrderIndex = 2; 3152 ScopeIndex = 3; 3153 break; 3154 case AMDGPU::BI__builtin_amdgcn_fence: 3155 OrderIndex = 0; 3156 ScopeIndex = 1; 3157 break; 3158 default: 3159 return false; 3160 } 3161 3162 ExprResult Arg = TheCall->getArg(OrderIndex); 3163 auto ArgExpr = Arg.get(); 3164 Expr::EvalResult ArgResult; 3165 3166 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3167 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3168 << ArgExpr->getType(); 3169 int ord = ArgResult.Val.getInt().getZExtValue(); 3170 3171 // Check valididty of memory ordering as per C11 / C++11's memody model. 3172 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 3173 case llvm::AtomicOrderingCABI::acquire: 3174 case llvm::AtomicOrderingCABI::release: 3175 case llvm::AtomicOrderingCABI::acq_rel: 3176 case llvm::AtomicOrderingCABI::seq_cst: 3177 break; 3178 default: { 3179 return Diag(ArgExpr->getBeginLoc(), 3180 diag::warn_atomic_op_has_invalid_memory_order) 3181 << ArgExpr->getSourceRange(); 3182 } 3183 } 3184 3185 Arg = TheCall->getArg(ScopeIndex); 3186 ArgExpr = Arg.get(); 3187 Expr::EvalResult ArgResult1; 3188 // Check that sync scope is a constant literal 3189 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Expr::EvaluateForCodeGen, 3190 Context)) 3191 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3192 << ArgExpr->getType(); 3193 3194 return false; 3195 } 3196 3197 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3198 CallExpr *TheCall) { 3199 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3200 Expr *Arg = TheCall->getArg(0); 3201 llvm::APSInt AbortCode(32); 3202 if (Arg->isIntegerConstantExpr(AbortCode, Context) && 3203 AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256) 3204 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3205 << Arg->getSourceRange(); 3206 } 3207 3208 // For intrinsics which take an immediate value as part of the instruction, 3209 // range check them here. 3210 unsigned i = 0, l = 0, u = 0; 3211 switch (BuiltinID) { 3212 default: return false; 3213 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3214 case SystemZ::BI__builtin_s390_verimb: 3215 case SystemZ::BI__builtin_s390_verimh: 3216 case SystemZ::BI__builtin_s390_verimf: 3217 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3218 case SystemZ::BI__builtin_s390_vfaeb: 3219 case SystemZ::BI__builtin_s390_vfaeh: 3220 case SystemZ::BI__builtin_s390_vfaef: 3221 case SystemZ::BI__builtin_s390_vfaebs: 3222 case SystemZ::BI__builtin_s390_vfaehs: 3223 case SystemZ::BI__builtin_s390_vfaefs: 3224 case SystemZ::BI__builtin_s390_vfaezb: 3225 case SystemZ::BI__builtin_s390_vfaezh: 3226 case SystemZ::BI__builtin_s390_vfaezf: 3227 case SystemZ::BI__builtin_s390_vfaezbs: 3228 case SystemZ::BI__builtin_s390_vfaezhs: 3229 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3230 case SystemZ::BI__builtin_s390_vfisb: 3231 case SystemZ::BI__builtin_s390_vfidb: 3232 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3233 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3234 case SystemZ::BI__builtin_s390_vftcisb: 3235 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3236 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3237 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3238 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3239 case SystemZ::BI__builtin_s390_vstrcb: 3240 case SystemZ::BI__builtin_s390_vstrch: 3241 case SystemZ::BI__builtin_s390_vstrcf: 3242 case SystemZ::BI__builtin_s390_vstrczb: 3243 case SystemZ::BI__builtin_s390_vstrczh: 3244 case SystemZ::BI__builtin_s390_vstrczf: 3245 case SystemZ::BI__builtin_s390_vstrcbs: 3246 case SystemZ::BI__builtin_s390_vstrchs: 3247 case SystemZ::BI__builtin_s390_vstrcfs: 3248 case SystemZ::BI__builtin_s390_vstrczbs: 3249 case SystemZ::BI__builtin_s390_vstrczhs: 3250 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3251 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3252 case SystemZ::BI__builtin_s390_vfminsb: 3253 case SystemZ::BI__builtin_s390_vfmaxsb: 3254 case SystemZ::BI__builtin_s390_vfmindb: 3255 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3256 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3257 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3258 } 3259 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3260 } 3261 3262 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3263 /// This checks that the target supports __builtin_cpu_supports and 3264 /// that the string argument is constant and valid. 3265 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3266 CallExpr *TheCall) { 3267 Expr *Arg = TheCall->getArg(0); 3268 3269 // Check if the argument is a string literal. 3270 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3271 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3272 << Arg->getSourceRange(); 3273 3274 // Check the contents of the string. 3275 StringRef Feature = 3276 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3277 if (!TI.validateCpuSupports(Feature)) 3278 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3279 << Arg->getSourceRange(); 3280 return false; 3281 } 3282 3283 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3284 /// This checks that the target supports __builtin_cpu_is and 3285 /// that the string argument is constant and valid. 3286 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3287 Expr *Arg = TheCall->getArg(0); 3288 3289 // Check if the argument is a string literal. 3290 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3291 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3292 << Arg->getSourceRange(); 3293 3294 // Check the contents of the string. 3295 StringRef Feature = 3296 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3297 if (!TI.validateCpuIs(Feature)) 3298 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3299 << Arg->getSourceRange(); 3300 return false; 3301 } 3302 3303 // Check if the rounding mode is legal. 3304 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3305 // Indicates if this instruction has rounding control or just SAE. 3306 bool HasRC = false; 3307 3308 unsigned ArgNum = 0; 3309 switch (BuiltinID) { 3310 default: 3311 return false; 3312 case X86::BI__builtin_ia32_vcvttsd2si32: 3313 case X86::BI__builtin_ia32_vcvttsd2si64: 3314 case X86::BI__builtin_ia32_vcvttsd2usi32: 3315 case X86::BI__builtin_ia32_vcvttsd2usi64: 3316 case X86::BI__builtin_ia32_vcvttss2si32: 3317 case X86::BI__builtin_ia32_vcvttss2si64: 3318 case X86::BI__builtin_ia32_vcvttss2usi32: 3319 case X86::BI__builtin_ia32_vcvttss2usi64: 3320 ArgNum = 1; 3321 break; 3322 case X86::BI__builtin_ia32_maxpd512: 3323 case X86::BI__builtin_ia32_maxps512: 3324 case X86::BI__builtin_ia32_minpd512: 3325 case X86::BI__builtin_ia32_minps512: 3326 ArgNum = 2; 3327 break; 3328 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3329 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3330 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3331 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3332 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3333 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3334 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3335 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3336 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3337 case X86::BI__builtin_ia32_exp2pd_mask: 3338 case X86::BI__builtin_ia32_exp2ps_mask: 3339 case X86::BI__builtin_ia32_getexppd512_mask: 3340 case X86::BI__builtin_ia32_getexpps512_mask: 3341 case X86::BI__builtin_ia32_rcp28pd_mask: 3342 case X86::BI__builtin_ia32_rcp28ps_mask: 3343 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3344 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3345 case X86::BI__builtin_ia32_vcomisd: 3346 case X86::BI__builtin_ia32_vcomiss: 3347 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3348 ArgNum = 3; 3349 break; 3350 case X86::BI__builtin_ia32_cmppd512_mask: 3351 case X86::BI__builtin_ia32_cmpps512_mask: 3352 case X86::BI__builtin_ia32_cmpsd_mask: 3353 case X86::BI__builtin_ia32_cmpss_mask: 3354 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3355 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3356 case X86::BI__builtin_ia32_getexpss128_round_mask: 3357 case X86::BI__builtin_ia32_getmantpd512_mask: 3358 case X86::BI__builtin_ia32_getmantps512_mask: 3359 case X86::BI__builtin_ia32_maxsd_round_mask: 3360 case X86::BI__builtin_ia32_maxss_round_mask: 3361 case X86::BI__builtin_ia32_minsd_round_mask: 3362 case X86::BI__builtin_ia32_minss_round_mask: 3363 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3364 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3365 case X86::BI__builtin_ia32_reducepd512_mask: 3366 case X86::BI__builtin_ia32_reduceps512_mask: 3367 case X86::BI__builtin_ia32_rndscalepd_mask: 3368 case X86::BI__builtin_ia32_rndscaleps_mask: 3369 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3370 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3371 ArgNum = 4; 3372 break; 3373 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3374 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3375 case X86::BI__builtin_ia32_fixupimmps512_mask: 3376 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3377 case X86::BI__builtin_ia32_fixupimmsd_mask: 3378 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3379 case X86::BI__builtin_ia32_fixupimmss_mask: 3380 case X86::BI__builtin_ia32_fixupimmss_maskz: 3381 case X86::BI__builtin_ia32_getmantsd_round_mask: 3382 case X86::BI__builtin_ia32_getmantss_round_mask: 3383 case X86::BI__builtin_ia32_rangepd512_mask: 3384 case X86::BI__builtin_ia32_rangeps512_mask: 3385 case X86::BI__builtin_ia32_rangesd128_round_mask: 3386 case X86::BI__builtin_ia32_rangess128_round_mask: 3387 case X86::BI__builtin_ia32_reducesd_mask: 3388 case X86::BI__builtin_ia32_reducess_mask: 3389 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3390 case X86::BI__builtin_ia32_rndscaless_round_mask: 3391 ArgNum = 5; 3392 break; 3393 case X86::BI__builtin_ia32_vcvtsd2si64: 3394 case X86::BI__builtin_ia32_vcvtsd2si32: 3395 case X86::BI__builtin_ia32_vcvtsd2usi32: 3396 case X86::BI__builtin_ia32_vcvtsd2usi64: 3397 case X86::BI__builtin_ia32_vcvtss2si32: 3398 case X86::BI__builtin_ia32_vcvtss2si64: 3399 case X86::BI__builtin_ia32_vcvtss2usi32: 3400 case X86::BI__builtin_ia32_vcvtss2usi64: 3401 case X86::BI__builtin_ia32_sqrtpd512: 3402 case X86::BI__builtin_ia32_sqrtps512: 3403 ArgNum = 1; 3404 HasRC = true; 3405 break; 3406 case X86::BI__builtin_ia32_addpd512: 3407 case X86::BI__builtin_ia32_addps512: 3408 case X86::BI__builtin_ia32_divpd512: 3409 case X86::BI__builtin_ia32_divps512: 3410 case X86::BI__builtin_ia32_mulpd512: 3411 case X86::BI__builtin_ia32_mulps512: 3412 case X86::BI__builtin_ia32_subpd512: 3413 case X86::BI__builtin_ia32_subps512: 3414 case X86::BI__builtin_ia32_cvtsi2sd64: 3415 case X86::BI__builtin_ia32_cvtsi2ss32: 3416 case X86::BI__builtin_ia32_cvtsi2ss64: 3417 case X86::BI__builtin_ia32_cvtusi2sd64: 3418 case X86::BI__builtin_ia32_cvtusi2ss32: 3419 case X86::BI__builtin_ia32_cvtusi2ss64: 3420 ArgNum = 2; 3421 HasRC = true; 3422 break; 3423 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3424 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3425 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3426 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3427 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3428 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3429 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3430 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3431 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3432 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3433 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3434 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3435 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3436 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3437 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3438 ArgNum = 3; 3439 HasRC = true; 3440 break; 3441 case X86::BI__builtin_ia32_addss_round_mask: 3442 case X86::BI__builtin_ia32_addsd_round_mask: 3443 case X86::BI__builtin_ia32_divss_round_mask: 3444 case X86::BI__builtin_ia32_divsd_round_mask: 3445 case X86::BI__builtin_ia32_mulss_round_mask: 3446 case X86::BI__builtin_ia32_mulsd_round_mask: 3447 case X86::BI__builtin_ia32_subss_round_mask: 3448 case X86::BI__builtin_ia32_subsd_round_mask: 3449 case X86::BI__builtin_ia32_scalefpd512_mask: 3450 case X86::BI__builtin_ia32_scalefps512_mask: 3451 case X86::BI__builtin_ia32_scalefsd_round_mask: 3452 case X86::BI__builtin_ia32_scalefss_round_mask: 3453 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3454 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3455 case X86::BI__builtin_ia32_sqrtss_round_mask: 3456 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3457 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3458 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3459 case X86::BI__builtin_ia32_vfmaddss3_mask: 3460 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3461 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3462 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3463 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3464 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3465 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3466 case X86::BI__builtin_ia32_vfmaddps512_mask: 3467 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3468 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3469 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3470 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3471 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3472 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3473 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3474 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3475 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3476 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3477 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3478 ArgNum = 4; 3479 HasRC = true; 3480 break; 3481 } 3482 3483 llvm::APSInt Result; 3484 3485 // We can't check the value of a dependent argument. 3486 Expr *Arg = TheCall->getArg(ArgNum); 3487 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3488 return false; 3489 3490 // Check constant-ness first. 3491 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3492 return true; 3493 3494 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3495 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3496 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3497 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3498 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3499 Result == 8/*ROUND_NO_EXC*/ || 3500 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3501 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3502 return false; 3503 3504 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3505 << Arg->getSourceRange(); 3506 } 3507 3508 // Check if the gather/scatter scale is legal. 3509 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3510 CallExpr *TheCall) { 3511 unsigned ArgNum = 0; 3512 switch (BuiltinID) { 3513 default: 3514 return false; 3515 case X86::BI__builtin_ia32_gatherpfdpd: 3516 case X86::BI__builtin_ia32_gatherpfdps: 3517 case X86::BI__builtin_ia32_gatherpfqpd: 3518 case X86::BI__builtin_ia32_gatherpfqps: 3519 case X86::BI__builtin_ia32_scatterpfdpd: 3520 case X86::BI__builtin_ia32_scatterpfdps: 3521 case X86::BI__builtin_ia32_scatterpfqpd: 3522 case X86::BI__builtin_ia32_scatterpfqps: 3523 ArgNum = 3; 3524 break; 3525 case X86::BI__builtin_ia32_gatherd_pd: 3526 case X86::BI__builtin_ia32_gatherd_pd256: 3527 case X86::BI__builtin_ia32_gatherq_pd: 3528 case X86::BI__builtin_ia32_gatherq_pd256: 3529 case X86::BI__builtin_ia32_gatherd_ps: 3530 case X86::BI__builtin_ia32_gatherd_ps256: 3531 case X86::BI__builtin_ia32_gatherq_ps: 3532 case X86::BI__builtin_ia32_gatherq_ps256: 3533 case X86::BI__builtin_ia32_gatherd_q: 3534 case X86::BI__builtin_ia32_gatherd_q256: 3535 case X86::BI__builtin_ia32_gatherq_q: 3536 case X86::BI__builtin_ia32_gatherq_q256: 3537 case X86::BI__builtin_ia32_gatherd_d: 3538 case X86::BI__builtin_ia32_gatherd_d256: 3539 case X86::BI__builtin_ia32_gatherq_d: 3540 case X86::BI__builtin_ia32_gatherq_d256: 3541 case X86::BI__builtin_ia32_gather3div2df: 3542 case X86::BI__builtin_ia32_gather3div2di: 3543 case X86::BI__builtin_ia32_gather3div4df: 3544 case X86::BI__builtin_ia32_gather3div4di: 3545 case X86::BI__builtin_ia32_gather3div4sf: 3546 case X86::BI__builtin_ia32_gather3div4si: 3547 case X86::BI__builtin_ia32_gather3div8sf: 3548 case X86::BI__builtin_ia32_gather3div8si: 3549 case X86::BI__builtin_ia32_gather3siv2df: 3550 case X86::BI__builtin_ia32_gather3siv2di: 3551 case X86::BI__builtin_ia32_gather3siv4df: 3552 case X86::BI__builtin_ia32_gather3siv4di: 3553 case X86::BI__builtin_ia32_gather3siv4sf: 3554 case X86::BI__builtin_ia32_gather3siv4si: 3555 case X86::BI__builtin_ia32_gather3siv8sf: 3556 case X86::BI__builtin_ia32_gather3siv8si: 3557 case X86::BI__builtin_ia32_gathersiv8df: 3558 case X86::BI__builtin_ia32_gathersiv16sf: 3559 case X86::BI__builtin_ia32_gatherdiv8df: 3560 case X86::BI__builtin_ia32_gatherdiv16sf: 3561 case X86::BI__builtin_ia32_gathersiv8di: 3562 case X86::BI__builtin_ia32_gathersiv16si: 3563 case X86::BI__builtin_ia32_gatherdiv8di: 3564 case X86::BI__builtin_ia32_gatherdiv16si: 3565 case X86::BI__builtin_ia32_scatterdiv2df: 3566 case X86::BI__builtin_ia32_scatterdiv2di: 3567 case X86::BI__builtin_ia32_scatterdiv4df: 3568 case X86::BI__builtin_ia32_scatterdiv4di: 3569 case X86::BI__builtin_ia32_scatterdiv4sf: 3570 case X86::BI__builtin_ia32_scatterdiv4si: 3571 case X86::BI__builtin_ia32_scatterdiv8sf: 3572 case X86::BI__builtin_ia32_scatterdiv8si: 3573 case X86::BI__builtin_ia32_scattersiv2df: 3574 case X86::BI__builtin_ia32_scattersiv2di: 3575 case X86::BI__builtin_ia32_scattersiv4df: 3576 case X86::BI__builtin_ia32_scattersiv4di: 3577 case X86::BI__builtin_ia32_scattersiv4sf: 3578 case X86::BI__builtin_ia32_scattersiv4si: 3579 case X86::BI__builtin_ia32_scattersiv8sf: 3580 case X86::BI__builtin_ia32_scattersiv8si: 3581 case X86::BI__builtin_ia32_scattersiv8df: 3582 case X86::BI__builtin_ia32_scattersiv16sf: 3583 case X86::BI__builtin_ia32_scatterdiv8df: 3584 case X86::BI__builtin_ia32_scatterdiv16sf: 3585 case X86::BI__builtin_ia32_scattersiv8di: 3586 case X86::BI__builtin_ia32_scattersiv16si: 3587 case X86::BI__builtin_ia32_scatterdiv8di: 3588 case X86::BI__builtin_ia32_scatterdiv16si: 3589 ArgNum = 4; 3590 break; 3591 } 3592 3593 llvm::APSInt Result; 3594 3595 // We can't check the value of a dependent argument. 3596 Expr *Arg = TheCall->getArg(ArgNum); 3597 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3598 return false; 3599 3600 // Check constant-ness first. 3601 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3602 return true; 3603 3604 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3605 return false; 3606 3607 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3608 << Arg->getSourceRange(); 3609 } 3610 3611 enum { TileRegLow = 0, TileRegHigh = 7 }; 3612 3613 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 3614 ArrayRef<int> ArgNums) { 3615 for (int ArgNum : ArgNums) { 3616 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 3617 return true; 3618 } 3619 return false; 3620 } 3621 3622 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, int ArgNum) { 3623 return SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh); 3624 } 3625 3626 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 3627 ArrayRef<int> ArgNums) { 3628 // Because the max number of tile register is TileRegHigh + 1, so here we use 3629 // each bit to represent the usage of them in bitset. 3630 std::bitset<TileRegHigh + 1> ArgValues; 3631 for (int ArgNum : ArgNums) { 3632 llvm::APSInt Arg; 3633 SemaBuiltinConstantArg(TheCall, ArgNum, Arg); 3634 int ArgExtValue = Arg.getExtValue(); 3635 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 3636 "Incorrect tile register num."); 3637 if (ArgValues.test(ArgExtValue)) 3638 return Diag(TheCall->getBeginLoc(), 3639 diag::err_x86_builtin_tile_arg_duplicate) 3640 << TheCall->getArg(ArgNum)->getSourceRange(); 3641 ArgValues.set(ArgExtValue); 3642 } 3643 return false; 3644 } 3645 3646 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 3647 ArrayRef<int> ArgNums) { 3648 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 3649 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 3650 } 3651 3652 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 3653 switch (BuiltinID) { 3654 default: 3655 return false; 3656 case X86::BI__builtin_ia32_tileloadd64: 3657 case X86::BI__builtin_ia32_tileloaddt164: 3658 case X86::BI__builtin_ia32_tilestored64: 3659 case X86::BI__builtin_ia32_tilezero: 3660 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 3661 case X86::BI__builtin_ia32_tdpbssd: 3662 case X86::BI__builtin_ia32_tdpbsud: 3663 case X86::BI__builtin_ia32_tdpbusd: 3664 case X86::BI__builtin_ia32_tdpbuud: 3665 case X86::BI__builtin_ia32_tdpbf16ps: 3666 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 3667 } 3668 } 3669 static bool isX86_32Builtin(unsigned BuiltinID) { 3670 // These builtins only work on x86-32 targets. 3671 switch (BuiltinID) { 3672 case X86::BI__builtin_ia32_readeflags_u32: 3673 case X86::BI__builtin_ia32_writeeflags_u32: 3674 return true; 3675 } 3676 3677 return false; 3678 } 3679 3680 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3681 CallExpr *TheCall) { 3682 if (BuiltinID == X86::BI__builtin_cpu_supports) 3683 return SemaBuiltinCpuSupports(*this, TI, TheCall); 3684 3685 if (BuiltinID == X86::BI__builtin_cpu_is) 3686 return SemaBuiltinCpuIs(*this, TI, TheCall); 3687 3688 // Check for 32-bit only builtins on a 64-bit target. 3689 const llvm::Triple &TT = TI.getTriple(); 3690 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3691 return Diag(TheCall->getCallee()->getBeginLoc(), 3692 diag::err_32_bit_builtin_64_bit_tgt); 3693 3694 // If the intrinsic has rounding or SAE make sure its valid. 3695 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3696 return true; 3697 3698 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3699 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3700 return true; 3701 3702 // If the intrinsic has a tile arguments, make sure they are valid. 3703 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 3704 return true; 3705 3706 // For intrinsics which take an immediate value as part of the instruction, 3707 // range check them here. 3708 int i = 0, l = 0, u = 0; 3709 switch (BuiltinID) { 3710 default: 3711 return false; 3712 case X86::BI__builtin_ia32_vec_ext_v2si: 3713 case X86::BI__builtin_ia32_vec_ext_v2di: 3714 case X86::BI__builtin_ia32_vextractf128_pd256: 3715 case X86::BI__builtin_ia32_vextractf128_ps256: 3716 case X86::BI__builtin_ia32_vextractf128_si256: 3717 case X86::BI__builtin_ia32_extract128i256: 3718 case X86::BI__builtin_ia32_extractf64x4_mask: 3719 case X86::BI__builtin_ia32_extracti64x4_mask: 3720 case X86::BI__builtin_ia32_extractf32x8_mask: 3721 case X86::BI__builtin_ia32_extracti32x8_mask: 3722 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3723 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3724 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3725 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3726 i = 1; l = 0; u = 1; 3727 break; 3728 case X86::BI__builtin_ia32_vec_set_v2di: 3729 case X86::BI__builtin_ia32_vinsertf128_pd256: 3730 case X86::BI__builtin_ia32_vinsertf128_ps256: 3731 case X86::BI__builtin_ia32_vinsertf128_si256: 3732 case X86::BI__builtin_ia32_insert128i256: 3733 case X86::BI__builtin_ia32_insertf32x8: 3734 case X86::BI__builtin_ia32_inserti32x8: 3735 case X86::BI__builtin_ia32_insertf64x4: 3736 case X86::BI__builtin_ia32_inserti64x4: 3737 case X86::BI__builtin_ia32_insertf64x2_256: 3738 case X86::BI__builtin_ia32_inserti64x2_256: 3739 case X86::BI__builtin_ia32_insertf32x4_256: 3740 case X86::BI__builtin_ia32_inserti32x4_256: 3741 i = 2; l = 0; u = 1; 3742 break; 3743 case X86::BI__builtin_ia32_vpermilpd: 3744 case X86::BI__builtin_ia32_vec_ext_v4hi: 3745 case X86::BI__builtin_ia32_vec_ext_v4si: 3746 case X86::BI__builtin_ia32_vec_ext_v4sf: 3747 case X86::BI__builtin_ia32_vec_ext_v4di: 3748 case X86::BI__builtin_ia32_extractf32x4_mask: 3749 case X86::BI__builtin_ia32_extracti32x4_mask: 3750 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3751 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3752 i = 1; l = 0; u = 3; 3753 break; 3754 case X86::BI_mm_prefetch: 3755 case X86::BI__builtin_ia32_vec_ext_v8hi: 3756 case X86::BI__builtin_ia32_vec_ext_v8si: 3757 i = 1; l = 0; u = 7; 3758 break; 3759 case X86::BI__builtin_ia32_sha1rnds4: 3760 case X86::BI__builtin_ia32_blendpd: 3761 case X86::BI__builtin_ia32_shufpd: 3762 case X86::BI__builtin_ia32_vec_set_v4hi: 3763 case X86::BI__builtin_ia32_vec_set_v4si: 3764 case X86::BI__builtin_ia32_vec_set_v4di: 3765 case X86::BI__builtin_ia32_shuf_f32x4_256: 3766 case X86::BI__builtin_ia32_shuf_f64x2_256: 3767 case X86::BI__builtin_ia32_shuf_i32x4_256: 3768 case X86::BI__builtin_ia32_shuf_i64x2_256: 3769 case X86::BI__builtin_ia32_insertf64x2_512: 3770 case X86::BI__builtin_ia32_inserti64x2_512: 3771 case X86::BI__builtin_ia32_insertf32x4: 3772 case X86::BI__builtin_ia32_inserti32x4: 3773 i = 2; l = 0; u = 3; 3774 break; 3775 case X86::BI__builtin_ia32_vpermil2pd: 3776 case X86::BI__builtin_ia32_vpermil2pd256: 3777 case X86::BI__builtin_ia32_vpermil2ps: 3778 case X86::BI__builtin_ia32_vpermil2ps256: 3779 i = 3; l = 0; u = 3; 3780 break; 3781 case X86::BI__builtin_ia32_cmpb128_mask: 3782 case X86::BI__builtin_ia32_cmpw128_mask: 3783 case X86::BI__builtin_ia32_cmpd128_mask: 3784 case X86::BI__builtin_ia32_cmpq128_mask: 3785 case X86::BI__builtin_ia32_cmpb256_mask: 3786 case X86::BI__builtin_ia32_cmpw256_mask: 3787 case X86::BI__builtin_ia32_cmpd256_mask: 3788 case X86::BI__builtin_ia32_cmpq256_mask: 3789 case X86::BI__builtin_ia32_cmpb512_mask: 3790 case X86::BI__builtin_ia32_cmpw512_mask: 3791 case X86::BI__builtin_ia32_cmpd512_mask: 3792 case X86::BI__builtin_ia32_cmpq512_mask: 3793 case X86::BI__builtin_ia32_ucmpb128_mask: 3794 case X86::BI__builtin_ia32_ucmpw128_mask: 3795 case X86::BI__builtin_ia32_ucmpd128_mask: 3796 case X86::BI__builtin_ia32_ucmpq128_mask: 3797 case X86::BI__builtin_ia32_ucmpb256_mask: 3798 case X86::BI__builtin_ia32_ucmpw256_mask: 3799 case X86::BI__builtin_ia32_ucmpd256_mask: 3800 case X86::BI__builtin_ia32_ucmpq256_mask: 3801 case X86::BI__builtin_ia32_ucmpb512_mask: 3802 case X86::BI__builtin_ia32_ucmpw512_mask: 3803 case X86::BI__builtin_ia32_ucmpd512_mask: 3804 case X86::BI__builtin_ia32_ucmpq512_mask: 3805 case X86::BI__builtin_ia32_vpcomub: 3806 case X86::BI__builtin_ia32_vpcomuw: 3807 case X86::BI__builtin_ia32_vpcomud: 3808 case X86::BI__builtin_ia32_vpcomuq: 3809 case X86::BI__builtin_ia32_vpcomb: 3810 case X86::BI__builtin_ia32_vpcomw: 3811 case X86::BI__builtin_ia32_vpcomd: 3812 case X86::BI__builtin_ia32_vpcomq: 3813 case X86::BI__builtin_ia32_vec_set_v8hi: 3814 case X86::BI__builtin_ia32_vec_set_v8si: 3815 i = 2; l = 0; u = 7; 3816 break; 3817 case X86::BI__builtin_ia32_vpermilpd256: 3818 case X86::BI__builtin_ia32_roundps: 3819 case X86::BI__builtin_ia32_roundpd: 3820 case X86::BI__builtin_ia32_roundps256: 3821 case X86::BI__builtin_ia32_roundpd256: 3822 case X86::BI__builtin_ia32_getmantpd128_mask: 3823 case X86::BI__builtin_ia32_getmantpd256_mask: 3824 case X86::BI__builtin_ia32_getmantps128_mask: 3825 case X86::BI__builtin_ia32_getmantps256_mask: 3826 case X86::BI__builtin_ia32_getmantpd512_mask: 3827 case X86::BI__builtin_ia32_getmantps512_mask: 3828 case X86::BI__builtin_ia32_vec_ext_v16qi: 3829 case X86::BI__builtin_ia32_vec_ext_v16hi: 3830 i = 1; l = 0; u = 15; 3831 break; 3832 case X86::BI__builtin_ia32_pblendd128: 3833 case X86::BI__builtin_ia32_blendps: 3834 case X86::BI__builtin_ia32_blendpd256: 3835 case X86::BI__builtin_ia32_shufpd256: 3836 case X86::BI__builtin_ia32_roundss: 3837 case X86::BI__builtin_ia32_roundsd: 3838 case X86::BI__builtin_ia32_rangepd128_mask: 3839 case X86::BI__builtin_ia32_rangepd256_mask: 3840 case X86::BI__builtin_ia32_rangepd512_mask: 3841 case X86::BI__builtin_ia32_rangeps128_mask: 3842 case X86::BI__builtin_ia32_rangeps256_mask: 3843 case X86::BI__builtin_ia32_rangeps512_mask: 3844 case X86::BI__builtin_ia32_getmantsd_round_mask: 3845 case X86::BI__builtin_ia32_getmantss_round_mask: 3846 case X86::BI__builtin_ia32_vec_set_v16qi: 3847 case X86::BI__builtin_ia32_vec_set_v16hi: 3848 i = 2; l = 0; u = 15; 3849 break; 3850 case X86::BI__builtin_ia32_vec_ext_v32qi: 3851 i = 1; l = 0; u = 31; 3852 break; 3853 case X86::BI__builtin_ia32_cmpps: 3854 case X86::BI__builtin_ia32_cmpss: 3855 case X86::BI__builtin_ia32_cmppd: 3856 case X86::BI__builtin_ia32_cmpsd: 3857 case X86::BI__builtin_ia32_cmpps256: 3858 case X86::BI__builtin_ia32_cmppd256: 3859 case X86::BI__builtin_ia32_cmpps128_mask: 3860 case X86::BI__builtin_ia32_cmppd128_mask: 3861 case X86::BI__builtin_ia32_cmpps256_mask: 3862 case X86::BI__builtin_ia32_cmppd256_mask: 3863 case X86::BI__builtin_ia32_cmpps512_mask: 3864 case X86::BI__builtin_ia32_cmppd512_mask: 3865 case X86::BI__builtin_ia32_cmpsd_mask: 3866 case X86::BI__builtin_ia32_cmpss_mask: 3867 case X86::BI__builtin_ia32_vec_set_v32qi: 3868 i = 2; l = 0; u = 31; 3869 break; 3870 case X86::BI__builtin_ia32_permdf256: 3871 case X86::BI__builtin_ia32_permdi256: 3872 case X86::BI__builtin_ia32_permdf512: 3873 case X86::BI__builtin_ia32_permdi512: 3874 case X86::BI__builtin_ia32_vpermilps: 3875 case X86::BI__builtin_ia32_vpermilps256: 3876 case X86::BI__builtin_ia32_vpermilpd512: 3877 case X86::BI__builtin_ia32_vpermilps512: 3878 case X86::BI__builtin_ia32_pshufd: 3879 case X86::BI__builtin_ia32_pshufd256: 3880 case X86::BI__builtin_ia32_pshufd512: 3881 case X86::BI__builtin_ia32_pshufhw: 3882 case X86::BI__builtin_ia32_pshufhw256: 3883 case X86::BI__builtin_ia32_pshufhw512: 3884 case X86::BI__builtin_ia32_pshuflw: 3885 case X86::BI__builtin_ia32_pshuflw256: 3886 case X86::BI__builtin_ia32_pshuflw512: 3887 case X86::BI__builtin_ia32_vcvtps2ph: 3888 case X86::BI__builtin_ia32_vcvtps2ph_mask: 3889 case X86::BI__builtin_ia32_vcvtps2ph256: 3890 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 3891 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 3892 case X86::BI__builtin_ia32_rndscaleps_128_mask: 3893 case X86::BI__builtin_ia32_rndscalepd_128_mask: 3894 case X86::BI__builtin_ia32_rndscaleps_256_mask: 3895 case X86::BI__builtin_ia32_rndscalepd_256_mask: 3896 case X86::BI__builtin_ia32_rndscaleps_mask: 3897 case X86::BI__builtin_ia32_rndscalepd_mask: 3898 case X86::BI__builtin_ia32_reducepd128_mask: 3899 case X86::BI__builtin_ia32_reducepd256_mask: 3900 case X86::BI__builtin_ia32_reducepd512_mask: 3901 case X86::BI__builtin_ia32_reduceps128_mask: 3902 case X86::BI__builtin_ia32_reduceps256_mask: 3903 case X86::BI__builtin_ia32_reduceps512_mask: 3904 case X86::BI__builtin_ia32_prold512: 3905 case X86::BI__builtin_ia32_prolq512: 3906 case X86::BI__builtin_ia32_prold128: 3907 case X86::BI__builtin_ia32_prold256: 3908 case X86::BI__builtin_ia32_prolq128: 3909 case X86::BI__builtin_ia32_prolq256: 3910 case X86::BI__builtin_ia32_prord512: 3911 case X86::BI__builtin_ia32_prorq512: 3912 case X86::BI__builtin_ia32_prord128: 3913 case X86::BI__builtin_ia32_prord256: 3914 case X86::BI__builtin_ia32_prorq128: 3915 case X86::BI__builtin_ia32_prorq256: 3916 case X86::BI__builtin_ia32_fpclasspd128_mask: 3917 case X86::BI__builtin_ia32_fpclasspd256_mask: 3918 case X86::BI__builtin_ia32_fpclassps128_mask: 3919 case X86::BI__builtin_ia32_fpclassps256_mask: 3920 case X86::BI__builtin_ia32_fpclassps512_mask: 3921 case X86::BI__builtin_ia32_fpclasspd512_mask: 3922 case X86::BI__builtin_ia32_fpclasssd_mask: 3923 case X86::BI__builtin_ia32_fpclassss_mask: 3924 case X86::BI__builtin_ia32_pslldqi128_byteshift: 3925 case X86::BI__builtin_ia32_pslldqi256_byteshift: 3926 case X86::BI__builtin_ia32_pslldqi512_byteshift: 3927 case X86::BI__builtin_ia32_psrldqi128_byteshift: 3928 case X86::BI__builtin_ia32_psrldqi256_byteshift: 3929 case X86::BI__builtin_ia32_psrldqi512_byteshift: 3930 case X86::BI__builtin_ia32_kshiftliqi: 3931 case X86::BI__builtin_ia32_kshiftlihi: 3932 case X86::BI__builtin_ia32_kshiftlisi: 3933 case X86::BI__builtin_ia32_kshiftlidi: 3934 case X86::BI__builtin_ia32_kshiftriqi: 3935 case X86::BI__builtin_ia32_kshiftrihi: 3936 case X86::BI__builtin_ia32_kshiftrisi: 3937 case X86::BI__builtin_ia32_kshiftridi: 3938 i = 1; l = 0; u = 255; 3939 break; 3940 case X86::BI__builtin_ia32_vperm2f128_pd256: 3941 case X86::BI__builtin_ia32_vperm2f128_ps256: 3942 case X86::BI__builtin_ia32_vperm2f128_si256: 3943 case X86::BI__builtin_ia32_permti256: 3944 case X86::BI__builtin_ia32_pblendw128: 3945 case X86::BI__builtin_ia32_pblendw256: 3946 case X86::BI__builtin_ia32_blendps256: 3947 case X86::BI__builtin_ia32_pblendd256: 3948 case X86::BI__builtin_ia32_palignr128: 3949 case X86::BI__builtin_ia32_palignr256: 3950 case X86::BI__builtin_ia32_palignr512: 3951 case X86::BI__builtin_ia32_alignq512: 3952 case X86::BI__builtin_ia32_alignd512: 3953 case X86::BI__builtin_ia32_alignd128: 3954 case X86::BI__builtin_ia32_alignd256: 3955 case X86::BI__builtin_ia32_alignq128: 3956 case X86::BI__builtin_ia32_alignq256: 3957 case X86::BI__builtin_ia32_vcomisd: 3958 case X86::BI__builtin_ia32_vcomiss: 3959 case X86::BI__builtin_ia32_shuf_f32x4: 3960 case X86::BI__builtin_ia32_shuf_f64x2: 3961 case X86::BI__builtin_ia32_shuf_i32x4: 3962 case X86::BI__builtin_ia32_shuf_i64x2: 3963 case X86::BI__builtin_ia32_shufpd512: 3964 case X86::BI__builtin_ia32_shufps: 3965 case X86::BI__builtin_ia32_shufps256: 3966 case X86::BI__builtin_ia32_shufps512: 3967 case X86::BI__builtin_ia32_dbpsadbw128: 3968 case X86::BI__builtin_ia32_dbpsadbw256: 3969 case X86::BI__builtin_ia32_dbpsadbw512: 3970 case X86::BI__builtin_ia32_vpshldd128: 3971 case X86::BI__builtin_ia32_vpshldd256: 3972 case X86::BI__builtin_ia32_vpshldd512: 3973 case X86::BI__builtin_ia32_vpshldq128: 3974 case X86::BI__builtin_ia32_vpshldq256: 3975 case X86::BI__builtin_ia32_vpshldq512: 3976 case X86::BI__builtin_ia32_vpshldw128: 3977 case X86::BI__builtin_ia32_vpshldw256: 3978 case X86::BI__builtin_ia32_vpshldw512: 3979 case X86::BI__builtin_ia32_vpshrdd128: 3980 case X86::BI__builtin_ia32_vpshrdd256: 3981 case X86::BI__builtin_ia32_vpshrdd512: 3982 case X86::BI__builtin_ia32_vpshrdq128: 3983 case X86::BI__builtin_ia32_vpshrdq256: 3984 case X86::BI__builtin_ia32_vpshrdq512: 3985 case X86::BI__builtin_ia32_vpshrdw128: 3986 case X86::BI__builtin_ia32_vpshrdw256: 3987 case X86::BI__builtin_ia32_vpshrdw512: 3988 i = 2; l = 0; u = 255; 3989 break; 3990 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3991 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3992 case X86::BI__builtin_ia32_fixupimmps512_mask: 3993 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3994 case X86::BI__builtin_ia32_fixupimmsd_mask: 3995 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3996 case X86::BI__builtin_ia32_fixupimmss_mask: 3997 case X86::BI__builtin_ia32_fixupimmss_maskz: 3998 case X86::BI__builtin_ia32_fixupimmpd128_mask: 3999 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4000 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4001 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4002 case X86::BI__builtin_ia32_fixupimmps128_mask: 4003 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4004 case X86::BI__builtin_ia32_fixupimmps256_mask: 4005 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4006 case X86::BI__builtin_ia32_pternlogd512_mask: 4007 case X86::BI__builtin_ia32_pternlogd512_maskz: 4008 case X86::BI__builtin_ia32_pternlogq512_mask: 4009 case X86::BI__builtin_ia32_pternlogq512_maskz: 4010 case X86::BI__builtin_ia32_pternlogd128_mask: 4011 case X86::BI__builtin_ia32_pternlogd128_maskz: 4012 case X86::BI__builtin_ia32_pternlogd256_mask: 4013 case X86::BI__builtin_ia32_pternlogd256_maskz: 4014 case X86::BI__builtin_ia32_pternlogq128_mask: 4015 case X86::BI__builtin_ia32_pternlogq128_maskz: 4016 case X86::BI__builtin_ia32_pternlogq256_mask: 4017 case X86::BI__builtin_ia32_pternlogq256_maskz: 4018 i = 3; l = 0; u = 255; 4019 break; 4020 case X86::BI__builtin_ia32_gatherpfdpd: 4021 case X86::BI__builtin_ia32_gatherpfdps: 4022 case X86::BI__builtin_ia32_gatherpfqpd: 4023 case X86::BI__builtin_ia32_gatherpfqps: 4024 case X86::BI__builtin_ia32_scatterpfdpd: 4025 case X86::BI__builtin_ia32_scatterpfdps: 4026 case X86::BI__builtin_ia32_scatterpfqpd: 4027 case X86::BI__builtin_ia32_scatterpfqps: 4028 i = 4; l = 2; u = 3; 4029 break; 4030 case X86::BI__builtin_ia32_reducesd_mask: 4031 case X86::BI__builtin_ia32_reducess_mask: 4032 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4033 case X86::BI__builtin_ia32_rndscaless_round_mask: 4034 i = 4; l = 0; u = 255; 4035 break; 4036 } 4037 4038 // Note that we don't force a hard error on the range check here, allowing 4039 // template-generated or macro-generated dead code to potentially have out-of- 4040 // range values. These need to code generate, but don't need to necessarily 4041 // make any sense. We use a warning that defaults to an error. 4042 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4043 } 4044 4045 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4046 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4047 /// Returns true when the format fits the function and the FormatStringInfo has 4048 /// been populated. 4049 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4050 FormatStringInfo *FSI) { 4051 FSI->HasVAListArg = Format->getFirstArg() == 0; 4052 FSI->FormatIdx = Format->getFormatIdx() - 1; 4053 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4054 4055 // The way the format attribute works in GCC, the implicit this argument 4056 // of member functions is counted. However, it doesn't appear in our own 4057 // lists, so decrement format_idx in that case. 4058 if (IsCXXMember) { 4059 if(FSI->FormatIdx == 0) 4060 return false; 4061 --FSI->FormatIdx; 4062 if (FSI->FirstDataArg != 0) 4063 --FSI->FirstDataArg; 4064 } 4065 return true; 4066 } 4067 4068 /// Checks if a the given expression evaluates to null. 4069 /// 4070 /// Returns true if the value evaluates to null. 4071 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4072 // If the expression has non-null type, it doesn't evaluate to null. 4073 if (auto nullability 4074 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4075 if (*nullability == NullabilityKind::NonNull) 4076 return false; 4077 } 4078 4079 // As a special case, transparent unions initialized with zero are 4080 // considered null for the purposes of the nonnull attribute. 4081 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4082 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4083 if (const CompoundLiteralExpr *CLE = 4084 dyn_cast<CompoundLiteralExpr>(Expr)) 4085 if (const InitListExpr *ILE = 4086 dyn_cast<InitListExpr>(CLE->getInitializer())) 4087 Expr = ILE->getInit(0); 4088 } 4089 4090 bool Result; 4091 return (!Expr->isValueDependent() && 4092 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4093 !Result); 4094 } 4095 4096 static void CheckNonNullArgument(Sema &S, 4097 const Expr *ArgExpr, 4098 SourceLocation CallSiteLoc) { 4099 if (CheckNonNullExpr(S, ArgExpr)) 4100 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4101 S.PDiag(diag::warn_null_arg) 4102 << ArgExpr->getSourceRange()); 4103 } 4104 4105 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4106 FormatStringInfo FSI; 4107 if ((GetFormatStringType(Format) == FST_NSString) && 4108 getFormatStringInfo(Format, false, &FSI)) { 4109 Idx = FSI.FormatIdx; 4110 return true; 4111 } 4112 return false; 4113 } 4114 4115 /// Diagnose use of %s directive in an NSString which is being passed 4116 /// as formatting string to formatting method. 4117 static void 4118 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4119 const NamedDecl *FDecl, 4120 Expr **Args, 4121 unsigned NumArgs) { 4122 unsigned Idx = 0; 4123 bool Format = false; 4124 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4125 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4126 Idx = 2; 4127 Format = true; 4128 } 4129 else 4130 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4131 if (S.GetFormatNSStringIdx(I, Idx)) { 4132 Format = true; 4133 break; 4134 } 4135 } 4136 if (!Format || NumArgs <= Idx) 4137 return; 4138 const Expr *FormatExpr = Args[Idx]; 4139 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4140 FormatExpr = CSCE->getSubExpr(); 4141 const StringLiteral *FormatString; 4142 if (const ObjCStringLiteral *OSL = 4143 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4144 FormatString = OSL->getString(); 4145 else 4146 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4147 if (!FormatString) 4148 return; 4149 if (S.FormatStringHasSArg(FormatString)) { 4150 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4151 << "%s" << 1 << 1; 4152 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4153 << FDecl->getDeclName(); 4154 } 4155 } 4156 4157 /// Determine whether the given type has a non-null nullability annotation. 4158 static bool isNonNullType(ASTContext &ctx, QualType type) { 4159 if (auto nullability = type->getNullability(ctx)) 4160 return *nullability == NullabilityKind::NonNull; 4161 4162 return false; 4163 } 4164 4165 static void CheckNonNullArguments(Sema &S, 4166 const NamedDecl *FDecl, 4167 const FunctionProtoType *Proto, 4168 ArrayRef<const Expr *> Args, 4169 SourceLocation CallSiteLoc) { 4170 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4171 4172 // Already checked by by constant evaluator. 4173 if (S.isConstantEvaluated()) 4174 return; 4175 // Check the attributes attached to the method/function itself. 4176 llvm::SmallBitVector NonNullArgs; 4177 if (FDecl) { 4178 // Handle the nonnull attribute on the function/method declaration itself. 4179 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4180 if (!NonNull->args_size()) { 4181 // Easy case: all pointer arguments are nonnull. 4182 for (const auto *Arg : Args) 4183 if (S.isValidPointerAttrType(Arg->getType())) 4184 CheckNonNullArgument(S, Arg, CallSiteLoc); 4185 return; 4186 } 4187 4188 for (const ParamIdx &Idx : NonNull->args()) { 4189 unsigned IdxAST = Idx.getASTIndex(); 4190 if (IdxAST >= Args.size()) 4191 continue; 4192 if (NonNullArgs.empty()) 4193 NonNullArgs.resize(Args.size()); 4194 NonNullArgs.set(IdxAST); 4195 } 4196 } 4197 } 4198 4199 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4200 // Handle the nonnull attribute on the parameters of the 4201 // function/method. 4202 ArrayRef<ParmVarDecl*> parms; 4203 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4204 parms = FD->parameters(); 4205 else 4206 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4207 4208 unsigned ParamIndex = 0; 4209 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4210 I != E; ++I, ++ParamIndex) { 4211 const ParmVarDecl *PVD = *I; 4212 if (PVD->hasAttr<NonNullAttr>() || 4213 isNonNullType(S.Context, PVD->getType())) { 4214 if (NonNullArgs.empty()) 4215 NonNullArgs.resize(Args.size()); 4216 4217 NonNullArgs.set(ParamIndex); 4218 } 4219 } 4220 } else { 4221 // If we have a non-function, non-method declaration but no 4222 // function prototype, try to dig out the function prototype. 4223 if (!Proto) { 4224 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4225 QualType type = VD->getType().getNonReferenceType(); 4226 if (auto pointerType = type->getAs<PointerType>()) 4227 type = pointerType->getPointeeType(); 4228 else if (auto blockType = type->getAs<BlockPointerType>()) 4229 type = blockType->getPointeeType(); 4230 // FIXME: data member pointers? 4231 4232 // Dig out the function prototype, if there is one. 4233 Proto = type->getAs<FunctionProtoType>(); 4234 } 4235 } 4236 4237 // Fill in non-null argument information from the nullability 4238 // information on the parameter types (if we have them). 4239 if (Proto) { 4240 unsigned Index = 0; 4241 for (auto paramType : Proto->getParamTypes()) { 4242 if (isNonNullType(S.Context, paramType)) { 4243 if (NonNullArgs.empty()) 4244 NonNullArgs.resize(Args.size()); 4245 4246 NonNullArgs.set(Index); 4247 } 4248 4249 ++Index; 4250 } 4251 } 4252 } 4253 4254 // Check for non-null arguments. 4255 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4256 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4257 if (NonNullArgs[ArgIndex]) 4258 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4259 } 4260 } 4261 4262 /// Handles the checks for format strings, non-POD arguments to vararg 4263 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4264 /// attributes. 4265 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4266 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4267 bool IsMemberFunction, SourceLocation Loc, 4268 SourceRange Range, VariadicCallType CallType) { 4269 // FIXME: We should check as much as we can in the template definition. 4270 if (CurContext->isDependentContext()) 4271 return; 4272 4273 // Printf and scanf checking. 4274 llvm::SmallBitVector CheckedVarArgs; 4275 if (FDecl) { 4276 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4277 // Only create vector if there are format attributes. 4278 CheckedVarArgs.resize(Args.size()); 4279 4280 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4281 CheckedVarArgs); 4282 } 4283 } 4284 4285 // Refuse POD arguments that weren't caught by the format string 4286 // checks above. 4287 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4288 if (CallType != VariadicDoesNotApply && 4289 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4290 unsigned NumParams = Proto ? Proto->getNumParams() 4291 : FDecl && isa<FunctionDecl>(FDecl) 4292 ? cast<FunctionDecl>(FDecl)->getNumParams() 4293 : FDecl && isa<ObjCMethodDecl>(FDecl) 4294 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4295 : 0; 4296 4297 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4298 // Args[ArgIdx] can be null in malformed code. 4299 if (const Expr *Arg = Args[ArgIdx]) { 4300 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4301 checkVariadicArgument(Arg, CallType); 4302 } 4303 } 4304 } 4305 4306 if (FDecl || Proto) { 4307 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4308 4309 // Type safety checking. 4310 if (FDecl) { 4311 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4312 CheckArgumentWithTypeTag(I, Args, Loc); 4313 } 4314 } 4315 4316 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4317 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4318 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4319 if (!Arg->isValueDependent()) { 4320 Expr::EvalResult Align; 4321 if (Arg->EvaluateAsInt(Align, Context)) { 4322 const llvm::APSInt &I = Align.Val.getInt(); 4323 if (!I.isPowerOf2()) 4324 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4325 << Arg->getSourceRange(); 4326 4327 if (I > Sema::MaximumAlignment) 4328 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4329 << Arg->getSourceRange() << Sema::MaximumAlignment; 4330 } 4331 } 4332 } 4333 4334 if (FD) 4335 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4336 } 4337 4338 /// CheckConstructorCall - Check a constructor call for correctness and safety 4339 /// properties not enforced by the C type system. 4340 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4341 ArrayRef<const Expr *> Args, 4342 const FunctionProtoType *Proto, 4343 SourceLocation Loc) { 4344 VariadicCallType CallType = 4345 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4346 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4347 Loc, SourceRange(), CallType); 4348 } 4349 4350 /// CheckFunctionCall - Check a direct function call for various correctness 4351 /// and safety properties not strictly enforced by the C type system. 4352 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4353 const FunctionProtoType *Proto) { 4354 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4355 isa<CXXMethodDecl>(FDecl); 4356 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4357 IsMemberOperatorCall; 4358 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4359 TheCall->getCallee()); 4360 Expr** Args = TheCall->getArgs(); 4361 unsigned NumArgs = TheCall->getNumArgs(); 4362 4363 Expr *ImplicitThis = nullptr; 4364 if (IsMemberOperatorCall) { 4365 // If this is a call to a member operator, hide the first argument 4366 // from checkCall. 4367 // FIXME: Our choice of AST representation here is less than ideal. 4368 ImplicitThis = Args[0]; 4369 ++Args; 4370 --NumArgs; 4371 } else if (IsMemberFunction) 4372 ImplicitThis = 4373 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4374 4375 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4376 IsMemberFunction, TheCall->getRParenLoc(), 4377 TheCall->getCallee()->getSourceRange(), CallType); 4378 4379 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4380 // None of the checks below are needed for functions that don't have 4381 // simple names (e.g., C++ conversion functions). 4382 if (!FnInfo) 4383 return false; 4384 4385 CheckAbsoluteValueFunction(TheCall, FDecl); 4386 CheckMaxUnsignedZero(TheCall, FDecl); 4387 4388 if (getLangOpts().ObjC) 4389 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4390 4391 unsigned CMId = FDecl->getMemoryFunctionKind(); 4392 if (CMId == 0) 4393 return false; 4394 4395 // Handle memory setting and copying functions. 4396 if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat) 4397 CheckStrlcpycatArguments(TheCall, FnInfo); 4398 else if (CMId == Builtin::BIstrncat) 4399 CheckStrncatArguments(TheCall, FnInfo); 4400 else 4401 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4402 4403 return false; 4404 } 4405 4406 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4407 ArrayRef<const Expr *> Args) { 4408 VariadicCallType CallType = 4409 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4410 4411 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4412 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4413 CallType); 4414 4415 return false; 4416 } 4417 4418 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4419 const FunctionProtoType *Proto) { 4420 QualType Ty; 4421 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4422 Ty = V->getType().getNonReferenceType(); 4423 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4424 Ty = F->getType().getNonReferenceType(); 4425 else 4426 return false; 4427 4428 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4429 !Ty->isFunctionProtoType()) 4430 return false; 4431 4432 VariadicCallType CallType; 4433 if (!Proto || !Proto->isVariadic()) { 4434 CallType = VariadicDoesNotApply; 4435 } else if (Ty->isBlockPointerType()) { 4436 CallType = VariadicBlock; 4437 } else { // Ty->isFunctionPointerType() 4438 CallType = VariadicFunction; 4439 } 4440 4441 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4442 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4443 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4444 TheCall->getCallee()->getSourceRange(), CallType); 4445 4446 return false; 4447 } 4448 4449 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4450 /// such as function pointers returned from functions. 4451 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4452 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4453 TheCall->getCallee()); 4454 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4455 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4456 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4457 TheCall->getCallee()->getSourceRange(), CallType); 4458 4459 return false; 4460 } 4461 4462 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4463 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4464 return false; 4465 4466 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4467 switch (Op) { 4468 case AtomicExpr::AO__c11_atomic_init: 4469 case AtomicExpr::AO__opencl_atomic_init: 4470 llvm_unreachable("There is no ordering argument for an init"); 4471 4472 case AtomicExpr::AO__c11_atomic_load: 4473 case AtomicExpr::AO__opencl_atomic_load: 4474 case AtomicExpr::AO__atomic_load_n: 4475 case AtomicExpr::AO__atomic_load: 4476 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4477 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4478 4479 case AtomicExpr::AO__c11_atomic_store: 4480 case AtomicExpr::AO__opencl_atomic_store: 4481 case AtomicExpr::AO__atomic_store: 4482 case AtomicExpr::AO__atomic_store_n: 4483 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4484 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4485 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4486 4487 default: 4488 return true; 4489 } 4490 } 4491 4492 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4493 AtomicExpr::AtomicOp Op) { 4494 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4495 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4496 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4497 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4498 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4499 Op); 4500 } 4501 4502 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4503 SourceLocation RParenLoc, MultiExprArg Args, 4504 AtomicExpr::AtomicOp Op, 4505 AtomicArgumentOrder ArgOrder) { 4506 // All the non-OpenCL operations take one of the following forms. 4507 // The OpenCL operations take the __c11 forms with one extra argument for 4508 // synchronization scope. 4509 enum { 4510 // C __c11_atomic_init(A *, C) 4511 Init, 4512 4513 // C __c11_atomic_load(A *, int) 4514 Load, 4515 4516 // void __atomic_load(A *, CP, int) 4517 LoadCopy, 4518 4519 // void __atomic_store(A *, CP, int) 4520 Copy, 4521 4522 // C __c11_atomic_add(A *, M, int) 4523 Arithmetic, 4524 4525 // C __atomic_exchange_n(A *, CP, int) 4526 Xchg, 4527 4528 // void __atomic_exchange(A *, C *, CP, int) 4529 GNUXchg, 4530 4531 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4532 C11CmpXchg, 4533 4534 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4535 GNUCmpXchg 4536 } Form = Init; 4537 4538 const unsigned NumForm = GNUCmpXchg + 1; 4539 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4540 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4541 // where: 4542 // C is an appropriate type, 4543 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4544 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4545 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4546 // the int parameters are for orderings. 4547 4548 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4549 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4550 "need to update code for modified forms"); 4551 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4552 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4553 AtomicExpr::AO__atomic_load, 4554 "need to update code for modified C11 atomics"); 4555 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4556 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4557 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4558 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4559 IsOpenCL; 4560 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4561 Op == AtomicExpr::AO__atomic_store_n || 4562 Op == AtomicExpr::AO__atomic_exchange_n || 4563 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4564 bool IsAddSub = false; 4565 4566 switch (Op) { 4567 case AtomicExpr::AO__c11_atomic_init: 4568 case AtomicExpr::AO__opencl_atomic_init: 4569 Form = Init; 4570 break; 4571 4572 case AtomicExpr::AO__c11_atomic_load: 4573 case AtomicExpr::AO__opencl_atomic_load: 4574 case AtomicExpr::AO__atomic_load_n: 4575 Form = Load; 4576 break; 4577 4578 case AtomicExpr::AO__atomic_load: 4579 Form = LoadCopy; 4580 break; 4581 4582 case AtomicExpr::AO__c11_atomic_store: 4583 case AtomicExpr::AO__opencl_atomic_store: 4584 case AtomicExpr::AO__atomic_store: 4585 case AtomicExpr::AO__atomic_store_n: 4586 Form = Copy; 4587 break; 4588 4589 case AtomicExpr::AO__c11_atomic_fetch_add: 4590 case AtomicExpr::AO__c11_atomic_fetch_sub: 4591 case AtomicExpr::AO__opencl_atomic_fetch_add: 4592 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4593 case AtomicExpr::AO__atomic_fetch_add: 4594 case AtomicExpr::AO__atomic_fetch_sub: 4595 case AtomicExpr::AO__atomic_add_fetch: 4596 case AtomicExpr::AO__atomic_sub_fetch: 4597 IsAddSub = true; 4598 LLVM_FALLTHROUGH; 4599 case AtomicExpr::AO__c11_atomic_fetch_and: 4600 case AtomicExpr::AO__c11_atomic_fetch_or: 4601 case AtomicExpr::AO__c11_atomic_fetch_xor: 4602 case AtomicExpr::AO__opencl_atomic_fetch_and: 4603 case AtomicExpr::AO__opencl_atomic_fetch_or: 4604 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4605 case AtomicExpr::AO__atomic_fetch_and: 4606 case AtomicExpr::AO__atomic_fetch_or: 4607 case AtomicExpr::AO__atomic_fetch_xor: 4608 case AtomicExpr::AO__atomic_fetch_nand: 4609 case AtomicExpr::AO__atomic_and_fetch: 4610 case AtomicExpr::AO__atomic_or_fetch: 4611 case AtomicExpr::AO__atomic_xor_fetch: 4612 case AtomicExpr::AO__atomic_nand_fetch: 4613 case AtomicExpr::AO__c11_atomic_fetch_min: 4614 case AtomicExpr::AO__c11_atomic_fetch_max: 4615 case AtomicExpr::AO__opencl_atomic_fetch_min: 4616 case AtomicExpr::AO__opencl_atomic_fetch_max: 4617 case AtomicExpr::AO__atomic_min_fetch: 4618 case AtomicExpr::AO__atomic_max_fetch: 4619 case AtomicExpr::AO__atomic_fetch_min: 4620 case AtomicExpr::AO__atomic_fetch_max: 4621 Form = Arithmetic; 4622 break; 4623 4624 case AtomicExpr::AO__c11_atomic_exchange: 4625 case AtomicExpr::AO__opencl_atomic_exchange: 4626 case AtomicExpr::AO__atomic_exchange_n: 4627 Form = Xchg; 4628 break; 4629 4630 case AtomicExpr::AO__atomic_exchange: 4631 Form = GNUXchg; 4632 break; 4633 4634 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4635 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4636 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4637 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4638 Form = C11CmpXchg; 4639 break; 4640 4641 case AtomicExpr::AO__atomic_compare_exchange: 4642 case AtomicExpr::AO__atomic_compare_exchange_n: 4643 Form = GNUCmpXchg; 4644 break; 4645 } 4646 4647 unsigned AdjustedNumArgs = NumArgs[Form]; 4648 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4649 ++AdjustedNumArgs; 4650 // Check we have the right number of arguments. 4651 if (Args.size() < AdjustedNumArgs) { 4652 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4653 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4654 << ExprRange; 4655 return ExprError(); 4656 } else if (Args.size() > AdjustedNumArgs) { 4657 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4658 diag::err_typecheck_call_too_many_args) 4659 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4660 << ExprRange; 4661 return ExprError(); 4662 } 4663 4664 // Inspect the first argument of the atomic operation. 4665 Expr *Ptr = Args[0]; 4666 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4667 if (ConvertedPtr.isInvalid()) 4668 return ExprError(); 4669 4670 Ptr = ConvertedPtr.get(); 4671 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4672 if (!pointerType) { 4673 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4674 << Ptr->getType() << Ptr->getSourceRange(); 4675 return ExprError(); 4676 } 4677 4678 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4679 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4680 QualType ValType = AtomTy; // 'C' 4681 if (IsC11) { 4682 if (!AtomTy->isAtomicType()) { 4683 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4684 << Ptr->getType() << Ptr->getSourceRange(); 4685 return ExprError(); 4686 } 4687 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4688 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4689 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4690 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4691 << Ptr->getSourceRange(); 4692 return ExprError(); 4693 } 4694 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4695 } else if (Form != Load && Form != LoadCopy) { 4696 if (ValType.isConstQualified()) { 4697 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4698 << Ptr->getType() << Ptr->getSourceRange(); 4699 return ExprError(); 4700 } 4701 } 4702 4703 // For an arithmetic operation, the implied arithmetic must be well-formed. 4704 if (Form == Arithmetic) { 4705 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4706 if (IsAddSub && !ValType->isIntegerType() 4707 && !ValType->isPointerType()) { 4708 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4709 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4710 return ExprError(); 4711 } 4712 if (!IsAddSub && !ValType->isIntegerType()) { 4713 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 4714 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4715 return ExprError(); 4716 } 4717 if (IsC11 && ValType->isPointerType() && 4718 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4719 diag::err_incomplete_type)) { 4720 return ExprError(); 4721 } 4722 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4723 // For __atomic_*_n operations, the value type must be a scalar integral or 4724 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4725 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4726 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4727 return ExprError(); 4728 } 4729 4730 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4731 !AtomTy->isScalarType()) { 4732 // For GNU atomics, require a trivially-copyable type. This is not part of 4733 // the GNU atomics specification, but we enforce it for sanity. 4734 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4735 << Ptr->getType() << Ptr->getSourceRange(); 4736 return ExprError(); 4737 } 4738 4739 switch (ValType.getObjCLifetime()) { 4740 case Qualifiers::OCL_None: 4741 case Qualifiers::OCL_ExplicitNone: 4742 // okay 4743 break; 4744 4745 case Qualifiers::OCL_Weak: 4746 case Qualifiers::OCL_Strong: 4747 case Qualifiers::OCL_Autoreleasing: 4748 // FIXME: Can this happen? By this point, ValType should be known 4749 // to be trivially copyable. 4750 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4751 << ValType << Ptr->getSourceRange(); 4752 return ExprError(); 4753 } 4754 4755 // All atomic operations have an overload which takes a pointer to a volatile 4756 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4757 // into the result or the other operands. Similarly atomic_load takes a 4758 // pointer to a const 'A'. 4759 ValType.removeLocalVolatile(); 4760 ValType.removeLocalConst(); 4761 QualType ResultType = ValType; 4762 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4763 Form == Init) 4764 ResultType = Context.VoidTy; 4765 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4766 ResultType = Context.BoolTy; 4767 4768 // The type of a parameter passed 'by value'. In the GNU atomics, such 4769 // arguments are actually passed as pointers. 4770 QualType ByValType = ValType; // 'CP' 4771 bool IsPassedByAddress = false; 4772 if (!IsC11 && !IsN) { 4773 ByValType = Ptr->getType(); 4774 IsPassedByAddress = true; 4775 } 4776 4777 SmallVector<Expr *, 5> APIOrderedArgs; 4778 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4779 APIOrderedArgs.push_back(Args[0]); 4780 switch (Form) { 4781 case Init: 4782 case Load: 4783 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4784 break; 4785 case LoadCopy: 4786 case Copy: 4787 case Arithmetic: 4788 case Xchg: 4789 APIOrderedArgs.push_back(Args[2]); // Val1 4790 APIOrderedArgs.push_back(Args[1]); // Order 4791 break; 4792 case GNUXchg: 4793 APIOrderedArgs.push_back(Args[2]); // Val1 4794 APIOrderedArgs.push_back(Args[3]); // Val2 4795 APIOrderedArgs.push_back(Args[1]); // Order 4796 break; 4797 case C11CmpXchg: 4798 APIOrderedArgs.push_back(Args[2]); // Val1 4799 APIOrderedArgs.push_back(Args[4]); // Val2 4800 APIOrderedArgs.push_back(Args[1]); // Order 4801 APIOrderedArgs.push_back(Args[3]); // OrderFail 4802 break; 4803 case GNUCmpXchg: 4804 APIOrderedArgs.push_back(Args[2]); // Val1 4805 APIOrderedArgs.push_back(Args[4]); // Val2 4806 APIOrderedArgs.push_back(Args[5]); // Weak 4807 APIOrderedArgs.push_back(Args[1]); // Order 4808 APIOrderedArgs.push_back(Args[3]); // OrderFail 4809 break; 4810 } 4811 } else 4812 APIOrderedArgs.append(Args.begin(), Args.end()); 4813 4814 // The first argument's non-CV pointer type is used to deduce the type of 4815 // subsequent arguments, except for: 4816 // - weak flag (always converted to bool) 4817 // - memory order (always converted to int) 4818 // - scope (always converted to int) 4819 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 4820 QualType Ty; 4821 if (i < NumVals[Form] + 1) { 4822 switch (i) { 4823 case 0: 4824 // The first argument is always a pointer. It has a fixed type. 4825 // It is always dereferenced, a nullptr is undefined. 4826 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4827 // Nothing else to do: we already know all we want about this pointer. 4828 continue; 4829 case 1: 4830 // The second argument is the non-atomic operand. For arithmetic, this 4831 // is always passed by value, and for a compare_exchange it is always 4832 // passed by address. For the rest, GNU uses by-address and C11 uses 4833 // by-value. 4834 assert(Form != Load); 4835 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 4836 Ty = ValType; 4837 else if (Form == Copy || Form == Xchg) { 4838 if (IsPassedByAddress) { 4839 // The value pointer is always dereferenced, a nullptr is undefined. 4840 CheckNonNullArgument(*this, APIOrderedArgs[i], 4841 ExprRange.getBegin()); 4842 } 4843 Ty = ByValType; 4844 } else if (Form == Arithmetic) 4845 Ty = Context.getPointerDiffType(); 4846 else { 4847 Expr *ValArg = APIOrderedArgs[i]; 4848 // The value pointer is always dereferenced, a nullptr is undefined. 4849 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 4850 LangAS AS = LangAS::Default; 4851 // Keep address space of non-atomic pointer type. 4852 if (const PointerType *PtrTy = 4853 ValArg->getType()->getAs<PointerType>()) { 4854 AS = PtrTy->getPointeeType().getAddressSpace(); 4855 } 4856 Ty = Context.getPointerType( 4857 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 4858 } 4859 break; 4860 case 2: 4861 // The third argument to compare_exchange / GNU exchange is the desired 4862 // value, either by-value (for the C11 and *_n variant) or as a pointer. 4863 if (IsPassedByAddress) 4864 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 4865 Ty = ByValType; 4866 break; 4867 case 3: 4868 // The fourth argument to GNU compare_exchange is a 'weak' flag. 4869 Ty = Context.BoolTy; 4870 break; 4871 } 4872 } else { 4873 // The order(s) and scope are always converted to int. 4874 Ty = Context.IntTy; 4875 } 4876 4877 InitializedEntity Entity = 4878 InitializedEntity::InitializeParameter(Context, Ty, false); 4879 ExprResult Arg = APIOrderedArgs[i]; 4880 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 4881 if (Arg.isInvalid()) 4882 return true; 4883 APIOrderedArgs[i] = Arg.get(); 4884 } 4885 4886 // Permute the arguments into a 'consistent' order. 4887 SmallVector<Expr*, 5> SubExprs; 4888 SubExprs.push_back(Ptr); 4889 switch (Form) { 4890 case Init: 4891 // Note, AtomicExpr::getVal1() has a special case for this atomic. 4892 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4893 break; 4894 case Load: 4895 SubExprs.push_back(APIOrderedArgs[1]); // Order 4896 break; 4897 case LoadCopy: 4898 case Copy: 4899 case Arithmetic: 4900 case Xchg: 4901 SubExprs.push_back(APIOrderedArgs[2]); // Order 4902 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4903 break; 4904 case GNUXchg: 4905 // Note, AtomicExpr::getVal2() has a special case for this atomic. 4906 SubExprs.push_back(APIOrderedArgs[3]); // Order 4907 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4908 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4909 break; 4910 case C11CmpXchg: 4911 SubExprs.push_back(APIOrderedArgs[3]); // Order 4912 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4913 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 4914 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4915 break; 4916 case GNUCmpXchg: 4917 SubExprs.push_back(APIOrderedArgs[4]); // Order 4918 SubExprs.push_back(APIOrderedArgs[1]); // Val1 4919 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 4920 SubExprs.push_back(APIOrderedArgs[2]); // Val2 4921 SubExprs.push_back(APIOrderedArgs[3]); // Weak 4922 break; 4923 } 4924 4925 if (SubExprs.size() >= 2 && Form != Init) { 4926 llvm::APSInt Result(32); 4927 if (SubExprs[1]->isIntegerConstantExpr(Result, Context) && 4928 !isValidOrderingForOp(Result.getSExtValue(), Op)) 4929 Diag(SubExprs[1]->getBeginLoc(), 4930 diag::warn_atomic_op_has_invalid_memory_order) 4931 << SubExprs[1]->getSourceRange(); 4932 } 4933 4934 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 4935 auto *Scope = Args[Args.size() - 1]; 4936 llvm::APSInt Result(32); 4937 if (Scope->isIntegerConstantExpr(Result, Context) && 4938 !ScopeModel->isValid(Result.getZExtValue())) { 4939 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 4940 << Scope->getSourceRange(); 4941 } 4942 SubExprs.push_back(Scope); 4943 } 4944 4945 AtomicExpr *AE = new (Context) 4946 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 4947 4948 if ((Op == AtomicExpr::AO__c11_atomic_load || 4949 Op == AtomicExpr::AO__c11_atomic_store || 4950 Op == AtomicExpr::AO__opencl_atomic_load || 4951 Op == AtomicExpr::AO__opencl_atomic_store ) && 4952 Context.AtomicUsesUnsupportedLibcall(AE)) 4953 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 4954 << ((Op == AtomicExpr::AO__c11_atomic_load || 4955 Op == AtomicExpr::AO__opencl_atomic_load) 4956 ? 0 4957 : 1); 4958 4959 if (ValType->isExtIntType()) { 4960 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 4961 return ExprError(); 4962 } 4963 4964 return AE; 4965 } 4966 4967 /// checkBuiltinArgument - Given a call to a builtin function, perform 4968 /// normal type-checking on the given argument, updating the call in 4969 /// place. This is useful when a builtin function requires custom 4970 /// type-checking for some of its arguments but not necessarily all of 4971 /// them. 4972 /// 4973 /// Returns true on error. 4974 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 4975 FunctionDecl *Fn = E->getDirectCallee(); 4976 assert(Fn && "builtin call without direct callee!"); 4977 4978 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 4979 InitializedEntity Entity = 4980 InitializedEntity::InitializeParameter(S.Context, Param); 4981 4982 ExprResult Arg = E->getArg(0); 4983 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 4984 if (Arg.isInvalid()) 4985 return true; 4986 4987 E->setArg(ArgIndex, Arg.get()); 4988 return false; 4989 } 4990 4991 /// We have a call to a function like __sync_fetch_and_add, which is an 4992 /// overloaded function based on the pointer type of its first argument. 4993 /// The main BuildCallExpr routines have already promoted the types of 4994 /// arguments because all of these calls are prototyped as void(...). 4995 /// 4996 /// This function goes through and does final semantic checking for these 4997 /// builtins, as well as generating any warnings. 4998 ExprResult 4999 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5000 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5001 Expr *Callee = TheCall->getCallee(); 5002 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5003 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5004 5005 // Ensure that we have at least one argument to do type inference from. 5006 if (TheCall->getNumArgs() < 1) { 5007 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5008 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5009 return ExprError(); 5010 } 5011 5012 // Inspect the first argument of the atomic builtin. This should always be 5013 // a pointer type, whose element is an integral scalar or pointer type. 5014 // Because it is a pointer type, we don't have to worry about any implicit 5015 // casts here. 5016 // FIXME: We don't allow floating point scalars as input. 5017 Expr *FirstArg = TheCall->getArg(0); 5018 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5019 if (FirstArgResult.isInvalid()) 5020 return ExprError(); 5021 FirstArg = FirstArgResult.get(); 5022 TheCall->setArg(0, FirstArg); 5023 5024 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5025 if (!pointerType) { 5026 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5027 << FirstArg->getType() << FirstArg->getSourceRange(); 5028 return ExprError(); 5029 } 5030 5031 QualType ValType = pointerType->getPointeeType(); 5032 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5033 !ValType->isBlockPointerType()) { 5034 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5035 << FirstArg->getType() << FirstArg->getSourceRange(); 5036 return ExprError(); 5037 } 5038 5039 if (ValType.isConstQualified()) { 5040 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5041 << FirstArg->getType() << FirstArg->getSourceRange(); 5042 return ExprError(); 5043 } 5044 5045 switch (ValType.getObjCLifetime()) { 5046 case Qualifiers::OCL_None: 5047 case Qualifiers::OCL_ExplicitNone: 5048 // okay 5049 break; 5050 5051 case Qualifiers::OCL_Weak: 5052 case Qualifiers::OCL_Strong: 5053 case Qualifiers::OCL_Autoreleasing: 5054 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5055 << ValType << FirstArg->getSourceRange(); 5056 return ExprError(); 5057 } 5058 5059 // Strip any qualifiers off ValType. 5060 ValType = ValType.getUnqualifiedType(); 5061 5062 // The majority of builtins return a value, but a few have special return 5063 // types, so allow them to override appropriately below. 5064 QualType ResultType = ValType; 5065 5066 // We need to figure out which concrete builtin this maps onto. For example, 5067 // __sync_fetch_and_add with a 2 byte object turns into 5068 // __sync_fetch_and_add_2. 5069 #define BUILTIN_ROW(x) \ 5070 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5071 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5072 5073 static const unsigned BuiltinIndices[][5] = { 5074 BUILTIN_ROW(__sync_fetch_and_add), 5075 BUILTIN_ROW(__sync_fetch_and_sub), 5076 BUILTIN_ROW(__sync_fetch_and_or), 5077 BUILTIN_ROW(__sync_fetch_and_and), 5078 BUILTIN_ROW(__sync_fetch_and_xor), 5079 BUILTIN_ROW(__sync_fetch_and_nand), 5080 5081 BUILTIN_ROW(__sync_add_and_fetch), 5082 BUILTIN_ROW(__sync_sub_and_fetch), 5083 BUILTIN_ROW(__sync_and_and_fetch), 5084 BUILTIN_ROW(__sync_or_and_fetch), 5085 BUILTIN_ROW(__sync_xor_and_fetch), 5086 BUILTIN_ROW(__sync_nand_and_fetch), 5087 5088 BUILTIN_ROW(__sync_val_compare_and_swap), 5089 BUILTIN_ROW(__sync_bool_compare_and_swap), 5090 BUILTIN_ROW(__sync_lock_test_and_set), 5091 BUILTIN_ROW(__sync_lock_release), 5092 BUILTIN_ROW(__sync_swap) 5093 }; 5094 #undef BUILTIN_ROW 5095 5096 // Determine the index of the size. 5097 unsigned SizeIndex; 5098 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5099 case 1: SizeIndex = 0; break; 5100 case 2: SizeIndex = 1; break; 5101 case 4: SizeIndex = 2; break; 5102 case 8: SizeIndex = 3; break; 5103 case 16: SizeIndex = 4; break; 5104 default: 5105 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5106 << FirstArg->getType() << FirstArg->getSourceRange(); 5107 return ExprError(); 5108 } 5109 5110 // Each of these builtins has one pointer argument, followed by some number of 5111 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5112 // that we ignore. Find out which row of BuiltinIndices to read from as well 5113 // as the number of fixed args. 5114 unsigned BuiltinID = FDecl->getBuiltinID(); 5115 unsigned BuiltinIndex, NumFixed = 1; 5116 bool WarnAboutSemanticsChange = false; 5117 switch (BuiltinID) { 5118 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5119 case Builtin::BI__sync_fetch_and_add: 5120 case Builtin::BI__sync_fetch_and_add_1: 5121 case Builtin::BI__sync_fetch_and_add_2: 5122 case Builtin::BI__sync_fetch_and_add_4: 5123 case Builtin::BI__sync_fetch_and_add_8: 5124 case Builtin::BI__sync_fetch_and_add_16: 5125 BuiltinIndex = 0; 5126 break; 5127 5128 case Builtin::BI__sync_fetch_and_sub: 5129 case Builtin::BI__sync_fetch_and_sub_1: 5130 case Builtin::BI__sync_fetch_and_sub_2: 5131 case Builtin::BI__sync_fetch_and_sub_4: 5132 case Builtin::BI__sync_fetch_and_sub_8: 5133 case Builtin::BI__sync_fetch_and_sub_16: 5134 BuiltinIndex = 1; 5135 break; 5136 5137 case Builtin::BI__sync_fetch_and_or: 5138 case Builtin::BI__sync_fetch_and_or_1: 5139 case Builtin::BI__sync_fetch_and_or_2: 5140 case Builtin::BI__sync_fetch_and_or_4: 5141 case Builtin::BI__sync_fetch_and_or_8: 5142 case Builtin::BI__sync_fetch_and_or_16: 5143 BuiltinIndex = 2; 5144 break; 5145 5146 case Builtin::BI__sync_fetch_and_and: 5147 case Builtin::BI__sync_fetch_and_and_1: 5148 case Builtin::BI__sync_fetch_and_and_2: 5149 case Builtin::BI__sync_fetch_and_and_4: 5150 case Builtin::BI__sync_fetch_and_and_8: 5151 case Builtin::BI__sync_fetch_and_and_16: 5152 BuiltinIndex = 3; 5153 break; 5154 5155 case Builtin::BI__sync_fetch_and_xor: 5156 case Builtin::BI__sync_fetch_and_xor_1: 5157 case Builtin::BI__sync_fetch_and_xor_2: 5158 case Builtin::BI__sync_fetch_and_xor_4: 5159 case Builtin::BI__sync_fetch_and_xor_8: 5160 case Builtin::BI__sync_fetch_and_xor_16: 5161 BuiltinIndex = 4; 5162 break; 5163 5164 case Builtin::BI__sync_fetch_and_nand: 5165 case Builtin::BI__sync_fetch_and_nand_1: 5166 case Builtin::BI__sync_fetch_and_nand_2: 5167 case Builtin::BI__sync_fetch_and_nand_4: 5168 case Builtin::BI__sync_fetch_and_nand_8: 5169 case Builtin::BI__sync_fetch_and_nand_16: 5170 BuiltinIndex = 5; 5171 WarnAboutSemanticsChange = true; 5172 break; 5173 5174 case Builtin::BI__sync_add_and_fetch: 5175 case Builtin::BI__sync_add_and_fetch_1: 5176 case Builtin::BI__sync_add_and_fetch_2: 5177 case Builtin::BI__sync_add_and_fetch_4: 5178 case Builtin::BI__sync_add_and_fetch_8: 5179 case Builtin::BI__sync_add_and_fetch_16: 5180 BuiltinIndex = 6; 5181 break; 5182 5183 case Builtin::BI__sync_sub_and_fetch: 5184 case Builtin::BI__sync_sub_and_fetch_1: 5185 case Builtin::BI__sync_sub_and_fetch_2: 5186 case Builtin::BI__sync_sub_and_fetch_4: 5187 case Builtin::BI__sync_sub_and_fetch_8: 5188 case Builtin::BI__sync_sub_and_fetch_16: 5189 BuiltinIndex = 7; 5190 break; 5191 5192 case Builtin::BI__sync_and_and_fetch: 5193 case Builtin::BI__sync_and_and_fetch_1: 5194 case Builtin::BI__sync_and_and_fetch_2: 5195 case Builtin::BI__sync_and_and_fetch_4: 5196 case Builtin::BI__sync_and_and_fetch_8: 5197 case Builtin::BI__sync_and_and_fetch_16: 5198 BuiltinIndex = 8; 5199 break; 5200 5201 case Builtin::BI__sync_or_and_fetch: 5202 case Builtin::BI__sync_or_and_fetch_1: 5203 case Builtin::BI__sync_or_and_fetch_2: 5204 case Builtin::BI__sync_or_and_fetch_4: 5205 case Builtin::BI__sync_or_and_fetch_8: 5206 case Builtin::BI__sync_or_and_fetch_16: 5207 BuiltinIndex = 9; 5208 break; 5209 5210 case Builtin::BI__sync_xor_and_fetch: 5211 case Builtin::BI__sync_xor_and_fetch_1: 5212 case Builtin::BI__sync_xor_and_fetch_2: 5213 case Builtin::BI__sync_xor_and_fetch_4: 5214 case Builtin::BI__sync_xor_and_fetch_8: 5215 case Builtin::BI__sync_xor_and_fetch_16: 5216 BuiltinIndex = 10; 5217 break; 5218 5219 case Builtin::BI__sync_nand_and_fetch: 5220 case Builtin::BI__sync_nand_and_fetch_1: 5221 case Builtin::BI__sync_nand_and_fetch_2: 5222 case Builtin::BI__sync_nand_and_fetch_4: 5223 case Builtin::BI__sync_nand_and_fetch_8: 5224 case Builtin::BI__sync_nand_and_fetch_16: 5225 BuiltinIndex = 11; 5226 WarnAboutSemanticsChange = true; 5227 break; 5228 5229 case Builtin::BI__sync_val_compare_and_swap: 5230 case Builtin::BI__sync_val_compare_and_swap_1: 5231 case Builtin::BI__sync_val_compare_and_swap_2: 5232 case Builtin::BI__sync_val_compare_and_swap_4: 5233 case Builtin::BI__sync_val_compare_and_swap_8: 5234 case Builtin::BI__sync_val_compare_and_swap_16: 5235 BuiltinIndex = 12; 5236 NumFixed = 2; 5237 break; 5238 5239 case Builtin::BI__sync_bool_compare_and_swap: 5240 case Builtin::BI__sync_bool_compare_and_swap_1: 5241 case Builtin::BI__sync_bool_compare_and_swap_2: 5242 case Builtin::BI__sync_bool_compare_and_swap_4: 5243 case Builtin::BI__sync_bool_compare_and_swap_8: 5244 case Builtin::BI__sync_bool_compare_and_swap_16: 5245 BuiltinIndex = 13; 5246 NumFixed = 2; 5247 ResultType = Context.BoolTy; 5248 break; 5249 5250 case Builtin::BI__sync_lock_test_and_set: 5251 case Builtin::BI__sync_lock_test_and_set_1: 5252 case Builtin::BI__sync_lock_test_and_set_2: 5253 case Builtin::BI__sync_lock_test_and_set_4: 5254 case Builtin::BI__sync_lock_test_and_set_8: 5255 case Builtin::BI__sync_lock_test_and_set_16: 5256 BuiltinIndex = 14; 5257 break; 5258 5259 case Builtin::BI__sync_lock_release: 5260 case Builtin::BI__sync_lock_release_1: 5261 case Builtin::BI__sync_lock_release_2: 5262 case Builtin::BI__sync_lock_release_4: 5263 case Builtin::BI__sync_lock_release_8: 5264 case Builtin::BI__sync_lock_release_16: 5265 BuiltinIndex = 15; 5266 NumFixed = 0; 5267 ResultType = Context.VoidTy; 5268 break; 5269 5270 case Builtin::BI__sync_swap: 5271 case Builtin::BI__sync_swap_1: 5272 case Builtin::BI__sync_swap_2: 5273 case Builtin::BI__sync_swap_4: 5274 case Builtin::BI__sync_swap_8: 5275 case Builtin::BI__sync_swap_16: 5276 BuiltinIndex = 16; 5277 break; 5278 } 5279 5280 // Now that we know how many fixed arguments we expect, first check that we 5281 // have at least that many. 5282 if (TheCall->getNumArgs() < 1+NumFixed) { 5283 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5284 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5285 << Callee->getSourceRange(); 5286 return ExprError(); 5287 } 5288 5289 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5290 << Callee->getSourceRange(); 5291 5292 if (WarnAboutSemanticsChange) { 5293 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5294 << Callee->getSourceRange(); 5295 } 5296 5297 // Get the decl for the concrete builtin from this, we can tell what the 5298 // concrete integer type we should convert to is. 5299 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5300 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5301 FunctionDecl *NewBuiltinDecl; 5302 if (NewBuiltinID == BuiltinID) 5303 NewBuiltinDecl = FDecl; 5304 else { 5305 // Perform builtin lookup to avoid redeclaring it. 5306 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5307 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5308 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5309 assert(Res.getFoundDecl()); 5310 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5311 if (!NewBuiltinDecl) 5312 return ExprError(); 5313 } 5314 5315 // The first argument --- the pointer --- has a fixed type; we 5316 // deduce the types of the rest of the arguments accordingly. Walk 5317 // the remaining arguments, converting them to the deduced value type. 5318 for (unsigned i = 0; i != NumFixed; ++i) { 5319 ExprResult Arg = TheCall->getArg(i+1); 5320 5321 // GCC does an implicit conversion to the pointer or integer ValType. This 5322 // can fail in some cases (1i -> int**), check for this error case now. 5323 // Initialize the argument. 5324 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5325 ValType, /*consume*/ false); 5326 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5327 if (Arg.isInvalid()) 5328 return ExprError(); 5329 5330 // Okay, we have something that *can* be converted to the right type. Check 5331 // to see if there is a potentially weird extension going on here. This can 5332 // happen when you do an atomic operation on something like an char* and 5333 // pass in 42. The 42 gets converted to char. This is even more strange 5334 // for things like 45.123 -> char, etc. 5335 // FIXME: Do this check. 5336 TheCall->setArg(i+1, Arg.get()); 5337 } 5338 5339 // Create a new DeclRefExpr to refer to the new decl. 5340 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5341 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5342 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5343 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5344 5345 // Set the callee in the CallExpr. 5346 // FIXME: This loses syntactic information. 5347 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5348 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5349 CK_BuiltinFnToFnPtr); 5350 TheCall->setCallee(PromotedCall.get()); 5351 5352 // Change the result type of the call to match the original value type. This 5353 // is arbitrary, but the codegen for these builtins ins design to handle it 5354 // gracefully. 5355 TheCall->setType(ResultType); 5356 5357 // Prohibit use of _ExtInt with atomic builtins. 5358 // The arguments would have already been converted to the first argument's 5359 // type, so only need to check the first argument. 5360 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 5361 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 5362 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 5363 return ExprError(); 5364 } 5365 5366 return TheCallResult; 5367 } 5368 5369 /// SemaBuiltinNontemporalOverloaded - We have a call to 5370 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5371 /// overloaded function based on the pointer type of its last argument. 5372 /// 5373 /// This function goes through and does final semantic checking for these 5374 /// builtins. 5375 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5376 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5377 DeclRefExpr *DRE = 5378 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5379 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5380 unsigned BuiltinID = FDecl->getBuiltinID(); 5381 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5382 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5383 "Unexpected nontemporal load/store builtin!"); 5384 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5385 unsigned numArgs = isStore ? 2 : 1; 5386 5387 // Ensure that we have the proper number of arguments. 5388 if (checkArgCount(*this, TheCall, numArgs)) 5389 return ExprError(); 5390 5391 // Inspect the last argument of the nontemporal builtin. This should always 5392 // be a pointer type, from which we imply the type of the memory access. 5393 // Because it is a pointer type, we don't have to worry about any implicit 5394 // casts here. 5395 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5396 ExprResult PointerArgResult = 5397 DefaultFunctionArrayLvalueConversion(PointerArg); 5398 5399 if (PointerArgResult.isInvalid()) 5400 return ExprError(); 5401 PointerArg = PointerArgResult.get(); 5402 TheCall->setArg(numArgs - 1, PointerArg); 5403 5404 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5405 if (!pointerType) { 5406 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5407 << PointerArg->getType() << PointerArg->getSourceRange(); 5408 return ExprError(); 5409 } 5410 5411 QualType ValType = pointerType->getPointeeType(); 5412 5413 // Strip any qualifiers off ValType. 5414 ValType = ValType.getUnqualifiedType(); 5415 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5416 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5417 !ValType->isVectorType()) { 5418 Diag(DRE->getBeginLoc(), 5419 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5420 << PointerArg->getType() << PointerArg->getSourceRange(); 5421 return ExprError(); 5422 } 5423 5424 if (!isStore) { 5425 TheCall->setType(ValType); 5426 return TheCallResult; 5427 } 5428 5429 ExprResult ValArg = TheCall->getArg(0); 5430 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5431 Context, ValType, /*consume*/ false); 5432 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5433 if (ValArg.isInvalid()) 5434 return ExprError(); 5435 5436 TheCall->setArg(0, ValArg.get()); 5437 TheCall->setType(Context.VoidTy); 5438 return TheCallResult; 5439 } 5440 5441 /// CheckObjCString - Checks that the argument to the builtin 5442 /// CFString constructor is correct 5443 /// Note: It might also make sense to do the UTF-16 conversion here (would 5444 /// simplify the backend). 5445 bool Sema::CheckObjCString(Expr *Arg) { 5446 Arg = Arg->IgnoreParenCasts(); 5447 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5448 5449 if (!Literal || !Literal->isAscii()) { 5450 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5451 << Arg->getSourceRange(); 5452 return true; 5453 } 5454 5455 if (Literal->containsNonAsciiOrNull()) { 5456 StringRef String = Literal->getString(); 5457 unsigned NumBytes = String.size(); 5458 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5459 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5460 llvm::UTF16 *ToPtr = &ToBuf[0]; 5461 5462 llvm::ConversionResult Result = 5463 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5464 ToPtr + NumBytes, llvm::strictConversion); 5465 // Check for conversion failure. 5466 if (Result != llvm::conversionOK) 5467 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5468 << Arg->getSourceRange(); 5469 } 5470 return false; 5471 } 5472 5473 /// CheckObjCString - Checks that the format string argument to the os_log() 5474 /// and os_trace() functions is correct, and converts it to const char *. 5475 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5476 Arg = Arg->IgnoreParenCasts(); 5477 auto *Literal = dyn_cast<StringLiteral>(Arg); 5478 if (!Literal) { 5479 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5480 Literal = ObjcLiteral->getString(); 5481 } 5482 } 5483 5484 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5485 return ExprError( 5486 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5487 << Arg->getSourceRange()); 5488 } 5489 5490 ExprResult Result(Literal); 5491 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5492 InitializedEntity Entity = 5493 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5494 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5495 return Result; 5496 } 5497 5498 /// Check that the user is calling the appropriate va_start builtin for the 5499 /// target and calling convention. 5500 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5501 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5502 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5503 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5504 TT.getArch() == llvm::Triple::aarch64_32); 5505 bool IsWindows = TT.isOSWindows(); 5506 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5507 if (IsX64 || IsAArch64) { 5508 CallingConv CC = CC_C; 5509 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5510 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5511 if (IsMSVAStart) { 5512 // Don't allow this in System V ABI functions. 5513 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5514 return S.Diag(Fn->getBeginLoc(), 5515 diag::err_ms_va_start_used_in_sysv_function); 5516 } else { 5517 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5518 // On x64 Windows, don't allow this in System V ABI functions. 5519 // (Yes, that means there's no corresponding way to support variadic 5520 // System V ABI functions on Windows.) 5521 if ((IsWindows && CC == CC_X86_64SysV) || 5522 (!IsWindows && CC == CC_Win64)) 5523 return S.Diag(Fn->getBeginLoc(), 5524 diag::err_va_start_used_in_wrong_abi_function) 5525 << !IsWindows; 5526 } 5527 return false; 5528 } 5529 5530 if (IsMSVAStart) 5531 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5532 return false; 5533 } 5534 5535 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5536 ParmVarDecl **LastParam = nullptr) { 5537 // Determine whether the current function, block, or obj-c method is variadic 5538 // and get its parameter list. 5539 bool IsVariadic = false; 5540 ArrayRef<ParmVarDecl *> Params; 5541 DeclContext *Caller = S.CurContext; 5542 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5543 IsVariadic = Block->isVariadic(); 5544 Params = Block->parameters(); 5545 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5546 IsVariadic = FD->isVariadic(); 5547 Params = FD->parameters(); 5548 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5549 IsVariadic = MD->isVariadic(); 5550 // FIXME: This isn't correct for methods (results in bogus warning). 5551 Params = MD->parameters(); 5552 } else if (isa<CapturedDecl>(Caller)) { 5553 // We don't support va_start in a CapturedDecl. 5554 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5555 return true; 5556 } else { 5557 // This must be some other declcontext that parses exprs. 5558 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5559 return true; 5560 } 5561 5562 if (!IsVariadic) { 5563 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5564 return true; 5565 } 5566 5567 if (LastParam) 5568 *LastParam = Params.empty() ? nullptr : Params.back(); 5569 5570 return false; 5571 } 5572 5573 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5574 /// for validity. Emit an error and return true on failure; return false 5575 /// on success. 5576 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5577 Expr *Fn = TheCall->getCallee(); 5578 5579 if (checkVAStartABI(*this, BuiltinID, Fn)) 5580 return true; 5581 5582 if (TheCall->getNumArgs() > 2) { 5583 Diag(TheCall->getArg(2)->getBeginLoc(), 5584 diag::err_typecheck_call_too_many_args) 5585 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5586 << Fn->getSourceRange() 5587 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5588 (*(TheCall->arg_end() - 1))->getEndLoc()); 5589 return true; 5590 } 5591 5592 if (TheCall->getNumArgs() < 2) { 5593 return Diag(TheCall->getEndLoc(), 5594 diag::err_typecheck_call_too_few_args_at_least) 5595 << 0 /*function call*/ << 2 << TheCall->getNumArgs(); 5596 } 5597 5598 // Type-check the first argument normally. 5599 if (checkBuiltinArgument(*this, TheCall, 0)) 5600 return true; 5601 5602 // Check that the current function is variadic, and get its last parameter. 5603 ParmVarDecl *LastParam; 5604 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5605 return true; 5606 5607 // Verify that the second argument to the builtin is the last argument of the 5608 // current function or method. 5609 bool SecondArgIsLastNamedArgument = false; 5610 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5611 5612 // These are valid if SecondArgIsLastNamedArgument is false after the next 5613 // block. 5614 QualType Type; 5615 SourceLocation ParamLoc; 5616 bool IsCRegister = false; 5617 5618 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5619 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5620 SecondArgIsLastNamedArgument = PV == LastParam; 5621 5622 Type = PV->getType(); 5623 ParamLoc = PV->getLocation(); 5624 IsCRegister = 5625 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5626 } 5627 } 5628 5629 if (!SecondArgIsLastNamedArgument) 5630 Diag(TheCall->getArg(1)->getBeginLoc(), 5631 diag::warn_second_arg_of_va_start_not_last_named_param); 5632 else if (IsCRegister || Type->isReferenceType() || 5633 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5634 // Promotable integers are UB, but enumerations need a bit of 5635 // extra checking to see what their promotable type actually is. 5636 if (!Type->isPromotableIntegerType()) 5637 return false; 5638 if (!Type->isEnumeralType()) 5639 return true; 5640 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5641 return !(ED && 5642 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5643 }()) { 5644 unsigned Reason = 0; 5645 if (Type->isReferenceType()) Reason = 1; 5646 else if (IsCRegister) Reason = 2; 5647 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5648 Diag(ParamLoc, diag::note_parameter_type) << Type; 5649 } 5650 5651 TheCall->setType(Context.VoidTy); 5652 return false; 5653 } 5654 5655 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5656 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5657 // const char *named_addr); 5658 5659 Expr *Func = Call->getCallee(); 5660 5661 if (Call->getNumArgs() < 3) 5662 return Diag(Call->getEndLoc(), 5663 diag::err_typecheck_call_too_few_args_at_least) 5664 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5665 5666 // Type-check the first argument normally. 5667 if (checkBuiltinArgument(*this, Call, 0)) 5668 return true; 5669 5670 // Check that the current function is variadic. 5671 if (checkVAStartIsInVariadicFunction(*this, Func)) 5672 return true; 5673 5674 // __va_start on Windows does not validate the parameter qualifiers 5675 5676 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5677 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5678 5679 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5680 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5681 5682 const QualType &ConstCharPtrTy = 5683 Context.getPointerType(Context.CharTy.withConst()); 5684 if (!Arg1Ty->isPointerType() || 5685 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5686 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5687 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5688 << 0 /* qualifier difference */ 5689 << 3 /* parameter mismatch */ 5690 << 2 << Arg1->getType() << ConstCharPtrTy; 5691 5692 const QualType SizeTy = Context.getSizeType(); 5693 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5694 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5695 << Arg2->getType() << SizeTy << 1 /* different class */ 5696 << 0 /* qualifier difference */ 5697 << 3 /* parameter mismatch */ 5698 << 3 << Arg2->getType() << SizeTy; 5699 5700 return false; 5701 } 5702 5703 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5704 /// friends. This is declared to take (...), so we have to check everything. 5705 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5706 if (TheCall->getNumArgs() < 2) 5707 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5708 << 0 << 2 << TheCall->getNumArgs() /*function call*/; 5709 if (TheCall->getNumArgs() > 2) 5710 return Diag(TheCall->getArg(2)->getBeginLoc(), 5711 diag::err_typecheck_call_too_many_args) 5712 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5713 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5714 (*(TheCall->arg_end() - 1))->getEndLoc()); 5715 5716 ExprResult OrigArg0 = TheCall->getArg(0); 5717 ExprResult OrigArg1 = TheCall->getArg(1); 5718 5719 // Do standard promotions between the two arguments, returning their common 5720 // type. 5721 QualType Res = UsualArithmeticConversions( 5722 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 5723 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5724 return true; 5725 5726 // Make sure any conversions are pushed back into the call; this is 5727 // type safe since unordered compare builtins are declared as "_Bool 5728 // foo(...)". 5729 TheCall->setArg(0, OrigArg0.get()); 5730 TheCall->setArg(1, OrigArg1.get()); 5731 5732 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5733 return false; 5734 5735 // If the common type isn't a real floating type, then the arguments were 5736 // invalid for this operation. 5737 if (Res.isNull() || !Res->isRealFloatingType()) 5738 return Diag(OrigArg0.get()->getBeginLoc(), 5739 diag::err_typecheck_call_invalid_ordered_compare) 5740 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5741 << SourceRange(OrigArg0.get()->getBeginLoc(), 5742 OrigArg1.get()->getEndLoc()); 5743 5744 return false; 5745 } 5746 5747 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5748 /// __builtin_isnan and friends. This is declared to take (...), so we have 5749 /// to check everything. We expect the last argument to be a floating point 5750 /// value. 5751 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5752 if (TheCall->getNumArgs() < NumArgs) 5753 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 5754 << 0 << NumArgs << TheCall->getNumArgs() /*function call*/; 5755 if (TheCall->getNumArgs() > NumArgs) 5756 return Diag(TheCall->getArg(NumArgs)->getBeginLoc(), 5757 diag::err_typecheck_call_too_many_args) 5758 << 0 /*function call*/ << NumArgs << TheCall->getNumArgs() 5759 << SourceRange(TheCall->getArg(NumArgs)->getBeginLoc(), 5760 (*(TheCall->arg_end() - 1))->getEndLoc()); 5761 5762 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 5763 // on all preceding parameters just being int. Try all of those. 5764 for (unsigned i = 0; i < NumArgs - 1; ++i) { 5765 Expr *Arg = TheCall->getArg(i); 5766 5767 if (Arg->isTypeDependent()) 5768 return false; 5769 5770 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 5771 5772 if (Res.isInvalid()) 5773 return true; 5774 TheCall->setArg(i, Res.get()); 5775 } 5776 5777 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5778 5779 if (OrigArg->isTypeDependent()) 5780 return false; 5781 5782 // Usual Unary Conversions will convert half to float, which we want for 5783 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 5784 // type how it is, but do normal L->Rvalue conversions. 5785 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 5786 OrigArg = UsualUnaryConversions(OrigArg).get(); 5787 else 5788 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 5789 TheCall->setArg(NumArgs - 1, OrigArg); 5790 5791 // This operation requires a non-_Complex floating-point number. 5792 if (!OrigArg->getType()->isRealFloatingType()) 5793 return Diag(OrigArg->getBeginLoc(), 5794 diag::err_typecheck_call_invalid_unary_fp) 5795 << OrigArg->getType() << OrigArg->getSourceRange(); 5796 5797 return false; 5798 } 5799 5800 // Customized Sema Checking for VSX builtins that have the following signature: 5801 // vector [...] builtinName(vector [...], vector [...], const int); 5802 // Which takes the same type of vectors (any legal vector type) for the first 5803 // two arguments and takes compile time constant for the third argument. 5804 // Example builtins are : 5805 // vector double vec_xxpermdi(vector double, vector double, int); 5806 // vector short vec_xxsldwi(vector short, vector short, int); 5807 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 5808 unsigned ExpectedNumArgs = 3; 5809 if (TheCall->getNumArgs() < ExpectedNumArgs) 5810 return Diag(TheCall->getEndLoc(), 5811 diag::err_typecheck_call_too_few_args_at_least) 5812 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5813 << TheCall->getSourceRange(); 5814 5815 if (TheCall->getNumArgs() > ExpectedNumArgs) 5816 return Diag(TheCall->getEndLoc(), 5817 diag::err_typecheck_call_too_many_args_at_most) 5818 << 0 /*function call*/ << ExpectedNumArgs << TheCall->getNumArgs() 5819 << TheCall->getSourceRange(); 5820 5821 // Check the third argument is a compile time constant 5822 llvm::APSInt Value; 5823 if(!TheCall->getArg(2)->isIntegerConstantExpr(Value, Context)) 5824 return Diag(TheCall->getBeginLoc(), 5825 diag::err_vsx_builtin_nonconstant_argument) 5826 << 3 /* argument index */ << TheCall->getDirectCallee() 5827 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 5828 TheCall->getArg(2)->getEndLoc()); 5829 5830 QualType Arg1Ty = TheCall->getArg(0)->getType(); 5831 QualType Arg2Ty = TheCall->getArg(1)->getType(); 5832 5833 // Check the type of argument 1 and argument 2 are vectors. 5834 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 5835 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 5836 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 5837 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 5838 << TheCall->getDirectCallee() 5839 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5840 TheCall->getArg(1)->getEndLoc()); 5841 } 5842 5843 // Check the first two arguments are the same type. 5844 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 5845 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 5846 << TheCall->getDirectCallee() 5847 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5848 TheCall->getArg(1)->getEndLoc()); 5849 } 5850 5851 // When default clang type checking is turned off and the customized type 5852 // checking is used, the returning type of the function must be explicitly 5853 // set. Otherwise it is _Bool by default. 5854 TheCall->setType(Arg1Ty); 5855 5856 return false; 5857 } 5858 5859 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 5860 // This is declared to take (...), so we have to check everything. 5861 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 5862 if (TheCall->getNumArgs() < 2) 5863 return ExprError(Diag(TheCall->getEndLoc(), 5864 diag::err_typecheck_call_too_few_args_at_least) 5865 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 5866 << TheCall->getSourceRange()); 5867 5868 // Determine which of the following types of shufflevector we're checking: 5869 // 1) unary, vector mask: (lhs, mask) 5870 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 5871 QualType resType = TheCall->getArg(0)->getType(); 5872 unsigned numElements = 0; 5873 5874 if (!TheCall->getArg(0)->isTypeDependent() && 5875 !TheCall->getArg(1)->isTypeDependent()) { 5876 QualType LHSType = TheCall->getArg(0)->getType(); 5877 QualType RHSType = TheCall->getArg(1)->getType(); 5878 5879 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 5880 return ExprError( 5881 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 5882 << TheCall->getDirectCallee() 5883 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5884 TheCall->getArg(1)->getEndLoc())); 5885 5886 numElements = LHSType->castAs<VectorType>()->getNumElements(); 5887 unsigned numResElements = TheCall->getNumArgs() - 2; 5888 5889 // Check to see if we have a call with 2 vector arguments, the unary shuffle 5890 // with mask. If so, verify that RHS is an integer vector type with the 5891 // same number of elts as lhs. 5892 if (TheCall->getNumArgs() == 2) { 5893 if (!RHSType->hasIntegerRepresentation() || 5894 RHSType->castAs<VectorType>()->getNumElements() != numElements) 5895 return ExprError(Diag(TheCall->getBeginLoc(), 5896 diag::err_vec_builtin_incompatible_vector) 5897 << TheCall->getDirectCallee() 5898 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 5899 TheCall->getArg(1)->getEndLoc())); 5900 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 5901 return ExprError(Diag(TheCall->getBeginLoc(), 5902 diag::err_vec_builtin_incompatible_vector) 5903 << TheCall->getDirectCallee() 5904 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 5905 TheCall->getArg(1)->getEndLoc())); 5906 } else if (numElements != numResElements) { 5907 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 5908 resType = Context.getVectorType(eltType, numResElements, 5909 VectorType::GenericVector); 5910 } 5911 } 5912 5913 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 5914 if (TheCall->getArg(i)->isTypeDependent() || 5915 TheCall->getArg(i)->isValueDependent()) 5916 continue; 5917 5918 llvm::APSInt Result(32); 5919 if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context)) 5920 return ExprError(Diag(TheCall->getBeginLoc(), 5921 diag::err_shufflevector_nonconstant_argument) 5922 << TheCall->getArg(i)->getSourceRange()); 5923 5924 // Allow -1 which will be translated to undef in the IR. 5925 if (Result.isSigned() && Result.isAllOnesValue()) 5926 continue; 5927 5928 if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2) 5929 return ExprError(Diag(TheCall->getBeginLoc(), 5930 diag::err_shufflevector_argument_too_large) 5931 << TheCall->getArg(i)->getSourceRange()); 5932 } 5933 5934 SmallVector<Expr*, 32> exprs; 5935 5936 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 5937 exprs.push_back(TheCall->getArg(i)); 5938 TheCall->setArg(i, nullptr); 5939 } 5940 5941 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 5942 TheCall->getCallee()->getBeginLoc(), 5943 TheCall->getRParenLoc()); 5944 } 5945 5946 /// SemaConvertVectorExpr - Handle __builtin_convertvector 5947 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 5948 SourceLocation BuiltinLoc, 5949 SourceLocation RParenLoc) { 5950 ExprValueKind VK = VK_RValue; 5951 ExprObjectKind OK = OK_Ordinary; 5952 QualType DstTy = TInfo->getType(); 5953 QualType SrcTy = E->getType(); 5954 5955 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 5956 return ExprError(Diag(BuiltinLoc, 5957 diag::err_convertvector_non_vector) 5958 << E->getSourceRange()); 5959 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 5960 return ExprError(Diag(BuiltinLoc, 5961 diag::err_convertvector_non_vector_type)); 5962 5963 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 5964 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 5965 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 5966 if (SrcElts != DstElts) 5967 return ExprError(Diag(BuiltinLoc, 5968 diag::err_convertvector_incompatible_vector) 5969 << E->getSourceRange()); 5970 } 5971 5972 return new (Context) 5973 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 5974 } 5975 5976 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 5977 // This is declared to take (const void*, ...) and can take two 5978 // optional constant int args. 5979 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 5980 unsigned NumArgs = TheCall->getNumArgs(); 5981 5982 if (NumArgs > 3) 5983 return Diag(TheCall->getEndLoc(), 5984 diag::err_typecheck_call_too_many_args_at_most) 5985 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 5986 5987 // Argument 0 is checked for us and the remaining arguments must be 5988 // constant integers. 5989 for (unsigned i = 1; i != NumArgs; ++i) 5990 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 5991 return true; 5992 5993 return false; 5994 } 5995 5996 /// SemaBuiltinAssume - Handle __assume (MS Extension). 5997 // __assume does not evaluate its arguments, and should warn if its argument 5998 // has side effects. 5999 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6000 Expr *Arg = TheCall->getArg(0); 6001 if (Arg->isInstantiationDependent()) return false; 6002 6003 if (Arg->HasSideEffects(Context)) 6004 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6005 << Arg->getSourceRange() 6006 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6007 6008 return false; 6009 } 6010 6011 /// Handle __builtin_alloca_with_align. This is declared 6012 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6013 /// than 8. 6014 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6015 // The alignment must be a constant integer. 6016 Expr *Arg = TheCall->getArg(1); 6017 6018 // We can't check the value of a dependent argument. 6019 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6020 if (const auto *UE = 6021 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6022 if (UE->getKind() == UETT_AlignOf || 6023 UE->getKind() == UETT_PreferredAlignOf) 6024 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6025 << Arg->getSourceRange(); 6026 6027 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6028 6029 if (!Result.isPowerOf2()) 6030 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6031 << Arg->getSourceRange(); 6032 6033 if (Result < Context.getCharWidth()) 6034 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6035 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6036 6037 if (Result > std::numeric_limits<int32_t>::max()) 6038 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6039 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6040 } 6041 6042 return false; 6043 } 6044 6045 /// Handle __builtin_assume_aligned. This is declared 6046 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6047 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6048 unsigned NumArgs = TheCall->getNumArgs(); 6049 6050 if (NumArgs > 3) 6051 return Diag(TheCall->getEndLoc(), 6052 diag::err_typecheck_call_too_many_args_at_most) 6053 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6054 6055 // The alignment must be a constant integer. 6056 Expr *Arg = TheCall->getArg(1); 6057 6058 // We can't check the value of a dependent argument. 6059 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6060 llvm::APSInt Result; 6061 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6062 return true; 6063 6064 if (!Result.isPowerOf2()) 6065 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6066 << Arg->getSourceRange(); 6067 6068 if (Result > Sema::MaximumAlignment) 6069 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6070 << Arg->getSourceRange() << Sema::MaximumAlignment; 6071 } 6072 6073 if (NumArgs > 2) { 6074 ExprResult Arg(TheCall->getArg(2)); 6075 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6076 Context.getSizeType(), false); 6077 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6078 if (Arg.isInvalid()) return true; 6079 TheCall->setArg(2, Arg.get()); 6080 } 6081 6082 return false; 6083 } 6084 6085 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6086 unsigned BuiltinID = 6087 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6088 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6089 6090 unsigned NumArgs = TheCall->getNumArgs(); 6091 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6092 if (NumArgs < NumRequiredArgs) { 6093 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6094 << 0 /* function call */ << NumRequiredArgs << NumArgs 6095 << TheCall->getSourceRange(); 6096 } 6097 if (NumArgs >= NumRequiredArgs + 0x100) { 6098 return Diag(TheCall->getEndLoc(), 6099 diag::err_typecheck_call_too_many_args_at_most) 6100 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6101 << TheCall->getSourceRange(); 6102 } 6103 unsigned i = 0; 6104 6105 // For formatting call, check buffer arg. 6106 if (!IsSizeCall) { 6107 ExprResult Arg(TheCall->getArg(i)); 6108 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6109 Context, Context.VoidPtrTy, false); 6110 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6111 if (Arg.isInvalid()) 6112 return true; 6113 TheCall->setArg(i, Arg.get()); 6114 i++; 6115 } 6116 6117 // Check string literal arg. 6118 unsigned FormatIdx = i; 6119 { 6120 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6121 if (Arg.isInvalid()) 6122 return true; 6123 TheCall->setArg(i, Arg.get()); 6124 i++; 6125 } 6126 6127 // Make sure variadic args are scalar. 6128 unsigned FirstDataArg = i; 6129 while (i < NumArgs) { 6130 ExprResult Arg = DefaultVariadicArgumentPromotion( 6131 TheCall->getArg(i), VariadicFunction, nullptr); 6132 if (Arg.isInvalid()) 6133 return true; 6134 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6135 if (ArgSize.getQuantity() >= 0x100) { 6136 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6137 << i << (int)ArgSize.getQuantity() << 0xff 6138 << TheCall->getSourceRange(); 6139 } 6140 TheCall->setArg(i, Arg.get()); 6141 i++; 6142 } 6143 6144 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6145 // call to avoid duplicate diagnostics. 6146 if (!IsSizeCall) { 6147 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6148 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6149 bool Success = CheckFormatArguments( 6150 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6151 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6152 CheckedVarArgs); 6153 if (!Success) 6154 return true; 6155 } 6156 6157 if (IsSizeCall) { 6158 TheCall->setType(Context.getSizeType()); 6159 } else { 6160 TheCall->setType(Context.VoidPtrTy); 6161 } 6162 return false; 6163 } 6164 6165 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6166 /// TheCall is a constant expression. 6167 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6168 llvm::APSInt &Result) { 6169 Expr *Arg = TheCall->getArg(ArgNum); 6170 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6171 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6172 6173 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6174 6175 if (!Arg->isIntegerConstantExpr(Result, Context)) 6176 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6177 << FDecl->getDeclName() << Arg->getSourceRange(); 6178 6179 return false; 6180 } 6181 6182 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6183 /// TheCall is a constant expression in the range [Low, High]. 6184 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6185 int Low, int High, bool RangeIsError) { 6186 if (isConstantEvaluated()) 6187 return false; 6188 llvm::APSInt Result; 6189 6190 // We can't check the value of a dependent argument. 6191 Expr *Arg = TheCall->getArg(ArgNum); 6192 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6193 return false; 6194 6195 // Check constant-ness first. 6196 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6197 return true; 6198 6199 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6200 if (RangeIsError) 6201 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6202 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6203 else 6204 // Defer the warning until we know if the code will be emitted so that 6205 // dead code can ignore this. 6206 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6207 PDiag(diag::warn_argument_invalid_range) 6208 << Result.toString(10) << Low << High 6209 << Arg->getSourceRange()); 6210 } 6211 6212 return false; 6213 } 6214 6215 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6216 /// TheCall is a constant expression is a multiple of Num.. 6217 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6218 unsigned Num) { 6219 llvm::APSInt Result; 6220 6221 // We can't check the value of a dependent argument. 6222 Expr *Arg = TheCall->getArg(ArgNum); 6223 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6224 return false; 6225 6226 // Check constant-ness first. 6227 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6228 return true; 6229 6230 if (Result.getSExtValue() % Num != 0) 6231 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6232 << Num << Arg->getSourceRange(); 6233 6234 return false; 6235 } 6236 6237 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6238 /// constant expression representing a power of 2. 6239 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6240 llvm::APSInt Result; 6241 6242 // We can't check the value of a dependent argument. 6243 Expr *Arg = TheCall->getArg(ArgNum); 6244 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6245 return false; 6246 6247 // Check constant-ness first. 6248 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6249 return true; 6250 6251 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6252 // and only if x is a power of 2. 6253 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6254 return false; 6255 6256 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6257 << Arg->getSourceRange(); 6258 } 6259 6260 static bool IsShiftedByte(llvm::APSInt Value) { 6261 if (Value.isNegative()) 6262 return false; 6263 6264 // Check if it's a shifted byte, by shifting it down 6265 while (true) { 6266 // If the value fits in the bottom byte, the check passes. 6267 if (Value < 0x100) 6268 return true; 6269 6270 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6271 // fails. 6272 if ((Value & 0xFF) != 0) 6273 return false; 6274 6275 // If the bottom 8 bits are all 0, but something above that is nonzero, 6276 // then shifting the value right by 8 bits won't affect whether it's a 6277 // shifted byte or not. So do that, and go round again. 6278 Value >>= 8; 6279 } 6280 } 6281 6282 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6283 /// a constant expression representing an arbitrary byte value shifted left by 6284 /// a multiple of 8 bits. 6285 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6286 unsigned ArgBits) { 6287 llvm::APSInt Result; 6288 6289 // We can't check the value of a dependent argument. 6290 Expr *Arg = TheCall->getArg(ArgNum); 6291 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6292 return false; 6293 6294 // Check constant-ness first. 6295 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6296 return true; 6297 6298 // Truncate to the given size. 6299 Result = Result.getLoBits(ArgBits); 6300 Result.setIsUnsigned(true); 6301 6302 if (IsShiftedByte(Result)) 6303 return false; 6304 6305 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6306 << Arg->getSourceRange(); 6307 } 6308 6309 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6310 /// TheCall is a constant expression representing either a shifted byte value, 6311 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6312 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6313 /// Arm MVE intrinsics. 6314 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6315 int ArgNum, 6316 unsigned ArgBits) { 6317 llvm::APSInt Result; 6318 6319 // We can't check the value of a dependent argument. 6320 Expr *Arg = TheCall->getArg(ArgNum); 6321 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6322 return false; 6323 6324 // Check constant-ness first. 6325 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6326 return true; 6327 6328 // Truncate to the given size. 6329 Result = Result.getLoBits(ArgBits); 6330 Result.setIsUnsigned(true); 6331 6332 // Check to see if it's in either of the required forms. 6333 if (IsShiftedByte(Result) || 6334 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6335 return false; 6336 6337 return Diag(TheCall->getBeginLoc(), 6338 diag::err_argument_not_shifted_byte_or_xxff) 6339 << Arg->getSourceRange(); 6340 } 6341 6342 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6343 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6344 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6345 if (checkArgCount(*this, TheCall, 2)) 6346 return true; 6347 Expr *Arg0 = TheCall->getArg(0); 6348 Expr *Arg1 = TheCall->getArg(1); 6349 6350 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6351 if (FirstArg.isInvalid()) 6352 return true; 6353 QualType FirstArgType = FirstArg.get()->getType(); 6354 if (!FirstArgType->isAnyPointerType()) 6355 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6356 << "first" << FirstArgType << Arg0->getSourceRange(); 6357 TheCall->setArg(0, FirstArg.get()); 6358 6359 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6360 if (SecArg.isInvalid()) 6361 return true; 6362 QualType SecArgType = SecArg.get()->getType(); 6363 if (!SecArgType->isIntegerType()) 6364 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6365 << "second" << SecArgType << Arg1->getSourceRange(); 6366 6367 // Derive the return type from the pointer argument. 6368 TheCall->setType(FirstArgType); 6369 return false; 6370 } 6371 6372 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6373 if (checkArgCount(*this, TheCall, 2)) 6374 return true; 6375 6376 Expr *Arg0 = TheCall->getArg(0); 6377 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6378 if (FirstArg.isInvalid()) 6379 return true; 6380 QualType FirstArgType = FirstArg.get()->getType(); 6381 if (!FirstArgType->isAnyPointerType()) 6382 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6383 << "first" << FirstArgType << Arg0->getSourceRange(); 6384 TheCall->setArg(0, FirstArg.get()); 6385 6386 // Derive the return type from the pointer argument. 6387 TheCall->setType(FirstArgType); 6388 6389 // Second arg must be an constant in range [0,15] 6390 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6391 } 6392 6393 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6394 if (checkArgCount(*this, TheCall, 2)) 6395 return true; 6396 Expr *Arg0 = TheCall->getArg(0); 6397 Expr *Arg1 = TheCall->getArg(1); 6398 6399 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6400 if (FirstArg.isInvalid()) 6401 return true; 6402 QualType FirstArgType = FirstArg.get()->getType(); 6403 if (!FirstArgType->isAnyPointerType()) 6404 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6405 << "first" << FirstArgType << Arg0->getSourceRange(); 6406 6407 QualType SecArgType = Arg1->getType(); 6408 if (!SecArgType->isIntegerType()) 6409 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6410 << "second" << SecArgType << Arg1->getSourceRange(); 6411 TheCall->setType(Context.IntTy); 6412 return false; 6413 } 6414 6415 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6416 BuiltinID == AArch64::BI__builtin_arm_stg) { 6417 if (checkArgCount(*this, TheCall, 1)) 6418 return true; 6419 Expr *Arg0 = TheCall->getArg(0); 6420 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6421 if (FirstArg.isInvalid()) 6422 return true; 6423 6424 QualType FirstArgType = FirstArg.get()->getType(); 6425 if (!FirstArgType->isAnyPointerType()) 6426 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6427 << "first" << FirstArgType << Arg0->getSourceRange(); 6428 TheCall->setArg(0, FirstArg.get()); 6429 6430 // Derive the return type from the pointer argument. 6431 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6432 TheCall->setType(FirstArgType); 6433 return false; 6434 } 6435 6436 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6437 Expr *ArgA = TheCall->getArg(0); 6438 Expr *ArgB = TheCall->getArg(1); 6439 6440 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6441 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6442 6443 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6444 return true; 6445 6446 QualType ArgTypeA = ArgExprA.get()->getType(); 6447 QualType ArgTypeB = ArgExprB.get()->getType(); 6448 6449 auto isNull = [&] (Expr *E) -> bool { 6450 return E->isNullPointerConstant( 6451 Context, Expr::NPC_ValueDependentIsNotNull); }; 6452 6453 // argument should be either a pointer or null 6454 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6455 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6456 << "first" << ArgTypeA << ArgA->getSourceRange(); 6457 6458 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6459 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6460 << "second" << ArgTypeB << ArgB->getSourceRange(); 6461 6462 // Ensure Pointee types are compatible 6463 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6464 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6465 QualType pointeeA = ArgTypeA->getPointeeType(); 6466 QualType pointeeB = ArgTypeB->getPointeeType(); 6467 if (!Context.typesAreCompatible( 6468 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6469 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6470 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6471 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6472 << ArgB->getSourceRange(); 6473 } 6474 } 6475 6476 // at least one argument should be pointer type 6477 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6478 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6479 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6480 6481 if (isNull(ArgA)) // adopt type of the other pointer 6482 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6483 6484 if (isNull(ArgB)) 6485 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6486 6487 TheCall->setArg(0, ArgExprA.get()); 6488 TheCall->setArg(1, ArgExprB.get()); 6489 TheCall->setType(Context.LongLongTy); 6490 return false; 6491 } 6492 assert(false && "Unhandled ARM MTE intrinsic"); 6493 return true; 6494 } 6495 6496 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6497 /// TheCall is an ARM/AArch64 special register string literal. 6498 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6499 int ArgNum, unsigned ExpectedFieldNum, 6500 bool AllowName) { 6501 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6502 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6503 BuiltinID == ARM::BI__builtin_arm_rsr || 6504 BuiltinID == ARM::BI__builtin_arm_rsrp || 6505 BuiltinID == ARM::BI__builtin_arm_wsr || 6506 BuiltinID == ARM::BI__builtin_arm_wsrp; 6507 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6508 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6509 BuiltinID == AArch64::BI__builtin_arm_rsr || 6510 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6511 BuiltinID == AArch64::BI__builtin_arm_wsr || 6512 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6513 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6514 6515 // We can't check the value of a dependent argument. 6516 Expr *Arg = TheCall->getArg(ArgNum); 6517 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6518 return false; 6519 6520 // Check if the argument is a string literal. 6521 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6522 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6523 << Arg->getSourceRange(); 6524 6525 // Check the type of special register given. 6526 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6527 SmallVector<StringRef, 6> Fields; 6528 Reg.split(Fields, ":"); 6529 6530 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6531 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6532 << Arg->getSourceRange(); 6533 6534 // If the string is the name of a register then we cannot check that it is 6535 // valid here but if the string is of one the forms described in ACLE then we 6536 // can check that the supplied fields are integers and within the valid 6537 // ranges. 6538 if (Fields.size() > 1) { 6539 bool FiveFields = Fields.size() == 5; 6540 6541 bool ValidString = true; 6542 if (IsARMBuiltin) { 6543 ValidString &= Fields[0].startswith_lower("cp") || 6544 Fields[0].startswith_lower("p"); 6545 if (ValidString) 6546 Fields[0] = 6547 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6548 6549 ValidString &= Fields[2].startswith_lower("c"); 6550 if (ValidString) 6551 Fields[2] = Fields[2].drop_front(1); 6552 6553 if (FiveFields) { 6554 ValidString &= Fields[3].startswith_lower("c"); 6555 if (ValidString) 6556 Fields[3] = Fields[3].drop_front(1); 6557 } 6558 } 6559 6560 SmallVector<int, 5> Ranges; 6561 if (FiveFields) 6562 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6563 else 6564 Ranges.append({15, 7, 15}); 6565 6566 for (unsigned i=0; i<Fields.size(); ++i) { 6567 int IntField; 6568 ValidString &= !Fields[i].getAsInteger(10, IntField); 6569 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6570 } 6571 6572 if (!ValidString) 6573 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6574 << Arg->getSourceRange(); 6575 } else if (IsAArch64Builtin && Fields.size() == 1) { 6576 // If the register name is one of those that appear in the condition below 6577 // and the special register builtin being used is one of the write builtins, 6578 // then we require that the argument provided for writing to the register 6579 // is an integer constant expression. This is because it will be lowered to 6580 // an MSR (immediate) instruction, so we need to know the immediate at 6581 // compile time. 6582 if (TheCall->getNumArgs() != 2) 6583 return false; 6584 6585 std::string RegLower = Reg.lower(); 6586 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6587 RegLower != "pan" && RegLower != "uao") 6588 return false; 6589 6590 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6591 } 6592 6593 return false; 6594 } 6595 6596 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6597 /// This checks that the target supports __builtin_longjmp and 6598 /// that val is a constant 1. 6599 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6600 if (!Context.getTargetInfo().hasSjLjLowering()) 6601 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6602 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6603 6604 Expr *Arg = TheCall->getArg(1); 6605 llvm::APSInt Result; 6606 6607 // TODO: This is less than ideal. Overload this to take a value. 6608 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6609 return true; 6610 6611 if (Result != 1) 6612 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6613 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6614 6615 return false; 6616 } 6617 6618 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6619 /// This checks that the target supports __builtin_setjmp. 6620 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6621 if (!Context.getTargetInfo().hasSjLjLowering()) 6622 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6623 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6624 return false; 6625 } 6626 6627 namespace { 6628 6629 class UncoveredArgHandler { 6630 enum { Unknown = -1, AllCovered = -2 }; 6631 6632 signed FirstUncoveredArg = Unknown; 6633 SmallVector<const Expr *, 4> DiagnosticExprs; 6634 6635 public: 6636 UncoveredArgHandler() = default; 6637 6638 bool hasUncoveredArg() const { 6639 return (FirstUncoveredArg >= 0); 6640 } 6641 6642 unsigned getUncoveredArg() const { 6643 assert(hasUncoveredArg() && "no uncovered argument"); 6644 return FirstUncoveredArg; 6645 } 6646 6647 void setAllCovered() { 6648 // A string has been found with all arguments covered, so clear out 6649 // the diagnostics. 6650 DiagnosticExprs.clear(); 6651 FirstUncoveredArg = AllCovered; 6652 } 6653 6654 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6655 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6656 6657 // Don't update if a previous string covers all arguments. 6658 if (FirstUncoveredArg == AllCovered) 6659 return; 6660 6661 // UncoveredArgHandler tracks the highest uncovered argument index 6662 // and with it all the strings that match this index. 6663 if (NewFirstUncoveredArg == FirstUncoveredArg) 6664 DiagnosticExprs.push_back(StrExpr); 6665 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6666 DiagnosticExprs.clear(); 6667 DiagnosticExprs.push_back(StrExpr); 6668 FirstUncoveredArg = NewFirstUncoveredArg; 6669 } 6670 } 6671 6672 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6673 }; 6674 6675 enum StringLiteralCheckType { 6676 SLCT_NotALiteral, 6677 SLCT_UncheckedLiteral, 6678 SLCT_CheckedLiteral 6679 }; 6680 6681 } // namespace 6682 6683 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6684 BinaryOperatorKind BinOpKind, 6685 bool AddendIsRight) { 6686 unsigned BitWidth = Offset.getBitWidth(); 6687 unsigned AddendBitWidth = Addend.getBitWidth(); 6688 // There might be negative interim results. 6689 if (Addend.isUnsigned()) { 6690 Addend = Addend.zext(++AddendBitWidth); 6691 Addend.setIsSigned(true); 6692 } 6693 // Adjust the bit width of the APSInts. 6694 if (AddendBitWidth > BitWidth) { 6695 Offset = Offset.sext(AddendBitWidth); 6696 BitWidth = AddendBitWidth; 6697 } else if (BitWidth > AddendBitWidth) { 6698 Addend = Addend.sext(BitWidth); 6699 } 6700 6701 bool Ov = false; 6702 llvm::APSInt ResOffset = Offset; 6703 if (BinOpKind == BO_Add) 6704 ResOffset = Offset.sadd_ov(Addend, Ov); 6705 else { 6706 assert(AddendIsRight && BinOpKind == BO_Sub && 6707 "operator must be add or sub with addend on the right"); 6708 ResOffset = Offset.ssub_ov(Addend, Ov); 6709 } 6710 6711 // We add an offset to a pointer here so we should support an offset as big as 6712 // possible. 6713 if (Ov) { 6714 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6715 "index (intermediate) result too big"); 6716 Offset = Offset.sext(2 * BitWidth); 6717 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6718 return; 6719 } 6720 6721 Offset = ResOffset; 6722 } 6723 6724 namespace { 6725 6726 // This is a wrapper class around StringLiteral to support offsetted string 6727 // literals as format strings. It takes the offset into account when returning 6728 // the string and its length or the source locations to display notes correctly. 6729 class FormatStringLiteral { 6730 const StringLiteral *FExpr; 6731 int64_t Offset; 6732 6733 public: 6734 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 6735 : FExpr(fexpr), Offset(Offset) {} 6736 6737 StringRef getString() const { 6738 return FExpr->getString().drop_front(Offset); 6739 } 6740 6741 unsigned getByteLength() const { 6742 return FExpr->getByteLength() - getCharByteWidth() * Offset; 6743 } 6744 6745 unsigned getLength() const { return FExpr->getLength() - Offset; } 6746 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 6747 6748 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 6749 6750 QualType getType() const { return FExpr->getType(); } 6751 6752 bool isAscii() const { return FExpr->isAscii(); } 6753 bool isWide() const { return FExpr->isWide(); } 6754 bool isUTF8() const { return FExpr->isUTF8(); } 6755 bool isUTF16() const { return FExpr->isUTF16(); } 6756 bool isUTF32() const { return FExpr->isUTF32(); } 6757 bool isPascal() const { return FExpr->isPascal(); } 6758 6759 SourceLocation getLocationOfByte( 6760 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 6761 const TargetInfo &Target, unsigned *StartToken = nullptr, 6762 unsigned *StartTokenByteOffset = nullptr) const { 6763 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 6764 StartToken, StartTokenByteOffset); 6765 } 6766 6767 SourceLocation getBeginLoc() const LLVM_READONLY { 6768 return FExpr->getBeginLoc().getLocWithOffset(Offset); 6769 } 6770 6771 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 6772 }; 6773 6774 } // namespace 6775 6776 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 6777 const Expr *OrigFormatExpr, 6778 ArrayRef<const Expr *> Args, 6779 bool HasVAListArg, unsigned format_idx, 6780 unsigned firstDataArg, 6781 Sema::FormatStringType Type, 6782 bool inFunctionCall, 6783 Sema::VariadicCallType CallType, 6784 llvm::SmallBitVector &CheckedVarArgs, 6785 UncoveredArgHandler &UncoveredArg, 6786 bool IgnoreStringsWithoutSpecifiers); 6787 6788 // Determine if an expression is a string literal or constant string. 6789 // If this function returns false on the arguments to a function expecting a 6790 // format string, we will usually need to emit a warning. 6791 // True string literals are then checked by CheckFormatString. 6792 static StringLiteralCheckType 6793 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 6794 bool HasVAListArg, unsigned format_idx, 6795 unsigned firstDataArg, Sema::FormatStringType Type, 6796 Sema::VariadicCallType CallType, bool InFunctionCall, 6797 llvm::SmallBitVector &CheckedVarArgs, 6798 UncoveredArgHandler &UncoveredArg, 6799 llvm::APSInt Offset, 6800 bool IgnoreStringsWithoutSpecifiers = false) { 6801 if (S.isConstantEvaluated()) 6802 return SLCT_NotALiteral; 6803 tryAgain: 6804 assert(Offset.isSigned() && "invalid offset"); 6805 6806 if (E->isTypeDependent() || E->isValueDependent()) 6807 return SLCT_NotALiteral; 6808 6809 E = E->IgnoreParenCasts(); 6810 6811 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 6812 // Technically -Wformat-nonliteral does not warn about this case. 6813 // The behavior of printf and friends in this case is implementation 6814 // dependent. Ideally if the format string cannot be null then 6815 // it should have a 'nonnull' attribute in the function prototype. 6816 return SLCT_UncheckedLiteral; 6817 6818 switch (E->getStmtClass()) { 6819 case Stmt::BinaryConditionalOperatorClass: 6820 case Stmt::ConditionalOperatorClass: { 6821 // The expression is a literal if both sub-expressions were, and it was 6822 // completely checked only if both sub-expressions were checked. 6823 const AbstractConditionalOperator *C = 6824 cast<AbstractConditionalOperator>(E); 6825 6826 // Determine whether it is necessary to check both sub-expressions, for 6827 // example, because the condition expression is a constant that can be 6828 // evaluated at compile time. 6829 bool CheckLeft = true, CheckRight = true; 6830 6831 bool Cond; 6832 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 6833 S.isConstantEvaluated())) { 6834 if (Cond) 6835 CheckRight = false; 6836 else 6837 CheckLeft = false; 6838 } 6839 6840 // We need to maintain the offsets for the right and the left hand side 6841 // separately to check if every possible indexed expression is a valid 6842 // string literal. They might have different offsets for different string 6843 // literals in the end. 6844 StringLiteralCheckType Left; 6845 if (!CheckLeft) 6846 Left = SLCT_UncheckedLiteral; 6847 else { 6848 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 6849 HasVAListArg, format_idx, firstDataArg, 6850 Type, CallType, InFunctionCall, 6851 CheckedVarArgs, UncoveredArg, Offset, 6852 IgnoreStringsWithoutSpecifiers); 6853 if (Left == SLCT_NotALiteral || !CheckRight) { 6854 return Left; 6855 } 6856 } 6857 6858 StringLiteralCheckType Right = checkFormatStringExpr( 6859 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 6860 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6861 IgnoreStringsWithoutSpecifiers); 6862 6863 return (CheckLeft && Left < Right) ? Left : Right; 6864 } 6865 6866 case Stmt::ImplicitCastExprClass: 6867 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 6868 goto tryAgain; 6869 6870 case Stmt::OpaqueValueExprClass: 6871 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 6872 E = src; 6873 goto tryAgain; 6874 } 6875 return SLCT_NotALiteral; 6876 6877 case Stmt::PredefinedExprClass: 6878 // While __func__, etc., are technically not string literals, they 6879 // cannot contain format specifiers and thus are not a security 6880 // liability. 6881 return SLCT_UncheckedLiteral; 6882 6883 case Stmt::DeclRefExprClass: { 6884 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 6885 6886 // As an exception, do not flag errors for variables binding to 6887 // const string literals. 6888 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 6889 bool isConstant = false; 6890 QualType T = DR->getType(); 6891 6892 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 6893 isConstant = AT->getElementType().isConstant(S.Context); 6894 } else if (const PointerType *PT = T->getAs<PointerType>()) { 6895 isConstant = T.isConstant(S.Context) && 6896 PT->getPointeeType().isConstant(S.Context); 6897 } else if (T->isObjCObjectPointerType()) { 6898 // In ObjC, there is usually no "const ObjectPointer" type, 6899 // so don't check if the pointee type is constant. 6900 isConstant = T.isConstant(S.Context); 6901 } 6902 6903 if (isConstant) { 6904 if (const Expr *Init = VD->getAnyInitializer()) { 6905 // Look through initializers like const char c[] = { "foo" } 6906 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 6907 if (InitList->isStringLiteralInit()) 6908 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 6909 } 6910 return checkFormatStringExpr(S, Init, Args, 6911 HasVAListArg, format_idx, 6912 firstDataArg, Type, CallType, 6913 /*InFunctionCall*/ false, CheckedVarArgs, 6914 UncoveredArg, Offset); 6915 } 6916 } 6917 6918 // For vprintf* functions (i.e., HasVAListArg==true), we add a 6919 // special check to see if the format string is a function parameter 6920 // of the function calling the printf function. If the function 6921 // has an attribute indicating it is a printf-like function, then we 6922 // should suppress warnings concerning non-literals being used in a call 6923 // to a vprintf function. For example: 6924 // 6925 // void 6926 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 6927 // va_list ap; 6928 // va_start(ap, fmt); 6929 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 6930 // ... 6931 // } 6932 if (HasVAListArg) { 6933 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 6934 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 6935 int PVIndex = PV->getFunctionScopeIndex() + 1; 6936 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 6937 // adjust for implicit parameter 6938 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 6939 if (MD->isInstance()) 6940 ++PVIndex; 6941 // We also check if the formats are compatible. 6942 // We can't pass a 'scanf' string to a 'printf' function. 6943 if (PVIndex == PVFormat->getFormatIdx() && 6944 Type == S.GetFormatStringType(PVFormat)) 6945 return SLCT_UncheckedLiteral; 6946 } 6947 } 6948 } 6949 } 6950 } 6951 6952 return SLCT_NotALiteral; 6953 } 6954 6955 case Stmt::CallExprClass: 6956 case Stmt::CXXMemberCallExprClass: { 6957 const CallExpr *CE = cast<CallExpr>(E); 6958 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 6959 bool IsFirst = true; 6960 StringLiteralCheckType CommonResult; 6961 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 6962 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 6963 StringLiteralCheckType Result = checkFormatStringExpr( 6964 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 6965 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 6966 IgnoreStringsWithoutSpecifiers); 6967 if (IsFirst) { 6968 CommonResult = Result; 6969 IsFirst = false; 6970 } 6971 } 6972 if (!IsFirst) 6973 return CommonResult; 6974 6975 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 6976 unsigned BuiltinID = FD->getBuiltinID(); 6977 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 6978 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 6979 const Expr *Arg = CE->getArg(0); 6980 return checkFormatStringExpr(S, Arg, Args, 6981 HasVAListArg, format_idx, 6982 firstDataArg, Type, CallType, 6983 InFunctionCall, CheckedVarArgs, 6984 UncoveredArg, Offset, 6985 IgnoreStringsWithoutSpecifiers); 6986 } 6987 } 6988 } 6989 6990 return SLCT_NotALiteral; 6991 } 6992 case Stmt::ObjCMessageExprClass: { 6993 const auto *ME = cast<ObjCMessageExpr>(E); 6994 if (const auto *MD = ME->getMethodDecl()) { 6995 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 6996 // As a special case heuristic, if we're using the method -[NSBundle 6997 // localizedStringForKey:value:table:], ignore any key strings that lack 6998 // format specifiers. The idea is that if the key doesn't have any 6999 // format specifiers then its probably just a key to map to the 7000 // localized strings. If it does have format specifiers though, then its 7001 // likely that the text of the key is the format string in the 7002 // programmer's language, and should be checked. 7003 const ObjCInterfaceDecl *IFace; 7004 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7005 IFace->getIdentifier()->isStr("NSBundle") && 7006 MD->getSelector().isKeywordSelector( 7007 {"localizedStringForKey", "value", "table"})) { 7008 IgnoreStringsWithoutSpecifiers = true; 7009 } 7010 7011 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7012 return checkFormatStringExpr( 7013 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7014 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7015 IgnoreStringsWithoutSpecifiers); 7016 } 7017 } 7018 7019 return SLCT_NotALiteral; 7020 } 7021 case Stmt::ObjCStringLiteralClass: 7022 case Stmt::StringLiteralClass: { 7023 const StringLiteral *StrE = nullptr; 7024 7025 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7026 StrE = ObjCFExpr->getString(); 7027 else 7028 StrE = cast<StringLiteral>(E); 7029 7030 if (StrE) { 7031 if (Offset.isNegative() || Offset > StrE->getLength()) { 7032 // TODO: It would be better to have an explicit warning for out of 7033 // bounds literals. 7034 return SLCT_NotALiteral; 7035 } 7036 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7037 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7038 firstDataArg, Type, InFunctionCall, CallType, 7039 CheckedVarArgs, UncoveredArg, 7040 IgnoreStringsWithoutSpecifiers); 7041 return SLCT_CheckedLiteral; 7042 } 7043 7044 return SLCT_NotALiteral; 7045 } 7046 case Stmt::BinaryOperatorClass: { 7047 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7048 7049 // A string literal + an int offset is still a string literal. 7050 if (BinOp->isAdditiveOp()) { 7051 Expr::EvalResult LResult, RResult; 7052 7053 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7054 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7055 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7056 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7057 7058 if (LIsInt != RIsInt) { 7059 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7060 7061 if (LIsInt) { 7062 if (BinOpKind == BO_Add) { 7063 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7064 E = BinOp->getRHS(); 7065 goto tryAgain; 7066 } 7067 } else { 7068 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7069 E = BinOp->getLHS(); 7070 goto tryAgain; 7071 } 7072 } 7073 } 7074 7075 return SLCT_NotALiteral; 7076 } 7077 case Stmt::UnaryOperatorClass: { 7078 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7079 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7080 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7081 Expr::EvalResult IndexResult; 7082 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7083 Expr::SE_NoSideEffects, 7084 S.isConstantEvaluated())) { 7085 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7086 /*RHS is int*/ true); 7087 E = ASE->getBase(); 7088 goto tryAgain; 7089 } 7090 } 7091 7092 return SLCT_NotALiteral; 7093 } 7094 7095 default: 7096 return SLCT_NotALiteral; 7097 } 7098 } 7099 7100 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7101 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7102 .Case("scanf", FST_Scanf) 7103 .Cases("printf", "printf0", FST_Printf) 7104 .Cases("NSString", "CFString", FST_NSString) 7105 .Case("strftime", FST_Strftime) 7106 .Case("strfmon", FST_Strfmon) 7107 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7108 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7109 .Case("os_trace", FST_OSLog) 7110 .Case("os_log", FST_OSLog) 7111 .Default(FST_Unknown); 7112 } 7113 7114 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7115 /// functions) for correct use of format strings. 7116 /// Returns true if a format string has been fully checked. 7117 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7118 ArrayRef<const Expr *> Args, 7119 bool IsCXXMember, 7120 VariadicCallType CallType, 7121 SourceLocation Loc, SourceRange Range, 7122 llvm::SmallBitVector &CheckedVarArgs) { 7123 FormatStringInfo FSI; 7124 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7125 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7126 FSI.FirstDataArg, GetFormatStringType(Format), 7127 CallType, Loc, Range, CheckedVarArgs); 7128 return false; 7129 } 7130 7131 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7132 bool HasVAListArg, unsigned format_idx, 7133 unsigned firstDataArg, FormatStringType Type, 7134 VariadicCallType CallType, 7135 SourceLocation Loc, SourceRange Range, 7136 llvm::SmallBitVector &CheckedVarArgs) { 7137 // CHECK: printf/scanf-like function is called with no format string. 7138 if (format_idx >= Args.size()) { 7139 Diag(Loc, diag::warn_missing_format_string) << Range; 7140 return false; 7141 } 7142 7143 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7144 7145 // CHECK: format string is not a string literal. 7146 // 7147 // Dynamically generated format strings are difficult to 7148 // automatically vet at compile time. Requiring that format strings 7149 // are string literals: (1) permits the checking of format strings by 7150 // the compiler and thereby (2) can practically remove the source of 7151 // many format string exploits. 7152 7153 // Format string can be either ObjC string (e.g. @"%d") or 7154 // C string (e.g. "%d") 7155 // ObjC string uses the same format specifiers as C string, so we can use 7156 // the same format string checking logic for both ObjC and C strings. 7157 UncoveredArgHandler UncoveredArg; 7158 StringLiteralCheckType CT = 7159 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7160 format_idx, firstDataArg, Type, CallType, 7161 /*IsFunctionCall*/ true, CheckedVarArgs, 7162 UncoveredArg, 7163 /*no string offset*/ llvm::APSInt(64, false) = 0); 7164 7165 // Generate a diagnostic where an uncovered argument is detected. 7166 if (UncoveredArg.hasUncoveredArg()) { 7167 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7168 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7169 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7170 } 7171 7172 if (CT != SLCT_NotALiteral) 7173 // Literal format string found, check done! 7174 return CT == SLCT_CheckedLiteral; 7175 7176 // Strftime is particular as it always uses a single 'time' argument, 7177 // so it is safe to pass a non-literal string. 7178 if (Type == FST_Strftime) 7179 return false; 7180 7181 // Do not emit diag when the string param is a macro expansion and the 7182 // format is either NSString or CFString. This is a hack to prevent 7183 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7184 // which are usually used in place of NS and CF string literals. 7185 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7186 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7187 return false; 7188 7189 // If there are no arguments specified, warn with -Wformat-security, otherwise 7190 // warn only with -Wformat-nonliteral. 7191 if (Args.size() == firstDataArg) { 7192 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7193 << OrigFormatExpr->getSourceRange(); 7194 switch (Type) { 7195 default: 7196 break; 7197 case FST_Kprintf: 7198 case FST_FreeBSDKPrintf: 7199 case FST_Printf: 7200 Diag(FormatLoc, diag::note_format_security_fixit) 7201 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7202 break; 7203 case FST_NSString: 7204 Diag(FormatLoc, diag::note_format_security_fixit) 7205 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7206 break; 7207 } 7208 } else { 7209 Diag(FormatLoc, diag::warn_format_nonliteral) 7210 << OrigFormatExpr->getSourceRange(); 7211 } 7212 return false; 7213 } 7214 7215 namespace { 7216 7217 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7218 protected: 7219 Sema &S; 7220 const FormatStringLiteral *FExpr; 7221 const Expr *OrigFormatExpr; 7222 const Sema::FormatStringType FSType; 7223 const unsigned FirstDataArg; 7224 const unsigned NumDataArgs; 7225 const char *Beg; // Start of format string. 7226 const bool HasVAListArg; 7227 ArrayRef<const Expr *> Args; 7228 unsigned FormatIdx; 7229 llvm::SmallBitVector CoveredArgs; 7230 bool usesPositionalArgs = false; 7231 bool atFirstArg = true; 7232 bool inFunctionCall; 7233 Sema::VariadicCallType CallType; 7234 llvm::SmallBitVector &CheckedVarArgs; 7235 UncoveredArgHandler &UncoveredArg; 7236 7237 public: 7238 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7239 const Expr *origFormatExpr, 7240 const Sema::FormatStringType type, unsigned firstDataArg, 7241 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7242 ArrayRef<const Expr *> Args, unsigned formatIdx, 7243 bool inFunctionCall, Sema::VariadicCallType callType, 7244 llvm::SmallBitVector &CheckedVarArgs, 7245 UncoveredArgHandler &UncoveredArg) 7246 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7247 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7248 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7249 inFunctionCall(inFunctionCall), CallType(callType), 7250 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7251 CoveredArgs.resize(numDataArgs); 7252 CoveredArgs.reset(); 7253 } 7254 7255 void DoneProcessing(); 7256 7257 void HandleIncompleteSpecifier(const char *startSpecifier, 7258 unsigned specifierLen) override; 7259 7260 void HandleInvalidLengthModifier( 7261 const analyze_format_string::FormatSpecifier &FS, 7262 const analyze_format_string::ConversionSpecifier &CS, 7263 const char *startSpecifier, unsigned specifierLen, 7264 unsigned DiagID); 7265 7266 void HandleNonStandardLengthModifier( 7267 const analyze_format_string::FormatSpecifier &FS, 7268 const char *startSpecifier, unsigned specifierLen); 7269 7270 void HandleNonStandardConversionSpecifier( 7271 const analyze_format_string::ConversionSpecifier &CS, 7272 const char *startSpecifier, unsigned specifierLen); 7273 7274 void HandlePosition(const char *startPos, unsigned posLen) override; 7275 7276 void HandleInvalidPosition(const char *startSpecifier, 7277 unsigned specifierLen, 7278 analyze_format_string::PositionContext p) override; 7279 7280 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7281 7282 void HandleNullChar(const char *nullCharacter) override; 7283 7284 template <typename Range> 7285 static void 7286 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7287 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7288 bool IsStringLocation, Range StringRange, 7289 ArrayRef<FixItHint> Fixit = None); 7290 7291 protected: 7292 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7293 const char *startSpec, 7294 unsigned specifierLen, 7295 const char *csStart, unsigned csLen); 7296 7297 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7298 const char *startSpec, 7299 unsigned specifierLen); 7300 7301 SourceRange getFormatStringRange(); 7302 CharSourceRange getSpecifierRange(const char *startSpecifier, 7303 unsigned specifierLen); 7304 SourceLocation getLocationOfByte(const char *x); 7305 7306 const Expr *getDataArg(unsigned i) const; 7307 7308 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7309 const analyze_format_string::ConversionSpecifier &CS, 7310 const char *startSpecifier, unsigned specifierLen, 7311 unsigned argIndex); 7312 7313 template <typename Range> 7314 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7315 bool IsStringLocation, Range StringRange, 7316 ArrayRef<FixItHint> Fixit = None); 7317 }; 7318 7319 } // namespace 7320 7321 SourceRange CheckFormatHandler::getFormatStringRange() { 7322 return OrigFormatExpr->getSourceRange(); 7323 } 7324 7325 CharSourceRange CheckFormatHandler:: 7326 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7327 SourceLocation Start = getLocationOfByte(startSpecifier); 7328 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7329 7330 // Advance the end SourceLocation by one due to half-open ranges. 7331 End = End.getLocWithOffset(1); 7332 7333 return CharSourceRange::getCharRange(Start, End); 7334 } 7335 7336 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7337 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7338 S.getLangOpts(), S.Context.getTargetInfo()); 7339 } 7340 7341 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7342 unsigned specifierLen){ 7343 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7344 getLocationOfByte(startSpecifier), 7345 /*IsStringLocation*/true, 7346 getSpecifierRange(startSpecifier, specifierLen)); 7347 } 7348 7349 void CheckFormatHandler::HandleInvalidLengthModifier( 7350 const analyze_format_string::FormatSpecifier &FS, 7351 const analyze_format_string::ConversionSpecifier &CS, 7352 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7353 using namespace analyze_format_string; 7354 7355 const LengthModifier &LM = FS.getLengthModifier(); 7356 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7357 7358 // See if we know how to fix this length modifier. 7359 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7360 if (FixedLM) { 7361 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7362 getLocationOfByte(LM.getStart()), 7363 /*IsStringLocation*/true, 7364 getSpecifierRange(startSpecifier, specifierLen)); 7365 7366 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7367 << FixedLM->toString() 7368 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7369 7370 } else { 7371 FixItHint Hint; 7372 if (DiagID == diag::warn_format_nonsensical_length) 7373 Hint = FixItHint::CreateRemoval(LMRange); 7374 7375 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7376 getLocationOfByte(LM.getStart()), 7377 /*IsStringLocation*/true, 7378 getSpecifierRange(startSpecifier, specifierLen), 7379 Hint); 7380 } 7381 } 7382 7383 void CheckFormatHandler::HandleNonStandardLengthModifier( 7384 const analyze_format_string::FormatSpecifier &FS, 7385 const char *startSpecifier, unsigned specifierLen) { 7386 using namespace analyze_format_string; 7387 7388 const LengthModifier &LM = FS.getLengthModifier(); 7389 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7390 7391 // See if we know how to fix this length modifier. 7392 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7393 if (FixedLM) { 7394 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7395 << LM.toString() << 0, 7396 getLocationOfByte(LM.getStart()), 7397 /*IsStringLocation*/true, 7398 getSpecifierRange(startSpecifier, specifierLen)); 7399 7400 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7401 << FixedLM->toString() 7402 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7403 7404 } else { 7405 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7406 << LM.toString() << 0, 7407 getLocationOfByte(LM.getStart()), 7408 /*IsStringLocation*/true, 7409 getSpecifierRange(startSpecifier, specifierLen)); 7410 } 7411 } 7412 7413 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7414 const analyze_format_string::ConversionSpecifier &CS, 7415 const char *startSpecifier, unsigned specifierLen) { 7416 using namespace analyze_format_string; 7417 7418 // See if we know how to fix this conversion specifier. 7419 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7420 if (FixedCS) { 7421 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7422 << CS.toString() << /*conversion specifier*/1, 7423 getLocationOfByte(CS.getStart()), 7424 /*IsStringLocation*/true, 7425 getSpecifierRange(startSpecifier, specifierLen)); 7426 7427 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7428 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7429 << FixedCS->toString() 7430 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7431 } else { 7432 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7433 << CS.toString() << /*conversion specifier*/1, 7434 getLocationOfByte(CS.getStart()), 7435 /*IsStringLocation*/true, 7436 getSpecifierRange(startSpecifier, specifierLen)); 7437 } 7438 } 7439 7440 void CheckFormatHandler::HandlePosition(const char *startPos, 7441 unsigned posLen) { 7442 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7443 getLocationOfByte(startPos), 7444 /*IsStringLocation*/true, 7445 getSpecifierRange(startPos, posLen)); 7446 } 7447 7448 void 7449 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7450 analyze_format_string::PositionContext p) { 7451 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7452 << (unsigned) p, 7453 getLocationOfByte(startPos), /*IsStringLocation*/true, 7454 getSpecifierRange(startPos, posLen)); 7455 } 7456 7457 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7458 unsigned posLen) { 7459 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7460 getLocationOfByte(startPos), 7461 /*IsStringLocation*/true, 7462 getSpecifierRange(startPos, posLen)); 7463 } 7464 7465 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7466 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7467 // The presence of a null character is likely an error. 7468 EmitFormatDiagnostic( 7469 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7470 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7471 getFormatStringRange()); 7472 } 7473 } 7474 7475 // Note that this may return NULL if there was an error parsing or building 7476 // one of the argument expressions. 7477 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7478 return Args[FirstDataArg + i]; 7479 } 7480 7481 void CheckFormatHandler::DoneProcessing() { 7482 // Does the number of data arguments exceed the number of 7483 // format conversions in the format string? 7484 if (!HasVAListArg) { 7485 // Find any arguments that weren't covered. 7486 CoveredArgs.flip(); 7487 signed notCoveredArg = CoveredArgs.find_first(); 7488 if (notCoveredArg >= 0) { 7489 assert((unsigned)notCoveredArg < NumDataArgs); 7490 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7491 } else { 7492 UncoveredArg.setAllCovered(); 7493 } 7494 } 7495 } 7496 7497 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7498 const Expr *ArgExpr) { 7499 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7500 "Invalid state"); 7501 7502 if (!ArgExpr) 7503 return; 7504 7505 SourceLocation Loc = ArgExpr->getBeginLoc(); 7506 7507 if (S.getSourceManager().isInSystemMacro(Loc)) 7508 return; 7509 7510 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7511 for (auto E : DiagnosticExprs) 7512 PDiag << E->getSourceRange(); 7513 7514 CheckFormatHandler::EmitFormatDiagnostic( 7515 S, IsFunctionCall, DiagnosticExprs[0], 7516 PDiag, Loc, /*IsStringLocation*/false, 7517 DiagnosticExprs[0]->getSourceRange()); 7518 } 7519 7520 bool 7521 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7522 SourceLocation Loc, 7523 const char *startSpec, 7524 unsigned specifierLen, 7525 const char *csStart, 7526 unsigned csLen) { 7527 bool keepGoing = true; 7528 if (argIndex < NumDataArgs) { 7529 // Consider the argument coverered, even though the specifier doesn't 7530 // make sense. 7531 CoveredArgs.set(argIndex); 7532 } 7533 else { 7534 // If argIndex exceeds the number of data arguments we 7535 // don't issue a warning because that is just a cascade of warnings (and 7536 // they may have intended '%%' anyway). We don't want to continue processing 7537 // the format string after this point, however, as we will like just get 7538 // gibberish when trying to match arguments. 7539 keepGoing = false; 7540 } 7541 7542 StringRef Specifier(csStart, csLen); 7543 7544 // If the specifier in non-printable, it could be the first byte of a UTF-8 7545 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7546 // hex value. 7547 std::string CodePointStr; 7548 if (!llvm::sys::locale::isPrint(*csStart)) { 7549 llvm::UTF32 CodePoint; 7550 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7551 const llvm::UTF8 *E = 7552 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7553 llvm::ConversionResult Result = 7554 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7555 7556 if (Result != llvm::conversionOK) { 7557 unsigned char FirstChar = *csStart; 7558 CodePoint = (llvm::UTF32)FirstChar; 7559 } 7560 7561 llvm::raw_string_ostream OS(CodePointStr); 7562 if (CodePoint < 256) 7563 OS << "\\x" << llvm::format("%02x", CodePoint); 7564 else if (CodePoint <= 0xFFFF) 7565 OS << "\\u" << llvm::format("%04x", CodePoint); 7566 else 7567 OS << "\\U" << llvm::format("%08x", CodePoint); 7568 OS.flush(); 7569 Specifier = CodePointStr; 7570 } 7571 7572 EmitFormatDiagnostic( 7573 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7574 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7575 7576 return keepGoing; 7577 } 7578 7579 void 7580 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7581 const char *startSpec, 7582 unsigned specifierLen) { 7583 EmitFormatDiagnostic( 7584 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7585 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7586 } 7587 7588 bool 7589 CheckFormatHandler::CheckNumArgs( 7590 const analyze_format_string::FormatSpecifier &FS, 7591 const analyze_format_string::ConversionSpecifier &CS, 7592 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7593 7594 if (argIndex >= NumDataArgs) { 7595 PartialDiagnostic PDiag = FS.usesPositionalArg() 7596 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7597 << (argIndex+1) << NumDataArgs) 7598 : S.PDiag(diag::warn_printf_insufficient_data_args); 7599 EmitFormatDiagnostic( 7600 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7601 getSpecifierRange(startSpecifier, specifierLen)); 7602 7603 // Since more arguments than conversion tokens are given, by extension 7604 // all arguments are covered, so mark this as so. 7605 UncoveredArg.setAllCovered(); 7606 return false; 7607 } 7608 return true; 7609 } 7610 7611 template<typename Range> 7612 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7613 SourceLocation Loc, 7614 bool IsStringLocation, 7615 Range StringRange, 7616 ArrayRef<FixItHint> FixIt) { 7617 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7618 Loc, IsStringLocation, StringRange, FixIt); 7619 } 7620 7621 /// If the format string is not within the function call, emit a note 7622 /// so that the function call and string are in diagnostic messages. 7623 /// 7624 /// \param InFunctionCall if true, the format string is within the function 7625 /// call and only one diagnostic message will be produced. Otherwise, an 7626 /// extra note will be emitted pointing to location of the format string. 7627 /// 7628 /// \param ArgumentExpr the expression that is passed as the format string 7629 /// argument in the function call. Used for getting locations when two 7630 /// diagnostics are emitted. 7631 /// 7632 /// \param PDiag the callee should already have provided any strings for the 7633 /// diagnostic message. This function only adds locations and fixits 7634 /// to diagnostics. 7635 /// 7636 /// \param Loc primary location for diagnostic. If two diagnostics are 7637 /// required, one will be at Loc and a new SourceLocation will be created for 7638 /// the other one. 7639 /// 7640 /// \param IsStringLocation if true, Loc points to the format string should be 7641 /// used for the note. Otherwise, Loc points to the argument list and will 7642 /// be used with PDiag. 7643 /// 7644 /// \param StringRange some or all of the string to highlight. This is 7645 /// templated so it can accept either a CharSourceRange or a SourceRange. 7646 /// 7647 /// \param FixIt optional fix it hint for the format string. 7648 template <typename Range> 7649 void CheckFormatHandler::EmitFormatDiagnostic( 7650 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7651 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7652 Range StringRange, ArrayRef<FixItHint> FixIt) { 7653 if (InFunctionCall) { 7654 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7655 D << StringRange; 7656 D << FixIt; 7657 } else { 7658 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7659 << ArgumentExpr->getSourceRange(); 7660 7661 const Sema::SemaDiagnosticBuilder &Note = 7662 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7663 diag::note_format_string_defined); 7664 7665 Note << StringRange; 7666 Note << FixIt; 7667 } 7668 } 7669 7670 //===--- CHECK: Printf format string checking ------------------------------===// 7671 7672 namespace { 7673 7674 class CheckPrintfHandler : public CheckFormatHandler { 7675 public: 7676 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7677 const Expr *origFormatExpr, 7678 const Sema::FormatStringType type, unsigned firstDataArg, 7679 unsigned numDataArgs, bool isObjC, const char *beg, 7680 bool hasVAListArg, ArrayRef<const Expr *> Args, 7681 unsigned formatIdx, bool inFunctionCall, 7682 Sema::VariadicCallType CallType, 7683 llvm::SmallBitVector &CheckedVarArgs, 7684 UncoveredArgHandler &UncoveredArg) 7685 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7686 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7687 inFunctionCall, CallType, CheckedVarArgs, 7688 UncoveredArg) {} 7689 7690 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7691 7692 /// Returns true if '%@' specifiers are allowed in the format string. 7693 bool allowsObjCArg() const { 7694 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7695 FSType == Sema::FST_OSTrace; 7696 } 7697 7698 bool HandleInvalidPrintfConversionSpecifier( 7699 const analyze_printf::PrintfSpecifier &FS, 7700 const char *startSpecifier, 7701 unsigned specifierLen) override; 7702 7703 void handleInvalidMaskType(StringRef MaskType) override; 7704 7705 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7706 const char *startSpecifier, 7707 unsigned specifierLen) override; 7708 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7709 const char *StartSpecifier, 7710 unsigned SpecifierLen, 7711 const Expr *E); 7712 7713 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7714 const char *startSpecifier, unsigned specifierLen); 7715 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7716 const analyze_printf::OptionalAmount &Amt, 7717 unsigned type, 7718 const char *startSpecifier, unsigned specifierLen); 7719 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7720 const analyze_printf::OptionalFlag &flag, 7721 const char *startSpecifier, unsigned specifierLen); 7722 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 7723 const analyze_printf::OptionalFlag &ignoredFlag, 7724 const analyze_printf::OptionalFlag &flag, 7725 const char *startSpecifier, unsigned specifierLen); 7726 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 7727 const Expr *E); 7728 7729 void HandleEmptyObjCModifierFlag(const char *startFlag, 7730 unsigned flagLen) override; 7731 7732 void HandleInvalidObjCModifierFlag(const char *startFlag, 7733 unsigned flagLen) override; 7734 7735 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 7736 const char *flagsEnd, 7737 const char *conversionPosition) 7738 override; 7739 }; 7740 7741 } // namespace 7742 7743 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 7744 const analyze_printf::PrintfSpecifier &FS, 7745 const char *startSpecifier, 7746 unsigned specifierLen) { 7747 const analyze_printf::PrintfConversionSpecifier &CS = 7748 FS.getConversionSpecifier(); 7749 7750 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 7751 getLocationOfByte(CS.getStart()), 7752 startSpecifier, specifierLen, 7753 CS.getStart(), CS.getLength()); 7754 } 7755 7756 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 7757 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 7758 } 7759 7760 bool CheckPrintfHandler::HandleAmount( 7761 const analyze_format_string::OptionalAmount &Amt, 7762 unsigned k, const char *startSpecifier, 7763 unsigned specifierLen) { 7764 if (Amt.hasDataArgument()) { 7765 if (!HasVAListArg) { 7766 unsigned argIndex = Amt.getArgIndex(); 7767 if (argIndex >= NumDataArgs) { 7768 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 7769 << k, 7770 getLocationOfByte(Amt.getStart()), 7771 /*IsStringLocation*/true, 7772 getSpecifierRange(startSpecifier, specifierLen)); 7773 // Don't do any more checking. We will just emit 7774 // spurious errors. 7775 return false; 7776 } 7777 7778 // Type check the data argument. It should be an 'int'. 7779 // Although not in conformance with C99, we also allow the argument to be 7780 // an 'unsigned int' as that is a reasonably safe case. GCC also 7781 // doesn't emit a warning for that case. 7782 CoveredArgs.set(argIndex); 7783 const Expr *Arg = getDataArg(argIndex); 7784 if (!Arg) 7785 return false; 7786 7787 QualType T = Arg->getType(); 7788 7789 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 7790 assert(AT.isValid()); 7791 7792 if (!AT.matchesType(S.Context, T)) { 7793 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 7794 << k << AT.getRepresentativeTypeName(S.Context) 7795 << T << Arg->getSourceRange(), 7796 getLocationOfByte(Amt.getStart()), 7797 /*IsStringLocation*/true, 7798 getSpecifierRange(startSpecifier, specifierLen)); 7799 // Don't do any more checking. We will just emit 7800 // spurious errors. 7801 return false; 7802 } 7803 } 7804 } 7805 return true; 7806 } 7807 7808 void CheckPrintfHandler::HandleInvalidAmount( 7809 const analyze_printf::PrintfSpecifier &FS, 7810 const analyze_printf::OptionalAmount &Amt, 7811 unsigned type, 7812 const char *startSpecifier, 7813 unsigned specifierLen) { 7814 const analyze_printf::PrintfConversionSpecifier &CS = 7815 FS.getConversionSpecifier(); 7816 7817 FixItHint fixit = 7818 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 7819 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 7820 Amt.getConstantLength())) 7821 : FixItHint(); 7822 7823 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 7824 << type << CS.toString(), 7825 getLocationOfByte(Amt.getStart()), 7826 /*IsStringLocation*/true, 7827 getSpecifierRange(startSpecifier, specifierLen), 7828 fixit); 7829 } 7830 7831 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7832 const analyze_printf::OptionalFlag &flag, 7833 const char *startSpecifier, 7834 unsigned specifierLen) { 7835 // Warn about pointless flag with a fixit removal. 7836 const analyze_printf::PrintfConversionSpecifier &CS = 7837 FS.getConversionSpecifier(); 7838 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 7839 << flag.toString() << CS.toString(), 7840 getLocationOfByte(flag.getPosition()), 7841 /*IsStringLocation*/true, 7842 getSpecifierRange(startSpecifier, specifierLen), 7843 FixItHint::CreateRemoval( 7844 getSpecifierRange(flag.getPosition(), 1))); 7845 } 7846 7847 void CheckPrintfHandler::HandleIgnoredFlag( 7848 const analyze_printf::PrintfSpecifier &FS, 7849 const analyze_printf::OptionalFlag &ignoredFlag, 7850 const analyze_printf::OptionalFlag &flag, 7851 const char *startSpecifier, 7852 unsigned specifierLen) { 7853 // Warn about ignored flag with a fixit removal. 7854 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 7855 << ignoredFlag.toString() << flag.toString(), 7856 getLocationOfByte(ignoredFlag.getPosition()), 7857 /*IsStringLocation*/true, 7858 getSpecifierRange(startSpecifier, specifierLen), 7859 FixItHint::CreateRemoval( 7860 getSpecifierRange(ignoredFlag.getPosition(), 1))); 7861 } 7862 7863 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 7864 unsigned flagLen) { 7865 // Warn about an empty flag. 7866 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 7867 getLocationOfByte(startFlag), 7868 /*IsStringLocation*/true, 7869 getSpecifierRange(startFlag, flagLen)); 7870 } 7871 7872 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 7873 unsigned flagLen) { 7874 // Warn about an invalid flag. 7875 auto Range = getSpecifierRange(startFlag, flagLen); 7876 StringRef flag(startFlag, flagLen); 7877 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 7878 getLocationOfByte(startFlag), 7879 /*IsStringLocation*/true, 7880 Range, FixItHint::CreateRemoval(Range)); 7881 } 7882 7883 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 7884 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 7885 // Warn about using '[...]' without a '@' conversion. 7886 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 7887 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 7888 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 7889 getLocationOfByte(conversionPosition), 7890 /*IsStringLocation*/true, 7891 Range, FixItHint::CreateRemoval(Range)); 7892 } 7893 7894 // Determines if the specified is a C++ class or struct containing 7895 // a member with the specified name and kind (e.g. a CXXMethodDecl named 7896 // "c_str()"). 7897 template<typename MemberKind> 7898 static llvm::SmallPtrSet<MemberKind*, 1> 7899 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 7900 const RecordType *RT = Ty->getAs<RecordType>(); 7901 llvm::SmallPtrSet<MemberKind*, 1> Results; 7902 7903 if (!RT) 7904 return Results; 7905 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 7906 if (!RD || !RD->getDefinition()) 7907 return Results; 7908 7909 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 7910 Sema::LookupMemberName); 7911 R.suppressDiagnostics(); 7912 7913 // We just need to include all members of the right kind turned up by the 7914 // filter, at this point. 7915 if (S.LookupQualifiedName(R, RT->getDecl())) 7916 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 7917 NamedDecl *decl = (*I)->getUnderlyingDecl(); 7918 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 7919 Results.insert(FK); 7920 } 7921 return Results; 7922 } 7923 7924 /// Check if we could call '.c_str()' on an object. 7925 /// 7926 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 7927 /// allow the call, or if it would be ambiguous). 7928 bool Sema::hasCStrMethod(const Expr *E) { 7929 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7930 7931 MethodSet Results = 7932 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 7933 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7934 MI != ME; ++MI) 7935 if ((*MI)->getMinRequiredArguments() == 0) 7936 return true; 7937 return false; 7938 } 7939 7940 // Check if a (w)string was passed when a (w)char* was needed, and offer a 7941 // better diagnostic if so. AT is assumed to be valid. 7942 // Returns true when a c_str() conversion method is found. 7943 bool CheckPrintfHandler::checkForCStrMembers( 7944 const analyze_printf::ArgType &AT, const Expr *E) { 7945 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 7946 7947 MethodSet Results = 7948 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 7949 7950 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 7951 MI != ME; ++MI) { 7952 const CXXMethodDecl *Method = *MI; 7953 if (Method->getMinRequiredArguments() == 0 && 7954 AT.matchesType(S.Context, Method->getReturnType())) { 7955 // FIXME: Suggest parens if the expression needs them. 7956 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 7957 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 7958 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 7959 return true; 7960 } 7961 } 7962 7963 return false; 7964 } 7965 7966 bool 7967 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 7968 &FS, 7969 const char *startSpecifier, 7970 unsigned specifierLen) { 7971 using namespace analyze_format_string; 7972 using namespace analyze_printf; 7973 7974 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 7975 7976 if (FS.consumesDataArgument()) { 7977 if (atFirstArg) { 7978 atFirstArg = false; 7979 usesPositionalArgs = FS.usesPositionalArg(); 7980 } 7981 else if (usesPositionalArgs != FS.usesPositionalArg()) { 7982 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 7983 startSpecifier, specifierLen); 7984 return false; 7985 } 7986 } 7987 7988 // First check if the field width, precision, and conversion specifier 7989 // have matching data arguments. 7990 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 7991 startSpecifier, specifierLen)) { 7992 return false; 7993 } 7994 7995 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 7996 startSpecifier, specifierLen)) { 7997 return false; 7998 } 7999 8000 if (!CS.consumesDataArgument()) { 8001 // FIXME: Technically specifying a precision or field width here 8002 // makes no sense. Worth issuing a warning at some point. 8003 return true; 8004 } 8005 8006 // Consume the argument. 8007 unsigned argIndex = FS.getArgIndex(); 8008 if (argIndex < NumDataArgs) { 8009 // The check to see if the argIndex is valid will come later. 8010 // We set the bit here because we may exit early from this 8011 // function if we encounter some other error. 8012 CoveredArgs.set(argIndex); 8013 } 8014 8015 // FreeBSD kernel extensions. 8016 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8017 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8018 // We need at least two arguments. 8019 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8020 return false; 8021 8022 // Claim the second argument. 8023 CoveredArgs.set(argIndex + 1); 8024 8025 // Type check the first argument (int for %b, pointer for %D) 8026 const Expr *Ex = getDataArg(argIndex); 8027 const analyze_printf::ArgType &AT = 8028 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8029 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8030 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8031 EmitFormatDiagnostic( 8032 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8033 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8034 << false << Ex->getSourceRange(), 8035 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8036 getSpecifierRange(startSpecifier, specifierLen)); 8037 8038 // Type check the second argument (char * for both %b and %D) 8039 Ex = getDataArg(argIndex + 1); 8040 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8041 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8042 EmitFormatDiagnostic( 8043 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8044 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8045 << false << Ex->getSourceRange(), 8046 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8047 getSpecifierRange(startSpecifier, specifierLen)); 8048 8049 return true; 8050 } 8051 8052 // Check for using an Objective-C specific conversion specifier 8053 // in a non-ObjC literal. 8054 if (!allowsObjCArg() && CS.isObjCArg()) { 8055 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8056 specifierLen); 8057 } 8058 8059 // %P can only be used with os_log. 8060 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8061 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8062 specifierLen); 8063 } 8064 8065 // %n is not allowed with os_log. 8066 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8067 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8068 getLocationOfByte(CS.getStart()), 8069 /*IsStringLocation*/ false, 8070 getSpecifierRange(startSpecifier, specifierLen)); 8071 8072 return true; 8073 } 8074 8075 // Only scalars are allowed for os_trace. 8076 if (FSType == Sema::FST_OSTrace && 8077 (CS.getKind() == ConversionSpecifier::PArg || 8078 CS.getKind() == ConversionSpecifier::sArg || 8079 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8080 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8081 specifierLen); 8082 } 8083 8084 // Check for use of public/private annotation outside of os_log(). 8085 if (FSType != Sema::FST_OSLog) { 8086 if (FS.isPublic().isSet()) { 8087 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8088 << "public", 8089 getLocationOfByte(FS.isPublic().getPosition()), 8090 /*IsStringLocation*/ false, 8091 getSpecifierRange(startSpecifier, specifierLen)); 8092 } 8093 if (FS.isPrivate().isSet()) { 8094 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8095 << "private", 8096 getLocationOfByte(FS.isPrivate().getPosition()), 8097 /*IsStringLocation*/ false, 8098 getSpecifierRange(startSpecifier, specifierLen)); 8099 } 8100 } 8101 8102 // Check for invalid use of field width 8103 if (!FS.hasValidFieldWidth()) { 8104 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8105 startSpecifier, specifierLen); 8106 } 8107 8108 // Check for invalid use of precision 8109 if (!FS.hasValidPrecision()) { 8110 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8111 startSpecifier, specifierLen); 8112 } 8113 8114 // Precision is mandatory for %P specifier. 8115 if (CS.getKind() == ConversionSpecifier::PArg && 8116 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8117 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8118 getLocationOfByte(startSpecifier), 8119 /*IsStringLocation*/ false, 8120 getSpecifierRange(startSpecifier, specifierLen)); 8121 } 8122 8123 // Check each flag does not conflict with any other component. 8124 if (!FS.hasValidThousandsGroupingPrefix()) 8125 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8126 if (!FS.hasValidLeadingZeros()) 8127 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8128 if (!FS.hasValidPlusPrefix()) 8129 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8130 if (!FS.hasValidSpacePrefix()) 8131 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8132 if (!FS.hasValidAlternativeForm()) 8133 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8134 if (!FS.hasValidLeftJustified()) 8135 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8136 8137 // Check that flags are not ignored by another flag 8138 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8139 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8140 startSpecifier, specifierLen); 8141 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8142 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8143 startSpecifier, specifierLen); 8144 8145 // Check the length modifier is valid with the given conversion specifier. 8146 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8147 S.getLangOpts())) 8148 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8149 diag::warn_format_nonsensical_length); 8150 else if (!FS.hasStandardLengthModifier()) 8151 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8152 else if (!FS.hasStandardLengthConversionCombination()) 8153 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8154 diag::warn_format_non_standard_conversion_spec); 8155 8156 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8157 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8158 8159 // The remaining checks depend on the data arguments. 8160 if (HasVAListArg) 8161 return true; 8162 8163 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8164 return false; 8165 8166 const Expr *Arg = getDataArg(argIndex); 8167 if (!Arg) 8168 return true; 8169 8170 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8171 } 8172 8173 static bool requiresParensToAddCast(const Expr *E) { 8174 // FIXME: We should have a general way to reason about operator 8175 // precedence and whether parens are actually needed here. 8176 // Take care of a few common cases where they aren't. 8177 const Expr *Inside = E->IgnoreImpCasts(); 8178 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8179 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8180 8181 switch (Inside->getStmtClass()) { 8182 case Stmt::ArraySubscriptExprClass: 8183 case Stmt::CallExprClass: 8184 case Stmt::CharacterLiteralClass: 8185 case Stmt::CXXBoolLiteralExprClass: 8186 case Stmt::DeclRefExprClass: 8187 case Stmt::FloatingLiteralClass: 8188 case Stmt::IntegerLiteralClass: 8189 case Stmt::MemberExprClass: 8190 case Stmt::ObjCArrayLiteralClass: 8191 case Stmt::ObjCBoolLiteralExprClass: 8192 case Stmt::ObjCBoxedExprClass: 8193 case Stmt::ObjCDictionaryLiteralClass: 8194 case Stmt::ObjCEncodeExprClass: 8195 case Stmt::ObjCIvarRefExprClass: 8196 case Stmt::ObjCMessageExprClass: 8197 case Stmt::ObjCPropertyRefExprClass: 8198 case Stmt::ObjCStringLiteralClass: 8199 case Stmt::ObjCSubscriptRefExprClass: 8200 case Stmt::ParenExprClass: 8201 case Stmt::StringLiteralClass: 8202 case Stmt::UnaryOperatorClass: 8203 return false; 8204 default: 8205 return true; 8206 } 8207 } 8208 8209 static std::pair<QualType, StringRef> 8210 shouldNotPrintDirectly(const ASTContext &Context, 8211 QualType IntendedTy, 8212 const Expr *E) { 8213 // Use a 'while' to peel off layers of typedefs. 8214 QualType TyTy = IntendedTy; 8215 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8216 StringRef Name = UserTy->getDecl()->getName(); 8217 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8218 .Case("CFIndex", Context.getNSIntegerType()) 8219 .Case("NSInteger", Context.getNSIntegerType()) 8220 .Case("NSUInteger", Context.getNSUIntegerType()) 8221 .Case("SInt32", Context.IntTy) 8222 .Case("UInt32", Context.UnsignedIntTy) 8223 .Default(QualType()); 8224 8225 if (!CastTy.isNull()) 8226 return std::make_pair(CastTy, Name); 8227 8228 TyTy = UserTy->desugar(); 8229 } 8230 8231 // Strip parens if necessary. 8232 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8233 return shouldNotPrintDirectly(Context, 8234 PE->getSubExpr()->getType(), 8235 PE->getSubExpr()); 8236 8237 // If this is a conditional expression, then its result type is constructed 8238 // via usual arithmetic conversions and thus there might be no necessary 8239 // typedef sugar there. Recurse to operands to check for NSInteger & 8240 // Co. usage condition. 8241 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8242 QualType TrueTy, FalseTy; 8243 StringRef TrueName, FalseName; 8244 8245 std::tie(TrueTy, TrueName) = 8246 shouldNotPrintDirectly(Context, 8247 CO->getTrueExpr()->getType(), 8248 CO->getTrueExpr()); 8249 std::tie(FalseTy, FalseName) = 8250 shouldNotPrintDirectly(Context, 8251 CO->getFalseExpr()->getType(), 8252 CO->getFalseExpr()); 8253 8254 if (TrueTy == FalseTy) 8255 return std::make_pair(TrueTy, TrueName); 8256 else if (TrueTy.isNull()) 8257 return std::make_pair(FalseTy, FalseName); 8258 else if (FalseTy.isNull()) 8259 return std::make_pair(TrueTy, TrueName); 8260 } 8261 8262 return std::make_pair(QualType(), StringRef()); 8263 } 8264 8265 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8266 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8267 /// type do not count. 8268 static bool 8269 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8270 QualType From = ICE->getSubExpr()->getType(); 8271 QualType To = ICE->getType(); 8272 // It's an integer promotion if the destination type is the promoted 8273 // source type. 8274 if (ICE->getCastKind() == CK_IntegralCast && 8275 From->isPromotableIntegerType() && 8276 S.Context.getPromotedIntegerType(From) == To) 8277 return true; 8278 // Look through vector types, since we do default argument promotion for 8279 // those in OpenCL. 8280 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8281 From = VecTy->getElementType(); 8282 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8283 To = VecTy->getElementType(); 8284 // It's a floating promotion if the source type is a lower rank. 8285 return ICE->getCastKind() == CK_FloatingCast && 8286 S.Context.getFloatingTypeOrder(From, To) < 0; 8287 } 8288 8289 bool 8290 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8291 const char *StartSpecifier, 8292 unsigned SpecifierLen, 8293 const Expr *E) { 8294 using namespace analyze_format_string; 8295 using namespace analyze_printf; 8296 8297 // Now type check the data expression that matches the 8298 // format specifier. 8299 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8300 if (!AT.isValid()) 8301 return true; 8302 8303 QualType ExprTy = E->getType(); 8304 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8305 ExprTy = TET->getUnderlyingExpr()->getType(); 8306 } 8307 8308 // Diagnose attempts to print a boolean value as a character. Unlike other 8309 // -Wformat diagnostics, this is fine from a type perspective, but it still 8310 // doesn't make sense. 8311 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8312 E->isKnownToHaveBooleanValue()) { 8313 const CharSourceRange &CSR = 8314 getSpecifierRange(StartSpecifier, SpecifierLen); 8315 SmallString<4> FSString; 8316 llvm::raw_svector_ostream os(FSString); 8317 FS.toString(os); 8318 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8319 << FSString, 8320 E->getExprLoc(), false, CSR); 8321 return true; 8322 } 8323 8324 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8325 if (Match == analyze_printf::ArgType::Match) 8326 return true; 8327 8328 // Look through argument promotions for our error message's reported type. 8329 // This includes the integral and floating promotions, but excludes array 8330 // and function pointer decay (seeing that an argument intended to be a 8331 // string has type 'char [6]' is probably more confusing than 'char *') and 8332 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8333 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8334 if (isArithmeticArgumentPromotion(S, ICE)) { 8335 E = ICE->getSubExpr(); 8336 ExprTy = E->getType(); 8337 8338 // Check if we didn't match because of an implicit cast from a 'char' 8339 // or 'short' to an 'int'. This is done because printf is a varargs 8340 // function. 8341 if (ICE->getType() == S.Context.IntTy || 8342 ICE->getType() == S.Context.UnsignedIntTy) { 8343 // All further checking is done on the subexpression 8344 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8345 AT.matchesType(S.Context, ExprTy); 8346 if (ImplicitMatch == analyze_printf::ArgType::Match) 8347 return true; 8348 if (ImplicitMatch == ArgType::NoMatchPedantic || 8349 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8350 Match = ImplicitMatch; 8351 } 8352 } 8353 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8354 // Special case for 'a', which has type 'int' in C. 8355 // Note, however, that we do /not/ want to treat multibyte constants like 8356 // 'MooV' as characters! This form is deprecated but still exists. 8357 if (ExprTy == S.Context.IntTy) 8358 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8359 ExprTy = S.Context.CharTy; 8360 } 8361 8362 // Look through enums to their underlying type. 8363 bool IsEnum = false; 8364 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8365 ExprTy = EnumTy->getDecl()->getIntegerType(); 8366 IsEnum = true; 8367 } 8368 8369 // %C in an Objective-C context prints a unichar, not a wchar_t. 8370 // If the argument is an integer of some kind, believe the %C and suggest 8371 // a cast instead of changing the conversion specifier. 8372 QualType IntendedTy = ExprTy; 8373 if (isObjCContext() && 8374 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8375 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8376 !ExprTy->isCharType()) { 8377 // 'unichar' is defined as a typedef of unsigned short, but we should 8378 // prefer using the typedef if it is visible. 8379 IntendedTy = S.Context.UnsignedShortTy; 8380 8381 // While we are here, check if the value is an IntegerLiteral that happens 8382 // to be within the valid range. 8383 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8384 const llvm::APInt &V = IL->getValue(); 8385 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8386 return true; 8387 } 8388 8389 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8390 Sema::LookupOrdinaryName); 8391 if (S.LookupName(Result, S.getCurScope())) { 8392 NamedDecl *ND = Result.getFoundDecl(); 8393 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8394 if (TD->getUnderlyingType() == IntendedTy) 8395 IntendedTy = S.Context.getTypedefType(TD); 8396 } 8397 } 8398 } 8399 8400 // Special-case some of Darwin's platform-independence types by suggesting 8401 // casts to primitive types that are known to be large enough. 8402 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8403 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8404 QualType CastTy; 8405 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8406 if (!CastTy.isNull()) { 8407 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8408 // (long in ASTContext). Only complain to pedants. 8409 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8410 (AT.isSizeT() || AT.isPtrdiffT()) && 8411 AT.matchesType(S.Context, CastTy)) 8412 Match = ArgType::NoMatchPedantic; 8413 IntendedTy = CastTy; 8414 ShouldNotPrintDirectly = true; 8415 } 8416 } 8417 8418 // We may be able to offer a FixItHint if it is a supported type. 8419 PrintfSpecifier fixedFS = FS; 8420 bool Success = 8421 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8422 8423 if (Success) { 8424 // Get the fix string from the fixed format specifier 8425 SmallString<16> buf; 8426 llvm::raw_svector_ostream os(buf); 8427 fixedFS.toString(os); 8428 8429 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8430 8431 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8432 unsigned Diag; 8433 switch (Match) { 8434 case ArgType::Match: llvm_unreachable("expected non-matching"); 8435 case ArgType::NoMatchPedantic: 8436 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8437 break; 8438 case ArgType::NoMatchTypeConfusion: 8439 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8440 break; 8441 case ArgType::NoMatch: 8442 Diag = diag::warn_format_conversion_argument_type_mismatch; 8443 break; 8444 } 8445 8446 // In this case, the specifier is wrong and should be changed to match 8447 // the argument. 8448 EmitFormatDiagnostic(S.PDiag(Diag) 8449 << AT.getRepresentativeTypeName(S.Context) 8450 << IntendedTy << IsEnum << E->getSourceRange(), 8451 E->getBeginLoc(), 8452 /*IsStringLocation*/ false, SpecRange, 8453 FixItHint::CreateReplacement(SpecRange, os.str())); 8454 } else { 8455 // The canonical type for formatting this value is different from the 8456 // actual type of the expression. (This occurs, for example, with Darwin's 8457 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8458 // should be printed as 'long' for 64-bit compatibility.) 8459 // Rather than emitting a normal format/argument mismatch, we want to 8460 // add a cast to the recommended type (and correct the format string 8461 // if necessary). 8462 SmallString<16> CastBuf; 8463 llvm::raw_svector_ostream CastFix(CastBuf); 8464 CastFix << "("; 8465 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8466 CastFix << ")"; 8467 8468 SmallVector<FixItHint,4> Hints; 8469 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8470 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8471 8472 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8473 // If there's already a cast present, just replace it. 8474 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8475 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8476 8477 } else if (!requiresParensToAddCast(E)) { 8478 // If the expression has high enough precedence, 8479 // just write the C-style cast. 8480 Hints.push_back( 8481 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8482 } else { 8483 // Otherwise, add parens around the expression as well as the cast. 8484 CastFix << "("; 8485 Hints.push_back( 8486 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8487 8488 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8489 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8490 } 8491 8492 if (ShouldNotPrintDirectly) { 8493 // The expression has a type that should not be printed directly. 8494 // We extract the name from the typedef because we don't want to show 8495 // the underlying type in the diagnostic. 8496 StringRef Name; 8497 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8498 Name = TypedefTy->getDecl()->getName(); 8499 else 8500 Name = CastTyName; 8501 unsigned Diag = Match == ArgType::NoMatchPedantic 8502 ? diag::warn_format_argument_needs_cast_pedantic 8503 : diag::warn_format_argument_needs_cast; 8504 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8505 << E->getSourceRange(), 8506 E->getBeginLoc(), /*IsStringLocation=*/false, 8507 SpecRange, Hints); 8508 } else { 8509 // In this case, the expression could be printed using a different 8510 // specifier, but we've decided that the specifier is probably correct 8511 // and we should cast instead. Just use the normal warning message. 8512 EmitFormatDiagnostic( 8513 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8514 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8515 << E->getSourceRange(), 8516 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8517 } 8518 } 8519 } else { 8520 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8521 SpecifierLen); 8522 // Since the warning for passing non-POD types to variadic functions 8523 // was deferred until now, we emit a warning for non-POD 8524 // arguments here. 8525 switch (S.isValidVarArgType(ExprTy)) { 8526 case Sema::VAK_Valid: 8527 case Sema::VAK_ValidInCXX11: { 8528 unsigned Diag; 8529 switch (Match) { 8530 case ArgType::Match: llvm_unreachable("expected non-matching"); 8531 case ArgType::NoMatchPedantic: 8532 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8533 break; 8534 case ArgType::NoMatchTypeConfusion: 8535 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8536 break; 8537 case ArgType::NoMatch: 8538 Diag = diag::warn_format_conversion_argument_type_mismatch; 8539 break; 8540 } 8541 8542 EmitFormatDiagnostic( 8543 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8544 << IsEnum << CSR << E->getSourceRange(), 8545 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8546 break; 8547 } 8548 case Sema::VAK_Undefined: 8549 case Sema::VAK_MSVCUndefined: 8550 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8551 << S.getLangOpts().CPlusPlus11 << ExprTy 8552 << CallType 8553 << AT.getRepresentativeTypeName(S.Context) << CSR 8554 << E->getSourceRange(), 8555 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8556 checkForCStrMembers(AT, E); 8557 break; 8558 8559 case Sema::VAK_Invalid: 8560 if (ExprTy->isObjCObjectType()) 8561 EmitFormatDiagnostic( 8562 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8563 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8564 << AT.getRepresentativeTypeName(S.Context) << CSR 8565 << E->getSourceRange(), 8566 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8567 else 8568 // FIXME: If this is an initializer list, suggest removing the braces 8569 // or inserting a cast to the target type. 8570 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8571 << isa<InitListExpr>(E) << ExprTy << CallType 8572 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8573 break; 8574 } 8575 8576 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8577 "format string specifier index out of range"); 8578 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8579 } 8580 8581 return true; 8582 } 8583 8584 //===--- CHECK: Scanf format string checking ------------------------------===// 8585 8586 namespace { 8587 8588 class CheckScanfHandler : public CheckFormatHandler { 8589 public: 8590 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8591 const Expr *origFormatExpr, Sema::FormatStringType type, 8592 unsigned firstDataArg, unsigned numDataArgs, 8593 const char *beg, bool hasVAListArg, 8594 ArrayRef<const Expr *> Args, unsigned formatIdx, 8595 bool inFunctionCall, Sema::VariadicCallType CallType, 8596 llvm::SmallBitVector &CheckedVarArgs, 8597 UncoveredArgHandler &UncoveredArg) 8598 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8599 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8600 inFunctionCall, CallType, CheckedVarArgs, 8601 UncoveredArg) {} 8602 8603 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8604 const char *startSpecifier, 8605 unsigned specifierLen) override; 8606 8607 bool HandleInvalidScanfConversionSpecifier( 8608 const analyze_scanf::ScanfSpecifier &FS, 8609 const char *startSpecifier, 8610 unsigned specifierLen) override; 8611 8612 void HandleIncompleteScanList(const char *start, const char *end) override; 8613 }; 8614 8615 } // namespace 8616 8617 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8618 const char *end) { 8619 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8620 getLocationOfByte(end), /*IsStringLocation*/true, 8621 getSpecifierRange(start, end - start)); 8622 } 8623 8624 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8625 const analyze_scanf::ScanfSpecifier &FS, 8626 const char *startSpecifier, 8627 unsigned specifierLen) { 8628 const analyze_scanf::ScanfConversionSpecifier &CS = 8629 FS.getConversionSpecifier(); 8630 8631 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8632 getLocationOfByte(CS.getStart()), 8633 startSpecifier, specifierLen, 8634 CS.getStart(), CS.getLength()); 8635 } 8636 8637 bool CheckScanfHandler::HandleScanfSpecifier( 8638 const analyze_scanf::ScanfSpecifier &FS, 8639 const char *startSpecifier, 8640 unsigned specifierLen) { 8641 using namespace analyze_scanf; 8642 using namespace analyze_format_string; 8643 8644 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8645 8646 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8647 // be used to decide if we are using positional arguments consistently. 8648 if (FS.consumesDataArgument()) { 8649 if (atFirstArg) { 8650 atFirstArg = false; 8651 usesPositionalArgs = FS.usesPositionalArg(); 8652 } 8653 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8654 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8655 startSpecifier, specifierLen); 8656 return false; 8657 } 8658 } 8659 8660 // Check if the field with is non-zero. 8661 const OptionalAmount &Amt = FS.getFieldWidth(); 8662 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8663 if (Amt.getConstantAmount() == 0) { 8664 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8665 Amt.getConstantLength()); 8666 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8667 getLocationOfByte(Amt.getStart()), 8668 /*IsStringLocation*/true, R, 8669 FixItHint::CreateRemoval(R)); 8670 } 8671 } 8672 8673 if (!FS.consumesDataArgument()) { 8674 // FIXME: Technically specifying a precision or field width here 8675 // makes no sense. Worth issuing a warning at some point. 8676 return true; 8677 } 8678 8679 // Consume the argument. 8680 unsigned argIndex = FS.getArgIndex(); 8681 if (argIndex < NumDataArgs) { 8682 // The check to see if the argIndex is valid will come later. 8683 // We set the bit here because we may exit early from this 8684 // function if we encounter some other error. 8685 CoveredArgs.set(argIndex); 8686 } 8687 8688 // Check the length modifier is valid with the given conversion specifier. 8689 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8690 S.getLangOpts())) 8691 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8692 diag::warn_format_nonsensical_length); 8693 else if (!FS.hasStandardLengthModifier()) 8694 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8695 else if (!FS.hasStandardLengthConversionCombination()) 8696 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8697 diag::warn_format_non_standard_conversion_spec); 8698 8699 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8700 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8701 8702 // The remaining checks depend on the data arguments. 8703 if (HasVAListArg) 8704 return true; 8705 8706 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8707 return false; 8708 8709 // Check that the argument type matches the format specifier. 8710 const Expr *Ex = getDataArg(argIndex); 8711 if (!Ex) 8712 return true; 8713 8714 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8715 8716 if (!AT.isValid()) { 8717 return true; 8718 } 8719 8720 analyze_format_string::ArgType::MatchKind Match = 8721 AT.matchesType(S.Context, Ex->getType()); 8722 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 8723 if (Match == analyze_format_string::ArgType::Match) 8724 return true; 8725 8726 ScanfSpecifier fixedFS = FS; 8727 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 8728 S.getLangOpts(), S.Context); 8729 8730 unsigned Diag = 8731 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 8732 : diag::warn_format_conversion_argument_type_mismatch; 8733 8734 if (Success) { 8735 // Get the fix string from the fixed format specifier. 8736 SmallString<128> buf; 8737 llvm::raw_svector_ostream os(buf); 8738 fixedFS.toString(os); 8739 8740 EmitFormatDiagnostic( 8741 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 8742 << Ex->getType() << false << Ex->getSourceRange(), 8743 Ex->getBeginLoc(), 8744 /*IsStringLocation*/ false, 8745 getSpecifierRange(startSpecifier, specifierLen), 8746 FixItHint::CreateReplacement( 8747 getSpecifierRange(startSpecifier, specifierLen), os.str())); 8748 } else { 8749 EmitFormatDiagnostic(S.PDiag(Diag) 8750 << AT.getRepresentativeTypeName(S.Context) 8751 << Ex->getType() << false << Ex->getSourceRange(), 8752 Ex->getBeginLoc(), 8753 /*IsStringLocation*/ false, 8754 getSpecifierRange(startSpecifier, specifierLen)); 8755 } 8756 8757 return true; 8758 } 8759 8760 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 8761 const Expr *OrigFormatExpr, 8762 ArrayRef<const Expr *> Args, 8763 bool HasVAListArg, unsigned format_idx, 8764 unsigned firstDataArg, 8765 Sema::FormatStringType Type, 8766 bool inFunctionCall, 8767 Sema::VariadicCallType CallType, 8768 llvm::SmallBitVector &CheckedVarArgs, 8769 UncoveredArgHandler &UncoveredArg, 8770 bool IgnoreStringsWithoutSpecifiers) { 8771 // CHECK: is the format string a wide literal? 8772 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 8773 CheckFormatHandler::EmitFormatDiagnostic( 8774 S, inFunctionCall, Args[format_idx], 8775 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 8776 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8777 return; 8778 } 8779 8780 // Str - The format string. NOTE: this is NOT null-terminated! 8781 StringRef StrRef = FExpr->getString(); 8782 const char *Str = StrRef.data(); 8783 // Account for cases where the string literal is truncated in a declaration. 8784 const ConstantArrayType *T = 8785 S.Context.getAsConstantArrayType(FExpr->getType()); 8786 assert(T && "String literal not of constant array type!"); 8787 size_t TypeSize = T->getSize().getZExtValue(); 8788 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8789 const unsigned numDataArgs = Args.size() - firstDataArg; 8790 8791 if (IgnoreStringsWithoutSpecifiers && 8792 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 8793 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 8794 return; 8795 8796 // Emit a warning if the string literal is truncated and does not contain an 8797 // embedded null character. 8798 if (TypeSize <= StrRef.size() && 8799 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 8800 CheckFormatHandler::EmitFormatDiagnostic( 8801 S, inFunctionCall, Args[format_idx], 8802 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 8803 FExpr->getBeginLoc(), 8804 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 8805 return; 8806 } 8807 8808 // CHECK: empty format string? 8809 if (StrLen == 0 && numDataArgs > 0) { 8810 CheckFormatHandler::EmitFormatDiagnostic( 8811 S, inFunctionCall, Args[format_idx], 8812 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 8813 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 8814 return; 8815 } 8816 8817 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 8818 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 8819 Type == Sema::FST_OSTrace) { 8820 CheckPrintfHandler H( 8821 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 8822 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 8823 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 8824 CheckedVarArgs, UncoveredArg); 8825 8826 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 8827 S.getLangOpts(), 8828 S.Context.getTargetInfo(), 8829 Type == Sema::FST_FreeBSDKPrintf)) 8830 H.DoneProcessing(); 8831 } else if (Type == Sema::FST_Scanf) { 8832 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 8833 numDataArgs, Str, HasVAListArg, Args, format_idx, 8834 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 8835 8836 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 8837 S.getLangOpts(), 8838 S.Context.getTargetInfo())) 8839 H.DoneProcessing(); 8840 } // TODO: handle other formats 8841 } 8842 8843 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 8844 // Str - The format string. NOTE: this is NOT null-terminated! 8845 StringRef StrRef = FExpr->getString(); 8846 const char *Str = StrRef.data(); 8847 // Account for cases where the string literal is truncated in a declaration. 8848 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 8849 assert(T && "String literal not of constant array type!"); 8850 size_t TypeSize = T->getSize().getZExtValue(); 8851 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 8852 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 8853 getLangOpts(), 8854 Context.getTargetInfo()); 8855 } 8856 8857 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 8858 8859 // Returns the related absolute value function that is larger, of 0 if one 8860 // does not exist. 8861 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 8862 switch (AbsFunction) { 8863 default: 8864 return 0; 8865 8866 case Builtin::BI__builtin_abs: 8867 return Builtin::BI__builtin_labs; 8868 case Builtin::BI__builtin_labs: 8869 return Builtin::BI__builtin_llabs; 8870 case Builtin::BI__builtin_llabs: 8871 return 0; 8872 8873 case Builtin::BI__builtin_fabsf: 8874 return Builtin::BI__builtin_fabs; 8875 case Builtin::BI__builtin_fabs: 8876 return Builtin::BI__builtin_fabsl; 8877 case Builtin::BI__builtin_fabsl: 8878 return 0; 8879 8880 case Builtin::BI__builtin_cabsf: 8881 return Builtin::BI__builtin_cabs; 8882 case Builtin::BI__builtin_cabs: 8883 return Builtin::BI__builtin_cabsl; 8884 case Builtin::BI__builtin_cabsl: 8885 return 0; 8886 8887 case Builtin::BIabs: 8888 return Builtin::BIlabs; 8889 case Builtin::BIlabs: 8890 return Builtin::BIllabs; 8891 case Builtin::BIllabs: 8892 return 0; 8893 8894 case Builtin::BIfabsf: 8895 return Builtin::BIfabs; 8896 case Builtin::BIfabs: 8897 return Builtin::BIfabsl; 8898 case Builtin::BIfabsl: 8899 return 0; 8900 8901 case Builtin::BIcabsf: 8902 return Builtin::BIcabs; 8903 case Builtin::BIcabs: 8904 return Builtin::BIcabsl; 8905 case Builtin::BIcabsl: 8906 return 0; 8907 } 8908 } 8909 8910 // Returns the argument type of the absolute value function. 8911 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 8912 unsigned AbsType) { 8913 if (AbsType == 0) 8914 return QualType(); 8915 8916 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 8917 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 8918 if (Error != ASTContext::GE_None) 8919 return QualType(); 8920 8921 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 8922 if (!FT) 8923 return QualType(); 8924 8925 if (FT->getNumParams() != 1) 8926 return QualType(); 8927 8928 return FT->getParamType(0); 8929 } 8930 8931 // Returns the best absolute value function, or zero, based on type and 8932 // current absolute value function. 8933 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 8934 unsigned AbsFunctionKind) { 8935 unsigned BestKind = 0; 8936 uint64_t ArgSize = Context.getTypeSize(ArgType); 8937 for (unsigned Kind = AbsFunctionKind; Kind != 0; 8938 Kind = getLargerAbsoluteValueFunction(Kind)) { 8939 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 8940 if (Context.getTypeSize(ParamType) >= ArgSize) { 8941 if (BestKind == 0) 8942 BestKind = Kind; 8943 else if (Context.hasSameType(ParamType, ArgType)) { 8944 BestKind = Kind; 8945 break; 8946 } 8947 } 8948 } 8949 return BestKind; 8950 } 8951 8952 enum AbsoluteValueKind { 8953 AVK_Integer, 8954 AVK_Floating, 8955 AVK_Complex 8956 }; 8957 8958 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 8959 if (T->isIntegralOrEnumerationType()) 8960 return AVK_Integer; 8961 if (T->isRealFloatingType()) 8962 return AVK_Floating; 8963 if (T->isAnyComplexType()) 8964 return AVK_Complex; 8965 8966 llvm_unreachable("Type not integer, floating, or complex"); 8967 } 8968 8969 // Changes the absolute value function to a different type. Preserves whether 8970 // the function is a builtin. 8971 static unsigned changeAbsFunction(unsigned AbsKind, 8972 AbsoluteValueKind ValueKind) { 8973 switch (ValueKind) { 8974 case AVK_Integer: 8975 switch (AbsKind) { 8976 default: 8977 return 0; 8978 case Builtin::BI__builtin_fabsf: 8979 case Builtin::BI__builtin_fabs: 8980 case Builtin::BI__builtin_fabsl: 8981 case Builtin::BI__builtin_cabsf: 8982 case Builtin::BI__builtin_cabs: 8983 case Builtin::BI__builtin_cabsl: 8984 return Builtin::BI__builtin_abs; 8985 case Builtin::BIfabsf: 8986 case Builtin::BIfabs: 8987 case Builtin::BIfabsl: 8988 case Builtin::BIcabsf: 8989 case Builtin::BIcabs: 8990 case Builtin::BIcabsl: 8991 return Builtin::BIabs; 8992 } 8993 case AVK_Floating: 8994 switch (AbsKind) { 8995 default: 8996 return 0; 8997 case Builtin::BI__builtin_abs: 8998 case Builtin::BI__builtin_labs: 8999 case Builtin::BI__builtin_llabs: 9000 case Builtin::BI__builtin_cabsf: 9001 case Builtin::BI__builtin_cabs: 9002 case Builtin::BI__builtin_cabsl: 9003 return Builtin::BI__builtin_fabsf; 9004 case Builtin::BIabs: 9005 case Builtin::BIlabs: 9006 case Builtin::BIllabs: 9007 case Builtin::BIcabsf: 9008 case Builtin::BIcabs: 9009 case Builtin::BIcabsl: 9010 return Builtin::BIfabsf; 9011 } 9012 case AVK_Complex: 9013 switch (AbsKind) { 9014 default: 9015 return 0; 9016 case Builtin::BI__builtin_abs: 9017 case Builtin::BI__builtin_labs: 9018 case Builtin::BI__builtin_llabs: 9019 case Builtin::BI__builtin_fabsf: 9020 case Builtin::BI__builtin_fabs: 9021 case Builtin::BI__builtin_fabsl: 9022 return Builtin::BI__builtin_cabsf; 9023 case Builtin::BIabs: 9024 case Builtin::BIlabs: 9025 case Builtin::BIllabs: 9026 case Builtin::BIfabsf: 9027 case Builtin::BIfabs: 9028 case Builtin::BIfabsl: 9029 return Builtin::BIcabsf; 9030 } 9031 } 9032 llvm_unreachable("Unable to convert function"); 9033 } 9034 9035 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9036 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9037 if (!FnInfo) 9038 return 0; 9039 9040 switch (FDecl->getBuiltinID()) { 9041 default: 9042 return 0; 9043 case Builtin::BI__builtin_abs: 9044 case Builtin::BI__builtin_fabs: 9045 case Builtin::BI__builtin_fabsf: 9046 case Builtin::BI__builtin_fabsl: 9047 case Builtin::BI__builtin_labs: 9048 case Builtin::BI__builtin_llabs: 9049 case Builtin::BI__builtin_cabs: 9050 case Builtin::BI__builtin_cabsf: 9051 case Builtin::BI__builtin_cabsl: 9052 case Builtin::BIabs: 9053 case Builtin::BIlabs: 9054 case Builtin::BIllabs: 9055 case Builtin::BIfabs: 9056 case Builtin::BIfabsf: 9057 case Builtin::BIfabsl: 9058 case Builtin::BIcabs: 9059 case Builtin::BIcabsf: 9060 case Builtin::BIcabsl: 9061 return FDecl->getBuiltinID(); 9062 } 9063 llvm_unreachable("Unknown Builtin type"); 9064 } 9065 9066 // If the replacement is valid, emit a note with replacement function. 9067 // Additionally, suggest including the proper header if not already included. 9068 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9069 unsigned AbsKind, QualType ArgType) { 9070 bool EmitHeaderHint = true; 9071 const char *HeaderName = nullptr; 9072 const char *FunctionName = nullptr; 9073 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9074 FunctionName = "std::abs"; 9075 if (ArgType->isIntegralOrEnumerationType()) { 9076 HeaderName = "cstdlib"; 9077 } else if (ArgType->isRealFloatingType()) { 9078 HeaderName = "cmath"; 9079 } else { 9080 llvm_unreachable("Invalid Type"); 9081 } 9082 9083 // Lookup all std::abs 9084 if (NamespaceDecl *Std = S.getStdNamespace()) { 9085 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9086 R.suppressDiagnostics(); 9087 S.LookupQualifiedName(R, Std); 9088 9089 for (const auto *I : R) { 9090 const FunctionDecl *FDecl = nullptr; 9091 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9092 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9093 } else { 9094 FDecl = dyn_cast<FunctionDecl>(I); 9095 } 9096 if (!FDecl) 9097 continue; 9098 9099 // Found std::abs(), check that they are the right ones. 9100 if (FDecl->getNumParams() != 1) 9101 continue; 9102 9103 // Check that the parameter type can handle the argument. 9104 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9105 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9106 S.Context.getTypeSize(ArgType) <= 9107 S.Context.getTypeSize(ParamType)) { 9108 // Found a function, don't need the header hint. 9109 EmitHeaderHint = false; 9110 break; 9111 } 9112 } 9113 } 9114 } else { 9115 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9116 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9117 9118 if (HeaderName) { 9119 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9120 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9121 R.suppressDiagnostics(); 9122 S.LookupName(R, S.getCurScope()); 9123 9124 if (R.isSingleResult()) { 9125 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9126 if (FD && FD->getBuiltinID() == AbsKind) { 9127 EmitHeaderHint = false; 9128 } else { 9129 return; 9130 } 9131 } else if (!R.empty()) { 9132 return; 9133 } 9134 } 9135 } 9136 9137 S.Diag(Loc, diag::note_replace_abs_function) 9138 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9139 9140 if (!HeaderName) 9141 return; 9142 9143 if (!EmitHeaderHint) 9144 return; 9145 9146 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9147 << FunctionName; 9148 } 9149 9150 template <std::size_t StrLen> 9151 static bool IsStdFunction(const FunctionDecl *FDecl, 9152 const char (&Str)[StrLen]) { 9153 if (!FDecl) 9154 return false; 9155 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9156 return false; 9157 if (!FDecl->isInStdNamespace()) 9158 return false; 9159 9160 return true; 9161 } 9162 9163 // Warn when using the wrong abs() function. 9164 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9165 const FunctionDecl *FDecl) { 9166 if (Call->getNumArgs() != 1) 9167 return; 9168 9169 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9170 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9171 if (AbsKind == 0 && !IsStdAbs) 9172 return; 9173 9174 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9175 QualType ParamType = Call->getArg(0)->getType(); 9176 9177 // Unsigned types cannot be negative. Suggest removing the absolute value 9178 // function call. 9179 if (ArgType->isUnsignedIntegerType()) { 9180 const char *FunctionName = 9181 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9182 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9183 Diag(Call->getExprLoc(), diag::note_remove_abs) 9184 << FunctionName 9185 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9186 return; 9187 } 9188 9189 // Taking the absolute value of a pointer is very suspicious, they probably 9190 // wanted to index into an array, dereference a pointer, call a function, etc. 9191 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9192 unsigned DiagType = 0; 9193 if (ArgType->isFunctionType()) 9194 DiagType = 1; 9195 else if (ArgType->isArrayType()) 9196 DiagType = 2; 9197 9198 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9199 return; 9200 } 9201 9202 // std::abs has overloads which prevent most of the absolute value problems 9203 // from occurring. 9204 if (IsStdAbs) 9205 return; 9206 9207 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9208 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9209 9210 // The argument and parameter are the same kind. Check if they are the right 9211 // size. 9212 if (ArgValueKind == ParamValueKind) { 9213 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9214 return; 9215 9216 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9217 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9218 << FDecl << ArgType << ParamType; 9219 9220 if (NewAbsKind == 0) 9221 return; 9222 9223 emitReplacement(*this, Call->getExprLoc(), 9224 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9225 return; 9226 } 9227 9228 // ArgValueKind != ParamValueKind 9229 // The wrong type of absolute value function was used. Attempt to find the 9230 // proper one. 9231 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9232 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9233 if (NewAbsKind == 0) 9234 return; 9235 9236 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9237 << FDecl << ParamValueKind << ArgValueKind; 9238 9239 emitReplacement(*this, Call->getExprLoc(), 9240 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9241 } 9242 9243 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9244 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9245 const FunctionDecl *FDecl) { 9246 if (!Call || !FDecl) return; 9247 9248 // Ignore template specializations and macros. 9249 if (inTemplateInstantiation()) return; 9250 if (Call->getExprLoc().isMacroID()) return; 9251 9252 // Only care about the one template argument, two function parameter std::max 9253 if (Call->getNumArgs() != 2) return; 9254 if (!IsStdFunction(FDecl, "max")) return; 9255 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9256 if (!ArgList) return; 9257 if (ArgList->size() != 1) return; 9258 9259 // Check that template type argument is unsigned integer. 9260 const auto& TA = ArgList->get(0); 9261 if (TA.getKind() != TemplateArgument::Type) return; 9262 QualType ArgType = TA.getAsType(); 9263 if (!ArgType->isUnsignedIntegerType()) return; 9264 9265 // See if either argument is a literal zero. 9266 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9267 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9268 if (!MTE) return false; 9269 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9270 if (!Num) return false; 9271 if (Num->getValue() != 0) return false; 9272 return true; 9273 }; 9274 9275 const Expr *FirstArg = Call->getArg(0); 9276 const Expr *SecondArg = Call->getArg(1); 9277 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9278 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9279 9280 // Only warn when exactly one argument is zero. 9281 if (IsFirstArgZero == IsSecondArgZero) return; 9282 9283 SourceRange FirstRange = FirstArg->getSourceRange(); 9284 SourceRange SecondRange = SecondArg->getSourceRange(); 9285 9286 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9287 9288 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9289 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9290 9291 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9292 SourceRange RemovalRange; 9293 if (IsFirstArgZero) { 9294 RemovalRange = SourceRange(FirstRange.getBegin(), 9295 SecondRange.getBegin().getLocWithOffset(-1)); 9296 } else { 9297 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9298 SecondRange.getEnd()); 9299 } 9300 9301 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9302 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9303 << FixItHint::CreateRemoval(RemovalRange); 9304 } 9305 9306 //===--- CHECK: Standard memory functions ---------------------------------===// 9307 9308 /// Takes the expression passed to the size_t parameter of functions 9309 /// such as memcmp, strncat, etc and warns if it's a comparison. 9310 /// 9311 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9312 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9313 IdentifierInfo *FnName, 9314 SourceLocation FnLoc, 9315 SourceLocation RParenLoc) { 9316 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9317 if (!Size) 9318 return false; 9319 9320 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9321 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9322 return false; 9323 9324 SourceRange SizeRange = Size->getSourceRange(); 9325 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9326 << SizeRange << FnName; 9327 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9328 << FnName 9329 << FixItHint::CreateInsertion( 9330 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9331 << FixItHint::CreateRemoval(RParenLoc); 9332 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9333 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9334 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9335 ")"); 9336 9337 return true; 9338 } 9339 9340 /// Determine whether the given type is or contains a dynamic class type 9341 /// (e.g., whether it has a vtable). 9342 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9343 bool &IsContained) { 9344 // Look through array types while ignoring qualifiers. 9345 const Type *Ty = T->getBaseElementTypeUnsafe(); 9346 IsContained = false; 9347 9348 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9349 RD = RD ? RD->getDefinition() : nullptr; 9350 if (!RD || RD->isInvalidDecl()) 9351 return nullptr; 9352 9353 if (RD->isDynamicClass()) 9354 return RD; 9355 9356 // Check all the fields. If any bases were dynamic, the class is dynamic. 9357 // It's impossible for a class to transitively contain itself by value, so 9358 // infinite recursion is impossible. 9359 for (auto *FD : RD->fields()) { 9360 bool SubContained; 9361 if (const CXXRecordDecl *ContainedRD = 9362 getContainedDynamicClass(FD->getType(), SubContained)) { 9363 IsContained = true; 9364 return ContainedRD; 9365 } 9366 } 9367 9368 return nullptr; 9369 } 9370 9371 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9372 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9373 if (Unary->getKind() == UETT_SizeOf) 9374 return Unary; 9375 return nullptr; 9376 } 9377 9378 /// If E is a sizeof expression, returns its argument expression, 9379 /// otherwise returns NULL. 9380 static const Expr *getSizeOfExprArg(const Expr *E) { 9381 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9382 if (!SizeOf->isArgumentType()) 9383 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9384 return nullptr; 9385 } 9386 9387 /// If E is a sizeof expression, returns its argument type. 9388 static QualType getSizeOfArgType(const Expr *E) { 9389 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9390 return SizeOf->getTypeOfArgument(); 9391 return QualType(); 9392 } 9393 9394 namespace { 9395 9396 struct SearchNonTrivialToInitializeField 9397 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9398 using Super = 9399 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9400 9401 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9402 9403 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9404 SourceLocation SL) { 9405 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9406 asDerived().visitArray(PDIK, AT, SL); 9407 return; 9408 } 9409 9410 Super::visitWithKind(PDIK, FT, SL); 9411 } 9412 9413 void visitARCStrong(QualType FT, SourceLocation SL) { 9414 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9415 } 9416 void visitARCWeak(QualType FT, SourceLocation SL) { 9417 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9418 } 9419 void visitStruct(QualType FT, SourceLocation SL) { 9420 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9421 visit(FD->getType(), FD->getLocation()); 9422 } 9423 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9424 const ArrayType *AT, SourceLocation SL) { 9425 visit(getContext().getBaseElementType(AT), SL); 9426 } 9427 void visitTrivial(QualType FT, SourceLocation SL) {} 9428 9429 static void diag(QualType RT, const Expr *E, Sema &S) { 9430 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9431 } 9432 9433 ASTContext &getContext() { return S.getASTContext(); } 9434 9435 const Expr *E; 9436 Sema &S; 9437 }; 9438 9439 struct SearchNonTrivialToCopyField 9440 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9441 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9442 9443 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9444 9445 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9446 SourceLocation SL) { 9447 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9448 asDerived().visitArray(PCK, AT, SL); 9449 return; 9450 } 9451 9452 Super::visitWithKind(PCK, FT, SL); 9453 } 9454 9455 void visitARCStrong(QualType FT, SourceLocation SL) { 9456 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9457 } 9458 void visitARCWeak(QualType FT, SourceLocation SL) { 9459 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9460 } 9461 void visitStruct(QualType FT, SourceLocation SL) { 9462 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9463 visit(FD->getType(), FD->getLocation()); 9464 } 9465 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9466 SourceLocation SL) { 9467 visit(getContext().getBaseElementType(AT), SL); 9468 } 9469 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9470 SourceLocation SL) {} 9471 void visitTrivial(QualType FT, SourceLocation SL) {} 9472 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9473 9474 static void diag(QualType RT, const Expr *E, Sema &S) { 9475 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9476 } 9477 9478 ASTContext &getContext() { return S.getASTContext(); } 9479 9480 const Expr *E; 9481 Sema &S; 9482 }; 9483 9484 } 9485 9486 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9487 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9488 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9489 9490 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9491 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9492 return false; 9493 9494 return doesExprLikelyComputeSize(BO->getLHS()) || 9495 doesExprLikelyComputeSize(BO->getRHS()); 9496 } 9497 9498 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9499 } 9500 9501 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9502 /// 9503 /// \code 9504 /// #define MACRO 0 9505 /// foo(MACRO); 9506 /// foo(0); 9507 /// \endcode 9508 /// 9509 /// This should return true for the first call to foo, but not for the second 9510 /// (regardless of whether foo is a macro or function). 9511 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9512 SourceLocation CallLoc, 9513 SourceLocation ArgLoc) { 9514 if (!CallLoc.isMacroID()) 9515 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9516 9517 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9518 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9519 } 9520 9521 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9522 /// last two arguments transposed. 9523 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9524 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9525 return; 9526 9527 const Expr *SizeArg = 9528 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9529 9530 auto isLiteralZero = [](const Expr *E) { 9531 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9532 }; 9533 9534 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9535 SourceLocation CallLoc = Call->getRParenLoc(); 9536 SourceManager &SM = S.getSourceManager(); 9537 if (isLiteralZero(SizeArg) && 9538 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9539 9540 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9541 9542 // Some platforms #define bzero to __builtin_memset. See if this is the 9543 // case, and if so, emit a better diagnostic. 9544 if (BId == Builtin::BIbzero || 9545 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9546 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9547 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9548 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9549 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9550 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9551 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9552 } 9553 return; 9554 } 9555 9556 // If the second argument to a memset is a sizeof expression and the third 9557 // isn't, this is also likely an error. This should catch 9558 // 'memset(buf, sizeof(buf), 0xff)'. 9559 if (BId == Builtin::BImemset && 9560 doesExprLikelyComputeSize(Call->getArg(1)) && 9561 !doesExprLikelyComputeSize(Call->getArg(2))) { 9562 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9563 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9564 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9565 return; 9566 } 9567 } 9568 9569 /// Check for dangerous or invalid arguments to memset(). 9570 /// 9571 /// This issues warnings on known problematic, dangerous or unspecified 9572 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9573 /// function calls. 9574 /// 9575 /// \param Call The call expression to diagnose. 9576 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9577 unsigned BId, 9578 IdentifierInfo *FnName) { 9579 assert(BId != 0); 9580 9581 // It is possible to have a non-standard definition of memset. Validate 9582 // we have enough arguments, and if not, abort further checking. 9583 unsigned ExpectedNumArgs = 9584 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9585 if (Call->getNumArgs() < ExpectedNumArgs) 9586 return; 9587 9588 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9589 BId == Builtin::BIstrndup ? 1 : 2); 9590 unsigned LenArg = 9591 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9592 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9593 9594 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9595 Call->getBeginLoc(), Call->getRParenLoc())) 9596 return; 9597 9598 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9599 CheckMemaccessSize(*this, BId, Call); 9600 9601 // We have special checking when the length is a sizeof expression. 9602 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9603 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9604 llvm::FoldingSetNodeID SizeOfArgID; 9605 9606 // Although widely used, 'bzero' is not a standard function. Be more strict 9607 // with the argument types before allowing diagnostics and only allow the 9608 // form bzero(ptr, sizeof(...)). 9609 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9610 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9611 return; 9612 9613 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9614 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9615 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9616 9617 QualType DestTy = Dest->getType(); 9618 QualType PointeeTy; 9619 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9620 PointeeTy = DestPtrTy->getPointeeType(); 9621 9622 // Never warn about void type pointers. This can be used to suppress 9623 // false positives. 9624 if (PointeeTy->isVoidType()) 9625 continue; 9626 9627 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9628 // actually comparing the expressions for equality. Because computing the 9629 // expression IDs can be expensive, we only do this if the diagnostic is 9630 // enabled. 9631 if (SizeOfArg && 9632 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9633 SizeOfArg->getExprLoc())) { 9634 // We only compute IDs for expressions if the warning is enabled, and 9635 // cache the sizeof arg's ID. 9636 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9637 SizeOfArg->Profile(SizeOfArgID, Context, true); 9638 llvm::FoldingSetNodeID DestID; 9639 Dest->Profile(DestID, Context, true); 9640 if (DestID == SizeOfArgID) { 9641 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9642 // over sizeof(src) as well. 9643 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9644 StringRef ReadableName = FnName->getName(); 9645 9646 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9647 if (UnaryOp->getOpcode() == UO_AddrOf) 9648 ActionIdx = 1; // If its an address-of operator, just remove it. 9649 if (!PointeeTy->isIncompleteType() && 9650 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9651 ActionIdx = 2; // If the pointee's size is sizeof(char), 9652 // suggest an explicit length. 9653 9654 // If the function is defined as a builtin macro, do not show macro 9655 // expansion. 9656 SourceLocation SL = SizeOfArg->getExprLoc(); 9657 SourceRange DSR = Dest->getSourceRange(); 9658 SourceRange SSR = SizeOfArg->getSourceRange(); 9659 SourceManager &SM = getSourceManager(); 9660 9661 if (SM.isMacroArgExpansion(SL)) { 9662 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9663 SL = SM.getSpellingLoc(SL); 9664 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9665 SM.getSpellingLoc(DSR.getEnd())); 9666 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9667 SM.getSpellingLoc(SSR.getEnd())); 9668 } 9669 9670 DiagRuntimeBehavior(SL, SizeOfArg, 9671 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9672 << ReadableName 9673 << PointeeTy 9674 << DestTy 9675 << DSR 9676 << SSR); 9677 DiagRuntimeBehavior(SL, SizeOfArg, 9678 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9679 << ActionIdx 9680 << SSR); 9681 9682 break; 9683 } 9684 } 9685 9686 // Also check for cases where the sizeof argument is the exact same 9687 // type as the memory argument, and where it points to a user-defined 9688 // record type. 9689 if (SizeOfArgTy != QualType()) { 9690 if (PointeeTy->isRecordType() && 9691 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9692 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9693 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9694 << FnName << SizeOfArgTy << ArgIdx 9695 << PointeeTy << Dest->getSourceRange() 9696 << LenExpr->getSourceRange()); 9697 break; 9698 } 9699 } 9700 } else if (DestTy->isArrayType()) { 9701 PointeeTy = DestTy; 9702 } 9703 9704 if (PointeeTy == QualType()) 9705 continue; 9706 9707 // Always complain about dynamic classes. 9708 bool IsContained; 9709 if (const CXXRecordDecl *ContainedRD = 9710 getContainedDynamicClass(PointeeTy, IsContained)) { 9711 9712 unsigned OperationType = 0; 9713 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9714 // "overwritten" if we're warning about the destination for any call 9715 // but memcmp; otherwise a verb appropriate to the call. 9716 if (ArgIdx != 0 || IsCmp) { 9717 if (BId == Builtin::BImemcpy) 9718 OperationType = 1; 9719 else if(BId == Builtin::BImemmove) 9720 OperationType = 2; 9721 else if (IsCmp) 9722 OperationType = 3; 9723 } 9724 9725 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9726 PDiag(diag::warn_dyn_class_memaccess) 9727 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 9728 << IsContained << ContainedRD << OperationType 9729 << Call->getCallee()->getSourceRange()); 9730 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 9731 BId != Builtin::BImemset) 9732 DiagRuntimeBehavior( 9733 Dest->getExprLoc(), Dest, 9734 PDiag(diag::warn_arc_object_memaccess) 9735 << ArgIdx << FnName << PointeeTy 9736 << Call->getCallee()->getSourceRange()); 9737 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 9738 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 9739 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 9740 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9741 PDiag(diag::warn_cstruct_memaccess) 9742 << ArgIdx << FnName << PointeeTy << 0); 9743 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 9744 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 9745 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 9746 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 9747 PDiag(diag::warn_cstruct_memaccess) 9748 << ArgIdx << FnName << PointeeTy << 1); 9749 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 9750 } else { 9751 continue; 9752 } 9753 } else 9754 continue; 9755 9756 DiagRuntimeBehavior( 9757 Dest->getExprLoc(), Dest, 9758 PDiag(diag::note_bad_memaccess_silence) 9759 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 9760 break; 9761 } 9762 } 9763 9764 // A little helper routine: ignore addition and subtraction of integer literals. 9765 // This intentionally does not ignore all integer constant expressions because 9766 // we don't want to remove sizeof(). 9767 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 9768 Ex = Ex->IgnoreParenCasts(); 9769 9770 while (true) { 9771 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 9772 if (!BO || !BO->isAdditiveOp()) 9773 break; 9774 9775 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 9776 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 9777 9778 if (isa<IntegerLiteral>(RHS)) 9779 Ex = LHS; 9780 else if (isa<IntegerLiteral>(LHS)) 9781 Ex = RHS; 9782 else 9783 break; 9784 } 9785 9786 return Ex; 9787 } 9788 9789 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 9790 ASTContext &Context) { 9791 // Only handle constant-sized or VLAs, but not flexible members. 9792 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 9793 // Only issue the FIXIT for arrays of size > 1. 9794 if (CAT->getSize().getSExtValue() <= 1) 9795 return false; 9796 } else if (!Ty->isVariableArrayType()) { 9797 return false; 9798 } 9799 return true; 9800 } 9801 9802 // Warn if the user has made the 'size' argument to strlcpy or strlcat 9803 // be the size of the source, instead of the destination. 9804 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 9805 IdentifierInfo *FnName) { 9806 9807 // Don't crash if the user has the wrong number of arguments 9808 unsigned NumArgs = Call->getNumArgs(); 9809 if ((NumArgs != 3) && (NumArgs != 4)) 9810 return; 9811 9812 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 9813 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 9814 const Expr *CompareWithSrc = nullptr; 9815 9816 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 9817 Call->getBeginLoc(), Call->getRParenLoc())) 9818 return; 9819 9820 // Look for 'strlcpy(dst, x, sizeof(x))' 9821 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 9822 CompareWithSrc = Ex; 9823 else { 9824 // Look for 'strlcpy(dst, x, strlen(x))' 9825 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 9826 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 9827 SizeCall->getNumArgs() == 1) 9828 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 9829 } 9830 } 9831 9832 if (!CompareWithSrc) 9833 return; 9834 9835 // Determine if the argument to sizeof/strlen is equal to the source 9836 // argument. In principle there's all kinds of things you could do 9837 // here, for instance creating an == expression and evaluating it with 9838 // EvaluateAsBooleanCondition, but this uses a more direct technique: 9839 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 9840 if (!SrcArgDRE) 9841 return; 9842 9843 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 9844 if (!CompareWithSrcDRE || 9845 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 9846 return; 9847 9848 const Expr *OriginalSizeArg = Call->getArg(2); 9849 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 9850 << OriginalSizeArg->getSourceRange() << FnName; 9851 9852 // Output a FIXIT hint if the destination is an array (rather than a 9853 // pointer to an array). This could be enhanced to handle some 9854 // pointers if we know the actual size, like if DstArg is 'array+2' 9855 // we could say 'sizeof(array)-2'. 9856 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 9857 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 9858 return; 9859 9860 SmallString<128> sizeString; 9861 llvm::raw_svector_ostream OS(sizeString); 9862 OS << "sizeof("; 9863 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9864 OS << ")"; 9865 9866 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 9867 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 9868 OS.str()); 9869 } 9870 9871 /// Check if two expressions refer to the same declaration. 9872 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 9873 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 9874 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 9875 return D1->getDecl() == D2->getDecl(); 9876 return false; 9877 } 9878 9879 static const Expr *getStrlenExprArg(const Expr *E) { 9880 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 9881 const FunctionDecl *FD = CE->getDirectCallee(); 9882 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 9883 return nullptr; 9884 return CE->getArg(0)->IgnoreParenCasts(); 9885 } 9886 return nullptr; 9887 } 9888 9889 // Warn on anti-patterns as the 'size' argument to strncat. 9890 // The correct size argument should look like following: 9891 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 9892 void Sema::CheckStrncatArguments(const CallExpr *CE, 9893 IdentifierInfo *FnName) { 9894 // Don't crash if the user has the wrong number of arguments. 9895 if (CE->getNumArgs() < 3) 9896 return; 9897 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 9898 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 9899 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 9900 9901 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 9902 CE->getRParenLoc())) 9903 return; 9904 9905 // Identify common expressions, which are wrongly used as the size argument 9906 // to strncat and may lead to buffer overflows. 9907 unsigned PatternType = 0; 9908 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 9909 // - sizeof(dst) 9910 if (referToTheSameDecl(SizeOfArg, DstArg)) 9911 PatternType = 1; 9912 // - sizeof(src) 9913 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 9914 PatternType = 2; 9915 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 9916 if (BE->getOpcode() == BO_Sub) { 9917 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 9918 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 9919 // - sizeof(dst) - strlen(dst) 9920 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 9921 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 9922 PatternType = 1; 9923 // - sizeof(src) - (anything) 9924 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 9925 PatternType = 2; 9926 } 9927 } 9928 9929 if (PatternType == 0) 9930 return; 9931 9932 // Generate the diagnostic. 9933 SourceLocation SL = LenArg->getBeginLoc(); 9934 SourceRange SR = LenArg->getSourceRange(); 9935 SourceManager &SM = getSourceManager(); 9936 9937 // If the function is defined as a builtin macro, do not show macro expansion. 9938 if (SM.isMacroArgExpansion(SL)) { 9939 SL = SM.getSpellingLoc(SL); 9940 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 9941 SM.getSpellingLoc(SR.getEnd())); 9942 } 9943 9944 // Check if the destination is an array (rather than a pointer to an array). 9945 QualType DstTy = DstArg->getType(); 9946 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 9947 Context); 9948 if (!isKnownSizeArray) { 9949 if (PatternType == 1) 9950 Diag(SL, diag::warn_strncat_wrong_size) << SR; 9951 else 9952 Diag(SL, diag::warn_strncat_src_size) << SR; 9953 return; 9954 } 9955 9956 if (PatternType == 1) 9957 Diag(SL, diag::warn_strncat_large_size) << SR; 9958 else 9959 Diag(SL, diag::warn_strncat_src_size) << SR; 9960 9961 SmallString<128> sizeString; 9962 llvm::raw_svector_ostream OS(sizeString); 9963 OS << "sizeof("; 9964 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9965 OS << ") - "; 9966 OS << "strlen("; 9967 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 9968 OS << ") - 1"; 9969 9970 Diag(SL, diag::note_strncat_wrong_size) 9971 << FixItHint::CreateReplacement(SR, OS.str()); 9972 } 9973 9974 void 9975 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 9976 SourceLocation ReturnLoc, 9977 bool isObjCMethod, 9978 const AttrVec *Attrs, 9979 const FunctionDecl *FD) { 9980 // Check if the return value is null but should not be. 9981 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 9982 (!isObjCMethod && isNonNullType(Context, lhsType))) && 9983 CheckNonNullExpr(*this, RetValExp)) 9984 Diag(ReturnLoc, diag::warn_null_ret) 9985 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 9986 9987 // C++11 [basic.stc.dynamic.allocation]p4: 9988 // If an allocation function declared with a non-throwing 9989 // exception-specification fails to allocate storage, it shall return 9990 // a null pointer. Any other allocation function that fails to allocate 9991 // storage shall indicate failure only by throwing an exception [...] 9992 if (FD) { 9993 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 9994 if (Op == OO_New || Op == OO_Array_New) { 9995 const FunctionProtoType *Proto 9996 = FD->getType()->castAs<FunctionProtoType>(); 9997 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 9998 CheckNonNullExpr(*this, RetValExp)) 9999 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 10000 << FD << getLangOpts().CPlusPlus11; 10001 } 10002 } 10003 } 10004 10005 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10006 10007 /// Check for comparisons of floating point operands using != and ==. 10008 /// Issue a warning if these are no self-comparisons, as they are not likely 10009 /// to do what the programmer intended. 10010 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10011 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10012 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10013 10014 // Special case: check for x == x (which is OK). 10015 // Do not emit warnings for such cases. 10016 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10017 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10018 if (DRL->getDecl() == DRR->getDecl()) 10019 return; 10020 10021 // Special case: check for comparisons against literals that can be exactly 10022 // represented by APFloat. In such cases, do not emit a warning. This 10023 // is a heuristic: often comparison against such literals are used to 10024 // detect if a value in a variable has not changed. This clearly can 10025 // lead to false negatives. 10026 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10027 if (FLL->isExact()) 10028 return; 10029 } else 10030 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10031 if (FLR->isExact()) 10032 return; 10033 10034 // Check for comparisons with builtin types. 10035 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10036 if (CL->getBuiltinCallee()) 10037 return; 10038 10039 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10040 if (CR->getBuiltinCallee()) 10041 return; 10042 10043 // Emit the diagnostic. 10044 Diag(Loc, diag::warn_floatingpoint_eq) 10045 << LHS->getSourceRange() << RHS->getSourceRange(); 10046 } 10047 10048 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10049 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10050 10051 namespace { 10052 10053 /// Structure recording the 'active' range of an integer-valued 10054 /// expression. 10055 struct IntRange { 10056 /// The number of bits active in the int. 10057 unsigned Width; 10058 10059 /// True if the int is known not to have negative values. 10060 bool NonNegative; 10061 10062 IntRange(unsigned Width, bool NonNegative) 10063 : Width(Width), NonNegative(NonNegative) {} 10064 10065 /// Returns the range of the bool type. 10066 static IntRange forBoolType() { 10067 return IntRange(1, true); 10068 } 10069 10070 /// Returns the range of an opaque value of the given integral type. 10071 static IntRange forValueOfType(ASTContext &C, QualType T) { 10072 return forValueOfCanonicalType(C, 10073 T->getCanonicalTypeInternal().getTypePtr()); 10074 } 10075 10076 /// Returns the range of an opaque value of a canonical integral type. 10077 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10078 assert(T->isCanonicalUnqualified()); 10079 10080 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10081 T = VT->getElementType().getTypePtr(); 10082 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10083 T = CT->getElementType().getTypePtr(); 10084 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10085 T = AT->getValueType().getTypePtr(); 10086 10087 if (!C.getLangOpts().CPlusPlus) { 10088 // For enum types in C code, use the underlying datatype. 10089 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10090 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10091 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10092 // For enum types in C++, use the known bit width of the enumerators. 10093 EnumDecl *Enum = ET->getDecl(); 10094 // In C++11, enums can have a fixed underlying type. Use this type to 10095 // compute the range. 10096 if (Enum->isFixed()) { 10097 return IntRange(C.getIntWidth(QualType(T, 0)), 10098 !ET->isSignedIntegerOrEnumerationType()); 10099 } 10100 10101 unsigned NumPositive = Enum->getNumPositiveBits(); 10102 unsigned NumNegative = Enum->getNumNegativeBits(); 10103 10104 if (NumNegative == 0) 10105 return IntRange(NumPositive, true/*NonNegative*/); 10106 else 10107 return IntRange(std::max(NumPositive + 1, NumNegative), 10108 false/*NonNegative*/); 10109 } 10110 10111 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10112 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10113 10114 const BuiltinType *BT = cast<BuiltinType>(T); 10115 assert(BT->isInteger()); 10116 10117 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10118 } 10119 10120 /// Returns the "target" range of a canonical integral type, i.e. 10121 /// the range of values expressible in the type. 10122 /// 10123 /// This matches forValueOfCanonicalType except that enums have the 10124 /// full range of their type, not the range of their enumerators. 10125 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10126 assert(T->isCanonicalUnqualified()); 10127 10128 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10129 T = VT->getElementType().getTypePtr(); 10130 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10131 T = CT->getElementType().getTypePtr(); 10132 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10133 T = AT->getValueType().getTypePtr(); 10134 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10135 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10136 10137 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10138 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10139 10140 const BuiltinType *BT = cast<BuiltinType>(T); 10141 assert(BT->isInteger()); 10142 10143 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10144 } 10145 10146 /// Returns the supremum of two ranges: i.e. their conservative merge. 10147 static IntRange join(IntRange L, IntRange R) { 10148 return IntRange(std::max(L.Width, R.Width), 10149 L.NonNegative && R.NonNegative); 10150 } 10151 10152 /// Returns the infinum of two ranges: i.e. their aggressive merge. 10153 static IntRange meet(IntRange L, IntRange R) { 10154 return IntRange(std::min(L.Width, R.Width), 10155 L.NonNegative || R.NonNegative); 10156 } 10157 }; 10158 10159 } // namespace 10160 10161 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10162 unsigned MaxWidth) { 10163 if (value.isSigned() && value.isNegative()) 10164 return IntRange(value.getMinSignedBits(), false); 10165 10166 if (value.getBitWidth() > MaxWidth) 10167 value = value.trunc(MaxWidth); 10168 10169 // isNonNegative() just checks the sign bit without considering 10170 // signedness. 10171 return IntRange(value.getActiveBits(), true); 10172 } 10173 10174 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10175 unsigned MaxWidth) { 10176 if (result.isInt()) 10177 return GetValueRange(C, result.getInt(), MaxWidth); 10178 10179 if (result.isVector()) { 10180 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10181 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10182 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10183 R = IntRange::join(R, El); 10184 } 10185 return R; 10186 } 10187 10188 if (result.isComplexInt()) { 10189 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10190 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10191 return IntRange::join(R, I); 10192 } 10193 10194 // This can happen with lossless casts to intptr_t of "based" lvalues. 10195 // Assume it might use arbitrary bits. 10196 // FIXME: The only reason we need to pass the type in here is to get 10197 // the sign right on this one case. It would be nice if APValue 10198 // preserved this. 10199 assert(result.isLValue() || result.isAddrLabelDiff()); 10200 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10201 } 10202 10203 static QualType GetExprType(const Expr *E) { 10204 QualType Ty = E->getType(); 10205 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10206 Ty = AtomicRHS->getValueType(); 10207 return Ty; 10208 } 10209 10210 /// Pseudo-evaluate the given integer expression, estimating the 10211 /// range of values it might take. 10212 /// 10213 /// \param MaxWidth - the width to which the value will be truncated 10214 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10215 bool InConstantContext) { 10216 E = E->IgnoreParens(); 10217 10218 // Try a full evaluation first. 10219 Expr::EvalResult result; 10220 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10221 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10222 10223 // I think we only want to look through implicit casts here; if the 10224 // user has an explicit widening cast, we should treat the value as 10225 // being of the new, wider type. 10226 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10227 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10228 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext); 10229 10230 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10231 10232 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10233 CE->getCastKind() == CK_BooleanToSignedIntegral; 10234 10235 // Assume that non-integer casts can span the full range of the type. 10236 if (!isIntegerCast) 10237 return OutputTypeRange; 10238 10239 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10240 std::min(MaxWidth, OutputTypeRange.Width), 10241 InConstantContext); 10242 10243 // Bail out if the subexpr's range is as wide as the cast type. 10244 if (SubRange.Width >= OutputTypeRange.Width) 10245 return OutputTypeRange; 10246 10247 // Otherwise, we take the smaller width, and we're non-negative if 10248 // either the output type or the subexpr is. 10249 return IntRange(SubRange.Width, 10250 SubRange.NonNegative || OutputTypeRange.NonNegative); 10251 } 10252 10253 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10254 // If we can fold the condition, just take that operand. 10255 bool CondResult; 10256 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10257 return GetExprRange(C, 10258 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10259 MaxWidth, InConstantContext); 10260 10261 // Otherwise, conservatively merge. 10262 IntRange L = 10263 GetExprRange(C, CO->getTrueExpr(), MaxWidth, InConstantContext); 10264 IntRange R = 10265 GetExprRange(C, CO->getFalseExpr(), MaxWidth, InConstantContext); 10266 return IntRange::join(L, R); 10267 } 10268 10269 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10270 switch (BO->getOpcode()) { 10271 case BO_Cmp: 10272 llvm_unreachable("builtin <=> should have class type"); 10273 10274 // Boolean-valued operations are single-bit and positive. 10275 case BO_LAnd: 10276 case BO_LOr: 10277 case BO_LT: 10278 case BO_GT: 10279 case BO_LE: 10280 case BO_GE: 10281 case BO_EQ: 10282 case BO_NE: 10283 return IntRange::forBoolType(); 10284 10285 // The type of the assignments is the type of the LHS, so the RHS 10286 // is not necessarily the same type. 10287 case BO_MulAssign: 10288 case BO_DivAssign: 10289 case BO_RemAssign: 10290 case BO_AddAssign: 10291 case BO_SubAssign: 10292 case BO_XorAssign: 10293 case BO_OrAssign: 10294 // TODO: bitfields? 10295 return IntRange::forValueOfType(C, GetExprType(E)); 10296 10297 // Simple assignments just pass through the RHS, which will have 10298 // been coerced to the LHS type. 10299 case BO_Assign: 10300 // TODO: bitfields? 10301 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10302 10303 // Operations with opaque sources are black-listed. 10304 case BO_PtrMemD: 10305 case BO_PtrMemI: 10306 return IntRange::forValueOfType(C, GetExprType(E)); 10307 10308 // Bitwise-and uses the *infinum* of the two source ranges. 10309 case BO_And: 10310 case BO_AndAssign: 10311 return IntRange::meet( 10312 GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext), 10313 GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext)); 10314 10315 // Left shift gets black-listed based on a judgement call. 10316 case BO_Shl: 10317 // ...except that we want to treat '1 << (blah)' as logically 10318 // positive. It's an important idiom. 10319 if (IntegerLiteral *I 10320 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10321 if (I->getValue() == 1) { 10322 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10323 return IntRange(R.Width, /*NonNegative*/ true); 10324 } 10325 } 10326 LLVM_FALLTHROUGH; 10327 10328 case BO_ShlAssign: 10329 return IntRange::forValueOfType(C, GetExprType(E)); 10330 10331 // Right shift by a constant can narrow its left argument. 10332 case BO_Shr: 10333 case BO_ShrAssign: { 10334 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10335 10336 // If the shift amount is a positive constant, drop the width by 10337 // that much. 10338 llvm::APSInt shift; 10339 if (BO->getRHS()->isIntegerConstantExpr(shift, C) && 10340 shift.isNonNegative()) { 10341 unsigned zext = shift.getZExtValue(); 10342 if (zext >= L.Width) 10343 L.Width = (L.NonNegative ? 0 : 1); 10344 else 10345 L.Width -= zext; 10346 } 10347 10348 return L; 10349 } 10350 10351 // Comma acts as its right operand. 10352 case BO_Comma: 10353 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10354 10355 // Black-list pointer subtractions. 10356 case BO_Sub: 10357 if (BO->getLHS()->getType()->isPointerType()) 10358 return IntRange::forValueOfType(C, GetExprType(E)); 10359 break; 10360 10361 // The width of a division result is mostly determined by the size 10362 // of the LHS. 10363 case BO_Div: { 10364 // Don't 'pre-truncate' the operands. 10365 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10366 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10367 10368 // If the divisor is constant, use that. 10369 llvm::APSInt divisor; 10370 if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) { 10371 unsigned log2 = divisor.logBase2(); // floor(log_2(divisor)) 10372 if (log2 >= L.Width) 10373 L.Width = (L.NonNegative ? 0 : 1); 10374 else 10375 L.Width = std::min(L.Width - log2, MaxWidth); 10376 return L; 10377 } 10378 10379 // Otherwise, just use the LHS's width. 10380 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10381 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10382 } 10383 10384 // The result of a remainder can't be larger than the result of 10385 // either side. 10386 case BO_Rem: { 10387 // Don't 'pre-truncate' the operands. 10388 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10389 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext); 10390 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext); 10391 10392 IntRange meet = IntRange::meet(L, R); 10393 meet.Width = std::min(meet.Width, MaxWidth); 10394 return meet; 10395 } 10396 10397 // The default behavior is okay for these. 10398 case BO_Mul: 10399 case BO_Add: 10400 case BO_Xor: 10401 case BO_Or: 10402 break; 10403 } 10404 10405 // The default case is to treat the operation as if it were closed 10406 // on the narrowest type that encompasses both operands. 10407 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext); 10408 IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext); 10409 return IntRange::join(L, R); 10410 } 10411 10412 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10413 switch (UO->getOpcode()) { 10414 // Boolean-valued operations are white-listed. 10415 case UO_LNot: 10416 return IntRange::forBoolType(); 10417 10418 // Operations with opaque sources are black-listed. 10419 case UO_Deref: 10420 case UO_AddrOf: // should be impossible 10421 return IntRange::forValueOfType(C, GetExprType(E)); 10422 10423 default: 10424 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext); 10425 } 10426 } 10427 10428 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10429 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext); 10430 10431 if (const auto *BitField = E->getSourceBitField()) 10432 return IntRange(BitField->getBitWidthValue(C), 10433 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10434 10435 return IntRange::forValueOfType(C, GetExprType(E)); 10436 } 10437 10438 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10439 bool InConstantContext) { 10440 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext); 10441 } 10442 10443 /// Checks whether the given value, which currently has the given 10444 /// source semantics, has the same value when coerced through the 10445 /// target semantics. 10446 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10447 const llvm::fltSemantics &Src, 10448 const llvm::fltSemantics &Tgt) { 10449 llvm::APFloat truncated = value; 10450 10451 bool ignored; 10452 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10453 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10454 10455 return truncated.bitwiseIsEqual(value); 10456 } 10457 10458 /// Checks whether the given value, which currently has the given 10459 /// source semantics, has the same value when coerced through the 10460 /// target semantics. 10461 /// 10462 /// The value might be a vector of floats (or a complex number). 10463 static bool IsSameFloatAfterCast(const APValue &value, 10464 const llvm::fltSemantics &Src, 10465 const llvm::fltSemantics &Tgt) { 10466 if (value.isFloat()) 10467 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10468 10469 if (value.isVector()) { 10470 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10471 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10472 return false; 10473 return true; 10474 } 10475 10476 assert(value.isComplexFloat()); 10477 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10478 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10479 } 10480 10481 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10482 bool IsListInit = false); 10483 10484 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10485 // Suppress cases where we are comparing against an enum constant. 10486 if (const DeclRefExpr *DR = 10487 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10488 if (isa<EnumConstantDecl>(DR->getDecl())) 10489 return true; 10490 10491 // Suppress cases where the value is expanded from a macro, unless that macro 10492 // is how a language represents a boolean literal. This is the case in both C 10493 // and Objective-C. 10494 SourceLocation BeginLoc = E->getBeginLoc(); 10495 if (BeginLoc.isMacroID()) { 10496 StringRef MacroName = Lexer::getImmediateMacroName( 10497 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10498 return MacroName != "YES" && MacroName != "NO" && 10499 MacroName != "true" && MacroName != "false"; 10500 } 10501 10502 return false; 10503 } 10504 10505 static bool isKnownToHaveUnsignedValue(Expr *E) { 10506 return E->getType()->isIntegerType() && 10507 (!E->getType()->isSignedIntegerType() || 10508 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10509 } 10510 10511 namespace { 10512 /// The promoted range of values of a type. In general this has the 10513 /// following structure: 10514 /// 10515 /// |-----------| . . . |-----------| 10516 /// ^ ^ ^ ^ 10517 /// Min HoleMin HoleMax Max 10518 /// 10519 /// ... where there is only a hole if a signed type is promoted to unsigned 10520 /// (in which case Min and Max are the smallest and largest representable 10521 /// values). 10522 struct PromotedRange { 10523 // Min, or HoleMax if there is a hole. 10524 llvm::APSInt PromotedMin; 10525 // Max, or HoleMin if there is a hole. 10526 llvm::APSInt PromotedMax; 10527 10528 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10529 if (R.Width == 0) 10530 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10531 else if (R.Width >= BitWidth && !Unsigned) { 10532 // Promotion made the type *narrower*. This happens when promoting 10533 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10534 // Treat all values of 'signed int' as being in range for now. 10535 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10536 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10537 } else { 10538 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10539 .extOrTrunc(BitWidth); 10540 PromotedMin.setIsUnsigned(Unsigned); 10541 10542 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10543 .extOrTrunc(BitWidth); 10544 PromotedMax.setIsUnsigned(Unsigned); 10545 } 10546 } 10547 10548 // Determine whether this range is contiguous (has no hole). 10549 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10550 10551 // Where a constant value is within the range. 10552 enum ComparisonResult { 10553 LT = 0x1, 10554 LE = 0x2, 10555 GT = 0x4, 10556 GE = 0x8, 10557 EQ = 0x10, 10558 NE = 0x20, 10559 InRangeFlag = 0x40, 10560 10561 Less = LE | LT | NE, 10562 Min = LE | InRangeFlag, 10563 InRange = InRangeFlag, 10564 Max = GE | InRangeFlag, 10565 Greater = GE | GT | NE, 10566 10567 OnlyValue = LE | GE | EQ | InRangeFlag, 10568 InHole = NE 10569 }; 10570 10571 ComparisonResult compare(const llvm::APSInt &Value) const { 10572 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 10573 Value.isUnsigned() == PromotedMin.isUnsigned()); 10574 if (!isContiguous()) { 10575 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 10576 if (Value.isMinValue()) return Min; 10577 if (Value.isMaxValue()) return Max; 10578 if (Value >= PromotedMin) return InRange; 10579 if (Value <= PromotedMax) return InRange; 10580 return InHole; 10581 } 10582 10583 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 10584 case -1: return Less; 10585 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 10586 case 1: 10587 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 10588 case -1: return InRange; 10589 case 0: return Max; 10590 case 1: return Greater; 10591 } 10592 } 10593 10594 llvm_unreachable("impossible compare result"); 10595 } 10596 10597 static llvm::Optional<StringRef> 10598 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 10599 if (Op == BO_Cmp) { 10600 ComparisonResult LTFlag = LT, GTFlag = GT; 10601 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 10602 10603 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 10604 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 10605 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 10606 return llvm::None; 10607 } 10608 10609 ComparisonResult TrueFlag, FalseFlag; 10610 if (Op == BO_EQ) { 10611 TrueFlag = EQ; 10612 FalseFlag = NE; 10613 } else if (Op == BO_NE) { 10614 TrueFlag = NE; 10615 FalseFlag = EQ; 10616 } else { 10617 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 10618 TrueFlag = LT; 10619 FalseFlag = GE; 10620 } else { 10621 TrueFlag = GT; 10622 FalseFlag = LE; 10623 } 10624 if (Op == BO_GE || Op == BO_LE) 10625 std::swap(TrueFlag, FalseFlag); 10626 } 10627 if (R & TrueFlag) 10628 return StringRef("true"); 10629 if (R & FalseFlag) 10630 return StringRef("false"); 10631 return llvm::None; 10632 } 10633 }; 10634 } 10635 10636 static bool HasEnumType(Expr *E) { 10637 // Strip off implicit integral promotions. 10638 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 10639 if (ICE->getCastKind() != CK_IntegralCast && 10640 ICE->getCastKind() != CK_NoOp) 10641 break; 10642 E = ICE->getSubExpr(); 10643 } 10644 10645 return E->getType()->isEnumeralType(); 10646 } 10647 10648 static int classifyConstantValue(Expr *Constant) { 10649 // The values of this enumeration are used in the diagnostics 10650 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 10651 enum ConstantValueKind { 10652 Miscellaneous = 0, 10653 LiteralTrue, 10654 LiteralFalse 10655 }; 10656 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 10657 return BL->getValue() ? ConstantValueKind::LiteralTrue 10658 : ConstantValueKind::LiteralFalse; 10659 return ConstantValueKind::Miscellaneous; 10660 } 10661 10662 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 10663 Expr *Constant, Expr *Other, 10664 const llvm::APSInt &Value, 10665 bool RhsConstant) { 10666 if (S.inTemplateInstantiation()) 10667 return false; 10668 10669 Expr *OriginalOther = Other; 10670 10671 Constant = Constant->IgnoreParenImpCasts(); 10672 Other = Other->IgnoreParenImpCasts(); 10673 10674 // Suppress warnings on tautological comparisons between values of the same 10675 // enumeration type. There are only two ways we could warn on this: 10676 // - If the constant is outside the range of representable values of 10677 // the enumeration. In such a case, we should warn about the cast 10678 // to enumeration type, not about the comparison. 10679 // - If the constant is the maximum / minimum in-range value. For an 10680 // enumeratin type, such comparisons can be meaningful and useful. 10681 if (Constant->getType()->isEnumeralType() && 10682 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 10683 return false; 10684 10685 // TODO: Investigate using GetExprRange() to get tighter bounds 10686 // on the bit ranges. 10687 QualType OtherT = Other->getType(); 10688 if (const auto *AT = OtherT->getAs<AtomicType>()) 10689 OtherT = AT->getValueType(); 10690 IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT); 10691 10692 // Special case for ObjC BOOL on targets where its a typedef for a signed char 10693 // (Namely, macOS). 10694 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 10695 S.NSAPIObj->isObjCBOOLType(OtherT) && 10696 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 10697 10698 // Whether we're treating Other as being a bool because of the form of 10699 // expression despite it having another type (typically 'int' in C). 10700 bool OtherIsBooleanDespiteType = 10701 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 10702 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 10703 OtherRange = IntRange::forBoolType(); 10704 10705 // Determine the promoted range of the other type and see if a comparison of 10706 // the constant against that range is tautological. 10707 PromotedRange OtherPromotedRange(OtherRange, Value.getBitWidth(), 10708 Value.isUnsigned()); 10709 auto Cmp = OtherPromotedRange.compare(Value); 10710 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 10711 if (!Result) 10712 return false; 10713 10714 // Suppress the diagnostic for an in-range comparison if the constant comes 10715 // from a macro or enumerator. We don't want to diagnose 10716 // 10717 // some_long_value <= INT_MAX 10718 // 10719 // when sizeof(int) == sizeof(long). 10720 bool InRange = Cmp & PromotedRange::InRangeFlag; 10721 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 10722 return false; 10723 10724 // If this is a comparison to an enum constant, include that 10725 // constant in the diagnostic. 10726 const EnumConstantDecl *ED = nullptr; 10727 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 10728 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 10729 10730 // Should be enough for uint128 (39 decimal digits) 10731 SmallString<64> PrettySourceValue; 10732 llvm::raw_svector_ostream OS(PrettySourceValue); 10733 if (ED) { 10734 OS << '\'' << *ED << "' (" << Value << ")"; 10735 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 10736 Constant->IgnoreParenImpCasts())) { 10737 OS << (BL->getValue() ? "YES" : "NO"); 10738 } else { 10739 OS << Value; 10740 } 10741 10742 if (IsObjCSignedCharBool) { 10743 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10744 S.PDiag(diag::warn_tautological_compare_objc_bool) 10745 << OS.str() << *Result); 10746 return true; 10747 } 10748 10749 // FIXME: We use a somewhat different formatting for the in-range cases and 10750 // cases involving boolean values for historical reasons. We should pick a 10751 // consistent way of presenting these diagnostics. 10752 if (!InRange || Other->isKnownToHaveBooleanValue()) { 10753 10754 S.DiagRuntimeBehavior( 10755 E->getOperatorLoc(), E, 10756 S.PDiag(!InRange ? diag::warn_out_of_range_compare 10757 : diag::warn_tautological_bool_compare) 10758 << OS.str() << classifyConstantValue(Constant) << OtherT 10759 << OtherIsBooleanDespiteType << *Result 10760 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 10761 } else { 10762 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 10763 ? (HasEnumType(OriginalOther) 10764 ? diag::warn_unsigned_enum_always_true_comparison 10765 : diag::warn_unsigned_always_true_comparison) 10766 : diag::warn_tautological_constant_compare; 10767 10768 S.Diag(E->getOperatorLoc(), Diag) 10769 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 10770 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 10771 } 10772 10773 return true; 10774 } 10775 10776 /// Analyze the operands of the given comparison. Implements the 10777 /// fallback case from AnalyzeComparison. 10778 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 10779 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 10780 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 10781 } 10782 10783 /// Implements -Wsign-compare. 10784 /// 10785 /// \param E the binary operator to check for warnings 10786 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 10787 // The type the comparison is being performed in. 10788 QualType T = E->getLHS()->getType(); 10789 10790 // Only analyze comparison operators where both sides have been converted to 10791 // the same type. 10792 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 10793 return AnalyzeImpConvsInComparison(S, E); 10794 10795 // Don't analyze value-dependent comparisons directly. 10796 if (E->isValueDependent()) 10797 return AnalyzeImpConvsInComparison(S, E); 10798 10799 Expr *LHS = E->getLHS(); 10800 Expr *RHS = E->getRHS(); 10801 10802 if (T->isIntegralType(S.Context)) { 10803 llvm::APSInt RHSValue; 10804 llvm::APSInt LHSValue; 10805 10806 bool IsRHSIntegralLiteral = RHS->isIntegerConstantExpr(RHSValue, S.Context); 10807 bool IsLHSIntegralLiteral = LHS->isIntegerConstantExpr(LHSValue, S.Context); 10808 10809 // We don't care about expressions whose result is a constant. 10810 if (IsRHSIntegralLiteral && IsLHSIntegralLiteral) 10811 return AnalyzeImpConvsInComparison(S, E); 10812 10813 // We only care about expressions where just one side is literal 10814 if (IsRHSIntegralLiteral ^ IsLHSIntegralLiteral) { 10815 // Is the constant on the RHS or LHS? 10816 const bool RhsConstant = IsRHSIntegralLiteral; 10817 Expr *Const = RhsConstant ? RHS : LHS; 10818 Expr *Other = RhsConstant ? LHS : RHS; 10819 const llvm::APSInt &Value = RhsConstant ? RHSValue : LHSValue; 10820 10821 // Check whether an integer constant comparison results in a value 10822 // of 'true' or 'false'. 10823 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 10824 return AnalyzeImpConvsInComparison(S, E); 10825 } 10826 } 10827 10828 if (!T->hasUnsignedIntegerRepresentation()) { 10829 // We don't do anything special if this isn't an unsigned integral 10830 // comparison: we're only interested in integral comparisons, and 10831 // signed comparisons only happen in cases we don't care to warn about. 10832 return AnalyzeImpConvsInComparison(S, E); 10833 } 10834 10835 LHS = LHS->IgnoreParenImpCasts(); 10836 RHS = RHS->IgnoreParenImpCasts(); 10837 10838 if (!S.getLangOpts().CPlusPlus) { 10839 // Avoid warning about comparison of integers with different signs when 10840 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 10841 // the type of `E`. 10842 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 10843 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10844 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 10845 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 10846 } 10847 10848 // Check to see if one of the (unmodified) operands is of different 10849 // signedness. 10850 Expr *signedOperand, *unsignedOperand; 10851 if (LHS->getType()->hasSignedIntegerRepresentation()) { 10852 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 10853 "unsigned comparison between two signed integer expressions?"); 10854 signedOperand = LHS; 10855 unsignedOperand = RHS; 10856 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 10857 signedOperand = RHS; 10858 unsignedOperand = LHS; 10859 } else { 10860 return AnalyzeImpConvsInComparison(S, E); 10861 } 10862 10863 // Otherwise, calculate the effective range of the signed operand. 10864 IntRange signedRange = 10865 GetExprRange(S.Context, signedOperand, S.isConstantEvaluated()); 10866 10867 // Go ahead and analyze implicit conversions in the operands. Note 10868 // that we skip the implicit conversions on both sides. 10869 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 10870 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 10871 10872 // If the signed range is non-negative, -Wsign-compare won't fire. 10873 if (signedRange.NonNegative) 10874 return; 10875 10876 // For (in)equality comparisons, if the unsigned operand is a 10877 // constant which cannot collide with a overflowed signed operand, 10878 // then reinterpreting the signed operand as unsigned will not 10879 // change the result of the comparison. 10880 if (E->isEqualityOp()) { 10881 unsigned comparisonWidth = S.Context.getIntWidth(T); 10882 IntRange unsignedRange = 10883 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated()); 10884 10885 // We should never be unable to prove that the unsigned operand is 10886 // non-negative. 10887 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 10888 10889 if (unsignedRange.Width < comparisonWidth) 10890 return; 10891 } 10892 10893 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 10894 S.PDiag(diag::warn_mixed_sign_comparison) 10895 << LHS->getType() << RHS->getType() 10896 << LHS->getSourceRange() << RHS->getSourceRange()); 10897 } 10898 10899 /// Analyzes an attempt to assign the given value to a bitfield. 10900 /// 10901 /// Returns true if there was something fishy about the attempt. 10902 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 10903 SourceLocation InitLoc) { 10904 assert(Bitfield->isBitField()); 10905 if (Bitfield->isInvalidDecl()) 10906 return false; 10907 10908 // White-list bool bitfields. 10909 QualType BitfieldType = Bitfield->getType(); 10910 if (BitfieldType->isBooleanType()) 10911 return false; 10912 10913 if (BitfieldType->isEnumeralType()) { 10914 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 10915 // If the underlying enum type was not explicitly specified as an unsigned 10916 // type and the enum contain only positive values, MSVC++ will cause an 10917 // inconsistency by storing this as a signed type. 10918 if (S.getLangOpts().CPlusPlus11 && 10919 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 10920 BitfieldEnumDecl->getNumPositiveBits() > 0 && 10921 BitfieldEnumDecl->getNumNegativeBits() == 0) { 10922 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 10923 << BitfieldEnumDecl->getNameAsString(); 10924 } 10925 } 10926 10927 if (Bitfield->getType()->isBooleanType()) 10928 return false; 10929 10930 // Ignore value- or type-dependent expressions. 10931 if (Bitfield->getBitWidth()->isValueDependent() || 10932 Bitfield->getBitWidth()->isTypeDependent() || 10933 Init->isValueDependent() || 10934 Init->isTypeDependent()) 10935 return false; 10936 10937 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 10938 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 10939 10940 Expr::EvalResult Result; 10941 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 10942 Expr::SE_AllowSideEffects)) { 10943 // The RHS is not constant. If the RHS has an enum type, make sure the 10944 // bitfield is wide enough to hold all the values of the enum without 10945 // truncation. 10946 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 10947 EnumDecl *ED = EnumTy->getDecl(); 10948 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 10949 10950 // Enum types are implicitly signed on Windows, so check if there are any 10951 // negative enumerators to see if the enum was intended to be signed or 10952 // not. 10953 bool SignedEnum = ED->getNumNegativeBits() > 0; 10954 10955 // Check for surprising sign changes when assigning enum values to a 10956 // bitfield of different signedness. If the bitfield is signed and we 10957 // have exactly the right number of bits to store this unsigned enum, 10958 // suggest changing the enum to an unsigned type. This typically happens 10959 // on Windows where unfixed enums always use an underlying type of 'int'. 10960 unsigned DiagID = 0; 10961 if (SignedEnum && !SignedBitfield) { 10962 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 10963 } else if (SignedBitfield && !SignedEnum && 10964 ED->getNumPositiveBits() == FieldWidth) { 10965 DiagID = diag::warn_signed_bitfield_enum_conversion; 10966 } 10967 10968 if (DiagID) { 10969 S.Diag(InitLoc, DiagID) << Bitfield << ED; 10970 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 10971 SourceRange TypeRange = 10972 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 10973 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 10974 << SignedEnum << TypeRange; 10975 } 10976 10977 // Compute the required bitwidth. If the enum has negative values, we need 10978 // one more bit than the normal number of positive bits to represent the 10979 // sign bit. 10980 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 10981 ED->getNumNegativeBits()) 10982 : ED->getNumPositiveBits(); 10983 10984 // Check the bitwidth. 10985 if (BitsNeeded > FieldWidth) { 10986 Expr *WidthExpr = Bitfield->getBitWidth(); 10987 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 10988 << Bitfield << ED; 10989 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 10990 << BitsNeeded << ED << WidthExpr->getSourceRange(); 10991 } 10992 } 10993 10994 return false; 10995 } 10996 10997 llvm::APSInt Value = Result.Val.getInt(); 10998 10999 unsigned OriginalWidth = Value.getBitWidth(); 11000 11001 if (!Value.isSigned() || Value.isNegative()) 11002 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 11003 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 11004 OriginalWidth = Value.getMinSignedBits(); 11005 11006 if (OriginalWidth <= FieldWidth) 11007 return false; 11008 11009 // Compute the value which the bitfield will contain. 11010 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 11011 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 11012 11013 // Check whether the stored value is equal to the original value. 11014 TruncatedValue = TruncatedValue.extend(OriginalWidth); 11015 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 11016 return false; 11017 11018 // Special-case bitfields of width 1: booleans are naturally 0/1, and 11019 // therefore don't strictly fit into a signed bitfield of width 1. 11020 if (FieldWidth == 1 && Value == 1) 11021 return false; 11022 11023 std::string PrettyValue = Value.toString(10); 11024 std::string PrettyTrunc = TruncatedValue.toString(10); 11025 11026 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 11027 << PrettyValue << PrettyTrunc << OriginalInit->getType() 11028 << Init->getSourceRange(); 11029 11030 return true; 11031 } 11032 11033 /// Analyze the given simple or compound assignment for warning-worthy 11034 /// operations. 11035 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 11036 // Just recurse on the LHS. 11037 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11038 11039 // We want to recurse on the RHS as normal unless we're assigning to 11040 // a bitfield. 11041 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 11042 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 11043 E->getOperatorLoc())) { 11044 // Recurse, ignoring any implicit conversions on the RHS. 11045 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 11046 E->getOperatorLoc()); 11047 } 11048 } 11049 11050 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11051 11052 // Diagnose implicitly sequentially-consistent atomic assignment. 11053 if (E->getLHS()->getType()->isAtomicType()) 11054 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11055 } 11056 11057 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11058 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 11059 SourceLocation CContext, unsigned diag, 11060 bool pruneControlFlow = false) { 11061 if (pruneControlFlow) { 11062 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11063 S.PDiag(diag) 11064 << SourceType << T << E->getSourceRange() 11065 << SourceRange(CContext)); 11066 return; 11067 } 11068 S.Diag(E->getExprLoc(), diag) 11069 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 11070 } 11071 11072 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11073 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 11074 SourceLocation CContext, 11075 unsigned diag, bool pruneControlFlow = false) { 11076 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 11077 } 11078 11079 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 11080 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 11081 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 11082 } 11083 11084 static void adornObjCBoolConversionDiagWithTernaryFixit( 11085 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 11086 Expr *Ignored = SourceExpr->IgnoreImplicit(); 11087 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 11088 Ignored = OVE->getSourceExpr(); 11089 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 11090 isa<BinaryOperator>(Ignored) || 11091 isa<CXXOperatorCallExpr>(Ignored); 11092 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 11093 if (NeedsParens) 11094 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 11095 << FixItHint::CreateInsertion(EndLoc, ")"); 11096 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 11097 } 11098 11099 /// Diagnose an implicit cast from a floating point value to an integer value. 11100 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 11101 SourceLocation CContext) { 11102 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 11103 const bool PruneWarnings = S.inTemplateInstantiation(); 11104 11105 Expr *InnerE = E->IgnoreParenImpCasts(); 11106 // We also want to warn on, e.g., "int i = -1.234" 11107 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 11108 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 11109 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11110 11111 const bool IsLiteral = 11112 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11113 11114 llvm::APFloat Value(0.0); 11115 bool IsConstant = 11116 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11117 if (!IsConstant) { 11118 if (isObjCSignedCharBool(S, T)) { 11119 return adornObjCBoolConversionDiagWithTernaryFixit( 11120 S, E, 11121 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11122 << E->getType()); 11123 } 11124 11125 return DiagnoseImpCast(S, E, T, CContext, 11126 diag::warn_impcast_float_integer, PruneWarnings); 11127 } 11128 11129 bool isExact = false; 11130 11131 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11132 T->hasUnsignedIntegerRepresentation()); 11133 llvm::APFloat::opStatus Result = Value.convertToInteger( 11134 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11135 11136 // FIXME: Force the precision of the source value down so we don't print 11137 // digits which are usually useless (we don't really care here if we 11138 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11139 // would automatically print the shortest representation, but it's a bit 11140 // tricky to implement. 11141 SmallString<16> PrettySourceValue; 11142 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11143 precision = (precision * 59 + 195) / 196; 11144 Value.toString(PrettySourceValue, precision); 11145 11146 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11147 return adornObjCBoolConversionDiagWithTernaryFixit( 11148 S, E, 11149 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11150 << PrettySourceValue); 11151 } 11152 11153 if (Result == llvm::APFloat::opOK && isExact) { 11154 if (IsLiteral) return; 11155 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11156 PruneWarnings); 11157 } 11158 11159 // Conversion of a floating-point value to a non-bool integer where the 11160 // integral part cannot be represented by the integer type is undefined. 11161 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11162 return DiagnoseImpCast( 11163 S, E, T, CContext, 11164 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11165 : diag::warn_impcast_float_to_integer_out_of_range, 11166 PruneWarnings); 11167 11168 unsigned DiagID = 0; 11169 if (IsLiteral) { 11170 // Warn on floating point literal to integer. 11171 DiagID = diag::warn_impcast_literal_float_to_integer; 11172 } else if (IntegerValue == 0) { 11173 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11174 return DiagnoseImpCast(S, E, T, CContext, 11175 diag::warn_impcast_float_integer, PruneWarnings); 11176 } 11177 // Warn on non-zero to zero conversion. 11178 DiagID = diag::warn_impcast_float_to_integer_zero; 11179 } else { 11180 if (IntegerValue.isUnsigned()) { 11181 if (!IntegerValue.isMaxValue()) { 11182 return DiagnoseImpCast(S, E, T, CContext, 11183 diag::warn_impcast_float_integer, PruneWarnings); 11184 } 11185 } else { // IntegerValue.isSigned() 11186 if (!IntegerValue.isMaxSignedValue() && 11187 !IntegerValue.isMinSignedValue()) { 11188 return DiagnoseImpCast(S, E, T, CContext, 11189 diag::warn_impcast_float_integer, PruneWarnings); 11190 } 11191 } 11192 // Warn on evaluatable floating point expression to integer conversion. 11193 DiagID = diag::warn_impcast_float_to_integer; 11194 } 11195 11196 SmallString<16> PrettyTargetValue; 11197 if (IsBool) 11198 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11199 else 11200 IntegerValue.toString(PrettyTargetValue); 11201 11202 if (PruneWarnings) { 11203 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11204 S.PDiag(DiagID) 11205 << E->getType() << T.getUnqualifiedType() 11206 << PrettySourceValue << PrettyTargetValue 11207 << E->getSourceRange() << SourceRange(CContext)); 11208 } else { 11209 S.Diag(E->getExprLoc(), DiagID) 11210 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11211 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11212 } 11213 } 11214 11215 /// Analyze the given compound assignment for the possible losing of 11216 /// floating-point precision. 11217 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11218 assert(isa<CompoundAssignOperator>(E) && 11219 "Must be compound assignment operation"); 11220 // Recurse on the LHS and RHS in here 11221 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11222 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11223 11224 if (E->getLHS()->getType()->isAtomicType()) 11225 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11226 11227 // Now check the outermost expression 11228 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11229 const auto *RBT = cast<CompoundAssignOperator>(E) 11230 ->getComputationResultType() 11231 ->getAs<BuiltinType>(); 11232 11233 // The below checks assume source is floating point. 11234 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11235 11236 // If source is floating point but target is an integer. 11237 if (ResultBT->isInteger()) 11238 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11239 E->getExprLoc(), diag::warn_impcast_float_integer); 11240 11241 if (!ResultBT->isFloatingPoint()) 11242 return; 11243 11244 // If both source and target are floating points, warn about losing precision. 11245 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11246 QualType(ResultBT, 0), QualType(RBT, 0)); 11247 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11248 // warn about dropping FP rank. 11249 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11250 diag::warn_impcast_float_result_precision); 11251 } 11252 11253 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11254 IntRange Range) { 11255 if (!Range.Width) return "0"; 11256 11257 llvm::APSInt ValueInRange = Value; 11258 ValueInRange.setIsSigned(!Range.NonNegative); 11259 ValueInRange = ValueInRange.trunc(Range.Width); 11260 return ValueInRange.toString(10); 11261 } 11262 11263 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11264 if (!isa<ImplicitCastExpr>(Ex)) 11265 return false; 11266 11267 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11268 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11269 const Type *Source = 11270 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11271 if (Target->isDependentType()) 11272 return false; 11273 11274 const BuiltinType *FloatCandidateBT = 11275 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11276 const Type *BoolCandidateType = ToBool ? Target : Source; 11277 11278 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11279 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11280 } 11281 11282 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11283 SourceLocation CC) { 11284 unsigned NumArgs = TheCall->getNumArgs(); 11285 for (unsigned i = 0; i < NumArgs; ++i) { 11286 Expr *CurrA = TheCall->getArg(i); 11287 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11288 continue; 11289 11290 bool IsSwapped = ((i > 0) && 11291 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11292 IsSwapped |= ((i < (NumArgs - 1)) && 11293 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11294 if (IsSwapped) { 11295 // Warn on this floating-point to bool conversion. 11296 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11297 CurrA->getType(), CC, 11298 diag::warn_impcast_floating_point_to_bool); 11299 } 11300 } 11301 } 11302 11303 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11304 SourceLocation CC) { 11305 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11306 E->getExprLoc())) 11307 return; 11308 11309 // Don't warn on functions which have return type nullptr_t. 11310 if (isa<CallExpr>(E)) 11311 return; 11312 11313 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11314 const Expr::NullPointerConstantKind NullKind = 11315 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11316 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11317 return; 11318 11319 // Return if target type is a safe conversion. 11320 if (T->isAnyPointerType() || T->isBlockPointerType() || 11321 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11322 return; 11323 11324 SourceLocation Loc = E->getSourceRange().getBegin(); 11325 11326 // Venture through the macro stacks to get to the source of macro arguments. 11327 // The new location is a better location than the complete location that was 11328 // passed in. 11329 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11330 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11331 11332 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11333 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11334 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11335 Loc, S.SourceMgr, S.getLangOpts()); 11336 if (MacroName == "NULL") 11337 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11338 } 11339 11340 // Only warn if the null and context location are in the same macro expansion. 11341 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11342 return; 11343 11344 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11345 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11346 << FixItHint::CreateReplacement(Loc, 11347 S.getFixItZeroLiteralForType(T, Loc)); 11348 } 11349 11350 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11351 ObjCArrayLiteral *ArrayLiteral); 11352 11353 static void 11354 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11355 ObjCDictionaryLiteral *DictionaryLiteral); 11356 11357 /// Check a single element within a collection literal against the 11358 /// target element type. 11359 static void checkObjCCollectionLiteralElement(Sema &S, 11360 QualType TargetElementType, 11361 Expr *Element, 11362 unsigned ElementKind) { 11363 // Skip a bitcast to 'id' or qualified 'id'. 11364 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11365 if (ICE->getCastKind() == CK_BitCast && 11366 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11367 Element = ICE->getSubExpr(); 11368 } 11369 11370 QualType ElementType = Element->getType(); 11371 ExprResult ElementResult(Element); 11372 if (ElementType->getAs<ObjCObjectPointerType>() && 11373 S.CheckSingleAssignmentConstraints(TargetElementType, 11374 ElementResult, 11375 false, false) 11376 != Sema::Compatible) { 11377 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11378 << ElementType << ElementKind << TargetElementType 11379 << Element->getSourceRange(); 11380 } 11381 11382 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11383 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11384 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11385 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11386 } 11387 11388 /// Check an Objective-C array literal being converted to the given 11389 /// target type. 11390 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11391 ObjCArrayLiteral *ArrayLiteral) { 11392 if (!S.NSArrayDecl) 11393 return; 11394 11395 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11396 if (!TargetObjCPtr) 11397 return; 11398 11399 if (TargetObjCPtr->isUnspecialized() || 11400 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11401 != S.NSArrayDecl->getCanonicalDecl()) 11402 return; 11403 11404 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11405 if (TypeArgs.size() != 1) 11406 return; 11407 11408 QualType TargetElementType = TypeArgs[0]; 11409 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11410 checkObjCCollectionLiteralElement(S, TargetElementType, 11411 ArrayLiteral->getElement(I), 11412 0); 11413 } 11414 } 11415 11416 /// Check an Objective-C dictionary literal being converted to the given 11417 /// target type. 11418 static void 11419 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11420 ObjCDictionaryLiteral *DictionaryLiteral) { 11421 if (!S.NSDictionaryDecl) 11422 return; 11423 11424 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11425 if (!TargetObjCPtr) 11426 return; 11427 11428 if (TargetObjCPtr->isUnspecialized() || 11429 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11430 != S.NSDictionaryDecl->getCanonicalDecl()) 11431 return; 11432 11433 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11434 if (TypeArgs.size() != 2) 11435 return; 11436 11437 QualType TargetKeyType = TypeArgs[0]; 11438 QualType TargetObjectType = TypeArgs[1]; 11439 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11440 auto Element = DictionaryLiteral->getKeyValueElement(I); 11441 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11442 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11443 } 11444 } 11445 11446 // Helper function to filter out cases for constant width constant conversion. 11447 // Don't warn on char array initialization or for non-decimal values. 11448 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11449 SourceLocation CC) { 11450 // If initializing from a constant, and the constant starts with '0', 11451 // then it is a binary, octal, or hexadecimal. Allow these constants 11452 // to fill all the bits, even if there is a sign change. 11453 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11454 const char FirstLiteralCharacter = 11455 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11456 if (FirstLiteralCharacter == '0') 11457 return false; 11458 } 11459 11460 // If the CC location points to a '{', and the type is char, then assume 11461 // assume it is an array initialization. 11462 if (CC.isValid() && T->isCharType()) { 11463 const char FirstContextCharacter = 11464 S.getSourceManager().getCharacterData(CC)[0]; 11465 if (FirstContextCharacter == '{') 11466 return false; 11467 } 11468 11469 return true; 11470 } 11471 11472 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11473 const auto *IL = dyn_cast<IntegerLiteral>(E); 11474 if (!IL) { 11475 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11476 if (UO->getOpcode() == UO_Minus) 11477 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11478 } 11479 } 11480 11481 return IL; 11482 } 11483 11484 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11485 E = E->IgnoreParenImpCasts(); 11486 SourceLocation ExprLoc = E->getExprLoc(); 11487 11488 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11489 BinaryOperator::Opcode Opc = BO->getOpcode(); 11490 Expr::EvalResult Result; 11491 // Do not diagnose unsigned shifts. 11492 if (Opc == BO_Shl) { 11493 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11494 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11495 if (LHS && LHS->getValue() == 0) 11496 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11497 else if (!E->isValueDependent() && LHS && RHS && 11498 RHS->getValue().isNonNegative() && 11499 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11500 S.Diag(ExprLoc, diag::warn_left_shift_always) 11501 << (Result.Val.getInt() != 0); 11502 else if (E->getType()->isSignedIntegerType()) 11503 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11504 } 11505 } 11506 11507 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11508 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11509 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11510 if (!LHS || !RHS) 11511 return; 11512 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11513 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11514 // Do not diagnose common idioms. 11515 return; 11516 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11517 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11518 } 11519 } 11520 11521 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11522 SourceLocation CC, 11523 bool *ICContext = nullptr, 11524 bool IsListInit = false) { 11525 if (E->isTypeDependent() || E->isValueDependent()) return; 11526 11527 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11528 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11529 if (Source == Target) return; 11530 if (Target->isDependentType()) return; 11531 11532 // If the conversion context location is invalid don't complain. We also 11533 // don't want to emit a warning if the issue occurs from the expansion of 11534 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11535 // delay this check as long as possible. Once we detect we are in that 11536 // scenario, we just return. 11537 if (CC.isInvalid()) 11538 return; 11539 11540 if (Source->isAtomicType()) 11541 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 11542 11543 // Diagnose implicit casts to bool. 11544 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 11545 if (isa<StringLiteral>(E)) 11546 // Warn on string literal to bool. Checks for string literals in logical 11547 // and expressions, for instance, assert(0 && "error here"), are 11548 // prevented by a check in AnalyzeImplicitConversions(). 11549 return DiagnoseImpCast(S, E, T, CC, 11550 diag::warn_impcast_string_literal_to_bool); 11551 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 11552 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 11553 // This covers the literal expressions that evaluate to Objective-C 11554 // objects. 11555 return DiagnoseImpCast(S, E, T, CC, 11556 diag::warn_impcast_objective_c_literal_to_bool); 11557 } 11558 if (Source->isPointerType() || Source->canDecayToPointerType()) { 11559 // Warn on pointer to bool conversion that is always true. 11560 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 11561 SourceRange(CC)); 11562 } 11563 } 11564 11565 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 11566 // is a typedef for signed char (macOS), then that constant value has to be 1 11567 // or 0. 11568 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 11569 Expr::EvalResult Result; 11570 if (E->EvaluateAsInt(Result, S.getASTContext(), 11571 Expr::SE_AllowSideEffects)) { 11572 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 11573 adornObjCBoolConversionDiagWithTernaryFixit( 11574 S, E, 11575 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 11576 << Result.Val.getInt().toString(10)); 11577 } 11578 return; 11579 } 11580 } 11581 11582 // Check implicit casts from Objective-C collection literals to specialized 11583 // collection types, e.g., NSArray<NSString *> *. 11584 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 11585 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 11586 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 11587 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 11588 11589 // Strip vector types. 11590 if (isa<VectorType>(Source)) { 11591 if (!isa<VectorType>(Target)) { 11592 if (S.SourceMgr.isInSystemMacro(CC)) 11593 return; 11594 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 11595 } 11596 11597 // If the vector cast is cast between two vectors of the same size, it is 11598 // a bitcast, not a conversion. 11599 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 11600 return; 11601 11602 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 11603 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 11604 } 11605 if (auto VecTy = dyn_cast<VectorType>(Target)) 11606 Target = VecTy->getElementType().getTypePtr(); 11607 11608 // Strip complex types. 11609 if (isa<ComplexType>(Source)) { 11610 if (!isa<ComplexType>(Target)) { 11611 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 11612 return; 11613 11614 return DiagnoseImpCast(S, E, T, CC, 11615 S.getLangOpts().CPlusPlus 11616 ? diag::err_impcast_complex_scalar 11617 : diag::warn_impcast_complex_scalar); 11618 } 11619 11620 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 11621 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 11622 } 11623 11624 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 11625 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 11626 11627 // If the source is floating point... 11628 if (SourceBT && SourceBT->isFloatingPoint()) { 11629 // ...and the target is floating point... 11630 if (TargetBT && TargetBT->isFloatingPoint()) { 11631 // ...then warn if we're dropping FP rank. 11632 11633 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11634 QualType(SourceBT, 0), QualType(TargetBT, 0)); 11635 if (Order > 0) { 11636 // Don't warn about float constants that are precisely 11637 // representable in the target type. 11638 Expr::EvalResult result; 11639 if (E->EvaluateAsRValue(result, S.Context)) { 11640 // Value might be a float, a float vector, or a float complex. 11641 if (IsSameFloatAfterCast(result.Val, 11642 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 11643 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 11644 return; 11645 } 11646 11647 if (S.SourceMgr.isInSystemMacro(CC)) 11648 return; 11649 11650 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 11651 } 11652 // ... or possibly if we're increasing rank, too 11653 else if (Order < 0) { 11654 if (S.SourceMgr.isInSystemMacro(CC)) 11655 return; 11656 11657 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 11658 } 11659 return; 11660 } 11661 11662 // If the target is integral, always warn. 11663 if (TargetBT && TargetBT->isInteger()) { 11664 if (S.SourceMgr.isInSystemMacro(CC)) 11665 return; 11666 11667 DiagnoseFloatingImpCast(S, E, T, CC); 11668 } 11669 11670 // Detect the case where a call result is converted from floating-point to 11671 // to bool, and the final argument to the call is converted from bool, to 11672 // discover this typo: 11673 // 11674 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 11675 // 11676 // FIXME: This is an incredibly special case; is there some more general 11677 // way to detect this class of misplaced-parentheses bug? 11678 if (Target->isBooleanType() && isa<CallExpr>(E)) { 11679 // Check last argument of function call to see if it is an 11680 // implicit cast from a type matching the type the result 11681 // is being cast to. 11682 CallExpr *CEx = cast<CallExpr>(E); 11683 if (unsigned NumArgs = CEx->getNumArgs()) { 11684 Expr *LastA = CEx->getArg(NumArgs - 1); 11685 Expr *InnerE = LastA->IgnoreParenImpCasts(); 11686 if (isa<ImplicitCastExpr>(LastA) && 11687 InnerE->getType()->isBooleanType()) { 11688 // Warn on this floating-point to bool conversion 11689 DiagnoseImpCast(S, E, T, CC, 11690 diag::warn_impcast_floating_point_to_bool); 11691 } 11692 } 11693 } 11694 return; 11695 } 11696 11697 // Valid casts involving fixed point types should be accounted for here. 11698 if (Source->isFixedPointType()) { 11699 if (Target->isUnsaturatedFixedPointType()) { 11700 Expr::EvalResult Result; 11701 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 11702 S.isConstantEvaluated())) { 11703 APFixedPoint Value = Result.Val.getFixedPoint(); 11704 APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 11705 APFixedPoint MinVal = S.Context.getFixedPointMin(T); 11706 if (Value > MaxVal || Value < MinVal) { 11707 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11708 S.PDiag(diag::warn_impcast_fixed_point_range) 11709 << Value.toString() << T 11710 << E->getSourceRange() 11711 << clang::SourceRange(CC)); 11712 return; 11713 } 11714 } 11715 } else if (Target->isIntegerType()) { 11716 Expr::EvalResult Result; 11717 if (!S.isConstantEvaluated() && 11718 E->EvaluateAsFixedPoint(Result, S.Context, 11719 Expr::SE_AllowSideEffects)) { 11720 APFixedPoint FXResult = Result.Val.getFixedPoint(); 11721 11722 bool Overflowed; 11723 llvm::APSInt IntResult = FXResult.convertToInt( 11724 S.Context.getIntWidth(T), 11725 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 11726 11727 if (Overflowed) { 11728 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11729 S.PDiag(diag::warn_impcast_fixed_point_range) 11730 << FXResult.toString() << T 11731 << E->getSourceRange() 11732 << clang::SourceRange(CC)); 11733 return; 11734 } 11735 } 11736 } 11737 } else if (Target->isUnsaturatedFixedPointType()) { 11738 if (Source->isIntegerType()) { 11739 Expr::EvalResult Result; 11740 if (!S.isConstantEvaluated() && 11741 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 11742 llvm::APSInt Value = Result.Val.getInt(); 11743 11744 bool Overflowed; 11745 APFixedPoint IntResult = APFixedPoint::getFromIntValue( 11746 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 11747 11748 if (Overflowed) { 11749 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11750 S.PDiag(diag::warn_impcast_fixed_point_range) 11751 << Value.toString(/*Radix=*/10) << T 11752 << E->getSourceRange() 11753 << clang::SourceRange(CC)); 11754 return; 11755 } 11756 } 11757 } 11758 } 11759 11760 // If we are casting an integer type to a floating point type without 11761 // initialization-list syntax, we might lose accuracy if the floating 11762 // point type has a narrower significand than the integer type. 11763 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 11764 TargetBT->isFloatingType() && !IsListInit) { 11765 // Determine the number of precision bits in the source integer type. 11766 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11767 unsigned int SourcePrecision = SourceRange.Width; 11768 11769 // Determine the number of precision bits in the 11770 // target floating point type. 11771 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 11772 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11773 11774 if (SourcePrecision > 0 && TargetPrecision > 0 && 11775 SourcePrecision > TargetPrecision) { 11776 11777 llvm::APSInt SourceInt; 11778 if (E->isIntegerConstantExpr(SourceInt, S.Context)) { 11779 // If the source integer is a constant, convert it to the target 11780 // floating point type. Issue a warning if the value changes 11781 // during the whole conversion. 11782 llvm::APFloat TargetFloatValue( 11783 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 11784 llvm::APFloat::opStatus ConversionStatus = 11785 TargetFloatValue.convertFromAPInt( 11786 SourceInt, SourceBT->isSignedInteger(), 11787 llvm::APFloat::rmNearestTiesToEven); 11788 11789 if (ConversionStatus != llvm::APFloat::opOK) { 11790 std::string PrettySourceValue = SourceInt.toString(10); 11791 SmallString<32> PrettyTargetValue; 11792 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 11793 11794 S.DiagRuntimeBehavior( 11795 E->getExprLoc(), E, 11796 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 11797 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11798 << E->getSourceRange() << clang::SourceRange(CC)); 11799 } 11800 } else { 11801 // Otherwise, the implicit conversion may lose precision. 11802 DiagnoseImpCast(S, E, T, CC, 11803 diag::warn_impcast_integer_float_precision); 11804 } 11805 } 11806 } 11807 11808 DiagnoseNullConversion(S, E, T, CC); 11809 11810 S.DiscardMisalignedMemberAddress(Target, E); 11811 11812 if (Target->isBooleanType()) 11813 DiagnoseIntInBoolContext(S, E); 11814 11815 if (!Source->isIntegerType() || !Target->isIntegerType()) 11816 return; 11817 11818 // TODO: remove this early return once the false positives for constant->bool 11819 // in templates, macros, etc, are reduced or removed. 11820 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 11821 return; 11822 11823 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 11824 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 11825 return adornObjCBoolConversionDiagWithTernaryFixit( 11826 S, E, 11827 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 11828 << E->getType()); 11829 } 11830 11831 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated()); 11832 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 11833 11834 if (SourceRange.Width > TargetRange.Width) { 11835 // If the source is a constant, use a default-on diagnostic. 11836 // TODO: this should happen for bitfield stores, too. 11837 Expr::EvalResult Result; 11838 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 11839 S.isConstantEvaluated())) { 11840 llvm::APSInt Value(32); 11841 Value = Result.Val.getInt(); 11842 11843 if (S.SourceMgr.isInSystemMacro(CC)) 11844 return; 11845 11846 std::string PrettySourceValue = Value.toString(10); 11847 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11848 11849 S.DiagRuntimeBehavior( 11850 E->getExprLoc(), E, 11851 S.PDiag(diag::warn_impcast_integer_precision_constant) 11852 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11853 << E->getSourceRange() << clang::SourceRange(CC)); 11854 return; 11855 } 11856 11857 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 11858 if (S.SourceMgr.isInSystemMacro(CC)) 11859 return; 11860 11861 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 11862 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 11863 /* pruneControlFlow */ true); 11864 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 11865 } 11866 11867 if (TargetRange.Width > SourceRange.Width) { 11868 if (auto *UO = dyn_cast<UnaryOperator>(E)) 11869 if (UO->getOpcode() == UO_Minus) 11870 if (Source->isUnsignedIntegerType()) { 11871 if (Target->isUnsignedIntegerType()) 11872 return DiagnoseImpCast(S, E, T, CC, 11873 diag::warn_impcast_high_order_zero_bits); 11874 if (Target->isSignedIntegerType()) 11875 return DiagnoseImpCast(S, E, T, CC, 11876 diag::warn_impcast_nonnegative_result); 11877 } 11878 } 11879 11880 if (TargetRange.Width == SourceRange.Width && !TargetRange.NonNegative && 11881 SourceRange.NonNegative && Source->isSignedIntegerType()) { 11882 // Warn when doing a signed to signed conversion, warn if the positive 11883 // source value is exactly the width of the target type, which will 11884 // cause a negative value to be stored. 11885 11886 Expr::EvalResult Result; 11887 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 11888 !S.SourceMgr.isInSystemMacro(CC)) { 11889 llvm::APSInt Value = Result.Val.getInt(); 11890 if (isSameWidthConstantConversion(S, E, T, CC)) { 11891 std::string PrettySourceValue = Value.toString(10); 11892 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 11893 11894 S.DiagRuntimeBehavior( 11895 E->getExprLoc(), E, 11896 S.PDiag(diag::warn_impcast_integer_precision_constant) 11897 << PrettySourceValue << PrettyTargetValue << E->getType() << T 11898 << E->getSourceRange() << clang::SourceRange(CC)); 11899 return; 11900 } 11901 } 11902 11903 // Fall through for non-constants to give a sign conversion warning. 11904 } 11905 11906 if ((TargetRange.NonNegative && !SourceRange.NonNegative) || 11907 (!TargetRange.NonNegative && SourceRange.NonNegative && 11908 SourceRange.Width == TargetRange.Width)) { 11909 if (S.SourceMgr.isInSystemMacro(CC)) 11910 return; 11911 11912 unsigned DiagID = diag::warn_impcast_integer_sign; 11913 11914 // Traditionally, gcc has warned about this under -Wsign-compare. 11915 // We also want to warn about it in -Wconversion. 11916 // So if -Wconversion is off, use a completely identical diagnostic 11917 // in the sign-compare group. 11918 // The conditional-checking code will 11919 if (ICContext) { 11920 DiagID = diag::warn_impcast_integer_sign_conditional; 11921 *ICContext = true; 11922 } 11923 11924 return DiagnoseImpCast(S, E, T, CC, DiagID); 11925 } 11926 11927 // Diagnose conversions between different enumeration types. 11928 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 11929 // type, to give us better diagnostics. 11930 QualType SourceType = E->getType(); 11931 if (!S.getLangOpts().CPlusPlus) { 11932 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 11933 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 11934 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 11935 SourceType = S.Context.getTypeDeclType(Enum); 11936 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 11937 } 11938 } 11939 11940 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 11941 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 11942 if (SourceEnum->getDecl()->hasNameForLinkage() && 11943 TargetEnum->getDecl()->hasNameForLinkage() && 11944 SourceEnum != TargetEnum) { 11945 if (S.SourceMgr.isInSystemMacro(CC)) 11946 return; 11947 11948 return DiagnoseImpCast(S, E, SourceType, T, CC, 11949 diag::warn_impcast_different_enum_types); 11950 } 11951 } 11952 11953 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 11954 SourceLocation CC, QualType T); 11955 11956 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 11957 SourceLocation CC, bool &ICContext) { 11958 E = E->IgnoreParenImpCasts(); 11959 11960 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 11961 return CheckConditionalOperator(S, CO, CC, T); 11962 11963 AnalyzeImplicitConversions(S, E, CC); 11964 if (E->getType() != T) 11965 return CheckImplicitConversion(S, E, T, CC, &ICContext); 11966 } 11967 11968 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 11969 SourceLocation CC, QualType T) { 11970 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 11971 11972 Expr *TrueExpr = E->getTrueExpr(); 11973 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 11974 TrueExpr = BCO->getCommon(); 11975 11976 bool Suspicious = false; 11977 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 11978 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 11979 11980 if (T->isBooleanType()) 11981 DiagnoseIntInBoolContext(S, E); 11982 11983 // If -Wconversion would have warned about either of the candidates 11984 // for a signedness conversion to the context type... 11985 if (!Suspicious) return; 11986 11987 // ...but it's currently ignored... 11988 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 11989 return; 11990 11991 // ...then check whether it would have warned about either of the 11992 // candidates for a signedness conversion to the condition type. 11993 if (E->getType() == T) return; 11994 11995 Suspicious = false; 11996 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 11997 E->getType(), CC, &Suspicious); 11998 if (!Suspicious) 11999 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 12000 E->getType(), CC, &Suspicious); 12001 } 12002 12003 /// Check conversion of given expression to boolean. 12004 /// Input argument E is a logical expression. 12005 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 12006 if (S.getLangOpts().Bool) 12007 return; 12008 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 12009 return; 12010 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 12011 } 12012 12013 namespace { 12014 struct AnalyzeImplicitConversionsWorkItem { 12015 Expr *E; 12016 SourceLocation CC; 12017 bool IsListInit; 12018 }; 12019 } 12020 12021 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 12022 /// that should be visited are added to WorkList. 12023 static void AnalyzeImplicitConversions( 12024 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 12025 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 12026 Expr *OrigE = Item.E; 12027 SourceLocation CC = Item.CC; 12028 12029 QualType T = OrigE->getType(); 12030 Expr *E = OrigE->IgnoreParenImpCasts(); 12031 12032 // Propagate whether we are in a C++ list initialization expression. 12033 // If so, we do not issue warnings for implicit int-float conversion 12034 // precision loss, because C++11 narrowing already handles it. 12035 bool IsListInit = Item.IsListInit || 12036 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 12037 12038 if (E->isTypeDependent() || E->isValueDependent()) 12039 return; 12040 12041 Expr *SourceExpr = E; 12042 // Examine, but don't traverse into the source expression of an 12043 // OpaqueValueExpr, since it may have multiple parents and we don't want to 12044 // emit duplicate diagnostics. Its fine to examine the form or attempt to 12045 // evaluate it in the context of checking the specific conversion to T though. 12046 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 12047 if (auto *Src = OVE->getSourceExpr()) 12048 SourceExpr = Src; 12049 12050 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 12051 if (UO->getOpcode() == UO_Not && 12052 UO->getSubExpr()->isKnownToHaveBooleanValue()) 12053 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 12054 << OrigE->getSourceRange() << T->isBooleanType() 12055 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 12056 12057 // For conditional operators, we analyze the arguments as if they 12058 // were being fed directly into the output. 12059 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 12060 CheckConditionalOperator(S, CO, CC, T); 12061 return; 12062 } 12063 12064 // Check implicit argument conversions for function calls. 12065 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 12066 CheckImplicitArgumentConversions(S, Call, CC); 12067 12068 // Go ahead and check any implicit conversions we might have skipped. 12069 // The non-canonical typecheck is just an optimization; 12070 // CheckImplicitConversion will filter out dead implicit conversions. 12071 if (SourceExpr->getType() != T) 12072 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 12073 12074 // Now continue drilling into this expression. 12075 12076 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 12077 // The bound subexpressions in a PseudoObjectExpr are not reachable 12078 // as transitive children. 12079 // FIXME: Use a more uniform representation for this. 12080 for (auto *SE : POE->semantics()) 12081 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 12082 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 12083 } 12084 12085 // Skip past explicit casts. 12086 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 12087 E = CE->getSubExpr()->IgnoreParenImpCasts(); 12088 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 12089 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12090 WorkList.push_back({E, CC, IsListInit}); 12091 return; 12092 } 12093 12094 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12095 // Do a somewhat different check with comparison operators. 12096 if (BO->isComparisonOp()) 12097 return AnalyzeComparison(S, BO); 12098 12099 // And with simple assignments. 12100 if (BO->getOpcode() == BO_Assign) 12101 return AnalyzeAssignment(S, BO); 12102 // And with compound assignments. 12103 if (BO->isAssignmentOp()) 12104 return AnalyzeCompoundAssignment(S, BO); 12105 } 12106 12107 // These break the otherwise-useful invariant below. Fortunately, 12108 // we don't really need to recurse into them, because any internal 12109 // expressions should have been analyzed already when they were 12110 // built into statements. 12111 if (isa<StmtExpr>(E)) return; 12112 12113 // Don't descend into unevaluated contexts. 12114 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12115 12116 // Now just recurse over the expression's children. 12117 CC = E->getExprLoc(); 12118 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12119 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12120 for (Stmt *SubStmt : E->children()) { 12121 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12122 if (!ChildExpr) 12123 continue; 12124 12125 if (IsLogicalAndOperator && 12126 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12127 // Ignore checking string literals that are in logical and operators. 12128 // This is a common pattern for asserts. 12129 continue; 12130 WorkList.push_back({ChildExpr, CC, IsListInit}); 12131 } 12132 12133 if (BO && BO->isLogicalOp()) { 12134 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12135 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12136 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12137 12138 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12139 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12140 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12141 } 12142 12143 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12144 if (U->getOpcode() == UO_LNot) { 12145 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12146 } else if (U->getOpcode() != UO_AddrOf) { 12147 if (U->getSubExpr()->getType()->isAtomicType()) 12148 S.Diag(U->getSubExpr()->getBeginLoc(), 12149 diag::warn_atomic_implicit_seq_cst); 12150 } 12151 } 12152 } 12153 12154 /// AnalyzeImplicitConversions - Find and report any interesting 12155 /// implicit conversions in the given expression. There are a couple 12156 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 12157 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 12158 bool IsListInit/*= false*/) { 12159 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 12160 WorkList.push_back({OrigE, CC, IsListInit}); 12161 while (!WorkList.empty()) 12162 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 12163 } 12164 12165 /// Diagnose integer type and any valid implicit conversion to it. 12166 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12167 // Taking into account implicit conversions, 12168 // allow any integer. 12169 if (!E->getType()->isIntegerType()) { 12170 S.Diag(E->getBeginLoc(), 12171 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12172 return true; 12173 } 12174 // Potentially emit standard warnings for implicit conversions if enabled 12175 // using -Wconversion. 12176 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12177 return false; 12178 } 12179 12180 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12181 // Returns true when emitting a warning about taking the address of a reference. 12182 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12183 const PartialDiagnostic &PD) { 12184 E = E->IgnoreParenImpCasts(); 12185 12186 const FunctionDecl *FD = nullptr; 12187 12188 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12189 if (!DRE->getDecl()->getType()->isReferenceType()) 12190 return false; 12191 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12192 if (!M->getMemberDecl()->getType()->isReferenceType()) 12193 return false; 12194 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12195 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12196 return false; 12197 FD = Call->getDirectCallee(); 12198 } else { 12199 return false; 12200 } 12201 12202 SemaRef.Diag(E->getExprLoc(), PD); 12203 12204 // If possible, point to location of function. 12205 if (FD) { 12206 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12207 } 12208 12209 return true; 12210 } 12211 12212 // Returns true if the SourceLocation is expanded from any macro body. 12213 // Returns false if the SourceLocation is invalid, is from not in a macro 12214 // expansion, or is from expanded from a top-level macro argument. 12215 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12216 if (Loc.isInvalid()) 12217 return false; 12218 12219 while (Loc.isMacroID()) { 12220 if (SM.isMacroBodyExpansion(Loc)) 12221 return true; 12222 Loc = SM.getImmediateMacroCallerLoc(Loc); 12223 } 12224 12225 return false; 12226 } 12227 12228 /// Diagnose pointers that are always non-null. 12229 /// \param E the expression containing the pointer 12230 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12231 /// compared to a null pointer 12232 /// \param IsEqual True when the comparison is equal to a null pointer 12233 /// \param Range Extra SourceRange to highlight in the diagnostic 12234 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12235 Expr::NullPointerConstantKind NullKind, 12236 bool IsEqual, SourceRange Range) { 12237 if (!E) 12238 return; 12239 12240 // Don't warn inside macros. 12241 if (E->getExprLoc().isMacroID()) { 12242 const SourceManager &SM = getSourceManager(); 12243 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12244 IsInAnyMacroBody(SM, Range.getBegin())) 12245 return; 12246 } 12247 E = E->IgnoreImpCasts(); 12248 12249 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12250 12251 if (isa<CXXThisExpr>(E)) { 12252 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12253 : diag::warn_this_bool_conversion; 12254 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12255 return; 12256 } 12257 12258 bool IsAddressOf = false; 12259 12260 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12261 if (UO->getOpcode() != UO_AddrOf) 12262 return; 12263 IsAddressOf = true; 12264 E = UO->getSubExpr(); 12265 } 12266 12267 if (IsAddressOf) { 12268 unsigned DiagID = IsCompare 12269 ? diag::warn_address_of_reference_null_compare 12270 : diag::warn_address_of_reference_bool_conversion; 12271 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12272 << IsEqual; 12273 if (CheckForReference(*this, E, PD)) { 12274 return; 12275 } 12276 } 12277 12278 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12279 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12280 std::string Str; 12281 llvm::raw_string_ostream S(Str); 12282 E->printPretty(S, nullptr, getPrintingPolicy()); 12283 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12284 : diag::warn_cast_nonnull_to_bool; 12285 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12286 << E->getSourceRange() << Range << IsEqual; 12287 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12288 }; 12289 12290 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12291 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12292 if (auto *Callee = Call->getDirectCallee()) { 12293 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12294 ComplainAboutNonnullParamOrCall(A); 12295 return; 12296 } 12297 } 12298 } 12299 12300 // Expect to find a single Decl. Skip anything more complicated. 12301 ValueDecl *D = nullptr; 12302 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12303 D = R->getDecl(); 12304 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12305 D = M->getMemberDecl(); 12306 } 12307 12308 // Weak Decls can be null. 12309 if (!D || D->isWeak()) 12310 return; 12311 12312 // Check for parameter decl with nonnull attribute 12313 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12314 if (getCurFunction() && 12315 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12316 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12317 ComplainAboutNonnullParamOrCall(A); 12318 return; 12319 } 12320 12321 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12322 // Skip function template not specialized yet. 12323 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12324 return; 12325 auto ParamIter = llvm::find(FD->parameters(), PV); 12326 assert(ParamIter != FD->param_end()); 12327 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12328 12329 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12330 if (!NonNull->args_size()) { 12331 ComplainAboutNonnullParamOrCall(NonNull); 12332 return; 12333 } 12334 12335 for (const ParamIdx &ArgNo : NonNull->args()) { 12336 if (ArgNo.getASTIndex() == ParamNo) { 12337 ComplainAboutNonnullParamOrCall(NonNull); 12338 return; 12339 } 12340 } 12341 } 12342 } 12343 } 12344 } 12345 12346 QualType T = D->getType(); 12347 const bool IsArray = T->isArrayType(); 12348 const bool IsFunction = T->isFunctionType(); 12349 12350 // Address of function is used to silence the function warning. 12351 if (IsAddressOf && IsFunction) { 12352 return; 12353 } 12354 12355 // Found nothing. 12356 if (!IsAddressOf && !IsFunction && !IsArray) 12357 return; 12358 12359 // Pretty print the expression for the diagnostic. 12360 std::string Str; 12361 llvm::raw_string_ostream S(Str); 12362 E->printPretty(S, nullptr, getPrintingPolicy()); 12363 12364 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12365 : diag::warn_impcast_pointer_to_bool; 12366 enum { 12367 AddressOf, 12368 FunctionPointer, 12369 ArrayPointer 12370 } DiagType; 12371 if (IsAddressOf) 12372 DiagType = AddressOf; 12373 else if (IsFunction) 12374 DiagType = FunctionPointer; 12375 else if (IsArray) 12376 DiagType = ArrayPointer; 12377 else 12378 llvm_unreachable("Could not determine diagnostic."); 12379 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12380 << Range << IsEqual; 12381 12382 if (!IsFunction) 12383 return; 12384 12385 // Suggest '&' to silence the function warning. 12386 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12387 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12388 12389 // Check to see if '()' fixit should be emitted. 12390 QualType ReturnType; 12391 UnresolvedSet<4> NonTemplateOverloads; 12392 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12393 if (ReturnType.isNull()) 12394 return; 12395 12396 if (IsCompare) { 12397 // There are two cases here. If there is null constant, the only suggest 12398 // for a pointer return type. If the null is 0, then suggest if the return 12399 // type is a pointer or an integer type. 12400 if (!ReturnType->isPointerType()) { 12401 if (NullKind == Expr::NPCK_ZeroExpression || 12402 NullKind == Expr::NPCK_ZeroLiteral) { 12403 if (!ReturnType->isIntegerType()) 12404 return; 12405 } else { 12406 return; 12407 } 12408 } 12409 } else { // !IsCompare 12410 // For function to bool, only suggest if the function pointer has bool 12411 // return type. 12412 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12413 return; 12414 } 12415 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12416 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12417 } 12418 12419 /// Diagnoses "dangerous" implicit conversions within the given 12420 /// expression (which is a full expression). Implements -Wconversion 12421 /// and -Wsign-compare. 12422 /// 12423 /// \param CC the "context" location of the implicit conversion, i.e. 12424 /// the most location of the syntactic entity requiring the implicit 12425 /// conversion 12426 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12427 // Don't diagnose in unevaluated contexts. 12428 if (isUnevaluatedContext()) 12429 return; 12430 12431 // Don't diagnose for value- or type-dependent expressions. 12432 if (E->isTypeDependent() || E->isValueDependent()) 12433 return; 12434 12435 // Check for array bounds violations in cases where the check isn't triggered 12436 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12437 // ArraySubscriptExpr is on the RHS of a variable initialization. 12438 CheckArrayAccess(E); 12439 12440 // This is not the right CC for (e.g.) a variable initialization. 12441 AnalyzeImplicitConversions(*this, E, CC); 12442 } 12443 12444 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12445 /// Input argument E is a logical expression. 12446 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12447 ::CheckBoolLikeConversion(*this, E, CC); 12448 } 12449 12450 /// Diagnose when expression is an integer constant expression and its evaluation 12451 /// results in integer overflow 12452 void Sema::CheckForIntOverflow (Expr *E) { 12453 // Use a work list to deal with nested struct initializers. 12454 SmallVector<Expr *, 2> Exprs(1, E); 12455 12456 do { 12457 Expr *OriginalE = Exprs.pop_back_val(); 12458 Expr *E = OriginalE->IgnoreParenCasts(); 12459 12460 if (isa<BinaryOperator>(E)) { 12461 E->EvaluateForOverflow(Context); 12462 continue; 12463 } 12464 12465 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12466 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12467 else if (isa<ObjCBoxedExpr>(OriginalE)) 12468 E->EvaluateForOverflow(Context); 12469 else if (auto Call = dyn_cast<CallExpr>(E)) 12470 Exprs.append(Call->arg_begin(), Call->arg_end()); 12471 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12472 Exprs.append(Message->arg_begin(), Message->arg_end()); 12473 } while (!Exprs.empty()); 12474 } 12475 12476 namespace { 12477 12478 /// Visitor for expressions which looks for unsequenced operations on the 12479 /// same object. 12480 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 12481 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 12482 12483 /// A tree of sequenced regions within an expression. Two regions are 12484 /// unsequenced if one is an ancestor or a descendent of the other. When we 12485 /// finish processing an expression with sequencing, such as a comma 12486 /// expression, we fold its tree nodes into its parent, since they are 12487 /// unsequenced with respect to nodes we will visit later. 12488 class SequenceTree { 12489 struct Value { 12490 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12491 unsigned Parent : 31; 12492 unsigned Merged : 1; 12493 }; 12494 SmallVector<Value, 8> Values; 12495 12496 public: 12497 /// A region within an expression which may be sequenced with respect 12498 /// to some other region. 12499 class Seq { 12500 friend class SequenceTree; 12501 12502 unsigned Index; 12503 12504 explicit Seq(unsigned N) : Index(N) {} 12505 12506 public: 12507 Seq() : Index(0) {} 12508 }; 12509 12510 SequenceTree() { Values.push_back(Value(0)); } 12511 Seq root() const { return Seq(0); } 12512 12513 /// Create a new sequence of operations, which is an unsequenced 12514 /// subset of \p Parent. This sequence of operations is sequenced with 12515 /// respect to other children of \p Parent. 12516 Seq allocate(Seq Parent) { 12517 Values.push_back(Value(Parent.Index)); 12518 return Seq(Values.size() - 1); 12519 } 12520 12521 /// Merge a sequence of operations into its parent. 12522 void merge(Seq S) { 12523 Values[S.Index].Merged = true; 12524 } 12525 12526 /// Determine whether two operations are unsequenced. This operation 12527 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12528 /// should have been merged into its parent as appropriate. 12529 bool isUnsequenced(Seq Cur, Seq Old) { 12530 unsigned C = representative(Cur.Index); 12531 unsigned Target = representative(Old.Index); 12532 while (C >= Target) { 12533 if (C == Target) 12534 return true; 12535 C = Values[C].Parent; 12536 } 12537 return false; 12538 } 12539 12540 private: 12541 /// Pick a representative for a sequence. 12542 unsigned representative(unsigned K) { 12543 if (Values[K].Merged) 12544 // Perform path compression as we go. 12545 return Values[K].Parent = representative(Values[K].Parent); 12546 return K; 12547 } 12548 }; 12549 12550 /// An object for which we can track unsequenced uses. 12551 using Object = const NamedDecl *; 12552 12553 /// Different flavors of object usage which we track. We only track the 12554 /// least-sequenced usage of each kind. 12555 enum UsageKind { 12556 /// A read of an object. Multiple unsequenced reads are OK. 12557 UK_Use, 12558 12559 /// A modification of an object which is sequenced before the value 12560 /// computation of the expression, such as ++n in C++. 12561 UK_ModAsValue, 12562 12563 /// A modification of an object which is not sequenced before the value 12564 /// computation of the expression, such as n++. 12565 UK_ModAsSideEffect, 12566 12567 UK_Count = UK_ModAsSideEffect + 1 12568 }; 12569 12570 /// Bundle together a sequencing region and the expression corresponding 12571 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 12572 struct Usage { 12573 const Expr *UsageExpr; 12574 SequenceTree::Seq Seq; 12575 12576 Usage() : UsageExpr(nullptr), Seq() {} 12577 }; 12578 12579 struct UsageInfo { 12580 Usage Uses[UK_Count]; 12581 12582 /// Have we issued a diagnostic for this object already? 12583 bool Diagnosed; 12584 12585 UsageInfo() : Uses(), Diagnosed(false) {} 12586 }; 12587 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 12588 12589 Sema &SemaRef; 12590 12591 /// Sequenced regions within the expression. 12592 SequenceTree Tree; 12593 12594 /// Declaration modifications and references which we have seen. 12595 UsageInfoMap UsageMap; 12596 12597 /// The region we are currently within. 12598 SequenceTree::Seq Region; 12599 12600 /// Filled in with declarations which were modified as a side-effect 12601 /// (that is, post-increment operations). 12602 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 12603 12604 /// Expressions to check later. We defer checking these to reduce 12605 /// stack usage. 12606 SmallVectorImpl<const Expr *> &WorkList; 12607 12608 /// RAII object wrapping the visitation of a sequenced subexpression of an 12609 /// expression. At the end of this process, the side-effects of the evaluation 12610 /// become sequenced with respect to the value computation of the result, so 12611 /// we downgrade any UK_ModAsSideEffect within the evaluation to 12612 /// UK_ModAsValue. 12613 struct SequencedSubexpression { 12614 SequencedSubexpression(SequenceChecker &Self) 12615 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 12616 Self.ModAsSideEffect = &ModAsSideEffect; 12617 } 12618 12619 ~SequencedSubexpression() { 12620 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 12621 // Add a new usage with usage kind UK_ModAsValue, and then restore 12622 // the previous usage with UK_ModAsSideEffect (thus clearing it if 12623 // the previous one was empty). 12624 UsageInfo &UI = Self.UsageMap[M.first]; 12625 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 12626 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 12627 SideEffectUsage = M.second; 12628 } 12629 Self.ModAsSideEffect = OldModAsSideEffect; 12630 } 12631 12632 SequenceChecker &Self; 12633 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 12634 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 12635 }; 12636 12637 /// RAII object wrapping the visitation of a subexpression which we might 12638 /// choose to evaluate as a constant. If any subexpression is evaluated and 12639 /// found to be non-constant, this allows us to suppress the evaluation of 12640 /// the outer expression. 12641 class EvaluationTracker { 12642 public: 12643 EvaluationTracker(SequenceChecker &Self) 12644 : Self(Self), Prev(Self.EvalTracker) { 12645 Self.EvalTracker = this; 12646 } 12647 12648 ~EvaluationTracker() { 12649 Self.EvalTracker = Prev; 12650 if (Prev) 12651 Prev->EvalOK &= EvalOK; 12652 } 12653 12654 bool evaluate(const Expr *E, bool &Result) { 12655 if (!EvalOK || E->isValueDependent()) 12656 return false; 12657 EvalOK = E->EvaluateAsBooleanCondition( 12658 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 12659 return EvalOK; 12660 } 12661 12662 private: 12663 SequenceChecker &Self; 12664 EvaluationTracker *Prev; 12665 bool EvalOK = true; 12666 } *EvalTracker = nullptr; 12667 12668 /// Find the object which is produced by the specified expression, 12669 /// if any. 12670 Object getObject(const Expr *E, bool Mod) const { 12671 E = E->IgnoreParenCasts(); 12672 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12673 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 12674 return getObject(UO->getSubExpr(), Mod); 12675 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12676 if (BO->getOpcode() == BO_Comma) 12677 return getObject(BO->getRHS(), Mod); 12678 if (Mod && BO->isAssignmentOp()) 12679 return getObject(BO->getLHS(), Mod); 12680 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 12681 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 12682 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 12683 return ME->getMemberDecl(); 12684 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12685 // FIXME: If this is a reference, map through to its value. 12686 return DRE->getDecl(); 12687 return nullptr; 12688 } 12689 12690 /// Note that an object \p O was modified or used by an expression 12691 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 12692 /// the object \p O as obtained via the \p UsageMap. 12693 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 12694 // Get the old usage for the given object and usage kind. 12695 Usage &U = UI.Uses[UK]; 12696 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 12697 // If we have a modification as side effect and are in a sequenced 12698 // subexpression, save the old Usage so that we can restore it later 12699 // in SequencedSubexpression::~SequencedSubexpression. 12700 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 12701 ModAsSideEffect->push_back(std::make_pair(O, U)); 12702 // Then record the new usage with the current sequencing region. 12703 U.UsageExpr = UsageExpr; 12704 U.Seq = Region; 12705 } 12706 } 12707 12708 /// Check whether a modification or use of an object \p O in an expression 12709 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 12710 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 12711 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 12712 /// usage and false we are checking for a mod-use unsequenced usage. 12713 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 12714 UsageKind OtherKind, bool IsModMod) { 12715 if (UI.Diagnosed) 12716 return; 12717 12718 const Usage &U = UI.Uses[OtherKind]; 12719 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 12720 return; 12721 12722 const Expr *Mod = U.UsageExpr; 12723 const Expr *ModOrUse = UsageExpr; 12724 if (OtherKind == UK_Use) 12725 std::swap(Mod, ModOrUse); 12726 12727 SemaRef.DiagRuntimeBehavior( 12728 Mod->getExprLoc(), {Mod, ModOrUse}, 12729 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 12730 : diag::warn_unsequenced_mod_use) 12731 << O << SourceRange(ModOrUse->getExprLoc())); 12732 UI.Diagnosed = true; 12733 } 12734 12735 // A note on note{Pre, Post}{Use, Mod}: 12736 // 12737 // (It helps to follow the algorithm with an expression such as 12738 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 12739 // operations before C++17 and both are well-defined in C++17). 12740 // 12741 // When visiting a node which uses/modify an object we first call notePreUse 12742 // or notePreMod before visiting its sub-expression(s). At this point the 12743 // children of the current node have not yet been visited and so the eventual 12744 // uses/modifications resulting from the children of the current node have not 12745 // been recorded yet. 12746 // 12747 // We then visit the children of the current node. After that notePostUse or 12748 // notePostMod is called. These will 1) detect an unsequenced modification 12749 // as side effect (as in "k++ + k") and 2) add a new usage with the 12750 // appropriate usage kind. 12751 // 12752 // We also have to be careful that some operation sequences modification as 12753 // side effect as well (for example: || or ,). To account for this we wrap 12754 // the visitation of such a sub-expression (for example: the LHS of || or ,) 12755 // with SequencedSubexpression. SequencedSubexpression is an RAII object 12756 // which record usages which are modifications as side effect, and then 12757 // downgrade them (or more accurately restore the previous usage which was a 12758 // modification as side effect) when exiting the scope of the sequenced 12759 // subexpression. 12760 12761 void notePreUse(Object O, const Expr *UseExpr) { 12762 UsageInfo &UI = UsageMap[O]; 12763 // Uses conflict with other modifications. 12764 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 12765 } 12766 12767 void notePostUse(Object O, const Expr *UseExpr) { 12768 UsageInfo &UI = UsageMap[O]; 12769 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 12770 /*IsModMod=*/false); 12771 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 12772 } 12773 12774 void notePreMod(Object O, const Expr *ModExpr) { 12775 UsageInfo &UI = UsageMap[O]; 12776 // Modifications conflict with other modifications and with uses. 12777 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 12778 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 12779 } 12780 12781 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 12782 UsageInfo &UI = UsageMap[O]; 12783 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 12784 /*IsModMod=*/true); 12785 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 12786 } 12787 12788 public: 12789 SequenceChecker(Sema &S, const Expr *E, 12790 SmallVectorImpl<const Expr *> &WorkList) 12791 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 12792 Visit(E); 12793 // Silence a -Wunused-private-field since WorkList is now unused. 12794 // TODO: Evaluate if it can be used, and if not remove it. 12795 (void)this->WorkList; 12796 } 12797 12798 void VisitStmt(const Stmt *S) { 12799 // Skip all statements which aren't expressions for now. 12800 } 12801 12802 void VisitExpr(const Expr *E) { 12803 // By default, just recurse to evaluated subexpressions. 12804 Base::VisitStmt(E); 12805 } 12806 12807 void VisitCastExpr(const CastExpr *E) { 12808 Object O = Object(); 12809 if (E->getCastKind() == CK_LValueToRValue) 12810 O = getObject(E->getSubExpr(), false); 12811 12812 if (O) 12813 notePreUse(O, E); 12814 VisitExpr(E); 12815 if (O) 12816 notePostUse(O, E); 12817 } 12818 12819 void VisitSequencedExpressions(const Expr *SequencedBefore, 12820 const Expr *SequencedAfter) { 12821 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 12822 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 12823 SequenceTree::Seq OldRegion = Region; 12824 12825 { 12826 SequencedSubexpression SeqBefore(*this); 12827 Region = BeforeRegion; 12828 Visit(SequencedBefore); 12829 } 12830 12831 Region = AfterRegion; 12832 Visit(SequencedAfter); 12833 12834 Region = OldRegion; 12835 12836 Tree.merge(BeforeRegion); 12837 Tree.merge(AfterRegion); 12838 } 12839 12840 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 12841 // C++17 [expr.sub]p1: 12842 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 12843 // expression E1 is sequenced before the expression E2. 12844 if (SemaRef.getLangOpts().CPlusPlus17) 12845 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 12846 else { 12847 Visit(ASE->getLHS()); 12848 Visit(ASE->getRHS()); 12849 } 12850 } 12851 12852 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12853 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 12854 void VisitBinPtrMem(const BinaryOperator *BO) { 12855 // C++17 [expr.mptr.oper]p4: 12856 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 12857 // the expression E1 is sequenced before the expression E2. 12858 if (SemaRef.getLangOpts().CPlusPlus17) 12859 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12860 else { 12861 Visit(BO->getLHS()); 12862 Visit(BO->getRHS()); 12863 } 12864 } 12865 12866 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12867 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 12868 void VisitBinShlShr(const BinaryOperator *BO) { 12869 // C++17 [expr.shift]p4: 12870 // The expression E1 is sequenced before the expression E2. 12871 if (SemaRef.getLangOpts().CPlusPlus17) 12872 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12873 else { 12874 Visit(BO->getLHS()); 12875 Visit(BO->getRHS()); 12876 } 12877 } 12878 12879 void VisitBinComma(const BinaryOperator *BO) { 12880 // C++11 [expr.comma]p1: 12881 // Every value computation and side effect associated with the left 12882 // expression is sequenced before every value computation and side 12883 // effect associated with the right expression. 12884 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 12885 } 12886 12887 void VisitBinAssign(const BinaryOperator *BO) { 12888 SequenceTree::Seq RHSRegion; 12889 SequenceTree::Seq LHSRegion; 12890 if (SemaRef.getLangOpts().CPlusPlus17) { 12891 RHSRegion = Tree.allocate(Region); 12892 LHSRegion = Tree.allocate(Region); 12893 } else { 12894 RHSRegion = Region; 12895 LHSRegion = Region; 12896 } 12897 SequenceTree::Seq OldRegion = Region; 12898 12899 // C++11 [expr.ass]p1: 12900 // [...] the assignment is sequenced after the value computation 12901 // of the right and left operands, [...] 12902 // 12903 // so check it before inspecting the operands and update the 12904 // map afterwards. 12905 Object O = getObject(BO->getLHS(), /*Mod=*/true); 12906 if (O) 12907 notePreMod(O, BO); 12908 12909 if (SemaRef.getLangOpts().CPlusPlus17) { 12910 // C++17 [expr.ass]p1: 12911 // [...] The right operand is sequenced before the left operand. [...] 12912 { 12913 SequencedSubexpression SeqBefore(*this); 12914 Region = RHSRegion; 12915 Visit(BO->getRHS()); 12916 } 12917 12918 Region = LHSRegion; 12919 Visit(BO->getLHS()); 12920 12921 if (O && isa<CompoundAssignOperator>(BO)) 12922 notePostUse(O, BO); 12923 12924 } else { 12925 // C++11 does not specify any sequencing between the LHS and RHS. 12926 Region = LHSRegion; 12927 Visit(BO->getLHS()); 12928 12929 if (O && isa<CompoundAssignOperator>(BO)) 12930 notePostUse(O, BO); 12931 12932 Region = RHSRegion; 12933 Visit(BO->getRHS()); 12934 } 12935 12936 // C++11 [expr.ass]p1: 12937 // the assignment is sequenced [...] before the value computation of the 12938 // assignment expression. 12939 // C11 6.5.16/3 has no such rule. 12940 Region = OldRegion; 12941 if (O) 12942 notePostMod(O, BO, 12943 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12944 : UK_ModAsSideEffect); 12945 if (SemaRef.getLangOpts().CPlusPlus17) { 12946 Tree.merge(RHSRegion); 12947 Tree.merge(LHSRegion); 12948 } 12949 } 12950 12951 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 12952 VisitBinAssign(CAO); 12953 } 12954 12955 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12956 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 12957 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 12958 Object O = getObject(UO->getSubExpr(), true); 12959 if (!O) 12960 return VisitExpr(UO); 12961 12962 notePreMod(O, UO); 12963 Visit(UO->getSubExpr()); 12964 // C++11 [expr.pre.incr]p1: 12965 // the expression ++x is equivalent to x+=1 12966 notePostMod(O, UO, 12967 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 12968 : UK_ModAsSideEffect); 12969 } 12970 12971 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12972 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 12973 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 12974 Object O = getObject(UO->getSubExpr(), true); 12975 if (!O) 12976 return VisitExpr(UO); 12977 12978 notePreMod(O, UO); 12979 Visit(UO->getSubExpr()); 12980 notePostMod(O, UO, UK_ModAsSideEffect); 12981 } 12982 12983 void VisitBinLOr(const BinaryOperator *BO) { 12984 // C++11 [expr.log.or]p2: 12985 // If the second expression is evaluated, every value computation and 12986 // side effect associated with the first expression is sequenced before 12987 // every value computation and side effect associated with the 12988 // second expression. 12989 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 12990 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 12991 SequenceTree::Seq OldRegion = Region; 12992 12993 EvaluationTracker Eval(*this); 12994 { 12995 SequencedSubexpression Sequenced(*this); 12996 Region = LHSRegion; 12997 Visit(BO->getLHS()); 12998 } 12999 13000 // C++11 [expr.log.or]p1: 13001 // [...] the second operand is not evaluated if the first operand 13002 // evaluates to true. 13003 bool EvalResult = false; 13004 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13005 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 13006 if (ShouldVisitRHS) { 13007 Region = RHSRegion; 13008 Visit(BO->getRHS()); 13009 } 13010 13011 Region = OldRegion; 13012 Tree.merge(LHSRegion); 13013 Tree.merge(RHSRegion); 13014 } 13015 13016 void VisitBinLAnd(const BinaryOperator *BO) { 13017 // C++11 [expr.log.and]p2: 13018 // If the second expression is evaluated, every value computation and 13019 // side effect associated with the first expression is sequenced before 13020 // every value computation and side effect associated with the 13021 // second expression. 13022 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13023 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13024 SequenceTree::Seq OldRegion = Region; 13025 13026 EvaluationTracker Eval(*this); 13027 { 13028 SequencedSubexpression Sequenced(*this); 13029 Region = LHSRegion; 13030 Visit(BO->getLHS()); 13031 } 13032 13033 // C++11 [expr.log.and]p1: 13034 // [...] the second operand is not evaluated if the first operand is false. 13035 bool EvalResult = false; 13036 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13037 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 13038 if (ShouldVisitRHS) { 13039 Region = RHSRegion; 13040 Visit(BO->getRHS()); 13041 } 13042 13043 Region = OldRegion; 13044 Tree.merge(LHSRegion); 13045 Tree.merge(RHSRegion); 13046 } 13047 13048 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 13049 // C++11 [expr.cond]p1: 13050 // [...] Every value computation and side effect associated with the first 13051 // expression is sequenced before every value computation and side effect 13052 // associated with the second or third expression. 13053 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 13054 13055 // No sequencing is specified between the true and false expression. 13056 // However since exactly one of both is going to be evaluated we can 13057 // consider them to be sequenced. This is needed to avoid warning on 13058 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 13059 // both the true and false expressions because we can't evaluate x. 13060 // This will still allow us to detect an expression like (pre C++17) 13061 // "(x ? y += 1 : y += 2) = y". 13062 // 13063 // We don't wrap the visitation of the true and false expression with 13064 // SequencedSubexpression because we don't want to downgrade modifications 13065 // as side effect in the true and false expressions after the visition 13066 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 13067 // not warn between the two "y++", but we should warn between the "y++" 13068 // and the "y". 13069 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 13070 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 13071 SequenceTree::Seq OldRegion = Region; 13072 13073 EvaluationTracker Eval(*this); 13074 { 13075 SequencedSubexpression Sequenced(*this); 13076 Region = ConditionRegion; 13077 Visit(CO->getCond()); 13078 } 13079 13080 // C++11 [expr.cond]p1: 13081 // [...] The first expression is contextually converted to bool (Clause 4). 13082 // It is evaluated and if it is true, the result of the conditional 13083 // expression is the value of the second expression, otherwise that of the 13084 // third expression. Only one of the second and third expressions is 13085 // evaluated. [...] 13086 bool EvalResult = false; 13087 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 13088 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 13089 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 13090 if (ShouldVisitTrueExpr) { 13091 Region = TrueRegion; 13092 Visit(CO->getTrueExpr()); 13093 } 13094 if (ShouldVisitFalseExpr) { 13095 Region = FalseRegion; 13096 Visit(CO->getFalseExpr()); 13097 } 13098 13099 Region = OldRegion; 13100 Tree.merge(ConditionRegion); 13101 Tree.merge(TrueRegion); 13102 Tree.merge(FalseRegion); 13103 } 13104 13105 void VisitCallExpr(const CallExpr *CE) { 13106 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 13107 13108 if (CE->isUnevaluatedBuiltinCall(Context)) 13109 return; 13110 13111 // C++11 [intro.execution]p15: 13112 // When calling a function [...], every value computation and side effect 13113 // associated with any argument expression, or with the postfix expression 13114 // designating the called function, is sequenced before execution of every 13115 // expression or statement in the body of the function [and thus before 13116 // the value computation of its result]. 13117 SequencedSubexpression Sequenced(*this); 13118 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 13119 // C++17 [expr.call]p5 13120 // The postfix-expression is sequenced before each expression in the 13121 // expression-list and any default argument. [...] 13122 SequenceTree::Seq CalleeRegion; 13123 SequenceTree::Seq OtherRegion; 13124 if (SemaRef.getLangOpts().CPlusPlus17) { 13125 CalleeRegion = Tree.allocate(Region); 13126 OtherRegion = Tree.allocate(Region); 13127 } else { 13128 CalleeRegion = Region; 13129 OtherRegion = Region; 13130 } 13131 SequenceTree::Seq OldRegion = Region; 13132 13133 // Visit the callee expression first. 13134 Region = CalleeRegion; 13135 if (SemaRef.getLangOpts().CPlusPlus17) { 13136 SequencedSubexpression Sequenced(*this); 13137 Visit(CE->getCallee()); 13138 } else { 13139 Visit(CE->getCallee()); 13140 } 13141 13142 // Then visit the argument expressions. 13143 Region = OtherRegion; 13144 for (const Expr *Argument : CE->arguments()) 13145 Visit(Argument); 13146 13147 Region = OldRegion; 13148 if (SemaRef.getLangOpts().CPlusPlus17) { 13149 Tree.merge(CalleeRegion); 13150 Tree.merge(OtherRegion); 13151 } 13152 }); 13153 } 13154 13155 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 13156 // C++17 [over.match.oper]p2: 13157 // [...] the operator notation is first transformed to the equivalent 13158 // function-call notation as summarized in Table 12 (where @ denotes one 13159 // of the operators covered in the specified subclause). However, the 13160 // operands are sequenced in the order prescribed for the built-in 13161 // operator (Clause 8). 13162 // 13163 // From the above only overloaded binary operators and overloaded call 13164 // operators have sequencing rules in C++17 that we need to handle 13165 // separately. 13166 if (!SemaRef.getLangOpts().CPlusPlus17 || 13167 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 13168 return VisitCallExpr(CXXOCE); 13169 13170 enum { 13171 NoSequencing, 13172 LHSBeforeRHS, 13173 RHSBeforeLHS, 13174 LHSBeforeRest 13175 } SequencingKind; 13176 switch (CXXOCE->getOperator()) { 13177 case OO_Equal: 13178 case OO_PlusEqual: 13179 case OO_MinusEqual: 13180 case OO_StarEqual: 13181 case OO_SlashEqual: 13182 case OO_PercentEqual: 13183 case OO_CaretEqual: 13184 case OO_AmpEqual: 13185 case OO_PipeEqual: 13186 case OO_LessLessEqual: 13187 case OO_GreaterGreaterEqual: 13188 SequencingKind = RHSBeforeLHS; 13189 break; 13190 13191 case OO_LessLess: 13192 case OO_GreaterGreater: 13193 case OO_AmpAmp: 13194 case OO_PipePipe: 13195 case OO_Comma: 13196 case OO_ArrowStar: 13197 case OO_Subscript: 13198 SequencingKind = LHSBeforeRHS; 13199 break; 13200 13201 case OO_Call: 13202 SequencingKind = LHSBeforeRest; 13203 break; 13204 13205 default: 13206 SequencingKind = NoSequencing; 13207 break; 13208 } 13209 13210 if (SequencingKind == NoSequencing) 13211 return VisitCallExpr(CXXOCE); 13212 13213 // This is a call, so all subexpressions are sequenced before the result. 13214 SequencedSubexpression Sequenced(*this); 13215 13216 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 13217 assert(SemaRef.getLangOpts().CPlusPlus17 && 13218 "Should only get there with C++17 and above!"); 13219 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 13220 "Should only get there with an overloaded binary operator" 13221 " or an overloaded call operator!"); 13222 13223 if (SequencingKind == LHSBeforeRest) { 13224 assert(CXXOCE->getOperator() == OO_Call && 13225 "We should only have an overloaded call operator here!"); 13226 13227 // This is very similar to VisitCallExpr, except that we only have the 13228 // C++17 case. The postfix-expression is the first argument of the 13229 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 13230 // are in the following arguments. 13231 // 13232 // Note that we intentionally do not visit the callee expression since 13233 // it is just a decayed reference to a function. 13234 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 13235 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 13236 SequenceTree::Seq OldRegion = Region; 13237 13238 assert(CXXOCE->getNumArgs() >= 1 && 13239 "An overloaded call operator must have at least one argument" 13240 " for the postfix-expression!"); 13241 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 13242 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 13243 CXXOCE->getNumArgs() - 1); 13244 13245 // Visit the postfix-expression first. 13246 { 13247 Region = PostfixExprRegion; 13248 SequencedSubexpression Sequenced(*this); 13249 Visit(PostfixExpr); 13250 } 13251 13252 // Then visit the argument expressions. 13253 Region = ArgsRegion; 13254 for (const Expr *Arg : Args) 13255 Visit(Arg); 13256 13257 Region = OldRegion; 13258 Tree.merge(PostfixExprRegion); 13259 Tree.merge(ArgsRegion); 13260 } else { 13261 assert(CXXOCE->getNumArgs() == 2 && 13262 "Should only have two arguments here!"); 13263 assert((SequencingKind == LHSBeforeRHS || 13264 SequencingKind == RHSBeforeLHS) && 13265 "Unexpected sequencing kind!"); 13266 13267 // We do not visit the callee expression since it is just a decayed 13268 // reference to a function. 13269 const Expr *E1 = CXXOCE->getArg(0); 13270 const Expr *E2 = CXXOCE->getArg(1); 13271 if (SequencingKind == RHSBeforeLHS) 13272 std::swap(E1, E2); 13273 13274 return VisitSequencedExpressions(E1, E2); 13275 } 13276 }); 13277 } 13278 13279 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 13280 // This is a call, so all subexpressions are sequenced before the result. 13281 SequencedSubexpression Sequenced(*this); 13282 13283 if (!CCE->isListInitialization()) 13284 return VisitExpr(CCE); 13285 13286 // In C++11, list initializations are sequenced. 13287 SmallVector<SequenceTree::Seq, 32> Elts; 13288 SequenceTree::Seq Parent = Region; 13289 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 13290 E = CCE->arg_end(); 13291 I != E; ++I) { 13292 Region = Tree.allocate(Parent); 13293 Elts.push_back(Region); 13294 Visit(*I); 13295 } 13296 13297 // Forget that the initializers are sequenced. 13298 Region = Parent; 13299 for (unsigned I = 0; I < Elts.size(); ++I) 13300 Tree.merge(Elts[I]); 13301 } 13302 13303 void VisitInitListExpr(const InitListExpr *ILE) { 13304 if (!SemaRef.getLangOpts().CPlusPlus11) 13305 return VisitExpr(ILE); 13306 13307 // In C++11, list initializations are sequenced. 13308 SmallVector<SequenceTree::Seq, 32> Elts; 13309 SequenceTree::Seq Parent = Region; 13310 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 13311 const Expr *E = ILE->getInit(I); 13312 if (!E) 13313 continue; 13314 Region = Tree.allocate(Parent); 13315 Elts.push_back(Region); 13316 Visit(E); 13317 } 13318 13319 // Forget that the initializers are sequenced. 13320 Region = Parent; 13321 for (unsigned I = 0; I < Elts.size(); ++I) 13322 Tree.merge(Elts[I]); 13323 } 13324 }; 13325 13326 } // namespace 13327 13328 void Sema::CheckUnsequencedOperations(const Expr *E) { 13329 SmallVector<const Expr *, 8> WorkList; 13330 WorkList.push_back(E); 13331 while (!WorkList.empty()) { 13332 const Expr *Item = WorkList.pop_back_val(); 13333 SequenceChecker(*this, Item, WorkList); 13334 } 13335 } 13336 13337 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 13338 bool IsConstexpr) { 13339 llvm::SaveAndRestore<bool> ConstantContext( 13340 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 13341 CheckImplicitConversions(E, CheckLoc); 13342 if (!E->isInstantiationDependent()) 13343 CheckUnsequencedOperations(E); 13344 if (!IsConstexpr && !E->isValueDependent()) 13345 CheckForIntOverflow(E); 13346 DiagnoseMisalignedMembers(); 13347 } 13348 13349 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 13350 FieldDecl *BitField, 13351 Expr *Init) { 13352 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 13353 } 13354 13355 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 13356 SourceLocation Loc) { 13357 if (!PType->isVariablyModifiedType()) 13358 return; 13359 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 13360 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 13361 return; 13362 } 13363 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 13364 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 13365 return; 13366 } 13367 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 13368 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 13369 return; 13370 } 13371 13372 const ArrayType *AT = S.Context.getAsArrayType(PType); 13373 if (!AT) 13374 return; 13375 13376 if (AT->getSizeModifier() != ArrayType::Star) { 13377 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 13378 return; 13379 } 13380 13381 S.Diag(Loc, diag::err_array_star_in_function_definition); 13382 } 13383 13384 /// CheckParmsForFunctionDef - Check that the parameters of the given 13385 /// function are appropriate for the definition of a function. This 13386 /// takes care of any checks that cannot be performed on the 13387 /// declaration itself, e.g., that the types of each of the function 13388 /// parameters are complete. 13389 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 13390 bool CheckParameterNames) { 13391 bool HasInvalidParm = false; 13392 for (ParmVarDecl *Param : Parameters) { 13393 // C99 6.7.5.3p4: the parameters in a parameter type list in a 13394 // function declarator that is part of a function definition of 13395 // that function shall not have incomplete type. 13396 // 13397 // This is also C++ [dcl.fct]p6. 13398 if (!Param->isInvalidDecl() && 13399 RequireCompleteType(Param->getLocation(), Param->getType(), 13400 diag::err_typecheck_decl_incomplete_type)) { 13401 Param->setInvalidDecl(); 13402 HasInvalidParm = true; 13403 } 13404 13405 // C99 6.9.1p5: If the declarator includes a parameter type list, the 13406 // declaration of each parameter shall include an identifier. 13407 if (CheckParameterNames && Param->getIdentifier() == nullptr && 13408 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 13409 // Diagnose this as an extension in C17 and earlier. 13410 if (!getLangOpts().C2x) 13411 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 13412 } 13413 13414 // C99 6.7.5.3p12: 13415 // If the function declarator is not part of a definition of that 13416 // function, parameters may have incomplete type and may use the [*] 13417 // notation in their sequences of declarator specifiers to specify 13418 // variable length array types. 13419 QualType PType = Param->getOriginalType(); 13420 // FIXME: This diagnostic should point the '[*]' if source-location 13421 // information is added for it. 13422 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 13423 13424 // If the parameter is a c++ class type and it has to be destructed in the 13425 // callee function, declare the destructor so that it can be called by the 13426 // callee function. Do not perform any direct access check on the dtor here. 13427 if (!Param->isInvalidDecl()) { 13428 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 13429 if (!ClassDecl->isInvalidDecl() && 13430 !ClassDecl->hasIrrelevantDestructor() && 13431 !ClassDecl->isDependentContext() && 13432 ClassDecl->isParamDestroyedInCallee()) { 13433 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13434 MarkFunctionReferenced(Param->getLocation(), Destructor); 13435 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 13436 } 13437 } 13438 } 13439 13440 // Parameters with the pass_object_size attribute only need to be marked 13441 // constant at function definitions. Because we lack information about 13442 // whether we're on a declaration or definition when we're instantiating the 13443 // attribute, we need to check for constness here. 13444 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 13445 if (!Param->getType().isConstQualified()) 13446 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 13447 << Attr->getSpelling() << 1; 13448 13449 // Check for parameter names shadowing fields from the class. 13450 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13451 // The owning context for the parameter should be the function, but we 13452 // want to see if this function's declaration context is a record. 13453 DeclContext *DC = Param->getDeclContext(); 13454 if (DC && DC->isFunctionOrMethod()) { 13455 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13456 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13457 RD, /*DeclIsField*/ false); 13458 } 13459 } 13460 } 13461 13462 return HasInvalidParm; 13463 } 13464 13465 Optional<std::pair<CharUnits, CharUnits>> 13466 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 13467 13468 /// Compute the alignment and offset of the base class object given the 13469 /// derived-to-base cast expression and the alignment and offset of the derived 13470 /// class object. 13471 static std::pair<CharUnits, CharUnits> 13472 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 13473 CharUnits BaseAlignment, CharUnits Offset, 13474 ASTContext &Ctx) { 13475 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 13476 ++PathI) { 13477 const CXXBaseSpecifier *Base = *PathI; 13478 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 13479 if (Base->isVirtual()) { 13480 // The complete object may have a lower alignment than the non-virtual 13481 // alignment of the base, in which case the base may be misaligned. Choose 13482 // the smaller of the non-virtual alignment and BaseAlignment, which is a 13483 // conservative lower bound of the complete object alignment. 13484 CharUnits NonVirtualAlignment = 13485 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 13486 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 13487 Offset = CharUnits::Zero(); 13488 } else { 13489 const ASTRecordLayout &RL = 13490 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 13491 Offset += RL.getBaseClassOffset(BaseDecl); 13492 } 13493 DerivedType = Base->getType(); 13494 } 13495 13496 return std::make_pair(BaseAlignment, Offset); 13497 } 13498 13499 /// Compute the alignment and offset of a binary additive operator. 13500 static Optional<std::pair<CharUnits, CharUnits>> 13501 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 13502 bool IsSub, ASTContext &Ctx) { 13503 QualType PointeeType = PtrE->getType()->getPointeeType(); 13504 13505 if (!PointeeType->isConstantSizeType()) 13506 return llvm::None; 13507 13508 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 13509 13510 if (!P) 13511 return llvm::None; 13512 13513 llvm::APSInt IdxRes; 13514 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 13515 if (IntE->isIntegerConstantExpr(IdxRes, Ctx)) { 13516 CharUnits Offset = EltSize * IdxRes.getExtValue(); 13517 if (IsSub) 13518 Offset = -Offset; 13519 return std::make_pair(P->first, P->second + Offset); 13520 } 13521 13522 // If the integer expression isn't a constant expression, compute the lower 13523 // bound of the alignment using the alignment and offset of the pointer 13524 // expression and the element size. 13525 return std::make_pair( 13526 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 13527 CharUnits::Zero()); 13528 } 13529 13530 /// This helper function takes an lvalue expression and returns the alignment of 13531 /// a VarDecl and a constant offset from the VarDecl. 13532 Optional<std::pair<CharUnits, CharUnits>> 13533 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 13534 E = E->IgnoreParens(); 13535 switch (E->getStmtClass()) { 13536 default: 13537 break; 13538 case Stmt::CStyleCastExprClass: 13539 case Stmt::CXXStaticCastExprClass: 13540 case Stmt::ImplicitCastExprClass: { 13541 auto *CE = cast<CastExpr>(E); 13542 const Expr *From = CE->getSubExpr(); 13543 switch (CE->getCastKind()) { 13544 default: 13545 break; 13546 case CK_NoOp: 13547 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13548 case CK_UncheckedDerivedToBase: 13549 case CK_DerivedToBase: { 13550 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13551 if (!P) 13552 break; 13553 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 13554 P->second, Ctx); 13555 } 13556 } 13557 break; 13558 } 13559 case Stmt::ArraySubscriptExprClass: { 13560 auto *ASE = cast<ArraySubscriptExpr>(E); 13561 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 13562 false, Ctx); 13563 } 13564 case Stmt::DeclRefExprClass: { 13565 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 13566 // FIXME: If VD is captured by copy or is an escaping __block variable, 13567 // use the alignment of VD's type. 13568 if (!VD->getType()->isReferenceType()) 13569 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 13570 if (VD->hasInit()) 13571 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 13572 } 13573 break; 13574 } 13575 case Stmt::MemberExprClass: { 13576 auto *ME = cast<MemberExpr>(E); 13577 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 13578 if (!FD || FD->getType()->isReferenceType()) 13579 break; 13580 Optional<std::pair<CharUnits, CharUnits>> P; 13581 if (ME->isArrow()) 13582 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 13583 else 13584 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 13585 if (!P) 13586 break; 13587 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 13588 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 13589 return std::make_pair(P->first, 13590 P->second + CharUnits::fromQuantity(Offset)); 13591 } 13592 case Stmt::UnaryOperatorClass: { 13593 auto *UO = cast<UnaryOperator>(E); 13594 switch (UO->getOpcode()) { 13595 default: 13596 break; 13597 case UO_Deref: 13598 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 13599 } 13600 break; 13601 } 13602 case Stmt::BinaryOperatorClass: { 13603 auto *BO = cast<BinaryOperator>(E); 13604 auto Opcode = BO->getOpcode(); 13605 switch (Opcode) { 13606 default: 13607 break; 13608 case BO_Comma: 13609 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 13610 } 13611 break; 13612 } 13613 } 13614 return llvm::None; 13615 } 13616 13617 /// This helper function takes a pointer expression and returns the alignment of 13618 /// a VarDecl and a constant offset from the VarDecl. 13619 Optional<std::pair<CharUnits, CharUnits>> 13620 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 13621 E = E->IgnoreParens(); 13622 switch (E->getStmtClass()) { 13623 default: 13624 break; 13625 case Stmt::CStyleCastExprClass: 13626 case Stmt::CXXStaticCastExprClass: 13627 case Stmt::ImplicitCastExprClass: { 13628 auto *CE = cast<CastExpr>(E); 13629 const Expr *From = CE->getSubExpr(); 13630 switch (CE->getCastKind()) { 13631 default: 13632 break; 13633 case CK_NoOp: 13634 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 13635 case CK_ArrayToPointerDecay: 13636 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 13637 case CK_UncheckedDerivedToBase: 13638 case CK_DerivedToBase: { 13639 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 13640 if (!P) 13641 break; 13642 return getDerivedToBaseAlignmentAndOffset( 13643 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 13644 } 13645 } 13646 break; 13647 } 13648 case Stmt::CXXThisExprClass: { 13649 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 13650 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 13651 return std::make_pair(Alignment, CharUnits::Zero()); 13652 } 13653 case Stmt::UnaryOperatorClass: { 13654 auto *UO = cast<UnaryOperator>(E); 13655 if (UO->getOpcode() == UO_AddrOf) 13656 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 13657 break; 13658 } 13659 case Stmt::BinaryOperatorClass: { 13660 auto *BO = cast<BinaryOperator>(E); 13661 auto Opcode = BO->getOpcode(); 13662 switch (Opcode) { 13663 default: 13664 break; 13665 case BO_Add: 13666 case BO_Sub: { 13667 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 13668 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 13669 std::swap(LHS, RHS); 13670 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 13671 Ctx); 13672 } 13673 case BO_Comma: 13674 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 13675 } 13676 break; 13677 } 13678 } 13679 return llvm::None; 13680 } 13681 13682 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 13683 // See if we can compute the alignment of a VarDecl and an offset from it. 13684 Optional<std::pair<CharUnits, CharUnits>> P = 13685 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 13686 13687 if (P) 13688 return P->first.alignmentAtOffset(P->second); 13689 13690 // If that failed, return the type's alignment. 13691 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 13692 } 13693 13694 /// CheckCastAlign - Implements -Wcast-align, which warns when a 13695 /// pointer cast increases the alignment requirements. 13696 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 13697 // This is actually a lot of work to potentially be doing on every 13698 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 13699 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 13700 return; 13701 13702 // Ignore dependent types. 13703 if (T->isDependentType() || Op->getType()->isDependentType()) 13704 return; 13705 13706 // Require that the destination be a pointer type. 13707 const PointerType *DestPtr = T->getAs<PointerType>(); 13708 if (!DestPtr) return; 13709 13710 // If the destination has alignment 1, we're done. 13711 QualType DestPointee = DestPtr->getPointeeType(); 13712 if (DestPointee->isIncompleteType()) return; 13713 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 13714 if (DestAlign.isOne()) return; 13715 13716 // Require that the source be a pointer type. 13717 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 13718 if (!SrcPtr) return; 13719 QualType SrcPointee = SrcPtr->getPointeeType(); 13720 13721 // Explicitly allow casts from cv void*. We already implicitly 13722 // allowed casts to cv void*, since they have alignment 1. 13723 // Also allow casts involving incomplete types, which implicitly 13724 // includes 'void'. 13725 if (SrcPointee->isIncompleteType()) return; 13726 13727 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 13728 13729 if (SrcAlign >= DestAlign) return; 13730 13731 Diag(TRange.getBegin(), diag::warn_cast_align) 13732 << Op->getType() << T 13733 << static_cast<unsigned>(SrcAlign.getQuantity()) 13734 << static_cast<unsigned>(DestAlign.getQuantity()) 13735 << TRange << Op->getSourceRange(); 13736 } 13737 13738 /// Check whether this array fits the idiom of a size-one tail padded 13739 /// array member of a struct. 13740 /// 13741 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 13742 /// commonly used to emulate flexible arrays in C89 code. 13743 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 13744 const NamedDecl *ND) { 13745 if (Size != 1 || !ND) return false; 13746 13747 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 13748 if (!FD) return false; 13749 13750 // Don't consider sizes resulting from macro expansions or template argument 13751 // substitution to form C89 tail-padded arrays. 13752 13753 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 13754 while (TInfo) { 13755 TypeLoc TL = TInfo->getTypeLoc(); 13756 // Look through typedefs. 13757 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 13758 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 13759 TInfo = TDL->getTypeSourceInfo(); 13760 continue; 13761 } 13762 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 13763 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 13764 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 13765 return false; 13766 } 13767 break; 13768 } 13769 13770 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 13771 if (!RD) return false; 13772 if (RD->isUnion()) return false; 13773 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 13774 if (!CRD->isStandardLayout()) return false; 13775 } 13776 13777 // See if this is the last field decl in the record. 13778 const Decl *D = FD; 13779 while ((D = D->getNextDeclInContext())) 13780 if (isa<FieldDecl>(D)) 13781 return false; 13782 return true; 13783 } 13784 13785 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 13786 const ArraySubscriptExpr *ASE, 13787 bool AllowOnePastEnd, bool IndexNegated) { 13788 // Already diagnosed by the constant evaluator. 13789 if (isConstantEvaluated()) 13790 return; 13791 13792 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 13793 if (IndexExpr->isValueDependent()) 13794 return; 13795 13796 const Type *EffectiveType = 13797 BaseExpr->getType()->getPointeeOrArrayElementType(); 13798 BaseExpr = BaseExpr->IgnoreParenCasts(); 13799 const ConstantArrayType *ArrayTy = 13800 Context.getAsConstantArrayType(BaseExpr->getType()); 13801 13802 if (!ArrayTy) 13803 return; 13804 13805 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 13806 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 13807 return; 13808 13809 Expr::EvalResult Result; 13810 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 13811 return; 13812 13813 llvm::APSInt index = Result.Val.getInt(); 13814 if (IndexNegated) 13815 index = -index; 13816 13817 const NamedDecl *ND = nullptr; 13818 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13819 ND = DRE->getDecl(); 13820 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13821 ND = ME->getMemberDecl(); 13822 13823 if (index.isUnsigned() || !index.isNegative()) { 13824 // It is possible that the type of the base expression after 13825 // IgnoreParenCasts is incomplete, even though the type of the base 13826 // expression before IgnoreParenCasts is complete (see PR39746 for an 13827 // example). In this case we have no information about whether the array 13828 // access exceeds the array bounds. However we can still diagnose an array 13829 // access which precedes the array bounds. 13830 if (BaseType->isIncompleteType()) 13831 return; 13832 13833 llvm::APInt size = ArrayTy->getSize(); 13834 if (!size.isStrictlyPositive()) 13835 return; 13836 13837 if (BaseType != EffectiveType) { 13838 // Make sure we're comparing apples to apples when comparing index to size 13839 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 13840 uint64_t array_typesize = Context.getTypeSize(BaseType); 13841 // Handle ptrarith_typesize being zero, such as when casting to void* 13842 if (!ptrarith_typesize) ptrarith_typesize = 1; 13843 if (ptrarith_typesize != array_typesize) { 13844 // There's a cast to a different size type involved 13845 uint64_t ratio = array_typesize / ptrarith_typesize; 13846 // TODO: Be smarter about handling cases where array_typesize is not a 13847 // multiple of ptrarith_typesize 13848 if (ptrarith_typesize * ratio == array_typesize) 13849 size *= llvm::APInt(size.getBitWidth(), ratio); 13850 } 13851 } 13852 13853 if (size.getBitWidth() > index.getBitWidth()) 13854 index = index.zext(size.getBitWidth()); 13855 else if (size.getBitWidth() < index.getBitWidth()) 13856 size = size.zext(index.getBitWidth()); 13857 13858 // For array subscripting the index must be less than size, but for pointer 13859 // arithmetic also allow the index (offset) to be equal to size since 13860 // computing the next address after the end of the array is legal and 13861 // commonly done e.g. in C++ iterators and range-based for loops. 13862 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 13863 return; 13864 13865 // Also don't warn for arrays of size 1 which are members of some 13866 // structure. These are often used to approximate flexible arrays in C89 13867 // code. 13868 if (IsTailPaddedMemberArray(*this, size, ND)) 13869 return; 13870 13871 // Suppress the warning if the subscript expression (as identified by the 13872 // ']' location) and the index expression are both from macro expansions 13873 // within a system header. 13874 if (ASE) { 13875 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 13876 ASE->getRBracketLoc()); 13877 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 13878 SourceLocation IndexLoc = 13879 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 13880 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 13881 return; 13882 } 13883 } 13884 13885 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 13886 if (ASE) 13887 DiagID = diag::warn_array_index_exceeds_bounds; 13888 13889 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13890 PDiag(DiagID) << index.toString(10, true) 13891 << size.toString(10, true) 13892 << (unsigned)size.getLimitedValue(~0U) 13893 << IndexExpr->getSourceRange()); 13894 } else { 13895 unsigned DiagID = diag::warn_array_index_precedes_bounds; 13896 if (!ASE) { 13897 DiagID = diag::warn_ptr_arith_precedes_bounds; 13898 if (index.isNegative()) index = -index; 13899 } 13900 13901 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 13902 PDiag(DiagID) << index.toString(10, true) 13903 << IndexExpr->getSourceRange()); 13904 } 13905 13906 if (!ND) { 13907 // Try harder to find a NamedDecl to point at in the note. 13908 while (const ArraySubscriptExpr *ASE = 13909 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 13910 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 13911 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 13912 ND = DRE->getDecl(); 13913 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 13914 ND = ME->getMemberDecl(); 13915 } 13916 13917 if (ND) 13918 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 13919 PDiag(diag::note_array_declared_here) 13920 << ND->getDeclName()); 13921 } 13922 13923 void Sema::CheckArrayAccess(const Expr *expr) { 13924 int AllowOnePastEnd = 0; 13925 while (expr) { 13926 expr = expr->IgnoreParenImpCasts(); 13927 switch (expr->getStmtClass()) { 13928 case Stmt::ArraySubscriptExprClass: { 13929 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 13930 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 13931 AllowOnePastEnd > 0); 13932 expr = ASE->getBase(); 13933 break; 13934 } 13935 case Stmt::MemberExprClass: { 13936 expr = cast<MemberExpr>(expr)->getBase(); 13937 break; 13938 } 13939 case Stmt::OMPArraySectionExprClass: { 13940 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 13941 if (ASE->getLowerBound()) 13942 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 13943 /*ASE=*/nullptr, AllowOnePastEnd > 0); 13944 return; 13945 } 13946 case Stmt::UnaryOperatorClass: { 13947 // Only unwrap the * and & unary operators 13948 const UnaryOperator *UO = cast<UnaryOperator>(expr); 13949 expr = UO->getSubExpr(); 13950 switch (UO->getOpcode()) { 13951 case UO_AddrOf: 13952 AllowOnePastEnd++; 13953 break; 13954 case UO_Deref: 13955 AllowOnePastEnd--; 13956 break; 13957 default: 13958 return; 13959 } 13960 break; 13961 } 13962 case Stmt::ConditionalOperatorClass: { 13963 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 13964 if (const Expr *lhs = cond->getLHS()) 13965 CheckArrayAccess(lhs); 13966 if (const Expr *rhs = cond->getRHS()) 13967 CheckArrayAccess(rhs); 13968 return; 13969 } 13970 case Stmt::CXXOperatorCallExprClass: { 13971 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 13972 for (const auto *Arg : OCE->arguments()) 13973 CheckArrayAccess(Arg); 13974 return; 13975 } 13976 default: 13977 return; 13978 } 13979 } 13980 } 13981 13982 //===--- CHECK: Objective-C retain cycles ----------------------------------// 13983 13984 namespace { 13985 13986 struct RetainCycleOwner { 13987 VarDecl *Variable = nullptr; 13988 SourceRange Range; 13989 SourceLocation Loc; 13990 bool Indirect = false; 13991 13992 RetainCycleOwner() = default; 13993 13994 void setLocsFrom(Expr *e) { 13995 Loc = e->getExprLoc(); 13996 Range = e->getSourceRange(); 13997 } 13998 }; 13999 14000 } // namespace 14001 14002 /// Consider whether capturing the given variable can possibly lead to 14003 /// a retain cycle. 14004 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 14005 // In ARC, it's captured strongly iff the variable has __strong 14006 // lifetime. In MRR, it's captured strongly if the variable is 14007 // __block and has an appropriate type. 14008 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14009 return false; 14010 14011 owner.Variable = var; 14012 if (ref) 14013 owner.setLocsFrom(ref); 14014 return true; 14015 } 14016 14017 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 14018 while (true) { 14019 e = e->IgnoreParens(); 14020 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 14021 switch (cast->getCastKind()) { 14022 case CK_BitCast: 14023 case CK_LValueBitCast: 14024 case CK_LValueToRValue: 14025 case CK_ARCReclaimReturnedObject: 14026 e = cast->getSubExpr(); 14027 continue; 14028 14029 default: 14030 return false; 14031 } 14032 } 14033 14034 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 14035 ObjCIvarDecl *ivar = ref->getDecl(); 14036 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14037 return false; 14038 14039 // Try to find a retain cycle in the base. 14040 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 14041 return false; 14042 14043 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 14044 owner.Indirect = true; 14045 return true; 14046 } 14047 14048 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 14049 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 14050 if (!var) return false; 14051 return considerVariable(var, ref, owner); 14052 } 14053 14054 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 14055 if (member->isArrow()) return false; 14056 14057 // Don't count this as an indirect ownership. 14058 e = member->getBase(); 14059 continue; 14060 } 14061 14062 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 14063 // Only pay attention to pseudo-objects on property references. 14064 ObjCPropertyRefExpr *pre 14065 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 14066 ->IgnoreParens()); 14067 if (!pre) return false; 14068 if (pre->isImplicitProperty()) return false; 14069 ObjCPropertyDecl *property = pre->getExplicitProperty(); 14070 if (!property->isRetaining() && 14071 !(property->getPropertyIvarDecl() && 14072 property->getPropertyIvarDecl()->getType() 14073 .getObjCLifetime() == Qualifiers::OCL_Strong)) 14074 return false; 14075 14076 owner.Indirect = true; 14077 if (pre->isSuperReceiver()) { 14078 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 14079 if (!owner.Variable) 14080 return false; 14081 owner.Loc = pre->getLocation(); 14082 owner.Range = pre->getSourceRange(); 14083 return true; 14084 } 14085 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 14086 ->getSourceExpr()); 14087 continue; 14088 } 14089 14090 // Array ivars? 14091 14092 return false; 14093 } 14094 } 14095 14096 namespace { 14097 14098 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 14099 ASTContext &Context; 14100 VarDecl *Variable; 14101 Expr *Capturer = nullptr; 14102 bool VarWillBeReased = false; 14103 14104 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 14105 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 14106 Context(Context), Variable(variable) {} 14107 14108 void VisitDeclRefExpr(DeclRefExpr *ref) { 14109 if (ref->getDecl() == Variable && !Capturer) 14110 Capturer = ref; 14111 } 14112 14113 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 14114 if (Capturer) return; 14115 Visit(ref->getBase()); 14116 if (Capturer && ref->isFreeIvar()) 14117 Capturer = ref; 14118 } 14119 14120 void VisitBlockExpr(BlockExpr *block) { 14121 // Look inside nested blocks 14122 if (block->getBlockDecl()->capturesVariable(Variable)) 14123 Visit(block->getBlockDecl()->getBody()); 14124 } 14125 14126 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 14127 if (Capturer) return; 14128 if (OVE->getSourceExpr()) 14129 Visit(OVE->getSourceExpr()); 14130 } 14131 14132 void VisitBinaryOperator(BinaryOperator *BinOp) { 14133 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 14134 return; 14135 Expr *LHS = BinOp->getLHS(); 14136 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 14137 if (DRE->getDecl() != Variable) 14138 return; 14139 if (Expr *RHS = BinOp->getRHS()) { 14140 RHS = RHS->IgnoreParenCasts(); 14141 llvm::APSInt Value; 14142 VarWillBeReased = 14143 (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0); 14144 } 14145 } 14146 } 14147 }; 14148 14149 } // namespace 14150 14151 /// Check whether the given argument is a block which captures a 14152 /// variable. 14153 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 14154 assert(owner.Variable && owner.Loc.isValid()); 14155 14156 e = e->IgnoreParenCasts(); 14157 14158 // Look through [^{...} copy] and Block_copy(^{...}). 14159 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 14160 Selector Cmd = ME->getSelector(); 14161 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 14162 e = ME->getInstanceReceiver(); 14163 if (!e) 14164 return nullptr; 14165 e = e->IgnoreParenCasts(); 14166 } 14167 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 14168 if (CE->getNumArgs() == 1) { 14169 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 14170 if (Fn) { 14171 const IdentifierInfo *FnI = Fn->getIdentifier(); 14172 if (FnI && FnI->isStr("_Block_copy")) { 14173 e = CE->getArg(0)->IgnoreParenCasts(); 14174 } 14175 } 14176 } 14177 } 14178 14179 BlockExpr *block = dyn_cast<BlockExpr>(e); 14180 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 14181 return nullptr; 14182 14183 FindCaptureVisitor visitor(S.Context, owner.Variable); 14184 visitor.Visit(block->getBlockDecl()->getBody()); 14185 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 14186 } 14187 14188 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 14189 RetainCycleOwner &owner) { 14190 assert(capturer); 14191 assert(owner.Variable && owner.Loc.isValid()); 14192 14193 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 14194 << owner.Variable << capturer->getSourceRange(); 14195 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 14196 << owner.Indirect << owner.Range; 14197 } 14198 14199 /// Check for a keyword selector that starts with the word 'add' or 14200 /// 'set'. 14201 static bool isSetterLikeSelector(Selector sel) { 14202 if (sel.isUnarySelector()) return false; 14203 14204 StringRef str = sel.getNameForSlot(0); 14205 while (!str.empty() && str.front() == '_') str = str.substr(1); 14206 if (str.startswith("set")) 14207 str = str.substr(3); 14208 else if (str.startswith("add")) { 14209 // Specially allow 'addOperationWithBlock:'. 14210 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 14211 return false; 14212 str = str.substr(3); 14213 } 14214 else 14215 return false; 14216 14217 if (str.empty()) return true; 14218 return !isLowercase(str.front()); 14219 } 14220 14221 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 14222 ObjCMessageExpr *Message) { 14223 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 14224 Message->getReceiverInterface(), 14225 NSAPI::ClassId_NSMutableArray); 14226 if (!IsMutableArray) { 14227 return None; 14228 } 14229 14230 Selector Sel = Message->getSelector(); 14231 14232 Optional<NSAPI::NSArrayMethodKind> MKOpt = 14233 S.NSAPIObj->getNSArrayMethodKind(Sel); 14234 if (!MKOpt) { 14235 return None; 14236 } 14237 14238 NSAPI::NSArrayMethodKind MK = *MKOpt; 14239 14240 switch (MK) { 14241 case NSAPI::NSMutableArr_addObject: 14242 case NSAPI::NSMutableArr_insertObjectAtIndex: 14243 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 14244 return 0; 14245 case NSAPI::NSMutableArr_replaceObjectAtIndex: 14246 return 1; 14247 14248 default: 14249 return None; 14250 } 14251 14252 return None; 14253 } 14254 14255 static 14256 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 14257 ObjCMessageExpr *Message) { 14258 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 14259 Message->getReceiverInterface(), 14260 NSAPI::ClassId_NSMutableDictionary); 14261 if (!IsMutableDictionary) { 14262 return None; 14263 } 14264 14265 Selector Sel = Message->getSelector(); 14266 14267 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 14268 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 14269 if (!MKOpt) { 14270 return None; 14271 } 14272 14273 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 14274 14275 switch (MK) { 14276 case NSAPI::NSMutableDict_setObjectForKey: 14277 case NSAPI::NSMutableDict_setValueForKey: 14278 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 14279 return 0; 14280 14281 default: 14282 return None; 14283 } 14284 14285 return None; 14286 } 14287 14288 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 14289 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 14290 Message->getReceiverInterface(), 14291 NSAPI::ClassId_NSMutableSet); 14292 14293 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 14294 Message->getReceiverInterface(), 14295 NSAPI::ClassId_NSMutableOrderedSet); 14296 if (!IsMutableSet && !IsMutableOrderedSet) { 14297 return None; 14298 } 14299 14300 Selector Sel = Message->getSelector(); 14301 14302 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 14303 if (!MKOpt) { 14304 return None; 14305 } 14306 14307 NSAPI::NSSetMethodKind MK = *MKOpt; 14308 14309 switch (MK) { 14310 case NSAPI::NSMutableSet_addObject: 14311 case NSAPI::NSOrderedSet_setObjectAtIndex: 14312 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 14313 case NSAPI::NSOrderedSet_insertObjectAtIndex: 14314 return 0; 14315 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 14316 return 1; 14317 } 14318 14319 return None; 14320 } 14321 14322 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 14323 if (!Message->isInstanceMessage()) { 14324 return; 14325 } 14326 14327 Optional<int> ArgOpt; 14328 14329 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 14330 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 14331 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 14332 return; 14333 } 14334 14335 int ArgIndex = *ArgOpt; 14336 14337 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 14338 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 14339 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 14340 } 14341 14342 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 14343 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14344 if (ArgRE->isObjCSelfExpr()) { 14345 Diag(Message->getSourceRange().getBegin(), 14346 diag::warn_objc_circular_container) 14347 << ArgRE->getDecl() << StringRef("'super'"); 14348 } 14349 } 14350 } else { 14351 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 14352 14353 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 14354 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 14355 } 14356 14357 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 14358 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14359 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 14360 ValueDecl *Decl = ReceiverRE->getDecl(); 14361 Diag(Message->getSourceRange().getBegin(), 14362 diag::warn_objc_circular_container) 14363 << Decl << Decl; 14364 if (!ArgRE->isObjCSelfExpr()) { 14365 Diag(Decl->getLocation(), 14366 diag::note_objc_circular_container_declared_here) 14367 << Decl; 14368 } 14369 } 14370 } 14371 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 14372 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 14373 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 14374 ObjCIvarDecl *Decl = IvarRE->getDecl(); 14375 Diag(Message->getSourceRange().getBegin(), 14376 diag::warn_objc_circular_container) 14377 << Decl << Decl; 14378 Diag(Decl->getLocation(), 14379 diag::note_objc_circular_container_declared_here) 14380 << Decl; 14381 } 14382 } 14383 } 14384 } 14385 } 14386 14387 /// Check a message send to see if it's likely to cause a retain cycle. 14388 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 14389 // Only check instance methods whose selector looks like a setter. 14390 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 14391 return; 14392 14393 // Try to find a variable that the receiver is strongly owned by. 14394 RetainCycleOwner owner; 14395 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 14396 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 14397 return; 14398 } else { 14399 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 14400 owner.Variable = getCurMethodDecl()->getSelfDecl(); 14401 owner.Loc = msg->getSuperLoc(); 14402 owner.Range = msg->getSuperLoc(); 14403 } 14404 14405 // Check whether the receiver is captured by any of the arguments. 14406 const ObjCMethodDecl *MD = msg->getMethodDecl(); 14407 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 14408 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 14409 // noescape blocks should not be retained by the method. 14410 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 14411 continue; 14412 return diagnoseRetainCycle(*this, capturer, owner); 14413 } 14414 } 14415 } 14416 14417 /// Check a property assign to see if it's likely to cause a retain cycle. 14418 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 14419 RetainCycleOwner owner; 14420 if (!findRetainCycleOwner(*this, receiver, owner)) 14421 return; 14422 14423 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 14424 diagnoseRetainCycle(*this, capturer, owner); 14425 } 14426 14427 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 14428 RetainCycleOwner Owner; 14429 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 14430 return; 14431 14432 // Because we don't have an expression for the variable, we have to set the 14433 // location explicitly here. 14434 Owner.Loc = Var->getLocation(); 14435 Owner.Range = Var->getSourceRange(); 14436 14437 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 14438 diagnoseRetainCycle(*this, Capturer, Owner); 14439 } 14440 14441 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 14442 Expr *RHS, bool isProperty) { 14443 // Check if RHS is an Objective-C object literal, which also can get 14444 // immediately zapped in a weak reference. Note that we explicitly 14445 // allow ObjCStringLiterals, since those are designed to never really die. 14446 RHS = RHS->IgnoreParenImpCasts(); 14447 14448 // This enum needs to match with the 'select' in 14449 // warn_objc_arc_literal_assign (off-by-1). 14450 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 14451 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 14452 return false; 14453 14454 S.Diag(Loc, diag::warn_arc_literal_assign) 14455 << (unsigned) Kind 14456 << (isProperty ? 0 : 1) 14457 << RHS->getSourceRange(); 14458 14459 return true; 14460 } 14461 14462 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 14463 Qualifiers::ObjCLifetime LT, 14464 Expr *RHS, bool isProperty) { 14465 // Strip off any implicit cast added to get to the one ARC-specific. 14466 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14467 if (cast->getCastKind() == CK_ARCConsumeObject) { 14468 S.Diag(Loc, diag::warn_arc_retained_assign) 14469 << (LT == Qualifiers::OCL_ExplicitNone) 14470 << (isProperty ? 0 : 1) 14471 << RHS->getSourceRange(); 14472 return true; 14473 } 14474 RHS = cast->getSubExpr(); 14475 } 14476 14477 if (LT == Qualifiers::OCL_Weak && 14478 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 14479 return true; 14480 14481 return false; 14482 } 14483 14484 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 14485 QualType LHS, Expr *RHS) { 14486 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 14487 14488 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 14489 return false; 14490 14491 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 14492 return true; 14493 14494 return false; 14495 } 14496 14497 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 14498 Expr *LHS, Expr *RHS) { 14499 QualType LHSType; 14500 // PropertyRef on LHS type need be directly obtained from 14501 // its declaration as it has a PseudoType. 14502 ObjCPropertyRefExpr *PRE 14503 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 14504 if (PRE && !PRE->isImplicitProperty()) { 14505 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14506 if (PD) 14507 LHSType = PD->getType(); 14508 } 14509 14510 if (LHSType.isNull()) 14511 LHSType = LHS->getType(); 14512 14513 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 14514 14515 if (LT == Qualifiers::OCL_Weak) { 14516 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 14517 getCurFunction()->markSafeWeakUse(LHS); 14518 } 14519 14520 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 14521 return; 14522 14523 // FIXME. Check for other life times. 14524 if (LT != Qualifiers::OCL_None) 14525 return; 14526 14527 if (PRE) { 14528 if (PRE->isImplicitProperty()) 14529 return; 14530 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14531 if (!PD) 14532 return; 14533 14534 unsigned Attributes = PD->getPropertyAttributes(); 14535 if (Attributes & ObjCPropertyAttribute::kind_assign) { 14536 // when 'assign' attribute was not explicitly specified 14537 // by user, ignore it and rely on property type itself 14538 // for lifetime info. 14539 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 14540 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 14541 LHSType->isObjCRetainableType()) 14542 return; 14543 14544 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14545 if (cast->getCastKind() == CK_ARCConsumeObject) { 14546 Diag(Loc, diag::warn_arc_retained_property_assign) 14547 << RHS->getSourceRange(); 14548 return; 14549 } 14550 RHS = cast->getSubExpr(); 14551 } 14552 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 14553 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 14554 return; 14555 } 14556 } 14557 } 14558 14559 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 14560 14561 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 14562 SourceLocation StmtLoc, 14563 const NullStmt *Body) { 14564 // Do not warn if the body is a macro that expands to nothing, e.g: 14565 // 14566 // #define CALL(x) 14567 // if (condition) 14568 // CALL(0); 14569 if (Body->hasLeadingEmptyMacro()) 14570 return false; 14571 14572 // Get line numbers of statement and body. 14573 bool StmtLineInvalid; 14574 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 14575 &StmtLineInvalid); 14576 if (StmtLineInvalid) 14577 return false; 14578 14579 bool BodyLineInvalid; 14580 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 14581 &BodyLineInvalid); 14582 if (BodyLineInvalid) 14583 return false; 14584 14585 // Warn if null statement and body are on the same line. 14586 if (StmtLine != BodyLine) 14587 return false; 14588 14589 return true; 14590 } 14591 14592 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 14593 const Stmt *Body, 14594 unsigned DiagID) { 14595 // Since this is a syntactic check, don't emit diagnostic for template 14596 // instantiations, this just adds noise. 14597 if (CurrentInstantiationScope) 14598 return; 14599 14600 // The body should be a null statement. 14601 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14602 if (!NBody) 14603 return; 14604 14605 // Do the usual checks. 14606 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14607 return; 14608 14609 Diag(NBody->getSemiLoc(), DiagID); 14610 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14611 } 14612 14613 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 14614 const Stmt *PossibleBody) { 14615 assert(!CurrentInstantiationScope); // Ensured by caller 14616 14617 SourceLocation StmtLoc; 14618 const Stmt *Body; 14619 unsigned DiagID; 14620 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 14621 StmtLoc = FS->getRParenLoc(); 14622 Body = FS->getBody(); 14623 DiagID = diag::warn_empty_for_body; 14624 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 14625 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 14626 Body = WS->getBody(); 14627 DiagID = diag::warn_empty_while_body; 14628 } else 14629 return; // Neither `for' nor `while'. 14630 14631 // The body should be a null statement. 14632 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 14633 if (!NBody) 14634 return; 14635 14636 // Skip expensive checks if diagnostic is disabled. 14637 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 14638 return; 14639 14640 // Do the usual checks. 14641 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 14642 return; 14643 14644 // `for(...);' and `while(...);' are popular idioms, so in order to keep 14645 // noise level low, emit diagnostics only if for/while is followed by a 14646 // CompoundStmt, e.g.: 14647 // for (int i = 0; i < n; i++); 14648 // { 14649 // a(i); 14650 // } 14651 // or if for/while is followed by a statement with more indentation 14652 // than for/while itself: 14653 // for (int i = 0; i < n; i++); 14654 // a(i); 14655 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 14656 if (!ProbableTypo) { 14657 bool BodyColInvalid; 14658 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 14659 PossibleBody->getBeginLoc(), &BodyColInvalid); 14660 if (BodyColInvalid) 14661 return; 14662 14663 bool StmtColInvalid; 14664 unsigned StmtCol = 14665 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 14666 if (StmtColInvalid) 14667 return; 14668 14669 if (BodyCol > StmtCol) 14670 ProbableTypo = true; 14671 } 14672 14673 if (ProbableTypo) { 14674 Diag(NBody->getSemiLoc(), DiagID); 14675 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 14676 } 14677 } 14678 14679 //===--- CHECK: Warn on self move with std::move. -------------------------===// 14680 14681 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 14682 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 14683 SourceLocation OpLoc) { 14684 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 14685 return; 14686 14687 if (inTemplateInstantiation()) 14688 return; 14689 14690 // Strip parens and casts away. 14691 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 14692 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 14693 14694 // Check for a call expression 14695 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 14696 if (!CE || CE->getNumArgs() != 1) 14697 return; 14698 14699 // Check for a call to std::move 14700 if (!CE->isCallToStdMove()) 14701 return; 14702 14703 // Get argument from std::move 14704 RHSExpr = CE->getArg(0); 14705 14706 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 14707 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 14708 14709 // Two DeclRefExpr's, check that the decls are the same. 14710 if (LHSDeclRef && RHSDeclRef) { 14711 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14712 return; 14713 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14714 RHSDeclRef->getDecl()->getCanonicalDecl()) 14715 return; 14716 14717 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14718 << LHSExpr->getSourceRange() 14719 << RHSExpr->getSourceRange(); 14720 return; 14721 } 14722 14723 // Member variables require a different approach to check for self moves. 14724 // MemberExpr's are the same if every nested MemberExpr refers to the same 14725 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 14726 // the base Expr's are CXXThisExpr's. 14727 const Expr *LHSBase = LHSExpr; 14728 const Expr *RHSBase = RHSExpr; 14729 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 14730 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 14731 if (!LHSME || !RHSME) 14732 return; 14733 14734 while (LHSME && RHSME) { 14735 if (LHSME->getMemberDecl()->getCanonicalDecl() != 14736 RHSME->getMemberDecl()->getCanonicalDecl()) 14737 return; 14738 14739 LHSBase = LHSME->getBase(); 14740 RHSBase = RHSME->getBase(); 14741 LHSME = dyn_cast<MemberExpr>(LHSBase); 14742 RHSME = dyn_cast<MemberExpr>(RHSBase); 14743 } 14744 14745 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 14746 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 14747 if (LHSDeclRef && RHSDeclRef) { 14748 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 14749 return; 14750 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 14751 RHSDeclRef->getDecl()->getCanonicalDecl()) 14752 return; 14753 14754 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14755 << LHSExpr->getSourceRange() 14756 << RHSExpr->getSourceRange(); 14757 return; 14758 } 14759 14760 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 14761 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 14762 << LHSExpr->getSourceRange() 14763 << RHSExpr->getSourceRange(); 14764 } 14765 14766 //===--- Layout compatibility ----------------------------------------------// 14767 14768 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 14769 14770 /// Check if two enumeration types are layout-compatible. 14771 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 14772 // C++11 [dcl.enum] p8: 14773 // Two enumeration types are layout-compatible if they have the same 14774 // underlying type. 14775 return ED1->isComplete() && ED2->isComplete() && 14776 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 14777 } 14778 14779 /// Check if two fields are layout-compatible. 14780 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 14781 FieldDecl *Field2) { 14782 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 14783 return false; 14784 14785 if (Field1->isBitField() != Field2->isBitField()) 14786 return false; 14787 14788 if (Field1->isBitField()) { 14789 // Make sure that the bit-fields are the same length. 14790 unsigned Bits1 = Field1->getBitWidthValue(C); 14791 unsigned Bits2 = Field2->getBitWidthValue(C); 14792 14793 if (Bits1 != Bits2) 14794 return false; 14795 } 14796 14797 return true; 14798 } 14799 14800 /// Check if two standard-layout structs are layout-compatible. 14801 /// (C++11 [class.mem] p17) 14802 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 14803 RecordDecl *RD2) { 14804 // If both records are C++ classes, check that base classes match. 14805 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 14806 // If one of records is a CXXRecordDecl we are in C++ mode, 14807 // thus the other one is a CXXRecordDecl, too. 14808 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 14809 // Check number of base classes. 14810 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 14811 return false; 14812 14813 // Check the base classes. 14814 for (CXXRecordDecl::base_class_const_iterator 14815 Base1 = D1CXX->bases_begin(), 14816 BaseEnd1 = D1CXX->bases_end(), 14817 Base2 = D2CXX->bases_begin(); 14818 Base1 != BaseEnd1; 14819 ++Base1, ++Base2) { 14820 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 14821 return false; 14822 } 14823 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 14824 // If only RD2 is a C++ class, it should have zero base classes. 14825 if (D2CXX->getNumBases() > 0) 14826 return false; 14827 } 14828 14829 // Check the fields. 14830 RecordDecl::field_iterator Field2 = RD2->field_begin(), 14831 Field2End = RD2->field_end(), 14832 Field1 = RD1->field_begin(), 14833 Field1End = RD1->field_end(); 14834 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 14835 if (!isLayoutCompatible(C, *Field1, *Field2)) 14836 return false; 14837 } 14838 if (Field1 != Field1End || Field2 != Field2End) 14839 return false; 14840 14841 return true; 14842 } 14843 14844 /// Check if two standard-layout unions are layout-compatible. 14845 /// (C++11 [class.mem] p18) 14846 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 14847 RecordDecl *RD2) { 14848 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 14849 for (auto *Field2 : RD2->fields()) 14850 UnmatchedFields.insert(Field2); 14851 14852 for (auto *Field1 : RD1->fields()) { 14853 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 14854 I = UnmatchedFields.begin(), 14855 E = UnmatchedFields.end(); 14856 14857 for ( ; I != E; ++I) { 14858 if (isLayoutCompatible(C, Field1, *I)) { 14859 bool Result = UnmatchedFields.erase(*I); 14860 (void) Result; 14861 assert(Result); 14862 break; 14863 } 14864 } 14865 if (I == E) 14866 return false; 14867 } 14868 14869 return UnmatchedFields.empty(); 14870 } 14871 14872 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 14873 RecordDecl *RD2) { 14874 if (RD1->isUnion() != RD2->isUnion()) 14875 return false; 14876 14877 if (RD1->isUnion()) 14878 return isLayoutCompatibleUnion(C, RD1, RD2); 14879 else 14880 return isLayoutCompatibleStruct(C, RD1, RD2); 14881 } 14882 14883 /// Check if two types are layout-compatible in C++11 sense. 14884 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 14885 if (T1.isNull() || T2.isNull()) 14886 return false; 14887 14888 // C++11 [basic.types] p11: 14889 // If two types T1 and T2 are the same type, then T1 and T2 are 14890 // layout-compatible types. 14891 if (C.hasSameType(T1, T2)) 14892 return true; 14893 14894 T1 = T1.getCanonicalType().getUnqualifiedType(); 14895 T2 = T2.getCanonicalType().getUnqualifiedType(); 14896 14897 const Type::TypeClass TC1 = T1->getTypeClass(); 14898 const Type::TypeClass TC2 = T2->getTypeClass(); 14899 14900 if (TC1 != TC2) 14901 return false; 14902 14903 if (TC1 == Type::Enum) { 14904 return isLayoutCompatible(C, 14905 cast<EnumType>(T1)->getDecl(), 14906 cast<EnumType>(T2)->getDecl()); 14907 } else if (TC1 == Type::Record) { 14908 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 14909 return false; 14910 14911 return isLayoutCompatible(C, 14912 cast<RecordType>(T1)->getDecl(), 14913 cast<RecordType>(T2)->getDecl()); 14914 } 14915 14916 return false; 14917 } 14918 14919 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 14920 14921 /// Given a type tag expression find the type tag itself. 14922 /// 14923 /// \param TypeExpr Type tag expression, as it appears in user's code. 14924 /// 14925 /// \param VD Declaration of an identifier that appears in a type tag. 14926 /// 14927 /// \param MagicValue Type tag magic value. 14928 /// 14929 /// \param isConstantEvaluated wether the evalaution should be performed in 14930 14931 /// constant context. 14932 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 14933 const ValueDecl **VD, uint64_t *MagicValue, 14934 bool isConstantEvaluated) { 14935 while(true) { 14936 if (!TypeExpr) 14937 return false; 14938 14939 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 14940 14941 switch (TypeExpr->getStmtClass()) { 14942 case Stmt::UnaryOperatorClass: { 14943 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 14944 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 14945 TypeExpr = UO->getSubExpr(); 14946 continue; 14947 } 14948 return false; 14949 } 14950 14951 case Stmt::DeclRefExprClass: { 14952 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 14953 *VD = DRE->getDecl(); 14954 return true; 14955 } 14956 14957 case Stmt::IntegerLiteralClass: { 14958 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 14959 llvm::APInt MagicValueAPInt = IL->getValue(); 14960 if (MagicValueAPInt.getActiveBits() <= 64) { 14961 *MagicValue = MagicValueAPInt.getZExtValue(); 14962 return true; 14963 } else 14964 return false; 14965 } 14966 14967 case Stmt::BinaryConditionalOperatorClass: 14968 case Stmt::ConditionalOperatorClass: { 14969 const AbstractConditionalOperator *ACO = 14970 cast<AbstractConditionalOperator>(TypeExpr); 14971 bool Result; 14972 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 14973 isConstantEvaluated)) { 14974 if (Result) 14975 TypeExpr = ACO->getTrueExpr(); 14976 else 14977 TypeExpr = ACO->getFalseExpr(); 14978 continue; 14979 } 14980 return false; 14981 } 14982 14983 case Stmt::BinaryOperatorClass: { 14984 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 14985 if (BO->getOpcode() == BO_Comma) { 14986 TypeExpr = BO->getRHS(); 14987 continue; 14988 } 14989 return false; 14990 } 14991 14992 default: 14993 return false; 14994 } 14995 } 14996 } 14997 14998 /// Retrieve the C type corresponding to type tag TypeExpr. 14999 /// 15000 /// \param TypeExpr Expression that specifies a type tag. 15001 /// 15002 /// \param MagicValues Registered magic values. 15003 /// 15004 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 15005 /// kind. 15006 /// 15007 /// \param TypeInfo Information about the corresponding C type. 15008 /// 15009 /// \param isConstantEvaluated wether the evalaution should be performed in 15010 /// constant context. 15011 /// 15012 /// \returns true if the corresponding C type was found. 15013 static bool GetMatchingCType( 15014 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 15015 const ASTContext &Ctx, 15016 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 15017 *MagicValues, 15018 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 15019 bool isConstantEvaluated) { 15020 FoundWrongKind = false; 15021 15022 // Variable declaration that has type_tag_for_datatype attribute. 15023 const ValueDecl *VD = nullptr; 15024 15025 uint64_t MagicValue; 15026 15027 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 15028 return false; 15029 15030 if (VD) { 15031 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 15032 if (I->getArgumentKind() != ArgumentKind) { 15033 FoundWrongKind = true; 15034 return false; 15035 } 15036 TypeInfo.Type = I->getMatchingCType(); 15037 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 15038 TypeInfo.MustBeNull = I->getMustBeNull(); 15039 return true; 15040 } 15041 return false; 15042 } 15043 15044 if (!MagicValues) 15045 return false; 15046 15047 llvm::DenseMap<Sema::TypeTagMagicValue, 15048 Sema::TypeTagData>::const_iterator I = 15049 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 15050 if (I == MagicValues->end()) 15051 return false; 15052 15053 TypeInfo = I->second; 15054 return true; 15055 } 15056 15057 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 15058 uint64_t MagicValue, QualType Type, 15059 bool LayoutCompatible, 15060 bool MustBeNull) { 15061 if (!TypeTagForDatatypeMagicValues) 15062 TypeTagForDatatypeMagicValues.reset( 15063 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 15064 15065 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 15066 (*TypeTagForDatatypeMagicValues)[Magic] = 15067 TypeTagData(Type, LayoutCompatible, MustBeNull); 15068 } 15069 15070 static bool IsSameCharType(QualType T1, QualType T2) { 15071 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 15072 if (!BT1) 15073 return false; 15074 15075 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 15076 if (!BT2) 15077 return false; 15078 15079 BuiltinType::Kind T1Kind = BT1->getKind(); 15080 BuiltinType::Kind T2Kind = BT2->getKind(); 15081 15082 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 15083 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 15084 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 15085 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 15086 } 15087 15088 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 15089 const ArrayRef<const Expr *> ExprArgs, 15090 SourceLocation CallSiteLoc) { 15091 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 15092 bool IsPointerAttr = Attr->getIsPointer(); 15093 15094 // Retrieve the argument representing the 'type_tag'. 15095 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 15096 if (TypeTagIdxAST >= ExprArgs.size()) { 15097 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15098 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 15099 return; 15100 } 15101 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 15102 bool FoundWrongKind; 15103 TypeTagData TypeInfo; 15104 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 15105 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 15106 TypeInfo, isConstantEvaluated())) { 15107 if (FoundWrongKind) 15108 Diag(TypeTagExpr->getExprLoc(), 15109 diag::warn_type_tag_for_datatype_wrong_kind) 15110 << TypeTagExpr->getSourceRange(); 15111 return; 15112 } 15113 15114 // Retrieve the argument representing the 'arg_idx'. 15115 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 15116 if (ArgumentIdxAST >= ExprArgs.size()) { 15117 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15118 << 1 << Attr->getArgumentIdx().getSourceIndex(); 15119 return; 15120 } 15121 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 15122 if (IsPointerAttr) { 15123 // Skip implicit cast of pointer to `void *' (as a function argument). 15124 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 15125 if (ICE->getType()->isVoidPointerType() && 15126 ICE->getCastKind() == CK_BitCast) 15127 ArgumentExpr = ICE->getSubExpr(); 15128 } 15129 QualType ArgumentType = ArgumentExpr->getType(); 15130 15131 // Passing a `void*' pointer shouldn't trigger a warning. 15132 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 15133 return; 15134 15135 if (TypeInfo.MustBeNull) { 15136 // Type tag with matching void type requires a null pointer. 15137 if (!ArgumentExpr->isNullPointerConstant(Context, 15138 Expr::NPC_ValueDependentIsNotNull)) { 15139 Diag(ArgumentExpr->getExprLoc(), 15140 diag::warn_type_safety_null_pointer_required) 15141 << ArgumentKind->getName() 15142 << ArgumentExpr->getSourceRange() 15143 << TypeTagExpr->getSourceRange(); 15144 } 15145 return; 15146 } 15147 15148 QualType RequiredType = TypeInfo.Type; 15149 if (IsPointerAttr) 15150 RequiredType = Context.getPointerType(RequiredType); 15151 15152 bool mismatch = false; 15153 if (!TypeInfo.LayoutCompatible) { 15154 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 15155 15156 // C++11 [basic.fundamental] p1: 15157 // Plain char, signed char, and unsigned char are three distinct types. 15158 // 15159 // But we treat plain `char' as equivalent to `signed char' or `unsigned 15160 // char' depending on the current char signedness mode. 15161 if (mismatch) 15162 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 15163 RequiredType->getPointeeType())) || 15164 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 15165 mismatch = false; 15166 } else 15167 if (IsPointerAttr) 15168 mismatch = !isLayoutCompatible(Context, 15169 ArgumentType->getPointeeType(), 15170 RequiredType->getPointeeType()); 15171 else 15172 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 15173 15174 if (mismatch) 15175 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 15176 << ArgumentType << ArgumentKind 15177 << TypeInfo.LayoutCompatible << RequiredType 15178 << ArgumentExpr->getSourceRange() 15179 << TypeTagExpr->getSourceRange(); 15180 } 15181 15182 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 15183 CharUnits Alignment) { 15184 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 15185 } 15186 15187 void Sema::DiagnoseMisalignedMembers() { 15188 for (MisalignedMember &m : MisalignedMembers) { 15189 const NamedDecl *ND = m.RD; 15190 if (ND->getName().empty()) { 15191 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 15192 ND = TD; 15193 } 15194 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 15195 << m.MD << ND << m.E->getSourceRange(); 15196 } 15197 MisalignedMembers.clear(); 15198 } 15199 15200 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 15201 E = E->IgnoreParens(); 15202 if (!T->isPointerType() && !T->isIntegerType()) 15203 return; 15204 if (isa<UnaryOperator>(E) && 15205 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 15206 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 15207 if (isa<MemberExpr>(Op)) { 15208 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 15209 if (MA != MisalignedMembers.end() && 15210 (T->isIntegerType() || 15211 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 15212 Context.getTypeAlignInChars( 15213 T->getPointeeType()) <= MA->Alignment)))) 15214 MisalignedMembers.erase(MA); 15215 } 15216 } 15217 } 15218 15219 void Sema::RefersToMemberWithReducedAlignment( 15220 Expr *E, 15221 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 15222 Action) { 15223 const auto *ME = dyn_cast<MemberExpr>(E); 15224 if (!ME) 15225 return; 15226 15227 // No need to check expressions with an __unaligned-qualified type. 15228 if (E->getType().getQualifiers().hasUnaligned()) 15229 return; 15230 15231 // For a chain of MemberExpr like "a.b.c.d" this list 15232 // will keep FieldDecl's like [d, c, b]. 15233 SmallVector<FieldDecl *, 4> ReverseMemberChain; 15234 const MemberExpr *TopME = nullptr; 15235 bool AnyIsPacked = false; 15236 do { 15237 QualType BaseType = ME->getBase()->getType(); 15238 if (BaseType->isDependentType()) 15239 return; 15240 if (ME->isArrow()) 15241 BaseType = BaseType->getPointeeType(); 15242 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 15243 if (RD->isInvalidDecl()) 15244 return; 15245 15246 ValueDecl *MD = ME->getMemberDecl(); 15247 auto *FD = dyn_cast<FieldDecl>(MD); 15248 // We do not care about non-data members. 15249 if (!FD || FD->isInvalidDecl()) 15250 return; 15251 15252 AnyIsPacked = 15253 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 15254 ReverseMemberChain.push_back(FD); 15255 15256 TopME = ME; 15257 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 15258 } while (ME); 15259 assert(TopME && "We did not compute a topmost MemberExpr!"); 15260 15261 // Not the scope of this diagnostic. 15262 if (!AnyIsPacked) 15263 return; 15264 15265 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 15266 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 15267 // TODO: The innermost base of the member expression may be too complicated. 15268 // For now, just disregard these cases. This is left for future 15269 // improvement. 15270 if (!DRE && !isa<CXXThisExpr>(TopBase)) 15271 return; 15272 15273 // Alignment expected by the whole expression. 15274 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 15275 15276 // No need to do anything else with this case. 15277 if (ExpectedAlignment.isOne()) 15278 return; 15279 15280 // Synthesize offset of the whole access. 15281 CharUnits Offset; 15282 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 15283 I++) { 15284 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 15285 } 15286 15287 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 15288 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 15289 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 15290 15291 // The base expression of the innermost MemberExpr may give 15292 // stronger guarantees than the class containing the member. 15293 if (DRE && !TopME->isArrow()) { 15294 const ValueDecl *VD = DRE->getDecl(); 15295 if (!VD->getType()->isReferenceType()) 15296 CompleteObjectAlignment = 15297 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 15298 } 15299 15300 // Check if the synthesized offset fulfills the alignment. 15301 if (Offset % ExpectedAlignment != 0 || 15302 // It may fulfill the offset it but the effective alignment may still be 15303 // lower than the expected expression alignment. 15304 CompleteObjectAlignment < ExpectedAlignment) { 15305 // If this happens, we want to determine a sensible culprit of this. 15306 // Intuitively, watching the chain of member expressions from right to 15307 // left, we start with the required alignment (as required by the field 15308 // type) but some packed attribute in that chain has reduced the alignment. 15309 // It may happen that another packed structure increases it again. But if 15310 // we are here such increase has not been enough. So pointing the first 15311 // FieldDecl that either is packed or else its RecordDecl is, 15312 // seems reasonable. 15313 FieldDecl *FD = nullptr; 15314 CharUnits Alignment; 15315 for (FieldDecl *FDI : ReverseMemberChain) { 15316 if (FDI->hasAttr<PackedAttr>() || 15317 FDI->getParent()->hasAttr<PackedAttr>()) { 15318 FD = FDI; 15319 Alignment = std::min( 15320 Context.getTypeAlignInChars(FD->getType()), 15321 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 15322 break; 15323 } 15324 } 15325 assert(FD && "We did not find a packed FieldDecl!"); 15326 Action(E, FD->getParent(), FD, Alignment); 15327 } 15328 } 15329 15330 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 15331 using namespace std::placeholders; 15332 15333 RefersToMemberWithReducedAlignment( 15334 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 15335 _2, _3, _4)); 15336 } 15337 15338 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 15339 ExprResult CallResult) { 15340 if (checkArgCount(*this, TheCall, 1)) 15341 return ExprError(); 15342 15343 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 15344 if (MatrixArg.isInvalid()) 15345 return MatrixArg; 15346 Expr *Matrix = MatrixArg.get(); 15347 15348 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 15349 if (!MType) { 15350 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 15351 return ExprError(); 15352 } 15353 15354 // Create returned matrix type by swapping rows and columns of the argument 15355 // matrix type. 15356 QualType ResultType = Context.getConstantMatrixType( 15357 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 15358 15359 // Change the return type to the type of the returned matrix. 15360 TheCall->setType(ResultType); 15361 15362 // Update call argument to use the possibly converted matrix argument. 15363 TheCall->setArg(0, Matrix); 15364 return CallResult; 15365 } 15366 15367 // Get and verify the matrix dimensions. 15368 static llvm::Optional<unsigned> 15369 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 15370 llvm::APSInt Value(64); 15371 SourceLocation ErrorPos; 15372 if (!Expr->isIntegerConstantExpr(Value, S.Context, &ErrorPos)) { 15373 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 15374 << Name; 15375 return {}; 15376 } 15377 uint64_t Dim = Value.getZExtValue(); 15378 if (!ConstantMatrixType::isDimensionValid(Dim)) { 15379 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 15380 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 15381 return {}; 15382 } 15383 return Dim; 15384 } 15385 15386 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 15387 ExprResult CallResult) { 15388 if (!getLangOpts().MatrixTypes) { 15389 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 15390 return ExprError(); 15391 } 15392 15393 if (checkArgCount(*this, TheCall, 4)) 15394 return ExprError(); 15395 15396 unsigned PtrArgIdx = 0; 15397 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15398 Expr *RowsExpr = TheCall->getArg(1); 15399 Expr *ColumnsExpr = TheCall->getArg(2); 15400 Expr *StrideExpr = TheCall->getArg(3); 15401 15402 bool ArgError = false; 15403 15404 // Check pointer argument. 15405 { 15406 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15407 if (PtrConv.isInvalid()) 15408 return PtrConv; 15409 PtrExpr = PtrConv.get(); 15410 TheCall->setArg(0, PtrExpr); 15411 if (PtrExpr->isTypeDependent()) { 15412 TheCall->setType(Context.DependentTy); 15413 return TheCall; 15414 } 15415 } 15416 15417 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15418 QualType ElementTy; 15419 if (!PtrTy) { 15420 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15421 << PtrArgIdx + 1; 15422 ArgError = true; 15423 } else { 15424 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 15425 15426 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 15427 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15428 << PtrArgIdx + 1; 15429 ArgError = true; 15430 } 15431 } 15432 15433 // Apply default Lvalue conversions and convert the expression to size_t. 15434 auto ApplyArgumentConversions = [this](Expr *E) { 15435 ExprResult Conv = DefaultLvalueConversion(E); 15436 if (Conv.isInvalid()) 15437 return Conv; 15438 15439 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 15440 }; 15441 15442 // Apply conversion to row and column expressions. 15443 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 15444 if (!RowsConv.isInvalid()) { 15445 RowsExpr = RowsConv.get(); 15446 TheCall->setArg(1, RowsExpr); 15447 } else 15448 RowsExpr = nullptr; 15449 15450 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 15451 if (!ColumnsConv.isInvalid()) { 15452 ColumnsExpr = ColumnsConv.get(); 15453 TheCall->setArg(2, ColumnsExpr); 15454 } else 15455 ColumnsExpr = nullptr; 15456 15457 // If any any part of the result matrix type is still pending, just use 15458 // Context.DependentTy, until all parts are resolved. 15459 if ((RowsExpr && RowsExpr->isTypeDependent()) || 15460 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 15461 TheCall->setType(Context.DependentTy); 15462 return CallResult; 15463 } 15464 15465 // Check row and column dimenions. 15466 llvm::Optional<unsigned> MaybeRows; 15467 if (RowsExpr) 15468 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 15469 15470 llvm::Optional<unsigned> MaybeColumns; 15471 if (ColumnsExpr) 15472 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 15473 15474 // Check stride argument. 15475 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 15476 if (StrideConv.isInvalid()) 15477 return ExprError(); 15478 StrideExpr = StrideConv.get(); 15479 TheCall->setArg(3, StrideExpr); 15480 15481 llvm::APSInt Value(64); 15482 if (MaybeRows && StrideExpr->isIntegerConstantExpr(Value, Context)) { 15483 uint64_t Stride = Value.getZExtValue(); 15484 if (Stride < *MaybeRows) { 15485 Diag(StrideExpr->getBeginLoc(), 15486 diag::err_builtin_matrix_stride_too_small); 15487 ArgError = true; 15488 } 15489 } 15490 15491 if (ArgError || !MaybeRows || !MaybeColumns) 15492 return ExprError(); 15493 15494 TheCall->setType( 15495 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 15496 return CallResult; 15497 } 15498 15499 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 15500 ExprResult CallResult) { 15501 if (checkArgCount(*this, TheCall, 3)) 15502 return ExprError(); 15503 15504 unsigned PtrArgIdx = 1; 15505 Expr *MatrixExpr = TheCall->getArg(0); 15506 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15507 Expr *StrideExpr = TheCall->getArg(2); 15508 15509 bool ArgError = false; 15510 15511 { 15512 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 15513 if (MatrixConv.isInvalid()) 15514 return MatrixConv; 15515 MatrixExpr = MatrixConv.get(); 15516 TheCall->setArg(0, MatrixExpr); 15517 } 15518 if (MatrixExpr->isTypeDependent()) { 15519 TheCall->setType(Context.DependentTy); 15520 return TheCall; 15521 } 15522 15523 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 15524 if (!MatrixTy) { 15525 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 15526 ArgError = true; 15527 } 15528 15529 { 15530 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15531 if (PtrConv.isInvalid()) 15532 return PtrConv; 15533 PtrExpr = PtrConv.get(); 15534 TheCall->setArg(1, PtrExpr); 15535 if (PtrExpr->isTypeDependent()) { 15536 TheCall->setType(Context.DependentTy); 15537 return TheCall; 15538 } 15539 } 15540 15541 // Check pointer argument. 15542 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15543 if (!PtrTy) { 15544 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15545 << PtrArgIdx + 1; 15546 ArgError = true; 15547 } else { 15548 QualType ElementTy = PtrTy->getPointeeType(); 15549 if (ElementTy.isConstQualified()) { 15550 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 15551 ArgError = true; 15552 } 15553 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 15554 if (MatrixTy && 15555 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 15556 Diag(PtrExpr->getBeginLoc(), 15557 diag::err_builtin_matrix_pointer_arg_mismatch) 15558 << ElementTy << MatrixTy->getElementType(); 15559 ArgError = true; 15560 } 15561 } 15562 15563 // Apply default Lvalue conversions and convert the stride expression to 15564 // size_t. 15565 { 15566 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 15567 if (StrideConv.isInvalid()) 15568 return StrideConv; 15569 15570 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 15571 if (StrideConv.isInvalid()) 15572 return StrideConv; 15573 StrideExpr = StrideConv.get(); 15574 TheCall->setArg(2, StrideExpr); 15575 } 15576 15577 // Check stride argument. 15578 llvm::APSInt Value(64); 15579 if (MatrixTy && StrideExpr->isIntegerConstantExpr(Value, Context)) { 15580 uint64_t Stride = Value.getZExtValue(); 15581 if (Stride < MatrixTy->getNumRows()) { 15582 Diag(StrideExpr->getBeginLoc(), 15583 diag::err_builtin_matrix_stride_too_small); 15584 ArgError = true; 15585 } 15586 } 15587 15588 if (ArgError) 15589 return ExprError(); 15590 15591 return CallResult; 15592 } 15593