xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaChecking.cpp (revision 79ac3c12a714bcd3f2354c52d948aed9575c46d6)
1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements extra semantic analysis beyond what is enforced
10 //  by the C type system.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/AttrIterator.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclBase.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclarationName.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/Expr.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/ExprObjC.h"
28 #include "clang/AST/ExprOpenMP.h"
29 #include "clang/AST/FormatString.h"
30 #include "clang/AST/NSAPI.h"
31 #include "clang/AST/NonTrivialTypeVisitor.h"
32 #include "clang/AST/OperationKinds.h"
33 #include "clang/AST/RecordLayout.h"
34 #include "clang/AST/Stmt.h"
35 #include "clang/AST/TemplateBase.h"
36 #include "clang/AST/Type.h"
37 #include "clang/AST/TypeLoc.h"
38 #include "clang/AST/UnresolvedSet.h"
39 #include "clang/Basic/AddressSpaces.h"
40 #include "clang/Basic/CharInfo.h"
41 #include "clang/Basic/Diagnostic.h"
42 #include "clang/Basic/IdentifierTable.h"
43 #include "clang/Basic/LLVM.h"
44 #include "clang/Basic/LangOptions.h"
45 #include "clang/Basic/OpenCLOptions.h"
46 #include "clang/Basic/OperatorKinds.h"
47 #include "clang/Basic/PartialDiagnostic.h"
48 #include "clang/Basic/SourceLocation.h"
49 #include "clang/Basic/SourceManager.h"
50 #include "clang/Basic/Specifiers.h"
51 #include "clang/Basic/SyncScope.h"
52 #include "clang/Basic/TargetBuiltins.h"
53 #include "clang/Basic/TargetCXXABI.h"
54 #include "clang/Basic/TargetInfo.h"
55 #include "clang/Basic/TypeTraits.h"
56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57 #include "clang/Sema/Initialization.h"
58 #include "clang/Sema/Lookup.h"
59 #include "clang/Sema/Ownership.h"
60 #include "clang/Sema/Scope.h"
61 #include "clang/Sema/ScopeInfo.h"
62 #include "clang/Sema/Sema.h"
63 #include "clang/Sema/SemaInternal.h"
64 #include "llvm/ADT/APFloat.h"
65 #include "llvm/ADT/APInt.h"
66 #include "llvm/ADT/APSInt.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/FoldingSet.h"
70 #include "llvm/ADT/None.h"
71 #include "llvm/ADT/Optional.h"
72 #include "llvm/ADT/STLExtras.h"
73 #include "llvm/ADT/SmallBitVector.h"
74 #include "llvm/ADT/SmallPtrSet.h"
75 #include "llvm/ADT/SmallString.h"
76 #include "llvm/ADT/SmallVector.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/ADT/StringSet.h"
79 #include "llvm/ADT/StringSwitch.h"
80 #include "llvm/ADT/Triple.h"
81 #include "llvm/Support/AtomicOrdering.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/Compiler.h"
84 #include "llvm/Support/ConvertUTF.h"
85 #include "llvm/Support/ErrorHandling.h"
86 #include "llvm/Support/Format.h"
87 #include "llvm/Support/Locale.h"
88 #include "llvm/Support/MathExtras.h"
89 #include "llvm/Support/SaveAndRestore.h"
90 #include "llvm/Support/raw_ostream.h"
91 #include <algorithm>
92 #include <bitset>
93 #include <cassert>
94 #include <cstddef>
95 #include <cstdint>
96 #include <functional>
97 #include <limits>
98 #include <string>
99 #include <tuple>
100 #include <utility>
101 
102 using namespace clang;
103 using namespace sema;
104 
105 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
106                                                     unsigned ByteNo) const {
107   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
108                                Context.getTargetInfo());
109 }
110 
111 /// Checks that a call expression's argument count is the desired number.
112 /// This is useful when doing custom type-checking.  Returns true on error.
113 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
114   unsigned argCount = call->getNumArgs();
115   if (argCount == desiredArgCount) return false;
116 
117   if (argCount < desiredArgCount)
118     return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
119            << 0 /*function call*/ << desiredArgCount << argCount
120            << call->getSourceRange();
121 
122   // Highlight all the excess arguments.
123   SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
124                     call->getArg(argCount - 1)->getEndLoc());
125 
126   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
127     << 0 /*function call*/ << desiredArgCount << argCount
128     << call->getArg(1)->getSourceRange();
129 }
130 
131 /// Check that the first argument to __builtin_annotation is an integer
132 /// and the second argument is a non-wide string literal.
133 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
134   if (checkArgCount(S, TheCall, 2))
135     return true;
136 
137   // First argument should be an integer.
138   Expr *ValArg = TheCall->getArg(0);
139   QualType Ty = ValArg->getType();
140   if (!Ty->isIntegerType()) {
141     S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
142         << ValArg->getSourceRange();
143     return true;
144   }
145 
146   // Second argument should be a constant string.
147   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
148   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
149   if (!Literal || !Literal->isAscii()) {
150     S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
151         << StrArg->getSourceRange();
152     return true;
153   }
154 
155   TheCall->setType(Ty);
156   return false;
157 }
158 
159 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
160   // We need at least one argument.
161   if (TheCall->getNumArgs() < 1) {
162     S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
163         << 0 << 1 << TheCall->getNumArgs()
164         << TheCall->getCallee()->getSourceRange();
165     return true;
166   }
167 
168   // All arguments should be wide string literals.
169   for (Expr *Arg : TheCall->arguments()) {
170     auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
171     if (!Literal || !Literal->isWide()) {
172       S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
173           << Arg->getSourceRange();
174       return true;
175     }
176   }
177 
178   return false;
179 }
180 
181 /// Check that the argument to __builtin_addressof is a glvalue, and set the
182 /// result type to the corresponding pointer type.
183 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
184   if (checkArgCount(S, TheCall, 1))
185     return true;
186 
187   ExprResult Arg(TheCall->getArg(0));
188   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
189   if (ResultType.isNull())
190     return true;
191 
192   TheCall->setArg(0, Arg.get());
193   TheCall->setType(ResultType);
194   return false;
195 }
196 
197 /// Check the number of arguments and set the result type to
198 /// the argument type.
199 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
200   if (checkArgCount(S, TheCall, 1))
201     return true;
202 
203   TheCall->setType(TheCall->getArg(0)->getType());
204   return false;
205 }
206 
207 /// Check that the value argument for __builtin_is_aligned(value, alignment) and
208 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
209 /// type (but not a function pointer) and that the alignment is a power-of-two.
210 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
211   if (checkArgCount(S, TheCall, 2))
212     return true;
213 
214   clang::Expr *Source = TheCall->getArg(0);
215   bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
216 
217   auto IsValidIntegerType = [](QualType Ty) {
218     return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
219   };
220   QualType SrcTy = Source->getType();
221   // We should also be able to use it with arrays (but not functions!).
222   if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
223     SrcTy = S.Context.getDecayedType(SrcTy);
224   }
225   if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
226       SrcTy->isFunctionPointerType()) {
227     // FIXME: this is not quite the right error message since we don't allow
228     // floating point types, or member pointers.
229     S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
230         << SrcTy;
231     return true;
232   }
233 
234   clang::Expr *AlignOp = TheCall->getArg(1);
235   if (!IsValidIntegerType(AlignOp->getType())) {
236     S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
237         << AlignOp->getType();
238     return true;
239   }
240   Expr::EvalResult AlignResult;
241   unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
242   // We can't check validity of alignment if it is value dependent.
243   if (!AlignOp->isValueDependent() &&
244       AlignOp->EvaluateAsInt(AlignResult, S.Context,
245                              Expr::SE_AllowSideEffects)) {
246     llvm::APSInt AlignValue = AlignResult.Val.getInt();
247     llvm::APSInt MaxValue(
248         llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
249     if (AlignValue < 1) {
250       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
251       return true;
252     }
253     if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
254       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
255           << MaxValue.toString(10);
256       return true;
257     }
258     if (!AlignValue.isPowerOf2()) {
259       S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
260       return true;
261     }
262     if (AlignValue == 1) {
263       S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
264           << IsBooleanAlignBuiltin;
265     }
266   }
267 
268   ExprResult SrcArg = S.PerformCopyInitialization(
269       InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
270       SourceLocation(), Source);
271   if (SrcArg.isInvalid())
272     return true;
273   TheCall->setArg(0, SrcArg.get());
274   ExprResult AlignArg =
275       S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
276                                       S.Context, AlignOp->getType(), false),
277                                   SourceLocation(), AlignOp);
278   if (AlignArg.isInvalid())
279     return true;
280   TheCall->setArg(1, AlignArg.get());
281   // For align_up/align_down, the return type is the same as the (potentially
282   // decayed) argument type including qualifiers. For is_aligned(), the result
283   // is always bool.
284   TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
285   return false;
286 }
287 
288 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
289                                 unsigned BuiltinID) {
290   if (checkArgCount(S, TheCall, 3))
291     return true;
292 
293   // First two arguments should be integers.
294   for (unsigned I = 0; I < 2; ++I) {
295     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
296     if (Arg.isInvalid()) return true;
297     TheCall->setArg(I, Arg.get());
298 
299     QualType Ty = Arg.get()->getType();
300     if (!Ty->isIntegerType()) {
301       S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
302           << Ty << Arg.get()->getSourceRange();
303       return true;
304     }
305   }
306 
307   // Third argument should be a pointer to a non-const integer.
308   // IRGen correctly handles volatile, restrict, and address spaces, and
309   // the other qualifiers aren't possible.
310   {
311     ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
312     if (Arg.isInvalid()) return true;
313     TheCall->setArg(2, Arg.get());
314 
315     QualType Ty = Arg.get()->getType();
316     const auto *PtrTy = Ty->getAs<PointerType>();
317     if (!PtrTy ||
318         !PtrTy->getPointeeType()->isIntegerType() ||
319         PtrTy->getPointeeType().isConstQualified()) {
320       S.Diag(Arg.get()->getBeginLoc(),
321              diag::err_overflow_builtin_must_be_ptr_int)
322         << Ty << Arg.get()->getSourceRange();
323       return true;
324     }
325   }
326 
327   // Disallow signed ExtIntType args larger than 128 bits to mul function until
328   // we improve backend support.
329   if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
330     for (unsigned I = 0; I < 3; ++I) {
331       const auto Arg = TheCall->getArg(I);
332       // Third argument will be a pointer.
333       auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
334       if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
335           S.getASTContext().getIntWidth(Ty) > 128)
336         return S.Diag(Arg->getBeginLoc(),
337                       diag::err_overflow_builtin_ext_int_max_size)
338                << 128;
339     }
340   }
341 
342   return false;
343 }
344 
345 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
346   if (checkArgCount(S, BuiltinCall, 2))
347     return true;
348 
349   SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
350   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
351   Expr *Call = BuiltinCall->getArg(0);
352   Expr *Chain = BuiltinCall->getArg(1);
353 
354   if (Call->getStmtClass() != Stmt::CallExprClass) {
355     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
356         << Call->getSourceRange();
357     return true;
358   }
359 
360   auto CE = cast<CallExpr>(Call);
361   if (CE->getCallee()->getType()->isBlockPointerType()) {
362     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
363         << Call->getSourceRange();
364     return true;
365   }
366 
367   const Decl *TargetDecl = CE->getCalleeDecl();
368   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
369     if (FD->getBuiltinID()) {
370       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
371           << Call->getSourceRange();
372       return true;
373     }
374 
375   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
376     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
377         << Call->getSourceRange();
378     return true;
379   }
380 
381   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
382   if (ChainResult.isInvalid())
383     return true;
384   if (!ChainResult.get()->getType()->isPointerType()) {
385     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
386         << Chain->getSourceRange();
387     return true;
388   }
389 
390   QualType ReturnTy = CE->getCallReturnType(S.Context);
391   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
392   QualType BuiltinTy = S.Context.getFunctionType(
393       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
394   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
395 
396   Builtin =
397       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
398 
399   BuiltinCall->setType(CE->getType());
400   BuiltinCall->setValueKind(CE->getValueKind());
401   BuiltinCall->setObjectKind(CE->getObjectKind());
402   BuiltinCall->setCallee(Builtin);
403   BuiltinCall->setArg(1, ChainResult.get());
404 
405   return false;
406 }
407 
408 namespace {
409 
410 class EstimateSizeFormatHandler
411     : public analyze_format_string::FormatStringHandler {
412   size_t Size;
413 
414 public:
415   EstimateSizeFormatHandler(StringRef Format)
416       : Size(std::min(Format.find(0), Format.size()) +
417              1 /* null byte always written by sprintf */) {}
418 
419   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
420                              const char *, unsigned SpecifierLen) override {
421 
422     const size_t FieldWidth = computeFieldWidth(FS);
423     const size_t Precision = computePrecision(FS);
424 
425     // The actual format.
426     switch (FS.getConversionSpecifier().getKind()) {
427     // Just a char.
428     case analyze_format_string::ConversionSpecifier::cArg:
429     case analyze_format_string::ConversionSpecifier::CArg:
430       Size += std::max(FieldWidth, (size_t)1);
431       break;
432     // Just an integer.
433     case analyze_format_string::ConversionSpecifier::dArg:
434     case analyze_format_string::ConversionSpecifier::DArg:
435     case analyze_format_string::ConversionSpecifier::iArg:
436     case analyze_format_string::ConversionSpecifier::oArg:
437     case analyze_format_string::ConversionSpecifier::OArg:
438     case analyze_format_string::ConversionSpecifier::uArg:
439     case analyze_format_string::ConversionSpecifier::UArg:
440     case analyze_format_string::ConversionSpecifier::xArg:
441     case analyze_format_string::ConversionSpecifier::XArg:
442       Size += std::max(FieldWidth, Precision);
443       break;
444 
445     // %g style conversion switches between %f or %e style dynamically.
446     // %f always takes less space, so default to it.
447     case analyze_format_string::ConversionSpecifier::gArg:
448     case analyze_format_string::ConversionSpecifier::GArg:
449 
450     // Floating point number in the form '[+]ddd.ddd'.
451     case analyze_format_string::ConversionSpecifier::fArg:
452     case analyze_format_string::ConversionSpecifier::FArg:
453       Size += std::max(FieldWidth, 1 /* integer part */ +
454                                        (Precision ? 1 + Precision
455                                                   : 0) /* period + decimal */);
456       break;
457 
458     // Floating point number in the form '[-]d.ddde[+-]dd'.
459     case analyze_format_string::ConversionSpecifier::eArg:
460     case analyze_format_string::ConversionSpecifier::EArg:
461       Size +=
462           std::max(FieldWidth,
463                    1 /* integer part */ +
464                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
465                        1 /* e or E letter */ + 2 /* exponent */);
466       break;
467 
468     // Floating point number in the form '[-]0xh.hhhhp±dd'.
469     case analyze_format_string::ConversionSpecifier::aArg:
470     case analyze_format_string::ConversionSpecifier::AArg:
471       Size +=
472           std::max(FieldWidth,
473                    2 /* 0x */ + 1 /* integer part */ +
474                        (Precision ? 1 + Precision : 0) /* period + decimal */ +
475                        1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
476       break;
477 
478     // Just a string.
479     case analyze_format_string::ConversionSpecifier::sArg:
480     case analyze_format_string::ConversionSpecifier::SArg:
481       Size += FieldWidth;
482       break;
483 
484     // Just a pointer in the form '0xddd'.
485     case analyze_format_string::ConversionSpecifier::pArg:
486       Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
487       break;
488 
489     // A plain percent.
490     case analyze_format_string::ConversionSpecifier::PercentArg:
491       Size += 1;
492       break;
493 
494     default:
495       break;
496     }
497 
498     Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
499 
500     if (FS.hasAlternativeForm()) {
501       switch (FS.getConversionSpecifier().getKind()) {
502       default:
503         break;
504       // Force a leading '0'.
505       case analyze_format_string::ConversionSpecifier::oArg:
506         Size += 1;
507         break;
508       // Force a leading '0x'.
509       case analyze_format_string::ConversionSpecifier::xArg:
510       case analyze_format_string::ConversionSpecifier::XArg:
511         Size += 2;
512         break;
513       // Force a period '.' before decimal, even if precision is 0.
514       case analyze_format_string::ConversionSpecifier::aArg:
515       case analyze_format_string::ConversionSpecifier::AArg:
516       case analyze_format_string::ConversionSpecifier::eArg:
517       case analyze_format_string::ConversionSpecifier::EArg:
518       case analyze_format_string::ConversionSpecifier::fArg:
519       case analyze_format_string::ConversionSpecifier::FArg:
520       case analyze_format_string::ConversionSpecifier::gArg:
521       case analyze_format_string::ConversionSpecifier::GArg:
522         Size += (Precision ? 0 : 1);
523         break;
524       }
525     }
526     assert(SpecifierLen <= Size && "no underflow");
527     Size -= SpecifierLen;
528     return true;
529   }
530 
531   size_t getSizeLowerBound() const { return Size; }
532 
533 private:
534   static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
535     const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
536     size_t FieldWidth = 0;
537     if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
538       FieldWidth = FW.getConstantAmount();
539     return FieldWidth;
540   }
541 
542   static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
543     const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
544     size_t Precision = 0;
545 
546     // See man 3 printf for default precision value based on the specifier.
547     switch (FW.getHowSpecified()) {
548     case analyze_format_string::OptionalAmount::NotSpecified:
549       switch (FS.getConversionSpecifier().getKind()) {
550       default:
551         break;
552       case analyze_format_string::ConversionSpecifier::dArg: // %d
553       case analyze_format_string::ConversionSpecifier::DArg: // %D
554       case analyze_format_string::ConversionSpecifier::iArg: // %i
555         Precision = 1;
556         break;
557       case analyze_format_string::ConversionSpecifier::oArg: // %d
558       case analyze_format_string::ConversionSpecifier::OArg: // %D
559       case analyze_format_string::ConversionSpecifier::uArg: // %d
560       case analyze_format_string::ConversionSpecifier::UArg: // %D
561       case analyze_format_string::ConversionSpecifier::xArg: // %d
562       case analyze_format_string::ConversionSpecifier::XArg: // %D
563         Precision = 1;
564         break;
565       case analyze_format_string::ConversionSpecifier::fArg: // %f
566       case analyze_format_string::ConversionSpecifier::FArg: // %F
567       case analyze_format_string::ConversionSpecifier::eArg: // %e
568       case analyze_format_string::ConversionSpecifier::EArg: // %E
569       case analyze_format_string::ConversionSpecifier::gArg: // %g
570       case analyze_format_string::ConversionSpecifier::GArg: // %G
571         Precision = 6;
572         break;
573       case analyze_format_string::ConversionSpecifier::pArg: // %d
574         Precision = 1;
575         break;
576       }
577       break;
578     case analyze_format_string::OptionalAmount::Constant:
579       Precision = FW.getConstantAmount();
580       break;
581     default:
582       break;
583     }
584     return Precision;
585   }
586 };
587 
588 } // namespace
589 
590 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
591 /// __builtin_*_chk function, then use the object size argument specified in the
592 /// source. Otherwise, infer the object size using __builtin_object_size.
593 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
594                                                CallExpr *TheCall) {
595   // FIXME: There are some more useful checks we could be doing here:
596   //  - Evaluate strlen of strcpy arguments, use as object size.
597 
598   if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
599       isConstantEvaluated())
600     return;
601 
602   unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
603   if (!BuiltinID)
604     return;
605 
606   const TargetInfo &TI = getASTContext().getTargetInfo();
607   unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
608 
609   unsigned DiagID = 0;
610   bool IsChkVariant = false;
611   Optional<llvm::APSInt> UsedSize;
612   unsigned SizeIndex, ObjectIndex;
613   switch (BuiltinID) {
614   default:
615     return;
616   case Builtin::BIsprintf:
617   case Builtin::BI__builtin___sprintf_chk: {
618     size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
619     auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
620 
621     if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
622 
623       if (!Format->isAscii() && !Format->isUTF8())
624         return;
625 
626       StringRef FormatStrRef = Format->getString();
627       EstimateSizeFormatHandler H(FormatStrRef);
628       const char *FormatBytes = FormatStrRef.data();
629       const ConstantArrayType *T =
630           Context.getAsConstantArrayType(Format->getType());
631       assert(T && "String literal not of constant array type!");
632       size_t TypeSize = T->getSize().getZExtValue();
633 
634       // In case there's a null byte somewhere.
635       size_t StrLen =
636           std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
637       if (!analyze_format_string::ParsePrintfString(
638               H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
639               Context.getTargetInfo(), false)) {
640         DiagID = diag::warn_fortify_source_format_overflow;
641         UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
642                        .extOrTrunc(SizeTypeWidth);
643         if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
644           IsChkVariant = true;
645           ObjectIndex = 2;
646         } else {
647           IsChkVariant = false;
648           ObjectIndex = 0;
649         }
650         break;
651       }
652     }
653     return;
654   }
655   case Builtin::BI__builtin___memcpy_chk:
656   case Builtin::BI__builtin___memmove_chk:
657   case Builtin::BI__builtin___memset_chk:
658   case Builtin::BI__builtin___strlcat_chk:
659   case Builtin::BI__builtin___strlcpy_chk:
660   case Builtin::BI__builtin___strncat_chk:
661   case Builtin::BI__builtin___strncpy_chk:
662   case Builtin::BI__builtin___stpncpy_chk:
663   case Builtin::BI__builtin___memccpy_chk:
664   case Builtin::BI__builtin___mempcpy_chk: {
665     DiagID = diag::warn_builtin_chk_overflow;
666     IsChkVariant = true;
667     SizeIndex = TheCall->getNumArgs() - 2;
668     ObjectIndex = TheCall->getNumArgs() - 1;
669     break;
670   }
671 
672   case Builtin::BI__builtin___snprintf_chk:
673   case Builtin::BI__builtin___vsnprintf_chk: {
674     DiagID = diag::warn_builtin_chk_overflow;
675     IsChkVariant = true;
676     SizeIndex = 1;
677     ObjectIndex = 3;
678     break;
679   }
680 
681   case Builtin::BIstrncat:
682   case Builtin::BI__builtin_strncat:
683   case Builtin::BIstrncpy:
684   case Builtin::BI__builtin_strncpy:
685   case Builtin::BIstpncpy:
686   case Builtin::BI__builtin_stpncpy: {
687     // Whether these functions overflow depends on the runtime strlen of the
688     // string, not just the buffer size, so emitting the "always overflow"
689     // diagnostic isn't quite right. We should still diagnose passing a buffer
690     // size larger than the destination buffer though; this is a runtime abort
691     // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
692     DiagID = diag::warn_fortify_source_size_mismatch;
693     SizeIndex = TheCall->getNumArgs() - 1;
694     ObjectIndex = 0;
695     break;
696   }
697 
698   case Builtin::BImemcpy:
699   case Builtin::BI__builtin_memcpy:
700   case Builtin::BImemmove:
701   case Builtin::BI__builtin_memmove:
702   case Builtin::BImemset:
703   case Builtin::BI__builtin_memset:
704   case Builtin::BImempcpy:
705   case Builtin::BI__builtin_mempcpy: {
706     DiagID = diag::warn_fortify_source_overflow;
707     SizeIndex = TheCall->getNumArgs() - 1;
708     ObjectIndex = 0;
709     break;
710   }
711   case Builtin::BIsnprintf:
712   case Builtin::BI__builtin_snprintf:
713   case Builtin::BIvsnprintf:
714   case Builtin::BI__builtin_vsnprintf: {
715     DiagID = diag::warn_fortify_source_size_mismatch;
716     SizeIndex = 1;
717     ObjectIndex = 0;
718     break;
719   }
720   }
721 
722   llvm::APSInt ObjectSize;
723   // For __builtin___*_chk, the object size is explicitly provided by the caller
724   // (usually using __builtin_object_size). Use that value to check this call.
725   if (IsChkVariant) {
726     Expr::EvalResult Result;
727     Expr *SizeArg = TheCall->getArg(ObjectIndex);
728     if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
729       return;
730     ObjectSize = Result.Val.getInt();
731 
732   // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
733   } else {
734     // If the parameter has a pass_object_size attribute, then we should use its
735     // (potentially) more strict checking mode. Otherwise, conservatively assume
736     // type 0.
737     int BOSType = 0;
738     if (const auto *POS =
739             FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
740       BOSType = POS->getType();
741 
742     Expr *ObjArg = TheCall->getArg(ObjectIndex);
743     uint64_t Result;
744     if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
745       return;
746     // Get the object size in the target's size_t width.
747     ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
748   }
749 
750   // Evaluate the number of bytes of the object that this call will use.
751   if (!UsedSize) {
752     Expr::EvalResult Result;
753     Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
754     if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
755       return;
756     UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
757   }
758 
759   if (UsedSize.getValue().ule(ObjectSize))
760     return;
761 
762   StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
763   // Skim off the details of whichever builtin was called to produce a better
764   // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
765   if (IsChkVariant) {
766     FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
767     FunctionName = FunctionName.drop_back(std::strlen("_chk"));
768   } else if (FunctionName.startswith("__builtin_")) {
769     FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
770   }
771 
772   DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
773                       PDiag(DiagID)
774                           << FunctionName << ObjectSize.toString(/*Radix=*/10)
775                           << UsedSize.getValue().toString(/*Radix=*/10));
776 }
777 
778 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
779                                      Scope::ScopeFlags NeededScopeFlags,
780                                      unsigned DiagID) {
781   // Scopes aren't available during instantiation. Fortunately, builtin
782   // functions cannot be template args so they cannot be formed through template
783   // instantiation. Therefore checking once during the parse is sufficient.
784   if (SemaRef.inTemplateInstantiation())
785     return false;
786 
787   Scope *S = SemaRef.getCurScope();
788   while (S && !S->isSEHExceptScope())
789     S = S->getParent();
790   if (!S || !(S->getFlags() & NeededScopeFlags)) {
791     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
792     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
793         << DRE->getDecl()->getIdentifier();
794     return true;
795   }
796 
797   return false;
798 }
799 
800 static inline bool isBlockPointer(Expr *Arg) {
801   return Arg->getType()->isBlockPointerType();
802 }
803 
804 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
805 /// void*, which is a requirement of device side enqueue.
806 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
807   const BlockPointerType *BPT =
808       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
809   ArrayRef<QualType> Params =
810       BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
811   unsigned ArgCounter = 0;
812   bool IllegalParams = false;
813   // Iterate through the block parameters until either one is found that is not
814   // a local void*, or the block is valid.
815   for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
816        I != E; ++I, ++ArgCounter) {
817     if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
818         (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
819             LangAS::opencl_local) {
820       // Get the location of the error. If a block literal has been passed
821       // (BlockExpr) then we can point straight to the offending argument,
822       // else we just point to the variable reference.
823       SourceLocation ErrorLoc;
824       if (isa<BlockExpr>(BlockArg)) {
825         BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
826         ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
827       } else if (isa<DeclRefExpr>(BlockArg)) {
828         ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
829       }
830       S.Diag(ErrorLoc,
831              diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
832       IllegalParams = true;
833     }
834   }
835 
836   return IllegalParams;
837 }
838 
839 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
840   if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
841     S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
842         << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
843     return true;
844   }
845   return false;
846 }
847 
848 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
849   if (checkArgCount(S, TheCall, 2))
850     return true;
851 
852   if (checkOpenCLSubgroupExt(S, TheCall))
853     return true;
854 
855   // First argument is an ndrange_t type.
856   Expr *NDRangeArg = TheCall->getArg(0);
857   if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
858     S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
859         << TheCall->getDirectCallee() << "'ndrange_t'";
860     return true;
861   }
862 
863   Expr *BlockArg = TheCall->getArg(1);
864   if (!isBlockPointer(BlockArg)) {
865     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
866         << TheCall->getDirectCallee() << "block";
867     return true;
868   }
869   return checkOpenCLBlockArgs(S, BlockArg);
870 }
871 
872 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
873 /// get_kernel_work_group_size
874 /// and get_kernel_preferred_work_group_size_multiple builtin functions.
875 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
876   if (checkArgCount(S, TheCall, 1))
877     return true;
878 
879   Expr *BlockArg = TheCall->getArg(0);
880   if (!isBlockPointer(BlockArg)) {
881     S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
882         << TheCall->getDirectCallee() << "block";
883     return true;
884   }
885   return checkOpenCLBlockArgs(S, BlockArg);
886 }
887 
888 /// Diagnose integer type and any valid implicit conversion to it.
889 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
890                                       const QualType &IntType);
891 
892 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
893                                             unsigned Start, unsigned End) {
894   bool IllegalParams = false;
895   for (unsigned I = Start; I <= End; ++I)
896     IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
897                                               S.Context.getSizeType());
898   return IllegalParams;
899 }
900 
901 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
902 /// 'local void*' parameter of passed block.
903 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
904                                            Expr *BlockArg,
905                                            unsigned NumNonVarArgs) {
906   const BlockPointerType *BPT =
907       cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
908   unsigned NumBlockParams =
909       BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
910   unsigned TotalNumArgs = TheCall->getNumArgs();
911 
912   // For each argument passed to the block, a corresponding uint needs to
913   // be passed to describe the size of the local memory.
914   if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
915     S.Diag(TheCall->getBeginLoc(),
916            diag::err_opencl_enqueue_kernel_local_size_args);
917     return true;
918   }
919 
920   // Check that the sizes of the local memory are specified by integers.
921   return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
922                                          TotalNumArgs - 1);
923 }
924 
925 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
926 /// overload formats specified in Table 6.13.17.1.
927 /// int enqueue_kernel(queue_t queue,
928 ///                    kernel_enqueue_flags_t flags,
929 ///                    const ndrange_t ndrange,
930 ///                    void (^block)(void))
931 /// int enqueue_kernel(queue_t queue,
932 ///                    kernel_enqueue_flags_t flags,
933 ///                    const ndrange_t ndrange,
934 ///                    uint num_events_in_wait_list,
935 ///                    clk_event_t *event_wait_list,
936 ///                    clk_event_t *event_ret,
937 ///                    void (^block)(void))
938 /// int enqueue_kernel(queue_t queue,
939 ///                    kernel_enqueue_flags_t flags,
940 ///                    const ndrange_t ndrange,
941 ///                    void (^block)(local void*, ...),
942 ///                    uint size0, ...)
943 /// int enqueue_kernel(queue_t queue,
944 ///                    kernel_enqueue_flags_t flags,
945 ///                    const ndrange_t ndrange,
946 ///                    uint num_events_in_wait_list,
947 ///                    clk_event_t *event_wait_list,
948 ///                    clk_event_t *event_ret,
949 ///                    void (^block)(local void*, ...),
950 ///                    uint size0, ...)
951 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
952   unsigned NumArgs = TheCall->getNumArgs();
953 
954   if (NumArgs < 4) {
955     S.Diag(TheCall->getBeginLoc(),
956            diag::err_typecheck_call_too_few_args_at_least)
957         << 0 << 4 << NumArgs;
958     return true;
959   }
960 
961   Expr *Arg0 = TheCall->getArg(0);
962   Expr *Arg1 = TheCall->getArg(1);
963   Expr *Arg2 = TheCall->getArg(2);
964   Expr *Arg3 = TheCall->getArg(3);
965 
966   // First argument always needs to be a queue_t type.
967   if (!Arg0->getType()->isQueueT()) {
968     S.Diag(TheCall->getArg(0)->getBeginLoc(),
969            diag::err_opencl_builtin_expected_type)
970         << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
971     return true;
972   }
973 
974   // Second argument always needs to be a kernel_enqueue_flags_t enum value.
975   if (!Arg1->getType()->isIntegerType()) {
976     S.Diag(TheCall->getArg(1)->getBeginLoc(),
977            diag::err_opencl_builtin_expected_type)
978         << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
979     return true;
980   }
981 
982   // Third argument is always an ndrange_t type.
983   if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
984     S.Diag(TheCall->getArg(2)->getBeginLoc(),
985            diag::err_opencl_builtin_expected_type)
986         << TheCall->getDirectCallee() << "'ndrange_t'";
987     return true;
988   }
989 
990   // With four arguments, there is only one form that the function could be
991   // called in: no events and no variable arguments.
992   if (NumArgs == 4) {
993     // check that the last argument is the right block type.
994     if (!isBlockPointer(Arg3)) {
995       S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996           << TheCall->getDirectCallee() << "block";
997       return true;
998     }
999     // we have a block type, check the prototype
1000     const BlockPointerType *BPT =
1001         cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1002     if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1003       S.Diag(Arg3->getBeginLoc(),
1004              diag::err_opencl_enqueue_kernel_blocks_no_args);
1005       return true;
1006     }
1007     return false;
1008   }
1009   // we can have block + varargs.
1010   if (isBlockPointer(Arg3))
1011     return (checkOpenCLBlockArgs(S, Arg3) ||
1012             checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1013   // last two cases with either exactly 7 args or 7 args and varargs.
1014   if (NumArgs >= 7) {
1015     // check common block argument.
1016     Expr *Arg6 = TheCall->getArg(6);
1017     if (!isBlockPointer(Arg6)) {
1018       S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019           << TheCall->getDirectCallee() << "block";
1020       return true;
1021     }
1022     if (checkOpenCLBlockArgs(S, Arg6))
1023       return true;
1024 
1025     // Forth argument has to be any integer type.
1026     if (!Arg3->getType()->isIntegerType()) {
1027       S.Diag(TheCall->getArg(3)->getBeginLoc(),
1028              diag::err_opencl_builtin_expected_type)
1029           << TheCall->getDirectCallee() << "integer";
1030       return true;
1031     }
1032     // check remaining common arguments.
1033     Expr *Arg4 = TheCall->getArg(4);
1034     Expr *Arg5 = TheCall->getArg(5);
1035 
1036     // Fifth argument is always passed as a pointer to clk_event_t.
1037     if (!Arg4->isNullPointerConstant(S.Context,
1038                                      Expr::NPC_ValueDependentIsNotNull) &&
1039         !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1040       S.Diag(TheCall->getArg(4)->getBeginLoc(),
1041              diag::err_opencl_builtin_expected_type)
1042           << TheCall->getDirectCallee()
1043           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1044       return true;
1045     }
1046 
1047     // Sixth argument is always passed as a pointer to clk_event_t.
1048     if (!Arg5->isNullPointerConstant(S.Context,
1049                                      Expr::NPC_ValueDependentIsNotNull) &&
1050         !(Arg5->getType()->isPointerType() &&
1051           Arg5->getType()->getPointeeType()->isClkEventT())) {
1052       S.Diag(TheCall->getArg(5)->getBeginLoc(),
1053              diag::err_opencl_builtin_expected_type)
1054           << TheCall->getDirectCallee()
1055           << S.Context.getPointerType(S.Context.OCLClkEventTy);
1056       return true;
1057     }
1058 
1059     if (NumArgs == 7)
1060       return false;
1061 
1062     return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1063   }
1064 
1065   // None of the specific case has been detected, give generic error
1066   S.Diag(TheCall->getBeginLoc(),
1067          diag::err_opencl_enqueue_kernel_incorrect_args);
1068   return true;
1069 }
1070 
1071 /// Returns OpenCL access qual.
1072 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1073     return D->getAttr<OpenCLAccessAttr>();
1074 }
1075 
1076 /// Returns true if pipe element type is different from the pointer.
1077 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1078   const Expr *Arg0 = Call->getArg(0);
1079   // First argument type should always be pipe.
1080   if (!Arg0->getType()->isPipeType()) {
1081     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1082         << Call->getDirectCallee() << Arg0->getSourceRange();
1083     return true;
1084   }
1085   OpenCLAccessAttr *AccessQual =
1086       getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1087   // Validates the access qualifier is compatible with the call.
1088   // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1089   // read_only and write_only, and assumed to be read_only if no qualifier is
1090   // specified.
1091   switch (Call->getDirectCallee()->getBuiltinID()) {
1092   case Builtin::BIread_pipe:
1093   case Builtin::BIreserve_read_pipe:
1094   case Builtin::BIcommit_read_pipe:
1095   case Builtin::BIwork_group_reserve_read_pipe:
1096   case Builtin::BIsub_group_reserve_read_pipe:
1097   case Builtin::BIwork_group_commit_read_pipe:
1098   case Builtin::BIsub_group_commit_read_pipe:
1099     if (!(!AccessQual || AccessQual->isReadOnly())) {
1100       S.Diag(Arg0->getBeginLoc(),
1101              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1102           << "read_only" << Arg0->getSourceRange();
1103       return true;
1104     }
1105     break;
1106   case Builtin::BIwrite_pipe:
1107   case Builtin::BIreserve_write_pipe:
1108   case Builtin::BIcommit_write_pipe:
1109   case Builtin::BIwork_group_reserve_write_pipe:
1110   case Builtin::BIsub_group_reserve_write_pipe:
1111   case Builtin::BIwork_group_commit_write_pipe:
1112   case Builtin::BIsub_group_commit_write_pipe:
1113     if (!(AccessQual && AccessQual->isWriteOnly())) {
1114       S.Diag(Arg0->getBeginLoc(),
1115              diag::err_opencl_builtin_pipe_invalid_access_modifier)
1116           << "write_only" << Arg0->getSourceRange();
1117       return true;
1118     }
1119     break;
1120   default:
1121     break;
1122   }
1123   return false;
1124 }
1125 
1126 /// Returns true if pipe element type is different from the pointer.
1127 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1128   const Expr *Arg0 = Call->getArg(0);
1129   const Expr *ArgIdx = Call->getArg(Idx);
1130   const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1131   const QualType EltTy = PipeTy->getElementType();
1132   const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1133   // The Idx argument should be a pointer and the type of the pointer and
1134   // the type of pipe element should also be the same.
1135   if (!ArgTy ||
1136       !S.Context.hasSameType(
1137           EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1138     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1139         << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1140         << ArgIdx->getType() << ArgIdx->getSourceRange();
1141     return true;
1142   }
1143   return false;
1144 }
1145 
1146 // Performs semantic analysis for the read/write_pipe call.
1147 // \param S Reference to the semantic analyzer.
1148 // \param Call A pointer to the builtin call.
1149 // \return True if a semantic error has been found, false otherwise.
1150 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1151   // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1152   // functions have two forms.
1153   switch (Call->getNumArgs()) {
1154   case 2:
1155     if (checkOpenCLPipeArg(S, Call))
1156       return true;
1157     // The call with 2 arguments should be
1158     // read/write_pipe(pipe T, T*).
1159     // Check packet type T.
1160     if (checkOpenCLPipePacketType(S, Call, 1))
1161       return true;
1162     break;
1163 
1164   case 4: {
1165     if (checkOpenCLPipeArg(S, Call))
1166       return true;
1167     // The call with 4 arguments should be
1168     // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1169     // Check reserve_id_t.
1170     if (!Call->getArg(1)->getType()->isReserveIDT()) {
1171       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1172           << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1173           << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1174       return true;
1175     }
1176 
1177     // Check the index.
1178     const Expr *Arg2 = Call->getArg(2);
1179     if (!Arg2->getType()->isIntegerType() &&
1180         !Arg2->getType()->isUnsignedIntegerType()) {
1181       S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1182           << Call->getDirectCallee() << S.Context.UnsignedIntTy
1183           << Arg2->getType() << Arg2->getSourceRange();
1184       return true;
1185     }
1186 
1187     // Check packet type T.
1188     if (checkOpenCLPipePacketType(S, Call, 3))
1189       return true;
1190   } break;
1191   default:
1192     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1193         << Call->getDirectCallee() << Call->getSourceRange();
1194     return true;
1195   }
1196 
1197   return false;
1198 }
1199 
1200 // Performs a semantic analysis on the {work_group_/sub_group_
1201 //        /_}reserve_{read/write}_pipe
1202 // \param S Reference to the semantic analyzer.
1203 // \param Call The call to the builtin function to be analyzed.
1204 // \return True if a semantic error was found, false otherwise.
1205 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1206   if (checkArgCount(S, Call, 2))
1207     return true;
1208 
1209   if (checkOpenCLPipeArg(S, Call))
1210     return true;
1211 
1212   // Check the reserve size.
1213   if (!Call->getArg(1)->getType()->isIntegerType() &&
1214       !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1215     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1216         << Call->getDirectCallee() << S.Context.UnsignedIntTy
1217         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1218     return true;
1219   }
1220 
1221   // Since return type of reserve_read/write_pipe built-in function is
1222   // reserve_id_t, which is not defined in the builtin def file , we used int
1223   // as return type and need to override the return type of these functions.
1224   Call->setType(S.Context.OCLReserveIDTy);
1225 
1226   return false;
1227 }
1228 
1229 // Performs a semantic analysis on {work_group_/sub_group_
1230 //        /_}commit_{read/write}_pipe
1231 // \param S Reference to the semantic analyzer.
1232 // \param Call The call to the builtin function to be analyzed.
1233 // \return True if a semantic error was found, false otherwise.
1234 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1235   if (checkArgCount(S, Call, 2))
1236     return true;
1237 
1238   if (checkOpenCLPipeArg(S, Call))
1239     return true;
1240 
1241   // Check reserve_id_t.
1242   if (!Call->getArg(1)->getType()->isReserveIDT()) {
1243     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1244         << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1245         << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1246     return true;
1247   }
1248 
1249   return false;
1250 }
1251 
1252 // Performs a semantic analysis on the call to built-in Pipe
1253 //        Query Functions.
1254 // \param S Reference to the semantic analyzer.
1255 // \param Call The call to the builtin function to be analyzed.
1256 // \return True if a semantic error was found, false otherwise.
1257 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1258   if (checkArgCount(S, Call, 1))
1259     return true;
1260 
1261   if (!Call->getArg(0)->getType()->isPipeType()) {
1262     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1263         << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1264     return true;
1265   }
1266 
1267   return false;
1268 }
1269 
1270 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1271 // Performs semantic analysis for the to_global/local/private call.
1272 // \param S Reference to the semantic analyzer.
1273 // \param BuiltinID ID of the builtin function.
1274 // \param Call A pointer to the builtin call.
1275 // \return True if a semantic error has been found, false otherwise.
1276 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1277                                     CallExpr *Call) {
1278   if (checkArgCount(S, Call, 1))
1279     return true;
1280 
1281   auto RT = Call->getArg(0)->getType();
1282   if (!RT->isPointerType() || RT->getPointeeType()
1283       .getAddressSpace() == LangAS::opencl_constant) {
1284     S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1285         << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1286     return true;
1287   }
1288 
1289   if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1290     S.Diag(Call->getArg(0)->getBeginLoc(),
1291            diag::warn_opencl_generic_address_space_arg)
1292         << Call->getDirectCallee()->getNameInfo().getAsString()
1293         << Call->getArg(0)->getSourceRange();
1294   }
1295 
1296   RT = RT->getPointeeType();
1297   auto Qual = RT.getQualifiers();
1298   switch (BuiltinID) {
1299   case Builtin::BIto_global:
1300     Qual.setAddressSpace(LangAS::opencl_global);
1301     break;
1302   case Builtin::BIto_local:
1303     Qual.setAddressSpace(LangAS::opencl_local);
1304     break;
1305   case Builtin::BIto_private:
1306     Qual.setAddressSpace(LangAS::opencl_private);
1307     break;
1308   default:
1309     llvm_unreachable("Invalid builtin function");
1310   }
1311   Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1312       RT.getUnqualifiedType(), Qual)));
1313 
1314   return false;
1315 }
1316 
1317 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1318   if (checkArgCount(S, TheCall, 1))
1319     return ExprError();
1320 
1321   // Compute __builtin_launder's parameter type from the argument.
1322   // The parameter type is:
1323   //  * The type of the argument if it's not an array or function type,
1324   //  Otherwise,
1325   //  * The decayed argument type.
1326   QualType ParamTy = [&]() {
1327     QualType ArgTy = TheCall->getArg(0)->getType();
1328     if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1329       return S.Context.getPointerType(Ty->getElementType());
1330     if (ArgTy->isFunctionType()) {
1331       return S.Context.getPointerType(ArgTy);
1332     }
1333     return ArgTy;
1334   }();
1335 
1336   TheCall->setType(ParamTy);
1337 
1338   auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1339     if (!ParamTy->isPointerType())
1340       return 0;
1341     if (ParamTy->isFunctionPointerType())
1342       return 1;
1343     if (ParamTy->isVoidPointerType())
1344       return 2;
1345     return llvm::Optional<unsigned>{};
1346   }();
1347   if (DiagSelect.hasValue()) {
1348     S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1349         << DiagSelect.getValue() << TheCall->getSourceRange();
1350     return ExprError();
1351   }
1352 
1353   // We either have an incomplete class type, or we have a class template
1354   // whose instantiation has not been forced. Example:
1355   //
1356   //   template <class T> struct Foo { T value; };
1357   //   Foo<int> *p = nullptr;
1358   //   auto *d = __builtin_launder(p);
1359   if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1360                             diag::err_incomplete_type))
1361     return ExprError();
1362 
1363   assert(ParamTy->getPointeeType()->isObjectType() &&
1364          "Unhandled non-object pointer case");
1365 
1366   InitializedEntity Entity =
1367       InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1368   ExprResult Arg =
1369       S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1370   if (Arg.isInvalid())
1371     return ExprError();
1372   TheCall->setArg(0, Arg.get());
1373 
1374   return TheCall;
1375 }
1376 
1377 // Emit an error and return true if the current architecture is not in the list
1378 // of supported architectures.
1379 static bool
1380 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1381                           ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1382   llvm::Triple::ArchType CurArch =
1383       S.getASTContext().getTargetInfo().getTriple().getArch();
1384   if (llvm::is_contained(SupportedArchs, CurArch))
1385     return false;
1386   S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1387       << TheCall->getSourceRange();
1388   return true;
1389 }
1390 
1391 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1392                                  SourceLocation CallSiteLoc);
1393 
1394 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1395                                       CallExpr *TheCall) {
1396   switch (TI.getTriple().getArch()) {
1397   default:
1398     // Some builtins don't require additional checking, so just consider these
1399     // acceptable.
1400     return false;
1401   case llvm::Triple::arm:
1402   case llvm::Triple::armeb:
1403   case llvm::Triple::thumb:
1404   case llvm::Triple::thumbeb:
1405     return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1406   case llvm::Triple::aarch64:
1407   case llvm::Triple::aarch64_32:
1408   case llvm::Triple::aarch64_be:
1409     return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1410   case llvm::Triple::bpfeb:
1411   case llvm::Triple::bpfel:
1412     return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1413   case llvm::Triple::hexagon:
1414     return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1415   case llvm::Triple::mips:
1416   case llvm::Triple::mipsel:
1417   case llvm::Triple::mips64:
1418   case llvm::Triple::mips64el:
1419     return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1420   case llvm::Triple::systemz:
1421     return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1422   case llvm::Triple::x86:
1423   case llvm::Triple::x86_64:
1424     return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425   case llvm::Triple::ppc:
1426   case llvm::Triple::ppcle:
1427   case llvm::Triple::ppc64:
1428   case llvm::Triple::ppc64le:
1429     return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1430   case llvm::Triple::amdgcn:
1431     return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1432   }
1433 }
1434 
1435 ExprResult
1436 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1437                                CallExpr *TheCall) {
1438   ExprResult TheCallResult(TheCall);
1439 
1440   // Find out if any arguments are required to be integer constant expressions.
1441   unsigned ICEArguments = 0;
1442   ASTContext::GetBuiltinTypeError Error;
1443   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444   if (Error != ASTContext::GE_None)
1445     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
1446 
1447   // If any arguments are required to be ICE's, check and diagnose.
1448   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1449     // Skip arguments not required to be ICE's.
1450     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1451 
1452     llvm::APSInt Result;
1453     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1454       return true;
1455     ICEArguments &= ~(1 << ArgNo);
1456   }
1457 
1458   switch (BuiltinID) {
1459   case Builtin::BI__builtin___CFStringMakeConstantString:
1460     assert(TheCall->getNumArgs() == 1 &&
1461            "Wrong # arguments to builtin CFStringMakeConstantString");
1462     if (CheckObjCString(TheCall->getArg(0)))
1463       return ExprError();
1464     break;
1465   case Builtin::BI__builtin_ms_va_start:
1466   case Builtin::BI__builtin_stdarg_start:
1467   case Builtin::BI__builtin_va_start:
1468     if (SemaBuiltinVAStart(BuiltinID, TheCall))
1469       return ExprError();
1470     break;
1471   case Builtin::BI__va_start: {
1472     switch (Context.getTargetInfo().getTriple().getArch()) {
1473     case llvm::Triple::aarch64:
1474     case llvm::Triple::arm:
1475     case llvm::Triple::thumb:
1476       if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1477         return ExprError();
1478       break;
1479     default:
1480       if (SemaBuiltinVAStart(BuiltinID, TheCall))
1481         return ExprError();
1482       break;
1483     }
1484     break;
1485   }
1486 
1487   // The acquire, release, and no fence variants are ARM and AArch64 only.
1488   case Builtin::BI_interlockedbittestandset_acq:
1489   case Builtin::BI_interlockedbittestandset_rel:
1490   case Builtin::BI_interlockedbittestandset_nf:
1491   case Builtin::BI_interlockedbittestandreset_acq:
1492   case Builtin::BI_interlockedbittestandreset_rel:
1493   case Builtin::BI_interlockedbittestandreset_nf:
1494     if (CheckBuiltinTargetSupport(
1495             *this, BuiltinID, TheCall,
1496             {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1497       return ExprError();
1498     break;
1499 
1500   // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1501   case Builtin::BI_bittest64:
1502   case Builtin::BI_bittestandcomplement64:
1503   case Builtin::BI_bittestandreset64:
1504   case Builtin::BI_bittestandset64:
1505   case Builtin::BI_interlockedbittestandreset64:
1506   case Builtin::BI_interlockedbittestandset64:
1507     if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1508                                   {llvm::Triple::x86_64, llvm::Triple::arm,
1509                                    llvm::Triple::thumb, llvm::Triple::aarch64}))
1510       return ExprError();
1511     break;
1512 
1513   case Builtin::BI__builtin_isgreater:
1514   case Builtin::BI__builtin_isgreaterequal:
1515   case Builtin::BI__builtin_isless:
1516   case Builtin::BI__builtin_islessequal:
1517   case Builtin::BI__builtin_islessgreater:
1518   case Builtin::BI__builtin_isunordered:
1519     if (SemaBuiltinUnorderedCompare(TheCall))
1520       return ExprError();
1521     break;
1522   case Builtin::BI__builtin_fpclassify:
1523     if (SemaBuiltinFPClassification(TheCall, 6))
1524       return ExprError();
1525     break;
1526   case Builtin::BI__builtin_isfinite:
1527   case Builtin::BI__builtin_isinf:
1528   case Builtin::BI__builtin_isinf_sign:
1529   case Builtin::BI__builtin_isnan:
1530   case Builtin::BI__builtin_isnormal:
1531   case Builtin::BI__builtin_signbit:
1532   case Builtin::BI__builtin_signbitf:
1533   case Builtin::BI__builtin_signbitl:
1534     if (SemaBuiltinFPClassification(TheCall, 1))
1535       return ExprError();
1536     break;
1537   case Builtin::BI__builtin_shufflevector:
1538     return SemaBuiltinShuffleVector(TheCall);
1539     // TheCall will be freed by the smart pointer here, but that's fine, since
1540     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1541   case Builtin::BI__builtin_prefetch:
1542     if (SemaBuiltinPrefetch(TheCall))
1543       return ExprError();
1544     break;
1545   case Builtin::BI__builtin_alloca_with_align:
1546     if (SemaBuiltinAllocaWithAlign(TheCall))
1547       return ExprError();
1548     LLVM_FALLTHROUGH;
1549   case Builtin::BI__builtin_alloca:
1550     Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1551         << TheCall->getDirectCallee();
1552     break;
1553   case Builtin::BI__assume:
1554   case Builtin::BI__builtin_assume:
1555     if (SemaBuiltinAssume(TheCall))
1556       return ExprError();
1557     break;
1558   case Builtin::BI__builtin_assume_aligned:
1559     if (SemaBuiltinAssumeAligned(TheCall))
1560       return ExprError();
1561     break;
1562   case Builtin::BI__builtin_dynamic_object_size:
1563   case Builtin::BI__builtin_object_size:
1564     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1565       return ExprError();
1566     break;
1567   case Builtin::BI__builtin_longjmp:
1568     if (SemaBuiltinLongjmp(TheCall))
1569       return ExprError();
1570     break;
1571   case Builtin::BI__builtin_setjmp:
1572     if (SemaBuiltinSetjmp(TheCall))
1573       return ExprError();
1574     break;
1575   case Builtin::BI__builtin_classify_type:
1576     if (checkArgCount(*this, TheCall, 1)) return true;
1577     TheCall->setType(Context.IntTy);
1578     break;
1579   case Builtin::BI__builtin_complex:
1580     if (SemaBuiltinComplex(TheCall))
1581       return ExprError();
1582     break;
1583   case Builtin::BI__builtin_constant_p: {
1584     if (checkArgCount(*this, TheCall, 1)) return true;
1585     ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1586     if (Arg.isInvalid()) return true;
1587     TheCall->setArg(0, Arg.get());
1588     TheCall->setType(Context.IntTy);
1589     break;
1590   }
1591   case Builtin::BI__builtin_launder:
1592     return SemaBuiltinLaunder(*this, TheCall);
1593   case Builtin::BI__sync_fetch_and_add:
1594   case Builtin::BI__sync_fetch_and_add_1:
1595   case Builtin::BI__sync_fetch_and_add_2:
1596   case Builtin::BI__sync_fetch_and_add_4:
1597   case Builtin::BI__sync_fetch_and_add_8:
1598   case Builtin::BI__sync_fetch_and_add_16:
1599   case Builtin::BI__sync_fetch_and_sub:
1600   case Builtin::BI__sync_fetch_and_sub_1:
1601   case Builtin::BI__sync_fetch_and_sub_2:
1602   case Builtin::BI__sync_fetch_and_sub_4:
1603   case Builtin::BI__sync_fetch_and_sub_8:
1604   case Builtin::BI__sync_fetch_and_sub_16:
1605   case Builtin::BI__sync_fetch_and_or:
1606   case Builtin::BI__sync_fetch_and_or_1:
1607   case Builtin::BI__sync_fetch_and_or_2:
1608   case Builtin::BI__sync_fetch_and_or_4:
1609   case Builtin::BI__sync_fetch_and_or_8:
1610   case Builtin::BI__sync_fetch_and_or_16:
1611   case Builtin::BI__sync_fetch_and_and:
1612   case Builtin::BI__sync_fetch_and_and_1:
1613   case Builtin::BI__sync_fetch_and_and_2:
1614   case Builtin::BI__sync_fetch_and_and_4:
1615   case Builtin::BI__sync_fetch_and_and_8:
1616   case Builtin::BI__sync_fetch_and_and_16:
1617   case Builtin::BI__sync_fetch_and_xor:
1618   case Builtin::BI__sync_fetch_and_xor_1:
1619   case Builtin::BI__sync_fetch_and_xor_2:
1620   case Builtin::BI__sync_fetch_and_xor_4:
1621   case Builtin::BI__sync_fetch_and_xor_8:
1622   case Builtin::BI__sync_fetch_and_xor_16:
1623   case Builtin::BI__sync_fetch_and_nand:
1624   case Builtin::BI__sync_fetch_and_nand_1:
1625   case Builtin::BI__sync_fetch_and_nand_2:
1626   case Builtin::BI__sync_fetch_and_nand_4:
1627   case Builtin::BI__sync_fetch_and_nand_8:
1628   case Builtin::BI__sync_fetch_and_nand_16:
1629   case Builtin::BI__sync_add_and_fetch:
1630   case Builtin::BI__sync_add_and_fetch_1:
1631   case Builtin::BI__sync_add_and_fetch_2:
1632   case Builtin::BI__sync_add_and_fetch_4:
1633   case Builtin::BI__sync_add_and_fetch_8:
1634   case Builtin::BI__sync_add_and_fetch_16:
1635   case Builtin::BI__sync_sub_and_fetch:
1636   case Builtin::BI__sync_sub_and_fetch_1:
1637   case Builtin::BI__sync_sub_and_fetch_2:
1638   case Builtin::BI__sync_sub_and_fetch_4:
1639   case Builtin::BI__sync_sub_and_fetch_8:
1640   case Builtin::BI__sync_sub_and_fetch_16:
1641   case Builtin::BI__sync_and_and_fetch:
1642   case Builtin::BI__sync_and_and_fetch_1:
1643   case Builtin::BI__sync_and_and_fetch_2:
1644   case Builtin::BI__sync_and_and_fetch_4:
1645   case Builtin::BI__sync_and_and_fetch_8:
1646   case Builtin::BI__sync_and_and_fetch_16:
1647   case Builtin::BI__sync_or_and_fetch:
1648   case Builtin::BI__sync_or_and_fetch_1:
1649   case Builtin::BI__sync_or_and_fetch_2:
1650   case Builtin::BI__sync_or_and_fetch_4:
1651   case Builtin::BI__sync_or_and_fetch_8:
1652   case Builtin::BI__sync_or_and_fetch_16:
1653   case Builtin::BI__sync_xor_and_fetch:
1654   case Builtin::BI__sync_xor_and_fetch_1:
1655   case Builtin::BI__sync_xor_and_fetch_2:
1656   case Builtin::BI__sync_xor_and_fetch_4:
1657   case Builtin::BI__sync_xor_and_fetch_8:
1658   case Builtin::BI__sync_xor_and_fetch_16:
1659   case Builtin::BI__sync_nand_and_fetch:
1660   case Builtin::BI__sync_nand_and_fetch_1:
1661   case Builtin::BI__sync_nand_and_fetch_2:
1662   case Builtin::BI__sync_nand_and_fetch_4:
1663   case Builtin::BI__sync_nand_and_fetch_8:
1664   case Builtin::BI__sync_nand_and_fetch_16:
1665   case Builtin::BI__sync_val_compare_and_swap:
1666   case Builtin::BI__sync_val_compare_and_swap_1:
1667   case Builtin::BI__sync_val_compare_and_swap_2:
1668   case Builtin::BI__sync_val_compare_and_swap_4:
1669   case Builtin::BI__sync_val_compare_and_swap_8:
1670   case Builtin::BI__sync_val_compare_and_swap_16:
1671   case Builtin::BI__sync_bool_compare_and_swap:
1672   case Builtin::BI__sync_bool_compare_and_swap_1:
1673   case Builtin::BI__sync_bool_compare_and_swap_2:
1674   case Builtin::BI__sync_bool_compare_and_swap_4:
1675   case Builtin::BI__sync_bool_compare_and_swap_8:
1676   case Builtin::BI__sync_bool_compare_and_swap_16:
1677   case Builtin::BI__sync_lock_test_and_set:
1678   case Builtin::BI__sync_lock_test_and_set_1:
1679   case Builtin::BI__sync_lock_test_and_set_2:
1680   case Builtin::BI__sync_lock_test_and_set_4:
1681   case Builtin::BI__sync_lock_test_and_set_8:
1682   case Builtin::BI__sync_lock_test_and_set_16:
1683   case Builtin::BI__sync_lock_release:
1684   case Builtin::BI__sync_lock_release_1:
1685   case Builtin::BI__sync_lock_release_2:
1686   case Builtin::BI__sync_lock_release_4:
1687   case Builtin::BI__sync_lock_release_8:
1688   case Builtin::BI__sync_lock_release_16:
1689   case Builtin::BI__sync_swap:
1690   case Builtin::BI__sync_swap_1:
1691   case Builtin::BI__sync_swap_2:
1692   case Builtin::BI__sync_swap_4:
1693   case Builtin::BI__sync_swap_8:
1694   case Builtin::BI__sync_swap_16:
1695     return SemaBuiltinAtomicOverloaded(TheCallResult);
1696   case Builtin::BI__sync_synchronize:
1697     Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1698         << TheCall->getCallee()->getSourceRange();
1699     break;
1700   case Builtin::BI__builtin_nontemporal_load:
1701   case Builtin::BI__builtin_nontemporal_store:
1702     return SemaBuiltinNontemporalOverloaded(TheCallResult);
1703   case Builtin::BI__builtin_memcpy_inline: {
1704     clang::Expr *SizeOp = TheCall->getArg(2);
1705     // We warn about copying to or from `nullptr` pointers when `size` is
1706     // greater than 0. When `size` is value dependent we cannot evaluate its
1707     // value so we bail out.
1708     if (SizeOp->isValueDependent())
1709       break;
1710     if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1711       CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1712       CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1713     }
1714     break;
1715   }
1716 #define BUILTIN(ID, TYPE, ATTRS)
1717 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1718   case Builtin::BI##ID: \
1719     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1720 #include "clang/Basic/Builtins.def"
1721   case Builtin::BI__annotation:
1722     if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1723       return ExprError();
1724     break;
1725   case Builtin::BI__builtin_annotation:
1726     if (SemaBuiltinAnnotation(*this, TheCall))
1727       return ExprError();
1728     break;
1729   case Builtin::BI__builtin_addressof:
1730     if (SemaBuiltinAddressof(*this, TheCall))
1731       return ExprError();
1732     break;
1733   case Builtin::BI__builtin_is_aligned:
1734   case Builtin::BI__builtin_align_up:
1735   case Builtin::BI__builtin_align_down:
1736     if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1737       return ExprError();
1738     break;
1739   case Builtin::BI__builtin_add_overflow:
1740   case Builtin::BI__builtin_sub_overflow:
1741   case Builtin::BI__builtin_mul_overflow:
1742     if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1743       return ExprError();
1744     break;
1745   case Builtin::BI__builtin_operator_new:
1746   case Builtin::BI__builtin_operator_delete: {
1747     bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1748     ExprResult Res =
1749         SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1750     if (Res.isInvalid())
1751       CorrectDelayedTyposInExpr(TheCallResult.get());
1752     return Res;
1753   }
1754   case Builtin::BI__builtin_dump_struct: {
1755     // We first want to ensure we are called with 2 arguments
1756     if (checkArgCount(*this, TheCall, 2))
1757       return ExprError();
1758     // Ensure that the first argument is of type 'struct XX *'
1759     const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1760     const QualType PtrArgType = PtrArg->getType();
1761     if (!PtrArgType->isPointerType() ||
1762         !PtrArgType->getPointeeType()->isRecordType()) {
1763       Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1764           << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1765           << "structure pointer";
1766       return ExprError();
1767     }
1768 
1769     // Ensure that the second argument is of type 'FunctionType'
1770     const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1771     const QualType FnPtrArgType = FnPtrArg->getType();
1772     if (!FnPtrArgType->isPointerType()) {
1773       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1774           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1775           << FnPtrArgType << "'int (*)(const char *, ...)'";
1776       return ExprError();
1777     }
1778 
1779     const auto *FuncType =
1780         FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1781 
1782     if (!FuncType) {
1783       Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1784           << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1785           << FnPtrArgType << "'int (*)(const char *, ...)'";
1786       return ExprError();
1787     }
1788 
1789     if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1790       if (!FT->getNumParams()) {
1791         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1792             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1793             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1794         return ExprError();
1795       }
1796       QualType PT = FT->getParamType(0);
1797       if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1798           !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1799           !PT->getPointeeType().isConstQualified()) {
1800         Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1801             << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1802             << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1803         return ExprError();
1804       }
1805     }
1806 
1807     TheCall->setType(Context.IntTy);
1808     break;
1809   }
1810   case Builtin::BI__builtin_expect_with_probability: {
1811     // We first want to ensure we are called with 3 arguments
1812     if (checkArgCount(*this, TheCall, 3))
1813       return ExprError();
1814     // then check probability is constant float in range [0.0, 1.0]
1815     const Expr *ProbArg = TheCall->getArg(2);
1816     SmallVector<PartialDiagnosticAt, 8> Notes;
1817     Expr::EvalResult Eval;
1818     Eval.Diag = &Notes;
1819     if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1820         !Eval.Val.isFloat()) {
1821       Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1822           << ProbArg->getSourceRange();
1823       for (const PartialDiagnosticAt &PDiag : Notes)
1824         Diag(PDiag.first, PDiag.second);
1825       return ExprError();
1826     }
1827     llvm::APFloat Probability = Eval.Val.getFloat();
1828     bool LoseInfo = false;
1829     Probability.convert(llvm::APFloat::IEEEdouble(),
1830                         llvm::RoundingMode::Dynamic, &LoseInfo);
1831     if (!(Probability >= llvm::APFloat(0.0) &&
1832           Probability <= llvm::APFloat(1.0))) {
1833       Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1834           << ProbArg->getSourceRange();
1835       return ExprError();
1836     }
1837     break;
1838   }
1839   case Builtin::BI__builtin_preserve_access_index:
1840     if (SemaBuiltinPreserveAI(*this, TheCall))
1841       return ExprError();
1842     break;
1843   case Builtin::BI__builtin_call_with_static_chain:
1844     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1845       return ExprError();
1846     break;
1847   case Builtin::BI__exception_code:
1848   case Builtin::BI_exception_code:
1849     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1850                                  diag::err_seh___except_block))
1851       return ExprError();
1852     break;
1853   case Builtin::BI__exception_info:
1854   case Builtin::BI_exception_info:
1855     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1856                                  diag::err_seh___except_filter))
1857       return ExprError();
1858     break;
1859   case Builtin::BI__GetExceptionInfo:
1860     if (checkArgCount(*this, TheCall, 1))
1861       return ExprError();
1862 
1863     if (CheckCXXThrowOperand(
1864             TheCall->getBeginLoc(),
1865             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1866             TheCall))
1867       return ExprError();
1868 
1869     TheCall->setType(Context.VoidPtrTy);
1870     break;
1871   // OpenCL v2.0, s6.13.16 - Pipe functions
1872   case Builtin::BIread_pipe:
1873   case Builtin::BIwrite_pipe:
1874     // Since those two functions are declared with var args, we need a semantic
1875     // check for the argument.
1876     if (SemaBuiltinRWPipe(*this, TheCall))
1877       return ExprError();
1878     break;
1879   case Builtin::BIreserve_read_pipe:
1880   case Builtin::BIreserve_write_pipe:
1881   case Builtin::BIwork_group_reserve_read_pipe:
1882   case Builtin::BIwork_group_reserve_write_pipe:
1883     if (SemaBuiltinReserveRWPipe(*this, TheCall))
1884       return ExprError();
1885     break;
1886   case Builtin::BIsub_group_reserve_read_pipe:
1887   case Builtin::BIsub_group_reserve_write_pipe:
1888     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1889         SemaBuiltinReserveRWPipe(*this, TheCall))
1890       return ExprError();
1891     break;
1892   case Builtin::BIcommit_read_pipe:
1893   case Builtin::BIcommit_write_pipe:
1894   case Builtin::BIwork_group_commit_read_pipe:
1895   case Builtin::BIwork_group_commit_write_pipe:
1896     if (SemaBuiltinCommitRWPipe(*this, TheCall))
1897       return ExprError();
1898     break;
1899   case Builtin::BIsub_group_commit_read_pipe:
1900   case Builtin::BIsub_group_commit_write_pipe:
1901     if (checkOpenCLSubgroupExt(*this, TheCall) ||
1902         SemaBuiltinCommitRWPipe(*this, TheCall))
1903       return ExprError();
1904     break;
1905   case Builtin::BIget_pipe_num_packets:
1906   case Builtin::BIget_pipe_max_packets:
1907     if (SemaBuiltinPipePackets(*this, TheCall))
1908       return ExprError();
1909     break;
1910   case Builtin::BIto_global:
1911   case Builtin::BIto_local:
1912   case Builtin::BIto_private:
1913     if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1914       return ExprError();
1915     break;
1916   // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1917   case Builtin::BIenqueue_kernel:
1918     if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1919       return ExprError();
1920     break;
1921   case Builtin::BIget_kernel_work_group_size:
1922   case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1923     if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1924       return ExprError();
1925     break;
1926   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1927   case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1928     if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1929       return ExprError();
1930     break;
1931   case Builtin::BI__builtin_os_log_format:
1932     Cleanup.setExprNeedsCleanups(true);
1933     LLVM_FALLTHROUGH;
1934   case Builtin::BI__builtin_os_log_format_buffer_size:
1935     if (SemaBuiltinOSLogFormat(TheCall))
1936       return ExprError();
1937     break;
1938   case Builtin::BI__builtin_frame_address:
1939   case Builtin::BI__builtin_return_address: {
1940     if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1941       return ExprError();
1942 
1943     // -Wframe-address warning if non-zero passed to builtin
1944     // return/frame address.
1945     Expr::EvalResult Result;
1946     if (!TheCall->getArg(0)->isValueDependent() &&
1947         TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1948         Result.Val.getInt() != 0)
1949       Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1950           << ((BuiltinID == Builtin::BI__builtin_return_address)
1951                   ? "__builtin_return_address"
1952                   : "__builtin_frame_address")
1953           << TheCall->getSourceRange();
1954     break;
1955   }
1956 
1957   case Builtin::BI__builtin_matrix_transpose:
1958     return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1959 
1960   case Builtin::BI__builtin_matrix_column_major_load:
1961     return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1962 
1963   case Builtin::BI__builtin_matrix_column_major_store:
1964     return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1965   }
1966 
1967   // Since the target specific builtins for each arch overlap, only check those
1968   // of the arch we are compiling for.
1969   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1970     if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1971       assert(Context.getAuxTargetInfo() &&
1972              "Aux Target Builtin, but not an aux target?");
1973 
1974       if (CheckTSBuiltinFunctionCall(
1975               *Context.getAuxTargetInfo(),
1976               Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1977         return ExprError();
1978     } else {
1979       if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1980                                      TheCall))
1981         return ExprError();
1982     }
1983   }
1984 
1985   return TheCallResult;
1986 }
1987 
1988 // Get the valid immediate range for the specified NEON type code.
1989 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1990   NeonTypeFlags Type(t);
1991   int IsQuad = ForceQuad ? true : Type.isQuad();
1992   switch (Type.getEltType()) {
1993   case NeonTypeFlags::Int8:
1994   case NeonTypeFlags::Poly8:
1995     return shift ? 7 : (8 << IsQuad) - 1;
1996   case NeonTypeFlags::Int16:
1997   case NeonTypeFlags::Poly16:
1998     return shift ? 15 : (4 << IsQuad) - 1;
1999   case NeonTypeFlags::Int32:
2000     return shift ? 31 : (2 << IsQuad) - 1;
2001   case NeonTypeFlags::Int64:
2002   case NeonTypeFlags::Poly64:
2003     return shift ? 63 : (1 << IsQuad) - 1;
2004   case NeonTypeFlags::Poly128:
2005     return shift ? 127 : (1 << IsQuad) - 1;
2006   case NeonTypeFlags::Float16:
2007     assert(!shift && "cannot shift float types!");
2008     return (4 << IsQuad) - 1;
2009   case NeonTypeFlags::Float32:
2010     assert(!shift && "cannot shift float types!");
2011     return (2 << IsQuad) - 1;
2012   case NeonTypeFlags::Float64:
2013     assert(!shift && "cannot shift float types!");
2014     return (1 << IsQuad) - 1;
2015   case NeonTypeFlags::BFloat16:
2016     assert(!shift && "cannot shift float types!");
2017     return (4 << IsQuad) - 1;
2018   }
2019   llvm_unreachable("Invalid NeonTypeFlag!");
2020 }
2021 
2022 /// getNeonEltType - Return the QualType corresponding to the elements of
2023 /// the vector type specified by the NeonTypeFlags.  This is used to check
2024 /// the pointer arguments for Neon load/store intrinsics.
2025 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2026                                bool IsPolyUnsigned, bool IsInt64Long) {
2027   switch (Flags.getEltType()) {
2028   case NeonTypeFlags::Int8:
2029     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2030   case NeonTypeFlags::Int16:
2031     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2032   case NeonTypeFlags::Int32:
2033     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2034   case NeonTypeFlags::Int64:
2035     if (IsInt64Long)
2036       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2037     else
2038       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2039                                 : Context.LongLongTy;
2040   case NeonTypeFlags::Poly8:
2041     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2042   case NeonTypeFlags::Poly16:
2043     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2044   case NeonTypeFlags::Poly64:
2045     if (IsInt64Long)
2046       return Context.UnsignedLongTy;
2047     else
2048       return Context.UnsignedLongLongTy;
2049   case NeonTypeFlags::Poly128:
2050     break;
2051   case NeonTypeFlags::Float16:
2052     return Context.HalfTy;
2053   case NeonTypeFlags::Float32:
2054     return Context.FloatTy;
2055   case NeonTypeFlags::Float64:
2056     return Context.DoubleTy;
2057   case NeonTypeFlags::BFloat16:
2058     return Context.BFloat16Ty;
2059   }
2060   llvm_unreachable("Invalid NeonTypeFlag!");
2061 }
2062 
2063 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2064   // Range check SVE intrinsics that take immediate values.
2065   SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2066 
2067   switch (BuiltinID) {
2068   default:
2069     return false;
2070 #define GET_SVE_IMMEDIATE_CHECK
2071 #include "clang/Basic/arm_sve_sema_rangechecks.inc"
2072 #undef GET_SVE_IMMEDIATE_CHECK
2073   }
2074 
2075   // Perform all the immediate checks for this builtin call.
2076   bool HasError = false;
2077   for (auto &I : ImmChecks) {
2078     int ArgNum, CheckTy, ElementSizeInBits;
2079     std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2080 
2081     typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2082 
2083     // Function that checks whether the operand (ArgNum) is an immediate
2084     // that is one of the predefined values.
2085     auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2086                                    int ErrDiag) -> bool {
2087       // We can't check the value of a dependent argument.
2088       Expr *Arg = TheCall->getArg(ArgNum);
2089       if (Arg->isTypeDependent() || Arg->isValueDependent())
2090         return false;
2091 
2092       // Check constant-ness first.
2093       llvm::APSInt Imm;
2094       if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2095         return true;
2096 
2097       if (!CheckImm(Imm.getSExtValue()))
2098         return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2099       return false;
2100     };
2101 
2102     switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2103     case SVETypeFlags::ImmCheck0_31:
2104       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2105         HasError = true;
2106       break;
2107     case SVETypeFlags::ImmCheck0_13:
2108       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2109         HasError = true;
2110       break;
2111     case SVETypeFlags::ImmCheck1_16:
2112       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2113         HasError = true;
2114       break;
2115     case SVETypeFlags::ImmCheck0_7:
2116       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2117         HasError = true;
2118       break;
2119     case SVETypeFlags::ImmCheckExtract:
2120       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2121                                       (2048 / ElementSizeInBits) - 1))
2122         HasError = true;
2123       break;
2124     case SVETypeFlags::ImmCheckShiftRight:
2125       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2126         HasError = true;
2127       break;
2128     case SVETypeFlags::ImmCheckShiftRightNarrow:
2129       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2130                                       ElementSizeInBits / 2))
2131         HasError = true;
2132       break;
2133     case SVETypeFlags::ImmCheckShiftLeft:
2134       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2135                                       ElementSizeInBits - 1))
2136         HasError = true;
2137       break;
2138     case SVETypeFlags::ImmCheckLaneIndex:
2139       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2140                                       (128 / (1 * ElementSizeInBits)) - 1))
2141         HasError = true;
2142       break;
2143     case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2144       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2145                                       (128 / (2 * ElementSizeInBits)) - 1))
2146         HasError = true;
2147       break;
2148     case SVETypeFlags::ImmCheckLaneIndexDot:
2149       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2150                                       (128 / (4 * ElementSizeInBits)) - 1))
2151         HasError = true;
2152       break;
2153     case SVETypeFlags::ImmCheckComplexRot90_270:
2154       if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2155                               diag::err_rotation_argument_to_cadd))
2156         HasError = true;
2157       break;
2158     case SVETypeFlags::ImmCheckComplexRotAll90:
2159       if (CheckImmediateInSet(
2160               [](int64_t V) {
2161                 return V == 0 || V == 90 || V == 180 || V == 270;
2162               },
2163               diag::err_rotation_argument_to_cmla))
2164         HasError = true;
2165       break;
2166     case SVETypeFlags::ImmCheck0_1:
2167       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2168         HasError = true;
2169       break;
2170     case SVETypeFlags::ImmCheck0_2:
2171       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2172         HasError = true;
2173       break;
2174     case SVETypeFlags::ImmCheck0_3:
2175       if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2176         HasError = true;
2177       break;
2178     }
2179   }
2180 
2181   return HasError;
2182 }
2183 
2184 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2185                                         unsigned BuiltinID, CallExpr *TheCall) {
2186   llvm::APSInt Result;
2187   uint64_t mask = 0;
2188   unsigned TV = 0;
2189   int PtrArgNum = -1;
2190   bool HasConstPtr = false;
2191   switch (BuiltinID) {
2192 #define GET_NEON_OVERLOAD_CHECK
2193 #include "clang/Basic/arm_neon.inc"
2194 #include "clang/Basic/arm_fp16.inc"
2195 #undef GET_NEON_OVERLOAD_CHECK
2196   }
2197 
2198   // For NEON intrinsics which are overloaded on vector element type, validate
2199   // the immediate which specifies which variant to emit.
2200   unsigned ImmArg = TheCall->getNumArgs()-1;
2201   if (mask) {
2202     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2203       return true;
2204 
2205     TV = Result.getLimitedValue(64);
2206     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2207       return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2208              << TheCall->getArg(ImmArg)->getSourceRange();
2209   }
2210 
2211   if (PtrArgNum >= 0) {
2212     // Check that pointer arguments have the specified type.
2213     Expr *Arg = TheCall->getArg(PtrArgNum);
2214     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2215       Arg = ICE->getSubExpr();
2216     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2217     QualType RHSTy = RHS.get()->getType();
2218 
2219     llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2220     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2221                           Arch == llvm::Triple::aarch64_32 ||
2222                           Arch == llvm::Triple::aarch64_be;
2223     bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2224     QualType EltTy =
2225         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2226     if (HasConstPtr)
2227       EltTy = EltTy.withConst();
2228     QualType LHSTy = Context.getPointerType(EltTy);
2229     AssignConvertType ConvTy;
2230     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2231     if (RHS.isInvalid())
2232       return true;
2233     if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2234                                  RHS.get(), AA_Assigning))
2235       return true;
2236   }
2237 
2238   // For NEON intrinsics which take an immediate value as part of the
2239   // instruction, range check them here.
2240   unsigned i = 0, l = 0, u = 0;
2241   switch (BuiltinID) {
2242   default:
2243     return false;
2244   #define GET_NEON_IMMEDIATE_CHECK
2245   #include "clang/Basic/arm_neon.inc"
2246   #include "clang/Basic/arm_fp16.inc"
2247   #undef GET_NEON_IMMEDIATE_CHECK
2248   }
2249 
2250   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2251 }
2252 
2253 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2254   switch (BuiltinID) {
2255   default:
2256     return false;
2257   #include "clang/Basic/arm_mve_builtin_sema.inc"
2258   }
2259 }
2260 
2261 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2262                                        CallExpr *TheCall) {
2263   bool Err = false;
2264   switch (BuiltinID) {
2265   default:
2266     return false;
2267 #include "clang/Basic/arm_cde_builtin_sema.inc"
2268   }
2269 
2270   if (Err)
2271     return true;
2272 
2273   return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2274 }
2275 
2276 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2277                                         const Expr *CoprocArg, bool WantCDE) {
2278   if (isConstantEvaluated())
2279     return false;
2280 
2281   // We can't check the value of a dependent argument.
2282   if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2283     return false;
2284 
2285   llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2286   int64_t CoprocNo = CoprocNoAP.getExtValue();
2287   assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
2288 
2289   uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2290   bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2291 
2292   if (IsCDECoproc != WantCDE)
2293     return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2294            << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2295 
2296   return false;
2297 }
2298 
2299 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2300                                         unsigned MaxWidth) {
2301   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
2302           BuiltinID == ARM::BI__builtin_arm_ldaex ||
2303           BuiltinID == ARM::BI__builtin_arm_strex ||
2304           BuiltinID == ARM::BI__builtin_arm_stlex ||
2305           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2306           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2307           BuiltinID == AArch64::BI__builtin_arm_strex ||
2308           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
2309          "unexpected ARM builtin");
2310   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2311                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
2312                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2313                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
2314 
2315   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2316 
2317   // Ensure that we have the proper number of arguments.
2318   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2319     return true;
2320 
2321   // Inspect the pointer argument of the atomic builtin.  This should always be
2322   // a pointer type, whose element is an integral scalar or pointer type.
2323   // Because it is a pointer type, we don't have to worry about any implicit
2324   // casts here.
2325   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2326   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2327   if (PointerArgRes.isInvalid())
2328     return true;
2329   PointerArg = PointerArgRes.get();
2330 
2331   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2332   if (!pointerType) {
2333     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2334         << PointerArg->getType() << PointerArg->getSourceRange();
2335     return true;
2336   }
2337 
2338   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2339   // task is to insert the appropriate casts into the AST. First work out just
2340   // what the appropriate type is.
2341   QualType ValType = pointerType->getPointeeType();
2342   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2343   if (IsLdrex)
2344     AddrType.addConst();
2345 
2346   // Issue a warning if the cast is dodgy.
2347   CastKind CastNeeded = CK_NoOp;
2348   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2349     CastNeeded = CK_BitCast;
2350     Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2351         << PointerArg->getType() << Context.getPointerType(AddrType)
2352         << AA_Passing << PointerArg->getSourceRange();
2353   }
2354 
2355   // Finally, do the cast and replace the argument with the corrected version.
2356   AddrType = Context.getPointerType(AddrType);
2357   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2358   if (PointerArgRes.isInvalid())
2359     return true;
2360   PointerArg = PointerArgRes.get();
2361 
2362   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2363 
2364   // In general, we allow ints, floats and pointers to be loaded and stored.
2365   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2366       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2367     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2368         << PointerArg->getType() << PointerArg->getSourceRange();
2369     return true;
2370   }
2371 
2372   // But ARM doesn't have instructions to deal with 128-bit versions.
2373   if (Context.getTypeSize(ValType) > MaxWidth) {
2374     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
2375     Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2376         << PointerArg->getType() << PointerArg->getSourceRange();
2377     return true;
2378   }
2379 
2380   switch (ValType.getObjCLifetime()) {
2381   case Qualifiers::OCL_None:
2382   case Qualifiers::OCL_ExplicitNone:
2383     // okay
2384     break;
2385 
2386   case Qualifiers::OCL_Weak:
2387   case Qualifiers::OCL_Strong:
2388   case Qualifiers::OCL_Autoreleasing:
2389     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2390         << ValType << PointerArg->getSourceRange();
2391     return true;
2392   }
2393 
2394   if (IsLdrex) {
2395     TheCall->setType(ValType);
2396     return false;
2397   }
2398 
2399   // Initialize the argument to be stored.
2400   ExprResult ValArg = TheCall->getArg(0);
2401   InitializedEntity Entity = InitializedEntity::InitializeParameter(
2402       Context, ValType, /*consume*/ false);
2403   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2404   if (ValArg.isInvalid())
2405     return true;
2406   TheCall->setArg(0, ValArg.get());
2407 
2408   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2409   // but the custom checker bypasses all default analysis.
2410   TheCall->setType(Context.IntTy);
2411   return false;
2412 }
2413 
2414 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2415                                        CallExpr *TheCall) {
2416   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2417       BuiltinID == ARM::BI__builtin_arm_ldaex ||
2418       BuiltinID == ARM::BI__builtin_arm_strex ||
2419       BuiltinID == ARM::BI__builtin_arm_stlex) {
2420     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2421   }
2422 
2423   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2424     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2425       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2426   }
2427 
2428   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2429       BuiltinID == ARM::BI__builtin_arm_wsr64)
2430     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2431 
2432   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2433       BuiltinID == ARM::BI__builtin_arm_rsrp ||
2434       BuiltinID == ARM::BI__builtin_arm_wsr ||
2435       BuiltinID == ARM::BI__builtin_arm_wsrp)
2436     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2437 
2438   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2439     return true;
2440   if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2441     return true;
2442   if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2443     return true;
2444 
2445   // For intrinsics which take an immediate value as part of the instruction,
2446   // range check them here.
2447   // FIXME: VFP Intrinsics should error if VFP not present.
2448   switch (BuiltinID) {
2449   default: return false;
2450   case ARM::BI__builtin_arm_ssat:
2451     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2452   case ARM::BI__builtin_arm_usat:
2453     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2454   case ARM::BI__builtin_arm_ssat16:
2455     return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2456   case ARM::BI__builtin_arm_usat16:
2457     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2458   case ARM::BI__builtin_arm_vcvtr_f:
2459   case ARM::BI__builtin_arm_vcvtr_d:
2460     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2461   case ARM::BI__builtin_arm_dmb:
2462   case ARM::BI__builtin_arm_dsb:
2463   case ARM::BI__builtin_arm_isb:
2464   case ARM::BI__builtin_arm_dbg:
2465     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2466   case ARM::BI__builtin_arm_cdp:
2467   case ARM::BI__builtin_arm_cdp2:
2468   case ARM::BI__builtin_arm_mcr:
2469   case ARM::BI__builtin_arm_mcr2:
2470   case ARM::BI__builtin_arm_mrc:
2471   case ARM::BI__builtin_arm_mrc2:
2472   case ARM::BI__builtin_arm_mcrr:
2473   case ARM::BI__builtin_arm_mcrr2:
2474   case ARM::BI__builtin_arm_mrrc:
2475   case ARM::BI__builtin_arm_mrrc2:
2476   case ARM::BI__builtin_arm_ldc:
2477   case ARM::BI__builtin_arm_ldcl:
2478   case ARM::BI__builtin_arm_ldc2:
2479   case ARM::BI__builtin_arm_ldc2l:
2480   case ARM::BI__builtin_arm_stc:
2481   case ARM::BI__builtin_arm_stcl:
2482   case ARM::BI__builtin_arm_stc2:
2483   case ARM::BI__builtin_arm_stc2l:
2484     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2485            CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2486                                         /*WantCDE*/ false);
2487   }
2488 }
2489 
2490 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2491                                            unsigned BuiltinID,
2492                                            CallExpr *TheCall) {
2493   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2494       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2495       BuiltinID == AArch64::BI__builtin_arm_strex ||
2496       BuiltinID == AArch64::BI__builtin_arm_stlex) {
2497     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2498   }
2499 
2500   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2501     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2502       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2503       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2504       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2505   }
2506 
2507   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2508       BuiltinID == AArch64::BI__builtin_arm_wsr64)
2509     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2510 
2511   // Memory Tagging Extensions (MTE) Intrinsics
2512   if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2513       BuiltinID == AArch64::BI__builtin_arm_addg ||
2514       BuiltinID == AArch64::BI__builtin_arm_gmi ||
2515       BuiltinID == AArch64::BI__builtin_arm_ldg ||
2516       BuiltinID == AArch64::BI__builtin_arm_stg ||
2517       BuiltinID == AArch64::BI__builtin_arm_subp) {
2518     return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2519   }
2520 
2521   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2522       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2523       BuiltinID == AArch64::BI__builtin_arm_wsr ||
2524       BuiltinID == AArch64::BI__builtin_arm_wsrp)
2525     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2526 
2527   // Only check the valid encoding range. Any constant in this range would be
2528   // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2529   // an exception for incorrect registers. This matches MSVC behavior.
2530   if (BuiltinID == AArch64::BI_ReadStatusReg ||
2531       BuiltinID == AArch64::BI_WriteStatusReg)
2532     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2533 
2534   if (BuiltinID == AArch64::BI__getReg)
2535     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2536 
2537   if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2538     return true;
2539 
2540   if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2541     return true;
2542 
2543   // For intrinsics which take an immediate value as part of the instruction,
2544   // range check them here.
2545   unsigned i = 0, l = 0, u = 0;
2546   switch (BuiltinID) {
2547   default: return false;
2548   case AArch64::BI__builtin_arm_dmb:
2549   case AArch64::BI__builtin_arm_dsb:
2550   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2551   case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2552   }
2553 
2554   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2555 }
2556 
2557 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2558   if (Arg->getType()->getAsPlaceholderType())
2559     return false;
2560 
2561   // The first argument needs to be a record field access.
2562   // If it is an array element access, we delay decision
2563   // to BPF backend to check whether the access is a
2564   // field access or not.
2565   return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2566           dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2567           dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2568 }
2569 
2570 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2571                             QualType VectorTy, QualType EltTy) {
2572   QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2573   if (!Context.hasSameType(VectorEltTy, EltTy)) {
2574     S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2575         << Call->getSourceRange() << VectorEltTy << EltTy;
2576     return false;
2577   }
2578   return true;
2579 }
2580 
2581 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2582   QualType ArgType = Arg->getType();
2583   if (ArgType->getAsPlaceholderType())
2584     return false;
2585 
2586   // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2587   // format:
2588   //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
2589   //   2. <type> var;
2590   //      __builtin_preserve_type_info(var, flag);
2591   if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2592       !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2593     return false;
2594 
2595   // Typedef type.
2596   if (ArgType->getAs<TypedefType>())
2597     return true;
2598 
2599   // Record type or Enum type.
2600   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2601   if (const auto *RT = Ty->getAs<RecordType>()) {
2602     if (!RT->getDecl()->getDeclName().isEmpty())
2603       return true;
2604   } else if (const auto *ET = Ty->getAs<EnumType>()) {
2605     if (!ET->getDecl()->getDeclName().isEmpty())
2606       return true;
2607   }
2608 
2609   return false;
2610 }
2611 
2612 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2613   QualType ArgType = Arg->getType();
2614   if (ArgType->getAsPlaceholderType())
2615     return false;
2616 
2617   // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2618   // format:
2619   //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2620   //                                 flag);
2621   const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2622   if (!UO)
2623     return false;
2624 
2625   const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2626   if (!CE || CE->getCastKind() != CK_IntegralToPointer)
2627     return false;
2628 
2629   // The integer must be from an EnumConstantDecl.
2630   const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2631   if (!DR)
2632     return false;
2633 
2634   const EnumConstantDecl *Enumerator =
2635       dyn_cast<EnumConstantDecl>(DR->getDecl());
2636   if (!Enumerator)
2637     return false;
2638 
2639   // The type must be EnumType.
2640   const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2641   const auto *ET = Ty->getAs<EnumType>();
2642   if (!ET)
2643     return false;
2644 
2645   // The enum value must be supported.
2646   for (auto *EDI : ET->getDecl()->enumerators()) {
2647     if (EDI == Enumerator)
2648       return true;
2649   }
2650 
2651   return false;
2652 }
2653 
2654 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2655                                        CallExpr *TheCall) {
2656   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
2657           BuiltinID == BPF::BI__builtin_btf_type_id ||
2658           BuiltinID == BPF::BI__builtin_preserve_type_info ||
2659           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
2660          "unexpected BPF builtin");
2661 
2662   if (checkArgCount(*this, TheCall, 2))
2663     return true;
2664 
2665   // The second argument needs to be a constant int
2666   Expr *Arg = TheCall->getArg(1);
2667   Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2668   diag::kind kind;
2669   if (!Value) {
2670     if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2671       kind = diag::err_preserve_field_info_not_const;
2672     else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2673       kind = diag::err_btf_type_id_not_const;
2674     else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2675       kind = diag::err_preserve_type_info_not_const;
2676     else
2677       kind = diag::err_preserve_enum_value_not_const;
2678     Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2679     return true;
2680   }
2681 
2682   // The first argument
2683   Arg = TheCall->getArg(0);
2684   bool InvalidArg = false;
2685   bool ReturnUnsignedInt = true;
2686   if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2687     if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2688       InvalidArg = true;
2689       kind = diag::err_preserve_field_info_not_field;
2690     }
2691   } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2692     if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2693       InvalidArg = true;
2694       kind = diag::err_preserve_type_info_invalid;
2695     }
2696   } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2697     if (!isValidBPFPreserveEnumValueArg(Arg)) {
2698       InvalidArg = true;
2699       kind = diag::err_preserve_enum_value_invalid;
2700     }
2701     ReturnUnsignedInt = false;
2702   } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2703     ReturnUnsignedInt = false;
2704   }
2705 
2706   if (InvalidArg) {
2707     Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2708     return true;
2709   }
2710 
2711   if (ReturnUnsignedInt)
2712     TheCall->setType(Context.UnsignedIntTy);
2713   else
2714     TheCall->setType(Context.UnsignedLongTy);
2715   return false;
2716 }
2717 
2718 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2719   struct ArgInfo {
2720     uint8_t OpNum;
2721     bool IsSigned;
2722     uint8_t BitWidth;
2723     uint8_t Align;
2724   };
2725   struct BuiltinInfo {
2726     unsigned BuiltinID;
2727     ArgInfo Infos[2];
2728   };
2729 
2730   static BuiltinInfo Infos[] = {
2731     { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
2732     { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
2733     { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
2734     { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
2735     { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
2736     { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
2737     { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
2738     { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
2739     { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
2740     { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
2741     { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
2742 
2743     { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
2744     { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
2745     { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
2746     { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
2747     { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
2748     { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
2749     { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
2750     { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
2751     { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
2752     { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
2753     { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
2754 
2755     { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
2756     { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
2757     { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
2758     { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
2759     { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
2760     { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
2761     { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
2762     { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
2763     { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
2764     { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
2765     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
2766     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
2767     { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
2768     { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
2769     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
2770     { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
2771     { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
2772     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
2773     { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
2774     { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
2775     { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
2776     { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
2777     { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
2778     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
2779     { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
2780     { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
2781     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
2782     { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
2783     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
2784     { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
2785     { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
2786     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
2787     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
2788     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
2789     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
2790     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
2791     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
2792     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
2793     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
2794     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
2795     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
2796     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
2797     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
2798     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
2799     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
2800     { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
2801     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
2802     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
2803     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
2804     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
2805     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
2806     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2807                                                       {{ 1, false, 6,  0 }} },
2808     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
2809     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
2810     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
2811     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
2812     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
2813     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
2814     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2815                                                       {{ 1, false, 5,  0 }} },
2816     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
2817     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
2818     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
2819     { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
2820     { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
2821     { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
2822                                                        { 2, false, 5,  0 }} },
2823     { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
2824                                                        { 2, false, 6,  0 }} },
2825     { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
2826                                                        { 3, false, 5,  0 }} },
2827     { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
2828                                                        { 3, false, 6,  0 }} },
2829     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
2830     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
2831     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
2832     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
2833     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
2834     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
2835     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
2836     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
2837     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
2838     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
2839     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
2840     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
2841     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
2842     { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
2843     { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
2844     { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2845                                                       {{ 2, false, 4,  0 },
2846                                                        { 3, false, 5,  0 }} },
2847     { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2848                                                       {{ 2, false, 4,  0 },
2849                                                        { 3, false, 5,  0 }} },
2850     { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2851                                                       {{ 2, false, 4,  0 },
2852                                                        { 3, false, 5,  0 }} },
2853     { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2854                                                       {{ 2, false, 4,  0 },
2855                                                        { 3, false, 5,  0 }} },
2856     { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
2857     { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
2858     { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
2859     { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
2860     { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
2861     { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
2862     { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
2863     { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
2864     { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
2865     { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
2866     { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
2867                                                        { 2, false, 5,  0 }} },
2868     { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
2869                                                        { 2, false, 6,  0 }} },
2870     { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
2871     { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
2872     { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
2873     { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
2874     { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
2875     { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
2876     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
2877     { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
2878     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2879                                                       {{ 1, false, 4,  0 }} },
2880     { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
2881     { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2882                                                       {{ 1, false, 4,  0 }} },
2883     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
2884     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
2885     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
2886     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
2887     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
2888     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
2889     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
2890     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
2891     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
2892     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
2893     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
2894     { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
2895     { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
2896     { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
2897     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
2898     { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
2899     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
2900     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
2901     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
2902     { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2903                                                       {{ 3, false, 1,  0 }} },
2904     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
2905     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
2906     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
2907     { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2908                                                       {{ 3, false, 1,  0 }} },
2909     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
2910     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
2911     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
2912     { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2913                                                       {{ 3, false, 1,  0 }} },
2914   };
2915 
2916   // Use a dynamically initialized static to sort the table exactly once on
2917   // first run.
2918   static const bool SortOnce =
2919       (llvm::sort(Infos,
2920                  [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2921                    return LHS.BuiltinID < RHS.BuiltinID;
2922                  }),
2923        true);
2924   (void)SortOnce;
2925 
2926   const BuiltinInfo *F = llvm::partition_point(
2927       Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2928   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2929     return false;
2930 
2931   bool Error = false;
2932 
2933   for (const ArgInfo &A : F->Infos) {
2934     // Ignore empty ArgInfo elements.
2935     if (A.BitWidth == 0)
2936       continue;
2937 
2938     int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2939     int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2940     if (!A.Align) {
2941       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2942     } else {
2943       unsigned M = 1 << A.Align;
2944       Min *= M;
2945       Max *= M;
2946       Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2947                SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2948     }
2949   }
2950   return Error;
2951 }
2952 
2953 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2954                                            CallExpr *TheCall) {
2955   return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2956 }
2957 
2958 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2959                                         unsigned BuiltinID, CallExpr *TheCall) {
2960   return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2961          CheckMipsBuiltinArgument(BuiltinID, TheCall);
2962 }
2963 
2964 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2965                                CallExpr *TheCall) {
2966 
2967   if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2968       BuiltinID <= Mips::BI__builtin_mips_lwx) {
2969     if (!TI.hasFeature("dsp"))
2970       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2971   }
2972 
2973   if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2974       BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2975     if (!TI.hasFeature("dspr2"))
2976       return Diag(TheCall->getBeginLoc(),
2977                   diag::err_mips_builtin_requires_dspr2);
2978   }
2979 
2980   if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2981       BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2982     if (!TI.hasFeature("msa"))
2983       return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2984   }
2985 
2986   return false;
2987 }
2988 
2989 // CheckMipsBuiltinArgument - Checks the constant value passed to the
2990 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2991 // ordering for DSP is unspecified. MSA is ordered by the data format used
2992 // by the underlying instruction i.e., df/m, df/n and then by size.
2993 //
2994 // FIXME: The size tests here should instead be tablegen'd along with the
2995 //        definitions from include/clang/Basic/BuiltinsMips.def.
2996 // FIXME: GCC is strict on signedness for some of these intrinsics, we should
2997 //        be too.
2998 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2999   unsigned i = 0, l = 0, u = 0, m = 0;
3000   switch (BuiltinID) {
3001   default: return false;
3002   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3003   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3004   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3005   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3006   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3007   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3008   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3009   // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3010   // df/m field.
3011   // These intrinsics take an unsigned 3 bit immediate.
3012   case Mips::BI__builtin_msa_bclri_b:
3013   case Mips::BI__builtin_msa_bnegi_b:
3014   case Mips::BI__builtin_msa_bseti_b:
3015   case Mips::BI__builtin_msa_sat_s_b:
3016   case Mips::BI__builtin_msa_sat_u_b:
3017   case Mips::BI__builtin_msa_slli_b:
3018   case Mips::BI__builtin_msa_srai_b:
3019   case Mips::BI__builtin_msa_srari_b:
3020   case Mips::BI__builtin_msa_srli_b:
3021   case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3022   case Mips::BI__builtin_msa_binsli_b:
3023   case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3024   // These intrinsics take an unsigned 4 bit immediate.
3025   case Mips::BI__builtin_msa_bclri_h:
3026   case Mips::BI__builtin_msa_bnegi_h:
3027   case Mips::BI__builtin_msa_bseti_h:
3028   case Mips::BI__builtin_msa_sat_s_h:
3029   case Mips::BI__builtin_msa_sat_u_h:
3030   case Mips::BI__builtin_msa_slli_h:
3031   case Mips::BI__builtin_msa_srai_h:
3032   case Mips::BI__builtin_msa_srari_h:
3033   case Mips::BI__builtin_msa_srli_h:
3034   case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3035   case Mips::BI__builtin_msa_binsli_h:
3036   case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3037   // These intrinsics take an unsigned 5 bit immediate.
3038   // The first block of intrinsics actually have an unsigned 5 bit field,
3039   // not a df/n field.
3040   case Mips::BI__builtin_msa_cfcmsa:
3041   case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3042   case Mips::BI__builtin_msa_clei_u_b:
3043   case Mips::BI__builtin_msa_clei_u_h:
3044   case Mips::BI__builtin_msa_clei_u_w:
3045   case Mips::BI__builtin_msa_clei_u_d:
3046   case Mips::BI__builtin_msa_clti_u_b:
3047   case Mips::BI__builtin_msa_clti_u_h:
3048   case Mips::BI__builtin_msa_clti_u_w:
3049   case Mips::BI__builtin_msa_clti_u_d:
3050   case Mips::BI__builtin_msa_maxi_u_b:
3051   case Mips::BI__builtin_msa_maxi_u_h:
3052   case Mips::BI__builtin_msa_maxi_u_w:
3053   case Mips::BI__builtin_msa_maxi_u_d:
3054   case Mips::BI__builtin_msa_mini_u_b:
3055   case Mips::BI__builtin_msa_mini_u_h:
3056   case Mips::BI__builtin_msa_mini_u_w:
3057   case Mips::BI__builtin_msa_mini_u_d:
3058   case Mips::BI__builtin_msa_addvi_b:
3059   case Mips::BI__builtin_msa_addvi_h:
3060   case Mips::BI__builtin_msa_addvi_w:
3061   case Mips::BI__builtin_msa_addvi_d:
3062   case Mips::BI__builtin_msa_bclri_w:
3063   case Mips::BI__builtin_msa_bnegi_w:
3064   case Mips::BI__builtin_msa_bseti_w:
3065   case Mips::BI__builtin_msa_sat_s_w:
3066   case Mips::BI__builtin_msa_sat_u_w:
3067   case Mips::BI__builtin_msa_slli_w:
3068   case Mips::BI__builtin_msa_srai_w:
3069   case Mips::BI__builtin_msa_srari_w:
3070   case Mips::BI__builtin_msa_srli_w:
3071   case Mips::BI__builtin_msa_srlri_w:
3072   case Mips::BI__builtin_msa_subvi_b:
3073   case Mips::BI__builtin_msa_subvi_h:
3074   case Mips::BI__builtin_msa_subvi_w:
3075   case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3076   case Mips::BI__builtin_msa_binsli_w:
3077   case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3078   // These intrinsics take an unsigned 6 bit immediate.
3079   case Mips::BI__builtin_msa_bclri_d:
3080   case Mips::BI__builtin_msa_bnegi_d:
3081   case Mips::BI__builtin_msa_bseti_d:
3082   case Mips::BI__builtin_msa_sat_s_d:
3083   case Mips::BI__builtin_msa_sat_u_d:
3084   case Mips::BI__builtin_msa_slli_d:
3085   case Mips::BI__builtin_msa_srai_d:
3086   case Mips::BI__builtin_msa_srari_d:
3087   case Mips::BI__builtin_msa_srli_d:
3088   case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3089   case Mips::BI__builtin_msa_binsli_d:
3090   case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3091   // These intrinsics take a signed 5 bit immediate.
3092   case Mips::BI__builtin_msa_ceqi_b:
3093   case Mips::BI__builtin_msa_ceqi_h:
3094   case Mips::BI__builtin_msa_ceqi_w:
3095   case Mips::BI__builtin_msa_ceqi_d:
3096   case Mips::BI__builtin_msa_clti_s_b:
3097   case Mips::BI__builtin_msa_clti_s_h:
3098   case Mips::BI__builtin_msa_clti_s_w:
3099   case Mips::BI__builtin_msa_clti_s_d:
3100   case Mips::BI__builtin_msa_clei_s_b:
3101   case Mips::BI__builtin_msa_clei_s_h:
3102   case Mips::BI__builtin_msa_clei_s_w:
3103   case Mips::BI__builtin_msa_clei_s_d:
3104   case Mips::BI__builtin_msa_maxi_s_b:
3105   case Mips::BI__builtin_msa_maxi_s_h:
3106   case Mips::BI__builtin_msa_maxi_s_w:
3107   case Mips::BI__builtin_msa_maxi_s_d:
3108   case Mips::BI__builtin_msa_mini_s_b:
3109   case Mips::BI__builtin_msa_mini_s_h:
3110   case Mips::BI__builtin_msa_mini_s_w:
3111   case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3112   // These intrinsics take an unsigned 8 bit immediate.
3113   case Mips::BI__builtin_msa_andi_b:
3114   case Mips::BI__builtin_msa_nori_b:
3115   case Mips::BI__builtin_msa_ori_b:
3116   case Mips::BI__builtin_msa_shf_b:
3117   case Mips::BI__builtin_msa_shf_h:
3118   case Mips::BI__builtin_msa_shf_w:
3119   case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3120   case Mips::BI__builtin_msa_bseli_b:
3121   case Mips::BI__builtin_msa_bmnzi_b:
3122   case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3123   // df/n format
3124   // These intrinsics take an unsigned 4 bit immediate.
3125   case Mips::BI__builtin_msa_copy_s_b:
3126   case Mips::BI__builtin_msa_copy_u_b:
3127   case Mips::BI__builtin_msa_insve_b:
3128   case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3129   case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3130   // These intrinsics take an unsigned 3 bit immediate.
3131   case Mips::BI__builtin_msa_copy_s_h:
3132   case Mips::BI__builtin_msa_copy_u_h:
3133   case Mips::BI__builtin_msa_insve_h:
3134   case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3135   case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3136   // These intrinsics take an unsigned 2 bit immediate.
3137   case Mips::BI__builtin_msa_copy_s_w:
3138   case Mips::BI__builtin_msa_copy_u_w:
3139   case Mips::BI__builtin_msa_insve_w:
3140   case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3141   case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3142   // These intrinsics take an unsigned 1 bit immediate.
3143   case Mips::BI__builtin_msa_copy_s_d:
3144   case Mips::BI__builtin_msa_copy_u_d:
3145   case Mips::BI__builtin_msa_insve_d:
3146   case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3147   case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3148   // Memory offsets and immediate loads.
3149   // These intrinsics take a signed 10 bit immediate.
3150   case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3151   case Mips::BI__builtin_msa_ldi_h:
3152   case Mips::BI__builtin_msa_ldi_w:
3153   case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3154   case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3155   case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3156   case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3157   case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3158   case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3159   case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3160   case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3161   case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3162   case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3163   case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3164   case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3165   case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3166   }
3167 
3168   if (!m)
3169     return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3170 
3171   return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3172          SemaBuiltinConstantArgMultiple(TheCall, i, m);
3173 }
3174 
3175 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3176 /// advancing the pointer over the consumed characters. The decoded type is
3177 /// returned. If the decoded type represents a constant integer with a
3178 /// constraint on its value then Mask is set to that value. The type descriptors
3179 /// used in Str are specific to PPC MMA builtins and are documented in the file
3180 /// defining the PPC builtins.
3181 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3182                                         unsigned &Mask) {
3183   bool RequireICE = false;
3184   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3185   switch (*Str++) {
3186   case 'V':
3187     return Context.getVectorType(Context.UnsignedCharTy, 16,
3188                                  VectorType::VectorKind::AltiVecVector);
3189   case 'i': {
3190     char *End;
3191     unsigned size = strtoul(Str, &End, 10);
3192     assert(End != Str && "Missing constant parameter constraint");
3193     Str = End;
3194     Mask = size;
3195     return Context.IntTy;
3196   }
3197   case 'W': {
3198     char *End;
3199     unsigned size = strtoul(Str, &End, 10);
3200     assert(End != Str && "Missing PowerPC MMA type size");
3201     Str = End;
3202     QualType Type;
3203     switch (size) {
3204   #define PPC_VECTOR_TYPE(typeName, Id, size) \
3205     case size: Type = Context.Id##Ty; break;
3206   #include "clang/Basic/PPCTypes.def"
3207     default: llvm_unreachable("Invalid PowerPC MMA vector type");
3208     }
3209     bool CheckVectorArgs = false;
3210     while (!CheckVectorArgs) {
3211       switch (*Str++) {
3212       case '*':
3213         Type = Context.getPointerType(Type);
3214         break;
3215       case 'C':
3216         Type = Type.withConst();
3217         break;
3218       default:
3219         CheckVectorArgs = true;
3220         --Str;
3221         break;
3222       }
3223     }
3224     return Type;
3225   }
3226   default:
3227     return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3228   }
3229 }
3230 
3231 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3232                                        CallExpr *TheCall) {
3233   unsigned i = 0, l = 0, u = 0;
3234   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3235                       BuiltinID == PPC::BI__builtin_divdeu ||
3236                       BuiltinID == PPC::BI__builtin_bpermd;
3237   bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3238   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3239                        BuiltinID == PPC::BI__builtin_divweu ||
3240                        BuiltinID == PPC::BI__builtin_divde ||
3241                        BuiltinID == PPC::BI__builtin_divdeu;
3242 
3243   if (Is64BitBltin && !IsTarget64Bit)
3244     return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3245            << TheCall->getSourceRange();
3246 
3247   if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3248       (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3249     return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3250            << TheCall->getSourceRange();
3251 
3252   auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3253     if (!TI.hasFeature("vsx"))
3254       return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3255              << TheCall->getSourceRange();
3256     return false;
3257   };
3258 
3259   switch (BuiltinID) {
3260   default: return false;
3261   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3262   case PPC::BI__builtin_altivec_crypto_vshasigmad:
3263     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3264            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3265   case PPC::BI__builtin_altivec_dss:
3266     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3267   case PPC::BI__builtin_tbegin:
3268   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3269   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3270   case PPC::BI__builtin_tabortwc:
3271   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3272   case PPC::BI__builtin_tabortwci:
3273   case PPC::BI__builtin_tabortdci:
3274     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3275            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3276   case PPC::BI__builtin_altivec_dst:
3277   case PPC::BI__builtin_altivec_dstt:
3278   case PPC::BI__builtin_altivec_dstst:
3279   case PPC::BI__builtin_altivec_dststt:
3280     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3281   case PPC::BI__builtin_vsx_xxpermdi:
3282   case PPC::BI__builtin_vsx_xxsldwi:
3283     return SemaBuiltinVSX(TheCall);
3284   case PPC::BI__builtin_unpack_vector_int128:
3285     return SemaVSXCheck(TheCall) ||
3286            SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3287   case PPC::BI__builtin_pack_vector_int128:
3288     return SemaVSXCheck(TheCall);
3289   case PPC::BI__builtin_altivec_vgnb:
3290      return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3291   case PPC::BI__builtin_altivec_vec_replace_elt:
3292   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3293     QualType VecTy = TheCall->getArg(0)->getType();
3294     QualType EltTy = TheCall->getArg(1)->getType();
3295     unsigned Width = Context.getIntWidth(EltTy);
3296     return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3297            !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3298   }
3299   case PPC::BI__builtin_vsx_xxeval:
3300      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3301   case PPC::BI__builtin_altivec_vsldbi:
3302      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3303   case PPC::BI__builtin_altivec_vsrdbi:
3304      return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3305   case PPC::BI__builtin_vsx_xxpermx:
3306      return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3307 #define CUSTOM_BUILTIN(Name, Types, Acc) \
3308   case PPC::BI__builtin_##Name: \
3309     return SemaBuiltinPPCMMACall(TheCall, Types);
3310 #include "clang/Basic/BuiltinsPPC.def"
3311   }
3312   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3313 }
3314 
3315 // Check if the given type is a non-pointer PPC MMA type. This function is used
3316 // in Sema to prevent invalid uses of restricted PPC MMA types.
3317 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3318   if (Type->isPointerType() || Type->isArrayType())
3319     return false;
3320 
3321   QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3322 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3323   if (false
3324 #include "clang/Basic/PPCTypes.def"
3325      ) {
3326     Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3327     return true;
3328   }
3329   return false;
3330 }
3331 
3332 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3333                                           CallExpr *TheCall) {
3334   // position of memory order and scope arguments in the builtin
3335   unsigned OrderIndex, ScopeIndex;
3336   switch (BuiltinID) {
3337   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3338   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3339   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3340   case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3341     OrderIndex = 2;
3342     ScopeIndex = 3;
3343     break;
3344   case AMDGPU::BI__builtin_amdgcn_fence:
3345     OrderIndex = 0;
3346     ScopeIndex = 1;
3347     break;
3348   default:
3349     return false;
3350   }
3351 
3352   ExprResult Arg = TheCall->getArg(OrderIndex);
3353   auto ArgExpr = Arg.get();
3354   Expr::EvalResult ArgResult;
3355 
3356   if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3357     return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3358            << ArgExpr->getType();
3359   int ord = ArgResult.Val.getInt().getZExtValue();
3360 
3361   // Check valididty of memory ordering as per C11 / C++11's memody model.
3362   switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3363   case llvm::AtomicOrderingCABI::acquire:
3364   case llvm::AtomicOrderingCABI::release:
3365   case llvm::AtomicOrderingCABI::acq_rel:
3366   case llvm::AtomicOrderingCABI::seq_cst:
3367     break;
3368   default: {
3369     return Diag(ArgExpr->getBeginLoc(),
3370                 diag::warn_atomic_op_has_invalid_memory_order)
3371            << ArgExpr->getSourceRange();
3372   }
3373   }
3374 
3375   Arg = TheCall->getArg(ScopeIndex);
3376   ArgExpr = Arg.get();
3377   Expr::EvalResult ArgResult1;
3378   // Check that sync scope is a constant literal
3379   if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3380     return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3381            << ArgExpr->getType();
3382 
3383   return false;
3384 }
3385 
3386 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3387                                            CallExpr *TheCall) {
3388   if (BuiltinID == SystemZ::BI__builtin_tabort) {
3389     Expr *Arg = TheCall->getArg(0);
3390     if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3391       if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3392         return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3393                << Arg->getSourceRange();
3394   }
3395 
3396   // For intrinsics which take an immediate value as part of the instruction,
3397   // range check them here.
3398   unsigned i = 0, l = 0, u = 0;
3399   switch (BuiltinID) {
3400   default: return false;
3401   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3402   case SystemZ::BI__builtin_s390_verimb:
3403   case SystemZ::BI__builtin_s390_verimh:
3404   case SystemZ::BI__builtin_s390_verimf:
3405   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3406   case SystemZ::BI__builtin_s390_vfaeb:
3407   case SystemZ::BI__builtin_s390_vfaeh:
3408   case SystemZ::BI__builtin_s390_vfaef:
3409   case SystemZ::BI__builtin_s390_vfaebs:
3410   case SystemZ::BI__builtin_s390_vfaehs:
3411   case SystemZ::BI__builtin_s390_vfaefs:
3412   case SystemZ::BI__builtin_s390_vfaezb:
3413   case SystemZ::BI__builtin_s390_vfaezh:
3414   case SystemZ::BI__builtin_s390_vfaezf:
3415   case SystemZ::BI__builtin_s390_vfaezbs:
3416   case SystemZ::BI__builtin_s390_vfaezhs:
3417   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3418   case SystemZ::BI__builtin_s390_vfisb:
3419   case SystemZ::BI__builtin_s390_vfidb:
3420     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3421            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3422   case SystemZ::BI__builtin_s390_vftcisb:
3423   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3424   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3425   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3426   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3427   case SystemZ::BI__builtin_s390_vstrcb:
3428   case SystemZ::BI__builtin_s390_vstrch:
3429   case SystemZ::BI__builtin_s390_vstrcf:
3430   case SystemZ::BI__builtin_s390_vstrczb:
3431   case SystemZ::BI__builtin_s390_vstrczh:
3432   case SystemZ::BI__builtin_s390_vstrczf:
3433   case SystemZ::BI__builtin_s390_vstrcbs:
3434   case SystemZ::BI__builtin_s390_vstrchs:
3435   case SystemZ::BI__builtin_s390_vstrcfs:
3436   case SystemZ::BI__builtin_s390_vstrczbs:
3437   case SystemZ::BI__builtin_s390_vstrczhs:
3438   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3439   case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3440   case SystemZ::BI__builtin_s390_vfminsb:
3441   case SystemZ::BI__builtin_s390_vfmaxsb:
3442   case SystemZ::BI__builtin_s390_vfmindb:
3443   case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3444   case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3445   case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3446   }
3447   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3448 }
3449 
3450 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3451 /// This checks that the target supports __builtin_cpu_supports and
3452 /// that the string argument is constant and valid.
3453 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3454                                    CallExpr *TheCall) {
3455   Expr *Arg = TheCall->getArg(0);
3456 
3457   // Check if the argument is a string literal.
3458   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3459     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3460            << Arg->getSourceRange();
3461 
3462   // Check the contents of the string.
3463   StringRef Feature =
3464       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3465   if (!TI.validateCpuSupports(Feature))
3466     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3467            << Arg->getSourceRange();
3468   return false;
3469 }
3470 
3471 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3472 /// This checks that the target supports __builtin_cpu_is and
3473 /// that the string argument is constant and valid.
3474 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3475   Expr *Arg = TheCall->getArg(0);
3476 
3477   // Check if the argument is a string literal.
3478   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3479     return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3480            << Arg->getSourceRange();
3481 
3482   // Check the contents of the string.
3483   StringRef Feature =
3484       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3485   if (!TI.validateCpuIs(Feature))
3486     return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3487            << Arg->getSourceRange();
3488   return false;
3489 }
3490 
3491 // Check if the rounding mode is legal.
3492 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3493   // Indicates if this instruction has rounding control or just SAE.
3494   bool HasRC = false;
3495 
3496   unsigned ArgNum = 0;
3497   switch (BuiltinID) {
3498   default:
3499     return false;
3500   case X86::BI__builtin_ia32_vcvttsd2si32:
3501   case X86::BI__builtin_ia32_vcvttsd2si64:
3502   case X86::BI__builtin_ia32_vcvttsd2usi32:
3503   case X86::BI__builtin_ia32_vcvttsd2usi64:
3504   case X86::BI__builtin_ia32_vcvttss2si32:
3505   case X86::BI__builtin_ia32_vcvttss2si64:
3506   case X86::BI__builtin_ia32_vcvttss2usi32:
3507   case X86::BI__builtin_ia32_vcvttss2usi64:
3508     ArgNum = 1;
3509     break;
3510   case X86::BI__builtin_ia32_maxpd512:
3511   case X86::BI__builtin_ia32_maxps512:
3512   case X86::BI__builtin_ia32_minpd512:
3513   case X86::BI__builtin_ia32_minps512:
3514     ArgNum = 2;
3515     break;
3516   case X86::BI__builtin_ia32_cvtps2pd512_mask:
3517   case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3518   case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3519   case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3520   case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3521   case X86::BI__builtin_ia32_cvttps2dq512_mask:
3522   case X86::BI__builtin_ia32_cvttps2qq512_mask:
3523   case X86::BI__builtin_ia32_cvttps2udq512_mask:
3524   case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3525   case X86::BI__builtin_ia32_exp2pd_mask:
3526   case X86::BI__builtin_ia32_exp2ps_mask:
3527   case X86::BI__builtin_ia32_getexppd512_mask:
3528   case X86::BI__builtin_ia32_getexpps512_mask:
3529   case X86::BI__builtin_ia32_rcp28pd_mask:
3530   case X86::BI__builtin_ia32_rcp28ps_mask:
3531   case X86::BI__builtin_ia32_rsqrt28pd_mask:
3532   case X86::BI__builtin_ia32_rsqrt28ps_mask:
3533   case X86::BI__builtin_ia32_vcomisd:
3534   case X86::BI__builtin_ia32_vcomiss:
3535   case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3536     ArgNum = 3;
3537     break;
3538   case X86::BI__builtin_ia32_cmppd512_mask:
3539   case X86::BI__builtin_ia32_cmpps512_mask:
3540   case X86::BI__builtin_ia32_cmpsd_mask:
3541   case X86::BI__builtin_ia32_cmpss_mask:
3542   case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3543   case X86::BI__builtin_ia32_getexpsd128_round_mask:
3544   case X86::BI__builtin_ia32_getexpss128_round_mask:
3545   case X86::BI__builtin_ia32_getmantpd512_mask:
3546   case X86::BI__builtin_ia32_getmantps512_mask:
3547   case X86::BI__builtin_ia32_maxsd_round_mask:
3548   case X86::BI__builtin_ia32_maxss_round_mask:
3549   case X86::BI__builtin_ia32_minsd_round_mask:
3550   case X86::BI__builtin_ia32_minss_round_mask:
3551   case X86::BI__builtin_ia32_rcp28sd_round_mask:
3552   case X86::BI__builtin_ia32_rcp28ss_round_mask:
3553   case X86::BI__builtin_ia32_reducepd512_mask:
3554   case X86::BI__builtin_ia32_reduceps512_mask:
3555   case X86::BI__builtin_ia32_rndscalepd_mask:
3556   case X86::BI__builtin_ia32_rndscaleps_mask:
3557   case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3558   case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3559     ArgNum = 4;
3560     break;
3561   case X86::BI__builtin_ia32_fixupimmpd512_mask:
3562   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3563   case X86::BI__builtin_ia32_fixupimmps512_mask:
3564   case X86::BI__builtin_ia32_fixupimmps512_maskz:
3565   case X86::BI__builtin_ia32_fixupimmsd_mask:
3566   case X86::BI__builtin_ia32_fixupimmsd_maskz:
3567   case X86::BI__builtin_ia32_fixupimmss_mask:
3568   case X86::BI__builtin_ia32_fixupimmss_maskz:
3569   case X86::BI__builtin_ia32_getmantsd_round_mask:
3570   case X86::BI__builtin_ia32_getmantss_round_mask:
3571   case X86::BI__builtin_ia32_rangepd512_mask:
3572   case X86::BI__builtin_ia32_rangeps512_mask:
3573   case X86::BI__builtin_ia32_rangesd128_round_mask:
3574   case X86::BI__builtin_ia32_rangess128_round_mask:
3575   case X86::BI__builtin_ia32_reducesd_mask:
3576   case X86::BI__builtin_ia32_reducess_mask:
3577   case X86::BI__builtin_ia32_rndscalesd_round_mask:
3578   case X86::BI__builtin_ia32_rndscaless_round_mask:
3579     ArgNum = 5;
3580     break;
3581   case X86::BI__builtin_ia32_vcvtsd2si64:
3582   case X86::BI__builtin_ia32_vcvtsd2si32:
3583   case X86::BI__builtin_ia32_vcvtsd2usi32:
3584   case X86::BI__builtin_ia32_vcvtsd2usi64:
3585   case X86::BI__builtin_ia32_vcvtss2si32:
3586   case X86::BI__builtin_ia32_vcvtss2si64:
3587   case X86::BI__builtin_ia32_vcvtss2usi32:
3588   case X86::BI__builtin_ia32_vcvtss2usi64:
3589   case X86::BI__builtin_ia32_sqrtpd512:
3590   case X86::BI__builtin_ia32_sqrtps512:
3591     ArgNum = 1;
3592     HasRC = true;
3593     break;
3594   case X86::BI__builtin_ia32_addpd512:
3595   case X86::BI__builtin_ia32_addps512:
3596   case X86::BI__builtin_ia32_divpd512:
3597   case X86::BI__builtin_ia32_divps512:
3598   case X86::BI__builtin_ia32_mulpd512:
3599   case X86::BI__builtin_ia32_mulps512:
3600   case X86::BI__builtin_ia32_subpd512:
3601   case X86::BI__builtin_ia32_subps512:
3602   case X86::BI__builtin_ia32_cvtsi2sd64:
3603   case X86::BI__builtin_ia32_cvtsi2ss32:
3604   case X86::BI__builtin_ia32_cvtsi2ss64:
3605   case X86::BI__builtin_ia32_cvtusi2sd64:
3606   case X86::BI__builtin_ia32_cvtusi2ss32:
3607   case X86::BI__builtin_ia32_cvtusi2ss64:
3608     ArgNum = 2;
3609     HasRC = true;
3610     break;
3611   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3612   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3613   case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3614   case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3615   case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3616   case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3617   case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3618   case X86::BI__builtin_ia32_cvtps2dq512_mask:
3619   case X86::BI__builtin_ia32_cvtps2qq512_mask:
3620   case X86::BI__builtin_ia32_cvtps2udq512_mask:
3621   case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3622   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3623   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3624   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3625   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3626     ArgNum = 3;
3627     HasRC = true;
3628     break;
3629   case X86::BI__builtin_ia32_addss_round_mask:
3630   case X86::BI__builtin_ia32_addsd_round_mask:
3631   case X86::BI__builtin_ia32_divss_round_mask:
3632   case X86::BI__builtin_ia32_divsd_round_mask:
3633   case X86::BI__builtin_ia32_mulss_round_mask:
3634   case X86::BI__builtin_ia32_mulsd_round_mask:
3635   case X86::BI__builtin_ia32_subss_round_mask:
3636   case X86::BI__builtin_ia32_subsd_round_mask:
3637   case X86::BI__builtin_ia32_scalefpd512_mask:
3638   case X86::BI__builtin_ia32_scalefps512_mask:
3639   case X86::BI__builtin_ia32_scalefsd_round_mask:
3640   case X86::BI__builtin_ia32_scalefss_round_mask:
3641   case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3642   case X86::BI__builtin_ia32_sqrtsd_round_mask:
3643   case X86::BI__builtin_ia32_sqrtss_round_mask:
3644   case X86::BI__builtin_ia32_vfmaddsd3_mask:
3645   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3646   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3647   case X86::BI__builtin_ia32_vfmaddss3_mask:
3648   case X86::BI__builtin_ia32_vfmaddss3_maskz:
3649   case X86::BI__builtin_ia32_vfmaddss3_mask3:
3650   case X86::BI__builtin_ia32_vfmaddpd512_mask:
3651   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3652   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3653   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3654   case X86::BI__builtin_ia32_vfmaddps512_mask:
3655   case X86::BI__builtin_ia32_vfmaddps512_maskz:
3656   case X86::BI__builtin_ia32_vfmaddps512_mask3:
3657   case X86::BI__builtin_ia32_vfmsubps512_mask3:
3658   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3659   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3660   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3661   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3662   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3663   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3664   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3665   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3666     ArgNum = 4;
3667     HasRC = true;
3668     break;
3669   }
3670 
3671   llvm::APSInt Result;
3672 
3673   // We can't check the value of a dependent argument.
3674   Expr *Arg = TheCall->getArg(ArgNum);
3675   if (Arg->isTypeDependent() || Arg->isValueDependent())
3676     return false;
3677 
3678   // Check constant-ness first.
3679   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3680     return true;
3681 
3682   // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3683   // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3684   // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3685   // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3686   if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3687       Result == 8/*ROUND_NO_EXC*/ ||
3688       (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3689       (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3690     return false;
3691 
3692   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3693          << Arg->getSourceRange();
3694 }
3695 
3696 // Check if the gather/scatter scale is legal.
3697 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3698                                              CallExpr *TheCall) {
3699   unsigned ArgNum = 0;
3700   switch (BuiltinID) {
3701   default:
3702     return false;
3703   case X86::BI__builtin_ia32_gatherpfdpd:
3704   case X86::BI__builtin_ia32_gatherpfdps:
3705   case X86::BI__builtin_ia32_gatherpfqpd:
3706   case X86::BI__builtin_ia32_gatherpfqps:
3707   case X86::BI__builtin_ia32_scatterpfdpd:
3708   case X86::BI__builtin_ia32_scatterpfdps:
3709   case X86::BI__builtin_ia32_scatterpfqpd:
3710   case X86::BI__builtin_ia32_scatterpfqps:
3711     ArgNum = 3;
3712     break;
3713   case X86::BI__builtin_ia32_gatherd_pd:
3714   case X86::BI__builtin_ia32_gatherd_pd256:
3715   case X86::BI__builtin_ia32_gatherq_pd:
3716   case X86::BI__builtin_ia32_gatherq_pd256:
3717   case X86::BI__builtin_ia32_gatherd_ps:
3718   case X86::BI__builtin_ia32_gatherd_ps256:
3719   case X86::BI__builtin_ia32_gatherq_ps:
3720   case X86::BI__builtin_ia32_gatherq_ps256:
3721   case X86::BI__builtin_ia32_gatherd_q:
3722   case X86::BI__builtin_ia32_gatherd_q256:
3723   case X86::BI__builtin_ia32_gatherq_q:
3724   case X86::BI__builtin_ia32_gatherq_q256:
3725   case X86::BI__builtin_ia32_gatherd_d:
3726   case X86::BI__builtin_ia32_gatherd_d256:
3727   case X86::BI__builtin_ia32_gatherq_d:
3728   case X86::BI__builtin_ia32_gatherq_d256:
3729   case X86::BI__builtin_ia32_gather3div2df:
3730   case X86::BI__builtin_ia32_gather3div2di:
3731   case X86::BI__builtin_ia32_gather3div4df:
3732   case X86::BI__builtin_ia32_gather3div4di:
3733   case X86::BI__builtin_ia32_gather3div4sf:
3734   case X86::BI__builtin_ia32_gather3div4si:
3735   case X86::BI__builtin_ia32_gather3div8sf:
3736   case X86::BI__builtin_ia32_gather3div8si:
3737   case X86::BI__builtin_ia32_gather3siv2df:
3738   case X86::BI__builtin_ia32_gather3siv2di:
3739   case X86::BI__builtin_ia32_gather3siv4df:
3740   case X86::BI__builtin_ia32_gather3siv4di:
3741   case X86::BI__builtin_ia32_gather3siv4sf:
3742   case X86::BI__builtin_ia32_gather3siv4si:
3743   case X86::BI__builtin_ia32_gather3siv8sf:
3744   case X86::BI__builtin_ia32_gather3siv8si:
3745   case X86::BI__builtin_ia32_gathersiv8df:
3746   case X86::BI__builtin_ia32_gathersiv16sf:
3747   case X86::BI__builtin_ia32_gatherdiv8df:
3748   case X86::BI__builtin_ia32_gatherdiv16sf:
3749   case X86::BI__builtin_ia32_gathersiv8di:
3750   case X86::BI__builtin_ia32_gathersiv16si:
3751   case X86::BI__builtin_ia32_gatherdiv8di:
3752   case X86::BI__builtin_ia32_gatherdiv16si:
3753   case X86::BI__builtin_ia32_scatterdiv2df:
3754   case X86::BI__builtin_ia32_scatterdiv2di:
3755   case X86::BI__builtin_ia32_scatterdiv4df:
3756   case X86::BI__builtin_ia32_scatterdiv4di:
3757   case X86::BI__builtin_ia32_scatterdiv4sf:
3758   case X86::BI__builtin_ia32_scatterdiv4si:
3759   case X86::BI__builtin_ia32_scatterdiv8sf:
3760   case X86::BI__builtin_ia32_scatterdiv8si:
3761   case X86::BI__builtin_ia32_scattersiv2df:
3762   case X86::BI__builtin_ia32_scattersiv2di:
3763   case X86::BI__builtin_ia32_scattersiv4df:
3764   case X86::BI__builtin_ia32_scattersiv4di:
3765   case X86::BI__builtin_ia32_scattersiv4sf:
3766   case X86::BI__builtin_ia32_scattersiv4si:
3767   case X86::BI__builtin_ia32_scattersiv8sf:
3768   case X86::BI__builtin_ia32_scattersiv8si:
3769   case X86::BI__builtin_ia32_scattersiv8df:
3770   case X86::BI__builtin_ia32_scattersiv16sf:
3771   case X86::BI__builtin_ia32_scatterdiv8df:
3772   case X86::BI__builtin_ia32_scatterdiv16sf:
3773   case X86::BI__builtin_ia32_scattersiv8di:
3774   case X86::BI__builtin_ia32_scattersiv16si:
3775   case X86::BI__builtin_ia32_scatterdiv8di:
3776   case X86::BI__builtin_ia32_scatterdiv16si:
3777     ArgNum = 4;
3778     break;
3779   }
3780 
3781   llvm::APSInt Result;
3782 
3783   // We can't check the value of a dependent argument.
3784   Expr *Arg = TheCall->getArg(ArgNum);
3785   if (Arg->isTypeDependent() || Arg->isValueDependent())
3786     return false;
3787 
3788   // Check constant-ness first.
3789   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3790     return true;
3791 
3792   if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3793     return false;
3794 
3795   return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3796          << Arg->getSourceRange();
3797 }
3798 
3799 enum { TileRegLow = 0, TileRegHigh = 7 };
3800 
3801 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3802                                              ArrayRef<int> ArgNums) {
3803   for (int ArgNum : ArgNums) {
3804     if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3805       return true;
3806   }
3807   return false;
3808 }
3809 
3810 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3811                                         ArrayRef<int> ArgNums) {
3812   // Because the max number of tile register is TileRegHigh + 1, so here we use
3813   // each bit to represent the usage of them in bitset.
3814   std::bitset<TileRegHigh + 1> ArgValues;
3815   for (int ArgNum : ArgNums) {
3816     Expr *Arg = TheCall->getArg(ArgNum);
3817     if (Arg->isTypeDependent() || Arg->isValueDependent())
3818       continue;
3819 
3820     llvm::APSInt Result;
3821     if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3822       return true;
3823     int ArgExtValue = Result.getExtValue();
3824     assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&
3825            "Incorrect tile register num.");
3826     if (ArgValues.test(ArgExtValue))
3827       return Diag(TheCall->getBeginLoc(),
3828                   diag::err_x86_builtin_tile_arg_duplicate)
3829              << TheCall->getArg(ArgNum)->getSourceRange();
3830     ArgValues.set(ArgExtValue);
3831   }
3832   return false;
3833 }
3834 
3835 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3836                                                 ArrayRef<int> ArgNums) {
3837   return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3838          CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3839 }
3840 
3841 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3842   switch (BuiltinID) {
3843   default:
3844     return false;
3845   case X86::BI__builtin_ia32_tileloadd64:
3846   case X86::BI__builtin_ia32_tileloaddt164:
3847   case X86::BI__builtin_ia32_tilestored64:
3848   case X86::BI__builtin_ia32_tilezero:
3849     return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3850   case X86::BI__builtin_ia32_tdpbssd:
3851   case X86::BI__builtin_ia32_tdpbsud:
3852   case X86::BI__builtin_ia32_tdpbusd:
3853   case X86::BI__builtin_ia32_tdpbuud:
3854   case X86::BI__builtin_ia32_tdpbf16ps:
3855     return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3856   }
3857 }
3858 static bool isX86_32Builtin(unsigned BuiltinID) {
3859   // These builtins only work on x86-32 targets.
3860   switch (BuiltinID) {
3861   case X86::BI__builtin_ia32_readeflags_u32:
3862   case X86::BI__builtin_ia32_writeeflags_u32:
3863     return true;
3864   }
3865 
3866   return false;
3867 }
3868 
3869 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3870                                        CallExpr *TheCall) {
3871   if (BuiltinID == X86::BI__builtin_cpu_supports)
3872     return SemaBuiltinCpuSupports(*this, TI, TheCall);
3873 
3874   if (BuiltinID == X86::BI__builtin_cpu_is)
3875     return SemaBuiltinCpuIs(*this, TI, TheCall);
3876 
3877   // Check for 32-bit only builtins on a 64-bit target.
3878   const llvm::Triple &TT = TI.getTriple();
3879   if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3880     return Diag(TheCall->getCallee()->getBeginLoc(),
3881                 diag::err_32_bit_builtin_64_bit_tgt);
3882 
3883   // If the intrinsic has rounding or SAE make sure its valid.
3884   if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3885     return true;
3886 
3887   // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3888   if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3889     return true;
3890 
3891   // If the intrinsic has a tile arguments, make sure they are valid.
3892   if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3893     return true;
3894 
3895   // For intrinsics which take an immediate value as part of the instruction,
3896   // range check them here.
3897   int i = 0, l = 0, u = 0;
3898   switch (BuiltinID) {
3899   default:
3900     return false;
3901   case X86::BI__builtin_ia32_vec_ext_v2si:
3902   case X86::BI__builtin_ia32_vec_ext_v2di:
3903   case X86::BI__builtin_ia32_vextractf128_pd256:
3904   case X86::BI__builtin_ia32_vextractf128_ps256:
3905   case X86::BI__builtin_ia32_vextractf128_si256:
3906   case X86::BI__builtin_ia32_extract128i256:
3907   case X86::BI__builtin_ia32_extractf64x4_mask:
3908   case X86::BI__builtin_ia32_extracti64x4_mask:
3909   case X86::BI__builtin_ia32_extractf32x8_mask:
3910   case X86::BI__builtin_ia32_extracti32x8_mask:
3911   case X86::BI__builtin_ia32_extractf64x2_256_mask:
3912   case X86::BI__builtin_ia32_extracti64x2_256_mask:
3913   case X86::BI__builtin_ia32_extractf32x4_256_mask:
3914   case X86::BI__builtin_ia32_extracti32x4_256_mask:
3915     i = 1; l = 0; u = 1;
3916     break;
3917   case X86::BI__builtin_ia32_vec_set_v2di:
3918   case X86::BI__builtin_ia32_vinsertf128_pd256:
3919   case X86::BI__builtin_ia32_vinsertf128_ps256:
3920   case X86::BI__builtin_ia32_vinsertf128_si256:
3921   case X86::BI__builtin_ia32_insert128i256:
3922   case X86::BI__builtin_ia32_insertf32x8:
3923   case X86::BI__builtin_ia32_inserti32x8:
3924   case X86::BI__builtin_ia32_insertf64x4:
3925   case X86::BI__builtin_ia32_inserti64x4:
3926   case X86::BI__builtin_ia32_insertf64x2_256:
3927   case X86::BI__builtin_ia32_inserti64x2_256:
3928   case X86::BI__builtin_ia32_insertf32x4_256:
3929   case X86::BI__builtin_ia32_inserti32x4_256:
3930     i = 2; l = 0; u = 1;
3931     break;
3932   case X86::BI__builtin_ia32_vpermilpd:
3933   case X86::BI__builtin_ia32_vec_ext_v4hi:
3934   case X86::BI__builtin_ia32_vec_ext_v4si:
3935   case X86::BI__builtin_ia32_vec_ext_v4sf:
3936   case X86::BI__builtin_ia32_vec_ext_v4di:
3937   case X86::BI__builtin_ia32_extractf32x4_mask:
3938   case X86::BI__builtin_ia32_extracti32x4_mask:
3939   case X86::BI__builtin_ia32_extractf64x2_512_mask:
3940   case X86::BI__builtin_ia32_extracti64x2_512_mask:
3941     i = 1; l = 0; u = 3;
3942     break;
3943   case X86::BI_mm_prefetch:
3944   case X86::BI__builtin_ia32_vec_ext_v8hi:
3945   case X86::BI__builtin_ia32_vec_ext_v8si:
3946     i = 1; l = 0; u = 7;
3947     break;
3948   case X86::BI__builtin_ia32_sha1rnds4:
3949   case X86::BI__builtin_ia32_blendpd:
3950   case X86::BI__builtin_ia32_shufpd:
3951   case X86::BI__builtin_ia32_vec_set_v4hi:
3952   case X86::BI__builtin_ia32_vec_set_v4si:
3953   case X86::BI__builtin_ia32_vec_set_v4di:
3954   case X86::BI__builtin_ia32_shuf_f32x4_256:
3955   case X86::BI__builtin_ia32_shuf_f64x2_256:
3956   case X86::BI__builtin_ia32_shuf_i32x4_256:
3957   case X86::BI__builtin_ia32_shuf_i64x2_256:
3958   case X86::BI__builtin_ia32_insertf64x2_512:
3959   case X86::BI__builtin_ia32_inserti64x2_512:
3960   case X86::BI__builtin_ia32_insertf32x4:
3961   case X86::BI__builtin_ia32_inserti32x4:
3962     i = 2; l = 0; u = 3;
3963     break;
3964   case X86::BI__builtin_ia32_vpermil2pd:
3965   case X86::BI__builtin_ia32_vpermil2pd256:
3966   case X86::BI__builtin_ia32_vpermil2ps:
3967   case X86::BI__builtin_ia32_vpermil2ps256:
3968     i = 3; l = 0; u = 3;
3969     break;
3970   case X86::BI__builtin_ia32_cmpb128_mask:
3971   case X86::BI__builtin_ia32_cmpw128_mask:
3972   case X86::BI__builtin_ia32_cmpd128_mask:
3973   case X86::BI__builtin_ia32_cmpq128_mask:
3974   case X86::BI__builtin_ia32_cmpb256_mask:
3975   case X86::BI__builtin_ia32_cmpw256_mask:
3976   case X86::BI__builtin_ia32_cmpd256_mask:
3977   case X86::BI__builtin_ia32_cmpq256_mask:
3978   case X86::BI__builtin_ia32_cmpb512_mask:
3979   case X86::BI__builtin_ia32_cmpw512_mask:
3980   case X86::BI__builtin_ia32_cmpd512_mask:
3981   case X86::BI__builtin_ia32_cmpq512_mask:
3982   case X86::BI__builtin_ia32_ucmpb128_mask:
3983   case X86::BI__builtin_ia32_ucmpw128_mask:
3984   case X86::BI__builtin_ia32_ucmpd128_mask:
3985   case X86::BI__builtin_ia32_ucmpq128_mask:
3986   case X86::BI__builtin_ia32_ucmpb256_mask:
3987   case X86::BI__builtin_ia32_ucmpw256_mask:
3988   case X86::BI__builtin_ia32_ucmpd256_mask:
3989   case X86::BI__builtin_ia32_ucmpq256_mask:
3990   case X86::BI__builtin_ia32_ucmpb512_mask:
3991   case X86::BI__builtin_ia32_ucmpw512_mask:
3992   case X86::BI__builtin_ia32_ucmpd512_mask:
3993   case X86::BI__builtin_ia32_ucmpq512_mask:
3994   case X86::BI__builtin_ia32_vpcomub:
3995   case X86::BI__builtin_ia32_vpcomuw:
3996   case X86::BI__builtin_ia32_vpcomud:
3997   case X86::BI__builtin_ia32_vpcomuq:
3998   case X86::BI__builtin_ia32_vpcomb:
3999   case X86::BI__builtin_ia32_vpcomw:
4000   case X86::BI__builtin_ia32_vpcomd:
4001   case X86::BI__builtin_ia32_vpcomq:
4002   case X86::BI__builtin_ia32_vec_set_v8hi:
4003   case X86::BI__builtin_ia32_vec_set_v8si:
4004     i = 2; l = 0; u = 7;
4005     break;
4006   case X86::BI__builtin_ia32_vpermilpd256:
4007   case X86::BI__builtin_ia32_roundps:
4008   case X86::BI__builtin_ia32_roundpd:
4009   case X86::BI__builtin_ia32_roundps256:
4010   case X86::BI__builtin_ia32_roundpd256:
4011   case X86::BI__builtin_ia32_getmantpd128_mask:
4012   case X86::BI__builtin_ia32_getmantpd256_mask:
4013   case X86::BI__builtin_ia32_getmantps128_mask:
4014   case X86::BI__builtin_ia32_getmantps256_mask:
4015   case X86::BI__builtin_ia32_getmantpd512_mask:
4016   case X86::BI__builtin_ia32_getmantps512_mask:
4017   case X86::BI__builtin_ia32_vec_ext_v16qi:
4018   case X86::BI__builtin_ia32_vec_ext_v16hi:
4019     i = 1; l = 0; u = 15;
4020     break;
4021   case X86::BI__builtin_ia32_pblendd128:
4022   case X86::BI__builtin_ia32_blendps:
4023   case X86::BI__builtin_ia32_blendpd256:
4024   case X86::BI__builtin_ia32_shufpd256:
4025   case X86::BI__builtin_ia32_roundss:
4026   case X86::BI__builtin_ia32_roundsd:
4027   case X86::BI__builtin_ia32_rangepd128_mask:
4028   case X86::BI__builtin_ia32_rangepd256_mask:
4029   case X86::BI__builtin_ia32_rangepd512_mask:
4030   case X86::BI__builtin_ia32_rangeps128_mask:
4031   case X86::BI__builtin_ia32_rangeps256_mask:
4032   case X86::BI__builtin_ia32_rangeps512_mask:
4033   case X86::BI__builtin_ia32_getmantsd_round_mask:
4034   case X86::BI__builtin_ia32_getmantss_round_mask:
4035   case X86::BI__builtin_ia32_vec_set_v16qi:
4036   case X86::BI__builtin_ia32_vec_set_v16hi:
4037     i = 2; l = 0; u = 15;
4038     break;
4039   case X86::BI__builtin_ia32_vec_ext_v32qi:
4040     i = 1; l = 0; u = 31;
4041     break;
4042   case X86::BI__builtin_ia32_cmpps:
4043   case X86::BI__builtin_ia32_cmpss:
4044   case X86::BI__builtin_ia32_cmppd:
4045   case X86::BI__builtin_ia32_cmpsd:
4046   case X86::BI__builtin_ia32_cmpps256:
4047   case X86::BI__builtin_ia32_cmppd256:
4048   case X86::BI__builtin_ia32_cmpps128_mask:
4049   case X86::BI__builtin_ia32_cmppd128_mask:
4050   case X86::BI__builtin_ia32_cmpps256_mask:
4051   case X86::BI__builtin_ia32_cmppd256_mask:
4052   case X86::BI__builtin_ia32_cmpps512_mask:
4053   case X86::BI__builtin_ia32_cmppd512_mask:
4054   case X86::BI__builtin_ia32_cmpsd_mask:
4055   case X86::BI__builtin_ia32_cmpss_mask:
4056   case X86::BI__builtin_ia32_vec_set_v32qi:
4057     i = 2; l = 0; u = 31;
4058     break;
4059   case X86::BI__builtin_ia32_permdf256:
4060   case X86::BI__builtin_ia32_permdi256:
4061   case X86::BI__builtin_ia32_permdf512:
4062   case X86::BI__builtin_ia32_permdi512:
4063   case X86::BI__builtin_ia32_vpermilps:
4064   case X86::BI__builtin_ia32_vpermilps256:
4065   case X86::BI__builtin_ia32_vpermilpd512:
4066   case X86::BI__builtin_ia32_vpermilps512:
4067   case X86::BI__builtin_ia32_pshufd:
4068   case X86::BI__builtin_ia32_pshufd256:
4069   case X86::BI__builtin_ia32_pshufd512:
4070   case X86::BI__builtin_ia32_pshufhw:
4071   case X86::BI__builtin_ia32_pshufhw256:
4072   case X86::BI__builtin_ia32_pshufhw512:
4073   case X86::BI__builtin_ia32_pshuflw:
4074   case X86::BI__builtin_ia32_pshuflw256:
4075   case X86::BI__builtin_ia32_pshuflw512:
4076   case X86::BI__builtin_ia32_vcvtps2ph:
4077   case X86::BI__builtin_ia32_vcvtps2ph_mask:
4078   case X86::BI__builtin_ia32_vcvtps2ph256:
4079   case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4080   case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4081   case X86::BI__builtin_ia32_rndscaleps_128_mask:
4082   case X86::BI__builtin_ia32_rndscalepd_128_mask:
4083   case X86::BI__builtin_ia32_rndscaleps_256_mask:
4084   case X86::BI__builtin_ia32_rndscalepd_256_mask:
4085   case X86::BI__builtin_ia32_rndscaleps_mask:
4086   case X86::BI__builtin_ia32_rndscalepd_mask:
4087   case X86::BI__builtin_ia32_reducepd128_mask:
4088   case X86::BI__builtin_ia32_reducepd256_mask:
4089   case X86::BI__builtin_ia32_reducepd512_mask:
4090   case X86::BI__builtin_ia32_reduceps128_mask:
4091   case X86::BI__builtin_ia32_reduceps256_mask:
4092   case X86::BI__builtin_ia32_reduceps512_mask:
4093   case X86::BI__builtin_ia32_prold512:
4094   case X86::BI__builtin_ia32_prolq512:
4095   case X86::BI__builtin_ia32_prold128:
4096   case X86::BI__builtin_ia32_prold256:
4097   case X86::BI__builtin_ia32_prolq128:
4098   case X86::BI__builtin_ia32_prolq256:
4099   case X86::BI__builtin_ia32_prord512:
4100   case X86::BI__builtin_ia32_prorq512:
4101   case X86::BI__builtin_ia32_prord128:
4102   case X86::BI__builtin_ia32_prord256:
4103   case X86::BI__builtin_ia32_prorq128:
4104   case X86::BI__builtin_ia32_prorq256:
4105   case X86::BI__builtin_ia32_fpclasspd128_mask:
4106   case X86::BI__builtin_ia32_fpclasspd256_mask:
4107   case X86::BI__builtin_ia32_fpclassps128_mask:
4108   case X86::BI__builtin_ia32_fpclassps256_mask:
4109   case X86::BI__builtin_ia32_fpclassps512_mask:
4110   case X86::BI__builtin_ia32_fpclasspd512_mask:
4111   case X86::BI__builtin_ia32_fpclasssd_mask:
4112   case X86::BI__builtin_ia32_fpclassss_mask:
4113   case X86::BI__builtin_ia32_pslldqi128_byteshift:
4114   case X86::BI__builtin_ia32_pslldqi256_byteshift:
4115   case X86::BI__builtin_ia32_pslldqi512_byteshift:
4116   case X86::BI__builtin_ia32_psrldqi128_byteshift:
4117   case X86::BI__builtin_ia32_psrldqi256_byteshift:
4118   case X86::BI__builtin_ia32_psrldqi512_byteshift:
4119   case X86::BI__builtin_ia32_kshiftliqi:
4120   case X86::BI__builtin_ia32_kshiftlihi:
4121   case X86::BI__builtin_ia32_kshiftlisi:
4122   case X86::BI__builtin_ia32_kshiftlidi:
4123   case X86::BI__builtin_ia32_kshiftriqi:
4124   case X86::BI__builtin_ia32_kshiftrihi:
4125   case X86::BI__builtin_ia32_kshiftrisi:
4126   case X86::BI__builtin_ia32_kshiftridi:
4127     i = 1; l = 0; u = 255;
4128     break;
4129   case X86::BI__builtin_ia32_vperm2f128_pd256:
4130   case X86::BI__builtin_ia32_vperm2f128_ps256:
4131   case X86::BI__builtin_ia32_vperm2f128_si256:
4132   case X86::BI__builtin_ia32_permti256:
4133   case X86::BI__builtin_ia32_pblendw128:
4134   case X86::BI__builtin_ia32_pblendw256:
4135   case X86::BI__builtin_ia32_blendps256:
4136   case X86::BI__builtin_ia32_pblendd256:
4137   case X86::BI__builtin_ia32_palignr128:
4138   case X86::BI__builtin_ia32_palignr256:
4139   case X86::BI__builtin_ia32_palignr512:
4140   case X86::BI__builtin_ia32_alignq512:
4141   case X86::BI__builtin_ia32_alignd512:
4142   case X86::BI__builtin_ia32_alignd128:
4143   case X86::BI__builtin_ia32_alignd256:
4144   case X86::BI__builtin_ia32_alignq128:
4145   case X86::BI__builtin_ia32_alignq256:
4146   case X86::BI__builtin_ia32_vcomisd:
4147   case X86::BI__builtin_ia32_vcomiss:
4148   case X86::BI__builtin_ia32_shuf_f32x4:
4149   case X86::BI__builtin_ia32_shuf_f64x2:
4150   case X86::BI__builtin_ia32_shuf_i32x4:
4151   case X86::BI__builtin_ia32_shuf_i64x2:
4152   case X86::BI__builtin_ia32_shufpd512:
4153   case X86::BI__builtin_ia32_shufps:
4154   case X86::BI__builtin_ia32_shufps256:
4155   case X86::BI__builtin_ia32_shufps512:
4156   case X86::BI__builtin_ia32_dbpsadbw128:
4157   case X86::BI__builtin_ia32_dbpsadbw256:
4158   case X86::BI__builtin_ia32_dbpsadbw512:
4159   case X86::BI__builtin_ia32_vpshldd128:
4160   case X86::BI__builtin_ia32_vpshldd256:
4161   case X86::BI__builtin_ia32_vpshldd512:
4162   case X86::BI__builtin_ia32_vpshldq128:
4163   case X86::BI__builtin_ia32_vpshldq256:
4164   case X86::BI__builtin_ia32_vpshldq512:
4165   case X86::BI__builtin_ia32_vpshldw128:
4166   case X86::BI__builtin_ia32_vpshldw256:
4167   case X86::BI__builtin_ia32_vpshldw512:
4168   case X86::BI__builtin_ia32_vpshrdd128:
4169   case X86::BI__builtin_ia32_vpshrdd256:
4170   case X86::BI__builtin_ia32_vpshrdd512:
4171   case X86::BI__builtin_ia32_vpshrdq128:
4172   case X86::BI__builtin_ia32_vpshrdq256:
4173   case X86::BI__builtin_ia32_vpshrdq512:
4174   case X86::BI__builtin_ia32_vpshrdw128:
4175   case X86::BI__builtin_ia32_vpshrdw256:
4176   case X86::BI__builtin_ia32_vpshrdw512:
4177     i = 2; l = 0; u = 255;
4178     break;
4179   case X86::BI__builtin_ia32_fixupimmpd512_mask:
4180   case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4181   case X86::BI__builtin_ia32_fixupimmps512_mask:
4182   case X86::BI__builtin_ia32_fixupimmps512_maskz:
4183   case X86::BI__builtin_ia32_fixupimmsd_mask:
4184   case X86::BI__builtin_ia32_fixupimmsd_maskz:
4185   case X86::BI__builtin_ia32_fixupimmss_mask:
4186   case X86::BI__builtin_ia32_fixupimmss_maskz:
4187   case X86::BI__builtin_ia32_fixupimmpd128_mask:
4188   case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4189   case X86::BI__builtin_ia32_fixupimmpd256_mask:
4190   case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4191   case X86::BI__builtin_ia32_fixupimmps128_mask:
4192   case X86::BI__builtin_ia32_fixupimmps128_maskz:
4193   case X86::BI__builtin_ia32_fixupimmps256_mask:
4194   case X86::BI__builtin_ia32_fixupimmps256_maskz:
4195   case X86::BI__builtin_ia32_pternlogd512_mask:
4196   case X86::BI__builtin_ia32_pternlogd512_maskz:
4197   case X86::BI__builtin_ia32_pternlogq512_mask:
4198   case X86::BI__builtin_ia32_pternlogq512_maskz:
4199   case X86::BI__builtin_ia32_pternlogd128_mask:
4200   case X86::BI__builtin_ia32_pternlogd128_maskz:
4201   case X86::BI__builtin_ia32_pternlogd256_mask:
4202   case X86::BI__builtin_ia32_pternlogd256_maskz:
4203   case X86::BI__builtin_ia32_pternlogq128_mask:
4204   case X86::BI__builtin_ia32_pternlogq128_maskz:
4205   case X86::BI__builtin_ia32_pternlogq256_mask:
4206   case X86::BI__builtin_ia32_pternlogq256_maskz:
4207     i = 3; l = 0; u = 255;
4208     break;
4209   case X86::BI__builtin_ia32_gatherpfdpd:
4210   case X86::BI__builtin_ia32_gatherpfdps:
4211   case X86::BI__builtin_ia32_gatherpfqpd:
4212   case X86::BI__builtin_ia32_gatherpfqps:
4213   case X86::BI__builtin_ia32_scatterpfdpd:
4214   case X86::BI__builtin_ia32_scatterpfdps:
4215   case X86::BI__builtin_ia32_scatterpfqpd:
4216   case X86::BI__builtin_ia32_scatterpfqps:
4217     i = 4; l = 2; u = 3;
4218     break;
4219   case X86::BI__builtin_ia32_reducesd_mask:
4220   case X86::BI__builtin_ia32_reducess_mask:
4221   case X86::BI__builtin_ia32_rndscalesd_round_mask:
4222   case X86::BI__builtin_ia32_rndscaless_round_mask:
4223     i = 4; l = 0; u = 255;
4224     break;
4225   }
4226 
4227   // Note that we don't force a hard error on the range check here, allowing
4228   // template-generated or macro-generated dead code to potentially have out-of-
4229   // range values. These need to code generate, but don't need to necessarily
4230   // make any sense. We use a warning that defaults to an error.
4231   return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4232 }
4233 
4234 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4235 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
4236 /// Returns true when the format fits the function and the FormatStringInfo has
4237 /// been populated.
4238 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4239                                FormatStringInfo *FSI) {
4240   FSI->HasVAListArg = Format->getFirstArg() == 0;
4241   FSI->FormatIdx = Format->getFormatIdx() - 1;
4242   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4243 
4244   // The way the format attribute works in GCC, the implicit this argument
4245   // of member functions is counted. However, it doesn't appear in our own
4246   // lists, so decrement format_idx in that case.
4247   if (IsCXXMember) {
4248     if(FSI->FormatIdx == 0)
4249       return false;
4250     --FSI->FormatIdx;
4251     if (FSI->FirstDataArg != 0)
4252       --FSI->FirstDataArg;
4253   }
4254   return true;
4255 }
4256 
4257 /// Checks if a the given expression evaluates to null.
4258 ///
4259 /// Returns true if the value evaluates to null.
4260 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4261   // If the expression has non-null type, it doesn't evaluate to null.
4262   if (auto nullability
4263         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4264     if (*nullability == NullabilityKind::NonNull)
4265       return false;
4266   }
4267 
4268   // As a special case, transparent unions initialized with zero are
4269   // considered null for the purposes of the nonnull attribute.
4270   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4271     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4272       if (const CompoundLiteralExpr *CLE =
4273           dyn_cast<CompoundLiteralExpr>(Expr))
4274         if (const InitListExpr *ILE =
4275             dyn_cast<InitListExpr>(CLE->getInitializer()))
4276           Expr = ILE->getInit(0);
4277   }
4278 
4279   bool Result;
4280   return (!Expr->isValueDependent() &&
4281           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4282           !Result);
4283 }
4284 
4285 static void CheckNonNullArgument(Sema &S,
4286                                  const Expr *ArgExpr,
4287                                  SourceLocation CallSiteLoc) {
4288   if (CheckNonNullExpr(S, ArgExpr))
4289     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4290                           S.PDiag(diag::warn_null_arg)
4291                               << ArgExpr->getSourceRange());
4292 }
4293 
4294 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4295   FormatStringInfo FSI;
4296   if ((GetFormatStringType(Format) == FST_NSString) &&
4297       getFormatStringInfo(Format, false, &FSI)) {
4298     Idx = FSI.FormatIdx;
4299     return true;
4300   }
4301   return false;
4302 }
4303 
4304 /// Diagnose use of %s directive in an NSString which is being passed
4305 /// as formatting string to formatting method.
4306 static void
4307 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4308                                         const NamedDecl *FDecl,
4309                                         Expr **Args,
4310                                         unsigned NumArgs) {
4311   unsigned Idx = 0;
4312   bool Format = false;
4313   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4314   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4315     Idx = 2;
4316     Format = true;
4317   }
4318   else
4319     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4320       if (S.GetFormatNSStringIdx(I, Idx)) {
4321         Format = true;
4322         break;
4323       }
4324     }
4325   if (!Format || NumArgs <= Idx)
4326     return;
4327   const Expr *FormatExpr = Args[Idx];
4328   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4329     FormatExpr = CSCE->getSubExpr();
4330   const StringLiteral *FormatString;
4331   if (const ObjCStringLiteral *OSL =
4332       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4333     FormatString = OSL->getString();
4334   else
4335     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4336   if (!FormatString)
4337     return;
4338   if (S.FormatStringHasSArg(FormatString)) {
4339     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4340       << "%s" << 1 << 1;
4341     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4342       << FDecl->getDeclName();
4343   }
4344 }
4345 
4346 /// Determine whether the given type has a non-null nullability annotation.
4347 static bool isNonNullType(ASTContext &ctx, QualType type) {
4348   if (auto nullability = type->getNullability(ctx))
4349     return *nullability == NullabilityKind::NonNull;
4350 
4351   return false;
4352 }
4353 
4354 static void CheckNonNullArguments(Sema &S,
4355                                   const NamedDecl *FDecl,
4356                                   const FunctionProtoType *Proto,
4357                                   ArrayRef<const Expr *> Args,
4358                                   SourceLocation CallSiteLoc) {
4359   assert((FDecl || Proto) && "Need a function declaration or prototype");
4360 
4361   // Already checked by by constant evaluator.
4362   if (S.isConstantEvaluated())
4363     return;
4364   // Check the attributes attached to the method/function itself.
4365   llvm::SmallBitVector NonNullArgs;
4366   if (FDecl) {
4367     // Handle the nonnull attribute on the function/method declaration itself.
4368     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4369       if (!NonNull->args_size()) {
4370         // Easy case: all pointer arguments are nonnull.
4371         for (const auto *Arg : Args)
4372           if (S.isValidPointerAttrType(Arg->getType()))
4373             CheckNonNullArgument(S, Arg, CallSiteLoc);
4374         return;
4375       }
4376 
4377       for (const ParamIdx &Idx : NonNull->args()) {
4378         unsigned IdxAST = Idx.getASTIndex();
4379         if (IdxAST >= Args.size())
4380           continue;
4381         if (NonNullArgs.empty())
4382           NonNullArgs.resize(Args.size());
4383         NonNullArgs.set(IdxAST);
4384       }
4385     }
4386   }
4387 
4388   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4389     // Handle the nonnull attribute on the parameters of the
4390     // function/method.
4391     ArrayRef<ParmVarDecl*> parms;
4392     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4393       parms = FD->parameters();
4394     else
4395       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4396 
4397     unsigned ParamIndex = 0;
4398     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4399          I != E; ++I, ++ParamIndex) {
4400       const ParmVarDecl *PVD = *I;
4401       if (PVD->hasAttr<NonNullAttr>() ||
4402           isNonNullType(S.Context, PVD->getType())) {
4403         if (NonNullArgs.empty())
4404           NonNullArgs.resize(Args.size());
4405 
4406         NonNullArgs.set(ParamIndex);
4407       }
4408     }
4409   } else {
4410     // If we have a non-function, non-method declaration but no
4411     // function prototype, try to dig out the function prototype.
4412     if (!Proto) {
4413       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4414         QualType type = VD->getType().getNonReferenceType();
4415         if (auto pointerType = type->getAs<PointerType>())
4416           type = pointerType->getPointeeType();
4417         else if (auto blockType = type->getAs<BlockPointerType>())
4418           type = blockType->getPointeeType();
4419         // FIXME: data member pointers?
4420 
4421         // Dig out the function prototype, if there is one.
4422         Proto = type->getAs<FunctionProtoType>();
4423       }
4424     }
4425 
4426     // Fill in non-null argument information from the nullability
4427     // information on the parameter types (if we have them).
4428     if (Proto) {
4429       unsigned Index = 0;
4430       for (auto paramType : Proto->getParamTypes()) {
4431         if (isNonNullType(S.Context, paramType)) {
4432           if (NonNullArgs.empty())
4433             NonNullArgs.resize(Args.size());
4434 
4435           NonNullArgs.set(Index);
4436         }
4437 
4438         ++Index;
4439       }
4440     }
4441   }
4442 
4443   // Check for non-null arguments.
4444   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4445        ArgIndex != ArgIndexEnd; ++ArgIndex) {
4446     if (NonNullArgs[ArgIndex])
4447       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4448   }
4449 }
4450 
4451 /// Handles the checks for format strings, non-POD arguments to vararg
4452 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4453 /// attributes.
4454 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4455                      const Expr *ThisArg, ArrayRef<const Expr *> Args,
4456                      bool IsMemberFunction, SourceLocation Loc,
4457                      SourceRange Range, VariadicCallType CallType) {
4458   // FIXME: We should check as much as we can in the template definition.
4459   if (CurContext->isDependentContext())
4460     return;
4461 
4462   // Printf and scanf checking.
4463   llvm::SmallBitVector CheckedVarArgs;
4464   if (FDecl) {
4465     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4466       // Only create vector if there are format attributes.
4467       CheckedVarArgs.resize(Args.size());
4468 
4469       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4470                            CheckedVarArgs);
4471     }
4472   }
4473 
4474   // Refuse POD arguments that weren't caught by the format string
4475   // checks above.
4476   auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4477   if (CallType != VariadicDoesNotApply &&
4478       (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4479     unsigned NumParams = Proto ? Proto->getNumParams()
4480                        : FDecl && isa<FunctionDecl>(FDecl)
4481                            ? cast<FunctionDecl>(FDecl)->getNumParams()
4482                        : FDecl && isa<ObjCMethodDecl>(FDecl)
4483                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
4484                        : 0;
4485 
4486     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4487       // Args[ArgIdx] can be null in malformed code.
4488       if (const Expr *Arg = Args[ArgIdx]) {
4489         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4490           checkVariadicArgument(Arg, CallType);
4491       }
4492     }
4493   }
4494 
4495   if (FDecl || Proto) {
4496     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4497 
4498     // Type safety checking.
4499     if (FDecl) {
4500       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4501         CheckArgumentWithTypeTag(I, Args, Loc);
4502     }
4503   }
4504 
4505   if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4506     auto *AA = FDecl->getAttr<AllocAlignAttr>();
4507     const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4508     if (!Arg->isValueDependent()) {
4509       Expr::EvalResult Align;
4510       if (Arg->EvaluateAsInt(Align, Context)) {
4511         const llvm::APSInt &I = Align.Val.getInt();
4512         if (!I.isPowerOf2())
4513           Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4514               << Arg->getSourceRange();
4515 
4516         if (I > Sema::MaximumAlignment)
4517           Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4518               << Arg->getSourceRange() << Sema::MaximumAlignment;
4519       }
4520     }
4521   }
4522 
4523   if (FD)
4524     diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4525 }
4526 
4527 /// CheckConstructorCall - Check a constructor call for correctness and safety
4528 /// properties not enforced by the C type system.
4529 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4530                                 ArrayRef<const Expr *> Args,
4531                                 const FunctionProtoType *Proto,
4532                                 SourceLocation Loc) {
4533   VariadicCallType CallType =
4534     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4535   checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4536             Loc, SourceRange(), CallType);
4537 }
4538 
4539 /// CheckFunctionCall - Check a direct function call for various correctness
4540 /// and safety properties not strictly enforced by the C type system.
4541 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4542                              const FunctionProtoType *Proto) {
4543   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
4544                               isa<CXXMethodDecl>(FDecl);
4545   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
4546                           IsMemberOperatorCall;
4547   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4548                                                   TheCall->getCallee());
4549   Expr** Args = TheCall->getArgs();
4550   unsigned NumArgs = TheCall->getNumArgs();
4551 
4552   Expr *ImplicitThis = nullptr;
4553   if (IsMemberOperatorCall) {
4554     // If this is a call to a member operator, hide the first argument
4555     // from checkCall.
4556     // FIXME: Our choice of AST representation here is less than ideal.
4557     ImplicitThis = Args[0];
4558     ++Args;
4559     --NumArgs;
4560   } else if (IsMemberFunction)
4561     ImplicitThis =
4562         cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4563 
4564   checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4565             IsMemberFunction, TheCall->getRParenLoc(),
4566             TheCall->getCallee()->getSourceRange(), CallType);
4567 
4568   IdentifierInfo *FnInfo = FDecl->getIdentifier();
4569   // None of the checks below are needed for functions that don't have
4570   // simple names (e.g., C++ conversion functions).
4571   if (!FnInfo)
4572     return false;
4573 
4574   CheckTCBEnforcement(TheCall, FDecl);
4575 
4576   CheckAbsoluteValueFunction(TheCall, FDecl);
4577   CheckMaxUnsignedZero(TheCall, FDecl);
4578 
4579   if (getLangOpts().ObjC)
4580     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4581 
4582   unsigned CMId = FDecl->getMemoryFunctionKind();
4583 
4584   // Handle memory setting and copying functions.
4585   switch (CMId) {
4586   case 0:
4587     return false;
4588   case Builtin::BIstrlcpy: // fallthrough
4589   case Builtin::BIstrlcat:
4590     CheckStrlcpycatArguments(TheCall, FnInfo);
4591     break;
4592   case Builtin::BIstrncat:
4593     CheckStrncatArguments(TheCall, FnInfo);
4594     break;
4595   case Builtin::BIfree:
4596     CheckFreeArguments(TheCall);
4597     break;
4598   default:
4599     CheckMemaccessArguments(TheCall, CMId, FnInfo);
4600   }
4601 
4602   return false;
4603 }
4604 
4605 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4606                                ArrayRef<const Expr *> Args) {
4607   VariadicCallType CallType =
4608       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4609 
4610   checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4611             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4612             CallType);
4613 
4614   return false;
4615 }
4616 
4617 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4618                             const FunctionProtoType *Proto) {
4619   QualType Ty;
4620   if (const auto *V = dyn_cast<VarDecl>(NDecl))
4621     Ty = V->getType().getNonReferenceType();
4622   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4623     Ty = F->getType().getNonReferenceType();
4624   else
4625     return false;
4626 
4627   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4628       !Ty->isFunctionProtoType())
4629     return false;
4630 
4631   VariadicCallType CallType;
4632   if (!Proto || !Proto->isVariadic()) {
4633     CallType = VariadicDoesNotApply;
4634   } else if (Ty->isBlockPointerType()) {
4635     CallType = VariadicBlock;
4636   } else { // Ty->isFunctionPointerType()
4637     CallType = VariadicFunction;
4638   }
4639 
4640   checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4641             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4642             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4643             TheCall->getCallee()->getSourceRange(), CallType);
4644 
4645   return false;
4646 }
4647 
4648 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4649 /// such as function pointers returned from functions.
4650 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4651   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4652                                                   TheCall->getCallee());
4653   checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4654             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4655             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4656             TheCall->getCallee()->getSourceRange(), CallType);
4657 
4658   return false;
4659 }
4660 
4661 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4662   if (!llvm::isValidAtomicOrderingCABI(Ordering))
4663     return false;
4664 
4665   auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4666   switch (Op) {
4667   case AtomicExpr::AO__c11_atomic_init:
4668   case AtomicExpr::AO__opencl_atomic_init:
4669     llvm_unreachable("There is no ordering argument for an init");
4670 
4671   case AtomicExpr::AO__c11_atomic_load:
4672   case AtomicExpr::AO__opencl_atomic_load:
4673   case AtomicExpr::AO__atomic_load_n:
4674   case AtomicExpr::AO__atomic_load:
4675     return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4676            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4677 
4678   case AtomicExpr::AO__c11_atomic_store:
4679   case AtomicExpr::AO__opencl_atomic_store:
4680   case AtomicExpr::AO__atomic_store:
4681   case AtomicExpr::AO__atomic_store_n:
4682     return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4683            OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4684            OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4685 
4686   default:
4687     return true;
4688   }
4689 }
4690 
4691 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4692                                          AtomicExpr::AtomicOp Op) {
4693   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4694   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4695   MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4696   return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4697                          DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4698                          Op);
4699 }
4700 
4701 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4702                                  SourceLocation RParenLoc, MultiExprArg Args,
4703                                  AtomicExpr::AtomicOp Op,
4704                                  AtomicArgumentOrder ArgOrder) {
4705   // All the non-OpenCL operations take one of the following forms.
4706   // The OpenCL operations take the __c11 forms with one extra argument for
4707   // synchronization scope.
4708   enum {
4709     // C    __c11_atomic_init(A *, C)
4710     Init,
4711 
4712     // C    __c11_atomic_load(A *, int)
4713     Load,
4714 
4715     // void __atomic_load(A *, CP, int)
4716     LoadCopy,
4717 
4718     // void __atomic_store(A *, CP, int)
4719     Copy,
4720 
4721     // C    __c11_atomic_add(A *, M, int)
4722     Arithmetic,
4723 
4724     // C    __atomic_exchange_n(A *, CP, int)
4725     Xchg,
4726 
4727     // void __atomic_exchange(A *, C *, CP, int)
4728     GNUXchg,
4729 
4730     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4731     C11CmpXchg,
4732 
4733     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4734     GNUCmpXchg
4735   } Form = Init;
4736 
4737   const unsigned NumForm = GNUCmpXchg + 1;
4738   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4739   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4740   // where:
4741   //   C is an appropriate type,
4742   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4743   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4744   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4745   //   the int parameters are for orderings.
4746 
4747   static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4748       && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4749       "need to update code for modified forms");
4750   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4751                     AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4752                         AtomicExpr::AO__atomic_load,
4753                 "need to update code for modified C11 atomics");
4754   bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4755                   Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4756   bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4757                Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4758                IsOpenCL;
4759   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4760              Op == AtomicExpr::AO__atomic_store_n ||
4761              Op == AtomicExpr::AO__atomic_exchange_n ||
4762              Op == AtomicExpr::AO__atomic_compare_exchange_n;
4763   bool IsAddSub = false;
4764 
4765   switch (Op) {
4766   case AtomicExpr::AO__c11_atomic_init:
4767   case AtomicExpr::AO__opencl_atomic_init:
4768     Form = Init;
4769     break;
4770 
4771   case AtomicExpr::AO__c11_atomic_load:
4772   case AtomicExpr::AO__opencl_atomic_load:
4773   case AtomicExpr::AO__atomic_load_n:
4774     Form = Load;
4775     break;
4776 
4777   case AtomicExpr::AO__atomic_load:
4778     Form = LoadCopy;
4779     break;
4780 
4781   case AtomicExpr::AO__c11_atomic_store:
4782   case AtomicExpr::AO__opencl_atomic_store:
4783   case AtomicExpr::AO__atomic_store:
4784   case AtomicExpr::AO__atomic_store_n:
4785     Form = Copy;
4786     break;
4787 
4788   case AtomicExpr::AO__c11_atomic_fetch_add:
4789   case AtomicExpr::AO__c11_atomic_fetch_sub:
4790   case AtomicExpr::AO__opencl_atomic_fetch_add:
4791   case AtomicExpr::AO__opencl_atomic_fetch_sub:
4792   case AtomicExpr::AO__atomic_fetch_add:
4793   case AtomicExpr::AO__atomic_fetch_sub:
4794   case AtomicExpr::AO__atomic_add_fetch:
4795   case AtomicExpr::AO__atomic_sub_fetch:
4796     IsAddSub = true;
4797     LLVM_FALLTHROUGH;
4798   case AtomicExpr::AO__c11_atomic_fetch_and:
4799   case AtomicExpr::AO__c11_atomic_fetch_or:
4800   case AtomicExpr::AO__c11_atomic_fetch_xor:
4801   case AtomicExpr::AO__opencl_atomic_fetch_and:
4802   case AtomicExpr::AO__opencl_atomic_fetch_or:
4803   case AtomicExpr::AO__opencl_atomic_fetch_xor:
4804   case AtomicExpr::AO__atomic_fetch_and:
4805   case AtomicExpr::AO__atomic_fetch_or:
4806   case AtomicExpr::AO__atomic_fetch_xor:
4807   case AtomicExpr::AO__atomic_fetch_nand:
4808   case AtomicExpr::AO__atomic_and_fetch:
4809   case AtomicExpr::AO__atomic_or_fetch:
4810   case AtomicExpr::AO__atomic_xor_fetch:
4811   case AtomicExpr::AO__atomic_nand_fetch:
4812   case AtomicExpr::AO__c11_atomic_fetch_min:
4813   case AtomicExpr::AO__c11_atomic_fetch_max:
4814   case AtomicExpr::AO__opencl_atomic_fetch_min:
4815   case AtomicExpr::AO__opencl_atomic_fetch_max:
4816   case AtomicExpr::AO__atomic_min_fetch:
4817   case AtomicExpr::AO__atomic_max_fetch:
4818   case AtomicExpr::AO__atomic_fetch_min:
4819   case AtomicExpr::AO__atomic_fetch_max:
4820     Form = Arithmetic;
4821     break;
4822 
4823   case AtomicExpr::AO__c11_atomic_exchange:
4824   case AtomicExpr::AO__opencl_atomic_exchange:
4825   case AtomicExpr::AO__atomic_exchange_n:
4826     Form = Xchg;
4827     break;
4828 
4829   case AtomicExpr::AO__atomic_exchange:
4830     Form = GNUXchg;
4831     break;
4832 
4833   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4834   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4835   case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4836   case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4837     Form = C11CmpXchg;
4838     break;
4839 
4840   case AtomicExpr::AO__atomic_compare_exchange:
4841   case AtomicExpr::AO__atomic_compare_exchange_n:
4842     Form = GNUCmpXchg;
4843     break;
4844   }
4845 
4846   unsigned AdjustedNumArgs = NumArgs[Form];
4847   if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4848     ++AdjustedNumArgs;
4849   // Check we have the right number of arguments.
4850   if (Args.size() < AdjustedNumArgs) {
4851     Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4852         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4853         << ExprRange;
4854     return ExprError();
4855   } else if (Args.size() > AdjustedNumArgs) {
4856     Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4857          diag::err_typecheck_call_too_many_args)
4858         << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4859         << ExprRange;
4860     return ExprError();
4861   }
4862 
4863   // Inspect the first argument of the atomic operation.
4864   Expr *Ptr = Args[0];
4865   ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4866   if (ConvertedPtr.isInvalid())
4867     return ExprError();
4868 
4869   Ptr = ConvertedPtr.get();
4870   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4871   if (!pointerType) {
4872     Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4873         << Ptr->getType() << Ptr->getSourceRange();
4874     return ExprError();
4875   }
4876 
4877   // For a __c11 builtin, this should be a pointer to an _Atomic type.
4878   QualType AtomTy = pointerType->getPointeeType(); // 'A'
4879   QualType ValType = AtomTy; // 'C'
4880   if (IsC11) {
4881     if (!AtomTy->isAtomicType()) {
4882       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4883           << Ptr->getType() << Ptr->getSourceRange();
4884       return ExprError();
4885     }
4886     if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4887         AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4888       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4889           << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4890           << Ptr->getSourceRange();
4891       return ExprError();
4892     }
4893     ValType = AtomTy->castAs<AtomicType>()->getValueType();
4894   } else if (Form != Load && Form != LoadCopy) {
4895     if (ValType.isConstQualified()) {
4896       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4897           << Ptr->getType() << Ptr->getSourceRange();
4898       return ExprError();
4899     }
4900   }
4901 
4902   // For an arithmetic operation, the implied arithmetic must be well-formed.
4903   if (Form == Arithmetic) {
4904     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4905     if (IsAddSub && !ValType->isIntegerType()
4906         && !ValType->isPointerType()) {
4907       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4908           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4909       return ExprError();
4910     }
4911     if (!IsAddSub && !ValType->isIntegerType()) {
4912       Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4913           << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4914       return ExprError();
4915     }
4916     if (IsC11 && ValType->isPointerType() &&
4917         RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4918                             diag::err_incomplete_type)) {
4919       return ExprError();
4920     }
4921   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4922     // For __atomic_*_n operations, the value type must be a scalar integral or
4923     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4924     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4925         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4926     return ExprError();
4927   }
4928 
4929   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4930       !AtomTy->isScalarType()) {
4931     // For GNU atomics, require a trivially-copyable type. This is not part of
4932     // the GNU atomics specification, but we enforce it for sanity.
4933     Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4934         << Ptr->getType() << Ptr->getSourceRange();
4935     return ExprError();
4936   }
4937 
4938   switch (ValType.getObjCLifetime()) {
4939   case Qualifiers::OCL_None:
4940   case Qualifiers::OCL_ExplicitNone:
4941     // okay
4942     break;
4943 
4944   case Qualifiers::OCL_Weak:
4945   case Qualifiers::OCL_Strong:
4946   case Qualifiers::OCL_Autoreleasing:
4947     // FIXME: Can this happen? By this point, ValType should be known
4948     // to be trivially copyable.
4949     Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4950         << ValType << Ptr->getSourceRange();
4951     return ExprError();
4952   }
4953 
4954   // All atomic operations have an overload which takes a pointer to a volatile
4955   // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
4956   // into the result or the other operands. Similarly atomic_load takes a
4957   // pointer to a const 'A'.
4958   ValType.removeLocalVolatile();
4959   ValType.removeLocalConst();
4960   QualType ResultType = ValType;
4961   if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4962       Form == Init)
4963     ResultType = Context.VoidTy;
4964   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4965     ResultType = Context.BoolTy;
4966 
4967   // The type of a parameter passed 'by value'. In the GNU atomics, such
4968   // arguments are actually passed as pointers.
4969   QualType ByValType = ValType; // 'CP'
4970   bool IsPassedByAddress = false;
4971   if (!IsC11 && !IsN) {
4972     ByValType = Ptr->getType();
4973     IsPassedByAddress = true;
4974   }
4975 
4976   SmallVector<Expr *, 5> APIOrderedArgs;
4977   if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4978     APIOrderedArgs.push_back(Args[0]);
4979     switch (Form) {
4980     case Init:
4981     case Load:
4982       APIOrderedArgs.push_back(Args[1]); // Val1/Order
4983       break;
4984     case LoadCopy:
4985     case Copy:
4986     case Arithmetic:
4987     case Xchg:
4988       APIOrderedArgs.push_back(Args[2]); // Val1
4989       APIOrderedArgs.push_back(Args[1]); // Order
4990       break;
4991     case GNUXchg:
4992       APIOrderedArgs.push_back(Args[2]); // Val1
4993       APIOrderedArgs.push_back(Args[3]); // Val2
4994       APIOrderedArgs.push_back(Args[1]); // Order
4995       break;
4996     case C11CmpXchg:
4997       APIOrderedArgs.push_back(Args[2]); // Val1
4998       APIOrderedArgs.push_back(Args[4]); // Val2
4999       APIOrderedArgs.push_back(Args[1]); // Order
5000       APIOrderedArgs.push_back(Args[3]); // OrderFail
5001       break;
5002     case GNUCmpXchg:
5003       APIOrderedArgs.push_back(Args[2]); // Val1
5004       APIOrderedArgs.push_back(Args[4]); // Val2
5005       APIOrderedArgs.push_back(Args[5]); // Weak
5006       APIOrderedArgs.push_back(Args[1]); // Order
5007       APIOrderedArgs.push_back(Args[3]); // OrderFail
5008       break;
5009     }
5010   } else
5011     APIOrderedArgs.append(Args.begin(), Args.end());
5012 
5013   // The first argument's non-CV pointer type is used to deduce the type of
5014   // subsequent arguments, except for:
5015   //  - weak flag (always converted to bool)
5016   //  - memory order (always converted to int)
5017   //  - scope  (always converted to int)
5018   for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5019     QualType Ty;
5020     if (i < NumVals[Form] + 1) {
5021       switch (i) {
5022       case 0:
5023         // The first argument is always a pointer. It has a fixed type.
5024         // It is always dereferenced, a nullptr is undefined.
5025         CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5026         // Nothing else to do: we already know all we want about this pointer.
5027         continue;
5028       case 1:
5029         // The second argument is the non-atomic operand. For arithmetic, this
5030         // is always passed by value, and for a compare_exchange it is always
5031         // passed by address. For the rest, GNU uses by-address and C11 uses
5032         // by-value.
5033         assert(Form != Load);
5034         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
5035           Ty = ValType;
5036         else if (Form == Copy || Form == Xchg) {
5037           if (IsPassedByAddress) {
5038             // The value pointer is always dereferenced, a nullptr is undefined.
5039             CheckNonNullArgument(*this, APIOrderedArgs[i],
5040                                  ExprRange.getBegin());
5041           }
5042           Ty = ByValType;
5043         } else if (Form == Arithmetic)
5044           Ty = Context.getPointerDiffType();
5045         else {
5046           Expr *ValArg = APIOrderedArgs[i];
5047           // The value pointer is always dereferenced, a nullptr is undefined.
5048           CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5049           LangAS AS = LangAS::Default;
5050           // Keep address space of non-atomic pointer type.
5051           if (const PointerType *PtrTy =
5052                   ValArg->getType()->getAs<PointerType>()) {
5053             AS = PtrTy->getPointeeType().getAddressSpace();
5054           }
5055           Ty = Context.getPointerType(
5056               Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5057         }
5058         break;
5059       case 2:
5060         // The third argument to compare_exchange / GNU exchange is the desired
5061         // value, either by-value (for the C11 and *_n variant) or as a pointer.
5062         if (IsPassedByAddress)
5063           CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5064         Ty = ByValType;
5065         break;
5066       case 3:
5067         // The fourth argument to GNU compare_exchange is a 'weak' flag.
5068         Ty = Context.BoolTy;
5069         break;
5070       }
5071     } else {
5072       // The order(s) and scope are always converted to int.
5073       Ty = Context.IntTy;
5074     }
5075 
5076     InitializedEntity Entity =
5077         InitializedEntity::InitializeParameter(Context, Ty, false);
5078     ExprResult Arg = APIOrderedArgs[i];
5079     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5080     if (Arg.isInvalid())
5081       return true;
5082     APIOrderedArgs[i] = Arg.get();
5083   }
5084 
5085   // Permute the arguments into a 'consistent' order.
5086   SmallVector<Expr*, 5> SubExprs;
5087   SubExprs.push_back(Ptr);
5088   switch (Form) {
5089   case Init:
5090     // Note, AtomicExpr::getVal1() has a special case for this atomic.
5091     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5092     break;
5093   case Load:
5094     SubExprs.push_back(APIOrderedArgs[1]); // Order
5095     break;
5096   case LoadCopy:
5097   case Copy:
5098   case Arithmetic:
5099   case Xchg:
5100     SubExprs.push_back(APIOrderedArgs[2]); // Order
5101     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5102     break;
5103   case GNUXchg:
5104     // Note, AtomicExpr::getVal2() has a special case for this atomic.
5105     SubExprs.push_back(APIOrderedArgs[3]); // Order
5106     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5107     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5108     break;
5109   case C11CmpXchg:
5110     SubExprs.push_back(APIOrderedArgs[3]); // Order
5111     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5112     SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5113     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5114     break;
5115   case GNUCmpXchg:
5116     SubExprs.push_back(APIOrderedArgs[4]); // Order
5117     SubExprs.push_back(APIOrderedArgs[1]); // Val1
5118     SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5119     SubExprs.push_back(APIOrderedArgs[2]); // Val2
5120     SubExprs.push_back(APIOrderedArgs[3]); // Weak
5121     break;
5122   }
5123 
5124   if (SubExprs.size() >= 2 && Form != Init) {
5125     if (Optional<llvm::APSInt> Result =
5126             SubExprs[1]->getIntegerConstantExpr(Context))
5127       if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5128         Diag(SubExprs[1]->getBeginLoc(),
5129              diag::warn_atomic_op_has_invalid_memory_order)
5130             << SubExprs[1]->getSourceRange();
5131   }
5132 
5133   if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5134     auto *Scope = Args[Args.size() - 1];
5135     if (Optional<llvm::APSInt> Result =
5136             Scope->getIntegerConstantExpr(Context)) {
5137       if (!ScopeModel->isValid(Result->getZExtValue()))
5138         Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5139             << Scope->getSourceRange();
5140     }
5141     SubExprs.push_back(Scope);
5142   }
5143 
5144   AtomicExpr *AE = new (Context)
5145       AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5146 
5147   if ((Op == AtomicExpr::AO__c11_atomic_load ||
5148        Op == AtomicExpr::AO__c11_atomic_store ||
5149        Op == AtomicExpr::AO__opencl_atomic_load ||
5150        Op == AtomicExpr::AO__opencl_atomic_store ) &&
5151       Context.AtomicUsesUnsupportedLibcall(AE))
5152     Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5153         << ((Op == AtomicExpr::AO__c11_atomic_load ||
5154              Op == AtomicExpr::AO__opencl_atomic_load)
5155                 ? 0
5156                 : 1);
5157 
5158   if (ValType->isExtIntType()) {
5159     Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5160     return ExprError();
5161   }
5162 
5163   return AE;
5164 }
5165 
5166 /// checkBuiltinArgument - Given a call to a builtin function, perform
5167 /// normal type-checking on the given argument, updating the call in
5168 /// place.  This is useful when a builtin function requires custom
5169 /// type-checking for some of its arguments but not necessarily all of
5170 /// them.
5171 ///
5172 /// Returns true on error.
5173 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5174   FunctionDecl *Fn = E->getDirectCallee();
5175   assert(Fn && "builtin call without direct callee!");
5176 
5177   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5178   InitializedEntity Entity =
5179     InitializedEntity::InitializeParameter(S.Context, Param);
5180 
5181   ExprResult Arg = E->getArg(0);
5182   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5183   if (Arg.isInvalid())
5184     return true;
5185 
5186   E->setArg(ArgIndex, Arg.get());
5187   return false;
5188 }
5189 
5190 /// We have a call to a function like __sync_fetch_and_add, which is an
5191 /// overloaded function based on the pointer type of its first argument.
5192 /// The main BuildCallExpr routines have already promoted the types of
5193 /// arguments because all of these calls are prototyped as void(...).
5194 ///
5195 /// This function goes through and does final semantic checking for these
5196 /// builtins, as well as generating any warnings.
5197 ExprResult
5198 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5199   CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5200   Expr *Callee = TheCall->getCallee();
5201   DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5202   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5203 
5204   // Ensure that we have at least one argument to do type inference from.
5205   if (TheCall->getNumArgs() < 1) {
5206     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5207         << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5208     return ExprError();
5209   }
5210 
5211   // Inspect the first argument of the atomic builtin.  This should always be
5212   // a pointer type, whose element is an integral scalar or pointer type.
5213   // Because it is a pointer type, we don't have to worry about any implicit
5214   // casts here.
5215   // FIXME: We don't allow floating point scalars as input.
5216   Expr *FirstArg = TheCall->getArg(0);
5217   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5218   if (FirstArgResult.isInvalid())
5219     return ExprError();
5220   FirstArg = FirstArgResult.get();
5221   TheCall->setArg(0, FirstArg);
5222 
5223   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5224   if (!pointerType) {
5225     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5226         << FirstArg->getType() << FirstArg->getSourceRange();
5227     return ExprError();
5228   }
5229 
5230   QualType ValType = pointerType->getPointeeType();
5231   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5232       !ValType->isBlockPointerType()) {
5233     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5234         << FirstArg->getType() << FirstArg->getSourceRange();
5235     return ExprError();
5236   }
5237 
5238   if (ValType.isConstQualified()) {
5239     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5240         << FirstArg->getType() << FirstArg->getSourceRange();
5241     return ExprError();
5242   }
5243 
5244   switch (ValType.getObjCLifetime()) {
5245   case Qualifiers::OCL_None:
5246   case Qualifiers::OCL_ExplicitNone:
5247     // okay
5248     break;
5249 
5250   case Qualifiers::OCL_Weak:
5251   case Qualifiers::OCL_Strong:
5252   case Qualifiers::OCL_Autoreleasing:
5253     Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5254         << ValType << FirstArg->getSourceRange();
5255     return ExprError();
5256   }
5257 
5258   // Strip any qualifiers off ValType.
5259   ValType = ValType.getUnqualifiedType();
5260 
5261   // The majority of builtins return a value, but a few have special return
5262   // types, so allow them to override appropriately below.
5263   QualType ResultType = ValType;
5264 
5265   // We need to figure out which concrete builtin this maps onto.  For example,
5266   // __sync_fetch_and_add with a 2 byte object turns into
5267   // __sync_fetch_and_add_2.
5268 #define BUILTIN_ROW(x) \
5269   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5270     Builtin::BI##x##_8, Builtin::BI##x##_16 }
5271 
5272   static const unsigned BuiltinIndices[][5] = {
5273     BUILTIN_ROW(__sync_fetch_and_add),
5274     BUILTIN_ROW(__sync_fetch_and_sub),
5275     BUILTIN_ROW(__sync_fetch_and_or),
5276     BUILTIN_ROW(__sync_fetch_and_and),
5277     BUILTIN_ROW(__sync_fetch_and_xor),
5278     BUILTIN_ROW(__sync_fetch_and_nand),
5279 
5280     BUILTIN_ROW(__sync_add_and_fetch),
5281     BUILTIN_ROW(__sync_sub_and_fetch),
5282     BUILTIN_ROW(__sync_and_and_fetch),
5283     BUILTIN_ROW(__sync_or_and_fetch),
5284     BUILTIN_ROW(__sync_xor_and_fetch),
5285     BUILTIN_ROW(__sync_nand_and_fetch),
5286 
5287     BUILTIN_ROW(__sync_val_compare_and_swap),
5288     BUILTIN_ROW(__sync_bool_compare_and_swap),
5289     BUILTIN_ROW(__sync_lock_test_and_set),
5290     BUILTIN_ROW(__sync_lock_release),
5291     BUILTIN_ROW(__sync_swap)
5292   };
5293 #undef BUILTIN_ROW
5294 
5295   // Determine the index of the size.
5296   unsigned SizeIndex;
5297   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5298   case 1: SizeIndex = 0; break;
5299   case 2: SizeIndex = 1; break;
5300   case 4: SizeIndex = 2; break;
5301   case 8: SizeIndex = 3; break;
5302   case 16: SizeIndex = 4; break;
5303   default:
5304     Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5305         << FirstArg->getType() << FirstArg->getSourceRange();
5306     return ExprError();
5307   }
5308 
5309   // Each of these builtins has one pointer argument, followed by some number of
5310   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5311   // that we ignore.  Find out which row of BuiltinIndices to read from as well
5312   // as the number of fixed args.
5313   unsigned BuiltinID = FDecl->getBuiltinID();
5314   unsigned BuiltinIndex, NumFixed = 1;
5315   bool WarnAboutSemanticsChange = false;
5316   switch (BuiltinID) {
5317   default: llvm_unreachable("Unknown overloaded atomic builtin!");
5318   case Builtin::BI__sync_fetch_and_add:
5319   case Builtin::BI__sync_fetch_and_add_1:
5320   case Builtin::BI__sync_fetch_and_add_2:
5321   case Builtin::BI__sync_fetch_and_add_4:
5322   case Builtin::BI__sync_fetch_and_add_8:
5323   case Builtin::BI__sync_fetch_and_add_16:
5324     BuiltinIndex = 0;
5325     break;
5326 
5327   case Builtin::BI__sync_fetch_and_sub:
5328   case Builtin::BI__sync_fetch_and_sub_1:
5329   case Builtin::BI__sync_fetch_and_sub_2:
5330   case Builtin::BI__sync_fetch_and_sub_4:
5331   case Builtin::BI__sync_fetch_and_sub_8:
5332   case Builtin::BI__sync_fetch_and_sub_16:
5333     BuiltinIndex = 1;
5334     break;
5335 
5336   case Builtin::BI__sync_fetch_and_or:
5337   case Builtin::BI__sync_fetch_and_or_1:
5338   case Builtin::BI__sync_fetch_and_or_2:
5339   case Builtin::BI__sync_fetch_and_or_4:
5340   case Builtin::BI__sync_fetch_and_or_8:
5341   case Builtin::BI__sync_fetch_and_or_16:
5342     BuiltinIndex = 2;
5343     break;
5344 
5345   case Builtin::BI__sync_fetch_and_and:
5346   case Builtin::BI__sync_fetch_and_and_1:
5347   case Builtin::BI__sync_fetch_and_and_2:
5348   case Builtin::BI__sync_fetch_and_and_4:
5349   case Builtin::BI__sync_fetch_and_and_8:
5350   case Builtin::BI__sync_fetch_and_and_16:
5351     BuiltinIndex = 3;
5352     break;
5353 
5354   case Builtin::BI__sync_fetch_and_xor:
5355   case Builtin::BI__sync_fetch_and_xor_1:
5356   case Builtin::BI__sync_fetch_and_xor_2:
5357   case Builtin::BI__sync_fetch_and_xor_4:
5358   case Builtin::BI__sync_fetch_and_xor_8:
5359   case Builtin::BI__sync_fetch_and_xor_16:
5360     BuiltinIndex = 4;
5361     break;
5362 
5363   case Builtin::BI__sync_fetch_and_nand:
5364   case Builtin::BI__sync_fetch_and_nand_1:
5365   case Builtin::BI__sync_fetch_and_nand_2:
5366   case Builtin::BI__sync_fetch_and_nand_4:
5367   case Builtin::BI__sync_fetch_and_nand_8:
5368   case Builtin::BI__sync_fetch_and_nand_16:
5369     BuiltinIndex = 5;
5370     WarnAboutSemanticsChange = true;
5371     break;
5372 
5373   case Builtin::BI__sync_add_and_fetch:
5374   case Builtin::BI__sync_add_and_fetch_1:
5375   case Builtin::BI__sync_add_and_fetch_2:
5376   case Builtin::BI__sync_add_and_fetch_4:
5377   case Builtin::BI__sync_add_and_fetch_8:
5378   case Builtin::BI__sync_add_and_fetch_16:
5379     BuiltinIndex = 6;
5380     break;
5381 
5382   case Builtin::BI__sync_sub_and_fetch:
5383   case Builtin::BI__sync_sub_and_fetch_1:
5384   case Builtin::BI__sync_sub_and_fetch_2:
5385   case Builtin::BI__sync_sub_and_fetch_4:
5386   case Builtin::BI__sync_sub_and_fetch_8:
5387   case Builtin::BI__sync_sub_and_fetch_16:
5388     BuiltinIndex = 7;
5389     break;
5390 
5391   case Builtin::BI__sync_and_and_fetch:
5392   case Builtin::BI__sync_and_and_fetch_1:
5393   case Builtin::BI__sync_and_and_fetch_2:
5394   case Builtin::BI__sync_and_and_fetch_4:
5395   case Builtin::BI__sync_and_and_fetch_8:
5396   case Builtin::BI__sync_and_and_fetch_16:
5397     BuiltinIndex = 8;
5398     break;
5399 
5400   case Builtin::BI__sync_or_and_fetch:
5401   case Builtin::BI__sync_or_and_fetch_1:
5402   case Builtin::BI__sync_or_and_fetch_2:
5403   case Builtin::BI__sync_or_and_fetch_4:
5404   case Builtin::BI__sync_or_and_fetch_8:
5405   case Builtin::BI__sync_or_and_fetch_16:
5406     BuiltinIndex = 9;
5407     break;
5408 
5409   case Builtin::BI__sync_xor_and_fetch:
5410   case Builtin::BI__sync_xor_and_fetch_1:
5411   case Builtin::BI__sync_xor_and_fetch_2:
5412   case Builtin::BI__sync_xor_and_fetch_4:
5413   case Builtin::BI__sync_xor_and_fetch_8:
5414   case Builtin::BI__sync_xor_and_fetch_16:
5415     BuiltinIndex = 10;
5416     break;
5417 
5418   case Builtin::BI__sync_nand_and_fetch:
5419   case Builtin::BI__sync_nand_and_fetch_1:
5420   case Builtin::BI__sync_nand_and_fetch_2:
5421   case Builtin::BI__sync_nand_and_fetch_4:
5422   case Builtin::BI__sync_nand_and_fetch_8:
5423   case Builtin::BI__sync_nand_and_fetch_16:
5424     BuiltinIndex = 11;
5425     WarnAboutSemanticsChange = true;
5426     break;
5427 
5428   case Builtin::BI__sync_val_compare_and_swap:
5429   case Builtin::BI__sync_val_compare_and_swap_1:
5430   case Builtin::BI__sync_val_compare_and_swap_2:
5431   case Builtin::BI__sync_val_compare_and_swap_4:
5432   case Builtin::BI__sync_val_compare_and_swap_8:
5433   case Builtin::BI__sync_val_compare_and_swap_16:
5434     BuiltinIndex = 12;
5435     NumFixed = 2;
5436     break;
5437 
5438   case Builtin::BI__sync_bool_compare_and_swap:
5439   case Builtin::BI__sync_bool_compare_and_swap_1:
5440   case Builtin::BI__sync_bool_compare_and_swap_2:
5441   case Builtin::BI__sync_bool_compare_and_swap_4:
5442   case Builtin::BI__sync_bool_compare_and_swap_8:
5443   case Builtin::BI__sync_bool_compare_and_swap_16:
5444     BuiltinIndex = 13;
5445     NumFixed = 2;
5446     ResultType = Context.BoolTy;
5447     break;
5448 
5449   case Builtin::BI__sync_lock_test_and_set:
5450   case Builtin::BI__sync_lock_test_and_set_1:
5451   case Builtin::BI__sync_lock_test_and_set_2:
5452   case Builtin::BI__sync_lock_test_and_set_4:
5453   case Builtin::BI__sync_lock_test_and_set_8:
5454   case Builtin::BI__sync_lock_test_and_set_16:
5455     BuiltinIndex = 14;
5456     break;
5457 
5458   case Builtin::BI__sync_lock_release:
5459   case Builtin::BI__sync_lock_release_1:
5460   case Builtin::BI__sync_lock_release_2:
5461   case Builtin::BI__sync_lock_release_4:
5462   case Builtin::BI__sync_lock_release_8:
5463   case Builtin::BI__sync_lock_release_16:
5464     BuiltinIndex = 15;
5465     NumFixed = 0;
5466     ResultType = Context.VoidTy;
5467     break;
5468 
5469   case Builtin::BI__sync_swap:
5470   case Builtin::BI__sync_swap_1:
5471   case Builtin::BI__sync_swap_2:
5472   case Builtin::BI__sync_swap_4:
5473   case Builtin::BI__sync_swap_8:
5474   case Builtin::BI__sync_swap_16:
5475     BuiltinIndex = 16;
5476     break;
5477   }
5478 
5479   // Now that we know how many fixed arguments we expect, first check that we
5480   // have at least that many.
5481   if (TheCall->getNumArgs() < 1+NumFixed) {
5482     Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5483         << 0 << 1 + NumFixed << TheCall->getNumArgs()
5484         << Callee->getSourceRange();
5485     return ExprError();
5486   }
5487 
5488   Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5489       << Callee->getSourceRange();
5490 
5491   if (WarnAboutSemanticsChange) {
5492     Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5493         << Callee->getSourceRange();
5494   }
5495 
5496   // Get the decl for the concrete builtin from this, we can tell what the
5497   // concrete integer type we should convert to is.
5498   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5499   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5500   FunctionDecl *NewBuiltinDecl;
5501   if (NewBuiltinID == BuiltinID)
5502     NewBuiltinDecl = FDecl;
5503   else {
5504     // Perform builtin lookup to avoid redeclaring it.
5505     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5506     LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5507     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5508     assert(Res.getFoundDecl());
5509     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5510     if (!NewBuiltinDecl)
5511       return ExprError();
5512   }
5513 
5514   // The first argument --- the pointer --- has a fixed type; we
5515   // deduce the types of the rest of the arguments accordingly.  Walk
5516   // the remaining arguments, converting them to the deduced value type.
5517   for (unsigned i = 0; i != NumFixed; ++i) {
5518     ExprResult Arg = TheCall->getArg(i+1);
5519 
5520     // GCC does an implicit conversion to the pointer or integer ValType.  This
5521     // can fail in some cases (1i -> int**), check for this error case now.
5522     // Initialize the argument.
5523     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5524                                                    ValType, /*consume*/ false);
5525     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5526     if (Arg.isInvalid())
5527       return ExprError();
5528 
5529     // Okay, we have something that *can* be converted to the right type.  Check
5530     // to see if there is a potentially weird extension going on here.  This can
5531     // happen when you do an atomic operation on something like an char* and
5532     // pass in 42.  The 42 gets converted to char.  This is even more strange
5533     // for things like 45.123 -> char, etc.
5534     // FIXME: Do this check.
5535     TheCall->setArg(i+1, Arg.get());
5536   }
5537 
5538   // Create a new DeclRefExpr to refer to the new decl.
5539   DeclRefExpr *NewDRE = DeclRefExpr::Create(
5540       Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5541       /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5542       DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5543 
5544   // Set the callee in the CallExpr.
5545   // FIXME: This loses syntactic information.
5546   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5547   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5548                                               CK_BuiltinFnToFnPtr);
5549   TheCall->setCallee(PromotedCall.get());
5550 
5551   // Change the result type of the call to match the original value type. This
5552   // is arbitrary, but the codegen for these builtins ins design to handle it
5553   // gracefully.
5554   TheCall->setType(ResultType);
5555 
5556   // Prohibit use of _ExtInt with atomic builtins.
5557   // The arguments would have already been converted to the first argument's
5558   // type, so only need to check the first argument.
5559   const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5560   if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5561     Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5562     return ExprError();
5563   }
5564 
5565   return TheCallResult;
5566 }
5567 
5568 /// SemaBuiltinNontemporalOverloaded - We have a call to
5569 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5570 /// overloaded function based on the pointer type of its last argument.
5571 ///
5572 /// This function goes through and does final semantic checking for these
5573 /// builtins.
5574 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5575   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5576   DeclRefExpr *DRE =
5577       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5578   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5579   unsigned BuiltinID = FDecl->getBuiltinID();
5580   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
5581           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
5582          "Unexpected nontemporal load/store builtin!");
5583   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5584   unsigned numArgs = isStore ? 2 : 1;
5585 
5586   // Ensure that we have the proper number of arguments.
5587   if (checkArgCount(*this, TheCall, numArgs))
5588     return ExprError();
5589 
5590   // Inspect the last argument of the nontemporal builtin.  This should always
5591   // be a pointer type, from which we imply the type of the memory access.
5592   // Because it is a pointer type, we don't have to worry about any implicit
5593   // casts here.
5594   Expr *PointerArg = TheCall->getArg(numArgs - 1);
5595   ExprResult PointerArgResult =
5596       DefaultFunctionArrayLvalueConversion(PointerArg);
5597 
5598   if (PointerArgResult.isInvalid())
5599     return ExprError();
5600   PointerArg = PointerArgResult.get();
5601   TheCall->setArg(numArgs - 1, PointerArg);
5602 
5603   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5604   if (!pointerType) {
5605     Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5606         << PointerArg->getType() << PointerArg->getSourceRange();
5607     return ExprError();
5608   }
5609 
5610   QualType ValType = pointerType->getPointeeType();
5611 
5612   // Strip any qualifiers off ValType.
5613   ValType = ValType.getUnqualifiedType();
5614   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5615       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5616       !ValType->isVectorType()) {
5617     Diag(DRE->getBeginLoc(),
5618          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5619         << PointerArg->getType() << PointerArg->getSourceRange();
5620     return ExprError();
5621   }
5622 
5623   if (!isStore) {
5624     TheCall->setType(ValType);
5625     return TheCallResult;
5626   }
5627 
5628   ExprResult ValArg = TheCall->getArg(0);
5629   InitializedEntity Entity = InitializedEntity::InitializeParameter(
5630       Context, ValType, /*consume*/ false);
5631   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5632   if (ValArg.isInvalid())
5633     return ExprError();
5634 
5635   TheCall->setArg(0, ValArg.get());
5636   TheCall->setType(Context.VoidTy);
5637   return TheCallResult;
5638 }
5639 
5640 /// CheckObjCString - Checks that the argument to the builtin
5641 /// CFString constructor is correct
5642 /// Note: It might also make sense to do the UTF-16 conversion here (would
5643 /// simplify the backend).
5644 bool Sema::CheckObjCString(Expr *Arg) {
5645   Arg = Arg->IgnoreParenCasts();
5646   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5647 
5648   if (!Literal || !Literal->isAscii()) {
5649     Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5650         << Arg->getSourceRange();
5651     return true;
5652   }
5653 
5654   if (Literal->containsNonAsciiOrNull()) {
5655     StringRef String = Literal->getString();
5656     unsigned NumBytes = String.size();
5657     SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5658     const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5659     llvm::UTF16 *ToPtr = &ToBuf[0];
5660 
5661     llvm::ConversionResult Result =
5662         llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5663                                  ToPtr + NumBytes, llvm::strictConversion);
5664     // Check for conversion failure.
5665     if (Result != llvm::conversionOK)
5666       Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5667           << Arg->getSourceRange();
5668   }
5669   return false;
5670 }
5671 
5672 /// CheckObjCString - Checks that the format string argument to the os_log()
5673 /// and os_trace() functions is correct, and converts it to const char *.
5674 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5675   Arg = Arg->IgnoreParenCasts();
5676   auto *Literal = dyn_cast<StringLiteral>(Arg);
5677   if (!Literal) {
5678     if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5679       Literal = ObjcLiteral->getString();
5680     }
5681   }
5682 
5683   if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5684     return ExprError(
5685         Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5686         << Arg->getSourceRange());
5687   }
5688 
5689   ExprResult Result(Literal);
5690   QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5691   InitializedEntity Entity =
5692       InitializedEntity::InitializeParameter(Context, ResultTy, false);
5693   Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5694   return Result;
5695 }
5696 
5697 /// Check that the user is calling the appropriate va_start builtin for the
5698 /// target and calling convention.
5699 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5700   const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5701   bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5702   bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5703                     TT.getArch() == llvm::Triple::aarch64_32);
5704   bool IsWindows = TT.isOSWindows();
5705   bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5706   if (IsX64 || IsAArch64) {
5707     CallingConv CC = CC_C;
5708     if (const FunctionDecl *FD = S.getCurFunctionDecl())
5709       CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5710     if (IsMSVAStart) {
5711       // Don't allow this in System V ABI functions.
5712       if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5713         return S.Diag(Fn->getBeginLoc(),
5714                       diag::err_ms_va_start_used_in_sysv_function);
5715     } else {
5716       // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5717       // On x64 Windows, don't allow this in System V ABI functions.
5718       // (Yes, that means there's no corresponding way to support variadic
5719       // System V ABI functions on Windows.)
5720       if ((IsWindows && CC == CC_X86_64SysV) ||
5721           (!IsWindows && CC == CC_Win64))
5722         return S.Diag(Fn->getBeginLoc(),
5723                       diag::err_va_start_used_in_wrong_abi_function)
5724                << !IsWindows;
5725     }
5726     return false;
5727   }
5728 
5729   if (IsMSVAStart)
5730     return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5731   return false;
5732 }
5733 
5734 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5735                                              ParmVarDecl **LastParam = nullptr) {
5736   // Determine whether the current function, block, or obj-c method is variadic
5737   // and get its parameter list.
5738   bool IsVariadic = false;
5739   ArrayRef<ParmVarDecl *> Params;
5740   DeclContext *Caller = S.CurContext;
5741   if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5742     IsVariadic = Block->isVariadic();
5743     Params = Block->parameters();
5744   } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5745     IsVariadic = FD->isVariadic();
5746     Params = FD->parameters();
5747   } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5748     IsVariadic = MD->isVariadic();
5749     // FIXME: This isn't correct for methods (results in bogus warning).
5750     Params = MD->parameters();
5751   } else if (isa<CapturedDecl>(Caller)) {
5752     // We don't support va_start in a CapturedDecl.
5753     S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5754     return true;
5755   } else {
5756     // This must be some other declcontext that parses exprs.
5757     S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5758     return true;
5759   }
5760 
5761   if (!IsVariadic) {
5762     S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5763     return true;
5764   }
5765 
5766   if (LastParam)
5767     *LastParam = Params.empty() ? nullptr : Params.back();
5768 
5769   return false;
5770 }
5771 
5772 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5773 /// for validity.  Emit an error and return true on failure; return false
5774 /// on success.
5775 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5776   Expr *Fn = TheCall->getCallee();
5777 
5778   if (checkVAStartABI(*this, BuiltinID, Fn))
5779     return true;
5780 
5781   if (checkArgCount(*this, TheCall, 2))
5782     return true;
5783 
5784   // Type-check the first argument normally.
5785   if (checkBuiltinArgument(*this, TheCall, 0))
5786     return true;
5787 
5788   // Check that the current function is variadic, and get its last parameter.
5789   ParmVarDecl *LastParam;
5790   if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5791     return true;
5792 
5793   // Verify that the second argument to the builtin is the last argument of the
5794   // current function or method.
5795   bool SecondArgIsLastNamedArgument = false;
5796   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5797 
5798   // These are valid if SecondArgIsLastNamedArgument is false after the next
5799   // block.
5800   QualType Type;
5801   SourceLocation ParamLoc;
5802   bool IsCRegister = false;
5803 
5804   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5805     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5806       SecondArgIsLastNamedArgument = PV == LastParam;
5807 
5808       Type = PV->getType();
5809       ParamLoc = PV->getLocation();
5810       IsCRegister =
5811           PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5812     }
5813   }
5814 
5815   if (!SecondArgIsLastNamedArgument)
5816     Diag(TheCall->getArg(1)->getBeginLoc(),
5817          diag::warn_second_arg_of_va_start_not_last_named_param);
5818   else if (IsCRegister || Type->isReferenceType() ||
5819            Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5820              // Promotable integers are UB, but enumerations need a bit of
5821              // extra checking to see what their promotable type actually is.
5822              if (!Type->isPromotableIntegerType())
5823                return false;
5824              if (!Type->isEnumeralType())
5825                return true;
5826              const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5827              return !(ED &&
5828                       Context.typesAreCompatible(ED->getPromotionType(), Type));
5829            }()) {
5830     unsigned Reason = 0;
5831     if (Type->isReferenceType())  Reason = 1;
5832     else if (IsCRegister)         Reason = 2;
5833     Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5834     Diag(ParamLoc, diag::note_parameter_type) << Type;
5835   }
5836 
5837   TheCall->setType(Context.VoidTy);
5838   return false;
5839 }
5840 
5841 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5842   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5843   //                 const char *named_addr);
5844 
5845   Expr *Func = Call->getCallee();
5846 
5847   if (Call->getNumArgs() < 3)
5848     return Diag(Call->getEndLoc(),
5849                 diag::err_typecheck_call_too_few_args_at_least)
5850            << 0 /*function call*/ << 3 << Call->getNumArgs();
5851 
5852   // Type-check the first argument normally.
5853   if (checkBuiltinArgument(*this, Call, 0))
5854     return true;
5855 
5856   // Check that the current function is variadic.
5857   if (checkVAStartIsInVariadicFunction(*this, Func))
5858     return true;
5859 
5860   // __va_start on Windows does not validate the parameter qualifiers
5861 
5862   const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5863   const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5864 
5865   const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5866   const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5867 
5868   const QualType &ConstCharPtrTy =
5869       Context.getPointerType(Context.CharTy.withConst());
5870   if (!Arg1Ty->isPointerType() ||
5871       Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5872     Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5873         << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5874         << 0                                      /* qualifier difference */
5875         << 3                                      /* parameter mismatch */
5876         << 2 << Arg1->getType() << ConstCharPtrTy;
5877 
5878   const QualType SizeTy = Context.getSizeType();
5879   if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5880     Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5881         << Arg2->getType() << SizeTy << 1 /* different class */
5882         << 0                              /* qualifier difference */
5883         << 3                              /* parameter mismatch */
5884         << 3 << Arg2->getType() << SizeTy;
5885 
5886   return false;
5887 }
5888 
5889 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5890 /// friends.  This is declared to take (...), so we have to check everything.
5891 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5892   if (checkArgCount(*this, TheCall, 2))
5893     return true;
5894 
5895   ExprResult OrigArg0 = TheCall->getArg(0);
5896   ExprResult OrigArg1 = TheCall->getArg(1);
5897 
5898   // Do standard promotions between the two arguments, returning their common
5899   // type.
5900   QualType Res = UsualArithmeticConversions(
5901       OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5902   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5903     return true;
5904 
5905   // Make sure any conversions are pushed back into the call; this is
5906   // type safe since unordered compare builtins are declared as "_Bool
5907   // foo(...)".
5908   TheCall->setArg(0, OrigArg0.get());
5909   TheCall->setArg(1, OrigArg1.get());
5910 
5911   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5912     return false;
5913 
5914   // If the common type isn't a real floating type, then the arguments were
5915   // invalid for this operation.
5916   if (Res.isNull() || !Res->isRealFloatingType())
5917     return Diag(OrigArg0.get()->getBeginLoc(),
5918                 diag::err_typecheck_call_invalid_ordered_compare)
5919            << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5920            << SourceRange(OrigArg0.get()->getBeginLoc(),
5921                           OrigArg1.get()->getEndLoc());
5922 
5923   return false;
5924 }
5925 
5926 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5927 /// __builtin_isnan and friends.  This is declared to take (...), so we have
5928 /// to check everything. We expect the last argument to be a floating point
5929 /// value.
5930 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5931   if (checkArgCount(*this, TheCall, NumArgs))
5932     return true;
5933 
5934   // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5935   // on all preceding parameters just being int.  Try all of those.
5936   for (unsigned i = 0; i < NumArgs - 1; ++i) {
5937     Expr *Arg = TheCall->getArg(i);
5938 
5939     if (Arg->isTypeDependent())
5940       return false;
5941 
5942     ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5943 
5944     if (Res.isInvalid())
5945       return true;
5946     TheCall->setArg(i, Res.get());
5947   }
5948 
5949   Expr *OrigArg = TheCall->getArg(NumArgs-1);
5950 
5951   if (OrigArg->isTypeDependent())
5952     return false;
5953 
5954   // Usual Unary Conversions will convert half to float, which we want for
5955   // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5956   // type how it is, but do normal L->Rvalue conversions.
5957   if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5958     OrigArg = UsualUnaryConversions(OrigArg).get();
5959   else
5960     OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5961   TheCall->setArg(NumArgs - 1, OrigArg);
5962 
5963   // This operation requires a non-_Complex floating-point number.
5964   if (!OrigArg->getType()->isRealFloatingType())
5965     return Diag(OrigArg->getBeginLoc(),
5966                 diag::err_typecheck_call_invalid_unary_fp)
5967            << OrigArg->getType() << OrigArg->getSourceRange();
5968 
5969   return false;
5970 }
5971 
5972 /// Perform semantic analysis for a call to __builtin_complex.
5973 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5974   if (checkArgCount(*this, TheCall, 2))
5975     return true;
5976 
5977   bool Dependent = false;
5978   for (unsigned I = 0; I != 2; ++I) {
5979     Expr *Arg = TheCall->getArg(I);
5980     QualType T = Arg->getType();
5981     if (T->isDependentType()) {
5982       Dependent = true;
5983       continue;
5984     }
5985 
5986     // Despite supporting _Complex int, GCC requires a real floating point type
5987     // for the operands of __builtin_complex.
5988     if (!T->isRealFloatingType()) {
5989       return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5990              << Arg->getType() << Arg->getSourceRange();
5991     }
5992 
5993     ExprResult Converted = DefaultLvalueConversion(Arg);
5994     if (Converted.isInvalid())
5995       return true;
5996     TheCall->setArg(I, Converted.get());
5997   }
5998 
5999   if (Dependent) {
6000     TheCall->setType(Context.DependentTy);
6001     return false;
6002   }
6003 
6004   Expr *Real = TheCall->getArg(0);
6005   Expr *Imag = TheCall->getArg(1);
6006   if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6007     return Diag(Real->getBeginLoc(),
6008                 diag::err_typecheck_call_different_arg_types)
6009            << Real->getType() << Imag->getType()
6010            << Real->getSourceRange() << Imag->getSourceRange();
6011   }
6012 
6013   // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6014   // don't allow this builtin to form those types either.
6015   // FIXME: Should we allow these types?
6016   if (Real->getType()->isFloat16Type())
6017     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6018            << "_Float16";
6019   if (Real->getType()->isHalfType())
6020     return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6021            << "half";
6022 
6023   TheCall->setType(Context.getComplexType(Real->getType()));
6024   return false;
6025 }
6026 
6027 // Customized Sema Checking for VSX builtins that have the following signature:
6028 // vector [...] builtinName(vector [...], vector [...], const int);
6029 // Which takes the same type of vectors (any legal vector type) for the first
6030 // two arguments and takes compile time constant for the third argument.
6031 // Example builtins are :
6032 // vector double vec_xxpermdi(vector double, vector double, int);
6033 // vector short vec_xxsldwi(vector short, vector short, int);
6034 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6035   unsigned ExpectedNumArgs = 3;
6036   if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6037     return true;
6038 
6039   // Check the third argument is a compile time constant
6040   if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6041     return Diag(TheCall->getBeginLoc(),
6042                 diag::err_vsx_builtin_nonconstant_argument)
6043            << 3 /* argument index */ << TheCall->getDirectCallee()
6044            << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6045                           TheCall->getArg(2)->getEndLoc());
6046 
6047   QualType Arg1Ty = TheCall->getArg(0)->getType();
6048   QualType Arg2Ty = TheCall->getArg(1)->getType();
6049 
6050   // Check the type of argument 1 and argument 2 are vectors.
6051   SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6052   if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6053       (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6054     return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6055            << TheCall->getDirectCallee()
6056            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6057                           TheCall->getArg(1)->getEndLoc());
6058   }
6059 
6060   // Check the first two arguments are the same type.
6061   if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6062     return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6063            << TheCall->getDirectCallee()
6064            << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6065                           TheCall->getArg(1)->getEndLoc());
6066   }
6067 
6068   // When default clang type checking is turned off and the customized type
6069   // checking is used, the returning type of the function must be explicitly
6070   // set. Otherwise it is _Bool by default.
6071   TheCall->setType(Arg1Ty);
6072 
6073   return false;
6074 }
6075 
6076 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6077 // This is declared to take (...), so we have to check everything.
6078 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6079   if (TheCall->getNumArgs() < 2)
6080     return ExprError(Diag(TheCall->getEndLoc(),
6081                           diag::err_typecheck_call_too_few_args_at_least)
6082                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6083                      << TheCall->getSourceRange());
6084 
6085   // Determine which of the following types of shufflevector we're checking:
6086   // 1) unary, vector mask: (lhs, mask)
6087   // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6088   QualType resType = TheCall->getArg(0)->getType();
6089   unsigned numElements = 0;
6090 
6091   if (!TheCall->getArg(0)->isTypeDependent() &&
6092       !TheCall->getArg(1)->isTypeDependent()) {
6093     QualType LHSType = TheCall->getArg(0)->getType();
6094     QualType RHSType = TheCall->getArg(1)->getType();
6095 
6096     if (!LHSType->isVectorType() || !RHSType->isVectorType())
6097       return ExprError(
6098           Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6099           << TheCall->getDirectCallee()
6100           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6101                          TheCall->getArg(1)->getEndLoc()));
6102 
6103     numElements = LHSType->castAs<VectorType>()->getNumElements();
6104     unsigned numResElements = TheCall->getNumArgs() - 2;
6105 
6106     // Check to see if we have a call with 2 vector arguments, the unary shuffle
6107     // with mask.  If so, verify that RHS is an integer vector type with the
6108     // same number of elts as lhs.
6109     if (TheCall->getNumArgs() == 2) {
6110       if (!RHSType->hasIntegerRepresentation() ||
6111           RHSType->castAs<VectorType>()->getNumElements() != numElements)
6112         return ExprError(Diag(TheCall->getBeginLoc(),
6113                               diag::err_vec_builtin_incompatible_vector)
6114                          << TheCall->getDirectCallee()
6115                          << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6116                                         TheCall->getArg(1)->getEndLoc()));
6117     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6118       return ExprError(Diag(TheCall->getBeginLoc(),
6119                             diag::err_vec_builtin_incompatible_vector)
6120                        << TheCall->getDirectCallee()
6121                        << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6122                                       TheCall->getArg(1)->getEndLoc()));
6123     } else if (numElements != numResElements) {
6124       QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6125       resType = Context.getVectorType(eltType, numResElements,
6126                                       VectorType::GenericVector);
6127     }
6128   }
6129 
6130   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6131     if (TheCall->getArg(i)->isTypeDependent() ||
6132         TheCall->getArg(i)->isValueDependent())
6133       continue;
6134 
6135     Optional<llvm::APSInt> Result;
6136     if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6137       return ExprError(Diag(TheCall->getBeginLoc(),
6138                             diag::err_shufflevector_nonconstant_argument)
6139                        << TheCall->getArg(i)->getSourceRange());
6140 
6141     // Allow -1 which will be translated to undef in the IR.
6142     if (Result->isSigned() && Result->isAllOnesValue())
6143       continue;
6144 
6145     if (Result->getActiveBits() > 64 ||
6146         Result->getZExtValue() >= numElements * 2)
6147       return ExprError(Diag(TheCall->getBeginLoc(),
6148                             diag::err_shufflevector_argument_too_large)
6149                        << TheCall->getArg(i)->getSourceRange());
6150   }
6151 
6152   SmallVector<Expr*, 32> exprs;
6153 
6154   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6155     exprs.push_back(TheCall->getArg(i));
6156     TheCall->setArg(i, nullptr);
6157   }
6158 
6159   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6160                                          TheCall->getCallee()->getBeginLoc(),
6161                                          TheCall->getRParenLoc());
6162 }
6163 
6164 /// SemaConvertVectorExpr - Handle __builtin_convertvector
6165 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6166                                        SourceLocation BuiltinLoc,
6167                                        SourceLocation RParenLoc) {
6168   ExprValueKind VK = VK_RValue;
6169   ExprObjectKind OK = OK_Ordinary;
6170   QualType DstTy = TInfo->getType();
6171   QualType SrcTy = E->getType();
6172 
6173   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6174     return ExprError(Diag(BuiltinLoc,
6175                           diag::err_convertvector_non_vector)
6176                      << E->getSourceRange());
6177   if (!DstTy->isVectorType() && !DstTy->isDependentType())
6178     return ExprError(Diag(BuiltinLoc,
6179                           diag::err_convertvector_non_vector_type));
6180 
6181   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6182     unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6183     unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6184     if (SrcElts != DstElts)
6185       return ExprError(Diag(BuiltinLoc,
6186                             diag::err_convertvector_incompatible_vector)
6187                        << E->getSourceRange());
6188   }
6189 
6190   return new (Context)
6191       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6192 }
6193 
6194 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6195 // This is declared to take (const void*, ...) and can take two
6196 // optional constant int args.
6197 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6198   unsigned NumArgs = TheCall->getNumArgs();
6199 
6200   if (NumArgs > 3)
6201     return Diag(TheCall->getEndLoc(),
6202                 diag::err_typecheck_call_too_many_args_at_most)
6203            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6204 
6205   // Argument 0 is checked for us and the remaining arguments must be
6206   // constant integers.
6207   for (unsigned i = 1; i != NumArgs; ++i)
6208     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6209       return true;
6210 
6211   return false;
6212 }
6213 
6214 /// SemaBuiltinAssume - Handle __assume (MS Extension).
6215 // __assume does not evaluate its arguments, and should warn if its argument
6216 // has side effects.
6217 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6218   Expr *Arg = TheCall->getArg(0);
6219   if (Arg->isInstantiationDependent()) return false;
6220 
6221   if (Arg->HasSideEffects(Context))
6222     Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6223         << Arg->getSourceRange()
6224         << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6225 
6226   return false;
6227 }
6228 
6229 /// Handle __builtin_alloca_with_align. This is declared
6230 /// as (size_t, size_t) where the second size_t must be a power of 2 greater
6231 /// than 8.
6232 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6233   // The alignment must be a constant integer.
6234   Expr *Arg = TheCall->getArg(1);
6235 
6236   // We can't check the value of a dependent argument.
6237   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6238     if (const auto *UE =
6239             dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6240       if (UE->getKind() == UETT_AlignOf ||
6241           UE->getKind() == UETT_PreferredAlignOf)
6242         Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6243             << Arg->getSourceRange();
6244 
6245     llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6246 
6247     if (!Result.isPowerOf2())
6248       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6249              << Arg->getSourceRange();
6250 
6251     if (Result < Context.getCharWidth())
6252       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6253              << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6254 
6255     if (Result > std::numeric_limits<int32_t>::max())
6256       return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6257              << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6258   }
6259 
6260   return false;
6261 }
6262 
6263 /// Handle __builtin_assume_aligned. This is declared
6264 /// as (const void*, size_t, ...) and can take one optional constant int arg.
6265 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6266   unsigned NumArgs = TheCall->getNumArgs();
6267 
6268   if (NumArgs > 3)
6269     return Diag(TheCall->getEndLoc(),
6270                 diag::err_typecheck_call_too_many_args_at_most)
6271            << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6272 
6273   // The alignment must be a constant integer.
6274   Expr *Arg = TheCall->getArg(1);
6275 
6276   // We can't check the value of a dependent argument.
6277   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6278     llvm::APSInt Result;
6279     if (SemaBuiltinConstantArg(TheCall, 1, Result))
6280       return true;
6281 
6282     if (!Result.isPowerOf2())
6283       return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6284              << Arg->getSourceRange();
6285 
6286     if (Result > Sema::MaximumAlignment)
6287       Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6288           << Arg->getSourceRange() << Sema::MaximumAlignment;
6289   }
6290 
6291   if (NumArgs > 2) {
6292     ExprResult Arg(TheCall->getArg(2));
6293     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6294       Context.getSizeType(), false);
6295     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6296     if (Arg.isInvalid()) return true;
6297     TheCall->setArg(2, Arg.get());
6298   }
6299 
6300   return false;
6301 }
6302 
6303 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6304   unsigned BuiltinID =
6305       cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6306   bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6307 
6308   unsigned NumArgs = TheCall->getNumArgs();
6309   unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6310   if (NumArgs < NumRequiredArgs) {
6311     return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6312            << 0 /* function call */ << NumRequiredArgs << NumArgs
6313            << TheCall->getSourceRange();
6314   }
6315   if (NumArgs >= NumRequiredArgs + 0x100) {
6316     return Diag(TheCall->getEndLoc(),
6317                 diag::err_typecheck_call_too_many_args_at_most)
6318            << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6319            << TheCall->getSourceRange();
6320   }
6321   unsigned i = 0;
6322 
6323   // For formatting call, check buffer arg.
6324   if (!IsSizeCall) {
6325     ExprResult Arg(TheCall->getArg(i));
6326     InitializedEntity Entity = InitializedEntity::InitializeParameter(
6327         Context, Context.VoidPtrTy, false);
6328     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6329     if (Arg.isInvalid())
6330       return true;
6331     TheCall->setArg(i, Arg.get());
6332     i++;
6333   }
6334 
6335   // Check string literal arg.
6336   unsigned FormatIdx = i;
6337   {
6338     ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6339     if (Arg.isInvalid())
6340       return true;
6341     TheCall->setArg(i, Arg.get());
6342     i++;
6343   }
6344 
6345   // Make sure variadic args are scalar.
6346   unsigned FirstDataArg = i;
6347   while (i < NumArgs) {
6348     ExprResult Arg = DefaultVariadicArgumentPromotion(
6349         TheCall->getArg(i), VariadicFunction, nullptr);
6350     if (Arg.isInvalid())
6351       return true;
6352     CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6353     if (ArgSize.getQuantity() >= 0x100) {
6354       return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6355              << i << (int)ArgSize.getQuantity() << 0xff
6356              << TheCall->getSourceRange();
6357     }
6358     TheCall->setArg(i, Arg.get());
6359     i++;
6360   }
6361 
6362   // Check formatting specifiers. NOTE: We're only doing this for the non-size
6363   // call to avoid duplicate diagnostics.
6364   if (!IsSizeCall) {
6365     llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6366     ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6367     bool Success = CheckFormatArguments(
6368         Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6369         VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6370         CheckedVarArgs);
6371     if (!Success)
6372       return true;
6373   }
6374 
6375   if (IsSizeCall) {
6376     TheCall->setType(Context.getSizeType());
6377   } else {
6378     TheCall->setType(Context.VoidPtrTy);
6379   }
6380   return false;
6381 }
6382 
6383 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6384 /// TheCall is a constant expression.
6385 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6386                                   llvm::APSInt &Result) {
6387   Expr *Arg = TheCall->getArg(ArgNum);
6388   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6389   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6390 
6391   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6392 
6393   Optional<llvm::APSInt> R;
6394   if (!(R = Arg->getIntegerConstantExpr(Context)))
6395     return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6396            << FDecl->getDeclName() << Arg->getSourceRange();
6397   Result = *R;
6398   return false;
6399 }
6400 
6401 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6402 /// TheCall is a constant expression in the range [Low, High].
6403 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6404                                        int Low, int High, bool RangeIsError) {
6405   if (isConstantEvaluated())
6406     return false;
6407   llvm::APSInt Result;
6408 
6409   // We can't check the value of a dependent argument.
6410   Expr *Arg = TheCall->getArg(ArgNum);
6411   if (Arg->isTypeDependent() || Arg->isValueDependent())
6412     return false;
6413 
6414   // Check constant-ness first.
6415   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6416     return true;
6417 
6418   if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6419     if (RangeIsError)
6420       return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6421              << Result.toString(10) << Low << High << Arg->getSourceRange();
6422     else
6423       // Defer the warning until we know if the code will be emitted so that
6424       // dead code can ignore this.
6425       DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6426                           PDiag(diag::warn_argument_invalid_range)
6427                               << Result.toString(10) << Low << High
6428                               << Arg->getSourceRange());
6429   }
6430 
6431   return false;
6432 }
6433 
6434 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6435 /// TheCall is a constant expression is a multiple of Num..
6436 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6437                                           unsigned Num) {
6438   llvm::APSInt Result;
6439 
6440   // We can't check the value of a dependent argument.
6441   Expr *Arg = TheCall->getArg(ArgNum);
6442   if (Arg->isTypeDependent() || Arg->isValueDependent())
6443     return false;
6444 
6445   // Check constant-ness first.
6446   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6447     return true;
6448 
6449   if (Result.getSExtValue() % Num != 0)
6450     return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6451            << Num << Arg->getSourceRange();
6452 
6453   return false;
6454 }
6455 
6456 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6457 /// constant expression representing a power of 2.
6458 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6459   llvm::APSInt Result;
6460 
6461   // We can't check the value of a dependent argument.
6462   Expr *Arg = TheCall->getArg(ArgNum);
6463   if (Arg->isTypeDependent() || Arg->isValueDependent())
6464     return false;
6465 
6466   // Check constant-ness first.
6467   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6468     return true;
6469 
6470   // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6471   // and only if x is a power of 2.
6472   if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6473     return false;
6474 
6475   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6476          << Arg->getSourceRange();
6477 }
6478 
6479 static bool IsShiftedByte(llvm::APSInt Value) {
6480   if (Value.isNegative())
6481     return false;
6482 
6483   // Check if it's a shifted byte, by shifting it down
6484   while (true) {
6485     // If the value fits in the bottom byte, the check passes.
6486     if (Value < 0x100)
6487       return true;
6488 
6489     // Otherwise, if the value has _any_ bits in the bottom byte, the check
6490     // fails.
6491     if ((Value & 0xFF) != 0)
6492       return false;
6493 
6494     // If the bottom 8 bits are all 0, but something above that is nonzero,
6495     // then shifting the value right by 8 bits won't affect whether it's a
6496     // shifted byte or not. So do that, and go round again.
6497     Value >>= 8;
6498   }
6499 }
6500 
6501 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6502 /// a constant expression representing an arbitrary byte value shifted left by
6503 /// a multiple of 8 bits.
6504 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6505                                              unsigned ArgBits) {
6506   llvm::APSInt Result;
6507 
6508   // We can't check the value of a dependent argument.
6509   Expr *Arg = TheCall->getArg(ArgNum);
6510   if (Arg->isTypeDependent() || Arg->isValueDependent())
6511     return false;
6512 
6513   // Check constant-ness first.
6514   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6515     return true;
6516 
6517   // Truncate to the given size.
6518   Result = Result.getLoBits(ArgBits);
6519   Result.setIsUnsigned(true);
6520 
6521   if (IsShiftedByte(Result))
6522     return false;
6523 
6524   return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6525          << Arg->getSourceRange();
6526 }
6527 
6528 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6529 /// TheCall is a constant expression representing either a shifted byte value,
6530 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6531 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6532 /// Arm MVE intrinsics.
6533 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6534                                                    int ArgNum,
6535                                                    unsigned ArgBits) {
6536   llvm::APSInt Result;
6537 
6538   // We can't check the value of a dependent argument.
6539   Expr *Arg = TheCall->getArg(ArgNum);
6540   if (Arg->isTypeDependent() || Arg->isValueDependent())
6541     return false;
6542 
6543   // Check constant-ness first.
6544   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6545     return true;
6546 
6547   // Truncate to the given size.
6548   Result = Result.getLoBits(ArgBits);
6549   Result.setIsUnsigned(true);
6550 
6551   // Check to see if it's in either of the required forms.
6552   if (IsShiftedByte(Result) ||
6553       (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6554     return false;
6555 
6556   return Diag(TheCall->getBeginLoc(),
6557               diag::err_argument_not_shifted_byte_or_xxff)
6558          << Arg->getSourceRange();
6559 }
6560 
6561 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6562 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6563   if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6564     if (checkArgCount(*this, TheCall, 2))
6565       return true;
6566     Expr *Arg0 = TheCall->getArg(0);
6567     Expr *Arg1 = TheCall->getArg(1);
6568 
6569     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6570     if (FirstArg.isInvalid())
6571       return true;
6572     QualType FirstArgType = FirstArg.get()->getType();
6573     if (!FirstArgType->isAnyPointerType())
6574       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6575                << "first" << FirstArgType << Arg0->getSourceRange();
6576     TheCall->setArg(0, FirstArg.get());
6577 
6578     ExprResult SecArg = DefaultLvalueConversion(Arg1);
6579     if (SecArg.isInvalid())
6580       return true;
6581     QualType SecArgType = SecArg.get()->getType();
6582     if (!SecArgType->isIntegerType())
6583       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6584                << "second" << SecArgType << Arg1->getSourceRange();
6585 
6586     // Derive the return type from the pointer argument.
6587     TheCall->setType(FirstArgType);
6588     return false;
6589   }
6590 
6591   if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6592     if (checkArgCount(*this, TheCall, 2))
6593       return true;
6594 
6595     Expr *Arg0 = TheCall->getArg(0);
6596     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6597     if (FirstArg.isInvalid())
6598       return true;
6599     QualType FirstArgType = FirstArg.get()->getType();
6600     if (!FirstArgType->isAnyPointerType())
6601       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6602                << "first" << FirstArgType << Arg0->getSourceRange();
6603     TheCall->setArg(0, FirstArg.get());
6604 
6605     // Derive the return type from the pointer argument.
6606     TheCall->setType(FirstArgType);
6607 
6608     // Second arg must be an constant in range [0,15]
6609     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6610   }
6611 
6612   if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6613     if (checkArgCount(*this, TheCall, 2))
6614       return true;
6615     Expr *Arg0 = TheCall->getArg(0);
6616     Expr *Arg1 = TheCall->getArg(1);
6617 
6618     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6619     if (FirstArg.isInvalid())
6620       return true;
6621     QualType FirstArgType = FirstArg.get()->getType();
6622     if (!FirstArgType->isAnyPointerType())
6623       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6624                << "first" << FirstArgType << Arg0->getSourceRange();
6625 
6626     QualType SecArgType = Arg1->getType();
6627     if (!SecArgType->isIntegerType())
6628       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6629                << "second" << SecArgType << Arg1->getSourceRange();
6630     TheCall->setType(Context.IntTy);
6631     return false;
6632   }
6633 
6634   if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6635       BuiltinID == AArch64::BI__builtin_arm_stg) {
6636     if (checkArgCount(*this, TheCall, 1))
6637       return true;
6638     Expr *Arg0 = TheCall->getArg(0);
6639     ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6640     if (FirstArg.isInvalid())
6641       return true;
6642 
6643     QualType FirstArgType = FirstArg.get()->getType();
6644     if (!FirstArgType->isAnyPointerType())
6645       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6646                << "first" << FirstArgType << Arg0->getSourceRange();
6647     TheCall->setArg(0, FirstArg.get());
6648 
6649     // Derive the return type from the pointer argument.
6650     if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6651       TheCall->setType(FirstArgType);
6652     return false;
6653   }
6654 
6655   if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6656     Expr *ArgA = TheCall->getArg(0);
6657     Expr *ArgB = TheCall->getArg(1);
6658 
6659     ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6660     ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6661 
6662     if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6663       return true;
6664 
6665     QualType ArgTypeA = ArgExprA.get()->getType();
6666     QualType ArgTypeB = ArgExprB.get()->getType();
6667 
6668     auto isNull = [&] (Expr *E) -> bool {
6669       return E->isNullPointerConstant(
6670                         Context, Expr::NPC_ValueDependentIsNotNull); };
6671 
6672     // argument should be either a pointer or null
6673     if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6674       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6675         << "first" << ArgTypeA << ArgA->getSourceRange();
6676 
6677     if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6678       return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6679         << "second" << ArgTypeB << ArgB->getSourceRange();
6680 
6681     // Ensure Pointee types are compatible
6682     if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6683         ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6684       QualType pointeeA = ArgTypeA->getPointeeType();
6685       QualType pointeeB = ArgTypeB->getPointeeType();
6686       if (!Context.typesAreCompatible(
6687              Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6688              Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6689         return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6690           << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
6691           << ArgB->getSourceRange();
6692       }
6693     }
6694 
6695     // at least one argument should be pointer type
6696     if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6697       return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6698         <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6699 
6700     if (isNull(ArgA)) // adopt type of the other pointer
6701       ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6702 
6703     if (isNull(ArgB))
6704       ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6705 
6706     TheCall->setArg(0, ArgExprA.get());
6707     TheCall->setArg(1, ArgExprB.get());
6708     TheCall->setType(Context.LongLongTy);
6709     return false;
6710   }
6711   assert(false && "Unhandled ARM MTE intrinsic");
6712   return true;
6713 }
6714 
6715 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6716 /// TheCall is an ARM/AArch64 special register string literal.
6717 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6718                                     int ArgNum, unsigned ExpectedFieldNum,
6719                                     bool AllowName) {
6720   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6721                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6722                       BuiltinID == ARM::BI__builtin_arm_rsr ||
6723                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
6724                       BuiltinID == ARM::BI__builtin_arm_wsr ||
6725                       BuiltinID == ARM::BI__builtin_arm_wsrp;
6726   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6727                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6728                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
6729                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6730                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
6731                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
6732   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
6733 
6734   // We can't check the value of a dependent argument.
6735   Expr *Arg = TheCall->getArg(ArgNum);
6736   if (Arg->isTypeDependent() || Arg->isValueDependent())
6737     return false;
6738 
6739   // Check if the argument is a string literal.
6740   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6741     return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6742            << Arg->getSourceRange();
6743 
6744   // Check the type of special register given.
6745   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6746   SmallVector<StringRef, 6> Fields;
6747   Reg.split(Fields, ":");
6748 
6749   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6750     return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6751            << Arg->getSourceRange();
6752 
6753   // If the string is the name of a register then we cannot check that it is
6754   // valid here but if the string is of one the forms described in ACLE then we
6755   // can check that the supplied fields are integers and within the valid
6756   // ranges.
6757   if (Fields.size() > 1) {
6758     bool FiveFields = Fields.size() == 5;
6759 
6760     bool ValidString = true;
6761     if (IsARMBuiltin) {
6762       ValidString &= Fields[0].startswith_lower("cp") ||
6763                      Fields[0].startswith_lower("p");
6764       if (ValidString)
6765         Fields[0] =
6766           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6767 
6768       ValidString &= Fields[2].startswith_lower("c");
6769       if (ValidString)
6770         Fields[2] = Fields[2].drop_front(1);
6771 
6772       if (FiveFields) {
6773         ValidString &= Fields[3].startswith_lower("c");
6774         if (ValidString)
6775           Fields[3] = Fields[3].drop_front(1);
6776       }
6777     }
6778 
6779     SmallVector<int, 5> Ranges;
6780     if (FiveFields)
6781       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6782     else
6783       Ranges.append({15, 7, 15});
6784 
6785     for (unsigned i=0; i<Fields.size(); ++i) {
6786       int IntField;
6787       ValidString &= !Fields[i].getAsInteger(10, IntField);
6788       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6789     }
6790 
6791     if (!ValidString)
6792       return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6793              << Arg->getSourceRange();
6794   } else if (IsAArch64Builtin && Fields.size() == 1) {
6795     // If the register name is one of those that appear in the condition below
6796     // and the special register builtin being used is one of the write builtins,
6797     // then we require that the argument provided for writing to the register
6798     // is an integer constant expression. This is because it will be lowered to
6799     // an MSR (immediate) instruction, so we need to know the immediate at
6800     // compile time.
6801     if (TheCall->getNumArgs() != 2)
6802       return false;
6803 
6804     std::string RegLower = Reg.lower();
6805     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6806         RegLower != "pan" && RegLower != "uao")
6807       return false;
6808 
6809     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6810   }
6811 
6812   return false;
6813 }
6814 
6815 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
6816 /// Emit an error and return true on failure; return false on success.
6817 /// TypeStr is a string containing the type descriptor of the value returned by
6818 /// the builtin and the descriptors of the expected type of the arguments.
6819 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
6820 
6821   assert((TypeStr[0] != '\0') &&
6822          "Invalid types in PPC MMA builtin declaration");
6823 
6824   unsigned Mask = 0;
6825   unsigned ArgNum = 0;
6826 
6827   // The first type in TypeStr is the type of the value returned by the
6828   // builtin. So we first read that type and change the type of TheCall.
6829   QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6830   TheCall->setType(type);
6831 
6832   while (*TypeStr != '\0') {
6833     Mask = 0;
6834     QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6835     if (ArgNum >= TheCall->getNumArgs()) {
6836       ArgNum++;
6837       break;
6838     }
6839 
6840     Expr *Arg = TheCall->getArg(ArgNum);
6841     QualType ArgType = Arg->getType();
6842 
6843     if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
6844         (!ExpectedType->isVoidPointerType() &&
6845            ArgType.getCanonicalType() != ExpectedType))
6846       return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6847              << ArgType << ExpectedType << 1 << 0 << 0;
6848 
6849     // If the value of the Mask is not 0, we have a constraint in the size of
6850     // the integer argument so here we ensure the argument is a constant that
6851     // is in the valid range.
6852     if (Mask != 0 &&
6853         SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
6854       return true;
6855 
6856     ArgNum++;
6857   }
6858 
6859   // In case we exited early from the previous loop, there are other types to
6860   // read from TypeStr. So we need to read them all to ensure we have the right
6861   // number of arguments in TheCall and if it is not the case, to display a
6862   // better error message.
6863   while (*TypeStr != '\0') {
6864     (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6865     ArgNum++;
6866   }
6867   if (checkArgCount(*this, TheCall, ArgNum))
6868     return true;
6869 
6870   return false;
6871 }
6872 
6873 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6874 /// This checks that the target supports __builtin_longjmp and
6875 /// that val is a constant 1.
6876 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6877   if (!Context.getTargetInfo().hasSjLjLowering())
6878     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6879            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6880 
6881   Expr *Arg = TheCall->getArg(1);
6882   llvm::APSInt Result;
6883 
6884   // TODO: This is less than ideal. Overload this to take a value.
6885   if (SemaBuiltinConstantArg(TheCall, 1, Result))
6886     return true;
6887 
6888   if (Result != 1)
6889     return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6890            << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6891 
6892   return false;
6893 }
6894 
6895 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6896 /// This checks that the target supports __builtin_setjmp.
6897 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6898   if (!Context.getTargetInfo().hasSjLjLowering())
6899     return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6900            << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6901   return false;
6902 }
6903 
6904 namespace {
6905 
6906 class UncoveredArgHandler {
6907   enum { Unknown = -1, AllCovered = -2 };
6908 
6909   signed FirstUncoveredArg = Unknown;
6910   SmallVector<const Expr *, 4> DiagnosticExprs;
6911 
6912 public:
6913   UncoveredArgHandler() = default;
6914 
6915   bool hasUncoveredArg() const {
6916     return (FirstUncoveredArg >= 0);
6917   }
6918 
6919   unsigned getUncoveredArg() const {
6920     assert(hasUncoveredArg() && "no uncovered argument");
6921     return FirstUncoveredArg;
6922   }
6923 
6924   void setAllCovered() {
6925     // A string has been found with all arguments covered, so clear out
6926     // the diagnostics.
6927     DiagnosticExprs.clear();
6928     FirstUncoveredArg = AllCovered;
6929   }
6930 
6931   void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6932     assert(NewFirstUncoveredArg >= 0 && "Outside range");
6933 
6934     // Don't update if a previous string covers all arguments.
6935     if (FirstUncoveredArg == AllCovered)
6936       return;
6937 
6938     // UncoveredArgHandler tracks the highest uncovered argument index
6939     // and with it all the strings that match this index.
6940     if (NewFirstUncoveredArg == FirstUncoveredArg)
6941       DiagnosticExprs.push_back(StrExpr);
6942     else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6943       DiagnosticExprs.clear();
6944       DiagnosticExprs.push_back(StrExpr);
6945       FirstUncoveredArg = NewFirstUncoveredArg;
6946     }
6947   }
6948 
6949   void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6950 };
6951 
6952 enum StringLiteralCheckType {
6953   SLCT_NotALiteral,
6954   SLCT_UncheckedLiteral,
6955   SLCT_CheckedLiteral
6956 };
6957 
6958 } // namespace
6959 
6960 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6961                                      BinaryOperatorKind BinOpKind,
6962                                      bool AddendIsRight) {
6963   unsigned BitWidth = Offset.getBitWidth();
6964   unsigned AddendBitWidth = Addend.getBitWidth();
6965   // There might be negative interim results.
6966   if (Addend.isUnsigned()) {
6967     Addend = Addend.zext(++AddendBitWidth);
6968     Addend.setIsSigned(true);
6969   }
6970   // Adjust the bit width of the APSInts.
6971   if (AddendBitWidth > BitWidth) {
6972     Offset = Offset.sext(AddendBitWidth);
6973     BitWidth = AddendBitWidth;
6974   } else if (BitWidth > AddendBitWidth) {
6975     Addend = Addend.sext(BitWidth);
6976   }
6977 
6978   bool Ov = false;
6979   llvm::APSInt ResOffset = Offset;
6980   if (BinOpKind == BO_Add)
6981     ResOffset = Offset.sadd_ov(Addend, Ov);
6982   else {
6983     assert(AddendIsRight && BinOpKind == BO_Sub &&
6984            "operator must be add or sub with addend on the right");
6985     ResOffset = Offset.ssub_ov(Addend, Ov);
6986   }
6987 
6988   // We add an offset to a pointer here so we should support an offset as big as
6989   // possible.
6990   if (Ov) {
6991     assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
6992            "index (intermediate) result too big");
6993     Offset = Offset.sext(2 * BitWidth);
6994     sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6995     return;
6996   }
6997 
6998   Offset = ResOffset;
6999 }
7000 
7001 namespace {
7002 
7003 // This is a wrapper class around StringLiteral to support offsetted string
7004 // literals as format strings. It takes the offset into account when returning
7005 // the string and its length or the source locations to display notes correctly.
7006 class FormatStringLiteral {
7007   const StringLiteral *FExpr;
7008   int64_t Offset;
7009 
7010  public:
7011   FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7012       : FExpr(fexpr), Offset(Offset) {}
7013 
7014   StringRef getString() const {
7015     return FExpr->getString().drop_front(Offset);
7016   }
7017 
7018   unsigned getByteLength() const {
7019     return FExpr->getByteLength() - getCharByteWidth() * Offset;
7020   }
7021 
7022   unsigned getLength() const { return FExpr->getLength() - Offset; }
7023   unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7024 
7025   StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7026 
7027   QualType getType() const { return FExpr->getType(); }
7028 
7029   bool isAscii() const { return FExpr->isAscii(); }
7030   bool isWide() const { return FExpr->isWide(); }
7031   bool isUTF8() const { return FExpr->isUTF8(); }
7032   bool isUTF16() const { return FExpr->isUTF16(); }
7033   bool isUTF32() const { return FExpr->isUTF32(); }
7034   bool isPascal() const { return FExpr->isPascal(); }
7035 
7036   SourceLocation getLocationOfByte(
7037       unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7038       const TargetInfo &Target, unsigned *StartToken = nullptr,
7039       unsigned *StartTokenByteOffset = nullptr) const {
7040     return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7041                                     StartToken, StartTokenByteOffset);
7042   }
7043 
7044   SourceLocation getBeginLoc() const LLVM_READONLY {
7045     return FExpr->getBeginLoc().getLocWithOffset(Offset);
7046   }
7047 
7048   SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
7049 };
7050 
7051 }  // namespace
7052 
7053 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7054                               const Expr *OrigFormatExpr,
7055                               ArrayRef<const Expr *> Args,
7056                               bool HasVAListArg, unsigned format_idx,
7057                               unsigned firstDataArg,
7058                               Sema::FormatStringType Type,
7059                               bool inFunctionCall,
7060                               Sema::VariadicCallType CallType,
7061                               llvm::SmallBitVector &CheckedVarArgs,
7062                               UncoveredArgHandler &UncoveredArg,
7063                               bool IgnoreStringsWithoutSpecifiers);
7064 
7065 // Determine if an expression is a string literal or constant string.
7066 // If this function returns false on the arguments to a function expecting a
7067 // format string, we will usually need to emit a warning.
7068 // True string literals are then checked by CheckFormatString.
7069 static StringLiteralCheckType
7070 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7071                       bool HasVAListArg, unsigned format_idx,
7072                       unsigned firstDataArg, Sema::FormatStringType Type,
7073                       Sema::VariadicCallType CallType, bool InFunctionCall,
7074                       llvm::SmallBitVector &CheckedVarArgs,
7075                       UncoveredArgHandler &UncoveredArg,
7076                       llvm::APSInt Offset,
7077                       bool IgnoreStringsWithoutSpecifiers = false) {
7078   if (S.isConstantEvaluated())
7079     return SLCT_NotALiteral;
7080  tryAgain:
7081   assert(Offset.isSigned() && "invalid offset");
7082 
7083   if (E->isTypeDependent() || E->isValueDependent())
7084     return SLCT_NotALiteral;
7085 
7086   E = E->IgnoreParenCasts();
7087 
7088   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7089     // Technically -Wformat-nonliteral does not warn about this case.
7090     // The behavior of printf and friends in this case is implementation
7091     // dependent.  Ideally if the format string cannot be null then
7092     // it should have a 'nonnull' attribute in the function prototype.
7093     return SLCT_UncheckedLiteral;
7094 
7095   switch (E->getStmtClass()) {
7096   case Stmt::BinaryConditionalOperatorClass:
7097   case Stmt::ConditionalOperatorClass: {
7098     // The expression is a literal if both sub-expressions were, and it was
7099     // completely checked only if both sub-expressions were checked.
7100     const AbstractConditionalOperator *C =
7101         cast<AbstractConditionalOperator>(E);
7102 
7103     // Determine whether it is necessary to check both sub-expressions, for
7104     // example, because the condition expression is a constant that can be
7105     // evaluated at compile time.
7106     bool CheckLeft = true, CheckRight = true;
7107 
7108     bool Cond;
7109     if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7110                                                  S.isConstantEvaluated())) {
7111       if (Cond)
7112         CheckRight = false;
7113       else
7114         CheckLeft = false;
7115     }
7116 
7117     // We need to maintain the offsets for the right and the left hand side
7118     // separately to check if every possible indexed expression is a valid
7119     // string literal. They might have different offsets for different string
7120     // literals in the end.
7121     StringLiteralCheckType Left;
7122     if (!CheckLeft)
7123       Left = SLCT_UncheckedLiteral;
7124     else {
7125       Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7126                                    HasVAListArg, format_idx, firstDataArg,
7127                                    Type, CallType, InFunctionCall,
7128                                    CheckedVarArgs, UncoveredArg, Offset,
7129                                    IgnoreStringsWithoutSpecifiers);
7130       if (Left == SLCT_NotALiteral || !CheckRight) {
7131         return Left;
7132       }
7133     }
7134 
7135     StringLiteralCheckType Right = checkFormatStringExpr(
7136         S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7137         Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7138         IgnoreStringsWithoutSpecifiers);
7139 
7140     return (CheckLeft && Left < Right) ? Left : Right;
7141   }
7142 
7143   case Stmt::ImplicitCastExprClass:
7144     E = cast<ImplicitCastExpr>(E)->getSubExpr();
7145     goto tryAgain;
7146 
7147   case Stmt::OpaqueValueExprClass:
7148     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7149       E = src;
7150       goto tryAgain;
7151     }
7152     return SLCT_NotALiteral;
7153 
7154   case Stmt::PredefinedExprClass:
7155     // While __func__, etc., are technically not string literals, they
7156     // cannot contain format specifiers and thus are not a security
7157     // liability.
7158     return SLCT_UncheckedLiteral;
7159 
7160   case Stmt::DeclRefExprClass: {
7161     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7162 
7163     // As an exception, do not flag errors for variables binding to
7164     // const string literals.
7165     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7166       bool isConstant = false;
7167       QualType T = DR->getType();
7168 
7169       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7170         isConstant = AT->getElementType().isConstant(S.Context);
7171       } else if (const PointerType *PT = T->getAs<PointerType>()) {
7172         isConstant = T.isConstant(S.Context) &&
7173                      PT->getPointeeType().isConstant(S.Context);
7174       } else if (T->isObjCObjectPointerType()) {
7175         // In ObjC, there is usually no "const ObjectPointer" type,
7176         // so don't check if the pointee type is constant.
7177         isConstant = T.isConstant(S.Context);
7178       }
7179 
7180       if (isConstant) {
7181         if (const Expr *Init = VD->getAnyInitializer()) {
7182           // Look through initializers like const char c[] = { "foo" }
7183           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7184             if (InitList->isStringLiteralInit())
7185               Init = InitList->getInit(0)->IgnoreParenImpCasts();
7186           }
7187           return checkFormatStringExpr(S, Init, Args,
7188                                        HasVAListArg, format_idx,
7189                                        firstDataArg, Type, CallType,
7190                                        /*InFunctionCall*/ false, CheckedVarArgs,
7191                                        UncoveredArg, Offset);
7192         }
7193       }
7194 
7195       // For vprintf* functions (i.e., HasVAListArg==true), we add a
7196       // special check to see if the format string is a function parameter
7197       // of the function calling the printf function.  If the function
7198       // has an attribute indicating it is a printf-like function, then we
7199       // should suppress warnings concerning non-literals being used in a call
7200       // to a vprintf function.  For example:
7201       //
7202       // void
7203       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7204       //      va_list ap;
7205       //      va_start(ap, fmt);
7206       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
7207       //      ...
7208       // }
7209       if (HasVAListArg) {
7210         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7211           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7212             int PVIndex = PV->getFunctionScopeIndex() + 1;
7213             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7214               // adjust for implicit parameter
7215               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7216                 if (MD->isInstance())
7217                   ++PVIndex;
7218               // We also check if the formats are compatible.
7219               // We can't pass a 'scanf' string to a 'printf' function.
7220               if (PVIndex == PVFormat->getFormatIdx() &&
7221                   Type == S.GetFormatStringType(PVFormat))
7222                 return SLCT_UncheckedLiteral;
7223             }
7224           }
7225         }
7226       }
7227     }
7228 
7229     return SLCT_NotALiteral;
7230   }
7231 
7232   case Stmt::CallExprClass:
7233   case Stmt::CXXMemberCallExprClass: {
7234     const CallExpr *CE = cast<CallExpr>(E);
7235     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7236       bool IsFirst = true;
7237       StringLiteralCheckType CommonResult;
7238       for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7239         const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7240         StringLiteralCheckType Result = checkFormatStringExpr(
7241             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7242             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7243             IgnoreStringsWithoutSpecifiers);
7244         if (IsFirst) {
7245           CommonResult = Result;
7246           IsFirst = false;
7247         }
7248       }
7249       if (!IsFirst)
7250         return CommonResult;
7251 
7252       if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7253         unsigned BuiltinID = FD->getBuiltinID();
7254         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7255             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7256           const Expr *Arg = CE->getArg(0);
7257           return checkFormatStringExpr(S, Arg, Args,
7258                                        HasVAListArg, format_idx,
7259                                        firstDataArg, Type, CallType,
7260                                        InFunctionCall, CheckedVarArgs,
7261                                        UncoveredArg, Offset,
7262                                        IgnoreStringsWithoutSpecifiers);
7263         }
7264       }
7265     }
7266 
7267     return SLCT_NotALiteral;
7268   }
7269   case Stmt::ObjCMessageExprClass: {
7270     const auto *ME = cast<ObjCMessageExpr>(E);
7271     if (const auto *MD = ME->getMethodDecl()) {
7272       if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7273         // As a special case heuristic, if we're using the method -[NSBundle
7274         // localizedStringForKey:value:table:], ignore any key strings that lack
7275         // format specifiers. The idea is that if the key doesn't have any
7276         // format specifiers then its probably just a key to map to the
7277         // localized strings. If it does have format specifiers though, then its
7278         // likely that the text of the key is the format string in the
7279         // programmer's language, and should be checked.
7280         const ObjCInterfaceDecl *IFace;
7281         if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7282             IFace->getIdentifier()->isStr("NSBundle") &&
7283             MD->getSelector().isKeywordSelector(
7284                 {"localizedStringForKey", "value", "table"})) {
7285           IgnoreStringsWithoutSpecifiers = true;
7286         }
7287 
7288         const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7289         return checkFormatStringExpr(
7290             S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7291             CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7292             IgnoreStringsWithoutSpecifiers);
7293       }
7294     }
7295 
7296     return SLCT_NotALiteral;
7297   }
7298   case Stmt::ObjCStringLiteralClass:
7299   case Stmt::StringLiteralClass: {
7300     const StringLiteral *StrE = nullptr;
7301 
7302     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7303       StrE = ObjCFExpr->getString();
7304     else
7305       StrE = cast<StringLiteral>(E);
7306 
7307     if (StrE) {
7308       if (Offset.isNegative() || Offset > StrE->getLength()) {
7309         // TODO: It would be better to have an explicit warning for out of
7310         // bounds literals.
7311         return SLCT_NotALiteral;
7312       }
7313       FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7314       CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7315                         firstDataArg, Type, InFunctionCall, CallType,
7316                         CheckedVarArgs, UncoveredArg,
7317                         IgnoreStringsWithoutSpecifiers);
7318       return SLCT_CheckedLiteral;
7319     }
7320 
7321     return SLCT_NotALiteral;
7322   }
7323   case Stmt::BinaryOperatorClass: {
7324     const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7325 
7326     // A string literal + an int offset is still a string literal.
7327     if (BinOp->isAdditiveOp()) {
7328       Expr::EvalResult LResult, RResult;
7329 
7330       bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7331           LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7332       bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7333           RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7334 
7335       if (LIsInt != RIsInt) {
7336         BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7337 
7338         if (LIsInt) {
7339           if (BinOpKind == BO_Add) {
7340             sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7341             E = BinOp->getRHS();
7342             goto tryAgain;
7343           }
7344         } else {
7345           sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7346           E = BinOp->getLHS();
7347           goto tryAgain;
7348         }
7349       }
7350     }
7351 
7352     return SLCT_NotALiteral;
7353   }
7354   case Stmt::UnaryOperatorClass: {
7355     const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7356     auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7357     if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7358       Expr::EvalResult IndexResult;
7359       if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7360                                        Expr::SE_NoSideEffects,
7361                                        S.isConstantEvaluated())) {
7362         sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7363                    /*RHS is int*/ true);
7364         E = ASE->getBase();
7365         goto tryAgain;
7366       }
7367     }
7368 
7369     return SLCT_NotALiteral;
7370   }
7371 
7372   default:
7373     return SLCT_NotALiteral;
7374   }
7375 }
7376 
7377 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7378   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7379       .Case("scanf", FST_Scanf)
7380       .Cases("printf", "printf0", FST_Printf)
7381       .Cases("NSString", "CFString", FST_NSString)
7382       .Case("strftime", FST_Strftime)
7383       .Case("strfmon", FST_Strfmon)
7384       .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7385       .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7386       .Case("os_trace", FST_OSLog)
7387       .Case("os_log", FST_OSLog)
7388       .Default(FST_Unknown);
7389 }
7390 
7391 /// CheckFormatArguments - Check calls to printf and scanf (and similar
7392 /// functions) for correct use of format strings.
7393 /// Returns true if a format string has been fully checked.
7394 bool Sema::CheckFormatArguments(const FormatAttr *Format,
7395                                 ArrayRef<const Expr *> Args,
7396                                 bool IsCXXMember,
7397                                 VariadicCallType CallType,
7398                                 SourceLocation Loc, SourceRange Range,
7399                                 llvm::SmallBitVector &CheckedVarArgs) {
7400   FormatStringInfo FSI;
7401   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7402     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7403                                 FSI.FirstDataArg, GetFormatStringType(Format),
7404                                 CallType, Loc, Range, CheckedVarArgs);
7405   return false;
7406 }
7407 
7408 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7409                                 bool HasVAListArg, unsigned format_idx,
7410                                 unsigned firstDataArg, FormatStringType Type,
7411                                 VariadicCallType CallType,
7412                                 SourceLocation Loc, SourceRange Range,
7413                                 llvm::SmallBitVector &CheckedVarArgs) {
7414   // CHECK: printf/scanf-like function is called with no format string.
7415   if (format_idx >= Args.size()) {
7416     Diag(Loc, diag::warn_missing_format_string) << Range;
7417     return false;
7418   }
7419 
7420   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7421 
7422   // CHECK: format string is not a string literal.
7423   //
7424   // Dynamically generated format strings are difficult to
7425   // automatically vet at compile time.  Requiring that format strings
7426   // are string literals: (1) permits the checking of format strings by
7427   // the compiler and thereby (2) can practically remove the source of
7428   // many format string exploits.
7429 
7430   // Format string can be either ObjC string (e.g. @"%d") or
7431   // C string (e.g. "%d")
7432   // ObjC string uses the same format specifiers as C string, so we can use
7433   // the same format string checking logic for both ObjC and C strings.
7434   UncoveredArgHandler UncoveredArg;
7435   StringLiteralCheckType CT =
7436       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7437                             format_idx, firstDataArg, Type, CallType,
7438                             /*IsFunctionCall*/ true, CheckedVarArgs,
7439                             UncoveredArg,
7440                             /*no string offset*/ llvm::APSInt(64, false) = 0);
7441 
7442   // Generate a diagnostic where an uncovered argument is detected.
7443   if (UncoveredArg.hasUncoveredArg()) {
7444     unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7445     assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
7446     UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7447   }
7448 
7449   if (CT != SLCT_NotALiteral)
7450     // Literal format string found, check done!
7451     return CT == SLCT_CheckedLiteral;
7452 
7453   // Strftime is particular as it always uses a single 'time' argument,
7454   // so it is safe to pass a non-literal string.
7455   if (Type == FST_Strftime)
7456     return false;
7457 
7458   // Do not emit diag when the string param is a macro expansion and the
7459   // format is either NSString or CFString. This is a hack to prevent
7460   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7461   // which are usually used in place of NS and CF string literals.
7462   SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7463   if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7464     return false;
7465 
7466   // If there are no arguments specified, warn with -Wformat-security, otherwise
7467   // warn only with -Wformat-nonliteral.
7468   if (Args.size() == firstDataArg) {
7469     Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7470       << OrigFormatExpr->getSourceRange();
7471     switch (Type) {
7472     default:
7473       break;
7474     case FST_Kprintf:
7475     case FST_FreeBSDKPrintf:
7476     case FST_Printf:
7477       Diag(FormatLoc, diag::note_format_security_fixit)
7478         << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7479       break;
7480     case FST_NSString:
7481       Diag(FormatLoc, diag::note_format_security_fixit)
7482         << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7483       break;
7484     }
7485   } else {
7486     Diag(FormatLoc, diag::warn_format_nonliteral)
7487       << OrigFormatExpr->getSourceRange();
7488   }
7489   return false;
7490 }
7491 
7492 namespace {
7493 
7494 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7495 protected:
7496   Sema &S;
7497   const FormatStringLiteral *FExpr;
7498   const Expr *OrigFormatExpr;
7499   const Sema::FormatStringType FSType;
7500   const unsigned FirstDataArg;
7501   const unsigned NumDataArgs;
7502   const char *Beg; // Start of format string.
7503   const bool HasVAListArg;
7504   ArrayRef<const Expr *> Args;
7505   unsigned FormatIdx;
7506   llvm::SmallBitVector CoveredArgs;
7507   bool usesPositionalArgs = false;
7508   bool atFirstArg = true;
7509   bool inFunctionCall;
7510   Sema::VariadicCallType CallType;
7511   llvm::SmallBitVector &CheckedVarArgs;
7512   UncoveredArgHandler &UncoveredArg;
7513 
7514 public:
7515   CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7516                      const Expr *origFormatExpr,
7517                      const Sema::FormatStringType type, unsigned firstDataArg,
7518                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
7519                      ArrayRef<const Expr *> Args, unsigned formatIdx,
7520                      bool inFunctionCall, Sema::VariadicCallType callType,
7521                      llvm::SmallBitVector &CheckedVarArgs,
7522                      UncoveredArgHandler &UncoveredArg)
7523       : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7524         FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7525         HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7526         inFunctionCall(inFunctionCall), CallType(callType),
7527         CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7528     CoveredArgs.resize(numDataArgs);
7529     CoveredArgs.reset();
7530   }
7531 
7532   void DoneProcessing();
7533 
7534   void HandleIncompleteSpecifier(const char *startSpecifier,
7535                                  unsigned specifierLen) override;
7536 
7537   void HandleInvalidLengthModifier(
7538                            const analyze_format_string::FormatSpecifier &FS,
7539                            const analyze_format_string::ConversionSpecifier &CS,
7540                            const char *startSpecifier, unsigned specifierLen,
7541                            unsigned DiagID);
7542 
7543   void HandleNonStandardLengthModifier(
7544                     const analyze_format_string::FormatSpecifier &FS,
7545                     const char *startSpecifier, unsigned specifierLen);
7546 
7547   void HandleNonStandardConversionSpecifier(
7548                     const analyze_format_string::ConversionSpecifier &CS,
7549                     const char *startSpecifier, unsigned specifierLen);
7550 
7551   void HandlePosition(const char *startPos, unsigned posLen) override;
7552 
7553   void HandleInvalidPosition(const char *startSpecifier,
7554                              unsigned specifierLen,
7555                              analyze_format_string::PositionContext p) override;
7556 
7557   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7558 
7559   void HandleNullChar(const char *nullCharacter) override;
7560 
7561   template <typename Range>
7562   static void
7563   EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7564                        const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7565                        bool IsStringLocation, Range StringRange,
7566                        ArrayRef<FixItHint> Fixit = None);
7567 
7568 protected:
7569   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7570                                         const char *startSpec,
7571                                         unsigned specifierLen,
7572                                         const char *csStart, unsigned csLen);
7573 
7574   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7575                                          const char *startSpec,
7576                                          unsigned specifierLen);
7577 
7578   SourceRange getFormatStringRange();
7579   CharSourceRange getSpecifierRange(const char *startSpecifier,
7580                                     unsigned specifierLen);
7581   SourceLocation getLocationOfByte(const char *x);
7582 
7583   const Expr *getDataArg(unsigned i) const;
7584 
7585   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7586                     const analyze_format_string::ConversionSpecifier &CS,
7587                     const char *startSpecifier, unsigned specifierLen,
7588                     unsigned argIndex);
7589 
7590   template <typename Range>
7591   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7592                             bool IsStringLocation, Range StringRange,
7593                             ArrayRef<FixItHint> Fixit = None);
7594 };
7595 
7596 } // namespace
7597 
7598 SourceRange CheckFormatHandler::getFormatStringRange() {
7599   return OrigFormatExpr->getSourceRange();
7600 }
7601 
7602 CharSourceRange CheckFormatHandler::
7603 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7604   SourceLocation Start = getLocationOfByte(startSpecifier);
7605   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
7606 
7607   // Advance the end SourceLocation by one due to half-open ranges.
7608   End = End.getLocWithOffset(1);
7609 
7610   return CharSourceRange::getCharRange(Start, End);
7611 }
7612 
7613 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7614   return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7615                                   S.getLangOpts(), S.Context.getTargetInfo());
7616 }
7617 
7618 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7619                                                    unsigned specifierLen){
7620   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7621                        getLocationOfByte(startSpecifier),
7622                        /*IsStringLocation*/true,
7623                        getSpecifierRange(startSpecifier, specifierLen));
7624 }
7625 
7626 void CheckFormatHandler::HandleInvalidLengthModifier(
7627     const analyze_format_string::FormatSpecifier &FS,
7628     const analyze_format_string::ConversionSpecifier &CS,
7629     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7630   using namespace analyze_format_string;
7631 
7632   const LengthModifier &LM = FS.getLengthModifier();
7633   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7634 
7635   // See if we know how to fix this length modifier.
7636   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7637   if (FixedLM) {
7638     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7639                          getLocationOfByte(LM.getStart()),
7640                          /*IsStringLocation*/true,
7641                          getSpecifierRange(startSpecifier, specifierLen));
7642 
7643     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7644       << FixedLM->toString()
7645       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7646 
7647   } else {
7648     FixItHint Hint;
7649     if (DiagID == diag::warn_format_nonsensical_length)
7650       Hint = FixItHint::CreateRemoval(LMRange);
7651 
7652     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7653                          getLocationOfByte(LM.getStart()),
7654                          /*IsStringLocation*/true,
7655                          getSpecifierRange(startSpecifier, specifierLen),
7656                          Hint);
7657   }
7658 }
7659 
7660 void CheckFormatHandler::HandleNonStandardLengthModifier(
7661     const analyze_format_string::FormatSpecifier &FS,
7662     const char *startSpecifier, unsigned specifierLen) {
7663   using namespace analyze_format_string;
7664 
7665   const LengthModifier &LM = FS.getLengthModifier();
7666   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7667 
7668   // See if we know how to fix this length modifier.
7669   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7670   if (FixedLM) {
7671     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7672                            << LM.toString() << 0,
7673                          getLocationOfByte(LM.getStart()),
7674                          /*IsStringLocation*/true,
7675                          getSpecifierRange(startSpecifier, specifierLen));
7676 
7677     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7678       << FixedLM->toString()
7679       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7680 
7681   } else {
7682     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7683                            << LM.toString() << 0,
7684                          getLocationOfByte(LM.getStart()),
7685                          /*IsStringLocation*/true,
7686                          getSpecifierRange(startSpecifier, specifierLen));
7687   }
7688 }
7689 
7690 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7691     const analyze_format_string::ConversionSpecifier &CS,
7692     const char *startSpecifier, unsigned specifierLen) {
7693   using namespace analyze_format_string;
7694 
7695   // See if we know how to fix this conversion specifier.
7696   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7697   if (FixedCS) {
7698     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7699                           << CS.toString() << /*conversion specifier*/1,
7700                          getLocationOfByte(CS.getStart()),
7701                          /*IsStringLocation*/true,
7702                          getSpecifierRange(startSpecifier, specifierLen));
7703 
7704     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7705     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7706       << FixedCS->toString()
7707       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7708   } else {
7709     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7710                           << CS.toString() << /*conversion specifier*/1,
7711                          getLocationOfByte(CS.getStart()),
7712                          /*IsStringLocation*/true,
7713                          getSpecifierRange(startSpecifier, specifierLen));
7714   }
7715 }
7716 
7717 void CheckFormatHandler::HandlePosition(const char *startPos,
7718                                         unsigned posLen) {
7719   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7720                                getLocationOfByte(startPos),
7721                                /*IsStringLocation*/true,
7722                                getSpecifierRange(startPos, posLen));
7723 }
7724 
7725 void
7726 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7727                                      analyze_format_string::PositionContext p) {
7728   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7729                          << (unsigned) p,
7730                        getLocationOfByte(startPos), /*IsStringLocation*/true,
7731                        getSpecifierRange(startPos, posLen));
7732 }
7733 
7734 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7735                                             unsigned posLen) {
7736   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7737                                getLocationOfByte(startPos),
7738                                /*IsStringLocation*/true,
7739                                getSpecifierRange(startPos, posLen));
7740 }
7741 
7742 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7743   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7744     // The presence of a null character is likely an error.
7745     EmitFormatDiagnostic(
7746       S.PDiag(diag::warn_printf_format_string_contains_null_char),
7747       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7748       getFormatStringRange());
7749   }
7750 }
7751 
7752 // Note that this may return NULL if there was an error parsing or building
7753 // one of the argument expressions.
7754 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7755   return Args[FirstDataArg + i];
7756 }
7757 
7758 void CheckFormatHandler::DoneProcessing() {
7759   // Does the number of data arguments exceed the number of
7760   // format conversions in the format string?
7761   if (!HasVAListArg) {
7762       // Find any arguments that weren't covered.
7763     CoveredArgs.flip();
7764     signed notCoveredArg = CoveredArgs.find_first();
7765     if (notCoveredArg >= 0) {
7766       assert((unsigned)notCoveredArg < NumDataArgs);
7767       UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7768     } else {
7769       UncoveredArg.setAllCovered();
7770     }
7771   }
7772 }
7773 
7774 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7775                                    const Expr *ArgExpr) {
7776   assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
7777          "Invalid state");
7778 
7779   if (!ArgExpr)
7780     return;
7781 
7782   SourceLocation Loc = ArgExpr->getBeginLoc();
7783 
7784   if (S.getSourceManager().isInSystemMacro(Loc))
7785     return;
7786 
7787   PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7788   for (auto E : DiagnosticExprs)
7789     PDiag << E->getSourceRange();
7790 
7791   CheckFormatHandler::EmitFormatDiagnostic(
7792                                   S, IsFunctionCall, DiagnosticExprs[0],
7793                                   PDiag, Loc, /*IsStringLocation*/false,
7794                                   DiagnosticExprs[0]->getSourceRange());
7795 }
7796 
7797 bool
7798 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7799                                                      SourceLocation Loc,
7800                                                      const char *startSpec,
7801                                                      unsigned specifierLen,
7802                                                      const char *csStart,
7803                                                      unsigned csLen) {
7804   bool keepGoing = true;
7805   if (argIndex < NumDataArgs) {
7806     // Consider the argument coverered, even though the specifier doesn't
7807     // make sense.
7808     CoveredArgs.set(argIndex);
7809   }
7810   else {
7811     // If argIndex exceeds the number of data arguments we
7812     // don't issue a warning because that is just a cascade of warnings (and
7813     // they may have intended '%%' anyway). We don't want to continue processing
7814     // the format string after this point, however, as we will like just get
7815     // gibberish when trying to match arguments.
7816     keepGoing = false;
7817   }
7818 
7819   StringRef Specifier(csStart, csLen);
7820 
7821   // If the specifier in non-printable, it could be the first byte of a UTF-8
7822   // sequence. In that case, print the UTF-8 code point. If not, print the byte
7823   // hex value.
7824   std::string CodePointStr;
7825   if (!llvm::sys::locale::isPrint(*csStart)) {
7826     llvm::UTF32 CodePoint;
7827     const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7828     const llvm::UTF8 *E =
7829         reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7830     llvm::ConversionResult Result =
7831         llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7832 
7833     if (Result != llvm::conversionOK) {
7834       unsigned char FirstChar = *csStart;
7835       CodePoint = (llvm::UTF32)FirstChar;
7836     }
7837 
7838     llvm::raw_string_ostream OS(CodePointStr);
7839     if (CodePoint < 256)
7840       OS << "\\x" << llvm::format("%02x", CodePoint);
7841     else if (CodePoint <= 0xFFFF)
7842       OS << "\\u" << llvm::format("%04x", CodePoint);
7843     else
7844       OS << "\\U" << llvm::format("%08x", CodePoint);
7845     OS.flush();
7846     Specifier = CodePointStr;
7847   }
7848 
7849   EmitFormatDiagnostic(
7850       S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7851       /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7852 
7853   return keepGoing;
7854 }
7855 
7856 void
7857 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7858                                                       const char *startSpec,
7859                                                       unsigned specifierLen) {
7860   EmitFormatDiagnostic(
7861     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7862     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7863 }
7864 
7865 bool
7866 CheckFormatHandler::CheckNumArgs(
7867   const analyze_format_string::FormatSpecifier &FS,
7868   const analyze_format_string::ConversionSpecifier &CS,
7869   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7870 
7871   if (argIndex >= NumDataArgs) {
7872     PartialDiagnostic PDiag = FS.usesPositionalArg()
7873       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7874            << (argIndex+1) << NumDataArgs)
7875       : S.PDiag(diag::warn_printf_insufficient_data_args);
7876     EmitFormatDiagnostic(
7877       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7878       getSpecifierRange(startSpecifier, specifierLen));
7879 
7880     // Since more arguments than conversion tokens are given, by extension
7881     // all arguments are covered, so mark this as so.
7882     UncoveredArg.setAllCovered();
7883     return false;
7884   }
7885   return true;
7886 }
7887 
7888 template<typename Range>
7889 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7890                                               SourceLocation Loc,
7891                                               bool IsStringLocation,
7892                                               Range StringRange,
7893                                               ArrayRef<FixItHint> FixIt) {
7894   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7895                        Loc, IsStringLocation, StringRange, FixIt);
7896 }
7897 
7898 /// If the format string is not within the function call, emit a note
7899 /// so that the function call and string are in diagnostic messages.
7900 ///
7901 /// \param InFunctionCall if true, the format string is within the function
7902 /// call and only one diagnostic message will be produced.  Otherwise, an
7903 /// extra note will be emitted pointing to location of the format string.
7904 ///
7905 /// \param ArgumentExpr the expression that is passed as the format string
7906 /// argument in the function call.  Used for getting locations when two
7907 /// diagnostics are emitted.
7908 ///
7909 /// \param PDiag the callee should already have provided any strings for the
7910 /// diagnostic message.  This function only adds locations and fixits
7911 /// to diagnostics.
7912 ///
7913 /// \param Loc primary location for diagnostic.  If two diagnostics are
7914 /// required, one will be at Loc and a new SourceLocation will be created for
7915 /// the other one.
7916 ///
7917 /// \param IsStringLocation if true, Loc points to the format string should be
7918 /// used for the note.  Otherwise, Loc points to the argument list and will
7919 /// be used with PDiag.
7920 ///
7921 /// \param StringRange some or all of the string to highlight.  This is
7922 /// templated so it can accept either a CharSourceRange or a SourceRange.
7923 ///
7924 /// \param FixIt optional fix it hint for the format string.
7925 template <typename Range>
7926 void CheckFormatHandler::EmitFormatDiagnostic(
7927     Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7928     const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7929     Range StringRange, ArrayRef<FixItHint> FixIt) {
7930   if (InFunctionCall) {
7931     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7932     D << StringRange;
7933     D << FixIt;
7934   } else {
7935     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7936       << ArgumentExpr->getSourceRange();
7937 
7938     const Sema::SemaDiagnosticBuilder &Note =
7939       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7940              diag::note_format_string_defined);
7941 
7942     Note << StringRange;
7943     Note << FixIt;
7944   }
7945 }
7946 
7947 //===--- CHECK: Printf format string checking ------------------------------===//
7948 
7949 namespace {
7950 
7951 class CheckPrintfHandler : public CheckFormatHandler {
7952 public:
7953   CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7954                      const Expr *origFormatExpr,
7955                      const Sema::FormatStringType type, unsigned firstDataArg,
7956                      unsigned numDataArgs, bool isObjC, const char *beg,
7957                      bool hasVAListArg, ArrayRef<const Expr *> Args,
7958                      unsigned formatIdx, bool inFunctionCall,
7959                      Sema::VariadicCallType CallType,
7960                      llvm::SmallBitVector &CheckedVarArgs,
7961                      UncoveredArgHandler &UncoveredArg)
7962       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7963                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
7964                            inFunctionCall, CallType, CheckedVarArgs,
7965                            UncoveredArg) {}
7966 
7967   bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7968 
7969   /// Returns true if '%@' specifiers are allowed in the format string.
7970   bool allowsObjCArg() const {
7971     return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7972            FSType == Sema::FST_OSTrace;
7973   }
7974 
7975   bool HandleInvalidPrintfConversionSpecifier(
7976                                       const analyze_printf::PrintfSpecifier &FS,
7977                                       const char *startSpecifier,
7978                                       unsigned specifierLen) override;
7979 
7980   void handleInvalidMaskType(StringRef MaskType) override;
7981 
7982   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7983                              const char *startSpecifier,
7984                              unsigned specifierLen) override;
7985   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7986                        const char *StartSpecifier,
7987                        unsigned SpecifierLen,
7988                        const Expr *E);
7989 
7990   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7991                     const char *startSpecifier, unsigned specifierLen);
7992   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7993                            const analyze_printf::OptionalAmount &Amt,
7994                            unsigned type,
7995                            const char *startSpecifier, unsigned specifierLen);
7996   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7997                   const analyze_printf::OptionalFlag &flag,
7998                   const char *startSpecifier, unsigned specifierLen);
7999   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8000                          const analyze_printf::OptionalFlag &ignoredFlag,
8001                          const analyze_printf::OptionalFlag &flag,
8002                          const char *startSpecifier, unsigned specifierLen);
8003   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8004                            const Expr *E);
8005 
8006   void HandleEmptyObjCModifierFlag(const char *startFlag,
8007                                    unsigned flagLen) override;
8008 
8009   void HandleInvalidObjCModifierFlag(const char *startFlag,
8010                                             unsigned flagLen) override;
8011 
8012   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8013                                            const char *flagsEnd,
8014                                            const char *conversionPosition)
8015                                              override;
8016 };
8017 
8018 } // namespace
8019 
8020 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8021                                       const analyze_printf::PrintfSpecifier &FS,
8022                                       const char *startSpecifier,
8023                                       unsigned specifierLen) {
8024   const analyze_printf::PrintfConversionSpecifier &CS =
8025     FS.getConversionSpecifier();
8026 
8027   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8028                                           getLocationOfByte(CS.getStart()),
8029                                           startSpecifier, specifierLen,
8030                                           CS.getStart(), CS.getLength());
8031 }
8032 
8033 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8034   S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8035 }
8036 
8037 bool CheckPrintfHandler::HandleAmount(
8038                                const analyze_format_string::OptionalAmount &Amt,
8039                                unsigned k, const char *startSpecifier,
8040                                unsigned specifierLen) {
8041   if (Amt.hasDataArgument()) {
8042     if (!HasVAListArg) {
8043       unsigned argIndex = Amt.getArgIndex();
8044       if (argIndex >= NumDataArgs) {
8045         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8046                                << k,
8047                              getLocationOfByte(Amt.getStart()),
8048                              /*IsStringLocation*/true,
8049                              getSpecifierRange(startSpecifier, specifierLen));
8050         // Don't do any more checking.  We will just emit
8051         // spurious errors.
8052         return false;
8053       }
8054 
8055       // Type check the data argument.  It should be an 'int'.
8056       // Although not in conformance with C99, we also allow the argument to be
8057       // an 'unsigned int' as that is a reasonably safe case.  GCC also
8058       // doesn't emit a warning for that case.
8059       CoveredArgs.set(argIndex);
8060       const Expr *Arg = getDataArg(argIndex);
8061       if (!Arg)
8062         return false;
8063 
8064       QualType T = Arg->getType();
8065 
8066       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8067       assert(AT.isValid());
8068 
8069       if (!AT.matchesType(S.Context, T)) {
8070         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8071                                << k << AT.getRepresentativeTypeName(S.Context)
8072                                << T << Arg->getSourceRange(),
8073                              getLocationOfByte(Amt.getStart()),
8074                              /*IsStringLocation*/true,
8075                              getSpecifierRange(startSpecifier, specifierLen));
8076         // Don't do any more checking.  We will just emit
8077         // spurious errors.
8078         return false;
8079       }
8080     }
8081   }
8082   return true;
8083 }
8084 
8085 void CheckPrintfHandler::HandleInvalidAmount(
8086                                       const analyze_printf::PrintfSpecifier &FS,
8087                                       const analyze_printf::OptionalAmount &Amt,
8088                                       unsigned type,
8089                                       const char *startSpecifier,
8090                                       unsigned specifierLen) {
8091   const analyze_printf::PrintfConversionSpecifier &CS =
8092     FS.getConversionSpecifier();
8093 
8094   FixItHint fixit =
8095     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8096       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8097                                  Amt.getConstantLength()))
8098       : FixItHint();
8099 
8100   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8101                          << type << CS.toString(),
8102                        getLocationOfByte(Amt.getStart()),
8103                        /*IsStringLocation*/true,
8104                        getSpecifierRange(startSpecifier, specifierLen),
8105                        fixit);
8106 }
8107 
8108 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8109                                     const analyze_printf::OptionalFlag &flag,
8110                                     const char *startSpecifier,
8111                                     unsigned specifierLen) {
8112   // Warn about pointless flag with a fixit removal.
8113   const analyze_printf::PrintfConversionSpecifier &CS =
8114     FS.getConversionSpecifier();
8115   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8116                          << flag.toString() << CS.toString(),
8117                        getLocationOfByte(flag.getPosition()),
8118                        /*IsStringLocation*/true,
8119                        getSpecifierRange(startSpecifier, specifierLen),
8120                        FixItHint::CreateRemoval(
8121                          getSpecifierRange(flag.getPosition(), 1)));
8122 }
8123 
8124 void CheckPrintfHandler::HandleIgnoredFlag(
8125                                 const analyze_printf::PrintfSpecifier &FS,
8126                                 const analyze_printf::OptionalFlag &ignoredFlag,
8127                                 const analyze_printf::OptionalFlag &flag,
8128                                 const char *startSpecifier,
8129                                 unsigned specifierLen) {
8130   // Warn about ignored flag with a fixit removal.
8131   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8132                          << ignoredFlag.toString() << flag.toString(),
8133                        getLocationOfByte(ignoredFlag.getPosition()),
8134                        /*IsStringLocation*/true,
8135                        getSpecifierRange(startSpecifier, specifierLen),
8136                        FixItHint::CreateRemoval(
8137                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
8138 }
8139 
8140 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8141                                                      unsigned flagLen) {
8142   // Warn about an empty flag.
8143   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8144                        getLocationOfByte(startFlag),
8145                        /*IsStringLocation*/true,
8146                        getSpecifierRange(startFlag, flagLen));
8147 }
8148 
8149 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8150                                                        unsigned flagLen) {
8151   // Warn about an invalid flag.
8152   auto Range = getSpecifierRange(startFlag, flagLen);
8153   StringRef flag(startFlag, flagLen);
8154   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8155                       getLocationOfByte(startFlag),
8156                       /*IsStringLocation*/true,
8157                       Range, FixItHint::CreateRemoval(Range));
8158 }
8159 
8160 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8161     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8162     // Warn about using '[...]' without a '@' conversion.
8163     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8164     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8165     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8166                          getLocationOfByte(conversionPosition),
8167                          /*IsStringLocation*/true,
8168                          Range, FixItHint::CreateRemoval(Range));
8169 }
8170 
8171 // Determines if the specified is a C++ class or struct containing
8172 // a member with the specified name and kind (e.g. a CXXMethodDecl named
8173 // "c_str()").
8174 template<typename MemberKind>
8175 static llvm::SmallPtrSet<MemberKind*, 1>
8176 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8177   const RecordType *RT = Ty->getAs<RecordType>();
8178   llvm::SmallPtrSet<MemberKind*, 1> Results;
8179 
8180   if (!RT)
8181     return Results;
8182   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8183   if (!RD || !RD->getDefinition())
8184     return Results;
8185 
8186   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8187                  Sema::LookupMemberName);
8188   R.suppressDiagnostics();
8189 
8190   // We just need to include all members of the right kind turned up by the
8191   // filter, at this point.
8192   if (S.LookupQualifiedName(R, RT->getDecl()))
8193     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8194       NamedDecl *decl = (*I)->getUnderlyingDecl();
8195       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8196         Results.insert(FK);
8197     }
8198   return Results;
8199 }
8200 
8201 /// Check if we could call '.c_str()' on an object.
8202 ///
8203 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8204 /// allow the call, or if it would be ambiguous).
8205 bool Sema::hasCStrMethod(const Expr *E) {
8206   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8207 
8208   MethodSet Results =
8209       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8210   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8211        MI != ME; ++MI)
8212     if ((*MI)->getMinRequiredArguments() == 0)
8213       return true;
8214   return false;
8215 }
8216 
8217 // Check if a (w)string was passed when a (w)char* was needed, and offer a
8218 // better diagnostic if so. AT is assumed to be valid.
8219 // Returns true when a c_str() conversion method is found.
8220 bool CheckPrintfHandler::checkForCStrMembers(
8221     const analyze_printf::ArgType &AT, const Expr *E) {
8222   using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8223 
8224   MethodSet Results =
8225       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8226 
8227   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8228        MI != ME; ++MI) {
8229     const CXXMethodDecl *Method = *MI;
8230     if (Method->getMinRequiredArguments() == 0 &&
8231         AT.matchesType(S.Context, Method->getReturnType())) {
8232       // FIXME: Suggest parens if the expression needs them.
8233       SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8234       S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8235           << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8236       return true;
8237     }
8238   }
8239 
8240   return false;
8241 }
8242 
8243 bool
8244 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8245                                             &FS,
8246                                           const char *startSpecifier,
8247                                           unsigned specifierLen) {
8248   using namespace analyze_format_string;
8249   using namespace analyze_printf;
8250 
8251   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8252 
8253   if (FS.consumesDataArgument()) {
8254     if (atFirstArg) {
8255         atFirstArg = false;
8256         usesPositionalArgs = FS.usesPositionalArg();
8257     }
8258     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8259       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8260                                         startSpecifier, specifierLen);
8261       return false;
8262     }
8263   }
8264 
8265   // First check if the field width, precision, and conversion specifier
8266   // have matching data arguments.
8267   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8268                     startSpecifier, specifierLen)) {
8269     return false;
8270   }
8271 
8272   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8273                     startSpecifier, specifierLen)) {
8274     return false;
8275   }
8276 
8277   if (!CS.consumesDataArgument()) {
8278     // FIXME: Technically specifying a precision or field width here
8279     // makes no sense.  Worth issuing a warning at some point.
8280     return true;
8281   }
8282 
8283   // Consume the argument.
8284   unsigned argIndex = FS.getArgIndex();
8285   if (argIndex < NumDataArgs) {
8286     // The check to see if the argIndex is valid will come later.
8287     // We set the bit here because we may exit early from this
8288     // function if we encounter some other error.
8289     CoveredArgs.set(argIndex);
8290   }
8291 
8292   // FreeBSD kernel extensions.
8293   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8294       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8295     // We need at least two arguments.
8296     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8297       return false;
8298 
8299     // Claim the second argument.
8300     CoveredArgs.set(argIndex + 1);
8301 
8302     // Type check the first argument (int for %b, pointer for %D)
8303     const Expr *Ex = getDataArg(argIndex);
8304     const analyze_printf::ArgType &AT =
8305       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8306         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8307     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8308       EmitFormatDiagnostic(
8309           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8310               << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8311               << false << Ex->getSourceRange(),
8312           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8313           getSpecifierRange(startSpecifier, specifierLen));
8314 
8315     // Type check the second argument (char * for both %b and %D)
8316     Ex = getDataArg(argIndex + 1);
8317     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8318     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8319       EmitFormatDiagnostic(
8320           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8321               << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8322               << false << Ex->getSourceRange(),
8323           Ex->getBeginLoc(), /*IsStringLocation*/ false,
8324           getSpecifierRange(startSpecifier, specifierLen));
8325 
8326      return true;
8327   }
8328 
8329   // Check for using an Objective-C specific conversion specifier
8330   // in a non-ObjC literal.
8331   if (!allowsObjCArg() && CS.isObjCArg()) {
8332     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8333                                                   specifierLen);
8334   }
8335 
8336   // %P can only be used with os_log.
8337   if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8338     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8339                                                   specifierLen);
8340   }
8341 
8342   // %n is not allowed with os_log.
8343   if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8344     EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8345                          getLocationOfByte(CS.getStart()),
8346                          /*IsStringLocation*/ false,
8347                          getSpecifierRange(startSpecifier, specifierLen));
8348 
8349     return true;
8350   }
8351 
8352   // Only scalars are allowed for os_trace.
8353   if (FSType == Sema::FST_OSTrace &&
8354       (CS.getKind() == ConversionSpecifier::PArg ||
8355        CS.getKind() == ConversionSpecifier::sArg ||
8356        CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8357     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8358                                                   specifierLen);
8359   }
8360 
8361   // Check for use of public/private annotation outside of os_log().
8362   if (FSType != Sema::FST_OSLog) {
8363     if (FS.isPublic().isSet()) {
8364       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8365                                << "public",
8366                            getLocationOfByte(FS.isPublic().getPosition()),
8367                            /*IsStringLocation*/ false,
8368                            getSpecifierRange(startSpecifier, specifierLen));
8369     }
8370     if (FS.isPrivate().isSet()) {
8371       EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8372                                << "private",
8373                            getLocationOfByte(FS.isPrivate().getPosition()),
8374                            /*IsStringLocation*/ false,
8375                            getSpecifierRange(startSpecifier, specifierLen));
8376     }
8377   }
8378 
8379   // Check for invalid use of field width
8380   if (!FS.hasValidFieldWidth()) {
8381     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8382         startSpecifier, specifierLen);
8383   }
8384 
8385   // Check for invalid use of precision
8386   if (!FS.hasValidPrecision()) {
8387     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8388         startSpecifier, specifierLen);
8389   }
8390 
8391   // Precision is mandatory for %P specifier.
8392   if (CS.getKind() == ConversionSpecifier::PArg &&
8393       FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8394     EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8395                          getLocationOfByte(startSpecifier),
8396                          /*IsStringLocation*/ false,
8397                          getSpecifierRange(startSpecifier, specifierLen));
8398   }
8399 
8400   // Check each flag does not conflict with any other component.
8401   if (!FS.hasValidThousandsGroupingPrefix())
8402     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8403   if (!FS.hasValidLeadingZeros())
8404     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8405   if (!FS.hasValidPlusPrefix())
8406     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8407   if (!FS.hasValidSpacePrefix())
8408     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8409   if (!FS.hasValidAlternativeForm())
8410     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8411   if (!FS.hasValidLeftJustified())
8412     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8413 
8414   // Check that flags are not ignored by another flag
8415   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8416     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8417         startSpecifier, specifierLen);
8418   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8419     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8420             startSpecifier, specifierLen);
8421 
8422   // Check the length modifier is valid with the given conversion specifier.
8423   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8424                                  S.getLangOpts()))
8425     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8426                                 diag::warn_format_nonsensical_length);
8427   else if (!FS.hasStandardLengthModifier())
8428     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8429   else if (!FS.hasStandardLengthConversionCombination())
8430     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8431                                 diag::warn_format_non_standard_conversion_spec);
8432 
8433   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8434     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8435 
8436   // The remaining checks depend on the data arguments.
8437   if (HasVAListArg)
8438     return true;
8439 
8440   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8441     return false;
8442 
8443   const Expr *Arg = getDataArg(argIndex);
8444   if (!Arg)
8445     return true;
8446 
8447   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8448 }
8449 
8450 static bool requiresParensToAddCast(const Expr *E) {
8451   // FIXME: We should have a general way to reason about operator
8452   // precedence and whether parens are actually needed here.
8453   // Take care of a few common cases where they aren't.
8454   const Expr *Inside = E->IgnoreImpCasts();
8455   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8456     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8457 
8458   switch (Inside->getStmtClass()) {
8459   case Stmt::ArraySubscriptExprClass:
8460   case Stmt::CallExprClass:
8461   case Stmt::CharacterLiteralClass:
8462   case Stmt::CXXBoolLiteralExprClass:
8463   case Stmt::DeclRefExprClass:
8464   case Stmt::FloatingLiteralClass:
8465   case Stmt::IntegerLiteralClass:
8466   case Stmt::MemberExprClass:
8467   case Stmt::ObjCArrayLiteralClass:
8468   case Stmt::ObjCBoolLiteralExprClass:
8469   case Stmt::ObjCBoxedExprClass:
8470   case Stmt::ObjCDictionaryLiteralClass:
8471   case Stmt::ObjCEncodeExprClass:
8472   case Stmt::ObjCIvarRefExprClass:
8473   case Stmt::ObjCMessageExprClass:
8474   case Stmt::ObjCPropertyRefExprClass:
8475   case Stmt::ObjCStringLiteralClass:
8476   case Stmt::ObjCSubscriptRefExprClass:
8477   case Stmt::ParenExprClass:
8478   case Stmt::StringLiteralClass:
8479   case Stmt::UnaryOperatorClass:
8480     return false;
8481   default:
8482     return true;
8483   }
8484 }
8485 
8486 static std::pair<QualType, StringRef>
8487 shouldNotPrintDirectly(const ASTContext &Context,
8488                        QualType IntendedTy,
8489                        const Expr *E) {
8490   // Use a 'while' to peel off layers of typedefs.
8491   QualType TyTy = IntendedTy;
8492   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8493     StringRef Name = UserTy->getDecl()->getName();
8494     QualType CastTy = llvm::StringSwitch<QualType>(Name)
8495       .Case("CFIndex", Context.getNSIntegerType())
8496       .Case("NSInteger", Context.getNSIntegerType())
8497       .Case("NSUInteger", Context.getNSUIntegerType())
8498       .Case("SInt32", Context.IntTy)
8499       .Case("UInt32", Context.UnsignedIntTy)
8500       .Default(QualType());
8501 
8502     if (!CastTy.isNull())
8503       return std::make_pair(CastTy, Name);
8504 
8505     TyTy = UserTy->desugar();
8506   }
8507 
8508   // Strip parens if necessary.
8509   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8510     return shouldNotPrintDirectly(Context,
8511                                   PE->getSubExpr()->getType(),
8512                                   PE->getSubExpr());
8513 
8514   // If this is a conditional expression, then its result type is constructed
8515   // via usual arithmetic conversions and thus there might be no necessary
8516   // typedef sugar there.  Recurse to operands to check for NSInteger &
8517   // Co. usage condition.
8518   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8519     QualType TrueTy, FalseTy;
8520     StringRef TrueName, FalseName;
8521 
8522     std::tie(TrueTy, TrueName) =
8523       shouldNotPrintDirectly(Context,
8524                              CO->getTrueExpr()->getType(),
8525                              CO->getTrueExpr());
8526     std::tie(FalseTy, FalseName) =
8527       shouldNotPrintDirectly(Context,
8528                              CO->getFalseExpr()->getType(),
8529                              CO->getFalseExpr());
8530 
8531     if (TrueTy == FalseTy)
8532       return std::make_pair(TrueTy, TrueName);
8533     else if (TrueTy.isNull())
8534       return std::make_pair(FalseTy, FalseName);
8535     else if (FalseTy.isNull())
8536       return std::make_pair(TrueTy, TrueName);
8537   }
8538 
8539   return std::make_pair(QualType(), StringRef());
8540 }
8541 
8542 /// Return true if \p ICE is an implicit argument promotion of an arithmetic
8543 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8544 /// type do not count.
8545 static bool
8546 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8547   QualType From = ICE->getSubExpr()->getType();
8548   QualType To = ICE->getType();
8549   // It's an integer promotion if the destination type is the promoted
8550   // source type.
8551   if (ICE->getCastKind() == CK_IntegralCast &&
8552       From->isPromotableIntegerType() &&
8553       S.Context.getPromotedIntegerType(From) == To)
8554     return true;
8555   // Look through vector types, since we do default argument promotion for
8556   // those in OpenCL.
8557   if (const auto *VecTy = From->getAs<ExtVectorType>())
8558     From = VecTy->getElementType();
8559   if (const auto *VecTy = To->getAs<ExtVectorType>())
8560     To = VecTy->getElementType();
8561   // It's a floating promotion if the source type is a lower rank.
8562   return ICE->getCastKind() == CK_FloatingCast &&
8563          S.Context.getFloatingTypeOrder(From, To) < 0;
8564 }
8565 
8566 bool
8567 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8568                                     const char *StartSpecifier,
8569                                     unsigned SpecifierLen,
8570                                     const Expr *E) {
8571   using namespace analyze_format_string;
8572   using namespace analyze_printf;
8573 
8574   // Now type check the data expression that matches the
8575   // format specifier.
8576   const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8577   if (!AT.isValid())
8578     return true;
8579 
8580   QualType ExprTy = E->getType();
8581   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8582     ExprTy = TET->getUnderlyingExpr()->getType();
8583   }
8584 
8585   // Diagnose attempts to print a boolean value as a character. Unlike other
8586   // -Wformat diagnostics, this is fine from a type perspective, but it still
8587   // doesn't make sense.
8588   if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8589       E->isKnownToHaveBooleanValue()) {
8590     const CharSourceRange &CSR =
8591         getSpecifierRange(StartSpecifier, SpecifierLen);
8592     SmallString<4> FSString;
8593     llvm::raw_svector_ostream os(FSString);
8594     FS.toString(os);
8595     EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8596                              << FSString,
8597                          E->getExprLoc(), false, CSR);
8598     return true;
8599   }
8600 
8601   analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8602   if (Match == analyze_printf::ArgType::Match)
8603     return true;
8604 
8605   // Look through argument promotions for our error message's reported type.
8606   // This includes the integral and floating promotions, but excludes array
8607   // and function pointer decay (seeing that an argument intended to be a
8608   // string has type 'char [6]' is probably more confusing than 'char *') and
8609   // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8610   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8611     if (isArithmeticArgumentPromotion(S, ICE)) {
8612       E = ICE->getSubExpr();
8613       ExprTy = E->getType();
8614 
8615       // Check if we didn't match because of an implicit cast from a 'char'
8616       // or 'short' to an 'int'.  This is done because printf is a varargs
8617       // function.
8618       if (ICE->getType() == S.Context.IntTy ||
8619           ICE->getType() == S.Context.UnsignedIntTy) {
8620         // All further checking is done on the subexpression
8621         const analyze_printf::ArgType::MatchKind ImplicitMatch =
8622             AT.matchesType(S.Context, ExprTy);
8623         if (ImplicitMatch == analyze_printf::ArgType::Match)
8624           return true;
8625         if (ImplicitMatch == ArgType::NoMatchPedantic ||
8626             ImplicitMatch == ArgType::NoMatchTypeConfusion)
8627           Match = ImplicitMatch;
8628       }
8629     }
8630   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8631     // Special case for 'a', which has type 'int' in C.
8632     // Note, however, that we do /not/ want to treat multibyte constants like
8633     // 'MooV' as characters! This form is deprecated but still exists.
8634     if (ExprTy == S.Context.IntTy)
8635       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8636         ExprTy = S.Context.CharTy;
8637   }
8638 
8639   // Look through enums to their underlying type.
8640   bool IsEnum = false;
8641   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8642     ExprTy = EnumTy->getDecl()->getIntegerType();
8643     IsEnum = true;
8644   }
8645 
8646   // %C in an Objective-C context prints a unichar, not a wchar_t.
8647   // If the argument is an integer of some kind, believe the %C and suggest
8648   // a cast instead of changing the conversion specifier.
8649   QualType IntendedTy = ExprTy;
8650   if (isObjCContext() &&
8651       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8652     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8653         !ExprTy->isCharType()) {
8654       // 'unichar' is defined as a typedef of unsigned short, but we should
8655       // prefer using the typedef if it is visible.
8656       IntendedTy = S.Context.UnsignedShortTy;
8657 
8658       // While we are here, check if the value is an IntegerLiteral that happens
8659       // to be within the valid range.
8660       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8661         const llvm::APInt &V = IL->getValue();
8662         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8663           return true;
8664       }
8665 
8666       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8667                           Sema::LookupOrdinaryName);
8668       if (S.LookupName(Result, S.getCurScope())) {
8669         NamedDecl *ND = Result.getFoundDecl();
8670         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8671           if (TD->getUnderlyingType() == IntendedTy)
8672             IntendedTy = S.Context.getTypedefType(TD);
8673       }
8674     }
8675   }
8676 
8677   // Special-case some of Darwin's platform-independence types by suggesting
8678   // casts to primitive types that are known to be large enough.
8679   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8680   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8681     QualType CastTy;
8682     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8683     if (!CastTy.isNull()) {
8684       // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8685       // (long in ASTContext). Only complain to pedants.
8686       if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8687           (AT.isSizeT() || AT.isPtrdiffT()) &&
8688           AT.matchesType(S.Context, CastTy))
8689         Match = ArgType::NoMatchPedantic;
8690       IntendedTy = CastTy;
8691       ShouldNotPrintDirectly = true;
8692     }
8693   }
8694 
8695   // We may be able to offer a FixItHint if it is a supported type.
8696   PrintfSpecifier fixedFS = FS;
8697   bool Success =
8698       fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8699 
8700   if (Success) {
8701     // Get the fix string from the fixed format specifier
8702     SmallString<16> buf;
8703     llvm::raw_svector_ostream os(buf);
8704     fixedFS.toString(os);
8705 
8706     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8707 
8708     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8709       unsigned Diag;
8710       switch (Match) {
8711       case ArgType::Match: llvm_unreachable("expected non-matching");
8712       case ArgType::NoMatchPedantic:
8713         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8714         break;
8715       case ArgType::NoMatchTypeConfusion:
8716         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8717         break;
8718       case ArgType::NoMatch:
8719         Diag = diag::warn_format_conversion_argument_type_mismatch;
8720         break;
8721       }
8722 
8723       // In this case, the specifier is wrong and should be changed to match
8724       // the argument.
8725       EmitFormatDiagnostic(S.PDiag(Diag)
8726                                << AT.getRepresentativeTypeName(S.Context)
8727                                << IntendedTy << IsEnum << E->getSourceRange(),
8728                            E->getBeginLoc(),
8729                            /*IsStringLocation*/ false, SpecRange,
8730                            FixItHint::CreateReplacement(SpecRange, os.str()));
8731     } else {
8732       // The canonical type for formatting this value is different from the
8733       // actual type of the expression. (This occurs, for example, with Darwin's
8734       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8735       // should be printed as 'long' for 64-bit compatibility.)
8736       // Rather than emitting a normal format/argument mismatch, we want to
8737       // add a cast to the recommended type (and correct the format string
8738       // if necessary).
8739       SmallString<16> CastBuf;
8740       llvm::raw_svector_ostream CastFix(CastBuf);
8741       CastFix << "(";
8742       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8743       CastFix << ")";
8744 
8745       SmallVector<FixItHint,4> Hints;
8746       if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8747         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8748 
8749       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8750         // If there's already a cast present, just replace it.
8751         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8752         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8753 
8754       } else if (!requiresParensToAddCast(E)) {
8755         // If the expression has high enough precedence,
8756         // just write the C-style cast.
8757         Hints.push_back(
8758             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8759       } else {
8760         // Otherwise, add parens around the expression as well as the cast.
8761         CastFix << "(";
8762         Hints.push_back(
8763             FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8764 
8765         SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8766         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8767       }
8768 
8769       if (ShouldNotPrintDirectly) {
8770         // The expression has a type that should not be printed directly.
8771         // We extract the name from the typedef because we don't want to show
8772         // the underlying type in the diagnostic.
8773         StringRef Name;
8774         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8775           Name = TypedefTy->getDecl()->getName();
8776         else
8777           Name = CastTyName;
8778         unsigned Diag = Match == ArgType::NoMatchPedantic
8779                             ? diag::warn_format_argument_needs_cast_pedantic
8780                             : diag::warn_format_argument_needs_cast;
8781         EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8782                                            << E->getSourceRange(),
8783                              E->getBeginLoc(), /*IsStringLocation=*/false,
8784                              SpecRange, Hints);
8785       } else {
8786         // In this case, the expression could be printed using a different
8787         // specifier, but we've decided that the specifier is probably correct
8788         // and we should cast instead. Just use the normal warning message.
8789         EmitFormatDiagnostic(
8790             S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8791                 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8792                 << E->getSourceRange(),
8793             E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8794       }
8795     }
8796   } else {
8797     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8798                                                    SpecifierLen);
8799     // Since the warning for passing non-POD types to variadic functions
8800     // was deferred until now, we emit a warning for non-POD
8801     // arguments here.
8802     switch (S.isValidVarArgType(ExprTy)) {
8803     case Sema::VAK_Valid:
8804     case Sema::VAK_ValidInCXX11: {
8805       unsigned Diag;
8806       switch (Match) {
8807       case ArgType::Match: llvm_unreachable("expected non-matching");
8808       case ArgType::NoMatchPedantic:
8809         Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8810         break;
8811       case ArgType::NoMatchTypeConfusion:
8812         Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8813         break;
8814       case ArgType::NoMatch:
8815         Diag = diag::warn_format_conversion_argument_type_mismatch;
8816         break;
8817       }
8818 
8819       EmitFormatDiagnostic(
8820           S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8821                         << IsEnum << CSR << E->getSourceRange(),
8822           E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8823       break;
8824     }
8825     case Sema::VAK_Undefined:
8826     case Sema::VAK_MSVCUndefined:
8827       EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8828                                << S.getLangOpts().CPlusPlus11 << ExprTy
8829                                << CallType
8830                                << AT.getRepresentativeTypeName(S.Context) << CSR
8831                                << E->getSourceRange(),
8832                            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8833       checkForCStrMembers(AT, E);
8834       break;
8835 
8836     case Sema::VAK_Invalid:
8837       if (ExprTy->isObjCObjectType())
8838         EmitFormatDiagnostic(
8839             S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8840                 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8841                 << AT.getRepresentativeTypeName(S.Context) << CSR
8842                 << E->getSourceRange(),
8843             E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8844       else
8845         // FIXME: If this is an initializer list, suggest removing the braces
8846         // or inserting a cast to the target type.
8847         S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8848             << isa<InitListExpr>(E) << ExprTy << CallType
8849             << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8850       break;
8851     }
8852 
8853     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
8854            "format string specifier index out of range");
8855     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8856   }
8857 
8858   return true;
8859 }
8860 
8861 //===--- CHECK: Scanf format string checking ------------------------------===//
8862 
8863 namespace {
8864 
8865 class CheckScanfHandler : public CheckFormatHandler {
8866 public:
8867   CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8868                     const Expr *origFormatExpr, Sema::FormatStringType type,
8869                     unsigned firstDataArg, unsigned numDataArgs,
8870                     const char *beg, bool hasVAListArg,
8871                     ArrayRef<const Expr *> Args, unsigned formatIdx,
8872                     bool inFunctionCall, Sema::VariadicCallType CallType,
8873                     llvm::SmallBitVector &CheckedVarArgs,
8874                     UncoveredArgHandler &UncoveredArg)
8875       : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8876                            numDataArgs, beg, hasVAListArg, Args, formatIdx,
8877                            inFunctionCall, CallType, CheckedVarArgs,
8878                            UncoveredArg) {}
8879 
8880   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8881                             const char *startSpecifier,
8882                             unsigned specifierLen) override;
8883 
8884   bool HandleInvalidScanfConversionSpecifier(
8885           const analyze_scanf::ScanfSpecifier &FS,
8886           const char *startSpecifier,
8887           unsigned specifierLen) override;
8888 
8889   void HandleIncompleteScanList(const char *start, const char *end) override;
8890 };
8891 
8892 } // namespace
8893 
8894 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8895                                                  const char *end) {
8896   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8897                        getLocationOfByte(end), /*IsStringLocation*/true,
8898                        getSpecifierRange(start, end - start));
8899 }
8900 
8901 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8902                                         const analyze_scanf::ScanfSpecifier &FS,
8903                                         const char *startSpecifier,
8904                                         unsigned specifierLen) {
8905   const analyze_scanf::ScanfConversionSpecifier &CS =
8906     FS.getConversionSpecifier();
8907 
8908   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8909                                           getLocationOfByte(CS.getStart()),
8910                                           startSpecifier, specifierLen,
8911                                           CS.getStart(), CS.getLength());
8912 }
8913 
8914 bool CheckScanfHandler::HandleScanfSpecifier(
8915                                        const analyze_scanf::ScanfSpecifier &FS,
8916                                        const char *startSpecifier,
8917                                        unsigned specifierLen) {
8918   using namespace analyze_scanf;
8919   using namespace analyze_format_string;
8920 
8921   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8922 
8923   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
8924   // be used to decide if we are using positional arguments consistently.
8925   if (FS.consumesDataArgument()) {
8926     if (atFirstArg) {
8927       atFirstArg = false;
8928       usesPositionalArgs = FS.usesPositionalArg();
8929     }
8930     else if (usesPositionalArgs != FS.usesPositionalArg()) {
8931       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8932                                         startSpecifier, specifierLen);
8933       return false;
8934     }
8935   }
8936 
8937   // Check if the field with is non-zero.
8938   const OptionalAmount &Amt = FS.getFieldWidth();
8939   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8940     if (Amt.getConstantAmount() == 0) {
8941       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8942                                                    Amt.getConstantLength());
8943       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8944                            getLocationOfByte(Amt.getStart()),
8945                            /*IsStringLocation*/true, R,
8946                            FixItHint::CreateRemoval(R));
8947     }
8948   }
8949 
8950   if (!FS.consumesDataArgument()) {
8951     // FIXME: Technically specifying a precision or field width here
8952     // makes no sense.  Worth issuing a warning at some point.
8953     return true;
8954   }
8955 
8956   // Consume the argument.
8957   unsigned argIndex = FS.getArgIndex();
8958   if (argIndex < NumDataArgs) {
8959       // The check to see if the argIndex is valid will come later.
8960       // We set the bit here because we may exit early from this
8961       // function if we encounter some other error.
8962     CoveredArgs.set(argIndex);
8963   }
8964 
8965   // Check the length modifier is valid with the given conversion specifier.
8966   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8967                                  S.getLangOpts()))
8968     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8969                                 diag::warn_format_nonsensical_length);
8970   else if (!FS.hasStandardLengthModifier())
8971     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8972   else if (!FS.hasStandardLengthConversionCombination())
8973     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8974                                 diag::warn_format_non_standard_conversion_spec);
8975 
8976   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8977     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8978 
8979   // The remaining checks depend on the data arguments.
8980   if (HasVAListArg)
8981     return true;
8982 
8983   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8984     return false;
8985 
8986   // Check that the argument type matches the format specifier.
8987   const Expr *Ex = getDataArg(argIndex);
8988   if (!Ex)
8989     return true;
8990 
8991   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8992 
8993   if (!AT.isValid()) {
8994     return true;
8995   }
8996 
8997   analyze_format_string::ArgType::MatchKind Match =
8998       AT.matchesType(S.Context, Ex->getType());
8999   bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9000   if (Match == analyze_format_string::ArgType::Match)
9001     return true;
9002 
9003   ScanfSpecifier fixedFS = FS;
9004   bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9005                                  S.getLangOpts(), S.Context);
9006 
9007   unsigned Diag =
9008       Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9009                : diag::warn_format_conversion_argument_type_mismatch;
9010 
9011   if (Success) {
9012     // Get the fix string from the fixed format specifier.
9013     SmallString<128> buf;
9014     llvm::raw_svector_ostream os(buf);
9015     fixedFS.toString(os);
9016 
9017     EmitFormatDiagnostic(
9018         S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9019                       << Ex->getType() << false << Ex->getSourceRange(),
9020         Ex->getBeginLoc(),
9021         /*IsStringLocation*/ false,
9022         getSpecifierRange(startSpecifier, specifierLen),
9023         FixItHint::CreateReplacement(
9024             getSpecifierRange(startSpecifier, specifierLen), os.str()));
9025   } else {
9026     EmitFormatDiagnostic(S.PDiag(Diag)
9027                              << AT.getRepresentativeTypeName(S.Context)
9028                              << Ex->getType() << false << Ex->getSourceRange(),
9029                          Ex->getBeginLoc(),
9030                          /*IsStringLocation*/ false,
9031                          getSpecifierRange(startSpecifier, specifierLen));
9032   }
9033 
9034   return true;
9035 }
9036 
9037 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9038                               const Expr *OrigFormatExpr,
9039                               ArrayRef<const Expr *> Args,
9040                               bool HasVAListArg, unsigned format_idx,
9041                               unsigned firstDataArg,
9042                               Sema::FormatStringType Type,
9043                               bool inFunctionCall,
9044                               Sema::VariadicCallType CallType,
9045                               llvm::SmallBitVector &CheckedVarArgs,
9046                               UncoveredArgHandler &UncoveredArg,
9047                               bool IgnoreStringsWithoutSpecifiers) {
9048   // CHECK: is the format string a wide literal?
9049   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9050     CheckFormatHandler::EmitFormatDiagnostic(
9051         S, inFunctionCall, Args[format_idx],
9052         S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9053         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9054     return;
9055   }
9056 
9057   // Str - The format string.  NOTE: this is NOT null-terminated!
9058   StringRef StrRef = FExpr->getString();
9059   const char *Str = StrRef.data();
9060   // Account for cases where the string literal is truncated in a declaration.
9061   const ConstantArrayType *T =
9062     S.Context.getAsConstantArrayType(FExpr->getType());
9063   assert(T && "String literal not of constant array type!");
9064   size_t TypeSize = T->getSize().getZExtValue();
9065   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9066   const unsigned numDataArgs = Args.size() - firstDataArg;
9067 
9068   if (IgnoreStringsWithoutSpecifiers &&
9069       !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9070           Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9071     return;
9072 
9073   // Emit a warning if the string literal is truncated and does not contain an
9074   // embedded null character.
9075   if (TypeSize <= StrRef.size() &&
9076       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9077     CheckFormatHandler::EmitFormatDiagnostic(
9078         S, inFunctionCall, Args[format_idx],
9079         S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9080         FExpr->getBeginLoc(),
9081         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9082     return;
9083   }
9084 
9085   // CHECK: empty format string?
9086   if (StrLen == 0 && numDataArgs > 0) {
9087     CheckFormatHandler::EmitFormatDiagnostic(
9088         S, inFunctionCall, Args[format_idx],
9089         S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9090         /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9091     return;
9092   }
9093 
9094   if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9095       Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9096       Type == Sema::FST_OSTrace) {
9097     CheckPrintfHandler H(
9098         S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9099         (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9100         HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9101         CheckedVarArgs, UncoveredArg);
9102 
9103     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9104                                                   S.getLangOpts(),
9105                                                   S.Context.getTargetInfo(),
9106                                             Type == Sema::FST_FreeBSDKPrintf))
9107       H.DoneProcessing();
9108   } else if (Type == Sema::FST_Scanf) {
9109     CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9110                         numDataArgs, Str, HasVAListArg, Args, format_idx,
9111                         inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9112 
9113     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9114                                                  S.getLangOpts(),
9115                                                  S.Context.getTargetInfo()))
9116       H.DoneProcessing();
9117   } // TODO: handle other formats
9118 }
9119 
9120 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9121   // Str - The format string.  NOTE: this is NOT null-terminated!
9122   StringRef StrRef = FExpr->getString();
9123   const char *Str = StrRef.data();
9124   // Account for cases where the string literal is truncated in a declaration.
9125   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9126   assert(T && "String literal not of constant array type!");
9127   size_t TypeSize = T->getSize().getZExtValue();
9128   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9129   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9130                                                          getLangOpts(),
9131                                                          Context.getTargetInfo());
9132 }
9133 
9134 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9135 
9136 // Returns the related absolute value function that is larger, of 0 if one
9137 // does not exist.
9138 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9139   switch (AbsFunction) {
9140   default:
9141     return 0;
9142 
9143   case Builtin::BI__builtin_abs:
9144     return Builtin::BI__builtin_labs;
9145   case Builtin::BI__builtin_labs:
9146     return Builtin::BI__builtin_llabs;
9147   case Builtin::BI__builtin_llabs:
9148     return 0;
9149 
9150   case Builtin::BI__builtin_fabsf:
9151     return Builtin::BI__builtin_fabs;
9152   case Builtin::BI__builtin_fabs:
9153     return Builtin::BI__builtin_fabsl;
9154   case Builtin::BI__builtin_fabsl:
9155     return 0;
9156 
9157   case Builtin::BI__builtin_cabsf:
9158     return Builtin::BI__builtin_cabs;
9159   case Builtin::BI__builtin_cabs:
9160     return Builtin::BI__builtin_cabsl;
9161   case Builtin::BI__builtin_cabsl:
9162     return 0;
9163 
9164   case Builtin::BIabs:
9165     return Builtin::BIlabs;
9166   case Builtin::BIlabs:
9167     return Builtin::BIllabs;
9168   case Builtin::BIllabs:
9169     return 0;
9170 
9171   case Builtin::BIfabsf:
9172     return Builtin::BIfabs;
9173   case Builtin::BIfabs:
9174     return Builtin::BIfabsl;
9175   case Builtin::BIfabsl:
9176     return 0;
9177 
9178   case Builtin::BIcabsf:
9179    return Builtin::BIcabs;
9180   case Builtin::BIcabs:
9181     return Builtin::BIcabsl;
9182   case Builtin::BIcabsl:
9183     return 0;
9184   }
9185 }
9186 
9187 // Returns the argument type of the absolute value function.
9188 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9189                                              unsigned AbsType) {
9190   if (AbsType == 0)
9191     return QualType();
9192 
9193   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9194   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9195   if (Error != ASTContext::GE_None)
9196     return QualType();
9197 
9198   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9199   if (!FT)
9200     return QualType();
9201 
9202   if (FT->getNumParams() != 1)
9203     return QualType();
9204 
9205   return FT->getParamType(0);
9206 }
9207 
9208 // Returns the best absolute value function, or zero, based on type and
9209 // current absolute value function.
9210 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9211                                    unsigned AbsFunctionKind) {
9212   unsigned BestKind = 0;
9213   uint64_t ArgSize = Context.getTypeSize(ArgType);
9214   for (unsigned Kind = AbsFunctionKind; Kind != 0;
9215        Kind = getLargerAbsoluteValueFunction(Kind)) {
9216     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9217     if (Context.getTypeSize(ParamType) >= ArgSize) {
9218       if (BestKind == 0)
9219         BestKind = Kind;
9220       else if (Context.hasSameType(ParamType, ArgType)) {
9221         BestKind = Kind;
9222         break;
9223       }
9224     }
9225   }
9226   return BestKind;
9227 }
9228 
9229 enum AbsoluteValueKind {
9230   AVK_Integer,
9231   AVK_Floating,
9232   AVK_Complex
9233 };
9234 
9235 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9236   if (T->isIntegralOrEnumerationType())
9237     return AVK_Integer;
9238   if (T->isRealFloatingType())
9239     return AVK_Floating;
9240   if (T->isAnyComplexType())
9241     return AVK_Complex;
9242 
9243   llvm_unreachable("Type not integer, floating, or complex");
9244 }
9245 
9246 // Changes the absolute value function to a different type.  Preserves whether
9247 // the function is a builtin.
9248 static unsigned changeAbsFunction(unsigned AbsKind,
9249                                   AbsoluteValueKind ValueKind) {
9250   switch (ValueKind) {
9251   case AVK_Integer:
9252     switch (AbsKind) {
9253     default:
9254       return 0;
9255     case Builtin::BI__builtin_fabsf:
9256     case Builtin::BI__builtin_fabs:
9257     case Builtin::BI__builtin_fabsl:
9258     case Builtin::BI__builtin_cabsf:
9259     case Builtin::BI__builtin_cabs:
9260     case Builtin::BI__builtin_cabsl:
9261       return Builtin::BI__builtin_abs;
9262     case Builtin::BIfabsf:
9263     case Builtin::BIfabs:
9264     case Builtin::BIfabsl:
9265     case Builtin::BIcabsf:
9266     case Builtin::BIcabs:
9267     case Builtin::BIcabsl:
9268       return Builtin::BIabs;
9269     }
9270   case AVK_Floating:
9271     switch (AbsKind) {
9272     default:
9273       return 0;
9274     case Builtin::BI__builtin_abs:
9275     case Builtin::BI__builtin_labs:
9276     case Builtin::BI__builtin_llabs:
9277     case Builtin::BI__builtin_cabsf:
9278     case Builtin::BI__builtin_cabs:
9279     case Builtin::BI__builtin_cabsl:
9280       return Builtin::BI__builtin_fabsf;
9281     case Builtin::BIabs:
9282     case Builtin::BIlabs:
9283     case Builtin::BIllabs:
9284     case Builtin::BIcabsf:
9285     case Builtin::BIcabs:
9286     case Builtin::BIcabsl:
9287       return Builtin::BIfabsf;
9288     }
9289   case AVK_Complex:
9290     switch (AbsKind) {
9291     default:
9292       return 0;
9293     case Builtin::BI__builtin_abs:
9294     case Builtin::BI__builtin_labs:
9295     case Builtin::BI__builtin_llabs:
9296     case Builtin::BI__builtin_fabsf:
9297     case Builtin::BI__builtin_fabs:
9298     case Builtin::BI__builtin_fabsl:
9299       return Builtin::BI__builtin_cabsf;
9300     case Builtin::BIabs:
9301     case Builtin::BIlabs:
9302     case Builtin::BIllabs:
9303     case Builtin::BIfabsf:
9304     case Builtin::BIfabs:
9305     case Builtin::BIfabsl:
9306       return Builtin::BIcabsf;
9307     }
9308   }
9309   llvm_unreachable("Unable to convert function");
9310 }
9311 
9312 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9313   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9314   if (!FnInfo)
9315     return 0;
9316 
9317   switch (FDecl->getBuiltinID()) {
9318   default:
9319     return 0;
9320   case Builtin::BI__builtin_abs:
9321   case Builtin::BI__builtin_fabs:
9322   case Builtin::BI__builtin_fabsf:
9323   case Builtin::BI__builtin_fabsl:
9324   case Builtin::BI__builtin_labs:
9325   case Builtin::BI__builtin_llabs:
9326   case Builtin::BI__builtin_cabs:
9327   case Builtin::BI__builtin_cabsf:
9328   case Builtin::BI__builtin_cabsl:
9329   case Builtin::BIabs:
9330   case Builtin::BIlabs:
9331   case Builtin::BIllabs:
9332   case Builtin::BIfabs:
9333   case Builtin::BIfabsf:
9334   case Builtin::BIfabsl:
9335   case Builtin::BIcabs:
9336   case Builtin::BIcabsf:
9337   case Builtin::BIcabsl:
9338     return FDecl->getBuiltinID();
9339   }
9340   llvm_unreachable("Unknown Builtin type");
9341 }
9342 
9343 // If the replacement is valid, emit a note with replacement function.
9344 // Additionally, suggest including the proper header if not already included.
9345 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9346                             unsigned AbsKind, QualType ArgType) {
9347   bool EmitHeaderHint = true;
9348   const char *HeaderName = nullptr;
9349   const char *FunctionName = nullptr;
9350   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9351     FunctionName = "std::abs";
9352     if (ArgType->isIntegralOrEnumerationType()) {
9353       HeaderName = "cstdlib";
9354     } else if (ArgType->isRealFloatingType()) {
9355       HeaderName = "cmath";
9356     } else {
9357       llvm_unreachable("Invalid Type");
9358     }
9359 
9360     // Lookup all std::abs
9361     if (NamespaceDecl *Std = S.getStdNamespace()) {
9362       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9363       R.suppressDiagnostics();
9364       S.LookupQualifiedName(R, Std);
9365 
9366       for (const auto *I : R) {
9367         const FunctionDecl *FDecl = nullptr;
9368         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9369           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9370         } else {
9371           FDecl = dyn_cast<FunctionDecl>(I);
9372         }
9373         if (!FDecl)
9374           continue;
9375 
9376         // Found std::abs(), check that they are the right ones.
9377         if (FDecl->getNumParams() != 1)
9378           continue;
9379 
9380         // Check that the parameter type can handle the argument.
9381         QualType ParamType = FDecl->getParamDecl(0)->getType();
9382         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9383             S.Context.getTypeSize(ArgType) <=
9384                 S.Context.getTypeSize(ParamType)) {
9385           // Found a function, don't need the header hint.
9386           EmitHeaderHint = false;
9387           break;
9388         }
9389       }
9390     }
9391   } else {
9392     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9393     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9394 
9395     if (HeaderName) {
9396       DeclarationName DN(&S.Context.Idents.get(FunctionName));
9397       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9398       R.suppressDiagnostics();
9399       S.LookupName(R, S.getCurScope());
9400 
9401       if (R.isSingleResult()) {
9402         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9403         if (FD && FD->getBuiltinID() == AbsKind) {
9404           EmitHeaderHint = false;
9405         } else {
9406           return;
9407         }
9408       } else if (!R.empty()) {
9409         return;
9410       }
9411     }
9412   }
9413 
9414   S.Diag(Loc, diag::note_replace_abs_function)
9415       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9416 
9417   if (!HeaderName)
9418     return;
9419 
9420   if (!EmitHeaderHint)
9421     return;
9422 
9423   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9424                                                     << FunctionName;
9425 }
9426 
9427 template <std::size_t StrLen>
9428 static bool IsStdFunction(const FunctionDecl *FDecl,
9429                           const char (&Str)[StrLen]) {
9430   if (!FDecl)
9431     return false;
9432   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9433     return false;
9434   if (!FDecl->isInStdNamespace())
9435     return false;
9436 
9437   return true;
9438 }
9439 
9440 // Warn when using the wrong abs() function.
9441 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9442                                       const FunctionDecl *FDecl) {
9443   if (Call->getNumArgs() != 1)
9444     return;
9445 
9446   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9447   bool IsStdAbs = IsStdFunction(FDecl, "abs");
9448   if (AbsKind == 0 && !IsStdAbs)
9449     return;
9450 
9451   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9452   QualType ParamType = Call->getArg(0)->getType();
9453 
9454   // Unsigned types cannot be negative.  Suggest removing the absolute value
9455   // function call.
9456   if (ArgType->isUnsignedIntegerType()) {
9457     const char *FunctionName =
9458         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9459     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9460     Diag(Call->getExprLoc(), diag::note_remove_abs)
9461         << FunctionName
9462         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9463     return;
9464   }
9465 
9466   // Taking the absolute value of a pointer is very suspicious, they probably
9467   // wanted to index into an array, dereference a pointer, call a function, etc.
9468   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9469     unsigned DiagType = 0;
9470     if (ArgType->isFunctionType())
9471       DiagType = 1;
9472     else if (ArgType->isArrayType())
9473       DiagType = 2;
9474 
9475     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9476     return;
9477   }
9478 
9479   // std::abs has overloads which prevent most of the absolute value problems
9480   // from occurring.
9481   if (IsStdAbs)
9482     return;
9483 
9484   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9485   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9486 
9487   // The argument and parameter are the same kind.  Check if they are the right
9488   // size.
9489   if (ArgValueKind == ParamValueKind) {
9490     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9491       return;
9492 
9493     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9494     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9495         << FDecl << ArgType << ParamType;
9496 
9497     if (NewAbsKind == 0)
9498       return;
9499 
9500     emitReplacement(*this, Call->getExprLoc(),
9501                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9502     return;
9503   }
9504 
9505   // ArgValueKind != ParamValueKind
9506   // The wrong type of absolute value function was used.  Attempt to find the
9507   // proper one.
9508   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9509   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9510   if (NewAbsKind == 0)
9511     return;
9512 
9513   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9514       << FDecl << ParamValueKind << ArgValueKind;
9515 
9516   emitReplacement(*this, Call->getExprLoc(),
9517                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9518 }
9519 
9520 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9521 void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9522                                 const FunctionDecl *FDecl) {
9523   if (!Call || !FDecl) return;
9524 
9525   // Ignore template specializations and macros.
9526   if (inTemplateInstantiation()) return;
9527   if (Call->getExprLoc().isMacroID()) return;
9528 
9529   // Only care about the one template argument, two function parameter std::max
9530   if (Call->getNumArgs() != 2) return;
9531   if (!IsStdFunction(FDecl, "max")) return;
9532   const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9533   if (!ArgList) return;
9534   if (ArgList->size() != 1) return;
9535 
9536   // Check that template type argument is unsigned integer.
9537   const auto& TA = ArgList->get(0);
9538   if (TA.getKind() != TemplateArgument::Type) return;
9539   QualType ArgType = TA.getAsType();
9540   if (!ArgType->isUnsignedIntegerType()) return;
9541 
9542   // See if either argument is a literal zero.
9543   auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9544     const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9545     if (!MTE) return false;
9546     const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9547     if (!Num) return false;
9548     if (Num->getValue() != 0) return false;
9549     return true;
9550   };
9551 
9552   const Expr *FirstArg = Call->getArg(0);
9553   const Expr *SecondArg = Call->getArg(1);
9554   const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9555   const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9556 
9557   // Only warn when exactly one argument is zero.
9558   if (IsFirstArgZero == IsSecondArgZero) return;
9559 
9560   SourceRange FirstRange = FirstArg->getSourceRange();
9561   SourceRange SecondRange = SecondArg->getSourceRange();
9562 
9563   SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9564 
9565   Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9566       << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9567 
9568   // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9569   SourceRange RemovalRange;
9570   if (IsFirstArgZero) {
9571     RemovalRange = SourceRange(FirstRange.getBegin(),
9572                                SecondRange.getBegin().getLocWithOffset(-1));
9573   } else {
9574     RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9575                                SecondRange.getEnd());
9576   }
9577 
9578   Diag(Call->getExprLoc(), diag::note_remove_max_call)
9579         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9580         << FixItHint::CreateRemoval(RemovalRange);
9581 }
9582 
9583 //===--- CHECK: Standard memory functions ---------------------------------===//
9584 
9585 /// Takes the expression passed to the size_t parameter of functions
9586 /// such as memcmp, strncat, etc and warns if it's a comparison.
9587 ///
9588 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9589 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9590                                            IdentifierInfo *FnName,
9591                                            SourceLocation FnLoc,
9592                                            SourceLocation RParenLoc) {
9593   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9594   if (!Size)
9595     return false;
9596 
9597   // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9598   if (!Size->isComparisonOp() && !Size->isLogicalOp())
9599     return false;
9600 
9601   SourceRange SizeRange = Size->getSourceRange();
9602   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9603       << SizeRange << FnName;
9604   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9605       << FnName
9606       << FixItHint::CreateInsertion(
9607              S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9608       << FixItHint::CreateRemoval(RParenLoc);
9609   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9610       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9611       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9612                                     ")");
9613 
9614   return true;
9615 }
9616 
9617 /// Determine whether the given type is or contains a dynamic class type
9618 /// (e.g., whether it has a vtable).
9619 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9620                                                      bool &IsContained) {
9621   // Look through array types while ignoring qualifiers.
9622   const Type *Ty = T->getBaseElementTypeUnsafe();
9623   IsContained = false;
9624 
9625   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9626   RD = RD ? RD->getDefinition() : nullptr;
9627   if (!RD || RD->isInvalidDecl())
9628     return nullptr;
9629 
9630   if (RD->isDynamicClass())
9631     return RD;
9632 
9633   // Check all the fields.  If any bases were dynamic, the class is dynamic.
9634   // It's impossible for a class to transitively contain itself by value, so
9635   // infinite recursion is impossible.
9636   for (auto *FD : RD->fields()) {
9637     bool SubContained;
9638     if (const CXXRecordDecl *ContainedRD =
9639             getContainedDynamicClass(FD->getType(), SubContained)) {
9640       IsContained = true;
9641       return ContainedRD;
9642     }
9643   }
9644 
9645   return nullptr;
9646 }
9647 
9648 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9649   if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9650     if (Unary->getKind() == UETT_SizeOf)
9651       return Unary;
9652   return nullptr;
9653 }
9654 
9655 /// If E is a sizeof expression, returns its argument expression,
9656 /// otherwise returns NULL.
9657 static const Expr *getSizeOfExprArg(const Expr *E) {
9658   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9659     if (!SizeOf->isArgumentType())
9660       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9661   return nullptr;
9662 }
9663 
9664 /// If E is a sizeof expression, returns its argument type.
9665 static QualType getSizeOfArgType(const Expr *E) {
9666   if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9667     return SizeOf->getTypeOfArgument();
9668   return QualType();
9669 }
9670 
9671 namespace {
9672 
9673 struct SearchNonTrivialToInitializeField
9674     : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9675   using Super =
9676       DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9677 
9678   SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9679 
9680   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9681                      SourceLocation SL) {
9682     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9683       asDerived().visitArray(PDIK, AT, SL);
9684       return;
9685     }
9686 
9687     Super::visitWithKind(PDIK, FT, SL);
9688   }
9689 
9690   void visitARCStrong(QualType FT, SourceLocation SL) {
9691     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9692   }
9693   void visitARCWeak(QualType FT, SourceLocation SL) {
9694     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9695   }
9696   void visitStruct(QualType FT, SourceLocation SL) {
9697     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9698       visit(FD->getType(), FD->getLocation());
9699   }
9700   void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9701                   const ArrayType *AT, SourceLocation SL) {
9702     visit(getContext().getBaseElementType(AT), SL);
9703   }
9704   void visitTrivial(QualType FT, SourceLocation SL) {}
9705 
9706   static void diag(QualType RT, const Expr *E, Sema &S) {
9707     SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9708   }
9709 
9710   ASTContext &getContext() { return S.getASTContext(); }
9711 
9712   const Expr *E;
9713   Sema &S;
9714 };
9715 
9716 struct SearchNonTrivialToCopyField
9717     : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9718   using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9719 
9720   SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9721 
9722   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9723                      SourceLocation SL) {
9724     if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9725       asDerived().visitArray(PCK, AT, SL);
9726       return;
9727     }
9728 
9729     Super::visitWithKind(PCK, FT, SL);
9730   }
9731 
9732   void visitARCStrong(QualType FT, SourceLocation SL) {
9733     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9734   }
9735   void visitARCWeak(QualType FT, SourceLocation SL) {
9736     S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9737   }
9738   void visitStruct(QualType FT, SourceLocation SL) {
9739     for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9740       visit(FD->getType(), FD->getLocation());
9741   }
9742   void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9743                   SourceLocation SL) {
9744     visit(getContext().getBaseElementType(AT), SL);
9745   }
9746   void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9747                 SourceLocation SL) {}
9748   void visitTrivial(QualType FT, SourceLocation SL) {}
9749   void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9750 
9751   static void diag(QualType RT, const Expr *E, Sema &S) {
9752     SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9753   }
9754 
9755   ASTContext &getContext() { return S.getASTContext(); }
9756 
9757   const Expr *E;
9758   Sema &S;
9759 };
9760 
9761 }
9762 
9763 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9764 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9765   SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9766 
9767   if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9768     if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9769       return false;
9770 
9771     return doesExprLikelyComputeSize(BO->getLHS()) ||
9772            doesExprLikelyComputeSize(BO->getRHS());
9773   }
9774 
9775   return getAsSizeOfExpr(SizeofExpr) != nullptr;
9776 }
9777 
9778 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9779 ///
9780 /// \code
9781 ///   #define MACRO 0
9782 ///   foo(MACRO);
9783 ///   foo(0);
9784 /// \endcode
9785 ///
9786 /// This should return true for the first call to foo, but not for the second
9787 /// (regardless of whether foo is a macro or function).
9788 static bool isArgumentExpandedFromMacro(SourceManager &SM,
9789                                         SourceLocation CallLoc,
9790                                         SourceLocation ArgLoc) {
9791   if (!CallLoc.isMacroID())
9792     return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9793 
9794   return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9795          SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9796 }
9797 
9798 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9799 /// last two arguments transposed.
9800 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9801   if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9802     return;
9803 
9804   const Expr *SizeArg =
9805     Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9806 
9807   auto isLiteralZero = [](const Expr *E) {
9808     return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9809   };
9810 
9811   // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9812   SourceLocation CallLoc = Call->getRParenLoc();
9813   SourceManager &SM = S.getSourceManager();
9814   if (isLiteralZero(SizeArg) &&
9815       !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9816 
9817     SourceLocation DiagLoc = SizeArg->getExprLoc();
9818 
9819     // Some platforms #define bzero to __builtin_memset. See if this is the
9820     // case, and if so, emit a better diagnostic.
9821     if (BId == Builtin::BIbzero ||
9822         (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9823                                     CallLoc, SM, S.getLangOpts()) == "bzero")) {
9824       S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9825       S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9826     } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9827       S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9828       S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9829     }
9830     return;
9831   }
9832 
9833   // If the second argument to a memset is a sizeof expression and the third
9834   // isn't, this is also likely an error. This should catch
9835   // 'memset(buf, sizeof(buf), 0xff)'.
9836   if (BId == Builtin::BImemset &&
9837       doesExprLikelyComputeSize(Call->getArg(1)) &&
9838       !doesExprLikelyComputeSize(Call->getArg(2))) {
9839     SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9840     S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9841     S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9842     return;
9843   }
9844 }
9845 
9846 /// Check for dangerous or invalid arguments to memset().
9847 ///
9848 /// This issues warnings on known problematic, dangerous or unspecified
9849 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9850 /// function calls.
9851 ///
9852 /// \param Call The call expression to diagnose.
9853 void Sema::CheckMemaccessArguments(const CallExpr *Call,
9854                                    unsigned BId,
9855                                    IdentifierInfo *FnName) {
9856   assert(BId != 0);
9857 
9858   // It is possible to have a non-standard definition of memset.  Validate
9859   // we have enough arguments, and if not, abort further checking.
9860   unsigned ExpectedNumArgs =
9861       (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9862   if (Call->getNumArgs() < ExpectedNumArgs)
9863     return;
9864 
9865   unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9866                       BId == Builtin::BIstrndup ? 1 : 2);
9867   unsigned LenArg =
9868       (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9869   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9870 
9871   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9872                                      Call->getBeginLoc(), Call->getRParenLoc()))
9873     return;
9874 
9875   // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9876   CheckMemaccessSize(*this, BId, Call);
9877 
9878   // We have special checking when the length is a sizeof expression.
9879   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9880   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9881   llvm::FoldingSetNodeID SizeOfArgID;
9882 
9883   // Although widely used, 'bzero' is not a standard function. Be more strict
9884   // with the argument types before allowing diagnostics and only allow the
9885   // form bzero(ptr, sizeof(...)).
9886   QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9887   if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9888     return;
9889 
9890   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9891     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9892     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9893 
9894     QualType DestTy = Dest->getType();
9895     QualType PointeeTy;
9896     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9897       PointeeTy = DestPtrTy->getPointeeType();
9898 
9899       // Never warn about void type pointers. This can be used to suppress
9900       // false positives.
9901       if (PointeeTy->isVoidType())
9902         continue;
9903 
9904       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9905       // actually comparing the expressions for equality. Because computing the
9906       // expression IDs can be expensive, we only do this if the diagnostic is
9907       // enabled.
9908       if (SizeOfArg &&
9909           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9910                            SizeOfArg->getExprLoc())) {
9911         // We only compute IDs for expressions if the warning is enabled, and
9912         // cache the sizeof arg's ID.
9913         if (SizeOfArgID == llvm::FoldingSetNodeID())
9914           SizeOfArg->Profile(SizeOfArgID, Context, true);
9915         llvm::FoldingSetNodeID DestID;
9916         Dest->Profile(DestID, Context, true);
9917         if (DestID == SizeOfArgID) {
9918           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9919           //       over sizeof(src) as well.
9920           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9921           StringRef ReadableName = FnName->getName();
9922 
9923           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9924             if (UnaryOp->getOpcode() == UO_AddrOf)
9925               ActionIdx = 1; // If its an address-of operator, just remove it.
9926           if (!PointeeTy->isIncompleteType() &&
9927               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9928             ActionIdx = 2; // If the pointee's size is sizeof(char),
9929                            // suggest an explicit length.
9930 
9931           // If the function is defined as a builtin macro, do not show macro
9932           // expansion.
9933           SourceLocation SL = SizeOfArg->getExprLoc();
9934           SourceRange DSR = Dest->getSourceRange();
9935           SourceRange SSR = SizeOfArg->getSourceRange();
9936           SourceManager &SM = getSourceManager();
9937 
9938           if (SM.isMacroArgExpansion(SL)) {
9939             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9940             SL = SM.getSpellingLoc(SL);
9941             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9942                              SM.getSpellingLoc(DSR.getEnd()));
9943             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9944                              SM.getSpellingLoc(SSR.getEnd()));
9945           }
9946 
9947           DiagRuntimeBehavior(SL, SizeOfArg,
9948                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9949                                 << ReadableName
9950                                 << PointeeTy
9951                                 << DestTy
9952                                 << DSR
9953                                 << SSR);
9954           DiagRuntimeBehavior(SL, SizeOfArg,
9955                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9956                                 << ActionIdx
9957                                 << SSR);
9958 
9959           break;
9960         }
9961       }
9962 
9963       // Also check for cases where the sizeof argument is the exact same
9964       // type as the memory argument, and where it points to a user-defined
9965       // record type.
9966       if (SizeOfArgTy != QualType()) {
9967         if (PointeeTy->isRecordType() &&
9968             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9969           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9970                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
9971                                 << FnName << SizeOfArgTy << ArgIdx
9972                                 << PointeeTy << Dest->getSourceRange()
9973                                 << LenExpr->getSourceRange());
9974           break;
9975         }
9976       }
9977     } else if (DestTy->isArrayType()) {
9978       PointeeTy = DestTy;
9979     }
9980 
9981     if (PointeeTy == QualType())
9982       continue;
9983 
9984     // Always complain about dynamic classes.
9985     bool IsContained;
9986     if (const CXXRecordDecl *ContainedRD =
9987             getContainedDynamicClass(PointeeTy, IsContained)) {
9988 
9989       unsigned OperationType = 0;
9990       const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9991       // "overwritten" if we're warning about the destination for any call
9992       // but memcmp; otherwise a verb appropriate to the call.
9993       if (ArgIdx != 0 || IsCmp) {
9994         if (BId == Builtin::BImemcpy)
9995           OperationType = 1;
9996         else if(BId == Builtin::BImemmove)
9997           OperationType = 2;
9998         else if (IsCmp)
9999           OperationType = 3;
10000       }
10001 
10002       DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10003                           PDiag(diag::warn_dyn_class_memaccess)
10004                               << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10005                               << IsContained << ContainedRD << OperationType
10006                               << Call->getCallee()->getSourceRange());
10007     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10008              BId != Builtin::BImemset)
10009       DiagRuntimeBehavior(
10010         Dest->getExprLoc(), Dest,
10011         PDiag(diag::warn_arc_object_memaccess)
10012           << ArgIdx << FnName << PointeeTy
10013           << Call->getCallee()->getSourceRange());
10014     else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10015       if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10016           RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10017         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10018                             PDiag(diag::warn_cstruct_memaccess)
10019                                 << ArgIdx << FnName << PointeeTy << 0);
10020         SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10021       } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10022                  RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10023         DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10024                             PDiag(diag::warn_cstruct_memaccess)
10025                                 << ArgIdx << FnName << PointeeTy << 1);
10026         SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10027       } else {
10028         continue;
10029       }
10030     } else
10031       continue;
10032 
10033     DiagRuntimeBehavior(
10034       Dest->getExprLoc(), Dest,
10035       PDiag(diag::note_bad_memaccess_silence)
10036         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10037     break;
10038   }
10039 }
10040 
10041 // A little helper routine: ignore addition and subtraction of integer literals.
10042 // This intentionally does not ignore all integer constant expressions because
10043 // we don't want to remove sizeof().
10044 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10045   Ex = Ex->IgnoreParenCasts();
10046 
10047   while (true) {
10048     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10049     if (!BO || !BO->isAdditiveOp())
10050       break;
10051 
10052     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10053     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10054 
10055     if (isa<IntegerLiteral>(RHS))
10056       Ex = LHS;
10057     else if (isa<IntegerLiteral>(LHS))
10058       Ex = RHS;
10059     else
10060       break;
10061   }
10062 
10063   return Ex;
10064 }
10065 
10066 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10067                                                       ASTContext &Context) {
10068   // Only handle constant-sized or VLAs, but not flexible members.
10069   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10070     // Only issue the FIXIT for arrays of size > 1.
10071     if (CAT->getSize().getSExtValue() <= 1)
10072       return false;
10073   } else if (!Ty->isVariableArrayType()) {
10074     return false;
10075   }
10076   return true;
10077 }
10078 
10079 // Warn if the user has made the 'size' argument to strlcpy or strlcat
10080 // be the size of the source, instead of the destination.
10081 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10082                                     IdentifierInfo *FnName) {
10083 
10084   // Don't crash if the user has the wrong number of arguments
10085   unsigned NumArgs = Call->getNumArgs();
10086   if ((NumArgs != 3) && (NumArgs != 4))
10087     return;
10088 
10089   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10090   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10091   const Expr *CompareWithSrc = nullptr;
10092 
10093   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10094                                      Call->getBeginLoc(), Call->getRParenLoc()))
10095     return;
10096 
10097   // Look for 'strlcpy(dst, x, sizeof(x))'
10098   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10099     CompareWithSrc = Ex;
10100   else {
10101     // Look for 'strlcpy(dst, x, strlen(x))'
10102     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10103       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10104           SizeCall->getNumArgs() == 1)
10105         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10106     }
10107   }
10108 
10109   if (!CompareWithSrc)
10110     return;
10111 
10112   // Determine if the argument to sizeof/strlen is equal to the source
10113   // argument.  In principle there's all kinds of things you could do
10114   // here, for instance creating an == expression and evaluating it with
10115   // EvaluateAsBooleanCondition, but this uses a more direct technique:
10116   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10117   if (!SrcArgDRE)
10118     return;
10119 
10120   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10121   if (!CompareWithSrcDRE ||
10122       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10123     return;
10124 
10125   const Expr *OriginalSizeArg = Call->getArg(2);
10126   Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10127       << OriginalSizeArg->getSourceRange() << FnName;
10128 
10129   // Output a FIXIT hint if the destination is an array (rather than a
10130   // pointer to an array).  This could be enhanced to handle some
10131   // pointers if we know the actual size, like if DstArg is 'array+2'
10132   // we could say 'sizeof(array)-2'.
10133   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10134   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10135     return;
10136 
10137   SmallString<128> sizeString;
10138   llvm::raw_svector_ostream OS(sizeString);
10139   OS << "sizeof(";
10140   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10141   OS << ")";
10142 
10143   Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10144       << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10145                                       OS.str());
10146 }
10147 
10148 /// Check if two expressions refer to the same declaration.
10149 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10150   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10151     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10152       return D1->getDecl() == D2->getDecl();
10153   return false;
10154 }
10155 
10156 static const Expr *getStrlenExprArg(const Expr *E) {
10157   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10158     const FunctionDecl *FD = CE->getDirectCallee();
10159     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10160       return nullptr;
10161     return CE->getArg(0)->IgnoreParenCasts();
10162   }
10163   return nullptr;
10164 }
10165 
10166 // Warn on anti-patterns as the 'size' argument to strncat.
10167 // The correct size argument should look like following:
10168 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10169 void Sema::CheckStrncatArguments(const CallExpr *CE,
10170                                  IdentifierInfo *FnName) {
10171   // Don't crash if the user has the wrong number of arguments.
10172   if (CE->getNumArgs() < 3)
10173     return;
10174   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10175   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10176   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10177 
10178   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10179                                      CE->getRParenLoc()))
10180     return;
10181 
10182   // Identify common expressions, which are wrongly used as the size argument
10183   // to strncat and may lead to buffer overflows.
10184   unsigned PatternType = 0;
10185   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10186     // - sizeof(dst)
10187     if (referToTheSameDecl(SizeOfArg, DstArg))
10188       PatternType = 1;
10189     // - sizeof(src)
10190     else if (referToTheSameDecl(SizeOfArg, SrcArg))
10191       PatternType = 2;
10192   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10193     if (BE->getOpcode() == BO_Sub) {
10194       const Expr *L = BE->getLHS()->IgnoreParenCasts();
10195       const Expr *R = BE->getRHS()->IgnoreParenCasts();
10196       // - sizeof(dst) - strlen(dst)
10197       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10198           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10199         PatternType = 1;
10200       // - sizeof(src) - (anything)
10201       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10202         PatternType = 2;
10203     }
10204   }
10205 
10206   if (PatternType == 0)
10207     return;
10208 
10209   // Generate the diagnostic.
10210   SourceLocation SL = LenArg->getBeginLoc();
10211   SourceRange SR = LenArg->getSourceRange();
10212   SourceManager &SM = getSourceManager();
10213 
10214   // If the function is defined as a builtin macro, do not show macro expansion.
10215   if (SM.isMacroArgExpansion(SL)) {
10216     SL = SM.getSpellingLoc(SL);
10217     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10218                      SM.getSpellingLoc(SR.getEnd()));
10219   }
10220 
10221   // Check if the destination is an array (rather than a pointer to an array).
10222   QualType DstTy = DstArg->getType();
10223   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10224                                                                     Context);
10225   if (!isKnownSizeArray) {
10226     if (PatternType == 1)
10227       Diag(SL, diag::warn_strncat_wrong_size) << SR;
10228     else
10229       Diag(SL, diag::warn_strncat_src_size) << SR;
10230     return;
10231   }
10232 
10233   if (PatternType == 1)
10234     Diag(SL, diag::warn_strncat_large_size) << SR;
10235   else
10236     Diag(SL, diag::warn_strncat_src_size) << SR;
10237 
10238   SmallString<128> sizeString;
10239   llvm::raw_svector_ostream OS(sizeString);
10240   OS << "sizeof(";
10241   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10242   OS << ") - ";
10243   OS << "strlen(";
10244   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10245   OS << ") - 1";
10246 
10247   Diag(SL, diag::note_strncat_wrong_size)
10248     << FixItHint::CreateReplacement(SR, OS.str());
10249 }
10250 
10251 namespace {
10252 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10253                                 const UnaryOperator *UnaryExpr,
10254                                 const VarDecl *Var) {
10255   StorageClass Class = Var->getStorageClass();
10256   if (Class == StorageClass::SC_Extern ||
10257       Class == StorageClass::SC_PrivateExtern ||
10258       Var->getType()->isReferenceType())
10259     return;
10260 
10261   S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10262       << CalleeName << Var;
10263 }
10264 
10265 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10266                                 const UnaryOperator *UnaryExpr, const Decl *D) {
10267   if (const auto *Field = dyn_cast<FieldDecl>(D))
10268     S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10269         << CalleeName << Field;
10270 }
10271 
10272 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10273                                  const UnaryOperator *UnaryExpr) {
10274   if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
10275     return;
10276 
10277   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
10278     if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
10279       return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
10280 
10281   if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10282     return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10283                                       Lvalue->getMemberDecl());
10284 }
10285 
10286 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10287                                   const DeclRefExpr *Lvalue) {
10288   if (!Lvalue->getType()->isArrayType())
10289     return;
10290 
10291   const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10292   if (Var == nullptr)
10293     return;
10294 
10295   S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10296       << CalleeName << Var;
10297 }
10298 } // namespace
10299 
10300 /// Alerts the user that they are attempting to free a non-malloc'd object.
10301 void Sema::CheckFreeArguments(const CallExpr *E) {
10302   const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10303   const std::string CalleeName =
10304       dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
10305 
10306   if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10307     return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10308 
10309   if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10310     return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10311 }
10312 
10313 void
10314 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10315                          SourceLocation ReturnLoc,
10316                          bool isObjCMethod,
10317                          const AttrVec *Attrs,
10318                          const FunctionDecl *FD) {
10319   // Check if the return value is null but should not be.
10320   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10321        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10322       CheckNonNullExpr(*this, RetValExp))
10323     Diag(ReturnLoc, diag::warn_null_ret)
10324       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10325 
10326   // C++11 [basic.stc.dynamic.allocation]p4:
10327   //   If an allocation function declared with a non-throwing
10328   //   exception-specification fails to allocate storage, it shall return
10329   //   a null pointer. Any other allocation function that fails to allocate
10330   //   storage shall indicate failure only by throwing an exception [...]
10331   if (FD) {
10332     OverloadedOperatorKind Op = FD->getOverloadedOperator();
10333     if (Op == OO_New || Op == OO_Array_New) {
10334       const FunctionProtoType *Proto
10335         = FD->getType()->castAs<FunctionProtoType>();
10336       if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10337           CheckNonNullExpr(*this, RetValExp))
10338         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10339           << FD << getLangOpts().CPlusPlus11;
10340     }
10341   }
10342 
10343   // PPC MMA non-pointer types are not allowed as return type. Checking the type
10344   // here prevent the user from using a PPC MMA type as trailing return type.
10345   if (Context.getTargetInfo().getTriple().isPPC64())
10346     CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10347 }
10348 
10349 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10350 
10351 /// Check for comparisons of floating point operands using != and ==.
10352 /// Issue a warning if these are no self-comparisons, as they are not likely
10353 /// to do what the programmer intended.
10354 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10355   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10356   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10357 
10358   // Special case: check for x == x (which is OK).
10359   // Do not emit warnings for such cases.
10360   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10361     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10362       if (DRL->getDecl() == DRR->getDecl())
10363         return;
10364 
10365   // Special case: check for comparisons against literals that can be exactly
10366   //  represented by APFloat.  In such cases, do not emit a warning.  This
10367   //  is a heuristic: often comparison against such literals are used to
10368   //  detect if a value in a variable has not changed.  This clearly can
10369   //  lead to false negatives.
10370   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10371     if (FLL->isExact())
10372       return;
10373   } else
10374     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10375       if (FLR->isExact())
10376         return;
10377 
10378   // Check for comparisons with builtin types.
10379   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10380     if (CL->getBuiltinCallee())
10381       return;
10382 
10383   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10384     if (CR->getBuiltinCallee())
10385       return;
10386 
10387   // Emit the diagnostic.
10388   Diag(Loc, diag::warn_floatingpoint_eq)
10389     << LHS->getSourceRange() << RHS->getSourceRange();
10390 }
10391 
10392 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10393 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10394 
10395 namespace {
10396 
10397 /// Structure recording the 'active' range of an integer-valued
10398 /// expression.
10399 struct IntRange {
10400   /// The number of bits active in the int. Note that this includes exactly one
10401   /// sign bit if !NonNegative.
10402   unsigned Width;
10403 
10404   /// True if the int is known not to have negative values. If so, all leading
10405   /// bits before Width are known zero, otherwise they are known to be the
10406   /// same as the MSB within Width.
10407   bool NonNegative;
10408 
10409   IntRange(unsigned Width, bool NonNegative)
10410       : Width(Width), NonNegative(NonNegative) {}
10411 
10412   /// Number of bits excluding the sign bit.
10413   unsigned valueBits() const {
10414     return NonNegative ? Width : Width - 1;
10415   }
10416 
10417   /// Returns the range of the bool type.
10418   static IntRange forBoolType() {
10419     return IntRange(1, true);
10420   }
10421 
10422   /// Returns the range of an opaque value of the given integral type.
10423   static IntRange forValueOfType(ASTContext &C, QualType T) {
10424     return forValueOfCanonicalType(C,
10425                           T->getCanonicalTypeInternal().getTypePtr());
10426   }
10427 
10428   /// Returns the range of an opaque value of a canonical integral type.
10429   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10430     assert(T->isCanonicalUnqualified());
10431 
10432     if (const VectorType *VT = dyn_cast<VectorType>(T))
10433       T = VT->getElementType().getTypePtr();
10434     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10435       T = CT->getElementType().getTypePtr();
10436     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10437       T = AT->getValueType().getTypePtr();
10438 
10439     if (!C.getLangOpts().CPlusPlus) {
10440       // For enum types in C code, use the underlying datatype.
10441       if (const EnumType *ET = dyn_cast<EnumType>(T))
10442         T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10443     } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10444       // For enum types in C++, use the known bit width of the enumerators.
10445       EnumDecl *Enum = ET->getDecl();
10446       // In C++11, enums can have a fixed underlying type. Use this type to
10447       // compute the range.
10448       if (Enum->isFixed()) {
10449         return IntRange(C.getIntWidth(QualType(T, 0)),
10450                         !ET->isSignedIntegerOrEnumerationType());
10451       }
10452 
10453       unsigned NumPositive = Enum->getNumPositiveBits();
10454       unsigned NumNegative = Enum->getNumNegativeBits();
10455 
10456       if (NumNegative == 0)
10457         return IntRange(NumPositive, true/*NonNegative*/);
10458       else
10459         return IntRange(std::max(NumPositive + 1, NumNegative),
10460                         false/*NonNegative*/);
10461     }
10462 
10463     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10464       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10465 
10466     const BuiltinType *BT = cast<BuiltinType>(T);
10467     assert(BT->isInteger());
10468 
10469     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10470   }
10471 
10472   /// Returns the "target" range of a canonical integral type, i.e.
10473   /// the range of values expressible in the type.
10474   ///
10475   /// This matches forValueOfCanonicalType except that enums have the
10476   /// full range of their type, not the range of their enumerators.
10477   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10478     assert(T->isCanonicalUnqualified());
10479 
10480     if (const VectorType *VT = dyn_cast<VectorType>(T))
10481       T = VT->getElementType().getTypePtr();
10482     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10483       T = CT->getElementType().getTypePtr();
10484     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10485       T = AT->getValueType().getTypePtr();
10486     if (const EnumType *ET = dyn_cast<EnumType>(T))
10487       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10488 
10489     if (const auto *EIT = dyn_cast<ExtIntType>(T))
10490       return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10491 
10492     const BuiltinType *BT = cast<BuiltinType>(T);
10493     assert(BT->isInteger());
10494 
10495     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10496   }
10497 
10498   /// Returns the supremum of two ranges: i.e. their conservative merge.
10499   static IntRange join(IntRange L, IntRange R) {
10500     bool Unsigned = L.NonNegative && R.NonNegative;
10501     return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10502                     L.NonNegative && R.NonNegative);
10503   }
10504 
10505   /// Return the range of a bitwise-AND of the two ranges.
10506   static IntRange bit_and(IntRange L, IntRange R) {
10507     unsigned Bits = std::max(L.Width, R.Width);
10508     bool NonNegative = false;
10509     if (L.NonNegative) {
10510       Bits = std::min(Bits, L.Width);
10511       NonNegative = true;
10512     }
10513     if (R.NonNegative) {
10514       Bits = std::min(Bits, R.Width);
10515       NonNegative = true;
10516     }
10517     return IntRange(Bits, NonNegative);
10518   }
10519 
10520   /// Return the range of a sum of the two ranges.
10521   static IntRange sum(IntRange L, IntRange R) {
10522     bool Unsigned = L.NonNegative && R.NonNegative;
10523     return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10524                     Unsigned);
10525   }
10526 
10527   /// Return the range of a difference of the two ranges.
10528   static IntRange difference(IntRange L, IntRange R) {
10529     // We need a 1-bit-wider range if:
10530     //   1) LHS can be negative: least value can be reduced.
10531     //   2) RHS can be negative: greatest value can be increased.
10532     bool CanWiden = !L.NonNegative || !R.NonNegative;
10533     bool Unsigned = L.NonNegative && R.Width == 0;
10534     return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10535                         !Unsigned,
10536                     Unsigned);
10537   }
10538 
10539   /// Return the range of a product of the two ranges.
10540   static IntRange product(IntRange L, IntRange R) {
10541     // If both LHS and RHS can be negative, we can form
10542     //   -2^L * -2^R = 2^(L + R)
10543     // which requires L + R + 1 value bits to represent.
10544     bool CanWiden = !L.NonNegative && !R.NonNegative;
10545     bool Unsigned = L.NonNegative && R.NonNegative;
10546     return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10547                     Unsigned);
10548   }
10549 
10550   /// Return the range of a remainder operation between the two ranges.
10551   static IntRange rem(IntRange L, IntRange R) {
10552     // The result of a remainder can't be larger than the result of
10553     // either side. The sign of the result is the sign of the LHS.
10554     bool Unsigned = L.NonNegative;
10555     return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10556                     Unsigned);
10557   }
10558 };
10559 
10560 } // namespace
10561 
10562 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10563                               unsigned MaxWidth) {
10564   if (value.isSigned() && value.isNegative())
10565     return IntRange(value.getMinSignedBits(), false);
10566 
10567   if (value.getBitWidth() > MaxWidth)
10568     value = value.trunc(MaxWidth);
10569 
10570   // isNonNegative() just checks the sign bit without considering
10571   // signedness.
10572   return IntRange(value.getActiveBits(), true);
10573 }
10574 
10575 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10576                               unsigned MaxWidth) {
10577   if (result.isInt())
10578     return GetValueRange(C, result.getInt(), MaxWidth);
10579 
10580   if (result.isVector()) {
10581     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10582     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10583       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10584       R = IntRange::join(R, El);
10585     }
10586     return R;
10587   }
10588 
10589   if (result.isComplexInt()) {
10590     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10591     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10592     return IntRange::join(R, I);
10593   }
10594 
10595   // This can happen with lossless casts to intptr_t of "based" lvalues.
10596   // Assume it might use arbitrary bits.
10597   // FIXME: The only reason we need to pass the type in here is to get
10598   // the sign right on this one case.  It would be nice if APValue
10599   // preserved this.
10600   assert(result.isLValue() || result.isAddrLabelDiff());
10601   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10602 }
10603 
10604 static QualType GetExprType(const Expr *E) {
10605   QualType Ty = E->getType();
10606   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10607     Ty = AtomicRHS->getValueType();
10608   return Ty;
10609 }
10610 
10611 /// Pseudo-evaluate the given integer expression, estimating the
10612 /// range of values it might take.
10613 ///
10614 /// \param MaxWidth The width to which the value will be truncated.
10615 /// \param Approximate If \c true, return a likely range for the result: in
10616 ///        particular, assume that aritmetic on narrower types doesn't leave
10617 ///        those types. If \c false, return a range including all possible
10618 ///        result values.
10619 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10620                              bool InConstantContext, bool Approximate) {
10621   E = E->IgnoreParens();
10622 
10623   // Try a full evaluation first.
10624   Expr::EvalResult result;
10625   if (E->EvaluateAsRValue(result, C, InConstantContext))
10626     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10627 
10628   // I think we only want to look through implicit casts here; if the
10629   // user has an explicit widening cast, we should treat the value as
10630   // being of the new, wider type.
10631   if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10632     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10633       return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10634                           Approximate);
10635 
10636     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10637 
10638     bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10639                          CE->getCastKind() == CK_BooleanToSignedIntegral;
10640 
10641     // Assume that non-integer casts can span the full range of the type.
10642     if (!isIntegerCast)
10643       return OutputTypeRange;
10644 
10645     IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10646                                      std::min(MaxWidth, OutputTypeRange.Width),
10647                                      InConstantContext, Approximate);
10648 
10649     // Bail out if the subexpr's range is as wide as the cast type.
10650     if (SubRange.Width >= OutputTypeRange.Width)
10651       return OutputTypeRange;
10652 
10653     // Otherwise, we take the smaller width, and we're non-negative if
10654     // either the output type or the subexpr is.
10655     return IntRange(SubRange.Width,
10656                     SubRange.NonNegative || OutputTypeRange.NonNegative);
10657   }
10658 
10659   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10660     // If we can fold the condition, just take that operand.
10661     bool CondResult;
10662     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10663       return GetExprRange(C,
10664                           CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10665                           MaxWidth, InConstantContext, Approximate);
10666 
10667     // Otherwise, conservatively merge.
10668     // GetExprRange requires an integer expression, but a throw expression
10669     // results in a void type.
10670     Expr *E = CO->getTrueExpr();
10671     IntRange L = E->getType()->isVoidType()
10672                      ? IntRange{0, true}
10673                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10674     E = CO->getFalseExpr();
10675     IntRange R = E->getType()->isVoidType()
10676                      ? IntRange{0, true}
10677                      : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10678     return IntRange::join(L, R);
10679   }
10680 
10681   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10682     IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10683 
10684     switch (BO->getOpcode()) {
10685     case BO_Cmp:
10686       llvm_unreachable("builtin <=> should have class type");
10687 
10688     // Boolean-valued operations are single-bit and positive.
10689     case BO_LAnd:
10690     case BO_LOr:
10691     case BO_LT:
10692     case BO_GT:
10693     case BO_LE:
10694     case BO_GE:
10695     case BO_EQ:
10696     case BO_NE:
10697       return IntRange::forBoolType();
10698 
10699     // The type of the assignments is the type of the LHS, so the RHS
10700     // is not necessarily the same type.
10701     case BO_MulAssign:
10702     case BO_DivAssign:
10703     case BO_RemAssign:
10704     case BO_AddAssign:
10705     case BO_SubAssign:
10706     case BO_XorAssign:
10707     case BO_OrAssign:
10708       // TODO: bitfields?
10709       return IntRange::forValueOfType(C, GetExprType(E));
10710 
10711     // Simple assignments just pass through the RHS, which will have
10712     // been coerced to the LHS type.
10713     case BO_Assign:
10714       // TODO: bitfields?
10715       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10716                           Approximate);
10717 
10718     // Operations with opaque sources are black-listed.
10719     case BO_PtrMemD:
10720     case BO_PtrMemI:
10721       return IntRange::forValueOfType(C, GetExprType(E));
10722 
10723     // Bitwise-and uses the *infinum* of the two source ranges.
10724     case BO_And:
10725     case BO_AndAssign:
10726       Combine = IntRange::bit_and;
10727       break;
10728 
10729     // Left shift gets black-listed based on a judgement call.
10730     case BO_Shl:
10731       // ...except that we want to treat '1 << (blah)' as logically
10732       // positive.  It's an important idiom.
10733       if (IntegerLiteral *I
10734             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10735         if (I->getValue() == 1) {
10736           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10737           return IntRange(R.Width, /*NonNegative*/ true);
10738         }
10739       }
10740       LLVM_FALLTHROUGH;
10741 
10742     case BO_ShlAssign:
10743       return IntRange::forValueOfType(C, GetExprType(E));
10744 
10745     // Right shift by a constant can narrow its left argument.
10746     case BO_Shr:
10747     case BO_ShrAssign: {
10748       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10749                                 Approximate);
10750 
10751       // If the shift amount is a positive constant, drop the width by
10752       // that much.
10753       if (Optional<llvm::APSInt> shift =
10754               BO->getRHS()->getIntegerConstantExpr(C)) {
10755         if (shift->isNonNegative()) {
10756           unsigned zext = shift->getZExtValue();
10757           if (zext >= L.Width)
10758             L.Width = (L.NonNegative ? 0 : 1);
10759           else
10760             L.Width -= zext;
10761         }
10762       }
10763 
10764       return L;
10765     }
10766 
10767     // Comma acts as its right operand.
10768     case BO_Comma:
10769       return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10770                           Approximate);
10771 
10772     case BO_Add:
10773       if (!Approximate)
10774         Combine = IntRange::sum;
10775       break;
10776 
10777     case BO_Sub:
10778       if (BO->getLHS()->getType()->isPointerType())
10779         return IntRange::forValueOfType(C, GetExprType(E));
10780       if (!Approximate)
10781         Combine = IntRange::difference;
10782       break;
10783 
10784     case BO_Mul:
10785       if (!Approximate)
10786         Combine = IntRange::product;
10787       break;
10788 
10789     // The width of a division result is mostly determined by the size
10790     // of the LHS.
10791     case BO_Div: {
10792       // Don't 'pre-truncate' the operands.
10793       unsigned opWidth = C.getIntWidth(GetExprType(E));
10794       IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10795                                 Approximate);
10796 
10797       // If the divisor is constant, use that.
10798       if (Optional<llvm::APSInt> divisor =
10799               BO->getRHS()->getIntegerConstantExpr(C)) {
10800         unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10801         if (log2 >= L.Width)
10802           L.Width = (L.NonNegative ? 0 : 1);
10803         else
10804           L.Width = std::min(L.Width - log2, MaxWidth);
10805         return L;
10806       }
10807 
10808       // Otherwise, just use the LHS's width.
10809       // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10810       // could be -1.
10811       IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10812                                 Approximate);
10813       return IntRange(L.Width, L.NonNegative && R.NonNegative);
10814     }
10815 
10816     case BO_Rem:
10817       Combine = IntRange::rem;
10818       break;
10819 
10820     // The default behavior is okay for these.
10821     case BO_Xor:
10822     case BO_Or:
10823       break;
10824     }
10825 
10826     // Combine the two ranges, but limit the result to the type in which we
10827     // performed the computation.
10828     QualType T = GetExprType(E);
10829     unsigned opWidth = C.getIntWidth(T);
10830     IntRange L =
10831         GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10832     IntRange R =
10833         GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10834     IntRange C = Combine(L, R);
10835     C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10836     C.Width = std::min(C.Width, MaxWidth);
10837     return C;
10838   }
10839 
10840   if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10841     switch (UO->getOpcode()) {
10842     // Boolean-valued operations are white-listed.
10843     case UO_LNot:
10844       return IntRange::forBoolType();
10845 
10846     // Operations with opaque sources are black-listed.
10847     case UO_Deref:
10848     case UO_AddrOf: // should be impossible
10849       return IntRange::forValueOfType(C, GetExprType(E));
10850 
10851     default:
10852       return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10853                           Approximate);
10854     }
10855   }
10856 
10857   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10858     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10859                         Approximate);
10860 
10861   if (const auto *BitField = E->getSourceBitField())
10862     return IntRange(BitField->getBitWidthValue(C),
10863                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
10864 
10865   return IntRange::forValueOfType(C, GetExprType(E));
10866 }
10867 
10868 static IntRange GetExprRange(ASTContext &C, const Expr *E,
10869                              bool InConstantContext, bool Approximate) {
10870   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10871                       Approximate);
10872 }
10873 
10874 /// Checks whether the given value, which currently has the given
10875 /// source semantics, has the same value when coerced through the
10876 /// target semantics.
10877 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10878                                  const llvm::fltSemantics &Src,
10879                                  const llvm::fltSemantics &Tgt) {
10880   llvm::APFloat truncated = value;
10881 
10882   bool ignored;
10883   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10884   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10885 
10886   return truncated.bitwiseIsEqual(value);
10887 }
10888 
10889 /// Checks whether the given value, which currently has the given
10890 /// source semantics, has the same value when coerced through the
10891 /// target semantics.
10892 ///
10893 /// The value might be a vector of floats (or a complex number).
10894 static bool IsSameFloatAfterCast(const APValue &value,
10895                                  const llvm::fltSemantics &Src,
10896                                  const llvm::fltSemantics &Tgt) {
10897   if (value.isFloat())
10898     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10899 
10900   if (value.isVector()) {
10901     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10902       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10903         return false;
10904     return true;
10905   }
10906 
10907   assert(value.isComplexFloat());
10908   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10909           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10910 }
10911 
10912 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10913                                        bool IsListInit = false);
10914 
10915 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10916   // Suppress cases where we are comparing against an enum constant.
10917   if (const DeclRefExpr *DR =
10918       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10919     if (isa<EnumConstantDecl>(DR->getDecl()))
10920       return true;
10921 
10922   // Suppress cases where the value is expanded from a macro, unless that macro
10923   // is how a language represents a boolean literal. This is the case in both C
10924   // and Objective-C.
10925   SourceLocation BeginLoc = E->getBeginLoc();
10926   if (BeginLoc.isMacroID()) {
10927     StringRef MacroName = Lexer::getImmediateMacroName(
10928         BeginLoc, S.getSourceManager(), S.getLangOpts());
10929     return MacroName != "YES" && MacroName != "NO" &&
10930            MacroName != "true" && MacroName != "false";
10931   }
10932 
10933   return false;
10934 }
10935 
10936 static bool isKnownToHaveUnsignedValue(Expr *E) {
10937   return E->getType()->isIntegerType() &&
10938          (!E->getType()->isSignedIntegerType() ||
10939           !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10940 }
10941 
10942 namespace {
10943 /// The promoted range of values of a type. In general this has the
10944 /// following structure:
10945 ///
10946 ///     |-----------| . . . |-----------|
10947 ///     ^           ^       ^           ^
10948 ///    Min       HoleMin  HoleMax      Max
10949 ///
10950 /// ... where there is only a hole if a signed type is promoted to unsigned
10951 /// (in which case Min and Max are the smallest and largest representable
10952 /// values).
10953 struct PromotedRange {
10954   // Min, or HoleMax if there is a hole.
10955   llvm::APSInt PromotedMin;
10956   // Max, or HoleMin if there is a hole.
10957   llvm::APSInt PromotedMax;
10958 
10959   PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10960     if (R.Width == 0)
10961       PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10962     else if (R.Width >= BitWidth && !Unsigned) {
10963       // Promotion made the type *narrower*. This happens when promoting
10964       // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10965       // Treat all values of 'signed int' as being in range for now.
10966       PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10967       PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10968     } else {
10969       PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10970                         .extOrTrunc(BitWidth);
10971       PromotedMin.setIsUnsigned(Unsigned);
10972 
10973       PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10974                         .extOrTrunc(BitWidth);
10975       PromotedMax.setIsUnsigned(Unsigned);
10976     }
10977   }
10978 
10979   // Determine whether this range is contiguous (has no hole).
10980   bool isContiguous() const { return PromotedMin <= PromotedMax; }
10981 
10982   // Where a constant value is within the range.
10983   enum ComparisonResult {
10984     LT = 0x1,
10985     LE = 0x2,
10986     GT = 0x4,
10987     GE = 0x8,
10988     EQ = 0x10,
10989     NE = 0x20,
10990     InRangeFlag = 0x40,
10991 
10992     Less = LE | LT | NE,
10993     Min = LE | InRangeFlag,
10994     InRange = InRangeFlag,
10995     Max = GE | InRangeFlag,
10996     Greater = GE | GT | NE,
10997 
10998     OnlyValue = LE | GE | EQ | InRangeFlag,
10999     InHole = NE
11000   };
11001 
11002   ComparisonResult compare(const llvm::APSInt &Value) const {
11003     assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
11004            Value.isUnsigned() == PromotedMin.isUnsigned());
11005     if (!isContiguous()) {
11006       assert(Value.isUnsigned() && "discontiguous range for signed compare");
11007       if (Value.isMinValue()) return Min;
11008       if (Value.isMaxValue()) return Max;
11009       if (Value >= PromotedMin) return InRange;
11010       if (Value <= PromotedMax) return InRange;
11011       return InHole;
11012     }
11013 
11014     switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11015     case -1: return Less;
11016     case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11017     case 1:
11018       switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11019       case -1: return InRange;
11020       case 0: return Max;
11021       case 1: return Greater;
11022       }
11023     }
11024 
11025     llvm_unreachable("impossible compare result");
11026   }
11027 
11028   static llvm::Optional<StringRef>
11029   constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11030     if (Op == BO_Cmp) {
11031       ComparisonResult LTFlag = LT, GTFlag = GT;
11032       if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11033 
11034       if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11035       if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11036       if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11037       return llvm::None;
11038     }
11039 
11040     ComparisonResult TrueFlag, FalseFlag;
11041     if (Op == BO_EQ) {
11042       TrueFlag = EQ;
11043       FalseFlag = NE;
11044     } else if (Op == BO_NE) {
11045       TrueFlag = NE;
11046       FalseFlag = EQ;
11047     } else {
11048       if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11049         TrueFlag = LT;
11050         FalseFlag = GE;
11051       } else {
11052         TrueFlag = GT;
11053         FalseFlag = LE;
11054       }
11055       if (Op == BO_GE || Op == BO_LE)
11056         std::swap(TrueFlag, FalseFlag);
11057     }
11058     if (R & TrueFlag)
11059       return StringRef("true");
11060     if (R & FalseFlag)
11061       return StringRef("false");
11062     return llvm::None;
11063   }
11064 };
11065 }
11066 
11067 static bool HasEnumType(Expr *E) {
11068   // Strip off implicit integral promotions.
11069   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11070     if (ICE->getCastKind() != CK_IntegralCast &&
11071         ICE->getCastKind() != CK_NoOp)
11072       break;
11073     E = ICE->getSubExpr();
11074   }
11075 
11076   return E->getType()->isEnumeralType();
11077 }
11078 
11079 static int classifyConstantValue(Expr *Constant) {
11080   // The values of this enumeration are used in the diagnostics
11081   // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11082   enum ConstantValueKind {
11083     Miscellaneous = 0,
11084     LiteralTrue,
11085     LiteralFalse
11086   };
11087   if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11088     return BL->getValue() ? ConstantValueKind::LiteralTrue
11089                           : ConstantValueKind::LiteralFalse;
11090   return ConstantValueKind::Miscellaneous;
11091 }
11092 
11093 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11094                                         Expr *Constant, Expr *Other,
11095                                         const llvm::APSInt &Value,
11096                                         bool RhsConstant) {
11097   if (S.inTemplateInstantiation())
11098     return false;
11099 
11100   Expr *OriginalOther = Other;
11101 
11102   Constant = Constant->IgnoreParenImpCasts();
11103   Other = Other->IgnoreParenImpCasts();
11104 
11105   // Suppress warnings on tautological comparisons between values of the same
11106   // enumeration type. There are only two ways we could warn on this:
11107   //  - If the constant is outside the range of representable values of
11108   //    the enumeration. In such a case, we should warn about the cast
11109   //    to enumeration type, not about the comparison.
11110   //  - If the constant is the maximum / minimum in-range value. For an
11111   //    enumeratin type, such comparisons can be meaningful and useful.
11112   if (Constant->getType()->isEnumeralType() &&
11113       S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11114     return false;
11115 
11116   IntRange OtherValueRange = GetExprRange(
11117       S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11118 
11119   QualType OtherT = Other->getType();
11120   if (const auto *AT = OtherT->getAs<AtomicType>())
11121     OtherT = AT->getValueType();
11122   IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11123 
11124   // Special case for ObjC BOOL on targets where its a typedef for a signed char
11125   // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11126   bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11127                               S.NSAPIObj->isObjCBOOLType(OtherT) &&
11128                               OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11129 
11130   // Whether we're treating Other as being a bool because of the form of
11131   // expression despite it having another type (typically 'int' in C).
11132   bool OtherIsBooleanDespiteType =
11133       !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11134   if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11135     OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11136 
11137   // Check if all values in the range of possible values of this expression
11138   // lead to the same comparison outcome.
11139   PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11140                                         Value.isUnsigned());
11141   auto Cmp = OtherPromotedValueRange.compare(Value);
11142   auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11143   if (!Result)
11144     return false;
11145 
11146   // Also consider the range determined by the type alone. This allows us to
11147   // classify the warning under the proper diagnostic group.
11148   bool TautologicalTypeCompare = false;
11149   {
11150     PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11151                                          Value.isUnsigned());
11152     auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11153     if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11154                                                        RhsConstant)) {
11155       TautologicalTypeCompare = true;
11156       Cmp = TypeCmp;
11157       Result = TypeResult;
11158     }
11159   }
11160 
11161   // Don't warn if the non-constant operand actually always evaluates to the
11162   // same value.
11163   if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11164     return false;
11165 
11166   // Suppress the diagnostic for an in-range comparison if the constant comes
11167   // from a macro or enumerator. We don't want to diagnose
11168   //
11169   //   some_long_value <= INT_MAX
11170   //
11171   // when sizeof(int) == sizeof(long).
11172   bool InRange = Cmp & PromotedRange::InRangeFlag;
11173   if (InRange && IsEnumConstOrFromMacro(S, Constant))
11174     return false;
11175 
11176   // A comparison of an unsigned bit-field against 0 is really a type problem,
11177   // even though at the type level the bit-field might promote to 'signed int'.
11178   if (Other->refersToBitField() && InRange && Value == 0 &&
11179       Other->getType()->isUnsignedIntegerOrEnumerationType())
11180     TautologicalTypeCompare = true;
11181 
11182   // If this is a comparison to an enum constant, include that
11183   // constant in the diagnostic.
11184   const EnumConstantDecl *ED = nullptr;
11185   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11186     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11187 
11188   // Should be enough for uint128 (39 decimal digits)
11189   SmallString<64> PrettySourceValue;
11190   llvm::raw_svector_ostream OS(PrettySourceValue);
11191   if (ED) {
11192     OS << '\'' << *ED << "' (" << Value << ")";
11193   } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11194                Constant->IgnoreParenImpCasts())) {
11195     OS << (BL->getValue() ? "YES" : "NO");
11196   } else {
11197     OS << Value;
11198   }
11199 
11200   if (!TautologicalTypeCompare) {
11201     S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11202         << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11203         << E->getOpcodeStr() << OS.str() << *Result
11204         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11205     return true;
11206   }
11207 
11208   if (IsObjCSignedCharBool) {
11209     S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11210                           S.PDiag(diag::warn_tautological_compare_objc_bool)
11211                               << OS.str() << *Result);
11212     return true;
11213   }
11214 
11215   // FIXME: We use a somewhat different formatting for the in-range cases and
11216   // cases involving boolean values for historical reasons. We should pick a
11217   // consistent way of presenting these diagnostics.
11218   if (!InRange || Other->isKnownToHaveBooleanValue()) {
11219 
11220     S.DiagRuntimeBehavior(
11221         E->getOperatorLoc(), E,
11222         S.PDiag(!InRange ? diag::warn_out_of_range_compare
11223                          : diag::warn_tautological_bool_compare)
11224             << OS.str() << classifyConstantValue(Constant) << OtherT
11225             << OtherIsBooleanDespiteType << *Result
11226             << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11227   } else {
11228     unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11229                         ? (HasEnumType(OriginalOther)
11230                                ? diag::warn_unsigned_enum_always_true_comparison
11231                                : diag::warn_unsigned_always_true_comparison)
11232                         : diag::warn_tautological_constant_compare;
11233 
11234     S.Diag(E->getOperatorLoc(), Diag)
11235         << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11236         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11237   }
11238 
11239   return true;
11240 }
11241 
11242 /// Analyze the operands of the given comparison.  Implements the
11243 /// fallback case from AnalyzeComparison.
11244 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11245   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11246   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11247 }
11248 
11249 /// Implements -Wsign-compare.
11250 ///
11251 /// \param E the binary operator to check for warnings
11252 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11253   // The type the comparison is being performed in.
11254   QualType T = E->getLHS()->getType();
11255 
11256   // Only analyze comparison operators where both sides have been converted to
11257   // the same type.
11258   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11259     return AnalyzeImpConvsInComparison(S, E);
11260 
11261   // Don't analyze value-dependent comparisons directly.
11262   if (E->isValueDependent())
11263     return AnalyzeImpConvsInComparison(S, E);
11264 
11265   Expr *LHS = E->getLHS();
11266   Expr *RHS = E->getRHS();
11267 
11268   if (T->isIntegralType(S.Context)) {
11269     Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11270     Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11271 
11272     // We don't care about expressions whose result is a constant.
11273     if (RHSValue && LHSValue)
11274       return AnalyzeImpConvsInComparison(S, E);
11275 
11276     // We only care about expressions where just one side is literal
11277     if ((bool)RHSValue ^ (bool)LHSValue) {
11278       // Is the constant on the RHS or LHS?
11279       const bool RhsConstant = (bool)RHSValue;
11280       Expr *Const = RhsConstant ? RHS : LHS;
11281       Expr *Other = RhsConstant ? LHS : RHS;
11282       const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11283 
11284       // Check whether an integer constant comparison results in a value
11285       // of 'true' or 'false'.
11286       if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11287         return AnalyzeImpConvsInComparison(S, E);
11288     }
11289   }
11290 
11291   if (!T->hasUnsignedIntegerRepresentation()) {
11292     // We don't do anything special if this isn't an unsigned integral
11293     // comparison:  we're only interested in integral comparisons, and
11294     // signed comparisons only happen in cases we don't care to warn about.
11295     return AnalyzeImpConvsInComparison(S, E);
11296   }
11297 
11298   LHS = LHS->IgnoreParenImpCasts();
11299   RHS = RHS->IgnoreParenImpCasts();
11300 
11301   if (!S.getLangOpts().CPlusPlus) {
11302     // Avoid warning about comparison of integers with different signs when
11303     // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11304     // the type of `E`.
11305     if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11306       LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11307     if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11308       RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11309   }
11310 
11311   // Check to see if one of the (unmodified) operands is of different
11312   // signedness.
11313   Expr *signedOperand, *unsignedOperand;
11314   if (LHS->getType()->hasSignedIntegerRepresentation()) {
11315     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
11316            "unsigned comparison between two signed integer expressions?");
11317     signedOperand = LHS;
11318     unsignedOperand = RHS;
11319   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11320     signedOperand = RHS;
11321     unsignedOperand = LHS;
11322   } else {
11323     return AnalyzeImpConvsInComparison(S, E);
11324   }
11325 
11326   // Otherwise, calculate the effective range of the signed operand.
11327   IntRange signedRange = GetExprRange(
11328       S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11329 
11330   // Go ahead and analyze implicit conversions in the operands.  Note
11331   // that we skip the implicit conversions on both sides.
11332   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11333   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11334 
11335   // If the signed range is non-negative, -Wsign-compare won't fire.
11336   if (signedRange.NonNegative)
11337     return;
11338 
11339   // For (in)equality comparisons, if the unsigned operand is a
11340   // constant which cannot collide with a overflowed signed operand,
11341   // then reinterpreting the signed operand as unsigned will not
11342   // change the result of the comparison.
11343   if (E->isEqualityOp()) {
11344     unsigned comparisonWidth = S.Context.getIntWidth(T);
11345     IntRange unsignedRange =
11346         GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11347                      /*Approximate*/ true);
11348 
11349     // We should never be unable to prove that the unsigned operand is
11350     // non-negative.
11351     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
11352 
11353     if (unsignedRange.Width < comparisonWidth)
11354       return;
11355   }
11356 
11357   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11358                         S.PDiag(diag::warn_mixed_sign_comparison)
11359                             << LHS->getType() << RHS->getType()
11360                             << LHS->getSourceRange() << RHS->getSourceRange());
11361 }
11362 
11363 /// Analyzes an attempt to assign the given value to a bitfield.
11364 ///
11365 /// Returns true if there was something fishy about the attempt.
11366 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11367                                       SourceLocation InitLoc) {
11368   assert(Bitfield->isBitField());
11369   if (Bitfield->isInvalidDecl())
11370     return false;
11371 
11372   // White-list bool bitfields.
11373   QualType BitfieldType = Bitfield->getType();
11374   if (BitfieldType->isBooleanType())
11375      return false;
11376 
11377   if (BitfieldType->isEnumeralType()) {
11378     EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11379     // If the underlying enum type was not explicitly specified as an unsigned
11380     // type and the enum contain only positive values, MSVC++ will cause an
11381     // inconsistency by storing this as a signed type.
11382     if (S.getLangOpts().CPlusPlus11 &&
11383         !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11384         BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11385         BitfieldEnumDecl->getNumNegativeBits() == 0) {
11386       S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11387           << BitfieldEnumDecl;
11388     }
11389   }
11390 
11391   if (Bitfield->getType()->isBooleanType())
11392     return false;
11393 
11394   // Ignore value- or type-dependent expressions.
11395   if (Bitfield->getBitWidth()->isValueDependent() ||
11396       Bitfield->getBitWidth()->isTypeDependent() ||
11397       Init->isValueDependent() ||
11398       Init->isTypeDependent())
11399     return false;
11400 
11401   Expr *OriginalInit = Init->IgnoreParenImpCasts();
11402   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11403 
11404   Expr::EvalResult Result;
11405   if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11406                                    Expr::SE_AllowSideEffects)) {
11407     // The RHS is not constant.  If the RHS has an enum type, make sure the
11408     // bitfield is wide enough to hold all the values of the enum without
11409     // truncation.
11410     if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11411       EnumDecl *ED = EnumTy->getDecl();
11412       bool SignedBitfield = BitfieldType->isSignedIntegerType();
11413 
11414       // Enum types are implicitly signed on Windows, so check if there are any
11415       // negative enumerators to see if the enum was intended to be signed or
11416       // not.
11417       bool SignedEnum = ED->getNumNegativeBits() > 0;
11418 
11419       // Check for surprising sign changes when assigning enum values to a
11420       // bitfield of different signedness.  If the bitfield is signed and we
11421       // have exactly the right number of bits to store this unsigned enum,
11422       // suggest changing the enum to an unsigned type. This typically happens
11423       // on Windows where unfixed enums always use an underlying type of 'int'.
11424       unsigned DiagID = 0;
11425       if (SignedEnum && !SignedBitfield) {
11426         DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11427       } else if (SignedBitfield && !SignedEnum &&
11428                  ED->getNumPositiveBits() == FieldWidth) {
11429         DiagID = diag::warn_signed_bitfield_enum_conversion;
11430       }
11431 
11432       if (DiagID) {
11433         S.Diag(InitLoc, DiagID) << Bitfield << ED;
11434         TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11435         SourceRange TypeRange =
11436             TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11437         S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11438             << SignedEnum << TypeRange;
11439       }
11440 
11441       // Compute the required bitwidth. If the enum has negative values, we need
11442       // one more bit than the normal number of positive bits to represent the
11443       // sign bit.
11444       unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11445                                                   ED->getNumNegativeBits())
11446                                        : ED->getNumPositiveBits();
11447 
11448       // Check the bitwidth.
11449       if (BitsNeeded > FieldWidth) {
11450         Expr *WidthExpr = Bitfield->getBitWidth();
11451         S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11452             << Bitfield << ED;
11453         S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11454             << BitsNeeded << ED << WidthExpr->getSourceRange();
11455       }
11456     }
11457 
11458     return false;
11459   }
11460 
11461   llvm::APSInt Value = Result.Val.getInt();
11462 
11463   unsigned OriginalWidth = Value.getBitWidth();
11464 
11465   if (!Value.isSigned() || Value.isNegative())
11466     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11467       if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11468         OriginalWidth = Value.getMinSignedBits();
11469 
11470   if (OriginalWidth <= FieldWidth)
11471     return false;
11472 
11473   // Compute the value which the bitfield will contain.
11474   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11475   TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11476 
11477   // Check whether the stored value is equal to the original value.
11478   TruncatedValue = TruncatedValue.extend(OriginalWidth);
11479   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11480     return false;
11481 
11482   // Special-case bitfields of width 1: booleans are naturally 0/1, and
11483   // therefore don't strictly fit into a signed bitfield of width 1.
11484   if (FieldWidth == 1 && Value == 1)
11485     return false;
11486 
11487   std::string PrettyValue = Value.toString(10);
11488   std::string PrettyTrunc = TruncatedValue.toString(10);
11489 
11490   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11491     << PrettyValue << PrettyTrunc << OriginalInit->getType()
11492     << Init->getSourceRange();
11493 
11494   return true;
11495 }
11496 
11497 /// Analyze the given simple or compound assignment for warning-worthy
11498 /// operations.
11499 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11500   // Just recurse on the LHS.
11501   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11502 
11503   // We want to recurse on the RHS as normal unless we're assigning to
11504   // a bitfield.
11505   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11506     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11507                                   E->getOperatorLoc())) {
11508       // Recurse, ignoring any implicit conversions on the RHS.
11509       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11510                                         E->getOperatorLoc());
11511     }
11512   }
11513 
11514   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11515 
11516   // Diagnose implicitly sequentially-consistent atomic assignment.
11517   if (E->getLHS()->getType()->isAtomicType())
11518     S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11519 }
11520 
11521 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11522 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11523                             SourceLocation CContext, unsigned diag,
11524                             bool pruneControlFlow = false) {
11525   if (pruneControlFlow) {
11526     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11527                           S.PDiag(diag)
11528                               << SourceType << T << E->getSourceRange()
11529                               << SourceRange(CContext));
11530     return;
11531   }
11532   S.Diag(E->getExprLoc(), diag)
11533     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11534 }
11535 
11536 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
11537 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11538                             SourceLocation CContext,
11539                             unsigned diag, bool pruneControlFlow = false) {
11540   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11541 }
11542 
11543 static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11544   return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11545       S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11546 }
11547 
11548 static void adornObjCBoolConversionDiagWithTernaryFixit(
11549     Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11550   Expr *Ignored = SourceExpr->IgnoreImplicit();
11551   if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11552     Ignored = OVE->getSourceExpr();
11553   bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11554                      isa<BinaryOperator>(Ignored) ||
11555                      isa<CXXOperatorCallExpr>(Ignored);
11556   SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11557   if (NeedsParens)
11558     Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11559             << FixItHint::CreateInsertion(EndLoc, ")");
11560   Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11561 }
11562 
11563 /// Diagnose an implicit cast from a floating point value to an integer value.
11564 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11565                                     SourceLocation CContext) {
11566   const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11567   const bool PruneWarnings = S.inTemplateInstantiation();
11568 
11569   Expr *InnerE = E->IgnoreParenImpCasts();
11570   // We also want to warn on, e.g., "int i = -1.234"
11571   if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11572     if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11573       InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11574 
11575   const bool IsLiteral =
11576       isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11577 
11578   llvm::APFloat Value(0.0);
11579   bool IsConstant =
11580     E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11581   if (!IsConstant) {
11582     if (isObjCSignedCharBool(S, T)) {
11583       return adornObjCBoolConversionDiagWithTernaryFixit(
11584           S, E,
11585           S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11586               << E->getType());
11587     }
11588 
11589     return DiagnoseImpCast(S, E, T, CContext,
11590                            diag::warn_impcast_float_integer, PruneWarnings);
11591   }
11592 
11593   bool isExact = false;
11594 
11595   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11596                             T->hasUnsignedIntegerRepresentation());
11597   llvm::APFloat::opStatus Result = Value.convertToInteger(
11598       IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11599 
11600   // FIXME: Force the precision of the source value down so we don't print
11601   // digits which are usually useless (we don't really care here if we
11602   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
11603   // would automatically print the shortest representation, but it's a bit
11604   // tricky to implement.
11605   SmallString<16> PrettySourceValue;
11606   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11607   precision = (precision * 59 + 195) / 196;
11608   Value.toString(PrettySourceValue, precision);
11609 
11610   if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11611     return adornObjCBoolConversionDiagWithTernaryFixit(
11612         S, E,
11613         S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11614             << PrettySourceValue);
11615   }
11616 
11617   if (Result == llvm::APFloat::opOK && isExact) {
11618     if (IsLiteral) return;
11619     return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11620                            PruneWarnings);
11621   }
11622 
11623   // Conversion of a floating-point value to a non-bool integer where the
11624   // integral part cannot be represented by the integer type is undefined.
11625   if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11626     return DiagnoseImpCast(
11627         S, E, T, CContext,
11628         IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11629                   : diag::warn_impcast_float_to_integer_out_of_range,
11630         PruneWarnings);
11631 
11632   unsigned DiagID = 0;
11633   if (IsLiteral) {
11634     // Warn on floating point literal to integer.
11635     DiagID = diag::warn_impcast_literal_float_to_integer;
11636   } else if (IntegerValue == 0) {
11637     if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
11638       return DiagnoseImpCast(S, E, T, CContext,
11639                              diag::warn_impcast_float_integer, PruneWarnings);
11640     }
11641     // Warn on non-zero to zero conversion.
11642     DiagID = diag::warn_impcast_float_to_integer_zero;
11643   } else {
11644     if (IntegerValue.isUnsigned()) {
11645       if (!IntegerValue.isMaxValue()) {
11646         return DiagnoseImpCast(S, E, T, CContext,
11647                                diag::warn_impcast_float_integer, PruneWarnings);
11648       }
11649     } else {  // IntegerValue.isSigned()
11650       if (!IntegerValue.isMaxSignedValue() &&
11651           !IntegerValue.isMinSignedValue()) {
11652         return DiagnoseImpCast(S, E, T, CContext,
11653                                diag::warn_impcast_float_integer, PruneWarnings);
11654       }
11655     }
11656     // Warn on evaluatable floating point expression to integer conversion.
11657     DiagID = diag::warn_impcast_float_to_integer;
11658   }
11659 
11660   SmallString<16> PrettyTargetValue;
11661   if (IsBool)
11662     PrettyTargetValue = Value.isZero() ? "false" : "true";
11663   else
11664     IntegerValue.toString(PrettyTargetValue);
11665 
11666   if (PruneWarnings) {
11667     S.DiagRuntimeBehavior(E->getExprLoc(), E,
11668                           S.PDiag(DiagID)
11669                               << E->getType() << T.getUnqualifiedType()
11670                               << PrettySourceValue << PrettyTargetValue
11671                               << E->getSourceRange() << SourceRange(CContext));
11672   } else {
11673     S.Diag(E->getExprLoc(), DiagID)
11674         << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11675         << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11676   }
11677 }
11678 
11679 /// Analyze the given compound assignment for the possible losing of
11680 /// floating-point precision.
11681 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11682   assert(isa<CompoundAssignOperator>(E) &&
11683          "Must be compound assignment operation");
11684   // Recurse on the LHS and RHS in here
11685   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11686   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11687 
11688   if (E->getLHS()->getType()->isAtomicType())
11689     S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11690 
11691   // Now check the outermost expression
11692   const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11693   const auto *RBT = cast<CompoundAssignOperator>(E)
11694                         ->getComputationResultType()
11695                         ->getAs<BuiltinType>();
11696 
11697   // The below checks assume source is floating point.
11698   if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11699 
11700   // If source is floating point but target is an integer.
11701   if (ResultBT->isInteger())
11702     return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11703                            E->getExprLoc(), diag::warn_impcast_float_integer);
11704 
11705   if (!ResultBT->isFloatingPoint())
11706     return;
11707 
11708   // If both source and target are floating points, warn about losing precision.
11709   int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11710       QualType(ResultBT, 0), QualType(RBT, 0));
11711   if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11712     // warn about dropping FP rank.
11713     DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11714                     diag::warn_impcast_float_result_precision);
11715 }
11716 
11717 static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11718                                       IntRange Range) {
11719   if (!Range.Width) return "0";
11720 
11721   llvm::APSInt ValueInRange = Value;
11722   ValueInRange.setIsSigned(!Range.NonNegative);
11723   ValueInRange = ValueInRange.trunc(Range.Width);
11724   return ValueInRange.toString(10);
11725 }
11726 
11727 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11728   if (!isa<ImplicitCastExpr>(Ex))
11729     return false;
11730 
11731   Expr *InnerE = Ex->IgnoreParenImpCasts();
11732   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11733   const Type *Source =
11734     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11735   if (Target->isDependentType())
11736     return false;
11737 
11738   const BuiltinType *FloatCandidateBT =
11739     dyn_cast<BuiltinType>(ToBool ? Source : Target);
11740   const Type *BoolCandidateType = ToBool ? Target : Source;
11741 
11742   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11743           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11744 }
11745 
11746 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11747                                              SourceLocation CC) {
11748   unsigned NumArgs = TheCall->getNumArgs();
11749   for (unsigned i = 0; i < NumArgs; ++i) {
11750     Expr *CurrA = TheCall->getArg(i);
11751     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11752       continue;
11753 
11754     bool IsSwapped = ((i > 0) &&
11755         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11756     IsSwapped |= ((i < (NumArgs - 1)) &&
11757         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11758     if (IsSwapped) {
11759       // Warn on this floating-point to bool conversion.
11760       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11761                       CurrA->getType(), CC,
11762                       diag::warn_impcast_floating_point_to_bool);
11763     }
11764   }
11765 }
11766 
11767 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11768                                    SourceLocation CC) {
11769   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11770                         E->getExprLoc()))
11771     return;
11772 
11773   // Don't warn on functions which have return type nullptr_t.
11774   if (isa<CallExpr>(E))
11775     return;
11776 
11777   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11778   const Expr::NullPointerConstantKind NullKind =
11779       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11780   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11781     return;
11782 
11783   // Return if target type is a safe conversion.
11784   if (T->isAnyPointerType() || T->isBlockPointerType() ||
11785       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11786     return;
11787 
11788   SourceLocation Loc = E->getSourceRange().getBegin();
11789 
11790   // Venture through the macro stacks to get to the source of macro arguments.
11791   // The new location is a better location than the complete location that was
11792   // passed in.
11793   Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11794   CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11795 
11796   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
11797   if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11798     StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11799         Loc, S.SourceMgr, S.getLangOpts());
11800     if (MacroName == "NULL")
11801       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11802   }
11803 
11804   // Only warn if the null and context location are in the same macro expansion.
11805   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11806     return;
11807 
11808   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11809       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11810       << FixItHint::CreateReplacement(Loc,
11811                                       S.getFixItZeroLiteralForType(T, Loc));
11812 }
11813 
11814 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11815                                   ObjCArrayLiteral *ArrayLiteral);
11816 
11817 static void
11818 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11819                            ObjCDictionaryLiteral *DictionaryLiteral);
11820 
11821 /// Check a single element within a collection literal against the
11822 /// target element type.
11823 static void checkObjCCollectionLiteralElement(Sema &S,
11824                                               QualType TargetElementType,
11825                                               Expr *Element,
11826                                               unsigned ElementKind) {
11827   // Skip a bitcast to 'id' or qualified 'id'.
11828   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11829     if (ICE->getCastKind() == CK_BitCast &&
11830         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11831       Element = ICE->getSubExpr();
11832   }
11833 
11834   QualType ElementType = Element->getType();
11835   ExprResult ElementResult(Element);
11836   if (ElementType->getAs<ObjCObjectPointerType>() &&
11837       S.CheckSingleAssignmentConstraints(TargetElementType,
11838                                          ElementResult,
11839                                          false, false)
11840         != Sema::Compatible) {
11841     S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11842         << ElementType << ElementKind << TargetElementType
11843         << Element->getSourceRange();
11844   }
11845 
11846   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11847     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11848   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11849     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11850 }
11851 
11852 /// Check an Objective-C array literal being converted to the given
11853 /// target type.
11854 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11855                                   ObjCArrayLiteral *ArrayLiteral) {
11856   if (!S.NSArrayDecl)
11857     return;
11858 
11859   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11860   if (!TargetObjCPtr)
11861     return;
11862 
11863   if (TargetObjCPtr->isUnspecialized() ||
11864       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11865         != S.NSArrayDecl->getCanonicalDecl())
11866     return;
11867 
11868   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11869   if (TypeArgs.size() != 1)
11870     return;
11871 
11872   QualType TargetElementType = TypeArgs[0];
11873   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11874     checkObjCCollectionLiteralElement(S, TargetElementType,
11875                                       ArrayLiteral->getElement(I),
11876                                       0);
11877   }
11878 }
11879 
11880 /// Check an Objective-C dictionary literal being converted to the given
11881 /// target type.
11882 static void
11883 checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11884                            ObjCDictionaryLiteral *DictionaryLiteral) {
11885   if (!S.NSDictionaryDecl)
11886     return;
11887 
11888   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11889   if (!TargetObjCPtr)
11890     return;
11891 
11892   if (TargetObjCPtr->isUnspecialized() ||
11893       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11894         != S.NSDictionaryDecl->getCanonicalDecl())
11895     return;
11896 
11897   auto TypeArgs = TargetObjCPtr->getTypeArgs();
11898   if (TypeArgs.size() != 2)
11899     return;
11900 
11901   QualType TargetKeyType = TypeArgs[0];
11902   QualType TargetObjectType = TypeArgs[1];
11903   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11904     auto Element = DictionaryLiteral->getKeyValueElement(I);
11905     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11906     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11907   }
11908 }
11909 
11910 // Helper function to filter out cases for constant width constant conversion.
11911 // Don't warn on char array initialization or for non-decimal values.
11912 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11913                                           SourceLocation CC) {
11914   // If initializing from a constant, and the constant starts with '0',
11915   // then it is a binary, octal, or hexadecimal.  Allow these constants
11916   // to fill all the bits, even if there is a sign change.
11917   if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11918     const char FirstLiteralCharacter =
11919         S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11920     if (FirstLiteralCharacter == '0')
11921       return false;
11922   }
11923 
11924   // If the CC location points to a '{', and the type is char, then assume
11925   // assume it is an array initialization.
11926   if (CC.isValid() && T->isCharType()) {
11927     const char FirstContextCharacter =
11928         S.getSourceManager().getCharacterData(CC)[0];
11929     if (FirstContextCharacter == '{')
11930       return false;
11931   }
11932 
11933   return true;
11934 }
11935 
11936 static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11937   const auto *IL = dyn_cast<IntegerLiteral>(E);
11938   if (!IL) {
11939     if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11940       if (UO->getOpcode() == UO_Minus)
11941         return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11942     }
11943   }
11944 
11945   return IL;
11946 }
11947 
11948 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11949   E = E->IgnoreParenImpCasts();
11950   SourceLocation ExprLoc = E->getExprLoc();
11951 
11952   if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11953     BinaryOperator::Opcode Opc = BO->getOpcode();
11954     Expr::EvalResult Result;
11955     // Do not diagnose unsigned shifts.
11956     if (Opc == BO_Shl) {
11957       const auto *LHS = getIntegerLiteral(BO->getLHS());
11958       const auto *RHS = getIntegerLiteral(BO->getRHS());
11959       if (LHS && LHS->getValue() == 0)
11960         S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11961       else if (!E->isValueDependent() && LHS && RHS &&
11962                RHS->getValue().isNonNegative() &&
11963                E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11964         S.Diag(ExprLoc, diag::warn_left_shift_always)
11965             << (Result.Val.getInt() != 0);
11966       else if (E->getType()->isSignedIntegerType())
11967         S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11968     }
11969   }
11970 
11971   if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11972     const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11973     const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11974     if (!LHS || !RHS)
11975       return;
11976     if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11977         (RHS->getValue() == 0 || RHS->getValue() == 1))
11978       // Do not diagnose common idioms.
11979       return;
11980     if (LHS->getValue() != 0 && RHS->getValue() != 0)
11981       S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11982   }
11983 }
11984 
11985 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11986                                     SourceLocation CC,
11987                                     bool *ICContext = nullptr,
11988                                     bool IsListInit = false) {
11989   if (E->isTypeDependent() || E->isValueDependent()) return;
11990 
11991   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11992   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11993   if (Source == Target) return;
11994   if (Target->isDependentType()) return;
11995 
11996   // If the conversion context location is invalid don't complain. We also
11997   // don't want to emit a warning if the issue occurs from the expansion of
11998   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11999   // delay this check as long as possible. Once we detect we are in that
12000   // scenario, we just return.
12001   if (CC.isInvalid())
12002     return;
12003 
12004   if (Source->isAtomicType())
12005     S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12006 
12007   // Diagnose implicit casts to bool.
12008   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12009     if (isa<StringLiteral>(E))
12010       // Warn on string literal to bool.  Checks for string literals in logical
12011       // and expressions, for instance, assert(0 && "error here"), are
12012       // prevented by a check in AnalyzeImplicitConversions().
12013       return DiagnoseImpCast(S, E, T, CC,
12014                              diag::warn_impcast_string_literal_to_bool);
12015     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12016         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12017       // This covers the literal expressions that evaluate to Objective-C
12018       // objects.
12019       return DiagnoseImpCast(S, E, T, CC,
12020                              diag::warn_impcast_objective_c_literal_to_bool);
12021     }
12022     if (Source->isPointerType() || Source->canDecayToPointerType()) {
12023       // Warn on pointer to bool conversion that is always true.
12024       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12025                                      SourceRange(CC));
12026     }
12027   }
12028 
12029   // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12030   // is a typedef for signed char (macOS), then that constant value has to be 1
12031   // or 0.
12032   if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12033     Expr::EvalResult Result;
12034     if (E->EvaluateAsInt(Result, S.getASTContext(),
12035                          Expr::SE_AllowSideEffects)) {
12036       if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12037         adornObjCBoolConversionDiagWithTernaryFixit(
12038             S, E,
12039             S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12040                 << Result.Val.getInt().toString(10));
12041       }
12042       return;
12043     }
12044   }
12045 
12046   // Check implicit casts from Objective-C collection literals to specialized
12047   // collection types, e.g., NSArray<NSString *> *.
12048   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12049     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12050   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12051     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12052 
12053   // Strip vector types.
12054   if (isa<VectorType>(Source)) {
12055     if (!isa<VectorType>(Target)) {
12056       if (S.SourceMgr.isInSystemMacro(CC))
12057         return;
12058       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12059     }
12060 
12061     // If the vector cast is cast between two vectors of the same size, it is
12062     // a bitcast, not a conversion.
12063     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12064       return;
12065 
12066     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12067     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12068   }
12069   if (auto VecTy = dyn_cast<VectorType>(Target))
12070     Target = VecTy->getElementType().getTypePtr();
12071 
12072   // Strip complex types.
12073   if (isa<ComplexType>(Source)) {
12074     if (!isa<ComplexType>(Target)) {
12075       if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12076         return;
12077 
12078       return DiagnoseImpCast(S, E, T, CC,
12079                              S.getLangOpts().CPlusPlus
12080                                  ? diag::err_impcast_complex_scalar
12081                                  : diag::warn_impcast_complex_scalar);
12082     }
12083 
12084     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12085     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12086   }
12087 
12088   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12089   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12090 
12091   // If the source is floating point...
12092   if (SourceBT && SourceBT->isFloatingPoint()) {
12093     // ...and the target is floating point...
12094     if (TargetBT && TargetBT->isFloatingPoint()) {
12095       // ...then warn if we're dropping FP rank.
12096 
12097       int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12098           QualType(SourceBT, 0), QualType(TargetBT, 0));
12099       if (Order > 0) {
12100         // Don't warn about float constants that are precisely
12101         // representable in the target type.
12102         Expr::EvalResult result;
12103         if (E->EvaluateAsRValue(result, S.Context)) {
12104           // Value might be a float, a float vector, or a float complex.
12105           if (IsSameFloatAfterCast(result.Val,
12106                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12107                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12108             return;
12109         }
12110 
12111         if (S.SourceMgr.isInSystemMacro(CC))
12112           return;
12113 
12114         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12115       }
12116       // ... or possibly if we're increasing rank, too
12117       else if (Order < 0) {
12118         if (S.SourceMgr.isInSystemMacro(CC))
12119           return;
12120 
12121         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12122       }
12123       return;
12124     }
12125 
12126     // If the target is integral, always warn.
12127     if (TargetBT && TargetBT->isInteger()) {
12128       if (S.SourceMgr.isInSystemMacro(CC))
12129         return;
12130 
12131       DiagnoseFloatingImpCast(S, E, T, CC);
12132     }
12133 
12134     // Detect the case where a call result is converted from floating-point to
12135     // to bool, and the final argument to the call is converted from bool, to
12136     // discover this typo:
12137     //
12138     //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
12139     //
12140     // FIXME: This is an incredibly special case; is there some more general
12141     // way to detect this class of misplaced-parentheses bug?
12142     if (Target->isBooleanType() && isa<CallExpr>(E)) {
12143       // Check last argument of function call to see if it is an
12144       // implicit cast from a type matching the type the result
12145       // is being cast to.
12146       CallExpr *CEx = cast<CallExpr>(E);
12147       if (unsigned NumArgs = CEx->getNumArgs()) {
12148         Expr *LastA = CEx->getArg(NumArgs - 1);
12149         Expr *InnerE = LastA->IgnoreParenImpCasts();
12150         if (isa<ImplicitCastExpr>(LastA) &&
12151             InnerE->getType()->isBooleanType()) {
12152           // Warn on this floating-point to bool conversion
12153           DiagnoseImpCast(S, E, T, CC,
12154                           diag::warn_impcast_floating_point_to_bool);
12155         }
12156       }
12157     }
12158     return;
12159   }
12160 
12161   // Valid casts involving fixed point types should be accounted for here.
12162   if (Source->isFixedPointType()) {
12163     if (Target->isUnsaturatedFixedPointType()) {
12164       Expr::EvalResult Result;
12165       if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12166                                   S.isConstantEvaluated())) {
12167         llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12168         llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12169         llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12170         if (Value > MaxVal || Value < MinVal) {
12171           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12172                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12173                                     << Value.toString() << T
12174                                     << E->getSourceRange()
12175                                     << clang::SourceRange(CC));
12176           return;
12177         }
12178       }
12179     } else if (Target->isIntegerType()) {
12180       Expr::EvalResult Result;
12181       if (!S.isConstantEvaluated() &&
12182           E->EvaluateAsFixedPoint(Result, S.Context,
12183                                   Expr::SE_AllowSideEffects)) {
12184         llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12185 
12186         bool Overflowed;
12187         llvm::APSInt IntResult = FXResult.convertToInt(
12188             S.Context.getIntWidth(T),
12189             Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12190 
12191         if (Overflowed) {
12192           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12193                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12194                                     << FXResult.toString() << T
12195                                     << E->getSourceRange()
12196                                     << clang::SourceRange(CC));
12197           return;
12198         }
12199       }
12200     }
12201   } else if (Target->isUnsaturatedFixedPointType()) {
12202     if (Source->isIntegerType()) {
12203       Expr::EvalResult Result;
12204       if (!S.isConstantEvaluated() &&
12205           E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12206         llvm::APSInt Value = Result.Val.getInt();
12207 
12208         bool Overflowed;
12209         llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12210             Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12211 
12212         if (Overflowed) {
12213           S.DiagRuntimeBehavior(E->getExprLoc(), E,
12214                                 S.PDiag(diag::warn_impcast_fixed_point_range)
12215                                     << Value.toString(/*Radix=*/10) << T
12216                                     << E->getSourceRange()
12217                                     << clang::SourceRange(CC));
12218           return;
12219         }
12220       }
12221     }
12222   }
12223 
12224   // If we are casting an integer type to a floating point type without
12225   // initialization-list syntax, we might lose accuracy if the floating
12226   // point type has a narrower significand than the integer type.
12227   if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12228       TargetBT->isFloatingType() && !IsListInit) {
12229     // Determine the number of precision bits in the source integer type.
12230     IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12231                                         /*Approximate*/ true);
12232     unsigned int SourcePrecision = SourceRange.Width;
12233 
12234     // Determine the number of precision bits in the
12235     // target floating point type.
12236     unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12237         S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12238 
12239     if (SourcePrecision > 0 && TargetPrecision > 0 &&
12240         SourcePrecision > TargetPrecision) {
12241 
12242       if (Optional<llvm::APSInt> SourceInt =
12243               E->getIntegerConstantExpr(S.Context)) {
12244         // If the source integer is a constant, convert it to the target
12245         // floating point type. Issue a warning if the value changes
12246         // during the whole conversion.
12247         llvm::APFloat TargetFloatValue(
12248             S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12249         llvm::APFloat::opStatus ConversionStatus =
12250             TargetFloatValue.convertFromAPInt(
12251                 *SourceInt, SourceBT->isSignedInteger(),
12252                 llvm::APFloat::rmNearestTiesToEven);
12253 
12254         if (ConversionStatus != llvm::APFloat::opOK) {
12255           std::string PrettySourceValue = SourceInt->toString(10);
12256           SmallString<32> PrettyTargetValue;
12257           TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12258 
12259           S.DiagRuntimeBehavior(
12260               E->getExprLoc(), E,
12261               S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12262                   << PrettySourceValue << PrettyTargetValue << E->getType() << T
12263                   << E->getSourceRange() << clang::SourceRange(CC));
12264         }
12265       } else {
12266         // Otherwise, the implicit conversion may lose precision.
12267         DiagnoseImpCast(S, E, T, CC,
12268                         diag::warn_impcast_integer_float_precision);
12269       }
12270     }
12271   }
12272 
12273   DiagnoseNullConversion(S, E, T, CC);
12274 
12275   S.DiscardMisalignedMemberAddress(Target, E);
12276 
12277   if (Target->isBooleanType())
12278     DiagnoseIntInBoolContext(S, E);
12279 
12280   if (!Source->isIntegerType() || !Target->isIntegerType())
12281     return;
12282 
12283   // TODO: remove this early return once the false positives for constant->bool
12284   // in templates, macros, etc, are reduced or removed.
12285   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12286     return;
12287 
12288   if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12289       !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12290     return adornObjCBoolConversionDiagWithTernaryFixit(
12291         S, E,
12292         S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12293             << E->getType());
12294   }
12295 
12296   IntRange SourceTypeRange =
12297       IntRange::forTargetOfCanonicalType(S.Context, Source);
12298   IntRange LikelySourceRange =
12299       GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12300   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12301 
12302   if (LikelySourceRange.Width > TargetRange.Width) {
12303     // If the source is a constant, use a default-on diagnostic.
12304     // TODO: this should happen for bitfield stores, too.
12305     Expr::EvalResult Result;
12306     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12307                          S.isConstantEvaluated())) {
12308       llvm::APSInt Value(32);
12309       Value = Result.Val.getInt();
12310 
12311       if (S.SourceMgr.isInSystemMacro(CC))
12312         return;
12313 
12314       std::string PrettySourceValue = Value.toString(10);
12315       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12316 
12317       S.DiagRuntimeBehavior(
12318           E->getExprLoc(), E,
12319           S.PDiag(diag::warn_impcast_integer_precision_constant)
12320               << PrettySourceValue << PrettyTargetValue << E->getType() << T
12321               << E->getSourceRange() << SourceRange(CC));
12322       return;
12323     }
12324 
12325     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12326     if (S.SourceMgr.isInSystemMacro(CC))
12327       return;
12328 
12329     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12330       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12331                              /* pruneControlFlow */ true);
12332     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12333   }
12334 
12335   if (TargetRange.Width > SourceTypeRange.Width) {
12336     if (auto *UO = dyn_cast<UnaryOperator>(E))
12337       if (UO->getOpcode() == UO_Minus)
12338         if (Source->isUnsignedIntegerType()) {
12339           if (Target->isUnsignedIntegerType())
12340             return DiagnoseImpCast(S, E, T, CC,
12341                                    diag::warn_impcast_high_order_zero_bits);
12342           if (Target->isSignedIntegerType())
12343             return DiagnoseImpCast(S, E, T, CC,
12344                                    diag::warn_impcast_nonnegative_result);
12345         }
12346   }
12347 
12348   if (TargetRange.Width == LikelySourceRange.Width &&
12349       !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12350       Source->isSignedIntegerType()) {
12351     // Warn when doing a signed to signed conversion, warn if the positive
12352     // source value is exactly the width of the target type, which will
12353     // cause a negative value to be stored.
12354 
12355     Expr::EvalResult Result;
12356     if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12357         !S.SourceMgr.isInSystemMacro(CC)) {
12358       llvm::APSInt Value = Result.Val.getInt();
12359       if (isSameWidthConstantConversion(S, E, T, CC)) {
12360         std::string PrettySourceValue = Value.toString(10);
12361         std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12362 
12363         S.DiagRuntimeBehavior(
12364             E->getExprLoc(), E,
12365             S.PDiag(diag::warn_impcast_integer_precision_constant)
12366                 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12367                 << E->getSourceRange() << SourceRange(CC));
12368         return;
12369       }
12370     }
12371 
12372     // Fall through for non-constants to give a sign conversion warning.
12373   }
12374 
12375   if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12376       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12377        LikelySourceRange.Width == TargetRange.Width)) {
12378     if (S.SourceMgr.isInSystemMacro(CC))
12379       return;
12380 
12381     unsigned DiagID = diag::warn_impcast_integer_sign;
12382 
12383     // Traditionally, gcc has warned about this under -Wsign-compare.
12384     // We also want to warn about it in -Wconversion.
12385     // So if -Wconversion is off, use a completely identical diagnostic
12386     // in the sign-compare group.
12387     // The conditional-checking code will
12388     if (ICContext) {
12389       DiagID = diag::warn_impcast_integer_sign_conditional;
12390       *ICContext = true;
12391     }
12392 
12393     return DiagnoseImpCast(S, E, T, CC, DiagID);
12394   }
12395 
12396   // Diagnose conversions between different enumeration types.
12397   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12398   // type, to give us better diagnostics.
12399   QualType SourceType = E->getType();
12400   if (!S.getLangOpts().CPlusPlus) {
12401     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12402       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12403         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12404         SourceType = S.Context.getTypeDeclType(Enum);
12405         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12406       }
12407   }
12408 
12409   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12410     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12411       if (SourceEnum->getDecl()->hasNameForLinkage() &&
12412           TargetEnum->getDecl()->hasNameForLinkage() &&
12413           SourceEnum != TargetEnum) {
12414         if (S.SourceMgr.isInSystemMacro(CC))
12415           return;
12416 
12417         return DiagnoseImpCast(S, E, SourceType, T, CC,
12418                                diag::warn_impcast_different_enum_types);
12419       }
12420 }
12421 
12422 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12423                                      SourceLocation CC, QualType T);
12424 
12425 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12426                                     SourceLocation CC, bool &ICContext) {
12427   E = E->IgnoreParenImpCasts();
12428 
12429   if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12430     return CheckConditionalOperator(S, CO, CC, T);
12431 
12432   AnalyzeImplicitConversions(S, E, CC);
12433   if (E->getType() != T)
12434     return CheckImplicitConversion(S, E, T, CC, &ICContext);
12435 }
12436 
12437 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12438                                      SourceLocation CC, QualType T) {
12439   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12440 
12441   Expr *TrueExpr = E->getTrueExpr();
12442   if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12443     TrueExpr = BCO->getCommon();
12444 
12445   bool Suspicious = false;
12446   CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12447   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12448 
12449   if (T->isBooleanType())
12450     DiagnoseIntInBoolContext(S, E);
12451 
12452   // If -Wconversion would have warned about either of the candidates
12453   // for a signedness conversion to the context type...
12454   if (!Suspicious) return;
12455 
12456   // ...but it's currently ignored...
12457   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12458     return;
12459 
12460   // ...then check whether it would have warned about either of the
12461   // candidates for a signedness conversion to the condition type.
12462   if (E->getType() == T) return;
12463 
12464   Suspicious = false;
12465   CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12466                           E->getType(), CC, &Suspicious);
12467   if (!Suspicious)
12468     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12469                             E->getType(), CC, &Suspicious);
12470 }
12471 
12472 /// Check conversion of given expression to boolean.
12473 /// Input argument E is a logical expression.
12474 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12475   if (S.getLangOpts().Bool)
12476     return;
12477   if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12478     return;
12479   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12480 }
12481 
12482 namespace {
12483 struct AnalyzeImplicitConversionsWorkItem {
12484   Expr *E;
12485   SourceLocation CC;
12486   bool IsListInit;
12487 };
12488 }
12489 
12490 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12491 /// that should be visited are added to WorkList.
12492 static void AnalyzeImplicitConversions(
12493     Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12494     llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12495   Expr *OrigE = Item.E;
12496   SourceLocation CC = Item.CC;
12497 
12498   QualType T = OrigE->getType();
12499   Expr *E = OrigE->IgnoreParenImpCasts();
12500 
12501   // Propagate whether we are in a C++ list initialization expression.
12502   // If so, we do not issue warnings for implicit int-float conversion
12503   // precision loss, because C++11 narrowing already handles it.
12504   bool IsListInit = Item.IsListInit ||
12505                     (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12506 
12507   if (E->isTypeDependent() || E->isValueDependent())
12508     return;
12509 
12510   Expr *SourceExpr = E;
12511   // Examine, but don't traverse into the source expression of an
12512   // OpaqueValueExpr, since it may have multiple parents and we don't want to
12513   // emit duplicate diagnostics. Its fine to examine the form or attempt to
12514   // evaluate it in the context of checking the specific conversion to T though.
12515   if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12516     if (auto *Src = OVE->getSourceExpr())
12517       SourceExpr = Src;
12518 
12519   if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12520     if (UO->getOpcode() == UO_Not &&
12521         UO->getSubExpr()->isKnownToHaveBooleanValue())
12522       S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12523           << OrigE->getSourceRange() << T->isBooleanType()
12524           << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12525 
12526   // For conditional operators, we analyze the arguments as if they
12527   // were being fed directly into the output.
12528   if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12529     CheckConditionalOperator(S, CO, CC, T);
12530     return;
12531   }
12532 
12533   // Check implicit argument conversions for function calls.
12534   if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12535     CheckImplicitArgumentConversions(S, Call, CC);
12536 
12537   // Go ahead and check any implicit conversions we might have skipped.
12538   // The non-canonical typecheck is just an optimization;
12539   // CheckImplicitConversion will filter out dead implicit conversions.
12540   if (SourceExpr->getType() != T)
12541     CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12542 
12543   // Now continue drilling into this expression.
12544 
12545   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12546     // The bound subexpressions in a PseudoObjectExpr are not reachable
12547     // as transitive children.
12548     // FIXME: Use a more uniform representation for this.
12549     for (auto *SE : POE->semantics())
12550       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12551         WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12552   }
12553 
12554   // Skip past explicit casts.
12555   if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12556     E = CE->getSubExpr()->IgnoreParenImpCasts();
12557     if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12558       S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12559     WorkList.push_back({E, CC, IsListInit});
12560     return;
12561   }
12562 
12563   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12564     // Do a somewhat different check with comparison operators.
12565     if (BO->isComparisonOp())
12566       return AnalyzeComparison(S, BO);
12567 
12568     // And with simple assignments.
12569     if (BO->getOpcode() == BO_Assign)
12570       return AnalyzeAssignment(S, BO);
12571     // And with compound assignments.
12572     if (BO->isAssignmentOp())
12573       return AnalyzeCompoundAssignment(S, BO);
12574   }
12575 
12576   // These break the otherwise-useful invariant below.  Fortunately,
12577   // we don't really need to recurse into them, because any internal
12578   // expressions should have been analyzed already when they were
12579   // built into statements.
12580   if (isa<StmtExpr>(E)) return;
12581 
12582   // Don't descend into unevaluated contexts.
12583   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12584 
12585   // Now just recurse over the expression's children.
12586   CC = E->getExprLoc();
12587   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12588   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12589   for (Stmt *SubStmt : E->children()) {
12590     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12591     if (!ChildExpr)
12592       continue;
12593 
12594     if (IsLogicalAndOperator &&
12595         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12596       // Ignore checking string literals that are in logical and operators.
12597       // This is a common pattern for asserts.
12598       continue;
12599     WorkList.push_back({ChildExpr, CC, IsListInit});
12600   }
12601 
12602   if (BO && BO->isLogicalOp()) {
12603     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12604     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12605       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12606 
12607     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12608     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12609       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12610   }
12611 
12612   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12613     if (U->getOpcode() == UO_LNot) {
12614       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12615     } else if (U->getOpcode() != UO_AddrOf) {
12616       if (U->getSubExpr()->getType()->isAtomicType())
12617         S.Diag(U->getSubExpr()->getBeginLoc(),
12618                diag::warn_atomic_implicit_seq_cst);
12619     }
12620   }
12621 }
12622 
12623 /// AnalyzeImplicitConversions - Find and report any interesting
12624 /// implicit conversions in the given expression.  There are a couple
12625 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
12626 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12627                                        bool IsListInit/*= false*/) {
12628   llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12629   WorkList.push_back({OrigE, CC, IsListInit});
12630   while (!WorkList.empty())
12631     AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12632 }
12633 
12634 /// Diagnose integer type and any valid implicit conversion to it.
12635 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12636   // Taking into account implicit conversions,
12637   // allow any integer.
12638   if (!E->getType()->isIntegerType()) {
12639     S.Diag(E->getBeginLoc(),
12640            diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12641     return true;
12642   }
12643   // Potentially emit standard warnings for implicit conversions if enabled
12644   // using -Wconversion.
12645   CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12646   return false;
12647 }
12648 
12649 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12650 // Returns true when emitting a warning about taking the address of a reference.
12651 static bool CheckForReference(Sema &SemaRef, const Expr *E,
12652                               const PartialDiagnostic &PD) {
12653   E = E->IgnoreParenImpCasts();
12654 
12655   const FunctionDecl *FD = nullptr;
12656 
12657   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12658     if (!DRE->getDecl()->getType()->isReferenceType())
12659       return false;
12660   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12661     if (!M->getMemberDecl()->getType()->isReferenceType())
12662       return false;
12663   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12664     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12665       return false;
12666     FD = Call->getDirectCallee();
12667   } else {
12668     return false;
12669   }
12670 
12671   SemaRef.Diag(E->getExprLoc(), PD);
12672 
12673   // If possible, point to location of function.
12674   if (FD) {
12675     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12676   }
12677 
12678   return true;
12679 }
12680 
12681 // Returns true if the SourceLocation is expanded from any macro body.
12682 // Returns false if the SourceLocation is invalid, is from not in a macro
12683 // expansion, or is from expanded from a top-level macro argument.
12684 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12685   if (Loc.isInvalid())
12686     return false;
12687 
12688   while (Loc.isMacroID()) {
12689     if (SM.isMacroBodyExpansion(Loc))
12690       return true;
12691     Loc = SM.getImmediateMacroCallerLoc(Loc);
12692   }
12693 
12694   return false;
12695 }
12696 
12697 /// Diagnose pointers that are always non-null.
12698 /// \param E the expression containing the pointer
12699 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12700 /// compared to a null pointer
12701 /// \param IsEqual True when the comparison is equal to a null pointer
12702 /// \param Range Extra SourceRange to highlight in the diagnostic
12703 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12704                                         Expr::NullPointerConstantKind NullKind,
12705                                         bool IsEqual, SourceRange Range) {
12706   if (!E)
12707     return;
12708 
12709   // Don't warn inside macros.
12710   if (E->getExprLoc().isMacroID()) {
12711     const SourceManager &SM = getSourceManager();
12712     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12713         IsInAnyMacroBody(SM, Range.getBegin()))
12714       return;
12715   }
12716   E = E->IgnoreImpCasts();
12717 
12718   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12719 
12720   if (isa<CXXThisExpr>(E)) {
12721     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12722                                 : diag::warn_this_bool_conversion;
12723     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12724     return;
12725   }
12726 
12727   bool IsAddressOf = false;
12728 
12729   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12730     if (UO->getOpcode() != UO_AddrOf)
12731       return;
12732     IsAddressOf = true;
12733     E = UO->getSubExpr();
12734   }
12735 
12736   if (IsAddressOf) {
12737     unsigned DiagID = IsCompare
12738                           ? diag::warn_address_of_reference_null_compare
12739                           : diag::warn_address_of_reference_bool_conversion;
12740     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12741                                          << IsEqual;
12742     if (CheckForReference(*this, E, PD)) {
12743       return;
12744     }
12745   }
12746 
12747   auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12748     bool IsParam = isa<NonNullAttr>(NonnullAttr);
12749     std::string Str;
12750     llvm::raw_string_ostream S(Str);
12751     E->printPretty(S, nullptr, getPrintingPolicy());
12752     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12753                                 : diag::warn_cast_nonnull_to_bool;
12754     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12755       << E->getSourceRange() << Range << IsEqual;
12756     Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12757   };
12758 
12759   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12760   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12761     if (auto *Callee = Call->getDirectCallee()) {
12762       if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12763         ComplainAboutNonnullParamOrCall(A);
12764         return;
12765       }
12766     }
12767   }
12768 
12769   // Expect to find a single Decl.  Skip anything more complicated.
12770   ValueDecl *D = nullptr;
12771   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12772     D = R->getDecl();
12773   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12774     D = M->getMemberDecl();
12775   }
12776 
12777   // Weak Decls can be null.
12778   if (!D || D->isWeak())
12779     return;
12780 
12781   // Check for parameter decl with nonnull attribute
12782   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12783     if (getCurFunction() &&
12784         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12785       if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12786         ComplainAboutNonnullParamOrCall(A);
12787         return;
12788       }
12789 
12790       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12791         // Skip function template not specialized yet.
12792         if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12793           return;
12794         auto ParamIter = llvm::find(FD->parameters(), PV);
12795         assert(ParamIter != FD->param_end());
12796         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12797 
12798         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12799           if (!NonNull->args_size()) {
12800               ComplainAboutNonnullParamOrCall(NonNull);
12801               return;
12802           }
12803 
12804           for (const ParamIdx &ArgNo : NonNull->args()) {
12805             if (ArgNo.getASTIndex() == ParamNo) {
12806               ComplainAboutNonnullParamOrCall(NonNull);
12807               return;
12808             }
12809           }
12810         }
12811       }
12812     }
12813   }
12814 
12815   QualType T = D->getType();
12816   const bool IsArray = T->isArrayType();
12817   const bool IsFunction = T->isFunctionType();
12818 
12819   // Address of function is used to silence the function warning.
12820   if (IsAddressOf && IsFunction) {
12821     return;
12822   }
12823 
12824   // Found nothing.
12825   if (!IsAddressOf && !IsFunction && !IsArray)
12826     return;
12827 
12828   // Pretty print the expression for the diagnostic.
12829   std::string Str;
12830   llvm::raw_string_ostream S(Str);
12831   E->printPretty(S, nullptr, getPrintingPolicy());
12832 
12833   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12834                               : diag::warn_impcast_pointer_to_bool;
12835   enum {
12836     AddressOf,
12837     FunctionPointer,
12838     ArrayPointer
12839   } DiagType;
12840   if (IsAddressOf)
12841     DiagType = AddressOf;
12842   else if (IsFunction)
12843     DiagType = FunctionPointer;
12844   else if (IsArray)
12845     DiagType = ArrayPointer;
12846   else
12847     llvm_unreachable("Could not determine diagnostic.");
12848   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12849                                 << Range << IsEqual;
12850 
12851   if (!IsFunction)
12852     return;
12853 
12854   // Suggest '&' to silence the function warning.
12855   Diag(E->getExprLoc(), diag::note_function_warning_silence)
12856       << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12857 
12858   // Check to see if '()' fixit should be emitted.
12859   QualType ReturnType;
12860   UnresolvedSet<4> NonTemplateOverloads;
12861   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12862   if (ReturnType.isNull())
12863     return;
12864 
12865   if (IsCompare) {
12866     // There are two cases here.  If there is null constant, the only suggest
12867     // for a pointer return type.  If the null is 0, then suggest if the return
12868     // type is a pointer or an integer type.
12869     if (!ReturnType->isPointerType()) {
12870       if (NullKind == Expr::NPCK_ZeroExpression ||
12871           NullKind == Expr::NPCK_ZeroLiteral) {
12872         if (!ReturnType->isIntegerType())
12873           return;
12874       } else {
12875         return;
12876       }
12877     }
12878   } else { // !IsCompare
12879     // For function to bool, only suggest if the function pointer has bool
12880     // return type.
12881     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12882       return;
12883   }
12884   Diag(E->getExprLoc(), diag::note_function_to_function_call)
12885       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12886 }
12887 
12888 /// Diagnoses "dangerous" implicit conversions within the given
12889 /// expression (which is a full expression).  Implements -Wconversion
12890 /// and -Wsign-compare.
12891 ///
12892 /// \param CC the "context" location of the implicit conversion, i.e.
12893 ///   the most location of the syntactic entity requiring the implicit
12894 ///   conversion
12895 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12896   // Don't diagnose in unevaluated contexts.
12897   if (isUnevaluatedContext())
12898     return;
12899 
12900   // Don't diagnose for value- or type-dependent expressions.
12901   if (E->isTypeDependent() || E->isValueDependent())
12902     return;
12903 
12904   // Check for array bounds violations in cases where the check isn't triggered
12905   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12906   // ArraySubscriptExpr is on the RHS of a variable initialization.
12907   CheckArrayAccess(E);
12908 
12909   // This is not the right CC for (e.g.) a variable initialization.
12910   AnalyzeImplicitConversions(*this, E, CC);
12911 }
12912 
12913 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12914 /// Input argument E is a logical expression.
12915 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12916   ::CheckBoolLikeConversion(*this, E, CC);
12917 }
12918 
12919 /// Diagnose when expression is an integer constant expression and its evaluation
12920 /// results in integer overflow
12921 void Sema::CheckForIntOverflow (Expr *E) {
12922   // Use a work list to deal with nested struct initializers.
12923   SmallVector<Expr *, 2> Exprs(1, E);
12924 
12925   do {
12926     Expr *OriginalE = Exprs.pop_back_val();
12927     Expr *E = OriginalE->IgnoreParenCasts();
12928 
12929     if (isa<BinaryOperator>(E)) {
12930       E->EvaluateForOverflow(Context);
12931       continue;
12932     }
12933 
12934     if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12935       Exprs.append(InitList->inits().begin(), InitList->inits().end());
12936     else if (isa<ObjCBoxedExpr>(OriginalE))
12937       E->EvaluateForOverflow(Context);
12938     else if (auto Call = dyn_cast<CallExpr>(E))
12939       Exprs.append(Call->arg_begin(), Call->arg_end());
12940     else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12941       Exprs.append(Message->arg_begin(), Message->arg_end());
12942   } while (!Exprs.empty());
12943 }
12944 
12945 namespace {
12946 
12947 /// Visitor for expressions which looks for unsequenced operations on the
12948 /// same object.
12949 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12950   using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12951 
12952   /// A tree of sequenced regions within an expression. Two regions are
12953   /// unsequenced if one is an ancestor or a descendent of the other. When we
12954   /// finish processing an expression with sequencing, such as a comma
12955   /// expression, we fold its tree nodes into its parent, since they are
12956   /// unsequenced with respect to nodes we will visit later.
12957   class SequenceTree {
12958     struct Value {
12959       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12960       unsigned Parent : 31;
12961       unsigned Merged : 1;
12962     };
12963     SmallVector<Value, 8> Values;
12964 
12965   public:
12966     /// A region within an expression which may be sequenced with respect
12967     /// to some other region.
12968     class Seq {
12969       friend class SequenceTree;
12970 
12971       unsigned Index;
12972 
12973       explicit Seq(unsigned N) : Index(N) {}
12974 
12975     public:
12976       Seq() : Index(0) {}
12977     };
12978 
12979     SequenceTree() { Values.push_back(Value(0)); }
12980     Seq root() const { return Seq(0); }
12981 
12982     /// Create a new sequence of operations, which is an unsequenced
12983     /// subset of \p Parent. This sequence of operations is sequenced with
12984     /// respect to other children of \p Parent.
12985     Seq allocate(Seq Parent) {
12986       Values.push_back(Value(Parent.Index));
12987       return Seq(Values.size() - 1);
12988     }
12989 
12990     /// Merge a sequence of operations into its parent.
12991     void merge(Seq S) {
12992       Values[S.Index].Merged = true;
12993     }
12994 
12995     /// Determine whether two operations are unsequenced. This operation
12996     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12997     /// should have been merged into its parent as appropriate.
12998     bool isUnsequenced(Seq Cur, Seq Old) {
12999       unsigned C = representative(Cur.Index);
13000       unsigned Target = representative(Old.Index);
13001       while (C >= Target) {
13002         if (C == Target)
13003           return true;
13004         C = Values[C].Parent;
13005       }
13006       return false;
13007     }
13008 
13009   private:
13010     /// Pick a representative for a sequence.
13011     unsigned representative(unsigned K) {
13012       if (Values[K].Merged)
13013         // Perform path compression as we go.
13014         return Values[K].Parent = representative(Values[K].Parent);
13015       return K;
13016     }
13017   };
13018 
13019   /// An object for which we can track unsequenced uses.
13020   using Object = const NamedDecl *;
13021 
13022   /// Different flavors of object usage which we track. We only track the
13023   /// least-sequenced usage of each kind.
13024   enum UsageKind {
13025     /// A read of an object. Multiple unsequenced reads are OK.
13026     UK_Use,
13027 
13028     /// A modification of an object which is sequenced before the value
13029     /// computation of the expression, such as ++n in C++.
13030     UK_ModAsValue,
13031 
13032     /// A modification of an object which is not sequenced before the value
13033     /// computation of the expression, such as n++.
13034     UK_ModAsSideEffect,
13035 
13036     UK_Count = UK_ModAsSideEffect + 1
13037   };
13038 
13039   /// Bundle together a sequencing region and the expression corresponding
13040   /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13041   struct Usage {
13042     const Expr *UsageExpr;
13043     SequenceTree::Seq Seq;
13044 
13045     Usage() : UsageExpr(nullptr), Seq() {}
13046   };
13047 
13048   struct UsageInfo {
13049     Usage Uses[UK_Count];
13050 
13051     /// Have we issued a diagnostic for this object already?
13052     bool Diagnosed;
13053 
13054     UsageInfo() : Uses(), Diagnosed(false) {}
13055   };
13056   using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13057 
13058   Sema &SemaRef;
13059 
13060   /// Sequenced regions within the expression.
13061   SequenceTree Tree;
13062 
13063   /// Declaration modifications and references which we have seen.
13064   UsageInfoMap UsageMap;
13065 
13066   /// The region we are currently within.
13067   SequenceTree::Seq Region;
13068 
13069   /// Filled in with declarations which were modified as a side-effect
13070   /// (that is, post-increment operations).
13071   SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13072 
13073   /// Expressions to check later. We defer checking these to reduce
13074   /// stack usage.
13075   SmallVectorImpl<const Expr *> &WorkList;
13076 
13077   /// RAII object wrapping the visitation of a sequenced subexpression of an
13078   /// expression. At the end of this process, the side-effects of the evaluation
13079   /// become sequenced with respect to the value computation of the result, so
13080   /// we downgrade any UK_ModAsSideEffect within the evaluation to
13081   /// UK_ModAsValue.
13082   struct SequencedSubexpression {
13083     SequencedSubexpression(SequenceChecker &Self)
13084       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13085       Self.ModAsSideEffect = &ModAsSideEffect;
13086     }
13087 
13088     ~SequencedSubexpression() {
13089       for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13090         // Add a new usage with usage kind UK_ModAsValue, and then restore
13091         // the previous usage with UK_ModAsSideEffect (thus clearing it if
13092         // the previous one was empty).
13093         UsageInfo &UI = Self.UsageMap[M.first];
13094         auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13095         Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13096         SideEffectUsage = M.second;
13097       }
13098       Self.ModAsSideEffect = OldModAsSideEffect;
13099     }
13100 
13101     SequenceChecker &Self;
13102     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13103     SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13104   };
13105 
13106   /// RAII object wrapping the visitation of a subexpression which we might
13107   /// choose to evaluate as a constant. If any subexpression is evaluated and
13108   /// found to be non-constant, this allows us to suppress the evaluation of
13109   /// the outer expression.
13110   class EvaluationTracker {
13111   public:
13112     EvaluationTracker(SequenceChecker &Self)
13113         : Self(Self), Prev(Self.EvalTracker) {
13114       Self.EvalTracker = this;
13115     }
13116 
13117     ~EvaluationTracker() {
13118       Self.EvalTracker = Prev;
13119       if (Prev)
13120         Prev->EvalOK &= EvalOK;
13121     }
13122 
13123     bool evaluate(const Expr *E, bool &Result) {
13124       if (!EvalOK || E->isValueDependent())
13125         return false;
13126       EvalOK = E->EvaluateAsBooleanCondition(
13127           Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13128       return EvalOK;
13129     }
13130 
13131   private:
13132     SequenceChecker &Self;
13133     EvaluationTracker *Prev;
13134     bool EvalOK = true;
13135   } *EvalTracker = nullptr;
13136 
13137   /// Find the object which is produced by the specified expression,
13138   /// if any.
13139   Object getObject(const Expr *E, bool Mod) const {
13140     E = E->IgnoreParenCasts();
13141     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13142       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13143         return getObject(UO->getSubExpr(), Mod);
13144     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13145       if (BO->getOpcode() == BO_Comma)
13146         return getObject(BO->getRHS(), Mod);
13147       if (Mod && BO->isAssignmentOp())
13148         return getObject(BO->getLHS(), Mod);
13149     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13150       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13151       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13152         return ME->getMemberDecl();
13153     } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13154       // FIXME: If this is a reference, map through to its value.
13155       return DRE->getDecl();
13156     return nullptr;
13157   }
13158 
13159   /// Note that an object \p O was modified or used by an expression
13160   /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13161   /// the object \p O as obtained via the \p UsageMap.
13162   void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13163     // Get the old usage for the given object and usage kind.
13164     Usage &U = UI.Uses[UK];
13165     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13166       // If we have a modification as side effect and are in a sequenced
13167       // subexpression, save the old Usage so that we can restore it later
13168       // in SequencedSubexpression::~SequencedSubexpression.
13169       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13170         ModAsSideEffect->push_back(std::make_pair(O, U));
13171       // Then record the new usage with the current sequencing region.
13172       U.UsageExpr = UsageExpr;
13173       U.Seq = Region;
13174     }
13175   }
13176 
13177   /// Check whether a modification or use of an object \p O in an expression
13178   /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13179   /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13180   /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13181   /// usage and false we are checking for a mod-use unsequenced usage.
13182   void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13183                   UsageKind OtherKind, bool IsModMod) {
13184     if (UI.Diagnosed)
13185       return;
13186 
13187     const Usage &U = UI.Uses[OtherKind];
13188     if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13189       return;
13190 
13191     const Expr *Mod = U.UsageExpr;
13192     const Expr *ModOrUse = UsageExpr;
13193     if (OtherKind == UK_Use)
13194       std::swap(Mod, ModOrUse);
13195 
13196     SemaRef.DiagRuntimeBehavior(
13197         Mod->getExprLoc(), {Mod, ModOrUse},
13198         SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13199                                : diag::warn_unsequenced_mod_use)
13200             << O << SourceRange(ModOrUse->getExprLoc()));
13201     UI.Diagnosed = true;
13202   }
13203 
13204   // A note on note{Pre, Post}{Use, Mod}:
13205   //
13206   // (It helps to follow the algorithm with an expression such as
13207   //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13208   //  operations before C++17 and both are well-defined in C++17).
13209   //
13210   // When visiting a node which uses/modify an object we first call notePreUse
13211   // or notePreMod before visiting its sub-expression(s). At this point the
13212   // children of the current node have not yet been visited and so the eventual
13213   // uses/modifications resulting from the children of the current node have not
13214   // been recorded yet.
13215   //
13216   // We then visit the children of the current node. After that notePostUse or
13217   // notePostMod is called. These will 1) detect an unsequenced modification
13218   // as side effect (as in "k++ + k") and 2) add a new usage with the
13219   // appropriate usage kind.
13220   //
13221   // We also have to be careful that some operation sequences modification as
13222   // side effect as well (for example: || or ,). To account for this we wrap
13223   // the visitation of such a sub-expression (for example: the LHS of || or ,)
13224   // with SequencedSubexpression. SequencedSubexpression is an RAII object
13225   // which record usages which are modifications as side effect, and then
13226   // downgrade them (or more accurately restore the previous usage which was a
13227   // modification as side effect) when exiting the scope of the sequenced
13228   // subexpression.
13229 
13230   void notePreUse(Object O, const Expr *UseExpr) {
13231     UsageInfo &UI = UsageMap[O];
13232     // Uses conflict with other modifications.
13233     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13234   }
13235 
13236   void notePostUse(Object O, const Expr *UseExpr) {
13237     UsageInfo &UI = UsageMap[O];
13238     checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13239                /*IsModMod=*/false);
13240     addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13241   }
13242 
13243   void notePreMod(Object O, const Expr *ModExpr) {
13244     UsageInfo &UI = UsageMap[O];
13245     // Modifications conflict with other modifications and with uses.
13246     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13247     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13248   }
13249 
13250   void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13251     UsageInfo &UI = UsageMap[O];
13252     checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13253                /*IsModMod=*/true);
13254     addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13255   }
13256 
13257 public:
13258   SequenceChecker(Sema &S, const Expr *E,
13259                   SmallVectorImpl<const Expr *> &WorkList)
13260       : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13261     Visit(E);
13262     // Silence a -Wunused-private-field since WorkList is now unused.
13263     // TODO: Evaluate if it can be used, and if not remove it.
13264     (void)this->WorkList;
13265   }
13266 
13267   void VisitStmt(const Stmt *S) {
13268     // Skip all statements which aren't expressions for now.
13269   }
13270 
13271   void VisitExpr(const Expr *E) {
13272     // By default, just recurse to evaluated subexpressions.
13273     Base::VisitStmt(E);
13274   }
13275 
13276   void VisitCastExpr(const CastExpr *E) {
13277     Object O = Object();
13278     if (E->getCastKind() == CK_LValueToRValue)
13279       O = getObject(E->getSubExpr(), false);
13280 
13281     if (O)
13282       notePreUse(O, E);
13283     VisitExpr(E);
13284     if (O)
13285       notePostUse(O, E);
13286   }
13287 
13288   void VisitSequencedExpressions(const Expr *SequencedBefore,
13289                                  const Expr *SequencedAfter) {
13290     SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13291     SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13292     SequenceTree::Seq OldRegion = Region;
13293 
13294     {
13295       SequencedSubexpression SeqBefore(*this);
13296       Region = BeforeRegion;
13297       Visit(SequencedBefore);
13298     }
13299 
13300     Region = AfterRegion;
13301     Visit(SequencedAfter);
13302 
13303     Region = OldRegion;
13304 
13305     Tree.merge(BeforeRegion);
13306     Tree.merge(AfterRegion);
13307   }
13308 
13309   void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13310     // C++17 [expr.sub]p1:
13311     //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13312     //   expression E1 is sequenced before the expression E2.
13313     if (SemaRef.getLangOpts().CPlusPlus17)
13314       VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13315     else {
13316       Visit(ASE->getLHS());
13317       Visit(ASE->getRHS());
13318     }
13319   }
13320 
13321   void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13322   void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13323   void VisitBinPtrMem(const BinaryOperator *BO) {
13324     // C++17 [expr.mptr.oper]p4:
13325     //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13326     //  the expression E1 is sequenced before the expression E2.
13327     if (SemaRef.getLangOpts().CPlusPlus17)
13328       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13329     else {
13330       Visit(BO->getLHS());
13331       Visit(BO->getRHS());
13332     }
13333   }
13334 
13335   void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13336   void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13337   void VisitBinShlShr(const BinaryOperator *BO) {
13338     // C++17 [expr.shift]p4:
13339     //  The expression E1 is sequenced before the expression E2.
13340     if (SemaRef.getLangOpts().CPlusPlus17)
13341       VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13342     else {
13343       Visit(BO->getLHS());
13344       Visit(BO->getRHS());
13345     }
13346   }
13347 
13348   void VisitBinComma(const BinaryOperator *BO) {
13349     // C++11 [expr.comma]p1:
13350     //   Every value computation and side effect associated with the left
13351     //   expression is sequenced before every value computation and side
13352     //   effect associated with the right expression.
13353     VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13354   }
13355 
13356   void VisitBinAssign(const BinaryOperator *BO) {
13357     SequenceTree::Seq RHSRegion;
13358     SequenceTree::Seq LHSRegion;
13359     if (SemaRef.getLangOpts().CPlusPlus17) {
13360       RHSRegion = Tree.allocate(Region);
13361       LHSRegion = Tree.allocate(Region);
13362     } else {
13363       RHSRegion = Region;
13364       LHSRegion = Region;
13365     }
13366     SequenceTree::Seq OldRegion = Region;
13367 
13368     // C++11 [expr.ass]p1:
13369     //  [...] the assignment is sequenced after the value computation
13370     //  of the right and left operands, [...]
13371     //
13372     // so check it before inspecting the operands and update the
13373     // map afterwards.
13374     Object O = getObject(BO->getLHS(), /*Mod=*/true);
13375     if (O)
13376       notePreMod(O, BO);
13377 
13378     if (SemaRef.getLangOpts().CPlusPlus17) {
13379       // C++17 [expr.ass]p1:
13380       //  [...] The right operand is sequenced before the left operand. [...]
13381       {
13382         SequencedSubexpression SeqBefore(*this);
13383         Region = RHSRegion;
13384         Visit(BO->getRHS());
13385       }
13386 
13387       Region = LHSRegion;
13388       Visit(BO->getLHS());
13389 
13390       if (O && isa<CompoundAssignOperator>(BO))
13391         notePostUse(O, BO);
13392 
13393     } else {
13394       // C++11 does not specify any sequencing between the LHS and RHS.
13395       Region = LHSRegion;
13396       Visit(BO->getLHS());
13397 
13398       if (O && isa<CompoundAssignOperator>(BO))
13399         notePostUse(O, BO);
13400 
13401       Region = RHSRegion;
13402       Visit(BO->getRHS());
13403     }
13404 
13405     // C++11 [expr.ass]p1:
13406     //  the assignment is sequenced [...] before the value computation of the
13407     //  assignment expression.
13408     // C11 6.5.16/3 has no such rule.
13409     Region = OldRegion;
13410     if (O)
13411       notePostMod(O, BO,
13412                   SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13413                                                   : UK_ModAsSideEffect);
13414     if (SemaRef.getLangOpts().CPlusPlus17) {
13415       Tree.merge(RHSRegion);
13416       Tree.merge(LHSRegion);
13417     }
13418   }
13419 
13420   void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13421     VisitBinAssign(CAO);
13422   }
13423 
13424   void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13425   void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13426   void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13427     Object O = getObject(UO->getSubExpr(), true);
13428     if (!O)
13429       return VisitExpr(UO);
13430 
13431     notePreMod(O, UO);
13432     Visit(UO->getSubExpr());
13433     // C++11 [expr.pre.incr]p1:
13434     //   the expression ++x is equivalent to x+=1
13435     notePostMod(O, UO,
13436                 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13437                                                 : UK_ModAsSideEffect);
13438   }
13439 
13440   void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13441   void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13442   void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13443     Object O = getObject(UO->getSubExpr(), true);
13444     if (!O)
13445       return VisitExpr(UO);
13446 
13447     notePreMod(O, UO);
13448     Visit(UO->getSubExpr());
13449     notePostMod(O, UO, UK_ModAsSideEffect);
13450   }
13451 
13452   void VisitBinLOr(const BinaryOperator *BO) {
13453     // C++11 [expr.log.or]p2:
13454     //  If the second expression is evaluated, every value computation and
13455     //  side effect associated with the first expression is sequenced before
13456     //  every value computation and side effect associated with the
13457     //  second expression.
13458     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13459     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13460     SequenceTree::Seq OldRegion = Region;
13461 
13462     EvaluationTracker Eval(*this);
13463     {
13464       SequencedSubexpression Sequenced(*this);
13465       Region = LHSRegion;
13466       Visit(BO->getLHS());
13467     }
13468 
13469     // C++11 [expr.log.or]p1:
13470     //  [...] the second operand is not evaluated if the first operand
13471     //  evaluates to true.
13472     bool EvalResult = false;
13473     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13474     bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13475     if (ShouldVisitRHS) {
13476       Region = RHSRegion;
13477       Visit(BO->getRHS());
13478     }
13479 
13480     Region = OldRegion;
13481     Tree.merge(LHSRegion);
13482     Tree.merge(RHSRegion);
13483   }
13484 
13485   void VisitBinLAnd(const BinaryOperator *BO) {
13486     // C++11 [expr.log.and]p2:
13487     //  If the second expression is evaluated, every value computation and
13488     //  side effect associated with the first expression is sequenced before
13489     //  every value computation and side effect associated with the
13490     //  second expression.
13491     SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13492     SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13493     SequenceTree::Seq OldRegion = Region;
13494 
13495     EvaluationTracker Eval(*this);
13496     {
13497       SequencedSubexpression Sequenced(*this);
13498       Region = LHSRegion;
13499       Visit(BO->getLHS());
13500     }
13501 
13502     // C++11 [expr.log.and]p1:
13503     //  [...] the second operand is not evaluated if the first operand is false.
13504     bool EvalResult = false;
13505     bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13506     bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13507     if (ShouldVisitRHS) {
13508       Region = RHSRegion;
13509       Visit(BO->getRHS());
13510     }
13511 
13512     Region = OldRegion;
13513     Tree.merge(LHSRegion);
13514     Tree.merge(RHSRegion);
13515   }
13516 
13517   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13518     // C++11 [expr.cond]p1:
13519     //  [...] Every value computation and side effect associated with the first
13520     //  expression is sequenced before every value computation and side effect
13521     //  associated with the second or third expression.
13522     SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13523 
13524     // No sequencing is specified between the true and false expression.
13525     // However since exactly one of both is going to be evaluated we can
13526     // consider them to be sequenced. This is needed to avoid warning on
13527     // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13528     // both the true and false expressions because we can't evaluate x.
13529     // This will still allow us to detect an expression like (pre C++17)
13530     // "(x ? y += 1 : y += 2) = y".
13531     //
13532     // We don't wrap the visitation of the true and false expression with
13533     // SequencedSubexpression because we don't want to downgrade modifications
13534     // as side effect in the true and false expressions after the visition
13535     // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13536     // not warn between the two "y++", but we should warn between the "y++"
13537     // and the "y".
13538     SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13539     SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13540     SequenceTree::Seq OldRegion = Region;
13541 
13542     EvaluationTracker Eval(*this);
13543     {
13544       SequencedSubexpression Sequenced(*this);
13545       Region = ConditionRegion;
13546       Visit(CO->getCond());
13547     }
13548 
13549     // C++11 [expr.cond]p1:
13550     // [...] The first expression is contextually converted to bool (Clause 4).
13551     // It is evaluated and if it is true, the result of the conditional
13552     // expression is the value of the second expression, otherwise that of the
13553     // third expression. Only one of the second and third expressions is
13554     // evaluated. [...]
13555     bool EvalResult = false;
13556     bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13557     bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13558     bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13559     if (ShouldVisitTrueExpr) {
13560       Region = TrueRegion;
13561       Visit(CO->getTrueExpr());
13562     }
13563     if (ShouldVisitFalseExpr) {
13564       Region = FalseRegion;
13565       Visit(CO->getFalseExpr());
13566     }
13567 
13568     Region = OldRegion;
13569     Tree.merge(ConditionRegion);
13570     Tree.merge(TrueRegion);
13571     Tree.merge(FalseRegion);
13572   }
13573 
13574   void VisitCallExpr(const CallExpr *CE) {
13575     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13576 
13577     if (CE->isUnevaluatedBuiltinCall(Context))
13578       return;
13579 
13580     // C++11 [intro.execution]p15:
13581     //   When calling a function [...], every value computation and side effect
13582     //   associated with any argument expression, or with the postfix expression
13583     //   designating the called function, is sequenced before execution of every
13584     //   expression or statement in the body of the function [and thus before
13585     //   the value computation of its result].
13586     SequencedSubexpression Sequenced(*this);
13587     SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13588       // C++17 [expr.call]p5
13589       //   The postfix-expression is sequenced before each expression in the
13590       //   expression-list and any default argument. [...]
13591       SequenceTree::Seq CalleeRegion;
13592       SequenceTree::Seq OtherRegion;
13593       if (SemaRef.getLangOpts().CPlusPlus17) {
13594         CalleeRegion = Tree.allocate(Region);
13595         OtherRegion = Tree.allocate(Region);
13596       } else {
13597         CalleeRegion = Region;
13598         OtherRegion = Region;
13599       }
13600       SequenceTree::Seq OldRegion = Region;
13601 
13602       // Visit the callee expression first.
13603       Region = CalleeRegion;
13604       if (SemaRef.getLangOpts().CPlusPlus17) {
13605         SequencedSubexpression Sequenced(*this);
13606         Visit(CE->getCallee());
13607       } else {
13608         Visit(CE->getCallee());
13609       }
13610 
13611       // Then visit the argument expressions.
13612       Region = OtherRegion;
13613       for (const Expr *Argument : CE->arguments())
13614         Visit(Argument);
13615 
13616       Region = OldRegion;
13617       if (SemaRef.getLangOpts().CPlusPlus17) {
13618         Tree.merge(CalleeRegion);
13619         Tree.merge(OtherRegion);
13620       }
13621     });
13622   }
13623 
13624   void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13625     // C++17 [over.match.oper]p2:
13626     //   [...] the operator notation is first transformed to the equivalent
13627     //   function-call notation as summarized in Table 12 (where @ denotes one
13628     //   of the operators covered in the specified subclause). However, the
13629     //   operands are sequenced in the order prescribed for the built-in
13630     //   operator (Clause 8).
13631     //
13632     // From the above only overloaded binary operators and overloaded call
13633     // operators have sequencing rules in C++17 that we need to handle
13634     // separately.
13635     if (!SemaRef.getLangOpts().CPlusPlus17 ||
13636         (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13637       return VisitCallExpr(CXXOCE);
13638 
13639     enum {
13640       NoSequencing,
13641       LHSBeforeRHS,
13642       RHSBeforeLHS,
13643       LHSBeforeRest
13644     } SequencingKind;
13645     switch (CXXOCE->getOperator()) {
13646     case OO_Equal:
13647     case OO_PlusEqual:
13648     case OO_MinusEqual:
13649     case OO_StarEqual:
13650     case OO_SlashEqual:
13651     case OO_PercentEqual:
13652     case OO_CaretEqual:
13653     case OO_AmpEqual:
13654     case OO_PipeEqual:
13655     case OO_LessLessEqual:
13656     case OO_GreaterGreaterEqual:
13657       SequencingKind = RHSBeforeLHS;
13658       break;
13659 
13660     case OO_LessLess:
13661     case OO_GreaterGreater:
13662     case OO_AmpAmp:
13663     case OO_PipePipe:
13664     case OO_Comma:
13665     case OO_ArrowStar:
13666     case OO_Subscript:
13667       SequencingKind = LHSBeforeRHS;
13668       break;
13669 
13670     case OO_Call:
13671       SequencingKind = LHSBeforeRest;
13672       break;
13673 
13674     default:
13675       SequencingKind = NoSequencing;
13676       break;
13677     }
13678 
13679     if (SequencingKind == NoSequencing)
13680       return VisitCallExpr(CXXOCE);
13681 
13682     // This is a call, so all subexpressions are sequenced before the result.
13683     SequencedSubexpression Sequenced(*this);
13684 
13685     SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13686       assert(SemaRef.getLangOpts().CPlusPlus17 &&
13687              "Should only get there with C++17 and above!");
13688       assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
13689              "Should only get there with an overloaded binary operator"
13690              " or an overloaded call operator!");
13691 
13692       if (SequencingKind == LHSBeforeRest) {
13693         assert(CXXOCE->getOperator() == OO_Call &&
13694                "We should only have an overloaded call operator here!");
13695 
13696         // This is very similar to VisitCallExpr, except that we only have the
13697         // C++17 case. The postfix-expression is the first argument of the
13698         // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13699         // are in the following arguments.
13700         //
13701         // Note that we intentionally do not visit the callee expression since
13702         // it is just a decayed reference to a function.
13703         SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13704         SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13705         SequenceTree::Seq OldRegion = Region;
13706 
13707         assert(CXXOCE->getNumArgs() >= 1 &&
13708                "An overloaded call operator must have at least one argument"
13709                " for the postfix-expression!");
13710         const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13711         llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13712                                           CXXOCE->getNumArgs() - 1);
13713 
13714         // Visit the postfix-expression first.
13715         {
13716           Region = PostfixExprRegion;
13717           SequencedSubexpression Sequenced(*this);
13718           Visit(PostfixExpr);
13719         }
13720 
13721         // Then visit the argument expressions.
13722         Region = ArgsRegion;
13723         for (const Expr *Arg : Args)
13724           Visit(Arg);
13725 
13726         Region = OldRegion;
13727         Tree.merge(PostfixExprRegion);
13728         Tree.merge(ArgsRegion);
13729       } else {
13730         assert(CXXOCE->getNumArgs() == 2 &&
13731                "Should only have two arguments here!");
13732         assert((SequencingKind == LHSBeforeRHS ||
13733                 SequencingKind == RHSBeforeLHS) &&
13734                "Unexpected sequencing kind!");
13735 
13736         // We do not visit the callee expression since it is just a decayed
13737         // reference to a function.
13738         const Expr *E1 = CXXOCE->getArg(0);
13739         const Expr *E2 = CXXOCE->getArg(1);
13740         if (SequencingKind == RHSBeforeLHS)
13741           std::swap(E1, E2);
13742 
13743         return VisitSequencedExpressions(E1, E2);
13744       }
13745     });
13746   }
13747 
13748   void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13749     // This is a call, so all subexpressions are sequenced before the result.
13750     SequencedSubexpression Sequenced(*this);
13751 
13752     if (!CCE->isListInitialization())
13753       return VisitExpr(CCE);
13754 
13755     // In C++11, list initializations are sequenced.
13756     SmallVector<SequenceTree::Seq, 32> Elts;
13757     SequenceTree::Seq Parent = Region;
13758     for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13759                                               E = CCE->arg_end();
13760          I != E; ++I) {
13761       Region = Tree.allocate(Parent);
13762       Elts.push_back(Region);
13763       Visit(*I);
13764     }
13765 
13766     // Forget that the initializers are sequenced.
13767     Region = Parent;
13768     for (unsigned I = 0; I < Elts.size(); ++I)
13769       Tree.merge(Elts[I]);
13770   }
13771 
13772   void VisitInitListExpr(const InitListExpr *ILE) {
13773     if (!SemaRef.getLangOpts().CPlusPlus11)
13774       return VisitExpr(ILE);
13775 
13776     // In C++11, list initializations are sequenced.
13777     SmallVector<SequenceTree::Seq, 32> Elts;
13778     SequenceTree::Seq Parent = Region;
13779     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13780       const Expr *E = ILE->getInit(I);
13781       if (!E)
13782         continue;
13783       Region = Tree.allocate(Parent);
13784       Elts.push_back(Region);
13785       Visit(E);
13786     }
13787 
13788     // Forget that the initializers are sequenced.
13789     Region = Parent;
13790     for (unsigned I = 0; I < Elts.size(); ++I)
13791       Tree.merge(Elts[I]);
13792   }
13793 };
13794 
13795 } // namespace
13796 
13797 void Sema::CheckUnsequencedOperations(const Expr *E) {
13798   SmallVector<const Expr *, 8> WorkList;
13799   WorkList.push_back(E);
13800   while (!WorkList.empty()) {
13801     const Expr *Item = WorkList.pop_back_val();
13802     SequenceChecker(*this, Item, WorkList);
13803   }
13804 }
13805 
13806 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13807                               bool IsConstexpr) {
13808   llvm::SaveAndRestore<bool> ConstantContext(
13809       isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13810   CheckImplicitConversions(E, CheckLoc);
13811   if (!E->isInstantiationDependent())
13812     CheckUnsequencedOperations(E);
13813   if (!IsConstexpr && !E->isValueDependent())
13814     CheckForIntOverflow(E);
13815   DiagnoseMisalignedMembers();
13816 }
13817 
13818 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13819                                        FieldDecl *BitField,
13820                                        Expr *Init) {
13821   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13822 }
13823 
13824 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13825                                          SourceLocation Loc) {
13826   if (!PType->isVariablyModifiedType())
13827     return;
13828   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13829     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13830     return;
13831   }
13832   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13833     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13834     return;
13835   }
13836   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13837     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13838     return;
13839   }
13840 
13841   const ArrayType *AT = S.Context.getAsArrayType(PType);
13842   if (!AT)
13843     return;
13844 
13845   if (AT->getSizeModifier() != ArrayType::Star) {
13846     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13847     return;
13848   }
13849 
13850   S.Diag(Loc, diag::err_array_star_in_function_definition);
13851 }
13852 
13853 /// CheckParmsForFunctionDef - Check that the parameters of the given
13854 /// function are appropriate for the definition of a function. This
13855 /// takes care of any checks that cannot be performed on the
13856 /// declaration itself, e.g., that the types of each of the function
13857 /// parameters are complete.
13858 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13859                                     bool CheckParameterNames) {
13860   bool HasInvalidParm = false;
13861   for (ParmVarDecl *Param : Parameters) {
13862     // C99 6.7.5.3p4: the parameters in a parameter type list in a
13863     // function declarator that is part of a function definition of
13864     // that function shall not have incomplete type.
13865     //
13866     // This is also C++ [dcl.fct]p6.
13867     if (!Param->isInvalidDecl() &&
13868         RequireCompleteType(Param->getLocation(), Param->getType(),
13869                             diag::err_typecheck_decl_incomplete_type)) {
13870       Param->setInvalidDecl();
13871       HasInvalidParm = true;
13872     }
13873 
13874     // C99 6.9.1p5: If the declarator includes a parameter type list, the
13875     // declaration of each parameter shall include an identifier.
13876     if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13877         !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13878       // Diagnose this as an extension in C17 and earlier.
13879       if (!getLangOpts().C2x)
13880         Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13881     }
13882 
13883     // C99 6.7.5.3p12:
13884     //   If the function declarator is not part of a definition of that
13885     //   function, parameters may have incomplete type and may use the [*]
13886     //   notation in their sequences of declarator specifiers to specify
13887     //   variable length array types.
13888     QualType PType = Param->getOriginalType();
13889     // FIXME: This diagnostic should point the '[*]' if source-location
13890     // information is added for it.
13891     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13892 
13893     // If the parameter is a c++ class type and it has to be destructed in the
13894     // callee function, declare the destructor so that it can be called by the
13895     // callee function. Do not perform any direct access check on the dtor here.
13896     if (!Param->isInvalidDecl()) {
13897       if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13898         if (!ClassDecl->isInvalidDecl() &&
13899             !ClassDecl->hasIrrelevantDestructor() &&
13900             !ClassDecl->isDependentContext() &&
13901             ClassDecl->isParamDestroyedInCallee()) {
13902           CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13903           MarkFunctionReferenced(Param->getLocation(), Destructor);
13904           DiagnoseUseOfDecl(Destructor, Param->getLocation());
13905         }
13906       }
13907     }
13908 
13909     // Parameters with the pass_object_size attribute only need to be marked
13910     // constant at function definitions. Because we lack information about
13911     // whether we're on a declaration or definition when we're instantiating the
13912     // attribute, we need to check for constness here.
13913     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13914       if (!Param->getType().isConstQualified())
13915         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13916             << Attr->getSpelling() << 1;
13917 
13918     // Check for parameter names shadowing fields from the class.
13919     if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13920       // The owning context for the parameter should be the function, but we
13921       // want to see if this function's declaration context is a record.
13922       DeclContext *DC = Param->getDeclContext();
13923       if (DC && DC->isFunctionOrMethod()) {
13924         if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13925           CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13926                                      RD, /*DeclIsField*/ false);
13927       }
13928     }
13929   }
13930 
13931   return HasInvalidParm;
13932 }
13933 
13934 Optional<std::pair<CharUnits, CharUnits>>
13935 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13936 
13937 /// Compute the alignment and offset of the base class object given the
13938 /// derived-to-base cast expression and the alignment and offset of the derived
13939 /// class object.
13940 static std::pair<CharUnits, CharUnits>
13941 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13942                                    CharUnits BaseAlignment, CharUnits Offset,
13943                                    ASTContext &Ctx) {
13944   for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13945        ++PathI) {
13946     const CXXBaseSpecifier *Base = *PathI;
13947     const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13948     if (Base->isVirtual()) {
13949       // The complete object may have a lower alignment than the non-virtual
13950       // alignment of the base, in which case the base may be misaligned. Choose
13951       // the smaller of the non-virtual alignment and BaseAlignment, which is a
13952       // conservative lower bound of the complete object alignment.
13953       CharUnits NonVirtualAlignment =
13954           Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13955       BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13956       Offset = CharUnits::Zero();
13957     } else {
13958       const ASTRecordLayout &RL =
13959           Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13960       Offset += RL.getBaseClassOffset(BaseDecl);
13961     }
13962     DerivedType = Base->getType();
13963   }
13964 
13965   return std::make_pair(BaseAlignment, Offset);
13966 }
13967 
13968 /// Compute the alignment and offset of a binary additive operator.
13969 static Optional<std::pair<CharUnits, CharUnits>>
13970 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13971                                      bool IsSub, ASTContext &Ctx) {
13972   QualType PointeeType = PtrE->getType()->getPointeeType();
13973 
13974   if (!PointeeType->isConstantSizeType())
13975     return llvm::None;
13976 
13977   auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13978 
13979   if (!P)
13980     return llvm::None;
13981 
13982   CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13983   if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13984     CharUnits Offset = EltSize * IdxRes->getExtValue();
13985     if (IsSub)
13986       Offset = -Offset;
13987     return std::make_pair(P->first, P->second + Offset);
13988   }
13989 
13990   // If the integer expression isn't a constant expression, compute the lower
13991   // bound of the alignment using the alignment and offset of the pointer
13992   // expression and the element size.
13993   return std::make_pair(
13994       P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13995       CharUnits::Zero());
13996 }
13997 
13998 /// This helper function takes an lvalue expression and returns the alignment of
13999 /// a VarDecl and a constant offset from the VarDecl.
14000 Optional<std::pair<CharUnits, CharUnits>>
14001 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14002   E = E->IgnoreParens();
14003   switch (E->getStmtClass()) {
14004   default:
14005     break;
14006   case Stmt::CStyleCastExprClass:
14007   case Stmt::CXXStaticCastExprClass:
14008   case Stmt::ImplicitCastExprClass: {
14009     auto *CE = cast<CastExpr>(E);
14010     const Expr *From = CE->getSubExpr();
14011     switch (CE->getCastKind()) {
14012     default:
14013       break;
14014     case CK_NoOp:
14015       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14016     case CK_UncheckedDerivedToBase:
14017     case CK_DerivedToBase: {
14018       auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14019       if (!P)
14020         break;
14021       return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14022                                                 P->second, Ctx);
14023     }
14024     }
14025     break;
14026   }
14027   case Stmt::ArraySubscriptExprClass: {
14028     auto *ASE = cast<ArraySubscriptExpr>(E);
14029     return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14030                                                 false, Ctx);
14031   }
14032   case Stmt::DeclRefExprClass: {
14033     if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14034       // FIXME: If VD is captured by copy or is an escaping __block variable,
14035       // use the alignment of VD's type.
14036       if (!VD->getType()->isReferenceType())
14037         return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14038       if (VD->hasInit())
14039         return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14040     }
14041     break;
14042   }
14043   case Stmt::MemberExprClass: {
14044     auto *ME = cast<MemberExpr>(E);
14045     auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14046     if (!FD || FD->getType()->isReferenceType())
14047       break;
14048     Optional<std::pair<CharUnits, CharUnits>> P;
14049     if (ME->isArrow())
14050       P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14051     else
14052       P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14053     if (!P)
14054       break;
14055     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14056     uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14057     return std::make_pair(P->first,
14058                           P->second + CharUnits::fromQuantity(Offset));
14059   }
14060   case Stmt::UnaryOperatorClass: {
14061     auto *UO = cast<UnaryOperator>(E);
14062     switch (UO->getOpcode()) {
14063     default:
14064       break;
14065     case UO_Deref:
14066       return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14067     }
14068     break;
14069   }
14070   case Stmt::BinaryOperatorClass: {
14071     auto *BO = cast<BinaryOperator>(E);
14072     auto Opcode = BO->getOpcode();
14073     switch (Opcode) {
14074     default:
14075       break;
14076     case BO_Comma:
14077       return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14078     }
14079     break;
14080   }
14081   }
14082   return llvm::None;
14083 }
14084 
14085 /// This helper function takes a pointer expression and returns the alignment of
14086 /// a VarDecl and a constant offset from the VarDecl.
14087 Optional<std::pair<CharUnits, CharUnits>>
14088 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14089   E = E->IgnoreParens();
14090   switch (E->getStmtClass()) {
14091   default:
14092     break;
14093   case Stmt::CStyleCastExprClass:
14094   case Stmt::CXXStaticCastExprClass:
14095   case Stmt::ImplicitCastExprClass: {
14096     auto *CE = cast<CastExpr>(E);
14097     const Expr *From = CE->getSubExpr();
14098     switch (CE->getCastKind()) {
14099     default:
14100       break;
14101     case CK_NoOp:
14102       return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14103     case CK_ArrayToPointerDecay:
14104       return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14105     case CK_UncheckedDerivedToBase:
14106     case CK_DerivedToBase: {
14107       auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14108       if (!P)
14109         break;
14110       return getDerivedToBaseAlignmentAndOffset(
14111           CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14112     }
14113     }
14114     break;
14115   }
14116   case Stmt::CXXThisExprClass: {
14117     auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14118     CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14119     return std::make_pair(Alignment, CharUnits::Zero());
14120   }
14121   case Stmt::UnaryOperatorClass: {
14122     auto *UO = cast<UnaryOperator>(E);
14123     if (UO->getOpcode() == UO_AddrOf)
14124       return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14125     break;
14126   }
14127   case Stmt::BinaryOperatorClass: {
14128     auto *BO = cast<BinaryOperator>(E);
14129     auto Opcode = BO->getOpcode();
14130     switch (Opcode) {
14131     default:
14132       break;
14133     case BO_Add:
14134     case BO_Sub: {
14135       const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14136       if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14137         std::swap(LHS, RHS);
14138       return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14139                                                   Ctx);
14140     }
14141     case BO_Comma:
14142       return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14143     }
14144     break;
14145   }
14146   }
14147   return llvm::None;
14148 }
14149 
14150 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14151   // See if we can compute the alignment of a VarDecl and an offset from it.
14152   Optional<std::pair<CharUnits, CharUnits>> P =
14153       getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14154 
14155   if (P)
14156     return P->first.alignmentAtOffset(P->second);
14157 
14158   // If that failed, return the type's alignment.
14159   return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14160 }
14161 
14162 /// CheckCastAlign - Implements -Wcast-align, which warns when a
14163 /// pointer cast increases the alignment requirements.
14164 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14165   // This is actually a lot of work to potentially be doing on every
14166   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14167   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14168     return;
14169 
14170   // Ignore dependent types.
14171   if (T->isDependentType() || Op->getType()->isDependentType())
14172     return;
14173 
14174   // Require that the destination be a pointer type.
14175   const PointerType *DestPtr = T->getAs<PointerType>();
14176   if (!DestPtr) return;
14177 
14178   // If the destination has alignment 1, we're done.
14179   QualType DestPointee = DestPtr->getPointeeType();
14180   if (DestPointee->isIncompleteType()) return;
14181   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14182   if (DestAlign.isOne()) return;
14183 
14184   // Require that the source be a pointer type.
14185   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14186   if (!SrcPtr) return;
14187   QualType SrcPointee = SrcPtr->getPointeeType();
14188 
14189   // Explicitly allow casts from cv void*.  We already implicitly
14190   // allowed casts to cv void*, since they have alignment 1.
14191   // Also allow casts involving incomplete types, which implicitly
14192   // includes 'void'.
14193   if (SrcPointee->isIncompleteType()) return;
14194 
14195   CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14196 
14197   if (SrcAlign >= DestAlign) return;
14198 
14199   Diag(TRange.getBegin(), diag::warn_cast_align)
14200     << Op->getType() << T
14201     << static_cast<unsigned>(SrcAlign.getQuantity())
14202     << static_cast<unsigned>(DestAlign.getQuantity())
14203     << TRange << Op->getSourceRange();
14204 }
14205 
14206 /// Check whether this array fits the idiom of a size-one tail padded
14207 /// array member of a struct.
14208 ///
14209 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
14210 /// commonly used to emulate flexible arrays in C89 code.
14211 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14212                                     const NamedDecl *ND) {
14213   if (Size != 1 || !ND) return false;
14214 
14215   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14216   if (!FD) return false;
14217 
14218   // Don't consider sizes resulting from macro expansions or template argument
14219   // substitution to form C89 tail-padded arrays.
14220 
14221   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14222   while (TInfo) {
14223     TypeLoc TL = TInfo->getTypeLoc();
14224     // Look through typedefs.
14225     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14226       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14227       TInfo = TDL->getTypeSourceInfo();
14228       continue;
14229     }
14230     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14231       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14232       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14233         return false;
14234     }
14235     break;
14236   }
14237 
14238   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14239   if (!RD) return false;
14240   if (RD->isUnion()) return false;
14241   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14242     if (!CRD->isStandardLayout()) return false;
14243   }
14244 
14245   // See if this is the last field decl in the record.
14246   const Decl *D = FD;
14247   while ((D = D->getNextDeclInContext()))
14248     if (isa<FieldDecl>(D))
14249       return false;
14250   return true;
14251 }
14252 
14253 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14254                             const ArraySubscriptExpr *ASE,
14255                             bool AllowOnePastEnd, bool IndexNegated) {
14256   // Already diagnosed by the constant evaluator.
14257   if (isConstantEvaluated())
14258     return;
14259 
14260   IndexExpr = IndexExpr->IgnoreParenImpCasts();
14261   if (IndexExpr->isValueDependent())
14262     return;
14263 
14264   const Type *EffectiveType =
14265       BaseExpr->getType()->getPointeeOrArrayElementType();
14266   BaseExpr = BaseExpr->IgnoreParenCasts();
14267   const ConstantArrayType *ArrayTy =
14268       Context.getAsConstantArrayType(BaseExpr->getType());
14269 
14270   if (!ArrayTy)
14271     return;
14272 
14273   const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14274   if (EffectiveType->isDependentType() || BaseType->isDependentType())
14275     return;
14276 
14277   Expr::EvalResult Result;
14278   if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14279     return;
14280 
14281   llvm::APSInt index = Result.Val.getInt();
14282   if (IndexNegated)
14283     index = -index;
14284 
14285   const NamedDecl *ND = nullptr;
14286   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14287     ND = DRE->getDecl();
14288   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14289     ND = ME->getMemberDecl();
14290 
14291   if (index.isUnsigned() || !index.isNegative()) {
14292     // It is possible that the type of the base expression after
14293     // IgnoreParenCasts is incomplete, even though the type of the base
14294     // expression before IgnoreParenCasts is complete (see PR39746 for an
14295     // example). In this case we have no information about whether the array
14296     // access exceeds the array bounds. However we can still diagnose an array
14297     // access which precedes the array bounds.
14298     if (BaseType->isIncompleteType())
14299       return;
14300 
14301     llvm::APInt size = ArrayTy->getSize();
14302     if (!size.isStrictlyPositive())
14303       return;
14304 
14305     if (BaseType != EffectiveType) {
14306       // Make sure we're comparing apples to apples when comparing index to size
14307       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14308       uint64_t array_typesize = Context.getTypeSize(BaseType);
14309       // Handle ptrarith_typesize being zero, such as when casting to void*
14310       if (!ptrarith_typesize) ptrarith_typesize = 1;
14311       if (ptrarith_typesize != array_typesize) {
14312         // There's a cast to a different size type involved
14313         uint64_t ratio = array_typesize / ptrarith_typesize;
14314         // TODO: Be smarter about handling cases where array_typesize is not a
14315         // multiple of ptrarith_typesize
14316         if (ptrarith_typesize * ratio == array_typesize)
14317           size *= llvm::APInt(size.getBitWidth(), ratio);
14318       }
14319     }
14320 
14321     if (size.getBitWidth() > index.getBitWidth())
14322       index = index.zext(size.getBitWidth());
14323     else if (size.getBitWidth() < index.getBitWidth())
14324       size = size.zext(index.getBitWidth());
14325 
14326     // For array subscripting the index must be less than size, but for pointer
14327     // arithmetic also allow the index (offset) to be equal to size since
14328     // computing the next address after the end of the array is legal and
14329     // commonly done e.g. in C++ iterators and range-based for loops.
14330     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14331       return;
14332 
14333     // Also don't warn for arrays of size 1 which are members of some
14334     // structure. These are often used to approximate flexible arrays in C89
14335     // code.
14336     if (IsTailPaddedMemberArray(*this, size, ND))
14337       return;
14338 
14339     // Suppress the warning if the subscript expression (as identified by the
14340     // ']' location) and the index expression are both from macro expansions
14341     // within a system header.
14342     if (ASE) {
14343       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14344           ASE->getRBracketLoc());
14345       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14346         SourceLocation IndexLoc =
14347             SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14348         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14349           return;
14350       }
14351     }
14352 
14353     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14354     if (ASE)
14355       DiagID = diag::warn_array_index_exceeds_bounds;
14356 
14357     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14358                         PDiag(DiagID) << index.toString(10, true)
14359                                       << size.toString(10, true)
14360                                       << (unsigned)size.getLimitedValue(~0U)
14361                                       << IndexExpr->getSourceRange());
14362   } else {
14363     unsigned DiagID = diag::warn_array_index_precedes_bounds;
14364     if (!ASE) {
14365       DiagID = diag::warn_ptr_arith_precedes_bounds;
14366       if (index.isNegative()) index = -index;
14367     }
14368 
14369     DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14370                         PDiag(DiagID) << index.toString(10, true)
14371                                       << IndexExpr->getSourceRange());
14372   }
14373 
14374   if (!ND) {
14375     // Try harder to find a NamedDecl to point at in the note.
14376     while (const ArraySubscriptExpr *ASE =
14377            dyn_cast<ArraySubscriptExpr>(BaseExpr))
14378       BaseExpr = ASE->getBase()->IgnoreParenCasts();
14379     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14380       ND = DRE->getDecl();
14381     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14382       ND = ME->getMemberDecl();
14383   }
14384 
14385   if (ND)
14386     DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14387                         PDiag(diag::note_array_declared_here) << ND);
14388 }
14389 
14390 void Sema::CheckArrayAccess(const Expr *expr) {
14391   int AllowOnePastEnd = 0;
14392   while (expr) {
14393     expr = expr->IgnoreParenImpCasts();
14394     switch (expr->getStmtClass()) {
14395       case Stmt::ArraySubscriptExprClass: {
14396         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14397         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14398                          AllowOnePastEnd > 0);
14399         expr = ASE->getBase();
14400         break;
14401       }
14402       case Stmt::MemberExprClass: {
14403         expr = cast<MemberExpr>(expr)->getBase();
14404         break;
14405       }
14406       case Stmt::OMPArraySectionExprClass: {
14407         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14408         if (ASE->getLowerBound())
14409           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14410                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
14411         return;
14412       }
14413       case Stmt::UnaryOperatorClass: {
14414         // Only unwrap the * and & unary operators
14415         const UnaryOperator *UO = cast<UnaryOperator>(expr);
14416         expr = UO->getSubExpr();
14417         switch (UO->getOpcode()) {
14418           case UO_AddrOf:
14419             AllowOnePastEnd++;
14420             break;
14421           case UO_Deref:
14422             AllowOnePastEnd--;
14423             break;
14424           default:
14425             return;
14426         }
14427         break;
14428       }
14429       case Stmt::ConditionalOperatorClass: {
14430         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14431         if (const Expr *lhs = cond->getLHS())
14432           CheckArrayAccess(lhs);
14433         if (const Expr *rhs = cond->getRHS())
14434           CheckArrayAccess(rhs);
14435         return;
14436       }
14437       case Stmt::CXXOperatorCallExprClass: {
14438         const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14439         for (const auto *Arg : OCE->arguments())
14440           CheckArrayAccess(Arg);
14441         return;
14442       }
14443       default:
14444         return;
14445     }
14446   }
14447 }
14448 
14449 //===--- CHECK: Objective-C retain cycles ----------------------------------//
14450 
14451 namespace {
14452 
14453 struct RetainCycleOwner {
14454   VarDecl *Variable = nullptr;
14455   SourceRange Range;
14456   SourceLocation Loc;
14457   bool Indirect = false;
14458 
14459   RetainCycleOwner() = default;
14460 
14461   void setLocsFrom(Expr *e) {
14462     Loc = e->getExprLoc();
14463     Range = e->getSourceRange();
14464   }
14465 };
14466 
14467 } // namespace
14468 
14469 /// Consider whether capturing the given variable can possibly lead to
14470 /// a retain cycle.
14471 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14472   // In ARC, it's captured strongly iff the variable has __strong
14473   // lifetime.  In MRR, it's captured strongly if the variable is
14474   // __block and has an appropriate type.
14475   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14476     return false;
14477 
14478   owner.Variable = var;
14479   if (ref)
14480     owner.setLocsFrom(ref);
14481   return true;
14482 }
14483 
14484 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14485   while (true) {
14486     e = e->IgnoreParens();
14487     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14488       switch (cast->getCastKind()) {
14489       case CK_BitCast:
14490       case CK_LValueBitCast:
14491       case CK_LValueToRValue:
14492       case CK_ARCReclaimReturnedObject:
14493         e = cast->getSubExpr();
14494         continue;
14495 
14496       default:
14497         return false;
14498       }
14499     }
14500 
14501     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14502       ObjCIvarDecl *ivar = ref->getDecl();
14503       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14504         return false;
14505 
14506       // Try to find a retain cycle in the base.
14507       if (!findRetainCycleOwner(S, ref->getBase(), owner))
14508         return false;
14509 
14510       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14511       owner.Indirect = true;
14512       return true;
14513     }
14514 
14515     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14516       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14517       if (!var) return false;
14518       return considerVariable(var, ref, owner);
14519     }
14520 
14521     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14522       if (member->isArrow()) return false;
14523 
14524       // Don't count this as an indirect ownership.
14525       e = member->getBase();
14526       continue;
14527     }
14528 
14529     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14530       // Only pay attention to pseudo-objects on property references.
14531       ObjCPropertyRefExpr *pre
14532         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14533                                               ->IgnoreParens());
14534       if (!pre) return false;
14535       if (pre->isImplicitProperty()) return false;
14536       ObjCPropertyDecl *property = pre->getExplicitProperty();
14537       if (!property->isRetaining() &&
14538           !(property->getPropertyIvarDecl() &&
14539             property->getPropertyIvarDecl()->getType()
14540               .getObjCLifetime() == Qualifiers::OCL_Strong))
14541           return false;
14542 
14543       owner.Indirect = true;
14544       if (pre->isSuperReceiver()) {
14545         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14546         if (!owner.Variable)
14547           return false;
14548         owner.Loc = pre->getLocation();
14549         owner.Range = pre->getSourceRange();
14550         return true;
14551       }
14552       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14553                               ->getSourceExpr());
14554       continue;
14555     }
14556 
14557     // Array ivars?
14558 
14559     return false;
14560   }
14561 }
14562 
14563 namespace {
14564 
14565   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14566     ASTContext &Context;
14567     VarDecl *Variable;
14568     Expr *Capturer = nullptr;
14569     bool VarWillBeReased = false;
14570 
14571     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14572         : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14573           Context(Context), Variable(variable) {}
14574 
14575     void VisitDeclRefExpr(DeclRefExpr *ref) {
14576       if (ref->getDecl() == Variable && !Capturer)
14577         Capturer = ref;
14578     }
14579 
14580     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14581       if (Capturer) return;
14582       Visit(ref->getBase());
14583       if (Capturer && ref->isFreeIvar())
14584         Capturer = ref;
14585     }
14586 
14587     void VisitBlockExpr(BlockExpr *block) {
14588       // Look inside nested blocks
14589       if (block->getBlockDecl()->capturesVariable(Variable))
14590         Visit(block->getBlockDecl()->getBody());
14591     }
14592 
14593     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14594       if (Capturer) return;
14595       if (OVE->getSourceExpr())
14596         Visit(OVE->getSourceExpr());
14597     }
14598 
14599     void VisitBinaryOperator(BinaryOperator *BinOp) {
14600       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14601         return;
14602       Expr *LHS = BinOp->getLHS();
14603       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14604         if (DRE->getDecl() != Variable)
14605           return;
14606         if (Expr *RHS = BinOp->getRHS()) {
14607           RHS = RHS->IgnoreParenCasts();
14608           Optional<llvm::APSInt> Value;
14609           VarWillBeReased =
14610               (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14611                *Value == 0);
14612         }
14613       }
14614     }
14615   };
14616 
14617 } // namespace
14618 
14619 /// Check whether the given argument is a block which captures a
14620 /// variable.
14621 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14622   assert(owner.Variable && owner.Loc.isValid());
14623 
14624   e = e->IgnoreParenCasts();
14625 
14626   // Look through [^{...} copy] and Block_copy(^{...}).
14627   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14628     Selector Cmd = ME->getSelector();
14629     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14630       e = ME->getInstanceReceiver();
14631       if (!e)
14632         return nullptr;
14633       e = e->IgnoreParenCasts();
14634     }
14635   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14636     if (CE->getNumArgs() == 1) {
14637       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14638       if (Fn) {
14639         const IdentifierInfo *FnI = Fn->getIdentifier();
14640         if (FnI && FnI->isStr("_Block_copy")) {
14641           e = CE->getArg(0)->IgnoreParenCasts();
14642         }
14643       }
14644     }
14645   }
14646 
14647   BlockExpr *block = dyn_cast<BlockExpr>(e);
14648   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14649     return nullptr;
14650 
14651   FindCaptureVisitor visitor(S.Context, owner.Variable);
14652   visitor.Visit(block->getBlockDecl()->getBody());
14653   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14654 }
14655 
14656 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14657                                 RetainCycleOwner &owner) {
14658   assert(capturer);
14659   assert(owner.Variable && owner.Loc.isValid());
14660 
14661   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14662     << owner.Variable << capturer->getSourceRange();
14663   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14664     << owner.Indirect << owner.Range;
14665 }
14666 
14667 /// Check for a keyword selector that starts with the word 'add' or
14668 /// 'set'.
14669 static bool isSetterLikeSelector(Selector sel) {
14670   if (sel.isUnarySelector()) return false;
14671 
14672   StringRef str = sel.getNameForSlot(0);
14673   while (!str.empty() && str.front() == '_') str = str.substr(1);
14674   if (str.startswith("set"))
14675     str = str.substr(3);
14676   else if (str.startswith("add")) {
14677     // Specially allow 'addOperationWithBlock:'.
14678     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14679       return false;
14680     str = str.substr(3);
14681   }
14682   else
14683     return false;
14684 
14685   if (str.empty()) return true;
14686   return !isLowercase(str.front());
14687 }
14688 
14689 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14690                                                     ObjCMessageExpr *Message) {
14691   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14692                                                 Message->getReceiverInterface(),
14693                                                 NSAPI::ClassId_NSMutableArray);
14694   if (!IsMutableArray) {
14695     return None;
14696   }
14697 
14698   Selector Sel = Message->getSelector();
14699 
14700   Optional<NSAPI::NSArrayMethodKind> MKOpt =
14701     S.NSAPIObj->getNSArrayMethodKind(Sel);
14702   if (!MKOpt) {
14703     return None;
14704   }
14705 
14706   NSAPI::NSArrayMethodKind MK = *MKOpt;
14707 
14708   switch (MK) {
14709     case NSAPI::NSMutableArr_addObject:
14710     case NSAPI::NSMutableArr_insertObjectAtIndex:
14711     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14712       return 0;
14713     case NSAPI::NSMutableArr_replaceObjectAtIndex:
14714       return 1;
14715 
14716     default:
14717       return None;
14718   }
14719 
14720   return None;
14721 }
14722 
14723 static
14724 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14725                                                   ObjCMessageExpr *Message) {
14726   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14727                                             Message->getReceiverInterface(),
14728                                             NSAPI::ClassId_NSMutableDictionary);
14729   if (!IsMutableDictionary) {
14730     return None;
14731   }
14732 
14733   Selector Sel = Message->getSelector();
14734 
14735   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14736     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14737   if (!MKOpt) {
14738     return None;
14739   }
14740 
14741   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14742 
14743   switch (MK) {
14744     case NSAPI::NSMutableDict_setObjectForKey:
14745     case NSAPI::NSMutableDict_setValueForKey:
14746     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14747       return 0;
14748 
14749     default:
14750       return None;
14751   }
14752 
14753   return None;
14754 }
14755 
14756 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14757   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14758                                                 Message->getReceiverInterface(),
14759                                                 NSAPI::ClassId_NSMutableSet);
14760 
14761   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14762                                             Message->getReceiverInterface(),
14763                                             NSAPI::ClassId_NSMutableOrderedSet);
14764   if (!IsMutableSet && !IsMutableOrderedSet) {
14765     return None;
14766   }
14767 
14768   Selector Sel = Message->getSelector();
14769 
14770   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14771   if (!MKOpt) {
14772     return None;
14773   }
14774 
14775   NSAPI::NSSetMethodKind MK = *MKOpt;
14776 
14777   switch (MK) {
14778     case NSAPI::NSMutableSet_addObject:
14779     case NSAPI::NSOrderedSet_setObjectAtIndex:
14780     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14781     case NSAPI::NSOrderedSet_insertObjectAtIndex:
14782       return 0;
14783     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14784       return 1;
14785   }
14786 
14787   return None;
14788 }
14789 
14790 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14791   if (!Message->isInstanceMessage()) {
14792     return;
14793   }
14794 
14795   Optional<int> ArgOpt;
14796 
14797   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14798       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14799       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14800     return;
14801   }
14802 
14803   int ArgIndex = *ArgOpt;
14804 
14805   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14806   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14807     Arg = OE->getSourceExpr()->IgnoreImpCasts();
14808   }
14809 
14810   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14811     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14812       if (ArgRE->isObjCSelfExpr()) {
14813         Diag(Message->getSourceRange().getBegin(),
14814              diag::warn_objc_circular_container)
14815           << ArgRE->getDecl() << StringRef("'super'");
14816       }
14817     }
14818   } else {
14819     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14820 
14821     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14822       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14823     }
14824 
14825     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14826       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14827         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14828           ValueDecl *Decl = ReceiverRE->getDecl();
14829           Diag(Message->getSourceRange().getBegin(),
14830                diag::warn_objc_circular_container)
14831             << Decl << Decl;
14832           if (!ArgRE->isObjCSelfExpr()) {
14833             Diag(Decl->getLocation(),
14834                  diag::note_objc_circular_container_declared_here)
14835               << Decl;
14836           }
14837         }
14838       }
14839     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14840       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14841         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14842           ObjCIvarDecl *Decl = IvarRE->getDecl();
14843           Diag(Message->getSourceRange().getBegin(),
14844                diag::warn_objc_circular_container)
14845             << Decl << Decl;
14846           Diag(Decl->getLocation(),
14847                diag::note_objc_circular_container_declared_here)
14848             << Decl;
14849         }
14850       }
14851     }
14852   }
14853 }
14854 
14855 /// Check a message send to see if it's likely to cause a retain cycle.
14856 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14857   // Only check instance methods whose selector looks like a setter.
14858   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14859     return;
14860 
14861   // Try to find a variable that the receiver is strongly owned by.
14862   RetainCycleOwner owner;
14863   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14864     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14865       return;
14866   } else {
14867     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
14868     owner.Variable = getCurMethodDecl()->getSelfDecl();
14869     owner.Loc = msg->getSuperLoc();
14870     owner.Range = msg->getSuperLoc();
14871   }
14872 
14873   // Check whether the receiver is captured by any of the arguments.
14874   const ObjCMethodDecl *MD = msg->getMethodDecl();
14875   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14876     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14877       // noescape blocks should not be retained by the method.
14878       if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14879         continue;
14880       return diagnoseRetainCycle(*this, capturer, owner);
14881     }
14882   }
14883 }
14884 
14885 /// Check a property assign to see if it's likely to cause a retain cycle.
14886 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14887   RetainCycleOwner owner;
14888   if (!findRetainCycleOwner(*this, receiver, owner))
14889     return;
14890 
14891   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14892     diagnoseRetainCycle(*this, capturer, owner);
14893 }
14894 
14895 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14896   RetainCycleOwner Owner;
14897   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14898     return;
14899 
14900   // Because we don't have an expression for the variable, we have to set the
14901   // location explicitly here.
14902   Owner.Loc = Var->getLocation();
14903   Owner.Range = Var->getSourceRange();
14904 
14905   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14906     diagnoseRetainCycle(*this, Capturer, Owner);
14907 }
14908 
14909 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14910                                      Expr *RHS, bool isProperty) {
14911   // Check if RHS is an Objective-C object literal, which also can get
14912   // immediately zapped in a weak reference.  Note that we explicitly
14913   // allow ObjCStringLiterals, since those are designed to never really die.
14914   RHS = RHS->IgnoreParenImpCasts();
14915 
14916   // This enum needs to match with the 'select' in
14917   // warn_objc_arc_literal_assign (off-by-1).
14918   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14919   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14920     return false;
14921 
14922   S.Diag(Loc, diag::warn_arc_literal_assign)
14923     << (unsigned) Kind
14924     << (isProperty ? 0 : 1)
14925     << RHS->getSourceRange();
14926 
14927   return true;
14928 }
14929 
14930 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14931                                     Qualifiers::ObjCLifetime LT,
14932                                     Expr *RHS, bool isProperty) {
14933   // Strip off any implicit cast added to get to the one ARC-specific.
14934   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14935     if (cast->getCastKind() == CK_ARCConsumeObject) {
14936       S.Diag(Loc, diag::warn_arc_retained_assign)
14937         << (LT == Qualifiers::OCL_ExplicitNone)
14938         << (isProperty ? 0 : 1)
14939         << RHS->getSourceRange();
14940       return true;
14941     }
14942     RHS = cast->getSubExpr();
14943   }
14944 
14945   if (LT == Qualifiers::OCL_Weak &&
14946       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14947     return true;
14948 
14949   return false;
14950 }
14951 
14952 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14953                               QualType LHS, Expr *RHS) {
14954   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14955 
14956   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14957     return false;
14958 
14959   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14960     return true;
14961 
14962   return false;
14963 }
14964 
14965 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14966                               Expr *LHS, Expr *RHS) {
14967   QualType LHSType;
14968   // PropertyRef on LHS type need be directly obtained from
14969   // its declaration as it has a PseudoType.
14970   ObjCPropertyRefExpr *PRE
14971     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14972   if (PRE && !PRE->isImplicitProperty()) {
14973     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14974     if (PD)
14975       LHSType = PD->getType();
14976   }
14977 
14978   if (LHSType.isNull())
14979     LHSType = LHS->getType();
14980 
14981   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14982 
14983   if (LT == Qualifiers::OCL_Weak) {
14984     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14985       getCurFunction()->markSafeWeakUse(LHS);
14986   }
14987 
14988   if (checkUnsafeAssigns(Loc, LHSType, RHS))
14989     return;
14990 
14991   // FIXME. Check for other life times.
14992   if (LT != Qualifiers::OCL_None)
14993     return;
14994 
14995   if (PRE) {
14996     if (PRE->isImplicitProperty())
14997       return;
14998     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14999     if (!PD)
15000       return;
15001 
15002     unsigned Attributes = PD->getPropertyAttributes();
15003     if (Attributes & ObjCPropertyAttribute::kind_assign) {
15004       // when 'assign' attribute was not explicitly specified
15005       // by user, ignore it and rely on property type itself
15006       // for lifetime info.
15007       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15008       if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15009           LHSType->isObjCRetainableType())
15010         return;
15011 
15012       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15013         if (cast->getCastKind() == CK_ARCConsumeObject) {
15014           Diag(Loc, diag::warn_arc_retained_property_assign)
15015           << RHS->getSourceRange();
15016           return;
15017         }
15018         RHS = cast->getSubExpr();
15019       }
15020     } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15021       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15022         return;
15023     }
15024   }
15025 }
15026 
15027 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15028 
15029 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15030                                         SourceLocation StmtLoc,
15031                                         const NullStmt *Body) {
15032   // Do not warn if the body is a macro that expands to nothing, e.g:
15033   //
15034   // #define CALL(x)
15035   // if (condition)
15036   //   CALL(0);
15037   if (Body->hasLeadingEmptyMacro())
15038     return false;
15039 
15040   // Get line numbers of statement and body.
15041   bool StmtLineInvalid;
15042   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15043                                                       &StmtLineInvalid);
15044   if (StmtLineInvalid)
15045     return false;
15046 
15047   bool BodyLineInvalid;
15048   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15049                                                       &BodyLineInvalid);
15050   if (BodyLineInvalid)
15051     return false;
15052 
15053   // Warn if null statement and body are on the same line.
15054   if (StmtLine != BodyLine)
15055     return false;
15056 
15057   return true;
15058 }
15059 
15060 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15061                                  const Stmt *Body,
15062                                  unsigned DiagID) {
15063   // Since this is a syntactic check, don't emit diagnostic for template
15064   // instantiations, this just adds noise.
15065   if (CurrentInstantiationScope)
15066     return;
15067 
15068   // The body should be a null statement.
15069   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15070   if (!NBody)
15071     return;
15072 
15073   // Do the usual checks.
15074   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15075     return;
15076 
15077   Diag(NBody->getSemiLoc(), DiagID);
15078   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15079 }
15080 
15081 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15082                                  const Stmt *PossibleBody) {
15083   assert(!CurrentInstantiationScope); // Ensured by caller
15084 
15085   SourceLocation StmtLoc;
15086   const Stmt *Body;
15087   unsigned DiagID;
15088   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15089     StmtLoc = FS->getRParenLoc();
15090     Body = FS->getBody();
15091     DiagID = diag::warn_empty_for_body;
15092   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15093     StmtLoc = WS->getCond()->getSourceRange().getEnd();
15094     Body = WS->getBody();
15095     DiagID = diag::warn_empty_while_body;
15096   } else
15097     return; // Neither `for' nor `while'.
15098 
15099   // The body should be a null statement.
15100   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15101   if (!NBody)
15102     return;
15103 
15104   // Skip expensive checks if diagnostic is disabled.
15105   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15106     return;
15107 
15108   // Do the usual checks.
15109   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15110     return;
15111 
15112   // `for(...);' and `while(...);' are popular idioms, so in order to keep
15113   // noise level low, emit diagnostics only if for/while is followed by a
15114   // CompoundStmt, e.g.:
15115   //    for (int i = 0; i < n; i++);
15116   //    {
15117   //      a(i);
15118   //    }
15119   // or if for/while is followed by a statement with more indentation
15120   // than for/while itself:
15121   //    for (int i = 0; i < n; i++);
15122   //      a(i);
15123   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15124   if (!ProbableTypo) {
15125     bool BodyColInvalid;
15126     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15127         PossibleBody->getBeginLoc(), &BodyColInvalid);
15128     if (BodyColInvalid)
15129       return;
15130 
15131     bool StmtColInvalid;
15132     unsigned StmtCol =
15133         SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15134     if (StmtColInvalid)
15135       return;
15136 
15137     if (BodyCol > StmtCol)
15138       ProbableTypo = true;
15139   }
15140 
15141   if (ProbableTypo) {
15142     Diag(NBody->getSemiLoc(), DiagID);
15143     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15144   }
15145 }
15146 
15147 //===--- CHECK: Warn on self move with std::move. -------------------------===//
15148 
15149 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15150 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15151                              SourceLocation OpLoc) {
15152   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15153     return;
15154 
15155   if (inTemplateInstantiation())
15156     return;
15157 
15158   // Strip parens and casts away.
15159   LHSExpr = LHSExpr->IgnoreParenImpCasts();
15160   RHSExpr = RHSExpr->IgnoreParenImpCasts();
15161 
15162   // Check for a call expression
15163   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15164   if (!CE || CE->getNumArgs() != 1)
15165     return;
15166 
15167   // Check for a call to std::move
15168   if (!CE->isCallToStdMove())
15169     return;
15170 
15171   // Get argument from std::move
15172   RHSExpr = CE->getArg(0);
15173 
15174   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15175   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15176 
15177   // Two DeclRefExpr's, check that the decls are the same.
15178   if (LHSDeclRef && RHSDeclRef) {
15179     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15180       return;
15181     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15182         RHSDeclRef->getDecl()->getCanonicalDecl())
15183       return;
15184 
15185     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15186                                         << LHSExpr->getSourceRange()
15187                                         << RHSExpr->getSourceRange();
15188     return;
15189   }
15190 
15191   // Member variables require a different approach to check for self moves.
15192   // MemberExpr's are the same if every nested MemberExpr refers to the same
15193   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15194   // the base Expr's are CXXThisExpr's.
15195   const Expr *LHSBase = LHSExpr;
15196   const Expr *RHSBase = RHSExpr;
15197   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15198   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15199   if (!LHSME || !RHSME)
15200     return;
15201 
15202   while (LHSME && RHSME) {
15203     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15204         RHSME->getMemberDecl()->getCanonicalDecl())
15205       return;
15206 
15207     LHSBase = LHSME->getBase();
15208     RHSBase = RHSME->getBase();
15209     LHSME = dyn_cast<MemberExpr>(LHSBase);
15210     RHSME = dyn_cast<MemberExpr>(RHSBase);
15211   }
15212 
15213   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15214   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15215   if (LHSDeclRef && RHSDeclRef) {
15216     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15217       return;
15218     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15219         RHSDeclRef->getDecl()->getCanonicalDecl())
15220       return;
15221 
15222     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15223                                         << LHSExpr->getSourceRange()
15224                                         << RHSExpr->getSourceRange();
15225     return;
15226   }
15227 
15228   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15229     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15230                                         << LHSExpr->getSourceRange()
15231                                         << RHSExpr->getSourceRange();
15232 }
15233 
15234 //===--- Layout compatibility ----------------------------------------------//
15235 
15236 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15237 
15238 /// Check if two enumeration types are layout-compatible.
15239 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15240   // C++11 [dcl.enum] p8:
15241   // Two enumeration types are layout-compatible if they have the same
15242   // underlying type.
15243   return ED1->isComplete() && ED2->isComplete() &&
15244          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15245 }
15246 
15247 /// Check if two fields are layout-compatible.
15248 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15249                                FieldDecl *Field2) {
15250   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15251     return false;
15252 
15253   if (Field1->isBitField() != Field2->isBitField())
15254     return false;
15255 
15256   if (Field1->isBitField()) {
15257     // Make sure that the bit-fields are the same length.
15258     unsigned Bits1 = Field1->getBitWidthValue(C);
15259     unsigned Bits2 = Field2->getBitWidthValue(C);
15260 
15261     if (Bits1 != Bits2)
15262       return false;
15263   }
15264 
15265   return true;
15266 }
15267 
15268 /// Check if two standard-layout structs are layout-compatible.
15269 /// (C++11 [class.mem] p17)
15270 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15271                                      RecordDecl *RD2) {
15272   // If both records are C++ classes, check that base classes match.
15273   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15274     // If one of records is a CXXRecordDecl we are in C++ mode,
15275     // thus the other one is a CXXRecordDecl, too.
15276     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15277     // Check number of base classes.
15278     if (D1CXX->getNumBases() != D2CXX->getNumBases())
15279       return false;
15280 
15281     // Check the base classes.
15282     for (CXXRecordDecl::base_class_const_iterator
15283                Base1 = D1CXX->bases_begin(),
15284            BaseEnd1 = D1CXX->bases_end(),
15285               Base2 = D2CXX->bases_begin();
15286          Base1 != BaseEnd1;
15287          ++Base1, ++Base2) {
15288       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15289         return false;
15290     }
15291   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15292     // If only RD2 is a C++ class, it should have zero base classes.
15293     if (D2CXX->getNumBases() > 0)
15294       return false;
15295   }
15296 
15297   // Check the fields.
15298   RecordDecl::field_iterator Field2 = RD2->field_begin(),
15299                              Field2End = RD2->field_end(),
15300                              Field1 = RD1->field_begin(),
15301                              Field1End = RD1->field_end();
15302   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15303     if (!isLayoutCompatible(C, *Field1, *Field2))
15304       return false;
15305   }
15306   if (Field1 != Field1End || Field2 != Field2End)
15307     return false;
15308 
15309   return true;
15310 }
15311 
15312 /// Check if two standard-layout unions are layout-compatible.
15313 /// (C++11 [class.mem] p18)
15314 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15315                                     RecordDecl *RD2) {
15316   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15317   for (auto *Field2 : RD2->fields())
15318     UnmatchedFields.insert(Field2);
15319 
15320   for (auto *Field1 : RD1->fields()) {
15321     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15322         I = UnmatchedFields.begin(),
15323         E = UnmatchedFields.end();
15324 
15325     for ( ; I != E; ++I) {
15326       if (isLayoutCompatible(C, Field1, *I)) {
15327         bool Result = UnmatchedFields.erase(*I);
15328         (void) Result;
15329         assert(Result);
15330         break;
15331       }
15332     }
15333     if (I == E)
15334       return false;
15335   }
15336 
15337   return UnmatchedFields.empty();
15338 }
15339 
15340 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15341                                RecordDecl *RD2) {
15342   if (RD1->isUnion() != RD2->isUnion())
15343     return false;
15344 
15345   if (RD1->isUnion())
15346     return isLayoutCompatibleUnion(C, RD1, RD2);
15347   else
15348     return isLayoutCompatibleStruct(C, RD1, RD2);
15349 }
15350 
15351 /// Check if two types are layout-compatible in C++11 sense.
15352 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15353   if (T1.isNull() || T2.isNull())
15354     return false;
15355 
15356   // C++11 [basic.types] p11:
15357   // If two types T1 and T2 are the same type, then T1 and T2 are
15358   // layout-compatible types.
15359   if (C.hasSameType(T1, T2))
15360     return true;
15361 
15362   T1 = T1.getCanonicalType().getUnqualifiedType();
15363   T2 = T2.getCanonicalType().getUnqualifiedType();
15364 
15365   const Type::TypeClass TC1 = T1->getTypeClass();
15366   const Type::TypeClass TC2 = T2->getTypeClass();
15367 
15368   if (TC1 != TC2)
15369     return false;
15370 
15371   if (TC1 == Type::Enum) {
15372     return isLayoutCompatible(C,
15373                               cast<EnumType>(T1)->getDecl(),
15374                               cast<EnumType>(T2)->getDecl());
15375   } else if (TC1 == Type::Record) {
15376     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15377       return false;
15378 
15379     return isLayoutCompatible(C,
15380                               cast<RecordType>(T1)->getDecl(),
15381                               cast<RecordType>(T2)->getDecl());
15382   }
15383 
15384   return false;
15385 }
15386 
15387 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15388 
15389 /// Given a type tag expression find the type tag itself.
15390 ///
15391 /// \param TypeExpr Type tag expression, as it appears in user's code.
15392 ///
15393 /// \param VD Declaration of an identifier that appears in a type tag.
15394 ///
15395 /// \param MagicValue Type tag magic value.
15396 ///
15397 /// \param isConstantEvaluated wether the evalaution should be performed in
15398 
15399 /// constant context.
15400 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15401                             const ValueDecl **VD, uint64_t *MagicValue,
15402                             bool isConstantEvaluated) {
15403   while(true) {
15404     if (!TypeExpr)
15405       return false;
15406 
15407     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15408 
15409     switch (TypeExpr->getStmtClass()) {
15410     case Stmt::UnaryOperatorClass: {
15411       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15412       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15413         TypeExpr = UO->getSubExpr();
15414         continue;
15415       }
15416       return false;
15417     }
15418 
15419     case Stmt::DeclRefExprClass: {
15420       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15421       *VD = DRE->getDecl();
15422       return true;
15423     }
15424 
15425     case Stmt::IntegerLiteralClass: {
15426       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15427       llvm::APInt MagicValueAPInt = IL->getValue();
15428       if (MagicValueAPInt.getActiveBits() <= 64) {
15429         *MagicValue = MagicValueAPInt.getZExtValue();
15430         return true;
15431       } else
15432         return false;
15433     }
15434 
15435     case Stmt::BinaryConditionalOperatorClass:
15436     case Stmt::ConditionalOperatorClass: {
15437       const AbstractConditionalOperator *ACO =
15438           cast<AbstractConditionalOperator>(TypeExpr);
15439       bool Result;
15440       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15441                                                      isConstantEvaluated)) {
15442         if (Result)
15443           TypeExpr = ACO->getTrueExpr();
15444         else
15445           TypeExpr = ACO->getFalseExpr();
15446         continue;
15447       }
15448       return false;
15449     }
15450 
15451     case Stmt::BinaryOperatorClass: {
15452       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15453       if (BO->getOpcode() == BO_Comma) {
15454         TypeExpr = BO->getRHS();
15455         continue;
15456       }
15457       return false;
15458     }
15459 
15460     default:
15461       return false;
15462     }
15463   }
15464 }
15465 
15466 /// Retrieve the C type corresponding to type tag TypeExpr.
15467 ///
15468 /// \param TypeExpr Expression that specifies a type tag.
15469 ///
15470 /// \param MagicValues Registered magic values.
15471 ///
15472 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15473 ///        kind.
15474 ///
15475 /// \param TypeInfo Information about the corresponding C type.
15476 ///
15477 /// \param isConstantEvaluated wether the evalaution should be performed in
15478 /// constant context.
15479 ///
15480 /// \returns true if the corresponding C type was found.
15481 static bool GetMatchingCType(
15482     const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15483     const ASTContext &Ctx,
15484     const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15485         *MagicValues,
15486     bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15487     bool isConstantEvaluated) {
15488   FoundWrongKind = false;
15489 
15490   // Variable declaration that has type_tag_for_datatype attribute.
15491   const ValueDecl *VD = nullptr;
15492 
15493   uint64_t MagicValue;
15494 
15495   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15496     return false;
15497 
15498   if (VD) {
15499     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15500       if (I->getArgumentKind() != ArgumentKind) {
15501         FoundWrongKind = true;
15502         return false;
15503       }
15504       TypeInfo.Type = I->getMatchingCType();
15505       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15506       TypeInfo.MustBeNull = I->getMustBeNull();
15507       return true;
15508     }
15509     return false;
15510   }
15511 
15512   if (!MagicValues)
15513     return false;
15514 
15515   llvm::DenseMap<Sema::TypeTagMagicValue,
15516                  Sema::TypeTagData>::const_iterator I =
15517       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15518   if (I == MagicValues->end())
15519     return false;
15520 
15521   TypeInfo = I->second;
15522   return true;
15523 }
15524 
15525 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15526                                       uint64_t MagicValue, QualType Type,
15527                                       bool LayoutCompatible,
15528                                       bool MustBeNull) {
15529   if (!TypeTagForDatatypeMagicValues)
15530     TypeTagForDatatypeMagicValues.reset(
15531         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15532 
15533   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15534   (*TypeTagForDatatypeMagicValues)[Magic] =
15535       TypeTagData(Type, LayoutCompatible, MustBeNull);
15536 }
15537 
15538 static bool IsSameCharType(QualType T1, QualType T2) {
15539   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15540   if (!BT1)
15541     return false;
15542 
15543   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15544   if (!BT2)
15545     return false;
15546 
15547   BuiltinType::Kind T1Kind = BT1->getKind();
15548   BuiltinType::Kind T2Kind = BT2->getKind();
15549 
15550   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
15551          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
15552          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15553          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15554 }
15555 
15556 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15557                                     const ArrayRef<const Expr *> ExprArgs,
15558                                     SourceLocation CallSiteLoc) {
15559   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15560   bool IsPointerAttr = Attr->getIsPointer();
15561 
15562   // Retrieve the argument representing the 'type_tag'.
15563   unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15564   if (TypeTagIdxAST >= ExprArgs.size()) {
15565     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15566         << 0 << Attr->getTypeTagIdx().getSourceIndex();
15567     return;
15568   }
15569   const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15570   bool FoundWrongKind;
15571   TypeTagData TypeInfo;
15572   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15573                         TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15574                         TypeInfo, isConstantEvaluated())) {
15575     if (FoundWrongKind)
15576       Diag(TypeTagExpr->getExprLoc(),
15577            diag::warn_type_tag_for_datatype_wrong_kind)
15578         << TypeTagExpr->getSourceRange();
15579     return;
15580   }
15581 
15582   // Retrieve the argument representing the 'arg_idx'.
15583   unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15584   if (ArgumentIdxAST >= ExprArgs.size()) {
15585     Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15586         << 1 << Attr->getArgumentIdx().getSourceIndex();
15587     return;
15588   }
15589   const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15590   if (IsPointerAttr) {
15591     // Skip implicit cast of pointer to `void *' (as a function argument).
15592     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15593       if (ICE->getType()->isVoidPointerType() &&
15594           ICE->getCastKind() == CK_BitCast)
15595         ArgumentExpr = ICE->getSubExpr();
15596   }
15597   QualType ArgumentType = ArgumentExpr->getType();
15598 
15599   // Passing a `void*' pointer shouldn't trigger a warning.
15600   if (IsPointerAttr && ArgumentType->isVoidPointerType())
15601     return;
15602 
15603   if (TypeInfo.MustBeNull) {
15604     // Type tag with matching void type requires a null pointer.
15605     if (!ArgumentExpr->isNullPointerConstant(Context,
15606                                              Expr::NPC_ValueDependentIsNotNull)) {
15607       Diag(ArgumentExpr->getExprLoc(),
15608            diag::warn_type_safety_null_pointer_required)
15609           << ArgumentKind->getName()
15610           << ArgumentExpr->getSourceRange()
15611           << TypeTagExpr->getSourceRange();
15612     }
15613     return;
15614   }
15615 
15616   QualType RequiredType = TypeInfo.Type;
15617   if (IsPointerAttr)
15618     RequiredType = Context.getPointerType(RequiredType);
15619 
15620   bool mismatch = false;
15621   if (!TypeInfo.LayoutCompatible) {
15622     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15623 
15624     // C++11 [basic.fundamental] p1:
15625     // Plain char, signed char, and unsigned char are three distinct types.
15626     //
15627     // But we treat plain `char' as equivalent to `signed char' or `unsigned
15628     // char' depending on the current char signedness mode.
15629     if (mismatch)
15630       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15631                                            RequiredType->getPointeeType())) ||
15632           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15633         mismatch = false;
15634   } else
15635     if (IsPointerAttr)
15636       mismatch = !isLayoutCompatible(Context,
15637                                      ArgumentType->getPointeeType(),
15638                                      RequiredType->getPointeeType());
15639     else
15640       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15641 
15642   if (mismatch)
15643     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15644         << ArgumentType << ArgumentKind
15645         << TypeInfo.LayoutCompatible << RequiredType
15646         << ArgumentExpr->getSourceRange()
15647         << TypeTagExpr->getSourceRange();
15648 }
15649 
15650 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15651                                          CharUnits Alignment) {
15652   MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15653 }
15654 
15655 void Sema::DiagnoseMisalignedMembers() {
15656   for (MisalignedMember &m : MisalignedMembers) {
15657     const NamedDecl *ND = m.RD;
15658     if (ND->getName().empty()) {
15659       if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15660         ND = TD;
15661     }
15662     Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15663         << m.MD << ND << m.E->getSourceRange();
15664   }
15665   MisalignedMembers.clear();
15666 }
15667 
15668 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15669   E = E->IgnoreParens();
15670   if (!T->isPointerType() && !T->isIntegerType())
15671     return;
15672   if (isa<UnaryOperator>(E) &&
15673       cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15674     auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15675     if (isa<MemberExpr>(Op)) {
15676       auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15677       if (MA != MisalignedMembers.end() &&
15678           (T->isIntegerType() ||
15679            (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15680                                    Context.getTypeAlignInChars(
15681                                        T->getPointeeType()) <= MA->Alignment))))
15682         MisalignedMembers.erase(MA);
15683     }
15684   }
15685 }
15686 
15687 void Sema::RefersToMemberWithReducedAlignment(
15688     Expr *E,
15689     llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15690         Action) {
15691   const auto *ME = dyn_cast<MemberExpr>(E);
15692   if (!ME)
15693     return;
15694 
15695   // No need to check expressions with an __unaligned-qualified type.
15696   if (E->getType().getQualifiers().hasUnaligned())
15697     return;
15698 
15699   // For a chain of MemberExpr like "a.b.c.d" this list
15700   // will keep FieldDecl's like [d, c, b].
15701   SmallVector<FieldDecl *, 4> ReverseMemberChain;
15702   const MemberExpr *TopME = nullptr;
15703   bool AnyIsPacked = false;
15704   do {
15705     QualType BaseType = ME->getBase()->getType();
15706     if (BaseType->isDependentType())
15707       return;
15708     if (ME->isArrow())
15709       BaseType = BaseType->getPointeeType();
15710     RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15711     if (RD->isInvalidDecl())
15712       return;
15713 
15714     ValueDecl *MD = ME->getMemberDecl();
15715     auto *FD = dyn_cast<FieldDecl>(MD);
15716     // We do not care about non-data members.
15717     if (!FD || FD->isInvalidDecl())
15718       return;
15719 
15720     AnyIsPacked =
15721         AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15722     ReverseMemberChain.push_back(FD);
15723 
15724     TopME = ME;
15725     ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15726   } while (ME);
15727   assert(TopME && "We did not compute a topmost MemberExpr!");
15728 
15729   // Not the scope of this diagnostic.
15730   if (!AnyIsPacked)
15731     return;
15732 
15733   const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15734   const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15735   // TODO: The innermost base of the member expression may be too complicated.
15736   // For now, just disregard these cases. This is left for future
15737   // improvement.
15738   if (!DRE && !isa<CXXThisExpr>(TopBase))
15739       return;
15740 
15741   // Alignment expected by the whole expression.
15742   CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15743 
15744   // No need to do anything else with this case.
15745   if (ExpectedAlignment.isOne())
15746     return;
15747 
15748   // Synthesize offset of the whole access.
15749   CharUnits Offset;
15750   for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15751        I++) {
15752     Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15753   }
15754 
15755   // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15756   CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15757       ReverseMemberChain.back()->getParent()->getTypeForDecl());
15758 
15759   // The base expression of the innermost MemberExpr may give
15760   // stronger guarantees than the class containing the member.
15761   if (DRE && !TopME->isArrow()) {
15762     const ValueDecl *VD = DRE->getDecl();
15763     if (!VD->getType()->isReferenceType())
15764       CompleteObjectAlignment =
15765           std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15766   }
15767 
15768   // Check if the synthesized offset fulfills the alignment.
15769   if (Offset % ExpectedAlignment != 0 ||
15770       // It may fulfill the offset it but the effective alignment may still be
15771       // lower than the expected expression alignment.
15772       CompleteObjectAlignment < ExpectedAlignment) {
15773     // If this happens, we want to determine a sensible culprit of this.
15774     // Intuitively, watching the chain of member expressions from right to
15775     // left, we start with the required alignment (as required by the field
15776     // type) but some packed attribute in that chain has reduced the alignment.
15777     // It may happen that another packed structure increases it again. But if
15778     // we are here such increase has not been enough. So pointing the first
15779     // FieldDecl that either is packed or else its RecordDecl is,
15780     // seems reasonable.
15781     FieldDecl *FD = nullptr;
15782     CharUnits Alignment;
15783     for (FieldDecl *FDI : ReverseMemberChain) {
15784       if (FDI->hasAttr<PackedAttr>() ||
15785           FDI->getParent()->hasAttr<PackedAttr>()) {
15786         FD = FDI;
15787         Alignment = std::min(
15788             Context.getTypeAlignInChars(FD->getType()),
15789             Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15790         break;
15791       }
15792     }
15793     assert(FD && "We did not find a packed FieldDecl!");
15794     Action(E, FD->getParent(), FD, Alignment);
15795   }
15796 }
15797 
15798 void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15799   using namespace std::placeholders;
15800 
15801   RefersToMemberWithReducedAlignment(
15802       rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15803                      _2, _3, _4));
15804 }
15805 
15806 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15807                                             ExprResult CallResult) {
15808   if (checkArgCount(*this, TheCall, 1))
15809     return ExprError();
15810 
15811   ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15812   if (MatrixArg.isInvalid())
15813     return MatrixArg;
15814   Expr *Matrix = MatrixArg.get();
15815 
15816   auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15817   if (!MType) {
15818     Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15819     return ExprError();
15820   }
15821 
15822   // Create returned matrix type by swapping rows and columns of the argument
15823   // matrix type.
15824   QualType ResultType = Context.getConstantMatrixType(
15825       MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15826 
15827   // Change the return type to the type of the returned matrix.
15828   TheCall->setType(ResultType);
15829 
15830   // Update call argument to use the possibly converted matrix argument.
15831   TheCall->setArg(0, Matrix);
15832   return CallResult;
15833 }
15834 
15835 // Get and verify the matrix dimensions.
15836 static llvm::Optional<unsigned>
15837 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15838   SourceLocation ErrorPos;
15839   Optional<llvm::APSInt> Value =
15840       Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15841   if (!Value) {
15842     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15843         << Name;
15844     return {};
15845   }
15846   uint64_t Dim = Value->getZExtValue();
15847   if (!ConstantMatrixType::isDimensionValid(Dim)) {
15848     S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15849         << Name << ConstantMatrixType::getMaxElementsPerDimension();
15850     return {};
15851   }
15852   return Dim;
15853 }
15854 
15855 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15856                                                   ExprResult CallResult) {
15857   if (!getLangOpts().MatrixTypes) {
15858     Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15859     return ExprError();
15860   }
15861 
15862   if (checkArgCount(*this, TheCall, 4))
15863     return ExprError();
15864 
15865   unsigned PtrArgIdx = 0;
15866   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15867   Expr *RowsExpr = TheCall->getArg(1);
15868   Expr *ColumnsExpr = TheCall->getArg(2);
15869   Expr *StrideExpr = TheCall->getArg(3);
15870 
15871   bool ArgError = false;
15872 
15873   // Check pointer argument.
15874   {
15875     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15876     if (PtrConv.isInvalid())
15877       return PtrConv;
15878     PtrExpr = PtrConv.get();
15879     TheCall->setArg(0, PtrExpr);
15880     if (PtrExpr->isTypeDependent()) {
15881       TheCall->setType(Context.DependentTy);
15882       return TheCall;
15883     }
15884   }
15885 
15886   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15887   QualType ElementTy;
15888   if (!PtrTy) {
15889     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15890         << PtrArgIdx + 1;
15891     ArgError = true;
15892   } else {
15893     ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15894 
15895     if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15896       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15897           << PtrArgIdx + 1;
15898       ArgError = true;
15899     }
15900   }
15901 
15902   // Apply default Lvalue conversions and convert the expression to size_t.
15903   auto ApplyArgumentConversions = [this](Expr *E) {
15904     ExprResult Conv = DefaultLvalueConversion(E);
15905     if (Conv.isInvalid())
15906       return Conv;
15907 
15908     return tryConvertExprToType(Conv.get(), Context.getSizeType());
15909   };
15910 
15911   // Apply conversion to row and column expressions.
15912   ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15913   if (!RowsConv.isInvalid()) {
15914     RowsExpr = RowsConv.get();
15915     TheCall->setArg(1, RowsExpr);
15916   } else
15917     RowsExpr = nullptr;
15918 
15919   ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15920   if (!ColumnsConv.isInvalid()) {
15921     ColumnsExpr = ColumnsConv.get();
15922     TheCall->setArg(2, ColumnsExpr);
15923   } else
15924     ColumnsExpr = nullptr;
15925 
15926   // If any any part of the result matrix type is still pending, just use
15927   // Context.DependentTy, until all parts are resolved.
15928   if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15929       (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15930     TheCall->setType(Context.DependentTy);
15931     return CallResult;
15932   }
15933 
15934   // Check row and column dimenions.
15935   llvm::Optional<unsigned> MaybeRows;
15936   if (RowsExpr)
15937     MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15938 
15939   llvm::Optional<unsigned> MaybeColumns;
15940   if (ColumnsExpr)
15941     MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15942 
15943   // Check stride argument.
15944   ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15945   if (StrideConv.isInvalid())
15946     return ExprError();
15947   StrideExpr = StrideConv.get();
15948   TheCall->setArg(3, StrideExpr);
15949 
15950   if (MaybeRows) {
15951     if (Optional<llvm::APSInt> Value =
15952             StrideExpr->getIntegerConstantExpr(Context)) {
15953       uint64_t Stride = Value->getZExtValue();
15954       if (Stride < *MaybeRows) {
15955         Diag(StrideExpr->getBeginLoc(),
15956              diag::err_builtin_matrix_stride_too_small);
15957         ArgError = true;
15958       }
15959     }
15960   }
15961 
15962   if (ArgError || !MaybeRows || !MaybeColumns)
15963     return ExprError();
15964 
15965   TheCall->setType(
15966       Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15967   return CallResult;
15968 }
15969 
15970 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15971                                                    ExprResult CallResult) {
15972   if (checkArgCount(*this, TheCall, 3))
15973     return ExprError();
15974 
15975   unsigned PtrArgIdx = 1;
15976   Expr *MatrixExpr = TheCall->getArg(0);
15977   Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15978   Expr *StrideExpr = TheCall->getArg(2);
15979 
15980   bool ArgError = false;
15981 
15982   {
15983     ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15984     if (MatrixConv.isInvalid())
15985       return MatrixConv;
15986     MatrixExpr = MatrixConv.get();
15987     TheCall->setArg(0, MatrixExpr);
15988   }
15989   if (MatrixExpr->isTypeDependent()) {
15990     TheCall->setType(Context.DependentTy);
15991     return TheCall;
15992   }
15993 
15994   auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15995   if (!MatrixTy) {
15996     Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
15997     ArgError = true;
15998   }
15999 
16000   {
16001     ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16002     if (PtrConv.isInvalid())
16003       return PtrConv;
16004     PtrExpr = PtrConv.get();
16005     TheCall->setArg(1, PtrExpr);
16006     if (PtrExpr->isTypeDependent()) {
16007       TheCall->setType(Context.DependentTy);
16008       return TheCall;
16009     }
16010   }
16011 
16012   // Check pointer argument.
16013   auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16014   if (!PtrTy) {
16015     Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16016         << PtrArgIdx + 1;
16017     ArgError = true;
16018   } else {
16019     QualType ElementTy = PtrTy->getPointeeType();
16020     if (ElementTy.isConstQualified()) {
16021       Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16022       ArgError = true;
16023     }
16024     ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16025     if (MatrixTy &&
16026         !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16027       Diag(PtrExpr->getBeginLoc(),
16028            diag::err_builtin_matrix_pointer_arg_mismatch)
16029           << ElementTy << MatrixTy->getElementType();
16030       ArgError = true;
16031     }
16032   }
16033 
16034   // Apply default Lvalue conversions and convert the stride expression to
16035   // size_t.
16036   {
16037     ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16038     if (StrideConv.isInvalid())
16039       return StrideConv;
16040 
16041     StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16042     if (StrideConv.isInvalid())
16043       return StrideConv;
16044     StrideExpr = StrideConv.get();
16045     TheCall->setArg(2, StrideExpr);
16046   }
16047 
16048   // Check stride argument.
16049   if (MatrixTy) {
16050     if (Optional<llvm::APSInt> Value =
16051             StrideExpr->getIntegerConstantExpr(Context)) {
16052       uint64_t Stride = Value->getZExtValue();
16053       if (Stride < MatrixTy->getNumRows()) {
16054         Diag(StrideExpr->getBeginLoc(),
16055              diag::err_builtin_matrix_stride_too_small);
16056         ArgError = true;
16057       }
16058     }
16059   }
16060 
16061   if (ArgError)
16062     return ExprError();
16063 
16064   return CallResult;
16065 }
16066 
16067 /// \brief Enforce the bounds of a TCB
16068 /// CheckTCBEnforcement - Enforces that every function in a named TCB only
16069 /// directly calls other functions in the same TCB as marked by the enforce_tcb
16070 /// and enforce_tcb_leaf attributes.
16071 void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16072                                const FunctionDecl *Callee) {
16073   const FunctionDecl *Caller = getCurFunctionDecl();
16074 
16075   // Calls to builtins are not enforced.
16076   if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16077       Callee->getBuiltinID() != 0)
16078     return;
16079 
16080   // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16081   // all TCBs the callee is a part of.
16082   llvm::StringSet<> CalleeTCBs;
16083   for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16084            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16085   for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16086            [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16087 
16088   // Go through the TCBs the caller is a part of and emit warnings if Caller
16089   // is in a TCB that the Callee is not.
16090   for_each(
16091       Caller->specific_attrs<EnforceTCBAttr>(),
16092       [&](const auto *A) {
16093         StringRef CallerTCB = A->getTCBName();
16094         if (CalleeTCBs.count(CallerTCB) == 0) {
16095           this->Diag(TheCall->getExprLoc(),
16096                      diag::warn_tcb_enforcement_violation) << Callee
16097                                                            << CallerTCB;
16098         }
16099       });
16100 }
16101