1 //===- SemaChecking.cpp - Extra Semantic Checking -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements extra semantic analysis beyond what is enforced 10 // by the C type system. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/APValue.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/Attr.h" 17 #include "clang/AST/AttrIterator.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/Decl.h" 20 #include "clang/AST/DeclBase.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclarationName.h" 24 #include "clang/AST/EvaluatedExprVisitor.h" 25 #include "clang/AST/Expr.h" 26 #include "clang/AST/ExprCXX.h" 27 #include "clang/AST/ExprObjC.h" 28 #include "clang/AST/ExprOpenMP.h" 29 #include "clang/AST/FormatString.h" 30 #include "clang/AST/NSAPI.h" 31 #include "clang/AST/NonTrivialTypeVisitor.h" 32 #include "clang/AST/OperationKinds.h" 33 #include "clang/AST/RecordLayout.h" 34 #include "clang/AST/Stmt.h" 35 #include "clang/AST/TemplateBase.h" 36 #include "clang/AST/Type.h" 37 #include "clang/AST/TypeLoc.h" 38 #include "clang/AST/UnresolvedSet.h" 39 #include "clang/Basic/AddressSpaces.h" 40 #include "clang/Basic/CharInfo.h" 41 #include "clang/Basic/Diagnostic.h" 42 #include "clang/Basic/IdentifierTable.h" 43 #include "clang/Basic/LLVM.h" 44 #include "clang/Basic/LangOptions.h" 45 #include "clang/Basic/OpenCLOptions.h" 46 #include "clang/Basic/OperatorKinds.h" 47 #include "clang/Basic/PartialDiagnostic.h" 48 #include "clang/Basic/SourceLocation.h" 49 #include "clang/Basic/SourceManager.h" 50 #include "clang/Basic/Specifiers.h" 51 #include "clang/Basic/SyncScope.h" 52 #include "clang/Basic/TargetBuiltins.h" 53 #include "clang/Basic/TargetCXXABI.h" 54 #include "clang/Basic/TargetInfo.h" 55 #include "clang/Basic/TypeTraits.h" 56 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 57 #include "clang/Sema/Initialization.h" 58 #include "clang/Sema/Lookup.h" 59 #include "clang/Sema/Ownership.h" 60 #include "clang/Sema/Scope.h" 61 #include "clang/Sema/ScopeInfo.h" 62 #include "clang/Sema/Sema.h" 63 #include "clang/Sema/SemaInternal.h" 64 #include "llvm/ADT/APFloat.h" 65 #include "llvm/ADT/APInt.h" 66 #include "llvm/ADT/APSInt.h" 67 #include "llvm/ADT/ArrayRef.h" 68 #include "llvm/ADT/DenseMap.h" 69 #include "llvm/ADT/FoldingSet.h" 70 #include "llvm/ADT/None.h" 71 #include "llvm/ADT/Optional.h" 72 #include "llvm/ADT/STLExtras.h" 73 #include "llvm/ADT/SmallBitVector.h" 74 #include "llvm/ADT/SmallPtrSet.h" 75 #include "llvm/ADT/SmallString.h" 76 #include "llvm/ADT/SmallVector.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/ADT/StringSet.h" 79 #include "llvm/ADT/StringSwitch.h" 80 #include "llvm/ADT/Triple.h" 81 #include "llvm/Support/AtomicOrdering.h" 82 #include "llvm/Support/Casting.h" 83 #include "llvm/Support/Compiler.h" 84 #include "llvm/Support/ConvertUTF.h" 85 #include "llvm/Support/ErrorHandling.h" 86 #include "llvm/Support/Format.h" 87 #include "llvm/Support/Locale.h" 88 #include "llvm/Support/MathExtras.h" 89 #include "llvm/Support/SaveAndRestore.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include <algorithm> 92 #include <bitset> 93 #include <cassert> 94 #include <cstddef> 95 #include <cstdint> 96 #include <functional> 97 #include <limits> 98 #include <string> 99 #include <tuple> 100 #include <utility> 101 102 using namespace clang; 103 using namespace sema; 104 105 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL, 106 unsigned ByteNo) const { 107 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts, 108 Context.getTargetInfo()); 109 } 110 111 /// Checks that a call expression's argument count is the desired number. 112 /// This is useful when doing custom type-checking. Returns true on error. 113 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) { 114 unsigned argCount = call->getNumArgs(); 115 if (argCount == desiredArgCount) return false; 116 117 if (argCount < desiredArgCount) 118 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args) 119 << 0 /*function call*/ << desiredArgCount << argCount 120 << call->getSourceRange(); 121 122 // Highlight all the excess arguments. 123 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(), 124 call->getArg(argCount - 1)->getEndLoc()); 125 126 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args) 127 << 0 /*function call*/ << desiredArgCount << argCount 128 << call->getArg(1)->getSourceRange(); 129 } 130 131 /// Check that the first argument to __builtin_annotation is an integer 132 /// and the second argument is a non-wide string literal. 133 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) { 134 if (checkArgCount(S, TheCall, 2)) 135 return true; 136 137 // First argument should be an integer. 138 Expr *ValArg = TheCall->getArg(0); 139 QualType Ty = ValArg->getType(); 140 if (!Ty->isIntegerType()) { 141 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg) 142 << ValArg->getSourceRange(); 143 return true; 144 } 145 146 // Second argument should be a constant string. 147 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts(); 148 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg); 149 if (!Literal || !Literal->isAscii()) { 150 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg) 151 << StrArg->getSourceRange(); 152 return true; 153 } 154 155 TheCall->setType(Ty); 156 return false; 157 } 158 159 static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) { 160 // We need at least one argument. 161 if (TheCall->getNumArgs() < 1) { 162 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 163 << 0 << 1 << TheCall->getNumArgs() 164 << TheCall->getCallee()->getSourceRange(); 165 return true; 166 } 167 168 // All arguments should be wide string literals. 169 for (Expr *Arg : TheCall->arguments()) { 170 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); 171 if (!Literal || !Literal->isWide()) { 172 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str) 173 << Arg->getSourceRange(); 174 return true; 175 } 176 } 177 178 return false; 179 } 180 181 /// Check that the argument to __builtin_addressof is a glvalue, and set the 182 /// result type to the corresponding pointer type. 183 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) { 184 if (checkArgCount(S, TheCall, 1)) 185 return true; 186 187 ExprResult Arg(TheCall->getArg(0)); 188 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc()); 189 if (ResultType.isNull()) 190 return true; 191 192 TheCall->setArg(0, Arg.get()); 193 TheCall->setType(ResultType); 194 return false; 195 } 196 197 /// Check the number of arguments and set the result type to 198 /// the argument type. 199 static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) { 200 if (checkArgCount(S, TheCall, 1)) 201 return true; 202 203 TheCall->setType(TheCall->getArg(0)->getType()); 204 return false; 205 } 206 207 /// Check that the value argument for __builtin_is_aligned(value, alignment) and 208 /// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer 209 /// type (but not a function pointer) and that the alignment is a power-of-two. 210 static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) { 211 if (checkArgCount(S, TheCall, 2)) 212 return true; 213 214 clang::Expr *Source = TheCall->getArg(0); 215 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned; 216 217 auto IsValidIntegerType = [](QualType Ty) { 218 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType(); 219 }; 220 QualType SrcTy = Source->getType(); 221 // We should also be able to use it with arrays (but not functions!). 222 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) { 223 SrcTy = S.Context.getDecayedType(SrcTy); 224 } 225 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) || 226 SrcTy->isFunctionPointerType()) { 227 // FIXME: this is not quite the right error message since we don't allow 228 // floating point types, or member pointers. 229 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand) 230 << SrcTy; 231 return true; 232 } 233 234 clang::Expr *AlignOp = TheCall->getArg(1); 235 if (!IsValidIntegerType(AlignOp->getType())) { 236 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int) 237 << AlignOp->getType(); 238 return true; 239 } 240 Expr::EvalResult AlignResult; 241 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1; 242 // We can't check validity of alignment if it is value dependent. 243 if (!AlignOp->isValueDependent() && 244 AlignOp->EvaluateAsInt(AlignResult, S.Context, 245 Expr::SE_AllowSideEffects)) { 246 llvm::APSInt AlignValue = AlignResult.Val.getInt(); 247 llvm::APSInt MaxValue( 248 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits)); 249 if (AlignValue < 1) { 250 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1; 251 return true; 252 } 253 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) { 254 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big) 255 << MaxValue.toString(10); 256 return true; 257 } 258 if (!AlignValue.isPowerOf2()) { 259 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two); 260 return true; 261 } 262 if (AlignValue == 1) { 263 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless) 264 << IsBooleanAlignBuiltin; 265 } 266 } 267 268 ExprResult SrcArg = S.PerformCopyInitialization( 269 InitializedEntity::InitializeParameter(S.Context, SrcTy, false), 270 SourceLocation(), Source); 271 if (SrcArg.isInvalid()) 272 return true; 273 TheCall->setArg(0, SrcArg.get()); 274 ExprResult AlignArg = 275 S.PerformCopyInitialization(InitializedEntity::InitializeParameter( 276 S.Context, AlignOp->getType(), false), 277 SourceLocation(), AlignOp); 278 if (AlignArg.isInvalid()) 279 return true; 280 TheCall->setArg(1, AlignArg.get()); 281 // For align_up/align_down, the return type is the same as the (potentially 282 // decayed) argument type including qualifiers. For is_aligned(), the result 283 // is always bool. 284 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy); 285 return false; 286 } 287 288 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall, 289 unsigned BuiltinID) { 290 if (checkArgCount(S, TheCall, 3)) 291 return true; 292 293 // First two arguments should be integers. 294 for (unsigned I = 0; I < 2; ++I) { 295 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I)); 296 if (Arg.isInvalid()) return true; 297 TheCall->setArg(I, Arg.get()); 298 299 QualType Ty = Arg.get()->getType(); 300 if (!Ty->isIntegerType()) { 301 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int) 302 << Ty << Arg.get()->getSourceRange(); 303 return true; 304 } 305 } 306 307 // Third argument should be a pointer to a non-const integer. 308 // IRGen correctly handles volatile, restrict, and address spaces, and 309 // the other qualifiers aren't possible. 310 { 311 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2)); 312 if (Arg.isInvalid()) return true; 313 TheCall->setArg(2, Arg.get()); 314 315 QualType Ty = Arg.get()->getType(); 316 const auto *PtrTy = Ty->getAs<PointerType>(); 317 if (!PtrTy || 318 !PtrTy->getPointeeType()->isIntegerType() || 319 PtrTy->getPointeeType().isConstQualified()) { 320 S.Diag(Arg.get()->getBeginLoc(), 321 diag::err_overflow_builtin_must_be_ptr_int) 322 << Ty << Arg.get()->getSourceRange(); 323 return true; 324 } 325 } 326 327 // Disallow signed ExtIntType args larger than 128 bits to mul function until 328 // we improve backend support. 329 if (BuiltinID == Builtin::BI__builtin_mul_overflow) { 330 for (unsigned I = 0; I < 3; ++I) { 331 const auto Arg = TheCall->getArg(I); 332 // Third argument will be a pointer. 333 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType(); 334 if (Ty->isExtIntType() && Ty->isSignedIntegerType() && 335 S.getASTContext().getIntWidth(Ty) > 128) 336 return S.Diag(Arg->getBeginLoc(), 337 diag::err_overflow_builtin_ext_int_max_size) 338 << 128; 339 } 340 } 341 342 return false; 343 } 344 345 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) { 346 if (checkArgCount(S, BuiltinCall, 2)) 347 return true; 348 349 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc(); 350 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts(); 351 Expr *Call = BuiltinCall->getArg(0); 352 Expr *Chain = BuiltinCall->getArg(1); 353 354 if (Call->getStmtClass() != Stmt::CallExprClass) { 355 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call) 356 << Call->getSourceRange(); 357 return true; 358 } 359 360 auto CE = cast<CallExpr>(Call); 361 if (CE->getCallee()->getType()->isBlockPointerType()) { 362 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call) 363 << Call->getSourceRange(); 364 return true; 365 } 366 367 const Decl *TargetDecl = CE->getCalleeDecl(); 368 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 369 if (FD->getBuiltinID()) { 370 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call) 371 << Call->getSourceRange(); 372 return true; 373 } 374 375 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) { 376 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call) 377 << Call->getSourceRange(); 378 return true; 379 } 380 381 ExprResult ChainResult = S.UsualUnaryConversions(Chain); 382 if (ChainResult.isInvalid()) 383 return true; 384 if (!ChainResult.get()->getType()->isPointerType()) { 385 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer) 386 << Chain->getSourceRange(); 387 return true; 388 } 389 390 QualType ReturnTy = CE->getCallReturnType(S.Context); 391 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() }; 392 QualType BuiltinTy = S.Context.getFunctionType( 393 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo()); 394 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy); 395 396 Builtin = 397 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get(); 398 399 BuiltinCall->setType(CE->getType()); 400 BuiltinCall->setValueKind(CE->getValueKind()); 401 BuiltinCall->setObjectKind(CE->getObjectKind()); 402 BuiltinCall->setCallee(Builtin); 403 BuiltinCall->setArg(1, ChainResult.get()); 404 405 return false; 406 } 407 408 namespace { 409 410 class EstimateSizeFormatHandler 411 : public analyze_format_string::FormatStringHandler { 412 size_t Size; 413 414 public: 415 EstimateSizeFormatHandler(StringRef Format) 416 : Size(std::min(Format.find(0), Format.size()) + 417 1 /* null byte always written by sprintf */) {} 418 419 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 420 const char *, unsigned SpecifierLen) override { 421 422 const size_t FieldWidth = computeFieldWidth(FS); 423 const size_t Precision = computePrecision(FS); 424 425 // The actual format. 426 switch (FS.getConversionSpecifier().getKind()) { 427 // Just a char. 428 case analyze_format_string::ConversionSpecifier::cArg: 429 case analyze_format_string::ConversionSpecifier::CArg: 430 Size += std::max(FieldWidth, (size_t)1); 431 break; 432 // Just an integer. 433 case analyze_format_string::ConversionSpecifier::dArg: 434 case analyze_format_string::ConversionSpecifier::DArg: 435 case analyze_format_string::ConversionSpecifier::iArg: 436 case analyze_format_string::ConversionSpecifier::oArg: 437 case analyze_format_string::ConversionSpecifier::OArg: 438 case analyze_format_string::ConversionSpecifier::uArg: 439 case analyze_format_string::ConversionSpecifier::UArg: 440 case analyze_format_string::ConversionSpecifier::xArg: 441 case analyze_format_string::ConversionSpecifier::XArg: 442 Size += std::max(FieldWidth, Precision); 443 break; 444 445 // %g style conversion switches between %f or %e style dynamically. 446 // %f always takes less space, so default to it. 447 case analyze_format_string::ConversionSpecifier::gArg: 448 case analyze_format_string::ConversionSpecifier::GArg: 449 450 // Floating point number in the form '[+]ddd.ddd'. 451 case analyze_format_string::ConversionSpecifier::fArg: 452 case analyze_format_string::ConversionSpecifier::FArg: 453 Size += std::max(FieldWidth, 1 /* integer part */ + 454 (Precision ? 1 + Precision 455 : 0) /* period + decimal */); 456 break; 457 458 // Floating point number in the form '[-]d.ddde[+-]dd'. 459 case analyze_format_string::ConversionSpecifier::eArg: 460 case analyze_format_string::ConversionSpecifier::EArg: 461 Size += 462 std::max(FieldWidth, 463 1 /* integer part */ + 464 (Precision ? 1 + Precision : 0) /* period + decimal */ + 465 1 /* e or E letter */ + 2 /* exponent */); 466 break; 467 468 // Floating point number in the form '[-]0xh.hhhhp±dd'. 469 case analyze_format_string::ConversionSpecifier::aArg: 470 case analyze_format_string::ConversionSpecifier::AArg: 471 Size += 472 std::max(FieldWidth, 473 2 /* 0x */ + 1 /* integer part */ + 474 (Precision ? 1 + Precision : 0) /* period + decimal */ + 475 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */); 476 break; 477 478 // Just a string. 479 case analyze_format_string::ConversionSpecifier::sArg: 480 case analyze_format_string::ConversionSpecifier::SArg: 481 Size += FieldWidth; 482 break; 483 484 // Just a pointer in the form '0xddd'. 485 case analyze_format_string::ConversionSpecifier::pArg: 486 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision); 487 break; 488 489 // A plain percent. 490 case analyze_format_string::ConversionSpecifier::PercentArg: 491 Size += 1; 492 break; 493 494 default: 495 break; 496 } 497 498 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix(); 499 500 if (FS.hasAlternativeForm()) { 501 switch (FS.getConversionSpecifier().getKind()) { 502 default: 503 break; 504 // Force a leading '0'. 505 case analyze_format_string::ConversionSpecifier::oArg: 506 Size += 1; 507 break; 508 // Force a leading '0x'. 509 case analyze_format_string::ConversionSpecifier::xArg: 510 case analyze_format_string::ConversionSpecifier::XArg: 511 Size += 2; 512 break; 513 // Force a period '.' before decimal, even if precision is 0. 514 case analyze_format_string::ConversionSpecifier::aArg: 515 case analyze_format_string::ConversionSpecifier::AArg: 516 case analyze_format_string::ConversionSpecifier::eArg: 517 case analyze_format_string::ConversionSpecifier::EArg: 518 case analyze_format_string::ConversionSpecifier::fArg: 519 case analyze_format_string::ConversionSpecifier::FArg: 520 case analyze_format_string::ConversionSpecifier::gArg: 521 case analyze_format_string::ConversionSpecifier::GArg: 522 Size += (Precision ? 0 : 1); 523 break; 524 } 525 } 526 assert(SpecifierLen <= Size && "no underflow"); 527 Size -= SpecifierLen; 528 return true; 529 } 530 531 size_t getSizeLowerBound() const { return Size; } 532 533 private: 534 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) { 535 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth(); 536 size_t FieldWidth = 0; 537 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant) 538 FieldWidth = FW.getConstantAmount(); 539 return FieldWidth; 540 } 541 542 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) { 543 const analyze_format_string::OptionalAmount &FW = FS.getPrecision(); 544 size_t Precision = 0; 545 546 // See man 3 printf for default precision value based on the specifier. 547 switch (FW.getHowSpecified()) { 548 case analyze_format_string::OptionalAmount::NotSpecified: 549 switch (FS.getConversionSpecifier().getKind()) { 550 default: 551 break; 552 case analyze_format_string::ConversionSpecifier::dArg: // %d 553 case analyze_format_string::ConversionSpecifier::DArg: // %D 554 case analyze_format_string::ConversionSpecifier::iArg: // %i 555 Precision = 1; 556 break; 557 case analyze_format_string::ConversionSpecifier::oArg: // %d 558 case analyze_format_string::ConversionSpecifier::OArg: // %D 559 case analyze_format_string::ConversionSpecifier::uArg: // %d 560 case analyze_format_string::ConversionSpecifier::UArg: // %D 561 case analyze_format_string::ConversionSpecifier::xArg: // %d 562 case analyze_format_string::ConversionSpecifier::XArg: // %D 563 Precision = 1; 564 break; 565 case analyze_format_string::ConversionSpecifier::fArg: // %f 566 case analyze_format_string::ConversionSpecifier::FArg: // %F 567 case analyze_format_string::ConversionSpecifier::eArg: // %e 568 case analyze_format_string::ConversionSpecifier::EArg: // %E 569 case analyze_format_string::ConversionSpecifier::gArg: // %g 570 case analyze_format_string::ConversionSpecifier::GArg: // %G 571 Precision = 6; 572 break; 573 case analyze_format_string::ConversionSpecifier::pArg: // %d 574 Precision = 1; 575 break; 576 } 577 break; 578 case analyze_format_string::OptionalAmount::Constant: 579 Precision = FW.getConstantAmount(); 580 break; 581 default: 582 break; 583 } 584 return Precision; 585 } 586 }; 587 588 } // namespace 589 590 /// Check a call to BuiltinID for buffer overflows. If BuiltinID is a 591 /// __builtin_*_chk function, then use the object size argument specified in the 592 /// source. Otherwise, infer the object size using __builtin_object_size. 593 void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD, 594 CallExpr *TheCall) { 595 // FIXME: There are some more useful checks we could be doing here: 596 // - Evaluate strlen of strcpy arguments, use as object size. 597 598 if (TheCall->isValueDependent() || TheCall->isTypeDependent() || 599 isConstantEvaluated()) 600 return; 601 602 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true); 603 if (!BuiltinID) 604 return; 605 606 const TargetInfo &TI = getASTContext().getTargetInfo(); 607 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType()); 608 609 unsigned DiagID = 0; 610 bool IsChkVariant = false; 611 Optional<llvm::APSInt> UsedSize; 612 unsigned SizeIndex, ObjectIndex; 613 switch (BuiltinID) { 614 default: 615 return; 616 case Builtin::BIsprintf: 617 case Builtin::BI__builtin___sprintf_chk: { 618 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3; 619 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts(); 620 621 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) { 622 623 if (!Format->isAscii() && !Format->isUTF8()) 624 return; 625 626 StringRef FormatStrRef = Format->getString(); 627 EstimateSizeFormatHandler H(FormatStrRef); 628 const char *FormatBytes = FormatStrRef.data(); 629 const ConstantArrayType *T = 630 Context.getAsConstantArrayType(Format->getType()); 631 assert(T && "String literal not of constant array type!"); 632 size_t TypeSize = T->getSize().getZExtValue(); 633 634 // In case there's a null byte somewhere. 635 size_t StrLen = 636 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0)); 637 if (!analyze_format_string::ParsePrintfString( 638 H, FormatBytes, FormatBytes + StrLen, getLangOpts(), 639 Context.getTargetInfo(), false)) { 640 DiagID = diag::warn_fortify_source_format_overflow; 641 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound()) 642 .extOrTrunc(SizeTypeWidth); 643 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) { 644 IsChkVariant = true; 645 ObjectIndex = 2; 646 } else { 647 IsChkVariant = false; 648 ObjectIndex = 0; 649 } 650 break; 651 } 652 } 653 return; 654 } 655 case Builtin::BI__builtin___memcpy_chk: 656 case Builtin::BI__builtin___memmove_chk: 657 case Builtin::BI__builtin___memset_chk: 658 case Builtin::BI__builtin___strlcat_chk: 659 case Builtin::BI__builtin___strlcpy_chk: 660 case Builtin::BI__builtin___strncat_chk: 661 case Builtin::BI__builtin___strncpy_chk: 662 case Builtin::BI__builtin___stpncpy_chk: 663 case Builtin::BI__builtin___memccpy_chk: 664 case Builtin::BI__builtin___mempcpy_chk: { 665 DiagID = diag::warn_builtin_chk_overflow; 666 IsChkVariant = true; 667 SizeIndex = TheCall->getNumArgs() - 2; 668 ObjectIndex = TheCall->getNumArgs() - 1; 669 break; 670 } 671 672 case Builtin::BI__builtin___snprintf_chk: 673 case Builtin::BI__builtin___vsnprintf_chk: { 674 DiagID = diag::warn_builtin_chk_overflow; 675 IsChkVariant = true; 676 SizeIndex = 1; 677 ObjectIndex = 3; 678 break; 679 } 680 681 case Builtin::BIstrncat: 682 case Builtin::BI__builtin_strncat: 683 case Builtin::BIstrncpy: 684 case Builtin::BI__builtin_strncpy: 685 case Builtin::BIstpncpy: 686 case Builtin::BI__builtin_stpncpy: { 687 // Whether these functions overflow depends on the runtime strlen of the 688 // string, not just the buffer size, so emitting the "always overflow" 689 // diagnostic isn't quite right. We should still diagnose passing a buffer 690 // size larger than the destination buffer though; this is a runtime abort 691 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise. 692 DiagID = diag::warn_fortify_source_size_mismatch; 693 SizeIndex = TheCall->getNumArgs() - 1; 694 ObjectIndex = 0; 695 break; 696 } 697 698 case Builtin::BImemcpy: 699 case Builtin::BI__builtin_memcpy: 700 case Builtin::BImemmove: 701 case Builtin::BI__builtin_memmove: 702 case Builtin::BImemset: 703 case Builtin::BI__builtin_memset: 704 case Builtin::BImempcpy: 705 case Builtin::BI__builtin_mempcpy: { 706 DiagID = diag::warn_fortify_source_overflow; 707 SizeIndex = TheCall->getNumArgs() - 1; 708 ObjectIndex = 0; 709 break; 710 } 711 case Builtin::BIsnprintf: 712 case Builtin::BI__builtin_snprintf: 713 case Builtin::BIvsnprintf: 714 case Builtin::BI__builtin_vsnprintf: { 715 DiagID = diag::warn_fortify_source_size_mismatch; 716 SizeIndex = 1; 717 ObjectIndex = 0; 718 break; 719 } 720 } 721 722 llvm::APSInt ObjectSize; 723 // For __builtin___*_chk, the object size is explicitly provided by the caller 724 // (usually using __builtin_object_size). Use that value to check this call. 725 if (IsChkVariant) { 726 Expr::EvalResult Result; 727 Expr *SizeArg = TheCall->getArg(ObjectIndex); 728 if (!SizeArg->EvaluateAsInt(Result, getASTContext())) 729 return; 730 ObjectSize = Result.Val.getInt(); 731 732 // Otherwise, try to evaluate an imaginary call to __builtin_object_size. 733 } else { 734 // If the parameter has a pass_object_size attribute, then we should use its 735 // (potentially) more strict checking mode. Otherwise, conservatively assume 736 // type 0. 737 int BOSType = 0; 738 if (const auto *POS = 739 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>()) 740 BOSType = POS->getType(); 741 742 Expr *ObjArg = TheCall->getArg(ObjectIndex); 743 uint64_t Result; 744 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType)) 745 return; 746 // Get the object size in the target's size_t width. 747 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth); 748 } 749 750 // Evaluate the number of bytes of the object that this call will use. 751 if (!UsedSize) { 752 Expr::EvalResult Result; 753 Expr *UsedSizeArg = TheCall->getArg(SizeIndex); 754 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext())) 755 return; 756 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth); 757 } 758 759 if (UsedSize.getValue().ule(ObjectSize)) 760 return; 761 762 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID); 763 // Skim off the details of whichever builtin was called to produce a better 764 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly. 765 if (IsChkVariant) { 766 FunctionName = FunctionName.drop_front(std::strlen("__builtin___")); 767 FunctionName = FunctionName.drop_back(std::strlen("_chk")); 768 } else if (FunctionName.startswith("__builtin_")) { 769 FunctionName = FunctionName.drop_front(std::strlen("__builtin_")); 770 } 771 772 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 773 PDiag(DiagID) 774 << FunctionName << ObjectSize.toString(/*Radix=*/10) 775 << UsedSize.getValue().toString(/*Radix=*/10)); 776 } 777 778 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall, 779 Scope::ScopeFlags NeededScopeFlags, 780 unsigned DiagID) { 781 // Scopes aren't available during instantiation. Fortunately, builtin 782 // functions cannot be template args so they cannot be formed through template 783 // instantiation. Therefore checking once during the parse is sufficient. 784 if (SemaRef.inTemplateInstantiation()) 785 return false; 786 787 Scope *S = SemaRef.getCurScope(); 788 while (S && !S->isSEHExceptScope()) 789 S = S->getParent(); 790 if (!S || !(S->getFlags() & NeededScopeFlags)) { 791 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 792 SemaRef.Diag(TheCall->getExprLoc(), DiagID) 793 << DRE->getDecl()->getIdentifier(); 794 return true; 795 } 796 797 return false; 798 } 799 800 static inline bool isBlockPointer(Expr *Arg) { 801 return Arg->getType()->isBlockPointerType(); 802 } 803 804 /// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local 805 /// void*, which is a requirement of device side enqueue. 806 static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) { 807 const BlockPointerType *BPT = 808 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 809 ArrayRef<QualType> Params = 810 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes(); 811 unsigned ArgCounter = 0; 812 bool IllegalParams = false; 813 // Iterate through the block parameters until either one is found that is not 814 // a local void*, or the block is valid. 815 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end(); 816 I != E; ++I, ++ArgCounter) { 817 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() || 818 (*I)->getPointeeType().getQualifiers().getAddressSpace() != 819 LangAS::opencl_local) { 820 // Get the location of the error. If a block literal has been passed 821 // (BlockExpr) then we can point straight to the offending argument, 822 // else we just point to the variable reference. 823 SourceLocation ErrorLoc; 824 if (isa<BlockExpr>(BlockArg)) { 825 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl(); 826 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc(); 827 } else if (isa<DeclRefExpr>(BlockArg)) { 828 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc(); 829 } 830 S.Diag(ErrorLoc, 831 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args); 832 IllegalParams = true; 833 } 834 } 835 836 return IllegalParams; 837 } 838 839 static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) { 840 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) { 841 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension) 842 << 1 << Call->getDirectCallee() << "cl_khr_subgroups"; 843 return true; 844 } 845 return false; 846 } 847 848 static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) { 849 if (checkArgCount(S, TheCall, 2)) 850 return true; 851 852 if (checkOpenCLSubgroupExt(S, TheCall)) 853 return true; 854 855 // First argument is an ndrange_t type. 856 Expr *NDRangeArg = TheCall->getArg(0); 857 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 858 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 859 << TheCall->getDirectCallee() << "'ndrange_t'"; 860 return true; 861 } 862 863 Expr *BlockArg = TheCall->getArg(1); 864 if (!isBlockPointer(BlockArg)) { 865 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 866 << TheCall->getDirectCallee() << "block"; 867 return true; 868 } 869 return checkOpenCLBlockArgs(S, BlockArg); 870 } 871 872 /// OpenCL C v2.0, s6.13.17.6 - Check the argument to the 873 /// get_kernel_work_group_size 874 /// and get_kernel_preferred_work_group_size_multiple builtin functions. 875 static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) { 876 if (checkArgCount(S, TheCall, 1)) 877 return true; 878 879 Expr *BlockArg = TheCall->getArg(0); 880 if (!isBlockPointer(BlockArg)) { 881 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type) 882 << TheCall->getDirectCallee() << "block"; 883 return true; 884 } 885 return checkOpenCLBlockArgs(S, BlockArg); 886 } 887 888 /// Diagnose integer type and any valid implicit conversion to it. 889 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, 890 const QualType &IntType); 891 892 static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall, 893 unsigned Start, unsigned End) { 894 bool IllegalParams = false; 895 for (unsigned I = Start; I <= End; ++I) 896 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I), 897 S.Context.getSizeType()); 898 return IllegalParams; 899 } 900 901 /// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all 902 /// 'local void*' parameter of passed block. 903 static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall, 904 Expr *BlockArg, 905 unsigned NumNonVarArgs) { 906 const BlockPointerType *BPT = 907 cast<BlockPointerType>(BlockArg->getType().getCanonicalType()); 908 unsigned NumBlockParams = 909 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams(); 910 unsigned TotalNumArgs = TheCall->getNumArgs(); 911 912 // For each argument passed to the block, a corresponding uint needs to 913 // be passed to describe the size of the local memory. 914 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) { 915 S.Diag(TheCall->getBeginLoc(), 916 diag::err_opencl_enqueue_kernel_local_size_args); 917 return true; 918 } 919 920 // Check that the sizes of the local memory are specified by integers. 921 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs, 922 TotalNumArgs - 1); 923 } 924 925 /// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different 926 /// overload formats specified in Table 6.13.17.1. 927 /// int enqueue_kernel(queue_t queue, 928 /// kernel_enqueue_flags_t flags, 929 /// const ndrange_t ndrange, 930 /// void (^block)(void)) 931 /// int enqueue_kernel(queue_t queue, 932 /// kernel_enqueue_flags_t flags, 933 /// const ndrange_t ndrange, 934 /// uint num_events_in_wait_list, 935 /// clk_event_t *event_wait_list, 936 /// clk_event_t *event_ret, 937 /// void (^block)(void)) 938 /// int enqueue_kernel(queue_t queue, 939 /// kernel_enqueue_flags_t flags, 940 /// const ndrange_t ndrange, 941 /// void (^block)(local void*, ...), 942 /// uint size0, ...) 943 /// int enqueue_kernel(queue_t queue, 944 /// kernel_enqueue_flags_t flags, 945 /// const ndrange_t ndrange, 946 /// uint num_events_in_wait_list, 947 /// clk_event_t *event_wait_list, 948 /// clk_event_t *event_ret, 949 /// void (^block)(local void*, ...), 950 /// uint size0, ...) 951 static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) { 952 unsigned NumArgs = TheCall->getNumArgs(); 953 954 if (NumArgs < 4) { 955 S.Diag(TheCall->getBeginLoc(), 956 diag::err_typecheck_call_too_few_args_at_least) 957 << 0 << 4 << NumArgs; 958 return true; 959 } 960 961 Expr *Arg0 = TheCall->getArg(0); 962 Expr *Arg1 = TheCall->getArg(1); 963 Expr *Arg2 = TheCall->getArg(2); 964 Expr *Arg3 = TheCall->getArg(3); 965 966 // First argument always needs to be a queue_t type. 967 if (!Arg0->getType()->isQueueT()) { 968 S.Diag(TheCall->getArg(0)->getBeginLoc(), 969 diag::err_opencl_builtin_expected_type) 970 << TheCall->getDirectCallee() << S.Context.OCLQueueTy; 971 return true; 972 } 973 974 // Second argument always needs to be a kernel_enqueue_flags_t enum value. 975 if (!Arg1->getType()->isIntegerType()) { 976 S.Diag(TheCall->getArg(1)->getBeginLoc(), 977 diag::err_opencl_builtin_expected_type) 978 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)"; 979 return true; 980 } 981 982 // Third argument is always an ndrange_t type. 983 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") { 984 S.Diag(TheCall->getArg(2)->getBeginLoc(), 985 diag::err_opencl_builtin_expected_type) 986 << TheCall->getDirectCallee() << "'ndrange_t'"; 987 return true; 988 } 989 990 // With four arguments, there is only one form that the function could be 991 // called in: no events and no variable arguments. 992 if (NumArgs == 4) { 993 // check that the last argument is the right block type. 994 if (!isBlockPointer(Arg3)) { 995 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type) 996 << TheCall->getDirectCallee() << "block"; 997 return true; 998 } 999 // we have a block type, check the prototype 1000 const BlockPointerType *BPT = 1001 cast<BlockPointerType>(Arg3->getType().getCanonicalType()); 1002 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) { 1003 S.Diag(Arg3->getBeginLoc(), 1004 diag::err_opencl_enqueue_kernel_blocks_no_args); 1005 return true; 1006 } 1007 return false; 1008 } 1009 // we can have block + varargs. 1010 if (isBlockPointer(Arg3)) 1011 return (checkOpenCLBlockArgs(S, Arg3) || 1012 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4)); 1013 // last two cases with either exactly 7 args or 7 args and varargs. 1014 if (NumArgs >= 7) { 1015 // check common block argument. 1016 Expr *Arg6 = TheCall->getArg(6); 1017 if (!isBlockPointer(Arg6)) { 1018 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type) 1019 << TheCall->getDirectCallee() << "block"; 1020 return true; 1021 } 1022 if (checkOpenCLBlockArgs(S, Arg6)) 1023 return true; 1024 1025 // Forth argument has to be any integer type. 1026 if (!Arg3->getType()->isIntegerType()) { 1027 S.Diag(TheCall->getArg(3)->getBeginLoc(), 1028 diag::err_opencl_builtin_expected_type) 1029 << TheCall->getDirectCallee() << "integer"; 1030 return true; 1031 } 1032 // check remaining common arguments. 1033 Expr *Arg4 = TheCall->getArg(4); 1034 Expr *Arg5 = TheCall->getArg(5); 1035 1036 // Fifth argument is always passed as a pointer to clk_event_t. 1037 if (!Arg4->isNullPointerConstant(S.Context, 1038 Expr::NPC_ValueDependentIsNotNull) && 1039 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) { 1040 S.Diag(TheCall->getArg(4)->getBeginLoc(), 1041 diag::err_opencl_builtin_expected_type) 1042 << TheCall->getDirectCallee() 1043 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1044 return true; 1045 } 1046 1047 // Sixth argument is always passed as a pointer to clk_event_t. 1048 if (!Arg5->isNullPointerConstant(S.Context, 1049 Expr::NPC_ValueDependentIsNotNull) && 1050 !(Arg5->getType()->isPointerType() && 1051 Arg5->getType()->getPointeeType()->isClkEventT())) { 1052 S.Diag(TheCall->getArg(5)->getBeginLoc(), 1053 diag::err_opencl_builtin_expected_type) 1054 << TheCall->getDirectCallee() 1055 << S.Context.getPointerType(S.Context.OCLClkEventTy); 1056 return true; 1057 } 1058 1059 if (NumArgs == 7) 1060 return false; 1061 1062 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7); 1063 } 1064 1065 // None of the specific case has been detected, give generic error 1066 S.Diag(TheCall->getBeginLoc(), 1067 diag::err_opencl_enqueue_kernel_incorrect_args); 1068 return true; 1069 } 1070 1071 /// Returns OpenCL access qual. 1072 static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) { 1073 return D->getAttr<OpenCLAccessAttr>(); 1074 } 1075 1076 /// Returns true if pipe element type is different from the pointer. 1077 static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) { 1078 const Expr *Arg0 = Call->getArg(0); 1079 // First argument type should always be pipe. 1080 if (!Arg0->getType()->isPipeType()) { 1081 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1082 << Call->getDirectCallee() << Arg0->getSourceRange(); 1083 return true; 1084 } 1085 OpenCLAccessAttr *AccessQual = 1086 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl()); 1087 // Validates the access qualifier is compatible with the call. 1088 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be 1089 // read_only and write_only, and assumed to be read_only if no qualifier is 1090 // specified. 1091 switch (Call->getDirectCallee()->getBuiltinID()) { 1092 case Builtin::BIread_pipe: 1093 case Builtin::BIreserve_read_pipe: 1094 case Builtin::BIcommit_read_pipe: 1095 case Builtin::BIwork_group_reserve_read_pipe: 1096 case Builtin::BIsub_group_reserve_read_pipe: 1097 case Builtin::BIwork_group_commit_read_pipe: 1098 case Builtin::BIsub_group_commit_read_pipe: 1099 if (!(!AccessQual || AccessQual->isReadOnly())) { 1100 S.Diag(Arg0->getBeginLoc(), 1101 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1102 << "read_only" << Arg0->getSourceRange(); 1103 return true; 1104 } 1105 break; 1106 case Builtin::BIwrite_pipe: 1107 case Builtin::BIreserve_write_pipe: 1108 case Builtin::BIcommit_write_pipe: 1109 case Builtin::BIwork_group_reserve_write_pipe: 1110 case Builtin::BIsub_group_reserve_write_pipe: 1111 case Builtin::BIwork_group_commit_write_pipe: 1112 case Builtin::BIsub_group_commit_write_pipe: 1113 if (!(AccessQual && AccessQual->isWriteOnly())) { 1114 S.Diag(Arg0->getBeginLoc(), 1115 diag::err_opencl_builtin_pipe_invalid_access_modifier) 1116 << "write_only" << Arg0->getSourceRange(); 1117 return true; 1118 } 1119 break; 1120 default: 1121 break; 1122 } 1123 return false; 1124 } 1125 1126 /// Returns true if pipe element type is different from the pointer. 1127 static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) { 1128 const Expr *Arg0 = Call->getArg(0); 1129 const Expr *ArgIdx = Call->getArg(Idx); 1130 const PipeType *PipeTy = cast<PipeType>(Arg0->getType()); 1131 const QualType EltTy = PipeTy->getElementType(); 1132 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>(); 1133 // The Idx argument should be a pointer and the type of the pointer and 1134 // the type of pipe element should also be the same. 1135 if (!ArgTy || 1136 !S.Context.hasSameType( 1137 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) { 1138 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1139 << Call->getDirectCallee() << S.Context.getPointerType(EltTy) 1140 << ArgIdx->getType() << ArgIdx->getSourceRange(); 1141 return true; 1142 } 1143 return false; 1144 } 1145 1146 // Performs semantic analysis for the read/write_pipe call. 1147 // \param S Reference to the semantic analyzer. 1148 // \param Call A pointer to the builtin call. 1149 // \return True if a semantic error has been found, false otherwise. 1150 static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) { 1151 // OpenCL v2.0 s6.13.16.2 - The built-in read/write 1152 // functions have two forms. 1153 switch (Call->getNumArgs()) { 1154 case 2: 1155 if (checkOpenCLPipeArg(S, Call)) 1156 return true; 1157 // The call with 2 arguments should be 1158 // read/write_pipe(pipe T, T*). 1159 // Check packet type T. 1160 if (checkOpenCLPipePacketType(S, Call, 1)) 1161 return true; 1162 break; 1163 1164 case 4: { 1165 if (checkOpenCLPipeArg(S, Call)) 1166 return true; 1167 // The call with 4 arguments should be 1168 // read/write_pipe(pipe T, reserve_id_t, uint, T*). 1169 // Check reserve_id_t. 1170 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1171 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1172 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1173 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1174 return true; 1175 } 1176 1177 // Check the index. 1178 const Expr *Arg2 = Call->getArg(2); 1179 if (!Arg2->getType()->isIntegerType() && 1180 !Arg2->getType()->isUnsignedIntegerType()) { 1181 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1182 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1183 << Arg2->getType() << Arg2->getSourceRange(); 1184 return true; 1185 } 1186 1187 // Check packet type T. 1188 if (checkOpenCLPipePacketType(S, Call, 3)) 1189 return true; 1190 } break; 1191 default: 1192 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num) 1193 << Call->getDirectCallee() << Call->getSourceRange(); 1194 return true; 1195 } 1196 1197 return false; 1198 } 1199 1200 // Performs a semantic analysis on the {work_group_/sub_group_ 1201 // /_}reserve_{read/write}_pipe 1202 // \param S Reference to the semantic analyzer. 1203 // \param Call The call to the builtin function to be analyzed. 1204 // \return True if a semantic error was found, false otherwise. 1205 static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) { 1206 if (checkArgCount(S, Call, 2)) 1207 return true; 1208 1209 if (checkOpenCLPipeArg(S, Call)) 1210 return true; 1211 1212 // Check the reserve size. 1213 if (!Call->getArg(1)->getType()->isIntegerType() && 1214 !Call->getArg(1)->getType()->isUnsignedIntegerType()) { 1215 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1216 << Call->getDirectCallee() << S.Context.UnsignedIntTy 1217 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1218 return true; 1219 } 1220 1221 // Since return type of reserve_read/write_pipe built-in function is 1222 // reserve_id_t, which is not defined in the builtin def file , we used int 1223 // as return type and need to override the return type of these functions. 1224 Call->setType(S.Context.OCLReserveIDTy); 1225 1226 return false; 1227 } 1228 1229 // Performs a semantic analysis on {work_group_/sub_group_ 1230 // /_}commit_{read/write}_pipe 1231 // \param S Reference to the semantic analyzer. 1232 // \param Call The call to the builtin function to be analyzed. 1233 // \return True if a semantic error was found, false otherwise. 1234 static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) { 1235 if (checkArgCount(S, Call, 2)) 1236 return true; 1237 1238 if (checkOpenCLPipeArg(S, Call)) 1239 return true; 1240 1241 // Check reserve_id_t. 1242 if (!Call->getArg(1)->getType()->isReserveIDT()) { 1243 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg) 1244 << Call->getDirectCallee() << S.Context.OCLReserveIDTy 1245 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange(); 1246 return true; 1247 } 1248 1249 return false; 1250 } 1251 1252 // Performs a semantic analysis on the call to built-in Pipe 1253 // Query Functions. 1254 // \param S Reference to the semantic analyzer. 1255 // \param Call The call to the builtin function to be analyzed. 1256 // \return True if a semantic error was found, false otherwise. 1257 static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) { 1258 if (checkArgCount(S, Call, 1)) 1259 return true; 1260 1261 if (!Call->getArg(0)->getType()->isPipeType()) { 1262 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg) 1263 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange(); 1264 return true; 1265 } 1266 1267 return false; 1268 } 1269 1270 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 1271 // Performs semantic analysis for the to_global/local/private call. 1272 // \param S Reference to the semantic analyzer. 1273 // \param BuiltinID ID of the builtin function. 1274 // \param Call A pointer to the builtin call. 1275 // \return True if a semantic error has been found, false otherwise. 1276 static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID, 1277 CallExpr *Call) { 1278 if (checkArgCount(S, Call, 1)) 1279 return true; 1280 1281 auto RT = Call->getArg(0)->getType(); 1282 if (!RT->isPointerType() || RT->getPointeeType() 1283 .getAddressSpace() == LangAS::opencl_constant) { 1284 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg) 1285 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange(); 1286 return true; 1287 } 1288 1289 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) { 1290 S.Diag(Call->getArg(0)->getBeginLoc(), 1291 diag::warn_opencl_generic_address_space_arg) 1292 << Call->getDirectCallee()->getNameInfo().getAsString() 1293 << Call->getArg(0)->getSourceRange(); 1294 } 1295 1296 RT = RT->getPointeeType(); 1297 auto Qual = RT.getQualifiers(); 1298 switch (BuiltinID) { 1299 case Builtin::BIto_global: 1300 Qual.setAddressSpace(LangAS::opencl_global); 1301 break; 1302 case Builtin::BIto_local: 1303 Qual.setAddressSpace(LangAS::opencl_local); 1304 break; 1305 case Builtin::BIto_private: 1306 Qual.setAddressSpace(LangAS::opencl_private); 1307 break; 1308 default: 1309 llvm_unreachable("Invalid builtin function"); 1310 } 1311 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType( 1312 RT.getUnqualifiedType(), Qual))); 1313 1314 return false; 1315 } 1316 1317 static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) { 1318 if (checkArgCount(S, TheCall, 1)) 1319 return ExprError(); 1320 1321 // Compute __builtin_launder's parameter type from the argument. 1322 // The parameter type is: 1323 // * The type of the argument if it's not an array or function type, 1324 // Otherwise, 1325 // * The decayed argument type. 1326 QualType ParamTy = [&]() { 1327 QualType ArgTy = TheCall->getArg(0)->getType(); 1328 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe()) 1329 return S.Context.getPointerType(Ty->getElementType()); 1330 if (ArgTy->isFunctionType()) { 1331 return S.Context.getPointerType(ArgTy); 1332 } 1333 return ArgTy; 1334 }(); 1335 1336 TheCall->setType(ParamTy); 1337 1338 auto DiagSelect = [&]() -> llvm::Optional<unsigned> { 1339 if (!ParamTy->isPointerType()) 1340 return 0; 1341 if (ParamTy->isFunctionPointerType()) 1342 return 1; 1343 if (ParamTy->isVoidPointerType()) 1344 return 2; 1345 return llvm::Optional<unsigned>{}; 1346 }(); 1347 if (DiagSelect.hasValue()) { 1348 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg) 1349 << DiagSelect.getValue() << TheCall->getSourceRange(); 1350 return ExprError(); 1351 } 1352 1353 // We either have an incomplete class type, or we have a class template 1354 // whose instantiation has not been forced. Example: 1355 // 1356 // template <class T> struct Foo { T value; }; 1357 // Foo<int> *p = nullptr; 1358 // auto *d = __builtin_launder(p); 1359 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(), 1360 diag::err_incomplete_type)) 1361 return ExprError(); 1362 1363 assert(ParamTy->getPointeeType()->isObjectType() && 1364 "Unhandled non-object pointer case"); 1365 1366 InitializedEntity Entity = 1367 InitializedEntity::InitializeParameter(S.Context, ParamTy, false); 1368 ExprResult Arg = 1369 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0)); 1370 if (Arg.isInvalid()) 1371 return ExprError(); 1372 TheCall->setArg(0, Arg.get()); 1373 1374 return TheCall; 1375 } 1376 1377 // Emit an error and return true if the current architecture is not in the list 1378 // of supported architectures. 1379 static bool 1380 CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall, 1381 ArrayRef<llvm::Triple::ArchType> SupportedArchs) { 1382 llvm::Triple::ArchType CurArch = 1383 S.getASTContext().getTargetInfo().getTriple().getArch(); 1384 if (llvm::is_contained(SupportedArchs, CurArch)) 1385 return false; 1386 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported) 1387 << TheCall->getSourceRange(); 1388 return true; 1389 } 1390 1391 static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr, 1392 SourceLocation CallSiteLoc); 1393 1394 bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 1395 CallExpr *TheCall) { 1396 switch (TI.getTriple().getArch()) { 1397 default: 1398 // Some builtins don't require additional checking, so just consider these 1399 // acceptable. 1400 return false; 1401 case llvm::Triple::arm: 1402 case llvm::Triple::armeb: 1403 case llvm::Triple::thumb: 1404 case llvm::Triple::thumbeb: 1405 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall); 1406 case llvm::Triple::aarch64: 1407 case llvm::Triple::aarch64_32: 1408 case llvm::Triple::aarch64_be: 1409 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall); 1410 case llvm::Triple::bpfeb: 1411 case llvm::Triple::bpfel: 1412 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall); 1413 case llvm::Triple::hexagon: 1414 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall); 1415 case llvm::Triple::mips: 1416 case llvm::Triple::mipsel: 1417 case llvm::Triple::mips64: 1418 case llvm::Triple::mips64el: 1419 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall); 1420 case llvm::Triple::systemz: 1421 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall); 1422 case llvm::Triple::x86: 1423 case llvm::Triple::x86_64: 1424 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall); 1425 case llvm::Triple::ppc: 1426 case llvm::Triple::ppcle: 1427 case llvm::Triple::ppc64: 1428 case llvm::Triple::ppc64le: 1429 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall); 1430 case llvm::Triple::amdgcn: 1431 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall); 1432 } 1433 } 1434 1435 ExprResult 1436 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID, 1437 CallExpr *TheCall) { 1438 ExprResult TheCallResult(TheCall); 1439 1440 // Find out if any arguments are required to be integer constant expressions. 1441 unsigned ICEArguments = 0; 1442 ASTContext::GetBuiltinTypeError Error; 1443 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments); 1444 if (Error != ASTContext::GE_None) 1445 ICEArguments = 0; // Don't diagnose previously diagnosed errors. 1446 1447 // If any arguments are required to be ICE's, check and diagnose. 1448 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) { 1449 // Skip arguments not required to be ICE's. 1450 if ((ICEArguments & (1 << ArgNo)) == 0) continue; 1451 1452 llvm::APSInt Result; 1453 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result)) 1454 return true; 1455 ICEArguments &= ~(1 << ArgNo); 1456 } 1457 1458 switch (BuiltinID) { 1459 case Builtin::BI__builtin___CFStringMakeConstantString: 1460 assert(TheCall->getNumArgs() == 1 && 1461 "Wrong # arguments to builtin CFStringMakeConstantString"); 1462 if (CheckObjCString(TheCall->getArg(0))) 1463 return ExprError(); 1464 break; 1465 case Builtin::BI__builtin_ms_va_start: 1466 case Builtin::BI__builtin_stdarg_start: 1467 case Builtin::BI__builtin_va_start: 1468 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1469 return ExprError(); 1470 break; 1471 case Builtin::BI__va_start: { 1472 switch (Context.getTargetInfo().getTriple().getArch()) { 1473 case llvm::Triple::aarch64: 1474 case llvm::Triple::arm: 1475 case llvm::Triple::thumb: 1476 if (SemaBuiltinVAStartARMMicrosoft(TheCall)) 1477 return ExprError(); 1478 break; 1479 default: 1480 if (SemaBuiltinVAStart(BuiltinID, TheCall)) 1481 return ExprError(); 1482 break; 1483 } 1484 break; 1485 } 1486 1487 // The acquire, release, and no fence variants are ARM and AArch64 only. 1488 case Builtin::BI_interlockedbittestandset_acq: 1489 case Builtin::BI_interlockedbittestandset_rel: 1490 case Builtin::BI_interlockedbittestandset_nf: 1491 case Builtin::BI_interlockedbittestandreset_acq: 1492 case Builtin::BI_interlockedbittestandreset_rel: 1493 case Builtin::BI_interlockedbittestandreset_nf: 1494 if (CheckBuiltinTargetSupport( 1495 *this, BuiltinID, TheCall, 1496 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64})) 1497 return ExprError(); 1498 break; 1499 1500 // The 64-bit bittest variants are x64, ARM, and AArch64 only. 1501 case Builtin::BI_bittest64: 1502 case Builtin::BI_bittestandcomplement64: 1503 case Builtin::BI_bittestandreset64: 1504 case Builtin::BI_bittestandset64: 1505 case Builtin::BI_interlockedbittestandreset64: 1506 case Builtin::BI_interlockedbittestandset64: 1507 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall, 1508 {llvm::Triple::x86_64, llvm::Triple::arm, 1509 llvm::Triple::thumb, llvm::Triple::aarch64})) 1510 return ExprError(); 1511 break; 1512 1513 case Builtin::BI__builtin_isgreater: 1514 case Builtin::BI__builtin_isgreaterequal: 1515 case Builtin::BI__builtin_isless: 1516 case Builtin::BI__builtin_islessequal: 1517 case Builtin::BI__builtin_islessgreater: 1518 case Builtin::BI__builtin_isunordered: 1519 if (SemaBuiltinUnorderedCompare(TheCall)) 1520 return ExprError(); 1521 break; 1522 case Builtin::BI__builtin_fpclassify: 1523 if (SemaBuiltinFPClassification(TheCall, 6)) 1524 return ExprError(); 1525 break; 1526 case Builtin::BI__builtin_isfinite: 1527 case Builtin::BI__builtin_isinf: 1528 case Builtin::BI__builtin_isinf_sign: 1529 case Builtin::BI__builtin_isnan: 1530 case Builtin::BI__builtin_isnormal: 1531 case Builtin::BI__builtin_signbit: 1532 case Builtin::BI__builtin_signbitf: 1533 case Builtin::BI__builtin_signbitl: 1534 if (SemaBuiltinFPClassification(TheCall, 1)) 1535 return ExprError(); 1536 break; 1537 case Builtin::BI__builtin_shufflevector: 1538 return SemaBuiltinShuffleVector(TheCall); 1539 // TheCall will be freed by the smart pointer here, but that's fine, since 1540 // SemaBuiltinShuffleVector guts it, but then doesn't release it. 1541 case Builtin::BI__builtin_prefetch: 1542 if (SemaBuiltinPrefetch(TheCall)) 1543 return ExprError(); 1544 break; 1545 case Builtin::BI__builtin_alloca_with_align: 1546 if (SemaBuiltinAllocaWithAlign(TheCall)) 1547 return ExprError(); 1548 LLVM_FALLTHROUGH; 1549 case Builtin::BI__builtin_alloca: 1550 Diag(TheCall->getBeginLoc(), diag::warn_alloca) 1551 << TheCall->getDirectCallee(); 1552 break; 1553 case Builtin::BI__assume: 1554 case Builtin::BI__builtin_assume: 1555 if (SemaBuiltinAssume(TheCall)) 1556 return ExprError(); 1557 break; 1558 case Builtin::BI__builtin_assume_aligned: 1559 if (SemaBuiltinAssumeAligned(TheCall)) 1560 return ExprError(); 1561 break; 1562 case Builtin::BI__builtin_dynamic_object_size: 1563 case Builtin::BI__builtin_object_size: 1564 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3)) 1565 return ExprError(); 1566 break; 1567 case Builtin::BI__builtin_longjmp: 1568 if (SemaBuiltinLongjmp(TheCall)) 1569 return ExprError(); 1570 break; 1571 case Builtin::BI__builtin_setjmp: 1572 if (SemaBuiltinSetjmp(TheCall)) 1573 return ExprError(); 1574 break; 1575 case Builtin::BI__builtin_classify_type: 1576 if (checkArgCount(*this, TheCall, 1)) return true; 1577 TheCall->setType(Context.IntTy); 1578 break; 1579 case Builtin::BI__builtin_complex: 1580 if (SemaBuiltinComplex(TheCall)) 1581 return ExprError(); 1582 break; 1583 case Builtin::BI__builtin_constant_p: { 1584 if (checkArgCount(*this, TheCall, 1)) return true; 1585 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0)); 1586 if (Arg.isInvalid()) return true; 1587 TheCall->setArg(0, Arg.get()); 1588 TheCall->setType(Context.IntTy); 1589 break; 1590 } 1591 case Builtin::BI__builtin_launder: 1592 return SemaBuiltinLaunder(*this, TheCall); 1593 case Builtin::BI__sync_fetch_and_add: 1594 case Builtin::BI__sync_fetch_and_add_1: 1595 case Builtin::BI__sync_fetch_and_add_2: 1596 case Builtin::BI__sync_fetch_and_add_4: 1597 case Builtin::BI__sync_fetch_and_add_8: 1598 case Builtin::BI__sync_fetch_and_add_16: 1599 case Builtin::BI__sync_fetch_and_sub: 1600 case Builtin::BI__sync_fetch_and_sub_1: 1601 case Builtin::BI__sync_fetch_and_sub_2: 1602 case Builtin::BI__sync_fetch_and_sub_4: 1603 case Builtin::BI__sync_fetch_and_sub_8: 1604 case Builtin::BI__sync_fetch_and_sub_16: 1605 case Builtin::BI__sync_fetch_and_or: 1606 case Builtin::BI__sync_fetch_and_or_1: 1607 case Builtin::BI__sync_fetch_and_or_2: 1608 case Builtin::BI__sync_fetch_and_or_4: 1609 case Builtin::BI__sync_fetch_and_or_8: 1610 case Builtin::BI__sync_fetch_and_or_16: 1611 case Builtin::BI__sync_fetch_and_and: 1612 case Builtin::BI__sync_fetch_and_and_1: 1613 case Builtin::BI__sync_fetch_and_and_2: 1614 case Builtin::BI__sync_fetch_and_and_4: 1615 case Builtin::BI__sync_fetch_and_and_8: 1616 case Builtin::BI__sync_fetch_and_and_16: 1617 case Builtin::BI__sync_fetch_and_xor: 1618 case Builtin::BI__sync_fetch_and_xor_1: 1619 case Builtin::BI__sync_fetch_and_xor_2: 1620 case Builtin::BI__sync_fetch_and_xor_4: 1621 case Builtin::BI__sync_fetch_and_xor_8: 1622 case Builtin::BI__sync_fetch_and_xor_16: 1623 case Builtin::BI__sync_fetch_and_nand: 1624 case Builtin::BI__sync_fetch_and_nand_1: 1625 case Builtin::BI__sync_fetch_and_nand_2: 1626 case Builtin::BI__sync_fetch_and_nand_4: 1627 case Builtin::BI__sync_fetch_and_nand_8: 1628 case Builtin::BI__sync_fetch_and_nand_16: 1629 case Builtin::BI__sync_add_and_fetch: 1630 case Builtin::BI__sync_add_and_fetch_1: 1631 case Builtin::BI__sync_add_and_fetch_2: 1632 case Builtin::BI__sync_add_and_fetch_4: 1633 case Builtin::BI__sync_add_and_fetch_8: 1634 case Builtin::BI__sync_add_and_fetch_16: 1635 case Builtin::BI__sync_sub_and_fetch: 1636 case Builtin::BI__sync_sub_and_fetch_1: 1637 case Builtin::BI__sync_sub_and_fetch_2: 1638 case Builtin::BI__sync_sub_and_fetch_4: 1639 case Builtin::BI__sync_sub_and_fetch_8: 1640 case Builtin::BI__sync_sub_and_fetch_16: 1641 case Builtin::BI__sync_and_and_fetch: 1642 case Builtin::BI__sync_and_and_fetch_1: 1643 case Builtin::BI__sync_and_and_fetch_2: 1644 case Builtin::BI__sync_and_and_fetch_4: 1645 case Builtin::BI__sync_and_and_fetch_8: 1646 case Builtin::BI__sync_and_and_fetch_16: 1647 case Builtin::BI__sync_or_and_fetch: 1648 case Builtin::BI__sync_or_and_fetch_1: 1649 case Builtin::BI__sync_or_and_fetch_2: 1650 case Builtin::BI__sync_or_and_fetch_4: 1651 case Builtin::BI__sync_or_and_fetch_8: 1652 case Builtin::BI__sync_or_and_fetch_16: 1653 case Builtin::BI__sync_xor_and_fetch: 1654 case Builtin::BI__sync_xor_and_fetch_1: 1655 case Builtin::BI__sync_xor_and_fetch_2: 1656 case Builtin::BI__sync_xor_and_fetch_4: 1657 case Builtin::BI__sync_xor_and_fetch_8: 1658 case Builtin::BI__sync_xor_and_fetch_16: 1659 case Builtin::BI__sync_nand_and_fetch: 1660 case Builtin::BI__sync_nand_and_fetch_1: 1661 case Builtin::BI__sync_nand_and_fetch_2: 1662 case Builtin::BI__sync_nand_and_fetch_4: 1663 case Builtin::BI__sync_nand_and_fetch_8: 1664 case Builtin::BI__sync_nand_and_fetch_16: 1665 case Builtin::BI__sync_val_compare_and_swap: 1666 case Builtin::BI__sync_val_compare_and_swap_1: 1667 case Builtin::BI__sync_val_compare_and_swap_2: 1668 case Builtin::BI__sync_val_compare_and_swap_4: 1669 case Builtin::BI__sync_val_compare_and_swap_8: 1670 case Builtin::BI__sync_val_compare_and_swap_16: 1671 case Builtin::BI__sync_bool_compare_and_swap: 1672 case Builtin::BI__sync_bool_compare_and_swap_1: 1673 case Builtin::BI__sync_bool_compare_and_swap_2: 1674 case Builtin::BI__sync_bool_compare_and_swap_4: 1675 case Builtin::BI__sync_bool_compare_and_swap_8: 1676 case Builtin::BI__sync_bool_compare_and_swap_16: 1677 case Builtin::BI__sync_lock_test_and_set: 1678 case Builtin::BI__sync_lock_test_and_set_1: 1679 case Builtin::BI__sync_lock_test_and_set_2: 1680 case Builtin::BI__sync_lock_test_and_set_4: 1681 case Builtin::BI__sync_lock_test_and_set_8: 1682 case Builtin::BI__sync_lock_test_and_set_16: 1683 case Builtin::BI__sync_lock_release: 1684 case Builtin::BI__sync_lock_release_1: 1685 case Builtin::BI__sync_lock_release_2: 1686 case Builtin::BI__sync_lock_release_4: 1687 case Builtin::BI__sync_lock_release_8: 1688 case Builtin::BI__sync_lock_release_16: 1689 case Builtin::BI__sync_swap: 1690 case Builtin::BI__sync_swap_1: 1691 case Builtin::BI__sync_swap_2: 1692 case Builtin::BI__sync_swap_4: 1693 case Builtin::BI__sync_swap_8: 1694 case Builtin::BI__sync_swap_16: 1695 return SemaBuiltinAtomicOverloaded(TheCallResult); 1696 case Builtin::BI__sync_synchronize: 1697 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst) 1698 << TheCall->getCallee()->getSourceRange(); 1699 break; 1700 case Builtin::BI__builtin_nontemporal_load: 1701 case Builtin::BI__builtin_nontemporal_store: 1702 return SemaBuiltinNontemporalOverloaded(TheCallResult); 1703 case Builtin::BI__builtin_memcpy_inline: { 1704 clang::Expr *SizeOp = TheCall->getArg(2); 1705 // We warn about copying to or from `nullptr` pointers when `size` is 1706 // greater than 0. When `size` is value dependent we cannot evaluate its 1707 // value so we bail out. 1708 if (SizeOp->isValueDependent()) 1709 break; 1710 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) { 1711 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc()); 1712 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc()); 1713 } 1714 break; 1715 } 1716 #define BUILTIN(ID, TYPE, ATTRS) 1717 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \ 1718 case Builtin::BI##ID: \ 1719 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID); 1720 #include "clang/Basic/Builtins.def" 1721 case Builtin::BI__annotation: 1722 if (SemaBuiltinMSVCAnnotation(*this, TheCall)) 1723 return ExprError(); 1724 break; 1725 case Builtin::BI__builtin_annotation: 1726 if (SemaBuiltinAnnotation(*this, TheCall)) 1727 return ExprError(); 1728 break; 1729 case Builtin::BI__builtin_addressof: 1730 if (SemaBuiltinAddressof(*this, TheCall)) 1731 return ExprError(); 1732 break; 1733 case Builtin::BI__builtin_is_aligned: 1734 case Builtin::BI__builtin_align_up: 1735 case Builtin::BI__builtin_align_down: 1736 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID)) 1737 return ExprError(); 1738 break; 1739 case Builtin::BI__builtin_add_overflow: 1740 case Builtin::BI__builtin_sub_overflow: 1741 case Builtin::BI__builtin_mul_overflow: 1742 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID)) 1743 return ExprError(); 1744 break; 1745 case Builtin::BI__builtin_operator_new: 1746 case Builtin::BI__builtin_operator_delete: { 1747 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete; 1748 ExprResult Res = 1749 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete); 1750 if (Res.isInvalid()) 1751 CorrectDelayedTyposInExpr(TheCallResult.get()); 1752 return Res; 1753 } 1754 case Builtin::BI__builtin_dump_struct: { 1755 // We first want to ensure we are called with 2 arguments 1756 if (checkArgCount(*this, TheCall, 2)) 1757 return ExprError(); 1758 // Ensure that the first argument is of type 'struct XX *' 1759 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts(); 1760 const QualType PtrArgType = PtrArg->getType(); 1761 if (!PtrArgType->isPointerType() || 1762 !PtrArgType->getPointeeType()->isRecordType()) { 1763 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1764 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType 1765 << "structure pointer"; 1766 return ExprError(); 1767 } 1768 1769 // Ensure that the second argument is of type 'FunctionType' 1770 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts(); 1771 const QualType FnPtrArgType = FnPtrArg->getType(); 1772 if (!FnPtrArgType->isPointerType()) { 1773 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1774 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1775 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1776 return ExprError(); 1777 } 1778 1779 const auto *FuncType = 1780 FnPtrArgType->getPointeeType()->getAs<FunctionType>(); 1781 1782 if (!FuncType) { 1783 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1784 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2 1785 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1786 return ExprError(); 1787 } 1788 1789 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) { 1790 if (!FT->getNumParams()) { 1791 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1792 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1793 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1794 return ExprError(); 1795 } 1796 QualType PT = FT->getParamType(0); 1797 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy || 1798 !PT->isPointerType() || !PT->getPointeeType()->isCharType() || 1799 !PT->getPointeeType().isConstQualified()) { 1800 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 1801 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 1802 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'"; 1803 return ExprError(); 1804 } 1805 } 1806 1807 TheCall->setType(Context.IntTy); 1808 break; 1809 } 1810 case Builtin::BI__builtin_expect_with_probability: { 1811 // We first want to ensure we are called with 3 arguments 1812 if (checkArgCount(*this, TheCall, 3)) 1813 return ExprError(); 1814 // then check probability is constant float in range [0.0, 1.0] 1815 const Expr *ProbArg = TheCall->getArg(2); 1816 SmallVector<PartialDiagnosticAt, 8> Notes; 1817 Expr::EvalResult Eval; 1818 Eval.Diag = &Notes; 1819 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) || 1820 !Eval.Val.isFloat()) { 1821 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float) 1822 << ProbArg->getSourceRange(); 1823 for (const PartialDiagnosticAt &PDiag : Notes) 1824 Diag(PDiag.first, PDiag.second); 1825 return ExprError(); 1826 } 1827 llvm::APFloat Probability = Eval.Val.getFloat(); 1828 bool LoseInfo = false; 1829 Probability.convert(llvm::APFloat::IEEEdouble(), 1830 llvm::RoundingMode::Dynamic, &LoseInfo); 1831 if (!(Probability >= llvm::APFloat(0.0) && 1832 Probability <= llvm::APFloat(1.0))) { 1833 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range) 1834 << ProbArg->getSourceRange(); 1835 return ExprError(); 1836 } 1837 break; 1838 } 1839 case Builtin::BI__builtin_preserve_access_index: 1840 if (SemaBuiltinPreserveAI(*this, TheCall)) 1841 return ExprError(); 1842 break; 1843 case Builtin::BI__builtin_call_with_static_chain: 1844 if (SemaBuiltinCallWithStaticChain(*this, TheCall)) 1845 return ExprError(); 1846 break; 1847 case Builtin::BI__exception_code: 1848 case Builtin::BI_exception_code: 1849 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope, 1850 diag::err_seh___except_block)) 1851 return ExprError(); 1852 break; 1853 case Builtin::BI__exception_info: 1854 case Builtin::BI_exception_info: 1855 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope, 1856 diag::err_seh___except_filter)) 1857 return ExprError(); 1858 break; 1859 case Builtin::BI__GetExceptionInfo: 1860 if (checkArgCount(*this, TheCall, 1)) 1861 return ExprError(); 1862 1863 if (CheckCXXThrowOperand( 1864 TheCall->getBeginLoc(), 1865 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()), 1866 TheCall)) 1867 return ExprError(); 1868 1869 TheCall->setType(Context.VoidPtrTy); 1870 break; 1871 // OpenCL v2.0, s6.13.16 - Pipe functions 1872 case Builtin::BIread_pipe: 1873 case Builtin::BIwrite_pipe: 1874 // Since those two functions are declared with var args, we need a semantic 1875 // check for the argument. 1876 if (SemaBuiltinRWPipe(*this, TheCall)) 1877 return ExprError(); 1878 break; 1879 case Builtin::BIreserve_read_pipe: 1880 case Builtin::BIreserve_write_pipe: 1881 case Builtin::BIwork_group_reserve_read_pipe: 1882 case Builtin::BIwork_group_reserve_write_pipe: 1883 if (SemaBuiltinReserveRWPipe(*this, TheCall)) 1884 return ExprError(); 1885 break; 1886 case Builtin::BIsub_group_reserve_read_pipe: 1887 case Builtin::BIsub_group_reserve_write_pipe: 1888 if (checkOpenCLSubgroupExt(*this, TheCall) || 1889 SemaBuiltinReserveRWPipe(*this, TheCall)) 1890 return ExprError(); 1891 break; 1892 case Builtin::BIcommit_read_pipe: 1893 case Builtin::BIcommit_write_pipe: 1894 case Builtin::BIwork_group_commit_read_pipe: 1895 case Builtin::BIwork_group_commit_write_pipe: 1896 if (SemaBuiltinCommitRWPipe(*this, TheCall)) 1897 return ExprError(); 1898 break; 1899 case Builtin::BIsub_group_commit_read_pipe: 1900 case Builtin::BIsub_group_commit_write_pipe: 1901 if (checkOpenCLSubgroupExt(*this, TheCall) || 1902 SemaBuiltinCommitRWPipe(*this, TheCall)) 1903 return ExprError(); 1904 break; 1905 case Builtin::BIget_pipe_num_packets: 1906 case Builtin::BIget_pipe_max_packets: 1907 if (SemaBuiltinPipePackets(*this, TheCall)) 1908 return ExprError(); 1909 break; 1910 case Builtin::BIto_global: 1911 case Builtin::BIto_local: 1912 case Builtin::BIto_private: 1913 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall)) 1914 return ExprError(); 1915 break; 1916 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions. 1917 case Builtin::BIenqueue_kernel: 1918 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall)) 1919 return ExprError(); 1920 break; 1921 case Builtin::BIget_kernel_work_group_size: 1922 case Builtin::BIget_kernel_preferred_work_group_size_multiple: 1923 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall)) 1924 return ExprError(); 1925 break; 1926 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 1927 case Builtin::BIget_kernel_sub_group_count_for_ndrange: 1928 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall)) 1929 return ExprError(); 1930 break; 1931 case Builtin::BI__builtin_os_log_format: 1932 Cleanup.setExprNeedsCleanups(true); 1933 LLVM_FALLTHROUGH; 1934 case Builtin::BI__builtin_os_log_format_buffer_size: 1935 if (SemaBuiltinOSLogFormat(TheCall)) 1936 return ExprError(); 1937 break; 1938 case Builtin::BI__builtin_frame_address: 1939 case Builtin::BI__builtin_return_address: { 1940 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF)) 1941 return ExprError(); 1942 1943 // -Wframe-address warning if non-zero passed to builtin 1944 // return/frame address. 1945 Expr::EvalResult Result; 1946 if (!TheCall->getArg(0)->isValueDependent() && 1947 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) && 1948 Result.Val.getInt() != 0) 1949 Diag(TheCall->getBeginLoc(), diag::warn_frame_address) 1950 << ((BuiltinID == Builtin::BI__builtin_return_address) 1951 ? "__builtin_return_address" 1952 : "__builtin_frame_address") 1953 << TheCall->getSourceRange(); 1954 break; 1955 } 1956 1957 case Builtin::BI__builtin_matrix_transpose: 1958 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult); 1959 1960 case Builtin::BI__builtin_matrix_column_major_load: 1961 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult); 1962 1963 case Builtin::BI__builtin_matrix_column_major_store: 1964 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult); 1965 } 1966 1967 // Since the target specific builtins for each arch overlap, only check those 1968 // of the arch we are compiling for. 1969 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) { 1970 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 1971 assert(Context.getAuxTargetInfo() && 1972 "Aux Target Builtin, but not an aux target?"); 1973 1974 if (CheckTSBuiltinFunctionCall( 1975 *Context.getAuxTargetInfo(), 1976 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall)) 1977 return ExprError(); 1978 } else { 1979 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID, 1980 TheCall)) 1981 return ExprError(); 1982 } 1983 } 1984 1985 return TheCallResult; 1986 } 1987 1988 // Get the valid immediate range for the specified NEON type code. 1989 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) { 1990 NeonTypeFlags Type(t); 1991 int IsQuad = ForceQuad ? true : Type.isQuad(); 1992 switch (Type.getEltType()) { 1993 case NeonTypeFlags::Int8: 1994 case NeonTypeFlags::Poly8: 1995 return shift ? 7 : (8 << IsQuad) - 1; 1996 case NeonTypeFlags::Int16: 1997 case NeonTypeFlags::Poly16: 1998 return shift ? 15 : (4 << IsQuad) - 1; 1999 case NeonTypeFlags::Int32: 2000 return shift ? 31 : (2 << IsQuad) - 1; 2001 case NeonTypeFlags::Int64: 2002 case NeonTypeFlags::Poly64: 2003 return shift ? 63 : (1 << IsQuad) - 1; 2004 case NeonTypeFlags::Poly128: 2005 return shift ? 127 : (1 << IsQuad) - 1; 2006 case NeonTypeFlags::Float16: 2007 assert(!shift && "cannot shift float types!"); 2008 return (4 << IsQuad) - 1; 2009 case NeonTypeFlags::Float32: 2010 assert(!shift && "cannot shift float types!"); 2011 return (2 << IsQuad) - 1; 2012 case NeonTypeFlags::Float64: 2013 assert(!shift && "cannot shift float types!"); 2014 return (1 << IsQuad) - 1; 2015 case NeonTypeFlags::BFloat16: 2016 assert(!shift && "cannot shift float types!"); 2017 return (4 << IsQuad) - 1; 2018 } 2019 llvm_unreachable("Invalid NeonTypeFlag!"); 2020 } 2021 2022 /// getNeonEltType - Return the QualType corresponding to the elements of 2023 /// the vector type specified by the NeonTypeFlags. This is used to check 2024 /// the pointer arguments for Neon load/store intrinsics. 2025 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context, 2026 bool IsPolyUnsigned, bool IsInt64Long) { 2027 switch (Flags.getEltType()) { 2028 case NeonTypeFlags::Int8: 2029 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy; 2030 case NeonTypeFlags::Int16: 2031 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy; 2032 case NeonTypeFlags::Int32: 2033 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy; 2034 case NeonTypeFlags::Int64: 2035 if (IsInt64Long) 2036 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy; 2037 else 2038 return Flags.isUnsigned() ? Context.UnsignedLongLongTy 2039 : Context.LongLongTy; 2040 case NeonTypeFlags::Poly8: 2041 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy; 2042 case NeonTypeFlags::Poly16: 2043 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy; 2044 case NeonTypeFlags::Poly64: 2045 if (IsInt64Long) 2046 return Context.UnsignedLongTy; 2047 else 2048 return Context.UnsignedLongLongTy; 2049 case NeonTypeFlags::Poly128: 2050 break; 2051 case NeonTypeFlags::Float16: 2052 return Context.HalfTy; 2053 case NeonTypeFlags::Float32: 2054 return Context.FloatTy; 2055 case NeonTypeFlags::Float64: 2056 return Context.DoubleTy; 2057 case NeonTypeFlags::BFloat16: 2058 return Context.BFloat16Ty; 2059 } 2060 llvm_unreachable("Invalid NeonTypeFlag!"); 2061 } 2062 2063 bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2064 // Range check SVE intrinsics that take immediate values. 2065 SmallVector<std::tuple<int,int,int>, 3> ImmChecks; 2066 2067 switch (BuiltinID) { 2068 default: 2069 return false; 2070 #define GET_SVE_IMMEDIATE_CHECK 2071 #include "clang/Basic/arm_sve_sema_rangechecks.inc" 2072 #undef GET_SVE_IMMEDIATE_CHECK 2073 } 2074 2075 // Perform all the immediate checks for this builtin call. 2076 bool HasError = false; 2077 for (auto &I : ImmChecks) { 2078 int ArgNum, CheckTy, ElementSizeInBits; 2079 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I; 2080 2081 typedef bool(*OptionSetCheckFnTy)(int64_t Value); 2082 2083 // Function that checks whether the operand (ArgNum) is an immediate 2084 // that is one of the predefined values. 2085 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm, 2086 int ErrDiag) -> bool { 2087 // We can't check the value of a dependent argument. 2088 Expr *Arg = TheCall->getArg(ArgNum); 2089 if (Arg->isTypeDependent() || Arg->isValueDependent()) 2090 return false; 2091 2092 // Check constant-ness first. 2093 llvm::APSInt Imm; 2094 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm)) 2095 return true; 2096 2097 if (!CheckImm(Imm.getSExtValue())) 2098 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange(); 2099 return false; 2100 }; 2101 2102 switch ((SVETypeFlags::ImmCheckType)CheckTy) { 2103 case SVETypeFlags::ImmCheck0_31: 2104 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31)) 2105 HasError = true; 2106 break; 2107 case SVETypeFlags::ImmCheck0_13: 2108 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13)) 2109 HasError = true; 2110 break; 2111 case SVETypeFlags::ImmCheck1_16: 2112 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16)) 2113 HasError = true; 2114 break; 2115 case SVETypeFlags::ImmCheck0_7: 2116 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7)) 2117 HasError = true; 2118 break; 2119 case SVETypeFlags::ImmCheckExtract: 2120 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2121 (2048 / ElementSizeInBits) - 1)) 2122 HasError = true; 2123 break; 2124 case SVETypeFlags::ImmCheckShiftRight: 2125 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits)) 2126 HasError = true; 2127 break; 2128 case SVETypeFlags::ImmCheckShiftRightNarrow: 2129 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 2130 ElementSizeInBits / 2)) 2131 HasError = true; 2132 break; 2133 case SVETypeFlags::ImmCheckShiftLeft: 2134 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2135 ElementSizeInBits - 1)) 2136 HasError = true; 2137 break; 2138 case SVETypeFlags::ImmCheckLaneIndex: 2139 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2140 (128 / (1 * ElementSizeInBits)) - 1)) 2141 HasError = true; 2142 break; 2143 case SVETypeFlags::ImmCheckLaneIndexCompRotate: 2144 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2145 (128 / (2 * ElementSizeInBits)) - 1)) 2146 HasError = true; 2147 break; 2148 case SVETypeFlags::ImmCheckLaneIndexDot: 2149 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2150 (128 / (4 * ElementSizeInBits)) - 1)) 2151 HasError = true; 2152 break; 2153 case SVETypeFlags::ImmCheckComplexRot90_270: 2154 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; }, 2155 diag::err_rotation_argument_to_cadd)) 2156 HasError = true; 2157 break; 2158 case SVETypeFlags::ImmCheckComplexRotAll90: 2159 if (CheckImmediateInSet( 2160 [](int64_t V) { 2161 return V == 0 || V == 90 || V == 180 || V == 270; 2162 }, 2163 diag::err_rotation_argument_to_cmla)) 2164 HasError = true; 2165 break; 2166 case SVETypeFlags::ImmCheck0_1: 2167 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1)) 2168 HasError = true; 2169 break; 2170 case SVETypeFlags::ImmCheck0_2: 2171 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2)) 2172 HasError = true; 2173 break; 2174 case SVETypeFlags::ImmCheck0_3: 2175 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3)) 2176 HasError = true; 2177 break; 2178 } 2179 } 2180 2181 return HasError; 2182 } 2183 2184 bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI, 2185 unsigned BuiltinID, CallExpr *TheCall) { 2186 llvm::APSInt Result; 2187 uint64_t mask = 0; 2188 unsigned TV = 0; 2189 int PtrArgNum = -1; 2190 bool HasConstPtr = false; 2191 switch (BuiltinID) { 2192 #define GET_NEON_OVERLOAD_CHECK 2193 #include "clang/Basic/arm_neon.inc" 2194 #include "clang/Basic/arm_fp16.inc" 2195 #undef GET_NEON_OVERLOAD_CHECK 2196 } 2197 2198 // For NEON intrinsics which are overloaded on vector element type, validate 2199 // the immediate which specifies which variant to emit. 2200 unsigned ImmArg = TheCall->getNumArgs()-1; 2201 if (mask) { 2202 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result)) 2203 return true; 2204 2205 TV = Result.getLimitedValue(64); 2206 if ((TV > 63) || (mask & (1ULL << TV)) == 0) 2207 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code) 2208 << TheCall->getArg(ImmArg)->getSourceRange(); 2209 } 2210 2211 if (PtrArgNum >= 0) { 2212 // Check that pointer arguments have the specified type. 2213 Expr *Arg = TheCall->getArg(PtrArgNum); 2214 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg)) 2215 Arg = ICE->getSubExpr(); 2216 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg); 2217 QualType RHSTy = RHS.get()->getType(); 2218 2219 llvm::Triple::ArchType Arch = TI.getTriple().getArch(); 2220 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 || 2221 Arch == llvm::Triple::aarch64_32 || 2222 Arch == llvm::Triple::aarch64_be; 2223 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong; 2224 QualType EltTy = 2225 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long); 2226 if (HasConstPtr) 2227 EltTy = EltTy.withConst(); 2228 QualType LHSTy = Context.getPointerType(EltTy); 2229 AssignConvertType ConvTy; 2230 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS); 2231 if (RHS.isInvalid()) 2232 return true; 2233 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy, 2234 RHS.get(), AA_Assigning)) 2235 return true; 2236 } 2237 2238 // For NEON intrinsics which take an immediate value as part of the 2239 // instruction, range check them here. 2240 unsigned i = 0, l = 0, u = 0; 2241 switch (BuiltinID) { 2242 default: 2243 return false; 2244 #define GET_NEON_IMMEDIATE_CHECK 2245 #include "clang/Basic/arm_neon.inc" 2246 #include "clang/Basic/arm_fp16.inc" 2247 #undef GET_NEON_IMMEDIATE_CHECK 2248 } 2249 2250 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2251 } 2252 2253 bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) { 2254 switch (BuiltinID) { 2255 default: 2256 return false; 2257 #include "clang/Basic/arm_mve_builtin_sema.inc" 2258 } 2259 } 2260 2261 bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2262 CallExpr *TheCall) { 2263 bool Err = false; 2264 switch (BuiltinID) { 2265 default: 2266 return false; 2267 #include "clang/Basic/arm_cde_builtin_sema.inc" 2268 } 2269 2270 if (Err) 2271 return true; 2272 2273 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true); 2274 } 2275 2276 bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI, 2277 const Expr *CoprocArg, bool WantCDE) { 2278 if (isConstantEvaluated()) 2279 return false; 2280 2281 // We can't check the value of a dependent argument. 2282 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent()) 2283 return false; 2284 2285 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context); 2286 int64_t CoprocNo = CoprocNoAP.getExtValue(); 2287 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative"); 2288 2289 uint32_t CDECoprocMask = TI.getARMCDECoprocMask(); 2290 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo)); 2291 2292 if (IsCDECoproc != WantCDE) 2293 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc) 2294 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange(); 2295 2296 return false; 2297 } 2298 2299 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall, 2300 unsigned MaxWidth) { 2301 assert((BuiltinID == ARM::BI__builtin_arm_ldrex || 2302 BuiltinID == ARM::BI__builtin_arm_ldaex || 2303 BuiltinID == ARM::BI__builtin_arm_strex || 2304 BuiltinID == ARM::BI__builtin_arm_stlex || 2305 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2306 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2307 BuiltinID == AArch64::BI__builtin_arm_strex || 2308 BuiltinID == AArch64::BI__builtin_arm_stlex) && 2309 "unexpected ARM builtin"); 2310 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex || 2311 BuiltinID == ARM::BI__builtin_arm_ldaex || 2312 BuiltinID == AArch64::BI__builtin_arm_ldrex || 2313 BuiltinID == AArch64::BI__builtin_arm_ldaex; 2314 2315 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 2316 2317 // Ensure that we have the proper number of arguments. 2318 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2)) 2319 return true; 2320 2321 // Inspect the pointer argument of the atomic builtin. This should always be 2322 // a pointer type, whose element is an integral scalar or pointer type. 2323 // Because it is a pointer type, we don't have to worry about any implicit 2324 // casts here. 2325 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1); 2326 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg); 2327 if (PointerArgRes.isInvalid()) 2328 return true; 2329 PointerArg = PointerArgRes.get(); 2330 2331 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 2332 if (!pointerType) { 2333 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 2334 << PointerArg->getType() << PointerArg->getSourceRange(); 2335 return true; 2336 } 2337 2338 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next 2339 // task is to insert the appropriate casts into the AST. First work out just 2340 // what the appropriate type is. 2341 QualType ValType = pointerType->getPointeeType(); 2342 QualType AddrType = ValType.getUnqualifiedType().withVolatile(); 2343 if (IsLdrex) 2344 AddrType.addConst(); 2345 2346 // Issue a warning if the cast is dodgy. 2347 CastKind CastNeeded = CK_NoOp; 2348 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) { 2349 CastNeeded = CK_BitCast; 2350 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers) 2351 << PointerArg->getType() << Context.getPointerType(AddrType) 2352 << AA_Passing << PointerArg->getSourceRange(); 2353 } 2354 2355 // Finally, do the cast and replace the argument with the corrected version. 2356 AddrType = Context.getPointerType(AddrType); 2357 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded); 2358 if (PointerArgRes.isInvalid()) 2359 return true; 2360 PointerArg = PointerArgRes.get(); 2361 2362 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg); 2363 2364 // In general, we allow ints, floats and pointers to be loaded and stored. 2365 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 2366 !ValType->isBlockPointerType() && !ValType->isFloatingType()) { 2367 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr) 2368 << PointerArg->getType() << PointerArg->getSourceRange(); 2369 return true; 2370 } 2371 2372 // But ARM doesn't have instructions to deal with 128-bit versions. 2373 if (Context.getTypeSize(ValType) > MaxWidth) { 2374 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"); 2375 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size) 2376 << PointerArg->getType() << PointerArg->getSourceRange(); 2377 return true; 2378 } 2379 2380 switch (ValType.getObjCLifetime()) { 2381 case Qualifiers::OCL_None: 2382 case Qualifiers::OCL_ExplicitNone: 2383 // okay 2384 break; 2385 2386 case Qualifiers::OCL_Weak: 2387 case Qualifiers::OCL_Strong: 2388 case Qualifiers::OCL_Autoreleasing: 2389 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 2390 << ValType << PointerArg->getSourceRange(); 2391 return true; 2392 } 2393 2394 if (IsLdrex) { 2395 TheCall->setType(ValType); 2396 return false; 2397 } 2398 2399 // Initialize the argument to be stored. 2400 ExprResult ValArg = TheCall->getArg(0); 2401 InitializedEntity Entity = InitializedEntity::InitializeParameter( 2402 Context, ValType, /*consume*/ false); 2403 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 2404 if (ValArg.isInvalid()) 2405 return true; 2406 TheCall->setArg(0, ValArg.get()); 2407 2408 // __builtin_arm_strex always returns an int. It's marked as such in the .def, 2409 // but the custom checker bypasses all default analysis. 2410 TheCall->setType(Context.IntTy); 2411 return false; 2412 } 2413 2414 bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 2415 CallExpr *TheCall) { 2416 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 2417 BuiltinID == ARM::BI__builtin_arm_ldaex || 2418 BuiltinID == ARM::BI__builtin_arm_strex || 2419 BuiltinID == ARM::BI__builtin_arm_stlex) { 2420 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64); 2421 } 2422 2423 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 2424 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2425 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1); 2426 } 2427 2428 if (BuiltinID == ARM::BI__builtin_arm_rsr64 || 2429 BuiltinID == ARM::BI__builtin_arm_wsr64) 2430 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false); 2431 2432 if (BuiltinID == ARM::BI__builtin_arm_rsr || 2433 BuiltinID == ARM::BI__builtin_arm_rsrp || 2434 BuiltinID == ARM::BI__builtin_arm_wsr || 2435 BuiltinID == ARM::BI__builtin_arm_wsrp) 2436 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2437 2438 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2439 return true; 2440 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall)) 2441 return true; 2442 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2443 return true; 2444 2445 // For intrinsics which take an immediate value as part of the instruction, 2446 // range check them here. 2447 // FIXME: VFP Intrinsics should error if VFP not present. 2448 switch (BuiltinID) { 2449 default: return false; 2450 case ARM::BI__builtin_arm_ssat: 2451 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32); 2452 case ARM::BI__builtin_arm_usat: 2453 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31); 2454 case ARM::BI__builtin_arm_ssat16: 2455 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16); 2456 case ARM::BI__builtin_arm_usat16: 2457 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 2458 case ARM::BI__builtin_arm_vcvtr_f: 2459 case ARM::BI__builtin_arm_vcvtr_d: 2460 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 2461 case ARM::BI__builtin_arm_dmb: 2462 case ARM::BI__builtin_arm_dsb: 2463 case ARM::BI__builtin_arm_isb: 2464 case ARM::BI__builtin_arm_dbg: 2465 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15); 2466 case ARM::BI__builtin_arm_cdp: 2467 case ARM::BI__builtin_arm_cdp2: 2468 case ARM::BI__builtin_arm_mcr: 2469 case ARM::BI__builtin_arm_mcr2: 2470 case ARM::BI__builtin_arm_mrc: 2471 case ARM::BI__builtin_arm_mrc2: 2472 case ARM::BI__builtin_arm_mcrr: 2473 case ARM::BI__builtin_arm_mcrr2: 2474 case ARM::BI__builtin_arm_mrrc: 2475 case ARM::BI__builtin_arm_mrrc2: 2476 case ARM::BI__builtin_arm_ldc: 2477 case ARM::BI__builtin_arm_ldcl: 2478 case ARM::BI__builtin_arm_ldc2: 2479 case ARM::BI__builtin_arm_ldc2l: 2480 case ARM::BI__builtin_arm_stc: 2481 case ARM::BI__builtin_arm_stcl: 2482 case ARM::BI__builtin_arm_stc2: 2483 case ARM::BI__builtin_arm_stc2l: 2484 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) || 2485 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), 2486 /*WantCDE*/ false); 2487 } 2488 } 2489 2490 bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI, 2491 unsigned BuiltinID, 2492 CallExpr *TheCall) { 2493 if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 2494 BuiltinID == AArch64::BI__builtin_arm_ldaex || 2495 BuiltinID == AArch64::BI__builtin_arm_strex || 2496 BuiltinID == AArch64::BI__builtin_arm_stlex) { 2497 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128); 2498 } 2499 2500 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 2501 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 2502 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) || 2503 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) || 2504 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1); 2505 } 2506 2507 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 || 2508 BuiltinID == AArch64::BI__builtin_arm_wsr64) 2509 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2510 2511 // Memory Tagging Extensions (MTE) Intrinsics 2512 if (BuiltinID == AArch64::BI__builtin_arm_irg || 2513 BuiltinID == AArch64::BI__builtin_arm_addg || 2514 BuiltinID == AArch64::BI__builtin_arm_gmi || 2515 BuiltinID == AArch64::BI__builtin_arm_ldg || 2516 BuiltinID == AArch64::BI__builtin_arm_stg || 2517 BuiltinID == AArch64::BI__builtin_arm_subp) { 2518 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall); 2519 } 2520 2521 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 2522 BuiltinID == AArch64::BI__builtin_arm_rsrp || 2523 BuiltinID == AArch64::BI__builtin_arm_wsr || 2524 BuiltinID == AArch64::BI__builtin_arm_wsrp) 2525 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true); 2526 2527 // Only check the valid encoding range. Any constant in this range would be 2528 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw 2529 // an exception for incorrect registers. This matches MSVC behavior. 2530 if (BuiltinID == AArch64::BI_ReadStatusReg || 2531 BuiltinID == AArch64::BI_WriteStatusReg) 2532 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff); 2533 2534 if (BuiltinID == AArch64::BI__getReg) 2535 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31); 2536 2537 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall)) 2538 return true; 2539 2540 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall)) 2541 return true; 2542 2543 // For intrinsics which take an immediate value as part of the instruction, 2544 // range check them here. 2545 unsigned i = 0, l = 0, u = 0; 2546 switch (BuiltinID) { 2547 default: return false; 2548 case AArch64::BI__builtin_arm_dmb: 2549 case AArch64::BI__builtin_arm_dsb: 2550 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break; 2551 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break; 2552 } 2553 2554 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l); 2555 } 2556 2557 static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) { 2558 if (Arg->getType()->getAsPlaceholderType()) 2559 return false; 2560 2561 // The first argument needs to be a record field access. 2562 // If it is an array element access, we delay decision 2563 // to BPF backend to check whether the access is a 2564 // field access or not. 2565 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField || 2566 dyn_cast<MemberExpr>(Arg->IgnoreParens()) || 2567 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens())); 2568 } 2569 2570 static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S, 2571 QualType VectorTy, QualType EltTy) { 2572 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType(); 2573 if (!Context.hasSameType(VectorEltTy, EltTy)) { 2574 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types) 2575 << Call->getSourceRange() << VectorEltTy << EltTy; 2576 return false; 2577 } 2578 return true; 2579 } 2580 2581 static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) { 2582 QualType ArgType = Arg->getType(); 2583 if (ArgType->getAsPlaceholderType()) 2584 return false; 2585 2586 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type 2587 // format: 2588 // 1. __builtin_preserve_type_info(*(<type> *)0, flag); 2589 // 2. <type> var; 2590 // __builtin_preserve_type_info(var, flag); 2591 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) && 2592 !dyn_cast<UnaryOperator>(Arg->IgnoreParens())) 2593 return false; 2594 2595 // Typedef type. 2596 if (ArgType->getAs<TypedefType>()) 2597 return true; 2598 2599 // Record type or Enum type. 2600 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2601 if (const auto *RT = Ty->getAs<RecordType>()) { 2602 if (!RT->getDecl()->getDeclName().isEmpty()) 2603 return true; 2604 } else if (const auto *ET = Ty->getAs<EnumType>()) { 2605 if (!ET->getDecl()->getDeclName().isEmpty()) 2606 return true; 2607 } 2608 2609 return false; 2610 } 2611 2612 static bool isValidBPFPreserveEnumValueArg(Expr *Arg) { 2613 QualType ArgType = Arg->getType(); 2614 if (ArgType->getAsPlaceholderType()) 2615 return false; 2616 2617 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type 2618 // format: 2619 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>, 2620 // flag); 2621 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens()); 2622 if (!UO) 2623 return false; 2624 2625 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr()); 2626 if (!CE || CE->getCastKind() != CK_IntegralToPointer) 2627 return false; 2628 2629 // The integer must be from an EnumConstantDecl. 2630 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr()); 2631 if (!DR) 2632 return false; 2633 2634 const EnumConstantDecl *Enumerator = 2635 dyn_cast<EnumConstantDecl>(DR->getDecl()); 2636 if (!Enumerator) 2637 return false; 2638 2639 // The type must be EnumType. 2640 const Type *Ty = ArgType->getUnqualifiedDesugaredType(); 2641 const auto *ET = Ty->getAs<EnumType>(); 2642 if (!ET) 2643 return false; 2644 2645 // The enum value must be supported. 2646 for (auto *EDI : ET->getDecl()->enumerators()) { 2647 if (EDI == Enumerator) 2648 return true; 2649 } 2650 2651 return false; 2652 } 2653 2654 bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID, 2655 CallExpr *TheCall) { 2656 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 2657 BuiltinID == BPF::BI__builtin_btf_type_id || 2658 BuiltinID == BPF::BI__builtin_preserve_type_info || 2659 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 2660 "unexpected BPF builtin"); 2661 2662 if (checkArgCount(*this, TheCall, 2)) 2663 return true; 2664 2665 // The second argument needs to be a constant int 2666 Expr *Arg = TheCall->getArg(1); 2667 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context); 2668 diag::kind kind; 2669 if (!Value) { 2670 if (BuiltinID == BPF::BI__builtin_preserve_field_info) 2671 kind = diag::err_preserve_field_info_not_const; 2672 else if (BuiltinID == BPF::BI__builtin_btf_type_id) 2673 kind = diag::err_btf_type_id_not_const; 2674 else if (BuiltinID == BPF::BI__builtin_preserve_type_info) 2675 kind = diag::err_preserve_type_info_not_const; 2676 else 2677 kind = diag::err_preserve_enum_value_not_const; 2678 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange(); 2679 return true; 2680 } 2681 2682 // The first argument 2683 Arg = TheCall->getArg(0); 2684 bool InvalidArg = false; 2685 bool ReturnUnsignedInt = true; 2686 if (BuiltinID == BPF::BI__builtin_preserve_field_info) { 2687 if (!isValidBPFPreserveFieldInfoArg(Arg)) { 2688 InvalidArg = true; 2689 kind = diag::err_preserve_field_info_not_field; 2690 } 2691 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) { 2692 if (!isValidBPFPreserveTypeInfoArg(Arg)) { 2693 InvalidArg = true; 2694 kind = diag::err_preserve_type_info_invalid; 2695 } 2696 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) { 2697 if (!isValidBPFPreserveEnumValueArg(Arg)) { 2698 InvalidArg = true; 2699 kind = diag::err_preserve_enum_value_invalid; 2700 } 2701 ReturnUnsignedInt = false; 2702 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) { 2703 ReturnUnsignedInt = false; 2704 } 2705 2706 if (InvalidArg) { 2707 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange(); 2708 return true; 2709 } 2710 2711 if (ReturnUnsignedInt) 2712 TheCall->setType(Context.UnsignedIntTy); 2713 else 2714 TheCall->setType(Context.UnsignedLongTy); 2715 return false; 2716 } 2717 2718 bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2719 struct ArgInfo { 2720 uint8_t OpNum; 2721 bool IsSigned; 2722 uint8_t BitWidth; 2723 uint8_t Align; 2724 }; 2725 struct BuiltinInfo { 2726 unsigned BuiltinID; 2727 ArgInfo Infos[2]; 2728 }; 2729 2730 static BuiltinInfo Infos[] = { 2731 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} }, 2732 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} }, 2733 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} }, 2734 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} }, 2735 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} }, 2736 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} }, 2737 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} }, 2738 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} }, 2739 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} }, 2740 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} }, 2741 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} }, 2742 2743 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} }, 2744 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} }, 2745 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} }, 2746 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} }, 2747 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} }, 2748 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} }, 2749 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} }, 2750 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} }, 2751 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} }, 2752 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} }, 2753 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} }, 2754 2755 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} }, 2756 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} }, 2757 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} }, 2758 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} }, 2759 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} }, 2760 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} }, 2761 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} }, 2762 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} }, 2763 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} }, 2764 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} }, 2765 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} }, 2766 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} }, 2767 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} }, 2768 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} }, 2769 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} }, 2770 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} }, 2771 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} }, 2772 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} }, 2773 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} }, 2774 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} }, 2775 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} }, 2776 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} }, 2777 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} }, 2778 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} }, 2779 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} }, 2780 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} }, 2781 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} }, 2782 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} }, 2783 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} }, 2784 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} }, 2785 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} }, 2786 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} }, 2787 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} }, 2788 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} }, 2789 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} }, 2790 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} }, 2791 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} }, 2792 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} }, 2793 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} }, 2794 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} }, 2795 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} }, 2796 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} }, 2797 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} }, 2798 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} }, 2799 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} }, 2800 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} }, 2801 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} }, 2802 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} }, 2803 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} }, 2804 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} }, 2805 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} }, 2806 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax, 2807 {{ 1, false, 6, 0 }} }, 2808 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} }, 2809 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} }, 2810 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} }, 2811 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} }, 2812 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} }, 2813 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} }, 2814 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax, 2815 {{ 1, false, 5, 0 }} }, 2816 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} }, 2817 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} }, 2818 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} }, 2819 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} }, 2820 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} }, 2821 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 }, 2822 { 2, false, 5, 0 }} }, 2823 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 }, 2824 { 2, false, 6, 0 }} }, 2825 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 }, 2826 { 3, false, 5, 0 }} }, 2827 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 }, 2828 { 3, false, 6, 0 }} }, 2829 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} }, 2830 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} }, 2831 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} }, 2832 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} }, 2833 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} }, 2834 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} }, 2835 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} }, 2836 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} }, 2837 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} }, 2838 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} }, 2839 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} }, 2840 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} }, 2841 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} }, 2842 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} }, 2843 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} }, 2844 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax, 2845 {{ 2, false, 4, 0 }, 2846 { 3, false, 5, 0 }} }, 2847 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax, 2848 {{ 2, false, 4, 0 }, 2849 { 3, false, 5, 0 }} }, 2850 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax, 2851 {{ 2, false, 4, 0 }, 2852 { 3, false, 5, 0 }} }, 2853 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax, 2854 {{ 2, false, 4, 0 }, 2855 { 3, false, 5, 0 }} }, 2856 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} }, 2857 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} }, 2858 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} }, 2859 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} }, 2860 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} }, 2861 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} }, 2862 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} }, 2863 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} }, 2864 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} }, 2865 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} }, 2866 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 }, 2867 { 2, false, 5, 0 }} }, 2868 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 }, 2869 { 2, false, 6, 0 }} }, 2870 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} }, 2871 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} }, 2872 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} }, 2873 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} }, 2874 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} }, 2875 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} }, 2876 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} }, 2877 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} }, 2878 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax, 2879 {{ 1, false, 4, 0 }} }, 2880 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} }, 2881 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax, 2882 {{ 1, false, 4, 0 }} }, 2883 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} }, 2884 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} }, 2885 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} }, 2886 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} }, 2887 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} }, 2888 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} }, 2889 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} }, 2890 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} }, 2891 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} }, 2892 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} }, 2893 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} }, 2894 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} }, 2895 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} }, 2896 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} }, 2897 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} }, 2898 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} }, 2899 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} }, 2900 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} }, 2901 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} }, 2902 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B, 2903 {{ 3, false, 1, 0 }} }, 2904 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} }, 2905 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} }, 2906 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} }, 2907 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B, 2908 {{ 3, false, 1, 0 }} }, 2909 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} }, 2910 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} }, 2911 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} }, 2912 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B, 2913 {{ 3, false, 1, 0 }} }, 2914 }; 2915 2916 // Use a dynamically initialized static to sort the table exactly once on 2917 // first run. 2918 static const bool SortOnce = 2919 (llvm::sort(Infos, 2920 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) { 2921 return LHS.BuiltinID < RHS.BuiltinID; 2922 }), 2923 true); 2924 (void)SortOnce; 2925 2926 const BuiltinInfo *F = llvm::partition_point( 2927 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; }); 2928 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 2929 return false; 2930 2931 bool Error = false; 2932 2933 for (const ArgInfo &A : F->Infos) { 2934 // Ignore empty ArgInfo elements. 2935 if (A.BitWidth == 0) 2936 continue; 2937 2938 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0; 2939 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1; 2940 if (!A.Align) { 2941 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max); 2942 } else { 2943 unsigned M = 1 << A.Align; 2944 Min *= M; 2945 Max *= M; 2946 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) | 2947 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M); 2948 } 2949 } 2950 return Error; 2951 } 2952 2953 bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID, 2954 CallExpr *TheCall) { 2955 return CheckHexagonBuiltinArgument(BuiltinID, TheCall); 2956 } 2957 2958 bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI, 2959 unsigned BuiltinID, CallExpr *TheCall) { 2960 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) || 2961 CheckMipsBuiltinArgument(BuiltinID, TheCall); 2962 } 2963 2964 bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID, 2965 CallExpr *TheCall) { 2966 2967 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID && 2968 BuiltinID <= Mips::BI__builtin_mips_lwx) { 2969 if (!TI.hasFeature("dsp")) 2970 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp); 2971 } 2972 2973 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID && 2974 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) { 2975 if (!TI.hasFeature("dspr2")) 2976 return Diag(TheCall->getBeginLoc(), 2977 diag::err_mips_builtin_requires_dspr2); 2978 } 2979 2980 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID && 2981 BuiltinID <= Mips::BI__builtin_msa_xori_b) { 2982 if (!TI.hasFeature("msa")) 2983 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa); 2984 } 2985 2986 return false; 2987 } 2988 2989 // CheckMipsBuiltinArgument - Checks the constant value passed to the 2990 // intrinsic is correct. The switch statement is ordered by DSP, MSA. The 2991 // ordering for DSP is unspecified. MSA is ordered by the data format used 2992 // by the underlying instruction i.e., df/m, df/n and then by size. 2993 // 2994 // FIXME: The size tests here should instead be tablegen'd along with the 2995 // definitions from include/clang/Basic/BuiltinsMips.def. 2996 // FIXME: GCC is strict on signedness for some of these intrinsics, we should 2997 // be too. 2998 bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) { 2999 unsigned i = 0, l = 0, u = 0, m = 0; 3000 switch (BuiltinID) { 3001 default: return false; 3002 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break; 3003 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break; 3004 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break; 3005 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break; 3006 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break; 3007 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break; 3008 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break; 3009 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the 3010 // df/m field. 3011 // These intrinsics take an unsigned 3 bit immediate. 3012 case Mips::BI__builtin_msa_bclri_b: 3013 case Mips::BI__builtin_msa_bnegi_b: 3014 case Mips::BI__builtin_msa_bseti_b: 3015 case Mips::BI__builtin_msa_sat_s_b: 3016 case Mips::BI__builtin_msa_sat_u_b: 3017 case Mips::BI__builtin_msa_slli_b: 3018 case Mips::BI__builtin_msa_srai_b: 3019 case Mips::BI__builtin_msa_srari_b: 3020 case Mips::BI__builtin_msa_srli_b: 3021 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break; 3022 case Mips::BI__builtin_msa_binsli_b: 3023 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break; 3024 // These intrinsics take an unsigned 4 bit immediate. 3025 case Mips::BI__builtin_msa_bclri_h: 3026 case Mips::BI__builtin_msa_bnegi_h: 3027 case Mips::BI__builtin_msa_bseti_h: 3028 case Mips::BI__builtin_msa_sat_s_h: 3029 case Mips::BI__builtin_msa_sat_u_h: 3030 case Mips::BI__builtin_msa_slli_h: 3031 case Mips::BI__builtin_msa_srai_h: 3032 case Mips::BI__builtin_msa_srari_h: 3033 case Mips::BI__builtin_msa_srli_h: 3034 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break; 3035 case Mips::BI__builtin_msa_binsli_h: 3036 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break; 3037 // These intrinsics take an unsigned 5 bit immediate. 3038 // The first block of intrinsics actually have an unsigned 5 bit field, 3039 // not a df/n field. 3040 case Mips::BI__builtin_msa_cfcmsa: 3041 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break; 3042 case Mips::BI__builtin_msa_clei_u_b: 3043 case Mips::BI__builtin_msa_clei_u_h: 3044 case Mips::BI__builtin_msa_clei_u_w: 3045 case Mips::BI__builtin_msa_clei_u_d: 3046 case Mips::BI__builtin_msa_clti_u_b: 3047 case Mips::BI__builtin_msa_clti_u_h: 3048 case Mips::BI__builtin_msa_clti_u_w: 3049 case Mips::BI__builtin_msa_clti_u_d: 3050 case Mips::BI__builtin_msa_maxi_u_b: 3051 case Mips::BI__builtin_msa_maxi_u_h: 3052 case Mips::BI__builtin_msa_maxi_u_w: 3053 case Mips::BI__builtin_msa_maxi_u_d: 3054 case Mips::BI__builtin_msa_mini_u_b: 3055 case Mips::BI__builtin_msa_mini_u_h: 3056 case Mips::BI__builtin_msa_mini_u_w: 3057 case Mips::BI__builtin_msa_mini_u_d: 3058 case Mips::BI__builtin_msa_addvi_b: 3059 case Mips::BI__builtin_msa_addvi_h: 3060 case Mips::BI__builtin_msa_addvi_w: 3061 case Mips::BI__builtin_msa_addvi_d: 3062 case Mips::BI__builtin_msa_bclri_w: 3063 case Mips::BI__builtin_msa_bnegi_w: 3064 case Mips::BI__builtin_msa_bseti_w: 3065 case Mips::BI__builtin_msa_sat_s_w: 3066 case Mips::BI__builtin_msa_sat_u_w: 3067 case Mips::BI__builtin_msa_slli_w: 3068 case Mips::BI__builtin_msa_srai_w: 3069 case Mips::BI__builtin_msa_srari_w: 3070 case Mips::BI__builtin_msa_srli_w: 3071 case Mips::BI__builtin_msa_srlri_w: 3072 case Mips::BI__builtin_msa_subvi_b: 3073 case Mips::BI__builtin_msa_subvi_h: 3074 case Mips::BI__builtin_msa_subvi_w: 3075 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break; 3076 case Mips::BI__builtin_msa_binsli_w: 3077 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break; 3078 // These intrinsics take an unsigned 6 bit immediate. 3079 case Mips::BI__builtin_msa_bclri_d: 3080 case Mips::BI__builtin_msa_bnegi_d: 3081 case Mips::BI__builtin_msa_bseti_d: 3082 case Mips::BI__builtin_msa_sat_s_d: 3083 case Mips::BI__builtin_msa_sat_u_d: 3084 case Mips::BI__builtin_msa_slli_d: 3085 case Mips::BI__builtin_msa_srai_d: 3086 case Mips::BI__builtin_msa_srari_d: 3087 case Mips::BI__builtin_msa_srli_d: 3088 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break; 3089 case Mips::BI__builtin_msa_binsli_d: 3090 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break; 3091 // These intrinsics take a signed 5 bit immediate. 3092 case Mips::BI__builtin_msa_ceqi_b: 3093 case Mips::BI__builtin_msa_ceqi_h: 3094 case Mips::BI__builtin_msa_ceqi_w: 3095 case Mips::BI__builtin_msa_ceqi_d: 3096 case Mips::BI__builtin_msa_clti_s_b: 3097 case Mips::BI__builtin_msa_clti_s_h: 3098 case Mips::BI__builtin_msa_clti_s_w: 3099 case Mips::BI__builtin_msa_clti_s_d: 3100 case Mips::BI__builtin_msa_clei_s_b: 3101 case Mips::BI__builtin_msa_clei_s_h: 3102 case Mips::BI__builtin_msa_clei_s_w: 3103 case Mips::BI__builtin_msa_clei_s_d: 3104 case Mips::BI__builtin_msa_maxi_s_b: 3105 case Mips::BI__builtin_msa_maxi_s_h: 3106 case Mips::BI__builtin_msa_maxi_s_w: 3107 case Mips::BI__builtin_msa_maxi_s_d: 3108 case Mips::BI__builtin_msa_mini_s_b: 3109 case Mips::BI__builtin_msa_mini_s_h: 3110 case Mips::BI__builtin_msa_mini_s_w: 3111 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break; 3112 // These intrinsics take an unsigned 8 bit immediate. 3113 case Mips::BI__builtin_msa_andi_b: 3114 case Mips::BI__builtin_msa_nori_b: 3115 case Mips::BI__builtin_msa_ori_b: 3116 case Mips::BI__builtin_msa_shf_b: 3117 case Mips::BI__builtin_msa_shf_h: 3118 case Mips::BI__builtin_msa_shf_w: 3119 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break; 3120 case Mips::BI__builtin_msa_bseli_b: 3121 case Mips::BI__builtin_msa_bmnzi_b: 3122 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break; 3123 // df/n format 3124 // These intrinsics take an unsigned 4 bit immediate. 3125 case Mips::BI__builtin_msa_copy_s_b: 3126 case Mips::BI__builtin_msa_copy_u_b: 3127 case Mips::BI__builtin_msa_insve_b: 3128 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break; 3129 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break; 3130 // These intrinsics take an unsigned 3 bit immediate. 3131 case Mips::BI__builtin_msa_copy_s_h: 3132 case Mips::BI__builtin_msa_copy_u_h: 3133 case Mips::BI__builtin_msa_insve_h: 3134 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break; 3135 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break; 3136 // These intrinsics take an unsigned 2 bit immediate. 3137 case Mips::BI__builtin_msa_copy_s_w: 3138 case Mips::BI__builtin_msa_copy_u_w: 3139 case Mips::BI__builtin_msa_insve_w: 3140 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break; 3141 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break; 3142 // These intrinsics take an unsigned 1 bit immediate. 3143 case Mips::BI__builtin_msa_copy_s_d: 3144 case Mips::BI__builtin_msa_copy_u_d: 3145 case Mips::BI__builtin_msa_insve_d: 3146 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break; 3147 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break; 3148 // Memory offsets and immediate loads. 3149 // These intrinsics take a signed 10 bit immediate. 3150 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break; 3151 case Mips::BI__builtin_msa_ldi_h: 3152 case Mips::BI__builtin_msa_ldi_w: 3153 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break; 3154 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break; 3155 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break; 3156 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break; 3157 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break; 3158 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break; 3159 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break; 3160 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break; 3161 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break; 3162 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break; 3163 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break; 3164 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break; 3165 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break; 3166 } 3167 3168 if (!m) 3169 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3170 3171 return SemaBuiltinConstantArgRange(TheCall, i, l, u) || 3172 SemaBuiltinConstantArgMultiple(TheCall, i, m); 3173 } 3174 3175 /// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str, 3176 /// advancing the pointer over the consumed characters. The decoded type is 3177 /// returned. If the decoded type represents a constant integer with a 3178 /// constraint on its value then Mask is set to that value. The type descriptors 3179 /// used in Str are specific to PPC MMA builtins and are documented in the file 3180 /// defining the PPC builtins. 3181 static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str, 3182 unsigned &Mask) { 3183 bool RequireICE = false; 3184 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 3185 switch (*Str++) { 3186 case 'V': 3187 return Context.getVectorType(Context.UnsignedCharTy, 16, 3188 VectorType::VectorKind::AltiVecVector); 3189 case 'i': { 3190 char *End; 3191 unsigned size = strtoul(Str, &End, 10); 3192 assert(End != Str && "Missing constant parameter constraint"); 3193 Str = End; 3194 Mask = size; 3195 return Context.IntTy; 3196 } 3197 case 'W': { 3198 char *End; 3199 unsigned size = strtoul(Str, &End, 10); 3200 assert(End != Str && "Missing PowerPC MMA type size"); 3201 Str = End; 3202 QualType Type; 3203 switch (size) { 3204 #define PPC_VECTOR_TYPE(typeName, Id, size) \ 3205 case size: Type = Context.Id##Ty; break; 3206 #include "clang/Basic/PPCTypes.def" 3207 default: llvm_unreachable("Invalid PowerPC MMA vector type"); 3208 } 3209 bool CheckVectorArgs = false; 3210 while (!CheckVectorArgs) { 3211 switch (*Str++) { 3212 case '*': 3213 Type = Context.getPointerType(Type); 3214 break; 3215 case 'C': 3216 Type = Type.withConst(); 3217 break; 3218 default: 3219 CheckVectorArgs = true; 3220 --Str; 3221 break; 3222 } 3223 } 3224 return Type; 3225 } 3226 default: 3227 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true); 3228 } 3229 } 3230 3231 bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3232 CallExpr *TheCall) { 3233 unsigned i = 0, l = 0, u = 0; 3234 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde || 3235 BuiltinID == PPC::BI__builtin_divdeu || 3236 BuiltinID == PPC::BI__builtin_bpermd; 3237 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64; 3238 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe || 3239 BuiltinID == PPC::BI__builtin_divweu || 3240 BuiltinID == PPC::BI__builtin_divde || 3241 BuiltinID == PPC::BI__builtin_divdeu; 3242 3243 if (Is64BitBltin && !IsTarget64Bit) 3244 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt) 3245 << TheCall->getSourceRange(); 3246 3247 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) || 3248 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd"))) 3249 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3250 << TheCall->getSourceRange(); 3251 3252 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool { 3253 if (!TI.hasFeature("vsx")) 3254 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7) 3255 << TheCall->getSourceRange(); 3256 return false; 3257 }; 3258 3259 switch (BuiltinID) { 3260 default: return false; 3261 case PPC::BI__builtin_altivec_crypto_vshasigmaw: 3262 case PPC::BI__builtin_altivec_crypto_vshasigmad: 3263 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) || 3264 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3265 case PPC::BI__builtin_altivec_dss: 3266 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3); 3267 case PPC::BI__builtin_tbegin: 3268 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break; 3269 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break; 3270 case PPC::BI__builtin_tabortwc: 3271 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break; 3272 case PPC::BI__builtin_tabortwci: 3273 case PPC::BI__builtin_tabortdci: 3274 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) || 3275 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31); 3276 case PPC::BI__builtin_altivec_dst: 3277 case PPC::BI__builtin_altivec_dstt: 3278 case PPC::BI__builtin_altivec_dstst: 3279 case PPC::BI__builtin_altivec_dststt: 3280 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3); 3281 case PPC::BI__builtin_vsx_xxpermdi: 3282 case PPC::BI__builtin_vsx_xxsldwi: 3283 return SemaBuiltinVSX(TheCall); 3284 case PPC::BI__builtin_unpack_vector_int128: 3285 return SemaVSXCheck(TheCall) || 3286 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1); 3287 case PPC::BI__builtin_pack_vector_int128: 3288 return SemaVSXCheck(TheCall); 3289 case PPC::BI__builtin_altivec_vgnb: 3290 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7); 3291 case PPC::BI__builtin_altivec_vec_replace_elt: 3292 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 3293 QualType VecTy = TheCall->getArg(0)->getType(); 3294 QualType EltTy = TheCall->getArg(1)->getType(); 3295 unsigned Width = Context.getIntWidth(EltTy); 3296 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) || 3297 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy); 3298 } 3299 case PPC::BI__builtin_vsx_xxeval: 3300 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255); 3301 case PPC::BI__builtin_altivec_vsldbi: 3302 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3303 case PPC::BI__builtin_altivec_vsrdbi: 3304 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7); 3305 case PPC::BI__builtin_vsx_xxpermx: 3306 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7); 3307 #define CUSTOM_BUILTIN(Name, Types, Acc) \ 3308 case PPC::BI__builtin_##Name: \ 3309 return SemaBuiltinPPCMMACall(TheCall, Types); 3310 #include "clang/Basic/BuiltinsPPC.def" 3311 } 3312 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3313 } 3314 3315 // Check if the given type is a non-pointer PPC MMA type. This function is used 3316 // in Sema to prevent invalid uses of restricted PPC MMA types. 3317 bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) { 3318 if (Type->isPointerType() || Type->isArrayType()) 3319 return false; 3320 3321 QualType CoreType = Type.getCanonicalType().getUnqualifiedType(); 3322 #define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty 3323 if (false 3324 #include "clang/Basic/PPCTypes.def" 3325 ) { 3326 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type); 3327 return true; 3328 } 3329 return false; 3330 } 3331 3332 bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID, 3333 CallExpr *TheCall) { 3334 // position of memory order and scope arguments in the builtin 3335 unsigned OrderIndex, ScopeIndex; 3336 switch (BuiltinID) { 3337 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 3338 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 3339 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 3340 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 3341 OrderIndex = 2; 3342 ScopeIndex = 3; 3343 break; 3344 case AMDGPU::BI__builtin_amdgcn_fence: 3345 OrderIndex = 0; 3346 ScopeIndex = 1; 3347 break; 3348 default: 3349 return false; 3350 } 3351 3352 ExprResult Arg = TheCall->getArg(OrderIndex); 3353 auto ArgExpr = Arg.get(); 3354 Expr::EvalResult ArgResult; 3355 3356 if (!ArgExpr->EvaluateAsInt(ArgResult, Context)) 3357 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int) 3358 << ArgExpr->getType(); 3359 int ord = ArgResult.Val.getInt().getZExtValue(); 3360 3361 // Check valididty of memory ordering as per C11 / C++11's memody model. 3362 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 3363 case llvm::AtomicOrderingCABI::acquire: 3364 case llvm::AtomicOrderingCABI::release: 3365 case llvm::AtomicOrderingCABI::acq_rel: 3366 case llvm::AtomicOrderingCABI::seq_cst: 3367 break; 3368 default: { 3369 return Diag(ArgExpr->getBeginLoc(), 3370 diag::warn_atomic_op_has_invalid_memory_order) 3371 << ArgExpr->getSourceRange(); 3372 } 3373 } 3374 3375 Arg = TheCall->getArg(ScopeIndex); 3376 ArgExpr = Arg.get(); 3377 Expr::EvalResult ArgResult1; 3378 // Check that sync scope is a constant literal 3379 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context)) 3380 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal) 3381 << ArgExpr->getType(); 3382 3383 return false; 3384 } 3385 3386 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID, 3387 CallExpr *TheCall) { 3388 if (BuiltinID == SystemZ::BI__builtin_tabort) { 3389 Expr *Arg = TheCall->getArg(0); 3390 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context)) 3391 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256) 3392 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code) 3393 << Arg->getSourceRange(); 3394 } 3395 3396 // For intrinsics which take an immediate value as part of the instruction, 3397 // range check them here. 3398 unsigned i = 0, l = 0, u = 0; 3399 switch (BuiltinID) { 3400 default: return false; 3401 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break; 3402 case SystemZ::BI__builtin_s390_verimb: 3403 case SystemZ::BI__builtin_s390_verimh: 3404 case SystemZ::BI__builtin_s390_verimf: 3405 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break; 3406 case SystemZ::BI__builtin_s390_vfaeb: 3407 case SystemZ::BI__builtin_s390_vfaeh: 3408 case SystemZ::BI__builtin_s390_vfaef: 3409 case SystemZ::BI__builtin_s390_vfaebs: 3410 case SystemZ::BI__builtin_s390_vfaehs: 3411 case SystemZ::BI__builtin_s390_vfaefs: 3412 case SystemZ::BI__builtin_s390_vfaezb: 3413 case SystemZ::BI__builtin_s390_vfaezh: 3414 case SystemZ::BI__builtin_s390_vfaezf: 3415 case SystemZ::BI__builtin_s390_vfaezbs: 3416 case SystemZ::BI__builtin_s390_vfaezhs: 3417 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break; 3418 case SystemZ::BI__builtin_s390_vfisb: 3419 case SystemZ::BI__builtin_s390_vfidb: 3420 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) || 3421 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15); 3422 case SystemZ::BI__builtin_s390_vftcisb: 3423 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break; 3424 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break; 3425 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break; 3426 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break; 3427 case SystemZ::BI__builtin_s390_vstrcb: 3428 case SystemZ::BI__builtin_s390_vstrch: 3429 case SystemZ::BI__builtin_s390_vstrcf: 3430 case SystemZ::BI__builtin_s390_vstrczb: 3431 case SystemZ::BI__builtin_s390_vstrczh: 3432 case SystemZ::BI__builtin_s390_vstrczf: 3433 case SystemZ::BI__builtin_s390_vstrcbs: 3434 case SystemZ::BI__builtin_s390_vstrchs: 3435 case SystemZ::BI__builtin_s390_vstrcfs: 3436 case SystemZ::BI__builtin_s390_vstrczbs: 3437 case SystemZ::BI__builtin_s390_vstrczhs: 3438 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break; 3439 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break; 3440 case SystemZ::BI__builtin_s390_vfminsb: 3441 case SystemZ::BI__builtin_s390_vfmaxsb: 3442 case SystemZ::BI__builtin_s390_vfmindb: 3443 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break; 3444 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break; 3445 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break; 3446 } 3447 return SemaBuiltinConstantArgRange(TheCall, i, l, u); 3448 } 3449 3450 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *). 3451 /// This checks that the target supports __builtin_cpu_supports and 3452 /// that the string argument is constant and valid. 3453 static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI, 3454 CallExpr *TheCall) { 3455 Expr *Arg = TheCall->getArg(0); 3456 3457 // Check if the argument is a string literal. 3458 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3459 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3460 << Arg->getSourceRange(); 3461 3462 // Check the contents of the string. 3463 StringRef Feature = 3464 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3465 if (!TI.validateCpuSupports(Feature)) 3466 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports) 3467 << Arg->getSourceRange(); 3468 return false; 3469 } 3470 3471 /// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *). 3472 /// This checks that the target supports __builtin_cpu_is and 3473 /// that the string argument is constant and valid. 3474 static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) { 3475 Expr *Arg = TheCall->getArg(0); 3476 3477 // Check if the argument is a string literal. 3478 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 3479 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 3480 << Arg->getSourceRange(); 3481 3482 // Check the contents of the string. 3483 StringRef Feature = 3484 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 3485 if (!TI.validateCpuIs(Feature)) 3486 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is) 3487 << Arg->getSourceRange(); 3488 return false; 3489 } 3490 3491 // Check if the rounding mode is legal. 3492 bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) { 3493 // Indicates if this instruction has rounding control or just SAE. 3494 bool HasRC = false; 3495 3496 unsigned ArgNum = 0; 3497 switch (BuiltinID) { 3498 default: 3499 return false; 3500 case X86::BI__builtin_ia32_vcvttsd2si32: 3501 case X86::BI__builtin_ia32_vcvttsd2si64: 3502 case X86::BI__builtin_ia32_vcvttsd2usi32: 3503 case X86::BI__builtin_ia32_vcvttsd2usi64: 3504 case X86::BI__builtin_ia32_vcvttss2si32: 3505 case X86::BI__builtin_ia32_vcvttss2si64: 3506 case X86::BI__builtin_ia32_vcvttss2usi32: 3507 case X86::BI__builtin_ia32_vcvttss2usi64: 3508 ArgNum = 1; 3509 break; 3510 case X86::BI__builtin_ia32_maxpd512: 3511 case X86::BI__builtin_ia32_maxps512: 3512 case X86::BI__builtin_ia32_minpd512: 3513 case X86::BI__builtin_ia32_minps512: 3514 ArgNum = 2; 3515 break; 3516 case X86::BI__builtin_ia32_cvtps2pd512_mask: 3517 case X86::BI__builtin_ia32_cvttpd2dq512_mask: 3518 case X86::BI__builtin_ia32_cvttpd2qq512_mask: 3519 case X86::BI__builtin_ia32_cvttpd2udq512_mask: 3520 case X86::BI__builtin_ia32_cvttpd2uqq512_mask: 3521 case X86::BI__builtin_ia32_cvttps2dq512_mask: 3522 case X86::BI__builtin_ia32_cvttps2qq512_mask: 3523 case X86::BI__builtin_ia32_cvttps2udq512_mask: 3524 case X86::BI__builtin_ia32_cvttps2uqq512_mask: 3525 case X86::BI__builtin_ia32_exp2pd_mask: 3526 case X86::BI__builtin_ia32_exp2ps_mask: 3527 case X86::BI__builtin_ia32_getexppd512_mask: 3528 case X86::BI__builtin_ia32_getexpps512_mask: 3529 case X86::BI__builtin_ia32_rcp28pd_mask: 3530 case X86::BI__builtin_ia32_rcp28ps_mask: 3531 case X86::BI__builtin_ia32_rsqrt28pd_mask: 3532 case X86::BI__builtin_ia32_rsqrt28ps_mask: 3533 case X86::BI__builtin_ia32_vcomisd: 3534 case X86::BI__builtin_ia32_vcomiss: 3535 case X86::BI__builtin_ia32_vcvtph2ps512_mask: 3536 ArgNum = 3; 3537 break; 3538 case X86::BI__builtin_ia32_cmppd512_mask: 3539 case X86::BI__builtin_ia32_cmpps512_mask: 3540 case X86::BI__builtin_ia32_cmpsd_mask: 3541 case X86::BI__builtin_ia32_cmpss_mask: 3542 case X86::BI__builtin_ia32_cvtss2sd_round_mask: 3543 case X86::BI__builtin_ia32_getexpsd128_round_mask: 3544 case X86::BI__builtin_ia32_getexpss128_round_mask: 3545 case X86::BI__builtin_ia32_getmantpd512_mask: 3546 case X86::BI__builtin_ia32_getmantps512_mask: 3547 case X86::BI__builtin_ia32_maxsd_round_mask: 3548 case X86::BI__builtin_ia32_maxss_round_mask: 3549 case X86::BI__builtin_ia32_minsd_round_mask: 3550 case X86::BI__builtin_ia32_minss_round_mask: 3551 case X86::BI__builtin_ia32_rcp28sd_round_mask: 3552 case X86::BI__builtin_ia32_rcp28ss_round_mask: 3553 case X86::BI__builtin_ia32_reducepd512_mask: 3554 case X86::BI__builtin_ia32_reduceps512_mask: 3555 case X86::BI__builtin_ia32_rndscalepd_mask: 3556 case X86::BI__builtin_ia32_rndscaleps_mask: 3557 case X86::BI__builtin_ia32_rsqrt28sd_round_mask: 3558 case X86::BI__builtin_ia32_rsqrt28ss_round_mask: 3559 ArgNum = 4; 3560 break; 3561 case X86::BI__builtin_ia32_fixupimmpd512_mask: 3562 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 3563 case X86::BI__builtin_ia32_fixupimmps512_mask: 3564 case X86::BI__builtin_ia32_fixupimmps512_maskz: 3565 case X86::BI__builtin_ia32_fixupimmsd_mask: 3566 case X86::BI__builtin_ia32_fixupimmsd_maskz: 3567 case X86::BI__builtin_ia32_fixupimmss_mask: 3568 case X86::BI__builtin_ia32_fixupimmss_maskz: 3569 case X86::BI__builtin_ia32_getmantsd_round_mask: 3570 case X86::BI__builtin_ia32_getmantss_round_mask: 3571 case X86::BI__builtin_ia32_rangepd512_mask: 3572 case X86::BI__builtin_ia32_rangeps512_mask: 3573 case X86::BI__builtin_ia32_rangesd128_round_mask: 3574 case X86::BI__builtin_ia32_rangess128_round_mask: 3575 case X86::BI__builtin_ia32_reducesd_mask: 3576 case X86::BI__builtin_ia32_reducess_mask: 3577 case X86::BI__builtin_ia32_rndscalesd_round_mask: 3578 case X86::BI__builtin_ia32_rndscaless_round_mask: 3579 ArgNum = 5; 3580 break; 3581 case X86::BI__builtin_ia32_vcvtsd2si64: 3582 case X86::BI__builtin_ia32_vcvtsd2si32: 3583 case X86::BI__builtin_ia32_vcvtsd2usi32: 3584 case X86::BI__builtin_ia32_vcvtsd2usi64: 3585 case X86::BI__builtin_ia32_vcvtss2si32: 3586 case X86::BI__builtin_ia32_vcvtss2si64: 3587 case X86::BI__builtin_ia32_vcvtss2usi32: 3588 case X86::BI__builtin_ia32_vcvtss2usi64: 3589 case X86::BI__builtin_ia32_sqrtpd512: 3590 case X86::BI__builtin_ia32_sqrtps512: 3591 ArgNum = 1; 3592 HasRC = true; 3593 break; 3594 case X86::BI__builtin_ia32_addpd512: 3595 case X86::BI__builtin_ia32_addps512: 3596 case X86::BI__builtin_ia32_divpd512: 3597 case X86::BI__builtin_ia32_divps512: 3598 case X86::BI__builtin_ia32_mulpd512: 3599 case X86::BI__builtin_ia32_mulps512: 3600 case X86::BI__builtin_ia32_subpd512: 3601 case X86::BI__builtin_ia32_subps512: 3602 case X86::BI__builtin_ia32_cvtsi2sd64: 3603 case X86::BI__builtin_ia32_cvtsi2ss32: 3604 case X86::BI__builtin_ia32_cvtsi2ss64: 3605 case X86::BI__builtin_ia32_cvtusi2sd64: 3606 case X86::BI__builtin_ia32_cvtusi2ss32: 3607 case X86::BI__builtin_ia32_cvtusi2ss64: 3608 ArgNum = 2; 3609 HasRC = true; 3610 break; 3611 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 3612 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 3613 case X86::BI__builtin_ia32_cvtpd2ps512_mask: 3614 case X86::BI__builtin_ia32_cvtpd2dq512_mask: 3615 case X86::BI__builtin_ia32_cvtpd2qq512_mask: 3616 case X86::BI__builtin_ia32_cvtpd2udq512_mask: 3617 case X86::BI__builtin_ia32_cvtpd2uqq512_mask: 3618 case X86::BI__builtin_ia32_cvtps2dq512_mask: 3619 case X86::BI__builtin_ia32_cvtps2qq512_mask: 3620 case X86::BI__builtin_ia32_cvtps2udq512_mask: 3621 case X86::BI__builtin_ia32_cvtps2uqq512_mask: 3622 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 3623 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 3624 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 3625 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 3626 ArgNum = 3; 3627 HasRC = true; 3628 break; 3629 case X86::BI__builtin_ia32_addss_round_mask: 3630 case X86::BI__builtin_ia32_addsd_round_mask: 3631 case X86::BI__builtin_ia32_divss_round_mask: 3632 case X86::BI__builtin_ia32_divsd_round_mask: 3633 case X86::BI__builtin_ia32_mulss_round_mask: 3634 case X86::BI__builtin_ia32_mulsd_round_mask: 3635 case X86::BI__builtin_ia32_subss_round_mask: 3636 case X86::BI__builtin_ia32_subsd_round_mask: 3637 case X86::BI__builtin_ia32_scalefpd512_mask: 3638 case X86::BI__builtin_ia32_scalefps512_mask: 3639 case X86::BI__builtin_ia32_scalefsd_round_mask: 3640 case X86::BI__builtin_ia32_scalefss_round_mask: 3641 case X86::BI__builtin_ia32_cvtsd2ss_round_mask: 3642 case X86::BI__builtin_ia32_sqrtsd_round_mask: 3643 case X86::BI__builtin_ia32_sqrtss_round_mask: 3644 case X86::BI__builtin_ia32_vfmaddsd3_mask: 3645 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 3646 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 3647 case X86::BI__builtin_ia32_vfmaddss3_mask: 3648 case X86::BI__builtin_ia32_vfmaddss3_maskz: 3649 case X86::BI__builtin_ia32_vfmaddss3_mask3: 3650 case X86::BI__builtin_ia32_vfmaddpd512_mask: 3651 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 3652 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 3653 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 3654 case X86::BI__builtin_ia32_vfmaddps512_mask: 3655 case X86::BI__builtin_ia32_vfmaddps512_maskz: 3656 case X86::BI__builtin_ia32_vfmaddps512_mask3: 3657 case X86::BI__builtin_ia32_vfmsubps512_mask3: 3658 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 3659 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 3660 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 3661 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 3662 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 3663 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 3664 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 3665 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 3666 ArgNum = 4; 3667 HasRC = true; 3668 break; 3669 } 3670 3671 llvm::APSInt Result; 3672 3673 // We can't check the value of a dependent argument. 3674 Expr *Arg = TheCall->getArg(ArgNum); 3675 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3676 return false; 3677 3678 // Check constant-ness first. 3679 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3680 return true; 3681 3682 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit 3683 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only 3684 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding 3685 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together. 3686 if (Result == 4/*ROUND_CUR_DIRECTION*/ || 3687 Result == 8/*ROUND_NO_EXC*/ || 3688 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) || 3689 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11)) 3690 return false; 3691 3692 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding) 3693 << Arg->getSourceRange(); 3694 } 3695 3696 // Check if the gather/scatter scale is legal. 3697 bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID, 3698 CallExpr *TheCall) { 3699 unsigned ArgNum = 0; 3700 switch (BuiltinID) { 3701 default: 3702 return false; 3703 case X86::BI__builtin_ia32_gatherpfdpd: 3704 case X86::BI__builtin_ia32_gatherpfdps: 3705 case X86::BI__builtin_ia32_gatherpfqpd: 3706 case X86::BI__builtin_ia32_gatherpfqps: 3707 case X86::BI__builtin_ia32_scatterpfdpd: 3708 case X86::BI__builtin_ia32_scatterpfdps: 3709 case X86::BI__builtin_ia32_scatterpfqpd: 3710 case X86::BI__builtin_ia32_scatterpfqps: 3711 ArgNum = 3; 3712 break; 3713 case X86::BI__builtin_ia32_gatherd_pd: 3714 case X86::BI__builtin_ia32_gatherd_pd256: 3715 case X86::BI__builtin_ia32_gatherq_pd: 3716 case X86::BI__builtin_ia32_gatherq_pd256: 3717 case X86::BI__builtin_ia32_gatherd_ps: 3718 case X86::BI__builtin_ia32_gatherd_ps256: 3719 case X86::BI__builtin_ia32_gatherq_ps: 3720 case X86::BI__builtin_ia32_gatherq_ps256: 3721 case X86::BI__builtin_ia32_gatherd_q: 3722 case X86::BI__builtin_ia32_gatherd_q256: 3723 case X86::BI__builtin_ia32_gatherq_q: 3724 case X86::BI__builtin_ia32_gatherq_q256: 3725 case X86::BI__builtin_ia32_gatherd_d: 3726 case X86::BI__builtin_ia32_gatherd_d256: 3727 case X86::BI__builtin_ia32_gatherq_d: 3728 case X86::BI__builtin_ia32_gatherq_d256: 3729 case X86::BI__builtin_ia32_gather3div2df: 3730 case X86::BI__builtin_ia32_gather3div2di: 3731 case X86::BI__builtin_ia32_gather3div4df: 3732 case X86::BI__builtin_ia32_gather3div4di: 3733 case X86::BI__builtin_ia32_gather3div4sf: 3734 case X86::BI__builtin_ia32_gather3div4si: 3735 case X86::BI__builtin_ia32_gather3div8sf: 3736 case X86::BI__builtin_ia32_gather3div8si: 3737 case X86::BI__builtin_ia32_gather3siv2df: 3738 case X86::BI__builtin_ia32_gather3siv2di: 3739 case X86::BI__builtin_ia32_gather3siv4df: 3740 case X86::BI__builtin_ia32_gather3siv4di: 3741 case X86::BI__builtin_ia32_gather3siv4sf: 3742 case X86::BI__builtin_ia32_gather3siv4si: 3743 case X86::BI__builtin_ia32_gather3siv8sf: 3744 case X86::BI__builtin_ia32_gather3siv8si: 3745 case X86::BI__builtin_ia32_gathersiv8df: 3746 case X86::BI__builtin_ia32_gathersiv16sf: 3747 case X86::BI__builtin_ia32_gatherdiv8df: 3748 case X86::BI__builtin_ia32_gatherdiv16sf: 3749 case X86::BI__builtin_ia32_gathersiv8di: 3750 case X86::BI__builtin_ia32_gathersiv16si: 3751 case X86::BI__builtin_ia32_gatherdiv8di: 3752 case X86::BI__builtin_ia32_gatherdiv16si: 3753 case X86::BI__builtin_ia32_scatterdiv2df: 3754 case X86::BI__builtin_ia32_scatterdiv2di: 3755 case X86::BI__builtin_ia32_scatterdiv4df: 3756 case X86::BI__builtin_ia32_scatterdiv4di: 3757 case X86::BI__builtin_ia32_scatterdiv4sf: 3758 case X86::BI__builtin_ia32_scatterdiv4si: 3759 case X86::BI__builtin_ia32_scatterdiv8sf: 3760 case X86::BI__builtin_ia32_scatterdiv8si: 3761 case X86::BI__builtin_ia32_scattersiv2df: 3762 case X86::BI__builtin_ia32_scattersiv2di: 3763 case X86::BI__builtin_ia32_scattersiv4df: 3764 case X86::BI__builtin_ia32_scattersiv4di: 3765 case X86::BI__builtin_ia32_scattersiv4sf: 3766 case X86::BI__builtin_ia32_scattersiv4si: 3767 case X86::BI__builtin_ia32_scattersiv8sf: 3768 case X86::BI__builtin_ia32_scattersiv8si: 3769 case X86::BI__builtin_ia32_scattersiv8df: 3770 case X86::BI__builtin_ia32_scattersiv16sf: 3771 case X86::BI__builtin_ia32_scatterdiv8df: 3772 case X86::BI__builtin_ia32_scatterdiv16sf: 3773 case X86::BI__builtin_ia32_scattersiv8di: 3774 case X86::BI__builtin_ia32_scattersiv16si: 3775 case X86::BI__builtin_ia32_scatterdiv8di: 3776 case X86::BI__builtin_ia32_scatterdiv16si: 3777 ArgNum = 4; 3778 break; 3779 } 3780 3781 llvm::APSInt Result; 3782 3783 // We can't check the value of a dependent argument. 3784 Expr *Arg = TheCall->getArg(ArgNum); 3785 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3786 return false; 3787 3788 // Check constant-ness first. 3789 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3790 return true; 3791 3792 if (Result == 1 || Result == 2 || Result == 4 || Result == 8) 3793 return false; 3794 3795 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale) 3796 << Arg->getSourceRange(); 3797 } 3798 3799 enum { TileRegLow = 0, TileRegHigh = 7 }; 3800 3801 bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall, 3802 ArrayRef<int> ArgNums) { 3803 for (int ArgNum : ArgNums) { 3804 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh)) 3805 return true; 3806 } 3807 return false; 3808 } 3809 3810 bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall, 3811 ArrayRef<int> ArgNums) { 3812 // Because the max number of tile register is TileRegHigh + 1, so here we use 3813 // each bit to represent the usage of them in bitset. 3814 std::bitset<TileRegHigh + 1> ArgValues; 3815 for (int ArgNum : ArgNums) { 3816 Expr *Arg = TheCall->getArg(ArgNum); 3817 if (Arg->isTypeDependent() || Arg->isValueDependent()) 3818 continue; 3819 3820 llvm::APSInt Result; 3821 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 3822 return true; 3823 int ArgExtValue = Result.getExtValue(); 3824 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && 3825 "Incorrect tile register num."); 3826 if (ArgValues.test(ArgExtValue)) 3827 return Diag(TheCall->getBeginLoc(), 3828 diag::err_x86_builtin_tile_arg_duplicate) 3829 << TheCall->getArg(ArgNum)->getSourceRange(); 3830 ArgValues.set(ArgExtValue); 3831 } 3832 return false; 3833 } 3834 3835 bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall, 3836 ArrayRef<int> ArgNums) { 3837 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) || 3838 CheckX86BuiltinTileDuplicate(TheCall, ArgNums); 3839 } 3840 3841 bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) { 3842 switch (BuiltinID) { 3843 default: 3844 return false; 3845 case X86::BI__builtin_ia32_tileloadd64: 3846 case X86::BI__builtin_ia32_tileloaddt164: 3847 case X86::BI__builtin_ia32_tilestored64: 3848 case X86::BI__builtin_ia32_tilezero: 3849 return CheckX86BuiltinTileArgumentsRange(TheCall, 0); 3850 case X86::BI__builtin_ia32_tdpbssd: 3851 case X86::BI__builtin_ia32_tdpbsud: 3852 case X86::BI__builtin_ia32_tdpbusd: 3853 case X86::BI__builtin_ia32_tdpbuud: 3854 case X86::BI__builtin_ia32_tdpbf16ps: 3855 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2}); 3856 } 3857 } 3858 static bool isX86_32Builtin(unsigned BuiltinID) { 3859 // These builtins only work on x86-32 targets. 3860 switch (BuiltinID) { 3861 case X86::BI__builtin_ia32_readeflags_u32: 3862 case X86::BI__builtin_ia32_writeeflags_u32: 3863 return true; 3864 } 3865 3866 return false; 3867 } 3868 3869 bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID, 3870 CallExpr *TheCall) { 3871 if (BuiltinID == X86::BI__builtin_cpu_supports) 3872 return SemaBuiltinCpuSupports(*this, TI, TheCall); 3873 3874 if (BuiltinID == X86::BI__builtin_cpu_is) 3875 return SemaBuiltinCpuIs(*this, TI, TheCall); 3876 3877 // Check for 32-bit only builtins on a 64-bit target. 3878 const llvm::Triple &TT = TI.getTriple(); 3879 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID)) 3880 return Diag(TheCall->getCallee()->getBeginLoc(), 3881 diag::err_32_bit_builtin_64_bit_tgt); 3882 3883 // If the intrinsic has rounding or SAE make sure its valid. 3884 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall)) 3885 return true; 3886 3887 // If the intrinsic has a gather/scatter scale immediate make sure its valid. 3888 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall)) 3889 return true; 3890 3891 // If the intrinsic has a tile arguments, make sure they are valid. 3892 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall)) 3893 return true; 3894 3895 // For intrinsics which take an immediate value as part of the instruction, 3896 // range check them here. 3897 int i = 0, l = 0, u = 0; 3898 switch (BuiltinID) { 3899 default: 3900 return false; 3901 case X86::BI__builtin_ia32_vec_ext_v2si: 3902 case X86::BI__builtin_ia32_vec_ext_v2di: 3903 case X86::BI__builtin_ia32_vextractf128_pd256: 3904 case X86::BI__builtin_ia32_vextractf128_ps256: 3905 case X86::BI__builtin_ia32_vextractf128_si256: 3906 case X86::BI__builtin_ia32_extract128i256: 3907 case X86::BI__builtin_ia32_extractf64x4_mask: 3908 case X86::BI__builtin_ia32_extracti64x4_mask: 3909 case X86::BI__builtin_ia32_extractf32x8_mask: 3910 case X86::BI__builtin_ia32_extracti32x8_mask: 3911 case X86::BI__builtin_ia32_extractf64x2_256_mask: 3912 case X86::BI__builtin_ia32_extracti64x2_256_mask: 3913 case X86::BI__builtin_ia32_extractf32x4_256_mask: 3914 case X86::BI__builtin_ia32_extracti32x4_256_mask: 3915 i = 1; l = 0; u = 1; 3916 break; 3917 case X86::BI__builtin_ia32_vec_set_v2di: 3918 case X86::BI__builtin_ia32_vinsertf128_pd256: 3919 case X86::BI__builtin_ia32_vinsertf128_ps256: 3920 case X86::BI__builtin_ia32_vinsertf128_si256: 3921 case X86::BI__builtin_ia32_insert128i256: 3922 case X86::BI__builtin_ia32_insertf32x8: 3923 case X86::BI__builtin_ia32_inserti32x8: 3924 case X86::BI__builtin_ia32_insertf64x4: 3925 case X86::BI__builtin_ia32_inserti64x4: 3926 case X86::BI__builtin_ia32_insertf64x2_256: 3927 case X86::BI__builtin_ia32_inserti64x2_256: 3928 case X86::BI__builtin_ia32_insertf32x4_256: 3929 case X86::BI__builtin_ia32_inserti32x4_256: 3930 i = 2; l = 0; u = 1; 3931 break; 3932 case X86::BI__builtin_ia32_vpermilpd: 3933 case X86::BI__builtin_ia32_vec_ext_v4hi: 3934 case X86::BI__builtin_ia32_vec_ext_v4si: 3935 case X86::BI__builtin_ia32_vec_ext_v4sf: 3936 case X86::BI__builtin_ia32_vec_ext_v4di: 3937 case X86::BI__builtin_ia32_extractf32x4_mask: 3938 case X86::BI__builtin_ia32_extracti32x4_mask: 3939 case X86::BI__builtin_ia32_extractf64x2_512_mask: 3940 case X86::BI__builtin_ia32_extracti64x2_512_mask: 3941 i = 1; l = 0; u = 3; 3942 break; 3943 case X86::BI_mm_prefetch: 3944 case X86::BI__builtin_ia32_vec_ext_v8hi: 3945 case X86::BI__builtin_ia32_vec_ext_v8si: 3946 i = 1; l = 0; u = 7; 3947 break; 3948 case X86::BI__builtin_ia32_sha1rnds4: 3949 case X86::BI__builtin_ia32_blendpd: 3950 case X86::BI__builtin_ia32_shufpd: 3951 case X86::BI__builtin_ia32_vec_set_v4hi: 3952 case X86::BI__builtin_ia32_vec_set_v4si: 3953 case X86::BI__builtin_ia32_vec_set_v4di: 3954 case X86::BI__builtin_ia32_shuf_f32x4_256: 3955 case X86::BI__builtin_ia32_shuf_f64x2_256: 3956 case X86::BI__builtin_ia32_shuf_i32x4_256: 3957 case X86::BI__builtin_ia32_shuf_i64x2_256: 3958 case X86::BI__builtin_ia32_insertf64x2_512: 3959 case X86::BI__builtin_ia32_inserti64x2_512: 3960 case X86::BI__builtin_ia32_insertf32x4: 3961 case X86::BI__builtin_ia32_inserti32x4: 3962 i = 2; l = 0; u = 3; 3963 break; 3964 case X86::BI__builtin_ia32_vpermil2pd: 3965 case X86::BI__builtin_ia32_vpermil2pd256: 3966 case X86::BI__builtin_ia32_vpermil2ps: 3967 case X86::BI__builtin_ia32_vpermil2ps256: 3968 i = 3; l = 0; u = 3; 3969 break; 3970 case X86::BI__builtin_ia32_cmpb128_mask: 3971 case X86::BI__builtin_ia32_cmpw128_mask: 3972 case X86::BI__builtin_ia32_cmpd128_mask: 3973 case X86::BI__builtin_ia32_cmpq128_mask: 3974 case X86::BI__builtin_ia32_cmpb256_mask: 3975 case X86::BI__builtin_ia32_cmpw256_mask: 3976 case X86::BI__builtin_ia32_cmpd256_mask: 3977 case X86::BI__builtin_ia32_cmpq256_mask: 3978 case X86::BI__builtin_ia32_cmpb512_mask: 3979 case X86::BI__builtin_ia32_cmpw512_mask: 3980 case X86::BI__builtin_ia32_cmpd512_mask: 3981 case X86::BI__builtin_ia32_cmpq512_mask: 3982 case X86::BI__builtin_ia32_ucmpb128_mask: 3983 case X86::BI__builtin_ia32_ucmpw128_mask: 3984 case X86::BI__builtin_ia32_ucmpd128_mask: 3985 case X86::BI__builtin_ia32_ucmpq128_mask: 3986 case X86::BI__builtin_ia32_ucmpb256_mask: 3987 case X86::BI__builtin_ia32_ucmpw256_mask: 3988 case X86::BI__builtin_ia32_ucmpd256_mask: 3989 case X86::BI__builtin_ia32_ucmpq256_mask: 3990 case X86::BI__builtin_ia32_ucmpb512_mask: 3991 case X86::BI__builtin_ia32_ucmpw512_mask: 3992 case X86::BI__builtin_ia32_ucmpd512_mask: 3993 case X86::BI__builtin_ia32_ucmpq512_mask: 3994 case X86::BI__builtin_ia32_vpcomub: 3995 case X86::BI__builtin_ia32_vpcomuw: 3996 case X86::BI__builtin_ia32_vpcomud: 3997 case X86::BI__builtin_ia32_vpcomuq: 3998 case X86::BI__builtin_ia32_vpcomb: 3999 case X86::BI__builtin_ia32_vpcomw: 4000 case X86::BI__builtin_ia32_vpcomd: 4001 case X86::BI__builtin_ia32_vpcomq: 4002 case X86::BI__builtin_ia32_vec_set_v8hi: 4003 case X86::BI__builtin_ia32_vec_set_v8si: 4004 i = 2; l = 0; u = 7; 4005 break; 4006 case X86::BI__builtin_ia32_vpermilpd256: 4007 case X86::BI__builtin_ia32_roundps: 4008 case X86::BI__builtin_ia32_roundpd: 4009 case X86::BI__builtin_ia32_roundps256: 4010 case X86::BI__builtin_ia32_roundpd256: 4011 case X86::BI__builtin_ia32_getmantpd128_mask: 4012 case X86::BI__builtin_ia32_getmantpd256_mask: 4013 case X86::BI__builtin_ia32_getmantps128_mask: 4014 case X86::BI__builtin_ia32_getmantps256_mask: 4015 case X86::BI__builtin_ia32_getmantpd512_mask: 4016 case X86::BI__builtin_ia32_getmantps512_mask: 4017 case X86::BI__builtin_ia32_vec_ext_v16qi: 4018 case X86::BI__builtin_ia32_vec_ext_v16hi: 4019 i = 1; l = 0; u = 15; 4020 break; 4021 case X86::BI__builtin_ia32_pblendd128: 4022 case X86::BI__builtin_ia32_blendps: 4023 case X86::BI__builtin_ia32_blendpd256: 4024 case X86::BI__builtin_ia32_shufpd256: 4025 case X86::BI__builtin_ia32_roundss: 4026 case X86::BI__builtin_ia32_roundsd: 4027 case X86::BI__builtin_ia32_rangepd128_mask: 4028 case X86::BI__builtin_ia32_rangepd256_mask: 4029 case X86::BI__builtin_ia32_rangepd512_mask: 4030 case X86::BI__builtin_ia32_rangeps128_mask: 4031 case X86::BI__builtin_ia32_rangeps256_mask: 4032 case X86::BI__builtin_ia32_rangeps512_mask: 4033 case X86::BI__builtin_ia32_getmantsd_round_mask: 4034 case X86::BI__builtin_ia32_getmantss_round_mask: 4035 case X86::BI__builtin_ia32_vec_set_v16qi: 4036 case X86::BI__builtin_ia32_vec_set_v16hi: 4037 i = 2; l = 0; u = 15; 4038 break; 4039 case X86::BI__builtin_ia32_vec_ext_v32qi: 4040 i = 1; l = 0; u = 31; 4041 break; 4042 case X86::BI__builtin_ia32_cmpps: 4043 case X86::BI__builtin_ia32_cmpss: 4044 case X86::BI__builtin_ia32_cmppd: 4045 case X86::BI__builtin_ia32_cmpsd: 4046 case X86::BI__builtin_ia32_cmpps256: 4047 case X86::BI__builtin_ia32_cmppd256: 4048 case X86::BI__builtin_ia32_cmpps128_mask: 4049 case X86::BI__builtin_ia32_cmppd128_mask: 4050 case X86::BI__builtin_ia32_cmpps256_mask: 4051 case X86::BI__builtin_ia32_cmppd256_mask: 4052 case X86::BI__builtin_ia32_cmpps512_mask: 4053 case X86::BI__builtin_ia32_cmppd512_mask: 4054 case X86::BI__builtin_ia32_cmpsd_mask: 4055 case X86::BI__builtin_ia32_cmpss_mask: 4056 case X86::BI__builtin_ia32_vec_set_v32qi: 4057 i = 2; l = 0; u = 31; 4058 break; 4059 case X86::BI__builtin_ia32_permdf256: 4060 case X86::BI__builtin_ia32_permdi256: 4061 case X86::BI__builtin_ia32_permdf512: 4062 case X86::BI__builtin_ia32_permdi512: 4063 case X86::BI__builtin_ia32_vpermilps: 4064 case X86::BI__builtin_ia32_vpermilps256: 4065 case X86::BI__builtin_ia32_vpermilpd512: 4066 case X86::BI__builtin_ia32_vpermilps512: 4067 case X86::BI__builtin_ia32_pshufd: 4068 case X86::BI__builtin_ia32_pshufd256: 4069 case X86::BI__builtin_ia32_pshufd512: 4070 case X86::BI__builtin_ia32_pshufhw: 4071 case X86::BI__builtin_ia32_pshufhw256: 4072 case X86::BI__builtin_ia32_pshufhw512: 4073 case X86::BI__builtin_ia32_pshuflw: 4074 case X86::BI__builtin_ia32_pshuflw256: 4075 case X86::BI__builtin_ia32_pshuflw512: 4076 case X86::BI__builtin_ia32_vcvtps2ph: 4077 case X86::BI__builtin_ia32_vcvtps2ph_mask: 4078 case X86::BI__builtin_ia32_vcvtps2ph256: 4079 case X86::BI__builtin_ia32_vcvtps2ph256_mask: 4080 case X86::BI__builtin_ia32_vcvtps2ph512_mask: 4081 case X86::BI__builtin_ia32_rndscaleps_128_mask: 4082 case X86::BI__builtin_ia32_rndscalepd_128_mask: 4083 case X86::BI__builtin_ia32_rndscaleps_256_mask: 4084 case X86::BI__builtin_ia32_rndscalepd_256_mask: 4085 case X86::BI__builtin_ia32_rndscaleps_mask: 4086 case X86::BI__builtin_ia32_rndscalepd_mask: 4087 case X86::BI__builtin_ia32_reducepd128_mask: 4088 case X86::BI__builtin_ia32_reducepd256_mask: 4089 case X86::BI__builtin_ia32_reducepd512_mask: 4090 case X86::BI__builtin_ia32_reduceps128_mask: 4091 case X86::BI__builtin_ia32_reduceps256_mask: 4092 case X86::BI__builtin_ia32_reduceps512_mask: 4093 case X86::BI__builtin_ia32_prold512: 4094 case X86::BI__builtin_ia32_prolq512: 4095 case X86::BI__builtin_ia32_prold128: 4096 case X86::BI__builtin_ia32_prold256: 4097 case X86::BI__builtin_ia32_prolq128: 4098 case X86::BI__builtin_ia32_prolq256: 4099 case X86::BI__builtin_ia32_prord512: 4100 case X86::BI__builtin_ia32_prorq512: 4101 case X86::BI__builtin_ia32_prord128: 4102 case X86::BI__builtin_ia32_prord256: 4103 case X86::BI__builtin_ia32_prorq128: 4104 case X86::BI__builtin_ia32_prorq256: 4105 case X86::BI__builtin_ia32_fpclasspd128_mask: 4106 case X86::BI__builtin_ia32_fpclasspd256_mask: 4107 case X86::BI__builtin_ia32_fpclassps128_mask: 4108 case X86::BI__builtin_ia32_fpclassps256_mask: 4109 case X86::BI__builtin_ia32_fpclassps512_mask: 4110 case X86::BI__builtin_ia32_fpclasspd512_mask: 4111 case X86::BI__builtin_ia32_fpclasssd_mask: 4112 case X86::BI__builtin_ia32_fpclassss_mask: 4113 case X86::BI__builtin_ia32_pslldqi128_byteshift: 4114 case X86::BI__builtin_ia32_pslldqi256_byteshift: 4115 case X86::BI__builtin_ia32_pslldqi512_byteshift: 4116 case X86::BI__builtin_ia32_psrldqi128_byteshift: 4117 case X86::BI__builtin_ia32_psrldqi256_byteshift: 4118 case X86::BI__builtin_ia32_psrldqi512_byteshift: 4119 case X86::BI__builtin_ia32_kshiftliqi: 4120 case X86::BI__builtin_ia32_kshiftlihi: 4121 case X86::BI__builtin_ia32_kshiftlisi: 4122 case X86::BI__builtin_ia32_kshiftlidi: 4123 case X86::BI__builtin_ia32_kshiftriqi: 4124 case X86::BI__builtin_ia32_kshiftrihi: 4125 case X86::BI__builtin_ia32_kshiftrisi: 4126 case X86::BI__builtin_ia32_kshiftridi: 4127 i = 1; l = 0; u = 255; 4128 break; 4129 case X86::BI__builtin_ia32_vperm2f128_pd256: 4130 case X86::BI__builtin_ia32_vperm2f128_ps256: 4131 case X86::BI__builtin_ia32_vperm2f128_si256: 4132 case X86::BI__builtin_ia32_permti256: 4133 case X86::BI__builtin_ia32_pblendw128: 4134 case X86::BI__builtin_ia32_pblendw256: 4135 case X86::BI__builtin_ia32_blendps256: 4136 case X86::BI__builtin_ia32_pblendd256: 4137 case X86::BI__builtin_ia32_palignr128: 4138 case X86::BI__builtin_ia32_palignr256: 4139 case X86::BI__builtin_ia32_palignr512: 4140 case X86::BI__builtin_ia32_alignq512: 4141 case X86::BI__builtin_ia32_alignd512: 4142 case X86::BI__builtin_ia32_alignd128: 4143 case X86::BI__builtin_ia32_alignd256: 4144 case X86::BI__builtin_ia32_alignq128: 4145 case X86::BI__builtin_ia32_alignq256: 4146 case X86::BI__builtin_ia32_vcomisd: 4147 case X86::BI__builtin_ia32_vcomiss: 4148 case X86::BI__builtin_ia32_shuf_f32x4: 4149 case X86::BI__builtin_ia32_shuf_f64x2: 4150 case X86::BI__builtin_ia32_shuf_i32x4: 4151 case X86::BI__builtin_ia32_shuf_i64x2: 4152 case X86::BI__builtin_ia32_shufpd512: 4153 case X86::BI__builtin_ia32_shufps: 4154 case X86::BI__builtin_ia32_shufps256: 4155 case X86::BI__builtin_ia32_shufps512: 4156 case X86::BI__builtin_ia32_dbpsadbw128: 4157 case X86::BI__builtin_ia32_dbpsadbw256: 4158 case X86::BI__builtin_ia32_dbpsadbw512: 4159 case X86::BI__builtin_ia32_vpshldd128: 4160 case X86::BI__builtin_ia32_vpshldd256: 4161 case X86::BI__builtin_ia32_vpshldd512: 4162 case X86::BI__builtin_ia32_vpshldq128: 4163 case X86::BI__builtin_ia32_vpshldq256: 4164 case X86::BI__builtin_ia32_vpshldq512: 4165 case X86::BI__builtin_ia32_vpshldw128: 4166 case X86::BI__builtin_ia32_vpshldw256: 4167 case X86::BI__builtin_ia32_vpshldw512: 4168 case X86::BI__builtin_ia32_vpshrdd128: 4169 case X86::BI__builtin_ia32_vpshrdd256: 4170 case X86::BI__builtin_ia32_vpshrdd512: 4171 case X86::BI__builtin_ia32_vpshrdq128: 4172 case X86::BI__builtin_ia32_vpshrdq256: 4173 case X86::BI__builtin_ia32_vpshrdq512: 4174 case X86::BI__builtin_ia32_vpshrdw128: 4175 case X86::BI__builtin_ia32_vpshrdw256: 4176 case X86::BI__builtin_ia32_vpshrdw512: 4177 i = 2; l = 0; u = 255; 4178 break; 4179 case X86::BI__builtin_ia32_fixupimmpd512_mask: 4180 case X86::BI__builtin_ia32_fixupimmpd512_maskz: 4181 case X86::BI__builtin_ia32_fixupimmps512_mask: 4182 case X86::BI__builtin_ia32_fixupimmps512_maskz: 4183 case X86::BI__builtin_ia32_fixupimmsd_mask: 4184 case X86::BI__builtin_ia32_fixupimmsd_maskz: 4185 case X86::BI__builtin_ia32_fixupimmss_mask: 4186 case X86::BI__builtin_ia32_fixupimmss_maskz: 4187 case X86::BI__builtin_ia32_fixupimmpd128_mask: 4188 case X86::BI__builtin_ia32_fixupimmpd128_maskz: 4189 case X86::BI__builtin_ia32_fixupimmpd256_mask: 4190 case X86::BI__builtin_ia32_fixupimmpd256_maskz: 4191 case X86::BI__builtin_ia32_fixupimmps128_mask: 4192 case X86::BI__builtin_ia32_fixupimmps128_maskz: 4193 case X86::BI__builtin_ia32_fixupimmps256_mask: 4194 case X86::BI__builtin_ia32_fixupimmps256_maskz: 4195 case X86::BI__builtin_ia32_pternlogd512_mask: 4196 case X86::BI__builtin_ia32_pternlogd512_maskz: 4197 case X86::BI__builtin_ia32_pternlogq512_mask: 4198 case X86::BI__builtin_ia32_pternlogq512_maskz: 4199 case X86::BI__builtin_ia32_pternlogd128_mask: 4200 case X86::BI__builtin_ia32_pternlogd128_maskz: 4201 case X86::BI__builtin_ia32_pternlogd256_mask: 4202 case X86::BI__builtin_ia32_pternlogd256_maskz: 4203 case X86::BI__builtin_ia32_pternlogq128_mask: 4204 case X86::BI__builtin_ia32_pternlogq128_maskz: 4205 case X86::BI__builtin_ia32_pternlogq256_mask: 4206 case X86::BI__builtin_ia32_pternlogq256_maskz: 4207 i = 3; l = 0; u = 255; 4208 break; 4209 case X86::BI__builtin_ia32_gatherpfdpd: 4210 case X86::BI__builtin_ia32_gatherpfdps: 4211 case X86::BI__builtin_ia32_gatherpfqpd: 4212 case X86::BI__builtin_ia32_gatherpfqps: 4213 case X86::BI__builtin_ia32_scatterpfdpd: 4214 case X86::BI__builtin_ia32_scatterpfdps: 4215 case X86::BI__builtin_ia32_scatterpfqpd: 4216 case X86::BI__builtin_ia32_scatterpfqps: 4217 i = 4; l = 2; u = 3; 4218 break; 4219 case X86::BI__builtin_ia32_reducesd_mask: 4220 case X86::BI__builtin_ia32_reducess_mask: 4221 case X86::BI__builtin_ia32_rndscalesd_round_mask: 4222 case X86::BI__builtin_ia32_rndscaless_round_mask: 4223 i = 4; l = 0; u = 255; 4224 break; 4225 } 4226 4227 // Note that we don't force a hard error on the range check here, allowing 4228 // template-generated or macro-generated dead code to potentially have out-of- 4229 // range values. These need to code generate, but don't need to necessarily 4230 // make any sense. We use a warning that defaults to an error. 4231 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false); 4232 } 4233 4234 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo 4235 /// parameter with the FormatAttr's correct format_idx and firstDataArg. 4236 /// Returns true when the format fits the function and the FormatStringInfo has 4237 /// been populated. 4238 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember, 4239 FormatStringInfo *FSI) { 4240 FSI->HasVAListArg = Format->getFirstArg() == 0; 4241 FSI->FormatIdx = Format->getFormatIdx() - 1; 4242 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1; 4243 4244 // The way the format attribute works in GCC, the implicit this argument 4245 // of member functions is counted. However, it doesn't appear in our own 4246 // lists, so decrement format_idx in that case. 4247 if (IsCXXMember) { 4248 if(FSI->FormatIdx == 0) 4249 return false; 4250 --FSI->FormatIdx; 4251 if (FSI->FirstDataArg != 0) 4252 --FSI->FirstDataArg; 4253 } 4254 return true; 4255 } 4256 4257 /// Checks if a the given expression evaluates to null. 4258 /// 4259 /// Returns true if the value evaluates to null. 4260 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) { 4261 // If the expression has non-null type, it doesn't evaluate to null. 4262 if (auto nullability 4263 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) { 4264 if (*nullability == NullabilityKind::NonNull) 4265 return false; 4266 } 4267 4268 // As a special case, transparent unions initialized with zero are 4269 // considered null for the purposes of the nonnull attribute. 4270 if (const RecordType *UT = Expr->getType()->getAsUnionType()) { 4271 if (UT->getDecl()->hasAttr<TransparentUnionAttr>()) 4272 if (const CompoundLiteralExpr *CLE = 4273 dyn_cast<CompoundLiteralExpr>(Expr)) 4274 if (const InitListExpr *ILE = 4275 dyn_cast<InitListExpr>(CLE->getInitializer())) 4276 Expr = ILE->getInit(0); 4277 } 4278 4279 bool Result; 4280 return (!Expr->isValueDependent() && 4281 Expr->EvaluateAsBooleanCondition(Result, S.Context) && 4282 !Result); 4283 } 4284 4285 static void CheckNonNullArgument(Sema &S, 4286 const Expr *ArgExpr, 4287 SourceLocation CallSiteLoc) { 4288 if (CheckNonNullExpr(S, ArgExpr)) 4289 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr, 4290 S.PDiag(diag::warn_null_arg) 4291 << ArgExpr->getSourceRange()); 4292 } 4293 4294 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) { 4295 FormatStringInfo FSI; 4296 if ((GetFormatStringType(Format) == FST_NSString) && 4297 getFormatStringInfo(Format, false, &FSI)) { 4298 Idx = FSI.FormatIdx; 4299 return true; 4300 } 4301 return false; 4302 } 4303 4304 /// Diagnose use of %s directive in an NSString which is being passed 4305 /// as formatting string to formatting method. 4306 static void 4307 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S, 4308 const NamedDecl *FDecl, 4309 Expr **Args, 4310 unsigned NumArgs) { 4311 unsigned Idx = 0; 4312 bool Format = false; 4313 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily(); 4314 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) { 4315 Idx = 2; 4316 Format = true; 4317 } 4318 else 4319 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4320 if (S.GetFormatNSStringIdx(I, Idx)) { 4321 Format = true; 4322 break; 4323 } 4324 } 4325 if (!Format || NumArgs <= Idx) 4326 return; 4327 const Expr *FormatExpr = Args[Idx]; 4328 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr)) 4329 FormatExpr = CSCE->getSubExpr(); 4330 const StringLiteral *FormatString; 4331 if (const ObjCStringLiteral *OSL = 4332 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts())) 4333 FormatString = OSL->getString(); 4334 else 4335 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts()); 4336 if (!FormatString) 4337 return; 4338 if (S.FormatStringHasSArg(FormatString)) { 4339 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string) 4340 << "%s" << 1 << 1; 4341 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at) 4342 << FDecl->getDeclName(); 4343 } 4344 } 4345 4346 /// Determine whether the given type has a non-null nullability annotation. 4347 static bool isNonNullType(ASTContext &ctx, QualType type) { 4348 if (auto nullability = type->getNullability(ctx)) 4349 return *nullability == NullabilityKind::NonNull; 4350 4351 return false; 4352 } 4353 4354 static void CheckNonNullArguments(Sema &S, 4355 const NamedDecl *FDecl, 4356 const FunctionProtoType *Proto, 4357 ArrayRef<const Expr *> Args, 4358 SourceLocation CallSiteLoc) { 4359 assert((FDecl || Proto) && "Need a function declaration or prototype"); 4360 4361 // Already checked by by constant evaluator. 4362 if (S.isConstantEvaluated()) 4363 return; 4364 // Check the attributes attached to the method/function itself. 4365 llvm::SmallBitVector NonNullArgs; 4366 if (FDecl) { 4367 // Handle the nonnull attribute on the function/method declaration itself. 4368 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) { 4369 if (!NonNull->args_size()) { 4370 // Easy case: all pointer arguments are nonnull. 4371 for (const auto *Arg : Args) 4372 if (S.isValidPointerAttrType(Arg->getType())) 4373 CheckNonNullArgument(S, Arg, CallSiteLoc); 4374 return; 4375 } 4376 4377 for (const ParamIdx &Idx : NonNull->args()) { 4378 unsigned IdxAST = Idx.getASTIndex(); 4379 if (IdxAST >= Args.size()) 4380 continue; 4381 if (NonNullArgs.empty()) 4382 NonNullArgs.resize(Args.size()); 4383 NonNullArgs.set(IdxAST); 4384 } 4385 } 4386 } 4387 4388 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) { 4389 // Handle the nonnull attribute on the parameters of the 4390 // function/method. 4391 ArrayRef<ParmVarDecl*> parms; 4392 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl)) 4393 parms = FD->parameters(); 4394 else 4395 parms = cast<ObjCMethodDecl>(FDecl)->parameters(); 4396 4397 unsigned ParamIndex = 0; 4398 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end(); 4399 I != E; ++I, ++ParamIndex) { 4400 const ParmVarDecl *PVD = *I; 4401 if (PVD->hasAttr<NonNullAttr>() || 4402 isNonNullType(S.Context, PVD->getType())) { 4403 if (NonNullArgs.empty()) 4404 NonNullArgs.resize(Args.size()); 4405 4406 NonNullArgs.set(ParamIndex); 4407 } 4408 } 4409 } else { 4410 // If we have a non-function, non-method declaration but no 4411 // function prototype, try to dig out the function prototype. 4412 if (!Proto) { 4413 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) { 4414 QualType type = VD->getType().getNonReferenceType(); 4415 if (auto pointerType = type->getAs<PointerType>()) 4416 type = pointerType->getPointeeType(); 4417 else if (auto blockType = type->getAs<BlockPointerType>()) 4418 type = blockType->getPointeeType(); 4419 // FIXME: data member pointers? 4420 4421 // Dig out the function prototype, if there is one. 4422 Proto = type->getAs<FunctionProtoType>(); 4423 } 4424 } 4425 4426 // Fill in non-null argument information from the nullability 4427 // information on the parameter types (if we have them). 4428 if (Proto) { 4429 unsigned Index = 0; 4430 for (auto paramType : Proto->getParamTypes()) { 4431 if (isNonNullType(S.Context, paramType)) { 4432 if (NonNullArgs.empty()) 4433 NonNullArgs.resize(Args.size()); 4434 4435 NonNullArgs.set(Index); 4436 } 4437 4438 ++Index; 4439 } 4440 } 4441 } 4442 4443 // Check for non-null arguments. 4444 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size(); 4445 ArgIndex != ArgIndexEnd; ++ArgIndex) { 4446 if (NonNullArgs[ArgIndex]) 4447 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc); 4448 } 4449 } 4450 4451 /// Handles the checks for format strings, non-POD arguments to vararg 4452 /// functions, NULL arguments passed to non-NULL parameters, and diagnose_if 4453 /// attributes. 4454 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto, 4455 const Expr *ThisArg, ArrayRef<const Expr *> Args, 4456 bool IsMemberFunction, SourceLocation Loc, 4457 SourceRange Range, VariadicCallType CallType) { 4458 // FIXME: We should check as much as we can in the template definition. 4459 if (CurContext->isDependentContext()) 4460 return; 4461 4462 // Printf and scanf checking. 4463 llvm::SmallBitVector CheckedVarArgs; 4464 if (FDecl) { 4465 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) { 4466 // Only create vector if there are format attributes. 4467 CheckedVarArgs.resize(Args.size()); 4468 4469 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range, 4470 CheckedVarArgs); 4471 } 4472 } 4473 4474 // Refuse POD arguments that weren't caught by the format string 4475 // checks above. 4476 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl); 4477 if (CallType != VariadicDoesNotApply && 4478 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) { 4479 unsigned NumParams = Proto ? Proto->getNumParams() 4480 : FDecl && isa<FunctionDecl>(FDecl) 4481 ? cast<FunctionDecl>(FDecl)->getNumParams() 4482 : FDecl && isa<ObjCMethodDecl>(FDecl) 4483 ? cast<ObjCMethodDecl>(FDecl)->param_size() 4484 : 0; 4485 4486 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) { 4487 // Args[ArgIdx] can be null in malformed code. 4488 if (const Expr *Arg = Args[ArgIdx]) { 4489 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx]) 4490 checkVariadicArgument(Arg, CallType); 4491 } 4492 } 4493 } 4494 4495 if (FDecl || Proto) { 4496 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc); 4497 4498 // Type safety checking. 4499 if (FDecl) { 4500 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>()) 4501 CheckArgumentWithTypeTag(I, Args, Loc); 4502 } 4503 } 4504 4505 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) { 4506 auto *AA = FDecl->getAttr<AllocAlignAttr>(); 4507 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()]; 4508 if (!Arg->isValueDependent()) { 4509 Expr::EvalResult Align; 4510 if (Arg->EvaluateAsInt(Align, Context)) { 4511 const llvm::APSInt &I = Align.Val.getInt(); 4512 if (!I.isPowerOf2()) 4513 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two) 4514 << Arg->getSourceRange(); 4515 4516 if (I > Sema::MaximumAlignment) 4517 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great) 4518 << Arg->getSourceRange() << Sema::MaximumAlignment; 4519 } 4520 } 4521 } 4522 4523 if (FD) 4524 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc); 4525 } 4526 4527 /// CheckConstructorCall - Check a constructor call for correctness and safety 4528 /// properties not enforced by the C type system. 4529 void Sema::CheckConstructorCall(FunctionDecl *FDecl, 4530 ArrayRef<const Expr *> Args, 4531 const FunctionProtoType *Proto, 4532 SourceLocation Loc) { 4533 VariadicCallType CallType = 4534 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply; 4535 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true, 4536 Loc, SourceRange(), CallType); 4537 } 4538 4539 /// CheckFunctionCall - Check a direct function call for various correctness 4540 /// and safety properties not strictly enforced by the C type system. 4541 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall, 4542 const FunctionProtoType *Proto) { 4543 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) && 4544 isa<CXXMethodDecl>(FDecl); 4545 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) || 4546 IsMemberOperatorCall; 4547 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, 4548 TheCall->getCallee()); 4549 Expr** Args = TheCall->getArgs(); 4550 unsigned NumArgs = TheCall->getNumArgs(); 4551 4552 Expr *ImplicitThis = nullptr; 4553 if (IsMemberOperatorCall) { 4554 // If this is a call to a member operator, hide the first argument 4555 // from checkCall. 4556 // FIXME: Our choice of AST representation here is less than ideal. 4557 ImplicitThis = Args[0]; 4558 ++Args; 4559 --NumArgs; 4560 } else if (IsMemberFunction) 4561 ImplicitThis = 4562 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument(); 4563 4564 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs), 4565 IsMemberFunction, TheCall->getRParenLoc(), 4566 TheCall->getCallee()->getSourceRange(), CallType); 4567 4568 IdentifierInfo *FnInfo = FDecl->getIdentifier(); 4569 // None of the checks below are needed for functions that don't have 4570 // simple names (e.g., C++ conversion functions). 4571 if (!FnInfo) 4572 return false; 4573 4574 CheckTCBEnforcement(TheCall, FDecl); 4575 4576 CheckAbsoluteValueFunction(TheCall, FDecl); 4577 CheckMaxUnsignedZero(TheCall, FDecl); 4578 4579 if (getLangOpts().ObjC) 4580 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs); 4581 4582 unsigned CMId = FDecl->getMemoryFunctionKind(); 4583 4584 // Handle memory setting and copying functions. 4585 switch (CMId) { 4586 case 0: 4587 return false; 4588 case Builtin::BIstrlcpy: // fallthrough 4589 case Builtin::BIstrlcat: 4590 CheckStrlcpycatArguments(TheCall, FnInfo); 4591 break; 4592 case Builtin::BIstrncat: 4593 CheckStrncatArguments(TheCall, FnInfo); 4594 break; 4595 case Builtin::BIfree: 4596 CheckFreeArguments(TheCall); 4597 break; 4598 default: 4599 CheckMemaccessArguments(TheCall, CMId, FnInfo); 4600 } 4601 4602 return false; 4603 } 4604 4605 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac, 4606 ArrayRef<const Expr *> Args) { 4607 VariadicCallType CallType = 4608 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply; 4609 4610 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args, 4611 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(), 4612 CallType); 4613 4614 return false; 4615 } 4616 4617 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall, 4618 const FunctionProtoType *Proto) { 4619 QualType Ty; 4620 if (const auto *V = dyn_cast<VarDecl>(NDecl)) 4621 Ty = V->getType().getNonReferenceType(); 4622 else if (const auto *F = dyn_cast<FieldDecl>(NDecl)) 4623 Ty = F->getType().getNonReferenceType(); 4624 else 4625 return false; 4626 4627 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() && 4628 !Ty->isFunctionProtoType()) 4629 return false; 4630 4631 VariadicCallType CallType; 4632 if (!Proto || !Proto->isVariadic()) { 4633 CallType = VariadicDoesNotApply; 4634 } else if (Ty->isBlockPointerType()) { 4635 CallType = VariadicBlock; 4636 } else { // Ty->isFunctionPointerType() 4637 CallType = VariadicFunction; 4638 } 4639 4640 checkCall(NDecl, Proto, /*ThisArg=*/nullptr, 4641 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4642 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4643 TheCall->getCallee()->getSourceRange(), CallType); 4644 4645 return false; 4646 } 4647 4648 /// Checks function calls when a FunctionDecl or a NamedDecl is not available, 4649 /// such as function pointers returned from functions. 4650 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) { 4651 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto, 4652 TheCall->getCallee()); 4653 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr, 4654 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()), 4655 /*IsMemberFunction=*/false, TheCall->getRParenLoc(), 4656 TheCall->getCallee()->getSourceRange(), CallType); 4657 4658 return false; 4659 } 4660 4661 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) { 4662 if (!llvm::isValidAtomicOrderingCABI(Ordering)) 4663 return false; 4664 4665 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering; 4666 switch (Op) { 4667 case AtomicExpr::AO__c11_atomic_init: 4668 case AtomicExpr::AO__opencl_atomic_init: 4669 llvm_unreachable("There is no ordering argument for an init"); 4670 4671 case AtomicExpr::AO__c11_atomic_load: 4672 case AtomicExpr::AO__opencl_atomic_load: 4673 case AtomicExpr::AO__atomic_load_n: 4674 case AtomicExpr::AO__atomic_load: 4675 return OrderingCABI != llvm::AtomicOrderingCABI::release && 4676 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4677 4678 case AtomicExpr::AO__c11_atomic_store: 4679 case AtomicExpr::AO__opencl_atomic_store: 4680 case AtomicExpr::AO__atomic_store: 4681 case AtomicExpr::AO__atomic_store_n: 4682 return OrderingCABI != llvm::AtomicOrderingCABI::consume && 4683 OrderingCABI != llvm::AtomicOrderingCABI::acquire && 4684 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel; 4685 4686 default: 4687 return true; 4688 } 4689 } 4690 4691 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult, 4692 AtomicExpr::AtomicOp Op) { 4693 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); 4694 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 4695 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()}; 4696 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()}, 4697 DRE->getSourceRange(), TheCall->getRParenLoc(), Args, 4698 Op); 4699 } 4700 4701 ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange, 4702 SourceLocation RParenLoc, MultiExprArg Args, 4703 AtomicExpr::AtomicOp Op, 4704 AtomicArgumentOrder ArgOrder) { 4705 // All the non-OpenCL operations take one of the following forms. 4706 // The OpenCL operations take the __c11 forms with one extra argument for 4707 // synchronization scope. 4708 enum { 4709 // C __c11_atomic_init(A *, C) 4710 Init, 4711 4712 // C __c11_atomic_load(A *, int) 4713 Load, 4714 4715 // void __atomic_load(A *, CP, int) 4716 LoadCopy, 4717 4718 // void __atomic_store(A *, CP, int) 4719 Copy, 4720 4721 // C __c11_atomic_add(A *, M, int) 4722 Arithmetic, 4723 4724 // C __atomic_exchange_n(A *, CP, int) 4725 Xchg, 4726 4727 // void __atomic_exchange(A *, C *, CP, int) 4728 GNUXchg, 4729 4730 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int) 4731 C11CmpXchg, 4732 4733 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int) 4734 GNUCmpXchg 4735 } Form = Init; 4736 4737 const unsigned NumForm = GNUCmpXchg + 1; 4738 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 }; 4739 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 }; 4740 // where: 4741 // C is an appropriate type, 4742 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins, 4743 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise, 4744 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and 4745 // the int parameters are for orderings. 4746 4747 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm 4748 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm, 4749 "need to update code for modified forms"); 4750 static_assert(AtomicExpr::AO__c11_atomic_init == 0 && 4751 AtomicExpr::AO__c11_atomic_fetch_min + 1 == 4752 AtomicExpr::AO__atomic_load, 4753 "need to update code for modified C11 atomics"); 4754 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init && 4755 Op <= AtomicExpr::AO__opencl_atomic_fetch_max; 4756 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init && 4757 Op <= AtomicExpr::AO__c11_atomic_fetch_min) || 4758 IsOpenCL; 4759 bool IsN = Op == AtomicExpr::AO__atomic_load_n || 4760 Op == AtomicExpr::AO__atomic_store_n || 4761 Op == AtomicExpr::AO__atomic_exchange_n || 4762 Op == AtomicExpr::AO__atomic_compare_exchange_n; 4763 bool IsAddSub = false; 4764 4765 switch (Op) { 4766 case AtomicExpr::AO__c11_atomic_init: 4767 case AtomicExpr::AO__opencl_atomic_init: 4768 Form = Init; 4769 break; 4770 4771 case AtomicExpr::AO__c11_atomic_load: 4772 case AtomicExpr::AO__opencl_atomic_load: 4773 case AtomicExpr::AO__atomic_load_n: 4774 Form = Load; 4775 break; 4776 4777 case AtomicExpr::AO__atomic_load: 4778 Form = LoadCopy; 4779 break; 4780 4781 case AtomicExpr::AO__c11_atomic_store: 4782 case AtomicExpr::AO__opencl_atomic_store: 4783 case AtomicExpr::AO__atomic_store: 4784 case AtomicExpr::AO__atomic_store_n: 4785 Form = Copy; 4786 break; 4787 4788 case AtomicExpr::AO__c11_atomic_fetch_add: 4789 case AtomicExpr::AO__c11_atomic_fetch_sub: 4790 case AtomicExpr::AO__opencl_atomic_fetch_add: 4791 case AtomicExpr::AO__opencl_atomic_fetch_sub: 4792 case AtomicExpr::AO__atomic_fetch_add: 4793 case AtomicExpr::AO__atomic_fetch_sub: 4794 case AtomicExpr::AO__atomic_add_fetch: 4795 case AtomicExpr::AO__atomic_sub_fetch: 4796 IsAddSub = true; 4797 LLVM_FALLTHROUGH; 4798 case AtomicExpr::AO__c11_atomic_fetch_and: 4799 case AtomicExpr::AO__c11_atomic_fetch_or: 4800 case AtomicExpr::AO__c11_atomic_fetch_xor: 4801 case AtomicExpr::AO__opencl_atomic_fetch_and: 4802 case AtomicExpr::AO__opencl_atomic_fetch_or: 4803 case AtomicExpr::AO__opencl_atomic_fetch_xor: 4804 case AtomicExpr::AO__atomic_fetch_and: 4805 case AtomicExpr::AO__atomic_fetch_or: 4806 case AtomicExpr::AO__atomic_fetch_xor: 4807 case AtomicExpr::AO__atomic_fetch_nand: 4808 case AtomicExpr::AO__atomic_and_fetch: 4809 case AtomicExpr::AO__atomic_or_fetch: 4810 case AtomicExpr::AO__atomic_xor_fetch: 4811 case AtomicExpr::AO__atomic_nand_fetch: 4812 case AtomicExpr::AO__c11_atomic_fetch_min: 4813 case AtomicExpr::AO__c11_atomic_fetch_max: 4814 case AtomicExpr::AO__opencl_atomic_fetch_min: 4815 case AtomicExpr::AO__opencl_atomic_fetch_max: 4816 case AtomicExpr::AO__atomic_min_fetch: 4817 case AtomicExpr::AO__atomic_max_fetch: 4818 case AtomicExpr::AO__atomic_fetch_min: 4819 case AtomicExpr::AO__atomic_fetch_max: 4820 Form = Arithmetic; 4821 break; 4822 4823 case AtomicExpr::AO__c11_atomic_exchange: 4824 case AtomicExpr::AO__opencl_atomic_exchange: 4825 case AtomicExpr::AO__atomic_exchange_n: 4826 Form = Xchg; 4827 break; 4828 4829 case AtomicExpr::AO__atomic_exchange: 4830 Form = GNUXchg; 4831 break; 4832 4833 case AtomicExpr::AO__c11_atomic_compare_exchange_strong: 4834 case AtomicExpr::AO__c11_atomic_compare_exchange_weak: 4835 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: 4836 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: 4837 Form = C11CmpXchg; 4838 break; 4839 4840 case AtomicExpr::AO__atomic_compare_exchange: 4841 case AtomicExpr::AO__atomic_compare_exchange_n: 4842 Form = GNUCmpXchg; 4843 break; 4844 } 4845 4846 unsigned AdjustedNumArgs = NumArgs[Form]; 4847 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init) 4848 ++AdjustedNumArgs; 4849 // Check we have the right number of arguments. 4850 if (Args.size() < AdjustedNumArgs) { 4851 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args) 4852 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4853 << ExprRange; 4854 return ExprError(); 4855 } else if (Args.size() > AdjustedNumArgs) { 4856 Diag(Args[AdjustedNumArgs]->getBeginLoc(), 4857 diag::err_typecheck_call_too_many_args) 4858 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size()) 4859 << ExprRange; 4860 return ExprError(); 4861 } 4862 4863 // Inspect the first argument of the atomic operation. 4864 Expr *Ptr = Args[0]; 4865 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr); 4866 if (ConvertedPtr.isInvalid()) 4867 return ExprError(); 4868 4869 Ptr = ConvertedPtr.get(); 4870 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>(); 4871 if (!pointerType) { 4872 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer) 4873 << Ptr->getType() << Ptr->getSourceRange(); 4874 return ExprError(); 4875 } 4876 4877 // For a __c11 builtin, this should be a pointer to an _Atomic type. 4878 QualType AtomTy = pointerType->getPointeeType(); // 'A' 4879 QualType ValType = AtomTy; // 'C' 4880 if (IsC11) { 4881 if (!AtomTy->isAtomicType()) { 4882 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic) 4883 << Ptr->getType() << Ptr->getSourceRange(); 4884 return ExprError(); 4885 } 4886 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) || 4887 AtomTy.getAddressSpace() == LangAS::opencl_constant) { 4888 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic) 4889 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType() 4890 << Ptr->getSourceRange(); 4891 return ExprError(); 4892 } 4893 ValType = AtomTy->castAs<AtomicType>()->getValueType(); 4894 } else if (Form != Load && Form != LoadCopy) { 4895 if (ValType.isConstQualified()) { 4896 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer) 4897 << Ptr->getType() << Ptr->getSourceRange(); 4898 return ExprError(); 4899 } 4900 } 4901 4902 // For an arithmetic operation, the implied arithmetic must be well-formed. 4903 if (Form == Arithmetic) { 4904 // gcc does not enforce these rules for GNU atomics, but we do so for sanity. 4905 if (IsAddSub && !ValType->isIntegerType() 4906 && !ValType->isPointerType()) { 4907 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4908 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4909 return ExprError(); 4910 } 4911 if (!IsAddSub && !ValType->isIntegerType()) { 4912 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int) 4913 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4914 return ExprError(); 4915 } 4916 if (IsC11 && ValType->isPointerType() && 4917 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(), 4918 diag::err_incomplete_type)) { 4919 return ExprError(); 4920 } 4921 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) { 4922 // For __atomic_*_n operations, the value type must be a scalar integral or 4923 // pointer type which is 1, 2, 4, 8 or 16 bytes in length. 4924 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr) 4925 << IsC11 << Ptr->getType() << Ptr->getSourceRange(); 4926 return ExprError(); 4927 } 4928 4929 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) && 4930 !AtomTy->isScalarType()) { 4931 // For GNU atomics, require a trivially-copyable type. This is not part of 4932 // the GNU atomics specification, but we enforce it for sanity. 4933 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy) 4934 << Ptr->getType() << Ptr->getSourceRange(); 4935 return ExprError(); 4936 } 4937 4938 switch (ValType.getObjCLifetime()) { 4939 case Qualifiers::OCL_None: 4940 case Qualifiers::OCL_ExplicitNone: 4941 // okay 4942 break; 4943 4944 case Qualifiers::OCL_Weak: 4945 case Qualifiers::OCL_Strong: 4946 case Qualifiers::OCL_Autoreleasing: 4947 // FIXME: Can this happen? By this point, ValType should be known 4948 // to be trivially copyable. 4949 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership) 4950 << ValType << Ptr->getSourceRange(); 4951 return ExprError(); 4952 } 4953 4954 // All atomic operations have an overload which takes a pointer to a volatile 4955 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself 4956 // into the result or the other operands. Similarly atomic_load takes a 4957 // pointer to a const 'A'. 4958 ValType.removeLocalVolatile(); 4959 ValType.removeLocalConst(); 4960 QualType ResultType = ValType; 4961 if (Form == Copy || Form == LoadCopy || Form == GNUXchg || 4962 Form == Init) 4963 ResultType = Context.VoidTy; 4964 else if (Form == C11CmpXchg || Form == GNUCmpXchg) 4965 ResultType = Context.BoolTy; 4966 4967 // The type of a parameter passed 'by value'. In the GNU atomics, such 4968 // arguments are actually passed as pointers. 4969 QualType ByValType = ValType; // 'CP' 4970 bool IsPassedByAddress = false; 4971 if (!IsC11 && !IsN) { 4972 ByValType = Ptr->getType(); 4973 IsPassedByAddress = true; 4974 } 4975 4976 SmallVector<Expr *, 5> APIOrderedArgs; 4977 if (ArgOrder == Sema::AtomicArgumentOrder::AST) { 4978 APIOrderedArgs.push_back(Args[0]); 4979 switch (Form) { 4980 case Init: 4981 case Load: 4982 APIOrderedArgs.push_back(Args[1]); // Val1/Order 4983 break; 4984 case LoadCopy: 4985 case Copy: 4986 case Arithmetic: 4987 case Xchg: 4988 APIOrderedArgs.push_back(Args[2]); // Val1 4989 APIOrderedArgs.push_back(Args[1]); // Order 4990 break; 4991 case GNUXchg: 4992 APIOrderedArgs.push_back(Args[2]); // Val1 4993 APIOrderedArgs.push_back(Args[3]); // Val2 4994 APIOrderedArgs.push_back(Args[1]); // Order 4995 break; 4996 case C11CmpXchg: 4997 APIOrderedArgs.push_back(Args[2]); // Val1 4998 APIOrderedArgs.push_back(Args[4]); // Val2 4999 APIOrderedArgs.push_back(Args[1]); // Order 5000 APIOrderedArgs.push_back(Args[3]); // OrderFail 5001 break; 5002 case GNUCmpXchg: 5003 APIOrderedArgs.push_back(Args[2]); // Val1 5004 APIOrderedArgs.push_back(Args[4]); // Val2 5005 APIOrderedArgs.push_back(Args[5]); // Weak 5006 APIOrderedArgs.push_back(Args[1]); // Order 5007 APIOrderedArgs.push_back(Args[3]); // OrderFail 5008 break; 5009 } 5010 } else 5011 APIOrderedArgs.append(Args.begin(), Args.end()); 5012 5013 // The first argument's non-CV pointer type is used to deduce the type of 5014 // subsequent arguments, except for: 5015 // - weak flag (always converted to bool) 5016 // - memory order (always converted to int) 5017 // - scope (always converted to int) 5018 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) { 5019 QualType Ty; 5020 if (i < NumVals[Form] + 1) { 5021 switch (i) { 5022 case 0: 5023 // The first argument is always a pointer. It has a fixed type. 5024 // It is always dereferenced, a nullptr is undefined. 5025 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5026 // Nothing else to do: we already know all we want about this pointer. 5027 continue; 5028 case 1: 5029 // The second argument is the non-atomic operand. For arithmetic, this 5030 // is always passed by value, and for a compare_exchange it is always 5031 // passed by address. For the rest, GNU uses by-address and C11 uses 5032 // by-value. 5033 assert(Form != Load); 5034 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType())) 5035 Ty = ValType; 5036 else if (Form == Copy || Form == Xchg) { 5037 if (IsPassedByAddress) { 5038 // The value pointer is always dereferenced, a nullptr is undefined. 5039 CheckNonNullArgument(*this, APIOrderedArgs[i], 5040 ExprRange.getBegin()); 5041 } 5042 Ty = ByValType; 5043 } else if (Form == Arithmetic) 5044 Ty = Context.getPointerDiffType(); 5045 else { 5046 Expr *ValArg = APIOrderedArgs[i]; 5047 // The value pointer is always dereferenced, a nullptr is undefined. 5048 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin()); 5049 LangAS AS = LangAS::Default; 5050 // Keep address space of non-atomic pointer type. 5051 if (const PointerType *PtrTy = 5052 ValArg->getType()->getAs<PointerType>()) { 5053 AS = PtrTy->getPointeeType().getAddressSpace(); 5054 } 5055 Ty = Context.getPointerType( 5056 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS)); 5057 } 5058 break; 5059 case 2: 5060 // The third argument to compare_exchange / GNU exchange is the desired 5061 // value, either by-value (for the C11 and *_n variant) or as a pointer. 5062 if (IsPassedByAddress) 5063 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin()); 5064 Ty = ByValType; 5065 break; 5066 case 3: 5067 // The fourth argument to GNU compare_exchange is a 'weak' flag. 5068 Ty = Context.BoolTy; 5069 break; 5070 } 5071 } else { 5072 // The order(s) and scope are always converted to int. 5073 Ty = Context.IntTy; 5074 } 5075 5076 InitializedEntity Entity = 5077 InitializedEntity::InitializeParameter(Context, Ty, false); 5078 ExprResult Arg = APIOrderedArgs[i]; 5079 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5080 if (Arg.isInvalid()) 5081 return true; 5082 APIOrderedArgs[i] = Arg.get(); 5083 } 5084 5085 // Permute the arguments into a 'consistent' order. 5086 SmallVector<Expr*, 5> SubExprs; 5087 SubExprs.push_back(Ptr); 5088 switch (Form) { 5089 case Init: 5090 // Note, AtomicExpr::getVal1() has a special case for this atomic. 5091 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5092 break; 5093 case Load: 5094 SubExprs.push_back(APIOrderedArgs[1]); // Order 5095 break; 5096 case LoadCopy: 5097 case Copy: 5098 case Arithmetic: 5099 case Xchg: 5100 SubExprs.push_back(APIOrderedArgs[2]); // Order 5101 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5102 break; 5103 case GNUXchg: 5104 // Note, AtomicExpr::getVal2() has a special case for this atomic. 5105 SubExprs.push_back(APIOrderedArgs[3]); // Order 5106 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5107 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5108 break; 5109 case C11CmpXchg: 5110 SubExprs.push_back(APIOrderedArgs[3]); // Order 5111 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5112 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail 5113 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5114 break; 5115 case GNUCmpXchg: 5116 SubExprs.push_back(APIOrderedArgs[4]); // Order 5117 SubExprs.push_back(APIOrderedArgs[1]); // Val1 5118 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail 5119 SubExprs.push_back(APIOrderedArgs[2]); // Val2 5120 SubExprs.push_back(APIOrderedArgs[3]); // Weak 5121 break; 5122 } 5123 5124 if (SubExprs.size() >= 2 && Form != Init) { 5125 if (Optional<llvm::APSInt> Result = 5126 SubExprs[1]->getIntegerConstantExpr(Context)) 5127 if (!isValidOrderingForOp(Result->getSExtValue(), Op)) 5128 Diag(SubExprs[1]->getBeginLoc(), 5129 diag::warn_atomic_op_has_invalid_memory_order) 5130 << SubExprs[1]->getSourceRange(); 5131 } 5132 5133 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) { 5134 auto *Scope = Args[Args.size() - 1]; 5135 if (Optional<llvm::APSInt> Result = 5136 Scope->getIntegerConstantExpr(Context)) { 5137 if (!ScopeModel->isValid(Result->getZExtValue())) 5138 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope) 5139 << Scope->getSourceRange(); 5140 } 5141 SubExprs.push_back(Scope); 5142 } 5143 5144 AtomicExpr *AE = new (Context) 5145 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc); 5146 5147 if ((Op == AtomicExpr::AO__c11_atomic_load || 5148 Op == AtomicExpr::AO__c11_atomic_store || 5149 Op == AtomicExpr::AO__opencl_atomic_load || 5150 Op == AtomicExpr::AO__opencl_atomic_store ) && 5151 Context.AtomicUsesUnsupportedLibcall(AE)) 5152 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib) 5153 << ((Op == AtomicExpr::AO__c11_atomic_load || 5154 Op == AtomicExpr::AO__opencl_atomic_load) 5155 ? 0 5156 : 1); 5157 5158 if (ValType->isExtIntType()) { 5159 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit); 5160 return ExprError(); 5161 } 5162 5163 return AE; 5164 } 5165 5166 /// checkBuiltinArgument - Given a call to a builtin function, perform 5167 /// normal type-checking on the given argument, updating the call in 5168 /// place. This is useful when a builtin function requires custom 5169 /// type-checking for some of its arguments but not necessarily all of 5170 /// them. 5171 /// 5172 /// Returns true on error. 5173 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) { 5174 FunctionDecl *Fn = E->getDirectCallee(); 5175 assert(Fn && "builtin call without direct callee!"); 5176 5177 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex); 5178 InitializedEntity Entity = 5179 InitializedEntity::InitializeParameter(S.Context, Param); 5180 5181 ExprResult Arg = E->getArg(0); 5182 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg); 5183 if (Arg.isInvalid()) 5184 return true; 5185 5186 E->setArg(ArgIndex, Arg.get()); 5187 return false; 5188 } 5189 5190 /// We have a call to a function like __sync_fetch_and_add, which is an 5191 /// overloaded function based on the pointer type of its first argument. 5192 /// The main BuildCallExpr routines have already promoted the types of 5193 /// arguments because all of these calls are prototyped as void(...). 5194 /// 5195 /// This function goes through and does final semantic checking for these 5196 /// builtins, as well as generating any warnings. 5197 ExprResult 5198 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) { 5199 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get()); 5200 Expr *Callee = TheCall->getCallee(); 5201 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts()); 5202 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5203 5204 // Ensure that we have at least one argument to do type inference from. 5205 if (TheCall->getNumArgs() < 1) { 5206 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5207 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange(); 5208 return ExprError(); 5209 } 5210 5211 // Inspect the first argument of the atomic builtin. This should always be 5212 // a pointer type, whose element is an integral scalar or pointer type. 5213 // Because it is a pointer type, we don't have to worry about any implicit 5214 // casts here. 5215 // FIXME: We don't allow floating point scalars as input. 5216 Expr *FirstArg = TheCall->getArg(0); 5217 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg); 5218 if (FirstArgResult.isInvalid()) 5219 return ExprError(); 5220 FirstArg = FirstArgResult.get(); 5221 TheCall->setArg(0, FirstArg); 5222 5223 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>(); 5224 if (!pointerType) { 5225 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer) 5226 << FirstArg->getType() << FirstArg->getSourceRange(); 5227 return ExprError(); 5228 } 5229 5230 QualType ValType = pointerType->getPointeeType(); 5231 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5232 !ValType->isBlockPointerType()) { 5233 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr) 5234 << FirstArg->getType() << FirstArg->getSourceRange(); 5235 return ExprError(); 5236 } 5237 5238 if (ValType.isConstQualified()) { 5239 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const) 5240 << FirstArg->getType() << FirstArg->getSourceRange(); 5241 return ExprError(); 5242 } 5243 5244 switch (ValType.getObjCLifetime()) { 5245 case Qualifiers::OCL_None: 5246 case Qualifiers::OCL_ExplicitNone: 5247 // okay 5248 break; 5249 5250 case Qualifiers::OCL_Weak: 5251 case Qualifiers::OCL_Strong: 5252 case Qualifiers::OCL_Autoreleasing: 5253 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership) 5254 << ValType << FirstArg->getSourceRange(); 5255 return ExprError(); 5256 } 5257 5258 // Strip any qualifiers off ValType. 5259 ValType = ValType.getUnqualifiedType(); 5260 5261 // The majority of builtins return a value, but a few have special return 5262 // types, so allow them to override appropriately below. 5263 QualType ResultType = ValType; 5264 5265 // We need to figure out which concrete builtin this maps onto. For example, 5266 // __sync_fetch_and_add with a 2 byte object turns into 5267 // __sync_fetch_and_add_2. 5268 #define BUILTIN_ROW(x) \ 5269 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \ 5270 Builtin::BI##x##_8, Builtin::BI##x##_16 } 5271 5272 static const unsigned BuiltinIndices[][5] = { 5273 BUILTIN_ROW(__sync_fetch_and_add), 5274 BUILTIN_ROW(__sync_fetch_and_sub), 5275 BUILTIN_ROW(__sync_fetch_and_or), 5276 BUILTIN_ROW(__sync_fetch_and_and), 5277 BUILTIN_ROW(__sync_fetch_and_xor), 5278 BUILTIN_ROW(__sync_fetch_and_nand), 5279 5280 BUILTIN_ROW(__sync_add_and_fetch), 5281 BUILTIN_ROW(__sync_sub_and_fetch), 5282 BUILTIN_ROW(__sync_and_and_fetch), 5283 BUILTIN_ROW(__sync_or_and_fetch), 5284 BUILTIN_ROW(__sync_xor_and_fetch), 5285 BUILTIN_ROW(__sync_nand_and_fetch), 5286 5287 BUILTIN_ROW(__sync_val_compare_and_swap), 5288 BUILTIN_ROW(__sync_bool_compare_and_swap), 5289 BUILTIN_ROW(__sync_lock_test_and_set), 5290 BUILTIN_ROW(__sync_lock_release), 5291 BUILTIN_ROW(__sync_swap) 5292 }; 5293 #undef BUILTIN_ROW 5294 5295 // Determine the index of the size. 5296 unsigned SizeIndex; 5297 switch (Context.getTypeSizeInChars(ValType).getQuantity()) { 5298 case 1: SizeIndex = 0; break; 5299 case 2: SizeIndex = 1; break; 5300 case 4: SizeIndex = 2; break; 5301 case 8: SizeIndex = 3; break; 5302 case 16: SizeIndex = 4; break; 5303 default: 5304 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size) 5305 << FirstArg->getType() << FirstArg->getSourceRange(); 5306 return ExprError(); 5307 } 5308 5309 // Each of these builtins has one pointer argument, followed by some number of 5310 // values (0, 1 or 2) followed by a potentially empty varags list of stuff 5311 // that we ignore. Find out which row of BuiltinIndices to read from as well 5312 // as the number of fixed args. 5313 unsigned BuiltinID = FDecl->getBuiltinID(); 5314 unsigned BuiltinIndex, NumFixed = 1; 5315 bool WarnAboutSemanticsChange = false; 5316 switch (BuiltinID) { 5317 default: llvm_unreachable("Unknown overloaded atomic builtin!"); 5318 case Builtin::BI__sync_fetch_and_add: 5319 case Builtin::BI__sync_fetch_and_add_1: 5320 case Builtin::BI__sync_fetch_and_add_2: 5321 case Builtin::BI__sync_fetch_and_add_4: 5322 case Builtin::BI__sync_fetch_and_add_8: 5323 case Builtin::BI__sync_fetch_and_add_16: 5324 BuiltinIndex = 0; 5325 break; 5326 5327 case Builtin::BI__sync_fetch_and_sub: 5328 case Builtin::BI__sync_fetch_and_sub_1: 5329 case Builtin::BI__sync_fetch_and_sub_2: 5330 case Builtin::BI__sync_fetch_and_sub_4: 5331 case Builtin::BI__sync_fetch_and_sub_8: 5332 case Builtin::BI__sync_fetch_and_sub_16: 5333 BuiltinIndex = 1; 5334 break; 5335 5336 case Builtin::BI__sync_fetch_and_or: 5337 case Builtin::BI__sync_fetch_and_or_1: 5338 case Builtin::BI__sync_fetch_and_or_2: 5339 case Builtin::BI__sync_fetch_and_or_4: 5340 case Builtin::BI__sync_fetch_and_or_8: 5341 case Builtin::BI__sync_fetch_and_or_16: 5342 BuiltinIndex = 2; 5343 break; 5344 5345 case Builtin::BI__sync_fetch_and_and: 5346 case Builtin::BI__sync_fetch_and_and_1: 5347 case Builtin::BI__sync_fetch_and_and_2: 5348 case Builtin::BI__sync_fetch_and_and_4: 5349 case Builtin::BI__sync_fetch_and_and_8: 5350 case Builtin::BI__sync_fetch_and_and_16: 5351 BuiltinIndex = 3; 5352 break; 5353 5354 case Builtin::BI__sync_fetch_and_xor: 5355 case Builtin::BI__sync_fetch_and_xor_1: 5356 case Builtin::BI__sync_fetch_and_xor_2: 5357 case Builtin::BI__sync_fetch_and_xor_4: 5358 case Builtin::BI__sync_fetch_and_xor_8: 5359 case Builtin::BI__sync_fetch_and_xor_16: 5360 BuiltinIndex = 4; 5361 break; 5362 5363 case Builtin::BI__sync_fetch_and_nand: 5364 case Builtin::BI__sync_fetch_and_nand_1: 5365 case Builtin::BI__sync_fetch_and_nand_2: 5366 case Builtin::BI__sync_fetch_and_nand_4: 5367 case Builtin::BI__sync_fetch_and_nand_8: 5368 case Builtin::BI__sync_fetch_and_nand_16: 5369 BuiltinIndex = 5; 5370 WarnAboutSemanticsChange = true; 5371 break; 5372 5373 case Builtin::BI__sync_add_and_fetch: 5374 case Builtin::BI__sync_add_and_fetch_1: 5375 case Builtin::BI__sync_add_and_fetch_2: 5376 case Builtin::BI__sync_add_and_fetch_4: 5377 case Builtin::BI__sync_add_and_fetch_8: 5378 case Builtin::BI__sync_add_and_fetch_16: 5379 BuiltinIndex = 6; 5380 break; 5381 5382 case Builtin::BI__sync_sub_and_fetch: 5383 case Builtin::BI__sync_sub_and_fetch_1: 5384 case Builtin::BI__sync_sub_and_fetch_2: 5385 case Builtin::BI__sync_sub_and_fetch_4: 5386 case Builtin::BI__sync_sub_and_fetch_8: 5387 case Builtin::BI__sync_sub_and_fetch_16: 5388 BuiltinIndex = 7; 5389 break; 5390 5391 case Builtin::BI__sync_and_and_fetch: 5392 case Builtin::BI__sync_and_and_fetch_1: 5393 case Builtin::BI__sync_and_and_fetch_2: 5394 case Builtin::BI__sync_and_and_fetch_4: 5395 case Builtin::BI__sync_and_and_fetch_8: 5396 case Builtin::BI__sync_and_and_fetch_16: 5397 BuiltinIndex = 8; 5398 break; 5399 5400 case Builtin::BI__sync_or_and_fetch: 5401 case Builtin::BI__sync_or_and_fetch_1: 5402 case Builtin::BI__sync_or_and_fetch_2: 5403 case Builtin::BI__sync_or_and_fetch_4: 5404 case Builtin::BI__sync_or_and_fetch_8: 5405 case Builtin::BI__sync_or_and_fetch_16: 5406 BuiltinIndex = 9; 5407 break; 5408 5409 case Builtin::BI__sync_xor_and_fetch: 5410 case Builtin::BI__sync_xor_and_fetch_1: 5411 case Builtin::BI__sync_xor_and_fetch_2: 5412 case Builtin::BI__sync_xor_and_fetch_4: 5413 case Builtin::BI__sync_xor_and_fetch_8: 5414 case Builtin::BI__sync_xor_and_fetch_16: 5415 BuiltinIndex = 10; 5416 break; 5417 5418 case Builtin::BI__sync_nand_and_fetch: 5419 case Builtin::BI__sync_nand_and_fetch_1: 5420 case Builtin::BI__sync_nand_and_fetch_2: 5421 case Builtin::BI__sync_nand_and_fetch_4: 5422 case Builtin::BI__sync_nand_and_fetch_8: 5423 case Builtin::BI__sync_nand_and_fetch_16: 5424 BuiltinIndex = 11; 5425 WarnAboutSemanticsChange = true; 5426 break; 5427 5428 case Builtin::BI__sync_val_compare_and_swap: 5429 case Builtin::BI__sync_val_compare_and_swap_1: 5430 case Builtin::BI__sync_val_compare_and_swap_2: 5431 case Builtin::BI__sync_val_compare_and_swap_4: 5432 case Builtin::BI__sync_val_compare_and_swap_8: 5433 case Builtin::BI__sync_val_compare_and_swap_16: 5434 BuiltinIndex = 12; 5435 NumFixed = 2; 5436 break; 5437 5438 case Builtin::BI__sync_bool_compare_and_swap: 5439 case Builtin::BI__sync_bool_compare_and_swap_1: 5440 case Builtin::BI__sync_bool_compare_and_swap_2: 5441 case Builtin::BI__sync_bool_compare_and_swap_4: 5442 case Builtin::BI__sync_bool_compare_and_swap_8: 5443 case Builtin::BI__sync_bool_compare_and_swap_16: 5444 BuiltinIndex = 13; 5445 NumFixed = 2; 5446 ResultType = Context.BoolTy; 5447 break; 5448 5449 case Builtin::BI__sync_lock_test_and_set: 5450 case Builtin::BI__sync_lock_test_and_set_1: 5451 case Builtin::BI__sync_lock_test_and_set_2: 5452 case Builtin::BI__sync_lock_test_and_set_4: 5453 case Builtin::BI__sync_lock_test_and_set_8: 5454 case Builtin::BI__sync_lock_test_and_set_16: 5455 BuiltinIndex = 14; 5456 break; 5457 5458 case Builtin::BI__sync_lock_release: 5459 case Builtin::BI__sync_lock_release_1: 5460 case Builtin::BI__sync_lock_release_2: 5461 case Builtin::BI__sync_lock_release_4: 5462 case Builtin::BI__sync_lock_release_8: 5463 case Builtin::BI__sync_lock_release_16: 5464 BuiltinIndex = 15; 5465 NumFixed = 0; 5466 ResultType = Context.VoidTy; 5467 break; 5468 5469 case Builtin::BI__sync_swap: 5470 case Builtin::BI__sync_swap_1: 5471 case Builtin::BI__sync_swap_2: 5472 case Builtin::BI__sync_swap_4: 5473 case Builtin::BI__sync_swap_8: 5474 case Builtin::BI__sync_swap_16: 5475 BuiltinIndex = 16; 5476 break; 5477 } 5478 5479 // Now that we know how many fixed arguments we expect, first check that we 5480 // have at least that many. 5481 if (TheCall->getNumArgs() < 1+NumFixed) { 5482 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least) 5483 << 0 << 1 + NumFixed << TheCall->getNumArgs() 5484 << Callee->getSourceRange(); 5485 return ExprError(); 5486 } 5487 5488 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst) 5489 << Callee->getSourceRange(); 5490 5491 if (WarnAboutSemanticsChange) { 5492 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change) 5493 << Callee->getSourceRange(); 5494 } 5495 5496 // Get the decl for the concrete builtin from this, we can tell what the 5497 // concrete integer type we should convert to is. 5498 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex]; 5499 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID); 5500 FunctionDecl *NewBuiltinDecl; 5501 if (NewBuiltinID == BuiltinID) 5502 NewBuiltinDecl = FDecl; 5503 else { 5504 // Perform builtin lookup to avoid redeclaring it. 5505 DeclarationName DN(&Context.Idents.get(NewBuiltinName)); 5506 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName); 5507 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true); 5508 assert(Res.getFoundDecl()); 5509 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl()); 5510 if (!NewBuiltinDecl) 5511 return ExprError(); 5512 } 5513 5514 // The first argument --- the pointer --- has a fixed type; we 5515 // deduce the types of the rest of the arguments accordingly. Walk 5516 // the remaining arguments, converting them to the deduced value type. 5517 for (unsigned i = 0; i != NumFixed; ++i) { 5518 ExprResult Arg = TheCall->getArg(i+1); 5519 5520 // GCC does an implicit conversion to the pointer or integer ValType. This 5521 // can fail in some cases (1i -> int**), check for this error case now. 5522 // Initialize the argument. 5523 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 5524 ValType, /*consume*/ false); 5525 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 5526 if (Arg.isInvalid()) 5527 return ExprError(); 5528 5529 // Okay, we have something that *can* be converted to the right type. Check 5530 // to see if there is a potentially weird extension going on here. This can 5531 // happen when you do an atomic operation on something like an char* and 5532 // pass in 42. The 42 gets converted to char. This is even more strange 5533 // for things like 45.123 -> char, etc. 5534 // FIXME: Do this check. 5535 TheCall->setArg(i+1, Arg.get()); 5536 } 5537 5538 // Create a new DeclRefExpr to refer to the new decl. 5539 DeclRefExpr *NewDRE = DeclRefExpr::Create( 5540 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl, 5541 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy, 5542 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse()); 5543 5544 // Set the callee in the CallExpr. 5545 // FIXME: This loses syntactic information. 5546 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType()); 5547 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy, 5548 CK_BuiltinFnToFnPtr); 5549 TheCall->setCallee(PromotedCall.get()); 5550 5551 // Change the result type of the call to match the original value type. This 5552 // is arbitrary, but the codegen for these builtins ins design to handle it 5553 // gracefully. 5554 TheCall->setType(ResultType); 5555 5556 // Prohibit use of _ExtInt with atomic builtins. 5557 // The arguments would have already been converted to the first argument's 5558 // type, so only need to check the first argument. 5559 const auto *ExtIntValType = ValType->getAs<ExtIntType>(); 5560 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) { 5561 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size); 5562 return ExprError(); 5563 } 5564 5565 return TheCallResult; 5566 } 5567 5568 /// SemaBuiltinNontemporalOverloaded - We have a call to 5569 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an 5570 /// overloaded function based on the pointer type of its last argument. 5571 /// 5572 /// This function goes through and does final semantic checking for these 5573 /// builtins. 5574 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) { 5575 CallExpr *TheCall = (CallExpr *)TheCallResult.get(); 5576 DeclRefExpr *DRE = 5577 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 5578 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 5579 unsigned BuiltinID = FDecl->getBuiltinID(); 5580 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store || 5581 BuiltinID == Builtin::BI__builtin_nontemporal_load) && 5582 "Unexpected nontemporal load/store builtin!"); 5583 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store; 5584 unsigned numArgs = isStore ? 2 : 1; 5585 5586 // Ensure that we have the proper number of arguments. 5587 if (checkArgCount(*this, TheCall, numArgs)) 5588 return ExprError(); 5589 5590 // Inspect the last argument of the nontemporal builtin. This should always 5591 // be a pointer type, from which we imply the type of the memory access. 5592 // Because it is a pointer type, we don't have to worry about any implicit 5593 // casts here. 5594 Expr *PointerArg = TheCall->getArg(numArgs - 1); 5595 ExprResult PointerArgResult = 5596 DefaultFunctionArrayLvalueConversion(PointerArg); 5597 5598 if (PointerArgResult.isInvalid()) 5599 return ExprError(); 5600 PointerArg = PointerArgResult.get(); 5601 TheCall->setArg(numArgs - 1, PointerArg); 5602 5603 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>(); 5604 if (!pointerType) { 5605 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer) 5606 << PointerArg->getType() << PointerArg->getSourceRange(); 5607 return ExprError(); 5608 } 5609 5610 QualType ValType = pointerType->getPointeeType(); 5611 5612 // Strip any qualifiers off ValType. 5613 ValType = ValType.getUnqualifiedType(); 5614 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() && 5615 !ValType->isBlockPointerType() && !ValType->isFloatingType() && 5616 !ValType->isVectorType()) { 5617 Diag(DRE->getBeginLoc(), 5618 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector) 5619 << PointerArg->getType() << PointerArg->getSourceRange(); 5620 return ExprError(); 5621 } 5622 5623 if (!isStore) { 5624 TheCall->setType(ValType); 5625 return TheCallResult; 5626 } 5627 5628 ExprResult ValArg = TheCall->getArg(0); 5629 InitializedEntity Entity = InitializedEntity::InitializeParameter( 5630 Context, ValType, /*consume*/ false); 5631 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg); 5632 if (ValArg.isInvalid()) 5633 return ExprError(); 5634 5635 TheCall->setArg(0, ValArg.get()); 5636 TheCall->setType(Context.VoidTy); 5637 return TheCallResult; 5638 } 5639 5640 /// CheckObjCString - Checks that the argument to the builtin 5641 /// CFString constructor is correct 5642 /// Note: It might also make sense to do the UTF-16 conversion here (would 5643 /// simplify the backend). 5644 bool Sema::CheckObjCString(Expr *Arg) { 5645 Arg = Arg->IgnoreParenCasts(); 5646 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg); 5647 5648 if (!Literal || !Literal->isAscii()) { 5649 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant) 5650 << Arg->getSourceRange(); 5651 return true; 5652 } 5653 5654 if (Literal->containsNonAsciiOrNull()) { 5655 StringRef String = Literal->getString(); 5656 unsigned NumBytes = String.size(); 5657 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes); 5658 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 5659 llvm::UTF16 *ToPtr = &ToBuf[0]; 5660 5661 llvm::ConversionResult Result = 5662 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 5663 ToPtr + NumBytes, llvm::strictConversion); 5664 // Check for conversion failure. 5665 if (Result != llvm::conversionOK) 5666 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated) 5667 << Arg->getSourceRange(); 5668 } 5669 return false; 5670 } 5671 5672 /// CheckObjCString - Checks that the format string argument to the os_log() 5673 /// and os_trace() functions is correct, and converts it to const char *. 5674 ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) { 5675 Arg = Arg->IgnoreParenCasts(); 5676 auto *Literal = dyn_cast<StringLiteral>(Arg); 5677 if (!Literal) { 5678 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) { 5679 Literal = ObjcLiteral->getString(); 5680 } 5681 } 5682 5683 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) { 5684 return ExprError( 5685 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant) 5686 << Arg->getSourceRange()); 5687 } 5688 5689 ExprResult Result(Literal); 5690 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst()); 5691 InitializedEntity Entity = 5692 InitializedEntity::InitializeParameter(Context, ResultTy, false); 5693 Result = PerformCopyInitialization(Entity, SourceLocation(), Result); 5694 return Result; 5695 } 5696 5697 /// Check that the user is calling the appropriate va_start builtin for the 5698 /// target and calling convention. 5699 static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) { 5700 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple(); 5701 bool IsX64 = TT.getArch() == llvm::Triple::x86_64; 5702 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 || 5703 TT.getArch() == llvm::Triple::aarch64_32); 5704 bool IsWindows = TT.isOSWindows(); 5705 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start; 5706 if (IsX64 || IsAArch64) { 5707 CallingConv CC = CC_C; 5708 if (const FunctionDecl *FD = S.getCurFunctionDecl()) 5709 CC = FD->getType()->castAs<FunctionType>()->getCallConv(); 5710 if (IsMSVAStart) { 5711 // Don't allow this in System V ABI functions. 5712 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64)) 5713 return S.Diag(Fn->getBeginLoc(), 5714 diag::err_ms_va_start_used_in_sysv_function); 5715 } else { 5716 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions. 5717 // On x64 Windows, don't allow this in System V ABI functions. 5718 // (Yes, that means there's no corresponding way to support variadic 5719 // System V ABI functions on Windows.) 5720 if ((IsWindows && CC == CC_X86_64SysV) || 5721 (!IsWindows && CC == CC_Win64)) 5722 return S.Diag(Fn->getBeginLoc(), 5723 diag::err_va_start_used_in_wrong_abi_function) 5724 << !IsWindows; 5725 } 5726 return false; 5727 } 5728 5729 if (IsMSVAStart) 5730 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only); 5731 return false; 5732 } 5733 5734 static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn, 5735 ParmVarDecl **LastParam = nullptr) { 5736 // Determine whether the current function, block, or obj-c method is variadic 5737 // and get its parameter list. 5738 bool IsVariadic = false; 5739 ArrayRef<ParmVarDecl *> Params; 5740 DeclContext *Caller = S.CurContext; 5741 if (auto *Block = dyn_cast<BlockDecl>(Caller)) { 5742 IsVariadic = Block->isVariadic(); 5743 Params = Block->parameters(); 5744 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) { 5745 IsVariadic = FD->isVariadic(); 5746 Params = FD->parameters(); 5747 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) { 5748 IsVariadic = MD->isVariadic(); 5749 // FIXME: This isn't correct for methods (results in bogus warning). 5750 Params = MD->parameters(); 5751 } else if (isa<CapturedDecl>(Caller)) { 5752 // We don't support va_start in a CapturedDecl. 5753 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt); 5754 return true; 5755 } else { 5756 // This must be some other declcontext that parses exprs. 5757 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function); 5758 return true; 5759 } 5760 5761 if (!IsVariadic) { 5762 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function); 5763 return true; 5764 } 5765 5766 if (LastParam) 5767 *LastParam = Params.empty() ? nullptr : Params.back(); 5768 5769 return false; 5770 } 5771 5772 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start' 5773 /// for validity. Emit an error and return true on failure; return false 5774 /// on success. 5775 bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) { 5776 Expr *Fn = TheCall->getCallee(); 5777 5778 if (checkVAStartABI(*this, BuiltinID, Fn)) 5779 return true; 5780 5781 if (checkArgCount(*this, TheCall, 2)) 5782 return true; 5783 5784 // Type-check the first argument normally. 5785 if (checkBuiltinArgument(*this, TheCall, 0)) 5786 return true; 5787 5788 // Check that the current function is variadic, and get its last parameter. 5789 ParmVarDecl *LastParam; 5790 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam)) 5791 return true; 5792 5793 // Verify that the second argument to the builtin is the last argument of the 5794 // current function or method. 5795 bool SecondArgIsLastNamedArgument = false; 5796 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts(); 5797 5798 // These are valid if SecondArgIsLastNamedArgument is false after the next 5799 // block. 5800 QualType Type; 5801 SourceLocation ParamLoc; 5802 bool IsCRegister = false; 5803 5804 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) { 5805 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) { 5806 SecondArgIsLastNamedArgument = PV == LastParam; 5807 5808 Type = PV->getType(); 5809 ParamLoc = PV->getLocation(); 5810 IsCRegister = 5811 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus; 5812 } 5813 } 5814 5815 if (!SecondArgIsLastNamedArgument) 5816 Diag(TheCall->getArg(1)->getBeginLoc(), 5817 diag::warn_second_arg_of_va_start_not_last_named_param); 5818 else if (IsCRegister || Type->isReferenceType() || 5819 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] { 5820 // Promotable integers are UB, but enumerations need a bit of 5821 // extra checking to see what their promotable type actually is. 5822 if (!Type->isPromotableIntegerType()) 5823 return false; 5824 if (!Type->isEnumeralType()) 5825 return true; 5826 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl(); 5827 return !(ED && 5828 Context.typesAreCompatible(ED->getPromotionType(), Type)); 5829 }()) { 5830 unsigned Reason = 0; 5831 if (Type->isReferenceType()) Reason = 1; 5832 else if (IsCRegister) Reason = 2; 5833 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason; 5834 Diag(ParamLoc, diag::note_parameter_type) << Type; 5835 } 5836 5837 TheCall->setType(Context.VoidTy); 5838 return false; 5839 } 5840 5841 bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) { 5842 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size, 5843 // const char *named_addr); 5844 5845 Expr *Func = Call->getCallee(); 5846 5847 if (Call->getNumArgs() < 3) 5848 return Diag(Call->getEndLoc(), 5849 diag::err_typecheck_call_too_few_args_at_least) 5850 << 0 /*function call*/ << 3 << Call->getNumArgs(); 5851 5852 // Type-check the first argument normally. 5853 if (checkBuiltinArgument(*this, Call, 0)) 5854 return true; 5855 5856 // Check that the current function is variadic. 5857 if (checkVAStartIsInVariadicFunction(*this, Func)) 5858 return true; 5859 5860 // __va_start on Windows does not validate the parameter qualifiers 5861 5862 const Expr *Arg1 = Call->getArg(1)->IgnoreParens(); 5863 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr(); 5864 5865 const Expr *Arg2 = Call->getArg(2)->IgnoreParens(); 5866 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr(); 5867 5868 const QualType &ConstCharPtrTy = 5869 Context.getPointerType(Context.CharTy.withConst()); 5870 if (!Arg1Ty->isPointerType() || 5871 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy) 5872 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5873 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */ 5874 << 0 /* qualifier difference */ 5875 << 3 /* parameter mismatch */ 5876 << 2 << Arg1->getType() << ConstCharPtrTy; 5877 5878 const QualType SizeTy = Context.getSizeType(); 5879 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy) 5880 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible) 5881 << Arg2->getType() << SizeTy << 1 /* different class */ 5882 << 0 /* qualifier difference */ 5883 << 3 /* parameter mismatch */ 5884 << 3 << Arg2->getType() << SizeTy; 5885 5886 return false; 5887 } 5888 5889 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and 5890 /// friends. This is declared to take (...), so we have to check everything. 5891 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) { 5892 if (checkArgCount(*this, TheCall, 2)) 5893 return true; 5894 5895 ExprResult OrigArg0 = TheCall->getArg(0); 5896 ExprResult OrigArg1 = TheCall->getArg(1); 5897 5898 // Do standard promotions between the two arguments, returning their common 5899 // type. 5900 QualType Res = UsualArithmeticConversions( 5901 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison); 5902 if (OrigArg0.isInvalid() || OrigArg1.isInvalid()) 5903 return true; 5904 5905 // Make sure any conversions are pushed back into the call; this is 5906 // type safe since unordered compare builtins are declared as "_Bool 5907 // foo(...)". 5908 TheCall->setArg(0, OrigArg0.get()); 5909 TheCall->setArg(1, OrigArg1.get()); 5910 5911 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent()) 5912 return false; 5913 5914 // If the common type isn't a real floating type, then the arguments were 5915 // invalid for this operation. 5916 if (Res.isNull() || !Res->isRealFloatingType()) 5917 return Diag(OrigArg0.get()->getBeginLoc(), 5918 diag::err_typecheck_call_invalid_ordered_compare) 5919 << OrigArg0.get()->getType() << OrigArg1.get()->getType() 5920 << SourceRange(OrigArg0.get()->getBeginLoc(), 5921 OrigArg1.get()->getEndLoc()); 5922 5923 return false; 5924 } 5925 5926 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like 5927 /// __builtin_isnan and friends. This is declared to take (...), so we have 5928 /// to check everything. We expect the last argument to be a floating point 5929 /// value. 5930 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) { 5931 if (checkArgCount(*this, TheCall, NumArgs)) 5932 return true; 5933 5934 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count 5935 // on all preceding parameters just being int. Try all of those. 5936 for (unsigned i = 0; i < NumArgs - 1; ++i) { 5937 Expr *Arg = TheCall->getArg(i); 5938 5939 if (Arg->isTypeDependent()) 5940 return false; 5941 5942 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing); 5943 5944 if (Res.isInvalid()) 5945 return true; 5946 TheCall->setArg(i, Res.get()); 5947 } 5948 5949 Expr *OrigArg = TheCall->getArg(NumArgs-1); 5950 5951 if (OrigArg->isTypeDependent()) 5952 return false; 5953 5954 // Usual Unary Conversions will convert half to float, which we want for 5955 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the 5956 // type how it is, but do normal L->Rvalue conversions. 5957 if (Context.getTargetInfo().useFP16ConversionIntrinsics()) 5958 OrigArg = UsualUnaryConversions(OrigArg).get(); 5959 else 5960 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get(); 5961 TheCall->setArg(NumArgs - 1, OrigArg); 5962 5963 // This operation requires a non-_Complex floating-point number. 5964 if (!OrigArg->getType()->isRealFloatingType()) 5965 return Diag(OrigArg->getBeginLoc(), 5966 diag::err_typecheck_call_invalid_unary_fp) 5967 << OrigArg->getType() << OrigArg->getSourceRange(); 5968 5969 return false; 5970 } 5971 5972 /// Perform semantic analysis for a call to __builtin_complex. 5973 bool Sema::SemaBuiltinComplex(CallExpr *TheCall) { 5974 if (checkArgCount(*this, TheCall, 2)) 5975 return true; 5976 5977 bool Dependent = false; 5978 for (unsigned I = 0; I != 2; ++I) { 5979 Expr *Arg = TheCall->getArg(I); 5980 QualType T = Arg->getType(); 5981 if (T->isDependentType()) { 5982 Dependent = true; 5983 continue; 5984 } 5985 5986 // Despite supporting _Complex int, GCC requires a real floating point type 5987 // for the operands of __builtin_complex. 5988 if (!T->isRealFloatingType()) { 5989 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp) 5990 << Arg->getType() << Arg->getSourceRange(); 5991 } 5992 5993 ExprResult Converted = DefaultLvalueConversion(Arg); 5994 if (Converted.isInvalid()) 5995 return true; 5996 TheCall->setArg(I, Converted.get()); 5997 } 5998 5999 if (Dependent) { 6000 TheCall->setType(Context.DependentTy); 6001 return false; 6002 } 6003 6004 Expr *Real = TheCall->getArg(0); 6005 Expr *Imag = TheCall->getArg(1); 6006 if (!Context.hasSameType(Real->getType(), Imag->getType())) { 6007 return Diag(Real->getBeginLoc(), 6008 diag::err_typecheck_call_different_arg_types) 6009 << Real->getType() << Imag->getType() 6010 << Real->getSourceRange() << Imag->getSourceRange(); 6011 } 6012 6013 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers; 6014 // don't allow this builtin to form those types either. 6015 // FIXME: Should we allow these types? 6016 if (Real->getType()->isFloat16Type()) 6017 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6018 << "_Float16"; 6019 if (Real->getType()->isHalfType()) 6020 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec) 6021 << "half"; 6022 6023 TheCall->setType(Context.getComplexType(Real->getType())); 6024 return false; 6025 } 6026 6027 // Customized Sema Checking for VSX builtins that have the following signature: 6028 // vector [...] builtinName(vector [...], vector [...], const int); 6029 // Which takes the same type of vectors (any legal vector type) for the first 6030 // two arguments and takes compile time constant for the third argument. 6031 // Example builtins are : 6032 // vector double vec_xxpermdi(vector double, vector double, int); 6033 // vector short vec_xxsldwi(vector short, vector short, int); 6034 bool Sema::SemaBuiltinVSX(CallExpr *TheCall) { 6035 unsigned ExpectedNumArgs = 3; 6036 if (checkArgCount(*this, TheCall, ExpectedNumArgs)) 6037 return true; 6038 6039 // Check the third argument is a compile time constant 6040 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context)) 6041 return Diag(TheCall->getBeginLoc(), 6042 diag::err_vsx_builtin_nonconstant_argument) 6043 << 3 /* argument index */ << TheCall->getDirectCallee() 6044 << SourceRange(TheCall->getArg(2)->getBeginLoc(), 6045 TheCall->getArg(2)->getEndLoc()); 6046 6047 QualType Arg1Ty = TheCall->getArg(0)->getType(); 6048 QualType Arg2Ty = TheCall->getArg(1)->getType(); 6049 6050 // Check the type of argument 1 and argument 2 are vectors. 6051 SourceLocation BuiltinLoc = TheCall->getBeginLoc(); 6052 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) || 6053 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) { 6054 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector) 6055 << TheCall->getDirectCallee() 6056 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6057 TheCall->getArg(1)->getEndLoc()); 6058 } 6059 6060 // Check the first two arguments are the same type. 6061 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) { 6062 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector) 6063 << TheCall->getDirectCallee() 6064 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6065 TheCall->getArg(1)->getEndLoc()); 6066 } 6067 6068 // When default clang type checking is turned off and the customized type 6069 // checking is used, the returning type of the function must be explicitly 6070 // set. Otherwise it is _Bool by default. 6071 TheCall->setType(Arg1Ty); 6072 6073 return false; 6074 } 6075 6076 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector. 6077 // This is declared to take (...), so we have to check everything. 6078 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) { 6079 if (TheCall->getNumArgs() < 2) 6080 return ExprError(Diag(TheCall->getEndLoc(), 6081 diag::err_typecheck_call_too_few_args_at_least) 6082 << 0 /*function call*/ << 2 << TheCall->getNumArgs() 6083 << TheCall->getSourceRange()); 6084 6085 // Determine which of the following types of shufflevector we're checking: 6086 // 1) unary, vector mask: (lhs, mask) 6087 // 2) binary, scalar mask: (lhs, rhs, index, ..., index) 6088 QualType resType = TheCall->getArg(0)->getType(); 6089 unsigned numElements = 0; 6090 6091 if (!TheCall->getArg(0)->isTypeDependent() && 6092 !TheCall->getArg(1)->isTypeDependent()) { 6093 QualType LHSType = TheCall->getArg(0)->getType(); 6094 QualType RHSType = TheCall->getArg(1)->getType(); 6095 6096 if (!LHSType->isVectorType() || !RHSType->isVectorType()) 6097 return ExprError( 6098 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector) 6099 << TheCall->getDirectCallee() 6100 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6101 TheCall->getArg(1)->getEndLoc())); 6102 6103 numElements = LHSType->castAs<VectorType>()->getNumElements(); 6104 unsigned numResElements = TheCall->getNumArgs() - 2; 6105 6106 // Check to see if we have a call with 2 vector arguments, the unary shuffle 6107 // with mask. If so, verify that RHS is an integer vector type with the 6108 // same number of elts as lhs. 6109 if (TheCall->getNumArgs() == 2) { 6110 if (!RHSType->hasIntegerRepresentation() || 6111 RHSType->castAs<VectorType>()->getNumElements() != numElements) 6112 return ExprError(Diag(TheCall->getBeginLoc(), 6113 diag::err_vec_builtin_incompatible_vector) 6114 << TheCall->getDirectCallee() 6115 << SourceRange(TheCall->getArg(1)->getBeginLoc(), 6116 TheCall->getArg(1)->getEndLoc())); 6117 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) { 6118 return ExprError(Diag(TheCall->getBeginLoc(), 6119 diag::err_vec_builtin_incompatible_vector) 6120 << TheCall->getDirectCallee() 6121 << SourceRange(TheCall->getArg(0)->getBeginLoc(), 6122 TheCall->getArg(1)->getEndLoc())); 6123 } else if (numElements != numResElements) { 6124 QualType eltType = LHSType->castAs<VectorType>()->getElementType(); 6125 resType = Context.getVectorType(eltType, numResElements, 6126 VectorType::GenericVector); 6127 } 6128 } 6129 6130 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) { 6131 if (TheCall->getArg(i)->isTypeDependent() || 6132 TheCall->getArg(i)->isValueDependent()) 6133 continue; 6134 6135 Optional<llvm::APSInt> Result; 6136 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context))) 6137 return ExprError(Diag(TheCall->getBeginLoc(), 6138 diag::err_shufflevector_nonconstant_argument) 6139 << TheCall->getArg(i)->getSourceRange()); 6140 6141 // Allow -1 which will be translated to undef in the IR. 6142 if (Result->isSigned() && Result->isAllOnesValue()) 6143 continue; 6144 6145 if (Result->getActiveBits() > 64 || 6146 Result->getZExtValue() >= numElements * 2) 6147 return ExprError(Diag(TheCall->getBeginLoc(), 6148 diag::err_shufflevector_argument_too_large) 6149 << TheCall->getArg(i)->getSourceRange()); 6150 } 6151 6152 SmallVector<Expr*, 32> exprs; 6153 6154 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) { 6155 exprs.push_back(TheCall->getArg(i)); 6156 TheCall->setArg(i, nullptr); 6157 } 6158 6159 return new (Context) ShuffleVectorExpr(Context, exprs, resType, 6160 TheCall->getCallee()->getBeginLoc(), 6161 TheCall->getRParenLoc()); 6162 } 6163 6164 /// SemaConvertVectorExpr - Handle __builtin_convertvector 6165 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo, 6166 SourceLocation BuiltinLoc, 6167 SourceLocation RParenLoc) { 6168 ExprValueKind VK = VK_RValue; 6169 ExprObjectKind OK = OK_Ordinary; 6170 QualType DstTy = TInfo->getType(); 6171 QualType SrcTy = E->getType(); 6172 6173 if (!SrcTy->isVectorType() && !SrcTy->isDependentType()) 6174 return ExprError(Diag(BuiltinLoc, 6175 diag::err_convertvector_non_vector) 6176 << E->getSourceRange()); 6177 if (!DstTy->isVectorType() && !DstTy->isDependentType()) 6178 return ExprError(Diag(BuiltinLoc, 6179 diag::err_convertvector_non_vector_type)); 6180 6181 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) { 6182 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements(); 6183 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements(); 6184 if (SrcElts != DstElts) 6185 return ExprError(Diag(BuiltinLoc, 6186 diag::err_convertvector_incompatible_vector) 6187 << E->getSourceRange()); 6188 } 6189 6190 return new (Context) 6191 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc); 6192 } 6193 6194 /// SemaBuiltinPrefetch - Handle __builtin_prefetch. 6195 // This is declared to take (const void*, ...) and can take two 6196 // optional constant int args. 6197 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) { 6198 unsigned NumArgs = TheCall->getNumArgs(); 6199 6200 if (NumArgs > 3) 6201 return Diag(TheCall->getEndLoc(), 6202 diag::err_typecheck_call_too_many_args_at_most) 6203 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6204 6205 // Argument 0 is checked for us and the remaining arguments must be 6206 // constant integers. 6207 for (unsigned i = 1; i != NumArgs; ++i) 6208 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3)) 6209 return true; 6210 6211 return false; 6212 } 6213 6214 /// SemaBuiltinAssume - Handle __assume (MS Extension). 6215 // __assume does not evaluate its arguments, and should warn if its argument 6216 // has side effects. 6217 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) { 6218 Expr *Arg = TheCall->getArg(0); 6219 if (Arg->isInstantiationDependent()) return false; 6220 6221 if (Arg->HasSideEffects(Context)) 6222 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects) 6223 << Arg->getSourceRange() 6224 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier(); 6225 6226 return false; 6227 } 6228 6229 /// Handle __builtin_alloca_with_align. This is declared 6230 /// as (size_t, size_t) where the second size_t must be a power of 2 greater 6231 /// than 8. 6232 bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) { 6233 // The alignment must be a constant integer. 6234 Expr *Arg = TheCall->getArg(1); 6235 6236 // We can't check the value of a dependent argument. 6237 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6238 if (const auto *UE = 6239 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts())) 6240 if (UE->getKind() == UETT_AlignOf || 6241 UE->getKind() == UETT_PreferredAlignOf) 6242 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof) 6243 << Arg->getSourceRange(); 6244 6245 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context); 6246 6247 if (!Result.isPowerOf2()) 6248 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6249 << Arg->getSourceRange(); 6250 6251 if (Result < Context.getCharWidth()) 6252 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small) 6253 << (unsigned)Context.getCharWidth() << Arg->getSourceRange(); 6254 6255 if (Result > std::numeric_limits<int32_t>::max()) 6256 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big) 6257 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange(); 6258 } 6259 6260 return false; 6261 } 6262 6263 /// Handle __builtin_assume_aligned. This is declared 6264 /// as (const void*, size_t, ...) and can take one optional constant int arg. 6265 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) { 6266 unsigned NumArgs = TheCall->getNumArgs(); 6267 6268 if (NumArgs > 3) 6269 return Diag(TheCall->getEndLoc(), 6270 diag::err_typecheck_call_too_many_args_at_most) 6271 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange(); 6272 6273 // The alignment must be a constant integer. 6274 Expr *Arg = TheCall->getArg(1); 6275 6276 // We can't check the value of a dependent argument. 6277 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) { 6278 llvm::APSInt Result; 6279 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6280 return true; 6281 6282 if (!Result.isPowerOf2()) 6283 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two) 6284 << Arg->getSourceRange(); 6285 6286 if (Result > Sema::MaximumAlignment) 6287 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great) 6288 << Arg->getSourceRange() << Sema::MaximumAlignment; 6289 } 6290 6291 if (NumArgs > 2) { 6292 ExprResult Arg(TheCall->getArg(2)); 6293 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, 6294 Context.getSizeType(), false); 6295 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6296 if (Arg.isInvalid()) return true; 6297 TheCall->setArg(2, Arg.get()); 6298 } 6299 6300 return false; 6301 } 6302 6303 bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) { 6304 unsigned BuiltinID = 6305 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID(); 6306 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size; 6307 6308 unsigned NumArgs = TheCall->getNumArgs(); 6309 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2; 6310 if (NumArgs < NumRequiredArgs) { 6311 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args) 6312 << 0 /* function call */ << NumRequiredArgs << NumArgs 6313 << TheCall->getSourceRange(); 6314 } 6315 if (NumArgs >= NumRequiredArgs + 0x100) { 6316 return Diag(TheCall->getEndLoc(), 6317 diag::err_typecheck_call_too_many_args_at_most) 6318 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs 6319 << TheCall->getSourceRange(); 6320 } 6321 unsigned i = 0; 6322 6323 // For formatting call, check buffer arg. 6324 if (!IsSizeCall) { 6325 ExprResult Arg(TheCall->getArg(i)); 6326 InitializedEntity Entity = InitializedEntity::InitializeParameter( 6327 Context, Context.VoidPtrTy, false); 6328 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg); 6329 if (Arg.isInvalid()) 6330 return true; 6331 TheCall->setArg(i, Arg.get()); 6332 i++; 6333 } 6334 6335 // Check string literal arg. 6336 unsigned FormatIdx = i; 6337 { 6338 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i)); 6339 if (Arg.isInvalid()) 6340 return true; 6341 TheCall->setArg(i, Arg.get()); 6342 i++; 6343 } 6344 6345 // Make sure variadic args are scalar. 6346 unsigned FirstDataArg = i; 6347 while (i < NumArgs) { 6348 ExprResult Arg = DefaultVariadicArgumentPromotion( 6349 TheCall->getArg(i), VariadicFunction, nullptr); 6350 if (Arg.isInvalid()) 6351 return true; 6352 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType()); 6353 if (ArgSize.getQuantity() >= 0x100) { 6354 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big) 6355 << i << (int)ArgSize.getQuantity() << 0xff 6356 << TheCall->getSourceRange(); 6357 } 6358 TheCall->setArg(i, Arg.get()); 6359 i++; 6360 } 6361 6362 // Check formatting specifiers. NOTE: We're only doing this for the non-size 6363 // call to avoid duplicate diagnostics. 6364 if (!IsSizeCall) { 6365 llvm::SmallBitVector CheckedVarArgs(NumArgs, false); 6366 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs()); 6367 bool Success = CheckFormatArguments( 6368 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog, 6369 VariadicFunction, TheCall->getBeginLoc(), SourceRange(), 6370 CheckedVarArgs); 6371 if (!Success) 6372 return true; 6373 } 6374 6375 if (IsSizeCall) { 6376 TheCall->setType(Context.getSizeType()); 6377 } else { 6378 TheCall->setType(Context.VoidPtrTy); 6379 } 6380 return false; 6381 } 6382 6383 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr 6384 /// TheCall is a constant expression. 6385 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum, 6386 llvm::APSInt &Result) { 6387 Expr *Arg = TheCall->getArg(ArgNum); 6388 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts()); 6389 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl()); 6390 6391 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false; 6392 6393 Optional<llvm::APSInt> R; 6394 if (!(R = Arg->getIntegerConstantExpr(Context))) 6395 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type) 6396 << FDecl->getDeclName() << Arg->getSourceRange(); 6397 Result = *R; 6398 return false; 6399 } 6400 6401 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr 6402 /// TheCall is a constant expression in the range [Low, High]. 6403 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, 6404 int Low, int High, bool RangeIsError) { 6405 if (isConstantEvaluated()) 6406 return false; 6407 llvm::APSInt Result; 6408 6409 // We can't check the value of a dependent argument. 6410 Expr *Arg = TheCall->getArg(ArgNum); 6411 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6412 return false; 6413 6414 // Check constant-ness first. 6415 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6416 return true; 6417 6418 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) { 6419 if (RangeIsError) 6420 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range) 6421 << Result.toString(10) << Low << High << Arg->getSourceRange(); 6422 else 6423 // Defer the warning until we know if the code will be emitted so that 6424 // dead code can ignore this. 6425 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall, 6426 PDiag(diag::warn_argument_invalid_range) 6427 << Result.toString(10) << Low << High 6428 << Arg->getSourceRange()); 6429 } 6430 6431 return false; 6432 } 6433 6434 /// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr 6435 /// TheCall is a constant expression is a multiple of Num.. 6436 bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum, 6437 unsigned Num) { 6438 llvm::APSInt Result; 6439 6440 // We can't check the value of a dependent argument. 6441 Expr *Arg = TheCall->getArg(ArgNum); 6442 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6443 return false; 6444 6445 // Check constant-ness first. 6446 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6447 return true; 6448 6449 if (Result.getSExtValue() % Num != 0) 6450 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple) 6451 << Num << Arg->getSourceRange(); 6452 6453 return false; 6454 } 6455 6456 /// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a 6457 /// constant expression representing a power of 2. 6458 bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) { 6459 llvm::APSInt Result; 6460 6461 // We can't check the value of a dependent argument. 6462 Expr *Arg = TheCall->getArg(ArgNum); 6463 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6464 return false; 6465 6466 // Check constant-ness first. 6467 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6468 return true; 6469 6470 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if 6471 // and only if x is a power of 2. 6472 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0) 6473 return false; 6474 6475 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2) 6476 << Arg->getSourceRange(); 6477 } 6478 6479 static bool IsShiftedByte(llvm::APSInt Value) { 6480 if (Value.isNegative()) 6481 return false; 6482 6483 // Check if it's a shifted byte, by shifting it down 6484 while (true) { 6485 // If the value fits in the bottom byte, the check passes. 6486 if (Value < 0x100) 6487 return true; 6488 6489 // Otherwise, if the value has _any_ bits in the bottom byte, the check 6490 // fails. 6491 if ((Value & 0xFF) != 0) 6492 return false; 6493 6494 // If the bottom 8 bits are all 0, but something above that is nonzero, 6495 // then shifting the value right by 8 bits won't affect whether it's a 6496 // shifted byte or not. So do that, and go round again. 6497 Value >>= 8; 6498 } 6499 } 6500 6501 /// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is 6502 /// a constant expression representing an arbitrary byte value shifted left by 6503 /// a multiple of 8 bits. 6504 bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum, 6505 unsigned ArgBits) { 6506 llvm::APSInt Result; 6507 6508 // We can't check the value of a dependent argument. 6509 Expr *Arg = TheCall->getArg(ArgNum); 6510 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6511 return false; 6512 6513 // Check constant-ness first. 6514 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6515 return true; 6516 6517 // Truncate to the given size. 6518 Result = Result.getLoBits(ArgBits); 6519 Result.setIsUnsigned(true); 6520 6521 if (IsShiftedByte(Result)) 6522 return false; 6523 6524 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte) 6525 << Arg->getSourceRange(); 6526 } 6527 6528 /// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of 6529 /// TheCall is a constant expression representing either a shifted byte value, 6530 /// or a value of the form 0x??FF (i.e. a member of the arithmetic progression 6531 /// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some 6532 /// Arm MVE intrinsics. 6533 bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, 6534 int ArgNum, 6535 unsigned ArgBits) { 6536 llvm::APSInt Result; 6537 6538 // We can't check the value of a dependent argument. 6539 Expr *Arg = TheCall->getArg(ArgNum); 6540 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6541 return false; 6542 6543 // Check constant-ness first. 6544 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result)) 6545 return true; 6546 6547 // Truncate to the given size. 6548 Result = Result.getLoBits(ArgBits); 6549 Result.setIsUnsigned(true); 6550 6551 // Check to see if it's in either of the required forms. 6552 if (IsShiftedByte(Result) || 6553 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF)) 6554 return false; 6555 6556 return Diag(TheCall->getBeginLoc(), 6557 diag::err_argument_not_shifted_byte_or_xxff) 6558 << Arg->getSourceRange(); 6559 } 6560 6561 /// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions 6562 bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) { 6563 if (BuiltinID == AArch64::BI__builtin_arm_irg) { 6564 if (checkArgCount(*this, TheCall, 2)) 6565 return true; 6566 Expr *Arg0 = TheCall->getArg(0); 6567 Expr *Arg1 = TheCall->getArg(1); 6568 6569 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6570 if (FirstArg.isInvalid()) 6571 return true; 6572 QualType FirstArgType = FirstArg.get()->getType(); 6573 if (!FirstArgType->isAnyPointerType()) 6574 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6575 << "first" << FirstArgType << Arg0->getSourceRange(); 6576 TheCall->setArg(0, FirstArg.get()); 6577 6578 ExprResult SecArg = DefaultLvalueConversion(Arg1); 6579 if (SecArg.isInvalid()) 6580 return true; 6581 QualType SecArgType = SecArg.get()->getType(); 6582 if (!SecArgType->isIntegerType()) 6583 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6584 << "second" << SecArgType << Arg1->getSourceRange(); 6585 6586 // Derive the return type from the pointer argument. 6587 TheCall->setType(FirstArgType); 6588 return false; 6589 } 6590 6591 if (BuiltinID == AArch64::BI__builtin_arm_addg) { 6592 if (checkArgCount(*this, TheCall, 2)) 6593 return true; 6594 6595 Expr *Arg0 = TheCall->getArg(0); 6596 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6597 if (FirstArg.isInvalid()) 6598 return true; 6599 QualType FirstArgType = FirstArg.get()->getType(); 6600 if (!FirstArgType->isAnyPointerType()) 6601 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6602 << "first" << FirstArgType << Arg0->getSourceRange(); 6603 TheCall->setArg(0, FirstArg.get()); 6604 6605 // Derive the return type from the pointer argument. 6606 TheCall->setType(FirstArgType); 6607 6608 // Second arg must be an constant in range [0,15] 6609 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6610 } 6611 6612 if (BuiltinID == AArch64::BI__builtin_arm_gmi) { 6613 if (checkArgCount(*this, TheCall, 2)) 6614 return true; 6615 Expr *Arg0 = TheCall->getArg(0); 6616 Expr *Arg1 = TheCall->getArg(1); 6617 6618 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6619 if (FirstArg.isInvalid()) 6620 return true; 6621 QualType FirstArgType = FirstArg.get()->getType(); 6622 if (!FirstArgType->isAnyPointerType()) 6623 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6624 << "first" << FirstArgType << Arg0->getSourceRange(); 6625 6626 QualType SecArgType = Arg1->getType(); 6627 if (!SecArgType->isIntegerType()) 6628 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer) 6629 << "second" << SecArgType << Arg1->getSourceRange(); 6630 TheCall->setType(Context.IntTy); 6631 return false; 6632 } 6633 6634 if (BuiltinID == AArch64::BI__builtin_arm_ldg || 6635 BuiltinID == AArch64::BI__builtin_arm_stg) { 6636 if (checkArgCount(*this, TheCall, 1)) 6637 return true; 6638 Expr *Arg0 = TheCall->getArg(0); 6639 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0); 6640 if (FirstArg.isInvalid()) 6641 return true; 6642 6643 QualType FirstArgType = FirstArg.get()->getType(); 6644 if (!FirstArgType->isAnyPointerType()) 6645 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer) 6646 << "first" << FirstArgType << Arg0->getSourceRange(); 6647 TheCall->setArg(0, FirstArg.get()); 6648 6649 // Derive the return type from the pointer argument. 6650 if (BuiltinID == AArch64::BI__builtin_arm_ldg) 6651 TheCall->setType(FirstArgType); 6652 return false; 6653 } 6654 6655 if (BuiltinID == AArch64::BI__builtin_arm_subp) { 6656 Expr *ArgA = TheCall->getArg(0); 6657 Expr *ArgB = TheCall->getArg(1); 6658 6659 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA); 6660 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB); 6661 6662 if (ArgExprA.isInvalid() || ArgExprB.isInvalid()) 6663 return true; 6664 6665 QualType ArgTypeA = ArgExprA.get()->getType(); 6666 QualType ArgTypeB = ArgExprB.get()->getType(); 6667 6668 auto isNull = [&] (Expr *E) -> bool { 6669 return E->isNullPointerConstant( 6670 Context, Expr::NPC_ValueDependentIsNotNull); }; 6671 6672 // argument should be either a pointer or null 6673 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA)) 6674 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6675 << "first" << ArgTypeA << ArgA->getSourceRange(); 6676 6677 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB)) 6678 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer) 6679 << "second" << ArgTypeB << ArgB->getSourceRange(); 6680 6681 // Ensure Pointee types are compatible 6682 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) && 6683 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) { 6684 QualType pointeeA = ArgTypeA->getPointeeType(); 6685 QualType pointeeB = ArgTypeB->getPointeeType(); 6686 if (!Context.typesAreCompatible( 6687 Context.getCanonicalType(pointeeA).getUnqualifiedType(), 6688 Context.getCanonicalType(pointeeB).getUnqualifiedType())) { 6689 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible) 6690 << ArgTypeA << ArgTypeB << ArgA->getSourceRange() 6691 << ArgB->getSourceRange(); 6692 } 6693 } 6694 6695 // at least one argument should be pointer type 6696 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType()) 6697 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer) 6698 << ArgTypeA << ArgTypeB << ArgA->getSourceRange(); 6699 6700 if (isNull(ArgA)) // adopt type of the other pointer 6701 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer); 6702 6703 if (isNull(ArgB)) 6704 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer); 6705 6706 TheCall->setArg(0, ArgExprA.get()); 6707 TheCall->setArg(1, ArgExprB.get()); 6708 TheCall->setType(Context.LongLongTy); 6709 return false; 6710 } 6711 assert(false && "Unhandled ARM MTE intrinsic"); 6712 return true; 6713 } 6714 6715 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr 6716 /// TheCall is an ARM/AArch64 special register string literal. 6717 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall, 6718 int ArgNum, unsigned ExpectedFieldNum, 6719 bool AllowName) { 6720 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 || 6721 BuiltinID == ARM::BI__builtin_arm_wsr64 || 6722 BuiltinID == ARM::BI__builtin_arm_rsr || 6723 BuiltinID == ARM::BI__builtin_arm_rsrp || 6724 BuiltinID == ARM::BI__builtin_arm_wsr || 6725 BuiltinID == ARM::BI__builtin_arm_wsrp; 6726 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 || 6727 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 6728 BuiltinID == AArch64::BI__builtin_arm_rsr || 6729 BuiltinID == AArch64::BI__builtin_arm_rsrp || 6730 BuiltinID == AArch64::BI__builtin_arm_wsr || 6731 BuiltinID == AArch64::BI__builtin_arm_wsrp; 6732 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."); 6733 6734 // We can't check the value of a dependent argument. 6735 Expr *Arg = TheCall->getArg(ArgNum); 6736 if (Arg->isTypeDependent() || Arg->isValueDependent()) 6737 return false; 6738 6739 // Check if the argument is a string literal. 6740 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) 6741 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal) 6742 << Arg->getSourceRange(); 6743 6744 // Check the type of special register given. 6745 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString(); 6746 SmallVector<StringRef, 6> Fields; 6747 Reg.split(Fields, ":"); 6748 6749 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1)) 6750 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6751 << Arg->getSourceRange(); 6752 6753 // If the string is the name of a register then we cannot check that it is 6754 // valid here but if the string is of one the forms described in ACLE then we 6755 // can check that the supplied fields are integers and within the valid 6756 // ranges. 6757 if (Fields.size() > 1) { 6758 bool FiveFields = Fields.size() == 5; 6759 6760 bool ValidString = true; 6761 if (IsARMBuiltin) { 6762 ValidString &= Fields[0].startswith_lower("cp") || 6763 Fields[0].startswith_lower("p"); 6764 if (ValidString) 6765 Fields[0] = 6766 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1); 6767 6768 ValidString &= Fields[2].startswith_lower("c"); 6769 if (ValidString) 6770 Fields[2] = Fields[2].drop_front(1); 6771 6772 if (FiveFields) { 6773 ValidString &= Fields[3].startswith_lower("c"); 6774 if (ValidString) 6775 Fields[3] = Fields[3].drop_front(1); 6776 } 6777 } 6778 6779 SmallVector<int, 5> Ranges; 6780 if (FiveFields) 6781 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7}); 6782 else 6783 Ranges.append({15, 7, 15}); 6784 6785 for (unsigned i=0; i<Fields.size(); ++i) { 6786 int IntField; 6787 ValidString &= !Fields[i].getAsInteger(10, IntField); 6788 ValidString &= (IntField >= 0 && IntField <= Ranges[i]); 6789 } 6790 6791 if (!ValidString) 6792 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg) 6793 << Arg->getSourceRange(); 6794 } else if (IsAArch64Builtin && Fields.size() == 1) { 6795 // If the register name is one of those that appear in the condition below 6796 // and the special register builtin being used is one of the write builtins, 6797 // then we require that the argument provided for writing to the register 6798 // is an integer constant expression. This is because it will be lowered to 6799 // an MSR (immediate) instruction, so we need to know the immediate at 6800 // compile time. 6801 if (TheCall->getNumArgs() != 2) 6802 return false; 6803 6804 std::string RegLower = Reg.lower(); 6805 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" && 6806 RegLower != "pan" && RegLower != "uao") 6807 return false; 6808 6809 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15); 6810 } 6811 6812 return false; 6813 } 6814 6815 /// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity. 6816 /// Emit an error and return true on failure; return false on success. 6817 /// TypeStr is a string containing the type descriptor of the value returned by 6818 /// the builtin and the descriptors of the expected type of the arguments. 6819 bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) { 6820 6821 assert((TypeStr[0] != '\0') && 6822 "Invalid types in PPC MMA builtin declaration"); 6823 6824 unsigned Mask = 0; 6825 unsigned ArgNum = 0; 6826 6827 // The first type in TypeStr is the type of the value returned by the 6828 // builtin. So we first read that type and change the type of TheCall. 6829 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6830 TheCall->setType(type); 6831 6832 while (*TypeStr != '\0') { 6833 Mask = 0; 6834 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6835 if (ArgNum >= TheCall->getNumArgs()) { 6836 ArgNum++; 6837 break; 6838 } 6839 6840 Expr *Arg = TheCall->getArg(ArgNum); 6841 QualType ArgType = Arg->getType(); 6842 6843 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) || 6844 (!ExpectedType->isVoidPointerType() && 6845 ArgType.getCanonicalType() != ExpectedType)) 6846 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible) 6847 << ArgType << ExpectedType << 1 << 0 << 0; 6848 6849 // If the value of the Mask is not 0, we have a constraint in the size of 6850 // the integer argument so here we ensure the argument is a constant that 6851 // is in the valid range. 6852 if (Mask != 0 && 6853 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true)) 6854 return true; 6855 6856 ArgNum++; 6857 } 6858 6859 // In case we exited early from the previous loop, there are other types to 6860 // read from TypeStr. So we need to read them all to ensure we have the right 6861 // number of arguments in TheCall and if it is not the case, to display a 6862 // better error message. 6863 while (*TypeStr != '\0') { 6864 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask); 6865 ArgNum++; 6866 } 6867 if (checkArgCount(*this, TheCall, ArgNum)) 6868 return true; 6869 6870 return false; 6871 } 6872 6873 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val). 6874 /// This checks that the target supports __builtin_longjmp and 6875 /// that val is a constant 1. 6876 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) { 6877 if (!Context.getTargetInfo().hasSjLjLowering()) 6878 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported) 6879 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6880 6881 Expr *Arg = TheCall->getArg(1); 6882 llvm::APSInt Result; 6883 6884 // TODO: This is less than ideal. Overload this to take a value. 6885 if (SemaBuiltinConstantArg(TheCall, 1, Result)) 6886 return true; 6887 6888 if (Result != 1) 6889 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val) 6890 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc()); 6891 6892 return false; 6893 } 6894 6895 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]). 6896 /// This checks that the target supports __builtin_setjmp. 6897 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) { 6898 if (!Context.getTargetInfo().hasSjLjLowering()) 6899 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported) 6900 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc()); 6901 return false; 6902 } 6903 6904 namespace { 6905 6906 class UncoveredArgHandler { 6907 enum { Unknown = -1, AllCovered = -2 }; 6908 6909 signed FirstUncoveredArg = Unknown; 6910 SmallVector<const Expr *, 4> DiagnosticExprs; 6911 6912 public: 6913 UncoveredArgHandler() = default; 6914 6915 bool hasUncoveredArg() const { 6916 return (FirstUncoveredArg >= 0); 6917 } 6918 6919 unsigned getUncoveredArg() const { 6920 assert(hasUncoveredArg() && "no uncovered argument"); 6921 return FirstUncoveredArg; 6922 } 6923 6924 void setAllCovered() { 6925 // A string has been found with all arguments covered, so clear out 6926 // the diagnostics. 6927 DiagnosticExprs.clear(); 6928 FirstUncoveredArg = AllCovered; 6929 } 6930 6931 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) { 6932 assert(NewFirstUncoveredArg >= 0 && "Outside range"); 6933 6934 // Don't update if a previous string covers all arguments. 6935 if (FirstUncoveredArg == AllCovered) 6936 return; 6937 6938 // UncoveredArgHandler tracks the highest uncovered argument index 6939 // and with it all the strings that match this index. 6940 if (NewFirstUncoveredArg == FirstUncoveredArg) 6941 DiagnosticExprs.push_back(StrExpr); 6942 else if (NewFirstUncoveredArg > FirstUncoveredArg) { 6943 DiagnosticExprs.clear(); 6944 DiagnosticExprs.push_back(StrExpr); 6945 FirstUncoveredArg = NewFirstUncoveredArg; 6946 } 6947 } 6948 6949 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr); 6950 }; 6951 6952 enum StringLiteralCheckType { 6953 SLCT_NotALiteral, 6954 SLCT_UncheckedLiteral, 6955 SLCT_CheckedLiteral 6956 }; 6957 6958 } // namespace 6959 6960 static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend, 6961 BinaryOperatorKind BinOpKind, 6962 bool AddendIsRight) { 6963 unsigned BitWidth = Offset.getBitWidth(); 6964 unsigned AddendBitWidth = Addend.getBitWidth(); 6965 // There might be negative interim results. 6966 if (Addend.isUnsigned()) { 6967 Addend = Addend.zext(++AddendBitWidth); 6968 Addend.setIsSigned(true); 6969 } 6970 // Adjust the bit width of the APSInts. 6971 if (AddendBitWidth > BitWidth) { 6972 Offset = Offset.sext(AddendBitWidth); 6973 BitWidth = AddendBitWidth; 6974 } else if (BitWidth > AddendBitWidth) { 6975 Addend = Addend.sext(BitWidth); 6976 } 6977 6978 bool Ov = false; 6979 llvm::APSInt ResOffset = Offset; 6980 if (BinOpKind == BO_Add) 6981 ResOffset = Offset.sadd_ov(Addend, Ov); 6982 else { 6983 assert(AddendIsRight && BinOpKind == BO_Sub && 6984 "operator must be add or sub with addend on the right"); 6985 ResOffset = Offset.ssub_ov(Addend, Ov); 6986 } 6987 6988 // We add an offset to a pointer here so we should support an offset as big as 6989 // possible. 6990 if (Ov) { 6991 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 && 6992 "index (intermediate) result too big"); 6993 Offset = Offset.sext(2 * BitWidth); 6994 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight); 6995 return; 6996 } 6997 6998 Offset = ResOffset; 6999 } 7000 7001 namespace { 7002 7003 // This is a wrapper class around StringLiteral to support offsetted string 7004 // literals as format strings. It takes the offset into account when returning 7005 // the string and its length or the source locations to display notes correctly. 7006 class FormatStringLiteral { 7007 const StringLiteral *FExpr; 7008 int64_t Offset; 7009 7010 public: 7011 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0) 7012 : FExpr(fexpr), Offset(Offset) {} 7013 7014 StringRef getString() const { 7015 return FExpr->getString().drop_front(Offset); 7016 } 7017 7018 unsigned getByteLength() const { 7019 return FExpr->getByteLength() - getCharByteWidth() * Offset; 7020 } 7021 7022 unsigned getLength() const { return FExpr->getLength() - Offset; } 7023 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); } 7024 7025 StringLiteral::StringKind getKind() const { return FExpr->getKind(); } 7026 7027 QualType getType() const { return FExpr->getType(); } 7028 7029 bool isAscii() const { return FExpr->isAscii(); } 7030 bool isWide() const { return FExpr->isWide(); } 7031 bool isUTF8() const { return FExpr->isUTF8(); } 7032 bool isUTF16() const { return FExpr->isUTF16(); } 7033 bool isUTF32() const { return FExpr->isUTF32(); } 7034 bool isPascal() const { return FExpr->isPascal(); } 7035 7036 SourceLocation getLocationOfByte( 7037 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features, 7038 const TargetInfo &Target, unsigned *StartToken = nullptr, 7039 unsigned *StartTokenByteOffset = nullptr) const { 7040 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target, 7041 StartToken, StartTokenByteOffset); 7042 } 7043 7044 SourceLocation getBeginLoc() const LLVM_READONLY { 7045 return FExpr->getBeginLoc().getLocWithOffset(Offset); 7046 } 7047 7048 SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); } 7049 }; 7050 7051 } // namespace 7052 7053 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 7054 const Expr *OrigFormatExpr, 7055 ArrayRef<const Expr *> Args, 7056 bool HasVAListArg, unsigned format_idx, 7057 unsigned firstDataArg, 7058 Sema::FormatStringType Type, 7059 bool inFunctionCall, 7060 Sema::VariadicCallType CallType, 7061 llvm::SmallBitVector &CheckedVarArgs, 7062 UncoveredArgHandler &UncoveredArg, 7063 bool IgnoreStringsWithoutSpecifiers); 7064 7065 // Determine if an expression is a string literal or constant string. 7066 // If this function returns false on the arguments to a function expecting a 7067 // format string, we will usually need to emit a warning. 7068 // True string literals are then checked by CheckFormatString. 7069 static StringLiteralCheckType 7070 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args, 7071 bool HasVAListArg, unsigned format_idx, 7072 unsigned firstDataArg, Sema::FormatStringType Type, 7073 Sema::VariadicCallType CallType, bool InFunctionCall, 7074 llvm::SmallBitVector &CheckedVarArgs, 7075 UncoveredArgHandler &UncoveredArg, 7076 llvm::APSInt Offset, 7077 bool IgnoreStringsWithoutSpecifiers = false) { 7078 if (S.isConstantEvaluated()) 7079 return SLCT_NotALiteral; 7080 tryAgain: 7081 assert(Offset.isSigned() && "invalid offset"); 7082 7083 if (E->isTypeDependent() || E->isValueDependent()) 7084 return SLCT_NotALiteral; 7085 7086 E = E->IgnoreParenCasts(); 7087 7088 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) 7089 // Technically -Wformat-nonliteral does not warn about this case. 7090 // The behavior of printf and friends in this case is implementation 7091 // dependent. Ideally if the format string cannot be null then 7092 // it should have a 'nonnull' attribute in the function prototype. 7093 return SLCT_UncheckedLiteral; 7094 7095 switch (E->getStmtClass()) { 7096 case Stmt::BinaryConditionalOperatorClass: 7097 case Stmt::ConditionalOperatorClass: { 7098 // The expression is a literal if both sub-expressions were, and it was 7099 // completely checked only if both sub-expressions were checked. 7100 const AbstractConditionalOperator *C = 7101 cast<AbstractConditionalOperator>(E); 7102 7103 // Determine whether it is necessary to check both sub-expressions, for 7104 // example, because the condition expression is a constant that can be 7105 // evaluated at compile time. 7106 bool CheckLeft = true, CheckRight = true; 7107 7108 bool Cond; 7109 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(), 7110 S.isConstantEvaluated())) { 7111 if (Cond) 7112 CheckRight = false; 7113 else 7114 CheckLeft = false; 7115 } 7116 7117 // We need to maintain the offsets for the right and the left hand side 7118 // separately to check if every possible indexed expression is a valid 7119 // string literal. They might have different offsets for different string 7120 // literals in the end. 7121 StringLiteralCheckType Left; 7122 if (!CheckLeft) 7123 Left = SLCT_UncheckedLiteral; 7124 else { 7125 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, 7126 HasVAListArg, format_idx, firstDataArg, 7127 Type, CallType, InFunctionCall, 7128 CheckedVarArgs, UncoveredArg, Offset, 7129 IgnoreStringsWithoutSpecifiers); 7130 if (Left == SLCT_NotALiteral || !CheckRight) { 7131 return Left; 7132 } 7133 } 7134 7135 StringLiteralCheckType Right = checkFormatStringExpr( 7136 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg, 7137 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7138 IgnoreStringsWithoutSpecifiers); 7139 7140 return (CheckLeft && Left < Right) ? Left : Right; 7141 } 7142 7143 case Stmt::ImplicitCastExprClass: 7144 E = cast<ImplicitCastExpr>(E)->getSubExpr(); 7145 goto tryAgain; 7146 7147 case Stmt::OpaqueValueExprClass: 7148 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) { 7149 E = src; 7150 goto tryAgain; 7151 } 7152 return SLCT_NotALiteral; 7153 7154 case Stmt::PredefinedExprClass: 7155 // While __func__, etc., are technically not string literals, they 7156 // cannot contain format specifiers and thus are not a security 7157 // liability. 7158 return SLCT_UncheckedLiteral; 7159 7160 case Stmt::DeclRefExprClass: { 7161 const DeclRefExpr *DR = cast<DeclRefExpr>(E); 7162 7163 // As an exception, do not flag errors for variables binding to 7164 // const string literals. 7165 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) { 7166 bool isConstant = false; 7167 QualType T = DR->getType(); 7168 7169 if (const ArrayType *AT = S.Context.getAsArrayType(T)) { 7170 isConstant = AT->getElementType().isConstant(S.Context); 7171 } else if (const PointerType *PT = T->getAs<PointerType>()) { 7172 isConstant = T.isConstant(S.Context) && 7173 PT->getPointeeType().isConstant(S.Context); 7174 } else if (T->isObjCObjectPointerType()) { 7175 // In ObjC, there is usually no "const ObjectPointer" type, 7176 // so don't check if the pointee type is constant. 7177 isConstant = T.isConstant(S.Context); 7178 } 7179 7180 if (isConstant) { 7181 if (const Expr *Init = VD->getAnyInitializer()) { 7182 // Look through initializers like const char c[] = { "foo" } 7183 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) { 7184 if (InitList->isStringLiteralInit()) 7185 Init = InitList->getInit(0)->IgnoreParenImpCasts(); 7186 } 7187 return checkFormatStringExpr(S, Init, Args, 7188 HasVAListArg, format_idx, 7189 firstDataArg, Type, CallType, 7190 /*InFunctionCall*/ false, CheckedVarArgs, 7191 UncoveredArg, Offset); 7192 } 7193 } 7194 7195 // For vprintf* functions (i.e., HasVAListArg==true), we add a 7196 // special check to see if the format string is a function parameter 7197 // of the function calling the printf function. If the function 7198 // has an attribute indicating it is a printf-like function, then we 7199 // should suppress warnings concerning non-literals being used in a call 7200 // to a vprintf function. For example: 7201 // 7202 // void 7203 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){ 7204 // va_list ap; 7205 // va_start(ap, fmt); 7206 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt". 7207 // ... 7208 // } 7209 if (HasVAListArg) { 7210 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) { 7211 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) { 7212 int PVIndex = PV->getFunctionScopeIndex() + 1; 7213 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) { 7214 // adjust for implicit parameter 7215 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND)) 7216 if (MD->isInstance()) 7217 ++PVIndex; 7218 // We also check if the formats are compatible. 7219 // We can't pass a 'scanf' string to a 'printf' function. 7220 if (PVIndex == PVFormat->getFormatIdx() && 7221 Type == S.GetFormatStringType(PVFormat)) 7222 return SLCT_UncheckedLiteral; 7223 } 7224 } 7225 } 7226 } 7227 } 7228 7229 return SLCT_NotALiteral; 7230 } 7231 7232 case Stmt::CallExprClass: 7233 case Stmt::CXXMemberCallExprClass: { 7234 const CallExpr *CE = cast<CallExpr>(E); 7235 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) { 7236 bool IsFirst = true; 7237 StringLiteralCheckType CommonResult; 7238 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) { 7239 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex()); 7240 StringLiteralCheckType Result = checkFormatStringExpr( 7241 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7242 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7243 IgnoreStringsWithoutSpecifiers); 7244 if (IsFirst) { 7245 CommonResult = Result; 7246 IsFirst = false; 7247 } 7248 } 7249 if (!IsFirst) 7250 return CommonResult; 7251 7252 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) { 7253 unsigned BuiltinID = FD->getBuiltinID(); 7254 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString || 7255 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) { 7256 const Expr *Arg = CE->getArg(0); 7257 return checkFormatStringExpr(S, Arg, Args, 7258 HasVAListArg, format_idx, 7259 firstDataArg, Type, CallType, 7260 InFunctionCall, CheckedVarArgs, 7261 UncoveredArg, Offset, 7262 IgnoreStringsWithoutSpecifiers); 7263 } 7264 } 7265 } 7266 7267 return SLCT_NotALiteral; 7268 } 7269 case Stmt::ObjCMessageExprClass: { 7270 const auto *ME = cast<ObjCMessageExpr>(E); 7271 if (const auto *MD = ME->getMethodDecl()) { 7272 if (const auto *FA = MD->getAttr<FormatArgAttr>()) { 7273 // As a special case heuristic, if we're using the method -[NSBundle 7274 // localizedStringForKey:value:table:], ignore any key strings that lack 7275 // format specifiers. The idea is that if the key doesn't have any 7276 // format specifiers then its probably just a key to map to the 7277 // localized strings. If it does have format specifiers though, then its 7278 // likely that the text of the key is the format string in the 7279 // programmer's language, and should be checked. 7280 const ObjCInterfaceDecl *IFace; 7281 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) && 7282 IFace->getIdentifier()->isStr("NSBundle") && 7283 MD->getSelector().isKeywordSelector( 7284 {"localizedStringForKey", "value", "table"})) { 7285 IgnoreStringsWithoutSpecifiers = true; 7286 } 7287 7288 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex()); 7289 return checkFormatStringExpr( 7290 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type, 7291 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset, 7292 IgnoreStringsWithoutSpecifiers); 7293 } 7294 } 7295 7296 return SLCT_NotALiteral; 7297 } 7298 case Stmt::ObjCStringLiteralClass: 7299 case Stmt::StringLiteralClass: { 7300 const StringLiteral *StrE = nullptr; 7301 7302 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E)) 7303 StrE = ObjCFExpr->getString(); 7304 else 7305 StrE = cast<StringLiteral>(E); 7306 7307 if (StrE) { 7308 if (Offset.isNegative() || Offset > StrE->getLength()) { 7309 // TODO: It would be better to have an explicit warning for out of 7310 // bounds literals. 7311 return SLCT_NotALiteral; 7312 } 7313 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue()); 7314 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx, 7315 firstDataArg, Type, InFunctionCall, CallType, 7316 CheckedVarArgs, UncoveredArg, 7317 IgnoreStringsWithoutSpecifiers); 7318 return SLCT_CheckedLiteral; 7319 } 7320 7321 return SLCT_NotALiteral; 7322 } 7323 case Stmt::BinaryOperatorClass: { 7324 const BinaryOperator *BinOp = cast<BinaryOperator>(E); 7325 7326 // A string literal + an int offset is still a string literal. 7327 if (BinOp->isAdditiveOp()) { 7328 Expr::EvalResult LResult, RResult; 7329 7330 bool LIsInt = BinOp->getLHS()->EvaluateAsInt( 7331 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7332 bool RIsInt = BinOp->getRHS()->EvaluateAsInt( 7333 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated()); 7334 7335 if (LIsInt != RIsInt) { 7336 BinaryOperatorKind BinOpKind = BinOp->getOpcode(); 7337 7338 if (LIsInt) { 7339 if (BinOpKind == BO_Add) { 7340 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt); 7341 E = BinOp->getRHS(); 7342 goto tryAgain; 7343 } 7344 } else { 7345 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt); 7346 E = BinOp->getLHS(); 7347 goto tryAgain; 7348 } 7349 } 7350 } 7351 7352 return SLCT_NotALiteral; 7353 } 7354 case Stmt::UnaryOperatorClass: { 7355 const UnaryOperator *UnaOp = cast<UnaryOperator>(E); 7356 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr()); 7357 if (UnaOp->getOpcode() == UO_AddrOf && ASE) { 7358 Expr::EvalResult IndexResult; 7359 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context, 7360 Expr::SE_NoSideEffects, 7361 S.isConstantEvaluated())) { 7362 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add, 7363 /*RHS is int*/ true); 7364 E = ASE->getBase(); 7365 goto tryAgain; 7366 } 7367 } 7368 7369 return SLCT_NotALiteral; 7370 } 7371 7372 default: 7373 return SLCT_NotALiteral; 7374 } 7375 } 7376 7377 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) { 7378 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName()) 7379 .Case("scanf", FST_Scanf) 7380 .Cases("printf", "printf0", FST_Printf) 7381 .Cases("NSString", "CFString", FST_NSString) 7382 .Case("strftime", FST_Strftime) 7383 .Case("strfmon", FST_Strfmon) 7384 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf) 7385 .Case("freebsd_kprintf", FST_FreeBSDKPrintf) 7386 .Case("os_trace", FST_OSLog) 7387 .Case("os_log", FST_OSLog) 7388 .Default(FST_Unknown); 7389 } 7390 7391 /// CheckFormatArguments - Check calls to printf and scanf (and similar 7392 /// functions) for correct use of format strings. 7393 /// Returns true if a format string has been fully checked. 7394 bool Sema::CheckFormatArguments(const FormatAttr *Format, 7395 ArrayRef<const Expr *> Args, 7396 bool IsCXXMember, 7397 VariadicCallType CallType, 7398 SourceLocation Loc, SourceRange Range, 7399 llvm::SmallBitVector &CheckedVarArgs) { 7400 FormatStringInfo FSI; 7401 if (getFormatStringInfo(Format, IsCXXMember, &FSI)) 7402 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx, 7403 FSI.FirstDataArg, GetFormatStringType(Format), 7404 CallType, Loc, Range, CheckedVarArgs); 7405 return false; 7406 } 7407 7408 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args, 7409 bool HasVAListArg, unsigned format_idx, 7410 unsigned firstDataArg, FormatStringType Type, 7411 VariadicCallType CallType, 7412 SourceLocation Loc, SourceRange Range, 7413 llvm::SmallBitVector &CheckedVarArgs) { 7414 // CHECK: printf/scanf-like function is called with no format string. 7415 if (format_idx >= Args.size()) { 7416 Diag(Loc, diag::warn_missing_format_string) << Range; 7417 return false; 7418 } 7419 7420 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts(); 7421 7422 // CHECK: format string is not a string literal. 7423 // 7424 // Dynamically generated format strings are difficult to 7425 // automatically vet at compile time. Requiring that format strings 7426 // are string literals: (1) permits the checking of format strings by 7427 // the compiler and thereby (2) can practically remove the source of 7428 // many format string exploits. 7429 7430 // Format string can be either ObjC string (e.g. @"%d") or 7431 // C string (e.g. "%d") 7432 // ObjC string uses the same format specifiers as C string, so we can use 7433 // the same format string checking logic for both ObjC and C strings. 7434 UncoveredArgHandler UncoveredArg; 7435 StringLiteralCheckType CT = 7436 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg, 7437 format_idx, firstDataArg, Type, CallType, 7438 /*IsFunctionCall*/ true, CheckedVarArgs, 7439 UncoveredArg, 7440 /*no string offset*/ llvm::APSInt(64, false) = 0); 7441 7442 // Generate a diagnostic where an uncovered argument is detected. 7443 if (UncoveredArg.hasUncoveredArg()) { 7444 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg; 7445 assert(ArgIdx < Args.size() && "ArgIdx outside bounds"); 7446 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]); 7447 } 7448 7449 if (CT != SLCT_NotALiteral) 7450 // Literal format string found, check done! 7451 return CT == SLCT_CheckedLiteral; 7452 7453 // Strftime is particular as it always uses a single 'time' argument, 7454 // so it is safe to pass a non-literal string. 7455 if (Type == FST_Strftime) 7456 return false; 7457 7458 // Do not emit diag when the string param is a macro expansion and the 7459 // format is either NSString or CFString. This is a hack to prevent 7460 // diag when using the NSLocalizedString and CFCopyLocalizedString macros 7461 // which are usually used in place of NS and CF string literals. 7462 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc(); 7463 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc)) 7464 return false; 7465 7466 // If there are no arguments specified, warn with -Wformat-security, otherwise 7467 // warn only with -Wformat-nonliteral. 7468 if (Args.size() == firstDataArg) { 7469 Diag(FormatLoc, diag::warn_format_nonliteral_noargs) 7470 << OrigFormatExpr->getSourceRange(); 7471 switch (Type) { 7472 default: 7473 break; 7474 case FST_Kprintf: 7475 case FST_FreeBSDKPrintf: 7476 case FST_Printf: 7477 Diag(FormatLoc, diag::note_format_security_fixit) 7478 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", "); 7479 break; 7480 case FST_NSString: 7481 Diag(FormatLoc, diag::note_format_security_fixit) 7482 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", "); 7483 break; 7484 } 7485 } else { 7486 Diag(FormatLoc, diag::warn_format_nonliteral) 7487 << OrigFormatExpr->getSourceRange(); 7488 } 7489 return false; 7490 } 7491 7492 namespace { 7493 7494 class CheckFormatHandler : public analyze_format_string::FormatStringHandler { 7495 protected: 7496 Sema &S; 7497 const FormatStringLiteral *FExpr; 7498 const Expr *OrigFormatExpr; 7499 const Sema::FormatStringType FSType; 7500 const unsigned FirstDataArg; 7501 const unsigned NumDataArgs; 7502 const char *Beg; // Start of format string. 7503 const bool HasVAListArg; 7504 ArrayRef<const Expr *> Args; 7505 unsigned FormatIdx; 7506 llvm::SmallBitVector CoveredArgs; 7507 bool usesPositionalArgs = false; 7508 bool atFirstArg = true; 7509 bool inFunctionCall; 7510 Sema::VariadicCallType CallType; 7511 llvm::SmallBitVector &CheckedVarArgs; 7512 UncoveredArgHandler &UncoveredArg; 7513 7514 public: 7515 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr, 7516 const Expr *origFormatExpr, 7517 const Sema::FormatStringType type, unsigned firstDataArg, 7518 unsigned numDataArgs, const char *beg, bool hasVAListArg, 7519 ArrayRef<const Expr *> Args, unsigned formatIdx, 7520 bool inFunctionCall, Sema::VariadicCallType callType, 7521 llvm::SmallBitVector &CheckedVarArgs, 7522 UncoveredArgHandler &UncoveredArg) 7523 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type), 7524 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg), 7525 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx), 7526 inFunctionCall(inFunctionCall), CallType(callType), 7527 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) { 7528 CoveredArgs.resize(numDataArgs); 7529 CoveredArgs.reset(); 7530 } 7531 7532 void DoneProcessing(); 7533 7534 void HandleIncompleteSpecifier(const char *startSpecifier, 7535 unsigned specifierLen) override; 7536 7537 void HandleInvalidLengthModifier( 7538 const analyze_format_string::FormatSpecifier &FS, 7539 const analyze_format_string::ConversionSpecifier &CS, 7540 const char *startSpecifier, unsigned specifierLen, 7541 unsigned DiagID); 7542 7543 void HandleNonStandardLengthModifier( 7544 const analyze_format_string::FormatSpecifier &FS, 7545 const char *startSpecifier, unsigned specifierLen); 7546 7547 void HandleNonStandardConversionSpecifier( 7548 const analyze_format_string::ConversionSpecifier &CS, 7549 const char *startSpecifier, unsigned specifierLen); 7550 7551 void HandlePosition(const char *startPos, unsigned posLen) override; 7552 7553 void HandleInvalidPosition(const char *startSpecifier, 7554 unsigned specifierLen, 7555 analyze_format_string::PositionContext p) override; 7556 7557 void HandleZeroPosition(const char *startPos, unsigned posLen) override; 7558 7559 void HandleNullChar(const char *nullCharacter) override; 7560 7561 template <typename Range> 7562 static void 7563 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr, 7564 const PartialDiagnostic &PDiag, SourceLocation StringLoc, 7565 bool IsStringLocation, Range StringRange, 7566 ArrayRef<FixItHint> Fixit = None); 7567 7568 protected: 7569 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc, 7570 const char *startSpec, 7571 unsigned specifierLen, 7572 const char *csStart, unsigned csLen); 7573 7574 void HandlePositionalNonpositionalArgs(SourceLocation Loc, 7575 const char *startSpec, 7576 unsigned specifierLen); 7577 7578 SourceRange getFormatStringRange(); 7579 CharSourceRange getSpecifierRange(const char *startSpecifier, 7580 unsigned specifierLen); 7581 SourceLocation getLocationOfByte(const char *x); 7582 7583 const Expr *getDataArg(unsigned i) const; 7584 7585 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS, 7586 const analyze_format_string::ConversionSpecifier &CS, 7587 const char *startSpecifier, unsigned specifierLen, 7588 unsigned argIndex); 7589 7590 template <typename Range> 7591 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc, 7592 bool IsStringLocation, Range StringRange, 7593 ArrayRef<FixItHint> Fixit = None); 7594 }; 7595 7596 } // namespace 7597 7598 SourceRange CheckFormatHandler::getFormatStringRange() { 7599 return OrigFormatExpr->getSourceRange(); 7600 } 7601 7602 CharSourceRange CheckFormatHandler:: 7603 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) { 7604 SourceLocation Start = getLocationOfByte(startSpecifier); 7605 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1); 7606 7607 // Advance the end SourceLocation by one due to half-open ranges. 7608 End = End.getLocWithOffset(1); 7609 7610 return CharSourceRange::getCharRange(Start, End); 7611 } 7612 7613 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) { 7614 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(), 7615 S.getLangOpts(), S.Context.getTargetInfo()); 7616 } 7617 7618 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier, 7619 unsigned specifierLen){ 7620 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier), 7621 getLocationOfByte(startSpecifier), 7622 /*IsStringLocation*/true, 7623 getSpecifierRange(startSpecifier, specifierLen)); 7624 } 7625 7626 void CheckFormatHandler::HandleInvalidLengthModifier( 7627 const analyze_format_string::FormatSpecifier &FS, 7628 const analyze_format_string::ConversionSpecifier &CS, 7629 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) { 7630 using namespace analyze_format_string; 7631 7632 const LengthModifier &LM = FS.getLengthModifier(); 7633 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7634 7635 // See if we know how to fix this length modifier. 7636 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7637 if (FixedLM) { 7638 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7639 getLocationOfByte(LM.getStart()), 7640 /*IsStringLocation*/true, 7641 getSpecifierRange(startSpecifier, specifierLen)); 7642 7643 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7644 << FixedLM->toString() 7645 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7646 7647 } else { 7648 FixItHint Hint; 7649 if (DiagID == diag::warn_format_nonsensical_length) 7650 Hint = FixItHint::CreateRemoval(LMRange); 7651 7652 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(), 7653 getLocationOfByte(LM.getStart()), 7654 /*IsStringLocation*/true, 7655 getSpecifierRange(startSpecifier, specifierLen), 7656 Hint); 7657 } 7658 } 7659 7660 void CheckFormatHandler::HandleNonStandardLengthModifier( 7661 const analyze_format_string::FormatSpecifier &FS, 7662 const char *startSpecifier, unsigned specifierLen) { 7663 using namespace analyze_format_string; 7664 7665 const LengthModifier &LM = FS.getLengthModifier(); 7666 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength()); 7667 7668 // See if we know how to fix this length modifier. 7669 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier(); 7670 if (FixedLM) { 7671 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7672 << LM.toString() << 0, 7673 getLocationOfByte(LM.getStart()), 7674 /*IsStringLocation*/true, 7675 getSpecifierRange(startSpecifier, specifierLen)); 7676 7677 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier) 7678 << FixedLM->toString() 7679 << FixItHint::CreateReplacement(LMRange, FixedLM->toString()); 7680 7681 } else { 7682 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7683 << LM.toString() << 0, 7684 getLocationOfByte(LM.getStart()), 7685 /*IsStringLocation*/true, 7686 getSpecifierRange(startSpecifier, specifierLen)); 7687 } 7688 } 7689 7690 void CheckFormatHandler::HandleNonStandardConversionSpecifier( 7691 const analyze_format_string::ConversionSpecifier &CS, 7692 const char *startSpecifier, unsigned specifierLen) { 7693 using namespace analyze_format_string; 7694 7695 // See if we know how to fix this conversion specifier. 7696 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier(); 7697 if (FixedCS) { 7698 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7699 << CS.toString() << /*conversion specifier*/1, 7700 getLocationOfByte(CS.getStart()), 7701 /*IsStringLocation*/true, 7702 getSpecifierRange(startSpecifier, specifierLen)); 7703 7704 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength()); 7705 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier) 7706 << FixedCS->toString() 7707 << FixItHint::CreateReplacement(CSRange, FixedCS->toString()); 7708 } else { 7709 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard) 7710 << CS.toString() << /*conversion specifier*/1, 7711 getLocationOfByte(CS.getStart()), 7712 /*IsStringLocation*/true, 7713 getSpecifierRange(startSpecifier, specifierLen)); 7714 } 7715 } 7716 7717 void CheckFormatHandler::HandlePosition(const char *startPos, 7718 unsigned posLen) { 7719 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg), 7720 getLocationOfByte(startPos), 7721 /*IsStringLocation*/true, 7722 getSpecifierRange(startPos, posLen)); 7723 } 7724 7725 void 7726 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen, 7727 analyze_format_string::PositionContext p) { 7728 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier) 7729 << (unsigned) p, 7730 getLocationOfByte(startPos), /*IsStringLocation*/true, 7731 getSpecifierRange(startPos, posLen)); 7732 } 7733 7734 void CheckFormatHandler::HandleZeroPosition(const char *startPos, 7735 unsigned posLen) { 7736 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier), 7737 getLocationOfByte(startPos), 7738 /*IsStringLocation*/true, 7739 getSpecifierRange(startPos, posLen)); 7740 } 7741 7742 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) { 7743 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) { 7744 // The presence of a null character is likely an error. 7745 EmitFormatDiagnostic( 7746 S.PDiag(diag::warn_printf_format_string_contains_null_char), 7747 getLocationOfByte(nullCharacter), /*IsStringLocation*/true, 7748 getFormatStringRange()); 7749 } 7750 } 7751 7752 // Note that this may return NULL if there was an error parsing or building 7753 // one of the argument expressions. 7754 const Expr *CheckFormatHandler::getDataArg(unsigned i) const { 7755 return Args[FirstDataArg + i]; 7756 } 7757 7758 void CheckFormatHandler::DoneProcessing() { 7759 // Does the number of data arguments exceed the number of 7760 // format conversions in the format string? 7761 if (!HasVAListArg) { 7762 // Find any arguments that weren't covered. 7763 CoveredArgs.flip(); 7764 signed notCoveredArg = CoveredArgs.find_first(); 7765 if (notCoveredArg >= 0) { 7766 assert((unsigned)notCoveredArg < NumDataArgs); 7767 UncoveredArg.Update(notCoveredArg, OrigFormatExpr); 7768 } else { 7769 UncoveredArg.setAllCovered(); 7770 } 7771 } 7772 } 7773 7774 void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall, 7775 const Expr *ArgExpr) { 7776 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 && 7777 "Invalid state"); 7778 7779 if (!ArgExpr) 7780 return; 7781 7782 SourceLocation Loc = ArgExpr->getBeginLoc(); 7783 7784 if (S.getSourceManager().isInSystemMacro(Loc)) 7785 return; 7786 7787 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used); 7788 for (auto E : DiagnosticExprs) 7789 PDiag << E->getSourceRange(); 7790 7791 CheckFormatHandler::EmitFormatDiagnostic( 7792 S, IsFunctionCall, DiagnosticExprs[0], 7793 PDiag, Loc, /*IsStringLocation*/false, 7794 DiagnosticExprs[0]->getSourceRange()); 7795 } 7796 7797 bool 7798 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex, 7799 SourceLocation Loc, 7800 const char *startSpec, 7801 unsigned specifierLen, 7802 const char *csStart, 7803 unsigned csLen) { 7804 bool keepGoing = true; 7805 if (argIndex < NumDataArgs) { 7806 // Consider the argument coverered, even though the specifier doesn't 7807 // make sense. 7808 CoveredArgs.set(argIndex); 7809 } 7810 else { 7811 // If argIndex exceeds the number of data arguments we 7812 // don't issue a warning because that is just a cascade of warnings (and 7813 // they may have intended '%%' anyway). We don't want to continue processing 7814 // the format string after this point, however, as we will like just get 7815 // gibberish when trying to match arguments. 7816 keepGoing = false; 7817 } 7818 7819 StringRef Specifier(csStart, csLen); 7820 7821 // If the specifier in non-printable, it could be the first byte of a UTF-8 7822 // sequence. In that case, print the UTF-8 code point. If not, print the byte 7823 // hex value. 7824 std::string CodePointStr; 7825 if (!llvm::sys::locale::isPrint(*csStart)) { 7826 llvm::UTF32 CodePoint; 7827 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart); 7828 const llvm::UTF8 *E = 7829 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen); 7830 llvm::ConversionResult Result = 7831 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion); 7832 7833 if (Result != llvm::conversionOK) { 7834 unsigned char FirstChar = *csStart; 7835 CodePoint = (llvm::UTF32)FirstChar; 7836 } 7837 7838 llvm::raw_string_ostream OS(CodePointStr); 7839 if (CodePoint < 256) 7840 OS << "\\x" << llvm::format("%02x", CodePoint); 7841 else if (CodePoint <= 0xFFFF) 7842 OS << "\\u" << llvm::format("%04x", CodePoint); 7843 else 7844 OS << "\\U" << llvm::format("%08x", CodePoint); 7845 OS.flush(); 7846 Specifier = CodePointStr; 7847 } 7848 7849 EmitFormatDiagnostic( 7850 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc, 7851 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen)); 7852 7853 return keepGoing; 7854 } 7855 7856 void 7857 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc, 7858 const char *startSpec, 7859 unsigned specifierLen) { 7860 EmitFormatDiagnostic( 7861 S.PDiag(diag::warn_format_mix_positional_nonpositional_args), 7862 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen)); 7863 } 7864 7865 bool 7866 CheckFormatHandler::CheckNumArgs( 7867 const analyze_format_string::FormatSpecifier &FS, 7868 const analyze_format_string::ConversionSpecifier &CS, 7869 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) { 7870 7871 if (argIndex >= NumDataArgs) { 7872 PartialDiagnostic PDiag = FS.usesPositionalArg() 7873 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args) 7874 << (argIndex+1) << NumDataArgs) 7875 : S.PDiag(diag::warn_printf_insufficient_data_args); 7876 EmitFormatDiagnostic( 7877 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true, 7878 getSpecifierRange(startSpecifier, specifierLen)); 7879 7880 // Since more arguments than conversion tokens are given, by extension 7881 // all arguments are covered, so mark this as so. 7882 UncoveredArg.setAllCovered(); 7883 return false; 7884 } 7885 return true; 7886 } 7887 7888 template<typename Range> 7889 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag, 7890 SourceLocation Loc, 7891 bool IsStringLocation, 7892 Range StringRange, 7893 ArrayRef<FixItHint> FixIt) { 7894 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag, 7895 Loc, IsStringLocation, StringRange, FixIt); 7896 } 7897 7898 /// If the format string is not within the function call, emit a note 7899 /// so that the function call and string are in diagnostic messages. 7900 /// 7901 /// \param InFunctionCall if true, the format string is within the function 7902 /// call and only one diagnostic message will be produced. Otherwise, an 7903 /// extra note will be emitted pointing to location of the format string. 7904 /// 7905 /// \param ArgumentExpr the expression that is passed as the format string 7906 /// argument in the function call. Used for getting locations when two 7907 /// diagnostics are emitted. 7908 /// 7909 /// \param PDiag the callee should already have provided any strings for the 7910 /// diagnostic message. This function only adds locations and fixits 7911 /// to diagnostics. 7912 /// 7913 /// \param Loc primary location for diagnostic. If two diagnostics are 7914 /// required, one will be at Loc and a new SourceLocation will be created for 7915 /// the other one. 7916 /// 7917 /// \param IsStringLocation if true, Loc points to the format string should be 7918 /// used for the note. Otherwise, Loc points to the argument list and will 7919 /// be used with PDiag. 7920 /// 7921 /// \param StringRange some or all of the string to highlight. This is 7922 /// templated so it can accept either a CharSourceRange or a SourceRange. 7923 /// 7924 /// \param FixIt optional fix it hint for the format string. 7925 template <typename Range> 7926 void CheckFormatHandler::EmitFormatDiagnostic( 7927 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr, 7928 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation, 7929 Range StringRange, ArrayRef<FixItHint> FixIt) { 7930 if (InFunctionCall) { 7931 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag); 7932 D << StringRange; 7933 D << FixIt; 7934 } else { 7935 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag) 7936 << ArgumentExpr->getSourceRange(); 7937 7938 const Sema::SemaDiagnosticBuilder &Note = 7939 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(), 7940 diag::note_format_string_defined); 7941 7942 Note << StringRange; 7943 Note << FixIt; 7944 } 7945 } 7946 7947 //===--- CHECK: Printf format string checking ------------------------------===// 7948 7949 namespace { 7950 7951 class CheckPrintfHandler : public CheckFormatHandler { 7952 public: 7953 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr, 7954 const Expr *origFormatExpr, 7955 const Sema::FormatStringType type, unsigned firstDataArg, 7956 unsigned numDataArgs, bool isObjC, const char *beg, 7957 bool hasVAListArg, ArrayRef<const Expr *> Args, 7958 unsigned formatIdx, bool inFunctionCall, 7959 Sema::VariadicCallType CallType, 7960 llvm::SmallBitVector &CheckedVarArgs, 7961 UncoveredArgHandler &UncoveredArg) 7962 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 7963 numDataArgs, beg, hasVAListArg, Args, formatIdx, 7964 inFunctionCall, CallType, CheckedVarArgs, 7965 UncoveredArg) {} 7966 7967 bool isObjCContext() const { return FSType == Sema::FST_NSString; } 7968 7969 /// Returns true if '%@' specifiers are allowed in the format string. 7970 bool allowsObjCArg() const { 7971 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog || 7972 FSType == Sema::FST_OSTrace; 7973 } 7974 7975 bool HandleInvalidPrintfConversionSpecifier( 7976 const analyze_printf::PrintfSpecifier &FS, 7977 const char *startSpecifier, 7978 unsigned specifierLen) override; 7979 7980 void handleInvalidMaskType(StringRef MaskType) override; 7981 7982 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS, 7983 const char *startSpecifier, 7984 unsigned specifierLen) override; 7985 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 7986 const char *StartSpecifier, 7987 unsigned SpecifierLen, 7988 const Expr *E); 7989 7990 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k, 7991 const char *startSpecifier, unsigned specifierLen); 7992 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS, 7993 const analyze_printf::OptionalAmount &Amt, 7994 unsigned type, 7995 const char *startSpecifier, unsigned specifierLen); 7996 void HandleFlag(const analyze_printf::PrintfSpecifier &FS, 7997 const analyze_printf::OptionalFlag &flag, 7998 const char *startSpecifier, unsigned specifierLen); 7999 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS, 8000 const analyze_printf::OptionalFlag &ignoredFlag, 8001 const analyze_printf::OptionalFlag &flag, 8002 const char *startSpecifier, unsigned specifierLen); 8003 bool checkForCStrMembers(const analyze_printf::ArgType &AT, 8004 const Expr *E); 8005 8006 void HandleEmptyObjCModifierFlag(const char *startFlag, 8007 unsigned flagLen) override; 8008 8009 void HandleInvalidObjCModifierFlag(const char *startFlag, 8010 unsigned flagLen) override; 8011 8012 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart, 8013 const char *flagsEnd, 8014 const char *conversionPosition) 8015 override; 8016 }; 8017 8018 } // namespace 8019 8020 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier( 8021 const analyze_printf::PrintfSpecifier &FS, 8022 const char *startSpecifier, 8023 unsigned specifierLen) { 8024 const analyze_printf::PrintfConversionSpecifier &CS = 8025 FS.getConversionSpecifier(); 8026 8027 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8028 getLocationOfByte(CS.getStart()), 8029 startSpecifier, specifierLen, 8030 CS.getStart(), CS.getLength()); 8031 } 8032 8033 void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) { 8034 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size); 8035 } 8036 8037 bool CheckPrintfHandler::HandleAmount( 8038 const analyze_format_string::OptionalAmount &Amt, 8039 unsigned k, const char *startSpecifier, 8040 unsigned specifierLen) { 8041 if (Amt.hasDataArgument()) { 8042 if (!HasVAListArg) { 8043 unsigned argIndex = Amt.getArgIndex(); 8044 if (argIndex >= NumDataArgs) { 8045 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg) 8046 << k, 8047 getLocationOfByte(Amt.getStart()), 8048 /*IsStringLocation*/true, 8049 getSpecifierRange(startSpecifier, specifierLen)); 8050 // Don't do any more checking. We will just emit 8051 // spurious errors. 8052 return false; 8053 } 8054 8055 // Type check the data argument. It should be an 'int'. 8056 // Although not in conformance with C99, we also allow the argument to be 8057 // an 'unsigned int' as that is a reasonably safe case. GCC also 8058 // doesn't emit a warning for that case. 8059 CoveredArgs.set(argIndex); 8060 const Expr *Arg = getDataArg(argIndex); 8061 if (!Arg) 8062 return false; 8063 8064 QualType T = Arg->getType(); 8065 8066 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context); 8067 assert(AT.isValid()); 8068 8069 if (!AT.matchesType(S.Context, T)) { 8070 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type) 8071 << k << AT.getRepresentativeTypeName(S.Context) 8072 << T << Arg->getSourceRange(), 8073 getLocationOfByte(Amt.getStart()), 8074 /*IsStringLocation*/true, 8075 getSpecifierRange(startSpecifier, specifierLen)); 8076 // Don't do any more checking. We will just emit 8077 // spurious errors. 8078 return false; 8079 } 8080 } 8081 } 8082 return true; 8083 } 8084 8085 void CheckPrintfHandler::HandleInvalidAmount( 8086 const analyze_printf::PrintfSpecifier &FS, 8087 const analyze_printf::OptionalAmount &Amt, 8088 unsigned type, 8089 const char *startSpecifier, 8090 unsigned specifierLen) { 8091 const analyze_printf::PrintfConversionSpecifier &CS = 8092 FS.getConversionSpecifier(); 8093 8094 FixItHint fixit = 8095 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant 8096 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(), 8097 Amt.getConstantLength())) 8098 : FixItHint(); 8099 8100 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount) 8101 << type << CS.toString(), 8102 getLocationOfByte(Amt.getStart()), 8103 /*IsStringLocation*/true, 8104 getSpecifierRange(startSpecifier, specifierLen), 8105 fixit); 8106 } 8107 8108 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS, 8109 const analyze_printf::OptionalFlag &flag, 8110 const char *startSpecifier, 8111 unsigned specifierLen) { 8112 // Warn about pointless flag with a fixit removal. 8113 const analyze_printf::PrintfConversionSpecifier &CS = 8114 FS.getConversionSpecifier(); 8115 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag) 8116 << flag.toString() << CS.toString(), 8117 getLocationOfByte(flag.getPosition()), 8118 /*IsStringLocation*/true, 8119 getSpecifierRange(startSpecifier, specifierLen), 8120 FixItHint::CreateRemoval( 8121 getSpecifierRange(flag.getPosition(), 1))); 8122 } 8123 8124 void CheckPrintfHandler::HandleIgnoredFlag( 8125 const analyze_printf::PrintfSpecifier &FS, 8126 const analyze_printf::OptionalFlag &ignoredFlag, 8127 const analyze_printf::OptionalFlag &flag, 8128 const char *startSpecifier, 8129 unsigned specifierLen) { 8130 // Warn about ignored flag with a fixit removal. 8131 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag) 8132 << ignoredFlag.toString() << flag.toString(), 8133 getLocationOfByte(ignoredFlag.getPosition()), 8134 /*IsStringLocation*/true, 8135 getSpecifierRange(startSpecifier, specifierLen), 8136 FixItHint::CreateRemoval( 8137 getSpecifierRange(ignoredFlag.getPosition(), 1))); 8138 } 8139 8140 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag, 8141 unsigned flagLen) { 8142 // Warn about an empty flag. 8143 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag), 8144 getLocationOfByte(startFlag), 8145 /*IsStringLocation*/true, 8146 getSpecifierRange(startFlag, flagLen)); 8147 } 8148 8149 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag, 8150 unsigned flagLen) { 8151 // Warn about an invalid flag. 8152 auto Range = getSpecifierRange(startFlag, flagLen); 8153 StringRef flag(startFlag, flagLen); 8154 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag, 8155 getLocationOfByte(startFlag), 8156 /*IsStringLocation*/true, 8157 Range, FixItHint::CreateRemoval(Range)); 8158 } 8159 8160 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion( 8161 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) { 8162 // Warn about using '[...]' without a '@' conversion. 8163 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1); 8164 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion; 8165 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1), 8166 getLocationOfByte(conversionPosition), 8167 /*IsStringLocation*/true, 8168 Range, FixItHint::CreateRemoval(Range)); 8169 } 8170 8171 // Determines if the specified is a C++ class or struct containing 8172 // a member with the specified name and kind (e.g. a CXXMethodDecl named 8173 // "c_str()"). 8174 template<typename MemberKind> 8175 static llvm::SmallPtrSet<MemberKind*, 1> 8176 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) { 8177 const RecordType *RT = Ty->getAs<RecordType>(); 8178 llvm::SmallPtrSet<MemberKind*, 1> Results; 8179 8180 if (!RT) 8181 return Results; 8182 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 8183 if (!RD || !RD->getDefinition()) 8184 return Results; 8185 8186 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(), 8187 Sema::LookupMemberName); 8188 R.suppressDiagnostics(); 8189 8190 // We just need to include all members of the right kind turned up by the 8191 // filter, at this point. 8192 if (S.LookupQualifiedName(R, RT->getDecl())) 8193 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { 8194 NamedDecl *decl = (*I)->getUnderlyingDecl(); 8195 if (MemberKind *FK = dyn_cast<MemberKind>(decl)) 8196 Results.insert(FK); 8197 } 8198 return Results; 8199 } 8200 8201 /// Check if we could call '.c_str()' on an object. 8202 /// 8203 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't 8204 /// allow the call, or if it would be ambiguous). 8205 bool Sema::hasCStrMethod(const Expr *E) { 8206 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8207 8208 MethodSet Results = 8209 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType()); 8210 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8211 MI != ME; ++MI) 8212 if ((*MI)->getMinRequiredArguments() == 0) 8213 return true; 8214 return false; 8215 } 8216 8217 // Check if a (w)string was passed when a (w)char* was needed, and offer a 8218 // better diagnostic if so. AT is assumed to be valid. 8219 // Returns true when a c_str() conversion method is found. 8220 bool CheckPrintfHandler::checkForCStrMembers( 8221 const analyze_printf::ArgType &AT, const Expr *E) { 8222 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>; 8223 8224 MethodSet Results = 8225 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType()); 8226 8227 for (MethodSet::iterator MI = Results.begin(), ME = Results.end(); 8228 MI != ME; ++MI) { 8229 const CXXMethodDecl *Method = *MI; 8230 if (Method->getMinRequiredArguments() == 0 && 8231 AT.matchesType(S.Context, Method->getReturnType())) { 8232 // FIXME: Suggest parens if the expression needs them. 8233 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc()); 8234 S.Diag(E->getBeginLoc(), diag::note_printf_c_str) 8235 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()"); 8236 return true; 8237 } 8238 } 8239 8240 return false; 8241 } 8242 8243 bool 8244 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier 8245 &FS, 8246 const char *startSpecifier, 8247 unsigned specifierLen) { 8248 using namespace analyze_format_string; 8249 using namespace analyze_printf; 8250 8251 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier(); 8252 8253 if (FS.consumesDataArgument()) { 8254 if (atFirstArg) { 8255 atFirstArg = false; 8256 usesPositionalArgs = FS.usesPositionalArg(); 8257 } 8258 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8259 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8260 startSpecifier, specifierLen); 8261 return false; 8262 } 8263 } 8264 8265 // First check if the field width, precision, and conversion specifier 8266 // have matching data arguments. 8267 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0, 8268 startSpecifier, specifierLen)) { 8269 return false; 8270 } 8271 8272 if (!HandleAmount(FS.getPrecision(), /* precision */ 1, 8273 startSpecifier, specifierLen)) { 8274 return false; 8275 } 8276 8277 if (!CS.consumesDataArgument()) { 8278 // FIXME: Technically specifying a precision or field width here 8279 // makes no sense. Worth issuing a warning at some point. 8280 return true; 8281 } 8282 8283 // Consume the argument. 8284 unsigned argIndex = FS.getArgIndex(); 8285 if (argIndex < NumDataArgs) { 8286 // The check to see if the argIndex is valid will come later. 8287 // We set the bit here because we may exit early from this 8288 // function if we encounter some other error. 8289 CoveredArgs.set(argIndex); 8290 } 8291 8292 // FreeBSD kernel extensions. 8293 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg || 8294 CS.getKind() == ConversionSpecifier::FreeBSDDArg) { 8295 // We need at least two arguments. 8296 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1)) 8297 return false; 8298 8299 // Claim the second argument. 8300 CoveredArgs.set(argIndex + 1); 8301 8302 // Type check the first argument (int for %b, pointer for %D) 8303 const Expr *Ex = getDataArg(argIndex); 8304 const analyze_printf::ArgType &AT = 8305 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ? 8306 ArgType(S.Context.IntTy) : ArgType::CPointerTy; 8307 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType())) 8308 EmitFormatDiagnostic( 8309 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8310 << AT.getRepresentativeTypeName(S.Context) << Ex->getType() 8311 << false << Ex->getSourceRange(), 8312 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8313 getSpecifierRange(startSpecifier, specifierLen)); 8314 8315 // Type check the second argument (char * for both %b and %D) 8316 Ex = getDataArg(argIndex + 1); 8317 const analyze_printf::ArgType &AT2 = ArgType::CStrTy; 8318 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType())) 8319 EmitFormatDiagnostic( 8320 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8321 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType() 8322 << false << Ex->getSourceRange(), 8323 Ex->getBeginLoc(), /*IsStringLocation*/ false, 8324 getSpecifierRange(startSpecifier, specifierLen)); 8325 8326 return true; 8327 } 8328 8329 // Check for using an Objective-C specific conversion specifier 8330 // in a non-ObjC literal. 8331 if (!allowsObjCArg() && CS.isObjCArg()) { 8332 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8333 specifierLen); 8334 } 8335 8336 // %P can only be used with os_log. 8337 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) { 8338 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8339 specifierLen); 8340 } 8341 8342 // %n is not allowed with os_log. 8343 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) { 8344 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg), 8345 getLocationOfByte(CS.getStart()), 8346 /*IsStringLocation*/ false, 8347 getSpecifierRange(startSpecifier, specifierLen)); 8348 8349 return true; 8350 } 8351 8352 // Only scalars are allowed for os_trace. 8353 if (FSType == Sema::FST_OSTrace && 8354 (CS.getKind() == ConversionSpecifier::PArg || 8355 CS.getKind() == ConversionSpecifier::sArg || 8356 CS.getKind() == ConversionSpecifier::ObjCObjArg)) { 8357 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier, 8358 specifierLen); 8359 } 8360 8361 // Check for use of public/private annotation outside of os_log(). 8362 if (FSType != Sema::FST_OSLog) { 8363 if (FS.isPublic().isSet()) { 8364 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8365 << "public", 8366 getLocationOfByte(FS.isPublic().getPosition()), 8367 /*IsStringLocation*/ false, 8368 getSpecifierRange(startSpecifier, specifierLen)); 8369 } 8370 if (FS.isPrivate().isSet()) { 8371 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation) 8372 << "private", 8373 getLocationOfByte(FS.isPrivate().getPosition()), 8374 /*IsStringLocation*/ false, 8375 getSpecifierRange(startSpecifier, specifierLen)); 8376 } 8377 } 8378 8379 // Check for invalid use of field width 8380 if (!FS.hasValidFieldWidth()) { 8381 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0, 8382 startSpecifier, specifierLen); 8383 } 8384 8385 // Check for invalid use of precision 8386 if (!FS.hasValidPrecision()) { 8387 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1, 8388 startSpecifier, specifierLen); 8389 } 8390 8391 // Precision is mandatory for %P specifier. 8392 if (CS.getKind() == ConversionSpecifier::PArg && 8393 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) { 8394 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision), 8395 getLocationOfByte(startSpecifier), 8396 /*IsStringLocation*/ false, 8397 getSpecifierRange(startSpecifier, specifierLen)); 8398 } 8399 8400 // Check each flag does not conflict with any other component. 8401 if (!FS.hasValidThousandsGroupingPrefix()) 8402 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen); 8403 if (!FS.hasValidLeadingZeros()) 8404 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen); 8405 if (!FS.hasValidPlusPrefix()) 8406 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen); 8407 if (!FS.hasValidSpacePrefix()) 8408 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen); 8409 if (!FS.hasValidAlternativeForm()) 8410 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen); 8411 if (!FS.hasValidLeftJustified()) 8412 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen); 8413 8414 // Check that flags are not ignored by another flag 8415 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+' 8416 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(), 8417 startSpecifier, specifierLen); 8418 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-' 8419 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(), 8420 startSpecifier, specifierLen); 8421 8422 // Check the length modifier is valid with the given conversion specifier. 8423 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8424 S.getLangOpts())) 8425 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8426 diag::warn_format_nonsensical_length); 8427 else if (!FS.hasStandardLengthModifier()) 8428 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8429 else if (!FS.hasStandardLengthConversionCombination()) 8430 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8431 diag::warn_format_non_standard_conversion_spec); 8432 8433 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8434 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8435 8436 // The remaining checks depend on the data arguments. 8437 if (HasVAListArg) 8438 return true; 8439 8440 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8441 return false; 8442 8443 const Expr *Arg = getDataArg(argIndex); 8444 if (!Arg) 8445 return true; 8446 8447 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg); 8448 } 8449 8450 static bool requiresParensToAddCast(const Expr *E) { 8451 // FIXME: We should have a general way to reason about operator 8452 // precedence and whether parens are actually needed here. 8453 // Take care of a few common cases where they aren't. 8454 const Expr *Inside = E->IgnoreImpCasts(); 8455 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside)) 8456 Inside = POE->getSyntacticForm()->IgnoreImpCasts(); 8457 8458 switch (Inside->getStmtClass()) { 8459 case Stmt::ArraySubscriptExprClass: 8460 case Stmt::CallExprClass: 8461 case Stmt::CharacterLiteralClass: 8462 case Stmt::CXXBoolLiteralExprClass: 8463 case Stmt::DeclRefExprClass: 8464 case Stmt::FloatingLiteralClass: 8465 case Stmt::IntegerLiteralClass: 8466 case Stmt::MemberExprClass: 8467 case Stmt::ObjCArrayLiteralClass: 8468 case Stmt::ObjCBoolLiteralExprClass: 8469 case Stmt::ObjCBoxedExprClass: 8470 case Stmt::ObjCDictionaryLiteralClass: 8471 case Stmt::ObjCEncodeExprClass: 8472 case Stmt::ObjCIvarRefExprClass: 8473 case Stmt::ObjCMessageExprClass: 8474 case Stmt::ObjCPropertyRefExprClass: 8475 case Stmt::ObjCStringLiteralClass: 8476 case Stmt::ObjCSubscriptRefExprClass: 8477 case Stmt::ParenExprClass: 8478 case Stmt::StringLiteralClass: 8479 case Stmt::UnaryOperatorClass: 8480 return false; 8481 default: 8482 return true; 8483 } 8484 } 8485 8486 static std::pair<QualType, StringRef> 8487 shouldNotPrintDirectly(const ASTContext &Context, 8488 QualType IntendedTy, 8489 const Expr *E) { 8490 // Use a 'while' to peel off layers of typedefs. 8491 QualType TyTy = IntendedTy; 8492 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) { 8493 StringRef Name = UserTy->getDecl()->getName(); 8494 QualType CastTy = llvm::StringSwitch<QualType>(Name) 8495 .Case("CFIndex", Context.getNSIntegerType()) 8496 .Case("NSInteger", Context.getNSIntegerType()) 8497 .Case("NSUInteger", Context.getNSUIntegerType()) 8498 .Case("SInt32", Context.IntTy) 8499 .Case("UInt32", Context.UnsignedIntTy) 8500 .Default(QualType()); 8501 8502 if (!CastTy.isNull()) 8503 return std::make_pair(CastTy, Name); 8504 8505 TyTy = UserTy->desugar(); 8506 } 8507 8508 // Strip parens if necessary. 8509 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) 8510 return shouldNotPrintDirectly(Context, 8511 PE->getSubExpr()->getType(), 8512 PE->getSubExpr()); 8513 8514 // If this is a conditional expression, then its result type is constructed 8515 // via usual arithmetic conversions and thus there might be no necessary 8516 // typedef sugar there. Recurse to operands to check for NSInteger & 8517 // Co. usage condition. 8518 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 8519 QualType TrueTy, FalseTy; 8520 StringRef TrueName, FalseName; 8521 8522 std::tie(TrueTy, TrueName) = 8523 shouldNotPrintDirectly(Context, 8524 CO->getTrueExpr()->getType(), 8525 CO->getTrueExpr()); 8526 std::tie(FalseTy, FalseName) = 8527 shouldNotPrintDirectly(Context, 8528 CO->getFalseExpr()->getType(), 8529 CO->getFalseExpr()); 8530 8531 if (TrueTy == FalseTy) 8532 return std::make_pair(TrueTy, TrueName); 8533 else if (TrueTy.isNull()) 8534 return std::make_pair(FalseTy, FalseName); 8535 else if (FalseTy.isNull()) 8536 return std::make_pair(TrueTy, TrueName); 8537 } 8538 8539 return std::make_pair(QualType(), StringRef()); 8540 } 8541 8542 /// Return true if \p ICE is an implicit argument promotion of an arithmetic 8543 /// type. Bit-field 'promotions' from a higher ranked type to a lower ranked 8544 /// type do not count. 8545 static bool 8546 isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) { 8547 QualType From = ICE->getSubExpr()->getType(); 8548 QualType To = ICE->getType(); 8549 // It's an integer promotion if the destination type is the promoted 8550 // source type. 8551 if (ICE->getCastKind() == CK_IntegralCast && 8552 From->isPromotableIntegerType() && 8553 S.Context.getPromotedIntegerType(From) == To) 8554 return true; 8555 // Look through vector types, since we do default argument promotion for 8556 // those in OpenCL. 8557 if (const auto *VecTy = From->getAs<ExtVectorType>()) 8558 From = VecTy->getElementType(); 8559 if (const auto *VecTy = To->getAs<ExtVectorType>()) 8560 To = VecTy->getElementType(); 8561 // It's a floating promotion if the source type is a lower rank. 8562 return ICE->getCastKind() == CK_FloatingCast && 8563 S.Context.getFloatingTypeOrder(From, To) < 0; 8564 } 8565 8566 bool 8567 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS, 8568 const char *StartSpecifier, 8569 unsigned SpecifierLen, 8570 const Expr *E) { 8571 using namespace analyze_format_string; 8572 using namespace analyze_printf; 8573 8574 // Now type check the data expression that matches the 8575 // format specifier. 8576 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext()); 8577 if (!AT.isValid()) 8578 return true; 8579 8580 QualType ExprTy = E->getType(); 8581 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) { 8582 ExprTy = TET->getUnderlyingExpr()->getType(); 8583 } 8584 8585 // Diagnose attempts to print a boolean value as a character. Unlike other 8586 // -Wformat diagnostics, this is fine from a type perspective, but it still 8587 // doesn't make sense. 8588 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg && 8589 E->isKnownToHaveBooleanValue()) { 8590 const CharSourceRange &CSR = 8591 getSpecifierRange(StartSpecifier, SpecifierLen); 8592 SmallString<4> FSString; 8593 llvm::raw_svector_ostream os(FSString); 8594 FS.toString(os); 8595 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character) 8596 << FSString, 8597 E->getExprLoc(), false, CSR); 8598 return true; 8599 } 8600 8601 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy); 8602 if (Match == analyze_printf::ArgType::Match) 8603 return true; 8604 8605 // Look through argument promotions for our error message's reported type. 8606 // This includes the integral and floating promotions, but excludes array 8607 // and function pointer decay (seeing that an argument intended to be a 8608 // string has type 'char [6]' is probably more confusing than 'char *') and 8609 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type). 8610 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 8611 if (isArithmeticArgumentPromotion(S, ICE)) { 8612 E = ICE->getSubExpr(); 8613 ExprTy = E->getType(); 8614 8615 // Check if we didn't match because of an implicit cast from a 'char' 8616 // or 'short' to an 'int'. This is done because printf is a varargs 8617 // function. 8618 if (ICE->getType() == S.Context.IntTy || 8619 ICE->getType() == S.Context.UnsignedIntTy) { 8620 // All further checking is done on the subexpression 8621 const analyze_printf::ArgType::MatchKind ImplicitMatch = 8622 AT.matchesType(S.Context, ExprTy); 8623 if (ImplicitMatch == analyze_printf::ArgType::Match) 8624 return true; 8625 if (ImplicitMatch == ArgType::NoMatchPedantic || 8626 ImplicitMatch == ArgType::NoMatchTypeConfusion) 8627 Match = ImplicitMatch; 8628 } 8629 } 8630 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) { 8631 // Special case for 'a', which has type 'int' in C. 8632 // Note, however, that we do /not/ want to treat multibyte constants like 8633 // 'MooV' as characters! This form is deprecated but still exists. 8634 if (ExprTy == S.Context.IntTy) 8635 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) 8636 ExprTy = S.Context.CharTy; 8637 } 8638 8639 // Look through enums to their underlying type. 8640 bool IsEnum = false; 8641 if (auto EnumTy = ExprTy->getAs<EnumType>()) { 8642 ExprTy = EnumTy->getDecl()->getIntegerType(); 8643 IsEnum = true; 8644 } 8645 8646 // %C in an Objective-C context prints a unichar, not a wchar_t. 8647 // If the argument is an integer of some kind, believe the %C and suggest 8648 // a cast instead of changing the conversion specifier. 8649 QualType IntendedTy = ExprTy; 8650 if (isObjCContext() && 8651 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) { 8652 if (ExprTy->isIntegralOrUnscopedEnumerationType() && 8653 !ExprTy->isCharType()) { 8654 // 'unichar' is defined as a typedef of unsigned short, but we should 8655 // prefer using the typedef if it is visible. 8656 IntendedTy = S.Context.UnsignedShortTy; 8657 8658 // While we are here, check if the value is an IntegerLiteral that happens 8659 // to be within the valid range. 8660 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) { 8661 const llvm::APInt &V = IL->getValue(); 8662 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy)) 8663 return true; 8664 } 8665 8666 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(), 8667 Sema::LookupOrdinaryName); 8668 if (S.LookupName(Result, S.getCurScope())) { 8669 NamedDecl *ND = Result.getFoundDecl(); 8670 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND)) 8671 if (TD->getUnderlyingType() == IntendedTy) 8672 IntendedTy = S.Context.getTypedefType(TD); 8673 } 8674 } 8675 } 8676 8677 // Special-case some of Darwin's platform-independence types by suggesting 8678 // casts to primitive types that are known to be large enough. 8679 bool ShouldNotPrintDirectly = false; StringRef CastTyName; 8680 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { 8681 QualType CastTy; 8682 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E); 8683 if (!CastTy.isNull()) { 8684 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int 8685 // (long in ASTContext). Only complain to pedants. 8686 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") && 8687 (AT.isSizeT() || AT.isPtrdiffT()) && 8688 AT.matchesType(S.Context, CastTy)) 8689 Match = ArgType::NoMatchPedantic; 8690 IntendedTy = CastTy; 8691 ShouldNotPrintDirectly = true; 8692 } 8693 } 8694 8695 // We may be able to offer a FixItHint if it is a supported type. 8696 PrintfSpecifier fixedFS = FS; 8697 bool Success = 8698 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext()); 8699 8700 if (Success) { 8701 // Get the fix string from the fixed format specifier 8702 SmallString<16> buf; 8703 llvm::raw_svector_ostream os(buf); 8704 fixedFS.toString(os); 8705 8706 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen); 8707 8708 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) { 8709 unsigned Diag; 8710 switch (Match) { 8711 case ArgType::Match: llvm_unreachable("expected non-matching"); 8712 case ArgType::NoMatchPedantic: 8713 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8714 break; 8715 case ArgType::NoMatchTypeConfusion: 8716 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8717 break; 8718 case ArgType::NoMatch: 8719 Diag = diag::warn_format_conversion_argument_type_mismatch; 8720 break; 8721 } 8722 8723 // In this case, the specifier is wrong and should be changed to match 8724 // the argument. 8725 EmitFormatDiagnostic(S.PDiag(Diag) 8726 << AT.getRepresentativeTypeName(S.Context) 8727 << IntendedTy << IsEnum << E->getSourceRange(), 8728 E->getBeginLoc(), 8729 /*IsStringLocation*/ false, SpecRange, 8730 FixItHint::CreateReplacement(SpecRange, os.str())); 8731 } else { 8732 // The canonical type for formatting this value is different from the 8733 // actual type of the expression. (This occurs, for example, with Darwin's 8734 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but 8735 // should be printed as 'long' for 64-bit compatibility.) 8736 // Rather than emitting a normal format/argument mismatch, we want to 8737 // add a cast to the recommended type (and correct the format string 8738 // if necessary). 8739 SmallString<16> CastBuf; 8740 llvm::raw_svector_ostream CastFix(CastBuf); 8741 CastFix << "("; 8742 IntendedTy.print(CastFix, S.Context.getPrintingPolicy()); 8743 CastFix << ")"; 8744 8745 SmallVector<FixItHint,4> Hints; 8746 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly) 8747 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str())); 8748 8749 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) { 8750 // If there's already a cast present, just replace it. 8751 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc()); 8752 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str())); 8753 8754 } else if (!requiresParensToAddCast(E)) { 8755 // If the expression has high enough precedence, 8756 // just write the C-style cast. 8757 Hints.push_back( 8758 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8759 } else { 8760 // Otherwise, add parens around the expression as well as the cast. 8761 CastFix << "("; 8762 Hints.push_back( 8763 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str())); 8764 8765 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc()); 8766 Hints.push_back(FixItHint::CreateInsertion(After, ")")); 8767 } 8768 8769 if (ShouldNotPrintDirectly) { 8770 // The expression has a type that should not be printed directly. 8771 // We extract the name from the typedef because we don't want to show 8772 // the underlying type in the diagnostic. 8773 StringRef Name; 8774 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy)) 8775 Name = TypedefTy->getDecl()->getName(); 8776 else 8777 Name = CastTyName; 8778 unsigned Diag = Match == ArgType::NoMatchPedantic 8779 ? diag::warn_format_argument_needs_cast_pedantic 8780 : diag::warn_format_argument_needs_cast; 8781 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum 8782 << E->getSourceRange(), 8783 E->getBeginLoc(), /*IsStringLocation=*/false, 8784 SpecRange, Hints); 8785 } else { 8786 // In this case, the expression could be printed using a different 8787 // specifier, but we've decided that the specifier is probably correct 8788 // and we should cast instead. Just use the normal warning message. 8789 EmitFormatDiagnostic( 8790 S.PDiag(diag::warn_format_conversion_argument_type_mismatch) 8791 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum 8792 << E->getSourceRange(), 8793 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints); 8794 } 8795 } 8796 } else { 8797 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier, 8798 SpecifierLen); 8799 // Since the warning for passing non-POD types to variadic functions 8800 // was deferred until now, we emit a warning for non-POD 8801 // arguments here. 8802 switch (S.isValidVarArgType(ExprTy)) { 8803 case Sema::VAK_Valid: 8804 case Sema::VAK_ValidInCXX11: { 8805 unsigned Diag; 8806 switch (Match) { 8807 case ArgType::Match: llvm_unreachable("expected non-matching"); 8808 case ArgType::NoMatchPedantic: 8809 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic; 8810 break; 8811 case ArgType::NoMatchTypeConfusion: 8812 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion; 8813 break; 8814 case ArgType::NoMatch: 8815 Diag = diag::warn_format_conversion_argument_type_mismatch; 8816 break; 8817 } 8818 8819 EmitFormatDiagnostic( 8820 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy 8821 << IsEnum << CSR << E->getSourceRange(), 8822 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8823 break; 8824 } 8825 case Sema::VAK_Undefined: 8826 case Sema::VAK_MSVCUndefined: 8827 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string) 8828 << S.getLangOpts().CPlusPlus11 << ExprTy 8829 << CallType 8830 << AT.getRepresentativeTypeName(S.Context) << CSR 8831 << E->getSourceRange(), 8832 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8833 checkForCStrMembers(AT, E); 8834 break; 8835 8836 case Sema::VAK_Invalid: 8837 if (ExprTy->isObjCObjectType()) 8838 EmitFormatDiagnostic( 8839 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format) 8840 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType 8841 << AT.getRepresentativeTypeName(S.Context) << CSR 8842 << E->getSourceRange(), 8843 E->getBeginLoc(), /*IsStringLocation*/ false, CSR); 8844 else 8845 // FIXME: If this is an initializer list, suggest removing the braces 8846 // or inserting a cast to the target type. 8847 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format) 8848 << isa<InitListExpr>(E) << ExprTy << CallType 8849 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange(); 8850 break; 8851 } 8852 8853 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && 8854 "format string specifier index out of range"); 8855 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true; 8856 } 8857 8858 return true; 8859 } 8860 8861 //===--- CHECK: Scanf format string checking ------------------------------===// 8862 8863 namespace { 8864 8865 class CheckScanfHandler : public CheckFormatHandler { 8866 public: 8867 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr, 8868 const Expr *origFormatExpr, Sema::FormatStringType type, 8869 unsigned firstDataArg, unsigned numDataArgs, 8870 const char *beg, bool hasVAListArg, 8871 ArrayRef<const Expr *> Args, unsigned formatIdx, 8872 bool inFunctionCall, Sema::VariadicCallType CallType, 8873 llvm::SmallBitVector &CheckedVarArgs, 8874 UncoveredArgHandler &UncoveredArg) 8875 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg, 8876 numDataArgs, beg, hasVAListArg, Args, formatIdx, 8877 inFunctionCall, CallType, CheckedVarArgs, 8878 UncoveredArg) {} 8879 8880 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS, 8881 const char *startSpecifier, 8882 unsigned specifierLen) override; 8883 8884 bool HandleInvalidScanfConversionSpecifier( 8885 const analyze_scanf::ScanfSpecifier &FS, 8886 const char *startSpecifier, 8887 unsigned specifierLen) override; 8888 8889 void HandleIncompleteScanList(const char *start, const char *end) override; 8890 }; 8891 8892 } // namespace 8893 8894 void CheckScanfHandler::HandleIncompleteScanList(const char *start, 8895 const char *end) { 8896 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete), 8897 getLocationOfByte(end), /*IsStringLocation*/true, 8898 getSpecifierRange(start, end - start)); 8899 } 8900 8901 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier( 8902 const analyze_scanf::ScanfSpecifier &FS, 8903 const char *startSpecifier, 8904 unsigned specifierLen) { 8905 const analyze_scanf::ScanfConversionSpecifier &CS = 8906 FS.getConversionSpecifier(); 8907 8908 return HandleInvalidConversionSpecifier(FS.getArgIndex(), 8909 getLocationOfByte(CS.getStart()), 8910 startSpecifier, specifierLen, 8911 CS.getStart(), CS.getLength()); 8912 } 8913 8914 bool CheckScanfHandler::HandleScanfSpecifier( 8915 const analyze_scanf::ScanfSpecifier &FS, 8916 const char *startSpecifier, 8917 unsigned specifierLen) { 8918 using namespace analyze_scanf; 8919 using namespace analyze_format_string; 8920 8921 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier(); 8922 8923 // Handle case where '%' and '*' don't consume an argument. These shouldn't 8924 // be used to decide if we are using positional arguments consistently. 8925 if (FS.consumesDataArgument()) { 8926 if (atFirstArg) { 8927 atFirstArg = false; 8928 usesPositionalArgs = FS.usesPositionalArg(); 8929 } 8930 else if (usesPositionalArgs != FS.usesPositionalArg()) { 8931 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()), 8932 startSpecifier, specifierLen); 8933 return false; 8934 } 8935 } 8936 8937 // Check if the field with is non-zero. 8938 const OptionalAmount &Amt = FS.getFieldWidth(); 8939 if (Amt.getHowSpecified() == OptionalAmount::Constant) { 8940 if (Amt.getConstantAmount() == 0) { 8941 const CharSourceRange &R = getSpecifierRange(Amt.getStart(), 8942 Amt.getConstantLength()); 8943 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width), 8944 getLocationOfByte(Amt.getStart()), 8945 /*IsStringLocation*/true, R, 8946 FixItHint::CreateRemoval(R)); 8947 } 8948 } 8949 8950 if (!FS.consumesDataArgument()) { 8951 // FIXME: Technically specifying a precision or field width here 8952 // makes no sense. Worth issuing a warning at some point. 8953 return true; 8954 } 8955 8956 // Consume the argument. 8957 unsigned argIndex = FS.getArgIndex(); 8958 if (argIndex < NumDataArgs) { 8959 // The check to see if the argIndex is valid will come later. 8960 // We set the bit here because we may exit early from this 8961 // function if we encounter some other error. 8962 CoveredArgs.set(argIndex); 8963 } 8964 8965 // Check the length modifier is valid with the given conversion specifier. 8966 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(), 8967 S.getLangOpts())) 8968 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8969 diag::warn_format_nonsensical_length); 8970 else if (!FS.hasStandardLengthModifier()) 8971 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen); 8972 else if (!FS.hasStandardLengthConversionCombination()) 8973 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen, 8974 diag::warn_format_non_standard_conversion_spec); 8975 8976 if (!FS.hasStandardConversionSpecifier(S.getLangOpts())) 8977 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen); 8978 8979 // The remaining checks depend on the data arguments. 8980 if (HasVAListArg) 8981 return true; 8982 8983 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex)) 8984 return false; 8985 8986 // Check that the argument type matches the format specifier. 8987 const Expr *Ex = getDataArg(argIndex); 8988 if (!Ex) 8989 return true; 8990 8991 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context); 8992 8993 if (!AT.isValid()) { 8994 return true; 8995 } 8996 8997 analyze_format_string::ArgType::MatchKind Match = 8998 AT.matchesType(S.Context, Ex->getType()); 8999 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic; 9000 if (Match == analyze_format_string::ArgType::Match) 9001 return true; 9002 9003 ScanfSpecifier fixedFS = FS; 9004 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(), 9005 S.getLangOpts(), S.Context); 9006 9007 unsigned Diag = 9008 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic 9009 : diag::warn_format_conversion_argument_type_mismatch; 9010 9011 if (Success) { 9012 // Get the fix string from the fixed format specifier. 9013 SmallString<128> buf; 9014 llvm::raw_svector_ostream os(buf); 9015 fixedFS.toString(os); 9016 9017 EmitFormatDiagnostic( 9018 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) 9019 << Ex->getType() << false << Ex->getSourceRange(), 9020 Ex->getBeginLoc(), 9021 /*IsStringLocation*/ false, 9022 getSpecifierRange(startSpecifier, specifierLen), 9023 FixItHint::CreateReplacement( 9024 getSpecifierRange(startSpecifier, specifierLen), os.str())); 9025 } else { 9026 EmitFormatDiagnostic(S.PDiag(Diag) 9027 << AT.getRepresentativeTypeName(S.Context) 9028 << Ex->getType() << false << Ex->getSourceRange(), 9029 Ex->getBeginLoc(), 9030 /*IsStringLocation*/ false, 9031 getSpecifierRange(startSpecifier, specifierLen)); 9032 } 9033 9034 return true; 9035 } 9036 9037 static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr, 9038 const Expr *OrigFormatExpr, 9039 ArrayRef<const Expr *> Args, 9040 bool HasVAListArg, unsigned format_idx, 9041 unsigned firstDataArg, 9042 Sema::FormatStringType Type, 9043 bool inFunctionCall, 9044 Sema::VariadicCallType CallType, 9045 llvm::SmallBitVector &CheckedVarArgs, 9046 UncoveredArgHandler &UncoveredArg, 9047 bool IgnoreStringsWithoutSpecifiers) { 9048 // CHECK: is the format string a wide literal? 9049 if (!FExpr->isAscii() && !FExpr->isUTF8()) { 9050 CheckFormatHandler::EmitFormatDiagnostic( 9051 S, inFunctionCall, Args[format_idx], 9052 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(), 9053 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9054 return; 9055 } 9056 9057 // Str - The format string. NOTE: this is NOT null-terminated! 9058 StringRef StrRef = FExpr->getString(); 9059 const char *Str = StrRef.data(); 9060 // Account for cases where the string literal is truncated in a declaration. 9061 const ConstantArrayType *T = 9062 S.Context.getAsConstantArrayType(FExpr->getType()); 9063 assert(T && "String literal not of constant array type!"); 9064 size_t TypeSize = T->getSize().getZExtValue(); 9065 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9066 const unsigned numDataArgs = Args.size() - firstDataArg; 9067 9068 if (IgnoreStringsWithoutSpecifiers && 9069 !analyze_format_string::parseFormatStringHasFormattingSpecifiers( 9070 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo())) 9071 return; 9072 9073 // Emit a warning if the string literal is truncated and does not contain an 9074 // embedded null character. 9075 if (TypeSize <= StrRef.size() && 9076 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) { 9077 CheckFormatHandler::EmitFormatDiagnostic( 9078 S, inFunctionCall, Args[format_idx], 9079 S.PDiag(diag::warn_printf_format_string_not_null_terminated), 9080 FExpr->getBeginLoc(), 9081 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange()); 9082 return; 9083 } 9084 9085 // CHECK: empty format string? 9086 if (StrLen == 0 && numDataArgs > 0) { 9087 CheckFormatHandler::EmitFormatDiagnostic( 9088 S, inFunctionCall, Args[format_idx], 9089 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(), 9090 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange()); 9091 return; 9092 } 9093 9094 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString || 9095 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog || 9096 Type == Sema::FST_OSTrace) { 9097 CheckPrintfHandler H( 9098 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs, 9099 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, 9100 HasVAListArg, Args, format_idx, inFunctionCall, CallType, 9101 CheckedVarArgs, UncoveredArg); 9102 9103 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen, 9104 S.getLangOpts(), 9105 S.Context.getTargetInfo(), 9106 Type == Sema::FST_FreeBSDKPrintf)) 9107 H.DoneProcessing(); 9108 } else if (Type == Sema::FST_Scanf) { 9109 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg, 9110 numDataArgs, Str, HasVAListArg, Args, format_idx, 9111 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg); 9112 9113 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen, 9114 S.getLangOpts(), 9115 S.Context.getTargetInfo())) 9116 H.DoneProcessing(); 9117 } // TODO: handle other formats 9118 } 9119 9120 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) { 9121 // Str - The format string. NOTE: this is NOT null-terminated! 9122 StringRef StrRef = FExpr->getString(); 9123 const char *Str = StrRef.data(); 9124 // Account for cases where the string literal is truncated in a declaration. 9125 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType()); 9126 assert(T && "String literal not of constant array type!"); 9127 size_t TypeSize = T->getSize().getZExtValue(); 9128 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size()); 9129 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen, 9130 getLangOpts(), 9131 Context.getTargetInfo()); 9132 } 9133 9134 //===--- CHECK: Warn on use of wrong absolute value function. -------------===// 9135 9136 // Returns the related absolute value function that is larger, of 0 if one 9137 // does not exist. 9138 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) { 9139 switch (AbsFunction) { 9140 default: 9141 return 0; 9142 9143 case Builtin::BI__builtin_abs: 9144 return Builtin::BI__builtin_labs; 9145 case Builtin::BI__builtin_labs: 9146 return Builtin::BI__builtin_llabs; 9147 case Builtin::BI__builtin_llabs: 9148 return 0; 9149 9150 case Builtin::BI__builtin_fabsf: 9151 return Builtin::BI__builtin_fabs; 9152 case Builtin::BI__builtin_fabs: 9153 return Builtin::BI__builtin_fabsl; 9154 case Builtin::BI__builtin_fabsl: 9155 return 0; 9156 9157 case Builtin::BI__builtin_cabsf: 9158 return Builtin::BI__builtin_cabs; 9159 case Builtin::BI__builtin_cabs: 9160 return Builtin::BI__builtin_cabsl; 9161 case Builtin::BI__builtin_cabsl: 9162 return 0; 9163 9164 case Builtin::BIabs: 9165 return Builtin::BIlabs; 9166 case Builtin::BIlabs: 9167 return Builtin::BIllabs; 9168 case Builtin::BIllabs: 9169 return 0; 9170 9171 case Builtin::BIfabsf: 9172 return Builtin::BIfabs; 9173 case Builtin::BIfabs: 9174 return Builtin::BIfabsl; 9175 case Builtin::BIfabsl: 9176 return 0; 9177 9178 case Builtin::BIcabsf: 9179 return Builtin::BIcabs; 9180 case Builtin::BIcabs: 9181 return Builtin::BIcabsl; 9182 case Builtin::BIcabsl: 9183 return 0; 9184 } 9185 } 9186 9187 // Returns the argument type of the absolute value function. 9188 static QualType getAbsoluteValueArgumentType(ASTContext &Context, 9189 unsigned AbsType) { 9190 if (AbsType == 0) 9191 return QualType(); 9192 9193 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None; 9194 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error); 9195 if (Error != ASTContext::GE_None) 9196 return QualType(); 9197 9198 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>(); 9199 if (!FT) 9200 return QualType(); 9201 9202 if (FT->getNumParams() != 1) 9203 return QualType(); 9204 9205 return FT->getParamType(0); 9206 } 9207 9208 // Returns the best absolute value function, or zero, based on type and 9209 // current absolute value function. 9210 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType, 9211 unsigned AbsFunctionKind) { 9212 unsigned BestKind = 0; 9213 uint64_t ArgSize = Context.getTypeSize(ArgType); 9214 for (unsigned Kind = AbsFunctionKind; Kind != 0; 9215 Kind = getLargerAbsoluteValueFunction(Kind)) { 9216 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind); 9217 if (Context.getTypeSize(ParamType) >= ArgSize) { 9218 if (BestKind == 0) 9219 BestKind = Kind; 9220 else if (Context.hasSameType(ParamType, ArgType)) { 9221 BestKind = Kind; 9222 break; 9223 } 9224 } 9225 } 9226 return BestKind; 9227 } 9228 9229 enum AbsoluteValueKind { 9230 AVK_Integer, 9231 AVK_Floating, 9232 AVK_Complex 9233 }; 9234 9235 static AbsoluteValueKind getAbsoluteValueKind(QualType T) { 9236 if (T->isIntegralOrEnumerationType()) 9237 return AVK_Integer; 9238 if (T->isRealFloatingType()) 9239 return AVK_Floating; 9240 if (T->isAnyComplexType()) 9241 return AVK_Complex; 9242 9243 llvm_unreachable("Type not integer, floating, or complex"); 9244 } 9245 9246 // Changes the absolute value function to a different type. Preserves whether 9247 // the function is a builtin. 9248 static unsigned changeAbsFunction(unsigned AbsKind, 9249 AbsoluteValueKind ValueKind) { 9250 switch (ValueKind) { 9251 case AVK_Integer: 9252 switch (AbsKind) { 9253 default: 9254 return 0; 9255 case Builtin::BI__builtin_fabsf: 9256 case Builtin::BI__builtin_fabs: 9257 case Builtin::BI__builtin_fabsl: 9258 case Builtin::BI__builtin_cabsf: 9259 case Builtin::BI__builtin_cabs: 9260 case Builtin::BI__builtin_cabsl: 9261 return Builtin::BI__builtin_abs; 9262 case Builtin::BIfabsf: 9263 case Builtin::BIfabs: 9264 case Builtin::BIfabsl: 9265 case Builtin::BIcabsf: 9266 case Builtin::BIcabs: 9267 case Builtin::BIcabsl: 9268 return Builtin::BIabs; 9269 } 9270 case AVK_Floating: 9271 switch (AbsKind) { 9272 default: 9273 return 0; 9274 case Builtin::BI__builtin_abs: 9275 case Builtin::BI__builtin_labs: 9276 case Builtin::BI__builtin_llabs: 9277 case Builtin::BI__builtin_cabsf: 9278 case Builtin::BI__builtin_cabs: 9279 case Builtin::BI__builtin_cabsl: 9280 return Builtin::BI__builtin_fabsf; 9281 case Builtin::BIabs: 9282 case Builtin::BIlabs: 9283 case Builtin::BIllabs: 9284 case Builtin::BIcabsf: 9285 case Builtin::BIcabs: 9286 case Builtin::BIcabsl: 9287 return Builtin::BIfabsf; 9288 } 9289 case AVK_Complex: 9290 switch (AbsKind) { 9291 default: 9292 return 0; 9293 case Builtin::BI__builtin_abs: 9294 case Builtin::BI__builtin_labs: 9295 case Builtin::BI__builtin_llabs: 9296 case Builtin::BI__builtin_fabsf: 9297 case Builtin::BI__builtin_fabs: 9298 case Builtin::BI__builtin_fabsl: 9299 return Builtin::BI__builtin_cabsf; 9300 case Builtin::BIabs: 9301 case Builtin::BIlabs: 9302 case Builtin::BIllabs: 9303 case Builtin::BIfabsf: 9304 case Builtin::BIfabs: 9305 case Builtin::BIfabsl: 9306 return Builtin::BIcabsf; 9307 } 9308 } 9309 llvm_unreachable("Unable to convert function"); 9310 } 9311 9312 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) { 9313 const IdentifierInfo *FnInfo = FDecl->getIdentifier(); 9314 if (!FnInfo) 9315 return 0; 9316 9317 switch (FDecl->getBuiltinID()) { 9318 default: 9319 return 0; 9320 case Builtin::BI__builtin_abs: 9321 case Builtin::BI__builtin_fabs: 9322 case Builtin::BI__builtin_fabsf: 9323 case Builtin::BI__builtin_fabsl: 9324 case Builtin::BI__builtin_labs: 9325 case Builtin::BI__builtin_llabs: 9326 case Builtin::BI__builtin_cabs: 9327 case Builtin::BI__builtin_cabsf: 9328 case Builtin::BI__builtin_cabsl: 9329 case Builtin::BIabs: 9330 case Builtin::BIlabs: 9331 case Builtin::BIllabs: 9332 case Builtin::BIfabs: 9333 case Builtin::BIfabsf: 9334 case Builtin::BIfabsl: 9335 case Builtin::BIcabs: 9336 case Builtin::BIcabsf: 9337 case Builtin::BIcabsl: 9338 return FDecl->getBuiltinID(); 9339 } 9340 llvm_unreachable("Unknown Builtin type"); 9341 } 9342 9343 // If the replacement is valid, emit a note with replacement function. 9344 // Additionally, suggest including the proper header if not already included. 9345 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range, 9346 unsigned AbsKind, QualType ArgType) { 9347 bool EmitHeaderHint = true; 9348 const char *HeaderName = nullptr; 9349 const char *FunctionName = nullptr; 9350 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) { 9351 FunctionName = "std::abs"; 9352 if (ArgType->isIntegralOrEnumerationType()) { 9353 HeaderName = "cstdlib"; 9354 } else if (ArgType->isRealFloatingType()) { 9355 HeaderName = "cmath"; 9356 } else { 9357 llvm_unreachable("Invalid Type"); 9358 } 9359 9360 // Lookup all std::abs 9361 if (NamespaceDecl *Std = S.getStdNamespace()) { 9362 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName); 9363 R.suppressDiagnostics(); 9364 S.LookupQualifiedName(R, Std); 9365 9366 for (const auto *I : R) { 9367 const FunctionDecl *FDecl = nullptr; 9368 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) { 9369 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl()); 9370 } else { 9371 FDecl = dyn_cast<FunctionDecl>(I); 9372 } 9373 if (!FDecl) 9374 continue; 9375 9376 // Found std::abs(), check that they are the right ones. 9377 if (FDecl->getNumParams() != 1) 9378 continue; 9379 9380 // Check that the parameter type can handle the argument. 9381 QualType ParamType = FDecl->getParamDecl(0)->getType(); 9382 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) && 9383 S.Context.getTypeSize(ArgType) <= 9384 S.Context.getTypeSize(ParamType)) { 9385 // Found a function, don't need the header hint. 9386 EmitHeaderHint = false; 9387 break; 9388 } 9389 } 9390 } 9391 } else { 9392 FunctionName = S.Context.BuiltinInfo.getName(AbsKind); 9393 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind); 9394 9395 if (HeaderName) { 9396 DeclarationName DN(&S.Context.Idents.get(FunctionName)); 9397 LookupResult R(S, DN, Loc, Sema::LookupAnyName); 9398 R.suppressDiagnostics(); 9399 S.LookupName(R, S.getCurScope()); 9400 9401 if (R.isSingleResult()) { 9402 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); 9403 if (FD && FD->getBuiltinID() == AbsKind) { 9404 EmitHeaderHint = false; 9405 } else { 9406 return; 9407 } 9408 } else if (!R.empty()) { 9409 return; 9410 } 9411 } 9412 } 9413 9414 S.Diag(Loc, diag::note_replace_abs_function) 9415 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName); 9416 9417 if (!HeaderName) 9418 return; 9419 9420 if (!EmitHeaderHint) 9421 return; 9422 9423 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName 9424 << FunctionName; 9425 } 9426 9427 template <std::size_t StrLen> 9428 static bool IsStdFunction(const FunctionDecl *FDecl, 9429 const char (&Str)[StrLen]) { 9430 if (!FDecl) 9431 return false; 9432 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str)) 9433 return false; 9434 if (!FDecl->isInStdNamespace()) 9435 return false; 9436 9437 return true; 9438 } 9439 9440 // Warn when using the wrong abs() function. 9441 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call, 9442 const FunctionDecl *FDecl) { 9443 if (Call->getNumArgs() != 1) 9444 return; 9445 9446 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl); 9447 bool IsStdAbs = IsStdFunction(FDecl, "abs"); 9448 if (AbsKind == 0 && !IsStdAbs) 9449 return; 9450 9451 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9452 QualType ParamType = Call->getArg(0)->getType(); 9453 9454 // Unsigned types cannot be negative. Suggest removing the absolute value 9455 // function call. 9456 if (ArgType->isUnsignedIntegerType()) { 9457 const char *FunctionName = 9458 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind); 9459 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType; 9460 Diag(Call->getExprLoc(), diag::note_remove_abs) 9461 << FunctionName 9462 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()); 9463 return; 9464 } 9465 9466 // Taking the absolute value of a pointer is very suspicious, they probably 9467 // wanted to index into an array, dereference a pointer, call a function, etc. 9468 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) { 9469 unsigned DiagType = 0; 9470 if (ArgType->isFunctionType()) 9471 DiagType = 1; 9472 else if (ArgType->isArrayType()) 9473 DiagType = 2; 9474 9475 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType; 9476 return; 9477 } 9478 9479 // std::abs has overloads which prevent most of the absolute value problems 9480 // from occurring. 9481 if (IsStdAbs) 9482 return; 9483 9484 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType); 9485 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType); 9486 9487 // The argument and parameter are the same kind. Check if they are the right 9488 // size. 9489 if (ArgValueKind == ParamValueKind) { 9490 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType)) 9491 return; 9492 9493 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind); 9494 Diag(Call->getExprLoc(), diag::warn_abs_too_small) 9495 << FDecl << ArgType << ParamType; 9496 9497 if (NewAbsKind == 0) 9498 return; 9499 9500 emitReplacement(*this, Call->getExprLoc(), 9501 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9502 return; 9503 } 9504 9505 // ArgValueKind != ParamValueKind 9506 // The wrong type of absolute value function was used. Attempt to find the 9507 // proper one. 9508 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind); 9509 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind); 9510 if (NewAbsKind == 0) 9511 return; 9512 9513 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type) 9514 << FDecl << ParamValueKind << ArgValueKind; 9515 9516 emitReplacement(*this, Call->getExprLoc(), 9517 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType); 9518 } 9519 9520 //===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===// 9521 void Sema::CheckMaxUnsignedZero(const CallExpr *Call, 9522 const FunctionDecl *FDecl) { 9523 if (!Call || !FDecl) return; 9524 9525 // Ignore template specializations and macros. 9526 if (inTemplateInstantiation()) return; 9527 if (Call->getExprLoc().isMacroID()) return; 9528 9529 // Only care about the one template argument, two function parameter std::max 9530 if (Call->getNumArgs() != 2) return; 9531 if (!IsStdFunction(FDecl, "max")) return; 9532 const auto * ArgList = FDecl->getTemplateSpecializationArgs(); 9533 if (!ArgList) return; 9534 if (ArgList->size() != 1) return; 9535 9536 // Check that template type argument is unsigned integer. 9537 const auto& TA = ArgList->get(0); 9538 if (TA.getKind() != TemplateArgument::Type) return; 9539 QualType ArgType = TA.getAsType(); 9540 if (!ArgType->isUnsignedIntegerType()) return; 9541 9542 // See if either argument is a literal zero. 9543 auto IsLiteralZeroArg = [](const Expr* E) -> bool { 9544 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E); 9545 if (!MTE) return false; 9546 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr()); 9547 if (!Num) return false; 9548 if (Num->getValue() != 0) return false; 9549 return true; 9550 }; 9551 9552 const Expr *FirstArg = Call->getArg(0); 9553 const Expr *SecondArg = Call->getArg(1); 9554 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg); 9555 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg); 9556 9557 // Only warn when exactly one argument is zero. 9558 if (IsFirstArgZero == IsSecondArgZero) return; 9559 9560 SourceRange FirstRange = FirstArg->getSourceRange(); 9561 SourceRange SecondRange = SecondArg->getSourceRange(); 9562 9563 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange; 9564 9565 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero) 9566 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange; 9567 9568 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)". 9569 SourceRange RemovalRange; 9570 if (IsFirstArgZero) { 9571 RemovalRange = SourceRange(FirstRange.getBegin(), 9572 SecondRange.getBegin().getLocWithOffset(-1)); 9573 } else { 9574 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()), 9575 SecondRange.getEnd()); 9576 } 9577 9578 Diag(Call->getExprLoc(), diag::note_remove_max_call) 9579 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange()) 9580 << FixItHint::CreateRemoval(RemovalRange); 9581 } 9582 9583 //===--- CHECK: Standard memory functions ---------------------------------===// 9584 9585 /// Takes the expression passed to the size_t parameter of functions 9586 /// such as memcmp, strncat, etc and warns if it's a comparison. 9587 /// 9588 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`. 9589 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E, 9590 IdentifierInfo *FnName, 9591 SourceLocation FnLoc, 9592 SourceLocation RParenLoc) { 9593 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E); 9594 if (!Size) 9595 return false; 9596 9597 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||: 9598 if (!Size->isComparisonOp() && !Size->isLogicalOp()) 9599 return false; 9600 9601 SourceRange SizeRange = Size->getSourceRange(); 9602 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison) 9603 << SizeRange << FnName; 9604 S.Diag(FnLoc, diag::note_memsize_comparison_paren) 9605 << FnName 9606 << FixItHint::CreateInsertion( 9607 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")") 9608 << FixItHint::CreateRemoval(RParenLoc); 9609 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence) 9610 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(") 9611 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()), 9612 ")"); 9613 9614 return true; 9615 } 9616 9617 /// Determine whether the given type is or contains a dynamic class type 9618 /// (e.g., whether it has a vtable). 9619 static const CXXRecordDecl *getContainedDynamicClass(QualType T, 9620 bool &IsContained) { 9621 // Look through array types while ignoring qualifiers. 9622 const Type *Ty = T->getBaseElementTypeUnsafe(); 9623 IsContained = false; 9624 9625 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 9626 RD = RD ? RD->getDefinition() : nullptr; 9627 if (!RD || RD->isInvalidDecl()) 9628 return nullptr; 9629 9630 if (RD->isDynamicClass()) 9631 return RD; 9632 9633 // Check all the fields. If any bases were dynamic, the class is dynamic. 9634 // It's impossible for a class to transitively contain itself by value, so 9635 // infinite recursion is impossible. 9636 for (auto *FD : RD->fields()) { 9637 bool SubContained; 9638 if (const CXXRecordDecl *ContainedRD = 9639 getContainedDynamicClass(FD->getType(), SubContained)) { 9640 IsContained = true; 9641 return ContainedRD; 9642 } 9643 } 9644 9645 return nullptr; 9646 } 9647 9648 static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) { 9649 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E)) 9650 if (Unary->getKind() == UETT_SizeOf) 9651 return Unary; 9652 return nullptr; 9653 } 9654 9655 /// If E is a sizeof expression, returns its argument expression, 9656 /// otherwise returns NULL. 9657 static const Expr *getSizeOfExprArg(const Expr *E) { 9658 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9659 if (!SizeOf->isArgumentType()) 9660 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts(); 9661 return nullptr; 9662 } 9663 9664 /// If E is a sizeof expression, returns its argument type. 9665 static QualType getSizeOfArgType(const Expr *E) { 9666 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E)) 9667 return SizeOf->getTypeOfArgument(); 9668 return QualType(); 9669 } 9670 9671 namespace { 9672 9673 struct SearchNonTrivialToInitializeField 9674 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> { 9675 using Super = 9676 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>; 9677 9678 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {} 9679 9680 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT, 9681 SourceLocation SL) { 9682 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9683 asDerived().visitArray(PDIK, AT, SL); 9684 return; 9685 } 9686 9687 Super::visitWithKind(PDIK, FT, SL); 9688 } 9689 9690 void visitARCStrong(QualType FT, SourceLocation SL) { 9691 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9692 } 9693 void visitARCWeak(QualType FT, SourceLocation SL) { 9694 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1); 9695 } 9696 void visitStruct(QualType FT, SourceLocation SL) { 9697 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9698 visit(FD->getType(), FD->getLocation()); 9699 } 9700 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK, 9701 const ArrayType *AT, SourceLocation SL) { 9702 visit(getContext().getBaseElementType(AT), SL); 9703 } 9704 void visitTrivial(QualType FT, SourceLocation SL) {} 9705 9706 static void diag(QualType RT, const Expr *E, Sema &S) { 9707 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation()); 9708 } 9709 9710 ASTContext &getContext() { return S.getASTContext(); } 9711 9712 const Expr *E; 9713 Sema &S; 9714 }; 9715 9716 struct SearchNonTrivialToCopyField 9717 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> { 9718 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>; 9719 9720 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {} 9721 9722 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT, 9723 SourceLocation SL) { 9724 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) { 9725 asDerived().visitArray(PCK, AT, SL); 9726 return; 9727 } 9728 9729 Super::visitWithKind(PCK, FT, SL); 9730 } 9731 9732 void visitARCStrong(QualType FT, SourceLocation SL) { 9733 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9734 } 9735 void visitARCWeak(QualType FT, SourceLocation SL) { 9736 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0); 9737 } 9738 void visitStruct(QualType FT, SourceLocation SL) { 9739 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields()) 9740 visit(FD->getType(), FD->getLocation()); 9741 } 9742 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT, 9743 SourceLocation SL) { 9744 visit(getContext().getBaseElementType(AT), SL); 9745 } 9746 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT, 9747 SourceLocation SL) {} 9748 void visitTrivial(QualType FT, SourceLocation SL) {} 9749 void visitVolatileTrivial(QualType FT, SourceLocation SL) {} 9750 9751 static void diag(QualType RT, const Expr *E, Sema &S) { 9752 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation()); 9753 } 9754 9755 ASTContext &getContext() { return S.getASTContext(); } 9756 9757 const Expr *E; 9758 Sema &S; 9759 }; 9760 9761 } 9762 9763 /// Detect if \c SizeofExpr is likely to calculate the sizeof an object. 9764 static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) { 9765 SizeofExpr = SizeofExpr->IgnoreParenImpCasts(); 9766 9767 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) { 9768 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add) 9769 return false; 9770 9771 return doesExprLikelyComputeSize(BO->getLHS()) || 9772 doesExprLikelyComputeSize(BO->getRHS()); 9773 } 9774 9775 return getAsSizeOfExpr(SizeofExpr) != nullptr; 9776 } 9777 9778 /// Check if the ArgLoc originated from a macro passed to the call at CallLoc. 9779 /// 9780 /// \code 9781 /// #define MACRO 0 9782 /// foo(MACRO); 9783 /// foo(0); 9784 /// \endcode 9785 /// 9786 /// This should return true for the first call to foo, but not for the second 9787 /// (regardless of whether foo is a macro or function). 9788 static bool isArgumentExpandedFromMacro(SourceManager &SM, 9789 SourceLocation CallLoc, 9790 SourceLocation ArgLoc) { 9791 if (!CallLoc.isMacroID()) 9792 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc); 9793 9794 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) != 9795 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc)); 9796 } 9797 9798 /// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the 9799 /// last two arguments transposed. 9800 static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) { 9801 if (BId != Builtin::BImemset && BId != Builtin::BIbzero) 9802 return; 9803 9804 const Expr *SizeArg = 9805 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts(); 9806 9807 auto isLiteralZero = [](const Expr *E) { 9808 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0; 9809 }; 9810 9811 // If we're memsetting or bzeroing 0 bytes, then this is likely an error. 9812 SourceLocation CallLoc = Call->getRParenLoc(); 9813 SourceManager &SM = S.getSourceManager(); 9814 if (isLiteralZero(SizeArg) && 9815 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) { 9816 9817 SourceLocation DiagLoc = SizeArg->getExprLoc(); 9818 9819 // Some platforms #define bzero to __builtin_memset. See if this is the 9820 // case, and if so, emit a better diagnostic. 9821 if (BId == Builtin::BIbzero || 9822 (CallLoc.isMacroID() && Lexer::getImmediateMacroName( 9823 CallLoc, SM, S.getLangOpts()) == "bzero")) { 9824 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size); 9825 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence); 9826 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) { 9827 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0; 9828 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0; 9829 } 9830 return; 9831 } 9832 9833 // If the second argument to a memset is a sizeof expression and the third 9834 // isn't, this is also likely an error. This should catch 9835 // 'memset(buf, sizeof(buf), 0xff)'. 9836 if (BId == Builtin::BImemset && 9837 doesExprLikelyComputeSize(Call->getArg(1)) && 9838 !doesExprLikelyComputeSize(Call->getArg(2))) { 9839 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc(); 9840 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1; 9841 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1; 9842 return; 9843 } 9844 } 9845 9846 /// Check for dangerous or invalid arguments to memset(). 9847 /// 9848 /// This issues warnings on known problematic, dangerous or unspecified 9849 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp' 9850 /// function calls. 9851 /// 9852 /// \param Call The call expression to diagnose. 9853 void Sema::CheckMemaccessArguments(const CallExpr *Call, 9854 unsigned BId, 9855 IdentifierInfo *FnName) { 9856 assert(BId != 0); 9857 9858 // It is possible to have a non-standard definition of memset. Validate 9859 // we have enough arguments, and if not, abort further checking. 9860 unsigned ExpectedNumArgs = 9861 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3); 9862 if (Call->getNumArgs() < ExpectedNumArgs) 9863 return; 9864 9865 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero || 9866 BId == Builtin::BIstrndup ? 1 : 2); 9867 unsigned LenArg = 9868 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2); 9869 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts(); 9870 9871 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName, 9872 Call->getBeginLoc(), Call->getRParenLoc())) 9873 return; 9874 9875 // Catch cases like 'memset(buf, sizeof(buf), 0)'. 9876 CheckMemaccessSize(*this, BId, Call); 9877 9878 // We have special checking when the length is a sizeof expression. 9879 QualType SizeOfArgTy = getSizeOfArgType(LenExpr); 9880 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr); 9881 llvm::FoldingSetNodeID SizeOfArgID; 9882 9883 // Although widely used, 'bzero' is not a standard function. Be more strict 9884 // with the argument types before allowing diagnostics and only allow the 9885 // form bzero(ptr, sizeof(...)). 9886 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType(); 9887 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>()) 9888 return; 9889 9890 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) { 9891 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts(); 9892 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange(); 9893 9894 QualType DestTy = Dest->getType(); 9895 QualType PointeeTy; 9896 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) { 9897 PointeeTy = DestPtrTy->getPointeeType(); 9898 9899 // Never warn about void type pointers. This can be used to suppress 9900 // false positives. 9901 if (PointeeTy->isVoidType()) 9902 continue; 9903 9904 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by 9905 // actually comparing the expressions for equality. Because computing the 9906 // expression IDs can be expensive, we only do this if the diagnostic is 9907 // enabled. 9908 if (SizeOfArg && 9909 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, 9910 SizeOfArg->getExprLoc())) { 9911 // We only compute IDs for expressions if the warning is enabled, and 9912 // cache the sizeof arg's ID. 9913 if (SizeOfArgID == llvm::FoldingSetNodeID()) 9914 SizeOfArg->Profile(SizeOfArgID, Context, true); 9915 llvm::FoldingSetNodeID DestID; 9916 Dest->Profile(DestID, Context, true); 9917 if (DestID == SizeOfArgID) { 9918 // TODO: For strncpy() and friends, this could suggest sizeof(dst) 9919 // over sizeof(src) as well. 9920 unsigned ActionIdx = 0; // Default is to suggest dereferencing. 9921 StringRef ReadableName = FnName->getName(); 9922 9923 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest)) 9924 if (UnaryOp->getOpcode() == UO_AddrOf) 9925 ActionIdx = 1; // If its an address-of operator, just remove it. 9926 if (!PointeeTy->isIncompleteType() && 9927 (Context.getTypeSize(PointeeTy) == Context.getCharWidth())) 9928 ActionIdx = 2; // If the pointee's size is sizeof(char), 9929 // suggest an explicit length. 9930 9931 // If the function is defined as a builtin macro, do not show macro 9932 // expansion. 9933 SourceLocation SL = SizeOfArg->getExprLoc(); 9934 SourceRange DSR = Dest->getSourceRange(); 9935 SourceRange SSR = SizeOfArg->getSourceRange(); 9936 SourceManager &SM = getSourceManager(); 9937 9938 if (SM.isMacroArgExpansion(SL)) { 9939 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts); 9940 SL = SM.getSpellingLoc(SL); 9941 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()), 9942 SM.getSpellingLoc(DSR.getEnd())); 9943 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()), 9944 SM.getSpellingLoc(SSR.getEnd())); 9945 } 9946 9947 DiagRuntimeBehavior(SL, SizeOfArg, 9948 PDiag(diag::warn_sizeof_pointer_expr_memaccess) 9949 << ReadableName 9950 << PointeeTy 9951 << DestTy 9952 << DSR 9953 << SSR); 9954 DiagRuntimeBehavior(SL, SizeOfArg, 9955 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note) 9956 << ActionIdx 9957 << SSR); 9958 9959 break; 9960 } 9961 } 9962 9963 // Also check for cases where the sizeof argument is the exact same 9964 // type as the memory argument, and where it points to a user-defined 9965 // record type. 9966 if (SizeOfArgTy != QualType()) { 9967 if (PointeeTy->isRecordType() && 9968 Context.typesAreCompatible(SizeOfArgTy, DestTy)) { 9969 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest, 9970 PDiag(diag::warn_sizeof_pointer_type_memaccess) 9971 << FnName << SizeOfArgTy << ArgIdx 9972 << PointeeTy << Dest->getSourceRange() 9973 << LenExpr->getSourceRange()); 9974 break; 9975 } 9976 } 9977 } else if (DestTy->isArrayType()) { 9978 PointeeTy = DestTy; 9979 } 9980 9981 if (PointeeTy == QualType()) 9982 continue; 9983 9984 // Always complain about dynamic classes. 9985 bool IsContained; 9986 if (const CXXRecordDecl *ContainedRD = 9987 getContainedDynamicClass(PointeeTy, IsContained)) { 9988 9989 unsigned OperationType = 0; 9990 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp; 9991 // "overwritten" if we're warning about the destination for any call 9992 // but memcmp; otherwise a verb appropriate to the call. 9993 if (ArgIdx != 0 || IsCmp) { 9994 if (BId == Builtin::BImemcpy) 9995 OperationType = 1; 9996 else if(BId == Builtin::BImemmove) 9997 OperationType = 2; 9998 else if (IsCmp) 9999 OperationType = 3; 10000 } 10001 10002 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10003 PDiag(diag::warn_dyn_class_memaccess) 10004 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName 10005 << IsContained << ContainedRD << OperationType 10006 << Call->getCallee()->getSourceRange()); 10007 } else if (PointeeTy.hasNonTrivialObjCLifetime() && 10008 BId != Builtin::BImemset) 10009 DiagRuntimeBehavior( 10010 Dest->getExprLoc(), Dest, 10011 PDiag(diag::warn_arc_object_memaccess) 10012 << ArgIdx << FnName << PointeeTy 10013 << Call->getCallee()->getSourceRange()); 10014 else if (const auto *RT = PointeeTy->getAs<RecordType>()) { 10015 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) && 10016 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) { 10017 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10018 PDiag(diag::warn_cstruct_memaccess) 10019 << ArgIdx << FnName << PointeeTy << 0); 10020 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this); 10021 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) && 10022 RT->getDecl()->isNonTrivialToPrimitiveCopy()) { 10023 DiagRuntimeBehavior(Dest->getExprLoc(), Dest, 10024 PDiag(diag::warn_cstruct_memaccess) 10025 << ArgIdx << FnName << PointeeTy << 1); 10026 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this); 10027 } else { 10028 continue; 10029 } 10030 } else 10031 continue; 10032 10033 DiagRuntimeBehavior( 10034 Dest->getExprLoc(), Dest, 10035 PDiag(diag::note_bad_memaccess_silence) 10036 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)")); 10037 break; 10038 } 10039 } 10040 10041 // A little helper routine: ignore addition and subtraction of integer literals. 10042 // This intentionally does not ignore all integer constant expressions because 10043 // we don't want to remove sizeof(). 10044 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) { 10045 Ex = Ex->IgnoreParenCasts(); 10046 10047 while (true) { 10048 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex); 10049 if (!BO || !BO->isAdditiveOp()) 10050 break; 10051 10052 const Expr *RHS = BO->getRHS()->IgnoreParenCasts(); 10053 const Expr *LHS = BO->getLHS()->IgnoreParenCasts(); 10054 10055 if (isa<IntegerLiteral>(RHS)) 10056 Ex = LHS; 10057 else if (isa<IntegerLiteral>(LHS)) 10058 Ex = RHS; 10059 else 10060 break; 10061 } 10062 10063 return Ex; 10064 } 10065 10066 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty, 10067 ASTContext &Context) { 10068 // Only handle constant-sized or VLAs, but not flexible members. 10069 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) { 10070 // Only issue the FIXIT for arrays of size > 1. 10071 if (CAT->getSize().getSExtValue() <= 1) 10072 return false; 10073 } else if (!Ty->isVariableArrayType()) { 10074 return false; 10075 } 10076 return true; 10077 } 10078 10079 // Warn if the user has made the 'size' argument to strlcpy or strlcat 10080 // be the size of the source, instead of the destination. 10081 void Sema::CheckStrlcpycatArguments(const CallExpr *Call, 10082 IdentifierInfo *FnName) { 10083 10084 // Don't crash if the user has the wrong number of arguments 10085 unsigned NumArgs = Call->getNumArgs(); 10086 if ((NumArgs != 3) && (NumArgs != 4)) 10087 return; 10088 10089 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context); 10090 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context); 10091 const Expr *CompareWithSrc = nullptr; 10092 10093 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName, 10094 Call->getBeginLoc(), Call->getRParenLoc())) 10095 return; 10096 10097 // Look for 'strlcpy(dst, x, sizeof(x))' 10098 if (const Expr *Ex = getSizeOfExprArg(SizeArg)) 10099 CompareWithSrc = Ex; 10100 else { 10101 // Look for 'strlcpy(dst, x, strlen(x))' 10102 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) { 10103 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen && 10104 SizeCall->getNumArgs() == 1) 10105 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context); 10106 } 10107 } 10108 10109 if (!CompareWithSrc) 10110 return; 10111 10112 // Determine if the argument to sizeof/strlen is equal to the source 10113 // argument. In principle there's all kinds of things you could do 10114 // here, for instance creating an == expression and evaluating it with 10115 // EvaluateAsBooleanCondition, but this uses a more direct technique: 10116 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg); 10117 if (!SrcArgDRE) 10118 return; 10119 10120 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc); 10121 if (!CompareWithSrcDRE || 10122 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl()) 10123 return; 10124 10125 const Expr *OriginalSizeArg = Call->getArg(2); 10126 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size) 10127 << OriginalSizeArg->getSourceRange() << FnName; 10128 10129 // Output a FIXIT hint if the destination is an array (rather than a 10130 // pointer to an array). This could be enhanced to handle some 10131 // pointers if we know the actual size, like if DstArg is 'array+2' 10132 // we could say 'sizeof(array)-2'. 10133 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts(); 10134 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context)) 10135 return; 10136 10137 SmallString<128> sizeString; 10138 llvm::raw_svector_ostream OS(sizeString); 10139 OS << "sizeof("; 10140 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10141 OS << ")"; 10142 10143 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size) 10144 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(), 10145 OS.str()); 10146 } 10147 10148 /// Check if two expressions refer to the same declaration. 10149 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) { 10150 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1)) 10151 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2)) 10152 return D1->getDecl() == D2->getDecl(); 10153 return false; 10154 } 10155 10156 static const Expr *getStrlenExprArg(const Expr *E) { 10157 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) { 10158 const FunctionDecl *FD = CE->getDirectCallee(); 10159 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen) 10160 return nullptr; 10161 return CE->getArg(0)->IgnoreParenCasts(); 10162 } 10163 return nullptr; 10164 } 10165 10166 // Warn on anti-patterns as the 'size' argument to strncat. 10167 // The correct size argument should look like following: 10168 // strncat(dst, src, sizeof(dst) - strlen(dest) - 1); 10169 void Sema::CheckStrncatArguments(const CallExpr *CE, 10170 IdentifierInfo *FnName) { 10171 // Don't crash if the user has the wrong number of arguments. 10172 if (CE->getNumArgs() < 3) 10173 return; 10174 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts(); 10175 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts(); 10176 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts(); 10177 10178 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(), 10179 CE->getRParenLoc())) 10180 return; 10181 10182 // Identify common expressions, which are wrongly used as the size argument 10183 // to strncat and may lead to buffer overflows. 10184 unsigned PatternType = 0; 10185 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) { 10186 // - sizeof(dst) 10187 if (referToTheSameDecl(SizeOfArg, DstArg)) 10188 PatternType = 1; 10189 // - sizeof(src) 10190 else if (referToTheSameDecl(SizeOfArg, SrcArg)) 10191 PatternType = 2; 10192 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) { 10193 if (BE->getOpcode() == BO_Sub) { 10194 const Expr *L = BE->getLHS()->IgnoreParenCasts(); 10195 const Expr *R = BE->getRHS()->IgnoreParenCasts(); 10196 // - sizeof(dst) - strlen(dst) 10197 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) && 10198 referToTheSameDecl(DstArg, getStrlenExprArg(R))) 10199 PatternType = 1; 10200 // - sizeof(src) - (anything) 10201 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L))) 10202 PatternType = 2; 10203 } 10204 } 10205 10206 if (PatternType == 0) 10207 return; 10208 10209 // Generate the diagnostic. 10210 SourceLocation SL = LenArg->getBeginLoc(); 10211 SourceRange SR = LenArg->getSourceRange(); 10212 SourceManager &SM = getSourceManager(); 10213 10214 // If the function is defined as a builtin macro, do not show macro expansion. 10215 if (SM.isMacroArgExpansion(SL)) { 10216 SL = SM.getSpellingLoc(SL); 10217 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()), 10218 SM.getSpellingLoc(SR.getEnd())); 10219 } 10220 10221 // Check if the destination is an array (rather than a pointer to an array). 10222 QualType DstTy = DstArg->getType(); 10223 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy, 10224 Context); 10225 if (!isKnownSizeArray) { 10226 if (PatternType == 1) 10227 Diag(SL, diag::warn_strncat_wrong_size) << SR; 10228 else 10229 Diag(SL, diag::warn_strncat_src_size) << SR; 10230 return; 10231 } 10232 10233 if (PatternType == 1) 10234 Diag(SL, diag::warn_strncat_large_size) << SR; 10235 else 10236 Diag(SL, diag::warn_strncat_src_size) << SR; 10237 10238 SmallString<128> sizeString; 10239 llvm::raw_svector_ostream OS(sizeString); 10240 OS << "sizeof("; 10241 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10242 OS << ") - "; 10243 OS << "strlen("; 10244 DstArg->printPretty(OS, nullptr, getPrintingPolicy()); 10245 OS << ") - 1"; 10246 10247 Diag(SL, diag::note_strncat_wrong_size) 10248 << FixItHint::CreateReplacement(SR, OS.str()); 10249 } 10250 10251 namespace { 10252 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10253 const UnaryOperator *UnaryExpr, 10254 const VarDecl *Var) { 10255 StorageClass Class = Var->getStorageClass(); 10256 if (Class == StorageClass::SC_Extern || 10257 Class == StorageClass::SC_PrivateExtern || 10258 Var->getType()->isReferenceType()) 10259 return; 10260 10261 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10262 << CalleeName << Var; 10263 } 10264 10265 void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName, 10266 const UnaryOperator *UnaryExpr, const Decl *D) { 10267 if (const auto *Field = dyn_cast<FieldDecl>(D)) 10268 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object) 10269 << CalleeName << Field; 10270 } 10271 10272 void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName, 10273 const UnaryOperator *UnaryExpr) { 10274 if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf) 10275 return; 10276 10277 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) 10278 if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl())) 10279 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var); 10280 10281 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr())) 10282 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, 10283 Lvalue->getMemberDecl()); 10284 } 10285 10286 void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName, 10287 const DeclRefExpr *Lvalue) { 10288 if (!Lvalue->getType()->isArrayType()) 10289 return; 10290 10291 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()); 10292 if (Var == nullptr) 10293 return; 10294 10295 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object) 10296 << CalleeName << Var; 10297 } 10298 } // namespace 10299 10300 /// Alerts the user that they are attempting to free a non-malloc'd object. 10301 void Sema::CheckFreeArguments(const CallExpr *E) { 10302 const Expr *Arg = E->getArg(0)->IgnoreParenCasts(); 10303 const std::string CalleeName = 10304 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString(); 10305 10306 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg)) 10307 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr); 10308 10309 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg)) 10310 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue); 10311 } 10312 10313 void 10314 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType, 10315 SourceLocation ReturnLoc, 10316 bool isObjCMethod, 10317 const AttrVec *Attrs, 10318 const FunctionDecl *FD) { 10319 // Check if the return value is null but should not be. 10320 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) || 10321 (!isObjCMethod && isNonNullType(Context, lhsType))) && 10322 CheckNonNullExpr(*this, RetValExp)) 10323 Diag(ReturnLoc, diag::warn_null_ret) 10324 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange(); 10325 10326 // C++11 [basic.stc.dynamic.allocation]p4: 10327 // If an allocation function declared with a non-throwing 10328 // exception-specification fails to allocate storage, it shall return 10329 // a null pointer. Any other allocation function that fails to allocate 10330 // storage shall indicate failure only by throwing an exception [...] 10331 if (FD) { 10332 OverloadedOperatorKind Op = FD->getOverloadedOperator(); 10333 if (Op == OO_New || Op == OO_Array_New) { 10334 const FunctionProtoType *Proto 10335 = FD->getType()->castAs<FunctionProtoType>(); 10336 if (!Proto->isNothrow(/*ResultIfDependent*/true) && 10337 CheckNonNullExpr(*this, RetValExp)) 10338 Diag(ReturnLoc, diag::warn_operator_new_returns_null) 10339 << FD << getLangOpts().CPlusPlus11; 10340 } 10341 } 10342 10343 // PPC MMA non-pointer types are not allowed as return type. Checking the type 10344 // here prevent the user from using a PPC MMA type as trailing return type. 10345 if (Context.getTargetInfo().getTriple().isPPC64()) 10346 CheckPPCMMAType(RetValExp->getType(), ReturnLoc); 10347 } 10348 10349 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===// 10350 10351 /// Check for comparisons of floating point operands using != and ==. 10352 /// Issue a warning if these are no self-comparisons, as they are not likely 10353 /// to do what the programmer intended. 10354 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) { 10355 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts(); 10356 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts(); 10357 10358 // Special case: check for x == x (which is OK). 10359 // Do not emit warnings for such cases. 10360 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen)) 10361 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen)) 10362 if (DRL->getDecl() == DRR->getDecl()) 10363 return; 10364 10365 // Special case: check for comparisons against literals that can be exactly 10366 // represented by APFloat. In such cases, do not emit a warning. This 10367 // is a heuristic: often comparison against such literals are used to 10368 // detect if a value in a variable has not changed. This clearly can 10369 // lead to false negatives. 10370 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) { 10371 if (FLL->isExact()) 10372 return; 10373 } else 10374 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen)) 10375 if (FLR->isExact()) 10376 return; 10377 10378 // Check for comparisons with builtin types. 10379 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen)) 10380 if (CL->getBuiltinCallee()) 10381 return; 10382 10383 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen)) 10384 if (CR->getBuiltinCallee()) 10385 return; 10386 10387 // Emit the diagnostic. 10388 Diag(Loc, diag::warn_floatingpoint_eq) 10389 << LHS->getSourceRange() << RHS->getSourceRange(); 10390 } 10391 10392 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===// 10393 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===// 10394 10395 namespace { 10396 10397 /// Structure recording the 'active' range of an integer-valued 10398 /// expression. 10399 struct IntRange { 10400 /// The number of bits active in the int. Note that this includes exactly one 10401 /// sign bit if !NonNegative. 10402 unsigned Width; 10403 10404 /// True if the int is known not to have negative values. If so, all leading 10405 /// bits before Width are known zero, otherwise they are known to be the 10406 /// same as the MSB within Width. 10407 bool NonNegative; 10408 10409 IntRange(unsigned Width, bool NonNegative) 10410 : Width(Width), NonNegative(NonNegative) {} 10411 10412 /// Number of bits excluding the sign bit. 10413 unsigned valueBits() const { 10414 return NonNegative ? Width : Width - 1; 10415 } 10416 10417 /// Returns the range of the bool type. 10418 static IntRange forBoolType() { 10419 return IntRange(1, true); 10420 } 10421 10422 /// Returns the range of an opaque value of the given integral type. 10423 static IntRange forValueOfType(ASTContext &C, QualType T) { 10424 return forValueOfCanonicalType(C, 10425 T->getCanonicalTypeInternal().getTypePtr()); 10426 } 10427 10428 /// Returns the range of an opaque value of a canonical integral type. 10429 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) { 10430 assert(T->isCanonicalUnqualified()); 10431 10432 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10433 T = VT->getElementType().getTypePtr(); 10434 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10435 T = CT->getElementType().getTypePtr(); 10436 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10437 T = AT->getValueType().getTypePtr(); 10438 10439 if (!C.getLangOpts().CPlusPlus) { 10440 // For enum types in C code, use the underlying datatype. 10441 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10442 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr(); 10443 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) { 10444 // For enum types in C++, use the known bit width of the enumerators. 10445 EnumDecl *Enum = ET->getDecl(); 10446 // In C++11, enums can have a fixed underlying type. Use this type to 10447 // compute the range. 10448 if (Enum->isFixed()) { 10449 return IntRange(C.getIntWidth(QualType(T, 0)), 10450 !ET->isSignedIntegerOrEnumerationType()); 10451 } 10452 10453 unsigned NumPositive = Enum->getNumPositiveBits(); 10454 unsigned NumNegative = Enum->getNumNegativeBits(); 10455 10456 if (NumNegative == 0) 10457 return IntRange(NumPositive, true/*NonNegative*/); 10458 else 10459 return IntRange(std::max(NumPositive + 1, NumNegative), 10460 false/*NonNegative*/); 10461 } 10462 10463 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10464 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10465 10466 const BuiltinType *BT = cast<BuiltinType>(T); 10467 assert(BT->isInteger()); 10468 10469 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10470 } 10471 10472 /// Returns the "target" range of a canonical integral type, i.e. 10473 /// the range of values expressible in the type. 10474 /// 10475 /// This matches forValueOfCanonicalType except that enums have the 10476 /// full range of their type, not the range of their enumerators. 10477 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) { 10478 assert(T->isCanonicalUnqualified()); 10479 10480 if (const VectorType *VT = dyn_cast<VectorType>(T)) 10481 T = VT->getElementType().getTypePtr(); 10482 if (const ComplexType *CT = dyn_cast<ComplexType>(T)) 10483 T = CT->getElementType().getTypePtr(); 10484 if (const AtomicType *AT = dyn_cast<AtomicType>(T)) 10485 T = AT->getValueType().getTypePtr(); 10486 if (const EnumType *ET = dyn_cast<EnumType>(T)) 10487 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr(); 10488 10489 if (const auto *EIT = dyn_cast<ExtIntType>(T)) 10490 return IntRange(EIT->getNumBits(), EIT->isUnsigned()); 10491 10492 const BuiltinType *BT = cast<BuiltinType>(T); 10493 assert(BT->isInteger()); 10494 10495 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger()); 10496 } 10497 10498 /// Returns the supremum of two ranges: i.e. their conservative merge. 10499 static IntRange join(IntRange L, IntRange R) { 10500 bool Unsigned = L.NonNegative && R.NonNegative; 10501 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned, 10502 L.NonNegative && R.NonNegative); 10503 } 10504 10505 /// Return the range of a bitwise-AND of the two ranges. 10506 static IntRange bit_and(IntRange L, IntRange R) { 10507 unsigned Bits = std::max(L.Width, R.Width); 10508 bool NonNegative = false; 10509 if (L.NonNegative) { 10510 Bits = std::min(Bits, L.Width); 10511 NonNegative = true; 10512 } 10513 if (R.NonNegative) { 10514 Bits = std::min(Bits, R.Width); 10515 NonNegative = true; 10516 } 10517 return IntRange(Bits, NonNegative); 10518 } 10519 10520 /// Return the range of a sum of the two ranges. 10521 static IntRange sum(IntRange L, IntRange R) { 10522 bool Unsigned = L.NonNegative && R.NonNegative; 10523 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned, 10524 Unsigned); 10525 } 10526 10527 /// Return the range of a difference of the two ranges. 10528 static IntRange difference(IntRange L, IntRange R) { 10529 // We need a 1-bit-wider range if: 10530 // 1) LHS can be negative: least value can be reduced. 10531 // 2) RHS can be negative: greatest value can be increased. 10532 bool CanWiden = !L.NonNegative || !R.NonNegative; 10533 bool Unsigned = L.NonNegative && R.Width == 0; 10534 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden + 10535 !Unsigned, 10536 Unsigned); 10537 } 10538 10539 /// Return the range of a product of the two ranges. 10540 static IntRange product(IntRange L, IntRange R) { 10541 // If both LHS and RHS can be negative, we can form 10542 // -2^L * -2^R = 2^(L + R) 10543 // which requires L + R + 1 value bits to represent. 10544 bool CanWiden = !L.NonNegative && !R.NonNegative; 10545 bool Unsigned = L.NonNegative && R.NonNegative; 10546 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned, 10547 Unsigned); 10548 } 10549 10550 /// Return the range of a remainder operation between the two ranges. 10551 static IntRange rem(IntRange L, IntRange R) { 10552 // The result of a remainder can't be larger than the result of 10553 // either side. The sign of the result is the sign of the LHS. 10554 bool Unsigned = L.NonNegative; 10555 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned, 10556 Unsigned); 10557 } 10558 }; 10559 10560 } // namespace 10561 10562 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value, 10563 unsigned MaxWidth) { 10564 if (value.isSigned() && value.isNegative()) 10565 return IntRange(value.getMinSignedBits(), false); 10566 10567 if (value.getBitWidth() > MaxWidth) 10568 value = value.trunc(MaxWidth); 10569 10570 // isNonNegative() just checks the sign bit without considering 10571 // signedness. 10572 return IntRange(value.getActiveBits(), true); 10573 } 10574 10575 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty, 10576 unsigned MaxWidth) { 10577 if (result.isInt()) 10578 return GetValueRange(C, result.getInt(), MaxWidth); 10579 10580 if (result.isVector()) { 10581 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth); 10582 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) { 10583 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth); 10584 R = IntRange::join(R, El); 10585 } 10586 return R; 10587 } 10588 10589 if (result.isComplexInt()) { 10590 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth); 10591 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth); 10592 return IntRange::join(R, I); 10593 } 10594 10595 // This can happen with lossless casts to intptr_t of "based" lvalues. 10596 // Assume it might use arbitrary bits. 10597 // FIXME: The only reason we need to pass the type in here is to get 10598 // the sign right on this one case. It would be nice if APValue 10599 // preserved this. 10600 assert(result.isLValue() || result.isAddrLabelDiff()); 10601 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType()); 10602 } 10603 10604 static QualType GetExprType(const Expr *E) { 10605 QualType Ty = E->getType(); 10606 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>()) 10607 Ty = AtomicRHS->getValueType(); 10608 return Ty; 10609 } 10610 10611 /// Pseudo-evaluate the given integer expression, estimating the 10612 /// range of values it might take. 10613 /// 10614 /// \param MaxWidth The width to which the value will be truncated. 10615 /// \param Approximate If \c true, return a likely range for the result: in 10616 /// particular, assume that aritmetic on narrower types doesn't leave 10617 /// those types. If \c false, return a range including all possible 10618 /// result values. 10619 static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth, 10620 bool InConstantContext, bool Approximate) { 10621 E = E->IgnoreParens(); 10622 10623 // Try a full evaluation first. 10624 Expr::EvalResult result; 10625 if (E->EvaluateAsRValue(result, C, InConstantContext)) 10626 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth); 10627 10628 // I think we only want to look through implicit casts here; if the 10629 // user has an explicit widening cast, we should treat the value as 10630 // being of the new, wider type. 10631 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) { 10632 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue) 10633 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext, 10634 Approximate); 10635 10636 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE)); 10637 10638 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast || 10639 CE->getCastKind() == CK_BooleanToSignedIntegral; 10640 10641 // Assume that non-integer casts can span the full range of the type. 10642 if (!isIntegerCast) 10643 return OutputTypeRange; 10644 10645 IntRange SubRange = GetExprRange(C, CE->getSubExpr(), 10646 std::min(MaxWidth, OutputTypeRange.Width), 10647 InConstantContext, Approximate); 10648 10649 // Bail out if the subexpr's range is as wide as the cast type. 10650 if (SubRange.Width >= OutputTypeRange.Width) 10651 return OutputTypeRange; 10652 10653 // Otherwise, we take the smaller width, and we're non-negative if 10654 // either the output type or the subexpr is. 10655 return IntRange(SubRange.Width, 10656 SubRange.NonNegative || OutputTypeRange.NonNegative); 10657 } 10658 10659 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 10660 // If we can fold the condition, just take that operand. 10661 bool CondResult; 10662 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C)) 10663 return GetExprRange(C, 10664 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), 10665 MaxWidth, InConstantContext, Approximate); 10666 10667 // Otherwise, conservatively merge. 10668 // GetExprRange requires an integer expression, but a throw expression 10669 // results in a void type. 10670 Expr *E = CO->getTrueExpr(); 10671 IntRange L = E->getType()->isVoidType() 10672 ? IntRange{0, true} 10673 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10674 E = CO->getFalseExpr(); 10675 IntRange R = E->getType()->isVoidType() 10676 ? IntRange{0, true} 10677 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate); 10678 return IntRange::join(L, R); 10679 } 10680 10681 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 10682 IntRange (*Combine)(IntRange, IntRange) = IntRange::join; 10683 10684 switch (BO->getOpcode()) { 10685 case BO_Cmp: 10686 llvm_unreachable("builtin <=> should have class type"); 10687 10688 // Boolean-valued operations are single-bit and positive. 10689 case BO_LAnd: 10690 case BO_LOr: 10691 case BO_LT: 10692 case BO_GT: 10693 case BO_LE: 10694 case BO_GE: 10695 case BO_EQ: 10696 case BO_NE: 10697 return IntRange::forBoolType(); 10698 10699 // The type of the assignments is the type of the LHS, so the RHS 10700 // is not necessarily the same type. 10701 case BO_MulAssign: 10702 case BO_DivAssign: 10703 case BO_RemAssign: 10704 case BO_AddAssign: 10705 case BO_SubAssign: 10706 case BO_XorAssign: 10707 case BO_OrAssign: 10708 // TODO: bitfields? 10709 return IntRange::forValueOfType(C, GetExprType(E)); 10710 10711 // Simple assignments just pass through the RHS, which will have 10712 // been coerced to the LHS type. 10713 case BO_Assign: 10714 // TODO: bitfields? 10715 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 10716 Approximate); 10717 10718 // Operations with opaque sources are black-listed. 10719 case BO_PtrMemD: 10720 case BO_PtrMemI: 10721 return IntRange::forValueOfType(C, GetExprType(E)); 10722 10723 // Bitwise-and uses the *infinum* of the two source ranges. 10724 case BO_And: 10725 case BO_AndAssign: 10726 Combine = IntRange::bit_and; 10727 break; 10728 10729 // Left shift gets black-listed based on a judgement call. 10730 case BO_Shl: 10731 // ...except that we want to treat '1 << (blah)' as logically 10732 // positive. It's an important idiom. 10733 if (IntegerLiteral *I 10734 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) { 10735 if (I->getValue() == 1) { 10736 IntRange R = IntRange::forValueOfType(C, GetExprType(E)); 10737 return IntRange(R.Width, /*NonNegative*/ true); 10738 } 10739 } 10740 LLVM_FALLTHROUGH; 10741 10742 case BO_ShlAssign: 10743 return IntRange::forValueOfType(C, GetExprType(E)); 10744 10745 // Right shift by a constant can narrow its left argument. 10746 case BO_Shr: 10747 case BO_ShrAssign: { 10748 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext, 10749 Approximate); 10750 10751 // If the shift amount is a positive constant, drop the width by 10752 // that much. 10753 if (Optional<llvm::APSInt> shift = 10754 BO->getRHS()->getIntegerConstantExpr(C)) { 10755 if (shift->isNonNegative()) { 10756 unsigned zext = shift->getZExtValue(); 10757 if (zext >= L.Width) 10758 L.Width = (L.NonNegative ? 0 : 1); 10759 else 10760 L.Width -= zext; 10761 } 10762 } 10763 10764 return L; 10765 } 10766 10767 // Comma acts as its right operand. 10768 case BO_Comma: 10769 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext, 10770 Approximate); 10771 10772 case BO_Add: 10773 if (!Approximate) 10774 Combine = IntRange::sum; 10775 break; 10776 10777 case BO_Sub: 10778 if (BO->getLHS()->getType()->isPointerType()) 10779 return IntRange::forValueOfType(C, GetExprType(E)); 10780 if (!Approximate) 10781 Combine = IntRange::difference; 10782 break; 10783 10784 case BO_Mul: 10785 if (!Approximate) 10786 Combine = IntRange::product; 10787 break; 10788 10789 // The width of a division result is mostly determined by the size 10790 // of the LHS. 10791 case BO_Div: { 10792 // Don't 'pre-truncate' the operands. 10793 unsigned opWidth = C.getIntWidth(GetExprType(E)); 10794 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, 10795 Approximate); 10796 10797 // If the divisor is constant, use that. 10798 if (Optional<llvm::APSInt> divisor = 10799 BO->getRHS()->getIntegerConstantExpr(C)) { 10800 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor)) 10801 if (log2 >= L.Width) 10802 L.Width = (L.NonNegative ? 0 : 1); 10803 else 10804 L.Width = std::min(L.Width - log2, MaxWidth); 10805 return L; 10806 } 10807 10808 // Otherwise, just use the LHS's width. 10809 // FIXME: This is wrong if the LHS could be its minimal value and the RHS 10810 // could be -1. 10811 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, 10812 Approximate); 10813 return IntRange(L.Width, L.NonNegative && R.NonNegative); 10814 } 10815 10816 case BO_Rem: 10817 Combine = IntRange::rem; 10818 break; 10819 10820 // The default behavior is okay for these. 10821 case BO_Xor: 10822 case BO_Or: 10823 break; 10824 } 10825 10826 // Combine the two ranges, but limit the result to the type in which we 10827 // performed the computation. 10828 QualType T = GetExprType(E); 10829 unsigned opWidth = C.getIntWidth(T); 10830 IntRange L = 10831 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate); 10832 IntRange R = 10833 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate); 10834 IntRange C = Combine(L, R); 10835 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType(); 10836 C.Width = std::min(C.Width, MaxWidth); 10837 return C; 10838 } 10839 10840 if (const auto *UO = dyn_cast<UnaryOperator>(E)) { 10841 switch (UO->getOpcode()) { 10842 // Boolean-valued operations are white-listed. 10843 case UO_LNot: 10844 return IntRange::forBoolType(); 10845 10846 // Operations with opaque sources are black-listed. 10847 case UO_Deref: 10848 case UO_AddrOf: // should be impossible 10849 return IntRange::forValueOfType(C, GetExprType(E)); 10850 10851 default: 10852 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext, 10853 Approximate); 10854 } 10855 } 10856 10857 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 10858 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext, 10859 Approximate); 10860 10861 if (const auto *BitField = E->getSourceBitField()) 10862 return IntRange(BitField->getBitWidthValue(C), 10863 BitField->getType()->isUnsignedIntegerOrEnumerationType()); 10864 10865 return IntRange::forValueOfType(C, GetExprType(E)); 10866 } 10867 10868 static IntRange GetExprRange(ASTContext &C, const Expr *E, 10869 bool InConstantContext, bool Approximate) { 10870 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext, 10871 Approximate); 10872 } 10873 10874 /// Checks whether the given value, which currently has the given 10875 /// source semantics, has the same value when coerced through the 10876 /// target semantics. 10877 static bool IsSameFloatAfterCast(const llvm::APFloat &value, 10878 const llvm::fltSemantics &Src, 10879 const llvm::fltSemantics &Tgt) { 10880 llvm::APFloat truncated = value; 10881 10882 bool ignored; 10883 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored); 10884 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored); 10885 10886 return truncated.bitwiseIsEqual(value); 10887 } 10888 10889 /// Checks whether the given value, which currently has the given 10890 /// source semantics, has the same value when coerced through the 10891 /// target semantics. 10892 /// 10893 /// The value might be a vector of floats (or a complex number). 10894 static bool IsSameFloatAfterCast(const APValue &value, 10895 const llvm::fltSemantics &Src, 10896 const llvm::fltSemantics &Tgt) { 10897 if (value.isFloat()) 10898 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt); 10899 10900 if (value.isVector()) { 10901 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i) 10902 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt)) 10903 return false; 10904 return true; 10905 } 10906 10907 assert(value.isComplexFloat()); 10908 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) && 10909 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt)); 10910 } 10911 10912 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC, 10913 bool IsListInit = false); 10914 10915 static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) { 10916 // Suppress cases where we are comparing against an enum constant. 10917 if (const DeclRefExpr *DR = 10918 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) 10919 if (isa<EnumConstantDecl>(DR->getDecl())) 10920 return true; 10921 10922 // Suppress cases where the value is expanded from a macro, unless that macro 10923 // is how a language represents a boolean literal. This is the case in both C 10924 // and Objective-C. 10925 SourceLocation BeginLoc = E->getBeginLoc(); 10926 if (BeginLoc.isMacroID()) { 10927 StringRef MacroName = Lexer::getImmediateMacroName( 10928 BeginLoc, S.getSourceManager(), S.getLangOpts()); 10929 return MacroName != "YES" && MacroName != "NO" && 10930 MacroName != "true" && MacroName != "false"; 10931 } 10932 10933 return false; 10934 } 10935 10936 static bool isKnownToHaveUnsignedValue(Expr *E) { 10937 return E->getType()->isIntegerType() && 10938 (!E->getType()->isSignedIntegerType() || 10939 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType()); 10940 } 10941 10942 namespace { 10943 /// The promoted range of values of a type. In general this has the 10944 /// following structure: 10945 /// 10946 /// |-----------| . . . |-----------| 10947 /// ^ ^ ^ ^ 10948 /// Min HoleMin HoleMax Max 10949 /// 10950 /// ... where there is only a hole if a signed type is promoted to unsigned 10951 /// (in which case Min and Max are the smallest and largest representable 10952 /// values). 10953 struct PromotedRange { 10954 // Min, or HoleMax if there is a hole. 10955 llvm::APSInt PromotedMin; 10956 // Max, or HoleMin if there is a hole. 10957 llvm::APSInt PromotedMax; 10958 10959 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) { 10960 if (R.Width == 0) 10961 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned); 10962 else if (R.Width >= BitWidth && !Unsigned) { 10963 // Promotion made the type *narrower*. This happens when promoting 10964 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'. 10965 // Treat all values of 'signed int' as being in range for now. 10966 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned); 10967 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned); 10968 } else { 10969 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative) 10970 .extOrTrunc(BitWidth); 10971 PromotedMin.setIsUnsigned(Unsigned); 10972 10973 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative) 10974 .extOrTrunc(BitWidth); 10975 PromotedMax.setIsUnsigned(Unsigned); 10976 } 10977 } 10978 10979 // Determine whether this range is contiguous (has no hole). 10980 bool isContiguous() const { return PromotedMin <= PromotedMax; } 10981 10982 // Where a constant value is within the range. 10983 enum ComparisonResult { 10984 LT = 0x1, 10985 LE = 0x2, 10986 GT = 0x4, 10987 GE = 0x8, 10988 EQ = 0x10, 10989 NE = 0x20, 10990 InRangeFlag = 0x40, 10991 10992 Less = LE | LT | NE, 10993 Min = LE | InRangeFlag, 10994 InRange = InRangeFlag, 10995 Max = GE | InRangeFlag, 10996 Greater = GE | GT | NE, 10997 10998 OnlyValue = LE | GE | EQ | InRangeFlag, 10999 InHole = NE 11000 }; 11001 11002 ComparisonResult compare(const llvm::APSInt &Value) const { 11003 assert(Value.getBitWidth() == PromotedMin.getBitWidth() && 11004 Value.isUnsigned() == PromotedMin.isUnsigned()); 11005 if (!isContiguous()) { 11006 assert(Value.isUnsigned() && "discontiguous range for signed compare"); 11007 if (Value.isMinValue()) return Min; 11008 if (Value.isMaxValue()) return Max; 11009 if (Value >= PromotedMin) return InRange; 11010 if (Value <= PromotedMax) return InRange; 11011 return InHole; 11012 } 11013 11014 switch (llvm::APSInt::compareValues(Value, PromotedMin)) { 11015 case -1: return Less; 11016 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min; 11017 case 1: 11018 switch (llvm::APSInt::compareValues(Value, PromotedMax)) { 11019 case -1: return InRange; 11020 case 0: return Max; 11021 case 1: return Greater; 11022 } 11023 } 11024 11025 llvm_unreachable("impossible compare result"); 11026 } 11027 11028 static llvm::Optional<StringRef> 11029 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) { 11030 if (Op == BO_Cmp) { 11031 ComparisonResult LTFlag = LT, GTFlag = GT; 11032 if (ConstantOnRHS) std::swap(LTFlag, GTFlag); 11033 11034 if (R & EQ) return StringRef("'std::strong_ordering::equal'"); 11035 if (R & LTFlag) return StringRef("'std::strong_ordering::less'"); 11036 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'"); 11037 return llvm::None; 11038 } 11039 11040 ComparisonResult TrueFlag, FalseFlag; 11041 if (Op == BO_EQ) { 11042 TrueFlag = EQ; 11043 FalseFlag = NE; 11044 } else if (Op == BO_NE) { 11045 TrueFlag = NE; 11046 FalseFlag = EQ; 11047 } else { 11048 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) { 11049 TrueFlag = LT; 11050 FalseFlag = GE; 11051 } else { 11052 TrueFlag = GT; 11053 FalseFlag = LE; 11054 } 11055 if (Op == BO_GE || Op == BO_LE) 11056 std::swap(TrueFlag, FalseFlag); 11057 } 11058 if (R & TrueFlag) 11059 return StringRef("true"); 11060 if (R & FalseFlag) 11061 return StringRef("false"); 11062 return llvm::None; 11063 } 11064 }; 11065 } 11066 11067 static bool HasEnumType(Expr *E) { 11068 // Strip off implicit integral promotions. 11069 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { 11070 if (ICE->getCastKind() != CK_IntegralCast && 11071 ICE->getCastKind() != CK_NoOp) 11072 break; 11073 E = ICE->getSubExpr(); 11074 } 11075 11076 return E->getType()->isEnumeralType(); 11077 } 11078 11079 static int classifyConstantValue(Expr *Constant) { 11080 // The values of this enumeration are used in the diagnostics 11081 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare. 11082 enum ConstantValueKind { 11083 Miscellaneous = 0, 11084 LiteralTrue, 11085 LiteralFalse 11086 }; 11087 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant)) 11088 return BL->getValue() ? ConstantValueKind::LiteralTrue 11089 : ConstantValueKind::LiteralFalse; 11090 return ConstantValueKind::Miscellaneous; 11091 } 11092 11093 static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E, 11094 Expr *Constant, Expr *Other, 11095 const llvm::APSInt &Value, 11096 bool RhsConstant) { 11097 if (S.inTemplateInstantiation()) 11098 return false; 11099 11100 Expr *OriginalOther = Other; 11101 11102 Constant = Constant->IgnoreParenImpCasts(); 11103 Other = Other->IgnoreParenImpCasts(); 11104 11105 // Suppress warnings on tautological comparisons between values of the same 11106 // enumeration type. There are only two ways we could warn on this: 11107 // - If the constant is outside the range of representable values of 11108 // the enumeration. In such a case, we should warn about the cast 11109 // to enumeration type, not about the comparison. 11110 // - If the constant is the maximum / minimum in-range value. For an 11111 // enumeratin type, such comparisons can be meaningful and useful. 11112 if (Constant->getType()->isEnumeralType() && 11113 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType())) 11114 return false; 11115 11116 IntRange OtherValueRange = GetExprRange( 11117 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false); 11118 11119 QualType OtherT = Other->getType(); 11120 if (const auto *AT = OtherT->getAs<AtomicType>()) 11121 OtherT = AT->getValueType(); 11122 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT); 11123 11124 // Special case for ObjC BOOL on targets where its a typedef for a signed char 11125 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this. 11126 bool IsObjCSignedCharBool = S.getLangOpts().ObjC && 11127 S.NSAPIObj->isObjCBOOLType(OtherT) && 11128 OtherT->isSpecificBuiltinType(BuiltinType::SChar); 11129 11130 // Whether we're treating Other as being a bool because of the form of 11131 // expression despite it having another type (typically 'int' in C). 11132 bool OtherIsBooleanDespiteType = 11133 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue(); 11134 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool) 11135 OtherTypeRange = OtherValueRange = IntRange::forBoolType(); 11136 11137 // Check if all values in the range of possible values of this expression 11138 // lead to the same comparison outcome. 11139 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(), 11140 Value.isUnsigned()); 11141 auto Cmp = OtherPromotedValueRange.compare(Value); 11142 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant); 11143 if (!Result) 11144 return false; 11145 11146 // Also consider the range determined by the type alone. This allows us to 11147 // classify the warning under the proper diagnostic group. 11148 bool TautologicalTypeCompare = false; 11149 { 11150 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(), 11151 Value.isUnsigned()); 11152 auto TypeCmp = OtherPromotedTypeRange.compare(Value); 11153 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp, 11154 RhsConstant)) { 11155 TautologicalTypeCompare = true; 11156 Cmp = TypeCmp; 11157 Result = TypeResult; 11158 } 11159 } 11160 11161 // Don't warn if the non-constant operand actually always evaluates to the 11162 // same value. 11163 if (!TautologicalTypeCompare && OtherValueRange.Width == 0) 11164 return false; 11165 11166 // Suppress the diagnostic for an in-range comparison if the constant comes 11167 // from a macro or enumerator. We don't want to diagnose 11168 // 11169 // some_long_value <= INT_MAX 11170 // 11171 // when sizeof(int) == sizeof(long). 11172 bool InRange = Cmp & PromotedRange::InRangeFlag; 11173 if (InRange && IsEnumConstOrFromMacro(S, Constant)) 11174 return false; 11175 11176 // A comparison of an unsigned bit-field against 0 is really a type problem, 11177 // even though at the type level the bit-field might promote to 'signed int'. 11178 if (Other->refersToBitField() && InRange && Value == 0 && 11179 Other->getType()->isUnsignedIntegerOrEnumerationType()) 11180 TautologicalTypeCompare = true; 11181 11182 // If this is a comparison to an enum constant, include that 11183 // constant in the diagnostic. 11184 const EnumConstantDecl *ED = nullptr; 11185 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant)) 11186 ED = dyn_cast<EnumConstantDecl>(DR->getDecl()); 11187 11188 // Should be enough for uint128 (39 decimal digits) 11189 SmallString<64> PrettySourceValue; 11190 llvm::raw_svector_ostream OS(PrettySourceValue); 11191 if (ED) { 11192 OS << '\'' << *ED << "' (" << Value << ")"; 11193 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>( 11194 Constant->IgnoreParenImpCasts())) { 11195 OS << (BL->getValue() ? "YES" : "NO"); 11196 } else { 11197 OS << Value; 11198 } 11199 11200 if (!TautologicalTypeCompare) { 11201 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range) 11202 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative 11203 << E->getOpcodeStr() << OS.str() << *Result 11204 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11205 return true; 11206 } 11207 11208 if (IsObjCSignedCharBool) { 11209 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11210 S.PDiag(diag::warn_tautological_compare_objc_bool) 11211 << OS.str() << *Result); 11212 return true; 11213 } 11214 11215 // FIXME: We use a somewhat different formatting for the in-range cases and 11216 // cases involving boolean values for historical reasons. We should pick a 11217 // consistent way of presenting these diagnostics. 11218 if (!InRange || Other->isKnownToHaveBooleanValue()) { 11219 11220 S.DiagRuntimeBehavior( 11221 E->getOperatorLoc(), E, 11222 S.PDiag(!InRange ? diag::warn_out_of_range_compare 11223 : diag::warn_tautological_bool_compare) 11224 << OS.str() << classifyConstantValue(Constant) << OtherT 11225 << OtherIsBooleanDespiteType << *Result 11226 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange()); 11227 } else { 11228 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0) 11229 ? (HasEnumType(OriginalOther) 11230 ? diag::warn_unsigned_enum_always_true_comparison 11231 : diag::warn_unsigned_always_true_comparison) 11232 : diag::warn_tautological_constant_compare; 11233 11234 S.Diag(E->getOperatorLoc(), Diag) 11235 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result 11236 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange(); 11237 } 11238 11239 return true; 11240 } 11241 11242 /// Analyze the operands of the given comparison. Implements the 11243 /// fallback case from AnalyzeComparison. 11244 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) { 11245 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11246 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11247 } 11248 11249 /// Implements -Wsign-compare. 11250 /// 11251 /// \param E the binary operator to check for warnings 11252 static void AnalyzeComparison(Sema &S, BinaryOperator *E) { 11253 // The type the comparison is being performed in. 11254 QualType T = E->getLHS()->getType(); 11255 11256 // Only analyze comparison operators where both sides have been converted to 11257 // the same type. 11258 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType())) 11259 return AnalyzeImpConvsInComparison(S, E); 11260 11261 // Don't analyze value-dependent comparisons directly. 11262 if (E->isValueDependent()) 11263 return AnalyzeImpConvsInComparison(S, E); 11264 11265 Expr *LHS = E->getLHS(); 11266 Expr *RHS = E->getRHS(); 11267 11268 if (T->isIntegralType(S.Context)) { 11269 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context); 11270 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context); 11271 11272 // We don't care about expressions whose result is a constant. 11273 if (RHSValue && LHSValue) 11274 return AnalyzeImpConvsInComparison(S, E); 11275 11276 // We only care about expressions where just one side is literal 11277 if ((bool)RHSValue ^ (bool)LHSValue) { 11278 // Is the constant on the RHS or LHS? 11279 const bool RhsConstant = (bool)RHSValue; 11280 Expr *Const = RhsConstant ? RHS : LHS; 11281 Expr *Other = RhsConstant ? LHS : RHS; 11282 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue; 11283 11284 // Check whether an integer constant comparison results in a value 11285 // of 'true' or 'false'. 11286 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant)) 11287 return AnalyzeImpConvsInComparison(S, E); 11288 } 11289 } 11290 11291 if (!T->hasUnsignedIntegerRepresentation()) { 11292 // We don't do anything special if this isn't an unsigned integral 11293 // comparison: we're only interested in integral comparisons, and 11294 // signed comparisons only happen in cases we don't care to warn about. 11295 return AnalyzeImpConvsInComparison(S, E); 11296 } 11297 11298 LHS = LHS->IgnoreParenImpCasts(); 11299 RHS = RHS->IgnoreParenImpCasts(); 11300 11301 if (!S.getLangOpts().CPlusPlus) { 11302 // Avoid warning about comparison of integers with different signs when 11303 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of 11304 // the type of `E`. 11305 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType())) 11306 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11307 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType())) 11308 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts(); 11309 } 11310 11311 // Check to see if one of the (unmodified) operands is of different 11312 // signedness. 11313 Expr *signedOperand, *unsignedOperand; 11314 if (LHS->getType()->hasSignedIntegerRepresentation()) { 11315 assert(!RHS->getType()->hasSignedIntegerRepresentation() && 11316 "unsigned comparison between two signed integer expressions?"); 11317 signedOperand = LHS; 11318 unsignedOperand = RHS; 11319 } else if (RHS->getType()->hasSignedIntegerRepresentation()) { 11320 signedOperand = RHS; 11321 unsignedOperand = LHS; 11322 } else { 11323 return AnalyzeImpConvsInComparison(S, E); 11324 } 11325 11326 // Otherwise, calculate the effective range of the signed operand. 11327 IntRange signedRange = GetExprRange( 11328 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true); 11329 11330 // Go ahead and analyze implicit conversions in the operands. Note 11331 // that we skip the implicit conversions on both sides. 11332 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc()); 11333 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc()); 11334 11335 // If the signed range is non-negative, -Wsign-compare won't fire. 11336 if (signedRange.NonNegative) 11337 return; 11338 11339 // For (in)equality comparisons, if the unsigned operand is a 11340 // constant which cannot collide with a overflowed signed operand, 11341 // then reinterpreting the signed operand as unsigned will not 11342 // change the result of the comparison. 11343 if (E->isEqualityOp()) { 11344 unsigned comparisonWidth = S.Context.getIntWidth(T); 11345 IntRange unsignedRange = 11346 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(), 11347 /*Approximate*/ true); 11348 11349 // We should never be unable to prove that the unsigned operand is 11350 // non-negative. 11351 assert(unsignedRange.NonNegative && "unsigned range includes negative?"); 11352 11353 if (unsignedRange.Width < comparisonWidth) 11354 return; 11355 } 11356 11357 S.DiagRuntimeBehavior(E->getOperatorLoc(), E, 11358 S.PDiag(diag::warn_mixed_sign_comparison) 11359 << LHS->getType() << RHS->getType() 11360 << LHS->getSourceRange() << RHS->getSourceRange()); 11361 } 11362 11363 /// Analyzes an attempt to assign the given value to a bitfield. 11364 /// 11365 /// Returns true if there was something fishy about the attempt. 11366 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init, 11367 SourceLocation InitLoc) { 11368 assert(Bitfield->isBitField()); 11369 if (Bitfield->isInvalidDecl()) 11370 return false; 11371 11372 // White-list bool bitfields. 11373 QualType BitfieldType = Bitfield->getType(); 11374 if (BitfieldType->isBooleanType()) 11375 return false; 11376 11377 if (BitfieldType->isEnumeralType()) { 11378 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl(); 11379 // If the underlying enum type was not explicitly specified as an unsigned 11380 // type and the enum contain only positive values, MSVC++ will cause an 11381 // inconsistency by storing this as a signed type. 11382 if (S.getLangOpts().CPlusPlus11 && 11383 !BitfieldEnumDecl->getIntegerTypeSourceInfo() && 11384 BitfieldEnumDecl->getNumPositiveBits() > 0 && 11385 BitfieldEnumDecl->getNumNegativeBits() == 0) { 11386 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield) 11387 << BitfieldEnumDecl; 11388 } 11389 } 11390 11391 if (Bitfield->getType()->isBooleanType()) 11392 return false; 11393 11394 // Ignore value- or type-dependent expressions. 11395 if (Bitfield->getBitWidth()->isValueDependent() || 11396 Bitfield->getBitWidth()->isTypeDependent() || 11397 Init->isValueDependent() || 11398 Init->isTypeDependent()) 11399 return false; 11400 11401 Expr *OriginalInit = Init->IgnoreParenImpCasts(); 11402 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context); 11403 11404 Expr::EvalResult Result; 11405 if (!OriginalInit->EvaluateAsInt(Result, S.Context, 11406 Expr::SE_AllowSideEffects)) { 11407 // The RHS is not constant. If the RHS has an enum type, make sure the 11408 // bitfield is wide enough to hold all the values of the enum without 11409 // truncation. 11410 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) { 11411 EnumDecl *ED = EnumTy->getDecl(); 11412 bool SignedBitfield = BitfieldType->isSignedIntegerType(); 11413 11414 // Enum types are implicitly signed on Windows, so check if there are any 11415 // negative enumerators to see if the enum was intended to be signed or 11416 // not. 11417 bool SignedEnum = ED->getNumNegativeBits() > 0; 11418 11419 // Check for surprising sign changes when assigning enum values to a 11420 // bitfield of different signedness. If the bitfield is signed and we 11421 // have exactly the right number of bits to store this unsigned enum, 11422 // suggest changing the enum to an unsigned type. This typically happens 11423 // on Windows where unfixed enums always use an underlying type of 'int'. 11424 unsigned DiagID = 0; 11425 if (SignedEnum && !SignedBitfield) { 11426 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum; 11427 } else if (SignedBitfield && !SignedEnum && 11428 ED->getNumPositiveBits() == FieldWidth) { 11429 DiagID = diag::warn_signed_bitfield_enum_conversion; 11430 } 11431 11432 if (DiagID) { 11433 S.Diag(InitLoc, DiagID) << Bitfield << ED; 11434 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo(); 11435 SourceRange TypeRange = 11436 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange(); 11437 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign) 11438 << SignedEnum << TypeRange; 11439 } 11440 11441 // Compute the required bitwidth. If the enum has negative values, we need 11442 // one more bit than the normal number of positive bits to represent the 11443 // sign bit. 11444 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1, 11445 ED->getNumNegativeBits()) 11446 : ED->getNumPositiveBits(); 11447 11448 // Check the bitwidth. 11449 if (BitsNeeded > FieldWidth) { 11450 Expr *WidthExpr = Bitfield->getBitWidth(); 11451 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum) 11452 << Bitfield << ED; 11453 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield) 11454 << BitsNeeded << ED << WidthExpr->getSourceRange(); 11455 } 11456 } 11457 11458 return false; 11459 } 11460 11461 llvm::APSInt Value = Result.Val.getInt(); 11462 11463 unsigned OriginalWidth = Value.getBitWidth(); 11464 11465 if (!Value.isSigned() || Value.isNegative()) 11466 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit)) 11467 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not) 11468 OriginalWidth = Value.getMinSignedBits(); 11469 11470 if (OriginalWidth <= FieldWidth) 11471 return false; 11472 11473 // Compute the value which the bitfield will contain. 11474 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth); 11475 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType()); 11476 11477 // Check whether the stored value is equal to the original value. 11478 TruncatedValue = TruncatedValue.extend(OriginalWidth); 11479 if (llvm::APSInt::isSameValue(Value, TruncatedValue)) 11480 return false; 11481 11482 // Special-case bitfields of width 1: booleans are naturally 0/1, and 11483 // therefore don't strictly fit into a signed bitfield of width 1. 11484 if (FieldWidth == 1 && Value == 1) 11485 return false; 11486 11487 std::string PrettyValue = Value.toString(10); 11488 std::string PrettyTrunc = TruncatedValue.toString(10); 11489 11490 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant) 11491 << PrettyValue << PrettyTrunc << OriginalInit->getType() 11492 << Init->getSourceRange(); 11493 11494 return true; 11495 } 11496 11497 /// Analyze the given simple or compound assignment for warning-worthy 11498 /// operations. 11499 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) { 11500 // Just recurse on the LHS. 11501 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11502 11503 // We want to recurse on the RHS as normal unless we're assigning to 11504 // a bitfield. 11505 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) { 11506 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(), 11507 E->getOperatorLoc())) { 11508 // Recurse, ignoring any implicit conversions on the RHS. 11509 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(), 11510 E->getOperatorLoc()); 11511 } 11512 } 11513 11514 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11515 11516 // Diagnose implicitly sequentially-consistent atomic assignment. 11517 if (E->getLHS()->getType()->isAtomicType()) 11518 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 11519 } 11520 11521 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11522 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T, 11523 SourceLocation CContext, unsigned diag, 11524 bool pruneControlFlow = false) { 11525 if (pruneControlFlow) { 11526 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11527 S.PDiag(diag) 11528 << SourceType << T << E->getSourceRange() 11529 << SourceRange(CContext)); 11530 return; 11531 } 11532 S.Diag(E->getExprLoc(), diag) 11533 << SourceType << T << E->getSourceRange() << SourceRange(CContext); 11534 } 11535 11536 /// Diagnose an implicit cast; purely a helper for CheckImplicitConversion. 11537 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T, 11538 SourceLocation CContext, 11539 unsigned diag, bool pruneControlFlow = false) { 11540 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow); 11541 } 11542 11543 static bool isObjCSignedCharBool(Sema &S, QualType Ty) { 11544 return Ty->isSpecificBuiltinType(BuiltinType::SChar) && 11545 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty); 11546 } 11547 11548 static void adornObjCBoolConversionDiagWithTernaryFixit( 11549 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) { 11550 Expr *Ignored = SourceExpr->IgnoreImplicit(); 11551 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored)) 11552 Ignored = OVE->getSourceExpr(); 11553 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) || 11554 isa<BinaryOperator>(Ignored) || 11555 isa<CXXOperatorCallExpr>(Ignored); 11556 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc()); 11557 if (NeedsParens) 11558 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(") 11559 << FixItHint::CreateInsertion(EndLoc, ")"); 11560 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO"); 11561 } 11562 11563 /// Diagnose an implicit cast from a floating point value to an integer value. 11564 static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T, 11565 SourceLocation CContext) { 11566 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool); 11567 const bool PruneWarnings = S.inTemplateInstantiation(); 11568 11569 Expr *InnerE = E->IgnoreParenImpCasts(); 11570 // We also want to warn on, e.g., "int i = -1.234" 11571 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE)) 11572 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus) 11573 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts(); 11574 11575 const bool IsLiteral = 11576 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE); 11577 11578 llvm::APFloat Value(0.0); 11579 bool IsConstant = 11580 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects); 11581 if (!IsConstant) { 11582 if (isObjCSignedCharBool(S, T)) { 11583 return adornObjCBoolConversionDiagWithTernaryFixit( 11584 S, E, 11585 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool) 11586 << E->getType()); 11587 } 11588 11589 return DiagnoseImpCast(S, E, T, CContext, 11590 diag::warn_impcast_float_integer, PruneWarnings); 11591 } 11592 11593 bool isExact = false; 11594 11595 llvm::APSInt IntegerValue(S.Context.getIntWidth(T), 11596 T->hasUnsignedIntegerRepresentation()); 11597 llvm::APFloat::opStatus Result = Value.convertToInteger( 11598 IntegerValue, llvm::APFloat::rmTowardZero, &isExact); 11599 11600 // FIXME: Force the precision of the source value down so we don't print 11601 // digits which are usually useless (we don't really care here if we 11602 // truncate a digit by accident in edge cases). Ideally, APFloat::toString 11603 // would automatically print the shortest representation, but it's a bit 11604 // tricky to implement. 11605 SmallString<16> PrettySourceValue; 11606 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics()); 11607 precision = (precision * 59 + 195) / 196; 11608 Value.toString(PrettySourceValue, precision); 11609 11610 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) { 11611 return adornObjCBoolConversionDiagWithTernaryFixit( 11612 S, E, 11613 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool) 11614 << PrettySourceValue); 11615 } 11616 11617 if (Result == llvm::APFloat::opOK && isExact) { 11618 if (IsLiteral) return; 11619 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer, 11620 PruneWarnings); 11621 } 11622 11623 // Conversion of a floating-point value to a non-bool integer where the 11624 // integral part cannot be represented by the integer type is undefined. 11625 if (!IsBool && Result == llvm::APFloat::opInvalidOp) 11626 return DiagnoseImpCast( 11627 S, E, T, CContext, 11628 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range 11629 : diag::warn_impcast_float_to_integer_out_of_range, 11630 PruneWarnings); 11631 11632 unsigned DiagID = 0; 11633 if (IsLiteral) { 11634 // Warn on floating point literal to integer. 11635 DiagID = diag::warn_impcast_literal_float_to_integer; 11636 } else if (IntegerValue == 0) { 11637 if (Value.isZero()) { // Skip -0.0 to 0 conversion. 11638 return DiagnoseImpCast(S, E, T, CContext, 11639 diag::warn_impcast_float_integer, PruneWarnings); 11640 } 11641 // Warn on non-zero to zero conversion. 11642 DiagID = diag::warn_impcast_float_to_integer_zero; 11643 } else { 11644 if (IntegerValue.isUnsigned()) { 11645 if (!IntegerValue.isMaxValue()) { 11646 return DiagnoseImpCast(S, E, T, CContext, 11647 diag::warn_impcast_float_integer, PruneWarnings); 11648 } 11649 } else { // IntegerValue.isSigned() 11650 if (!IntegerValue.isMaxSignedValue() && 11651 !IntegerValue.isMinSignedValue()) { 11652 return DiagnoseImpCast(S, E, T, CContext, 11653 diag::warn_impcast_float_integer, PruneWarnings); 11654 } 11655 } 11656 // Warn on evaluatable floating point expression to integer conversion. 11657 DiagID = diag::warn_impcast_float_to_integer; 11658 } 11659 11660 SmallString<16> PrettyTargetValue; 11661 if (IsBool) 11662 PrettyTargetValue = Value.isZero() ? "false" : "true"; 11663 else 11664 IntegerValue.toString(PrettyTargetValue); 11665 11666 if (PruneWarnings) { 11667 S.DiagRuntimeBehavior(E->getExprLoc(), E, 11668 S.PDiag(DiagID) 11669 << E->getType() << T.getUnqualifiedType() 11670 << PrettySourceValue << PrettyTargetValue 11671 << E->getSourceRange() << SourceRange(CContext)); 11672 } else { 11673 S.Diag(E->getExprLoc(), DiagID) 11674 << E->getType() << T.getUnqualifiedType() << PrettySourceValue 11675 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext); 11676 } 11677 } 11678 11679 /// Analyze the given compound assignment for the possible losing of 11680 /// floating-point precision. 11681 static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) { 11682 assert(isa<CompoundAssignOperator>(E) && 11683 "Must be compound assignment operation"); 11684 // Recurse on the LHS and RHS in here 11685 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc()); 11686 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc()); 11687 11688 if (E->getLHS()->getType()->isAtomicType()) 11689 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst); 11690 11691 // Now check the outermost expression 11692 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>(); 11693 const auto *RBT = cast<CompoundAssignOperator>(E) 11694 ->getComputationResultType() 11695 ->getAs<BuiltinType>(); 11696 11697 // The below checks assume source is floating point. 11698 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return; 11699 11700 // If source is floating point but target is an integer. 11701 if (ResultBT->isInteger()) 11702 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(), 11703 E->getExprLoc(), diag::warn_impcast_float_integer); 11704 11705 if (!ResultBT->isFloatingPoint()) 11706 return; 11707 11708 // If both source and target are floating points, warn about losing precision. 11709 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 11710 QualType(ResultBT, 0), QualType(RBT, 0)); 11711 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc())) 11712 // warn about dropping FP rank. 11713 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(), 11714 diag::warn_impcast_float_result_precision); 11715 } 11716 11717 static std::string PrettyPrintInRange(const llvm::APSInt &Value, 11718 IntRange Range) { 11719 if (!Range.Width) return "0"; 11720 11721 llvm::APSInt ValueInRange = Value; 11722 ValueInRange.setIsSigned(!Range.NonNegative); 11723 ValueInRange = ValueInRange.trunc(Range.Width); 11724 return ValueInRange.toString(10); 11725 } 11726 11727 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) { 11728 if (!isa<ImplicitCastExpr>(Ex)) 11729 return false; 11730 11731 Expr *InnerE = Ex->IgnoreParenImpCasts(); 11732 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr(); 11733 const Type *Source = 11734 S.Context.getCanonicalType(InnerE->getType()).getTypePtr(); 11735 if (Target->isDependentType()) 11736 return false; 11737 11738 const BuiltinType *FloatCandidateBT = 11739 dyn_cast<BuiltinType>(ToBool ? Source : Target); 11740 const Type *BoolCandidateType = ToBool ? Target : Source; 11741 11742 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) && 11743 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint())); 11744 } 11745 11746 static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall, 11747 SourceLocation CC) { 11748 unsigned NumArgs = TheCall->getNumArgs(); 11749 for (unsigned i = 0; i < NumArgs; ++i) { 11750 Expr *CurrA = TheCall->getArg(i); 11751 if (!IsImplicitBoolFloatConversion(S, CurrA, true)) 11752 continue; 11753 11754 bool IsSwapped = ((i > 0) && 11755 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false)); 11756 IsSwapped |= ((i < (NumArgs - 1)) && 11757 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false)); 11758 if (IsSwapped) { 11759 // Warn on this floating-point to bool conversion. 11760 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(), 11761 CurrA->getType(), CC, 11762 diag::warn_impcast_floating_point_to_bool); 11763 } 11764 } 11765 } 11766 11767 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T, 11768 SourceLocation CC) { 11769 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer, 11770 E->getExprLoc())) 11771 return; 11772 11773 // Don't warn on functions which have return type nullptr_t. 11774 if (isa<CallExpr>(E)) 11775 return; 11776 11777 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr). 11778 const Expr::NullPointerConstantKind NullKind = 11779 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull); 11780 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr) 11781 return; 11782 11783 // Return if target type is a safe conversion. 11784 if (T->isAnyPointerType() || T->isBlockPointerType() || 11785 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType()) 11786 return; 11787 11788 SourceLocation Loc = E->getSourceRange().getBegin(); 11789 11790 // Venture through the macro stacks to get to the source of macro arguments. 11791 // The new location is a better location than the complete location that was 11792 // passed in. 11793 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc); 11794 CC = S.SourceMgr.getTopMacroCallerLoc(CC); 11795 11796 // __null is usually wrapped in a macro. Go up a macro if that is the case. 11797 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) { 11798 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 11799 Loc, S.SourceMgr, S.getLangOpts()); 11800 if (MacroName == "NULL") 11801 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin(); 11802 } 11803 11804 // Only warn if the null and context location are in the same macro expansion. 11805 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC)) 11806 return; 11807 11808 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer) 11809 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC) 11810 << FixItHint::CreateReplacement(Loc, 11811 S.getFixItZeroLiteralForType(T, Loc)); 11812 } 11813 11814 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11815 ObjCArrayLiteral *ArrayLiteral); 11816 11817 static void 11818 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11819 ObjCDictionaryLiteral *DictionaryLiteral); 11820 11821 /// Check a single element within a collection literal against the 11822 /// target element type. 11823 static void checkObjCCollectionLiteralElement(Sema &S, 11824 QualType TargetElementType, 11825 Expr *Element, 11826 unsigned ElementKind) { 11827 // Skip a bitcast to 'id' or qualified 'id'. 11828 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) { 11829 if (ICE->getCastKind() == CK_BitCast && 11830 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>()) 11831 Element = ICE->getSubExpr(); 11832 } 11833 11834 QualType ElementType = Element->getType(); 11835 ExprResult ElementResult(Element); 11836 if (ElementType->getAs<ObjCObjectPointerType>() && 11837 S.CheckSingleAssignmentConstraints(TargetElementType, 11838 ElementResult, 11839 false, false) 11840 != Sema::Compatible) { 11841 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element) 11842 << ElementType << ElementKind << TargetElementType 11843 << Element->getSourceRange(); 11844 } 11845 11846 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element)) 11847 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral); 11848 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element)) 11849 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral); 11850 } 11851 11852 /// Check an Objective-C array literal being converted to the given 11853 /// target type. 11854 static void checkObjCArrayLiteral(Sema &S, QualType TargetType, 11855 ObjCArrayLiteral *ArrayLiteral) { 11856 if (!S.NSArrayDecl) 11857 return; 11858 11859 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11860 if (!TargetObjCPtr) 11861 return; 11862 11863 if (TargetObjCPtr->isUnspecialized() || 11864 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11865 != S.NSArrayDecl->getCanonicalDecl()) 11866 return; 11867 11868 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11869 if (TypeArgs.size() != 1) 11870 return; 11871 11872 QualType TargetElementType = TypeArgs[0]; 11873 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) { 11874 checkObjCCollectionLiteralElement(S, TargetElementType, 11875 ArrayLiteral->getElement(I), 11876 0); 11877 } 11878 } 11879 11880 /// Check an Objective-C dictionary literal being converted to the given 11881 /// target type. 11882 static void 11883 checkObjCDictionaryLiteral(Sema &S, QualType TargetType, 11884 ObjCDictionaryLiteral *DictionaryLiteral) { 11885 if (!S.NSDictionaryDecl) 11886 return; 11887 11888 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>(); 11889 if (!TargetObjCPtr) 11890 return; 11891 11892 if (TargetObjCPtr->isUnspecialized() || 11893 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl() 11894 != S.NSDictionaryDecl->getCanonicalDecl()) 11895 return; 11896 11897 auto TypeArgs = TargetObjCPtr->getTypeArgs(); 11898 if (TypeArgs.size() != 2) 11899 return; 11900 11901 QualType TargetKeyType = TypeArgs[0]; 11902 QualType TargetObjectType = TypeArgs[1]; 11903 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) { 11904 auto Element = DictionaryLiteral->getKeyValueElement(I); 11905 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1); 11906 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2); 11907 } 11908 } 11909 11910 // Helper function to filter out cases for constant width constant conversion. 11911 // Don't warn on char array initialization or for non-decimal values. 11912 static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T, 11913 SourceLocation CC) { 11914 // If initializing from a constant, and the constant starts with '0', 11915 // then it is a binary, octal, or hexadecimal. Allow these constants 11916 // to fill all the bits, even if there is a sign change. 11917 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) { 11918 const char FirstLiteralCharacter = 11919 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0]; 11920 if (FirstLiteralCharacter == '0') 11921 return false; 11922 } 11923 11924 // If the CC location points to a '{', and the type is char, then assume 11925 // assume it is an array initialization. 11926 if (CC.isValid() && T->isCharType()) { 11927 const char FirstContextCharacter = 11928 S.getSourceManager().getCharacterData(CC)[0]; 11929 if (FirstContextCharacter == '{') 11930 return false; 11931 } 11932 11933 return true; 11934 } 11935 11936 static const IntegerLiteral *getIntegerLiteral(Expr *E) { 11937 const auto *IL = dyn_cast<IntegerLiteral>(E); 11938 if (!IL) { 11939 if (auto *UO = dyn_cast<UnaryOperator>(E)) { 11940 if (UO->getOpcode() == UO_Minus) 11941 return dyn_cast<IntegerLiteral>(UO->getSubExpr()); 11942 } 11943 } 11944 11945 return IL; 11946 } 11947 11948 static void DiagnoseIntInBoolContext(Sema &S, Expr *E) { 11949 E = E->IgnoreParenImpCasts(); 11950 SourceLocation ExprLoc = E->getExprLoc(); 11951 11952 if (const auto *BO = dyn_cast<BinaryOperator>(E)) { 11953 BinaryOperator::Opcode Opc = BO->getOpcode(); 11954 Expr::EvalResult Result; 11955 // Do not diagnose unsigned shifts. 11956 if (Opc == BO_Shl) { 11957 const auto *LHS = getIntegerLiteral(BO->getLHS()); 11958 const auto *RHS = getIntegerLiteral(BO->getRHS()); 11959 if (LHS && LHS->getValue() == 0) 11960 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0; 11961 else if (!E->isValueDependent() && LHS && RHS && 11962 RHS->getValue().isNonNegative() && 11963 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) 11964 S.Diag(ExprLoc, diag::warn_left_shift_always) 11965 << (Result.Val.getInt() != 0); 11966 else if (E->getType()->isSignedIntegerType()) 11967 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E; 11968 } 11969 } 11970 11971 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { 11972 const auto *LHS = getIntegerLiteral(CO->getTrueExpr()); 11973 const auto *RHS = getIntegerLiteral(CO->getFalseExpr()); 11974 if (!LHS || !RHS) 11975 return; 11976 if ((LHS->getValue() == 0 || LHS->getValue() == 1) && 11977 (RHS->getValue() == 0 || RHS->getValue() == 1)) 11978 // Do not diagnose common idioms. 11979 return; 11980 if (LHS->getValue() != 0 && RHS->getValue() != 0) 11981 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true); 11982 } 11983 } 11984 11985 static void CheckImplicitConversion(Sema &S, Expr *E, QualType T, 11986 SourceLocation CC, 11987 bool *ICContext = nullptr, 11988 bool IsListInit = false) { 11989 if (E->isTypeDependent() || E->isValueDependent()) return; 11990 11991 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr(); 11992 const Type *Target = S.Context.getCanonicalType(T).getTypePtr(); 11993 if (Source == Target) return; 11994 if (Target->isDependentType()) return; 11995 11996 // If the conversion context location is invalid don't complain. We also 11997 // don't want to emit a warning if the issue occurs from the expansion of 11998 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we 11999 // delay this check as long as possible. Once we detect we are in that 12000 // scenario, we just return. 12001 if (CC.isInvalid()) 12002 return; 12003 12004 if (Source->isAtomicType()) 12005 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst); 12006 12007 // Diagnose implicit casts to bool. 12008 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) { 12009 if (isa<StringLiteral>(E)) 12010 // Warn on string literal to bool. Checks for string literals in logical 12011 // and expressions, for instance, assert(0 && "error here"), are 12012 // prevented by a check in AnalyzeImplicitConversions(). 12013 return DiagnoseImpCast(S, E, T, CC, 12014 diag::warn_impcast_string_literal_to_bool); 12015 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) || 12016 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) { 12017 // This covers the literal expressions that evaluate to Objective-C 12018 // objects. 12019 return DiagnoseImpCast(S, E, T, CC, 12020 diag::warn_impcast_objective_c_literal_to_bool); 12021 } 12022 if (Source->isPointerType() || Source->canDecayToPointerType()) { 12023 // Warn on pointer to bool conversion that is always true. 12024 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false, 12025 SourceRange(CC)); 12026 } 12027 } 12028 12029 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL 12030 // is a typedef for signed char (macOS), then that constant value has to be 1 12031 // or 0. 12032 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) { 12033 Expr::EvalResult Result; 12034 if (E->EvaluateAsInt(Result, S.getASTContext(), 12035 Expr::SE_AllowSideEffects)) { 12036 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) { 12037 adornObjCBoolConversionDiagWithTernaryFixit( 12038 S, E, 12039 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool) 12040 << Result.Val.getInt().toString(10)); 12041 } 12042 return; 12043 } 12044 } 12045 12046 // Check implicit casts from Objective-C collection literals to specialized 12047 // collection types, e.g., NSArray<NSString *> *. 12048 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E)) 12049 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral); 12050 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E)) 12051 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral); 12052 12053 // Strip vector types. 12054 if (isa<VectorType>(Source)) { 12055 if (!isa<VectorType>(Target)) { 12056 if (S.SourceMgr.isInSystemMacro(CC)) 12057 return; 12058 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar); 12059 } 12060 12061 // If the vector cast is cast between two vectors of the same size, it is 12062 // a bitcast, not a conversion. 12063 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target)) 12064 return; 12065 12066 Source = cast<VectorType>(Source)->getElementType().getTypePtr(); 12067 Target = cast<VectorType>(Target)->getElementType().getTypePtr(); 12068 } 12069 if (auto VecTy = dyn_cast<VectorType>(Target)) 12070 Target = VecTy->getElementType().getTypePtr(); 12071 12072 // Strip complex types. 12073 if (isa<ComplexType>(Source)) { 12074 if (!isa<ComplexType>(Target)) { 12075 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType()) 12076 return; 12077 12078 return DiagnoseImpCast(S, E, T, CC, 12079 S.getLangOpts().CPlusPlus 12080 ? diag::err_impcast_complex_scalar 12081 : diag::warn_impcast_complex_scalar); 12082 } 12083 12084 Source = cast<ComplexType>(Source)->getElementType().getTypePtr(); 12085 Target = cast<ComplexType>(Target)->getElementType().getTypePtr(); 12086 } 12087 12088 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source); 12089 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target); 12090 12091 // If the source is floating point... 12092 if (SourceBT && SourceBT->isFloatingPoint()) { 12093 // ...and the target is floating point... 12094 if (TargetBT && TargetBT->isFloatingPoint()) { 12095 // ...then warn if we're dropping FP rank. 12096 12097 int Order = S.getASTContext().getFloatingTypeSemanticOrder( 12098 QualType(SourceBT, 0), QualType(TargetBT, 0)); 12099 if (Order > 0) { 12100 // Don't warn about float constants that are precisely 12101 // representable in the target type. 12102 Expr::EvalResult result; 12103 if (E->EvaluateAsRValue(result, S.Context)) { 12104 // Value might be a float, a float vector, or a float complex. 12105 if (IsSameFloatAfterCast(result.Val, 12106 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)), 12107 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0)))) 12108 return; 12109 } 12110 12111 if (S.SourceMgr.isInSystemMacro(CC)) 12112 return; 12113 12114 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision); 12115 } 12116 // ... or possibly if we're increasing rank, too 12117 else if (Order < 0) { 12118 if (S.SourceMgr.isInSystemMacro(CC)) 12119 return; 12120 12121 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion); 12122 } 12123 return; 12124 } 12125 12126 // If the target is integral, always warn. 12127 if (TargetBT && TargetBT->isInteger()) { 12128 if (S.SourceMgr.isInSystemMacro(CC)) 12129 return; 12130 12131 DiagnoseFloatingImpCast(S, E, T, CC); 12132 } 12133 12134 // Detect the case where a call result is converted from floating-point to 12135 // to bool, and the final argument to the call is converted from bool, to 12136 // discover this typo: 12137 // 12138 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;" 12139 // 12140 // FIXME: This is an incredibly special case; is there some more general 12141 // way to detect this class of misplaced-parentheses bug? 12142 if (Target->isBooleanType() && isa<CallExpr>(E)) { 12143 // Check last argument of function call to see if it is an 12144 // implicit cast from a type matching the type the result 12145 // is being cast to. 12146 CallExpr *CEx = cast<CallExpr>(E); 12147 if (unsigned NumArgs = CEx->getNumArgs()) { 12148 Expr *LastA = CEx->getArg(NumArgs - 1); 12149 Expr *InnerE = LastA->IgnoreParenImpCasts(); 12150 if (isa<ImplicitCastExpr>(LastA) && 12151 InnerE->getType()->isBooleanType()) { 12152 // Warn on this floating-point to bool conversion 12153 DiagnoseImpCast(S, E, T, CC, 12154 diag::warn_impcast_floating_point_to_bool); 12155 } 12156 } 12157 } 12158 return; 12159 } 12160 12161 // Valid casts involving fixed point types should be accounted for here. 12162 if (Source->isFixedPointType()) { 12163 if (Target->isUnsaturatedFixedPointType()) { 12164 Expr::EvalResult Result; 12165 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects, 12166 S.isConstantEvaluated())) { 12167 llvm::APFixedPoint Value = Result.Val.getFixedPoint(); 12168 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T); 12169 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T); 12170 if (Value > MaxVal || Value < MinVal) { 12171 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12172 S.PDiag(diag::warn_impcast_fixed_point_range) 12173 << Value.toString() << T 12174 << E->getSourceRange() 12175 << clang::SourceRange(CC)); 12176 return; 12177 } 12178 } 12179 } else if (Target->isIntegerType()) { 12180 Expr::EvalResult Result; 12181 if (!S.isConstantEvaluated() && 12182 E->EvaluateAsFixedPoint(Result, S.Context, 12183 Expr::SE_AllowSideEffects)) { 12184 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint(); 12185 12186 bool Overflowed; 12187 llvm::APSInt IntResult = FXResult.convertToInt( 12188 S.Context.getIntWidth(T), 12189 Target->isSignedIntegerOrEnumerationType(), &Overflowed); 12190 12191 if (Overflowed) { 12192 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12193 S.PDiag(diag::warn_impcast_fixed_point_range) 12194 << FXResult.toString() << T 12195 << E->getSourceRange() 12196 << clang::SourceRange(CC)); 12197 return; 12198 } 12199 } 12200 } 12201 } else if (Target->isUnsaturatedFixedPointType()) { 12202 if (Source->isIntegerType()) { 12203 Expr::EvalResult Result; 12204 if (!S.isConstantEvaluated() && 12205 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) { 12206 llvm::APSInt Value = Result.Val.getInt(); 12207 12208 bool Overflowed; 12209 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue( 12210 Value, S.Context.getFixedPointSemantics(T), &Overflowed); 12211 12212 if (Overflowed) { 12213 S.DiagRuntimeBehavior(E->getExprLoc(), E, 12214 S.PDiag(diag::warn_impcast_fixed_point_range) 12215 << Value.toString(/*Radix=*/10) << T 12216 << E->getSourceRange() 12217 << clang::SourceRange(CC)); 12218 return; 12219 } 12220 } 12221 } 12222 } 12223 12224 // If we are casting an integer type to a floating point type without 12225 // initialization-list syntax, we might lose accuracy if the floating 12226 // point type has a narrower significand than the integer type. 12227 if (SourceBT && TargetBT && SourceBT->isIntegerType() && 12228 TargetBT->isFloatingType() && !IsListInit) { 12229 // Determine the number of precision bits in the source integer type. 12230 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(), 12231 /*Approximate*/ true); 12232 unsigned int SourcePrecision = SourceRange.Width; 12233 12234 // Determine the number of precision bits in the 12235 // target floating point type. 12236 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision( 12237 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12238 12239 if (SourcePrecision > 0 && TargetPrecision > 0 && 12240 SourcePrecision > TargetPrecision) { 12241 12242 if (Optional<llvm::APSInt> SourceInt = 12243 E->getIntegerConstantExpr(S.Context)) { 12244 // If the source integer is a constant, convert it to the target 12245 // floating point type. Issue a warning if the value changes 12246 // during the whole conversion. 12247 llvm::APFloat TargetFloatValue( 12248 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0))); 12249 llvm::APFloat::opStatus ConversionStatus = 12250 TargetFloatValue.convertFromAPInt( 12251 *SourceInt, SourceBT->isSignedInteger(), 12252 llvm::APFloat::rmNearestTiesToEven); 12253 12254 if (ConversionStatus != llvm::APFloat::opOK) { 12255 std::string PrettySourceValue = SourceInt->toString(10); 12256 SmallString<32> PrettyTargetValue; 12257 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision); 12258 12259 S.DiagRuntimeBehavior( 12260 E->getExprLoc(), E, 12261 S.PDiag(diag::warn_impcast_integer_float_precision_constant) 12262 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12263 << E->getSourceRange() << clang::SourceRange(CC)); 12264 } 12265 } else { 12266 // Otherwise, the implicit conversion may lose precision. 12267 DiagnoseImpCast(S, E, T, CC, 12268 diag::warn_impcast_integer_float_precision); 12269 } 12270 } 12271 } 12272 12273 DiagnoseNullConversion(S, E, T, CC); 12274 12275 S.DiscardMisalignedMemberAddress(Target, E); 12276 12277 if (Target->isBooleanType()) 12278 DiagnoseIntInBoolContext(S, E); 12279 12280 if (!Source->isIntegerType() || !Target->isIntegerType()) 12281 return; 12282 12283 // TODO: remove this early return once the false positives for constant->bool 12284 // in templates, macros, etc, are reduced or removed. 12285 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) 12286 return; 12287 12288 if (isObjCSignedCharBool(S, T) && !Source->isCharType() && 12289 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) { 12290 return adornObjCBoolConversionDiagWithTernaryFixit( 12291 S, E, 12292 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool) 12293 << E->getType()); 12294 } 12295 12296 IntRange SourceTypeRange = 12297 IntRange::forTargetOfCanonicalType(S.Context, Source); 12298 IntRange LikelySourceRange = 12299 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true); 12300 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target); 12301 12302 if (LikelySourceRange.Width > TargetRange.Width) { 12303 // If the source is a constant, use a default-on diagnostic. 12304 // TODO: this should happen for bitfield stores, too. 12305 Expr::EvalResult Result; 12306 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects, 12307 S.isConstantEvaluated())) { 12308 llvm::APSInt Value(32); 12309 Value = Result.Val.getInt(); 12310 12311 if (S.SourceMgr.isInSystemMacro(CC)) 12312 return; 12313 12314 std::string PrettySourceValue = Value.toString(10); 12315 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12316 12317 S.DiagRuntimeBehavior( 12318 E->getExprLoc(), E, 12319 S.PDiag(diag::warn_impcast_integer_precision_constant) 12320 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12321 << E->getSourceRange() << SourceRange(CC)); 12322 return; 12323 } 12324 12325 // People want to build with -Wshorten-64-to-32 and not -Wconversion. 12326 if (S.SourceMgr.isInSystemMacro(CC)) 12327 return; 12328 12329 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64) 12330 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32, 12331 /* pruneControlFlow */ true); 12332 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision); 12333 } 12334 12335 if (TargetRange.Width > SourceTypeRange.Width) { 12336 if (auto *UO = dyn_cast<UnaryOperator>(E)) 12337 if (UO->getOpcode() == UO_Minus) 12338 if (Source->isUnsignedIntegerType()) { 12339 if (Target->isUnsignedIntegerType()) 12340 return DiagnoseImpCast(S, E, T, CC, 12341 diag::warn_impcast_high_order_zero_bits); 12342 if (Target->isSignedIntegerType()) 12343 return DiagnoseImpCast(S, E, T, CC, 12344 diag::warn_impcast_nonnegative_result); 12345 } 12346 } 12347 12348 if (TargetRange.Width == LikelySourceRange.Width && 12349 !TargetRange.NonNegative && LikelySourceRange.NonNegative && 12350 Source->isSignedIntegerType()) { 12351 // Warn when doing a signed to signed conversion, warn if the positive 12352 // source value is exactly the width of the target type, which will 12353 // cause a negative value to be stored. 12354 12355 Expr::EvalResult Result; 12356 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) && 12357 !S.SourceMgr.isInSystemMacro(CC)) { 12358 llvm::APSInt Value = Result.Val.getInt(); 12359 if (isSameWidthConstantConversion(S, E, T, CC)) { 12360 std::string PrettySourceValue = Value.toString(10); 12361 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange); 12362 12363 S.DiagRuntimeBehavior( 12364 E->getExprLoc(), E, 12365 S.PDiag(diag::warn_impcast_integer_precision_constant) 12366 << PrettySourceValue << PrettyTargetValue << E->getType() << T 12367 << E->getSourceRange() << SourceRange(CC)); 12368 return; 12369 } 12370 } 12371 12372 // Fall through for non-constants to give a sign conversion warning. 12373 } 12374 12375 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) || 12376 (!TargetRange.NonNegative && LikelySourceRange.NonNegative && 12377 LikelySourceRange.Width == TargetRange.Width)) { 12378 if (S.SourceMgr.isInSystemMacro(CC)) 12379 return; 12380 12381 unsigned DiagID = diag::warn_impcast_integer_sign; 12382 12383 // Traditionally, gcc has warned about this under -Wsign-compare. 12384 // We also want to warn about it in -Wconversion. 12385 // So if -Wconversion is off, use a completely identical diagnostic 12386 // in the sign-compare group. 12387 // The conditional-checking code will 12388 if (ICContext) { 12389 DiagID = diag::warn_impcast_integer_sign_conditional; 12390 *ICContext = true; 12391 } 12392 12393 return DiagnoseImpCast(S, E, T, CC, DiagID); 12394 } 12395 12396 // Diagnose conversions between different enumeration types. 12397 // In C, we pretend that the type of an EnumConstantDecl is its enumeration 12398 // type, to give us better diagnostics. 12399 QualType SourceType = E->getType(); 12400 if (!S.getLangOpts().CPlusPlus) { 12401 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 12402 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) { 12403 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext()); 12404 SourceType = S.Context.getTypeDeclType(Enum); 12405 Source = S.Context.getCanonicalType(SourceType).getTypePtr(); 12406 } 12407 } 12408 12409 if (const EnumType *SourceEnum = Source->getAs<EnumType>()) 12410 if (const EnumType *TargetEnum = Target->getAs<EnumType>()) 12411 if (SourceEnum->getDecl()->hasNameForLinkage() && 12412 TargetEnum->getDecl()->hasNameForLinkage() && 12413 SourceEnum != TargetEnum) { 12414 if (S.SourceMgr.isInSystemMacro(CC)) 12415 return; 12416 12417 return DiagnoseImpCast(S, E, SourceType, T, CC, 12418 diag::warn_impcast_different_enum_types); 12419 } 12420 } 12421 12422 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12423 SourceLocation CC, QualType T); 12424 12425 static void CheckConditionalOperand(Sema &S, Expr *E, QualType T, 12426 SourceLocation CC, bool &ICContext) { 12427 E = E->IgnoreParenImpCasts(); 12428 12429 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E)) 12430 return CheckConditionalOperator(S, CO, CC, T); 12431 12432 AnalyzeImplicitConversions(S, E, CC); 12433 if (E->getType() != T) 12434 return CheckImplicitConversion(S, E, T, CC, &ICContext); 12435 } 12436 12437 static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E, 12438 SourceLocation CC, QualType T) { 12439 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc()); 12440 12441 Expr *TrueExpr = E->getTrueExpr(); 12442 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) 12443 TrueExpr = BCO->getCommon(); 12444 12445 bool Suspicious = false; 12446 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious); 12447 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious); 12448 12449 if (T->isBooleanType()) 12450 DiagnoseIntInBoolContext(S, E); 12451 12452 // If -Wconversion would have warned about either of the candidates 12453 // for a signedness conversion to the context type... 12454 if (!Suspicious) return; 12455 12456 // ...but it's currently ignored... 12457 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC)) 12458 return; 12459 12460 // ...then check whether it would have warned about either of the 12461 // candidates for a signedness conversion to the condition type. 12462 if (E->getType() == T) return; 12463 12464 Suspicious = false; 12465 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(), 12466 E->getType(), CC, &Suspicious); 12467 if (!Suspicious) 12468 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(), 12469 E->getType(), CC, &Suspicious); 12470 } 12471 12472 /// Check conversion of given expression to boolean. 12473 /// Input argument E is a logical expression. 12474 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) { 12475 if (S.getLangOpts().Bool) 12476 return; 12477 if (E->IgnoreParenImpCasts()->getType()->isAtomicType()) 12478 return; 12479 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC); 12480 } 12481 12482 namespace { 12483 struct AnalyzeImplicitConversionsWorkItem { 12484 Expr *E; 12485 SourceLocation CC; 12486 bool IsListInit; 12487 }; 12488 } 12489 12490 /// Data recursive variant of AnalyzeImplicitConversions. Subexpressions 12491 /// that should be visited are added to WorkList. 12492 static void AnalyzeImplicitConversions( 12493 Sema &S, AnalyzeImplicitConversionsWorkItem Item, 12494 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) { 12495 Expr *OrigE = Item.E; 12496 SourceLocation CC = Item.CC; 12497 12498 QualType T = OrigE->getType(); 12499 Expr *E = OrigE->IgnoreParenImpCasts(); 12500 12501 // Propagate whether we are in a C++ list initialization expression. 12502 // If so, we do not issue warnings for implicit int-float conversion 12503 // precision loss, because C++11 narrowing already handles it. 12504 bool IsListInit = Item.IsListInit || 12505 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus); 12506 12507 if (E->isTypeDependent() || E->isValueDependent()) 12508 return; 12509 12510 Expr *SourceExpr = E; 12511 // Examine, but don't traverse into the source expression of an 12512 // OpaqueValueExpr, since it may have multiple parents and we don't want to 12513 // emit duplicate diagnostics. Its fine to examine the form or attempt to 12514 // evaluate it in the context of checking the specific conversion to T though. 12515 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E)) 12516 if (auto *Src = OVE->getSourceExpr()) 12517 SourceExpr = Src; 12518 12519 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr)) 12520 if (UO->getOpcode() == UO_Not && 12521 UO->getSubExpr()->isKnownToHaveBooleanValue()) 12522 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool) 12523 << OrigE->getSourceRange() << T->isBooleanType() 12524 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!"); 12525 12526 // For conditional operators, we analyze the arguments as if they 12527 // were being fed directly into the output. 12528 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) { 12529 CheckConditionalOperator(S, CO, CC, T); 12530 return; 12531 } 12532 12533 // Check implicit argument conversions for function calls. 12534 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr)) 12535 CheckImplicitArgumentConversions(S, Call, CC); 12536 12537 // Go ahead and check any implicit conversions we might have skipped. 12538 // The non-canonical typecheck is just an optimization; 12539 // CheckImplicitConversion will filter out dead implicit conversions. 12540 if (SourceExpr->getType() != T) 12541 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit); 12542 12543 // Now continue drilling into this expression. 12544 12545 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) { 12546 // The bound subexpressions in a PseudoObjectExpr are not reachable 12547 // as transitive children. 12548 // FIXME: Use a more uniform representation for this. 12549 for (auto *SE : POE->semantics()) 12550 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE)) 12551 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit}); 12552 } 12553 12554 // Skip past explicit casts. 12555 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) { 12556 E = CE->getSubExpr()->IgnoreParenImpCasts(); 12557 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType()) 12558 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst); 12559 WorkList.push_back({E, CC, IsListInit}); 12560 return; 12561 } 12562 12563 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 12564 // Do a somewhat different check with comparison operators. 12565 if (BO->isComparisonOp()) 12566 return AnalyzeComparison(S, BO); 12567 12568 // And with simple assignments. 12569 if (BO->getOpcode() == BO_Assign) 12570 return AnalyzeAssignment(S, BO); 12571 // And with compound assignments. 12572 if (BO->isAssignmentOp()) 12573 return AnalyzeCompoundAssignment(S, BO); 12574 } 12575 12576 // These break the otherwise-useful invariant below. Fortunately, 12577 // we don't really need to recurse into them, because any internal 12578 // expressions should have been analyzed already when they were 12579 // built into statements. 12580 if (isa<StmtExpr>(E)) return; 12581 12582 // Don't descend into unevaluated contexts. 12583 if (isa<UnaryExprOrTypeTraitExpr>(E)) return; 12584 12585 // Now just recurse over the expression's children. 12586 CC = E->getExprLoc(); 12587 BinaryOperator *BO = dyn_cast<BinaryOperator>(E); 12588 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd; 12589 for (Stmt *SubStmt : E->children()) { 12590 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt); 12591 if (!ChildExpr) 12592 continue; 12593 12594 if (IsLogicalAndOperator && 12595 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts())) 12596 // Ignore checking string literals that are in logical and operators. 12597 // This is a common pattern for asserts. 12598 continue; 12599 WorkList.push_back({ChildExpr, CC, IsListInit}); 12600 } 12601 12602 if (BO && BO->isLogicalOp()) { 12603 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts(); 12604 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12605 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12606 12607 SubExpr = BO->getRHS()->IgnoreParenImpCasts(); 12608 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr)) 12609 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc()); 12610 } 12611 12612 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) { 12613 if (U->getOpcode() == UO_LNot) { 12614 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC); 12615 } else if (U->getOpcode() != UO_AddrOf) { 12616 if (U->getSubExpr()->getType()->isAtomicType()) 12617 S.Diag(U->getSubExpr()->getBeginLoc(), 12618 diag::warn_atomic_implicit_seq_cst); 12619 } 12620 } 12621 } 12622 12623 /// AnalyzeImplicitConversions - Find and report any interesting 12624 /// implicit conversions in the given expression. There are a couple 12625 /// of competing diagnostics here, -Wconversion and -Wsign-compare. 12626 static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC, 12627 bool IsListInit/*= false*/) { 12628 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList; 12629 WorkList.push_back({OrigE, CC, IsListInit}); 12630 while (!WorkList.empty()) 12631 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList); 12632 } 12633 12634 /// Diagnose integer type and any valid implicit conversion to it. 12635 static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) { 12636 // Taking into account implicit conversions, 12637 // allow any integer. 12638 if (!E->getType()->isIntegerType()) { 12639 S.Diag(E->getBeginLoc(), 12640 diag::err_opencl_enqueue_kernel_invalid_local_size_type); 12641 return true; 12642 } 12643 // Potentially emit standard warnings for implicit conversions if enabled 12644 // using -Wconversion. 12645 CheckImplicitConversion(S, E, IntT, E->getBeginLoc()); 12646 return false; 12647 } 12648 12649 // Helper function for Sema::DiagnoseAlwaysNonNullPointer. 12650 // Returns true when emitting a warning about taking the address of a reference. 12651 static bool CheckForReference(Sema &SemaRef, const Expr *E, 12652 const PartialDiagnostic &PD) { 12653 E = E->IgnoreParenImpCasts(); 12654 12655 const FunctionDecl *FD = nullptr; 12656 12657 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { 12658 if (!DRE->getDecl()->getType()->isReferenceType()) 12659 return false; 12660 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12661 if (!M->getMemberDecl()->getType()->isReferenceType()) 12662 return false; 12663 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) { 12664 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType()) 12665 return false; 12666 FD = Call->getDirectCallee(); 12667 } else { 12668 return false; 12669 } 12670 12671 SemaRef.Diag(E->getExprLoc(), PD); 12672 12673 // If possible, point to location of function. 12674 if (FD) { 12675 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD; 12676 } 12677 12678 return true; 12679 } 12680 12681 // Returns true if the SourceLocation is expanded from any macro body. 12682 // Returns false if the SourceLocation is invalid, is from not in a macro 12683 // expansion, or is from expanded from a top-level macro argument. 12684 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) { 12685 if (Loc.isInvalid()) 12686 return false; 12687 12688 while (Loc.isMacroID()) { 12689 if (SM.isMacroBodyExpansion(Loc)) 12690 return true; 12691 Loc = SM.getImmediateMacroCallerLoc(Loc); 12692 } 12693 12694 return false; 12695 } 12696 12697 /// Diagnose pointers that are always non-null. 12698 /// \param E the expression containing the pointer 12699 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is 12700 /// compared to a null pointer 12701 /// \param IsEqual True when the comparison is equal to a null pointer 12702 /// \param Range Extra SourceRange to highlight in the diagnostic 12703 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E, 12704 Expr::NullPointerConstantKind NullKind, 12705 bool IsEqual, SourceRange Range) { 12706 if (!E) 12707 return; 12708 12709 // Don't warn inside macros. 12710 if (E->getExprLoc().isMacroID()) { 12711 const SourceManager &SM = getSourceManager(); 12712 if (IsInAnyMacroBody(SM, E->getExprLoc()) || 12713 IsInAnyMacroBody(SM, Range.getBegin())) 12714 return; 12715 } 12716 E = E->IgnoreImpCasts(); 12717 12718 const bool IsCompare = NullKind != Expr::NPCK_NotNull; 12719 12720 if (isa<CXXThisExpr>(E)) { 12721 unsigned DiagID = IsCompare ? diag::warn_this_null_compare 12722 : diag::warn_this_bool_conversion; 12723 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual; 12724 return; 12725 } 12726 12727 bool IsAddressOf = false; 12728 12729 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 12730 if (UO->getOpcode() != UO_AddrOf) 12731 return; 12732 IsAddressOf = true; 12733 E = UO->getSubExpr(); 12734 } 12735 12736 if (IsAddressOf) { 12737 unsigned DiagID = IsCompare 12738 ? diag::warn_address_of_reference_null_compare 12739 : diag::warn_address_of_reference_bool_conversion; 12740 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range 12741 << IsEqual; 12742 if (CheckForReference(*this, E, PD)) { 12743 return; 12744 } 12745 } 12746 12747 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) { 12748 bool IsParam = isa<NonNullAttr>(NonnullAttr); 12749 std::string Str; 12750 llvm::raw_string_ostream S(Str); 12751 E->printPretty(S, nullptr, getPrintingPolicy()); 12752 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare 12753 : diag::warn_cast_nonnull_to_bool; 12754 Diag(E->getExprLoc(), DiagID) << IsParam << S.str() 12755 << E->getSourceRange() << Range << IsEqual; 12756 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam; 12757 }; 12758 12759 // If we have a CallExpr that is tagged with returns_nonnull, we can complain. 12760 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) { 12761 if (auto *Callee = Call->getDirectCallee()) { 12762 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) { 12763 ComplainAboutNonnullParamOrCall(A); 12764 return; 12765 } 12766 } 12767 } 12768 12769 // Expect to find a single Decl. Skip anything more complicated. 12770 ValueDecl *D = nullptr; 12771 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) { 12772 D = R->getDecl(); 12773 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) { 12774 D = M->getMemberDecl(); 12775 } 12776 12777 // Weak Decls can be null. 12778 if (!D || D->isWeak()) 12779 return; 12780 12781 // Check for parameter decl with nonnull attribute 12782 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) { 12783 if (getCurFunction() && 12784 !getCurFunction()->ModifiedNonNullParams.count(PV)) { 12785 if (const Attr *A = PV->getAttr<NonNullAttr>()) { 12786 ComplainAboutNonnullParamOrCall(A); 12787 return; 12788 } 12789 12790 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) { 12791 // Skip function template not specialized yet. 12792 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 12793 return; 12794 auto ParamIter = llvm::find(FD->parameters(), PV); 12795 assert(ParamIter != FD->param_end()); 12796 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter); 12797 12798 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) { 12799 if (!NonNull->args_size()) { 12800 ComplainAboutNonnullParamOrCall(NonNull); 12801 return; 12802 } 12803 12804 for (const ParamIdx &ArgNo : NonNull->args()) { 12805 if (ArgNo.getASTIndex() == ParamNo) { 12806 ComplainAboutNonnullParamOrCall(NonNull); 12807 return; 12808 } 12809 } 12810 } 12811 } 12812 } 12813 } 12814 12815 QualType T = D->getType(); 12816 const bool IsArray = T->isArrayType(); 12817 const bool IsFunction = T->isFunctionType(); 12818 12819 // Address of function is used to silence the function warning. 12820 if (IsAddressOf && IsFunction) { 12821 return; 12822 } 12823 12824 // Found nothing. 12825 if (!IsAddressOf && !IsFunction && !IsArray) 12826 return; 12827 12828 // Pretty print the expression for the diagnostic. 12829 std::string Str; 12830 llvm::raw_string_ostream S(Str); 12831 E->printPretty(S, nullptr, getPrintingPolicy()); 12832 12833 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare 12834 : diag::warn_impcast_pointer_to_bool; 12835 enum { 12836 AddressOf, 12837 FunctionPointer, 12838 ArrayPointer 12839 } DiagType; 12840 if (IsAddressOf) 12841 DiagType = AddressOf; 12842 else if (IsFunction) 12843 DiagType = FunctionPointer; 12844 else if (IsArray) 12845 DiagType = ArrayPointer; 12846 else 12847 llvm_unreachable("Could not determine diagnostic."); 12848 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange() 12849 << Range << IsEqual; 12850 12851 if (!IsFunction) 12852 return; 12853 12854 // Suggest '&' to silence the function warning. 12855 Diag(E->getExprLoc(), diag::note_function_warning_silence) 12856 << FixItHint::CreateInsertion(E->getBeginLoc(), "&"); 12857 12858 // Check to see if '()' fixit should be emitted. 12859 QualType ReturnType; 12860 UnresolvedSet<4> NonTemplateOverloads; 12861 tryExprAsCall(*E, ReturnType, NonTemplateOverloads); 12862 if (ReturnType.isNull()) 12863 return; 12864 12865 if (IsCompare) { 12866 // There are two cases here. If there is null constant, the only suggest 12867 // for a pointer return type. If the null is 0, then suggest if the return 12868 // type is a pointer or an integer type. 12869 if (!ReturnType->isPointerType()) { 12870 if (NullKind == Expr::NPCK_ZeroExpression || 12871 NullKind == Expr::NPCK_ZeroLiteral) { 12872 if (!ReturnType->isIntegerType()) 12873 return; 12874 } else { 12875 return; 12876 } 12877 } 12878 } else { // !IsCompare 12879 // For function to bool, only suggest if the function pointer has bool 12880 // return type. 12881 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool)) 12882 return; 12883 } 12884 Diag(E->getExprLoc(), diag::note_function_to_function_call) 12885 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()"); 12886 } 12887 12888 /// Diagnoses "dangerous" implicit conversions within the given 12889 /// expression (which is a full expression). Implements -Wconversion 12890 /// and -Wsign-compare. 12891 /// 12892 /// \param CC the "context" location of the implicit conversion, i.e. 12893 /// the most location of the syntactic entity requiring the implicit 12894 /// conversion 12895 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) { 12896 // Don't diagnose in unevaluated contexts. 12897 if (isUnevaluatedContext()) 12898 return; 12899 12900 // Don't diagnose for value- or type-dependent expressions. 12901 if (E->isTypeDependent() || E->isValueDependent()) 12902 return; 12903 12904 // Check for array bounds violations in cases where the check isn't triggered 12905 // elsewhere for other Expr types (like BinaryOperators), e.g. when an 12906 // ArraySubscriptExpr is on the RHS of a variable initialization. 12907 CheckArrayAccess(E); 12908 12909 // This is not the right CC for (e.g.) a variable initialization. 12910 AnalyzeImplicitConversions(*this, E, CC); 12911 } 12912 12913 /// CheckBoolLikeConversion - Check conversion of given expression to boolean. 12914 /// Input argument E is a logical expression. 12915 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) { 12916 ::CheckBoolLikeConversion(*this, E, CC); 12917 } 12918 12919 /// Diagnose when expression is an integer constant expression and its evaluation 12920 /// results in integer overflow 12921 void Sema::CheckForIntOverflow (Expr *E) { 12922 // Use a work list to deal with nested struct initializers. 12923 SmallVector<Expr *, 2> Exprs(1, E); 12924 12925 do { 12926 Expr *OriginalE = Exprs.pop_back_val(); 12927 Expr *E = OriginalE->IgnoreParenCasts(); 12928 12929 if (isa<BinaryOperator>(E)) { 12930 E->EvaluateForOverflow(Context); 12931 continue; 12932 } 12933 12934 if (auto InitList = dyn_cast<InitListExpr>(OriginalE)) 12935 Exprs.append(InitList->inits().begin(), InitList->inits().end()); 12936 else if (isa<ObjCBoxedExpr>(OriginalE)) 12937 E->EvaluateForOverflow(Context); 12938 else if (auto Call = dyn_cast<CallExpr>(E)) 12939 Exprs.append(Call->arg_begin(), Call->arg_end()); 12940 else if (auto Message = dyn_cast<ObjCMessageExpr>(E)) 12941 Exprs.append(Message->arg_begin(), Message->arg_end()); 12942 } while (!Exprs.empty()); 12943 } 12944 12945 namespace { 12946 12947 /// Visitor for expressions which looks for unsequenced operations on the 12948 /// same object. 12949 class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> { 12950 using Base = ConstEvaluatedExprVisitor<SequenceChecker>; 12951 12952 /// A tree of sequenced regions within an expression. Two regions are 12953 /// unsequenced if one is an ancestor or a descendent of the other. When we 12954 /// finish processing an expression with sequencing, such as a comma 12955 /// expression, we fold its tree nodes into its parent, since they are 12956 /// unsequenced with respect to nodes we will visit later. 12957 class SequenceTree { 12958 struct Value { 12959 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {} 12960 unsigned Parent : 31; 12961 unsigned Merged : 1; 12962 }; 12963 SmallVector<Value, 8> Values; 12964 12965 public: 12966 /// A region within an expression which may be sequenced with respect 12967 /// to some other region. 12968 class Seq { 12969 friend class SequenceTree; 12970 12971 unsigned Index; 12972 12973 explicit Seq(unsigned N) : Index(N) {} 12974 12975 public: 12976 Seq() : Index(0) {} 12977 }; 12978 12979 SequenceTree() { Values.push_back(Value(0)); } 12980 Seq root() const { return Seq(0); } 12981 12982 /// Create a new sequence of operations, which is an unsequenced 12983 /// subset of \p Parent. This sequence of operations is sequenced with 12984 /// respect to other children of \p Parent. 12985 Seq allocate(Seq Parent) { 12986 Values.push_back(Value(Parent.Index)); 12987 return Seq(Values.size() - 1); 12988 } 12989 12990 /// Merge a sequence of operations into its parent. 12991 void merge(Seq S) { 12992 Values[S.Index].Merged = true; 12993 } 12994 12995 /// Determine whether two operations are unsequenced. This operation 12996 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old 12997 /// should have been merged into its parent as appropriate. 12998 bool isUnsequenced(Seq Cur, Seq Old) { 12999 unsigned C = representative(Cur.Index); 13000 unsigned Target = representative(Old.Index); 13001 while (C >= Target) { 13002 if (C == Target) 13003 return true; 13004 C = Values[C].Parent; 13005 } 13006 return false; 13007 } 13008 13009 private: 13010 /// Pick a representative for a sequence. 13011 unsigned representative(unsigned K) { 13012 if (Values[K].Merged) 13013 // Perform path compression as we go. 13014 return Values[K].Parent = representative(Values[K].Parent); 13015 return K; 13016 } 13017 }; 13018 13019 /// An object for which we can track unsequenced uses. 13020 using Object = const NamedDecl *; 13021 13022 /// Different flavors of object usage which we track. We only track the 13023 /// least-sequenced usage of each kind. 13024 enum UsageKind { 13025 /// A read of an object. Multiple unsequenced reads are OK. 13026 UK_Use, 13027 13028 /// A modification of an object which is sequenced before the value 13029 /// computation of the expression, such as ++n in C++. 13030 UK_ModAsValue, 13031 13032 /// A modification of an object which is not sequenced before the value 13033 /// computation of the expression, such as n++. 13034 UK_ModAsSideEffect, 13035 13036 UK_Count = UK_ModAsSideEffect + 1 13037 }; 13038 13039 /// Bundle together a sequencing region and the expression corresponding 13040 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo. 13041 struct Usage { 13042 const Expr *UsageExpr; 13043 SequenceTree::Seq Seq; 13044 13045 Usage() : UsageExpr(nullptr), Seq() {} 13046 }; 13047 13048 struct UsageInfo { 13049 Usage Uses[UK_Count]; 13050 13051 /// Have we issued a diagnostic for this object already? 13052 bool Diagnosed; 13053 13054 UsageInfo() : Uses(), Diagnosed(false) {} 13055 }; 13056 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>; 13057 13058 Sema &SemaRef; 13059 13060 /// Sequenced regions within the expression. 13061 SequenceTree Tree; 13062 13063 /// Declaration modifications and references which we have seen. 13064 UsageInfoMap UsageMap; 13065 13066 /// The region we are currently within. 13067 SequenceTree::Seq Region; 13068 13069 /// Filled in with declarations which were modified as a side-effect 13070 /// (that is, post-increment operations). 13071 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr; 13072 13073 /// Expressions to check later. We defer checking these to reduce 13074 /// stack usage. 13075 SmallVectorImpl<const Expr *> &WorkList; 13076 13077 /// RAII object wrapping the visitation of a sequenced subexpression of an 13078 /// expression. At the end of this process, the side-effects of the evaluation 13079 /// become sequenced with respect to the value computation of the result, so 13080 /// we downgrade any UK_ModAsSideEffect within the evaluation to 13081 /// UK_ModAsValue. 13082 struct SequencedSubexpression { 13083 SequencedSubexpression(SequenceChecker &Self) 13084 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) { 13085 Self.ModAsSideEffect = &ModAsSideEffect; 13086 } 13087 13088 ~SequencedSubexpression() { 13089 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) { 13090 // Add a new usage with usage kind UK_ModAsValue, and then restore 13091 // the previous usage with UK_ModAsSideEffect (thus clearing it if 13092 // the previous one was empty). 13093 UsageInfo &UI = Self.UsageMap[M.first]; 13094 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect]; 13095 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue); 13096 SideEffectUsage = M.second; 13097 } 13098 Self.ModAsSideEffect = OldModAsSideEffect; 13099 } 13100 13101 SequenceChecker &Self; 13102 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect; 13103 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect; 13104 }; 13105 13106 /// RAII object wrapping the visitation of a subexpression which we might 13107 /// choose to evaluate as a constant. If any subexpression is evaluated and 13108 /// found to be non-constant, this allows us to suppress the evaluation of 13109 /// the outer expression. 13110 class EvaluationTracker { 13111 public: 13112 EvaluationTracker(SequenceChecker &Self) 13113 : Self(Self), Prev(Self.EvalTracker) { 13114 Self.EvalTracker = this; 13115 } 13116 13117 ~EvaluationTracker() { 13118 Self.EvalTracker = Prev; 13119 if (Prev) 13120 Prev->EvalOK &= EvalOK; 13121 } 13122 13123 bool evaluate(const Expr *E, bool &Result) { 13124 if (!EvalOK || E->isValueDependent()) 13125 return false; 13126 EvalOK = E->EvaluateAsBooleanCondition( 13127 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated()); 13128 return EvalOK; 13129 } 13130 13131 private: 13132 SequenceChecker &Self; 13133 EvaluationTracker *Prev; 13134 bool EvalOK = true; 13135 } *EvalTracker = nullptr; 13136 13137 /// Find the object which is produced by the specified expression, 13138 /// if any. 13139 Object getObject(const Expr *E, bool Mod) const { 13140 E = E->IgnoreParenCasts(); 13141 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 13142 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec)) 13143 return getObject(UO->getSubExpr(), Mod); 13144 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 13145 if (BO->getOpcode() == BO_Comma) 13146 return getObject(BO->getRHS(), Mod); 13147 if (Mod && BO->isAssignmentOp()) 13148 return getObject(BO->getLHS(), Mod); 13149 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) { 13150 // FIXME: Check for more interesting cases, like "x.n = ++x.n". 13151 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts())) 13152 return ME->getMemberDecl(); 13153 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 13154 // FIXME: If this is a reference, map through to its value. 13155 return DRE->getDecl(); 13156 return nullptr; 13157 } 13158 13159 /// Note that an object \p O was modified or used by an expression 13160 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for 13161 /// the object \p O as obtained via the \p UsageMap. 13162 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) { 13163 // Get the old usage for the given object and usage kind. 13164 Usage &U = UI.Uses[UK]; 13165 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) { 13166 // If we have a modification as side effect and are in a sequenced 13167 // subexpression, save the old Usage so that we can restore it later 13168 // in SequencedSubexpression::~SequencedSubexpression. 13169 if (UK == UK_ModAsSideEffect && ModAsSideEffect) 13170 ModAsSideEffect->push_back(std::make_pair(O, U)); 13171 // Then record the new usage with the current sequencing region. 13172 U.UsageExpr = UsageExpr; 13173 U.Seq = Region; 13174 } 13175 } 13176 13177 /// Check whether a modification or use of an object \p O in an expression 13178 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is 13179 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap. 13180 /// \p IsModMod is true when we are checking for a mod-mod unsequenced 13181 /// usage and false we are checking for a mod-use unsequenced usage. 13182 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, 13183 UsageKind OtherKind, bool IsModMod) { 13184 if (UI.Diagnosed) 13185 return; 13186 13187 const Usage &U = UI.Uses[OtherKind]; 13188 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) 13189 return; 13190 13191 const Expr *Mod = U.UsageExpr; 13192 const Expr *ModOrUse = UsageExpr; 13193 if (OtherKind == UK_Use) 13194 std::swap(Mod, ModOrUse); 13195 13196 SemaRef.DiagRuntimeBehavior( 13197 Mod->getExprLoc(), {Mod, ModOrUse}, 13198 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod 13199 : diag::warn_unsequenced_mod_use) 13200 << O << SourceRange(ModOrUse->getExprLoc())); 13201 UI.Diagnosed = true; 13202 } 13203 13204 // A note on note{Pre, Post}{Use, Mod}: 13205 // 13206 // (It helps to follow the algorithm with an expression such as 13207 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced 13208 // operations before C++17 and both are well-defined in C++17). 13209 // 13210 // When visiting a node which uses/modify an object we first call notePreUse 13211 // or notePreMod before visiting its sub-expression(s). At this point the 13212 // children of the current node have not yet been visited and so the eventual 13213 // uses/modifications resulting from the children of the current node have not 13214 // been recorded yet. 13215 // 13216 // We then visit the children of the current node. After that notePostUse or 13217 // notePostMod is called. These will 1) detect an unsequenced modification 13218 // as side effect (as in "k++ + k") and 2) add a new usage with the 13219 // appropriate usage kind. 13220 // 13221 // We also have to be careful that some operation sequences modification as 13222 // side effect as well (for example: || or ,). To account for this we wrap 13223 // the visitation of such a sub-expression (for example: the LHS of || or ,) 13224 // with SequencedSubexpression. SequencedSubexpression is an RAII object 13225 // which record usages which are modifications as side effect, and then 13226 // downgrade them (or more accurately restore the previous usage which was a 13227 // modification as side effect) when exiting the scope of the sequenced 13228 // subexpression. 13229 13230 void notePreUse(Object O, const Expr *UseExpr) { 13231 UsageInfo &UI = UsageMap[O]; 13232 // Uses conflict with other modifications. 13233 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false); 13234 } 13235 13236 void notePostUse(Object O, const Expr *UseExpr) { 13237 UsageInfo &UI = UsageMap[O]; 13238 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect, 13239 /*IsModMod=*/false); 13240 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use); 13241 } 13242 13243 void notePreMod(Object O, const Expr *ModExpr) { 13244 UsageInfo &UI = UsageMap[O]; 13245 // Modifications conflict with other modifications and with uses. 13246 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true); 13247 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false); 13248 } 13249 13250 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) { 13251 UsageInfo &UI = UsageMap[O]; 13252 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect, 13253 /*IsModMod=*/true); 13254 addUsage(O, UI, ModExpr, /*UsageKind=*/UK); 13255 } 13256 13257 public: 13258 SequenceChecker(Sema &S, const Expr *E, 13259 SmallVectorImpl<const Expr *> &WorkList) 13260 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) { 13261 Visit(E); 13262 // Silence a -Wunused-private-field since WorkList is now unused. 13263 // TODO: Evaluate if it can be used, and if not remove it. 13264 (void)this->WorkList; 13265 } 13266 13267 void VisitStmt(const Stmt *S) { 13268 // Skip all statements which aren't expressions for now. 13269 } 13270 13271 void VisitExpr(const Expr *E) { 13272 // By default, just recurse to evaluated subexpressions. 13273 Base::VisitStmt(E); 13274 } 13275 13276 void VisitCastExpr(const CastExpr *E) { 13277 Object O = Object(); 13278 if (E->getCastKind() == CK_LValueToRValue) 13279 O = getObject(E->getSubExpr(), false); 13280 13281 if (O) 13282 notePreUse(O, E); 13283 VisitExpr(E); 13284 if (O) 13285 notePostUse(O, E); 13286 } 13287 13288 void VisitSequencedExpressions(const Expr *SequencedBefore, 13289 const Expr *SequencedAfter) { 13290 SequenceTree::Seq BeforeRegion = Tree.allocate(Region); 13291 SequenceTree::Seq AfterRegion = Tree.allocate(Region); 13292 SequenceTree::Seq OldRegion = Region; 13293 13294 { 13295 SequencedSubexpression SeqBefore(*this); 13296 Region = BeforeRegion; 13297 Visit(SequencedBefore); 13298 } 13299 13300 Region = AfterRegion; 13301 Visit(SequencedAfter); 13302 13303 Region = OldRegion; 13304 13305 Tree.merge(BeforeRegion); 13306 Tree.merge(AfterRegion); 13307 } 13308 13309 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) { 13310 // C++17 [expr.sub]p1: 13311 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The 13312 // expression E1 is sequenced before the expression E2. 13313 if (SemaRef.getLangOpts().CPlusPlus17) 13314 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS()); 13315 else { 13316 Visit(ASE->getLHS()); 13317 Visit(ASE->getRHS()); 13318 } 13319 } 13320 13321 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13322 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); } 13323 void VisitBinPtrMem(const BinaryOperator *BO) { 13324 // C++17 [expr.mptr.oper]p4: 13325 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...] 13326 // the expression E1 is sequenced before the expression E2. 13327 if (SemaRef.getLangOpts().CPlusPlus17) 13328 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13329 else { 13330 Visit(BO->getLHS()); 13331 Visit(BO->getRHS()); 13332 } 13333 } 13334 13335 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13336 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); } 13337 void VisitBinShlShr(const BinaryOperator *BO) { 13338 // C++17 [expr.shift]p4: 13339 // The expression E1 is sequenced before the expression E2. 13340 if (SemaRef.getLangOpts().CPlusPlus17) 13341 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13342 else { 13343 Visit(BO->getLHS()); 13344 Visit(BO->getRHS()); 13345 } 13346 } 13347 13348 void VisitBinComma(const BinaryOperator *BO) { 13349 // C++11 [expr.comma]p1: 13350 // Every value computation and side effect associated with the left 13351 // expression is sequenced before every value computation and side 13352 // effect associated with the right expression. 13353 VisitSequencedExpressions(BO->getLHS(), BO->getRHS()); 13354 } 13355 13356 void VisitBinAssign(const BinaryOperator *BO) { 13357 SequenceTree::Seq RHSRegion; 13358 SequenceTree::Seq LHSRegion; 13359 if (SemaRef.getLangOpts().CPlusPlus17) { 13360 RHSRegion = Tree.allocate(Region); 13361 LHSRegion = Tree.allocate(Region); 13362 } else { 13363 RHSRegion = Region; 13364 LHSRegion = Region; 13365 } 13366 SequenceTree::Seq OldRegion = Region; 13367 13368 // C++11 [expr.ass]p1: 13369 // [...] the assignment is sequenced after the value computation 13370 // of the right and left operands, [...] 13371 // 13372 // so check it before inspecting the operands and update the 13373 // map afterwards. 13374 Object O = getObject(BO->getLHS(), /*Mod=*/true); 13375 if (O) 13376 notePreMod(O, BO); 13377 13378 if (SemaRef.getLangOpts().CPlusPlus17) { 13379 // C++17 [expr.ass]p1: 13380 // [...] The right operand is sequenced before the left operand. [...] 13381 { 13382 SequencedSubexpression SeqBefore(*this); 13383 Region = RHSRegion; 13384 Visit(BO->getRHS()); 13385 } 13386 13387 Region = LHSRegion; 13388 Visit(BO->getLHS()); 13389 13390 if (O && isa<CompoundAssignOperator>(BO)) 13391 notePostUse(O, BO); 13392 13393 } else { 13394 // C++11 does not specify any sequencing between the LHS and RHS. 13395 Region = LHSRegion; 13396 Visit(BO->getLHS()); 13397 13398 if (O && isa<CompoundAssignOperator>(BO)) 13399 notePostUse(O, BO); 13400 13401 Region = RHSRegion; 13402 Visit(BO->getRHS()); 13403 } 13404 13405 // C++11 [expr.ass]p1: 13406 // the assignment is sequenced [...] before the value computation of the 13407 // assignment expression. 13408 // C11 6.5.16/3 has no such rule. 13409 Region = OldRegion; 13410 if (O) 13411 notePostMod(O, BO, 13412 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13413 : UK_ModAsSideEffect); 13414 if (SemaRef.getLangOpts().CPlusPlus17) { 13415 Tree.merge(RHSRegion); 13416 Tree.merge(LHSRegion); 13417 } 13418 } 13419 13420 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) { 13421 VisitBinAssign(CAO); 13422 } 13423 13424 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13425 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); } 13426 void VisitUnaryPreIncDec(const UnaryOperator *UO) { 13427 Object O = getObject(UO->getSubExpr(), true); 13428 if (!O) 13429 return VisitExpr(UO); 13430 13431 notePreMod(O, UO); 13432 Visit(UO->getSubExpr()); 13433 // C++11 [expr.pre.incr]p1: 13434 // the expression ++x is equivalent to x+=1 13435 notePostMod(O, UO, 13436 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue 13437 : UK_ModAsSideEffect); 13438 } 13439 13440 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13441 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); } 13442 void VisitUnaryPostIncDec(const UnaryOperator *UO) { 13443 Object O = getObject(UO->getSubExpr(), true); 13444 if (!O) 13445 return VisitExpr(UO); 13446 13447 notePreMod(O, UO); 13448 Visit(UO->getSubExpr()); 13449 notePostMod(O, UO, UK_ModAsSideEffect); 13450 } 13451 13452 void VisitBinLOr(const BinaryOperator *BO) { 13453 // C++11 [expr.log.or]p2: 13454 // If the second expression is evaluated, every value computation and 13455 // side effect associated with the first expression is sequenced before 13456 // every value computation and side effect associated with the 13457 // second expression. 13458 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13459 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13460 SequenceTree::Seq OldRegion = Region; 13461 13462 EvaluationTracker Eval(*this); 13463 { 13464 SequencedSubexpression Sequenced(*this); 13465 Region = LHSRegion; 13466 Visit(BO->getLHS()); 13467 } 13468 13469 // C++11 [expr.log.or]p1: 13470 // [...] the second operand is not evaluated if the first operand 13471 // evaluates to true. 13472 bool EvalResult = false; 13473 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13474 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult); 13475 if (ShouldVisitRHS) { 13476 Region = RHSRegion; 13477 Visit(BO->getRHS()); 13478 } 13479 13480 Region = OldRegion; 13481 Tree.merge(LHSRegion); 13482 Tree.merge(RHSRegion); 13483 } 13484 13485 void VisitBinLAnd(const BinaryOperator *BO) { 13486 // C++11 [expr.log.and]p2: 13487 // If the second expression is evaluated, every value computation and 13488 // side effect associated with the first expression is sequenced before 13489 // every value computation and side effect associated with the 13490 // second expression. 13491 SequenceTree::Seq LHSRegion = Tree.allocate(Region); 13492 SequenceTree::Seq RHSRegion = Tree.allocate(Region); 13493 SequenceTree::Seq OldRegion = Region; 13494 13495 EvaluationTracker Eval(*this); 13496 { 13497 SequencedSubexpression Sequenced(*this); 13498 Region = LHSRegion; 13499 Visit(BO->getLHS()); 13500 } 13501 13502 // C++11 [expr.log.and]p1: 13503 // [...] the second operand is not evaluated if the first operand is false. 13504 bool EvalResult = false; 13505 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult); 13506 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult); 13507 if (ShouldVisitRHS) { 13508 Region = RHSRegion; 13509 Visit(BO->getRHS()); 13510 } 13511 13512 Region = OldRegion; 13513 Tree.merge(LHSRegion); 13514 Tree.merge(RHSRegion); 13515 } 13516 13517 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) { 13518 // C++11 [expr.cond]p1: 13519 // [...] Every value computation and side effect associated with the first 13520 // expression is sequenced before every value computation and side effect 13521 // associated with the second or third expression. 13522 SequenceTree::Seq ConditionRegion = Tree.allocate(Region); 13523 13524 // No sequencing is specified between the true and false expression. 13525 // However since exactly one of both is going to be evaluated we can 13526 // consider them to be sequenced. This is needed to avoid warning on 13527 // something like "x ? y+= 1 : y += 2;" in the case where we will visit 13528 // both the true and false expressions because we can't evaluate x. 13529 // This will still allow us to detect an expression like (pre C++17) 13530 // "(x ? y += 1 : y += 2) = y". 13531 // 13532 // We don't wrap the visitation of the true and false expression with 13533 // SequencedSubexpression because we don't want to downgrade modifications 13534 // as side effect in the true and false expressions after the visition 13535 // is done. (for example in the expression "(x ? y++ : y++) + y" we should 13536 // not warn between the two "y++", but we should warn between the "y++" 13537 // and the "y". 13538 SequenceTree::Seq TrueRegion = Tree.allocate(Region); 13539 SequenceTree::Seq FalseRegion = Tree.allocate(Region); 13540 SequenceTree::Seq OldRegion = Region; 13541 13542 EvaluationTracker Eval(*this); 13543 { 13544 SequencedSubexpression Sequenced(*this); 13545 Region = ConditionRegion; 13546 Visit(CO->getCond()); 13547 } 13548 13549 // C++11 [expr.cond]p1: 13550 // [...] The first expression is contextually converted to bool (Clause 4). 13551 // It is evaluated and if it is true, the result of the conditional 13552 // expression is the value of the second expression, otherwise that of the 13553 // third expression. Only one of the second and third expressions is 13554 // evaluated. [...] 13555 bool EvalResult = false; 13556 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult); 13557 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult); 13558 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult); 13559 if (ShouldVisitTrueExpr) { 13560 Region = TrueRegion; 13561 Visit(CO->getTrueExpr()); 13562 } 13563 if (ShouldVisitFalseExpr) { 13564 Region = FalseRegion; 13565 Visit(CO->getFalseExpr()); 13566 } 13567 13568 Region = OldRegion; 13569 Tree.merge(ConditionRegion); 13570 Tree.merge(TrueRegion); 13571 Tree.merge(FalseRegion); 13572 } 13573 13574 void VisitCallExpr(const CallExpr *CE) { 13575 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions. 13576 13577 if (CE->isUnevaluatedBuiltinCall(Context)) 13578 return; 13579 13580 // C++11 [intro.execution]p15: 13581 // When calling a function [...], every value computation and side effect 13582 // associated with any argument expression, or with the postfix expression 13583 // designating the called function, is sequenced before execution of every 13584 // expression or statement in the body of the function [and thus before 13585 // the value computation of its result]. 13586 SequencedSubexpression Sequenced(*this); 13587 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] { 13588 // C++17 [expr.call]p5 13589 // The postfix-expression is sequenced before each expression in the 13590 // expression-list and any default argument. [...] 13591 SequenceTree::Seq CalleeRegion; 13592 SequenceTree::Seq OtherRegion; 13593 if (SemaRef.getLangOpts().CPlusPlus17) { 13594 CalleeRegion = Tree.allocate(Region); 13595 OtherRegion = Tree.allocate(Region); 13596 } else { 13597 CalleeRegion = Region; 13598 OtherRegion = Region; 13599 } 13600 SequenceTree::Seq OldRegion = Region; 13601 13602 // Visit the callee expression first. 13603 Region = CalleeRegion; 13604 if (SemaRef.getLangOpts().CPlusPlus17) { 13605 SequencedSubexpression Sequenced(*this); 13606 Visit(CE->getCallee()); 13607 } else { 13608 Visit(CE->getCallee()); 13609 } 13610 13611 // Then visit the argument expressions. 13612 Region = OtherRegion; 13613 for (const Expr *Argument : CE->arguments()) 13614 Visit(Argument); 13615 13616 Region = OldRegion; 13617 if (SemaRef.getLangOpts().CPlusPlus17) { 13618 Tree.merge(CalleeRegion); 13619 Tree.merge(OtherRegion); 13620 } 13621 }); 13622 } 13623 13624 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) { 13625 // C++17 [over.match.oper]p2: 13626 // [...] the operator notation is first transformed to the equivalent 13627 // function-call notation as summarized in Table 12 (where @ denotes one 13628 // of the operators covered in the specified subclause). However, the 13629 // operands are sequenced in the order prescribed for the built-in 13630 // operator (Clause 8). 13631 // 13632 // From the above only overloaded binary operators and overloaded call 13633 // operators have sequencing rules in C++17 that we need to handle 13634 // separately. 13635 if (!SemaRef.getLangOpts().CPlusPlus17 || 13636 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call)) 13637 return VisitCallExpr(CXXOCE); 13638 13639 enum { 13640 NoSequencing, 13641 LHSBeforeRHS, 13642 RHSBeforeLHS, 13643 LHSBeforeRest 13644 } SequencingKind; 13645 switch (CXXOCE->getOperator()) { 13646 case OO_Equal: 13647 case OO_PlusEqual: 13648 case OO_MinusEqual: 13649 case OO_StarEqual: 13650 case OO_SlashEqual: 13651 case OO_PercentEqual: 13652 case OO_CaretEqual: 13653 case OO_AmpEqual: 13654 case OO_PipeEqual: 13655 case OO_LessLessEqual: 13656 case OO_GreaterGreaterEqual: 13657 SequencingKind = RHSBeforeLHS; 13658 break; 13659 13660 case OO_LessLess: 13661 case OO_GreaterGreater: 13662 case OO_AmpAmp: 13663 case OO_PipePipe: 13664 case OO_Comma: 13665 case OO_ArrowStar: 13666 case OO_Subscript: 13667 SequencingKind = LHSBeforeRHS; 13668 break; 13669 13670 case OO_Call: 13671 SequencingKind = LHSBeforeRest; 13672 break; 13673 13674 default: 13675 SequencingKind = NoSequencing; 13676 break; 13677 } 13678 13679 if (SequencingKind == NoSequencing) 13680 return VisitCallExpr(CXXOCE); 13681 13682 // This is a call, so all subexpressions are sequenced before the result. 13683 SequencedSubexpression Sequenced(*this); 13684 13685 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] { 13686 assert(SemaRef.getLangOpts().CPlusPlus17 && 13687 "Should only get there with C++17 and above!"); 13688 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && 13689 "Should only get there with an overloaded binary operator" 13690 " or an overloaded call operator!"); 13691 13692 if (SequencingKind == LHSBeforeRest) { 13693 assert(CXXOCE->getOperator() == OO_Call && 13694 "We should only have an overloaded call operator here!"); 13695 13696 // This is very similar to VisitCallExpr, except that we only have the 13697 // C++17 case. The postfix-expression is the first argument of the 13698 // CXXOperatorCallExpr. The expressions in the expression-list, if any, 13699 // are in the following arguments. 13700 // 13701 // Note that we intentionally do not visit the callee expression since 13702 // it is just a decayed reference to a function. 13703 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region); 13704 SequenceTree::Seq ArgsRegion = Tree.allocate(Region); 13705 SequenceTree::Seq OldRegion = Region; 13706 13707 assert(CXXOCE->getNumArgs() >= 1 && 13708 "An overloaded call operator must have at least one argument" 13709 " for the postfix-expression!"); 13710 const Expr *PostfixExpr = CXXOCE->getArgs()[0]; 13711 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1, 13712 CXXOCE->getNumArgs() - 1); 13713 13714 // Visit the postfix-expression first. 13715 { 13716 Region = PostfixExprRegion; 13717 SequencedSubexpression Sequenced(*this); 13718 Visit(PostfixExpr); 13719 } 13720 13721 // Then visit the argument expressions. 13722 Region = ArgsRegion; 13723 for (const Expr *Arg : Args) 13724 Visit(Arg); 13725 13726 Region = OldRegion; 13727 Tree.merge(PostfixExprRegion); 13728 Tree.merge(ArgsRegion); 13729 } else { 13730 assert(CXXOCE->getNumArgs() == 2 && 13731 "Should only have two arguments here!"); 13732 assert((SequencingKind == LHSBeforeRHS || 13733 SequencingKind == RHSBeforeLHS) && 13734 "Unexpected sequencing kind!"); 13735 13736 // We do not visit the callee expression since it is just a decayed 13737 // reference to a function. 13738 const Expr *E1 = CXXOCE->getArg(0); 13739 const Expr *E2 = CXXOCE->getArg(1); 13740 if (SequencingKind == RHSBeforeLHS) 13741 std::swap(E1, E2); 13742 13743 return VisitSequencedExpressions(E1, E2); 13744 } 13745 }); 13746 } 13747 13748 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) { 13749 // This is a call, so all subexpressions are sequenced before the result. 13750 SequencedSubexpression Sequenced(*this); 13751 13752 if (!CCE->isListInitialization()) 13753 return VisitExpr(CCE); 13754 13755 // In C++11, list initializations are sequenced. 13756 SmallVector<SequenceTree::Seq, 32> Elts; 13757 SequenceTree::Seq Parent = Region; 13758 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), 13759 E = CCE->arg_end(); 13760 I != E; ++I) { 13761 Region = Tree.allocate(Parent); 13762 Elts.push_back(Region); 13763 Visit(*I); 13764 } 13765 13766 // Forget that the initializers are sequenced. 13767 Region = Parent; 13768 for (unsigned I = 0; I < Elts.size(); ++I) 13769 Tree.merge(Elts[I]); 13770 } 13771 13772 void VisitInitListExpr(const InitListExpr *ILE) { 13773 if (!SemaRef.getLangOpts().CPlusPlus11) 13774 return VisitExpr(ILE); 13775 13776 // In C++11, list initializations are sequenced. 13777 SmallVector<SequenceTree::Seq, 32> Elts; 13778 SequenceTree::Seq Parent = Region; 13779 for (unsigned I = 0; I < ILE->getNumInits(); ++I) { 13780 const Expr *E = ILE->getInit(I); 13781 if (!E) 13782 continue; 13783 Region = Tree.allocate(Parent); 13784 Elts.push_back(Region); 13785 Visit(E); 13786 } 13787 13788 // Forget that the initializers are sequenced. 13789 Region = Parent; 13790 for (unsigned I = 0; I < Elts.size(); ++I) 13791 Tree.merge(Elts[I]); 13792 } 13793 }; 13794 13795 } // namespace 13796 13797 void Sema::CheckUnsequencedOperations(const Expr *E) { 13798 SmallVector<const Expr *, 8> WorkList; 13799 WorkList.push_back(E); 13800 while (!WorkList.empty()) { 13801 const Expr *Item = WorkList.pop_back_val(); 13802 SequenceChecker(*this, Item, WorkList); 13803 } 13804 } 13805 13806 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc, 13807 bool IsConstexpr) { 13808 llvm::SaveAndRestore<bool> ConstantContext( 13809 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E)); 13810 CheckImplicitConversions(E, CheckLoc); 13811 if (!E->isInstantiationDependent()) 13812 CheckUnsequencedOperations(E); 13813 if (!IsConstexpr && !E->isValueDependent()) 13814 CheckForIntOverflow(E); 13815 DiagnoseMisalignedMembers(); 13816 } 13817 13818 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc, 13819 FieldDecl *BitField, 13820 Expr *Init) { 13821 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc); 13822 } 13823 13824 static void diagnoseArrayStarInParamType(Sema &S, QualType PType, 13825 SourceLocation Loc) { 13826 if (!PType->isVariablyModifiedType()) 13827 return; 13828 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) { 13829 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc); 13830 return; 13831 } 13832 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) { 13833 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc); 13834 return; 13835 } 13836 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) { 13837 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc); 13838 return; 13839 } 13840 13841 const ArrayType *AT = S.Context.getAsArrayType(PType); 13842 if (!AT) 13843 return; 13844 13845 if (AT->getSizeModifier() != ArrayType::Star) { 13846 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc); 13847 return; 13848 } 13849 13850 S.Diag(Loc, diag::err_array_star_in_function_definition); 13851 } 13852 13853 /// CheckParmsForFunctionDef - Check that the parameters of the given 13854 /// function are appropriate for the definition of a function. This 13855 /// takes care of any checks that cannot be performed on the 13856 /// declaration itself, e.g., that the types of each of the function 13857 /// parameters are complete. 13858 bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters, 13859 bool CheckParameterNames) { 13860 bool HasInvalidParm = false; 13861 for (ParmVarDecl *Param : Parameters) { 13862 // C99 6.7.5.3p4: the parameters in a parameter type list in a 13863 // function declarator that is part of a function definition of 13864 // that function shall not have incomplete type. 13865 // 13866 // This is also C++ [dcl.fct]p6. 13867 if (!Param->isInvalidDecl() && 13868 RequireCompleteType(Param->getLocation(), Param->getType(), 13869 diag::err_typecheck_decl_incomplete_type)) { 13870 Param->setInvalidDecl(); 13871 HasInvalidParm = true; 13872 } 13873 13874 // C99 6.9.1p5: If the declarator includes a parameter type list, the 13875 // declaration of each parameter shall include an identifier. 13876 if (CheckParameterNames && Param->getIdentifier() == nullptr && 13877 !Param->isImplicit() && !getLangOpts().CPlusPlus) { 13878 // Diagnose this as an extension in C17 and earlier. 13879 if (!getLangOpts().C2x) 13880 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x); 13881 } 13882 13883 // C99 6.7.5.3p12: 13884 // If the function declarator is not part of a definition of that 13885 // function, parameters may have incomplete type and may use the [*] 13886 // notation in their sequences of declarator specifiers to specify 13887 // variable length array types. 13888 QualType PType = Param->getOriginalType(); 13889 // FIXME: This diagnostic should point the '[*]' if source-location 13890 // information is added for it. 13891 diagnoseArrayStarInParamType(*this, PType, Param->getLocation()); 13892 13893 // If the parameter is a c++ class type and it has to be destructed in the 13894 // callee function, declare the destructor so that it can be called by the 13895 // callee function. Do not perform any direct access check on the dtor here. 13896 if (!Param->isInvalidDecl()) { 13897 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) { 13898 if (!ClassDecl->isInvalidDecl() && 13899 !ClassDecl->hasIrrelevantDestructor() && 13900 !ClassDecl->isDependentContext() && 13901 ClassDecl->isParamDestroyedInCallee()) { 13902 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl); 13903 MarkFunctionReferenced(Param->getLocation(), Destructor); 13904 DiagnoseUseOfDecl(Destructor, Param->getLocation()); 13905 } 13906 } 13907 } 13908 13909 // Parameters with the pass_object_size attribute only need to be marked 13910 // constant at function definitions. Because we lack information about 13911 // whether we're on a declaration or definition when we're instantiating the 13912 // attribute, we need to check for constness here. 13913 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>()) 13914 if (!Param->getType().isConstQualified()) 13915 Diag(Param->getLocation(), diag::err_attribute_pointers_only) 13916 << Attr->getSpelling() << 1; 13917 13918 // Check for parameter names shadowing fields from the class. 13919 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) { 13920 // The owning context for the parameter should be the function, but we 13921 // want to see if this function's declaration context is a record. 13922 DeclContext *DC = Param->getDeclContext(); 13923 if (DC && DC->isFunctionOrMethod()) { 13924 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent())) 13925 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(), 13926 RD, /*DeclIsField*/ false); 13927 } 13928 } 13929 } 13930 13931 return HasInvalidParm; 13932 } 13933 13934 Optional<std::pair<CharUnits, CharUnits>> 13935 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx); 13936 13937 /// Compute the alignment and offset of the base class object given the 13938 /// derived-to-base cast expression and the alignment and offset of the derived 13939 /// class object. 13940 static std::pair<CharUnits, CharUnits> 13941 getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType, 13942 CharUnits BaseAlignment, CharUnits Offset, 13943 ASTContext &Ctx) { 13944 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE; 13945 ++PathI) { 13946 const CXXBaseSpecifier *Base = *PathI; 13947 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); 13948 if (Base->isVirtual()) { 13949 // The complete object may have a lower alignment than the non-virtual 13950 // alignment of the base, in which case the base may be misaligned. Choose 13951 // the smaller of the non-virtual alignment and BaseAlignment, which is a 13952 // conservative lower bound of the complete object alignment. 13953 CharUnits NonVirtualAlignment = 13954 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment(); 13955 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment); 13956 Offset = CharUnits::Zero(); 13957 } else { 13958 const ASTRecordLayout &RL = 13959 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl()); 13960 Offset += RL.getBaseClassOffset(BaseDecl); 13961 } 13962 DerivedType = Base->getType(); 13963 } 13964 13965 return std::make_pair(BaseAlignment, Offset); 13966 } 13967 13968 /// Compute the alignment and offset of a binary additive operator. 13969 static Optional<std::pair<CharUnits, CharUnits>> 13970 getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE, 13971 bool IsSub, ASTContext &Ctx) { 13972 QualType PointeeType = PtrE->getType()->getPointeeType(); 13973 13974 if (!PointeeType->isConstantSizeType()) 13975 return llvm::None; 13976 13977 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx); 13978 13979 if (!P) 13980 return llvm::None; 13981 13982 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType); 13983 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) { 13984 CharUnits Offset = EltSize * IdxRes->getExtValue(); 13985 if (IsSub) 13986 Offset = -Offset; 13987 return std::make_pair(P->first, P->second + Offset); 13988 } 13989 13990 // If the integer expression isn't a constant expression, compute the lower 13991 // bound of the alignment using the alignment and offset of the pointer 13992 // expression and the element size. 13993 return std::make_pair( 13994 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize), 13995 CharUnits::Zero()); 13996 } 13997 13998 /// This helper function takes an lvalue expression and returns the alignment of 13999 /// a VarDecl and a constant offset from the VarDecl. 14000 Optional<std::pair<CharUnits, CharUnits>> 14001 static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) { 14002 E = E->IgnoreParens(); 14003 switch (E->getStmtClass()) { 14004 default: 14005 break; 14006 case Stmt::CStyleCastExprClass: 14007 case Stmt::CXXStaticCastExprClass: 14008 case Stmt::ImplicitCastExprClass: { 14009 auto *CE = cast<CastExpr>(E); 14010 const Expr *From = CE->getSubExpr(); 14011 switch (CE->getCastKind()) { 14012 default: 14013 break; 14014 case CK_NoOp: 14015 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14016 case CK_UncheckedDerivedToBase: 14017 case CK_DerivedToBase: { 14018 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14019 if (!P) 14020 break; 14021 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first, 14022 P->second, Ctx); 14023 } 14024 } 14025 break; 14026 } 14027 case Stmt::ArraySubscriptExprClass: { 14028 auto *ASE = cast<ArraySubscriptExpr>(E); 14029 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(), 14030 false, Ctx); 14031 } 14032 case Stmt::DeclRefExprClass: { 14033 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) { 14034 // FIXME: If VD is captured by copy or is an escaping __block variable, 14035 // use the alignment of VD's type. 14036 if (!VD->getType()->isReferenceType()) 14037 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero()); 14038 if (VD->hasInit()) 14039 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx); 14040 } 14041 break; 14042 } 14043 case Stmt::MemberExprClass: { 14044 auto *ME = cast<MemberExpr>(E); 14045 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 14046 if (!FD || FD->getType()->isReferenceType()) 14047 break; 14048 Optional<std::pair<CharUnits, CharUnits>> P; 14049 if (ME->isArrow()) 14050 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx); 14051 else 14052 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx); 14053 if (!P) 14054 break; 14055 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent()); 14056 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex()); 14057 return std::make_pair(P->first, 14058 P->second + CharUnits::fromQuantity(Offset)); 14059 } 14060 case Stmt::UnaryOperatorClass: { 14061 auto *UO = cast<UnaryOperator>(E); 14062 switch (UO->getOpcode()) { 14063 default: 14064 break; 14065 case UO_Deref: 14066 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx); 14067 } 14068 break; 14069 } 14070 case Stmt::BinaryOperatorClass: { 14071 auto *BO = cast<BinaryOperator>(E); 14072 auto Opcode = BO->getOpcode(); 14073 switch (Opcode) { 14074 default: 14075 break; 14076 case BO_Comma: 14077 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx); 14078 } 14079 break; 14080 } 14081 } 14082 return llvm::None; 14083 } 14084 14085 /// This helper function takes a pointer expression and returns the alignment of 14086 /// a VarDecl and a constant offset from the VarDecl. 14087 Optional<std::pair<CharUnits, CharUnits>> 14088 static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) { 14089 E = E->IgnoreParens(); 14090 switch (E->getStmtClass()) { 14091 default: 14092 break; 14093 case Stmt::CStyleCastExprClass: 14094 case Stmt::CXXStaticCastExprClass: 14095 case Stmt::ImplicitCastExprClass: { 14096 auto *CE = cast<CastExpr>(E); 14097 const Expr *From = CE->getSubExpr(); 14098 switch (CE->getCastKind()) { 14099 default: 14100 break; 14101 case CK_NoOp: 14102 return getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14103 case CK_ArrayToPointerDecay: 14104 return getBaseAlignmentAndOffsetFromLValue(From, Ctx); 14105 case CK_UncheckedDerivedToBase: 14106 case CK_DerivedToBase: { 14107 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx); 14108 if (!P) 14109 break; 14110 return getDerivedToBaseAlignmentAndOffset( 14111 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx); 14112 } 14113 } 14114 break; 14115 } 14116 case Stmt::CXXThisExprClass: { 14117 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl(); 14118 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment(); 14119 return std::make_pair(Alignment, CharUnits::Zero()); 14120 } 14121 case Stmt::UnaryOperatorClass: { 14122 auto *UO = cast<UnaryOperator>(E); 14123 if (UO->getOpcode() == UO_AddrOf) 14124 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx); 14125 break; 14126 } 14127 case Stmt::BinaryOperatorClass: { 14128 auto *BO = cast<BinaryOperator>(E); 14129 auto Opcode = BO->getOpcode(); 14130 switch (Opcode) { 14131 default: 14132 break; 14133 case BO_Add: 14134 case BO_Sub: { 14135 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS(); 14136 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType()) 14137 std::swap(LHS, RHS); 14138 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub, 14139 Ctx); 14140 } 14141 case BO_Comma: 14142 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx); 14143 } 14144 break; 14145 } 14146 } 14147 return llvm::None; 14148 } 14149 14150 static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) { 14151 // See if we can compute the alignment of a VarDecl and an offset from it. 14152 Optional<std::pair<CharUnits, CharUnits>> P = 14153 getBaseAlignmentAndOffsetFromPtr(E, S.Context); 14154 14155 if (P) 14156 return P->first.alignmentAtOffset(P->second); 14157 14158 // If that failed, return the type's alignment. 14159 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType()); 14160 } 14161 14162 /// CheckCastAlign - Implements -Wcast-align, which warns when a 14163 /// pointer cast increases the alignment requirements. 14164 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) { 14165 // This is actually a lot of work to potentially be doing on every 14166 // cast; don't do it if we're ignoring -Wcast_align (as is the default). 14167 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin())) 14168 return; 14169 14170 // Ignore dependent types. 14171 if (T->isDependentType() || Op->getType()->isDependentType()) 14172 return; 14173 14174 // Require that the destination be a pointer type. 14175 const PointerType *DestPtr = T->getAs<PointerType>(); 14176 if (!DestPtr) return; 14177 14178 // If the destination has alignment 1, we're done. 14179 QualType DestPointee = DestPtr->getPointeeType(); 14180 if (DestPointee->isIncompleteType()) return; 14181 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee); 14182 if (DestAlign.isOne()) return; 14183 14184 // Require that the source be a pointer type. 14185 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>(); 14186 if (!SrcPtr) return; 14187 QualType SrcPointee = SrcPtr->getPointeeType(); 14188 14189 // Explicitly allow casts from cv void*. We already implicitly 14190 // allowed casts to cv void*, since they have alignment 1. 14191 // Also allow casts involving incomplete types, which implicitly 14192 // includes 'void'. 14193 if (SrcPointee->isIncompleteType()) return; 14194 14195 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this); 14196 14197 if (SrcAlign >= DestAlign) return; 14198 14199 Diag(TRange.getBegin(), diag::warn_cast_align) 14200 << Op->getType() << T 14201 << static_cast<unsigned>(SrcAlign.getQuantity()) 14202 << static_cast<unsigned>(DestAlign.getQuantity()) 14203 << TRange << Op->getSourceRange(); 14204 } 14205 14206 /// Check whether this array fits the idiom of a size-one tail padded 14207 /// array member of a struct. 14208 /// 14209 /// We avoid emitting out-of-bounds access warnings for such arrays as they are 14210 /// commonly used to emulate flexible arrays in C89 code. 14211 static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size, 14212 const NamedDecl *ND) { 14213 if (Size != 1 || !ND) return false; 14214 14215 const FieldDecl *FD = dyn_cast<FieldDecl>(ND); 14216 if (!FD) return false; 14217 14218 // Don't consider sizes resulting from macro expansions or template argument 14219 // substitution to form C89 tail-padded arrays. 14220 14221 TypeSourceInfo *TInfo = FD->getTypeSourceInfo(); 14222 while (TInfo) { 14223 TypeLoc TL = TInfo->getTypeLoc(); 14224 // Look through typedefs. 14225 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) { 14226 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl(); 14227 TInfo = TDL->getTypeSourceInfo(); 14228 continue; 14229 } 14230 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) { 14231 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr()); 14232 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID()) 14233 return false; 14234 } 14235 break; 14236 } 14237 14238 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext()); 14239 if (!RD) return false; 14240 if (RD->isUnion()) return false; 14241 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 14242 if (!CRD->isStandardLayout()) return false; 14243 } 14244 14245 // See if this is the last field decl in the record. 14246 const Decl *D = FD; 14247 while ((D = D->getNextDeclInContext())) 14248 if (isa<FieldDecl>(D)) 14249 return false; 14250 return true; 14251 } 14252 14253 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr, 14254 const ArraySubscriptExpr *ASE, 14255 bool AllowOnePastEnd, bool IndexNegated) { 14256 // Already diagnosed by the constant evaluator. 14257 if (isConstantEvaluated()) 14258 return; 14259 14260 IndexExpr = IndexExpr->IgnoreParenImpCasts(); 14261 if (IndexExpr->isValueDependent()) 14262 return; 14263 14264 const Type *EffectiveType = 14265 BaseExpr->getType()->getPointeeOrArrayElementType(); 14266 BaseExpr = BaseExpr->IgnoreParenCasts(); 14267 const ConstantArrayType *ArrayTy = 14268 Context.getAsConstantArrayType(BaseExpr->getType()); 14269 14270 if (!ArrayTy) 14271 return; 14272 14273 const Type *BaseType = ArrayTy->getElementType().getTypePtr(); 14274 if (EffectiveType->isDependentType() || BaseType->isDependentType()) 14275 return; 14276 14277 Expr::EvalResult Result; 14278 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) 14279 return; 14280 14281 llvm::APSInt index = Result.Val.getInt(); 14282 if (IndexNegated) 14283 index = -index; 14284 14285 const NamedDecl *ND = nullptr; 14286 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14287 ND = DRE->getDecl(); 14288 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14289 ND = ME->getMemberDecl(); 14290 14291 if (index.isUnsigned() || !index.isNegative()) { 14292 // It is possible that the type of the base expression after 14293 // IgnoreParenCasts is incomplete, even though the type of the base 14294 // expression before IgnoreParenCasts is complete (see PR39746 for an 14295 // example). In this case we have no information about whether the array 14296 // access exceeds the array bounds. However we can still diagnose an array 14297 // access which precedes the array bounds. 14298 if (BaseType->isIncompleteType()) 14299 return; 14300 14301 llvm::APInt size = ArrayTy->getSize(); 14302 if (!size.isStrictlyPositive()) 14303 return; 14304 14305 if (BaseType != EffectiveType) { 14306 // Make sure we're comparing apples to apples when comparing index to size 14307 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType); 14308 uint64_t array_typesize = Context.getTypeSize(BaseType); 14309 // Handle ptrarith_typesize being zero, such as when casting to void* 14310 if (!ptrarith_typesize) ptrarith_typesize = 1; 14311 if (ptrarith_typesize != array_typesize) { 14312 // There's a cast to a different size type involved 14313 uint64_t ratio = array_typesize / ptrarith_typesize; 14314 // TODO: Be smarter about handling cases where array_typesize is not a 14315 // multiple of ptrarith_typesize 14316 if (ptrarith_typesize * ratio == array_typesize) 14317 size *= llvm::APInt(size.getBitWidth(), ratio); 14318 } 14319 } 14320 14321 if (size.getBitWidth() > index.getBitWidth()) 14322 index = index.zext(size.getBitWidth()); 14323 else if (size.getBitWidth() < index.getBitWidth()) 14324 size = size.zext(index.getBitWidth()); 14325 14326 // For array subscripting the index must be less than size, but for pointer 14327 // arithmetic also allow the index (offset) to be equal to size since 14328 // computing the next address after the end of the array is legal and 14329 // commonly done e.g. in C++ iterators and range-based for loops. 14330 if (AllowOnePastEnd ? index.ule(size) : index.ult(size)) 14331 return; 14332 14333 // Also don't warn for arrays of size 1 which are members of some 14334 // structure. These are often used to approximate flexible arrays in C89 14335 // code. 14336 if (IsTailPaddedMemberArray(*this, size, ND)) 14337 return; 14338 14339 // Suppress the warning if the subscript expression (as identified by the 14340 // ']' location) and the index expression are both from macro expansions 14341 // within a system header. 14342 if (ASE) { 14343 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc( 14344 ASE->getRBracketLoc()); 14345 if (SourceMgr.isInSystemHeader(RBracketLoc)) { 14346 SourceLocation IndexLoc = 14347 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc()); 14348 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc)) 14349 return; 14350 } 14351 } 14352 14353 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds; 14354 if (ASE) 14355 DiagID = diag::warn_array_index_exceeds_bounds; 14356 14357 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14358 PDiag(DiagID) << index.toString(10, true) 14359 << size.toString(10, true) 14360 << (unsigned)size.getLimitedValue(~0U) 14361 << IndexExpr->getSourceRange()); 14362 } else { 14363 unsigned DiagID = diag::warn_array_index_precedes_bounds; 14364 if (!ASE) { 14365 DiagID = diag::warn_ptr_arith_precedes_bounds; 14366 if (index.isNegative()) index = -index; 14367 } 14368 14369 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr, 14370 PDiag(DiagID) << index.toString(10, true) 14371 << IndexExpr->getSourceRange()); 14372 } 14373 14374 if (!ND) { 14375 // Try harder to find a NamedDecl to point at in the note. 14376 while (const ArraySubscriptExpr *ASE = 14377 dyn_cast<ArraySubscriptExpr>(BaseExpr)) 14378 BaseExpr = ASE->getBase()->IgnoreParenCasts(); 14379 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr)) 14380 ND = DRE->getDecl(); 14381 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr)) 14382 ND = ME->getMemberDecl(); 14383 } 14384 14385 if (ND) 14386 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr, 14387 PDiag(diag::note_array_declared_here) << ND); 14388 } 14389 14390 void Sema::CheckArrayAccess(const Expr *expr) { 14391 int AllowOnePastEnd = 0; 14392 while (expr) { 14393 expr = expr->IgnoreParenImpCasts(); 14394 switch (expr->getStmtClass()) { 14395 case Stmt::ArraySubscriptExprClass: { 14396 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr); 14397 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE, 14398 AllowOnePastEnd > 0); 14399 expr = ASE->getBase(); 14400 break; 14401 } 14402 case Stmt::MemberExprClass: { 14403 expr = cast<MemberExpr>(expr)->getBase(); 14404 break; 14405 } 14406 case Stmt::OMPArraySectionExprClass: { 14407 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr); 14408 if (ASE->getLowerBound()) 14409 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(), 14410 /*ASE=*/nullptr, AllowOnePastEnd > 0); 14411 return; 14412 } 14413 case Stmt::UnaryOperatorClass: { 14414 // Only unwrap the * and & unary operators 14415 const UnaryOperator *UO = cast<UnaryOperator>(expr); 14416 expr = UO->getSubExpr(); 14417 switch (UO->getOpcode()) { 14418 case UO_AddrOf: 14419 AllowOnePastEnd++; 14420 break; 14421 case UO_Deref: 14422 AllowOnePastEnd--; 14423 break; 14424 default: 14425 return; 14426 } 14427 break; 14428 } 14429 case Stmt::ConditionalOperatorClass: { 14430 const ConditionalOperator *cond = cast<ConditionalOperator>(expr); 14431 if (const Expr *lhs = cond->getLHS()) 14432 CheckArrayAccess(lhs); 14433 if (const Expr *rhs = cond->getRHS()) 14434 CheckArrayAccess(rhs); 14435 return; 14436 } 14437 case Stmt::CXXOperatorCallExprClass: { 14438 const auto *OCE = cast<CXXOperatorCallExpr>(expr); 14439 for (const auto *Arg : OCE->arguments()) 14440 CheckArrayAccess(Arg); 14441 return; 14442 } 14443 default: 14444 return; 14445 } 14446 } 14447 } 14448 14449 //===--- CHECK: Objective-C retain cycles ----------------------------------// 14450 14451 namespace { 14452 14453 struct RetainCycleOwner { 14454 VarDecl *Variable = nullptr; 14455 SourceRange Range; 14456 SourceLocation Loc; 14457 bool Indirect = false; 14458 14459 RetainCycleOwner() = default; 14460 14461 void setLocsFrom(Expr *e) { 14462 Loc = e->getExprLoc(); 14463 Range = e->getSourceRange(); 14464 } 14465 }; 14466 14467 } // namespace 14468 14469 /// Consider whether capturing the given variable can possibly lead to 14470 /// a retain cycle. 14471 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) { 14472 // In ARC, it's captured strongly iff the variable has __strong 14473 // lifetime. In MRR, it's captured strongly if the variable is 14474 // __block and has an appropriate type. 14475 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14476 return false; 14477 14478 owner.Variable = var; 14479 if (ref) 14480 owner.setLocsFrom(ref); 14481 return true; 14482 } 14483 14484 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) { 14485 while (true) { 14486 e = e->IgnoreParens(); 14487 if (CastExpr *cast = dyn_cast<CastExpr>(e)) { 14488 switch (cast->getCastKind()) { 14489 case CK_BitCast: 14490 case CK_LValueBitCast: 14491 case CK_LValueToRValue: 14492 case CK_ARCReclaimReturnedObject: 14493 e = cast->getSubExpr(); 14494 continue; 14495 14496 default: 14497 return false; 14498 } 14499 } 14500 14501 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) { 14502 ObjCIvarDecl *ivar = ref->getDecl(); 14503 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong) 14504 return false; 14505 14506 // Try to find a retain cycle in the base. 14507 if (!findRetainCycleOwner(S, ref->getBase(), owner)) 14508 return false; 14509 14510 if (ref->isFreeIvar()) owner.setLocsFrom(ref); 14511 owner.Indirect = true; 14512 return true; 14513 } 14514 14515 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) { 14516 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl()); 14517 if (!var) return false; 14518 return considerVariable(var, ref, owner); 14519 } 14520 14521 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) { 14522 if (member->isArrow()) return false; 14523 14524 // Don't count this as an indirect ownership. 14525 e = member->getBase(); 14526 continue; 14527 } 14528 14529 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) { 14530 // Only pay attention to pseudo-objects on property references. 14531 ObjCPropertyRefExpr *pre 14532 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm() 14533 ->IgnoreParens()); 14534 if (!pre) return false; 14535 if (pre->isImplicitProperty()) return false; 14536 ObjCPropertyDecl *property = pre->getExplicitProperty(); 14537 if (!property->isRetaining() && 14538 !(property->getPropertyIvarDecl() && 14539 property->getPropertyIvarDecl()->getType() 14540 .getObjCLifetime() == Qualifiers::OCL_Strong)) 14541 return false; 14542 14543 owner.Indirect = true; 14544 if (pre->isSuperReceiver()) { 14545 owner.Variable = S.getCurMethodDecl()->getSelfDecl(); 14546 if (!owner.Variable) 14547 return false; 14548 owner.Loc = pre->getLocation(); 14549 owner.Range = pre->getSourceRange(); 14550 return true; 14551 } 14552 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase()) 14553 ->getSourceExpr()); 14554 continue; 14555 } 14556 14557 // Array ivars? 14558 14559 return false; 14560 } 14561 } 14562 14563 namespace { 14564 14565 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> { 14566 ASTContext &Context; 14567 VarDecl *Variable; 14568 Expr *Capturer = nullptr; 14569 bool VarWillBeReased = false; 14570 14571 FindCaptureVisitor(ASTContext &Context, VarDecl *variable) 14572 : EvaluatedExprVisitor<FindCaptureVisitor>(Context), 14573 Context(Context), Variable(variable) {} 14574 14575 void VisitDeclRefExpr(DeclRefExpr *ref) { 14576 if (ref->getDecl() == Variable && !Capturer) 14577 Capturer = ref; 14578 } 14579 14580 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) { 14581 if (Capturer) return; 14582 Visit(ref->getBase()); 14583 if (Capturer && ref->isFreeIvar()) 14584 Capturer = ref; 14585 } 14586 14587 void VisitBlockExpr(BlockExpr *block) { 14588 // Look inside nested blocks 14589 if (block->getBlockDecl()->capturesVariable(Variable)) 14590 Visit(block->getBlockDecl()->getBody()); 14591 } 14592 14593 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) { 14594 if (Capturer) return; 14595 if (OVE->getSourceExpr()) 14596 Visit(OVE->getSourceExpr()); 14597 } 14598 14599 void VisitBinaryOperator(BinaryOperator *BinOp) { 14600 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign) 14601 return; 14602 Expr *LHS = BinOp->getLHS(); 14603 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) { 14604 if (DRE->getDecl() != Variable) 14605 return; 14606 if (Expr *RHS = BinOp->getRHS()) { 14607 RHS = RHS->IgnoreParenCasts(); 14608 Optional<llvm::APSInt> Value; 14609 VarWillBeReased = 14610 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) && 14611 *Value == 0); 14612 } 14613 } 14614 } 14615 }; 14616 14617 } // namespace 14618 14619 /// Check whether the given argument is a block which captures a 14620 /// variable. 14621 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) { 14622 assert(owner.Variable && owner.Loc.isValid()); 14623 14624 e = e->IgnoreParenCasts(); 14625 14626 // Look through [^{...} copy] and Block_copy(^{...}). 14627 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) { 14628 Selector Cmd = ME->getSelector(); 14629 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") { 14630 e = ME->getInstanceReceiver(); 14631 if (!e) 14632 return nullptr; 14633 e = e->IgnoreParenCasts(); 14634 } 14635 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) { 14636 if (CE->getNumArgs() == 1) { 14637 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl()); 14638 if (Fn) { 14639 const IdentifierInfo *FnI = Fn->getIdentifier(); 14640 if (FnI && FnI->isStr("_Block_copy")) { 14641 e = CE->getArg(0)->IgnoreParenCasts(); 14642 } 14643 } 14644 } 14645 } 14646 14647 BlockExpr *block = dyn_cast<BlockExpr>(e); 14648 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable)) 14649 return nullptr; 14650 14651 FindCaptureVisitor visitor(S.Context, owner.Variable); 14652 visitor.Visit(block->getBlockDecl()->getBody()); 14653 return visitor.VarWillBeReased ? nullptr : visitor.Capturer; 14654 } 14655 14656 static void diagnoseRetainCycle(Sema &S, Expr *capturer, 14657 RetainCycleOwner &owner) { 14658 assert(capturer); 14659 assert(owner.Variable && owner.Loc.isValid()); 14660 14661 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle) 14662 << owner.Variable << capturer->getSourceRange(); 14663 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner) 14664 << owner.Indirect << owner.Range; 14665 } 14666 14667 /// Check for a keyword selector that starts with the word 'add' or 14668 /// 'set'. 14669 static bool isSetterLikeSelector(Selector sel) { 14670 if (sel.isUnarySelector()) return false; 14671 14672 StringRef str = sel.getNameForSlot(0); 14673 while (!str.empty() && str.front() == '_') str = str.substr(1); 14674 if (str.startswith("set")) 14675 str = str.substr(3); 14676 else if (str.startswith("add")) { 14677 // Specially allow 'addOperationWithBlock:'. 14678 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock")) 14679 return false; 14680 str = str.substr(3); 14681 } 14682 else 14683 return false; 14684 14685 if (str.empty()) return true; 14686 return !isLowercase(str.front()); 14687 } 14688 14689 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S, 14690 ObjCMessageExpr *Message) { 14691 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass( 14692 Message->getReceiverInterface(), 14693 NSAPI::ClassId_NSMutableArray); 14694 if (!IsMutableArray) { 14695 return None; 14696 } 14697 14698 Selector Sel = Message->getSelector(); 14699 14700 Optional<NSAPI::NSArrayMethodKind> MKOpt = 14701 S.NSAPIObj->getNSArrayMethodKind(Sel); 14702 if (!MKOpt) { 14703 return None; 14704 } 14705 14706 NSAPI::NSArrayMethodKind MK = *MKOpt; 14707 14708 switch (MK) { 14709 case NSAPI::NSMutableArr_addObject: 14710 case NSAPI::NSMutableArr_insertObjectAtIndex: 14711 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript: 14712 return 0; 14713 case NSAPI::NSMutableArr_replaceObjectAtIndex: 14714 return 1; 14715 14716 default: 14717 return None; 14718 } 14719 14720 return None; 14721 } 14722 14723 static 14724 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S, 14725 ObjCMessageExpr *Message) { 14726 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass( 14727 Message->getReceiverInterface(), 14728 NSAPI::ClassId_NSMutableDictionary); 14729 if (!IsMutableDictionary) { 14730 return None; 14731 } 14732 14733 Selector Sel = Message->getSelector(); 14734 14735 Optional<NSAPI::NSDictionaryMethodKind> MKOpt = 14736 S.NSAPIObj->getNSDictionaryMethodKind(Sel); 14737 if (!MKOpt) { 14738 return None; 14739 } 14740 14741 NSAPI::NSDictionaryMethodKind MK = *MKOpt; 14742 14743 switch (MK) { 14744 case NSAPI::NSMutableDict_setObjectForKey: 14745 case NSAPI::NSMutableDict_setValueForKey: 14746 case NSAPI::NSMutableDict_setObjectForKeyedSubscript: 14747 return 0; 14748 14749 default: 14750 return None; 14751 } 14752 14753 return None; 14754 } 14755 14756 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) { 14757 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass( 14758 Message->getReceiverInterface(), 14759 NSAPI::ClassId_NSMutableSet); 14760 14761 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass( 14762 Message->getReceiverInterface(), 14763 NSAPI::ClassId_NSMutableOrderedSet); 14764 if (!IsMutableSet && !IsMutableOrderedSet) { 14765 return None; 14766 } 14767 14768 Selector Sel = Message->getSelector(); 14769 14770 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel); 14771 if (!MKOpt) { 14772 return None; 14773 } 14774 14775 NSAPI::NSSetMethodKind MK = *MKOpt; 14776 14777 switch (MK) { 14778 case NSAPI::NSMutableSet_addObject: 14779 case NSAPI::NSOrderedSet_setObjectAtIndex: 14780 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript: 14781 case NSAPI::NSOrderedSet_insertObjectAtIndex: 14782 return 0; 14783 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject: 14784 return 1; 14785 } 14786 14787 return None; 14788 } 14789 14790 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) { 14791 if (!Message->isInstanceMessage()) { 14792 return; 14793 } 14794 14795 Optional<int> ArgOpt; 14796 14797 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) && 14798 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) && 14799 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) { 14800 return; 14801 } 14802 14803 int ArgIndex = *ArgOpt; 14804 14805 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts(); 14806 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) { 14807 Arg = OE->getSourceExpr()->IgnoreImpCasts(); 14808 } 14809 14810 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) { 14811 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14812 if (ArgRE->isObjCSelfExpr()) { 14813 Diag(Message->getSourceRange().getBegin(), 14814 diag::warn_objc_circular_container) 14815 << ArgRE->getDecl() << StringRef("'super'"); 14816 } 14817 } 14818 } else { 14819 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts(); 14820 14821 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) { 14822 Receiver = OE->getSourceExpr()->IgnoreImpCasts(); 14823 } 14824 14825 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) { 14826 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) { 14827 if (ReceiverRE->getDecl() == ArgRE->getDecl()) { 14828 ValueDecl *Decl = ReceiverRE->getDecl(); 14829 Diag(Message->getSourceRange().getBegin(), 14830 diag::warn_objc_circular_container) 14831 << Decl << Decl; 14832 if (!ArgRE->isObjCSelfExpr()) { 14833 Diag(Decl->getLocation(), 14834 diag::note_objc_circular_container_declared_here) 14835 << Decl; 14836 } 14837 } 14838 } 14839 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) { 14840 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) { 14841 if (IvarRE->getDecl() == IvarArgRE->getDecl()) { 14842 ObjCIvarDecl *Decl = IvarRE->getDecl(); 14843 Diag(Message->getSourceRange().getBegin(), 14844 diag::warn_objc_circular_container) 14845 << Decl << Decl; 14846 Diag(Decl->getLocation(), 14847 diag::note_objc_circular_container_declared_here) 14848 << Decl; 14849 } 14850 } 14851 } 14852 } 14853 } 14854 14855 /// Check a message send to see if it's likely to cause a retain cycle. 14856 void Sema::checkRetainCycles(ObjCMessageExpr *msg) { 14857 // Only check instance methods whose selector looks like a setter. 14858 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector())) 14859 return; 14860 14861 // Try to find a variable that the receiver is strongly owned by. 14862 RetainCycleOwner owner; 14863 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) { 14864 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner)) 14865 return; 14866 } else { 14867 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance); 14868 owner.Variable = getCurMethodDecl()->getSelfDecl(); 14869 owner.Loc = msg->getSuperLoc(); 14870 owner.Range = msg->getSuperLoc(); 14871 } 14872 14873 // Check whether the receiver is captured by any of the arguments. 14874 const ObjCMethodDecl *MD = msg->getMethodDecl(); 14875 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) { 14876 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) { 14877 // noescape blocks should not be retained by the method. 14878 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>()) 14879 continue; 14880 return diagnoseRetainCycle(*this, capturer, owner); 14881 } 14882 } 14883 } 14884 14885 /// Check a property assign to see if it's likely to cause a retain cycle. 14886 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) { 14887 RetainCycleOwner owner; 14888 if (!findRetainCycleOwner(*this, receiver, owner)) 14889 return; 14890 14891 if (Expr *capturer = findCapturingExpr(*this, argument, owner)) 14892 diagnoseRetainCycle(*this, capturer, owner); 14893 } 14894 14895 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) { 14896 RetainCycleOwner Owner; 14897 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner)) 14898 return; 14899 14900 // Because we don't have an expression for the variable, we have to set the 14901 // location explicitly here. 14902 Owner.Loc = Var->getLocation(); 14903 Owner.Range = Var->getSourceRange(); 14904 14905 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner)) 14906 diagnoseRetainCycle(*this, Capturer, Owner); 14907 } 14908 14909 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc, 14910 Expr *RHS, bool isProperty) { 14911 // Check if RHS is an Objective-C object literal, which also can get 14912 // immediately zapped in a weak reference. Note that we explicitly 14913 // allow ObjCStringLiterals, since those are designed to never really die. 14914 RHS = RHS->IgnoreParenImpCasts(); 14915 14916 // This enum needs to match with the 'select' in 14917 // warn_objc_arc_literal_assign (off-by-1). 14918 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS); 14919 if (Kind == Sema::LK_String || Kind == Sema::LK_None) 14920 return false; 14921 14922 S.Diag(Loc, diag::warn_arc_literal_assign) 14923 << (unsigned) Kind 14924 << (isProperty ? 0 : 1) 14925 << RHS->getSourceRange(); 14926 14927 return true; 14928 } 14929 14930 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc, 14931 Qualifiers::ObjCLifetime LT, 14932 Expr *RHS, bool isProperty) { 14933 // Strip off any implicit cast added to get to the one ARC-specific. 14934 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 14935 if (cast->getCastKind() == CK_ARCConsumeObject) { 14936 S.Diag(Loc, diag::warn_arc_retained_assign) 14937 << (LT == Qualifiers::OCL_ExplicitNone) 14938 << (isProperty ? 0 : 1) 14939 << RHS->getSourceRange(); 14940 return true; 14941 } 14942 RHS = cast->getSubExpr(); 14943 } 14944 14945 if (LT == Qualifiers::OCL_Weak && 14946 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty)) 14947 return true; 14948 14949 return false; 14950 } 14951 14952 bool Sema::checkUnsafeAssigns(SourceLocation Loc, 14953 QualType LHS, Expr *RHS) { 14954 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime(); 14955 14956 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone) 14957 return false; 14958 14959 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false)) 14960 return true; 14961 14962 return false; 14963 } 14964 14965 void Sema::checkUnsafeExprAssigns(SourceLocation Loc, 14966 Expr *LHS, Expr *RHS) { 14967 QualType LHSType; 14968 // PropertyRef on LHS type need be directly obtained from 14969 // its declaration as it has a PseudoType. 14970 ObjCPropertyRefExpr *PRE 14971 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens()); 14972 if (PRE && !PRE->isImplicitProperty()) { 14973 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14974 if (PD) 14975 LHSType = PD->getType(); 14976 } 14977 14978 if (LHSType.isNull()) 14979 LHSType = LHS->getType(); 14980 14981 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime(); 14982 14983 if (LT == Qualifiers::OCL_Weak) { 14984 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) 14985 getCurFunction()->markSafeWeakUse(LHS); 14986 } 14987 14988 if (checkUnsafeAssigns(Loc, LHSType, RHS)) 14989 return; 14990 14991 // FIXME. Check for other life times. 14992 if (LT != Qualifiers::OCL_None) 14993 return; 14994 14995 if (PRE) { 14996 if (PRE->isImplicitProperty()) 14997 return; 14998 const ObjCPropertyDecl *PD = PRE->getExplicitProperty(); 14999 if (!PD) 15000 return; 15001 15002 unsigned Attributes = PD->getPropertyAttributes(); 15003 if (Attributes & ObjCPropertyAttribute::kind_assign) { 15004 // when 'assign' attribute was not explicitly specified 15005 // by user, ignore it and rely on property type itself 15006 // for lifetime info. 15007 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten(); 15008 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) && 15009 LHSType->isObjCRetainableType()) 15010 return; 15011 15012 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) { 15013 if (cast->getCastKind() == CK_ARCConsumeObject) { 15014 Diag(Loc, diag::warn_arc_retained_property_assign) 15015 << RHS->getSourceRange(); 15016 return; 15017 } 15018 RHS = cast->getSubExpr(); 15019 } 15020 } else if (Attributes & ObjCPropertyAttribute::kind_weak) { 15021 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true)) 15022 return; 15023 } 15024 } 15025 } 15026 15027 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===// 15028 15029 static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr, 15030 SourceLocation StmtLoc, 15031 const NullStmt *Body) { 15032 // Do not warn if the body is a macro that expands to nothing, e.g: 15033 // 15034 // #define CALL(x) 15035 // if (condition) 15036 // CALL(0); 15037 if (Body->hasLeadingEmptyMacro()) 15038 return false; 15039 15040 // Get line numbers of statement and body. 15041 bool StmtLineInvalid; 15042 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc, 15043 &StmtLineInvalid); 15044 if (StmtLineInvalid) 15045 return false; 15046 15047 bool BodyLineInvalid; 15048 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(), 15049 &BodyLineInvalid); 15050 if (BodyLineInvalid) 15051 return false; 15052 15053 // Warn if null statement and body are on the same line. 15054 if (StmtLine != BodyLine) 15055 return false; 15056 15057 return true; 15058 } 15059 15060 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc, 15061 const Stmt *Body, 15062 unsigned DiagID) { 15063 // Since this is a syntactic check, don't emit diagnostic for template 15064 // instantiations, this just adds noise. 15065 if (CurrentInstantiationScope) 15066 return; 15067 15068 // The body should be a null statement. 15069 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15070 if (!NBody) 15071 return; 15072 15073 // Do the usual checks. 15074 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15075 return; 15076 15077 Diag(NBody->getSemiLoc(), DiagID); 15078 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15079 } 15080 15081 void Sema::DiagnoseEmptyLoopBody(const Stmt *S, 15082 const Stmt *PossibleBody) { 15083 assert(!CurrentInstantiationScope); // Ensured by caller 15084 15085 SourceLocation StmtLoc; 15086 const Stmt *Body; 15087 unsigned DiagID; 15088 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) { 15089 StmtLoc = FS->getRParenLoc(); 15090 Body = FS->getBody(); 15091 DiagID = diag::warn_empty_for_body; 15092 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) { 15093 StmtLoc = WS->getCond()->getSourceRange().getEnd(); 15094 Body = WS->getBody(); 15095 DiagID = diag::warn_empty_while_body; 15096 } else 15097 return; // Neither `for' nor `while'. 15098 15099 // The body should be a null statement. 15100 const NullStmt *NBody = dyn_cast<NullStmt>(Body); 15101 if (!NBody) 15102 return; 15103 15104 // Skip expensive checks if diagnostic is disabled. 15105 if (Diags.isIgnored(DiagID, NBody->getSemiLoc())) 15106 return; 15107 15108 // Do the usual checks. 15109 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody)) 15110 return; 15111 15112 // `for(...);' and `while(...);' are popular idioms, so in order to keep 15113 // noise level low, emit diagnostics only if for/while is followed by a 15114 // CompoundStmt, e.g.: 15115 // for (int i = 0; i < n; i++); 15116 // { 15117 // a(i); 15118 // } 15119 // or if for/while is followed by a statement with more indentation 15120 // than for/while itself: 15121 // for (int i = 0; i < n; i++); 15122 // a(i); 15123 bool ProbableTypo = isa<CompoundStmt>(PossibleBody); 15124 if (!ProbableTypo) { 15125 bool BodyColInvalid; 15126 unsigned BodyCol = SourceMgr.getPresumedColumnNumber( 15127 PossibleBody->getBeginLoc(), &BodyColInvalid); 15128 if (BodyColInvalid) 15129 return; 15130 15131 bool StmtColInvalid; 15132 unsigned StmtCol = 15133 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid); 15134 if (StmtColInvalid) 15135 return; 15136 15137 if (BodyCol > StmtCol) 15138 ProbableTypo = true; 15139 } 15140 15141 if (ProbableTypo) { 15142 Diag(NBody->getSemiLoc(), DiagID); 15143 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line); 15144 } 15145 } 15146 15147 //===--- CHECK: Warn on self move with std::move. -------------------------===// 15148 15149 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself. 15150 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr, 15151 SourceLocation OpLoc) { 15152 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc)) 15153 return; 15154 15155 if (inTemplateInstantiation()) 15156 return; 15157 15158 // Strip parens and casts away. 15159 LHSExpr = LHSExpr->IgnoreParenImpCasts(); 15160 RHSExpr = RHSExpr->IgnoreParenImpCasts(); 15161 15162 // Check for a call expression 15163 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr); 15164 if (!CE || CE->getNumArgs() != 1) 15165 return; 15166 15167 // Check for a call to std::move 15168 if (!CE->isCallToStdMove()) 15169 return; 15170 15171 // Get argument from std::move 15172 RHSExpr = CE->getArg(0); 15173 15174 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr); 15175 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr); 15176 15177 // Two DeclRefExpr's, check that the decls are the same. 15178 if (LHSDeclRef && RHSDeclRef) { 15179 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15180 return; 15181 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15182 RHSDeclRef->getDecl()->getCanonicalDecl()) 15183 return; 15184 15185 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15186 << LHSExpr->getSourceRange() 15187 << RHSExpr->getSourceRange(); 15188 return; 15189 } 15190 15191 // Member variables require a different approach to check for self moves. 15192 // MemberExpr's are the same if every nested MemberExpr refers to the same 15193 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or 15194 // the base Expr's are CXXThisExpr's. 15195 const Expr *LHSBase = LHSExpr; 15196 const Expr *RHSBase = RHSExpr; 15197 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr); 15198 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr); 15199 if (!LHSME || !RHSME) 15200 return; 15201 15202 while (LHSME && RHSME) { 15203 if (LHSME->getMemberDecl()->getCanonicalDecl() != 15204 RHSME->getMemberDecl()->getCanonicalDecl()) 15205 return; 15206 15207 LHSBase = LHSME->getBase(); 15208 RHSBase = RHSME->getBase(); 15209 LHSME = dyn_cast<MemberExpr>(LHSBase); 15210 RHSME = dyn_cast<MemberExpr>(RHSBase); 15211 } 15212 15213 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase); 15214 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase); 15215 if (LHSDeclRef && RHSDeclRef) { 15216 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl()) 15217 return; 15218 if (LHSDeclRef->getDecl()->getCanonicalDecl() != 15219 RHSDeclRef->getDecl()->getCanonicalDecl()) 15220 return; 15221 15222 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15223 << LHSExpr->getSourceRange() 15224 << RHSExpr->getSourceRange(); 15225 return; 15226 } 15227 15228 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase)) 15229 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType() 15230 << LHSExpr->getSourceRange() 15231 << RHSExpr->getSourceRange(); 15232 } 15233 15234 //===--- Layout compatibility ----------------------------------------------// 15235 15236 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2); 15237 15238 /// Check if two enumeration types are layout-compatible. 15239 static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) { 15240 // C++11 [dcl.enum] p8: 15241 // Two enumeration types are layout-compatible if they have the same 15242 // underlying type. 15243 return ED1->isComplete() && ED2->isComplete() && 15244 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType()); 15245 } 15246 15247 /// Check if two fields are layout-compatible. 15248 static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, 15249 FieldDecl *Field2) { 15250 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType())) 15251 return false; 15252 15253 if (Field1->isBitField() != Field2->isBitField()) 15254 return false; 15255 15256 if (Field1->isBitField()) { 15257 // Make sure that the bit-fields are the same length. 15258 unsigned Bits1 = Field1->getBitWidthValue(C); 15259 unsigned Bits2 = Field2->getBitWidthValue(C); 15260 15261 if (Bits1 != Bits2) 15262 return false; 15263 } 15264 15265 return true; 15266 } 15267 15268 /// Check if two standard-layout structs are layout-compatible. 15269 /// (C++11 [class.mem] p17) 15270 static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1, 15271 RecordDecl *RD2) { 15272 // If both records are C++ classes, check that base classes match. 15273 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) { 15274 // If one of records is a CXXRecordDecl we are in C++ mode, 15275 // thus the other one is a CXXRecordDecl, too. 15276 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2); 15277 // Check number of base classes. 15278 if (D1CXX->getNumBases() != D2CXX->getNumBases()) 15279 return false; 15280 15281 // Check the base classes. 15282 for (CXXRecordDecl::base_class_const_iterator 15283 Base1 = D1CXX->bases_begin(), 15284 BaseEnd1 = D1CXX->bases_end(), 15285 Base2 = D2CXX->bases_begin(); 15286 Base1 != BaseEnd1; 15287 ++Base1, ++Base2) { 15288 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType())) 15289 return false; 15290 } 15291 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) { 15292 // If only RD2 is a C++ class, it should have zero base classes. 15293 if (D2CXX->getNumBases() > 0) 15294 return false; 15295 } 15296 15297 // Check the fields. 15298 RecordDecl::field_iterator Field2 = RD2->field_begin(), 15299 Field2End = RD2->field_end(), 15300 Field1 = RD1->field_begin(), 15301 Field1End = RD1->field_end(); 15302 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) { 15303 if (!isLayoutCompatible(C, *Field1, *Field2)) 15304 return false; 15305 } 15306 if (Field1 != Field1End || Field2 != Field2End) 15307 return false; 15308 15309 return true; 15310 } 15311 15312 /// Check if two standard-layout unions are layout-compatible. 15313 /// (C++11 [class.mem] p18) 15314 static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1, 15315 RecordDecl *RD2) { 15316 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields; 15317 for (auto *Field2 : RD2->fields()) 15318 UnmatchedFields.insert(Field2); 15319 15320 for (auto *Field1 : RD1->fields()) { 15321 llvm::SmallPtrSet<FieldDecl *, 8>::iterator 15322 I = UnmatchedFields.begin(), 15323 E = UnmatchedFields.end(); 15324 15325 for ( ; I != E; ++I) { 15326 if (isLayoutCompatible(C, Field1, *I)) { 15327 bool Result = UnmatchedFields.erase(*I); 15328 (void) Result; 15329 assert(Result); 15330 break; 15331 } 15332 } 15333 if (I == E) 15334 return false; 15335 } 15336 15337 return UnmatchedFields.empty(); 15338 } 15339 15340 static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, 15341 RecordDecl *RD2) { 15342 if (RD1->isUnion() != RD2->isUnion()) 15343 return false; 15344 15345 if (RD1->isUnion()) 15346 return isLayoutCompatibleUnion(C, RD1, RD2); 15347 else 15348 return isLayoutCompatibleStruct(C, RD1, RD2); 15349 } 15350 15351 /// Check if two types are layout-compatible in C++11 sense. 15352 static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) { 15353 if (T1.isNull() || T2.isNull()) 15354 return false; 15355 15356 // C++11 [basic.types] p11: 15357 // If two types T1 and T2 are the same type, then T1 and T2 are 15358 // layout-compatible types. 15359 if (C.hasSameType(T1, T2)) 15360 return true; 15361 15362 T1 = T1.getCanonicalType().getUnqualifiedType(); 15363 T2 = T2.getCanonicalType().getUnqualifiedType(); 15364 15365 const Type::TypeClass TC1 = T1->getTypeClass(); 15366 const Type::TypeClass TC2 = T2->getTypeClass(); 15367 15368 if (TC1 != TC2) 15369 return false; 15370 15371 if (TC1 == Type::Enum) { 15372 return isLayoutCompatible(C, 15373 cast<EnumType>(T1)->getDecl(), 15374 cast<EnumType>(T2)->getDecl()); 15375 } else if (TC1 == Type::Record) { 15376 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType()) 15377 return false; 15378 15379 return isLayoutCompatible(C, 15380 cast<RecordType>(T1)->getDecl(), 15381 cast<RecordType>(T2)->getDecl()); 15382 } 15383 15384 return false; 15385 } 15386 15387 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----// 15388 15389 /// Given a type tag expression find the type tag itself. 15390 /// 15391 /// \param TypeExpr Type tag expression, as it appears in user's code. 15392 /// 15393 /// \param VD Declaration of an identifier that appears in a type tag. 15394 /// 15395 /// \param MagicValue Type tag magic value. 15396 /// 15397 /// \param isConstantEvaluated wether the evalaution should be performed in 15398 15399 /// constant context. 15400 static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx, 15401 const ValueDecl **VD, uint64_t *MagicValue, 15402 bool isConstantEvaluated) { 15403 while(true) { 15404 if (!TypeExpr) 15405 return false; 15406 15407 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts(); 15408 15409 switch (TypeExpr->getStmtClass()) { 15410 case Stmt::UnaryOperatorClass: { 15411 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr); 15412 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) { 15413 TypeExpr = UO->getSubExpr(); 15414 continue; 15415 } 15416 return false; 15417 } 15418 15419 case Stmt::DeclRefExprClass: { 15420 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr); 15421 *VD = DRE->getDecl(); 15422 return true; 15423 } 15424 15425 case Stmt::IntegerLiteralClass: { 15426 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr); 15427 llvm::APInt MagicValueAPInt = IL->getValue(); 15428 if (MagicValueAPInt.getActiveBits() <= 64) { 15429 *MagicValue = MagicValueAPInt.getZExtValue(); 15430 return true; 15431 } else 15432 return false; 15433 } 15434 15435 case Stmt::BinaryConditionalOperatorClass: 15436 case Stmt::ConditionalOperatorClass: { 15437 const AbstractConditionalOperator *ACO = 15438 cast<AbstractConditionalOperator>(TypeExpr); 15439 bool Result; 15440 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx, 15441 isConstantEvaluated)) { 15442 if (Result) 15443 TypeExpr = ACO->getTrueExpr(); 15444 else 15445 TypeExpr = ACO->getFalseExpr(); 15446 continue; 15447 } 15448 return false; 15449 } 15450 15451 case Stmt::BinaryOperatorClass: { 15452 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr); 15453 if (BO->getOpcode() == BO_Comma) { 15454 TypeExpr = BO->getRHS(); 15455 continue; 15456 } 15457 return false; 15458 } 15459 15460 default: 15461 return false; 15462 } 15463 } 15464 } 15465 15466 /// Retrieve the C type corresponding to type tag TypeExpr. 15467 /// 15468 /// \param TypeExpr Expression that specifies a type tag. 15469 /// 15470 /// \param MagicValues Registered magic values. 15471 /// 15472 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong 15473 /// kind. 15474 /// 15475 /// \param TypeInfo Information about the corresponding C type. 15476 /// 15477 /// \param isConstantEvaluated wether the evalaution should be performed in 15478 /// constant context. 15479 /// 15480 /// \returns true if the corresponding C type was found. 15481 static bool GetMatchingCType( 15482 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr, 15483 const ASTContext &Ctx, 15484 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData> 15485 *MagicValues, 15486 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo, 15487 bool isConstantEvaluated) { 15488 FoundWrongKind = false; 15489 15490 // Variable declaration that has type_tag_for_datatype attribute. 15491 const ValueDecl *VD = nullptr; 15492 15493 uint64_t MagicValue; 15494 15495 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated)) 15496 return false; 15497 15498 if (VD) { 15499 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) { 15500 if (I->getArgumentKind() != ArgumentKind) { 15501 FoundWrongKind = true; 15502 return false; 15503 } 15504 TypeInfo.Type = I->getMatchingCType(); 15505 TypeInfo.LayoutCompatible = I->getLayoutCompatible(); 15506 TypeInfo.MustBeNull = I->getMustBeNull(); 15507 return true; 15508 } 15509 return false; 15510 } 15511 15512 if (!MagicValues) 15513 return false; 15514 15515 llvm::DenseMap<Sema::TypeTagMagicValue, 15516 Sema::TypeTagData>::const_iterator I = 15517 MagicValues->find(std::make_pair(ArgumentKind, MagicValue)); 15518 if (I == MagicValues->end()) 15519 return false; 15520 15521 TypeInfo = I->second; 15522 return true; 15523 } 15524 15525 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind, 15526 uint64_t MagicValue, QualType Type, 15527 bool LayoutCompatible, 15528 bool MustBeNull) { 15529 if (!TypeTagForDatatypeMagicValues) 15530 TypeTagForDatatypeMagicValues.reset( 15531 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>); 15532 15533 TypeTagMagicValue Magic(ArgumentKind, MagicValue); 15534 (*TypeTagForDatatypeMagicValues)[Magic] = 15535 TypeTagData(Type, LayoutCompatible, MustBeNull); 15536 } 15537 15538 static bool IsSameCharType(QualType T1, QualType T2) { 15539 const BuiltinType *BT1 = T1->getAs<BuiltinType>(); 15540 if (!BT1) 15541 return false; 15542 15543 const BuiltinType *BT2 = T2->getAs<BuiltinType>(); 15544 if (!BT2) 15545 return false; 15546 15547 BuiltinType::Kind T1Kind = BT1->getKind(); 15548 BuiltinType::Kind T2Kind = BT2->getKind(); 15549 15550 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) || 15551 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) || 15552 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) || 15553 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar); 15554 } 15555 15556 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr, 15557 const ArrayRef<const Expr *> ExprArgs, 15558 SourceLocation CallSiteLoc) { 15559 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind(); 15560 bool IsPointerAttr = Attr->getIsPointer(); 15561 15562 // Retrieve the argument representing the 'type_tag'. 15563 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex(); 15564 if (TypeTagIdxAST >= ExprArgs.size()) { 15565 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15566 << 0 << Attr->getTypeTagIdx().getSourceIndex(); 15567 return; 15568 } 15569 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST]; 15570 bool FoundWrongKind; 15571 TypeTagData TypeInfo; 15572 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context, 15573 TypeTagForDatatypeMagicValues.get(), FoundWrongKind, 15574 TypeInfo, isConstantEvaluated())) { 15575 if (FoundWrongKind) 15576 Diag(TypeTagExpr->getExprLoc(), 15577 diag::warn_type_tag_for_datatype_wrong_kind) 15578 << TypeTagExpr->getSourceRange(); 15579 return; 15580 } 15581 15582 // Retrieve the argument representing the 'arg_idx'. 15583 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex(); 15584 if (ArgumentIdxAST >= ExprArgs.size()) { 15585 Diag(CallSiteLoc, diag::err_tag_index_out_of_range) 15586 << 1 << Attr->getArgumentIdx().getSourceIndex(); 15587 return; 15588 } 15589 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST]; 15590 if (IsPointerAttr) { 15591 // Skip implicit cast of pointer to `void *' (as a function argument). 15592 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr)) 15593 if (ICE->getType()->isVoidPointerType() && 15594 ICE->getCastKind() == CK_BitCast) 15595 ArgumentExpr = ICE->getSubExpr(); 15596 } 15597 QualType ArgumentType = ArgumentExpr->getType(); 15598 15599 // Passing a `void*' pointer shouldn't trigger a warning. 15600 if (IsPointerAttr && ArgumentType->isVoidPointerType()) 15601 return; 15602 15603 if (TypeInfo.MustBeNull) { 15604 // Type tag with matching void type requires a null pointer. 15605 if (!ArgumentExpr->isNullPointerConstant(Context, 15606 Expr::NPC_ValueDependentIsNotNull)) { 15607 Diag(ArgumentExpr->getExprLoc(), 15608 diag::warn_type_safety_null_pointer_required) 15609 << ArgumentKind->getName() 15610 << ArgumentExpr->getSourceRange() 15611 << TypeTagExpr->getSourceRange(); 15612 } 15613 return; 15614 } 15615 15616 QualType RequiredType = TypeInfo.Type; 15617 if (IsPointerAttr) 15618 RequiredType = Context.getPointerType(RequiredType); 15619 15620 bool mismatch = false; 15621 if (!TypeInfo.LayoutCompatible) { 15622 mismatch = !Context.hasSameType(ArgumentType, RequiredType); 15623 15624 // C++11 [basic.fundamental] p1: 15625 // Plain char, signed char, and unsigned char are three distinct types. 15626 // 15627 // But we treat plain `char' as equivalent to `signed char' or `unsigned 15628 // char' depending on the current char signedness mode. 15629 if (mismatch) 15630 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(), 15631 RequiredType->getPointeeType())) || 15632 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType))) 15633 mismatch = false; 15634 } else 15635 if (IsPointerAttr) 15636 mismatch = !isLayoutCompatible(Context, 15637 ArgumentType->getPointeeType(), 15638 RequiredType->getPointeeType()); 15639 else 15640 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType); 15641 15642 if (mismatch) 15643 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch) 15644 << ArgumentType << ArgumentKind 15645 << TypeInfo.LayoutCompatible << RequiredType 15646 << ArgumentExpr->getSourceRange() 15647 << TypeTagExpr->getSourceRange(); 15648 } 15649 15650 void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD, 15651 CharUnits Alignment) { 15652 MisalignedMembers.emplace_back(E, RD, MD, Alignment); 15653 } 15654 15655 void Sema::DiagnoseMisalignedMembers() { 15656 for (MisalignedMember &m : MisalignedMembers) { 15657 const NamedDecl *ND = m.RD; 15658 if (ND->getName().empty()) { 15659 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl()) 15660 ND = TD; 15661 } 15662 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member) 15663 << m.MD << ND << m.E->getSourceRange(); 15664 } 15665 MisalignedMembers.clear(); 15666 } 15667 15668 void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) { 15669 E = E->IgnoreParens(); 15670 if (!T->isPointerType() && !T->isIntegerType()) 15671 return; 15672 if (isa<UnaryOperator>(E) && 15673 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) { 15674 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); 15675 if (isa<MemberExpr>(Op)) { 15676 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op)); 15677 if (MA != MisalignedMembers.end() && 15678 (T->isIntegerType() || 15679 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() || 15680 Context.getTypeAlignInChars( 15681 T->getPointeeType()) <= MA->Alignment)))) 15682 MisalignedMembers.erase(MA); 15683 } 15684 } 15685 } 15686 15687 void Sema::RefersToMemberWithReducedAlignment( 15688 Expr *E, 15689 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)> 15690 Action) { 15691 const auto *ME = dyn_cast<MemberExpr>(E); 15692 if (!ME) 15693 return; 15694 15695 // No need to check expressions with an __unaligned-qualified type. 15696 if (E->getType().getQualifiers().hasUnaligned()) 15697 return; 15698 15699 // For a chain of MemberExpr like "a.b.c.d" this list 15700 // will keep FieldDecl's like [d, c, b]. 15701 SmallVector<FieldDecl *, 4> ReverseMemberChain; 15702 const MemberExpr *TopME = nullptr; 15703 bool AnyIsPacked = false; 15704 do { 15705 QualType BaseType = ME->getBase()->getType(); 15706 if (BaseType->isDependentType()) 15707 return; 15708 if (ME->isArrow()) 15709 BaseType = BaseType->getPointeeType(); 15710 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl(); 15711 if (RD->isInvalidDecl()) 15712 return; 15713 15714 ValueDecl *MD = ME->getMemberDecl(); 15715 auto *FD = dyn_cast<FieldDecl>(MD); 15716 // We do not care about non-data members. 15717 if (!FD || FD->isInvalidDecl()) 15718 return; 15719 15720 AnyIsPacked = 15721 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>()); 15722 ReverseMemberChain.push_back(FD); 15723 15724 TopME = ME; 15725 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens()); 15726 } while (ME); 15727 assert(TopME && "We did not compute a topmost MemberExpr!"); 15728 15729 // Not the scope of this diagnostic. 15730 if (!AnyIsPacked) 15731 return; 15732 15733 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts(); 15734 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase); 15735 // TODO: The innermost base of the member expression may be too complicated. 15736 // For now, just disregard these cases. This is left for future 15737 // improvement. 15738 if (!DRE && !isa<CXXThisExpr>(TopBase)) 15739 return; 15740 15741 // Alignment expected by the whole expression. 15742 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType()); 15743 15744 // No need to do anything else with this case. 15745 if (ExpectedAlignment.isOne()) 15746 return; 15747 15748 // Synthesize offset of the whole access. 15749 CharUnits Offset; 15750 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend(); 15751 I++) { 15752 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I)); 15753 } 15754 15755 // Compute the CompleteObjectAlignment as the alignment of the whole chain. 15756 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars( 15757 ReverseMemberChain.back()->getParent()->getTypeForDecl()); 15758 15759 // The base expression of the innermost MemberExpr may give 15760 // stronger guarantees than the class containing the member. 15761 if (DRE && !TopME->isArrow()) { 15762 const ValueDecl *VD = DRE->getDecl(); 15763 if (!VD->getType()->isReferenceType()) 15764 CompleteObjectAlignment = 15765 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD)); 15766 } 15767 15768 // Check if the synthesized offset fulfills the alignment. 15769 if (Offset % ExpectedAlignment != 0 || 15770 // It may fulfill the offset it but the effective alignment may still be 15771 // lower than the expected expression alignment. 15772 CompleteObjectAlignment < ExpectedAlignment) { 15773 // If this happens, we want to determine a sensible culprit of this. 15774 // Intuitively, watching the chain of member expressions from right to 15775 // left, we start with the required alignment (as required by the field 15776 // type) but some packed attribute in that chain has reduced the alignment. 15777 // It may happen that another packed structure increases it again. But if 15778 // we are here such increase has not been enough. So pointing the first 15779 // FieldDecl that either is packed or else its RecordDecl is, 15780 // seems reasonable. 15781 FieldDecl *FD = nullptr; 15782 CharUnits Alignment; 15783 for (FieldDecl *FDI : ReverseMemberChain) { 15784 if (FDI->hasAttr<PackedAttr>() || 15785 FDI->getParent()->hasAttr<PackedAttr>()) { 15786 FD = FDI; 15787 Alignment = std::min( 15788 Context.getTypeAlignInChars(FD->getType()), 15789 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl())); 15790 break; 15791 } 15792 } 15793 assert(FD && "We did not find a packed FieldDecl!"); 15794 Action(E, FD->getParent(), FD, Alignment); 15795 } 15796 } 15797 15798 void Sema::CheckAddressOfPackedMember(Expr *rhs) { 15799 using namespace std::placeholders; 15800 15801 RefersToMemberWithReducedAlignment( 15802 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1, 15803 _2, _3, _4)); 15804 } 15805 15806 ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall, 15807 ExprResult CallResult) { 15808 if (checkArgCount(*this, TheCall, 1)) 15809 return ExprError(); 15810 15811 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0)); 15812 if (MatrixArg.isInvalid()) 15813 return MatrixArg; 15814 Expr *Matrix = MatrixArg.get(); 15815 15816 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>(); 15817 if (!MType) { 15818 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg); 15819 return ExprError(); 15820 } 15821 15822 // Create returned matrix type by swapping rows and columns of the argument 15823 // matrix type. 15824 QualType ResultType = Context.getConstantMatrixType( 15825 MType->getElementType(), MType->getNumColumns(), MType->getNumRows()); 15826 15827 // Change the return type to the type of the returned matrix. 15828 TheCall->setType(ResultType); 15829 15830 // Update call argument to use the possibly converted matrix argument. 15831 TheCall->setArg(0, Matrix); 15832 return CallResult; 15833 } 15834 15835 // Get and verify the matrix dimensions. 15836 static llvm::Optional<unsigned> 15837 getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) { 15838 SourceLocation ErrorPos; 15839 Optional<llvm::APSInt> Value = 15840 Expr->getIntegerConstantExpr(S.Context, &ErrorPos); 15841 if (!Value) { 15842 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg) 15843 << Name; 15844 return {}; 15845 } 15846 uint64_t Dim = Value->getZExtValue(); 15847 if (!ConstantMatrixType::isDimensionValid(Dim)) { 15848 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension) 15849 << Name << ConstantMatrixType::getMaxElementsPerDimension(); 15850 return {}; 15851 } 15852 return Dim; 15853 } 15854 15855 ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall, 15856 ExprResult CallResult) { 15857 if (!getLangOpts().MatrixTypes) { 15858 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled); 15859 return ExprError(); 15860 } 15861 15862 if (checkArgCount(*this, TheCall, 4)) 15863 return ExprError(); 15864 15865 unsigned PtrArgIdx = 0; 15866 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15867 Expr *RowsExpr = TheCall->getArg(1); 15868 Expr *ColumnsExpr = TheCall->getArg(2); 15869 Expr *StrideExpr = TheCall->getArg(3); 15870 15871 bool ArgError = false; 15872 15873 // Check pointer argument. 15874 { 15875 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 15876 if (PtrConv.isInvalid()) 15877 return PtrConv; 15878 PtrExpr = PtrConv.get(); 15879 TheCall->setArg(0, PtrExpr); 15880 if (PtrExpr->isTypeDependent()) { 15881 TheCall->setType(Context.DependentTy); 15882 return TheCall; 15883 } 15884 } 15885 15886 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 15887 QualType ElementTy; 15888 if (!PtrTy) { 15889 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15890 << PtrArgIdx + 1; 15891 ArgError = true; 15892 } else { 15893 ElementTy = PtrTy->getPointeeType().getUnqualifiedType(); 15894 15895 if (!ConstantMatrixType::isValidElementType(ElementTy)) { 15896 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 15897 << PtrArgIdx + 1; 15898 ArgError = true; 15899 } 15900 } 15901 15902 // Apply default Lvalue conversions and convert the expression to size_t. 15903 auto ApplyArgumentConversions = [this](Expr *E) { 15904 ExprResult Conv = DefaultLvalueConversion(E); 15905 if (Conv.isInvalid()) 15906 return Conv; 15907 15908 return tryConvertExprToType(Conv.get(), Context.getSizeType()); 15909 }; 15910 15911 // Apply conversion to row and column expressions. 15912 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr); 15913 if (!RowsConv.isInvalid()) { 15914 RowsExpr = RowsConv.get(); 15915 TheCall->setArg(1, RowsExpr); 15916 } else 15917 RowsExpr = nullptr; 15918 15919 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr); 15920 if (!ColumnsConv.isInvalid()) { 15921 ColumnsExpr = ColumnsConv.get(); 15922 TheCall->setArg(2, ColumnsExpr); 15923 } else 15924 ColumnsExpr = nullptr; 15925 15926 // If any any part of the result matrix type is still pending, just use 15927 // Context.DependentTy, until all parts are resolved. 15928 if ((RowsExpr && RowsExpr->isTypeDependent()) || 15929 (ColumnsExpr && ColumnsExpr->isTypeDependent())) { 15930 TheCall->setType(Context.DependentTy); 15931 return CallResult; 15932 } 15933 15934 // Check row and column dimenions. 15935 llvm::Optional<unsigned> MaybeRows; 15936 if (RowsExpr) 15937 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this); 15938 15939 llvm::Optional<unsigned> MaybeColumns; 15940 if (ColumnsExpr) 15941 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this); 15942 15943 // Check stride argument. 15944 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr); 15945 if (StrideConv.isInvalid()) 15946 return ExprError(); 15947 StrideExpr = StrideConv.get(); 15948 TheCall->setArg(3, StrideExpr); 15949 15950 if (MaybeRows) { 15951 if (Optional<llvm::APSInt> Value = 15952 StrideExpr->getIntegerConstantExpr(Context)) { 15953 uint64_t Stride = Value->getZExtValue(); 15954 if (Stride < *MaybeRows) { 15955 Diag(StrideExpr->getBeginLoc(), 15956 diag::err_builtin_matrix_stride_too_small); 15957 ArgError = true; 15958 } 15959 } 15960 } 15961 15962 if (ArgError || !MaybeRows || !MaybeColumns) 15963 return ExprError(); 15964 15965 TheCall->setType( 15966 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns)); 15967 return CallResult; 15968 } 15969 15970 ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall, 15971 ExprResult CallResult) { 15972 if (checkArgCount(*this, TheCall, 3)) 15973 return ExprError(); 15974 15975 unsigned PtrArgIdx = 1; 15976 Expr *MatrixExpr = TheCall->getArg(0); 15977 Expr *PtrExpr = TheCall->getArg(PtrArgIdx); 15978 Expr *StrideExpr = TheCall->getArg(2); 15979 15980 bool ArgError = false; 15981 15982 { 15983 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr); 15984 if (MatrixConv.isInvalid()) 15985 return MatrixConv; 15986 MatrixExpr = MatrixConv.get(); 15987 TheCall->setArg(0, MatrixExpr); 15988 } 15989 if (MatrixExpr->isTypeDependent()) { 15990 TheCall->setType(Context.DependentTy); 15991 return TheCall; 15992 } 15993 15994 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>(); 15995 if (!MatrixTy) { 15996 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0; 15997 ArgError = true; 15998 } 15999 16000 { 16001 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr); 16002 if (PtrConv.isInvalid()) 16003 return PtrConv; 16004 PtrExpr = PtrConv.get(); 16005 TheCall->setArg(1, PtrExpr); 16006 if (PtrExpr->isTypeDependent()) { 16007 TheCall->setType(Context.DependentTy); 16008 return TheCall; 16009 } 16010 } 16011 16012 // Check pointer argument. 16013 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>(); 16014 if (!PtrTy) { 16015 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg) 16016 << PtrArgIdx + 1; 16017 ArgError = true; 16018 } else { 16019 QualType ElementTy = PtrTy->getPointeeType(); 16020 if (ElementTy.isConstQualified()) { 16021 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const); 16022 ArgError = true; 16023 } 16024 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType(); 16025 if (MatrixTy && 16026 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) { 16027 Diag(PtrExpr->getBeginLoc(), 16028 diag::err_builtin_matrix_pointer_arg_mismatch) 16029 << ElementTy << MatrixTy->getElementType(); 16030 ArgError = true; 16031 } 16032 } 16033 16034 // Apply default Lvalue conversions and convert the stride expression to 16035 // size_t. 16036 { 16037 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr); 16038 if (StrideConv.isInvalid()) 16039 return StrideConv; 16040 16041 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType()); 16042 if (StrideConv.isInvalid()) 16043 return StrideConv; 16044 StrideExpr = StrideConv.get(); 16045 TheCall->setArg(2, StrideExpr); 16046 } 16047 16048 // Check stride argument. 16049 if (MatrixTy) { 16050 if (Optional<llvm::APSInt> Value = 16051 StrideExpr->getIntegerConstantExpr(Context)) { 16052 uint64_t Stride = Value->getZExtValue(); 16053 if (Stride < MatrixTy->getNumRows()) { 16054 Diag(StrideExpr->getBeginLoc(), 16055 diag::err_builtin_matrix_stride_too_small); 16056 ArgError = true; 16057 } 16058 } 16059 } 16060 16061 if (ArgError) 16062 return ExprError(); 16063 16064 return CallResult; 16065 } 16066 16067 /// \brief Enforce the bounds of a TCB 16068 /// CheckTCBEnforcement - Enforces that every function in a named TCB only 16069 /// directly calls other functions in the same TCB as marked by the enforce_tcb 16070 /// and enforce_tcb_leaf attributes. 16071 void Sema::CheckTCBEnforcement(const CallExpr *TheCall, 16072 const FunctionDecl *Callee) { 16073 const FunctionDecl *Caller = getCurFunctionDecl(); 16074 16075 // Calls to builtins are not enforced. 16076 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() || 16077 Callee->getBuiltinID() != 0) 16078 return; 16079 16080 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find 16081 // all TCBs the callee is a part of. 16082 llvm::StringSet<> CalleeTCBs; 16083 for_each(Callee->specific_attrs<EnforceTCBAttr>(), 16084 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16085 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(), 16086 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); }); 16087 16088 // Go through the TCBs the caller is a part of and emit warnings if Caller 16089 // is in a TCB that the Callee is not. 16090 for_each( 16091 Caller->specific_attrs<EnforceTCBAttr>(), 16092 [&](const auto *A) { 16093 StringRef CallerTCB = A->getTCBName(); 16094 if (CalleeTCBs.count(CallerTCB) == 0) { 16095 this->Diag(TheCall->getExprLoc(), 16096 diag::warn_tcb_enforcement_violation) << Callee 16097 << CallerTCB; 16098 } 16099 }); 16100 } 16101