1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for cast expressions, including 10 // 1) C-style casts like '(int) x' 11 // 2) C++ functional casts like 'int(x)' 12 // 3) C++ named casts like 'static_cast<int>(x)' 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/Sema/SemaInternal.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "clang/Sema/Initialization.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include <set> 28 using namespace clang; 29 30 31 32 enum TryCastResult { 33 TC_NotApplicable, ///< The cast method is not applicable. 34 TC_Success, ///< The cast method is appropriate and successful. 35 TC_Extension, ///< The cast method is appropriate and accepted as a 36 ///< language extension. 37 TC_Failed ///< The cast method is appropriate, but failed. A 38 ///< diagnostic has been emitted. 39 }; 40 41 static bool isValidCast(TryCastResult TCR) { 42 return TCR == TC_Success || TCR == TC_Extension; 43 } 44 45 enum CastType { 46 CT_Const, ///< const_cast 47 CT_Static, ///< static_cast 48 CT_Reinterpret, ///< reinterpret_cast 49 CT_Dynamic, ///< dynamic_cast 50 CT_CStyle, ///< (Type)expr 51 CT_Functional ///< Type(expr) 52 }; 53 54 namespace { 55 struct CastOperation { 56 CastOperation(Sema &S, QualType destType, ExprResult src) 57 : Self(S), SrcExpr(src), DestType(destType), 58 ResultType(destType.getNonLValueExprType(S.Context)), 59 ValueKind(Expr::getValueKindForType(destType)), 60 Kind(CK_Dependent), IsARCUnbridgedCast(false) { 61 62 if (const BuiltinType *placeholder = 63 src.get()->getType()->getAsPlaceholderType()) { 64 PlaceholderKind = placeholder->getKind(); 65 } else { 66 PlaceholderKind = (BuiltinType::Kind) 0; 67 } 68 } 69 70 Sema &Self; 71 ExprResult SrcExpr; 72 QualType DestType; 73 QualType ResultType; 74 ExprValueKind ValueKind; 75 CastKind Kind; 76 BuiltinType::Kind PlaceholderKind; 77 CXXCastPath BasePath; 78 bool IsARCUnbridgedCast; 79 80 SourceRange OpRange; 81 SourceRange DestRange; 82 83 // Top-level semantics-checking routines. 84 void CheckConstCast(); 85 void CheckReinterpretCast(); 86 void CheckStaticCast(); 87 void CheckDynamicCast(); 88 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization); 89 void CheckCStyleCast(); 90 void CheckBuiltinBitCast(); 91 92 void updatePartOfExplicitCastFlags(CastExpr *CE) { 93 // Walk down from the CE to the OrigSrcExpr, and mark all immediate 94 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE 95 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched. 96 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE) 97 ICE->setIsPartOfExplicitCast(true); 98 } 99 100 /// Complete an apparently-successful cast operation that yields 101 /// the given expression. 102 ExprResult complete(CastExpr *castExpr) { 103 // If this is an unbridged cast, wrap the result in an implicit 104 // cast that yields the unbridged-cast placeholder type. 105 if (IsARCUnbridgedCast) { 106 castExpr = ImplicitCastExpr::Create(Self.Context, 107 Self.Context.ARCUnbridgedCastTy, 108 CK_Dependent, castExpr, nullptr, 109 castExpr->getValueKind()); 110 } 111 updatePartOfExplicitCastFlags(castExpr); 112 return castExpr; 113 } 114 115 // Internal convenience methods. 116 117 /// Try to handle the given placeholder expression kind. Return 118 /// true if the source expression has the appropriate placeholder 119 /// kind. A placeholder can only be claimed once. 120 bool claimPlaceholder(BuiltinType::Kind K) { 121 if (PlaceholderKind != K) return false; 122 123 PlaceholderKind = (BuiltinType::Kind) 0; 124 return true; 125 } 126 127 bool isPlaceholder() const { 128 return PlaceholderKind != 0; 129 } 130 bool isPlaceholder(BuiltinType::Kind K) const { 131 return PlaceholderKind == K; 132 } 133 134 // Language specific cast restrictions for address spaces. 135 void checkAddressSpaceCast(QualType SrcType, QualType DestType); 136 137 void checkCastAlign() { 138 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); 139 } 140 141 void checkObjCConversion(Sema::CheckedConversionKind CCK) { 142 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()); 143 144 Expr *src = SrcExpr.get(); 145 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) == 146 Sema::ACR_unbridged) 147 IsARCUnbridgedCast = true; 148 SrcExpr = src; 149 } 150 151 /// Check for and handle non-overload placeholder expressions. 152 void checkNonOverloadPlaceholders() { 153 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload)) 154 return; 155 156 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 157 if (SrcExpr.isInvalid()) 158 return; 159 PlaceholderKind = (BuiltinType::Kind) 0; 160 } 161 }; 162 } 163 164 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 165 QualType DestType); 166 167 // The Try functions attempt a specific way of casting. If they succeed, they 168 // return TC_Success. If their way of casting is not appropriate for the given 169 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic 170 // to emit if no other way succeeds. If their way of casting is appropriate but 171 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if 172 // they emit a specialized diagnostic. 173 // All diagnostics returned by these functions must expect the same three 174 // arguments: 175 // %0: Cast Type (a value from the CastType enumeration) 176 // %1: Source Type 177 // %2: Destination Type 178 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 179 QualType DestType, bool CStyle, 180 CastKind &Kind, 181 CXXCastPath &BasePath, 182 unsigned &msg); 183 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, 184 QualType DestType, bool CStyle, 185 SourceRange OpRange, 186 unsigned &msg, 187 CastKind &Kind, 188 CXXCastPath &BasePath); 189 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, 190 QualType DestType, bool CStyle, 191 SourceRange OpRange, 192 unsigned &msg, 193 CastKind &Kind, 194 CXXCastPath &BasePath); 195 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, 196 CanQualType DestType, bool CStyle, 197 SourceRange OpRange, 198 QualType OrigSrcType, 199 QualType OrigDestType, unsigned &msg, 200 CastKind &Kind, 201 CXXCastPath &BasePath); 202 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, 203 QualType SrcType, 204 QualType DestType,bool CStyle, 205 SourceRange OpRange, 206 unsigned &msg, 207 CastKind &Kind, 208 CXXCastPath &BasePath); 209 210 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, 211 QualType DestType, 212 Sema::CheckedConversionKind CCK, 213 SourceRange OpRange, 214 unsigned &msg, CastKind &Kind, 215 bool ListInitialization); 216 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 217 QualType DestType, 218 Sema::CheckedConversionKind CCK, 219 SourceRange OpRange, 220 unsigned &msg, CastKind &Kind, 221 CXXCastPath &BasePath, 222 bool ListInitialization); 223 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 224 QualType DestType, bool CStyle, 225 unsigned &msg); 226 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 227 QualType DestType, bool CStyle, 228 SourceRange OpRange, 229 unsigned &msg, 230 CastKind &Kind); 231 232 233 /// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's. 234 ExprResult 235 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 236 SourceLocation LAngleBracketLoc, Declarator &D, 237 SourceLocation RAngleBracketLoc, 238 SourceLocation LParenLoc, Expr *E, 239 SourceLocation RParenLoc) { 240 241 assert(!D.isInvalidType()); 242 243 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType()); 244 if (D.isInvalidType()) 245 return ExprError(); 246 247 if (getLangOpts().CPlusPlus) { 248 // Check that there are no default arguments (C++ only). 249 CheckExtraCXXDefaultArguments(D); 250 } 251 252 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E, 253 SourceRange(LAngleBracketLoc, RAngleBracketLoc), 254 SourceRange(LParenLoc, RParenLoc)); 255 } 256 257 ExprResult 258 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 259 TypeSourceInfo *DestTInfo, Expr *E, 260 SourceRange AngleBrackets, SourceRange Parens) { 261 ExprResult Ex = E; 262 QualType DestType = DestTInfo->getType(); 263 264 // If the type is dependent, we won't do the semantic analysis now. 265 bool TypeDependent = 266 DestType->isDependentType() || Ex.get()->isTypeDependent(); 267 268 CastOperation Op(*this, DestType, E); 269 Op.OpRange = SourceRange(OpLoc, Parens.getEnd()); 270 Op.DestRange = AngleBrackets; 271 272 switch (Kind) { 273 default: llvm_unreachable("Unknown C++ cast!"); 274 275 case tok::kw_const_cast: 276 if (!TypeDependent) { 277 Op.CheckConstCast(); 278 if (Op.SrcExpr.isInvalid()) 279 return ExprError(); 280 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 281 } 282 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType, 283 Op.ValueKind, Op.SrcExpr.get(), DestTInfo, 284 OpLoc, Parens.getEnd(), 285 AngleBrackets)); 286 287 case tok::kw_dynamic_cast: { 288 // dynamic_cast is not supported in C++ for OpenCL. 289 if (getLangOpts().OpenCLCPlusPlus) { 290 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 291 << "dynamic_cast"); 292 } 293 294 if (!TypeDependent) { 295 Op.CheckDynamicCast(); 296 if (Op.SrcExpr.isInvalid()) 297 return ExprError(); 298 } 299 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType, 300 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 301 &Op.BasePath, DestTInfo, 302 OpLoc, Parens.getEnd(), 303 AngleBrackets)); 304 } 305 case tok::kw_reinterpret_cast: { 306 if (!TypeDependent) { 307 Op.CheckReinterpretCast(); 308 if (Op.SrcExpr.isInvalid()) 309 return ExprError(); 310 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 311 } 312 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType, 313 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 314 nullptr, DestTInfo, OpLoc, 315 Parens.getEnd(), 316 AngleBrackets)); 317 } 318 case tok::kw_static_cast: { 319 if (!TypeDependent) { 320 Op.CheckStaticCast(); 321 if (Op.SrcExpr.isInvalid()) 322 return ExprError(); 323 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 324 } 325 326 return Op.complete(CXXStaticCastExpr::Create(Context, Op.ResultType, 327 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 328 &Op.BasePath, DestTInfo, 329 OpLoc, Parens.getEnd(), 330 AngleBrackets)); 331 } 332 } 333 } 334 335 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D, 336 ExprResult Operand, 337 SourceLocation RParenLoc) { 338 assert(!D.isInvalidType()); 339 340 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType()); 341 if (D.isInvalidType()) 342 return ExprError(); 343 344 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc); 345 } 346 347 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc, 348 TypeSourceInfo *TSI, Expr *Operand, 349 SourceLocation RParenLoc) { 350 CastOperation Op(*this, TSI->getType(), Operand); 351 Op.OpRange = SourceRange(KWLoc, RParenLoc); 352 TypeLoc TL = TSI->getTypeLoc(); 353 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); 354 355 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) { 356 Op.CheckBuiltinBitCast(); 357 if (Op.SrcExpr.isInvalid()) 358 return ExprError(); 359 } 360 361 BuiltinBitCastExpr *BCE = 362 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind, 363 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc); 364 return Op.complete(BCE); 365 } 366 367 /// Try to diagnose a failed overloaded cast. Returns true if 368 /// diagnostics were emitted. 369 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, 370 SourceRange range, Expr *src, 371 QualType destType, 372 bool listInitialization) { 373 switch (CT) { 374 // These cast kinds don't consider user-defined conversions. 375 case CT_Const: 376 case CT_Reinterpret: 377 case CT_Dynamic: 378 return false; 379 380 // These do. 381 case CT_Static: 382 case CT_CStyle: 383 case CT_Functional: 384 break; 385 } 386 387 QualType srcType = src->getType(); 388 if (!destType->isRecordType() && !srcType->isRecordType()) 389 return false; 390 391 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); 392 InitializationKind initKind 393 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), 394 range, listInitialization) 395 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range, 396 listInitialization) 397 : InitializationKind::CreateCast(/*type range?*/ range); 398 InitializationSequence sequence(S, entity, initKind, src); 399 400 assert(sequence.Failed() && "initialization succeeded on second try?"); 401 switch (sequence.getFailureKind()) { 402 default: return false; 403 404 case InitializationSequence::FK_ConstructorOverloadFailed: 405 case InitializationSequence::FK_UserConversionOverloadFailed: 406 break; 407 } 408 409 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); 410 411 unsigned msg = 0; 412 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; 413 414 switch (sequence.getFailedOverloadResult()) { 415 case OR_Success: llvm_unreachable("successful failed overload"); 416 case OR_No_Viable_Function: 417 if (candidates.empty()) 418 msg = diag::err_ovl_no_conversion_in_cast; 419 else 420 msg = diag::err_ovl_no_viable_conversion_in_cast; 421 howManyCandidates = OCD_AllCandidates; 422 break; 423 424 case OR_Ambiguous: 425 msg = diag::err_ovl_ambiguous_conversion_in_cast; 426 howManyCandidates = OCD_ViableCandidates; 427 break; 428 429 case OR_Deleted: 430 msg = diag::err_ovl_deleted_conversion_in_cast; 431 howManyCandidates = OCD_ViableCandidates; 432 break; 433 } 434 435 candidates.NoteCandidates( 436 PartialDiagnosticAt(range.getBegin(), 437 S.PDiag(msg) << CT << srcType << destType << range 438 << src->getSourceRange()), 439 S, howManyCandidates, src); 440 441 return true; 442 } 443 444 /// Diagnose a failed cast. 445 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, 446 SourceRange opRange, Expr *src, QualType destType, 447 bool listInitialization) { 448 if (msg == diag::err_bad_cxx_cast_generic && 449 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType, 450 listInitialization)) 451 return; 452 453 S.Diag(opRange.getBegin(), msg) << castType 454 << src->getType() << destType << opRange << src->getSourceRange(); 455 456 // Detect if both types are (ptr to) class, and note any incompleteness. 457 int DifferentPtrness = 0; 458 QualType From = destType; 459 if (auto Ptr = From->getAs<PointerType>()) { 460 From = Ptr->getPointeeType(); 461 DifferentPtrness++; 462 } 463 QualType To = src->getType(); 464 if (auto Ptr = To->getAs<PointerType>()) { 465 To = Ptr->getPointeeType(); 466 DifferentPtrness--; 467 } 468 if (!DifferentPtrness) { 469 auto RecFrom = From->getAs<RecordType>(); 470 auto RecTo = To->getAs<RecordType>(); 471 if (RecFrom && RecTo) { 472 auto DeclFrom = RecFrom->getAsCXXRecordDecl(); 473 if (!DeclFrom->isCompleteDefinition()) 474 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) 475 << DeclFrom->getDeclName(); 476 auto DeclTo = RecTo->getAsCXXRecordDecl(); 477 if (!DeclTo->isCompleteDefinition()) 478 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) 479 << DeclTo->getDeclName(); 480 } 481 } 482 } 483 484 namespace { 485 /// The kind of unwrapping we did when determining whether a conversion casts 486 /// away constness. 487 enum CastAwayConstnessKind { 488 /// The conversion does not cast away constness. 489 CACK_None = 0, 490 /// We unwrapped similar types. 491 CACK_Similar = 1, 492 /// We unwrapped dissimilar types with similar representations (eg, a pointer 493 /// versus an Objective-C object pointer). 494 CACK_SimilarKind = 2, 495 /// We unwrapped representationally-unrelated types, such as a pointer versus 496 /// a pointer-to-member. 497 CACK_Incoherent = 3, 498 }; 499 } 500 501 /// Unwrap one level of types for CastsAwayConstness. 502 /// 503 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from 504 /// both types, provided that they're both pointer-like or array-like. Unlike 505 /// the Sema function, doesn't care if the unwrapped pieces are related. 506 /// 507 /// This function may remove additional levels as necessary for correctness: 508 /// the resulting T1 is unwrapped sufficiently that it is never an array type, 509 /// so that its qualifiers can be directly compared to those of T2 (which will 510 /// have the combined set of qualifiers from all indermediate levels of T2), 511 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers 512 /// with those from T2. 513 static CastAwayConstnessKind 514 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) { 515 enum { None, Ptr, MemPtr, BlockPtr, Array }; 516 auto Classify = [](QualType T) { 517 if (T->isAnyPointerType()) return Ptr; 518 if (T->isMemberPointerType()) return MemPtr; 519 if (T->isBlockPointerType()) return BlockPtr; 520 // We somewhat-arbitrarily don't look through VLA types here. This is at 521 // least consistent with the behavior of UnwrapSimilarTypes. 522 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array; 523 return None; 524 }; 525 526 auto Unwrap = [&](QualType T) { 527 if (auto *AT = Context.getAsArrayType(T)) 528 return AT->getElementType(); 529 return T->getPointeeType(); 530 }; 531 532 CastAwayConstnessKind Kind; 533 534 if (T2->isReferenceType()) { 535 // Special case: if the destination type is a reference type, unwrap it as 536 // the first level. (The source will have been an lvalue expression in this 537 // case, so there is no corresponding "reference to" in T1 to remove.) This 538 // simulates removing a "pointer to" from both sides. 539 T2 = T2->getPointeeType(); 540 Kind = CastAwayConstnessKind::CACK_Similar; 541 } else if (Context.UnwrapSimilarTypes(T1, T2)) { 542 Kind = CastAwayConstnessKind::CACK_Similar; 543 } else { 544 // Try unwrapping mismatching levels. 545 int T1Class = Classify(T1); 546 if (T1Class == None) 547 return CastAwayConstnessKind::CACK_None; 548 549 int T2Class = Classify(T2); 550 if (T2Class == None) 551 return CastAwayConstnessKind::CACK_None; 552 553 T1 = Unwrap(T1); 554 T2 = Unwrap(T2); 555 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind 556 : CastAwayConstnessKind::CACK_Incoherent; 557 } 558 559 // We've unwrapped at least one level. If the resulting T1 is a (possibly 560 // multidimensional) array type, any qualifier on any matching layer of 561 // T2 is considered to correspond to T1. Decompose down to the element 562 // type of T1 so that we can compare properly. 563 while (true) { 564 Context.UnwrapSimilarArrayTypes(T1, T2); 565 566 if (Classify(T1) != Array) 567 break; 568 569 auto T2Class = Classify(T2); 570 if (T2Class == None) 571 break; 572 573 if (T2Class != Array) 574 Kind = CastAwayConstnessKind::CACK_Incoherent; 575 else if (Kind != CastAwayConstnessKind::CACK_Incoherent) 576 Kind = CastAwayConstnessKind::CACK_SimilarKind; 577 578 T1 = Unwrap(T1); 579 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers()); 580 } 581 582 return Kind; 583 } 584 585 /// Check if the pointer conversion from SrcType to DestType casts away 586 /// constness as defined in C++ [expr.const.cast]. This is used by the cast 587 /// checkers. Both arguments must denote pointer (possibly to member) types. 588 /// 589 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. 590 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. 591 static CastAwayConstnessKind 592 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, 593 bool CheckCVR, bool CheckObjCLifetime, 594 QualType *TheOffendingSrcType = nullptr, 595 QualType *TheOffendingDestType = nullptr, 596 Qualifiers *CastAwayQualifiers = nullptr) { 597 // If the only checking we care about is for Objective-C lifetime qualifiers, 598 // and we're not in ObjC mode, there's nothing to check. 599 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC) 600 return CastAwayConstnessKind::CACK_None; 601 602 if (!DestType->isReferenceType()) { 603 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || 604 SrcType->isBlockPointerType()) && 605 "Source type is not pointer or pointer to member."); 606 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || 607 DestType->isBlockPointerType()) && 608 "Destination type is not pointer or pointer to member."); 609 } 610 611 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), 612 UnwrappedDestType = Self.Context.getCanonicalType(DestType); 613 614 // Find the qualifiers. We only care about cvr-qualifiers for the 615 // purpose of this check, because other qualifiers (address spaces, 616 // Objective-C GC, etc.) are part of the type's identity. 617 QualType PrevUnwrappedSrcType = UnwrappedSrcType; 618 QualType PrevUnwrappedDestType = UnwrappedDestType; 619 auto WorstKind = CastAwayConstnessKind::CACK_Similar; 620 bool AllConstSoFar = true; 621 while (auto Kind = unwrapCastAwayConstnessLevel( 622 Self.Context, UnwrappedSrcType, UnwrappedDestType)) { 623 // Track the worst kind of unwrap we needed to do before we found a 624 // problem. 625 if (Kind > WorstKind) 626 WorstKind = Kind; 627 628 // Determine the relevant qualifiers at this level. 629 Qualifiers SrcQuals, DestQuals; 630 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); 631 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); 632 633 // We do not meaningfully track object const-ness of Objective-C object 634 // types. Remove const from the source type if either the source or 635 // the destination is an Objective-C object type. 636 if (UnwrappedSrcType->isObjCObjectType() || 637 UnwrappedDestType->isObjCObjectType()) 638 SrcQuals.removeConst(); 639 640 if (CheckCVR) { 641 Qualifiers SrcCvrQuals = 642 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers()); 643 Qualifiers DestCvrQuals = 644 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers()); 645 646 if (SrcCvrQuals != DestCvrQuals) { 647 if (CastAwayQualifiers) 648 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals; 649 650 // If we removed a cvr-qualifier, this is casting away 'constness'. 651 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) { 652 if (TheOffendingSrcType) 653 *TheOffendingSrcType = PrevUnwrappedSrcType; 654 if (TheOffendingDestType) 655 *TheOffendingDestType = PrevUnwrappedDestType; 656 return WorstKind; 657 } 658 659 // If any prior level was not 'const', this is also casting away 660 // 'constness'. We noted the outermost type missing a 'const' already. 661 if (!AllConstSoFar) 662 return WorstKind; 663 } 664 } 665 666 if (CheckObjCLifetime && 667 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) 668 return WorstKind; 669 670 // If we found our first non-const-qualified type, this may be the place 671 // where things start to go wrong. 672 if (AllConstSoFar && !DestQuals.hasConst()) { 673 AllConstSoFar = false; 674 if (TheOffendingSrcType) 675 *TheOffendingSrcType = PrevUnwrappedSrcType; 676 if (TheOffendingDestType) 677 *TheOffendingDestType = PrevUnwrappedDestType; 678 } 679 680 PrevUnwrappedSrcType = UnwrappedSrcType; 681 PrevUnwrappedDestType = UnwrappedDestType; 682 } 683 684 return CastAwayConstnessKind::CACK_None; 685 } 686 687 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK, 688 unsigned &DiagID) { 689 switch (CACK) { 690 case CastAwayConstnessKind::CACK_None: 691 llvm_unreachable("did not cast away constness"); 692 693 case CastAwayConstnessKind::CACK_Similar: 694 // FIXME: Accept these as an extension too? 695 case CastAwayConstnessKind::CACK_SimilarKind: 696 DiagID = diag::err_bad_cxx_cast_qualifiers_away; 697 return TC_Failed; 698 699 case CastAwayConstnessKind::CACK_Incoherent: 700 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent; 701 return TC_Extension; 702 } 703 704 llvm_unreachable("unexpected cast away constness kind"); 705 } 706 707 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. 708 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- 709 /// checked downcasts in class hierarchies. 710 void CastOperation::CheckDynamicCast() { 711 if (ValueKind == VK_RValue) 712 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 713 else if (isPlaceholder()) 714 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 715 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 716 return; 717 718 QualType OrigSrcType = SrcExpr.get()->getType(); 719 QualType DestType = Self.Context.getCanonicalType(this->DestType); 720 721 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, 722 // or "pointer to cv void". 723 724 QualType DestPointee; 725 const PointerType *DestPointer = DestType->getAs<PointerType>(); 726 const ReferenceType *DestReference = nullptr; 727 if (DestPointer) { 728 DestPointee = DestPointer->getPointeeType(); 729 } else if ((DestReference = DestType->getAs<ReferenceType>())) { 730 DestPointee = DestReference->getPointeeType(); 731 } else { 732 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) 733 << this->DestType << DestRange; 734 SrcExpr = ExprError(); 735 return; 736 } 737 738 const RecordType *DestRecord = DestPointee->getAs<RecordType>(); 739 if (DestPointee->isVoidType()) { 740 assert(DestPointer && "Reference to void is not possible"); 741 } else if (DestRecord) { 742 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, 743 diag::err_bad_dynamic_cast_incomplete, 744 DestRange)) { 745 SrcExpr = ExprError(); 746 return; 747 } 748 } else { 749 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 750 << DestPointee.getUnqualifiedType() << DestRange; 751 SrcExpr = ExprError(); 752 return; 753 } 754 755 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to 756 // complete class type, [...]. If T is an lvalue reference type, v shall be 757 // an lvalue of a complete class type, [...]. If T is an rvalue reference 758 // type, v shall be an expression having a complete class type, [...] 759 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); 760 QualType SrcPointee; 761 if (DestPointer) { 762 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 763 SrcPointee = SrcPointer->getPointeeType(); 764 } else { 765 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) 766 << OrigSrcType << SrcExpr.get()->getSourceRange(); 767 SrcExpr = ExprError(); 768 return; 769 } 770 } else if (DestReference->isLValueReferenceType()) { 771 if (!SrcExpr.get()->isLValue()) { 772 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) 773 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 774 } 775 SrcPointee = SrcType; 776 } else { 777 // If we're dynamic_casting from a prvalue to an rvalue reference, we need 778 // to materialize the prvalue before we bind the reference to it. 779 if (SrcExpr.get()->isRValue()) 780 SrcExpr = Self.CreateMaterializeTemporaryExpr( 781 SrcType, SrcExpr.get(), /*IsLValueReference*/ false); 782 SrcPointee = SrcType; 783 } 784 785 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); 786 if (SrcRecord) { 787 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, 788 diag::err_bad_dynamic_cast_incomplete, 789 SrcExpr.get())) { 790 SrcExpr = ExprError(); 791 return; 792 } 793 } else { 794 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 795 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 796 SrcExpr = ExprError(); 797 return; 798 } 799 800 assert((DestPointer || DestReference) && 801 "Bad destination non-ptr/ref slipped through."); 802 assert((DestRecord || DestPointee->isVoidType()) && 803 "Bad destination pointee slipped through."); 804 assert(SrcRecord && "Bad source pointee slipped through."); 805 806 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. 807 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { 808 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) 809 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 810 SrcExpr = ExprError(); 811 return; 812 } 813 814 // C++ 5.2.7p3: If the type of v is the same as the required result type, 815 // [except for cv]. 816 if (DestRecord == SrcRecord) { 817 Kind = CK_NoOp; 818 return; 819 } 820 821 // C++ 5.2.7p5 822 // Upcasts are resolved statically. 823 if (DestRecord && 824 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) { 825 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, 826 OpRange.getBegin(), OpRange, 827 &BasePath)) { 828 SrcExpr = ExprError(); 829 return; 830 } 831 832 Kind = CK_DerivedToBase; 833 return; 834 } 835 836 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. 837 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); 838 assert(SrcDecl && "Definition missing"); 839 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { 840 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) 841 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 842 SrcExpr = ExprError(); 843 } 844 845 // dynamic_cast is not available with -fno-rtti. 846 // As an exception, dynamic_cast to void* is available because it doesn't 847 // use RTTI. 848 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) { 849 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti); 850 SrcExpr = ExprError(); 851 return; 852 } 853 854 // Done. Everything else is run-time checks. 855 Kind = CK_Dynamic; 856 } 857 858 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. 859 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code 860 /// like this: 861 /// const char *str = "literal"; 862 /// legacy_function(const_cast\<char*\>(str)); 863 void CastOperation::CheckConstCast() { 864 if (ValueKind == VK_RValue) 865 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 866 else if (isPlaceholder()) 867 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 868 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 869 return; 870 871 unsigned msg = diag::err_bad_cxx_cast_generic; 872 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg); 873 if (TCR != TC_Success && msg != 0) { 874 Self.Diag(OpRange.getBegin(), msg) << CT_Const 875 << SrcExpr.get()->getType() << DestType << OpRange; 876 } 877 if (!isValidCast(TCR)) 878 SrcExpr = ExprError(); 879 } 880 881 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast 882 /// or downcast between respective pointers or references. 883 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr, 884 QualType DestType, 885 SourceRange OpRange) { 886 QualType SrcType = SrcExpr->getType(); 887 // When casting from pointer or reference, get pointee type; use original 888 // type otherwise. 889 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl(); 890 const CXXRecordDecl *SrcRD = 891 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl(); 892 893 // Examining subobjects for records is only possible if the complete and 894 // valid definition is available. Also, template instantiation is not 895 // allowed here. 896 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl()) 897 return; 898 899 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl(); 900 901 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl()) 902 return; 903 904 enum { 905 ReinterpretUpcast, 906 ReinterpretDowncast 907 } ReinterpretKind; 908 909 CXXBasePaths BasePaths; 910 911 if (SrcRD->isDerivedFrom(DestRD, BasePaths)) 912 ReinterpretKind = ReinterpretUpcast; 913 else if (DestRD->isDerivedFrom(SrcRD, BasePaths)) 914 ReinterpretKind = ReinterpretDowncast; 915 else 916 return; 917 918 bool VirtualBase = true; 919 bool NonZeroOffset = false; 920 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(), 921 E = BasePaths.end(); 922 I != E; ++I) { 923 const CXXBasePath &Path = *I; 924 CharUnits Offset = CharUnits::Zero(); 925 bool IsVirtual = false; 926 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end(); 927 IElem != EElem; ++IElem) { 928 IsVirtual = IElem->Base->isVirtual(); 929 if (IsVirtual) 930 break; 931 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl(); 932 assert(BaseRD && "Base type should be a valid unqualified class type"); 933 // Don't check if any base has invalid declaration or has no definition 934 // since it has no layout info. 935 const CXXRecordDecl *Class = IElem->Class, 936 *ClassDefinition = Class->getDefinition(); 937 if (Class->isInvalidDecl() || !ClassDefinition || 938 !ClassDefinition->isCompleteDefinition()) 939 return; 940 941 const ASTRecordLayout &DerivedLayout = 942 Self.Context.getASTRecordLayout(Class); 943 Offset += DerivedLayout.getBaseClassOffset(BaseRD); 944 } 945 if (!IsVirtual) { 946 // Don't warn if any path is a non-virtually derived base at offset zero. 947 if (Offset.isZero()) 948 return; 949 // Offset makes sense only for non-virtual bases. 950 else 951 NonZeroOffset = true; 952 } 953 VirtualBase = VirtualBase && IsVirtual; 954 } 955 956 (void) NonZeroOffset; // Silence set but not used warning. 957 assert((VirtualBase || NonZeroOffset) && 958 "Should have returned if has non-virtual base with zero offset"); 959 960 QualType BaseType = 961 ReinterpretKind == ReinterpretUpcast? DestType : SrcType; 962 QualType DerivedType = 963 ReinterpretKind == ReinterpretUpcast? SrcType : DestType; 964 965 SourceLocation BeginLoc = OpRange.getBegin(); 966 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static) 967 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind) 968 << OpRange; 969 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static) 970 << int(ReinterpretKind) 971 << FixItHint::CreateReplacement(BeginLoc, "static_cast"); 972 } 973 974 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is 975 /// valid. 976 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code 977 /// like this: 978 /// char *bytes = reinterpret_cast\<char*\>(int_ptr); 979 void CastOperation::CheckReinterpretCast() { 980 if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload)) 981 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 982 else 983 checkNonOverloadPlaceholders(); 984 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 985 return; 986 987 unsigned msg = diag::err_bad_cxx_cast_generic; 988 TryCastResult tcr = 989 TryReinterpretCast(Self, SrcExpr, DestType, 990 /*CStyle*/false, OpRange, msg, Kind); 991 if (tcr != TC_Success && msg != 0) { 992 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 993 return; 994 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 995 //FIXME: &f<int>; is overloaded and resolvable 996 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) 997 << OverloadExpr::find(SrcExpr.get()).Expression->getName() 998 << DestType << OpRange; 999 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1000 1001 } else { 1002 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), 1003 DestType, /*listInitialization=*/false); 1004 } 1005 } 1006 1007 if (isValidCast(tcr)) { 1008 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1009 checkObjCConversion(Sema::CCK_OtherCast); 1010 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange); 1011 } else { 1012 SrcExpr = ExprError(); 1013 } 1014 } 1015 1016 1017 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. 1018 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making 1019 /// implicit conversions explicit and getting rid of data loss warnings. 1020 void CastOperation::CheckStaticCast() { 1021 if (isPlaceholder()) { 1022 checkNonOverloadPlaceholders(); 1023 if (SrcExpr.isInvalid()) 1024 return; 1025 } 1026 1027 // This test is outside everything else because it's the only case where 1028 // a non-lvalue-reference target type does not lead to decay. 1029 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1030 if (DestType->isVoidType()) { 1031 Kind = CK_ToVoid; 1032 1033 if (claimPlaceholder(BuiltinType::Overload)) { 1034 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr, 1035 false, // Decay Function to ptr 1036 true, // Complain 1037 OpRange, DestType, diag::err_bad_static_cast_overload); 1038 if (SrcExpr.isInvalid()) 1039 return; 1040 } 1041 1042 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 1043 return; 1044 } 1045 1046 if (ValueKind == VK_RValue && !DestType->isRecordType() && 1047 !isPlaceholder(BuiltinType::Overload)) { 1048 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1049 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1050 return; 1051 } 1052 1053 unsigned msg = diag::err_bad_cxx_cast_generic; 1054 TryCastResult tcr 1055 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, 1056 Kind, BasePath, /*ListInitialization=*/false); 1057 if (tcr != TC_Success && msg != 0) { 1058 if (SrcExpr.isInvalid()) 1059 return; 1060 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1061 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; 1062 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) 1063 << oe->getName() << DestType << OpRange 1064 << oe->getQualifierLoc().getSourceRange(); 1065 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1066 } else { 1067 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType, 1068 /*listInitialization=*/false); 1069 } 1070 } 1071 1072 if (isValidCast(tcr)) { 1073 if (Kind == CK_BitCast) 1074 checkCastAlign(); 1075 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1076 checkObjCConversion(Sema::CCK_OtherCast); 1077 } else { 1078 SrcExpr = ExprError(); 1079 } 1080 } 1081 1082 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) { 1083 auto *SrcPtrType = SrcType->getAs<PointerType>(); 1084 if (!SrcPtrType) 1085 return false; 1086 auto *DestPtrType = DestType->getAs<PointerType>(); 1087 if (!DestPtrType) 1088 return false; 1089 return SrcPtrType->getPointeeType().getAddressSpace() != 1090 DestPtrType->getPointeeType().getAddressSpace(); 1091 } 1092 1093 /// TryStaticCast - Check if a static cast can be performed, and do so if 1094 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting 1095 /// and casting away constness. 1096 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 1097 QualType DestType, 1098 Sema::CheckedConversionKind CCK, 1099 SourceRange OpRange, unsigned &msg, 1100 CastKind &Kind, CXXCastPath &BasePath, 1101 bool ListInitialization) { 1102 // Determine whether we have the semantics of a C-style cast. 1103 bool CStyle 1104 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1105 1106 // The order the tests is not entirely arbitrary. There is one conversion 1107 // that can be handled in two different ways. Given: 1108 // struct A {}; 1109 // struct B : public A { 1110 // B(); B(const A&); 1111 // }; 1112 // const A &a = B(); 1113 // the cast static_cast<const B&>(a) could be seen as either a static 1114 // reference downcast, or an explicit invocation of the user-defined 1115 // conversion using B's conversion constructor. 1116 // DR 427 specifies that the downcast is to be applied here. 1117 1118 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1119 // Done outside this function. 1120 1121 TryCastResult tcr; 1122 1123 // C++ 5.2.9p5, reference downcast. 1124 // See the function for details. 1125 // DR 427 specifies that this is to be applied before paragraph 2. 1126 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, 1127 OpRange, msg, Kind, BasePath); 1128 if (tcr != TC_NotApplicable) 1129 return tcr; 1130 1131 // C++11 [expr.static.cast]p3: 1132 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 1133 // T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1134 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, 1135 BasePath, msg); 1136 if (tcr != TC_NotApplicable) 1137 return tcr; 1138 1139 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T 1140 // [...] if the declaration "T t(e);" is well-formed, [...]. 1141 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, 1142 Kind, ListInitialization); 1143 if (SrcExpr.isInvalid()) 1144 return TC_Failed; 1145 if (tcr != TC_NotApplicable) 1146 return tcr; 1147 1148 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except 1149 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean 1150 // conversions, subject to further restrictions. 1151 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal 1152 // of qualification conversions impossible. 1153 // In the CStyle case, the earlier attempt to const_cast should have taken 1154 // care of reverse qualification conversions. 1155 1156 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); 1157 1158 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly 1159 // converted to an integral type. [...] A value of a scoped enumeration type 1160 // can also be explicitly converted to a floating-point type [...]. 1161 if (const EnumType *Enum = SrcType->getAs<EnumType>()) { 1162 if (Enum->getDecl()->isScoped()) { 1163 if (DestType->isBooleanType()) { 1164 Kind = CK_IntegralToBoolean; 1165 return TC_Success; 1166 } else if (DestType->isIntegralType(Self.Context)) { 1167 Kind = CK_IntegralCast; 1168 return TC_Success; 1169 } else if (DestType->isRealFloatingType()) { 1170 Kind = CK_IntegralToFloating; 1171 return TC_Success; 1172 } 1173 } 1174 } 1175 1176 // Reverse integral promotion/conversion. All such conversions are themselves 1177 // again integral promotions or conversions and are thus already handled by 1178 // p2 (TryDirectInitialization above). 1179 // (Note: any data loss warnings should be suppressed.) 1180 // The exception is the reverse of enum->integer, i.e. integer->enum (and 1181 // enum->enum). See also C++ 5.2.9p7. 1182 // The same goes for reverse floating point promotion/conversion and 1183 // floating-integral conversions. Again, only floating->enum is relevant. 1184 if (DestType->isEnumeralType()) { 1185 if (SrcType->isIntegralOrEnumerationType()) { 1186 Kind = CK_IntegralCast; 1187 return TC_Success; 1188 } else if (SrcType->isRealFloatingType()) { 1189 Kind = CK_FloatingToIntegral; 1190 return TC_Success; 1191 } 1192 } 1193 1194 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. 1195 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. 1196 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, 1197 Kind, BasePath); 1198 if (tcr != TC_NotApplicable) 1199 return tcr; 1200 1201 // Reverse member pointer conversion. C++ 4.11 specifies member pointer 1202 // conversion. C++ 5.2.9p9 has additional information. 1203 // DR54's access restrictions apply here also. 1204 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, 1205 OpRange, msg, Kind, BasePath); 1206 if (tcr != TC_NotApplicable) 1207 return tcr; 1208 1209 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to 1210 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is 1211 // just the usual constness stuff. 1212 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 1213 QualType SrcPointee = SrcPointer->getPointeeType(); 1214 if (SrcPointee->isVoidType()) { 1215 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { 1216 QualType DestPointee = DestPointer->getPointeeType(); 1217 if (DestPointee->isIncompleteOrObjectType()) { 1218 // This is definitely the intended conversion, but it might fail due 1219 // to a qualifier violation. Note that we permit Objective-C lifetime 1220 // and GC qualifier mismatches here. 1221 if (!CStyle) { 1222 Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); 1223 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); 1224 DestPointeeQuals.removeObjCGCAttr(); 1225 DestPointeeQuals.removeObjCLifetime(); 1226 SrcPointeeQuals.removeObjCGCAttr(); 1227 SrcPointeeQuals.removeObjCLifetime(); 1228 if (DestPointeeQuals != SrcPointeeQuals && 1229 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { 1230 msg = diag::err_bad_cxx_cast_qualifiers_away; 1231 return TC_Failed; 1232 } 1233 } 1234 Kind = IsAddressSpaceConversion(SrcType, DestType) 1235 ? CK_AddressSpaceConversion 1236 : CK_BitCast; 1237 return TC_Success; 1238 } 1239 1240 // Microsoft permits static_cast from 'pointer-to-void' to 1241 // 'pointer-to-function'. 1242 if (!CStyle && Self.getLangOpts().MSVCCompat && 1243 DestPointee->isFunctionType()) { 1244 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange; 1245 Kind = CK_BitCast; 1246 return TC_Success; 1247 } 1248 } 1249 else if (DestType->isObjCObjectPointerType()) { 1250 // allow both c-style cast and static_cast of objective-c pointers as 1251 // they are pervasive. 1252 Kind = CK_CPointerToObjCPointerCast; 1253 return TC_Success; 1254 } 1255 else if (CStyle && DestType->isBlockPointerType()) { 1256 // allow c-style cast of void * to block pointers. 1257 Kind = CK_AnyPointerToBlockPointerCast; 1258 return TC_Success; 1259 } 1260 } 1261 } 1262 // Allow arbitrary objective-c pointer conversion with static casts. 1263 if (SrcType->isObjCObjectPointerType() && 1264 DestType->isObjCObjectPointerType()) { 1265 Kind = CK_BitCast; 1266 return TC_Success; 1267 } 1268 // Allow ns-pointer to cf-pointer conversion in either direction 1269 // with static casts. 1270 if (!CStyle && 1271 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind)) 1272 return TC_Success; 1273 1274 // See if it looks like the user is trying to convert between 1275 // related record types, and select a better diagnostic if so. 1276 if (auto SrcPointer = SrcType->getAs<PointerType>()) 1277 if (auto DestPointer = DestType->getAs<PointerType>()) 1278 if (SrcPointer->getPointeeType()->getAs<RecordType>() && 1279 DestPointer->getPointeeType()->getAs<RecordType>()) 1280 msg = diag::err_bad_cxx_cast_unrelated_class; 1281 1282 // We tried everything. Everything! Nothing works! :-( 1283 return TC_NotApplicable; 1284 } 1285 1286 /// Tests whether a conversion according to N2844 is valid. 1287 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 1288 QualType DestType, bool CStyle, 1289 CastKind &Kind, CXXCastPath &BasePath, 1290 unsigned &msg) { 1291 // C++11 [expr.static.cast]p3: 1292 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to 1293 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1294 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); 1295 if (!R) 1296 return TC_NotApplicable; 1297 1298 if (!SrcExpr->isGLValue()) 1299 return TC_NotApplicable; 1300 1301 // Because we try the reference downcast before this function, from now on 1302 // this is the only cast possibility, so we issue an error if we fail now. 1303 // FIXME: Should allow casting away constness if CStyle. 1304 bool DerivedToBase; 1305 bool ObjCConversion; 1306 bool ObjCLifetimeConversion; 1307 bool FunctionConversion; 1308 QualType FromType = SrcExpr->getType(); 1309 QualType ToType = R->getPointeeType(); 1310 if (CStyle) { 1311 FromType = FromType.getUnqualifiedType(); 1312 ToType = ToType.getUnqualifiedType(); 1313 } 1314 1315 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship( 1316 SrcExpr->getBeginLoc(), ToType, FromType, DerivedToBase, ObjCConversion, 1317 ObjCLifetimeConversion, FunctionConversion); 1318 if (RefResult != Sema::Ref_Compatible) { 1319 if (CStyle || RefResult == Sema::Ref_Incompatible) 1320 return TC_NotApplicable; 1321 // Diagnose types which are reference-related but not compatible here since 1322 // we can provide better diagnostics. In these cases forwarding to 1323 // [expr.static.cast]p4 should never result in a well-formed cast. 1324 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast 1325 : diag::err_bad_rvalue_to_rvalue_cast; 1326 return TC_Failed; 1327 } 1328 1329 if (DerivedToBase) { 1330 Kind = CK_DerivedToBase; 1331 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1332 /*DetectVirtual=*/true); 1333 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(), 1334 R->getPointeeType(), Paths)) 1335 return TC_NotApplicable; 1336 1337 Self.BuildBasePathArray(Paths, BasePath); 1338 } else 1339 Kind = CK_NoOp; 1340 1341 return TC_Success; 1342 } 1343 1344 /// Tests whether a conversion according to C++ 5.2.9p5 is valid. 1345 TryCastResult 1346 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, 1347 bool CStyle, SourceRange OpRange, 1348 unsigned &msg, CastKind &Kind, 1349 CXXCastPath &BasePath) { 1350 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be 1351 // cast to type "reference to cv2 D", where D is a class derived from B, 1352 // if a valid standard conversion from "pointer to D" to "pointer to B" 1353 // exists, cv2 >= cv1, and B is not a virtual base class of D. 1354 // In addition, DR54 clarifies that the base must be accessible in the 1355 // current context. Although the wording of DR54 only applies to the pointer 1356 // variant of this rule, the intent is clearly for it to apply to the this 1357 // conversion as well. 1358 1359 const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); 1360 if (!DestReference) { 1361 return TC_NotApplicable; 1362 } 1363 bool RValueRef = DestReference->isRValueReferenceType(); 1364 if (!RValueRef && !SrcExpr->isLValue()) { 1365 // We know the left side is an lvalue reference, so we can suggest a reason. 1366 msg = diag::err_bad_cxx_cast_rvalue; 1367 return TC_NotApplicable; 1368 } 1369 1370 QualType DestPointee = DestReference->getPointeeType(); 1371 1372 // FIXME: If the source is a prvalue, we should issue a warning (because the 1373 // cast always has undefined behavior), and for AST consistency, we should 1374 // materialize a temporary. 1375 return TryStaticDowncast(Self, 1376 Self.Context.getCanonicalType(SrcExpr->getType()), 1377 Self.Context.getCanonicalType(DestPointee), CStyle, 1378 OpRange, SrcExpr->getType(), DestType, msg, Kind, 1379 BasePath); 1380 } 1381 1382 /// Tests whether a conversion according to C++ 5.2.9p8 is valid. 1383 TryCastResult 1384 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, 1385 bool CStyle, SourceRange OpRange, 1386 unsigned &msg, CastKind &Kind, 1387 CXXCastPath &BasePath) { 1388 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class 1389 // type, can be converted to an rvalue of type "pointer to cv2 D", where D 1390 // is a class derived from B, if a valid standard conversion from "pointer 1391 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base 1392 // class of D. 1393 // In addition, DR54 clarifies that the base must be accessible in the 1394 // current context. 1395 1396 const PointerType *DestPointer = DestType->getAs<PointerType>(); 1397 if (!DestPointer) { 1398 return TC_NotApplicable; 1399 } 1400 1401 const PointerType *SrcPointer = SrcType->getAs<PointerType>(); 1402 if (!SrcPointer) { 1403 msg = diag::err_bad_static_cast_pointer_nonpointer; 1404 return TC_NotApplicable; 1405 } 1406 1407 return TryStaticDowncast(Self, 1408 Self.Context.getCanonicalType(SrcPointer->getPointeeType()), 1409 Self.Context.getCanonicalType(DestPointer->getPointeeType()), 1410 CStyle, OpRange, SrcType, DestType, msg, Kind, 1411 BasePath); 1412 } 1413 1414 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and 1415 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to 1416 /// DestType is possible and allowed. 1417 TryCastResult 1418 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, 1419 bool CStyle, SourceRange OpRange, QualType OrigSrcType, 1420 QualType OrigDestType, unsigned &msg, 1421 CastKind &Kind, CXXCastPath &BasePath) { 1422 // We can only work with complete types. But don't complain if it doesn't work 1423 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) || 1424 !Self.isCompleteType(OpRange.getBegin(), DestType)) 1425 return TC_NotApplicable; 1426 1427 // Downcast can only happen in class hierarchies, so we need classes. 1428 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { 1429 return TC_NotApplicable; 1430 } 1431 1432 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1433 /*DetectVirtual=*/true); 1434 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) { 1435 return TC_NotApplicable; 1436 } 1437 1438 // Target type does derive from source type. Now we're serious. If an error 1439 // appears now, it's not ignored. 1440 // This may not be entirely in line with the standard. Take for example: 1441 // struct A {}; 1442 // struct B : virtual A { 1443 // B(A&); 1444 // }; 1445 // 1446 // void f() 1447 // { 1448 // (void)static_cast<const B&>(*((A*)0)); 1449 // } 1450 // As far as the standard is concerned, p5 does not apply (A is virtual), so 1451 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. 1452 // However, both GCC and Comeau reject this example, and accepting it would 1453 // mean more complex code if we're to preserve the nice error message. 1454 // FIXME: Being 100% compliant here would be nice to have. 1455 1456 // Must preserve cv, as always, unless we're in C-style mode. 1457 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { 1458 msg = diag::err_bad_cxx_cast_qualifiers_away; 1459 return TC_Failed; 1460 } 1461 1462 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { 1463 // This code is analoguous to that in CheckDerivedToBaseConversion, except 1464 // that it builds the paths in reverse order. 1465 // To sum up: record all paths to the base and build a nice string from 1466 // them. Use it to spice up the error message. 1467 if (!Paths.isRecordingPaths()) { 1468 Paths.clear(); 1469 Paths.setRecordingPaths(true); 1470 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths); 1471 } 1472 std::string PathDisplayStr; 1473 std::set<unsigned> DisplayedPaths; 1474 for (clang::CXXBasePath &Path : Paths) { 1475 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) { 1476 // We haven't displayed a path to this particular base 1477 // class subobject yet. 1478 PathDisplayStr += "\n "; 1479 for (CXXBasePathElement &PE : llvm::reverse(Path)) 1480 PathDisplayStr += PE.Base->getType().getAsString() + " -> "; 1481 PathDisplayStr += QualType(DestType).getAsString(); 1482 } 1483 } 1484 1485 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) 1486 << QualType(SrcType).getUnqualifiedType() 1487 << QualType(DestType).getUnqualifiedType() 1488 << PathDisplayStr << OpRange; 1489 msg = 0; 1490 return TC_Failed; 1491 } 1492 1493 if (Paths.getDetectedVirtual() != nullptr) { 1494 QualType VirtualBase(Paths.getDetectedVirtual(), 0); 1495 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) 1496 << OrigSrcType << OrigDestType << VirtualBase << OpRange; 1497 msg = 0; 1498 return TC_Failed; 1499 } 1500 1501 if (!CStyle) { 1502 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1503 SrcType, DestType, 1504 Paths.front(), 1505 diag::err_downcast_from_inaccessible_base)) { 1506 case Sema::AR_accessible: 1507 case Sema::AR_delayed: // be optimistic 1508 case Sema::AR_dependent: // be optimistic 1509 break; 1510 1511 case Sema::AR_inaccessible: 1512 msg = 0; 1513 return TC_Failed; 1514 } 1515 } 1516 1517 Self.BuildBasePathArray(Paths, BasePath); 1518 Kind = CK_BaseToDerived; 1519 return TC_Success; 1520 } 1521 1522 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to 1523 /// C++ 5.2.9p9 is valid: 1524 /// 1525 /// An rvalue of type "pointer to member of D of type cv1 T" can be 1526 /// converted to an rvalue of type "pointer to member of B of type cv2 T", 1527 /// where B is a base class of D [...]. 1528 /// 1529 TryCastResult 1530 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, 1531 QualType DestType, bool CStyle, 1532 SourceRange OpRange, 1533 unsigned &msg, CastKind &Kind, 1534 CXXCastPath &BasePath) { 1535 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); 1536 if (!DestMemPtr) 1537 return TC_NotApplicable; 1538 1539 bool WasOverloadedFunction = false; 1540 DeclAccessPair FoundOverload; 1541 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1542 if (FunctionDecl *Fn 1543 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, 1544 FoundOverload)) { 1545 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 1546 SrcType = Self.Context.getMemberPointerType(Fn->getType(), 1547 Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); 1548 WasOverloadedFunction = true; 1549 } 1550 } 1551 1552 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 1553 if (!SrcMemPtr) { 1554 msg = diag::err_bad_static_cast_member_pointer_nonmp; 1555 return TC_NotApplicable; 1556 } 1557 1558 // Lock down the inheritance model right now in MS ABI, whether or not the 1559 // pointee types are the same. 1560 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1561 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 1562 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 1563 } 1564 1565 // T == T, modulo cv 1566 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), 1567 DestMemPtr->getPointeeType())) 1568 return TC_NotApplicable; 1569 1570 // B base of D 1571 QualType SrcClass(SrcMemPtr->getClass(), 0); 1572 QualType DestClass(DestMemPtr->getClass(), 0); 1573 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1574 /*DetectVirtual=*/true); 1575 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths)) 1576 return TC_NotApplicable; 1577 1578 // B is a base of D. But is it an allowed base? If not, it's a hard error. 1579 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { 1580 Paths.clear(); 1581 Paths.setRecordingPaths(true); 1582 bool StillOkay = 1583 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths); 1584 assert(StillOkay); 1585 (void)StillOkay; 1586 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); 1587 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) 1588 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; 1589 msg = 0; 1590 return TC_Failed; 1591 } 1592 1593 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1594 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) 1595 << SrcClass << DestClass << QualType(VBase, 0) << OpRange; 1596 msg = 0; 1597 return TC_Failed; 1598 } 1599 1600 if (!CStyle) { 1601 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1602 DestClass, SrcClass, 1603 Paths.front(), 1604 diag::err_upcast_to_inaccessible_base)) { 1605 case Sema::AR_accessible: 1606 case Sema::AR_delayed: 1607 case Sema::AR_dependent: 1608 // Optimistically assume that the delayed and dependent cases 1609 // will work out. 1610 break; 1611 1612 case Sema::AR_inaccessible: 1613 msg = 0; 1614 return TC_Failed; 1615 } 1616 } 1617 1618 if (WasOverloadedFunction) { 1619 // Resolve the address of the overloaded function again, this time 1620 // allowing complaints if something goes wrong. 1621 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 1622 DestType, 1623 true, 1624 FoundOverload); 1625 if (!Fn) { 1626 msg = 0; 1627 return TC_Failed; 1628 } 1629 1630 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); 1631 if (!SrcExpr.isUsable()) { 1632 msg = 0; 1633 return TC_Failed; 1634 } 1635 } 1636 1637 Self.BuildBasePathArray(Paths, BasePath); 1638 Kind = CK_DerivedToBaseMemberPointer; 1639 return TC_Success; 1640 } 1641 1642 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 1643 /// is valid: 1644 /// 1645 /// An expression e can be explicitly converted to a type T using a 1646 /// @c static_cast if the declaration "T t(e);" is well-formed [...]. 1647 TryCastResult 1648 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, 1649 Sema::CheckedConversionKind CCK, 1650 SourceRange OpRange, unsigned &msg, 1651 CastKind &Kind, bool ListInitialization) { 1652 if (DestType->isRecordType()) { 1653 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1654 diag::err_bad_dynamic_cast_incomplete) || 1655 Self.RequireNonAbstractType(OpRange.getBegin(), DestType, 1656 diag::err_allocation_of_abstract_type)) { 1657 msg = 0; 1658 return TC_Failed; 1659 } 1660 } 1661 1662 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); 1663 InitializationKind InitKind 1664 = (CCK == Sema::CCK_CStyleCast) 1665 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange, 1666 ListInitialization) 1667 : (CCK == Sema::CCK_FunctionalCast) 1668 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization) 1669 : InitializationKind::CreateCast(OpRange); 1670 Expr *SrcExprRaw = SrcExpr.get(); 1671 // FIXME: Per DR242, we should check for an implicit conversion sequence 1672 // or for a constructor that could be invoked by direct-initialization 1673 // here, not for an initialization sequence. 1674 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw); 1675 1676 // At this point of CheckStaticCast, if the destination is a reference, 1677 // or the expression is an overload expression this has to work. 1678 // There is no other way that works. 1679 // On the other hand, if we're checking a C-style cast, we've still got 1680 // the reinterpret_cast way. 1681 bool CStyle 1682 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1683 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) 1684 return TC_NotApplicable; 1685 1686 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw); 1687 if (Result.isInvalid()) { 1688 msg = 0; 1689 return TC_Failed; 1690 } 1691 1692 if (InitSeq.isConstructorInitialization()) 1693 Kind = CK_ConstructorConversion; 1694 else 1695 Kind = CK_NoOp; 1696 1697 SrcExpr = Result; 1698 return TC_Success; 1699 } 1700 1701 /// TryConstCast - See if a const_cast from source to destination is allowed, 1702 /// and perform it if it is. 1703 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 1704 QualType DestType, bool CStyle, 1705 unsigned &msg) { 1706 DestType = Self.Context.getCanonicalType(DestType); 1707 QualType SrcType = SrcExpr.get()->getType(); 1708 bool NeedToMaterializeTemporary = false; 1709 1710 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { 1711 // C++11 5.2.11p4: 1712 // if a pointer to T1 can be explicitly converted to the type "pointer to 1713 // T2" using a const_cast, then the following conversions can also be 1714 // made: 1715 // -- an lvalue of type T1 can be explicitly converted to an lvalue of 1716 // type T2 using the cast const_cast<T2&>; 1717 // -- a glvalue of type T1 can be explicitly converted to an xvalue of 1718 // type T2 using the cast const_cast<T2&&>; and 1719 // -- if T1 is a class type, a prvalue of type T1 can be explicitly 1720 // converted to an xvalue of type T2 using the cast const_cast<T2&&>. 1721 1722 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) { 1723 // Cannot const_cast non-lvalue to lvalue reference type. But if this 1724 // is C-style, static_cast might find a way, so we simply suggest a 1725 // message and tell the parent to keep searching. 1726 msg = diag::err_bad_cxx_cast_rvalue; 1727 return TC_NotApplicable; 1728 } 1729 1730 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isRValue()) { 1731 if (!SrcType->isRecordType()) { 1732 // Cannot const_cast non-class prvalue to rvalue reference type. But if 1733 // this is C-style, static_cast can do this. 1734 msg = diag::err_bad_cxx_cast_rvalue; 1735 return TC_NotApplicable; 1736 } 1737 1738 // Materialize the class prvalue so that the const_cast can bind a 1739 // reference to it. 1740 NeedToMaterializeTemporary = true; 1741 } 1742 1743 // It's not completely clear under the standard whether we can 1744 // const_cast bit-field gl-values. Doing so would not be 1745 // intrinsically complicated, but for now, we say no for 1746 // consistency with other compilers and await the word of the 1747 // committee. 1748 if (SrcExpr.get()->refersToBitField()) { 1749 msg = diag::err_bad_cxx_cast_bitfield; 1750 return TC_NotApplicable; 1751 } 1752 1753 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 1754 SrcType = Self.Context.getPointerType(SrcType); 1755 } 1756 1757 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] 1758 // the rules for const_cast are the same as those used for pointers. 1759 1760 if (!DestType->isPointerType() && 1761 !DestType->isMemberPointerType() && 1762 !DestType->isObjCObjectPointerType()) { 1763 // Cannot cast to non-pointer, non-reference type. Note that, if DestType 1764 // was a reference type, we converted it to a pointer above. 1765 // The status of rvalue references isn't entirely clear, but it looks like 1766 // conversion to them is simply invalid. 1767 // C++ 5.2.11p3: For two pointer types [...] 1768 if (!CStyle) 1769 msg = diag::err_bad_const_cast_dest; 1770 return TC_NotApplicable; 1771 } 1772 if (DestType->isFunctionPointerType() || 1773 DestType->isMemberFunctionPointerType()) { 1774 // Cannot cast direct function pointers. 1775 // C++ 5.2.11p2: [...] where T is any object type or the void type [...] 1776 // T is the ultimate pointee of source and target type. 1777 if (!CStyle) 1778 msg = diag::err_bad_const_cast_dest; 1779 return TC_NotApplicable; 1780 } 1781 1782 // C++ [expr.const.cast]p3: 1783 // "For two similar types T1 and T2, [...]" 1784 // 1785 // We only allow a const_cast to change cvr-qualifiers, not other kinds of 1786 // type qualifiers. (Likewise, we ignore other changes when determining 1787 // whether a cast casts away constness.) 1788 if (!Self.Context.hasCvrSimilarType(SrcType, DestType)) 1789 return TC_NotApplicable; 1790 1791 if (NeedToMaterializeTemporary) 1792 // This is a const_cast from a class prvalue to an rvalue reference type. 1793 // Materialize a temporary to store the result of the conversion. 1794 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(), 1795 SrcExpr.get(), 1796 /*IsLValueReference*/ false); 1797 1798 return TC_Success; 1799 } 1800 1801 // Checks for undefined behavior in reinterpret_cast. 1802 // The cases that is checked for is: 1803 // *reinterpret_cast<T*>(&a) 1804 // reinterpret_cast<T&>(a) 1805 // where accessing 'a' as type 'T' will result in undefined behavior. 1806 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, 1807 bool IsDereference, 1808 SourceRange Range) { 1809 unsigned DiagID = IsDereference ? 1810 diag::warn_pointer_indirection_from_incompatible_type : 1811 diag::warn_undefined_reinterpret_cast; 1812 1813 if (Diags.isIgnored(DiagID, Range.getBegin())) 1814 return; 1815 1816 QualType SrcTy, DestTy; 1817 if (IsDereference) { 1818 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { 1819 return; 1820 } 1821 SrcTy = SrcType->getPointeeType(); 1822 DestTy = DestType->getPointeeType(); 1823 } else { 1824 if (!DestType->getAs<ReferenceType>()) { 1825 return; 1826 } 1827 SrcTy = SrcType; 1828 DestTy = DestType->getPointeeType(); 1829 } 1830 1831 // Cast is compatible if the types are the same. 1832 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { 1833 return; 1834 } 1835 // or one of the types is a char or void type 1836 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || 1837 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { 1838 return; 1839 } 1840 // or one of the types is a tag type. 1841 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { 1842 return; 1843 } 1844 1845 // FIXME: Scoped enums? 1846 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || 1847 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { 1848 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { 1849 return; 1850 } 1851 } 1852 1853 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; 1854 } 1855 1856 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr, 1857 QualType DestType) { 1858 QualType SrcType = SrcExpr.get()->getType(); 1859 if (Self.Context.hasSameType(SrcType, DestType)) 1860 return; 1861 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>()) 1862 if (SrcPtrTy->isObjCSelType()) { 1863 QualType DT = DestType; 1864 if (isa<PointerType>(DestType)) 1865 DT = DestType->getPointeeType(); 1866 if (!DT.getUnqualifiedType()->isVoidType()) 1867 Self.Diag(SrcExpr.get()->getExprLoc(), 1868 diag::warn_cast_pointer_from_sel) 1869 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 1870 } 1871 } 1872 1873 /// Diagnose casts that change the calling convention of a pointer to a function 1874 /// defined in the current TU. 1875 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr, 1876 QualType DstType, SourceRange OpRange) { 1877 // Check if this cast would change the calling convention of a function 1878 // pointer type. 1879 QualType SrcType = SrcExpr.get()->getType(); 1880 if (Self.Context.hasSameType(SrcType, DstType) || 1881 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType()) 1882 return; 1883 const auto *SrcFTy = 1884 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 1885 const auto *DstFTy = 1886 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 1887 CallingConv SrcCC = SrcFTy->getCallConv(); 1888 CallingConv DstCC = DstFTy->getCallConv(); 1889 if (SrcCC == DstCC) 1890 return; 1891 1892 // We have a calling convention cast. Check if the source is a pointer to a 1893 // known, specific function that has already been defined. 1894 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts(); 1895 if (auto *UO = dyn_cast<UnaryOperator>(Src)) 1896 if (UO->getOpcode() == UO_AddrOf) 1897 Src = UO->getSubExpr()->IgnoreParenImpCasts(); 1898 auto *DRE = dyn_cast<DeclRefExpr>(Src); 1899 if (!DRE) 1900 return; 1901 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 1902 if (!FD) 1903 return; 1904 1905 // Only warn if we are casting from the default convention to a non-default 1906 // convention. This can happen when the programmer forgot to apply the calling 1907 // convention to the function declaration and then inserted this cast to 1908 // satisfy the type system. 1909 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention( 1910 FD->isVariadic(), FD->isCXXInstanceMember()); 1911 if (DstCC == DefaultCC || SrcCC != DefaultCC) 1912 return; 1913 1914 // Diagnose this cast, as it is probably bad. 1915 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC); 1916 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC); 1917 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv) 1918 << SrcCCName << DstCCName << OpRange; 1919 1920 // The checks above are cheaper than checking if the diagnostic is enabled. 1921 // However, it's worth checking if the warning is enabled before we construct 1922 // a fixit. 1923 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin())) 1924 return; 1925 1926 // Try to suggest a fixit to change the calling convention of the function 1927 // whose address was taken. Try to use the latest macro for the convention. 1928 // For example, users probably want to write "WINAPI" instead of "__stdcall" 1929 // to match the Windows header declarations. 1930 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc(); 1931 Preprocessor &PP = Self.getPreprocessor(); 1932 SmallVector<TokenValue, 6> AttrTokens; 1933 SmallString<64> CCAttrText; 1934 llvm::raw_svector_ostream OS(CCAttrText); 1935 if (Self.getLangOpts().MicrosoftExt) { 1936 // __stdcall or __vectorcall 1937 OS << "__" << DstCCName; 1938 IdentifierInfo *II = PP.getIdentifierInfo(OS.str()); 1939 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 1940 ? TokenValue(II->getTokenID()) 1941 : TokenValue(II)); 1942 } else { 1943 // __attribute__((stdcall)) or __attribute__((vectorcall)) 1944 OS << "__attribute__((" << DstCCName << "))"; 1945 AttrTokens.push_back(tok::kw___attribute); 1946 AttrTokens.push_back(tok::l_paren); 1947 AttrTokens.push_back(tok::l_paren); 1948 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName); 1949 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 1950 ? TokenValue(II->getTokenID()) 1951 : TokenValue(II)); 1952 AttrTokens.push_back(tok::r_paren); 1953 AttrTokens.push_back(tok::r_paren); 1954 } 1955 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens); 1956 if (!AttrSpelling.empty()) 1957 CCAttrText = AttrSpelling; 1958 OS << ' '; 1959 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit) 1960 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText); 1961 } 1962 1963 static void checkIntToPointerCast(bool CStyle, SourceLocation Loc, 1964 const Expr *SrcExpr, QualType DestType, 1965 Sema &Self) { 1966 QualType SrcType = SrcExpr->getType(); 1967 1968 // Not warning on reinterpret_cast, boolean, constant expressions, etc 1969 // are not explicit design choices, but consistent with GCC's behavior. 1970 // Feel free to modify them if you've reason/evidence for an alternative. 1971 if (CStyle && SrcType->isIntegralType(Self.Context) 1972 && !SrcType->isBooleanType() 1973 && !SrcType->isEnumeralType() 1974 && !SrcExpr->isIntegerConstantExpr(Self.Context) 1975 && Self.Context.getTypeSize(DestType) > 1976 Self.Context.getTypeSize(SrcType)) { 1977 // Separate between casts to void* and non-void* pointers. 1978 // Some APIs use (abuse) void* for something like a user context, 1979 // and often that value is an integer even if it isn't a pointer itself. 1980 // Having a separate warning flag allows users to control the warning 1981 // for their workflow. 1982 unsigned Diag = DestType->isVoidPointerType() ? 1983 diag::warn_int_to_void_pointer_cast 1984 : diag::warn_int_to_pointer_cast; 1985 Self.Diag(Loc, Diag) << SrcType << DestType; 1986 } 1987 } 1988 1989 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType, 1990 ExprResult &Result) { 1991 // We can only fix an overloaded reinterpret_cast if 1992 // - it is a template with explicit arguments that resolves to an lvalue 1993 // unambiguously, or 1994 // - it is the only function in an overload set that may have its address 1995 // taken. 1996 1997 Expr *E = Result.get(); 1998 // TODO: what if this fails because of DiagnoseUseOfDecl or something 1999 // like it? 2000 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2001 Result, 2002 Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr 2003 ) && 2004 Result.isUsable()) 2005 return true; 2006 2007 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization 2008 // preserves Result. 2009 Result = E; 2010 if (!Self.resolveAndFixAddressOfOnlyViableOverloadCandidate( 2011 Result, /*DoFunctionPointerConversion=*/true)) 2012 return false; 2013 return Result.isUsable(); 2014 } 2015 2016 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 2017 QualType DestType, bool CStyle, 2018 SourceRange OpRange, 2019 unsigned &msg, 2020 CastKind &Kind) { 2021 bool IsLValueCast = false; 2022 2023 DestType = Self.Context.getCanonicalType(DestType); 2024 QualType SrcType = SrcExpr.get()->getType(); 2025 2026 // Is the source an overloaded name? (i.e. &foo) 2027 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5) 2028 if (SrcType == Self.Context.OverloadTy) { 2029 ExprResult FixedExpr = SrcExpr; 2030 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr)) 2031 return TC_NotApplicable; 2032 2033 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr"); 2034 SrcExpr = FixedExpr; 2035 SrcType = SrcExpr.get()->getType(); 2036 } 2037 2038 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { 2039 if (!SrcExpr.get()->isGLValue()) { 2040 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the 2041 // similar comment in const_cast. 2042 msg = diag::err_bad_cxx_cast_rvalue; 2043 return TC_NotApplicable; 2044 } 2045 2046 if (!CStyle) { 2047 Self.CheckCompatibleReinterpretCast(SrcType, DestType, 2048 /*IsDereference=*/false, OpRange); 2049 } 2050 2051 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the 2052 // same effect as the conversion *reinterpret_cast<T*>(&x) with the 2053 // built-in & and * operators. 2054 2055 const char *inappropriate = nullptr; 2056 switch (SrcExpr.get()->getObjectKind()) { 2057 case OK_Ordinary: 2058 break; 2059 case OK_BitField: 2060 msg = diag::err_bad_cxx_cast_bitfield; 2061 return TC_NotApplicable; 2062 // FIXME: Use a specific diagnostic for the rest of these cases. 2063 case OK_VectorComponent: inappropriate = "vector element"; break; 2064 case OK_ObjCProperty: inappropriate = "property expression"; break; 2065 case OK_ObjCSubscript: inappropriate = "container subscripting expression"; 2066 break; 2067 } 2068 if (inappropriate) { 2069 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) 2070 << inappropriate << DestType 2071 << OpRange << SrcExpr.get()->getSourceRange(); 2072 msg = 0; SrcExpr = ExprError(); 2073 return TC_NotApplicable; 2074 } 2075 2076 // This code does this transformation for the checked types. 2077 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 2078 SrcType = Self.Context.getPointerType(SrcType); 2079 2080 IsLValueCast = true; 2081 } 2082 2083 // Canonicalize source for comparison. 2084 SrcType = Self.Context.getCanonicalType(SrcType); 2085 2086 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), 2087 *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 2088 if (DestMemPtr && SrcMemPtr) { 2089 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" 2090 // can be explicitly converted to an rvalue of type "pointer to member 2091 // of Y of type T2" if T1 and T2 are both function types or both object 2092 // types. 2093 if (DestMemPtr->isMemberFunctionPointer() != 2094 SrcMemPtr->isMemberFunctionPointer()) 2095 return TC_NotApplicable; 2096 2097 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2098 // We need to determine the inheritance model that the class will use if 2099 // haven't yet. 2100 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 2101 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 2102 } 2103 2104 // Don't allow casting between member pointers of different sizes. 2105 if (Self.Context.getTypeSize(DestMemPtr) != 2106 Self.Context.getTypeSize(SrcMemPtr)) { 2107 msg = diag::err_bad_cxx_cast_member_pointer_size; 2108 return TC_Failed; 2109 } 2110 2111 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away 2112 // constness. 2113 // A reinterpret_cast followed by a const_cast can, though, so in C-style, 2114 // we accept it. 2115 if (auto CACK = 2116 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2117 /*CheckObjCLifetime=*/CStyle)) 2118 return getCastAwayConstnessCastKind(CACK, msg); 2119 2120 // A valid member pointer cast. 2121 assert(!IsLValueCast); 2122 Kind = CK_ReinterpretMemberPointer; 2123 return TC_Success; 2124 } 2125 2126 // See below for the enumeral issue. 2127 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { 2128 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral 2129 // type large enough to hold it. A value of std::nullptr_t can be 2130 // converted to an integral type; the conversion has the same meaning 2131 // and validity as a conversion of (void*)0 to the integral type. 2132 if (Self.Context.getTypeSize(SrcType) > 2133 Self.Context.getTypeSize(DestType)) { 2134 msg = diag::err_bad_reinterpret_cast_small_int; 2135 return TC_Failed; 2136 } 2137 Kind = CK_PointerToIntegral; 2138 return TC_Success; 2139 } 2140 2141 // Allow reinterpret_casts between vectors of the same size and 2142 // between vectors and integers of the same size. 2143 bool destIsVector = DestType->isVectorType(); 2144 bool srcIsVector = SrcType->isVectorType(); 2145 if (srcIsVector || destIsVector) { 2146 // The non-vector type, if any, must have integral type. This is 2147 // the same rule that C vector casts use; note, however, that enum 2148 // types are not integral in C++. 2149 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) || 2150 (!srcIsVector && !SrcType->isIntegralType(Self.Context))) 2151 return TC_NotApplicable; 2152 2153 // The size we want to consider is eltCount * eltSize. 2154 // That's exactly what the lax-conversion rules will check. 2155 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) { 2156 Kind = CK_BitCast; 2157 return TC_Success; 2158 } 2159 2160 // Otherwise, pick a reasonable diagnostic. 2161 if (!destIsVector) 2162 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; 2163 else if (!srcIsVector) 2164 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; 2165 else 2166 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; 2167 2168 return TC_Failed; 2169 } 2170 2171 if (SrcType == DestType) { 2172 // C++ 5.2.10p2 has a note that mentions that, subject to all other 2173 // restrictions, a cast to the same type is allowed so long as it does not 2174 // cast away constness. In C++98, the intent was not entirely clear here, 2175 // since all other paragraphs explicitly forbid casts to the same type. 2176 // C++11 clarifies this case with p2. 2177 // 2178 // The only allowed types are: integral, enumeration, pointer, or 2179 // pointer-to-member types. We also won't restrict Obj-C pointers either. 2180 Kind = CK_NoOp; 2181 TryCastResult Result = TC_NotApplicable; 2182 if (SrcType->isIntegralOrEnumerationType() || 2183 SrcType->isAnyPointerType() || 2184 SrcType->isMemberPointerType() || 2185 SrcType->isBlockPointerType()) { 2186 Result = TC_Success; 2187 } 2188 return Result; 2189 } 2190 2191 bool destIsPtr = DestType->isAnyPointerType() || 2192 DestType->isBlockPointerType(); 2193 bool srcIsPtr = SrcType->isAnyPointerType() || 2194 SrcType->isBlockPointerType(); 2195 if (!destIsPtr && !srcIsPtr) { 2196 // Except for std::nullptr_t->integer and lvalue->reference, which are 2197 // handled above, at least one of the two arguments must be a pointer. 2198 return TC_NotApplicable; 2199 } 2200 2201 if (DestType->isIntegralType(Self.Context)) { 2202 assert(srcIsPtr && "One type must be a pointer"); 2203 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral 2204 // type large enough to hold it; except in Microsoft mode, where the 2205 // integral type size doesn't matter (except we don't allow bool). 2206 bool MicrosoftException = Self.getLangOpts().MicrosoftExt && 2207 !DestType->isBooleanType(); 2208 if ((Self.Context.getTypeSize(SrcType) > 2209 Self.Context.getTypeSize(DestType)) && 2210 !MicrosoftException) { 2211 msg = diag::err_bad_reinterpret_cast_small_int; 2212 return TC_Failed; 2213 } 2214 Kind = CK_PointerToIntegral; 2215 return TC_Success; 2216 } 2217 2218 if (SrcType->isIntegralOrEnumerationType()) { 2219 assert(destIsPtr && "One type must be a pointer"); 2220 checkIntToPointerCast(CStyle, OpRange.getBegin(), SrcExpr.get(), DestType, 2221 Self); 2222 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly 2223 // converted to a pointer. 2224 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not 2225 // necessarily converted to a null pointer value.] 2226 Kind = CK_IntegralToPointer; 2227 return TC_Success; 2228 } 2229 2230 if (!destIsPtr || !srcIsPtr) { 2231 // With the valid non-pointer conversions out of the way, we can be even 2232 // more stringent. 2233 return TC_NotApplicable; 2234 } 2235 2236 // Cannot convert between block pointers and Objective-C object pointers. 2237 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || 2238 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) 2239 return TC_NotApplicable; 2240 2241 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. 2242 // The C-style cast operator can. 2243 TryCastResult SuccessResult = TC_Success; 2244 if (auto CACK = 2245 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2246 /*CheckObjCLifetime=*/CStyle)) 2247 SuccessResult = getCastAwayConstnessCastKind(CACK, msg); 2248 2249 if (IsAddressSpaceConversion(SrcType, DestType)) { 2250 Kind = CK_AddressSpaceConversion; 2251 assert(SrcType->isPointerType() && DestType->isPointerType()); 2252 if (!CStyle && 2253 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf( 2254 SrcType->getPointeeType().getQualifiers())) { 2255 SuccessResult = TC_Failed; 2256 } 2257 } else if (IsLValueCast) { 2258 Kind = CK_LValueBitCast; 2259 } else if (DestType->isObjCObjectPointerType()) { 2260 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr); 2261 } else if (DestType->isBlockPointerType()) { 2262 if (!SrcType->isBlockPointerType()) { 2263 Kind = CK_AnyPointerToBlockPointerCast; 2264 } else { 2265 Kind = CK_BitCast; 2266 } 2267 } else { 2268 Kind = CK_BitCast; 2269 } 2270 2271 // Any pointer can be cast to an Objective-C pointer type with a C-style 2272 // cast. 2273 if (CStyle && DestType->isObjCObjectPointerType()) { 2274 return SuccessResult; 2275 } 2276 if (CStyle) 2277 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2278 2279 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2280 2281 // Not casting away constness, so the only remaining check is for compatible 2282 // pointer categories. 2283 2284 if (SrcType->isFunctionPointerType()) { 2285 if (DestType->isFunctionPointerType()) { 2286 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to 2287 // a pointer to a function of a different type. 2288 return SuccessResult; 2289 } 2290 2291 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to 2292 // an object type or vice versa is conditionally-supported. 2293 // Compilers support it in C++03 too, though, because it's necessary for 2294 // casting the return value of dlsym() and GetProcAddress(). 2295 // FIXME: Conditionally-supported behavior should be configurable in the 2296 // TargetInfo or similar. 2297 Self.Diag(OpRange.getBegin(), 2298 Self.getLangOpts().CPlusPlus11 ? 2299 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2300 << OpRange; 2301 return SuccessResult; 2302 } 2303 2304 if (DestType->isFunctionPointerType()) { 2305 // See above. 2306 Self.Diag(OpRange.getBegin(), 2307 Self.getLangOpts().CPlusPlus11 ? 2308 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2309 << OpRange; 2310 return SuccessResult; 2311 } 2312 2313 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to 2314 // a pointer to an object of different type. 2315 // Void pointers are not specified, but supported by every compiler out there. 2316 // So we finish by allowing everything that remains - it's got to be two 2317 // object pointers. 2318 return SuccessResult; 2319 } 2320 2321 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 2322 QualType DestType, bool CStyle, 2323 unsigned &msg) { 2324 if (!Self.getLangOpts().OpenCL) 2325 // FIXME: As compiler doesn't have any information about overlapping addr 2326 // spaces at the moment we have to be permissive here. 2327 return TC_NotApplicable; 2328 // Even though the logic below is general enough and can be applied to 2329 // non-OpenCL mode too, we fast-path above because no other languages 2330 // define overlapping address spaces currently. 2331 auto SrcType = SrcExpr.get()->getType(); 2332 auto SrcPtrType = SrcType->getAs<PointerType>(); 2333 if (!SrcPtrType) 2334 return TC_NotApplicable; 2335 auto DestPtrType = DestType->getAs<PointerType>(); 2336 if (!DestPtrType) 2337 return TC_NotApplicable; 2338 auto SrcPointeeType = SrcPtrType->getPointeeType(); 2339 auto DestPointeeType = DestPtrType->getPointeeType(); 2340 if (SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace()) 2341 return TC_NotApplicable; 2342 if (!DestPtrType->isAddressSpaceOverlapping(*SrcPtrType)) { 2343 msg = diag::err_bad_cxx_cast_addr_space_mismatch; 2344 return TC_Failed; 2345 } 2346 auto SrcPointeeTypeWithoutAS = 2347 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType()); 2348 auto DestPointeeTypeWithoutAS = 2349 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType()); 2350 return Self.Context.hasSameType(SrcPointeeTypeWithoutAS, 2351 DestPointeeTypeWithoutAS) 2352 ? TC_Success 2353 : TC_NotApplicable; 2354 } 2355 2356 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) { 2357 // In OpenCL only conversions between pointers to objects in overlapping 2358 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps 2359 // with any named one, except for constant. 2360 2361 // Converting the top level pointee addrspace is permitted for compatible 2362 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but 2363 // if any of the nested pointee addrspaces differ, we emit a warning 2364 // regardless of addrspace compatibility. This makes 2365 // local int ** p; 2366 // return (generic int **) p; 2367 // warn even though local -> generic is permitted. 2368 if (Self.getLangOpts().OpenCL) { 2369 const Type *DestPtr, *SrcPtr; 2370 bool Nested = false; 2371 unsigned DiagID = diag::err_typecheck_incompatible_address_space; 2372 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()), 2373 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr()); 2374 2375 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) { 2376 const PointerType *DestPPtr = cast<PointerType>(DestPtr); 2377 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr); 2378 QualType DestPPointee = DestPPtr->getPointeeType(); 2379 QualType SrcPPointee = SrcPPtr->getPointeeType(); 2380 if (Nested ? DestPPointee.getAddressSpace() != 2381 SrcPPointee.getAddressSpace() 2382 : !DestPPtr->isAddressSpaceOverlapping(*SrcPPtr)) { 2383 Self.Diag(OpRange.getBegin(), DiagID) 2384 << SrcType << DestType << Sema::AA_Casting 2385 << SrcExpr.get()->getSourceRange(); 2386 if (!Nested) 2387 SrcExpr = ExprError(); 2388 return; 2389 } 2390 2391 DestPtr = DestPPtr->getPointeeType().getTypePtr(); 2392 SrcPtr = SrcPPtr->getPointeeType().getTypePtr(); 2393 Nested = true; 2394 DiagID = diag::ext_nested_pointer_qualifier_mismatch; 2395 } 2396 } 2397 } 2398 2399 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle, 2400 bool ListInitialization) { 2401 assert(Self.getLangOpts().CPlusPlus); 2402 2403 // Handle placeholders. 2404 if (isPlaceholder()) { 2405 // C-style casts can resolve __unknown_any types. 2406 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2407 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2408 SrcExpr.get(), Kind, 2409 ValueKind, BasePath); 2410 return; 2411 } 2412 2413 checkNonOverloadPlaceholders(); 2414 if (SrcExpr.isInvalid()) 2415 return; 2416 } 2417 2418 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 2419 // This test is outside everything else because it's the only case where 2420 // a non-lvalue-reference target type does not lead to decay. 2421 if (DestType->isVoidType()) { 2422 Kind = CK_ToVoid; 2423 2424 if (claimPlaceholder(BuiltinType::Overload)) { 2425 Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2426 SrcExpr, /* Decay Function to ptr */ false, 2427 /* Complain */ true, DestRange, DestType, 2428 diag::err_bad_cstyle_cast_overload); 2429 if (SrcExpr.isInvalid()) 2430 return; 2431 } 2432 2433 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2434 return; 2435 } 2436 2437 // If the type is dependent, we won't do any other semantic analysis now. 2438 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2439 SrcExpr.get()->isValueDependent()) { 2440 assert(Kind == CK_Dependent); 2441 return; 2442 } 2443 2444 if (ValueKind == VK_RValue && !DestType->isRecordType() && 2445 !isPlaceholder(BuiltinType::Overload)) { 2446 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2447 if (SrcExpr.isInvalid()) 2448 return; 2449 } 2450 2451 // AltiVec vector initialization with a single literal. 2452 if (const VectorType *vecTy = DestType->getAs<VectorType>()) 2453 if (vecTy->getVectorKind() == VectorType::AltiVecVector 2454 && (SrcExpr.get()->getType()->isIntegerType() 2455 || SrcExpr.get()->getType()->isFloatingType())) { 2456 Kind = CK_VectorSplat; 2457 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2458 return; 2459 } 2460 2461 // C++ [expr.cast]p5: The conversions performed by 2462 // - a const_cast, 2463 // - a static_cast, 2464 // - a static_cast followed by a const_cast, 2465 // - a reinterpret_cast, or 2466 // - a reinterpret_cast followed by a const_cast, 2467 // can be performed using the cast notation of explicit type conversion. 2468 // [...] If a conversion can be interpreted in more than one of the ways 2469 // listed above, the interpretation that appears first in the list is used, 2470 // even if a cast resulting from that interpretation is ill-formed. 2471 // In plain language, this means trying a const_cast ... 2472 // Note that for address space we check compatibility after const_cast. 2473 unsigned msg = diag::err_bad_cxx_cast_generic; 2474 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType, 2475 /*CStyle*/ true, msg); 2476 if (SrcExpr.isInvalid()) 2477 return; 2478 if (isValidCast(tcr)) 2479 Kind = CK_NoOp; 2480 2481 Sema::CheckedConversionKind CCK = 2482 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast; 2483 if (tcr == TC_NotApplicable) { 2484 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg); 2485 if (SrcExpr.isInvalid()) 2486 return; 2487 2488 if (isValidCast(tcr)) 2489 Kind = CK_AddressSpaceConversion; 2490 2491 if (tcr == TC_NotApplicable) { 2492 // ... or if that is not possible, a static_cast, ignoring const, ... 2493 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, 2494 BasePath, ListInitialization); 2495 if (SrcExpr.isInvalid()) 2496 return; 2497 2498 if (tcr == TC_NotApplicable) { 2499 // ... and finally a reinterpret_cast, ignoring const. 2500 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true, 2501 OpRange, msg, Kind); 2502 if (SrcExpr.isInvalid()) 2503 return; 2504 } 2505 } 2506 } 2507 2508 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 2509 isValidCast(tcr)) 2510 checkObjCConversion(CCK); 2511 2512 if (tcr != TC_Success && msg != 0) { 2513 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2514 DeclAccessPair Found; 2515 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 2516 DestType, 2517 /*Complain*/ true, 2518 Found); 2519 if (Fn) { 2520 // If DestType is a function type (not to be confused with the function 2521 // pointer type), it will be possible to resolve the function address, 2522 // but the type cast should be considered as failure. 2523 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression; 2524 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload) 2525 << OE->getName() << DestType << OpRange 2526 << OE->getQualifierLoc().getSourceRange(); 2527 Self.NoteAllOverloadCandidates(SrcExpr.get()); 2528 } 2529 } else { 2530 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), 2531 OpRange, SrcExpr.get(), DestType, ListInitialization); 2532 } 2533 } 2534 2535 if (isValidCast(tcr)) { 2536 if (Kind == CK_BitCast) 2537 checkCastAlign(); 2538 } else { 2539 SrcExpr = ExprError(); 2540 } 2541 } 2542 2543 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a 2544 /// non-matching type. Such as enum function call to int, int call to 2545 /// pointer; etc. Cast to 'void' is an exception. 2546 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr, 2547 QualType DestType) { 2548 if (Self.Diags.isIgnored(diag::warn_bad_function_cast, 2549 SrcExpr.get()->getExprLoc())) 2550 return; 2551 2552 if (!isa<CallExpr>(SrcExpr.get())) 2553 return; 2554 2555 QualType SrcType = SrcExpr.get()->getType(); 2556 if (DestType.getUnqualifiedType()->isVoidType()) 2557 return; 2558 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType()) 2559 && (DestType->isAnyPointerType() || DestType->isBlockPointerType())) 2560 return; 2561 if (SrcType->isIntegerType() && DestType->isIntegerType() && 2562 (SrcType->isBooleanType() == DestType->isBooleanType()) && 2563 (SrcType->isEnumeralType() == DestType->isEnumeralType())) 2564 return; 2565 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType()) 2566 return; 2567 if (SrcType->isEnumeralType() && DestType->isEnumeralType()) 2568 return; 2569 if (SrcType->isComplexType() && DestType->isComplexType()) 2570 return; 2571 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType()) 2572 return; 2573 2574 Self.Diag(SrcExpr.get()->getExprLoc(), 2575 diag::warn_bad_function_cast) 2576 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2577 } 2578 2579 /// Check the semantics of a C-style cast operation, in C. 2580 void CastOperation::CheckCStyleCast() { 2581 assert(!Self.getLangOpts().CPlusPlus); 2582 2583 // C-style casts can resolve __unknown_any types. 2584 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2585 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2586 SrcExpr.get(), Kind, 2587 ValueKind, BasePath); 2588 return; 2589 } 2590 2591 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression 2592 // type needs to be scalar. 2593 if (DestType->isVoidType()) { 2594 // We don't necessarily do lvalue-to-rvalue conversions on this. 2595 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2596 if (SrcExpr.isInvalid()) 2597 return; 2598 2599 // Cast to void allows any expr type. 2600 Kind = CK_ToVoid; 2601 return; 2602 } 2603 2604 // Overloads are allowed with C extensions, so we need to support them. 2605 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2606 DeclAccessPair DAP; 2607 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction( 2608 SrcExpr.get(), DestType, /*Complain=*/true, DAP)) 2609 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD); 2610 else 2611 return; 2612 assert(SrcExpr.isUsable()); 2613 } 2614 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2615 if (SrcExpr.isInvalid()) 2616 return; 2617 QualType SrcType = SrcExpr.get()->getType(); 2618 2619 assert(!SrcType->isPlaceholderType()); 2620 2621 checkAddressSpaceCast(SrcType, DestType); 2622 if (SrcExpr.isInvalid()) 2623 return; 2624 2625 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2626 diag::err_typecheck_cast_to_incomplete)) { 2627 SrcExpr = ExprError(); 2628 return; 2629 } 2630 2631 if (!DestType->isScalarType() && !DestType->isVectorType()) { 2632 const RecordType *DestRecordTy = DestType->getAs<RecordType>(); 2633 2634 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){ 2635 // GCC struct/union extension: allow cast to self. 2636 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar) 2637 << DestType << SrcExpr.get()->getSourceRange(); 2638 Kind = CK_NoOp; 2639 return; 2640 } 2641 2642 // GCC's cast to union extension. 2643 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) { 2644 RecordDecl *RD = DestRecordTy->getDecl(); 2645 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) { 2646 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union) 2647 << SrcExpr.get()->getSourceRange(); 2648 Kind = CK_ToUnion; 2649 return; 2650 } else { 2651 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type) 2652 << SrcType << SrcExpr.get()->getSourceRange(); 2653 SrcExpr = ExprError(); 2654 return; 2655 } 2656 } 2657 2658 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type. 2659 if (Self.getLangOpts().OpenCL && DestType->isEventT()) { 2660 Expr::EvalResult Result; 2661 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) { 2662 llvm::APSInt CastInt = Result.Val.getInt(); 2663 if (0 == CastInt) { 2664 Kind = CK_ZeroToOCLOpaqueType; 2665 return; 2666 } 2667 Self.Diag(OpRange.getBegin(), 2668 diag::err_opencl_cast_non_zero_to_event_t) 2669 << CastInt.toString(10) << SrcExpr.get()->getSourceRange(); 2670 SrcExpr = ExprError(); 2671 return; 2672 } 2673 } 2674 2675 // Reject any other conversions to non-scalar types. 2676 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar) 2677 << DestType << SrcExpr.get()->getSourceRange(); 2678 SrcExpr = ExprError(); 2679 return; 2680 } 2681 2682 // The type we're casting to is known to be a scalar or vector. 2683 2684 // Require the operand to be a scalar or vector. 2685 if (!SrcType->isScalarType() && !SrcType->isVectorType()) { 2686 Self.Diag(SrcExpr.get()->getExprLoc(), 2687 diag::err_typecheck_expect_scalar_operand) 2688 << SrcType << SrcExpr.get()->getSourceRange(); 2689 SrcExpr = ExprError(); 2690 return; 2691 } 2692 2693 if (DestType->isExtVectorType()) { 2694 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind); 2695 return; 2696 } 2697 2698 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) { 2699 if (DestVecTy->getVectorKind() == VectorType::AltiVecVector && 2700 (SrcType->isIntegerType() || SrcType->isFloatingType())) { 2701 Kind = CK_VectorSplat; 2702 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2703 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) { 2704 SrcExpr = ExprError(); 2705 } 2706 return; 2707 } 2708 2709 if (SrcType->isVectorType()) { 2710 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind)) 2711 SrcExpr = ExprError(); 2712 return; 2713 } 2714 2715 // The source and target types are both scalars, i.e. 2716 // - arithmetic types (fundamental, enum, and complex) 2717 // - all kinds of pointers 2718 // Note that member pointers were filtered out with C++, above. 2719 2720 if (isa<ObjCSelectorExpr>(SrcExpr.get())) { 2721 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr); 2722 SrcExpr = ExprError(); 2723 return; 2724 } 2725 2726 // If either type is a pointer, the other type has to be either an 2727 // integer or a pointer. 2728 if (!DestType->isArithmeticType()) { 2729 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) { 2730 Self.Diag(SrcExpr.get()->getExprLoc(), 2731 diag::err_cast_pointer_from_non_pointer_int) 2732 << SrcType << SrcExpr.get()->getSourceRange(); 2733 SrcExpr = ExprError(); 2734 return; 2735 } 2736 checkIntToPointerCast(/* CStyle */ true, OpRange.getBegin(), SrcExpr.get(), 2737 DestType, Self); 2738 } else if (!SrcType->isArithmeticType()) { 2739 if (!DestType->isIntegralType(Self.Context) && 2740 DestType->isArithmeticType()) { 2741 Self.Diag(SrcExpr.get()->getBeginLoc(), 2742 diag::err_cast_pointer_to_non_pointer_int) 2743 << DestType << SrcExpr.get()->getSourceRange(); 2744 SrcExpr = ExprError(); 2745 return; 2746 } 2747 } 2748 2749 if (Self.getLangOpts().OpenCL && 2750 !Self.getOpenCLOptions().isEnabled("cl_khr_fp16")) { 2751 if (DestType->isHalfType()) { 2752 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half) 2753 << DestType << SrcExpr.get()->getSourceRange(); 2754 SrcExpr = ExprError(); 2755 return; 2756 } 2757 } 2758 2759 // ARC imposes extra restrictions on casts. 2760 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) { 2761 checkObjCConversion(Sema::CCK_CStyleCast); 2762 if (SrcExpr.isInvalid()) 2763 return; 2764 2765 const PointerType *CastPtr = DestType->getAs<PointerType>(); 2766 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) { 2767 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) { 2768 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); 2769 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); 2770 if (CastPtr->getPointeeType()->isObjCLifetimeType() && 2771 ExprPtr->getPointeeType()->isObjCLifetimeType() && 2772 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { 2773 Self.Diag(SrcExpr.get()->getBeginLoc(), 2774 diag::err_typecheck_incompatible_ownership) 2775 << SrcType << DestType << Sema::AA_Casting 2776 << SrcExpr.get()->getSourceRange(); 2777 return; 2778 } 2779 } 2780 } 2781 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) { 2782 Self.Diag(SrcExpr.get()->getBeginLoc(), 2783 diag::err_arc_convesion_of_weak_unavailable) 2784 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2785 SrcExpr = ExprError(); 2786 return; 2787 } 2788 } 2789 2790 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2791 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2792 DiagnoseBadFunctionCast(Self, SrcExpr, DestType); 2793 Kind = Self.PrepareScalarCast(SrcExpr, DestType); 2794 if (SrcExpr.isInvalid()) 2795 return; 2796 2797 if (Kind == CK_BitCast) 2798 checkCastAlign(); 2799 } 2800 2801 void CastOperation::CheckBuiltinBitCast() { 2802 QualType SrcType = SrcExpr.get()->getType(); 2803 2804 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2805 diag::err_typecheck_cast_to_incomplete) || 2806 Self.RequireCompleteType(OpRange.getBegin(), SrcType, 2807 diag::err_incomplete_type)) { 2808 SrcExpr = ExprError(); 2809 return; 2810 } 2811 2812 if (SrcExpr.get()->isRValue()) 2813 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(), 2814 /*IsLValueReference=*/false); 2815 2816 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType); 2817 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType); 2818 if (DestSize != SourceSize) { 2819 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch) 2820 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity(); 2821 SrcExpr = ExprError(); 2822 return; 2823 } 2824 2825 if (!DestType.isTriviallyCopyableType(Self.Context)) { 2826 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 2827 << 1; 2828 SrcExpr = ExprError(); 2829 return; 2830 } 2831 2832 if (!SrcType.isTriviallyCopyableType(Self.Context)) { 2833 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 2834 << 0; 2835 SrcExpr = ExprError(); 2836 return; 2837 } 2838 2839 Kind = CK_LValueToRValueBitCast; 2840 } 2841 2842 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either 2843 /// const, volatile or both. 2844 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 2845 QualType DestType) { 2846 if (SrcExpr.isInvalid()) 2847 return; 2848 2849 QualType SrcType = SrcExpr.get()->getType(); 2850 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) || 2851 DestType->isLValueReferenceType())) 2852 return; 2853 2854 QualType TheOffendingSrcType, TheOffendingDestType; 2855 Qualifiers CastAwayQualifiers; 2856 if (CastsAwayConstness(Self, SrcType, DestType, true, false, 2857 &TheOffendingSrcType, &TheOffendingDestType, 2858 &CastAwayQualifiers) != 2859 CastAwayConstnessKind::CACK_Similar) 2860 return; 2861 2862 // FIXME: 'restrict' is not properly handled here. 2863 int qualifiers = -1; 2864 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) { 2865 qualifiers = 0; 2866 } else if (CastAwayQualifiers.hasConst()) { 2867 qualifiers = 1; 2868 } else if (CastAwayQualifiers.hasVolatile()) { 2869 qualifiers = 2; 2870 } 2871 // This is a variant of int **x; const int **y = (const int **)x; 2872 if (qualifiers == -1) 2873 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2) 2874 << SrcType << DestType; 2875 else 2876 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual) 2877 << TheOffendingSrcType << TheOffendingDestType << qualifiers; 2878 } 2879 2880 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc, 2881 TypeSourceInfo *CastTypeInfo, 2882 SourceLocation RPLoc, 2883 Expr *CastExpr) { 2884 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); 2885 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 2886 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc()); 2887 2888 if (getLangOpts().CPlusPlus) { 2889 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false, 2890 isa<InitListExpr>(CastExpr)); 2891 } else { 2892 Op.CheckCStyleCast(); 2893 } 2894 2895 if (Op.SrcExpr.isInvalid()) 2896 return ExprError(); 2897 2898 // -Wcast-qual 2899 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType); 2900 2901 return Op.complete(CStyleCastExpr::Create(Context, Op.ResultType, 2902 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 2903 &Op.BasePath, CastTypeInfo, LPLoc, RPLoc)); 2904 } 2905 2906 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo, 2907 QualType Type, 2908 SourceLocation LPLoc, 2909 Expr *CastExpr, 2910 SourceLocation RPLoc) { 2911 assert(LPLoc.isValid() && "List-initialization shouldn't get here."); 2912 CastOperation Op(*this, Type, CastExpr); 2913 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 2914 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc()); 2915 2916 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false); 2917 if (Op.SrcExpr.isInvalid()) 2918 return ExprError(); 2919 2920 auto *SubExpr = Op.SrcExpr.get(); 2921 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 2922 SubExpr = BindExpr->getSubExpr(); 2923 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr)) 2924 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc)); 2925 2926 return Op.complete(CXXFunctionalCastExpr::Create(Context, Op.ResultType, 2927 Op.ValueKind, CastTypeInfo, Op.Kind, 2928 Op.SrcExpr.get(), &Op.BasePath, LPLoc, RPLoc)); 2929 } 2930