1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for cast expressions, including 10 // 1) C-style casts like '(int) x' 11 // 2) C++ functional casts like 'int(x)' 12 // 3) C++ named casts like 'static_cast<int>(x)' 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTStructuralEquivalence.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "clang/Sema/Initialization.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include <set> 30 using namespace clang; 31 32 33 34 enum TryCastResult { 35 TC_NotApplicable, ///< The cast method is not applicable. 36 TC_Success, ///< The cast method is appropriate and successful. 37 TC_Extension, ///< The cast method is appropriate and accepted as a 38 ///< language extension. 39 TC_Failed ///< The cast method is appropriate, but failed. A 40 ///< diagnostic has been emitted. 41 }; 42 43 static bool isValidCast(TryCastResult TCR) { 44 return TCR == TC_Success || TCR == TC_Extension; 45 } 46 47 enum CastType { 48 CT_Const, ///< const_cast 49 CT_Static, ///< static_cast 50 CT_Reinterpret, ///< reinterpret_cast 51 CT_Dynamic, ///< dynamic_cast 52 CT_CStyle, ///< (Type)expr 53 CT_Functional, ///< Type(expr) 54 CT_Addrspace ///< addrspace_cast 55 }; 56 57 namespace { 58 struct CastOperation { 59 CastOperation(Sema &S, QualType destType, ExprResult src) 60 : Self(S), SrcExpr(src), DestType(destType), 61 ResultType(destType.getNonLValueExprType(S.Context)), 62 ValueKind(Expr::getValueKindForType(destType)), 63 Kind(CK_Dependent), IsARCUnbridgedCast(false) { 64 65 // C++ [expr.type]/8.2.2: 66 // If a pr-value initially has the type cv-T, where T is a 67 // cv-unqualified non-class, non-array type, the type of the 68 // expression is adjusted to T prior to any further analysis. 69 // C23 6.5.4p6: 70 // Preceding an expression by a parenthesized type name converts the 71 // value of the expression to the unqualified, non-atomic version of 72 // the named type. 73 if (!S.Context.getLangOpts().ObjC && !DestType->isRecordType() && 74 !DestType->isArrayType()) { 75 DestType = DestType.getAtomicUnqualifiedType(); 76 } 77 78 if (const BuiltinType *placeholder = 79 src.get()->getType()->getAsPlaceholderType()) { 80 PlaceholderKind = placeholder->getKind(); 81 } else { 82 PlaceholderKind = (BuiltinType::Kind) 0; 83 } 84 } 85 86 Sema &Self; 87 ExprResult SrcExpr; 88 QualType DestType; 89 QualType ResultType; 90 ExprValueKind ValueKind; 91 CastKind Kind; 92 BuiltinType::Kind PlaceholderKind; 93 CXXCastPath BasePath; 94 bool IsARCUnbridgedCast; 95 96 SourceRange OpRange; 97 SourceRange DestRange; 98 99 // Top-level semantics-checking routines. 100 void CheckConstCast(); 101 void CheckReinterpretCast(); 102 void CheckStaticCast(); 103 void CheckDynamicCast(); 104 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization); 105 void CheckCStyleCast(); 106 void CheckBuiltinBitCast(); 107 void CheckAddrspaceCast(); 108 109 void updatePartOfExplicitCastFlags(CastExpr *CE) { 110 // Walk down from the CE to the OrigSrcExpr, and mark all immediate 111 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE 112 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched. 113 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE) 114 ICE->setIsPartOfExplicitCast(true); 115 } 116 117 /// Complete an apparently-successful cast operation that yields 118 /// the given expression. 119 ExprResult complete(CastExpr *castExpr) { 120 // If this is an unbridged cast, wrap the result in an implicit 121 // cast that yields the unbridged-cast placeholder type. 122 if (IsARCUnbridgedCast) { 123 castExpr = ImplicitCastExpr::Create( 124 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent, 125 castExpr, nullptr, castExpr->getValueKind(), 126 Self.CurFPFeatureOverrides()); 127 } 128 updatePartOfExplicitCastFlags(castExpr); 129 return castExpr; 130 } 131 132 // Internal convenience methods. 133 134 /// Try to handle the given placeholder expression kind. Return 135 /// true if the source expression has the appropriate placeholder 136 /// kind. A placeholder can only be claimed once. 137 bool claimPlaceholder(BuiltinType::Kind K) { 138 if (PlaceholderKind != K) return false; 139 140 PlaceholderKind = (BuiltinType::Kind) 0; 141 return true; 142 } 143 144 bool isPlaceholder() const { 145 return PlaceholderKind != 0; 146 } 147 bool isPlaceholder(BuiltinType::Kind K) const { 148 return PlaceholderKind == K; 149 } 150 151 // Language specific cast restrictions for address spaces. 152 void checkAddressSpaceCast(QualType SrcType, QualType DestType); 153 154 void checkCastAlign() { 155 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); 156 } 157 158 void checkObjCConversion(Sema::CheckedConversionKind CCK) { 159 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()); 160 161 Expr *src = SrcExpr.get(); 162 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) == 163 Sema::ACR_unbridged) 164 IsARCUnbridgedCast = true; 165 SrcExpr = src; 166 } 167 168 /// Check for and handle non-overload placeholder expressions. 169 void checkNonOverloadPlaceholders() { 170 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload)) 171 return; 172 173 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 174 if (SrcExpr.isInvalid()) 175 return; 176 PlaceholderKind = (BuiltinType::Kind) 0; 177 } 178 }; 179 180 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType, 181 SourceLocation OpLoc) { 182 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) { 183 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 184 if (const auto *DestType = dyn_cast<PointerType>(ToType)) { 185 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) { 186 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer); 187 } 188 } 189 } 190 } 191 } 192 193 struct CheckNoDerefRAII { 194 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {} 195 ~CheckNoDerefRAII() { 196 if (!Op.SrcExpr.isInvalid()) 197 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType, 198 Op.OpRange.getBegin()); 199 } 200 201 CastOperation &Op; 202 }; 203 } 204 205 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 206 QualType DestType); 207 208 // The Try functions attempt a specific way of casting. If they succeed, they 209 // return TC_Success. If their way of casting is not appropriate for the given 210 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic 211 // to emit if no other way succeeds. If their way of casting is appropriate but 212 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if 213 // they emit a specialized diagnostic. 214 // All diagnostics returned by these functions must expect the same three 215 // arguments: 216 // %0: Cast Type (a value from the CastType enumeration) 217 // %1: Source Type 218 // %2: Destination Type 219 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 220 QualType DestType, bool CStyle, 221 CastKind &Kind, 222 CXXCastPath &BasePath, 223 unsigned &msg); 224 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, 225 QualType DestType, bool CStyle, 226 SourceRange OpRange, 227 unsigned &msg, 228 CastKind &Kind, 229 CXXCastPath &BasePath); 230 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, 231 QualType DestType, bool CStyle, 232 SourceRange OpRange, 233 unsigned &msg, 234 CastKind &Kind, 235 CXXCastPath &BasePath); 236 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, 237 CanQualType DestType, bool CStyle, 238 SourceRange OpRange, 239 QualType OrigSrcType, 240 QualType OrigDestType, unsigned &msg, 241 CastKind &Kind, 242 CXXCastPath &BasePath); 243 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, 244 QualType SrcType, 245 QualType DestType,bool CStyle, 246 SourceRange OpRange, 247 unsigned &msg, 248 CastKind &Kind, 249 CXXCastPath &BasePath); 250 251 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, 252 QualType DestType, 253 Sema::CheckedConversionKind CCK, 254 SourceRange OpRange, 255 unsigned &msg, CastKind &Kind, 256 bool ListInitialization); 257 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 258 QualType DestType, 259 Sema::CheckedConversionKind CCK, 260 SourceRange OpRange, 261 unsigned &msg, CastKind &Kind, 262 CXXCastPath &BasePath, 263 bool ListInitialization); 264 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 265 QualType DestType, bool CStyle, 266 unsigned &msg); 267 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 268 QualType DestType, bool CStyle, 269 SourceRange OpRange, unsigned &msg, 270 CastKind &Kind); 271 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 272 QualType DestType, bool CStyle, 273 unsigned &msg, CastKind &Kind); 274 275 /// ActOnCXXNamedCast - Parse 276 /// {dynamic,static,reinterpret,const,addrspace}_cast's. 277 ExprResult 278 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 279 SourceLocation LAngleBracketLoc, Declarator &D, 280 SourceLocation RAngleBracketLoc, 281 SourceLocation LParenLoc, Expr *E, 282 SourceLocation RParenLoc) { 283 284 assert(!D.isInvalidType()); 285 286 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType()); 287 if (D.isInvalidType()) 288 return ExprError(); 289 290 if (getLangOpts().CPlusPlus) { 291 // Check that there are no default arguments (C++ only). 292 CheckExtraCXXDefaultArguments(D); 293 } 294 295 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E, 296 SourceRange(LAngleBracketLoc, RAngleBracketLoc), 297 SourceRange(LParenLoc, RParenLoc)); 298 } 299 300 ExprResult 301 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 302 TypeSourceInfo *DestTInfo, Expr *E, 303 SourceRange AngleBrackets, SourceRange Parens) { 304 ExprResult Ex = E; 305 QualType DestType = DestTInfo->getType(); 306 307 // If the type is dependent, we won't do the semantic analysis now. 308 bool TypeDependent = 309 DestType->isDependentType() || Ex.get()->isTypeDependent(); 310 311 CastOperation Op(*this, DestType, E); 312 Op.OpRange = SourceRange(OpLoc, Parens.getEnd()); 313 Op.DestRange = AngleBrackets; 314 315 switch (Kind) { 316 default: llvm_unreachable("Unknown C++ cast!"); 317 318 case tok::kw_addrspace_cast: 319 if (!TypeDependent) { 320 Op.CheckAddrspaceCast(); 321 if (Op.SrcExpr.isInvalid()) 322 return ExprError(); 323 } 324 return Op.complete(CXXAddrspaceCastExpr::Create( 325 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 326 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets)); 327 328 case tok::kw_const_cast: 329 if (!TypeDependent) { 330 Op.CheckConstCast(); 331 if (Op.SrcExpr.isInvalid()) 332 return ExprError(); 333 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 334 } 335 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType, 336 Op.ValueKind, Op.SrcExpr.get(), DestTInfo, 337 OpLoc, Parens.getEnd(), 338 AngleBrackets)); 339 340 case tok::kw_dynamic_cast: { 341 // dynamic_cast is not supported in C++ for OpenCL. 342 if (getLangOpts().OpenCLCPlusPlus) { 343 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 344 << "dynamic_cast"); 345 } 346 347 if (!TypeDependent) { 348 Op.CheckDynamicCast(); 349 if (Op.SrcExpr.isInvalid()) 350 return ExprError(); 351 } 352 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType, 353 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 354 &Op.BasePath, DestTInfo, 355 OpLoc, Parens.getEnd(), 356 AngleBrackets)); 357 } 358 case tok::kw_reinterpret_cast: { 359 if (!TypeDependent) { 360 Op.CheckReinterpretCast(); 361 if (Op.SrcExpr.isInvalid()) 362 return ExprError(); 363 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 364 } 365 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType, 366 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 367 nullptr, DestTInfo, OpLoc, 368 Parens.getEnd(), 369 AngleBrackets)); 370 } 371 case tok::kw_static_cast: { 372 if (!TypeDependent) { 373 Op.CheckStaticCast(); 374 if (Op.SrcExpr.isInvalid()) 375 return ExprError(); 376 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 377 } 378 379 return Op.complete(CXXStaticCastExpr::Create( 380 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 381 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc, 382 Parens.getEnd(), AngleBrackets)); 383 } 384 } 385 } 386 387 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D, 388 ExprResult Operand, 389 SourceLocation RParenLoc) { 390 assert(!D.isInvalidType()); 391 392 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType()); 393 if (D.isInvalidType()) 394 return ExprError(); 395 396 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc); 397 } 398 399 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc, 400 TypeSourceInfo *TSI, Expr *Operand, 401 SourceLocation RParenLoc) { 402 CastOperation Op(*this, TSI->getType(), Operand); 403 Op.OpRange = SourceRange(KWLoc, RParenLoc); 404 TypeLoc TL = TSI->getTypeLoc(); 405 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); 406 407 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) { 408 Op.CheckBuiltinBitCast(); 409 if (Op.SrcExpr.isInvalid()) 410 return ExprError(); 411 } 412 413 BuiltinBitCastExpr *BCE = 414 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind, 415 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc); 416 return Op.complete(BCE); 417 } 418 419 /// Try to diagnose a failed overloaded cast. Returns true if 420 /// diagnostics were emitted. 421 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, 422 SourceRange range, Expr *src, 423 QualType destType, 424 bool listInitialization) { 425 switch (CT) { 426 // These cast kinds don't consider user-defined conversions. 427 case CT_Const: 428 case CT_Reinterpret: 429 case CT_Dynamic: 430 case CT_Addrspace: 431 return false; 432 433 // These do. 434 case CT_Static: 435 case CT_CStyle: 436 case CT_Functional: 437 break; 438 } 439 440 QualType srcType = src->getType(); 441 if (!destType->isRecordType() && !srcType->isRecordType()) 442 return false; 443 444 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); 445 InitializationKind initKind 446 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), 447 range, listInitialization) 448 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range, 449 listInitialization) 450 : InitializationKind::CreateCast(/*type range?*/ range); 451 InitializationSequence sequence(S, entity, initKind, src); 452 453 assert(sequence.Failed() && "initialization succeeded on second try?"); 454 switch (sequence.getFailureKind()) { 455 default: return false; 456 457 case InitializationSequence::FK_ParenthesizedListInitFailed: 458 // In C++20, if the underlying destination type is a RecordType, Clang 459 // attempts to perform parentesized aggregate initialization if constructor 460 // overload fails: 461 // 462 // C++20 [expr.static.cast]p4: 463 // An expression E can be explicitly converted to a type T...if overload 464 // resolution for a direct-initialization...would find at least one viable 465 // function ([over.match.viable]), or if T is an aggregate type having a 466 // first element X and there is an implicit conversion sequence from E to 467 // the type of X. 468 // 469 // If that fails, then we'll generate the diagnostics from the failed 470 // previous constructor overload attempt. Array initialization, however, is 471 // not done after attempting constructor overloading, so we exit as there 472 // won't be a failed overload result. 473 if (destType->isArrayType()) 474 return false; 475 break; 476 case InitializationSequence::FK_ConstructorOverloadFailed: 477 case InitializationSequence::FK_UserConversionOverloadFailed: 478 break; 479 } 480 481 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); 482 483 unsigned msg = 0; 484 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; 485 486 switch (sequence.getFailedOverloadResult()) { 487 case OR_Success: llvm_unreachable("successful failed overload"); 488 case OR_No_Viable_Function: 489 if (candidates.empty()) 490 msg = diag::err_ovl_no_conversion_in_cast; 491 else 492 msg = diag::err_ovl_no_viable_conversion_in_cast; 493 howManyCandidates = OCD_AllCandidates; 494 break; 495 496 case OR_Ambiguous: 497 msg = diag::err_ovl_ambiguous_conversion_in_cast; 498 howManyCandidates = OCD_AmbiguousCandidates; 499 break; 500 501 case OR_Deleted: 502 msg = diag::err_ovl_deleted_conversion_in_cast; 503 howManyCandidates = OCD_ViableCandidates; 504 break; 505 } 506 507 candidates.NoteCandidates( 508 PartialDiagnosticAt(range.getBegin(), 509 S.PDiag(msg) << CT << srcType << destType << range 510 << src->getSourceRange()), 511 S, howManyCandidates, src); 512 513 return true; 514 } 515 516 /// Diagnose a failed cast. 517 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, 518 SourceRange opRange, Expr *src, QualType destType, 519 bool listInitialization) { 520 if (msg == diag::err_bad_cxx_cast_generic && 521 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType, 522 listInitialization)) 523 return; 524 525 S.Diag(opRange.getBegin(), msg) << castType 526 << src->getType() << destType << opRange << src->getSourceRange(); 527 528 // Detect if both types are (ptr to) class, and note any incompleteness. 529 int DifferentPtrness = 0; 530 QualType From = destType; 531 if (auto Ptr = From->getAs<PointerType>()) { 532 From = Ptr->getPointeeType(); 533 DifferentPtrness++; 534 } 535 QualType To = src->getType(); 536 if (auto Ptr = To->getAs<PointerType>()) { 537 To = Ptr->getPointeeType(); 538 DifferentPtrness--; 539 } 540 if (!DifferentPtrness) { 541 auto RecFrom = From->getAs<RecordType>(); 542 auto RecTo = To->getAs<RecordType>(); 543 if (RecFrom && RecTo) { 544 auto DeclFrom = RecFrom->getAsCXXRecordDecl(); 545 if (!DeclFrom->isCompleteDefinition()) 546 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom; 547 auto DeclTo = RecTo->getAsCXXRecordDecl(); 548 if (!DeclTo->isCompleteDefinition()) 549 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo; 550 } 551 } 552 } 553 554 namespace { 555 /// The kind of unwrapping we did when determining whether a conversion casts 556 /// away constness. 557 enum CastAwayConstnessKind { 558 /// The conversion does not cast away constness. 559 CACK_None = 0, 560 /// We unwrapped similar types. 561 CACK_Similar = 1, 562 /// We unwrapped dissimilar types with similar representations (eg, a pointer 563 /// versus an Objective-C object pointer). 564 CACK_SimilarKind = 2, 565 /// We unwrapped representationally-unrelated types, such as a pointer versus 566 /// a pointer-to-member. 567 CACK_Incoherent = 3, 568 }; 569 } 570 571 /// Unwrap one level of types for CastsAwayConstness. 572 /// 573 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from 574 /// both types, provided that they're both pointer-like or array-like. Unlike 575 /// the Sema function, doesn't care if the unwrapped pieces are related. 576 /// 577 /// This function may remove additional levels as necessary for correctness: 578 /// the resulting T1 is unwrapped sufficiently that it is never an array type, 579 /// so that its qualifiers can be directly compared to those of T2 (which will 580 /// have the combined set of qualifiers from all indermediate levels of T2), 581 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers 582 /// with those from T2. 583 static CastAwayConstnessKind 584 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) { 585 enum { None, Ptr, MemPtr, BlockPtr, Array }; 586 auto Classify = [](QualType T) { 587 if (T->isAnyPointerType()) return Ptr; 588 if (T->isMemberPointerType()) return MemPtr; 589 if (T->isBlockPointerType()) return BlockPtr; 590 // We somewhat-arbitrarily don't look through VLA types here. This is at 591 // least consistent with the behavior of UnwrapSimilarTypes. 592 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array; 593 return None; 594 }; 595 596 auto Unwrap = [&](QualType T) { 597 if (auto *AT = Context.getAsArrayType(T)) 598 return AT->getElementType(); 599 return T->getPointeeType(); 600 }; 601 602 CastAwayConstnessKind Kind; 603 604 if (T2->isReferenceType()) { 605 // Special case: if the destination type is a reference type, unwrap it as 606 // the first level. (The source will have been an lvalue expression in this 607 // case, so there is no corresponding "reference to" in T1 to remove.) This 608 // simulates removing a "pointer to" from both sides. 609 T2 = T2->getPointeeType(); 610 Kind = CastAwayConstnessKind::CACK_Similar; 611 } else if (Context.UnwrapSimilarTypes(T1, T2)) { 612 Kind = CastAwayConstnessKind::CACK_Similar; 613 } else { 614 // Try unwrapping mismatching levels. 615 int T1Class = Classify(T1); 616 if (T1Class == None) 617 return CastAwayConstnessKind::CACK_None; 618 619 int T2Class = Classify(T2); 620 if (T2Class == None) 621 return CastAwayConstnessKind::CACK_None; 622 623 T1 = Unwrap(T1); 624 T2 = Unwrap(T2); 625 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind 626 : CastAwayConstnessKind::CACK_Incoherent; 627 } 628 629 // We've unwrapped at least one level. If the resulting T1 is a (possibly 630 // multidimensional) array type, any qualifier on any matching layer of 631 // T2 is considered to correspond to T1. Decompose down to the element 632 // type of T1 so that we can compare properly. 633 while (true) { 634 Context.UnwrapSimilarArrayTypes(T1, T2); 635 636 if (Classify(T1) != Array) 637 break; 638 639 auto T2Class = Classify(T2); 640 if (T2Class == None) 641 break; 642 643 if (T2Class != Array) 644 Kind = CastAwayConstnessKind::CACK_Incoherent; 645 else if (Kind != CastAwayConstnessKind::CACK_Incoherent) 646 Kind = CastAwayConstnessKind::CACK_SimilarKind; 647 648 T1 = Unwrap(T1); 649 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers()); 650 } 651 652 return Kind; 653 } 654 655 /// Check if the pointer conversion from SrcType to DestType casts away 656 /// constness as defined in C++ [expr.const.cast]. This is used by the cast 657 /// checkers. Both arguments must denote pointer (possibly to member) types. 658 /// 659 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. 660 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. 661 static CastAwayConstnessKind 662 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, 663 bool CheckCVR, bool CheckObjCLifetime, 664 QualType *TheOffendingSrcType = nullptr, 665 QualType *TheOffendingDestType = nullptr, 666 Qualifiers *CastAwayQualifiers = nullptr) { 667 // If the only checking we care about is for Objective-C lifetime qualifiers, 668 // and we're not in ObjC mode, there's nothing to check. 669 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC) 670 return CastAwayConstnessKind::CACK_None; 671 672 if (!DestType->isReferenceType()) { 673 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || 674 SrcType->isBlockPointerType()) && 675 "Source type is not pointer or pointer to member."); 676 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || 677 DestType->isBlockPointerType()) && 678 "Destination type is not pointer or pointer to member."); 679 } 680 681 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), 682 UnwrappedDestType = Self.Context.getCanonicalType(DestType); 683 684 // Find the qualifiers. We only care about cvr-qualifiers for the 685 // purpose of this check, because other qualifiers (address spaces, 686 // Objective-C GC, etc.) are part of the type's identity. 687 QualType PrevUnwrappedSrcType = UnwrappedSrcType; 688 QualType PrevUnwrappedDestType = UnwrappedDestType; 689 auto WorstKind = CastAwayConstnessKind::CACK_Similar; 690 bool AllConstSoFar = true; 691 while (auto Kind = unwrapCastAwayConstnessLevel( 692 Self.Context, UnwrappedSrcType, UnwrappedDestType)) { 693 // Track the worst kind of unwrap we needed to do before we found a 694 // problem. 695 if (Kind > WorstKind) 696 WorstKind = Kind; 697 698 // Determine the relevant qualifiers at this level. 699 Qualifiers SrcQuals, DestQuals; 700 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); 701 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); 702 703 // We do not meaningfully track object const-ness of Objective-C object 704 // types. Remove const from the source type if either the source or 705 // the destination is an Objective-C object type. 706 if (UnwrappedSrcType->isObjCObjectType() || 707 UnwrappedDestType->isObjCObjectType()) 708 SrcQuals.removeConst(); 709 710 if (CheckCVR) { 711 Qualifiers SrcCvrQuals = 712 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers()); 713 Qualifiers DestCvrQuals = 714 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers()); 715 716 if (SrcCvrQuals != DestCvrQuals) { 717 if (CastAwayQualifiers) 718 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals; 719 720 // If we removed a cvr-qualifier, this is casting away 'constness'. 721 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) { 722 if (TheOffendingSrcType) 723 *TheOffendingSrcType = PrevUnwrappedSrcType; 724 if (TheOffendingDestType) 725 *TheOffendingDestType = PrevUnwrappedDestType; 726 return WorstKind; 727 } 728 729 // If any prior level was not 'const', this is also casting away 730 // 'constness'. We noted the outermost type missing a 'const' already. 731 if (!AllConstSoFar) 732 return WorstKind; 733 } 734 } 735 736 if (CheckObjCLifetime && 737 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) 738 return WorstKind; 739 740 // If we found our first non-const-qualified type, this may be the place 741 // where things start to go wrong. 742 if (AllConstSoFar && !DestQuals.hasConst()) { 743 AllConstSoFar = false; 744 if (TheOffendingSrcType) 745 *TheOffendingSrcType = PrevUnwrappedSrcType; 746 if (TheOffendingDestType) 747 *TheOffendingDestType = PrevUnwrappedDestType; 748 } 749 750 PrevUnwrappedSrcType = UnwrappedSrcType; 751 PrevUnwrappedDestType = UnwrappedDestType; 752 } 753 754 return CastAwayConstnessKind::CACK_None; 755 } 756 757 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK, 758 unsigned &DiagID) { 759 switch (CACK) { 760 case CastAwayConstnessKind::CACK_None: 761 llvm_unreachable("did not cast away constness"); 762 763 case CastAwayConstnessKind::CACK_Similar: 764 // FIXME: Accept these as an extension too? 765 case CastAwayConstnessKind::CACK_SimilarKind: 766 DiagID = diag::err_bad_cxx_cast_qualifiers_away; 767 return TC_Failed; 768 769 case CastAwayConstnessKind::CACK_Incoherent: 770 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent; 771 return TC_Extension; 772 } 773 774 llvm_unreachable("unexpected cast away constness kind"); 775 } 776 777 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. 778 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- 779 /// checked downcasts in class hierarchies. 780 void CastOperation::CheckDynamicCast() { 781 CheckNoDerefRAII NoderefCheck(*this); 782 783 if (ValueKind == VK_PRValue) 784 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 785 else if (isPlaceholder()) 786 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 787 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 788 return; 789 790 QualType OrigSrcType = SrcExpr.get()->getType(); 791 QualType DestType = Self.Context.getCanonicalType(this->DestType); 792 793 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, 794 // or "pointer to cv void". 795 796 QualType DestPointee; 797 const PointerType *DestPointer = DestType->getAs<PointerType>(); 798 const ReferenceType *DestReference = nullptr; 799 if (DestPointer) { 800 DestPointee = DestPointer->getPointeeType(); 801 } else if ((DestReference = DestType->getAs<ReferenceType>())) { 802 DestPointee = DestReference->getPointeeType(); 803 } else { 804 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) 805 << this->DestType << DestRange; 806 SrcExpr = ExprError(); 807 return; 808 } 809 810 const RecordType *DestRecord = DestPointee->getAs<RecordType>(); 811 if (DestPointee->isVoidType()) { 812 assert(DestPointer && "Reference to void is not possible"); 813 } else if (DestRecord) { 814 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, 815 diag::err_bad_cast_incomplete, 816 DestRange)) { 817 SrcExpr = ExprError(); 818 return; 819 } 820 } else { 821 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 822 << DestPointee.getUnqualifiedType() << DestRange; 823 SrcExpr = ExprError(); 824 return; 825 } 826 827 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to 828 // complete class type, [...]. If T is an lvalue reference type, v shall be 829 // an lvalue of a complete class type, [...]. If T is an rvalue reference 830 // type, v shall be an expression having a complete class type, [...] 831 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); 832 QualType SrcPointee; 833 if (DestPointer) { 834 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 835 SrcPointee = SrcPointer->getPointeeType(); 836 } else { 837 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) 838 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange(); 839 SrcExpr = ExprError(); 840 return; 841 } 842 } else if (DestReference->isLValueReferenceType()) { 843 if (!SrcExpr.get()->isLValue()) { 844 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) 845 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 846 } 847 SrcPointee = SrcType; 848 } else { 849 // If we're dynamic_casting from a prvalue to an rvalue reference, we need 850 // to materialize the prvalue before we bind the reference to it. 851 if (SrcExpr.get()->isPRValue()) 852 SrcExpr = Self.CreateMaterializeTemporaryExpr( 853 SrcType, SrcExpr.get(), /*IsLValueReference*/ false); 854 SrcPointee = SrcType; 855 } 856 857 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); 858 if (SrcRecord) { 859 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, 860 diag::err_bad_cast_incomplete, 861 SrcExpr.get())) { 862 SrcExpr = ExprError(); 863 return; 864 } 865 } else { 866 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 867 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 868 SrcExpr = ExprError(); 869 return; 870 } 871 872 assert((DestPointer || DestReference) && 873 "Bad destination non-ptr/ref slipped through."); 874 assert((DestRecord || DestPointee->isVoidType()) && 875 "Bad destination pointee slipped through."); 876 assert(SrcRecord && "Bad source pointee slipped through."); 877 878 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. 879 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { 880 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) 881 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 882 SrcExpr = ExprError(); 883 return; 884 } 885 886 // C++ 5.2.7p3: If the type of v is the same as the required result type, 887 // [except for cv]. 888 if (DestRecord == SrcRecord) { 889 Kind = CK_NoOp; 890 return; 891 } 892 893 // C++ 5.2.7p5 894 // Upcasts are resolved statically. 895 if (DestRecord && 896 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) { 897 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, 898 OpRange.getBegin(), OpRange, 899 &BasePath)) { 900 SrcExpr = ExprError(); 901 return; 902 } 903 904 Kind = CK_DerivedToBase; 905 return; 906 } 907 908 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. 909 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); 910 assert(SrcDecl && "Definition missing"); 911 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { 912 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) 913 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 914 SrcExpr = ExprError(); 915 } 916 917 // dynamic_cast is not available with -fno-rtti. 918 // As an exception, dynamic_cast to void* is available because it doesn't 919 // use RTTI. 920 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) { 921 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti); 922 SrcExpr = ExprError(); 923 return; 924 } 925 926 // Warns when dynamic_cast is used with RTTI data disabled. 927 if (!Self.getLangOpts().RTTIData) { 928 bool MicrosoftABI = 929 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft(); 930 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() == 931 DiagnosticOptions::MSVC; 932 if (MicrosoftABI || !DestPointee->isVoidType()) 933 Self.Diag(OpRange.getBegin(), 934 diag::warn_no_dynamic_cast_with_rtti_disabled) 935 << isClangCL; 936 } 937 938 // For a dynamic_cast to a final type, IR generation might emit a reference 939 // to the vtable. 940 if (DestRecord) { 941 auto *DestDecl = DestRecord->getAsCXXRecordDecl(); 942 if (DestDecl->isEffectivelyFinal()) 943 Self.MarkVTableUsed(OpRange.getBegin(), DestDecl); 944 } 945 946 // Done. Everything else is run-time checks. 947 Kind = CK_Dynamic; 948 } 949 950 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. 951 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code 952 /// like this: 953 /// const char *str = "literal"; 954 /// legacy_function(const_cast\<char*\>(str)); 955 void CastOperation::CheckConstCast() { 956 CheckNoDerefRAII NoderefCheck(*this); 957 958 if (ValueKind == VK_PRValue) 959 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 960 else if (isPlaceholder()) 961 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 962 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 963 return; 964 965 unsigned msg = diag::err_bad_cxx_cast_generic; 966 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg); 967 if (TCR != TC_Success && msg != 0) { 968 Self.Diag(OpRange.getBegin(), msg) << CT_Const 969 << SrcExpr.get()->getType() << DestType << OpRange; 970 } 971 if (!isValidCast(TCR)) 972 SrcExpr = ExprError(); 973 } 974 975 void CastOperation::CheckAddrspaceCast() { 976 unsigned msg = diag::err_bad_cxx_cast_generic; 977 auto TCR = 978 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind); 979 if (TCR != TC_Success && msg != 0) { 980 Self.Diag(OpRange.getBegin(), msg) 981 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange; 982 } 983 if (!isValidCast(TCR)) 984 SrcExpr = ExprError(); 985 } 986 987 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast 988 /// or downcast between respective pointers or references. 989 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr, 990 QualType DestType, 991 SourceRange OpRange) { 992 QualType SrcType = SrcExpr->getType(); 993 // When casting from pointer or reference, get pointee type; use original 994 // type otherwise. 995 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl(); 996 const CXXRecordDecl *SrcRD = 997 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl(); 998 999 // Examining subobjects for records is only possible if the complete and 1000 // valid definition is available. Also, template instantiation is not 1001 // allowed here. 1002 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl()) 1003 return; 1004 1005 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl(); 1006 1007 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl()) 1008 return; 1009 1010 enum { 1011 ReinterpretUpcast, 1012 ReinterpretDowncast 1013 } ReinterpretKind; 1014 1015 CXXBasePaths BasePaths; 1016 1017 if (SrcRD->isDerivedFrom(DestRD, BasePaths)) 1018 ReinterpretKind = ReinterpretUpcast; 1019 else if (DestRD->isDerivedFrom(SrcRD, BasePaths)) 1020 ReinterpretKind = ReinterpretDowncast; 1021 else 1022 return; 1023 1024 bool VirtualBase = true; 1025 bool NonZeroOffset = false; 1026 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(), 1027 E = BasePaths.end(); 1028 I != E; ++I) { 1029 const CXXBasePath &Path = *I; 1030 CharUnits Offset = CharUnits::Zero(); 1031 bool IsVirtual = false; 1032 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end(); 1033 IElem != EElem; ++IElem) { 1034 IsVirtual = IElem->Base->isVirtual(); 1035 if (IsVirtual) 1036 break; 1037 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl(); 1038 assert(BaseRD && "Base type should be a valid unqualified class type"); 1039 // Don't check if any base has invalid declaration or has no definition 1040 // since it has no layout info. 1041 const CXXRecordDecl *Class = IElem->Class, 1042 *ClassDefinition = Class->getDefinition(); 1043 if (Class->isInvalidDecl() || !ClassDefinition || 1044 !ClassDefinition->isCompleteDefinition()) 1045 return; 1046 1047 const ASTRecordLayout &DerivedLayout = 1048 Self.Context.getASTRecordLayout(Class); 1049 Offset += DerivedLayout.getBaseClassOffset(BaseRD); 1050 } 1051 if (!IsVirtual) { 1052 // Don't warn if any path is a non-virtually derived base at offset zero. 1053 if (Offset.isZero()) 1054 return; 1055 // Offset makes sense only for non-virtual bases. 1056 else 1057 NonZeroOffset = true; 1058 } 1059 VirtualBase = VirtualBase && IsVirtual; 1060 } 1061 1062 (void) NonZeroOffset; // Silence set but not used warning. 1063 assert((VirtualBase || NonZeroOffset) && 1064 "Should have returned if has non-virtual base with zero offset"); 1065 1066 QualType BaseType = 1067 ReinterpretKind == ReinterpretUpcast? DestType : SrcType; 1068 QualType DerivedType = 1069 ReinterpretKind == ReinterpretUpcast? SrcType : DestType; 1070 1071 SourceLocation BeginLoc = OpRange.getBegin(); 1072 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static) 1073 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind) 1074 << OpRange; 1075 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static) 1076 << int(ReinterpretKind) 1077 << FixItHint::CreateReplacement(BeginLoc, "static_cast"); 1078 } 1079 1080 static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType, 1081 ASTContext &Context) { 1082 if (SrcType->isPointerType() && DestType->isPointerType()) 1083 return true; 1084 1085 // Allow integral type mismatch if their size are equal. 1086 if (SrcType->isIntegralType(Context) && DestType->isIntegralType(Context)) 1087 if (Context.getTypeInfoInChars(SrcType).Width == 1088 Context.getTypeInfoInChars(DestType).Width) 1089 return true; 1090 1091 return Context.hasSameUnqualifiedType(SrcType, DestType); 1092 } 1093 1094 static unsigned int checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr, 1095 QualType DestType) { 1096 unsigned int DiagID = 0; 1097 const unsigned int DiagList[] = {diag::warn_cast_function_type_strict, 1098 diag::warn_cast_function_type}; 1099 for (auto ID : DiagList) { 1100 if (!Self.Diags.isIgnored(ID, SrcExpr.get()->getExprLoc())) { 1101 DiagID = ID; 1102 break; 1103 } 1104 } 1105 if (!DiagID) 1106 return 0; 1107 1108 QualType SrcType = SrcExpr.get()->getType(); 1109 const FunctionType *SrcFTy = nullptr; 1110 const FunctionType *DstFTy = nullptr; 1111 if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) && 1112 DestType->isFunctionPointerType()) || 1113 (SrcType->isMemberFunctionPointerType() && 1114 DestType->isMemberFunctionPointerType())) { 1115 SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>(); 1116 DstFTy = DestType->getPointeeType()->castAs<FunctionType>(); 1117 } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) { 1118 SrcFTy = SrcType->castAs<FunctionType>(); 1119 DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>(); 1120 } else { 1121 return 0; 1122 } 1123 assert(SrcFTy && DstFTy); 1124 1125 if (Self.Context.hasSameType(SrcFTy, DstFTy)) 1126 return 0; 1127 1128 // For strict checks, ensure we have an exact match. 1129 if (DiagID == diag::warn_cast_function_type_strict) 1130 return DiagID; 1131 1132 auto IsVoidVoid = [](const FunctionType *T) { 1133 if (!T->getReturnType()->isVoidType()) 1134 return false; 1135 if (const auto *PT = T->getAs<FunctionProtoType>()) 1136 return !PT->isVariadic() && PT->getNumParams() == 0; 1137 return false; 1138 }; 1139 1140 // Skip if either function type is void(*)(void) 1141 if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy)) 1142 return 0; 1143 1144 // Check return type. 1145 if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(), 1146 Self.Context)) 1147 return DiagID; 1148 1149 // Check if either has unspecified number of parameters 1150 if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType()) 1151 return 0; 1152 1153 // Check parameter types. 1154 1155 const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy); 1156 const auto *DstFPTy = cast<FunctionProtoType>(DstFTy); 1157 1158 // In a cast involving function types with a variable argument list only the 1159 // types of initial arguments that are provided are considered. 1160 unsigned NumParams = SrcFPTy->getNumParams(); 1161 unsigned DstNumParams = DstFPTy->getNumParams(); 1162 if (NumParams > DstNumParams) { 1163 if (!DstFPTy->isVariadic()) 1164 return DiagID; 1165 NumParams = DstNumParams; 1166 } else if (NumParams < DstNumParams) { 1167 if (!SrcFPTy->isVariadic()) 1168 return DiagID; 1169 } 1170 1171 for (unsigned i = 0; i < NumParams; ++i) 1172 if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i), 1173 DstFPTy->getParamType(i), Self.Context)) 1174 return DiagID; 1175 1176 return 0; 1177 } 1178 1179 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is 1180 /// valid. 1181 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code 1182 /// like this: 1183 /// char *bytes = reinterpret_cast\<char*\>(int_ptr); 1184 void CastOperation::CheckReinterpretCast() { 1185 if (ValueKind == VK_PRValue && !isPlaceholder(BuiltinType::Overload)) 1186 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1187 else 1188 checkNonOverloadPlaceholders(); 1189 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1190 return; 1191 1192 unsigned msg = diag::err_bad_cxx_cast_generic; 1193 TryCastResult tcr = 1194 TryReinterpretCast(Self, SrcExpr, DestType, 1195 /*CStyle*/false, OpRange, msg, Kind); 1196 if (tcr != TC_Success && msg != 0) { 1197 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1198 return; 1199 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1200 //FIXME: &f<int>; is overloaded and resolvable 1201 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) 1202 << OverloadExpr::find(SrcExpr.get()).Expression->getName() 1203 << DestType << OpRange; 1204 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1205 1206 } else { 1207 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), 1208 DestType, /*listInitialization=*/false); 1209 } 1210 } 1211 1212 if (isValidCast(tcr)) { 1213 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1214 checkObjCConversion(Sema::CCK_OtherCast); 1215 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange); 1216 1217 if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType)) 1218 Self.Diag(OpRange.getBegin(), DiagID) 1219 << SrcExpr.get()->getType() << DestType << OpRange; 1220 } else { 1221 SrcExpr = ExprError(); 1222 } 1223 } 1224 1225 1226 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. 1227 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making 1228 /// implicit conversions explicit and getting rid of data loss warnings. 1229 void CastOperation::CheckStaticCast() { 1230 CheckNoDerefRAII NoderefCheck(*this); 1231 1232 if (isPlaceholder()) { 1233 checkNonOverloadPlaceholders(); 1234 if (SrcExpr.isInvalid()) 1235 return; 1236 } 1237 1238 // This test is outside everything else because it's the only case where 1239 // a non-lvalue-reference target type does not lead to decay. 1240 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1241 if (DestType->isVoidType()) { 1242 Kind = CK_ToVoid; 1243 1244 if (claimPlaceholder(BuiltinType::Overload)) { 1245 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr, 1246 false, // Decay Function to ptr 1247 true, // Complain 1248 OpRange, DestType, diag::err_bad_static_cast_overload); 1249 if (SrcExpr.isInvalid()) 1250 return; 1251 } 1252 1253 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 1254 return; 1255 } 1256 1257 if (ValueKind == VK_PRValue && !DestType->isRecordType() && 1258 !isPlaceholder(BuiltinType::Overload)) { 1259 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1260 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1261 return; 1262 } 1263 1264 unsigned msg = diag::err_bad_cxx_cast_generic; 1265 TryCastResult tcr 1266 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, 1267 Kind, BasePath, /*ListInitialization=*/false); 1268 if (tcr != TC_Success && msg != 0) { 1269 if (SrcExpr.isInvalid()) 1270 return; 1271 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1272 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; 1273 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) 1274 << oe->getName() << DestType << OpRange 1275 << oe->getQualifierLoc().getSourceRange(); 1276 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1277 } else { 1278 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType, 1279 /*listInitialization=*/false); 1280 } 1281 } 1282 1283 if (isValidCast(tcr)) { 1284 if (Kind == CK_BitCast) 1285 checkCastAlign(); 1286 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1287 checkObjCConversion(Sema::CCK_OtherCast); 1288 } else { 1289 SrcExpr = ExprError(); 1290 } 1291 } 1292 1293 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) { 1294 auto *SrcPtrType = SrcType->getAs<PointerType>(); 1295 if (!SrcPtrType) 1296 return false; 1297 auto *DestPtrType = DestType->getAs<PointerType>(); 1298 if (!DestPtrType) 1299 return false; 1300 return SrcPtrType->getPointeeType().getAddressSpace() != 1301 DestPtrType->getPointeeType().getAddressSpace(); 1302 } 1303 1304 /// TryStaticCast - Check if a static cast can be performed, and do so if 1305 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting 1306 /// and casting away constness. 1307 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 1308 QualType DestType, 1309 Sema::CheckedConversionKind CCK, 1310 SourceRange OpRange, unsigned &msg, 1311 CastKind &Kind, CXXCastPath &BasePath, 1312 bool ListInitialization) { 1313 // Determine whether we have the semantics of a C-style cast. 1314 bool CStyle 1315 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1316 1317 // The order the tests is not entirely arbitrary. There is one conversion 1318 // that can be handled in two different ways. Given: 1319 // struct A {}; 1320 // struct B : public A { 1321 // B(); B(const A&); 1322 // }; 1323 // const A &a = B(); 1324 // the cast static_cast<const B&>(a) could be seen as either a static 1325 // reference downcast, or an explicit invocation of the user-defined 1326 // conversion using B's conversion constructor. 1327 // DR 427 specifies that the downcast is to be applied here. 1328 1329 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1330 // Done outside this function. 1331 1332 TryCastResult tcr; 1333 1334 // C++ 5.2.9p5, reference downcast. 1335 // See the function for details. 1336 // DR 427 specifies that this is to be applied before paragraph 2. 1337 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, 1338 OpRange, msg, Kind, BasePath); 1339 if (tcr != TC_NotApplicable) 1340 return tcr; 1341 1342 // C++11 [expr.static.cast]p3: 1343 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 1344 // T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1345 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, 1346 BasePath, msg); 1347 if (tcr != TC_NotApplicable) 1348 return tcr; 1349 1350 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T 1351 // [...] if the declaration "T t(e);" is well-formed, [...]. 1352 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, 1353 Kind, ListInitialization); 1354 if (SrcExpr.isInvalid()) 1355 return TC_Failed; 1356 if (tcr != TC_NotApplicable) 1357 return tcr; 1358 1359 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except 1360 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean 1361 // conversions, subject to further restrictions. 1362 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal 1363 // of qualification conversions impossible. (In C++20, adding an array bound 1364 // would be the reverse of a qualification conversion, but adding permission 1365 // to add an array bound in a static_cast is a wording oversight.) 1366 // In the CStyle case, the earlier attempt to const_cast should have taken 1367 // care of reverse qualification conversions. 1368 1369 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); 1370 1371 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly 1372 // converted to an integral type. [...] A value of a scoped enumeration type 1373 // can also be explicitly converted to a floating-point type [...]. 1374 if (const EnumType *Enum = SrcType->getAs<EnumType>()) { 1375 if (Enum->getDecl()->isScoped()) { 1376 if (DestType->isBooleanType()) { 1377 Kind = CK_IntegralToBoolean; 1378 return TC_Success; 1379 } else if (DestType->isIntegralType(Self.Context)) { 1380 Kind = CK_IntegralCast; 1381 return TC_Success; 1382 } else if (DestType->isRealFloatingType()) { 1383 Kind = CK_IntegralToFloating; 1384 return TC_Success; 1385 } 1386 } 1387 } 1388 1389 // Reverse integral promotion/conversion. All such conversions are themselves 1390 // again integral promotions or conversions and are thus already handled by 1391 // p2 (TryDirectInitialization above). 1392 // (Note: any data loss warnings should be suppressed.) 1393 // The exception is the reverse of enum->integer, i.e. integer->enum (and 1394 // enum->enum). See also C++ 5.2.9p7. 1395 // The same goes for reverse floating point promotion/conversion and 1396 // floating-integral conversions. Again, only floating->enum is relevant. 1397 if (DestType->isEnumeralType()) { 1398 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1399 diag::err_bad_cast_incomplete)) { 1400 SrcExpr = ExprError(); 1401 return TC_Failed; 1402 } 1403 if (SrcType->isIntegralOrEnumerationType()) { 1404 // [expr.static.cast]p10 If the enumeration type has a fixed underlying 1405 // type, the value is first converted to that type by integral conversion 1406 const EnumType *Enum = DestType->castAs<EnumType>(); 1407 Kind = Enum->getDecl()->isFixed() && 1408 Enum->getDecl()->getIntegerType()->isBooleanType() 1409 ? CK_IntegralToBoolean 1410 : CK_IntegralCast; 1411 return TC_Success; 1412 } else if (SrcType->isRealFloatingType()) { 1413 Kind = CK_FloatingToIntegral; 1414 return TC_Success; 1415 } 1416 } 1417 1418 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. 1419 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. 1420 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, 1421 Kind, BasePath); 1422 if (tcr != TC_NotApplicable) 1423 return tcr; 1424 1425 // Reverse member pointer conversion. C++ 4.11 specifies member pointer 1426 // conversion. C++ 5.2.9p9 has additional information. 1427 // DR54's access restrictions apply here also. 1428 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, 1429 OpRange, msg, Kind, BasePath); 1430 if (tcr != TC_NotApplicable) 1431 return tcr; 1432 1433 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to 1434 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is 1435 // just the usual constness stuff. 1436 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 1437 QualType SrcPointee = SrcPointer->getPointeeType(); 1438 if (SrcPointee->isVoidType()) { 1439 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { 1440 QualType DestPointee = DestPointer->getPointeeType(); 1441 if (DestPointee->isIncompleteOrObjectType()) { 1442 // This is definitely the intended conversion, but it might fail due 1443 // to a qualifier violation. Note that we permit Objective-C lifetime 1444 // and GC qualifier mismatches here. 1445 if (!CStyle) { 1446 Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); 1447 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); 1448 DestPointeeQuals.removeObjCGCAttr(); 1449 DestPointeeQuals.removeObjCLifetime(); 1450 SrcPointeeQuals.removeObjCGCAttr(); 1451 SrcPointeeQuals.removeObjCLifetime(); 1452 if (DestPointeeQuals != SrcPointeeQuals && 1453 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { 1454 msg = diag::err_bad_cxx_cast_qualifiers_away; 1455 return TC_Failed; 1456 } 1457 } 1458 Kind = IsAddressSpaceConversion(SrcType, DestType) 1459 ? CK_AddressSpaceConversion 1460 : CK_BitCast; 1461 return TC_Success; 1462 } 1463 1464 // Microsoft permits static_cast from 'pointer-to-void' to 1465 // 'pointer-to-function'. 1466 if (!CStyle && Self.getLangOpts().MSVCCompat && 1467 DestPointee->isFunctionType()) { 1468 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange; 1469 Kind = CK_BitCast; 1470 return TC_Success; 1471 } 1472 } 1473 else if (DestType->isObjCObjectPointerType()) { 1474 // allow both c-style cast and static_cast of objective-c pointers as 1475 // they are pervasive. 1476 Kind = CK_CPointerToObjCPointerCast; 1477 return TC_Success; 1478 } 1479 else if (CStyle && DestType->isBlockPointerType()) { 1480 // allow c-style cast of void * to block pointers. 1481 Kind = CK_AnyPointerToBlockPointerCast; 1482 return TC_Success; 1483 } 1484 } 1485 } 1486 // Allow arbitrary objective-c pointer conversion with static casts. 1487 if (SrcType->isObjCObjectPointerType() && 1488 DestType->isObjCObjectPointerType()) { 1489 Kind = CK_BitCast; 1490 return TC_Success; 1491 } 1492 // Allow ns-pointer to cf-pointer conversion in either direction 1493 // with static casts. 1494 if (!CStyle && 1495 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind)) 1496 return TC_Success; 1497 1498 // See if it looks like the user is trying to convert between 1499 // related record types, and select a better diagnostic if so. 1500 if (auto SrcPointer = SrcType->getAs<PointerType>()) 1501 if (auto DestPointer = DestType->getAs<PointerType>()) 1502 if (SrcPointer->getPointeeType()->getAs<RecordType>() && 1503 DestPointer->getPointeeType()->getAs<RecordType>()) 1504 msg = diag::err_bad_cxx_cast_unrelated_class; 1505 1506 if (SrcType->isMatrixType() && DestType->isMatrixType()) { 1507 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) { 1508 SrcExpr = ExprError(); 1509 return TC_Failed; 1510 } 1511 return TC_Success; 1512 } 1513 1514 // We tried everything. Everything! Nothing works! :-( 1515 return TC_NotApplicable; 1516 } 1517 1518 /// Tests whether a conversion according to N2844 is valid. 1519 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 1520 QualType DestType, bool CStyle, 1521 CastKind &Kind, CXXCastPath &BasePath, 1522 unsigned &msg) { 1523 // C++11 [expr.static.cast]p3: 1524 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to 1525 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1526 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); 1527 if (!R) 1528 return TC_NotApplicable; 1529 1530 if (!SrcExpr->isGLValue()) 1531 return TC_NotApplicable; 1532 1533 // Because we try the reference downcast before this function, from now on 1534 // this is the only cast possibility, so we issue an error if we fail now. 1535 // FIXME: Should allow casting away constness if CStyle. 1536 QualType FromType = SrcExpr->getType(); 1537 QualType ToType = R->getPointeeType(); 1538 if (CStyle) { 1539 FromType = FromType.getUnqualifiedType(); 1540 ToType = ToType.getUnqualifiedType(); 1541 } 1542 1543 Sema::ReferenceConversions RefConv; 1544 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship( 1545 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv); 1546 if (RefResult != Sema::Ref_Compatible) { 1547 if (CStyle || RefResult == Sema::Ref_Incompatible) 1548 return TC_NotApplicable; 1549 // Diagnose types which are reference-related but not compatible here since 1550 // we can provide better diagnostics. In these cases forwarding to 1551 // [expr.static.cast]p4 should never result in a well-formed cast. 1552 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast 1553 : diag::err_bad_rvalue_to_rvalue_cast; 1554 return TC_Failed; 1555 } 1556 1557 if (RefConv & Sema::ReferenceConversions::DerivedToBase) { 1558 Kind = CK_DerivedToBase; 1559 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1560 /*DetectVirtual=*/true); 1561 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(), 1562 R->getPointeeType(), Paths)) 1563 return TC_NotApplicable; 1564 1565 Self.BuildBasePathArray(Paths, BasePath); 1566 } else 1567 Kind = CK_NoOp; 1568 1569 return TC_Success; 1570 } 1571 1572 /// Tests whether a conversion according to C++ 5.2.9p5 is valid. 1573 TryCastResult 1574 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, 1575 bool CStyle, SourceRange OpRange, 1576 unsigned &msg, CastKind &Kind, 1577 CXXCastPath &BasePath) { 1578 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be 1579 // cast to type "reference to cv2 D", where D is a class derived from B, 1580 // if a valid standard conversion from "pointer to D" to "pointer to B" 1581 // exists, cv2 >= cv1, and B is not a virtual base class of D. 1582 // In addition, DR54 clarifies that the base must be accessible in the 1583 // current context. Although the wording of DR54 only applies to the pointer 1584 // variant of this rule, the intent is clearly for it to apply to the this 1585 // conversion as well. 1586 1587 const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); 1588 if (!DestReference) { 1589 return TC_NotApplicable; 1590 } 1591 bool RValueRef = DestReference->isRValueReferenceType(); 1592 if (!RValueRef && !SrcExpr->isLValue()) { 1593 // We know the left side is an lvalue reference, so we can suggest a reason. 1594 msg = diag::err_bad_cxx_cast_rvalue; 1595 return TC_NotApplicable; 1596 } 1597 1598 QualType DestPointee = DestReference->getPointeeType(); 1599 1600 // FIXME: If the source is a prvalue, we should issue a warning (because the 1601 // cast always has undefined behavior), and for AST consistency, we should 1602 // materialize a temporary. 1603 return TryStaticDowncast(Self, 1604 Self.Context.getCanonicalType(SrcExpr->getType()), 1605 Self.Context.getCanonicalType(DestPointee), CStyle, 1606 OpRange, SrcExpr->getType(), DestType, msg, Kind, 1607 BasePath); 1608 } 1609 1610 /// Tests whether a conversion according to C++ 5.2.9p8 is valid. 1611 TryCastResult 1612 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, 1613 bool CStyle, SourceRange OpRange, 1614 unsigned &msg, CastKind &Kind, 1615 CXXCastPath &BasePath) { 1616 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class 1617 // type, can be converted to an rvalue of type "pointer to cv2 D", where D 1618 // is a class derived from B, if a valid standard conversion from "pointer 1619 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base 1620 // class of D. 1621 // In addition, DR54 clarifies that the base must be accessible in the 1622 // current context. 1623 1624 const PointerType *DestPointer = DestType->getAs<PointerType>(); 1625 if (!DestPointer) { 1626 return TC_NotApplicable; 1627 } 1628 1629 const PointerType *SrcPointer = SrcType->getAs<PointerType>(); 1630 if (!SrcPointer) { 1631 msg = diag::err_bad_static_cast_pointer_nonpointer; 1632 return TC_NotApplicable; 1633 } 1634 1635 return TryStaticDowncast(Self, 1636 Self.Context.getCanonicalType(SrcPointer->getPointeeType()), 1637 Self.Context.getCanonicalType(DestPointer->getPointeeType()), 1638 CStyle, OpRange, SrcType, DestType, msg, Kind, 1639 BasePath); 1640 } 1641 1642 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and 1643 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to 1644 /// DestType is possible and allowed. 1645 TryCastResult 1646 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, 1647 bool CStyle, SourceRange OpRange, QualType OrigSrcType, 1648 QualType OrigDestType, unsigned &msg, 1649 CastKind &Kind, CXXCastPath &BasePath) { 1650 // We can only work with complete types. But don't complain if it doesn't work 1651 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) || 1652 !Self.isCompleteType(OpRange.getBegin(), DestType)) 1653 return TC_NotApplicable; 1654 1655 // Downcast can only happen in class hierarchies, so we need classes. 1656 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { 1657 return TC_NotApplicable; 1658 } 1659 1660 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1661 /*DetectVirtual=*/true); 1662 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) { 1663 return TC_NotApplicable; 1664 } 1665 1666 // Target type does derive from source type. Now we're serious. If an error 1667 // appears now, it's not ignored. 1668 // This may not be entirely in line with the standard. Take for example: 1669 // struct A {}; 1670 // struct B : virtual A { 1671 // B(A&); 1672 // }; 1673 // 1674 // void f() 1675 // { 1676 // (void)static_cast<const B&>(*((A*)0)); 1677 // } 1678 // As far as the standard is concerned, p5 does not apply (A is virtual), so 1679 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. 1680 // However, both GCC and Comeau reject this example, and accepting it would 1681 // mean more complex code if we're to preserve the nice error message. 1682 // FIXME: Being 100% compliant here would be nice to have. 1683 1684 // Must preserve cv, as always, unless we're in C-style mode. 1685 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { 1686 msg = diag::err_bad_cxx_cast_qualifiers_away; 1687 return TC_Failed; 1688 } 1689 1690 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { 1691 // This code is analoguous to that in CheckDerivedToBaseConversion, except 1692 // that it builds the paths in reverse order. 1693 // To sum up: record all paths to the base and build a nice string from 1694 // them. Use it to spice up the error message. 1695 if (!Paths.isRecordingPaths()) { 1696 Paths.clear(); 1697 Paths.setRecordingPaths(true); 1698 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths); 1699 } 1700 std::string PathDisplayStr; 1701 std::set<unsigned> DisplayedPaths; 1702 for (clang::CXXBasePath &Path : Paths) { 1703 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) { 1704 // We haven't displayed a path to this particular base 1705 // class subobject yet. 1706 PathDisplayStr += "\n "; 1707 for (CXXBasePathElement &PE : llvm::reverse(Path)) 1708 PathDisplayStr += PE.Base->getType().getAsString() + " -> "; 1709 PathDisplayStr += QualType(DestType).getAsString(); 1710 } 1711 } 1712 1713 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) 1714 << QualType(SrcType).getUnqualifiedType() 1715 << QualType(DestType).getUnqualifiedType() 1716 << PathDisplayStr << OpRange; 1717 msg = 0; 1718 return TC_Failed; 1719 } 1720 1721 if (Paths.getDetectedVirtual() != nullptr) { 1722 QualType VirtualBase(Paths.getDetectedVirtual(), 0); 1723 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) 1724 << OrigSrcType << OrigDestType << VirtualBase << OpRange; 1725 msg = 0; 1726 return TC_Failed; 1727 } 1728 1729 if (!CStyle) { 1730 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1731 SrcType, DestType, 1732 Paths.front(), 1733 diag::err_downcast_from_inaccessible_base)) { 1734 case Sema::AR_accessible: 1735 case Sema::AR_delayed: // be optimistic 1736 case Sema::AR_dependent: // be optimistic 1737 break; 1738 1739 case Sema::AR_inaccessible: 1740 msg = 0; 1741 return TC_Failed; 1742 } 1743 } 1744 1745 Self.BuildBasePathArray(Paths, BasePath); 1746 Kind = CK_BaseToDerived; 1747 return TC_Success; 1748 } 1749 1750 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to 1751 /// C++ 5.2.9p9 is valid: 1752 /// 1753 /// An rvalue of type "pointer to member of D of type cv1 T" can be 1754 /// converted to an rvalue of type "pointer to member of B of type cv2 T", 1755 /// where B is a base class of D [...]. 1756 /// 1757 TryCastResult 1758 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, 1759 QualType DestType, bool CStyle, 1760 SourceRange OpRange, 1761 unsigned &msg, CastKind &Kind, 1762 CXXCastPath &BasePath) { 1763 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); 1764 if (!DestMemPtr) 1765 return TC_NotApplicable; 1766 1767 bool WasOverloadedFunction = false; 1768 DeclAccessPair FoundOverload; 1769 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1770 if (FunctionDecl *Fn 1771 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, 1772 FoundOverload)) { 1773 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 1774 SrcType = Self.Context.getMemberPointerType(Fn->getType(), 1775 Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); 1776 WasOverloadedFunction = true; 1777 } 1778 } 1779 1780 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 1781 if (!SrcMemPtr) { 1782 msg = diag::err_bad_static_cast_member_pointer_nonmp; 1783 return TC_NotApplicable; 1784 } 1785 1786 // Lock down the inheritance model right now in MS ABI, whether or not the 1787 // pointee types are the same. 1788 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1789 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 1790 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 1791 } 1792 1793 // T == T, modulo cv 1794 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), 1795 DestMemPtr->getPointeeType())) 1796 return TC_NotApplicable; 1797 1798 // B base of D 1799 QualType SrcClass(SrcMemPtr->getClass(), 0); 1800 QualType DestClass(DestMemPtr->getClass(), 0); 1801 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1802 /*DetectVirtual=*/true); 1803 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths)) 1804 return TC_NotApplicable; 1805 1806 // B is a base of D. But is it an allowed base? If not, it's a hard error. 1807 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { 1808 Paths.clear(); 1809 Paths.setRecordingPaths(true); 1810 bool StillOkay = 1811 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths); 1812 assert(StillOkay); 1813 (void)StillOkay; 1814 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); 1815 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) 1816 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; 1817 msg = 0; 1818 return TC_Failed; 1819 } 1820 1821 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1822 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) 1823 << SrcClass << DestClass << QualType(VBase, 0) << OpRange; 1824 msg = 0; 1825 return TC_Failed; 1826 } 1827 1828 if (!CStyle) { 1829 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1830 DestClass, SrcClass, 1831 Paths.front(), 1832 diag::err_upcast_to_inaccessible_base)) { 1833 case Sema::AR_accessible: 1834 case Sema::AR_delayed: 1835 case Sema::AR_dependent: 1836 // Optimistically assume that the delayed and dependent cases 1837 // will work out. 1838 break; 1839 1840 case Sema::AR_inaccessible: 1841 msg = 0; 1842 return TC_Failed; 1843 } 1844 } 1845 1846 if (WasOverloadedFunction) { 1847 // Resolve the address of the overloaded function again, this time 1848 // allowing complaints if something goes wrong. 1849 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 1850 DestType, 1851 true, 1852 FoundOverload); 1853 if (!Fn) { 1854 msg = 0; 1855 return TC_Failed; 1856 } 1857 1858 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); 1859 if (!SrcExpr.isUsable()) { 1860 msg = 0; 1861 return TC_Failed; 1862 } 1863 } 1864 1865 Self.BuildBasePathArray(Paths, BasePath); 1866 Kind = CK_DerivedToBaseMemberPointer; 1867 return TC_Success; 1868 } 1869 1870 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 1871 /// is valid: 1872 /// 1873 /// An expression e can be explicitly converted to a type T using a 1874 /// @c static_cast if the declaration "T t(e);" is well-formed [...]. 1875 TryCastResult 1876 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, 1877 Sema::CheckedConversionKind CCK, 1878 SourceRange OpRange, unsigned &msg, 1879 CastKind &Kind, bool ListInitialization) { 1880 if (DestType->isRecordType()) { 1881 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1882 diag::err_bad_cast_incomplete) || 1883 Self.RequireNonAbstractType(OpRange.getBegin(), DestType, 1884 diag::err_allocation_of_abstract_type)) { 1885 msg = 0; 1886 return TC_Failed; 1887 } 1888 } 1889 1890 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); 1891 InitializationKind InitKind 1892 = (CCK == Sema::CCK_CStyleCast) 1893 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange, 1894 ListInitialization) 1895 : (CCK == Sema::CCK_FunctionalCast) 1896 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization) 1897 : InitializationKind::CreateCast(OpRange); 1898 Expr *SrcExprRaw = SrcExpr.get(); 1899 // FIXME: Per DR242, we should check for an implicit conversion sequence 1900 // or for a constructor that could be invoked by direct-initialization 1901 // here, not for an initialization sequence. 1902 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw); 1903 1904 // At this point of CheckStaticCast, if the destination is a reference, 1905 // or the expression is an overload expression this has to work. 1906 // There is no other way that works. 1907 // On the other hand, if we're checking a C-style cast, we've still got 1908 // the reinterpret_cast way. 1909 bool CStyle 1910 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1911 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) 1912 return TC_NotApplicable; 1913 1914 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw); 1915 if (Result.isInvalid()) { 1916 msg = 0; 1917 return TC_Failed; 1918 } 1919 1920 if (InitSeq.isConstructorInitialization()) 1921 Kind = CK_ConstructorConversion; 1922 else 1923 Kind = CK_NoOp; 1924 1925 SrcExpr = Result; 1926 return TC_Success; 1927 } 1928 1929 /// TryConstCast - See if a const_cast from source to destination is allowed, 1930 /// and perform it if it is. 1931 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 1932 QualType DestType, bool CStyle, 1933 unsigned &msg) { 1934 DestType = Self.Context.getCanonicalType(DestType); 1935 QualType SrcType = SrcExpr.get()->getType(); 1936 bool NeedToMaterializeTemporary = false; 1937 1938 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { 1939 // C++11 5.2.11p4: 1940 // if a pointer to T1 can be explicitly converted to the type "pointer to 1941 // T2" using a const_cast, then the following conversions can also be 1942 // made: 1943 // -- an lvalue of type T1 can be explicitly converted to an lvalue of 1944 // type T2 using the cast const_cast<T2&>; 1945 // -- a glvalue of type T1 can be explicitly converted to an xvalue of 1946 // type T2 using the cast const_cast<T2&&>; and 1947 // -- if T1 is a class type, a prvalue of type T1 can be explicitly 1948 // converted to an xvalue of type T2 using the cast const_cast<T2&&>. 1949 1950 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) { 1951 // Cannot const_cast non-lvalue to lvalue reference type. But if this 1952 // is C-style, static_cast might find a way, so we simply suggest a 1953 // message and tell the parent to keep searching. 1954 msg = diag::err_bad_cxx_cast_rvalue; 1955 return TC_NotApplicable; 1956 } 1957 1958 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isPRValue()) { 1959 if (!SrcType->isRecordType()) { 1960 // Cannot const_cast non-class prvalue to rvalue reference type. But if 1961 // this is C-style, static_cast can do this. 1962 msg = diag::err_bad_cxx_cast_rvalue; 1963 return TC_NotApplicable; 1964 } 1965 1966 // Materialize the class prvalue so that the const_cast can bind a 1967 // reference to it. 1968 NeedToMaterializeTemporary = true; 1969 } 1970 1971 // It's not completely clear under the standard whether we can 1972 // const_cast bit-field gl-values. Doing so would not be 1973 // intrinsically complicated, but for now, we say no for 1974 // consistency with other compilers and await the word of the 1975 // committee. 1976 if (SrcExpr.get()->refersToBitField()) { 1977 msg = diag::err_bad_cxx_cast_bitfield; 1978 return TC_NotApplicable; 1979 } 1980 1981 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 1982 SrcType = Self.Context.getPointerType(SrcType); 1983 } 1984 1985 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] 1986 // the rules for const_cast are the same as those used for pointers. 1987 1988 if (!DestType->isPointerType() && 1989 !DestType->isMemberPointerType() && 1990 !DestType->isObjCObjectPointerType()) { 1991 // Cannot cast to non-pointer, non-reference type. Note that, if DestType 1992 // was a reference type, we converted it to a pointer above. 1993 // The status of rvalue references isn't entirely clear, but it looks like 1994 // conversion to them is simply invalid. 1995 // C++ 5.2.11p3: For two pointer types [...] 1996 if (!CStyle) 1997 msg = diag::err_bad_const_cast_dest; 1998 return TC_NotApplicable; 1999 } 2000 if (DestType->isFunctionPointerType() || 2001 DestType->isMemberFunctionPointerType()) { 2002 // Cannot cast direct function pointers. 2003 // C++ 5.2.11p2: [...] where T is any object type or the void type [...] 2004 // T is the ultimate pointee of source and target type. 2005 if (!CStyle) 2006 msg = diag::err_bad_const_cast_dest; 2007 return TC_NotApplicable; 2008 } 2009 2010 // C++ [expr.const.cast]p3: 2011 // "For two similar types T1 and T2, [...]" 2012 // 2013 // We only allow a const_cast to change cvr-qualifiers, not other kinds of 2014 // type qualifiers. (Likewise, we ignore other changes when determining 2015 // whether a cast casts away constness.) 2016 if (!Self.Context.hasCvrSimilarType(SrcType, DestType)) 2017 return TC_NotApplicable; 2018 2019 if (NeedToMaterializeTemporary) 2020 // This is a const_cast from a class prvalue to an rvalue reference type. 2021 // Materialize a temporary to store the result of the conversion. 2022 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(), 2023 SrcExpr.get(), 2024 /*IsLValueReference*/ false); 2025 2026 return TC_Success; 2027 } 2028 2029 // Checks for undefined behavior in reinterpret_cast. 2030 // The cases that is checked for is: 2031 // *reinterpret_cast<T*>(&a) 2032 // reinterpret_cast<T&>(a) 2033 // where accessing 'a' as type 'T' will result in undefined behavior. 2034 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, 2035 bool IsDereference, 2036 SourceRange Range) { 2037 unsigned DiagID = IsDereference ? 2038 diag::warn_pointer_indirection_from_incompatible_type : 2039 diag::warn_undefined_reinterpret_cast; 2040 2041 if (Diags.isIgnored(DiagID, Range.getBegin())) 2042 return; 2043 2044 QualType SrcTy, DestTy; 2045 if (IsDereference) { 2046 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { 2047 return; 2048 } 2049 SrcTy = SrcType->getPointeeType(); 2050 DestTy = DestType->getPointeeType(); 2051 } else { 2052 if (!DestType->getAs<ReferenceType>()) { 2053 return; 2054 } 2055 SrcTy = SrcType; 2056 DestTy = DestType->getPointeeType(); 2057 } 2058 2059 // Cast is compatible if the types are the same. 2060 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { 2061 return; 2062 } 2063 // or one of the types is a char or void type 2064 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || 2065 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { 2066 return; 2067 } 2068 // or one of the types is a tag type. 2069 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { 2070 return; 2071 } 2072 2073 // FIXME: Scoped enums? 2074 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || 2075 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { 2076 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { 2077 return; 2078 } 2079 } 2080 2081 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; 2082 } 2083 2084 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr, 2085 QualType DestType) { 2086 QualType SrcType = SrcExpr.get()->getType(); 2087 if (Self.Context.hasSameType(SrcType, DestType)) 2088 return; 2089 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>()) 2090 if (SrcPtrTy->isObjCSelType()) { 2091 QualType DT = DestType; 2092 if (isa<PointerType>(DestType)) 2093 DT = DestType->getPointeeType(); 2094 if (!DT.getUnqualifiedType()->isVoidType()) 2095 Self.Diag(SrcExpr.get()->getExprLoc(), 2096 diag::warn_cast_pointer_from_sel) 2097 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2098 } 2099 } 2100 2101 /// Diagnose casts that change the calling convention of a pointer to a function 2102 /// defined in the current TU. 2103 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr, 2104 QualType DstType, SourceRange OpRange) { 2105 // Check if this cast would change the calling convention of a function 2106 // pointer type. 2107 QualType SrcType = SrcExpr.get()->getType(); 2108 if (Self.Context.hasSameType(SrcType, DstType) || 2109 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType()) 2110 return; 2111 const auto *SrcFTy = 2112 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 2113 const auto *DstFTy = 2114 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 2115 CallingConv SrcCC = SrcFTy->getCallConv(); 2116 CallingConv DstCC = DstFTy->getCallConv(); 2117 if (SrcCC == DstCC) 2118 return; 2119 2120 // We have a calling convention cast. Check if the source is a pointer to a 2121 // known, specific function that has already been defined. 2122 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts(); 2123 if (auto *UO = dyn_cast<UnaryOperator>(Src)) 2124 if (UO->getOpcode() == UO_AddrOf) 2125 Src = UO->getSubExpr()->IgnoreParenImpCasts(); 2126 auto *DRE = dyn_cast<DeclRefExpr>(Src); 2127 if (!DRE) 2128 return; 2129 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 2130 if (!FD) 2131 return; 2132 2133 // Only warn if we are casting from the default convention to a non-default 2134 // convention. This can happen when the programmer forgot to apply the calling 2135 // convention to the function declaration and then inserted this cast to 2136 // satisfy the type system. 2137 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention( 2138 FD->isVariadic(), FD->isCXXInstanceMember()); 2139 if (DstCC == DefaultCC || SrcCC != DefaultCC) 2140 return; 2141 2142 // Diagnose this cast, as it is probably bad. 2143 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC); 2144 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC); 2145 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv) 2146 << SrcCCName << DstCCName << OpRange; 2147 2148 // The checks above are cheaper than checking if the diagnostic is enabled. 2149 // However, it's worth checking if the warning is enabled before we construct 2150 // a fixit. 2151 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin())) 2152 return; 2153 2154 // Try to suggest a fixit to change the calling convention of the function 2155 // whose address was taken. Try to use the latest macro for the convention. 2156 // For example, users probably want to write "WINAPI" instead of "__stdcall" 2157 // to match the Windows header declarations. 2158 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc(); 2159 Preprocessor &PP = Self.getPreprocessor(); 2160 SmallVector<TokenValue, 6> AttrTokens; 2161 SmallString<64> CCAttrText; 2162 llvm::raw_svector_ostream OS(CCAttrText); 2163 if (Self.getLangOpts().MicrosoftExt) { 2164 // __stdcall or __vectorcall 2165 OS << "__" << DstCCName; 2166 IdentifierInfo *II = PP.getIdentifierInfo(OS.str()); 2167 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2168 ? TokenValue(II->getTokenID()) 2169 : TokenValue(II)); 2170 } else { 2171 // __attribute__((stdcall)) or __attribute__((vectorcall)) 2172 OS << "__attribute__((" << DstCCName << "))"; 2173 AttrTokens.push_back(tok::kw___attribute); 2174 AttrTokens.push_back(tok::l_paren); 2175 AttrTokens.push_back(tok::l_paren); 2176 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName); 2177 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2178 ? TokenValue(II->getTokenID()) 2179 : TokenValue(II)); 2180 AttrTokens.push_back(tok::r_paren); 2181 AttrTokens.push_back(tok::r_paren); 2182 } 2183 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens); 2184 if (!AttrSpelling.empty()) 2185 CCAttrText = AttrSpelling; 2186 OS << ' '; 2187 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit) 2188 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText); 2189 } 2190 2191 static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange, 2192 const Expr *SrcExpr, QualType DestType, 2193 Sema &Self) { 2194 QualType SrcType = SrcExpr->getType(); 2195 2196 // Not warning on reinterpret_cast, boolean, constant expressions, etc 2197 // are not explicit design choices, but consistent with GCC's behavior. 2198 // Feel free to modify them if you've reason/evidence for an alternative. 2199 if (CStyle && SrcType->isIntegralType(Self.Context) 2200 && !SrcType->isBooleanType() 2201 && !SrcType->isEnumeralType() 2202 && !SrcExpr->isIntegerConstantExpr(Self.Context) 2203 && Self.Context.getTypeSize(DestType) > 2204 Self.Context.getTypeSize(SrcType)) { 2205 // Separate between casts to void* and non-void* pointers. 2206 // Some APIs use (abuse) void* for something like a user context, 2207 // and often that value is an integer even if it isn't a pointer itself. 2208 // Having a separate warning flag allows users to control the warning 2209 // for their workflow. 2210 unsigned Diag = DestType->isVoidPointerType() ? 2211 diag::warn_int_to_void_pointer_cast 2212 : diag::warn_int_to_pointer_cast; 2213 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2214 } 2215 } 2216 2217 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType, 2218 ExprResult &Result) { 2219 // We can only fix an overloaded reinterpret_cast if 2220 // - it is a template with explicit arguments that resolves to an lvalue 2221 // unambiguously, or 2222 // - it is the only function in an overload set that may have its address 2223 // taken. 2224 2225 Expr *E = Result.get(); 2226 // TODO: what if this fails because of DiagnoseUseOfDecl or something 2227 // like it? 2228 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2229 Result, 2230 Expr::getValueKindForType(DestType) == 2231 VK_PRValue // Convert Fun to Ptr 2232 ) && 2233 Result.isUsable()) 2234 return true; 2235 2236 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization 2237 // preserves Result. 2238 Result = E; 2239 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate( 2240 Result, /*DoFunctionPointerConversion=*/true)) 2241 return false; 2242 return Result.isUsable(); 2243 } 2244 2245 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 2246 QualType DestType, bool CStyle, 2247 SourceRange OpRange, 2248 unsigned &msg, 2249 CastKind &Kind) { 2250 bool IsLValueCast = false; 2251 2252 DestType = Self.Context.getCanonicalType(DestType); 2253 QualType SrcType = SrcExpr.get()->getType(); 2254 2255 // Is the source an overloaded name? (i.e. &foo) 2256 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5) 2257 if (SrcType == Self.Context.OverloadTy) { 2258 ExprResult FixedExpr = SrcExpr; 2259 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr)) 2260 return TC_NotApplicable; 2261 2262 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr"); 2263 SrcExpr = FixedExpr; 2264 SrcType = SrcExpr.get()->getType(); 2265 } 2266 2267 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { 2268 if (!SrcExpr.get()->isGLValue()) { 2269 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the 2270 // similar comment in const_cast. 2271 msg = diag::err_bad_cxx_cast_rvalue; 2272 return TC_NotApplicable; 2273 } 2274 2275 if (!CStyle) { 2276 Self.CheckCompatibleReinterpretCast(SrcType, DestType, 2277 /*IsDereference=*/false, OpRange); 2278 } 2279 2280 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the 2281 // same effect as the conversion *reinterpret_cast<T*>(&x) with the 2282 // built-in & and * operators. 2283 2284 const char *inappropriate = nullptr; 2285 switch (SrcExpr.get()->getObjectKind()) { 2286 case OK_Ordinary: 2287 break; 2288 case OK_BitField: 2289 msg = diag::err_bad_cxx_cast_bitfield; 2290 return TC_NotApplicable; 2291 // FIXME: Use a specific diagnostic for the rest of these cases. 2292 case OK_VectorComponent: inappropriate = "vector element"; break; 2293 case OK_MatrixComponent: 2294 inappropriate = "matrix element"; 2295 break; 2296 case OK_ObjCProperty: inappropriate = "property expression"; break; 2297 case OK_ObjCSubscript: inappropriate = "container subscripting expression"; 2298 break; 2299 } 2300 if (inappropriate) { 2301 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) 2302 << inappropriate << DestType 2303 << OpRange << SrcExpr.get()->getSourceRange(); 2304 msg = 0; SrcExpr = ExprError(); 2305 return TC_NotApplicable; 2306 } 2307 2308 // This code does this transformation for the checked types. 2309 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 2310 SrcType = Self.Context.getPointerType(SrcType); 2311 2312 IsLValueCast = true; 2313 } 2314 2315 // Canonicalize source for comparison. 2316 SrcType = Self.Context.getCanonicalType(SrcType); 2317 2318 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), 2319 *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 2320 if (DestMemPtr && SrcMemPtr) { 2321 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" 2322 // can be explicitly converted to an rvalue of type "pointer to member 2323 // of Y of type T2" if T1 and T2 are both function types or both object 2324 // types. 2325 if (DestMemPtr->isMemberFunctionPointer() != 2326 SrcMemPtr->isMemberFunctionPointer()) 2327 return TC_NotApplicable; 2328 2329 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2330 // We need to determine the inheritance model that the class will use if 2331 // haven't yet. 2332 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 2333 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 2334 } 2335 2336 // Don't allow casting between member pointers of different sizes. 2337 if (Self.Context.getTypeSize(DestMemPtr) != 2338 Self.Context.getTypeSize(SrcMemPtr)) { 2339 msg = diag::err_bad_cxx_cast_member_pointer_size; 2340 return TC_Failed; 2341 } 2342 2343 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away 2344 // constness. 2345 // A reinterpret_cast followed by a const_cast can, though, so in C-style, 2346 // we accept it. 2347 if (auto CACK = 2348 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2349 /*CheckObjCLifetime=*/CStyle)) 2350 return getCastAwayConstnessCastKind(CACK, msg); 2351 2352 // A valid member pointer cast. 2353 assert(!IsLValueCast); 2354 Kind = CK_ReinterpretMemberPointer; 2355 return TC_Success; 2356 } 2357 2358 // See below for the enumeral issue. 2359 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { 2360 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral 2361 // type large enough to hold it. A value of std::nullptr_t can be 2362 // converted to an integral type; the conversion has the same meaning 2363 // and validity as a conversion of (void*)0 to the integral type. 2364 if (Self.Context.getTypeSize(SrcType) > 2365 Self.Context.getTypeSize(DestType)) { 2366 msg = diag::err_bad_reinterpret_cast_small_int; 2367 return TC_Failed; 2368 } 2369 Kind = CK_PointerToIntegral; 2370 return TC_Success; 2371 } 2372 2373 // Allow reinterpret_casts between vectors of the same size and 2374 // between vectors and integers of the same size. 2375 bool destIsVector = DestType->isVectorType(); 2376 bool srcIsVector = SrcType->isVectorType(); 2377 if (srcIsVector || destIsVector) { 2378 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa. 2379 if (Self.isValidSveBitcast(SrcType, DestType)) { 2380 Kind = CK_BitCast; 2381 return TC_Success; 2382 } 2383 2384 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa. 2385 if (Self.isValidRVVBitcast(SrcType, DestType)) { 2386 Kind = CK_BitCast; 2387 return TC_Success; 2388 } 2389 2390 // The non-vector type, if any, must have integral type. This is 2391 // the same rule that C vector casts use; note, however, that enum 2392 // types are not integral in C++. 2393 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) || 2394 (!srcIsVector && !SrcType->isIntegralType(Self.Context))) 2395 return TC_NotApplicable; 2396 2397 // The size we want to consider is eltCount * eltSize. 2398 // That's exactly what the lax-conversion rules will check. 2399 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) { 2400 Kind = CK_BitCast; 2401 return TC_Success; 2402 } 2403 2404 if (Self.LangOpts.OpenCL && !CStyle) { 2405 if (DestType->isExtVectorType() || SrcType->isExtVectorType()) { 2406 // FIXME: Allow for reinterpret cast between 3 and 4 element vectors 2407 if (Self.areVectorTypesSameSize(SrcType, DestType)) { 2408 Kind = CK_BitCast; 2409 return TC_Success; 2410 } 2411 } 2412 } 2413 2414 // Otherwise, pick a reasonable diagnostic. 2415 if (!destIsVector) 2416 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; 2417 else if (!srcIsVector) 2418 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; 2419 else 2420 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; 2421 2422 return TC_Failed; 2423 } 2424 2425 if (SrcType == DestType) { 2426 // C++ 5.2.10p2 has a note that mentions that, subject to all other 2427 // restrictions, a cast to the same type is allowed so long as it does not 2428 // cast away constness. In C++98, the intent was not entirely clear here, 2429 // since all other paragraphs explicitly forbid casts to the same type. 2430 // C++11 clarifies this case with p2. 2431 // 2432 // The only allowed types are: integral, enumeration, pointer, or 2433 // pointer-to-member types. We also won't restrict Obj-C pointers either. 2434 Kind = CK_NoOp; 2435 TryCastResult Result = TC_NotApplicable; 2436 if (SrcType->isIntegralOrEnumerationType() || 2437 SrcType->isAnyPointerType() || 2438 SrcType->isMemberPointerType() || 2439 SrcType->isBlockPointerType()) { 2440 Result = TC_Success; 2441 } 2442 return Result; 2443 } 2444 2445 bool destIsPtr = DestType->isAnyPointerType() || 2446 DestType->isBlockPointerType(); 2447 bool srcIsPtr = SrcType->isAnyPointerType() || 2448 SrcType->isBlockPointerType(); 2449 if (!destIsPtr && !srcIsPtr) { 2450 // Except for std::nullptr_t->integer and lvalue->reference, which are 2451 // handled above, at least one of the two arguments must be a pointer. 2452 return TC_NotApplicable; 2453 } 2454 2455 if (DestType->isIntegralType(Self.Context)) { 2456 assert(srcIsPtr && "One type must be a pointer"); 2457 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral 2458 // type large enough to hold it; except in Microsoft mode, where the 2459 // integral type size doesn't matter (except we don't allow bool). 2460 if ((Self.Context.getTypeSize(SrcType) > 2461 Self.Context.getTypeSize(DestType))) { 2462 bool MicrosoftException = 2463 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType(); 2464 if (MicrosoftException) { 2465 unsigned Diag = SrcType->isVoidPointerType() 2466 ? diag::warn_void_pointer_to_int_cast 2467 : diag::warn_pointer_to_int_cast; 2468 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2469 } else { 2470 msg = diag::err_bad_reinterpret_cast_small_int; 2471 return TC_Failed; 2472 } 2473 } 2474 Kind = CK_PointerToIntegral; 2475 return TC_Success; 2476 } 2477 2478 if (SrcType->isIntegralOrEnumerationType()) { 2479 assert(destIsPtr && "One type must be a pointer"); 2480 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self); 2481 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly 2482 // converted to a pointer. 2483 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not 2484 // necessarily converted to a null pointer value.] 2485 Kind = CK_IntegralToPointer; 2486 return TC_Success; 2487 } 2488 2489 if (!destIsPtr || !srcIsPtr) { 2490 // With the valid non-pointer conversions out of the way, we can be even 2491 // more stringent. 2492 return TC_NotApplicable; 2493 } 2494 2495 // Cannot convert between block pointers and Objective-C object pointers. 2496 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || 2497 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) 2498 return TC_NotApplicable; 2499 2500 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. 2501 // The C-style cast operator can. 2502 TryCastResult SuccessResult = TC_Success; 2503 if (auto CACK = 2504 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2505 /*CheckObjCLifetime=*/CStyle)) 2506 SuccessResult = getCastAwayConstnessCastKind(CACK, msg); 2507 2508 if (IsAddressSpaceConversion(SrcType, DestType)) { 2509 Kind = CK_AddressSpaceConversion; 2510 assert(SrcType->isPointerType() && DestType->isPointerType()); 2511 if (!CStyle && 2512 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf( 2513 SrcType->getPointeeType().getQualifiers())) { 2514 SuccessResult = TC_Failed; 2515 } 2516 } else if (IsLValueCast) { 2517 Kind = CK_LValueBitCast; 2518 } else if (DestType->isObjCObjectPointerType()) { 2519 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr); 2520 } else if (DestType->isBlockPointerType()) { 2521 if (!SrcType->isBlockPointerType()) { 2522 Kind = CK_AnyPointerToBlockPointerCast; 2523 } else { 2524 Kind = CK_BitCast; 2525 } 2526 } else { 2527 Kind = CK_BitCast; 2528 } 2529 2530 // Any pointer can be cast to an Objective-C pointer type with a C-style 2531 // cast. 2532 if (CStyle && DestType->isObjCObjectPointerType()) { 2533 return SuccessResult; 2534 } 2535 if (CStyle) 2536 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2537 2538 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2539 2540 // Not casting away constness, so the only remaining check is for compatible 2541 // pointer categories. 2542 2543 if (SrcType->isFunctionPointerType()) { 2544 if (DestType->isFunctionPointerType()) { 2545 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to 2546 // a pointer to a function of a different type. 2547 return SuccessResult; 2548 } 2549 2550 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to 2551 // an object type or vice versa is conditionally-supported. 2552 // Compilers support it in C++03 too, though, because it's necessary for 2553 // casting the return value of dlsym() and GetProcAddress(). 2554 // FIXME: Conditionally-supported behavior should be configurable in the 2555 // TargetInfo or similar. 2556 Self.Diag(OpRange.getBegin(), 2557 Self.getLangOpts().CPlusPlus11 ? 2558 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2559 << OpRange; 2560 return SuccessResult; 2561 } 2562 2563 if (DestType->isFunctionPointerType()) { 2564 // See above. 2565 Self.Diag(OpRange.getBegin(), 2566 Self.getLangOpts().CPlusPlus11 ? 2567 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2568 << OpRange; 2569 return SuccessResult; 2570 } 2571 2572 // Diagnose address space conversion in nested pointers. 2573 QualType DestPtee = DestType->getPointeeType().isNull() 2574 ? DestType->getPointeeType() 2575 : DestType->getPointeeType()->getPointeeType(); 2576 QualType SrcPtee = SrcType->getPointeeType().isNull() 2577 ? SrcType->getPointeeType() 2578 : SrcType->getPointeeType()->getPointeeType(); 2579 while (!DestPtee.isNull() && !SrcPtee.isNull()) { 2580 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) { 2581 Self.Diag(OpRange.getBegin(), 2582 diag::warn_bad_cxx_cast_nested_pointer_addr_space) 2583 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2584 break; 2585 } 2586 DestPtee = DestPtee->getPointeeType(); 2587 SrcPtee = SrcPtee->getPointeeType(); 2588 } 2589 2590 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to 2591 // a pointer to an object of different type. 2592 // Void pointers are not specified, but supported by every compiler out there. 2593 // So we finish by allowing everything that remains - it's got to be two 2594 // object pointers. 2595 return SuccessResult; 2596 } 2597 2598 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 2599 QualType DestType, bool CStyle, 2600 unsigned &msg, CastKind &Kind) { 2601 if (!Self.getLangOpts().OpenCL && !Self.getLangOpts().SYCLIsDevice) 2602 // FIXME: As compiler doesn't have any information about overlapping addr 2603 // spaces at the moment we have to be permissive here. 2604 return TC_NotApplicable; 2605 // Even though the logic below is general enough and can be applied to 2606 // non-OpenCL mode too, we fast-path above because no other languages 2607 // define overlapping address spaces currently. 2608 auto SrcType = SrcExpr.get()->getType(); 2609 // FIXME: Should this be generalized to references? The reference parameter 2610 // however becomes a reference pointee type here and therefore rejected. 2611 // Perhaps this is the right behavior though according to C++. 2612 auto SrcPtrType = SrcType->getAs<PointerType>(); 2613 if (!SrcPtrType) 2614 return TC_NotApplicable; 2615 auto DestPtrType = DestType->getAs<PointerType>(); 2616 if (!DestPtrType) 2617 return TC_NotApplicable; 2618 auto SrcPointeeType = SrcPtrType->getPointeeType(); 2619 auto DestPointeeType = DestPtrType->getPointeeType(); 2620 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) { 2621 msg = diag::err_bad_cxx_cast_addr_space_mismatch; 2622 return TC_Failed; 2623 } 2624 auto SrcPointeeTypeWithoutAS = 2625 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType()); 2626 auto DestPointeeTypeWithoutAS = 2627 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType()); 2628 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS, 2629 DestPointeeTypeWithoutAS)) { 2630 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace() 2631 ? CK_NoOp 2632 : CK_AddressSpaceConversion; 2633 return TC_Success; 2634 } else { 2635 return TC_NotApplicable; 2636 } 2637 } 2638 2639 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) { 2640 // In OpenCL only conversions between pointers to objects in overlapping 2641 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps 2642 // with any named one, except for constant. 2643 2644 // Converting the top level pointee addrspace is permitted for compatible 2645 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but 2646 // if any of the nested pointee addrspaces differ, we emit a warning 2647 // regardless of addrspace compatibility. This makes 2648 // local int ** p; 2649 // return (generic int **) p; 2650 // warn even though local -> generic is permitted. 2651 if (Self.getLangOpts().OpenCL) { 2652 const Type *DestPtr, *SrcPtr; 2653 bool Nested = false; 2654 unsigned DiagID = diag::err_typecheck_incompatible_address_space; 2655 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()), 2656 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr()); 2657 2658 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) { 2659 const PointerType *DestPPtr = cast<PointerType>(DestPtr); 2660 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr); 2661 QualType DestPPointee = DestPPtr->getPointeeType(); 2662 QualType SrcPPointee = SrcPPtr->getPointeeType(); 2663 if (Nested 2664 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace() 2665 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) { 2666 Self.Diag(OpRange.getBegin(), DiagID) 2667 << SrcType << DestType << Sema::AA_Casting 2668 << SrcExpr.get()->getSourceRange(); 2669 if (!Nested) 2670 SrcExpr = ExprError(); 2671 return; 2672 } 2673 2674 DestPtr = DestPPtr->getPointeeType().getTypePtr(); 2675 SrcPtr = SrcPPtr->getPointeeType().getTypePtr(); 2676 Nested = true; 2677 DiagID = diag::ext_nested_pointer_qualifier_mismatch; 2678 } 2679 } 2680 } 2681 2682 bool Sema::ShouldSplatAltivecScalarInCast(const VectorType *VecTy) { 2683 bool SrcCompatXL = this->getLangOpts().getAltivecSrcCompat() == 2684 LangOptions::AltivecSrcCompatKind::XL; 2685 VectorKind VKind = VecTy->getVectorKind(); 2686 2687 if ((VKind == VectorKind::AltiVecVector) || 2688 (SrcCompatXL && ((VKind == VectorKind::AltiVecBool) || 2689 (VKind == VectorKind::AltiVecPixel)))) { 2690 return true; 2691 } 2692 return false; 2693 } 2694 2695 bool Sema::CheckAltivecInitFromScalar(SourceRange R, QualType VecTy, 2696 QualType SrcTy) { 2697 bool SrcCompatGCC = this->getLangOpts().getAltivecSrcCompat() == 2698 LangOptions::AltivecSrcCompatKind::GCC; 2699 if (this->getLangOpts().AltiVec && SrcCompatGCC) { 2700 this->Diag(R.getBegin(), 2701 diag::err_invalid_conversion_between_vector_and_integer) 2702 << VecTy << SrcTy << R; 2703 return true; 2704 } 2705 return false; 2706 } 2707 2708 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle, 2709 bool ListInitialization) { 2710 assert(Self.getLangOpts().CPlusPlus); 2711 2712 // Handle placeholders. 2713 if (isPlaceholder()) { 2714 // C-style casts can resolve __unknown_any types. 2715 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2716 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2717 SrcExpr.get(), Kind, 2718 ValueKind, BasePath); 2719 return; 2720 } 2721 2722 checkNonOverloadPlaceholders(); 2723 if (SrcExpr.isInvalid()) 2724 return; 2725 } 2726 2727 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 2728 // This test is outside everything else because it's the only case where 2729 // a non-lvalue-reference target type does not lead to decay. 2730 if (DestType->isVoidType()) { 2731 Kind = CK_ToVoid; 2732 2733 if (claimPlaceholder(BuiltinType::Overload)) { 2734 Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2735 SrcExpr, /* Decay Function to ptr */ false, 2736 /* Complain */ true, DestRange, DestType, 2737 diag::err_bad_cstyle_cast_overload); 2738 if (SrcExpr.isInvalid()) 2739 return; 2740 } 2741 2742 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2743 return; 2744 } 2745 2746 // If the type is dependent, we won't do any other semantic analysis now. 2747 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2748 SrcExpr.get()->isValueDependent()) { 2749 assert(Kind == CK_Dependent); 2750 return; 2751 } 2752 2753 if (ValueKind == VK_PRValue && !DestType->isRecordType() && 2754 !isPlaceholder(BuiltinType::Overload)) { 2755 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2756 if (SrcExpr.isInvalid()) 2757 return; 2758 } 2759 2760 // AltiVec vector initialization with a single literal. 2761 if (const VectorType *vecTy = DestType->getAs<VectorType>()) { 2762 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, 2763 SrcExpr.get()->getType())) { 2764 SrcExpr = ExprError(); 2765 return; 2766 } 2767 if (Self.ShouldSplatAltivecScalarInCast(vecTy) && 2768 (SrcExpr.get()->getType()->isIntegerType() || 2769 SrcExpr.get()->getType()->isFloatingType())) { 2770 Kind = CK_VectorSplat; 2771 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2772 return; 2773 } 2774 } 2775 2776 // WebAssembly tables cannot be cast. 2777 QualType SrcType = SrcExpr.get()->getType(); 2778 if (SrcType->isWebAssemblyTableType()) { 2779 Self.Diag(OpRange.getBegin(), diag::err_wasm_cast_table) 2780 << 1 << SrcExpr.get()->getSourceRange(); 2781 SrcExpr = ExprError(); 2782 return; 2783 } 2784 2785 // C++ [expr.cast]p5: The conversions performed by 2786 // - a const_cast, 2787 // - a static_cast, 2788 // - a static_cast followed by a const_cast, 2789 // - a reinterpret_cast, or 2790 // - a reinterpret_cast followed by a const_cast, 2791 // can be performed using the cast notation of explicit type conversion. 2792 // [...] If a conversion can be interpreted in more than one of the ways 2793 // listed above, the interpretation that appears first in the list is used, 2794 // even if a cast resulting from that interpretation is ill-formed. 2795 // In plain language, this means trying a const_cast ... 2796 // Note that for address space we check compatibility after const_cast. 2797 unsigned msg = diag::err_bad_cxx_cast_generic; 2798 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType, 2799 /*CStyle*/ true, msg); 2800 if (SrcExpr.isInvalid()) 2801 return; 2802 if (isValidCast(tcr)) 2803 Kind = CK_NoOp; 2804 2805 Sema::CheckedConversionKind CCK = 2806 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast; 2807 if (tcr == TC_NotApplicable) { 2808 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg, 2809 Kind); 2810 if (SrcExpr.isInvalid()) 2811 return; 2812 2813 if (tcr == TC_NotApplicable) { 2814 // ... or if that is not possible, a static_cast, ignoring const and 2815 // addr space, ... 2816 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, 2817 BasePath, ListInitialization); 2818 if (SrcExpr.isInvalid()) 2819 return; 2820 2821 if (tcr == TC_NotApplicable) { 2822 // ... and finally a reinterpret_cast, ignoring const and addr space. 2823 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true, 2824 OpRange, msg, Kind); 2825 if (SrcExpr.isInvalid()) 2826 return; 2827 } 2828 } 2829 } 2830 2831 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 2832 isValidCast(tcr)) 2833 checkObjCConversion(CCK); 2834 2835 if (tcr != TC_Success && msg != 0) { 2836 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2837 DeclAccessPair Found; 2838 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 2839 DestType, 2840 /*Complain*/ true, 2841 Found); 2842 if (Fn) { 2843 // If DestType is a function type (not to be confused with the function 2844 // pointer type), it will be possible to resolve the function address, 2845 // but the type cast should be considered as failure. 2846 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression; 2847 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload) 2848 << OE->getName() << DestType << OpRange 2849 << OE->getQualifierLoc().getSourceRange(); 2850 Self.NoteAllOverloadCandidates(SrcExpr.get()); 2851 } 2852 } else { 2853 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), 2854 OpRange, SrcExpr.get(), DestType, ListInitialization); 2855 } 2856 } 2857 2858 if (isValidCast(tcr)) { 2859 if (Kind == CK_BitCast) 2860 checkCastAlign(); 2861 2862 if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType)) 2863 Self.Diag(OpRange.getBegin(), DiagID) 2864 << SrcExpr.get()->getType() << DestType << OpRange; 2865 2866 } else { 2867 SrcExpr = ExprError(); 2868 } 2869 } 2870 2871 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a 2872 /// non-matching type. Such as enum function call to int, int call to 2873 /// pointer; etc. Cast to 'void' is an exception. 2874 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr, 2875 QualType DestType) { 2876 if (Self.Diags.isIgnored(diag::warn_bad_function_cast, 2877 SrcExpr.get()->getExprLoc())) 2878 return; 2879 2880 if (!isa<CallExpr>(SrcExpr.get())) 2881 return; 2882 2883 QualType SrcType = SrcExpr.get()->getType(); 2884 if (DestType.getUnqualifiedType()->isVoidType()) 2885 return; 2886 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType()) 2887 && (DestType->isAnyPointerType() || DestType->isBlockPointerType())) 2888 return; 2889 if (SrcType->isIntegerType() && DestType->isIntegerType() && 2890 (SrcType->isBooleanType() == DestType->isBooleanType()) && 2891 (SrcType->isEnumeralType() == DestType->isEnumeralType())) 2892 return; 2893 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType()) 2894 return; 2895 if (SrcType->isEnumeralType() && DestType->isEnumeralType()) 2896 return; 2897 if (SrcType->isComplexType() && DestType->isComplexType()) 2898 return; 2899 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType()) 2900 return; 2901 if (SrcType->isFixedPointType() && DestType->isFixedPointType()) 2902 return; 2903 2904 Self.Diag(SrcExpr.get()->getExprLoc(), 2905 diag::warn_bad_function_cast) 2906 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2907 } 2908 2909 /// Check the semantics of a C-style cast operation, in C. 2910 void CastOperation::CheckCStyleCast() { 2911 assert(!Self.getLangOpts().CPlusPlus); 2912 2913 // C-style casts can resolve __unknown_any types. 2914 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2915 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2916 SrcExpr.get(), Kind, 2917 ValueKind, BasePath); 2918 return; 2919 } 2920 2921 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression 2922 // type needs to be scalar. 2923 if (DestType->isVoidType()) { 2924 // We don't necessarily do lvalue-to-rvalue conversions on this. 2925 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2926 if (SrcExpr.isInvalid()) 2927 return; 2928 2929 // Cast to void allows any expr type. 2930 Kind = CK_ToVoid; 2931 return; 2932 } 2933 2934 // If the type is dependent, we won't do any other semantic analysis now. 2935 if (Self.getASTContext().isDependenceAllowed() && 2936 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2937 SrcExpr.get()->isValueDependent())) { 2938 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() || 2939 SrcExpr.get()->containsErrors()) && 2940 "should only occur in error-recovery path."); 2941 assert(Kind == CK_Dependent); 2942 return; 2943 } 2944 2945 // Overloads are allowed with C extensions, so we need to support them. 2946 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2947 DeclAccessPair DAP; 2948 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction( 2949 SrcExpr.get(), DestType, /*Complain=*/true, DAP)) 2950 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD); 2951 else 2952 return; 2953 assert(SrcExpr.isUsable()); 2954 } 2955 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2956 if (SrcExpr.isInvalid()) 2957 return; 2958 QualType SrcType = SrcExpr.get()->getType(); 2959 2960 if (SrcType->isWebAssemblyTableType()) { 2961 Self.Diag(OpRange.getBegin(), diag::err_wasm_cast_table) 2962 << 1 << SrcExpr.get()->getSourceRange(); 2963 SrcExpr = ExprError(); 2964 return; 2965 } 2966 2967 assert(!SrcType->isPlaceholderType()); 2968 2969 checkAddressSpaceCast(SrcType, DestType); 2970 if (SrcExpr.isInvalid()) 2971 return; 2972 2973 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2974 diag::err_typecheck_cast_to_incomplete)) { 2975 SrcExpr = ExprError(); 2976 return; 2977 } 2978 2979 // Allow casting a sizeless built-in type to itself. 2980 if (DestType->isSizelessBuiltinType() && 2981 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) { 2982 Kind = CK_NoOp; 2983 return; 2984 } 2985 2986 // Allow bitcasting between compatible SVE vector types. 2987 if ((SrcType->isVectorType() || DestType->isVectorType()) && 2988 Self.isValidSveBitcast(SrcType, DestType)) { 2989 Kind = CK_BitCast; 2990 return; 2991 } 2992 2993 // Allow bitcasting between compatible RVV vector types. 2994 if ((SrcType->isVectorType() || DestType->isVectorType()) && 2995 Self.isValidRVVBitcast(SrcType, DestType)) { 2996 Kind = CK_BitCast; 2997 return; 2998 } 2999 3000 if (!DestType->isScalarType() && !DestType->isVectorType() && 3001 !DestType->isMatrixType()) { 3002 const RecordType *DestRecordTy = DestType->getAs<RecordType>(); 3003 3004 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){ 3005 // GCC struct/union extension: allow cast to self. 3006 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar) 3007 << DestType << SrcExpr.get()->getSourceRange(); 3008 Kind = CK_NoOp; 3009 return; 3010 } 3011 3012 // GCC's cast to union extension. 3013 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) { 3014 RecordDecl *RD = DestRecordTy->getDecl(); 3015 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) { 3016 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union) 3017 << SrcExpr.get()->getSourceRange(); 3018 Kind = CK_ToUnion; 3019 return; 3020 } else { 3021 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type) 3022 << SrcType << SrcExpr.get()->getSourceRange(); 3023 SrcExpr = ExprError(); 3024 return; 3025 } 3026 } 3027 3028 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type. 3029 if (Self.getLangOpts().OpenCL && DestType->isEventT()) { 3030 Expr::EvalResult Result; 3031 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) { 3032 llvm::APSInt CastInt = Result.Val.getInt(); 3033 if (0 == CastInt) { 3034 Kind = CK_ZeroToOCLOpaqueType; 3035 return; 3036 } 3037 Self.Diag(OpRange.getBegin(), 3038 diag::err_opencl_cast_non_zero_to_event_t) 3039 << toString(CastInt, 10) << SrcExpr.get()->getSourceRange(); 3040 SrcExpr = ExprError(); 3041 return; 3042 } 3043 } 3044 3045 // Reject any other conversions to non-scalar types. 3046 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar) 3047 << DestType << SrcExpr.get()->getSourceRange(); 3048 SrcExpr = ExprError(); 3049 return; 3050 } 3051 3052 // The type we're casting to is known to be a scalar, a vector, or a matrix. 3053 3054 // Require the operand to be a scalar, a vector, or a matrix. 3055 if (!SrcType->isScalarType() && !SrcType->isVectorType() && 3056 !SrcType->isMatrixType()) { 3057 Self.Diag(SrcExpr.get()->getExprLoc(), 3058 diag::err_typecheck_expect_scalar_operand) 3059 << SrcType << SrcExpr.get()->getSourceRange(); 3060 SrcExpr = ExprError(); 3061 return; 3062 } 3063 3064 // C23 6.5.4p4: 3065 // The type nullptr_t shall not be converted to any type other than void, 3066 // bool, or a pointer type. No type other than nullptr_t shall be converted 3067 // to nullptr_t. 3068 if (SrcType->isNullPtrType()) { 3069 // FIXME: 6.3.2.4p2 says that nullptr_t can be converted to itself, but 3070 // 6.5.4p4 is a constraint check and nullptr_t is not void, bool, or a 3071 // pointer type. We're not going to diagnose that as a constraint violation. 3072 if (!DestType->isVoidType() && !DestType->isBooleanType() && 3073 !DestType->isPointerType() && !DestType->isNullPtrType()) { 3074 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_nullptr_cast) 3075 << /*nullptr to type*/ 0 << DestType; 3076 SrcExpr = ExprError(); 3077 return; 3078 } 3079 if (!DestType->isNullPtrType()) { 3080 // Implicitly cast from the null pointer type to the type of the 3081 // destination. 3082 CastKind CK = DestType->isPointerType() ? CK_NullToPointer : CK_BitCast; 3083 SrcExpr = ImplicitCastExpr::Create(Self.Context, DestType, CK, 3084 SrcExpr.get(), nullptr, VK_PRValue, 3085 Self.CurFPFeatureOverrides()); 3086 } 3087 } 3088 if (DestType->isNullPtrType() && !SrcType->isNullPtrType()) { 3089 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_nullptr_cast) 3090 << /*type to nullptr*/ 1 << SrcType; 3091 SrcExpr = ExprError(); 3092 return; 3093 } 3094 3095 if (DestType->isExtVectorType()) { 3096 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind); 3097 return; 3098 } 3099 3100 if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) { 3101 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) 3102 SrcExpr = ExprError(); 3103 return; 3104 } 3105 3106 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) { 3107 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, SrcType)) { 3108 SrcExpr = ExprError(); 3109 return; 3110 } 3111 if (Self.ShouldSplatAltivecScalarInCast(DestVecTy) && 3112 (SrcType->isIntegerType() || SrcType->isFloatingType())) { 3113 Kind = CK_VectorSplat; 3114 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 3115 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) { 3116 SrcExpr = ExprError(); 3117 } 3118 return; 3119 } 3120 3121 if (SrcType->isVectorType()) { 3122 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind)) 3123 SrcExpr = ExprError(); 3124 return; 3125 } 3126 3127 // The source and target types are both scalars, i.e. 3128 // - arithmetic types (fundamental, enum, and complex) 3129 // - all kinds of pointers 3130 // Note that member pointers were filtered out with C++, above. 3131 3132 if (isa<ObjCSelectorExpr>(SrcExpr.get())) { 3133 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr); 3134 SrcExpr = ExprError(); 3135 return; 3136 } 3137 3138 // If either type is a pointer, the other type has to be either an 3139 // integer or a pointer. 3140 if (!DestType->isArithmeticType()) { 3141 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) { 3142 Self.Diag(SrcExpr.get()->getExprLoc(), 3143 diag::err_cast_pointer_from_non_pointer_int) 3144 << SrcType << SrcExpr.get()->getSourceRange(); 3145 SrcExpr = ExprError(); 3146 return; 3147 } 3148 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType, 3149 Self); 3150 } else if (!SrcType->isArithmeticType()) { 3151 if (!DestType->isIntegralType(Self.Context) && 3152 DestType->isArithmeticType()) { 3153 Self.Diag(SrcExpr.get()->getBeginLoc(), 3154 diag::err_cast_pointer_to_non_pointer_int) 3155 << DestType << SrcExpr.get()->getSourceRange(); 3156 SrcExpr = ExprError(); 3157 return; 3158 } 3159 3160 if ((Self.Context.getTypeSize(SrcType) > 3161 Self.Context.getTypeSize(DestType)) && 3162 !DestType->isBooleanType()) { 3163 // C 6.3.2.3p6: Any pointer type may be converted to an integer type. 3164 // Except as previously specified, the result is implementation-defined. 3165 // If the result cannot be represented in the integer type, the behavior 3166 // is undefined. The result need not be in the range of values of any 3167 // integer type. 3168 unsigned Diag; 3169 if (SrcType->isVoidPointerType()) 3170 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast 3171 : diag::warn_void_pointer_to_int_cast; 3172 else if (DestType->isEnumeralType()) 3173 Diag = diag::warn_pointer_to_enum_cast; 3174 else 3175 Diag = diag::warn_pointer_to_int_cast; 3176 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 3177 } 3178 } 3179 3180 if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption( 3181 "cl_khr_fp16", Self.getLangOpts())) { 3182 if (DestType->isHalfType()) { 3183 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half) 3184 << DestType << SrcExpr.get()->getSourceRange(); 3185 SrcExpr = ExprError(); 3186 return; 3187 } 3188 } 3189 3190 // ARC imposes extra restrictions on casts. 3191 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) { 3192 checkObjCConversion(Sema::CCK_CStyleCast); 3193 if (SrcExpr.isInvalid()) 3194 return; 3195 3196 const PointerType *CastPtr = DestType->getAs<PointerType>(); 3197 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) { 3198 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) { 3199 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); 3200 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); 3201 if (CastPtr->getPointeeType()->isObjCLifetimeType() && 3202 ExprPtr->getPointeeType()->isObjCLifetimeType() && 3203 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { 3204 Self.Diag(SrcExpr.get()->getBeginLoc(), 3205 diag::err_typecheck_incompatible_ownership) 3206 << SrcType << DestType << Sema::AA_Casting 3207 << SrcExpr.get()->getSourceRange(); 3208 return; 3209 } 3210 } 3211 } 3212 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) { 3213 Self.Diag(SrcExpr.get()->getBeginLoc(), 3214 diag::err_arc_convesion_of_weak_unavailable) 3215 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 3216 SrcExpr = ExprError(); 3217 return; 3218 } 3219 } 3220 3221 if (unsigned DiagID = checkCastFunctionType(Self, SrcExpr, DestType)) 3222 Self.Diag(OpRange.getBegin(), DiagID) << SrcType << DestType << OpRange; 3223 3224 if (isa<PointerType>(SrcType) && isa<PointerType>(DestType)) { 3225 QualType SrcTy = cast<PointerType>(SrcType)->getPointeeType(); 3226 QualType DestTy = cast<PointerType>(DestType)->getPointeeType(); 3227 3228 const RecordDecl *SrcRD = SrcTy->getAsRecordDecl(); 3229 const RecordDecl *DestRD = DestTy->getAsRecordDecl(); 3230 3231 if (SrcRD && DestRD && SrcRD->hasAttr<RandomizeLayoutAttr>() && 3232 SrcRD != DestRD) { 3233 // The struct we are casting the pointer from was randomized. 3234 Self.Diag(OpRange.getBegin(), diag::err_cast_from_randomized_struct) 3235 << SrcType << DestType; 3236 SrcExpr = ExprError(); 3237 return; 3238 } 3239 } 3240 3241 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 3242 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 3243 DiagnoseBadFunctionCast(Self, SrcExpr, DestType); 3244 Kind = Self.PrepareScalarCast(SrcExpr, DestType); 3245 if (SrcExpr.isInvalid()) 3246 return; 3247 3248 if (Kind == CK_BitCast) 3249 checkCastAlign(); 3250 } 3251 3252 void CastOperation::CheckBuiltinBitCast() { 3253 QualType SrcType = SrcExpr.get()->getType(); 3254 3255 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 3256 diag::err_typecheck_cast_to_incomplete) || 3257 Self.RequireCompleteType(OpRange.getBegin(), SrcType, 3258 diag::err_incomplete_type)) { 3259 SrcExpr = ExprError(); 3260 return; 3261 } 3262 3263 if (SrcExpr.get()->isPRValue()) 3264 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(), 3265 /*IsLValueReference=*/false); 3266 3267 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType); 3268 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType); 3269 if (DestSize != SourceSize) { 3270 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch) 3271 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity(); 3272 SrcExpr = ExprError(); 3273 return; 3274 } 3275 3276 if (!DestType.isTriviallyCopyableType(Self.Context)) { 3277 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 3278 << 1; 3279 SrcExpr = ExprError(); 3280 return; 3281 } 3282 3283 if (!SrcType.isTriviallyCopyableType(Self.Context)) { 3284 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 3285 << 0; 3286 SrcExpr = ExprError(); 3287 return; 3288 } 3289 3290 Kind = CK_LValueToRValueBitCast; 3291 } 3292 3293 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either 3294 /// const, volatile or both. 3295 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 3296 QualType DestType) { 3297 if (SrcExpr.isInvalid()) 3298 return; 3299 3300 QualType SrcType = SrcExpr.get()->getType(); 3301 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) || 3302 DestType->isLValueReferenceType())) 3303 return; 3304 3305 QualType TheOffendingSrcType, TheOffendingDestType; 3306 Qualifiers CastAwayQualifiers; 3307 if (CastsAwayConstness(Self, SrcType, DestType, true, false, 3308 &TheOffendingSrcType, &TheOffendingDestType, 3309 &CastAwayQualifiers) != 3310 CastAwayConstnessKind::CACK_Similar) 3311 return; 3312 3313 // FIXME: 'restrict' is not properly handled here. 3314 int qualifiers = -1; 3315 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) { 3316 qualifiers = 0; 3317 } else if (CastAwayQualifiers.hasConst()) { 3318 qualifiers = 1; 3319 } else if (CastAwayQualifiers.hasVolatile()) { 3320 qualifiers = 2; 3321 } 3322 // This is a variant of int **x; const int **y = (const int **)x; 3323 if (qualifiers == -1) 3324 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2) 3325 << SrcType << DestType; 3326 else 3327 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual) 3328 << TheOffendingSrcType << TheOffendingDestType << qualifiers; 3329 } 3330 3331 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc, 3332 TypeSourceInfo *CastTypeInfo, 3333 SourceLocation RPLoc, 3334 Expr *CastExpr) { 3335 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); 3336 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3337 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc()); 3338 3339 if (getLangOpts().CPlusPlus) { 3340 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false, 3341 isa<InitListExpr>(CastExpr)); 3342 } else { 3343 Op.CheckCStyleCast(); 3344 } 3345 3346 if (Op.SrcExpr.isInvalid()) 3347 return ExprError(); 3348 3349 // -Wcast-qual 3350 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType); 3351 3352 return Op.complete(CStyleCastExpr::Create( 3353 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 3354 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc)); 3355 } 3356 3357 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo, 3358 QualType Type, 3359 SourceLocation LPLoc, 3360 Expr *CastExpr, 3361 SourceLocation RPLoc) { 3362 assert(LPLoc.isValid() && "List-initialization shouldn't get here."); 3363 CastOperation Op(*this, Type, CastExpr); 3364 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3365 Op.OpRange = SourceRange(Op.DestRange.getBegin(), RPLoc); 3366 3367 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false); 3368 if (Op.SrcExpr.isInvalid()) 3369 return ExprError(); 3370 3371 auto *SubExpr = Op.SrcExpr.get(); 3372 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 3373 SubExpr = BindExpr->getSubExpr(); 3374 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr)) 3375 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc)); 3376 3377 // -Wcast-qual 3378 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType); 3379 3380 return Op.complete(CXXFunctionalCastExpr::Create( 3381 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind, 3382 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc)); 3383 } 3384