1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for cast expressions, including 10 // 1) C-style casts like '(int) x' 11 // 2) C++ functional casts like 'int(x)' 12 // 3) C++ named casts like 'static_cast<int>(x)' 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/Sema/SemaInternal.h" 17 #include "clang/AST/ASTContext.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "clang/Sema/Initialization.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include <set> 28 using namespace clang; 29 30 31 32 enum TryCastResult { 33 TC_NotApplicable, ///< The cast method is not applicable. 34 TC_Success, ///< The cast method is appropriate and successful. 35 TC_Extension, ///< The cast method is appropriate and accepted as a 36 ///< language extension. 37 TC_Failed ///< The cast method is appropriate, but failed. A 38 ///< diagnostic has been emitted. 39 }; 40 41 static bool isValidCast(TryCastResult TCR) { 42 return TCR == TC_Success || TCR == TC_Extension; 43 } 44 45 enum CastType { 46 CT_Const, ///< const_cast 47 CT_Static, ///< static_cast 48 CT_Reinterpret, ///< reinterpret_cast 49 CT_Dynamic, ///< dynamic_cast 50 CT_CStyle, ///< (Type)expr 51 CT_Functional, ///< Type(expr) 52 CT_Addrspace ///< addrspace_cast 53 }; 54 55 namespace { 56 struct CastOperation { 57 CastOperation(Sema &S, QualType destType, ExprResult src) 58 : Self(S), SrcExpr(src), DestType(destType), 59 ResultType(destType.getNonLValueExprType(S.Context)), 60 ValueKind(Expr::getValueKindForType(destType)), 61 Kind(CK_Dependent), IsARCUnbridgedCast(false) { 62 63 if (const BuiltinType *placeholder = 64 src.get()->getType()->getAsPlaceholderType()) { 65 PlaceholderKind = placeholder->getKind(); 66 } else { 67 PlaceholderKind = (BuiltinType::Kind) 0; 68 } 69 } 70 71 Sema &Self; 72 ExprResult SrcExpr; 73 QualType DestType; 74 QualType ResultType; 75 ExprValueKind ValueKind; 76 CastKind Kind; 77 BuiltinType::Kind PlaceholderKind; 78 CXXCastPath BasePath; 79 bool IsARCUnbridgedCast; 80 81 SourceRange OpRange; 82 SourceRange DestRange; 83 84 // Top-level semantics-checking routines. 85 void CheckConstCast(); 86 void CheckReinterpretCast(); 87 void CheckStaticCast(); 88 void CheckDynamicCast(); 89 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization); 90 void CheckCStyleCast(); 91 void CheckBuiltinBitCast(); 92 void CheckAddrspaceCast(); 93 94 void updatePartOfExplicitCastFlags(CastExpr *CE) { 95 // Walk down from the CE to the OrigSrcExpr, and mark all immediate 96 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE 97 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched. 98 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE) 99 ICE->setIsPartOfExplicitCast(true); 100 } 101 102 /// Complete an apparently-successful cast operation that yields 103 /// the given expression. 104 ExprResult complete(CastExpr *castExpr) { 105 // If this is an unbridged cast, wrap the result in an implicit 106 // cast that yields the unbridged-cast placeholder type. 107 if (IsARCUnbridgedCast) { 108 castExpr = ImplicitCastExpr::Create( 109 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent, 110 castExpr, nullptr, castExpr->getValueKind(), 111 Self.CurFPFeatureOverrides()); 112 } 113 updatePartOfExplicitCastFlags(castExpr); 114 return castExpr; 115 } 116 117 // Internal convenience methods. 118 119 /// Try to handle the given placeholder expression kind. Return 120 /// true if the source expression has the appropriate placeholder 121 /// kind. A placeholder can only be claimed once. 122 bool claimPlaceholder(BuiltinType::Kind K) { 123 if (PlaceholderKind != K) return false; 124 125 PlaceholderKind = (BuiltinType::Kind) 0; 126 return true; 127 } 128 129 bool isPlaceholder() const { 130 return PlaceholderKind != 0; 131 } 132 bool isPlaceholder(BuiltinType::Kind K) const { 133 return PlaceholderKind == K; 134 } 135 136 // Language specific cast restrictions for address spaces. 137 void checkAddressSpaceCast(QualType SrcType, QualType DestType); 138 139 void checkCastAlign() { 140 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); 141 } 142 143 void checkObjCConversion(Sema::CheckedConversionKind CCK) { 144 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()); 145 146 Expr *src = SrcExpr.get(); 147 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) == 148 Sema::ACR_unbridged) 149 IsARCUnbridgedCast = true; 150 SrcExpr = src; 151 } 152 153 /// Check for and handle non-overload placeholder expressions. 154 void checkNonOverloadPlaceholders() { 155 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload)) 156 return; 157 158 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 159 if (SrcExpr.isInvalid()) 160 return; 161 PlaceholderKind = (BuiltinType::Kind) 0; 162 } 163 }; 164 165 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType, 166 SourceLocation OpLoc) { 167 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) { 168 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 169 if (const auto *DestType = dyn_cast<PointerType>(ToType)) { 170 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) { 171 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer); 172 } 173 } 174 } 175 } 176 } 177 178 struct CheckNoDerefRAII { 179 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {} 180 ~CheckNoDerefRAII() { 181 if (!Op.SrcExpr.isInvalid()) 182 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType, 183 Op.OpRange.getBegin()); 184 } 185 186 CastOperation &Op; 187 }; 188 } 189 190 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 191 QualType DestType); 192 193 // The Try functions attempt a specific way of casting. If they succeed, they 194 // return TC_Success. If their way of casting is not appropriate for the given 195 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic 196 // to emit if no other way succeeds. If their way of casting is appropriate but 197 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if 198 // they emit a specialized diagnostic. 199 // All diagnostics returned by these functions must expect the same three 200 // arguments: 201 // %0: Cast Type (a value from the CastType enumeration) 202 // %1: Source Type 203 // %2: Destination Type 204 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 205 QualType DestType, bool CStyle, 206 CastKind &Kind, 207 CXXCastPath &BasePath, 208 unsigned &msg); 209 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, 210 QualType DestType, bool CStyle, 211 SourceRange OpRange, 212 unsigned &msg, 213 CastKind &Kind, 214 CXXCastPath &BasePath); 215 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, 216 QualType DestType, bool CStyle, 217 SourceRange OpRange, 218 unsigned &msg, 219 CastKind &Kind, 220 CXXCastPath &BasePath); 221 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, 222 CanQualType DestType, bool CStyle, 223 SourceRange OpRange, 224 QualType OrigSrcType, 225 QualType OrigDestType, unsigned &msg, 226 CastKind &Kind, 227 CXXCastPath &BasePath); 228 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, 229 QualType SrcType, 230 QualType DestType,bool CStyle, 231 SourceRange OpRange, 232 unsigned &msg, 233 CastKind &Kind, 234 CXXCastPath &BasePath); 235 236 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, 237 QualType DestType, 238 Sema::CheckedConversionKind CCK, 239 SourceRange OpRange, 240 unsigned &msg, CastKind &Kind, 241 bool ListInitialization); 242 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 243 QualType DestType, 244 Sema::CheckedConversionKind CCK, 245 SourceRange OpRange, 246 unsigned &msg, CastKind &Kind, 247 CXXCastPath &BasePath, 248 bool ListInitialization); 249 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 250 QualType DestType, bool CStyle, 251 unsigned &msg); 252 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 253 QualType DestType, bool CStyle, 254 SourceRange OpRange, unsigned &msg, 255 CastKind &Kind); 256 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 257 QualType DestType, bool CStyle, 258 unsigned &msg, CastKind &Kind); 259 260 /// ActOnCXXNamedCast - Parse 261 /// {dynamic,static,reinterpret,const,addrspace}_cast's. 262 ExprResult 263 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 264 SourceLocation LAngleBracketLoc, Declarator &D, 265 SourceLocation RAngleBracketLoc, 266 SourceLocation LParenLoc, Expr *E, 267 SourceLocation RParenLoc) { 268 269 assert(!D.isInvalidType()); 270 271 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType()); 272 if (D.isInvalidType()) 273 return ExprError(); 274 275 if (getLangOpts().CPlusPlus) { 276 // Check that there are no default arguments (C++ only). 277 CheckExtraCXXDefaultArguments(D); 278 } 279 280 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E, 281 SourceRange(LAngleBracketLoc, RAngleBracketLoc), 282 SourceRange(LParenLoc, RParenLoc)); 283 } 284 285 ExprResult 286 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 287 TypeSourceInfo *DestTInfo, Expr *E, 288 SourceRange AngleBrackets, SourceRange Parens) { 289 ExprResult Ex = E; 290 QualType DestType = DestTInfo->getType(); 291 292 // If the type is dependent, we won't do the semantic analysis now. 293 bool TypeDependent = 294 DestType->isDependentType() || Ex.get()->isTypeDependent(); 295 296 CastOperation Op(*this, DestType, E); 297 Op.OpRange = SourceRange(OpLoc, Parens.getEnd()); 298 Op.DestRange = AngleBrackets; 299 300 switch (Kind) { 301 default: llvm_unreachable("Unknown C++ cast!"); 302 303 case tok::kw_addrspace_cast: 304 if (!TypeDependent) { 305 Op.CheckAddrspaceCast(); 306 if (Op.SrcExpr.isInvalid()) 307 return ExprError(); 308 } 309 return Op.complete(CXXAddrspaceCastExpr::Create( 310 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 311 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets)); 312 313 case tok::kw_const_cast: 314 if (!TypeDependent) { 315 Op.CheckConstCast(); 316 if (Op.SrcExpr.isInvalid()) 317 return ExprError(); 318 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 319 } 320 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType, 321 Op.ValueKind, Op.SrcExpr.get(), DestTInfo, 322 OpLoc, Parens.getEnd(), 323 AngleBrackets)); 324 325 case tok::kw_dynamic_cast: { 326 // dynamic_cast is not supported in C++ for OpenCL. 327 if (getLangOpts().OpenCLCPlusPlus) { 328 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 329 << "dynamic_cast"); 330 } 331 332 if (!TypeDependent) { 333 Op.CheckDynamicCast(); 334 if (Op.SrcExpr.isInvalid()) 335 return ExprError(); 336 } 337 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType, 338 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 339 &Op.BasePath, DestTInfo, 340 OpLoc, Parens.getEnd(), 341 AngleBrackets)); 342 } 343 case tok::kw_reinterpret_cast: { 344 if (!TypeDependent) { 345 Op.CheckReinterpretCast(); 346 if (Op.SrcExpr.isInvalid()) 347 return ExprError(); 348 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 349 } 350 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType, 351 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 352 nullptr, DestTInfo, OpLoc, 353 Parens.getEnd(), 354 AngleBrackets)); 355 } 356 case tok::kw_static_cast: { 357 if (!TypeDependent) { 358 Op.CheckStaticCast(); 359 if (Op.SrcExpr.isInvalid()) 360 return ExprError(); 361 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 362 } 363 364 return Op.complete(CXXStaticCastExpr::Create( 365 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 366 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc, 367 Parens.getEnd(), AngleBrackets)); 368 } 369 } 370 } 371 372 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D, 373 ExprResult Operand, 374 SourceLocation RParenLoc) { 375 assert(!D.isInvalidType()); 376 377 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType()); 378 if (D.isInvalidType()) 379 return ExprError(); 380 381 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc); 382 } 383 384 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc, 385 TypeSourceInfo *TSI, Expr *Operand, 386 SourceLocation RParenLoc) { 387 CastOperation Op(*this, TSI->getType(), Operand); 388 Op.OpRange = SourceRange(KWLoc, RParenLoc); 389 TypeLoc TL = TSI->getTypeLoc(); 390 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); 391 392 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) { 393 Op.CheckBuiltinBitCast(); 394 if (Op.SrcExpr.isInvalid()) 395 return ExprError(); 396 } 397 398 BuiltinBitCastExpr *BCE = 399 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind, 400 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc); 401 return Op.complete(BCE); 402 } 403 404 /// Try to diagnose a failed overloaded cast. Returns true if 405 /// diagnostics were emitted. 406 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, 407 SourceRange range, Expr *src, 408 QualType destType, 409 bool listInitialization) { 410 switch (CT) { 411 // These cast kinds don't consider user-defined conversions. 412 case CT_Const: 413 case CT_Reinterpret: 414 case CT_Dynamic: 415 case CT_Addrspace: 416 return false; 417 418 // These do. 419 case CT_Static: 420 case CT_CStyle: 421 case CT_Functional: 422 break; 423 } 424 425 QualType srcType = src->getType(); 426 if (!destType->isRecordType() && !srcType->isRecordType()) 427 return false; 428 429 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); 430 InitializationKind initKind 431 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), 432 range, listInitialization) 433 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range, 434 listInitialization) 435 : InitializationKind::CreateCast(/*type range?*/ range); 436 InitializationSequence sequence(S, entity, initKind, src); 437 438 assert(sequence.Failed() && "initialization succeeded on second try?"); 439 switch (sequence.getFailureKind()) { 440 default: return false; 441 442 case InitializationSequence::FK_ConstructorOverloadFailed: 443 case InitializationSequence::FK_UserConversionOverloadFailed: 444 break; 445 } 446 447 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); 448 449 unsigned msg = 0; 450 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; 451 452 switch (sequence.getFailedOverloadResult()) { 453 case OR_Success: llvm_unreachable("successful failed overload"); 454 case OR_No_Viable_Function: 455 if (candidates.empty()) 456 msg = diag::err_ovl_no_conversion_in_cast; 457 else 458 msg = diag::err_ovl_no_viable_conversion_in_cast; 459 howManyCandidates = OCD_AllCandidates; 460 break; 461 462 case OR_Ambiguous: 463 msg = diag::err_ovl_ambiguous_conversion_in_cast; 464 howManyCandidates = OCD_AmbiguousCandidates; 465 break; 466 467 case OR_Deleted: 468 msg = diag::err_ovl_deleted_conversion_in_cast; 469 howManyCandidates = OCD_ViableCandidates; 470 break; 471 } 472 473 candidates.NoteCandidates( 474 PartialDiagnosticAt(range.getBegin(), 475 S.PDiag(msg) << CT << srcType << destType << range 476 << src->getSourceRange()), 477 S, howManyCandidates, src); 478 479 return true; 480 } 481 482 /// Diagnose a failed cast. 483 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, 484 SourceRange opRange, Expr *src, QualType destType, 485 bool listInitialization) { 486 if (msg == diag::err_bad_cxx_cast_generic && 487 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType, 488 listInitialization)) 489 return; 490 491 S.Diag(opRange.getBegin(), msg) << castType 492 << src->getType() << destType << opRange << src->getSourceRange(); 493 494 // Detect if both types are (ptr to) class, and note any incompleteness. 495 int DifferentPtrness = 0; 496 QualType From = destType; 497 if (auto Ptr = From->getAs<PointerType>()) { 498 From = Ptr->getPointeeType(); 499 DifferentPtrness++; 500 } 501 QualType To = src->getType(); 502 if (auto Ptr = To->getAs<PointerType>()) { 503 To = Ptr->getPointeeType(); 504 DifferentPtrness--; 505 } 506 if (!DifferentPtrness) { 507 auto RecFrom = From->getAs<RecordType>(); 508 auto RecTo = To->getAs<RecordType>(); 509 if (RecFrom && RecTo) { 510 auto DeclFrom = RecFrom->getAsCXXRecordDecl(); 511 if (!DeclFrom->isCompleteDefinition()) 512 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom; 513 auto DeclTo = RecTo->getAsCXXRecordDecl(); 514 if (!DeclTo->isCompleteDefinition()) 515 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo; 516 } 517 } 518 } 519 520 namespace { 521 /// The kind of unwrapping we did when determining whether a conversion casts 522 /// away constness. 523 enum CastAwayConstnessKind { 524 /// The conversion does not cast away constness. 525 CACK_None = 0, 526 /// We unwrapped similar types. 527 CACK_Similar = 1, 528 /// We unwrapped dissimilar types with similar representations (eg, a pointer 529 /// versus an Objective-C object pointer). 530 CACK_SimilarKind = 2, 531 /// We unwrapped representationally-unrelated types, such as a pointer versus 532 /// a pointer-to-member. 533 CACK_Incoherent = 3, 534 }; 535 } 536 537 /// Unwrap one level of types for CastsAwayConstness. 538 /// 539 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from 540 /// both types, provided that they're both pointer-like or array-like. Unlike 541 /// the Sema function, doesn't care if the unwrapped pieces are related. 542 /// 543 /// This function may remove additional levels as necessary for correctness: 544 /// the resulting T1 is unwrapped sufficiently that it is never an array type, 545 /// so that its qualifiers can be directly compared to those of T2 (which will 546 /// have the combined set of qualifiers from all indermediate levels of T2), 547 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers 548 /// with those from T2. 549 static CastAwayConstnessKind 550 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) { 551 enum { None, Ptr, MemPtr, BlockPtr, Array }; 552 auto Classify = [](QualType T) { 553 if (T->isAnyPointerType()) return Ptr; 554 if (T->isMemberPointerType()) return MemPtr; 555 if (T->isBlockPointerType()) return BlockPtr; 556 // We somewhat-arbitrarily don't look through VLA types here. This is at 557 // least consistent with the behavior of UnwrapSimilarTypes. 558 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array; 559 return None; 560 }; 561 562 auto Unwrap = [&](QualType T) { 563 if (auto *AT = Context.getAsArrayType(T)) 564 return AT->getElementType(); 565 return T->getPointeeType(); 566 }; 567 568 CastAwayConstnessKind Kind; 569 570 if (T2->isReferenceType()) { 571 // Special case: if the destination type is a reference type, unwrap it as 572 // the first level. (The source will have been an lvalue expression in this 573 // case, so there is no corresponding "reference to" in T1 to remove.) This 574 // simulates removing a "pointer to" from both sides. 575 T2 = T2->getPointeeType(); 576 Kind = CastAwayConstnessKind::CACK_Similar; 577 } else if (Context.UnwrapSimilarTypes(T1, T2)) { 578 Kind = CastAwayConstnessKind::CACK_Similar; 579 } else { 580 // Try unwrapping mismatching levels. 581 int T1Class = Classify(T1); 582 if (T1Class == None) 583 return CastAwayConstnessKind::CACK_None; 584 585 int T2Class = Classify(T2); 586 if (T2Class == None) 587 return CastAwayConstnessKind::CACK_None; 588 589 T1 = Unwrap(T1); 590 T2 = Unwrap(T2); 591 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind 592 : CastAwayConstnessKind::CACK_Incoherent; 593 } 594 595 // We've unwrapped at least one level. If the resulting T1 is a (possibly 596 // multidimensional) array type, any qualifier on any matching layer of 597 // T2 is considered to correspond to T1. Decompose down to the element 598 // type of T1 so that we can compare properly. 599 while (true) { 600 Context.UnwrapSimilarArrayTypes(T1, T2); 601 602 if (Classify(T1) != Array) 603 break; 604 605 auto T2Class = Classify(T2); 606 if (T2Class == None) 607 break; 608 609 if (T2Class != Array) 610 Kind = CastAwayConstnessKind::CACK_Incoherent; 611 else if (Kind != CastAwayConstnessKind::CACK_Incoherent) 612 Kind = CastAwayConstnessKind::CACK_SimilarKind; 613 614 T1 = Unwrap(T1); 615 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers()); 616 } 617 618 return Kind; 619 } 620 621 /// Check if the pointer conversion from SrcType to DestType casts away 622 /// constness as defined in C++ [expr.const.cast]. This is used by the cast 623 /// checkers. Both arguments must denote pointer (possibly to member) types. 624 /// 625 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. 626 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. 627 static CastAwayConstnessKind 628 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, 629 bool CheckCVR, bool CheckObjCLifetime, 630 QualType *TheOffendingSrcType = nullptr, 631 QualType *TheOffendingDestType = nullptr, 632 Qualifiers *CastAwayQualifiers = nullptr) { 633 // If the only checking we care about is for Objective-C lifetime qualifiers, 634 // and we're not in ObjC mode, there's nothing to check. 635 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC) 636 return CastAwayConstnessKind::CACK_None; 637 638 if (!DestType->isReferenceType()) { 639 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || 640 SrcType->isBlockPointerType()) && 641 "Source type is not pointer or pointer to member."); 642 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || 643 DestType->isBlockPointerType()) && 644 "Destination type is not pointer or pointer to member."); 645 } 646 647 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), 648 UnwrappedDestType = Self.Context.getCanonicalType(DestType); 649 650 // Find the qualifiers. We only care about cvr-qualifiers for the 651 // purpose of this check, because other qualifiers (address spaces, 652 // Objective-C GC, etc.) are part of the type's identity. 653 QualType PrevUnwrappedSrcType = UnwrappedSrcType; 654 QualType PrevUnwrappedDestType = UnwrappedDestType; 655 auto WorstKind = CastAwayConstnessKind::CACK_Similar; 656 bool AllConstSoFar = true; 657 while (auto Kind = unwrapCastAwayConstnessLevel( 658 Self.Context, UnwrappedSrcType, UnwrappedDestType)) { 659 // Track the worst kind of unwrap we needed to do before we found a 660 // problem. 661 if (Kind > WorstKind) 662 WorstKind = Kind; 663 664 // Determine the relevant qualifiers at this level. 665 Qualifiers SrcQuals, DestQuals; 666 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); 667 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); 668 669 // We do not meaningfully track object const-ness of Objective-C object 670 // types. Remove const from the source type if either the source or 671 // the destination is an Objective-C object type. 672 if (UnwrappedSrcType->isObjCObjectType() || 673 UnwrappedDestType->isObjCObjectType()) 674 SrcQuals.removeConst(); 675 676 if (CheckCVR) { 677 Qualifiers SrcCvrQuals = 678 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers()); 679 Qualifiers DestCvrQuals = 680 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers()); 681 682 if (SrcCvrQuals != DestCvrQuals) { 683 if (CastAwayQualifiers) 684 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals; 685 686 // If we removed a cvr-qualifier, this is casting away 'constness'. 687 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) { 688 if (TheOffendingSrcType) 689 *TheOffendingSrcType = PrevUnwrappedSrcType; 690 if (TheOffendingDestType) 691 *TheOffendingDestType = PrevUnwrappedDestType; 692 return WorstKind; 693 } 694 695 // If any prior level was not 'const', this is also casting away 696 // 'constness'. We noted the outermost type missing a 'const' already. 697 if (!AllConstSoFar) 698 return WorstKind; 699 } 700 } 701 702 if (CheckObjCLifetime && 703 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) 704 return WorstKind; 705 706 // If we found our first non-const-qualified type, this may be the place 707 // where things start to go wrong. 708 if (AllConstSoFar && !DestQuals.hasConst()) { 709 AllConstSoFar = false; 710 if (TheOffendingSrcType) 711 *TheOffendingSrcType = PrevUnwrappedSrcType; 712 if (TheOffendingDestType) 713 *TheOffendingDestType = PrevUnwrappedDestType; 714 } 715 716 PrevUnwrappedSrcType = UnwrappedSrcType; 717 PrevUnwrappedDestType = UnwrappedDestType; 718 } 719 720 return CastAwayConstnessKind::CACK_None; 721 } 722 723 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK, 724 unsigned &DiagID) { 725 switch (CACK) { 726 case CastAwayConstnessKind::CACK_None: 727 llvm_unreachable("did not cast away constness"); 728 729 case CastAwayConstnessKind::CACK_Similar: 730 // FIXME: Accept these as an extension too? 731 case CastAwayConstnessKind::CACK_SimilarKind: 732 DiagID = diag::err_bad_cxx_cast_qualifiers_away; 733 return TC_Failed; 734 735 case CastAwayConstnessKind::CACK_Incoherent: 736 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent; 737 return TC_Extension; 738 } 739 740 llvm_unreachable("unexpected cast away constness kind"); 741 } 742 743 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. 744 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- 745 /// checked downcasts in class hierarchies. 746 void CastOperation::CheckDynamicCast() { 747 CheckNoDerefRAII NoderefCheck(*this); 748 749 if (ValueKind == VK_RValue) 750 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 751 else if (isPlaceholder()) 752 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 753 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 754 return; 755 756 QualType OrigSrcType = SrcExpr.get()->getType(); 757 QualType DestType = Self.Context.getCanonicalType(this->DestType); 758 759 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, 760 // or "pointer to cv void". 761 762 QualType DestPointee; 763 const PointerType *DestPointer = DestType->getAs<PointerType>(); 764 const ReferenceType *DestReference = nullptr; 765 if (DestPointer) { 766 DestPointee = DestPointer->getPointeeType(); 767 } else if ((DestReference = DestType->getAs<ReferenceType>())) { 768 DestPointee = DestReference->getPointeeType(); 769 } else { 770 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) 771 << this->DestType << DestRange; 772 SrcExpr = ExprError(); 773 return; 774 } 775 776 const RecordType *DestRecord = DestPointee->getAs<RecordType>(); 777 if (DestPointee->isVoidType()) { 778 assert(DestPointer && "Reference to void is not possible"); 779 } else if (DestRecord) { 780 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, 781 diag::err_bad_cast_incomplete, 782 DestRange)) { 783 SrcExpr = ExprError(); 784 return; 785 } 786 } else { 787 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 788 << DestPointee.getUnqualifiedType() << DestRange; 789 SrcExpr = ExprError(); 790 return; 791 } 792 793 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to 794 // complete class type, [...]. If T is an lvalue reference type, v shall be 795 // an lvalue of a complete class type, [...]. If T is an rvalue reference 796 // type, v shall be an expression having a complete class type, [...] 797 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); 798 QualType SrcPointee; 799 if (DestPointer) { 800 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 801 SrcPointee = SrcPointer->getPointeeType(); 802 } else { 803 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) 804 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange(); 805 SrcExpr = ExprError(); 806 return; 807 } 808 } else if (DestReference->isLValueReferenceType()) { 809 if (!SrcExpr.get()->isLValue()) { 810 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) 811 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 812 } 813 SrcPointee = SrcType; 814 } else { 815 // If we're dynamic_casting from a prvalue to an rvalue reference, we need 816 // to materialize the prvalue before we bind the reference to it. 817 if (SrcExpr.get()->isRValue()) 818 SrcExpr = Self.CreateMaterializeTemporaryExpr( 819 SrcType, SrcExpr.get(), /*IsLValueReference*/ false); 820 SrcPointee = SrcType; 821 } 822 823 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); 824 if (SrcRecord) { 825 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, 826 diag::err_bad_cast_incomplete, 827 SrcExpr.get())) { 828 SrcExpr = ExprError(); 829 return; 830 } 831 } else { 832 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 833 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 834 SrcExpr = ExprError(); 835 return; 836 } 837 838 assert((DestPointer || DestReference) && 839 "Bad destination non-ptr/ref slipped through."); 840 assert((DestRecord || DestPointee->isVoidType()) && 841 "Bad destination pointee slipped through."); 842 assert(SrcRecord && "Bad source pointee slipped through."); 843 844 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. 845 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { 846 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) 847 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 848 SrcExpr = ExprError(); 849 return; 850 } 851 852 // C++ 5.2.7p3: If the type of v is the same as the required result type, 853 // [except for cv]. 854 if (DestRecord == SrcRecord) { 855 Kind = CK_NoOp; 856 return; 857 } 858 859 // C++ 5.2.7p5 860 // Upcasts are resolved statically. 861 if (DestRecord && 862 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) { 863 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, 864 OpRange.getBegin(), OpRange, 865 &BasePath)) { 866 SrcExpr = ExprError(); 867 return; 868 } 869 870 Kind = CK_DerivedToBase; 871 return; 872 } 873 874 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. 875 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); 876 assert(SrcDecl && "Definition missing"); 877 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { 878 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) 879 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 880 SrcExpr = ExprError(); 881 } 882 883 // dynamic_cast is not available with -fno-rtti. 884 // As an exception, dynamic_cast to void* is available because it doesn't 885 // use RTTI. 886 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) { 887 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti); 888 SrcExpr = ExprError(); 889 return; 890 } 891 892 // Warns when dynamic_cast is used with RTTI data disabled. 893 if (!Self.getLangOpts().RTTIData) { 894 bool MicrosoftABI = 895 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft(); 896 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() == 897 DiagnosticOptions::MSVC; 898 if (MicrosoftABI || !DestPointee->isVoidType()) 899 Self.Diag(OpRange.getBegin(), 900 diag::warn_no_dynamic_cast_with_rtti_disabled) 901 << isClangCL; 902 } 903 904 // Done. Everything else is run-time checks. 905 Kind = CK_Dynamic; 906 } 907 908 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. 909 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code 910 /// like this: 911 /// const char *str = "literal"; 912 /// legacy_function(const_cast\<char*\>(str)); 913 void CastOperation::CheckConstCast() { 914 CheckNoDerefRAII NoderefCheck(*this); 915 916 if (ValueKind == VK_RValue) 917 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 918 else if (isPlaceholder()) 919 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 920 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 921 return; 922 923 unsigned msg = diag::err_bad_cxx_cast_generic; 924 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg); 925 if (TCR != TC_Success && msg != 0) { 926 Self.Diag(OpRange.getBegin(), msg) << CT_Const 927 << SrcExpr.get()->getType() << DestType << OpRange; 928 } 929 if (!isValidCast(TCR)) 930 SrcExpr = ExprError(); 931 } 932 933 void CastOperation::CheckAddrspaceCast() { 934 unsigned msg = diag::err_bad_cxx_cast_generic; 935 auto TCR = 936 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind); 937 if (TCR != TC_Success && msg != 0) { 938 Self.Diag(OpRange.getBegin(), msg) 939 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange; 940 } 941 if (!isValidCast(TCR)) 942 SrcExpr = ExprError(); 943 } 944 945 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast 946 /// or downcast between respective pointers or references. 947 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr, 948 QualType DestType, 949 SourceRange OpRange) { 950 QualType SrcType = SrcExpr->getType(); 951 // When casting from pointer or reference, get pointee type; use original 952 // type otherwise. 953 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl(); 954 const CXXRecordDecl *SrcRD = 955 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl(); 956 957 // Examining subobjects for records is only possible if the complete and 958 // valid definition is available. Also, template instantiation is not 959 // allowed here. 960 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl()) 961 return; 962 963 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl(); 964 965 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl()) 966 return; 967 968 enum { 969 ReinterpretUpcast, 970 ReinterpretDowncast 971 } ReinterpretKind; 972 973 CXXBasePaths BasePaths; 974 975 if (SrcRD->isDerivedFrom(DestRD, BasePaths)) 976 ReinterpretKind = ReinterpretUpcast; 977 else if (DestRD->isDerivedFrom(SrcRD, BasePaths)) 978 ReinterpretKind = ReinterpretDowncast; 979 else 980 return; 981 982 bool VirtualBase = true; 983 bool NonZeroOffset = false; 984 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(), 985 E = BasePaths.end(); 986 I != E; ++I) { 987 const CXXBasePath &Path = *I; 988 CharUnits Offset = CharUnits::Zero(); 989 bool IsVirtual = false; 990 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end(); 991 IElem != EElem; ++IElem) { 992 IsVirtual = IElem->Base->isVirtual(); 993 if (IsVirtual) 994 break; 995 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl(); 996 assert(BaseRD && "Base type should be a valid unqualified class type"); 997 // Don't check if any base has invalid declaration or has no definition 998 // since it has no layout info. 999 const CXXRecordDecl *Class = IElem->Class, 1000 *ClassDefinition = Class->getDefinition(); 1001 if (Class->isInvalidDecl() || !ClassDefinition || 1002 !ClassDefinition->isCompleteDefinition()) 1003 return; 1004 1005 const ASTRecordLayout &DerivedLayout = 1006 Self.Context.getASTRecordLayout(Class); 1007 Offset += DerivedLayout.getBaseClassOffset(BaseRD); 1008 } 1009 if (!IsVirtual) { 1010 // Don't warn if any path is a non-virtually derived base at offset zero. 1011 if (Offset.isZero()) 1012 return; 1013 // Offset makes sense only for non-virtual bases. 1014 else 1015 NonZeroOffset = true; 1016 } 1017 VirtualBase = VirtualBase && IsVirtual; 1018 } 1019 1020 (void) NonZeroOffset; // Silence set but not used warning. 1021 assert((VirtualBase || NonZeroOffset) && 1022 "Should have returned if has non-virtual base with zero offset"); 1023 1024 QualType BaseType = 1025 ReinterpretKind == ReinterpretUpcast? DestType : SrcType; 1026 QualType DerivedType = 1027 ReinterpretKind == ReinterpretUpcast? SrcType : DestType; 1028 1029 SourceLocation BeginLoc = OpRange.getBegin(); 1030 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static) 1031 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind) 1032 << OpRange; 1033 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static) 1034 << int(ReinterpretKind) 1035 << FixItHint::CreateReplacement(BeginLoc, "static_cast"); 1036 } 1037 1038 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is 1039 /// valid. 1040 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code 1041 /// like this: 1042 /// char *bytes = reinterpret_cast\<char*\>(int_ptr); 1043 void CastOperation::CheckReinterpretCast() { 1044 if (ValueKind == VK_RValue && !isPlaceholder(BuiltinType::Overload)) 1045 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1046 else 1047 checkNonOverloadPlaceholders(); 1048 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1049 return; 1050 1051 unsigned msg = diag::err_bad_cxx_cast_generic; 1052 TryCastResult tcr = 1053 TryReinterpretCast(Self, SrcExpr, DestType, 1054 /*CStyle*/false, OpRange, msg, Kind); 1055 if (tcr != TC_Success && msg != 0) { 1056 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1057 return; 1058 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1059 //FIXME: &f<int>; is overloaded and resolvable 1060 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) 1061 << OverloadExpr::find(SrcExpr.get()).Expression->getName() 1062 << DestType << OpRange; 1063 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1064 1065 } else { 1066 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), 1067 DestType, /*listInitialization=*/false); 1068 } 1069 } 1070 1071 if (isValidCast(tcr)) { 1072 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1073 checkObjCConversion(Sema::CCK_OtherCast); 1074 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange); 1075 } else { 1076 SrcExpr = ExprError(); 1077 } 1078 } 1079 1080 1081 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. 1082 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making 1083 /// implicit conversions explicit and getting rid of data loss warnings. 1084 void CastOperation::CheckStaticCast() { 1085 CheckNoDerefRAII NoderefCheck(*this); 1086 1087 if (isPlaceholder()) { 1088 checkNonOverloadPlaceholders(); 1089 if (SrcExpr.isInvalid()) 1090 return; 1091 } 1092 1093 // This test is outside everything else because it's the only case where 1094 // a non-lvalue-reference target type does not lead to decay. 1095 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1096 if (DestType->isVoidType()) { 1097 Kind = CK_ToVoid; 1098 1099 if (claimPlaceholder(BuiltinType::Overload)) { 1100 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr, 1101 false, // Decay Function to ptr 1102 true, // Complain 1103 OpRange, DestType, diag::err_bad_static_cast_overload); 1104 if (SrcExpr.isInvalid()) 1105 return; 1106 } 1107 1108 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 1109 return; 1110 } 1111 1112 if (ValueKind == VK_RValue && !DestType->isRecordType() && 1113 !isPlaceholder(BuiltinType::Overload)) { 1114 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1115 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1116 return; 1117 } 1118 1119 unsigned msg = diag::err_bad_cxx_cast_generic; 1120 TryCastResult tcr 1121 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, 1122 Kind, BasePath, /*ListInitialization=*/false); 1123 if (tcr != TC_Success && msg != 0) { 1124 if (SrcExpr.isInvalid()) 1125 return; 1126 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1127 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; 1128 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) 1129 << oe->getName() << DestType << OpRange 1130 << oe->getQualifierLoc().getSourceRange(); 1131 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1132 } else { 1133 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType, 1134 /*listInitialization=*/false); 1135 } 1136 } 1137 1138 if (isValidCast(tcr)) { 1139 if (Kind == CK_BitCast) 1140 checkCastAlign(); 1141 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1142 checkObjCConversion(Sema::CCK_OtherCast); 1143 } else { 1144 SrcExpr = ExprError(); 1145 } 1146 } 1147 1148 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) { 1149 auto *SrcPtrType = SrcType->getAs<PointerType>(); 1150 if (!SrcPtrType) 1151 return false; 1152 auto *DestPtrType = DestType->getAs<PointerType>(); 1153 if (!DestPtrType) 1154 return false; 1155 return SrcPtrType->getPointeeType().getAddressSpace() != 1156 DestPtrType->getPointeeType().getAddressSpace(); 1157 } 1158 1159 /// TryStaticCast - Check if a static cast can be performed, and do so if 1160 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting 1161 /// and casting away constness. 1162 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 1163 QualType DestType, 1164 Sema::CheckedConversionKind CCK, 1165 SourceRange OpRange, unsigned &msg, 1166 CastKind &Kind, CXXCastPath &BasePath, 1167 bool ListInitialization) { 1168 // Determine whether we have the semantics of a C-style cast. 1169 bool CStyle 1170 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1171 1172 // The order the tests is not entirely arbitrary. There is one conversion 1173 // that can be handled in two different ways. Given: 1174 // struct A {}; 1175 // struct B : public A { 1176 // B(); B(const A&); 1177 // }; 1178 // const A &a = B(); 1179 // the cast static_cast<const B&>(a) could be seen as either a static 1180 // reference downcast, or an explicit invocation of the user-defined 1181 // conversion using B's conversion constructor. 1182 // DR 427 specifies that the downcast is to be applied here. 1183 1184 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1185 // Done outside this function. 1186 1187 TryCastResult tcr; 1188 1189 // C++ 5.2.9p5, reference downcast. 1190 // See the function for details. 1191 // DR 427 specifies that this is to be applied before paragraph 2. 1192 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, 1193 OpRange, msg, Kind, BasePath); 1194 if (tcr != TC_NotApplicable) 1195 return tcr; 1196 1197 // C++11 [expr.static.cast]p3: 1198 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 1199 // T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1200 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, 1201 BasePath, msg); 1202 if (tcr != TC_NotApplicable) 1203 return tcr; 1204 1205 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T 1206 // [...] if the declaration "T t(e);" is well-formed, [...]. 1207 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, 1208 Kind, ListInitialization); 1209 if (SrcExpr.isInvalid()) 1210 return TC_Failed; 1211 if (tcr != TC_NotApplicable) 1212 return tcr; 1213 1214 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except 1215 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean 1216 // conversions, subject to further restrictions. 1217 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal 1218 // of qualification conversions impossible. 1219 // In the CStyle case, the earlier attempt to const_cast should have taken 1220 // care of reverse qualification conversions. 1221 1222 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); 1223 1224 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly 1225 // converted to an integral type. [...] A value of a scoped enumeration type 1226 // can also be explicitly converted to a floating-point type [...]. 1227 if (const EnumType *Enum = SrcType->getAs<EnumType>()) { 1228 if (Enum->getDecl()->isScoped()) { 1229 if (DestType->isBooleanType()) { 1230 Kind = CK_IntegralToBoolean; 1231 return TC_Success; 1232 } else if (DestType->isIntegralType(Self.Context)) { 1233 Kind = CK_IntegralCast; 1234 return TC_Success; 1235 } else if (DestType->isRealFloatingType()) { 1236 Kind = CK_IntegralToFloating; 1237 return TC_Success; 1238 } 1239 } 1240 } 1241 1242 // Reverse integral promotion/conversion. All such conversions are themselves 1243 // again integral promotions or conversions and are thus already handled by 1244 // p2 (TryDirectInitialization above). 1245 // (Note: any data loss warnings should be suppressed.) 1246 // The exception is the reverse of enum->integer, i.e. integer->enum (and 1247 // enum->enum). See also C++ 5.2.9p7. 1248 // The same goes for reverse floating point promotion/conversion and 1249 // floating-integral conversions. Again, only floating->enum is relevant. 1250 if (DestType->isEnumeralType()) { 1251 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1252 diag::err_bad_cast_incomplete)) { 1253 SrcExpr = ExprError(); 1254 return TC_Failed; 1255 } 1256 if (SrcType->isIntegralOrEnumerationType()) { 1257 // [expr.static.cast]p10 If the enumeration type has a fixed underlying 1258 // type, the value is first converted to that type by integral conversion 1259 const EnumType *Enum = DestType->getAs<EnumType>(); 1260 Kind = Enum->getDecl()->isFixed() && 1261 Enum->getDecl()->getIntegerType()->isBooleanType() 1262 ? CK_IntegralToBoolean 1263 : CK_IntegralCast; 1264 return TC_Success; 1265 } else if (SrcType->isRealFloatingType()) { 1266 Kind = CK_FloatingToIntegral; 1267 return TC_Success; 1268 } 1269 } 1270 1271 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. 1272 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. 1273 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, 1274 Kind, BasePath); 1275 if (tcr != TC_NotApplicable) 1276 return tcr; 1277 1278 // Reverse member pointer conversion. C++ 4.11 specifies member pointer 1279 // conversion. C++ 5.2.9p9 has additional information. 1280 // DR54's access restrictions apply here also. 1281 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, 1282 OpRange, msg, Kind, BasePath); 1283 if (tcr != TC_NotApplicable) 1284 return tcr; 1285 1286 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to 1287 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is 1288 // just the usual constness stuff. 1289 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 1290 QualType SrcPointee = SrcPointer->getPointeeType(); 1291 if (SrcPointee->isVoidType()) { 1292 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { 1293 QualType DestPointee = DestPointer->getPointeeType(); 1294 if (DestPointee->isIncompleteOrObjectType()) { 1295 // This is definitely the intended conversion, but it might fail due 1296 // to a qualifier violation. Note that we permit Objective-C lifetime 1297 // and GC qualifier mismatches here. 1298 if (!CStyle) { 1299 Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); 1300 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); 1301 DestPointeeQuals.removeObjCGCAttr(); 1302 DestPointeeQuals.removeObjCLifetime(); 1303 SrcPointeeQuals.removeObjCGCAttr(); 1304 SrcPointeeQuals.removeObjCLifetime(); 1305 if (DestPointeeQuals != SrcPointeeQuals && 1306 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { 1307 msg = diag::err_bad_cxx_cast_qualifiers_away; 1308 return TC_Failed; 1309 } 1310 } 1311 Kind = IsAddressSpaceConversion(SrcType, DestType) 1312 ? CK_AddressSpaceConversion 1313 : CK_BitCast; 1314 return TC_Success; 1315 } 1316 1317 // Microsoft permits static_cast from 'pointer-to-void' to 1318 // 'pointer-to-function'. 1319 if (!CStyle && Self.getLangOpts().MSVCCompat && 1320 DestPointee->isFunctionType()) { 1321 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange; 1322 Kind = CK_BitCast; 1323 return TC_Success; 1324 } 1325 } 1326 else if (DestType->isObjCObjectPointerType()) { 1327 // allow both c-style cast and static_cast of objective-c pointers as 1328 // they are pervasive. 1329 Kind = CK_CPointerToObjCPointerCast; 1330 return TC_Success; 1331 } 1332 else if (CStyle && DestType->isBlockPointerType()) { 1333 // allow c-style cast of void * to block pointers. 1334 Kind = CK_AnyPointerToBlockPointerCast; 1335 return TC_Success; 1336 } 1337 } 1338 } 1339 // Allow arbitrary objective-c pointer conversion with static casts. 1340 if (SrcType->isObjCObjectPointerType() && 1341 DestType->isObjCObjectPointerType()) { 1342 Kind = CK_BitCast; 1343 return TC_Success; 1344 } 1345 // Allow ns-pointer to cf-pointer conversion in either direction 1346 // with static casts. 1347 if (!CStyle && 1348 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind)) 1349 return TC_Success; 1350 1351 // See if it looks like the user is trying to convert between 1352 // related record types, and select a better diagnostic if so. 1353 if (auto SrcPointer = SrcType->getAs<PointerType>()) 1354 if (auto DestPointer = DestType->getAs<PointerType>()) 1355 if (SrcPointer->getPointeeType()->getAs<RecordType>() && 1356 DestPointer->getPointeeType()->getAs<RecordType>()) 1357 msg = diag::err_bad_cxx_cast_unrelated_class; 1358 1359 // We tried everything. Everything! Nothing works! :-( 1360 return TC_NotApplicable; 1361 } 1362 1363 /// Tests whether a conversion according to N2844 is valid. 1364 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 1365 QualType DestType, bool CStyle, 1366 CastKind &Kind, CXXCastPath &BasePath, 1367 unsigned &msg) { 1368 // C++11 [expr.static.cast]p3: 1369 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to 1370 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1371 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); 1372 if (!R) 1373 return TC_NotApplicable; 1374 1375 if (!SrcExpr->isGLValue()) 1376 return TC_NotApplicable; 1377 1378 // Because we try the reference downcast before this function, from now on 1379 // this is the only cast possibility, so we issue an error if we fail now. 1380 // FIXME: Should allow casting away constness if CStyle. 1381 QualType FromType = SrcExpr->getType(); 1382 QualType ToType = R->getPointeeType(); 1383 if (CStyle) { 1384 FromType = FromType.getUnqualifiedType(); 1385 ToType = ToType.getUnqualifiedType(); 1386 } 1387 1388 Sema::ReferenceConversions RefConv; 1389 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship( 1390 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv); 1391 if (RefResult != Sema::Ref_Compatible) { 1392 if (CStyle || RefResult == Sema::Ref_Incompatible) 1393 return TC_NotApplicable; 1394 // Diagnose types which are reference-related but not compatible here since 1395 // we can provide better diagnostics. In these cases forwarding to 1396 // [expr.static.cast]p4 should never result in a well-formed cast. 1397 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast 1398 : diag::err_bad_rvalue_to_rvalue_cast; 1399 return TC_Failed; 1400 } 1401 1402 if (RefConv & Sema::ReferenceConversions::DerivedToBase) { 1403 Kind = CK_DerivedToBase; 1404 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1405 /*DetectVirtual=*/true); 1406 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(), 1407 R->getPointeeType(), Paths)) 1408 return TC_NotApplicable; 1409 1410 Self.BuildBasePathArray(Paths, BasePath); 1411 } else 1412 Kind = CK_NoOp; 1413 1414 return TC_Success; 1415 } 1416 1417 /// Tests whether a conversion according to C++ 5.2.9p5 is valid. 1418 TryCastResult 1419 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, 1420 bool CStyle, SourceRange OpRange, 1421 unsigned &msg, CastKind &Kind, 1422 CXXCastPath &BasePath) { 1423 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be 1424 // cast to type "reference to cv2 D", where D is a class derived from B, 1425 // if a valid standard conversion from "pointer to D" to "pointer to B" 1426 // exists, cv2 >= cv1, and B is not a virtual base class of D. 1427 // In addition, DR54 clarifies that the base must be accessible in the 1428 // current context. Although the wording of DR54 only applies to the pointer 1429 // variant of this rule, the intent is clearly for it to apply to the this 1430 // conversion as well. 1431 1432 const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); 1433 if (!DestReference) { 1434 return TC_NotApplicable; 1435 } 1436 bool RValueRef = DestReference->isRValueReferenceType(); 1437 if (!RValueRef && !SrcExpr->isLValue()) { 1438 // We know the left side is an lvalue reference, so we can suggest a reason. 1439 msg = diag::err_bad_cxx_cast_rvalue; 1440 return TC_NotApplicable; 1441 } 1442 1443 QualType DestPointee = DestReference->getPointeeType(); 1444 1445 // FIXME: If the source is a prvalue, we should issue a warning (because the 1446 // cast always has undefined behavior), and for AST consistency, we should 1447 // materialize a temporary. 1448 return TryStaticDowncast(Self, 1449 Self.Context.getCanonicalType(SrcExpr->getType()), 1450 Self.Context.getCanonicalType(DestPointee), CStyle, 1451 OpRange, SrcExpr->getType(), DestType, msg, Kind, 1452 BasePath); 1453 } 1454 1455 /// Tests whether a conversion according to C++ 5.2.9p8 is valid. 1456 TryCastResult 1457 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, 1458 bool CStyle, SourceRange OpRange, 1459 unsigned &msg, CastKind &Kind, 1460 CXXCastPath &BasePath) { 1461 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class 1462 // type, can be converted to an rvalue of type "pointer to cv2 D", where D 1463 // is a class derived from B, if a valid standard conversion from "pointer 1464 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base 1465 // class of D. 1466 // In addition, DR54 clarifies that the base must be accessible in the 1467 // current context. 1468 1469 const PointerType *DestPointer = DestType->getAs<PointerType>(); 1470 if (!DestPointer) { 1471 return TC_NotApplicable; 1472 } 1473 1474 const PointerType *SrcPointer = SrcType->getAs<PointerType>(); 1475 if (!SrcPointer) { 1476 msg = diag::err_bad_static_cast_pointer_nonpointer; 1477 return TC_NotApplicable; 1478 } 1479 1480 return TryStaticDowncast(Self, 1481 Self.Context.getCanonicalType(SrcPointer->getPointeeType()), 1482 Self.Context.getCanonicalType(DestPointer->getPointeeType()), 1483 CStyle, OpRange, SrcType, DestType, msg, Kind, 1484 BasePath); 1485 } 1486 1487 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and 1488 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to 1489 /// DestType is possible and allowed. 1490 TryCastResult 1491 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, 1492 bool CStyle, SourceRange OpRange, QualType OrigSrcType, 1493 QualType OrigDestType, unsigned &msg, 1494 CastKind &Kind, CXXCastPath &BasePath) { 1495 // We can only work with complete types. But don't complain if it doesn't work 1496 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) || 1497 !Self.isCompleteType(OpRange.getBegin(), DestType)) 1498 return TC_NotApplicable; 1499 1500 // Downcast can only happen in class hierarchies, so we need classes. 1501 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { 1502 return TC_NotApplicable; 1503 } 1504 1505 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1506 /*DetectVirtual=*/true); 1507 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) { 1508 return TC_NotApplicable; 1509 } 1510 1511 // Target type does derive from source type. Now we're serious. If an error 1512 // appears now, it's not ignored. 1513 // This may not be entirely in line with the standard. Take for example: 1514 // struct A {}; 1515 // struct B : virtual A { 1516 // B(A&); 1517 // }; 1518 // 1519 // void f() 1520 // { 1521 // (void)static_cast<const B&>(*((A*)0)); 1522 // } 1523 // As far as the standard is concerned, p5 does not apply (A is virtual), so 1524 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. 1525 // However, both GCC and Comeau reject this example, and accepting it would 1526 // mean more complex code if we're to preserve the nice error message. 1527 // FIXME: Being 100% compliant here would be nice to have. 1528 1529 // Must preserve cv, as always, unless we're in C-style mode. 1530 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { 1531 msg = diag::err_bad_cxx_cast_qualifiers_away; 1532 return TC_Failed; 1533 } 1534 1535 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { 1536 // This code is analoguous to that in CheckDerivedToBaseConversion, except 1537 // that it builds the paths in reverse order. 1538 // To sum up: record all paths to the base and build a nice string from 1539 // them. Use it to spice up the error message. 1540 if (!Paths.isRecordingPaths()) { 1541 Paths.clear(); 1542 Paths.setRecordingPaths(true); 1543 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths); 1544 } 1545 std::string PathDisplayStr; 1546 std::set<unsigned> DisplayedPaths; 1547 for (clang::CXXBasePath &Path : Paths) { 1548 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) { 1549 // We haven't displayed a path to this particular base 1550 // class subobject yet. 1551 PathDisplayStr += "\n "; 1552 for (CXXBasePathElement &PE : llvm::reverse(Path)) 1553 PathDisplayStr += PE.Base->getType().getAsString() + " -> "; 1554 PathDisplayStr += QualType(DestType).getAsString(); 1555 } 1556 } 1557 1558 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) 1559 << QualType(SrcType).getUnqualifiedType() 1560 << QualType(DestType).getUnqualifiedType() 1561 << PathDisplayStr << OpRange; 1562 msg = 0; 1563 return TC_Failed; 1564 } 1565 1566 if (Paths.getDetectedVirtual() != nullptr) { 1567 QualType VirtualBase(Paths.getDetectedVirtual(), 0); 1568 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) 1569 << OrigSrcType << OrigDestType << VirtualBase << OpRange; 1570 msg = 0; 1571 return TC_Failed; 1572 } 1573 1574 if (!CStyle) { 1575 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1576 SrcType, DestType, 1577 Paths.front(), 1578 diag::err_downcast_from_inaccessible_base)) { 1579 case Sema::AR_accessible: 1580 case Sema::AR_delayed: // be optimistic 1581 case Sema::AR_dependent: // be optimistic 1582 break; 1583 1584 case Sema::AR_inaccessible: 1585 msg = 0; 1586 return TC_Failed; 1587 } 1588 } 1589 1590 Self.BuildBasePathArray(Paths, BasePath); 1591 Kind = CK_BaseToDerived; 1592 return TC_Success; 1593 } 1594 1595 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to 1596 /// C++ 5.2.9p9 is valid: 1597 /// 1598 /// An rvalue of type "pointer to member of D of type cv1 T" can be 1599 /// converted to an rvalue of type "pointer to member of B of type cv2 T", 1600 /// where B is a base class of D [...]. 1601 /// 1602 TryCastResult 1603 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, 1604 QualType DestType, bool CStyle, 1605 SourceRange OpRange, 1606 unsigned &msg, CastKind &Kind, 1607 CXXCastPath &BasePath) { 1608 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); 1609 if (!DestMemPtr) 1610 return TC_NotApplicable; 1611 1612 bool WasOverloadedFunction = false; 1613 DeclAccessPair FoundOverload; 1614 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1615 if (FunctionDecl *Fn 1616 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, 1617 FoundOverload)) { 1618 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 1619 SrcType = Self.Context.getMemberPointerType(Fn->getType(), 1620 Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); 1621 WasOverloadedFunction = true; 1622 } 1623 } 1624 1625 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 1626 if (!SrcMemPtr) { 1627 msg = diag::err_bad_static_cast_member_pointer_nonmp; 1628 return TC_NotApplicable; 1629 } 1630 1631 // Lock down the inheritance model right now in MS ABI, whether or not the 1632 // pointee types are the same. 1633 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1634 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 1635 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 1636 } 1637 1638 // T == T, modulo cv 1639 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), 1640 DestMemPtr->getPointeeType())) 1641 return TC_NotApplicable; 1642 1643 // B base of D 1644 QualType SrcClass(SrcMemPtr->getClass(), 0); 1645 QualType DestClass(DestMemPtr->getClass(), 0); 1646 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1647 /*DetectVirtual=*/true); 1648 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths)) 1649 return TC_NotApplicable; 1650 1651 // B is a base of D. But is it an allowed base? If not, it's a hard error. 1652 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { 1653 Paths.clear(); 1654 Paths.setRecordingPaths(true); 1655 bool StillOkay = 1656 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths); 1657 assert(StillOkay); 1658 (void)StillOkay; 1659 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); 1660 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) 1661 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; 1662 msg = 0; 1663 return TC_Failed; 1664 } 1665 1666 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1667 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) 1668 << SrcClass << DestClass << QualType(VBase, 0) << OpRange; 1669 msg = 0; 1670 return TC_Failed; 1671 } 1672 1673 if (!CStyle) { 1674 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1675 DestClass, SrcClass, 1676 Paths.front(), 1677 diag::err_upcast_to_inaccessible_base)) { 1678 case Sema::AR_accessible: 1679 case Sema::AR_delayed: 1680 case Sema::AR_dependent: 1681 // Optimistically assume that the delayed and dependent cases 1682 // will work out. 1683 break; 1684 1685 case Sema::AR_inaccessible: 1686 msg = 0; 1687 return TC_Failed; 1688 } 1689 } 1690 1691 if (WasOverloadedFunction) { 1692 // Resolve the address of the overloaded function again, this time 1693 // allowing complaints if something goes wrong. 1694 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 1695 DestType, 1696 true, 1697 FoundOverload); 1698 if (!Fn) { 1699 msg = 0; 1700 return TC_Failed; 1701 } 1702 1703 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); 1704 if (!SrcExpr.isUsable()) { 1705 msg = 0; 1706 return TC_Failed; 1707 } 1708 } 1709 1710 Self.BuildBasePathArray(Paths, BasePath); 1711 Kind = CK_DerivedToBaseMemberPointer; 1712 return TC_Success; 1713 } 1714 1715 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 1716 /// is valid: 1717 /// 1718 /// An expression e can be explicitly converted to a type T using a 1719 /// @c static_cast if the declaration "T t(e);" is well-formed [...]. 1720 TryCastResult 1721 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, 1722 Sema::CheckedConversionKind CCK, 1723 SourceRange OpRange, unsigned &msg, 1724 CastKind &Kind, bool ListInitialization) { 1725 if (DestType->isRecordType()) { 1726 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1727 diag::err_bad_cast_incomplete) || 1728 Self.RequireNonAbstractType(OpRange.getBegin(), DestType, 1729 diag::err_allocation_of_abstract_type)) { 1730 msg = 0; 1731 return TC_Failed; 1732 } 1733 } 1734 1735 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); 1736 InitializationKind InitKind 1737 = (CCK == Sema::CCK_CStyleCast) 1738 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange, 1739 ListInitialization) 1740 : (CCK == Sema::CCK_FunctionalCast) 1741 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization) 1742 : InitializationKind::CreateCast(OpRange); 1743 Expr *SrcExprRaw = SrcExpr.get(); 1744 // FIXME: Per DR242, we should check for an implicit conversion sequence 1745 // or for a constructor that could be invoked by direct-initialization 1746 // here, not for an initialization sequence. 1747 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw); 1748 1749 // At this point of CheckStaticCast, if the destination is a reference, 1750 // or the expression is an overload expression this has to work. 1751 // There is no other way that works. 1752 // On the other hand, if we're checking a C-style cast, we've still got 1753 // the reinterpret_cast way. 1754 bool CStyle 1755 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1756 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) 1757 return TC_NotApplicable; 1758 1759 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw); 1760 if (Result.isInvalid()) { 1761 msg = 0; 1762 return TC_Failed; 1763 } 1764 1765 if (InitSeq.isConstructorInitialization()) 1766 Kind = CK_ConstructorConversion; 1767 else 1768 Kind = CK_NoOp; 1769 1770 SrcExpr = Result; 1771 return TC_Success; 1772 } 1773 1774 /// TryConstCast - See if a const_cast from source to destination is allowed, 1775 /// and perform it if it is. 1776 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 1777 QualType DestType, bool CStyle, 1778 unsigned &msg) { 1779 DestType = Self.Context.getCanonicalType(DestType); 1780 QualType SrcType = SrcExpr.get()->getType(); 1781 bool NeedToMaterializeTemporary = false; 1782 1783 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { 1784 // C++11 5.2.11p4: 1785 // if a pointer to T1 can be explicitly converted to the type "pointer to 1786 // T2" using a const_cast, then the following conversions can also be 1787 // made: 1788 // -- an lvalue of type T1 can be explicitly converted to an lvalue of 1789 // type T2 using the cast const_cast<T2&>; 1790 // -- a glvalue of type T1 can be explicitly converted to an xvalue of 1791 // type T2 using the cast const_cast<T2&&>; and 1792 // -- if T1 is a class type, a prvalue of type T1 can be explicitly 1793 // converted to an xvalue of type T2 using the cast const_cast<T2&&>. 1794 1795 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) { 1796 // Cannot const_cast non-lvalue to lvalue reference type. But if this 1797 // is C-style, static_cast might find a way, so we simply suggest a 1798 // message and tell the parent to keep searching. 1799 msg = diag::err_bad_cxx_cast_rvalue; 1800 return TC_NotApplicable; 1801 } 1802 1803 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isRValue()) { 1804 if (!SrcType->isRecordType()) { 1805 // Cannot const_cast non-class prvalue to rvalue reference type. But if 1806 // this is C-style, static_cast can do this. 1807 msg = diag::err_bad_cxx_cast_rvalue; 1808 return TC_NotApplicable; 1809 } 1810 1811 // Materialize the class prvalue so that the const_cast can bind a 1812 // reference to it. 1813 NeedToMaterializeTemporary = true; 1814 } 1815 1816 // It's not completely clear under the standard whether we can 1817 // const_cast bit-field gl-values. Doing so would not be 1818 // intrinsically complicated, but for now, we say no for 1819 // consistency with other compilers and await the word of the 1820 // committee. 1821 if (SrcExpr.get()->refersToBitField()) { 1822 msg = diag::err_bad_cxx_cast_bitfield; 1823 return TC_NotApplicable; 1824 } 1825 1826 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 1827 SrcType = Self.Context.getPointerType(SrcType); 1828 } 1829 1830 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] 1831 // the rules for const_cast are the same as those used for pointers. 1832 1833 if (!DestType->isPointerType() && 1834 !DestType->isMemberPointerType() && 1835 !DestType->isObjCObjectPointerType()) { 1836 // Cannot cast to non-pointer, non-reference type. Note that, if DestType 1837 // was a reference type, we converted it to a pointer above. 1838 // The status of rvalue references isn't entirely clear, but it looks like 1839 // conversion to them is simply invalid. 1840 // C++ 5.2.11p3: For two pointer types [...] 1841 if (!CStyle) 1842 msg = diag::err_bad_const_cast_dest; 1843 return TC_NotApplicable; 1844 } 1845 if (DestType->isFunctionPointerType() || 1846 DestType->isMemberFunctionPointerType()) { 1847 // Cannot cast direct function pointers. 1848 // C++ 5.2.11p2: [...] where T is any object type or the void type [...] 1849 // T is the ultimate pointee of source and target type. 1850 if (!CStyle) 1851 msg = diag::err_bad_const_cast_dest; 1852 return TC_NotApplicable; 1853 } 1854 1855 // C++ [expr.const.cast]p3: 1856 // "For two similar types T1 and T2, [...]" 1857 // 1858 // We only allow a const_cast to change cvr-qualifiers, not other kinds of 1859 // type qualifiers. (Likewise, we ignore other changes when determining 1860 // whether a cast casts away constness.) 1861 if (!Self.Context.hasCvrSimilarType(SrcType, DestType)) 1862 return TC_NotApplicable; 1863 1864 if (NeedToMaterializeTemporary) 1865 // This is a const_cast from a class prvalue to an rvalue reference type. 1866 // Materialize a temporary to store the result of the conversion. 1867 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(), 1868 SrcExpr.get(), 1869 /*IsLValueReference*/ false); 1870 1871 return TC_Success; 1872 } 1873 1874 // Checks for undefined behavior in reinterpret_cast. 1875 // The cases that is checked for is: 1876 // *reinterpret_cast<T*>(&a) 1877 // reinterpret_cast<T&>(a) 1878 // where accessing 'a' as type 'T' will result in undefined behavior. 1879 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, 1880 bool IsDereference, 1881 SourceRange Range) { 1882 unsigned DiagID = IsDereference ? 1883 diag::warn_pointer_indirection_from_incompatible_type : 1884 diag::warn_undefined_reinterpret_cast; 1885 1886 if (Diags.isIgnored(DiagID, Range.getBegin())) 1887 return; 1888 1889 QualType SrcTy, DestTy; 1890 if (IsDereference) { 1891 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { 1892 return; 1893 } 1894 SrcTy = SrcType->getPointeeType(); 1895 DestTy = DestType->getPointeeType(); 1896 } else { 1897 if (!DestType->getAs<ReferenceType>()) { 1898 return; 1899 } 1900 SrcTy = SrcType; 1901 DestTy = DestType->getPointeeType(); 1902 } 1903 1904 // Cast is compatible if the types are the same. 1905 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { 1906 return; 1907 } 1908 // or one of the types is a char or void type 1909 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || 1910 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { 1911 return; 1912 } 1913 // or one of the types is a tag type. 1914 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { 1915 return; 1916 } 1917 1918 // FIXME: Scoped enums? 1919 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || 1920 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { 1921 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { 1922 return; 1923 } 1924 } 1925 1926 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; 1927 } 1928 1929 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr, 1930 QualType DestType) { 1931 QualType SrcType = SrcExpr.get()->getType(); 1932 if (Self.Context.hasSameType(SrcType, DestType)) 1933 return; 1934 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>()) 1935 if (SrcPtrTy->isObjCSelType()) { 1936 QualType DT = DestType; 1937 if (isa<PointerType>(DestType)) 1938 DT = DestType->getPointeeType(); 1939 if (!DT.getUnqualifiedType()->isVoidType()) 1940 Self.Diag(SrcExpr.get()->getExprLoc(), 1941 diag::warn_cast_pointer_from_sel) 1942 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 1943 } 1944 } 1945 1946 /// Diagnose casts that change the calling convention of a pointer to a function 1947 /// defined in the current TU. 1948 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr, 1949 QualType DstType, SourceRange OpRange) { 1950 // Check if this cast would change the calling convention of a function 1951 // pointer type. 1952 QualType SrcType = SrcExpr.get()->getType(); 1953 if (Self.Context.hasSameType(SrcType, DstType) || 1954 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType()) 1955 return; 1956 const auto *SrcFTy = 1957 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 1958 const auto *DstFTy = 1959 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 1960 CallingConv SrcCC = SrcFTy->getCallConv(); 1961 CallingConv DstCC = DstFTy->getCallConv(); 1962 if (SrcCC == DstCC) 1963 return; 1964 1965 // We have a calling convention cast. Check if the source is a pointer to a 1966 // known, specific function that has already been defined. 1967 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts(); 1968 if (auto *UO = dyn_cast<UnaryOperator>(Src)) 1969 if (UO->getOpcode() == UO_AddrOf) 1970 Src = UO->getSubExpr()->IgnoreParenImpCasts(); 1971 auto *DRE = dyn_cast<DeclRefExpr>(Src); 1972 if (!DRE) 1973 return; 1974 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 1975 if (!FD) 1976 return; 1977 1978 // Only warn if we are casting from the default convention to a non-default 1979 // convention. This can happen when the programmer forgot to apply the calling 1980 // convention to the function declaration and then inserted this cast to 1981 // satisfy the type system. 1982 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention( 1983 FD->isVariadic(), FD->isCXXInstanceMember()); 1984 if (DstCC == DefaultCC || SrcCC != DefaultCC) 1985 return; 1986 1987 // Diagnose this cast, as it is probably bad. 1988 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC); 1989 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC); 1990 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv) 1991 << SrcCCName << DstCCName << OpRange; 1992 1993 // The checks above are cheaper than checking if the diagnostic is enabled. 1994 // However, it's worth checking if the warning is enabled before we construct 1995 // a fixit. 1996 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin())) 1997 return; 1998 1999 // Try to suggest a fixit to change the calling convention of the function 2000 // whose address was taken. Try to use the latest macro for the convention. 2001 // For example, users probably want to write "WINAPI" instead of "__stdcall" 2002 // to match the Windows header declarations. 2003 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc(); 2004 Preprocessor &PP = Self.getPreprocessor(); 2005 SmallVector<TokenValue, 6> AttrTokens; 2006 SmallString<64> CCAttrText; 2007 llvm::raw_svector_ostream OS(CCAttrText); 2008 if (Self.getLangOpts().MicrosoftExt) { 2009 // __stdcall or __vectorcall 2010 OS << "__" << DstCCName; 2011 IdentifierInfo *II = PP.getIdentifierInfo(OS.str()); 2012 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2013 ? TokenValue(II->getTokenID()) 2014 : TokenValue(II)); 2015 } else { 2016 // __attribute__((stdcall)) or __attribute__((vectorcall)) 2017 OS << "__attribute__((" << DstCCName << "))"; 2018 AttrTokens.push_back(tok::kw___attribute); 2019 AttrTokens.push_back(tok::l_paren); 2020 AttrTokens.push_back(tok::l_paren); 2021 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName); 2022 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2023 ? TokenValue(II->getTokenID()) 2024 : TokenValue(II)); 2025 AttrTokens.push_back(tok::r_paren); 2026 AttrTokens.push_back(tok::r_paren); 2027 } 2028 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens); 2029 if (!AttrSpelling.empty()) 2030 CCAttrText = AttrSpelling; 2031 OS << ' '; 2032 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit) 2033 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText); 2034 } 2035 2036 static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange, 2037 const Expr *SrcExpr, QualType DestType, 2038 Sema &Self) { 2039 QualType SrcType = SrcExpr->getType(); 2040 2041 // Not warning on reinterpret_cast, boolean, constant expressions, etc 2042 // are not explicit design choices, but consistent with GCC's behavior. 2043 // Feel free to modify them if you've reason/evidence for an alternative. 2044 if (CStyle && SrcType->isIntegralType(Self.Context) 2045 && !SrcType->isBooleanType() 2046 && !SrcType->isEnumeralType() 2047 && !SrcExpr->isIntegerConstantExpr(Self.Context) 2048 && Self.Context.getTypeSize(DestType) > 2049 Self.Context.getTypeSize(SrcType)) { 2050 // Separate between casts to void* and non-void* pointers. 2051 // Some APIs use (abuse) void* for something like a user context, 2052 // and often that value is an integer even if it isn't a pointer itself. 2053 // Having a separate warning flag allows users to control the warning 2054 // for their workflow. 2055 unsigned Diag = DestType->isVoidPointerType() ? 2056 diag::warn_int_to_void_pointer_cast 2057 : diag::warn_int_to_pointer_cast; 2058 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2059 } 2060 } 2061 2062 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType, 2063 ExprResult &Result) { 2064 // We can only fix an overloaded reinterpret_cast if 2065 // - it is a template with explicit arguments that resolves to an lvalue 2066 // unambiguously, or 2067 // - it is the only function in an overload set that may have its address 2068 // taken. 2069 2070 Expr *E = Result.get(); 2071 // TODO: what if this fails because of DiagnoseUseOfDecl or something 2072 // like it? 2073 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2074 Result, 2075 Expr::getValueKindForType(DestType) == VK_RValue // Convert Fun to Ptr 2076 ) && 2077 Result.isUsable()) 2078 return true; 2079 2080 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization 2081 // preserves Result. 2082 Result = E; 2083 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate( 2084 Result, /*DoFunctionPointerConversion=*/true)) 2085 return false; 2086 return Result.isUsable(); 2087 } 2088 2089 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 2090 QualType DestType, bool CStyle, 2091 SourceRange OpRange, 2092 unsigned &msg, 2093 CastKind &Kind) { 2094 bool IsLValueCast = false; 2095 2096 DestType = Self.Context.getCanonicalType(DestType); 2097 QualType SrcType = SrcExpr.get()->getType(); 2098 2099 // Is the source an overloaded name? (i.e. &foo) 2100 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5) 2101 if (SrcType == Self.Context.OverloadTy) { 2102 ExprResult FixedExpr = SrcExpr; 2103 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr)) 2104 return TC_NotApplicable; 2105 2106 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr"); 2107 SrcExpr = FixedExpr; 2108 SrcType = SrcExpr.get()->getType(); 2109 } 2110 2111 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { 2112 if (!SrcExpr.get()->isGLValue()) { 2113 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the 2114 // similar comment in const_cast. 2115 msg = diag::err_bad_cxx_cast_rvalue; 2116 return TC_NotApplicable; 2117 } 2118 2119 if (!CStyle) { 2120 Self.CheckCompatibleReinterpretCast(SrcType, DestType, 2121 /*IsDereference=*/false, OpRange); 2122 } 2123 2124 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the 2125 // same effect as the conversion *reinterpret_cast<T*>(&x) with the 2126 // built-in & and * operators. 2127 2128 const char *inappropriate = nullptr; 2129 switch (SrcExpr.get()->getObjectKind()) { 2130 case OK_Ordinary: 2131 break; 2132 case OK_BitField: 2133 msg = diag::err_bad_cxx_cast_bitfield; 2134 return TC_NotApplicable; 2135 // FIXME: Use a specific diagnostic for the rest of these cases. 2136 case OK_VectorComponent: inappropriate = "vector element"; break; 2137 case OK_MatrixComponent: 2138 inappropriate = "matrix element"; 2139 break; 2140 case OK_ObjCProperty: inappropriate = "property expression"; break; 2141 case OK_ObjCSubscript: inappropriate = "container subscripting expression"; 2142 break; 2143 } 2144 if (inappropriate) { 2145 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) 2146 << inappropriate << DestType 2147 << OpRange << SrcExpr.get()->getSourceRange(); 2148 msg = 0; SrcExpr = ExprError(); 2149 return TC_NotApplicable; 2150 } 2151 2152 // This code does this transformation for the checked types. 2153 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 2154 SrcType = Self.Context.getPointerType(SrcType); 2155 2156 IsLValueCast = true; 2157 } 2158 2159 // Canonicalize source for comparison. 2160 SrcType = Self.Context.getCanonicalType(SrcType); 2161 2162 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), 2163 *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 2164 if (DestMemPtr && SrcMemPtr) { 2165 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" 2166 // can be explicitly converted to an rvalue of type "pointer to member 2167 // of Y of type T2" if T1 and T2 are both function types or both object 2168 // types. 2169 if (DestMemPtr->isMemberFunctionPointer() != 2170 SrcMemPtr->isMemberFunctionPointer()) 2171 return TC_NotApplicable; 2172 2173 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2174 // We need to determine the inheritance model that the class will use if 2175 // haven't yet. 2176 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 2177 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 2178 } 2179 2180 // Don't allow casting between member pointers of different sizes. 2181 if (Self.Context.getTypeSize(DestMemPtr) != 2182 Self.Context.getTypeSize(SrcMemPtr)) { 2183 msg = diag::err_bad_cxx_cast_member_pointer_size; 2184 return TC_Failed; 2185 } 2186 2187 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away 2188 // constness. 2189 // A reinterpret_cast followed by a const_cast can, though, so in C-style, 2190 // we accept it. 2191 if (auto CACK = 2192 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2193 /*CheckObjCLifetime=*/CStyle)) 2194 return getCastAwayConstnessCastKind(CACK, msg); 2195 2196 // A valid member pointer cast. 2197 assert(!IsLValueCast); 2198 Kind = CK_ReinterpretMemberPointer; 2199 return TC_Success; 2200 } 2201 2202 // See below for the enumeral issue. 2203 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { 2204 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral 2205 // type large enough to hold it. A value of std::nullptr_t can be 2206 // converted to an integral type; the conversion has the same meaning 2207 // and validity as a conversion of (void*)0 to the integral type. 2208 if (Self.Context.getTypeSize(SrcType) > 2209 Self.Context.getTypeSize(DestType)) { 2210 msg = diag::err_bad_reinterpret_cast_small_int; 2211 return TC_Failed; 2212 } 2213 Kind = CK_PointerToIntegral; 2214 return TC_Success; 2215 } 2216 2217 // Allow reinterpret_casts between vectors of the same size and 2218 // between vectors and integers of the same size. 2219 bool destIsVector = DestType->isVectorType(); 2220 bool srcIsVector = SrcType->isVectorType(); 2221 if (srcIsVector || destIsVector) { 2222 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa. 2223 if (Self.isValidSveBitcast(SrcType, DestType)) { 2224 Kind = CK_BitCast; 2225 return TC_Success; 2226 } 2227 2228 // The non-vector type, if any, must have integral type. This is 2229 // the same rule that C vector casts use; note, however, that enum 2230 // types are not integral in C++. 2231 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) || 2232 (!srcIsVector && !SrcType->isIntegralType(Self.Context))) 2233 return TC_NotApplicable; 2234 2235 // The size we want to consider is eltCount * eltSize. 2236 // That's exactly what the lax-conversion rules will check. 2237 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) { 2238 Kind = CK_BitCast; 2239 return TC_Success; 2240 } 2241 2242 // Otherwise, pick a reasonable diagnostic. 2243 if (!destIsVector) 2244 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; 2245 else if (!srcIsVector) 2246 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; 2247 else 2248 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; 2249 2250 return TC_Failed; 2251 } 2252 2253 if (SrcType == DestType) { 2254 // C++ 5.2.10p2 has a note that mentions that, subject to all other 2255 // restrictions, a cast to the same type is allowed so long as it does not 2256 // cast away constness. In C++98, the intent was not entirely clear here, 2257 // since all other paragraphs explicitly forbid casts to the same type. 2258 // C++11 clarifies this case with p2. 2259 // 2260 // The only allowed types are: integral, enumeration, pointer, or 2261 // pointer-to-member types. We also won't restrict Obj-C pointers either. 2262 Kind = CK_NoOp; 2263 TryCastResult Result = TC_NotApplicable; 2264 if (SrcType->isIntegralOrEnumerationType() || 2265 SrcType->isAnyPointerType() || 2266 SrcType->isMemberPointerType() || 2267 SrcType->isBlockPointerType()) { 2268 Result = TC_Success; 2269 } 2270 return Result; 2271 } 2272 2273 bool destIsPtr = DestType->isAnyPointerType() || 2274 DestType->isBlockPointerType(); 2275 bool srcIsPtr = SrcType->isAnyPointerType() || 2276 SrcType->isBlockPointerType(); 2277 if (!destIsPtr && !srcIsPtr) { 2278 // Except for std::nullptr_t->integer and lvalue->reference, which are 2279 // handled above, at least one of the two arguments must be a pointer. 2280 return TC_NotApplicable; 2281 } 2282 2283 if (DestType->isIntegralType(Self.Context)) { 2284 assert(srcIsPtr && "One type must be a pointer"); 2285 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral 2286 // type large enough to hold it; except in Microsoft mode, where the 2287 // integral type size doesn't matter (except we don't allow bool). 2288 if ((Self.Context.getTypeSize(SrcType) > 2289 Self.Context.getTypeSize(DestType))) { 2290 bool MicrosoftException = 2291 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType(); 2292 if (MicrosoftException) { 2293 unsigned Diag = SrcType->isVoidPointerType() 2294 ? diag::warn_void_pointer_to_int_cast 2295 : diag::warn_pointer_to_int_cast; 2296 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2297 } else { 2298 msg = diag::err_bad_reinterpret_cast_small_int; 2299 return TC_Failed; 2300 } 2301 } 2302 Kind = CK_PointerToIntegral; 2303 return TC_Success; 2304 } 2305 2306 if (SrcType->isIntegralOrEnumerationType()) { 2307 assert(destIsPtr && "One type must be a pointer"); 2308 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self); 2309 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly 2310 // converted to a pointer. 2311 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not 2312 // necessarily converted to a null pointer value.] 2313 Kind = CK_IntegralToPointer; 2314 return TC_Success; 2315 } 2316 2317 if (!destIsPtr || !srcIsPtr) { 2318 // With the valid non-pointer conversions out of the way, we can be even 2319 // more stringent. 2320 return TC_NotApplicable; 2321 } 2322 2323 // Cannot convert between block pointers and Objective-C object pointers. 2324 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || 2325 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) 2326 return TC_NotApplicable; 2327 2328 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. 2329 // The C-style cast operator can. 2330 TryCastResult SuccessResult = TC_Success; 2331 if (auto CACK = 2332 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2333 /*CheckObjCLifetime=*/CStyle)) 2334 SuccessResult = getCastAwayConstnessCastKind(CACK, msg); 2335 2336 if (IsAddressSpaceConversion(SrcType, DestType)) { 2337 Kind = CK_AddressSpaceConversion; 2338 assert(SrcType->isPointerType() && DestType->isPointerType()); 2339 if (!CStyle && 2340 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf( 2341 SrcType->getPointeeType().getQualifiers())) { 2342 SuccessResult = TC_Failed; 2343 } 2344 } else if (IsLValueCast) { 2345 Kind = CK_LValueBitCast; 2346 } else if (DestType->isObjCObjectPointerType()) { 2347 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr); 2348 } else if (DestType->isBlockPointerType()) { 2349 if (!SrcType->isBlockPointerType()) { 2350 Kind = CK_AnyPointerToBlockPointerCast; 2351 } else { 2352 Kind = CK_BitCast; 2353 } 2354 } else { 2355 Kind = CK_BitCast; 2356 } 2357 2358 // Any pointer can be cast to an Objective-C pointer type with a C-style 2359 // cast. 2360 if (CStyle && DestType->isObjCObjectPointerType()) { 2361 return SuccessResult; 2362 } 2363 if (CStyle) 2364 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2365 2366 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2367 2368 // Not casting away constness, so the only remaining check is for compatible 2369 // pointer categories. 2370 2371 if (SrcType->isFunctionPointerType()) { 2372 if (DestType->isFunctionPointerType()) { 2373 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to 2374 // a pointer to a function of a different type. 2375 return SuccessResult; 2376 } 2377 2378 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to 2379 // an object type or vice versa is conditionally-supported. 2380 // Compilers support it in C++03 too, though, because it's necessary for 2381 // casting the return value of dlsym() and GetProcAddress(). 2382 // FIXME: Conditionally-supported behavior should be configurable in the 2383 // TargetInfo or similar. 2384 Self.Diag(OpRange.getBegin(), 2385 Self.getLangOpts().CPlusPlus11 ? 2386 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2387 << OpRange; 2388 return SuccessResult; 2389 } 2390 2391 if (DestType->isFunctionPointerType()) { 2392 // See above. 2393 Self.Diag(OpRange.getBegin(), 2394 Self.getLangOpts().CPlusPlus11 ? 2395 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2396 << OpRange; 2397 return SuccessResult; 2398 } 2399 2400 // Diagnose address space conversion in nested pointers. 2401 QualType DestPtee = DestType->getPointeeType().isNull() 2402 ? DestType->getPointeeType() 2403 : DestType->getPointeeType()->getPointeeType(); 2404 QualType SrcPtee = SrcType->getPointeeType().isNull() 2405 ? SrcType->getPointeeType() 2406 : SrcType->getPointeeType()->getPointeeType(); 2407 while (!DestPtee.isNull() && !SrcPtee.isNull()) { 2408 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) { 2409 Self.Diag(OpRange.getBegin(), 2410 diag::warn_bad_cxx_cast_nested_pointer_addr_space) 2411 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2412 break; 2413 } 2414 DestPtee = DestPtee->getPointeeType(); 2415 SrcPtee = SrcPtee->getPointeeType(); 2416 } 2417 2418 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to 2419 // a pointer to an object of different type. 2420 // Void pointers are not specified, but supported by every compiler out there. 2421 // So we finish by allowing everything that remains - it's got to be two 2422 // object pointers. 2423 return SuccessResult; 2424 } 2425 2426 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 2427 QualType DestType, bool CStyle, 2428 unsigned &msg, CastKind &Kind) { 2429 if (!Self.getLangOpts().OpenCL) 2430 // FIXME: As compiler doesn't have any information about overlapping addr 2431 // spaces at the moment we have to be permissive here. 2432 return TC_NotApplicable; 2433 // Even though the logic below is general enough and can be applied to 2434 // non-OpenCL mode too, we fast-path above because no other languages 2435 // define overlapping address spaces currently. 2436 auto SrcType = SrcExpr.get()->getType(); 2437 // FIXME: Should this be generalized to references? The reference parameter 2438 // however becomes a reference pointee type here and therefore rejected. 2439 // Perhaps this is the right behavior though according to C++. 2440 auto SrcPtrType = SrcType->getAs<PointerType>(); 2441 if (!SrcPtrType) 2442 return TC_NotApplicable; 2443 auto DestPtrType = DestType->getAs<PointerType>(); 2444 if (!DestPtrType) 2445 return TC_NotApplicable; 2446 auto SrcPointeeType = SrcPtrType->getPointeeType(); 2447 auto DestPointeeType = DestPtrType->getPointeeType(); 2448 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) { 2449 msg = diag::err_bad_cxx_cast_addr_space_mismatch; 2450 return TC_Failed; 2451 } 2452 auto SrcPointeeTypeWithoutAS = 2453 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType()); 2454 auto DestPointeeTypeWithoutAS = 2455 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType()); 2456 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS, 2457 DestPointeeTypeWithoutAS)) { 2458 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace() 2459 ? CK_NoOp 2460 : CK_AddressSpaceConversion; 2461 return TC_Success; 2462 } else { 2463 return TC_NotApplicable; 2464 } 2465 } 2466 2467 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) { 2468 // In OpenCL only conversions between pointers to objects in overlapping 2469 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps 2470 // with any named one, except for constant. 2471 2472 // Converting the top level pointee addrspace is permitted for compatible 2473 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but 2474 // if any of the nested pointee addrspaces differ, we emit a warning 2475 // regardless of addrspace compatibility. This makes 2476 // local int ** p; 2477 // return (generic int **) p; 2478 // warn even though local -> generic is permitted. 2479 if (Self.getLangOpts().OpenCL) { 2480 const Type *DestPtr, *SrcPtr; 2481 bool Nested = false; 2482 unsigned DiagID = diag::err_typecheck_incompatible_address_space; 2483 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()), 2484 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr()); 2485 2486 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) { 2487 const PointerType *DestPPtr = cast<PointerType>(DestPtr); 2488 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr); 2489 QualType DestPPointee = DestPPtr->getPointeeType(); 2490 QualType SrcPPointee = SrcPPtr->getPointeeType(); 2491 if (Nested 2492 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace() 2493 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) { 2494 Self.Diag(OpRange.getBegin(), DiagID) 2495 << SrcType << DestType << Sema::AA_Casting 2496 << SrcExpr.get()->getSourceRange(); 2497 if (!Nested) 2498 SrcExpr = ExprError(); 2499 return; 2500 } 2501 2502 DestPtr = DestPPtr->getPointeeType().getTypePtr(); 2503 SrcPtr = SrcPPtr->getPointeeType().getTypePtr(); 2504 Nested = true; 2505 DiagID = diag::ext_nested_pointer_qualifier_mismatch; 2506 } 2507 } 2508 } 2509 2510 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle, 2511 bool ListInitialization) { 2512 assert(Self.getLangOpts().CPlusPlus); 2513 2514 // Handle placeholders. 2515 if (isPlaceholder()) { 2516 // C-style casts can resolve __unknown_any types. 2517 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2518 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2519 SrcExpr.get(), Kind, 2520 ValueKind, BasePath); 2521 return; 2522 } 2523 2524 checkNonOverloadPlaceholders(); 2525 if (SrcExpr.isInvalid()) 2526 return; 2527 } 2528 2529 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 2530 // This test is outside everything else because it's the only case where 2531 // a non-lvalue-reference target type does not lead to decay. 2532 if (DestType->isVoidType()) { 2533 Kind = CK_ToVoid; 2534 2535 if (claimPlaceholder(BuiltinType::Overload)) { 2536 Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2537 SrcExpr, /* Decay Function to ptr */ false, 2538 /* Complain */ true, DestRange, DestType, 2539 diag::err_bad_cstyle_cast_overload); 2540 if (SrcExpr.isInvalid()) 2541 return; 2542 } 2543 2544 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2545 return; 2546 } 2547 2548 // If the type is dependent, we won't do any other semantic analysis now. 2549 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2550 SrcExpr.get()->isValueDependent()) { 2551 assert(Kind == CK_Dependent); 2552 return; 2553 } 2554 2555 if (ValueKind == VK_RValue && !DestType->isRecordType() && 2556 !isPlaceholder(BuiltinType::Overload)) { 2557 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2558 if (SrcExpr.isInvalid()) 2559 return; 2560 } 2561 2562 // AltiVec vector initialization with a single literal. 2563 if (const VectorType *vecTy = DestType->getAs<VectorType>()) 2564 if (vecTy->getVectorKind() == VectorType::AltiVecVector 2565 && (SrcExpr.get()->getType()->isIntegerType() 2566 || SrcExpr.get()->getType()->isFloatingType())) { 2567 Kind = CK_VectorSplat; 2568 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2569 return; 2570 } 2571 2572 // C++ [expr.cast]p5: The conversions performed by 2573 // - a const_cast, 2574 // - a static_cast, 2575 // - a static_cast followed by a const_cast, 2576 // - a reinterpret_cast, or 2577 // - a reinterpret_cast followed by a const_cast, 2578 // can be performed using the cast notation of explicit type conversion. 2579 // [...] If a conversion can be interpreted in more than one of the ways 2580 // listed above, the interpretation that appears first in the list is used, 2581 // even if a cast resulting from that interpretation is ill-formed. 2582 // In plain language, this means trying a const_cast ... 2583 // Note that for address space we check compatibility after const_cast. 2584 unsigned msg = diag::err_bad_cxx_cast_generic; 2585 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType, 2586 /*CStyle*/ true, msg); 2587 if (SrcExpr.isInvalid()) 2588 return; 2589 if (isValidCast(tcr)) 2590 Kind = CK_NoOp; 2591 2592 Sema::CheckedConversionKind CCK = 2593 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast; 2594 if (tcr == TC_NotApplicable) { 2595 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg, 2596 Kind); 2597 if (SrcExpr.isInvalid()) 2598 return; 2599 2600 if (tcr == TC_NotApplicable) { 2601 // ... or if that is not possible, a static_cast, ignoring const and 2602 // addr space, ... 2603 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, 2604 BasePath, ListInitialization); 2605 if (SrcExpr.isInvalid()) 2606 return; 2607 2608 if (tcr == TC_NotApplicable) { 2609 // ... and finally a reinterpret_cast, ignoring const and addr space. 2610 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true, 2611 OpRange, msg, Kind); 2612 if (SrcExpr.isInvalid()) 2613 return; 2614 } 2615 } 2616 } 2617 2618 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 2619 isValidCast(tcr)) 2620 checkObjCConversion(CCK); 2621 2622 if (tcr != TC_Success && msg != 0) { 2623 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2624 DeclAccessPair Found; 2625 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 2626 DestType, 2627 /*Complain*/ true, 2628 Found); 2629 if (Fn) { 2630 // If DestType is a function type (not to be confused with the function 2631 // pointer type), it will be possible to resolve the function address, 2632 // but the type cast should be considered as failure. 2633 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression; 2634 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload) 2635 << OE->getName() << DestType << OpRange 2636 << OE->getQualifierLoc().getSourceRange(); 2637 Self.NoteAllOverloadCandidates(SrcExpr.get()); 2638 } 2639 } else { 2640 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), 2641 OpRange, SrcExpr.get(), DestType, ListInitialization); 2642 } 2643 } 2644 2645 if (isValidCast(tcr)) { 2646 if (Kind == CK_BitCast) 2647 checkCastAlign(); 2648 } else { 2649 SrcExpr = ExprError(); 2650 } 2651 } 2652 2653 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a 2654 /// non-matching type. Such as enum function call to int, int call to 2655 /// pointer; etc. Cast to 'void' is an exception. 2656 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr, 2657 QualType DestType) { 2658 if (Self.Diags.isIgnored(diag::warn_bad_function_cast, 2659 SrcExpr.get()->getExprLoc())) 2660 return; 2661 2662 if (!isa<CallExpr>(SrcExpr.get())) 2663 return; 2664 2665 QualType SrcType = SrcExpr.get()->getType(); 2666 if (DestType.getUnqualifiedType()->isVoidType()) 2667 return; 2668 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType()) 2669 && (DestType->isAnyPointerType() || DestType->isBlockPointerType())) 2670 return; 2671 if (SrcType->isIntegerType() && DestType->isIntegerType() && 2672 (SrcType->isBooleanType() == DestType->isBooleanType()) && 2673 (SrcType->isEnumeralType() == DestType->isEnumeralType())) 2674 return; 2675 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType()) 2676 return; 2677 if (SrcType->isEnumeralType() && DestType->isEnumeralType()) 2678 return; 2679 if (SrcType->isComplexType() && DestType->isComplexType()) 2680 return; 2681 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType()) 2682 return; 2683 if (SrcType->isFixedPointType() && DestType->isFixedPointType()) 2684 return; 2685 2686 Self.Diag(SrcExpr.get()->getExprLoc(), 2687 diag::warn_bad_function_cast) 2688 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2689 } 2690 2691 /// Check the semantics of a C-style cast operation, in C. 2692 void CastOperation::CheckCStyleCast() { 2693 assert(!Self.getLangOpts().CPlusPlus); 2694 2695 // C-style casts can resolve __unknown_any types. 2696 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2697 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2698 SrcExpr.get(), Kind, 2699 ValueKind, BasePath); 2700 return; 2701 } 2702 2703 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression 2704 // type needs to be scalar. 2705 if (DestType->isVoidType()) { 2706 // We don't necessarily do lvalue-to-rvalue conversions on this. 2707 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2708 if (SrcExpr.isInvalid()) 2709 return; 2710 2711 // Cast to void allows any expr type. 2712 Kind = CK_ToVoid; 2713 return; 2714 } 2715 2716 // If the type is dependent, we won't do any other semantic analysis now. 2717 if (Self.getASTContext().isDependenceAllowed() && 2718 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2719 SrcExpr.get()->isValueDependent())) { 2720 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() || 2721 SrcExpr.get()->containsErrors()) && 2722 "should only occur in error-recovery path."); 2723 assert(Kind == CK_Dependent); 2724 return; 2725 } 2726 2727 // Overloads are allowed with C extensions, so we need to support them. 2728 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2729 DeclAccessPair DAP; 2730 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction( 2731 SrcExpr.get(), DestType, /*Complain=*/true, DAP)) 2732 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD); 2733 else 2734 return; 2735 assert(SrcExpr.isUsable()); 2736 } 2737 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2738 if (SrcExpr.isInvalid()) 2739 return; 2740 QualType SrcType = SrcExpr.get()->getType(); 2741 2742 assert(!SrcType->isPlaceholderType()); 2743 2744 checkAddressSpaceCast(SrcType, DestType); 2745 if (SrcExpr.isInvalid()) 2746 return; 2747 2748 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2749 diag::err_typecheck_cast_to_incomplete)) { 2750 SrcExpr = ExprError(); 2751 return; 2752 } 2753 2754 // Allow casting a sizeless built-in type to itself. 2755 if (DestType->isSizelessBuiltinType() && 2756 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) { 2757 Kind = CK_NoOp; 2758 return; 2759 } 2760 2761 // Allow bitcasting between compatible SVE vector types. 2762 if ((SrcType->isVectorType() || DestType->isVectorType()) && 2763 Self.isValidSveBitcast(SrcType, DestType)) { 2764 Kind = CK_BitCast; 2765 return; 2766 } 2767 2768 if (!DestType->isScalarType() && !DestType->isVectorType()) { 2769 const RecordType *DestRecordTy = DestType->getAs<RecordType>(); 2770 2771 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){ 2772 // GCC struct/union extension: allow cast to self. 2773 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar) 2774 << DestType << SrcExpr.get()->getSourceRange(); 2775 Kind = CK_NoOp; 2776 return; 2777 } 2778 2779 // GCC's cast to union extension. 2780 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) { 2781 RecordDecl *RD = DestRecordTy->getDecl(); 2782 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) { 2783 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union) 2784 << SrcExpr.get()->getSourceRange(); 2785 Kind = CK_ToUnion; 2786 return; 2787 } else { 2788 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type) 2789 << SrcType << SrcExpr.get()->getSourceRange(); 2790 SrcExpr = ExprError(); 2791 return; 2792 } 2793 } 2794 2795 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type. 2796 if (Self.getLangOpts().OpenCL && DestType->isEventT()) { 2797 Expr::EvalResult Result; 2798 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) { 2799 llvm::APSInt CastInt = Result.Val.getInt(); 2800 if (0 == CastInt) { 2801 Kind = CK_ZeroToOCLOpaqueType; 2802 return; 2803 } 2804 Self.Diag(OpRange.getBegin(), 2805 diag::err_opencl_cast_non_zero_to_event_t) 2806 << CastInt.toString(10) << SrcExpr.get()->getSourceRange(); 2807 SrcExpr = ExprError(); 2808 return; 2809 } 2810 } 2811 2812 // Reject any other conversions to non-scalar types. 2813 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar) 2814 << DestType << SrcExpr.get()->getSourceRange(); 2815 SrcExpr = ExprError(); 2816 return; 2817 } 2818 2819 // The type we're casting to is known to be a scalar or vector. 2820 2821 // Require the operand to be a scalar or vector. 2822 if (!SrcType->isScalarType() && !SrcType->isVectorType()) { 2823 Self.Diag(SrcExpr.get()->getExprLoc(), 2824 diag::err_typecheck_expect_scalar_operand) 2825 << SrcType << SrcExpr.get()->getSourceRange(); 2826 SrcExpr = ExprError(); 2827 return; 2828 } 2829 2830 if (DestType->isExtVectorType()) { 2831 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind); 2832 return; 2833 } 2834 2835 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) { 2836 if (DestVecTy->getVectorKind() == VectorType::AltiVecVector && 2837 (SrcType->isIntegerType() || SrcType->isFloatingType())) { 2838 Kind = CK_VectorSplat; 2839 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2840 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) { 2841 SrcExpr = ExprError(); 2842 } 2843 return; 2844 } 2845 2846 if (SrcType->isVectorType()) { 2847 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind)) 2848 SrcExpr = ExprError(); 2849 return; 2850 } 2851 2852 // The source and target types are both scalars, i.e. 2853 // - arithmetic types (fundamental, enum, and complex) 2854 // - all kinds of pointers 2855 // Note that member pointers were filtered out with C++, above. 2856 2857 if (isa<ObjCSelectorExpr>(SrcExpr.get())) { 2858 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr); 2859 SrcExpr = ExprError(); 2860 return; 2861 } 2862 2863 // Can't cast to or from bfloat 2864 if (DestType->isBFloat16Type() && !SrcType->isBFloat16Type()) { 2865 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_to_bfloat16) 2866 << SrcExpr.get()->getSourceRange(); 2867 SrcExpr = ExprError(); 2868 return; 2869 } 2870 if (SrcType->isBFloat16Type() && !DestType->isBFloat16Type()) { 2871 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_from_bfloat16) 2872 << SrcExpr.get()->getSourceRange(); 2873 SrcExpr = ExprError(); 2874 return; 2875 } 2876 2877 // If either type is a pointer, the other type has to be either an 2878 // integer or a pointer. 2879 if (!DestType->isArithmeticType()) { 2880 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) { 2881 Self.Diag(SrcExpr.get()->getExprLoc(), 2882 diag::err_cast_pointer_from_non_pointer_int) 2883 << SrcType << SrcExpr.get()->getSourceRange(); 2884 SrcExpr = ExprError(); 2885 return; 2886 } 2887 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType, 2888 Self); 2889 } else if (!SrcType->isArithmeticType()) { 2890 if (!DestType->isIntegralType(Self.Context) && 2891 DestType->isArithmeticType()) { 2892 Self.Diag(SrcExpr.get()->getBeginLoc(), 2893 diag::err_cast_pointer_to_non_pointer_int) 2894 << DestType << SrcExpr.get()->getSourceRange(); 2895 SrcExpr = ExprError(); 2896 return; 2897 } 2898 2899 if ((Self.Context.getTypeSize(SrcType) > 2900 Self.Context.getTypeSize(DestType)) && 2901 !DestType->isBooleanType()) { 2902 // C 6.3.2.3p6: Any pointer type may be converted to an integer type. 2903 // Except as previously specified, the result is implementation-defined. 2904 // If the result cannot be represented in the integer type, the behavior 2905 // is undefined. The result need not be in the range of values of any 2906 // integer type. 2907 unsigned Diag; 2908 if (SrcType->isVoidPointerType()) 2909 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast 2910 : diag::warn_void_pointer_to_int_cast; 2911 else if (DestType->isEnumeralType()) 2912 Diag = diag::warn_pointer_to_enum_cast; 2913 else 2914 Diag = diag::warn_pointer_to_int_cast; 2915 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2916 } 2917 } 2918 2919 if (Self.getLangOpts().OpenCL && 2920 !Self.getOpenCLOptions().isEnabled("cl_khr_fp16")) { 2921 if (DestType->isHalfType()) { 2922 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half) 2923 << DestType << SrcExpr.get()->getSourceRange(); 2924 SrcExpr = ExprError(); 2925 return; 2926 } 2927 } 2928 2929 // ARC imposes extra restrictions on casts. 2930 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) { 2931 checkObjCConversion(Sema::CCK_CStyleCast); 2932 if (SrcExpr.isInvalid()) 2933 return; 2934 2935 const PointerType *CastPtr = DestType->getAs<PointerType>(); 2936 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) { 2937 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) { 2938 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); 2939 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); 2940 if (CastPtr->getPointeeType()->isObjCLifetimeType() && 2941 ExprPtr->getPointeeType()->isObjCLifetimeType() && 2942 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { 2943 Self.Diag(SrcExpr.get()->getBeginLoc(), 2944 diag::err_typecheck_incompatible_ownership) 2945 << SrcType << DestType << Sema::AA_Casting 2946 << SrcExpr.get()->getSourceRange(); 2947 return; 2948 } 2949 } 2950 } 2951 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) { 2952 Self.Diag(SrcExpr.get()->getBeginLoc(), 2953 diag::err_arc_convesion_of_weak_unavailable) 2954 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2955 SrcExpr = ExprError(); 2956 return; 2957 } 2958 } 2959 2960 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2961 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2962 DiagnoseBadFunctionCast(Self, SrcExpr, DestType); 2963 Kind = Self.PrepareScalarCast(SrcExpr, DestType); 2964 if (SrcExpr.isInvalid()) 2965 return; 2966 2967 if (Kind == CK_BitCast) 2968 checkCastAlign(); 2969 } 2970 2971 void CastOperation::CheckBuiltinBitCast() { 2972 QualType SrcType = SrcExpr.get()->getType(); 2973 2974 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2975 diag::err_typecheck_cast_to_incomplete) || 2976 Self.RequireCompleteType(OpRange.getBegin(), SrcType, 2977 diag::err_incomplete_type)) { 2978 SrcExpr = ExprError(); 2979 return; 2980 } 2981 2982 if (SrcExpr.get()->isRValue()) 2983 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(), 2984 /*IsLValueReference=*/false); 2985 2986 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType); 2987 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType); 2988 if (DestSize != SourceSize) { 2989 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch) 2990 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity(); 2991 SrcExpr = ExprError(); 2992 return; 2993 } 2994 2995 if (!DestType.isTriviallyCopyableType(Self.Context)) { 2996 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 2997 << 1; 2998 SrcExpr = ExprError(); 2999 return; 3000 } 3001 3002 if (!SrcType.isTriviallyCopyableType(Self.Context)) { 3003 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 3004 << 0; 3005 SrcExpr = ExprError(); 3006 return; 3007 } 3008 3009 Kind = CK_LValueToRValueBitCast; 3010 } 3011 3012 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either 3013 /// const, volatile or both. 3014 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 3015 QualType DestType) { 3016 if (SrcExpr.isInvalid()) 3017 return; 3018 3019 QualType SrcType = SrcExpr.get()->getType(); 3020 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) || 3021 DestType->isLValueReferenceType())) 3022 return; 3023 3024 QualType TheOffendingSrcType, TheOffendingDestType; 3025 Qualifiers CastAwayQualifiers; 3026 if (CastsAwayConstness(Self, SrcType, DestType, true, false, 3027 &TheOffendingSrcType, &TheOffendingDestType, 3028 &CastAwayQualifiers) != 3029 CastAwayConstnessKind::CACK_Similar) 3030 return; 3031 3032 // FIXME: 'restrict' is not properly handled here. 3033 int qualifiers = -1; 3034 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) { 3035 qualifiers = 0; 3036 } else if (CastAwayQualifiers.hasConst()) { 3037 qualifiers = 1; 3038 } else if (CastAwayQualifiers.hasVolatile()) { 3039 qualifiers = 2; 3040 } 3041 // This is a variant of int **x; const int **y = (const int **)x; 3042 if (qualifiers == -1) 3043 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2) 3044 << SrcType << DestType; 3045 else 3046 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual) 3047 << TheOffendingSrcType << TheOffendingDestType << qualifiers; 3048 } 3049 3050 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc, 3051 TypeSourceInfo *CastTypeInfo, 3052 SourceLocation RPLoc, 3053 Expr *CastExpr) { 3054 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); 3055 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3056 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc()); 3057 3058 if (getLangOpts().CPlusPlus) { 3059 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false, 3060 isa<InitListExpr>(CastExpr)); 3061 } else { 3062 Op.CheckCStyleCast(); 3063 } 3064 3065 if (Op.SrcExpr.isInvalid()) 3066 return ExprError(); 3067 3068 // -Wcast-qual 3069 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType); 3070 3071 return Op.complete(CStyleCastExpr::Create( 3072 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 3073 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc)); 3074 } 3075 3076 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo, 3077 QualType Type, 3078 SourceLocation LPLoc, 3079 Expr *CastExpr, 3080 SourceLocation RPLoc) { 3081 assert(LPLoc.isValid() && "List-initialization shouldn't get here."); 3082 CastOperation Op(*this, Type, CastExpr); 3083 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3084 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc()); 3085 3086 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false); 3087 if (Op.SrcExpr.isInvalid()) 3088 return ExprError(); 3089 3090 auto *SubExpr = Op.SrcExpr.get(); 3091 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 3092 SubExpr = BindExpr->getSubExpr(); 3093 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr)) 3094 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc)); 3095 3096 return Op.complete(CXXFunctionalCastExpr::Create( 3097 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind, 3098 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc)); 3099 } 3100