1 //===--- SemaCast.cpp - Semantic Analysis for Casts -----------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for cast expressions, including 10 // 1) C-style casts like '(int) x' 11 // 2) C++ functional casts like 'int(x)' 12 // 3) C++ named casts like 'static_cast<int>(x)' 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/ASTStructuralEquivalence.h" 18 #include "clang/AST/CXXInheritance.h" 19 #include "clang/AST/ExprCXX.h" 20 #include "clang/AST/ExprObjC.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/PartialDiagnostic.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/Preprocessor.h" 25 #include "clang/Sema/Initialization.h" 26 #include "clang/Sema/SemaInternal.h" 27 #include "llvm/ADT/SmallVector.h" 28 #include <set> 29 using namespace clang; 30 31 32 33 enum TryCastResult { 34 TC_NotApplicable, ///< The cast method is not applicable. 35 TC_Success, ///< The cast method is appropriate and successful. 36 TC_Extension, ///< The cast method is appropriate and accepted as a 37 ///< language extension. 38 TC_Failed ///< The cast method is appropriate, but failed. A 39 ///< diagnostic has been emitted. 40 }; 41 42 static bool isValidCast(TryCastResult TCR) { 43 return TCR == TC_Success || TCR == TC_Extension; 44 } 45 46 enum CastType { 47 CT_Const, ///< const_cast 48 CT_Static, ///< static_cast 49 CT_Reinterpret, ///< reinterpret_cast 50 CT_Dynamic, ///< dynamic_cast 51 CT_CStyle, ///< (Type)expr 52 CT_Functional, ///< Type(expr) 53 CT_Addrspace ///< addrspace_cast 54 }; 55 56 namespace { 57 struct CastOperation { 58 CastOperation(Sema &S, QualType destType, ExprResult src) 59 : Self(S), SrcExpr(src), DestType(destType), 60 ResultType(destType.getNonLValueExprType(S.Context)), 61 ValueKind(Expr::getValueKindForType(destType)), 62 Kind(CK_Dependent), IsARCUnbridgedCast(false) { 63 64 // C++ [expr.type]/8.2.2: 65 // If a pr-value initially has the type cv-T, where T is a 66 // cv-unqualified non-class, non-array type, the type of the 67 // expression is adjusted to T prior to any further analysis. 68 if (!S.Context.getLangOpts().ObjC && !DestType->isRecordType() && 69 !DestType->isArrayType()) { 70 DestType = DestType.getUnqualifiedType(); 71 } 72 73 if (const BuiltinType *placeholder = 74 src.get()->getType()->getAsPlaceholderType()) { 75 PlaceholderKind = placeholder->getKind(); 76 } else { 77 PlaceholderKind = (BuiltinType::Kind) 0; 78 } 79 } 80 81 Sema &Self; 82 ExprResult SrcExpr; 83 QualType DestType; 84 QualType ResultType; 85 ExprValueKind ValueKind; 86 CastKind Kind; 87 BuiltinType::Kind PlaceholderKind; 88 CXXCastPath BasePath; 89 bool IsARCUnbridgedCast; 90 91 SourceRange OpRange; 92 SourceRange DestRange; 93 94 // Top-level semantics-checking routines. 95 void CheckConstCast(); 96 void CheckReinterpretCast(); 97 void CheckStaticCast(); 98 void CheckDynamicCast(); 99 void CheckCXXCStyleCast(bool FunctionalCast, bool ListInitialization); 100 void CheckCStyleCast(); 101 void CheckBuiltinBitCast(); 102 void CheckAddrspaceCast(); 103 104 void updatePartOfExplicitCastFlags(CastExpr *CE) { 105 // Walk down from the CE to the OrigSrcExpr, and mark all immediate 106 // ImplicitCastExpr's as being part of ExplicitCastExpr. The original CE 107 // (which is a ExplicitCastExpr), and the OrigSrcExpr are not touched. 108 for (; auto *ICE = dyn_cast<ImplicitCastExpr>(CE->getSubExpr()); CE = ICE) 109 ICE->setIsPartOfExplicitCast(true); 110 } 111 112 /// Complete an apparently-successful cast operation that yields 113 /// the given expression. 114 ExprResult complete(CastExpr *castExpr) { 115 // If this is an unbridged cast, wrap the result in an implicit 116 // cast that yields the unbridged-cast placeholder type. 117 if (IsARCUnbridgedCast) { 118 castExpr = ImplicitCastExpr::Create( 119 Self.Context, Self.Context.ARCUnbridgedCastTy, CK_Dependent, 120 castExpr, nullptr, castExpr->getValueKind(), 121 Self.CurFPFeatureOverrides()); 122 } 123 updatePartOfExplicitCastFlags(castExpr); 124 return castExpr; 125 } 126 127 // Internal convenience methods. 128 129 /// Try to handle the given placeholder expression kind. Return 130 /// true if the source expression has the appropriate placeholder 131 /// kind. A placeholder can only be claimed once. 132 bool claimPlaceholder(BuiltinType::Kind K) { 133 if (PlaceholderKind != K) return false; 134 135 PlaceholderKind = (BuiltinType::Kind) 0; 136 return true; 137 } 138 139 bool isPlaceholder() const { 140 return PlaceholderKind != 0; 141 } 142 bool isPlaceholder(BuiltinType::Kind K) const { 143 return PlaceholderKind == K; 144 } 145 146 // Language specific cast restrictions for address spaces. 147 void checkAddressSpaceCast(QualType SrcType, QualType DestType); 148 149 void checkCastAlign() { 150 Self.CheckCastAlign(SrcExpr.get(), DestType, OpRange); 151 } 152 153 void checkObjCConversion(Sema::CheckedConversionKind CCK) { 154 assert(Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()); 155 156 Expr *src = SrcExpr.get(); 157 if (Self.CheckObjCConversion(OpRange, DestType, src, CCK) == 158 Sema::ACR_unbridged) 159 IsARCUnbridgedCast = true; 160 SrcExpr = src; 161 } 162 163 /// Check for and handle non-overload placeholder expressions. 164 void checkNonOverloadPlaceholders() { 165 if (!isPlaceholder() || isPlaceholder(BuiltinType::Overload)) 166 return; 167 168 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 169 if (SrcExpr.isInvalid()) 170 return; 171 PlaceholderKind = (BuiltinType::Kind) 0; 172 } 173 }; 174 175 void CheckNoDeref(Sema &S, const QualType FromType, const QualType ToType, 176 SourceLocation OpLoc) { 177 if (const auto *PtrType = dyn_cast<PointerType>(FromType)) { 178 if (PtrType->getPointeeType()->hasAttr(attr::NoDeref)) { 179 if (const auto *DestType = dyn_cast<PointerType>(ToType)) { 180 if (!DestType->getPointeeType()->hasAttr(attr::NoDeref)) { 181 S.Diag(OpLoc, diag::warn_noderef_to_dereferenceable_pointer); 182 } 183 } 184 } 185 } 186 } 187 188 struct CheckNoDerefRAII { 189 CheckNoDerefRAII(CastOperation &Op) : Op(Op) {} 190 ~CheckNoDerefRAII() { 191 if (!Op.SrcExpr.isInvalid()) 192 CheckNoDeref(Op.Self, Op.SrcExpr.get()->getType(), Op.ResultType, 193 Op.OpRange.getBegin()); 194 } 195 196 CastOperation &Op; 197 }; 198 } 199 200 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 201 QualType DestType); 202 203 // The Try functions attempt a specific way of casting. If they succeed, they 204 // return TC_Success. If their way of casting is not appropriate for the given 205 // arguments, they return TC_NotApplicable and *may* set diag to a diagnostic 206 // to emit if no other way succeeds. If their way of casting is appropriate but 207 // fails, they return TC_Failed and *must* set diag; they can set it to 0 if 208 // they emit a specialized diagnostic. 209 // All diagnostics returned by these functions must expect the same three 210 // arguments: 211 // %0: Cast Type (a value from the CastType enumeration) 212 // %1: Source Type 213 // %2: Destination Type 214 static TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 215 QualType DestType, bool CStyle, 216 CastKind &Kind, 217 CXXCastPath &BasePath, 218 unsigned &msg); 219 static TryCastResult TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, 220 QualType DestType, bool CStyle, 221 SourceRange OpRange, 222 unsigned &msg, 223 CastKind &Kind, 224 CXXCastPath &BasePath); 225 static TryCastResult TryStaticPointerDowncast(Sema &Self, QualType SrcType, 226 QualType DestType, bool CStyle, 227 SourceRange OpRange, 228 unsigned &msg, 229 CastKind &Kind, 230 CXXCastPath &BasePath); 231 static TryCastResult TryStaticDowncast(Sema &Self, CanQualType SrcType, 232 CanQualType DestType, bool CStyle, 233 SourceRange OpRange, 234 QualType OrigSrcType, 235 QualType OrigDestType, unsigned &msg, 236 CastKind &Kind, 237 CXXCastPath &BasePath); 238 static TryCastResult TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, 239 QualType SrcType, 240 QualType DestType,bool CStyle, 241 SourceRange OpRange, 242 unsigned &msg, 243 CastKind &Kind, 244 CXXCastPath &BasePath); 245 246 static TryCastResult TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, 247 QualType DestType, 248 Sema::CheckedConversionKind CCK, 249 SourceRange OpRange, 250 unsigned &msg, CastKind &Kind, 251 bool ListInitialization); 252 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 253 QualType DestType, 254 Sema::CheckedConversionKind CCK, 255 SourceRange OpRange, 256 unsigned &msg, CastKind &Kind, 257 CXXCastPath &BasePath, 258 bool ListInitialization); 259 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 260 QualType DestType, bool CStyle, 261 unsigned &msg); 262 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 263 QualType DestType, bool CStyle, 264 SourceRange OpRange, unsigned &msg, 265 CastKind &Kind); 266 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 267 QualType DestType, bool CStyle, 268 unsigned &msg, CastKind &Kind); 269 270 /// ActOnCXXNamedCast - Parse 271 /// {dynamic,static,reinterpret,const,addrspace}_cast's. 272 ExprResult 273 Sema::ActOnCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 274 SourceLocation LAngleBracketLoc, Declarator &D, 275 SourceLocation RAngleBracketLoc, 276 SourceLocation LParenLoc, Expr *E, 277 SourceLocation RParenLoc) { 278 279 assert(!D.isInvalidType()); 280 281 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, E->getType()); 282 if (D.isInvalidType()) 283 return ExprError(); 284 285 if (getLangOpts().CPlusPlus) { 286 // Check that there are no default arguments (C++ only). 287 CheckExtraCXXDefaultArguments(D); 288 } 289 290 return BuildCXXNamedCast(OpLoc, Kind, TInfo, E, 291 SourceRange(LAngleBracketLoc, RAngleBracketLoc), 292 SourceRange(LParenLoc, RParenLoc)); 293 } 294 295 ExprResult 296 Sema::BuildCXXNamedCast(SourceLocation OpLoc, tok::TokenKind Kind, 297 TypeSourceInfo *DestTInfo, Expr *E, 298 SourceRange AngleBrackets, SourceRange Parens) { 299 ExprResult Ex = E; 300 QualType DestType = DestTInfo->getType(); 301 302 // If the type is dependent, we won't do the semantic analysis now. 303 bool TypeDependent = 304 DestType->isDependentType() || Ex.get()->isTypeDependent(); 305 306 CastOperation Op(*this, DestType, E); 307 Op.OpRange = SourceRange(OpLoc, Parens.getEnd()); 308 Op.DestRange = AngleBrackets; 309 310 switch (Kind) { 311 default: llvm_unreachable("Unknown C++ cast!"); 312 313 case tok::kw_addrspace_cast: 314 if (!TypeDependent) { 315 Op.CheckAddrspaceCast(); 316 if (Op.SrcExpr.isInvalid()) 317 return ExprError(); 318 } 319 return Op.complete(CXXAddrspaceCastExpr::Create( 320 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 321 DestTInfo, OpLoc, Parens.getEnd(), AngleBrackets)); 322 323 case tok::kw_const_cast: 324 if (!TypeDependent) { 325 Op.CheckConstCast(); 326 if (Op.SrcExpr.isInvalid()) 327 return ExprError(); 328 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 329 } 330 return Op.complete(CXXConstCastExpr::Create(Context, Op.ResultType, 331 Op.ValueKind, Op.SrcExpr.get(), DestTInfo, 332 OpLoc, Parens.getEnd(), 333 AngleBrackets)); 334 335 case tok::kw_dynamic_cast: { 336 // dynamic_cast is not supported in C++ for OpenCL. 337 if (getLangOpts().OpenCLCPlusPlus) { 338 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) 339 << "dynamic_cast"); 340 } 341 342 if (!TypeDependent) { 343 Op.CheckDynamicCast(); 344 if (Op.SrcExpr.isInvalid()) 345 return ExprError(); 346 } 347 return Op.complete(CXXDynamicCastExpr::Create(Context, Op.ResultType, 348 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 349 &Op.BasePath, DestTInfo, 350 OpLoc, Parens.getEnd(), 351 AngleBrackets)); 352 } 353 case tok::kw_reinterpret_cast: { 354 if (!TypeDependent) { 355 Op.CheckReinterpretCast(); 356 if (Op.SrcExpr.isInvalid()) 357 return ExprError(); 358 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 359 } 360 return Op.complete(CXXReinterpretCastExpr::Create(Context, Op.ResultType, 361 Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 362 nullptr, DestTInfo, OpLoc, 363 Parens.getEnd(), 364 AngleBrackets)); 365 } 366 case tok::kw_static_cast: { 367 if (!TypeDependent) { 368 Op.CheckStaticCast(); 369 if (Op.SrcExpr.isInvalid()) 370 return ExprError(); 371 DiscardMisalignedMemberAddress(DestType.getTypePtr(), E); 372 } 373 374 return Op.complete(CXXStaticCastExpr::Create( 375 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 376 &Op.BasePath, DestTInfo, CurFPFeatureOverrides(), OpLoc, 377 Parens.getEnd(), AngleBrackets)); 378 } 379 } 380 } 381 382 ExprResult Sema::ActOnBuiltinBitCastExpr(SourceLocation KWLoc, Declarator &D, 383 ExprResult Operand, 384 SourceLocation RParenLoc) { 385 assert(!D.isInvalidType()); 386 387 TypeSourceInfo *TInfo = GetTypeForDeclaratorCast(D, Operand.get()->getType()); 388 if (D.isInvalidType()) 389 return ExprError(); 390 391 return BuildBuiltinBitCastExpr(KWLoc, TInfo, Operand.get(), RParenLoc); 392 } 393 394 ExprResult Sema::BuildBuiltinBitCastExpr(SourceLocation KWLoc, 395 TypeSourceInfo *TSI, Expr *Operand, 396 SourceLocation RParenLoc) { 397 CastOperation Op(*this, TSI->getType(), Operand); 398 Op.OpRange = SourceRange(KWLoc, RParenLoc); 399 TypeLoc TL = TSI->getTypeLoc(); 400 Op.DestRange = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); 401 402 if (!Operand->isTypeDependent() && !TSI->getType()->isDependentType()) { 403 Op.CheckBuiltinBitCast(); 404 if (Op.SrcExpr.isInvalid()) 405 return ExprError(); 406 } 407 408 BuiltinBitCastExpr *BCE = 409 new (Context) BuiltinBitCastExpr(Op.ResultType, Op.ValueKind, Op.Kind, 410 Op.SrcExpr.get(), TSI, KWLoc, RParenLoc); 411 return Op.complete(BCE); 412 } 413 414 /// Try to diagnose a failed overloaded cast. Returns true if 415 /// diagnostics were emitted. 416 static bool tryDiagnoseOverloadedCast(Sema &S, CastType CT, 417 SourceRange range, Expr *src, 418 QualType destType, 419 bool listInitialization) { 420 switch (CT) { 421 // These cast kinds don't consider user-defined conversions. 422 case CT_Const: 423 case CT_Reinterpret: 424 case CT_Dynamic: 425 case CT_Addrspace: 426 return false; 427 428 // These do. 429 case CT_Static: 430 case CT_CStyle: 431 case CT_Functional: 432 break; 433 } 434 435 QualType srcType = src->getType(); 436 if (!destType->isRecordType() && !srcType->isRecordType()) 437 return false; 438 439 InitializedEntity entity = InitializedEntity::InitializeTemporary(destType); 440 InitializationKind initKind 441 = (CT == CT_CStyle)? InitializationKind::CreateCStyleCast(range.getBegin(), 442 range, listInitialization) 443 : (CT == CT_Functional)? InitializationKind::CreateFunctionalCast(range, 444 listInitialization) 445 : InitializationKind::CreateCast(/*type range?*/ range); 446 InitializationSequence sequence(S, entity, initKind, src); 447 448 assert(sequence.Failed() && "initialization succeeded on second try?"); 449 switch (sequence.getFailureKind()) { 450 default: return false; 451 452 case InitializationSequence::FK_ConstructorOverloadFailed: 453 case InitializationSequence::FK_UserConversionOverloadFailed: 454 break; 455 } 456 457 OverloadCandidateSet &candidates = sequence.getFailedCandidateSet(); 458 459 unsigned msg = 0; 460 OverloadCandidateDisplayKind howManyCandidates = OCD_AllCandidates; 461 462 switch (sequence.getFailedOverloadResult()) { 463 case OR_Success: llvm_unreachable("successful failed overload"); 464 case OR_No_Viable_Function: 465 if (candidates.empty()) 466 msg = diag::err_ovl_no_conversion_in_cast; 467 else 468 msg = diag::err_ovl_no_viable_conversion_in_cast; 469 howManyCandidates = OCD_AllCandidates; 470 break; 471 472 case OR_Ambiguous: 473 msg = diag::err_ovl_ambiguous_conversion_in_cast; 474 howManyCandidates = OCD_AmbiguousCandidates; 475 break; 476 477 case OR_Deleted: 478 msg = diag::err_ovl_deleted_conversion_in_cast; 479 howManyCandidates = OCD_ViableCandidates; 480 break; 481 } 482 483 candidates.NoteCandidates( 484 PartialDiagnosticAt(range.getBegin(), 485 S.PDiag(msg) << CT << srcType << destType << range 486 << src->getSourceRange()), 487 S, howManyCandidates, src); 488 489 return true; 490 } 491 492 /// Diagnose a failed cast. 493 static void diagnoseBadCast(Sema &S, unsigned msg, CastType castType, 494 SourceRange opRange, Expr *src, QualType destType, 495 bool listInitialization) { 496 if (msg == diag::err_bad_cxx_cast_generic && 497 tryDiagnoseOverloadedCast(S, castType, opRange, src, destType, 498 listInitialization)) 499 return; 500 501 S.Diag(opRange.getBegin(), msg) << castType 502 << src->getType() << destType << opRange << src->getSourceRange(); 503 504 // Detect if both types are (ptr to) class, and note any incompleteness. 505 int DifferentPtrness = 0; 506 QualType From = destType; 507 if (auto Ptr = From->getAs<PointerType>()) { 508 From = Ptr->getPointeeType(); 509 DifferentPtrness++; 510 } 511 QualType To = src->getType(); 512 if (auto Ptr = To->getAs<PointerType>()) { 513 To = Ptr->getPointeeType(); 514 DifferentPtrness--; 515 } 516 if (!DifferentPtrness) { 517 auto RecFrom = From->getAs<RecordType>(); 518 auto RecTo = To->getAs<RecordType>(); 519 if (RecFrom && RecTo) { 520 auto DeclFrom = RecFrom->getAsCXXRecordDecl(); 521 if (!DeclFrom->isCompleteDefinition()) 522 S.Diag(DeclFrom->getLocation(), diag::note_type_incomplete) << DeclFrom; 523 auto DeclTo = RecTo->getAsCXXRecordDecl(); 524 if (!DeclTo->isCompleteDefinition()) 525 S.Diag(DeclTo->getLocation(), diag::note_type_incomplete) << DeclTo; 526 } 527 } 528 } 529 530 namespace { 531 /// The kind of unwrapping we did when determining whether a conversion casts 532 /// away constness. 533 enum CastAwayConstnessKind { 534 /// The conversion does not cast away constness. 535 CACK_None = 0, 536 /// We unwrapped similar types. 537 CACK_Similar = 1, 538 /// We unwrapped dissimilar types with similar representations (eg, a pointer 539 /// versus an Objective-C object pointer). 540 CACK_SimilarKind = 2, 541 /// We unwrapped representationally-unrelated types, such as a pointer versus 542 /// a pointer-to-member. 543 CACK_Incoherent = 3, 544 }; 545 } 546 547 /// Unwrap one level of types for CastsAwayConstness. 548 /// 549 /// Like Sema::UnwrapSimilarTypes, this removes one level of indirection from 550 /// both types, provided that they're both pointer-like or array-like. Unlike 551 /// the Sema function, doesn't care if the unwrapped pieces are related. 552 /// 553 /// This function may remove additional levels as necessary for correctness: 554 /// the resulting T1 is unwrapped sufficiently that it is never an array type, 555 /// so that its qualifiers can be directly compared to those of T2 (which will 556 /// have the combined set of qualifiers from all indermediate levels of T2), 557 /// as (effectively) required by [expr.const.cast]p7 replacing T1's qualifiers 558 /// with those from T2. 559 static CastAwayConstnessKind 560 unwrapCastAwayConstnessLevel(ASTContext &Context, QualType &T1, QualType &T2) { 561 enum { None, Ptr, MemPtr, BlockPtr, Array }; 562 auto Classify = [](QualType T) { 563 if (T->isAnyPointerType()) return Ptr; 564 if (T->isMemberPointerType()) return MemPtr; 565 if (T->isBlockPointerType()) return BlockPtr; 566 // We somewhat-arbitrarily don't look through VLA types here. This is at 567 // least consistent with the behavior of UnwrapSimilarTypes. 568 if (T->isConstantArrayType() || T->isIncompleteArrayType()) return Array; 569 return None; 570 }; 571 572 auto Unwrap = [&](QualType T) { 573 if (auto *AT = Context.getAsArrayType(T)) 574 return AT->getElementType(); 575 return T->getPointeeType(); 576 }; 577 578 CastAwayConstnessKind Kind; 579 580 if (T2->isReferenceType()) { 581 // Special case: if the destination type is a reference type, unwrap it as 582 // the first level. (The source will have been an lvalue expression in this 583 // case, so there is no corresponding "reference to" in T1 to remove.) This 584 // simulates removing a "pointer to" from both sides. 585 T2 = T2->getPointeeType(); 586 Kind = CastAwayConstnessKind::CACK_Similar; 587 } else if (Context.UnwrapSimilarTypes(T1, T2)) { 588 Kind = CastAwayConstnessKind::CACK_Similar; 589 } else { 590 // Try unwrapping mismatching levels. 591 int T1Class = Classify(T1); 592 if (T1Class == None) 593 return CastAwayConstnessKind::CACK_None; 594 595 int T2Class = Classify(T2); 596 if (T2Class == None) 597 return CastAwayConstnessKind::CACK_None; 598 599 T1 = Unwrap(T1); 600 T2 = Unwrap(T2); 601 Kind = T1Class == T2Class ? CastAwayConstnessKind::CACK_SimilarKind 602 : CastAwayConstnessKind::CACK_Incoherent; 603 } 604 605 // We've unwrapped at least one level. If the resulting T1 is a (possibly 606 // multidimensional) array type, any qualifier on any matching layer of 607 // T2 is considered to correspond to T1. Decompose down to the element 608 // type of T1 so that we can compare properly. 609 while (true) { 610 Context.UnwrapSimilarArrayTypes(T1, T2); 611 612 if (Classify(T1) != Array) 613 break; 614 615 auto T2Class = Classify(T2); 616 if (T2Class == None) 617 break; 618 619 if (T2Class != Array) 620 Kind = CastAwayConstnessKind::CACK_Incoherent; 621 else if (Kind != CastAwayConstnessKind::CACK_Incoherent) 622 Kind = CastAwayConstnessKind::CACK_SimilarKind; 623 624 T1 = Unwrap(T1); 625 T2 = Unwrap(T2).withCVRQualifiers(T2.getCVRQualifiers()); 626 } 627 628 return Kind; 629 } 630 631 /// Check if the pointer conversion from SrcType to DestType casts away 632 /// constness as defined in C++ [expr.const.cast]. This is used by the cast 633 /// checkers. Both arguments must denote pointer (possibly to member) types. 634 /// 635 /// \param CheckCVR Whether to check for const/volatile/restrict qualifiers. 636 /// \param CheckObjCLifetime Whether to check Objective-C lifetime qualifiers. 637 static CastAwayConstnessKind 638 CastsAwayConstness(Sema &Self, QualType SrcType, QualType DestType, 639 bool CheckCVR, bool CheckObjCLifetime, 640 QualType *TheOffendingSrcType = nullptr, 641 QualType *TheOffendingDestType = nullptr, 642 Qualifiers *CastAwayQualifiers = nullptr) { 643 // If the only checking we care about is for Objective-C lifetime qualifiers, 644 // and we're not in ObjC mode, there's nothing to check. 645 if (!CheckCVR && CheckObjCLifetime && !Self.Context.getLangOpts().ObjC) 646 return CastAwayConstnessKind::CACK_None; 647 648 if (!DestType->isReferenceType()) { 649 assert((SrcType->isAnyPointerType() || SrcType->isMemberPointerType() || 650 SrcType->isBlockPointerType()) && 651 "Source type is not pointer or pointer to member."); 652 assert((DestType->isAnyPointerType() || DestType->isMemberPointerType() || 653 DestType->isBlockPointerType()) && 654 "Destination type is not pointer or pointer to member."); 655 } 656 657 QualType UnwrappedSrcType = Self.Context.getCanonicalType(SrcType), 658 UnwrappedDestType = Self.Context.getCanonicalType(DestType); 659 660 // Find the qualifiers. We only care about cvr-qualifiers for the 661 // purpose of this check, because other qualifiers (address spaces, 662 // Objective-C GC, etc.) are part of the type's identity. 663 QualType PrevUnwrappedSrcType = UnwrappedSrcType; 664 QualType PrevUnwrappedDestType = UnwrappedDestType; 665 auto WorstKind = CastAwayConstnessKind::CACK_Similar; 666 bool AllConstSoFar = true; 667 while (auto Kind = unwrapCastAwayConstnessLevel( 668 Self.Context, UnwrappedSrcType, UnwrappedDestType)) { 669 // Track the worst kind of unwrap we needed to do before we found a 670 // problem. 671 if (Kind > WorstKind) 672 WorstKind = Kind; 673 674 // Determine the relevant qualifiers at this level. 675 Qualifiers SrcQuals, DestQuals; 676 Self.Context.getUnqualifiedArrayType(UnwrappedSrcType, SrcQuals); 677 Self.Context.getUnqualifiedArrayType(UnwrappedDestType, DestQuals); 678 679 // We do not meaningfully track object const-ness of Objective-C object 680 // types. Remove const from the source type if either the source or 681 // the destination is an Objective-C object type. 682 if (UnwrappedSrcType->isObjCObjectType() || 683 UnwrappedDestType->isObjCObjectType()) 684 SrcQuals.removeConst(); 685 686 if (CheckCVR) { 687 Qualifiers SrcCvrQuals = 688 Qualifiers::fromCVRMask(SrcQuals.getCVRQualifiers()); 689 Qualifiers DestCvrQuals = 690 Qualifiers::fromCVRMask(DestQuals.getCVRQualifiers()); 691 692 if (SrcCvrQuals != DestCvrQuals) { 693 if (CastAwayQualifiers) 694 *CastAwayQualifiers = SrcCvrQuals - DestCvrQuals; 695 696 // If we removed a cvr-qualifier, this is casting away 'constness'. 697 if (!DestCvrQuals.compatiblyIncludes(SrcCvrQuals)) { 698 if (TheOffendingSrcType) 699 *TheOffendingSrcType = PrevUnwrappedSrcType; 700 if (TheOffendingDestType) 701 *TheOffendingDestType = PrevUnwrappedDestType; 702 return WorstKind; 703 } 704 705 // If any prior level was not 'const', this is also casting away 706 // 'constness'. We noted the outermost type missing a 'const' already. 707 if (!AllConstSoFar) 708 return WorstKind; 709 } 710 } 711 712 if (CheckObjCLifetime && 713 !DestQuals.compatiblyIncludesObjCLifetime(SrcQuals)) 714 return WorstKind; 715 716 // If we found our first non-const-qualified type, this may be the place 717 // where things start to go wrong. 718 if (AllConstSoFar && !DestQuals.hasConst()) { 719 AllConstSoFar = false; 720 if (TheOffendingSrcType) 721 *TheOffendingSrcType = PrevUnwrappedSrcType; 722 if (TheOffendingDestType) 723 *TheOffendingDestType = PrevUnwrappedDestType; 724 } 725 726 PrevUnwrappedSrcType = UnwrappedSrcType; 727 PrevUnwrappedDestType = UnwrappedDestType; 728 } 729 730 return CastAwayConstnessKind::CACK_None; 731 } 732 733 static TryCastResult getCastAwayConstnessCastKind(CastAwayConstnessKind CACK, 734 unsigned &DiagID) { 735 switch (CACK) { 736 case CastAwayConstnessKind::CACK_None: 737 llvm_unreachable("did not cast away constness"); 738 739 case CastAwayConstnessKind::CACK_Similar: 740 // FIXME: Accept these as an extension too? 741 case CastAwayConstnessKind::CACK_SimilarKind: 742 DiagID = diag::err_bad_cxx_cast_qualifiers_away; 743 return TC_Failed; 744 745 case CastAwayConstnessKind::CACK_Incoherent: 746 DiagID = diag::ext_bad_cxx_cast_qualifiers_away_incoherent; 747 return TC_Extension; 748 } 749 750 llvm_unreachable("unexpected cast away constness kind"); 751 } 752 753 /// CheckDynamicCast - Check that a dynamic_cast\<DestType\>(SrcExpr) is valid. 754 /// Refer to C++ 5.2.7 for details. Dynamic casts are used mostly for runtime- 755 /// checked downcasts in class hierarchies. 756 void CastOperation::CheckDynamicCast() { 757 CheckNoDerefRAII NoderefCheck(*this); 758 759 if (ValueKind == VK_PRValue) 760 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 761 else if (isPlaceholder()) 762 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 763 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 764 return; 765 766 QualType OrigSrcType = SrcExpr.get()->getType(); 767 QualType DestType = Self.Context.getCanonicalType(this->DestType); 768 769 // C++ 5.2.7p1: T shall be a pointer or reference to a complete class type, 770 // or "pointer to cv void". 771 772 QualType DestPointee; 773 const PointerType *DestPointer = DestType->getAs<PointerType>(); 774 const ReferenceType *DestReference = nullptr; 775 if (DestPointer) { 776 DestPointee = DestPointer->getPointeeType(); 777 } else if ((DestReference = DestType->getAs<ReferenceType>())) { 778 DestPointee = DestReference->getPointeeType(); 779 } else { 780 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ref_or_ptr) 781 << this->DestType << DestRange; 782 SrcExpr = ExprError(); 783 return; 784 } 785 786 const RecordType *DestRecord = DestPointee->getAs<RecordType>(); 787 if (DestPointee->isVoidType()) { 788 assert(DestPointer && "Reference to void is not possible"); 789 } else if (DestRecord) { 790 if (Self.RequireCompleteType(OpRange.getBegin(), DestPointee, 791 diag::err_bad_cast_incomplete, 792 DestRange)) { 793 SrcExpr = ExprError(); 794 return; 795 } 796 } else { 797 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 798 << DestPointee.getUnqualifiedType() << DestRange; 799 SrcExpr = ExprError(); 800 return; 801 } 802 803 // C++0x 5.2.7p2: If T is a pointer type, v shall be an rvalue of a pointer to 804 // complete class type, [...]. If T is an lvalue reference type, v shall be 805 // an lvalue of a complete class type, [...]. If T is an rvalue reference 806 // type, v shall be an expression having a complete class type, [...] 807 QualType SrcType = Self.Context.getCanonicalType(OrigSrcType); 808 QualType SrcPointee; 809 if (DestPointer) { 810 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 811 SrcPointee = SrcPointer->getPointeeType(); 812 } else { 813 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_ptr) 814 << OrigSrcType << this->DestType << SrcExpr.get()->getSourceRange(); 815 SrcExpr = ExprError(); 816 return; 817 } 818 } else if (DestReference->isLValueReferenceType()) { 819 if (!SrcExpr.get()->isLValue()) { 820 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_rvalue) 821 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 822 } 823 SrcPointee = SrcType; 824 } else { 825 // If we're dynamic_casting from a prvalue to an rvalue reference, we need 826 // to materialize the prvalue before we bind the reference to it. 827 if (SrcExpr.get()->isPRValue()) 828 SrcExpr = Self.CreateMaterializeTemporaryExpr( 829 SrcType, SrcExpr.get(), /*IsLValueReference*/ false); 830 SrcPointee = SrcType; 831 } 832 833 const RecordType *SrcRecord = SrcPointee->getAs<RecordType>(); 834 if (SrcRecord) { 835 if (Self.RequireCompleteType(OpRange.getBegin(), SrcPointee, 836 diag::err_bad_cast_incomplete, 837 SrcExpr.get())) { 838 SrcExpr = ExprError(); 839 return; 840 } 841 } else { 842 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_class) 843 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 844 SrcExpr = ExprError(); 845 return; 846 } 847 848 assert((DestPointer || DestReference) && 849 "Bad destination non-ptr/ref slipped through."); 850 assert((DestRecord || DestPointee->isVoidType()) && 851 "Bad destination pointee slipped through."); 852 assert(SrcRecord && "Bad source pointee slipped through."); 853 854 // C++ 5.2.7p1: The dynamic_cast operator shall not cast away constness. 855 if (!DestPointee.isAtLeastAsQualifiedAs(SrcPointee)) { 856 Self.Diag(OpRange.getBegin(), diag::err_bad_cxx_cast_qualifiers_away) 857 << CT_Dynamic << OrigSrcType << this->DestType << OpRange; 858 SrcExpr = ExprError(); 859 return; 860 } 861 862 // C++ 5.2.7p3: If the type of v is the same as the required result type, 863 // [except for cv]. 864 if (DestRecord == SrcRecord) { 865 Kind = CK_NoOp; 866 return; 867 } 868 869 // C++ 5.2.7p5 870 // Upcasts are resolved statically. 871 if (DestRecord && 872 Self.IsDerivedFrom(OpRange.getBegin(), SrcPointee, DestPointee)) { 873 if (Self.CheckDerivedToBaseConversion(SrcPointee, DestPointee, 874 OpRange.getBegin(), OpRange, 875 &BasePath)) { 876 SrcExpr = ExprError(); 877 return; 878 } 879 880 Kind = CK_DerivedToBase; 881 return; 882 } 883 884 // C++ 5.2.7p6: Otherwise, v shall be [polymorphic]. 885 const RecordDecl *SrcDecl = SrcRecord->getDecl()->getDefinition(); 886 assert(SrcDecl && "Definition missing"); 887 if (!cast<CXXRecordDecl>(SrcDecl)->isPolymorphic()) { 888 Self.Diag(OpRange.getBegin(), diag::err_bad_dynamic_cast_not_polymorphic) 889 << SrcPointee.getUnqualifiedType() << SrcExpr.get()->getSourceRange(); 890 SrcExpr = ExprError(); 891 } 892 893 // dynamic_cast is not available with -fno-rtti. 894 // As an exception, dynamic_cast to void* is available because it doesn't 895 // use RTTI. 896 if (!Self.getLangOpts().RTTI && !DestPointee->isVoidType()) { 897 Self.Diag(OpRange.getBegin(), diag::err_no_dynamic_cast_with_fno_rtti); 898 SrcExpr = ExprError(); 899 return; 900 } 901 902 // Warns when dynamic_cast is used with RTTI data disabled. 903 if (!Self.getLangOpts().RTTIData) { 904 bool MicrosoftABI = 905 Self.getASTContext().getTargetInfo().getCXXABI().isMicrosoft(); 906 bool isClangCL = Self.getDiagnostics().getDiagnosticOptions().getFormat() == 907 DiagnosticOptions::MSVC; 908 if (MicrosoftABI || !DestPointee->isVoidType()) 909 Self.Diag(OpRange.getBegin(), 910 diag::warn_no_dynamic_cast_with_rtti_disabled) 911 << isClangCL; 912 } 913 914 // Done. Everything else is run-time checks. 915 Kind = CK_Dynamic; 916 } 917 918 /// CheckConstCast - Check that a const_cast\<DestType\>(SrcExpr) is valid. 919 /// Refer to C++ 5.2.11 for details. const_cast is typically used in code 920 /// like this: 921 /// const char *str = "literal"; 922 /// legacy_function(const_cast\<char*\>(str)); 923 void CastOperation::CheckConstCast() { 924 CheckNoDerefRAII NoderefCheck(*this); 925 926 if (ValueKind == VK_PRValue) 927 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 928 else if (isPlaceholder()) 929 SrcExpr = Self.CheckPlaceholderExpr(SrcExpr.get()); 930 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 931 return; 932 933 unsigned msg = diag::err_bad_cxx_cast_generic; 934 auto TCR = TryConstCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg); 935 if (TCR != TC_Success && msg != 0) { 936 Self.Diag(OpRange.getBegin(), msg) << CT_Const 937 << SrcExpr.get()->getType() << DestType << OpRange; 938 } 939 if (!isValidCast(TCR)) 940 SrcExpr = ExprError(); 941 } 942 943 void CastOperation::CheckAddrspaceCast() { 944 unsigned msg = diag::err_bad_cxx_cast_generic; 945 auto TCR = 946 TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ false, msg, Kind); 947 if (TCR != TC_Success && msg != 0) { 948 Self.Diag(OpRange.getBegin(), msg) 949 << CT_Addrspace << SrcExpr.get()->getType() << DestType << OpRange; 950 } 951 if (!isValidCast(TCR)) 952 SrcExpr = ExprError(); 953 } 954 955 /// Check that a reinterpret_cast\<DestType\>(SrcExpr) is not used as upcast 956 /// or downcast between respective pointers or references. 957 static void DiagnoseReinterpretUpDownCast(Sema &Self, const Expr *SrcExpr, 958 QualType DestType, 959 SourceRange OpRange) { 960 QualType SrcType = SrcExpr->getType(); 961 // When casting from pointer or reference, get pointee type; use original 962 // type otherwise. 963 const CXXRecordDecl *SrcPointeeRD = SrcType->getPointeeCXXRecordDecl(); 964 const CXXRecordDecl *SrcRD = 965 SrcPointeeRD ? SrcPointeeRD : SrcType->getAsCXXRecordDecl(); 966 967 // Examining subobjects for records is only possible if the complete and 968 // valid definition is available. Also, template instantiation is not 969 // allowed here. 970 if (!SrcRD || !SrcRD->isCompleteDefinition() || SrcRD->isInvalidDecl()) 971 return; 972 973 const CXXRecordDecl *DestRD = DestType->getPointeeCXXRecordDecl(); 974 975 if (!DestRD || !DestRD->isCompleteDefinition() || DestRD->isInvalidDecl()) 976 return; 977 978 enum { 979 ReinterpretUpcast, 980 ReinterpretDowncast 981 } ReinterpretKind; 982 983 CXXBasePaths BasePaths; 984 985 if (SrcRD->isDerivedFrom(DestRD, BasePaths)) 986 ReinterpretKind = ReinterpretUpcast; 987 else if (DestRD->isDerivedFrom(SrcRD, BasePaths)) 988 ReinterpretKind = ReinterpretDowncast; 989 else 990 return; 991 992 bool VirtualBase = true; 993 bool NonZeroOffset = false; 994 for (CXXBasePaths::const_paths_iterator I = BasePaths.begin(), 995 E = BasePaths.end(); 996 I != E; ++I) { 997 const CXXBasePath &Path = *I; 998 CharUnits Offset = CharUnits::Zero(); 999 bool IsVirtual = false; 1000 for (CXXBasePath::const_iterator IElem = Path.begin(), EElem = Path.end(); 1001 IElem != EElem; ++IElem) { 1002 IsVirtual = IElem->Base->isVirtual(); 1003 if (IsVirtual) 1004 break; 1005 const CXXRecordDecl *BaseRD = IElem->Base->getType()->getAsCXXRecordDecl(); 1006 assert(BaseRD && "Base type should be a valid unqualified class type"); 1007 // Don't check if any base has invalid declaration or has no definition 1008 // since it has no layout info. 1009 const CXXRecordDecl *Class = IElem->Class, 1010 *ClassDefinition = Class->getDefinition(); 1011 if (Class->isInvalidDecl() || !ClassDefinition || 1012 !ClassDefinition->isCompleteDefinition()) 1013 return; 1014 1015 const ASTRecordLayout &DerivedLayout = 1016 Self.Context.getASTRecordLayout(Class); 1017 Offset += DerivedLayout.getBaseClassOffset(BaseRD); 1018 } 1019 if (!IsVirtual) { 1020 // Don't warn if any path is a non-virtually derived base at offset zero. 1021 if (Offset.isZero()) 1022 return; 1023 // Offset makes sense only for non-virtual bases. 1024 else 1025 NonZeroOffset = true; 1026 } 1027 VirtualBase = VirtualBase && IsVirtual; 1028 } 1029 1030 (void) NonZeroOffset; // Silence set but not used warning. 1031 assert((VirtualBase || NonZeroOffset) && 1032 "Should have returned if has non-virtual base with zero offset"); 1033 1034 QualType BaseType = 1035 ReinterpretKind == ReinterpretUpcast? DestType : SrcType; 1036 QualType DerivedType = 1037 ReinterpretKind == ReinterpretUpcast? SrcType : DestType; 1038 1039 SourceLocation BeginLoc = OpRange.getBegin(); 1040 Self.Diag(BeginLoc, diag::warn_reinterpret_different_from_static) 1041 << DerivedType << BaseType << !VirtualBase << int(ReinterpretKind) 1042 << OpRange; 1043 Self.Diag(BeginLoc, diag::note_reinterpret_updowncast_use_static) 1044 << int(ReinterpretKind) 1045 << FixItHint::CreateReplacement(BeginLoc, "static_cast"); 1046 } 1047 1048 static bool argTypeIsABIEquivalent(QualType SrcType, QualType DestType, 1049 ASTContext &Context) { 1050 if (SrcType->isPointerType() && DestType->isPointerType()) 1051 return true; 1052 1053 // Allow integral type mismatch if their size are equal. 1054 if (SrcType->isIntegralType(Context) && DestType->isIntegralType(Context)) 1055 if (Context.getTypeInfoInChars(SrcType).Width == 1056 Context.getTypeInfoInChars(DestType).Width) 1057 return true; 1058 1059 return Context.hasSameUnqualifiedType(SrcType, DestType); 1060 } 1061 1062 static bool checkCastFunctionType(Sema &Self, const ExprResult &SrcExpr, 1063 QualType DestType) { 1064 if (Self.Diags.isIgnored(diag::warn_cast_function_type, 1065 SrcExpr.get()->getExprLoc())) 1066 return true; 1067 1068 QualType SrcType = SrcExpr.get()->getType(); 1069 const FunctionType *SrcFTy = nullptr; 1070 const FunctionType *DstFTy = nullptr; 1071 if (((SrcType->isBlockPointerType() || SrcType->isFunctionPointerType()) && 1072 DestType->isFunctionPointerType()) || 1073 (SrcType->isMemberFunctionPointerType() && 1074 DestType->isMemberFunctionPointerType())) { 1075 SrcFTy = SrcType->getPointeeType()->castAs<FunctionType>(); 1076 DstFTy = DestType->getPointeeType()->castAs<FunctionType>(); 1077 } else if (SrcType->isFunctionType() && DestType->isFunctionReferenceType()) { 1078 SrcFTy = SrcType->castAs<FunctionType>(); 1079 DstFTy = DestType.getNonReferenceType()->castAs<FunctionType>(); 1080 } else { 1081 return true; 1082 } 1083 assert(SrcFTy && DstFTy); 1084 1085 auto IsVoidVoid = [](const FunctionType *T) { 1086 if (!T->getReturnType()->isVoidType()) 1087 return false; 1088 if (const auto *PT = T->getAs<FunctionProtoType>()) 1089 return !PT->isVariadic() && PT->getNumParams() == 0; 1090 return false; 1091 }; 1092 1093 // Skip if either function type is void(*)(void) 1094 if (IsVoidVoid(SrcFTy) || IsVoidVoid(DstFTy)) 1095 return true; 1096 1097 // Check return type. 1098 if (!argTypeIsABIEquivalent(SrcFTy->getReturnType(), DstFTy->getReturnType(), 1099 Self.Context)) 1100 return false; 1101 1102 // Check if either has unspecified number of parameters 1103 if (SrcFTy->isFunctionNoProtoType() || DstFTy->isFunctionNoProtoType()) 1104 return true; 1105 1106 // Check parameter types. 1107 1108 const auto *SrcFPTy = cast<FunctionProtoType>(SrcFTy); 1109 const auto *DstFPTy = cast<FunctionProtoType>(DstFTy); 1110 1111 // In a cast involving function types with a variable argument list only the 1112 // types of initial arguments that are provided are considered. 1113 unsigned NumParams = SrcFPTy->getNumParams(); 1114 unsigned DstNumParams = DstFPTy->getNumParams(); 1115 if (NumParams > DstNumParams) { 1116 if (!DstFPTy->isVariadic()) 1117 return false; 1118 NumParams = DstNumParams; 1119 } else if (NumParams < DstNumParams) { 1120 if (!SrcFPTy->isVariadic()) 1121 return false; 1122 } 1123 1124 for (unsigned i = 0; i < NumParams; ++i) 1125 if (!argTypeIsABIEquivalent(SrcFPTy->getParamType(i), 1126 DstFPTy->getParamType(i), Self.Context)) 1127 return false; 1128 1129 return true; 1130 } 1131 1132 /// CheckReinterpretCast - Check that a reinterpret_cast\<DestType\>(SrcExpr) is 1133 /// valid. 1134 /// Refer to C++ 5.2.10 for details. reinterpret_cast is typically used in code 1135 /// like this: 1136 /// char *bytes = reinterpret_cast\<char*\>(int_ptr); 1137 void CastOperation::CheckReinterpretCast() { 1138 if (ValueKind == VK_PRValue && !isPlaceholder(BuiltinType::Overload)) 1139 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1140 else 1141 checkNonOverloadPlaceholders(); 1142 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1143 return; 1144 1145 unsigned msg = diag::err_bad_cxx_cast_generic; 1146 TryCastResult tcr = 1147 TryReinterpretCast(Self, SrcExpr, DestType, 1148 /*CStyle*/false, OpRange, msg, Kind); 1149 if (tcr != TC_Success && msg != 0) { 1150 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1151 return; 1152 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1153 //FIXME: &f<int>; is overloaded and resolvable 1154 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_overload) 1155 << OverloadExpr::find(SrcExpr.get()).Expression->getName() 1156 << DestType << OpRange; 1157 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1158 1159 } else { 1160 diagnoseBadCast(Self, msg, CT_Reinterpret, OpRange, SrcExpr.get(), 1161 DestType, /*listInitialization=*/false); 1162 } 1163 } 1164 1165 if (isValidCast(tcr)) { 1166 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1167 checkObjCConversion(Sema::CCK_OtherCast); 1168 DiagnoseReinterpretUpDownCast(Self, SrcExpr.get(), DestType, OpRange); 1169 1170 if (!checkCastFunctionType(Self, SrcExpr, DestType)) 1171 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type) 1172 << SrcExpr.get()->getType() << DestType << OpRange; 1173 } else { 1174 SrcExpr = ExprError(); 1175 } 1176 } 1177 1178 1179 /// CheckStaticCast - Check that a static_cast\<DestType\>(SrcExpr) is valid. 1180 /// Refer to C++ 5.2.9 for details. Static casts are mostly used for making 1181 /// implicit conversions explicit and getting rid of data loss warnings. 1182 void CastOperation::CheckStaticCast() { 1183 CheckNoDerefRAII NoderefCheck(*this); 1184 1185 if (isPlaceholder()) { 1186 checkNonOverloadPlaceholders(); 1187 if (SrcExpr.isInvalid()) 1188 return; 1189 } 1190 1191 // This test is outside everything else because it's the only case where 1192 // a non-lvalue-reference target type does not lead to decay. 1193 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1194 if (DestType->isVoidType()) { 1195 Kind = CK_ToVoid; 1196 1197 if (claimPlaceholder(BuiltinType::Overload)) { 1198 Self.ResolveAndFixSingleFunctionTemplateSpecialization(SrcExpr, 1199 false, // Decay Function to ptr 1200 true, // Complain 1201 OpRange, DestType, diag::err_bad_static_cast_overload); 1202 if (SrcExpr.isInvalid()) 1203 return; 1204 } 1205 1206 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 1207 return; 1208 } 1209 1210 if (ValueKind == VK_PRValue && !DestType->isRecordType() && 1211 !isPlaceholder(BuiltinType::Overload)) { 1212 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 1213 if (SrcExpr.isInvalid()) // if conversion failed, don't report another error 1214 return; 1215 } 1216 1217 unsigned msg = diag::err_bad_cxx_cast_generic; 1218 TryCastResult tcr 1219 = TryStaticCast(Self, SrcExpr, DestType, Sema::CCK_OtherCast, OpRange, msg, 1220 Kind, BasePath, /*ListInitialization=*/false); 1221 if (tcr != TC_Success && msg != 0) { 1222 if (SrcExpr.isInvalid()) 1223 return; 1224 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1225 OverloadExpr* oe = OverloadExpr::find(SrcExpr.get()).Expression; 1226 Self.Diag(OpRange.getBegin(), diag::err_bad_static_cast_overload) 1227 << oe->getName() << DestType << OpRange 1228 << oe->getQualifierLoc().getSourceRange(); 1229 Self.NoteAllOverloadCandidates(SrcExpr.get()); 1230 } else { 1231 diagnoseBadCast(Self, msg, CT_Static, OpRange, SrcExpr.get(), DestType, 1232 /*listInitialization=*/false); 1233 } 1234 } 1235 1236 if (isValidCast(tcr)) { 1237 if (Kind == CK_BitCast) 1238 checkCastAlign(); 1239 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) 1240 checkObjCConversion(Sema::CCK_OtherCast); 1241 } else { 1242 SrcExpr = ExprError(); 1243 } 1244 } 1245 1246 static bool IsAddressSpaceConversion(QualType SrcType, QualType DestType) { 1247 auto *SrcPtrType = SrcType->getAs<PointerType>(); 1248 if (!SrcPtrType) 1249 return false; 1250 auto *DestPtrType = DestType->getAs<PointerType>(); 1251 if (!DestPtrType) 1252 return false; 1253 return SrcPtrType->getPointeeType().getAddressSpace() != 1254 DestPtrType->getPointeeType().getAddressSpace(); 1255 } 1256 1257 /// TryStaticCast - Check if a static cast can be performed, and do so if 1258 /// possible. If @p CStyle, ignore access restrictions on hierarchy casting 1259 /// and casting away constness. 1260 static TryCastResult TryStaticCast(Sema &Self, ExprResult &SrcExpr, 1261 QualType DestType, 1262 Sema::CheckedConversionKind CCK, 1263 SourceRange OpRange, unsigned &msg, 1264 CastKind &Kind, CXXCastPath &BasePath, 1265 bool ListInitialization) { 1266 // Determine whether we have the semantics of a C-style cast. 1267 bool CStyle 1268 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1269 1270 // The order the tests is not entirely arbitrary. There is one conversion 1271 // that can be handled in two different ways. Given: 1272 // struct A {}; 1273 // struct B : public A { 1274 // B(); B(const A&); 1275 // }; 1276 // const A &a = B(); 1277 // the cast static_cast<const B&>(a) could be seen as either a static 1278 // reference downcast, or an explicit invocation of the user-defined 1279 // conversion using B's conversion constructor. 1280 // DR 427 specifies that the downcast is to be applied here. 1281 1282 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 1283 // Done outside this function. 1284 1285 TryCastResult tcr; 1286 1287 // C++ 5.2.9p5, reference downcast. 1288 // See the function for details. 1289 // DR 427 specifies that this is to be applied before paragraph 2. 1290 tcr = TryStaticReferenceDowncast(Self, SrcExpr.get(), DestType, CStyle, 1291 OpRange, msg, Kind, BasePath); 1292 if (tcr != TC_NotApplicable) 1293 return tcr; 1294 1295 // C++11 [expr.static.cast]p3: 1296 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to cv2 1297 // T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1298 tcr = TryLValueToRValueCast(Self, SrcExpr.get(), DestType, CStyle, Kind, 1299 BasePath, msg); 1300 if (tcr != TC_NotApplicable) 1301 return tcr; 1302 1303 // C++ 5.2.9p2: An expression e can be explicitly converted to a type T 1304 // [...] if the declaration "T t(e);" is well-formed, [...]. 1305 tcr = TryStaticImplicitCast(Self, SrcExpr, DestType, CCK, OpRange, msg, 1306 Kind, ListInitialization); 1307 if (SrcExpr.isInvalid()) 1308 return TC_Failed; 1309 if (tcr != TC_NotApplicable) 1310 return tcr; 1311 1312 // C++ 5.2.9p6: May apply the reverse of any standard conversion, except 1313 // lvalue-to-rvalue, array-to-pointer, function-to-pointer, and boolean 1314 // conversions, subject to further restrictions. 1315 // Also, C++ 5.2.9p1 forbids casting away constness, which makes reversal 1316 // of qualification conversions impossible. (In C++20, adding an array bound 1317 // would be the reverse of a qualification conversion, but adding permission 1318 // to add an array bound in a static_cast is a wording oversight.) 1319 // In the CStyle case, the earlier attempt to const_cast should have taken 1320 // care of reverse qualification conversions. 1321 1322 QualType SrcType = Self.Context.getCanonicalType(SrcExpr.get()->getType()); 1323 1324 // C++0x 5.2.9p9: A value of a scoped enumeration type can be explicitly 1325 // converted to an integral type. [...] A value of a scoped enumeration type 1326 // can also be explicitly converted to a floating-point type [...]. 1327 if (const EnumType *Enum = SrcType->getAs<EnumType>()) { 1328 if (Enum->getDecl()->isScoped()) { 1329 if (DestType->isBooleanType()) { 1330 Kind = CK_IntegralToBoolean; 1331 return TC_Success; 1332 } else if (DestType->isIntegralType(Self.Context)) { 1333 Kind = CK_IntegralCast; 1334 return TC_Success; 1335 } else if (DestType->isRealFloatingType()) { 1336 Kind = CK_IntegralToFloating; 1337 return TC_Success; 1338 } 1339 } 1340 } 1341 1342 // Reverse integral promotion/conversion. All such conversions are themselves 1343 // again integral promotions or conversions and are thus already handled by 1344 // p2 (TryDirectInitialization above). 1345 // (Note: any data loss warnings should be suppressed.) 1346 // The exception is the reverse of enum->integer, i.e. integer->enum (and 1347 // enum->enum). See also C++ 5.2.9p7. 1348 // The same goes for reverse floating point promotion/conversion and 1349 // floating-integral conversions. Again, only floating->enum is relevant. 1350 if (DestType->isEnumeralType()) { 1351 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1352 diag::err_bad_cast_incomplete)) { 1353 SrcExpr = ExprError(); 1354 return TC_Failed; 1355 } 1356 if (SrcType->isIntegralOrEnumerationType()) { 1357 // [expr.static.cast]p10 If the enumeration type has a fixed underlying 1358 // type, the value is first converted to that type by integral conversion 1359 const EnumType *Enum = DestType->getAs<EnumType>(); 1360 Kind = Enum->getDecl()->isFixed() && 1361 Enum->getDecl()->getIntegerType()->isBooleanType() 1362 ? CK_IntegralToBoolean 1363 : CK_IntegralCast; 1364 return TC_Success; 1365 } else if (SrcType->isRealFloatingType()) { 1366 Kind = CK_FloatingToIntegral; 1367 return TC_Success; 1368 } 1369 } 1370 1371 // Reverse pointer upcast. C++ 4.10p3 specifies pointer upcast. 1372 // C++ 5.2.9p8 additionally disallows a cast path through virtual inheritance. 1373 tcr = TryStaticPointerDowncast(Self, SrcType, DestType, CStyle, OpRange, msg, 1374 Kind, BasePath); 1375 if (tcr != TC_NotApplicable) 1376 return tcr; 1377 1378 // Reverse member pointer conversion. C++ 4.11 specifies member pointer 1379 // conversion. C++ 5.2.9p9 has additional information. 1380 // DR54's access restrictions apply here also. 1381 tcr = TryStaticMemberPointerUpcast(Self, SrcExpr, SrcType, DestType, CStyle, 1382 OpRange, msg, Kind, BasePath); 1383 if (tcr != TC_NotApplicable) 1384 return tcr; 1385 1386 // Reverse pointer conversion to void*. C++ 4.10.p2 specifies conversion to 1387 // void*. C++ 5.2.9p10 specifies additional restrictions, which really is 1388 // just the usual constness stuff. 1389 if (const PointerType *SrcPointer = SrcType->getAs<PointerType>()) { 1390 QualType SrcPointee = SrcPointer->getPointeeType(); 1391 if (SrcPointee->isVoidType()) { 1392 if (const PointerType *DestPointer = DestType->getAs<PointerType>()) { 1393 QualType DestPointee = DestPointer->getPointeeType(); 1394 if (DestPointee->isIncompleteOrObjectType()) { 1395 // This is definitely the intended conversion, but it might fail due 1396 // to a qualifier violation. Note that we permit Objective-C lifetime 1397 // and GC qualifier mismatches here. 1398 if (!CStyle) { 1399 Qualifiers DestPointeeQuals = DestPointee.getQualifiers(); 1400 Qualifiers SrcPointeeQuals = SrcPointee.getQualifiers(); 1401 DestPointeeQuals.removeObjCGCAttr(); 1402 DestPointeeQuals.removeObjCLifetime(); 1403 SrcPointeeQuals.removeObjCGCAttr(); 1404 SrcPointeeQuals.removeObjCLifetime(); 1405 if (DestPointeeQuals != SrcPointeeQuals && 1406 !DestPointeeQuals.compatiblyIncludes(SrcPointeeQuals)) { 1407 msg = diag::err_bad_cxx_cast_qualifiers_away; 1408 return TC_Failed; 1409 } 1410 } 1411 Kind = IsAddressSpaceConversion(SrcType, DestType) 1412 ? CK_AddressSpaceConversion 1413 : CK_BitCast; 1414 return TC_Success; 1415 } 1416 1417 // Microsoft permits static_cast from 'pointer-to-void' to 1418 // 'pointer-to-function'. 1419 if (!CStyle && Self.getLangOpts().MSVCCompat && 1420 DestPointee->isFunctionType()) { 1421 Self.Diag(OpRange.getBegin(), diag::ext_ms_cast_fn_obj) << OpRange; 1422 Kind = CK_BitCast; 1423 return TC_Success; 1424 } 1425 } 1426 else if (DestType->isObjCObjectPointerType()) { 1427 // allow both c-style cast and static_cast of objective-c pointers as 1428 // they are pervasive. 1429 Kind = CK_CPointerToObjCPointerCast; 1430 return TC_Success; 1431 } 1432 else if (CStyle && DestType->isBlockPointerType()) { 1433 // allow c-style cast of void * to block pointers. 1434 Kind = CK_AnyPointerToBlockPointerCast; 1435 return TC_Success; 1436 } 1437 } 1438 } 1439 // Allow arbitrary objective-c pointer conversion with static casts. 1440 if (SrcType->isObjCObjectPointerType() && 1441 DestType->isObjCObjectPointerType()) { 1442 Kind = CK_BitCast; 1443 return TC_Success; 1444 } 1445 // Allow ns-pointer to cf-pointer conversion in either direction 1446 // with static casts. 1447 if (!CStyle && 1448 Self.CheckTollFreeBridgeStaticCast(DestType, SrcExpr.get(), Kind)) 1449 return TC_Success; 1450 1451 // See if it looks like the user is trying to convert between 1452 // related record types, and select a better diagnostic if so. 1453 if (auto SrcPointer = SrcType->getAs<PointerType>()) 1454 if (auto DestPointer = DestType->getAs<PointerType>()) 1455 if (SrcPointer->getPointeeType()->getAs<RecordType>() && 1456 DestPointer->getPointeeType()->getAs<RecordType>()) 1457 msg = diag::err_bad_cxx_cast_unrelated_class; 1458 1459 if (SrcType->isMatrixType() && DestType->isMatrixType()) { 1460 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) { 1461 SrcExpr = ExprError(); 1462 return TC_Failed; 1463 } 1464 return TC_Success; 1465 } 1466 1467 // We tried everything. Everything! Nothing works! :-( 1468 return TC_NotApplicable; 1469 } 1470 1471 /// Tests whether a conversion according to N2844 is valid. 1472 TryCastResult TryLValueToRValueCast(Sema &Self, Expr *SrcExpr, 1473 QualType DestType, bool CStyle, 1474 CastKind &Kind, CXXCastPath &BasePath, 1475 unsigned &msg) { 1476 // C++11 [expr.static.cast]p3: 1477 // A glvalue of type "cv1 T1" can be cast to type "rvalue reference to 1478 // cv2 T2" if "cv2 T2" is reference-compatible with "cv1 T1". 1479 const RValueReferenceType *R = DestType->getAs<RValueReferenceType>(); 1480 if (!R) 1481 return TC_NotApplicable; 1482 1483 if (!SrcExpr->isGLValue()) 1484 return TC_NotApplicable; 1485 1486 // Because we try the reference downcast before this function, from now on 1487 // this is the only cast possibility, so we issue an error if we fail now. 1488 // FIXME: Should allow casting away constness if CStyle. 1489 QualType FromType = SrcExpr->getType(); 1490 QualType ToType = R->getPointeeType(); 1491 if (CStyle) { 1492 FromType = FromType.getUnqualifiedType(); 1493 ToType = ToType.getUnqualifiedType(); 1494 } 1495 1496 Sema::ReferenceConversions RefConv; 1497 Sema::ReferenceCompareResult RefResult = Self.CompareReferenceRelationship( 1498 SrcExpr->getBeginLoc(), ToType, FromType, &RefConv); 1499 if (RefResult != Sema::Ref_Compatible) { 1500 if (CStyle || RefResult == Sema::Ref_Incompatible) 1501 return TC_NotApplicable; 1502 // Diagnose types which are reference-related but not compatible here since 1503 // we can provide better diagnostics. In these cases forwarding to 1504 // [expr.static.cast]p4 should never result in a well-formed cast. 1505 msg = SrcExpr->isLValue() ? diag::err_bad_lvalue_to_rvalue_cast 1506 : diag::err_bad_rvalue_to_rvalue_cast; 1507 return TC_Failed; 1508 } 1509 1510 if (RefConv & Sema::ReferenceConversions::DerivedToBase) { 1511 Kind = CK_DerivedToBase; 1512 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1513 /*DetectVirtual=*/true); 1514 if (!Self.IsDerivedFrom(SrcExpr->getBeginLoc(), SrcExpr->getType(), 1515 R->getPointeeType(), Paths)) 1516 return TC_NotApplicable; 1517 1518 Self.BuildBasePathArray(Paths, BasePath); 1519 } else 1520 Kind = CK_NoOp; 1521 1522 return TC_Success; 1523 } 1524 1525 /// Tests whether a conversion according to C++ 5.2.9p5 is valid. 1526 TryCastResult 1527 TryStaticReferenceDowncast(Sema &Self, Expr *SrcExpr, QualType DestType, 1528 bool CStyle, SourceRange OpRange, 1529 unsigned &msg, CastKind &Kind, 1530 CXXCastPath &BasePath) { 1531 // C++ 5.2.9p5: An lvalue of type "cv1 B", where B is a class type, can be 1532 // cast to type "reference to cv2 D", where D is a class derived from B, 1533 // if a valid standard conversion from "pointer to D" to "pointer to B" 1534 // exists, cv2 >= cv1, and B is not a virtual base class of D. 1535 // In addition, DR54 clarifies that the base must be accessible in the 1536 // current context. Although the wording of DR54 only applies to the pointer 1537 // variant of this rule, the intent is clearly for it to apply to the this 1538 // conversion as well. 1539 1540 const ReferenceType *DestReference = DestType->getAs<ReferenceType>(); 1541 if (!DestReference) { 1542 return TC_NotApplicable; 1543 } 1544 bool RValueRef = DestReference->isRValueReferenceType(); 1545 if (!RValueRef && !SrcExpr->isLValue()) { 1546 // We know the left side is an lvalue reference, so we can suggest a reason. 1547 msg = diag::err_bad_cxx_cast_rvalue; 1548 return TC_NotApplicable; 1549 } 1550 1551 QualType DestPointee = DestReference->getPointeeType(); 1552 1553 // FIXME: If the source is a prvalue, we should issue a warning (because the 1554 // cast always has undefined behavior), and for AST consistency, we should 1555 // materialize a temporary. 1556 return TryStaticDowncast(Self, 1557 Self.Context.getCanonicalType(SrcExpr->getType()), 1558 Self.Context.getCanonicalType(DestPointee), CStyle, 1559 OpRange, SrcExpr->getType(), DestType, msg, Kind, 1560 BasePath); 1561 } 1562 1563 /// Tests whether a conversion according to C++ 5.2.9p8 is valid. 1564 TryCastResult 1565 TryStaticPointerDowncast(Sema &Self, QualType SrcType, QualType DestType, 1566 bool CStyle, SourceRange OpRange, 1567 unsigned &msg, CastKind &Kind, 1568 CXXCastPath &BasePath) { 1569 // C++ 5.2.9p8: An rvalue of type "pointer to cv1 B", where B is a class 1570 // type, can be converted to an rvalue of type "pointer to cv2 D", where D 1571 // is a class derived from B, if a valid standard conversion from "pointer 1572 // to D" to "pointer to B" exists, cv2 >= cv1, and B is not a virtual base 1573 // class of D. 1574 // In addition, DR54 clarifies that the base must be accessible in the 1575 // current context. 1576 1577 const PointerType *DestPointer = DestType->getAs<PointerType>(); 1578 if (!DestPointer) { 1579 return TC_NotApplicable; 1580 } 1581 1582 const PointerType *SrcPointer = SrcType->getAs<PointerType>(); 1583 if (!SrcPointer) { 1584 msg = diag::err_bad_static_cast_pointer_nonpointer; 1585 return TC_NotApplicable; 1586 } 1587 1588 return TryStaticDowncast(Self, 1589 Self.Context.getCanonicalType(SrcPointer->getPointeeType()), 1590 Self.Context.getCanonicalType(DestPointer->getPointeeType()), 1591 CStyle, OpRange, SrcType, DestType, msg, Kind, 1592 BasePath); 1593 } 1594 1595 /// TryStaticDowncast - Common functionality of TryStaticReferenceDowncast and 1596 /// TryStaticPointerDowncast. Tests whether a static downcast from SrcType to 1597 /// DestType is possible and allowed. 1598 TryCastResult 1599 TryStaticDowncast(Sema &Self, CanQualType SrcType, CanQualType DestType, 1600 bool CStyle, SourceRange OpRange, QualType OrigSrcType, 1601 QualType OrigDestType, unsigned &msg, 1602 CastKind &Kind, CXXCastPath &BasePath) { 1603 // We can only work with complete types. But don't complain if it doesn't work 1604 if (!Self.isCompleteType(OpRange.getBegin(), SrcType) || 1605 !Self.isCompleteType(OpRange.getBegin(), DestType)) 1606 return TC_NotApplicable; 1607 1608 // Downcast can only happen in class hierarchies, so we need classes. 1609 if (!DestType->getAs<RecordType>() || !SrcType->getAs<RecordType>()) { 1610 return TC_NotApplicable; 1611 } 1612 1613 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1614 /*DetectVirtual=*/true); 1615 if (!Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths)) { 1616 return TC_NotApplicable; 1617 } 1618 1619 // Target type does derive from source type. Now we're serious. If an error 1620 // appears now, it's not ignored. 1621 // This may not be entirely in line with the standard. Take for example: 1622 // struct A {}; 1623 // struct B : virtual A { 1624 // B(A&); 1625 // }; 1626 // 1627 // void f() 1628 // { 1629 // (void)static_cast<const B&>(*((A*)0)); 1630 // } 1631 // As far as the standard is concerned, p5 does not apply (A is virtual), so 1632 // p2 should be used instead - "const B& t(*((A*)0));" is perfectly valid. 1633 // However, both GCC and Comeau reject this example, and accepting it would 1634 // mean more complex code if we're to preserve the nice error message. 1635 // FIXME: Being 100% compliant here would be nice to have. 1636 1637 // Must preserve cv, as always, unless we're in C-style mode. 1638 if (!CStyle && !DestType.isAtLeastAsQualifiedAs(SrcType)) { 1639 msg = diag::err_bad_cxx_cast_qualifiers_away; 1640 return TC_Failed; 1641 } 1642 1643 if (Paths.isAmbiguous(SrcType.getUnqualifiedType())) { 1644 // This code is analoguous to that in CheckDerivedToBaseConversion, except 1645 // that it builds the paths in reverse order. 1646 // To sum up: record all paths to the base and build a nice string from 1647 // them. Use it to spice up the error message. 1648 if (!Paths.isRecordingPaths()) { 1649 Paths.clear(); 1650 Paths.setRecordingPaths(true); 1651 Self.IsDerivedFrom(OpRange.getBegin(), DestType, SrcType, Paths); 1652 } 1653 std::string PathDisplayStr; 1654 std::set<unsigned> DisplayedPaths; 1655 for (clang::CXXBasePath &Path : Paths) { 1656 if (DisplayedPaths.insert(Path.back().SubobjectNumber).second) { 1657 // We haven't displayed a path to this particular base 1658 // class subobject yet. 1659 PathDisplayStr += "\n "; 1660 for (CXXBasePathElement &PE : llvm::reverse(Path)) 1661 PathDisplayStr += PE.Base->getType().getAsString() + " -> "; 1662 PathDisplayStr += QualType(DestType).getAsString(); 1663 } 1664 } 1665 1666 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_base_to_derived_cast) 1667 << QualType(SrcType).getUnqualifiedType() 1668 << QualType(DestType).getUnqualifiedType() 1669 << PathDisplayStr << OpRange; 1670 msg = 0; 1671 return TC_Failed; 1672 } 1673 1674 if (Paths.getDetectedVirtual() != nullptr) { 1675 QualType VirtualBase(Paths.getDetectedVirtual(), 0); 1676 Self.Diag(OpRange.getBegin(), diag::err_static_downcast_via_virtual) 1677 << OrigSrcType << OrigDestType << VirtualBase << OpRange; 1678 msg = 0; 1679 return TC_Failed; 1680 } 1681 1682 if (!CStyle) { 1683 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1684 SrcType, DestType, 1685 Paths.front(), 1686 diag::err_downcast_from_inaccessible_base)) { 1687 case Sema::AR_accessible: 1688 case Sema::AR_delayed: // be optimistic 1689 case Sema::AR_dependent: // be optimistic 1690 break; 1691 1692 case Sema::AR_inaccessible: 1693 msg = 0; 1694 return TC_Failed; 1695 } 1696 } 1697 1698 Self.BuildBasePathArray(Paths, BasePath); 1699 Kind = CK_BaseToDerived; 1700 return TC_Success; 1701 } 1702 1703 /// TryStaticMemberPointerUpcast - Tests whether a conversion according to 1704 /// C++ 5.2.9p9 is valid: 1705 /// 1706 /// An rvalue of type "pointer to member of D of type cv1 T" can be 1707 /// converted to an rvalue of type "pointer to member of B of type cv2 T", 1708 /// where B is a base class of D [...]. 1709 /// 1710 TryCastResult 1711 TryStaticMemberPointerUpcast(Sema &Self, ExprResult &SrcExpr, QualType SrcType, 1712 QualType DestType, bool CStyle, 1713 SourceRange OpRange, 1714 unsigned &msg, CastKind &Kind, 1715 CXXCastPath &BasePath) { 1716 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(); 1717 if (!DestMemPtr) 1718 return TC_NotApplicable; 1719 1720 bool WasOverloadedFunction = false; 1721 DeclAccessPair FoundOverload; 1722 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 1723 if (FunctionDecl *Fn 1724 = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), DestType, false, 1725 FoundOverload)) { 1726 CXXMethodDecl *M = cast<CXXMethodDecl>(Fn); 1727 SrcType = Self.Context.getMemberPointerType(Fn->getType(), 1728 Self.Context.getTypeDeclType(M->getParent()).getTypePtr()); 1729 WasOverloadedFunction = true; 1730 } 1731 } 1732 1733 const MemberPointerType *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 1734 if (!SrcMemPtr) { 1735 msg = diag::err_bad_static_cast_member_pointer_nonmp; 1736 return TC_NotApplicable; 1737 } 1738 1739 // Lock down the inheritance model right now in MS ABI, whether or not the 1740 // pointee types are the same. 1741 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1742 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 1743 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 1744 } 1745 1746 // T == T, modulo cv 1747 if (!Self.Context.hasSameUnqualifiedType(SrcMemPtr->getPointeeType(), 1748 DestMemPtr->getPointeeType())) 1749 return TC_NotApplicable; 1750 1751 // B base of D 1752 QualType SrcClass(SrcMemPtr->getClass(), 0); 1753 QualType DestClass(DestMemPtr->getClass(), 0); 1754 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, 1755 /*DetectVirtual=*/true); 1756 if (!Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths)) 1757 return TC_NotApplicable; 1758 1759 // B is a base of D. But is it an allowed base? If not, it's a hard error. 1760 if (Paths.isAmbiguous(Self.Context.getCanonicalType(DestClass))) { 1761 Paths.clear(); 1762 Paths.setRecordingPaths(true); 1763 bool StillOkay = 1764 Self.IsDerivedFrom(OpRange.getBegin(), SrcClass, DestClass, Paths); 1765 assert(StillOkay); 1766 (void)StillOkay; 1767 std::string PathDisplayStr = Self.getAmbiguousPathsDisplayString(Paths); 1768 Self.Diag(OpRange.getBegin(), diag::err_ambiguous_memptr_conv) 1769 << 1 << SrcClass << DestClass << PathDisplayStr << OpRange; 1770 msg = 0; 1771 return TC_Failed; 1772 } 1773 1774 if (const RecordType *VBase = Paths.getDetectedVirtual()) { 1775 Self.Diag(OpRange.getBegin(), diag::err_memptr_conv_via_virtual) 1776 << SrcClass << DestClass << QualType(VBase, 0) << OpRange; 1777 msg = 0; 1778 return TC_Failed; 1779 } 1780 1781 if (!CStyle) { 1782 switch (Self.CheckBaseClassAccess(OpRange.getBegin(), 1783 DestClass, SrcClass, 1784 Paths.front(), 1785 diag::err_upcast_to_inaccessible_base)) { 1786 case Sema::AR_accessible: 1787 case Sema::AR_delayed: 1788 case Sema::AR_dependent: 1789 // Optimistically assume that the delayed and dependent cases 1790 // will work out. 1791 break; 1792 1793 case Sema::AR_inaccessible: 1794 msg = 0; 1795 return TC_Failed; 1796 } 1797 } 1798 1799 if (WasOverloadedFunction) { 1800 // Resolve the address of the overloaded function again, this time 1801 // allowing complaints if something goes wrong. 1802 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 1803 DestType, 1804 true, 1805 FoundOverload); 1806 if (!Fn) { 1807 msg = 0; 1808 return TC_Failed; 1809 } 1810 1811 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr, FoundOverload, Fn); 1812 if (!SrcExpr.isUsable()) { 1813 msg = 0; 1814 return TC_Failed; 1815 } 1816 } 1817 1818 Self.BuildBasePathArray(Paths, BasePath); 1819 Kind = CK_DerivedToBaseMemberPointer; 1820 return TC_Success; 1821 } 1822 1823 /// TryStaticImplicitCast - Tests whether a conversion according to C++ 5.2.9p2 1824 /// is valid: 1825 /// 1826 /// An expression e can be explicitly converted to a type T using a 1827 /// @c static_cast if the declaration "T t(e);" is well-formed [...]. 1828 TryCastResult 1829 TryStaticImplicitCast(Sema &Self, ExprResult &SrcExpr, QualType DestType, 1830 Sema::CheckedConversionKind CCK, 1831 SourceRange OpRange, unsigned &msg, 1832 CastKind &Kind, bool ListInitialization) { 1833 if (DestType->isRecordType()) { 1834 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 1835 diag::err_bad_cast_incomplete) || 1836 Self.RequireNonAbstractType(OpRange.getBegin(), DestType, 1837 diag::err_allocation_of_abstract_type)) { 1838 msg = 0; 1839 return TC_Failed; 1840 } 1841 } 1842 1843 InitializedEntity Entity = InitializedEntity::InitializeTemporary(DestType); 1844 InitializationKind InitKind 1845 = (CCK == Sema::CCK_CStyleCast) 1846 ? InitializationKind::CreateCStyleCast(OpRange.getBegin(), OpRange, 1847 ListInitialization) 1848 : (CCK == Sema::CCK_FunctionalCast) 1849 ? InitializationKind::CreateFunctionalCast(OpRange, ListInitialization) 1850 : InitializationKind::CreateCast(OpRange); 1851 Expr *SrcExprRaw = SrcExpr.get(); 1852 // FIXME: Per DR242, we should check for an implicit conversion sequence 1853 // or for a constructor that could be invoked by direct-initialization 1854 // here, not for an initialization sequence. 1855 InitializationSequence InitSeq(Self, Entity, InitKind, SrcExprRaw); 1856 1857 // At this point of CheckStaticCast, if the destination is a reference, 1858 // or the expression is an overload expression this has to work. 1859 // There is no other way that works. 1860 // On the other hand, if we're checking a C-style cast, we've still got 1861 // the reinterpret_cast way. 1862 bool CStyle 1863 = (CCK == Sema::CCK_CStyleCast || CCK == Sema::CCK_FunctionalCast); 1864 if (InitSeq.Failed() && (CStyle || !DestType->isReferenceType())) 1865 return TC_NotApplicable; 1866 1867 ExprResult Result = InitSeq.Perform(Self, Entity, InitKind, SrcExprRaw); 1868 if (Result.isInvalid()) { 1869 msg = 0; 1870 return TC_Failed; 1871 } 1872 1873 if (InitSeq.isConstructorInitialization()) 1874 Kind = CK_ConstructorConversion; 1875 else 1876 Kind = CK_NoOp; 1877 1878 SrcExpr = Result; 1879 return TC_Success; 1880 } 1881 1882 /// TryConstCast - See if a const_cast from source to destination is allowed, 1883 /// and perform it if it is. 1884 static TryCastResult TryConstCast(Sema &Self, ExprResult &SrcExpr, 1885 QualType DestType, bool CStyle, 1886 unsigned &msg) { 1887 DestType = Self.Context.getCanonicalType(DestType); 1888 QualType SrcType = SrcExpr.get()->getType(); 1889 bool NeedToMaterializeTemporary = false; 1890 1891 if (const ReferenceType *DestTypeTmp =DestType->getAs<ReferenceType>()) { 1892 // C++11 5.2.11p4: 1893 // if a pointer to T1 can be explicitly converted to the type "pointer to 1894 // T2" using a const_cast, then the following conversions can also be 1895 // made: 1896 // -- an lvalue of type T1 can be explicitly converted to an lvalue of 1897 // type T2 using the cast const_cast<T2&>; 1898 // -- a glvalue of type T1 can be explicitly converted to an xvalue of 1899 // type T2 using the cast const_cast<T2&&>; and 1900 // -- if T1 is a class type, a prvalue of type T1 can be explicitly 1901 // converted to an xvalue of type T2 using the cast const_cast<T2&&>. 1902 1903 if (isa<LValueReferenceType>(DestTypeTmp) && !SrcExpr.get()->isLValue()) { 1904 // Cannot const_cast non-lvalue to lvalue reference type. But if this 1905 // is C-style, static_cast might find a way, so we simply suggest a 1906 // message and tell the parent to keep searching. 1907 msg = diag::err_bad_cxx_cast_rvalue; 1908 return TC_NotApplicable; 1909 } 1910 1911 if (isa<RValueReferenceType>(DestTypeTmp) && SrcExpr.get()->isPRValue()) { 1912 if (!SrcType->isRecordType()) { 1913 // Cannot const_cast non-class prvalue to rvalue reference type. But if 1914 // this is C-style, static_cast can do this. 1915 msg = diag::err_bad_cxx_cast_rvalue; 1916 return TC_NotApplicable; 1917 } 1918 1919 // Materialize the class prvalue so that the const_cast can bind a 1920 // reference to it. 1921 NeedToMaterializeTemporary = true; 1922 } 1923 1924 // It's not completely clear under the standard whether we can 1925 // const_cast bit-field gl-values. Doing so would not be 1926 // intrinsically complicated, but for now, we say no for 1927 // consistency with other compilers and await the word of the 1928 // committee. 1929 if (SrcExpr.get()->refersToBitField()) { 1930 msg = diag::err_bad_cxx_cast_bitfield; 1931 return TC_NotApplicable; 1932 } 1933 1934 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 1935 SrcType = Self.Context.getPointerType(SrcType); 1936 } 1937 1938 // C++ 5.2.11p5: For a const_cast involving pointers to data members [...] 1939 // the rules for const_cast are the same as those used for pointers. 1940 1941 if (!DestType->isPointerType() && 1942 !DestType->isMemberPointerType() && 1943 !DestType->isObjCObjectPointerType()) { 1944 // Cannot cast to non-pointer, non-reference type. Note that, if DestType 1945 // was a reference type, we converted it to a pointer above. 1946 // The status of rvalue references isn't entirely clear, but it looks like 1947 // conversion to them is simply invalid. 1948 // C++ 5.2.11p3: For two pointer types [...] 1949 if (!CStyle) 1950 msg = diag::err_bad_const_cast_dest; 1951 return TC_NotApplicable; 1952 } 1953 if (DestType->isFunctionPointerType() || 1954 DestType->isMemberFunctionPointerType()) { 1955 // Cannot cast direct function pointers. 1956 // C++ 5.2.11p2: [...] where T is any object type or the void type [...] 1957 // T is the ultimate pointee of source and target type. 1958 if (!CStyle) 1959 msg = diag::err_bad_const_cast_dest; 1960 return TC_NotApplicable; 1961 } 1962 1963 // C++ [expr.const.cast]p3: 1964 // "For two similar types T1 and T2, [...]" 1965 // 1966 // We only allow a const_cast to change cvr-qualifiers, not other kinds of 1967 // type qualifiers. (Likewise, we ignore other changes when determining 1968 // whether a cast casts away constness.) 1969 if (!Self.Context.hasCvrSimilarType(SrcType, DestType)) 1970 return TC_NotApplicable; 1971 1972 if (NeedToMaterializeTemporary) 1973 // This is a const_cast from a class prvalue to an rvalue reference type. 1974 // Materialize a temporary to store the result of the conversion. 1975 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcExpr.get()->getType(), 1976 SrcExpr.get(), 1977 /*IsLValueReference*/ false); 1978 1979 return TC_Success; 1980 } 1981 1982 // Checks for undefined behavior in reinterpret_cast. 1983 // The cases that is checked for is: 1984 // *reinterpret_cast<T*>(&a) 1985 // reinterpret_cast<T&>(a) 1986 // where accessing 'a' as type 'T' will result in undefined behavior. 1987 void Sema::CheckCompatibleReinterpretCast(QualType SrcType, QualType DestType, 1988 bool IsDereference, 1989 SourceRange Range) { 1990 unsigned DiagID = IsDereference ? 1991 diag::warn_pointer_indirection_from_incompatible_type : 1992 diag::warn_undefined_reinterpret_cast; 1993 1994 if (Diags.isIgnored(DiagID, Range.getBegin())) 1995 return; 1996 1997 QualType SrcTy, DestTy; 1998 if (IsDereference) { 1999 if (!SrcType->getAs<PointerType>() || !DestType->getAs<PointerType>()) { 2000 return; 2001 } 2002 SrcTy = SrcType->getPointeeType(); 2003 DestTy = DestType->getPointeeType(); 2004 } else { 2005 if (!DestType->getAs<ReferenceType>()) { 2006 return; 2007 } 2008 SrcTy = SrcType; 2009 DestTy = DestType->getPointeeType(); 2010 } 2011 2012 // Cast is compatible if the types are the same. 2013 if (Context.hasSameUnqualifiedType(DestTy, SrcTy)) { 2014 return; 2015 } 2016 // or one of the types is a char or void type 2017 if (DestTy->isAnyCharacterType() || DestTy->isVoidType() || 2018 SrcTy->isAnyCharacterType() || SrcTy->isVoidType()) { 2019 return; 2020 } 2021 // or one of the types is a tag type. 2022 if (SrcTy->getAs<TagType>() || DestTy->getAs<TagType>()) { 2023 return; 2024 } 2025 2026 // FIXME: Scoped enums? 2027 if ((SrcTy->isUnsignedIntegerType() && DestTy->isSignedIntegerType()) || 2028 (SrcTy->isSignedIntegerType() && DestTy->isUnsignedIntegerType())) { 2029 if (Context.getTypeSize(DestTy) == Context.getTypeSize(SrcTy)) { 2030 return; 2031 } 2032 } 2033 2034 Diag(Range.getBegin(), DiagID) << SrcType << DestType << Range; 2035 } 2036 2037 static void DiagnoseCastOfObjCSEL(Sema &Self, const ExprResult &SrcExpr, 2038 QualType DestType) { 2039 QualType SrcType = SrcExpr.get()->getType(); 2040 if (Self.Context.hasSameType(SrcType, DestType)) 2041 return; 2042 if (const PointerType *SrcPtrTy = SrcType->getAs<PointerType>()) 2043 if (SrcPtrTy->isObjCSelType()) { 2044 QualType DT = DestType; 2045 if (isa<PointerType>(DestType)) 2046 DT = DestType->getPointeeType(); 2047 if (!DT.getUnqualifiedType()->isVoidType()) 2048 Self.Diag(SrcExpr.get()->getExprLoc(), 2049 diag::warn_cast_pointer_from_sel) 2050 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2051 } 2052 } 2053 2054 /// Diagnose casts that change the calling convention of a pointer to a function 2055 /// defined in the current TU. 2056 static void DiagnoseCallingConvCast(Sema &Self, const ExprResult &SrcExpr, 2057 QualType DstType, SourceRange OpRange) { 2058 // Check if this cast would change the calling convention of a function 2059 // pointer type. 2060 QualType SrcType = SrcExpr.get()->getType(); 2061 if (Self.Context.hasSameType(SrcType, DstType) || 2062 !SrcType->isFunctionPointerType() || !DstType->isFunctionPointerType()) 2063 return; 2064 const auto *SrcFTy = 2065 SrcType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 2066 const auto *DstFTy = 2067 DstType->castAs<PointerType>()->getPointeeType()->castAs<FunctionType>(); 2068 CallingConv SrcCC = SrcFTy->getCallConv(); 2069 CallingConv DstCC = DstFTy->getCallConv(); 2070 if (SrcCC == DstCC) 2071 return; 2072 2073 // We have a calling convention cast. Check if the source is a pointer to a 2074 // known, specific function that has already been defined. 2075 Expr *Src = SrcExpr.get()->IgnoreParenImpCasts(); 2076 if (auto *UO = dyn_cast<UnaryOperator>(Src)) 2077 if (UO->getOpcode() == UO_AddrOf) 2078 Src = UO->getSubExpr()->IgnoreParenImpCasts(); 2079 auto *DRE = dyn_cast<DeclRefExpr>(Src); 2080 if (!DRE) 2081 return; 2082 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()); 2083 if (!FD) 2084 return; 2085 2086 // Only warn if we are casting from the default convention to a non-default 2087 // convention. This can happen when the programmer forgot to apply the calling 2088 // convention to the function declaration and then inserted this cast to 2089 // satisfy the type system. 2090 CallingConv DefaultCC = Self.getASTContext().getDefaultCallingConvention( 2091 FD->isVariadic(), FD->isCXXInstanceMember()); 2092 if (DstCC == DefaultCC || SrcCC != DefaultCC) 2093 return; 2094 2095 // Diagnose this cast, as it is probably bad. 2096 StringRef SrcCCName = FunctionType::getNameForCallConv(SrcCC); 2097 StringRef DstCCName = FunctionType::getNameForCallConv(DstCC); 2098 Self.Diag(OpRange.getBegin(), diag::warn_cast_calling_conv) 2099 << SrcCCName << DstCCName << OpRange; 2100 2101 // The checks above are cheaper than checking if the diagnostic is enabled. 2102 // However, it's worth checking if the warning is enabled before we construct 2103 // a fixit. 2104 if (Self.Diags.isIgnored(diag::warn_cast_calling_conv, OpRange.getBegin())) 2105 return; 2106 2107 // Try to suggest a fixit to change the calling convention of the function 2108 // whose address was taken. Try to use the latest macro for the convention. 2109 // For example, users probably want to write "WINAPI" instead of "__stdcall" 2110 // to match the Windows header declarations. 2111 SourceLocation NameLoc = FD->getFirstDecl()->getNameInfo().getLoc(); 2112 Preprocessor &PP = Self.getPreprocessor(); 2113 SmallVector<TokenValue, 6> AttrTokens; 2114 SmallString<64> CCAttrText; 2115 llvm::raw_svector_ostream OS(CCAttrText); 2116 if (Self.getLangOpts().MicrosoftExt) { 2117 // __stdcall or __vectorcall 2118 OS << "__" << DstCCName; 2119 IdentifierInfo *II = PP.getIdentifierInfo(OS.str()); 2120 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2121 ? TokenValue(II->getTokenID()) 2122 : TokenValue(II)); 2123 } else { 2124 // __attribute__((stdcall)) or __attribute__((vectorcall)) 2125 OS << "__attribute__((" << DstCCName << "))"; 2126 AttrTokens.push_back(tok::kw___attribute); 2127 AttrTokens.push_back(tok::l_paren); 2128 AttrTokens.push_back(tok::l_paren); 2129 IdentifierInfo *II = PP.getIdentifierInfo(DstCCName); 2130 AttrTokens.push_back(II->isKeyword(Self.getLangOpts()) 2131 ? TokenValue(II->getTokenID()) 2132 : TokenValue(II)); 2133 AttrTokens.push_back(tok::r_paren); 2134 AttrTokens.push_back(tok::r_paren); 2135 } 2136 StringRef AttrSpelling = PP.getLastMacroWithSpelling(NameLoc, AttrTokens); 2137 if (!AttrSpelling.empty()) 2138 CCAttrText = AttrSpelling; 2139 OS << ' '; 2140 Self.Diag(NameLoc, diag::note_change_calling_conv_fixit) 2141 << FD << DstCCName << FixItHint::CreateInsertion(NameLoc, CCAttrText); 2142 } 2143 2144 static void checkIntToPointerCast(bool CStyle, const SourceRange &OpRange, 2145 const Expr *SrcExpr, QualType DestType, 2146 Sema &Self) { 2147 QualType SrcType = SrcExpr->getType(); 2148 2149 // Not warning on reinterpret_cast, boolean, constant expressions, etc 2150 // are not explicit design choices, but consistent with GCC's behavior. 2151 // Feel free to modify them if you've reason/evidence for an alternative. 2152 if (CStyle && SrcType->isIntegralType(Self.Context) 2153 && !SrcType->isBooleanType() 2154 && !SrcType->isEnumeralType() 2155 && !SrcExpr->isIntegerConstantExpr(Self.Context) 2156 && Self.Context.getTypeSize(DestType) > 2157 Self.Context.getTypeSize(SrcType)) { 2158 // Separate between casts to void* and non-void* pointers. 2159 // Some APIs use (abuse) void* for something like a user context, 2160 // and often that value is an integer even if it isn't a pointer itself. 2161 // Having a separate warning flag allows users to control the warning 2162 // for their workflow. 2163 unsigned Diag = DestType->isVoidPointerType() ? 2164 diag::warn_int_to_void_pointer_cast 2165 : diag::warn_int_to_pointer_cast; 2166 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2167 } 2168 } 2169 2170 static bool fixOverloadedReinterpretCastExpr(Sema &Self, QualType DestType, 2171 ExprResult &Result) { 2172 // We can only fix an overloaded reinterpret_cast if 2173 // - it is a template with explicit arguments that resolves to an lvalue 2174 // unambiguously, or 2175 // - it is the only function in an overload set that may have its address 2176 // taken. 2177 2178 Expr *E = Result.get(); 2179 // TODO: what if this fails because of DiagnoseUseOfDecl or something 2180 // like it? 2181 if (Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2182 Result, 2183 Expr::getValueKindForType(DestType) == 2184 VK_PRValue // Convert Fun to Ptr 2185 ) && 2186 Result.isUsable()) 2187 return true; 2188 2189 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization 2190 // preserves Result. 2191 Result = E; 2192 if (!Self.resolveAndFixAddressOfSingleOverloadCandidate( 2193 Result, /*DoFunctionPointerConversion=*/true)) 2194 return false; 2195 return Result.isUsable(); 2196 } 2197 2198 static TryCastResult TryReinterpretCast(Sema &Self, ExprResult &SrcExpr, 2199 QualType DestType, bool CStyle, 2200 SourceRange OpRange, 2201 unsigned &msg, 2202 CastKind &Kind) { 2203 bool IsLValueCast = false; 2204 2205 DestType = Self.Context.getCanonicalType(DestType); 2206 QualType SrcType = SrcExpr.get()->getType(); 2207 2208 // Is the source an overloaded name? (i.e. &foo) 2209 // If so, reinterpret_cast generally can not help us here (13.4, p1, bullet 5) 2210 if (SrcType == Self.Context.OverloadTy) { 2211 ExprResult FixedExpr = SrcExpr; 2212 if (!fixOverloadedReinterpretCastExpr(Self, DestType, FixedExpr)) 2213 return TC_NotApplicable; 2214 2215 assert(FixedExpr.isUsable() && "Invalid result fixing overloaded expr"); 2216 SrcExpr = FixedExpr; 2217 SrcType = SrcExpr.get()->getType(); 2218 } 2219 2220 if (const ReferenceType *DestTypeTmp = DestType->getAs<ReferenceType>()) { 2221 if (!SrcExpr.get()->isGLValue()) { 2222 // Cannot cast non-glvalue to (lvalue or rvalue) reference type. See the 2223 // similar comment in const_cast. 2224 msg = diag::err_bad_cxx_cast_rvalue; 2225 return TC_NotApplicable; 2226 } 2227 2228 if (!CStyle) { 2229 Self.CheckCompatibleReinterpretCast(SrcType, DestType, 2230 /*IsDereference=*/false, OpRange); 2231 } 2232 2233 // C++ 5.2.10p10: [...] a reference cast reinterpret_cast<T&>(x) has the 2234 // same effect as the conversion *reinterpret_cast<T*>(&x) with the 2235 // built-in & and * operators. 2236 2237 const char *inappropriate = nullptr; 2238 switch (SrcExpr.get()->getObjectKind()) { 2239 case OK_Ordinary: 2240 break; 2241 case OK_BitField: 2242 msg = diag::err_bad_cxx_cast_bitfield; 2243 return TC_NotApplicable; 2244 // FIXME: Use a specific diagnostic for the rest of these cases. 2245 case OK_VectorComponent: inappropriate = "vector element"; break; 2246 case OK_MatrixComponent: 2247 inappropriate = "matrix element"; 2248 break; 2249 case OK_ObjCProperty: inappropriate = "property expression"; break; 2250 case OK_ObjCSubscript: inappropriate = "container subscripting expression"; 2251 break; 2252 } 2253 if (inappropriate) { 2254 Self.Diag(OpRange.getBegin(), diag::err_bad_reinterpret_cast_reference) 2255 << inappropriate << DestType 2256 << OpRange << SrcExpr.get()->getSourceRange(); 2257 msg = 0; SrcExpr = ExprError(); 2258 return TC_NotApplicable; 2259 } 2260 2261 // This code does this transformation for the checked types. 2262 DestType = Self.Context.getPointerType(DestTypeTmp->getPointeeType()); 2263 SrcType = Self.Context.getPointerType(SrcType); 2264 2265 IsLValueCast = true; 2266 } 2267 2268 // Canonicalize source for comparison. 2269 SrcType = Self.Context.getCanonicalType(SrcType); 2270 2271 const MemberPointerType *DestMemPtr = DestType->getAs<MemberPointerType>(), 2272 *SrcMemPtr = SrcType->getAs<MemberPointerType>(); 2273 if (DestMemPtr && SrcMemPtr) { 2274 // C++ 5.2.10p9: An rvalue of type "pointer to member of X of type T1" 2275 // can be explicitly converted to an rvalue of type "pointer to member 2276 // of Y of type T2" if T1 and T2 are both function types or both object 2277 // types. 2278 if (DestMemPtr->isMemberFunctionPointer() != 2279 SrcMemPtr->isMemberFunctionPointer()) 2280 return TC_NotApplicable; 2281 2282 if (Self.Context.getTargetInfo().getCXXABI().isMicrosoft()) { 2283 // We need to determine the inheritance model that the class will use if 2284 // haven't yet. 2285 (void)Self.isCompleteType(OpRange.getBegin(), SrcType); 2286 (void)Self.isCompleteType(OpRange.getBegin(), DestType); 2287 } 2288 2289 // Don't allow casting between member pointers of different sizes. 2290 if (Self.Context.getTypeSize(DestMemPtr) != 2291 Self.Context.getTypeSize(SrcMemPtr)) { 2292 msg = diag::err_bad_cxx_cast_member_pointer_size; 2293 return TC_Failed; 2294 } 2295 2296 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away 2297 // constness. 2298 // A reinterpret_cast followed by a const_cast can, though, so in C-style, 2299 // we accept it. 2300 if (auto CACK = 2301 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2302 /*CheckObjCLifetime=*/CStyle)) 2303 return getCastAwayConstnessCastKind(CACK, msg); 2304 2305 // A valid member pointer cast. 2306 assert(!IsLValueCast); 2307 Kind = CK_ReinterpretMemberPointer; 2308 return TC_Success; 2309 } 2310 2311 // See below for the enumeral issue. 2312 if (SrcType->isNullPtrType() && DestType->isIntegralType(Self.Context)) { 2313 // C++0x 5.2.10p4: A pointer can be explicitly converted to any integral 2314 // type large enough to hold it. A value of std::nullptr_t can be 2315 // converted to an integral type; the conversion has the same meaning 2316 // and validity as a conversion of (void*)0 to the integral type. 2317 if (Self.Context.getTypeSize(SrcType) > 2318 Self.Context.getTypeSize(DestType)) { 2319 msg = diag::err_bad_reinterpret_cast_small_int; 2320 return TC_Failed; 2321 } 2322 Kind = CK_PointerToIntegral; 2323 return TC_Success; 2324 } 2325 2326 // Allow reinterpret_casts between vectors of the same size and 2327 // between vectors and integers of the same size. 2328 bool destIsVector = DestType->isVectorType(); 2329 bool srcIsVector = SrcType->isVectorType(); 2330 if (srcIsVector || destIsVector) { 2331 // Allow bitcasting between SVE VLATs and VLSTs, and vice-versa. 2332 if (Self.isValidSveBitcast(SrcType, DestType)) { 2333 Kind = CK_BitCast; 2334 return TC_Success; 2335 } 2336 2337 // The non-vector type, if any, must have integral type. This is 2338 // the same rule that C vector casts use; note, however, that enum 2339 // types are not integral in C++. 2340 if ((!destIsVector && !DestType->isIntegralType(Self.Context)) || 2341 (!srcIsVector && !SrcType->isIntegralType(Self.Context))) 2342 return TC_NotApplicable; 2343 2344 // The size we want to consider is eltCount * eltSize. 2345 // That's exactly what the lax-conversion rules will check. 2346 if (Self.areLaxCompatibleVectorTypes(SrcType, DestType)) { 2347 Kind = CK_BitCast; 2348 return TC_Success; 2349 } 2350 2351 if (Self.LangOpts.OpenCL && !CStyle) { 2352 if (DestType->isExtVectorType() || SrcType->isExtVectorType()) { 2353 // FIXME: Allow for reinterpret cast between 3 and 4 element vectors 2354 if (Self.areVectorTypesSameSize(SrcType, DestType)) { 2355 Kind = CK_BitCast; 2356 return TC_Success; 2357 } 2358 } 2359 } 2360 2361 // Otherwise, pick a reasonable diagnostic. 2362 if (!destIsVector) 2363 msg = diag::err_bad_cxx_cast_vector_to_scalar_different_size; 2364 else if (!srcIsVector) 2365 msg = diag::err_bad_cxx_cast_scalar_to_vector_different_size; 2366 else 2367 msg = diag::err_bad_cxx_cast_vector_to_vector_different_size; 2368 2369 return TC_Failed; 2370 } 2371 2372 if (SrcType == DestType) { 2373 // C++ 5.2.10p2 has a note that mentions that, subject to all other 2374 // restrictions, a cast to the same type is allowed so long as it does not 2375 // cast away constness. In C++98, the intent was not entirely clear here, 2376 // since all other paragraphs explicitly forbid casts to the same type. 2377 // C++11 clarifies this case with p2. 2378 // 2379 // The only allowed types are: integral, enumeration, pointer, or 2380 // pointer-to-member types. We also won't restrict Obj-C pointers either. 2381 Kind = CK_NoOp; 2382 TryCastResult Result = TC_NotApplicable; 2383 if (SrcType->isIntegralOrEnumerationType() || 2384 SrcType->isAnyPointerType() || 2385 SrcType->isMemberPointerType() || 2386 SrcType->isBlockPointerType()) { 2387 Result = TC_Success; 2388 } 2389 return Result; 2390 } 2391 2392 bool destIsPtr = DestType->isAnyPointerType() || 2393 DestType->isBlockPointerType(); 2394 bool srcIsPtr = SrcType->isAnyPointerType() || 2395 SrcType->isBlockPointerType(); 2396 if (!destIsPtr && !srcIsPtr) { 2397 // Except for std::nullptr_t->integer and lvalue->reference, which are 2398 // handled above, at least one of the two arguments must be a pointer. 2399 return TC_NotApplicable; 2400 } 2401 2402 if (DestType->isIntegralType(Self.Context)) { 2403 assert(srcIsPtr && "One type must be a pointer"); 2404 // C++ 5.2.10p4: A pointer can be explicitly converted to any integral 2405 // type large enough to hold it; except in Microsoft mode, where the 2406 // integral type size doesn't matter (except we don't allow bool). 2407 if ((Self.Context.getTypeSize(SrcType) > 2408 Self.Context.getTypeSize(DestType))) { 2409 bool MicrosoftException = 2410 Self.getLangOpts().MicrosoftExt && !DestType->isBooleanType(); 2411 if (MicrosoftException) { 2412 unsigned Diag = SrcType->isVoidPointerType() 2413 ? diag::warn_void_pointer_to_int_cast 2414 : diag::warn_pointer_to_int_cast; 2415 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 2416 } else { 2417 msg = diag::err_bad_reinterpret_cast_small_int; 2418 return TC_Failed; 2419 } 2420 } 2421 Kind = CK_PointerToIntegral; 2422 return TC_Success; 2423 } 2424 2425 if (SrcType->isIntegralOrEnumerationType()) { 2426 assert(destIsPtr && "One type must be a pointer"); 2427 checkIntToPointerCast(CStyle, OpRange, SrcExpr.get(), DestType, Self); 2428 // C++ 5.2.10p5: A value of integral or enumeration type can be explicitly 2429 // converted to a pointer. 2430 // C++ 5.2.10p9: [Note: ...a null pointer constant of integral type is not 2431 // necessarily converted to a null pointer value.] 2432 Kind = CK_IntegralToPointer; 2433 return TC_Success; 2434 } 2435 2436 if (!destIsPtr || !srcIsPtr) { 2437 // With the valid non-pointer conversions out of the way, we can be even 2438 // more stringent. 2439 return TC_NotApplicable; 2440 } 2441 2442 // Cannot convert between block pointers and Objective-C object pointers. 2443 if ((SrcType->isBlockPointerType() && DestType->isObjCObjectPointerType()) || 2444 (DestType->isBlockPointerType() && SrcType->isObjCObjectPointerType())) 2445 return TC_NotApplicable; 2446 2447 // C++ 5.2.10p2: The reinterpret_cast operator shall not cast away constness. 2448 // The C-style cast operator can. 2449 TryCastResult SuccessResult = TC_Success; 2450 if (auto CACK = 2451 CastsAwayConstness(Self, SrcType, DestType, /*CheckCVR=*/!CStyle, 2452 /*CheckObjCLifetime=*/CStyle)) 2453 SuccessResult = getCastAwayConstnessCastKind(CACK, msg); 2454 2455 if (IsAddressSpaceConversion(SrcType, DestType)) { 2456 Kind = CK_AddressSpaceConversion; 2457 assert(SrcType->isPointerType() && DestType->isPointerType()); 2458 if (!CStyle && 2459 !DestType->getPointeeType().getQualifiers().isAddressSpaceSupersetOf( 2460 SrcType->getPointeeType().getQualifiers())) { 2461 SuccessResult = TC_Failed; 2462 } 2463 } else if (IsLValueCast) { 2464 Kind = CK_LValueBitCast; 2465 } else if (DestType->isObjCObjectPointerType()) { 2466 Kind = Self.PrepareCastToObjCObjectPointer(SrcExpr); 2467 } else if (DestType->isBlockPointerType()) { 2468 if (!SrcType->isBlockPointerType()) { 2469 Kind = CK_AnyPointerToBlockPointerCast; 2470 } else { 2471 Kind = CK_BitCast; 2472 } 2473 } else { 2474 Kind = CK_BitCast; 2475 } 2476 2477 // Any pointer can be cast to an Objective-C pointer type with a C-style 2478 // cast. 2479 if (CStyle && DestType->isObjCObjectPointerType()) { 2480 return SuccessResult; 2481 } 2482 if (CStyle) 2483 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 2484 2485 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 2486 2487 // Not casting away constness, so the only remaining check is for compatible 2488 // pointer categories. 2489 2490 if (SrcType->isFunctionPointerType()) { 2491 if (DestType->isFunctionPointerType()) { 2492 // C++ 5.2.10p6: A pointer to a function can be explicitly converted to 2493 // a pointer to a function of a different type. 2494 return SuccessResult; 2495 } 2496 2497 // C++0x 5.2.10p8: Converting a pointer to a function into a pointer to 2498 // an object type or vice versa is conditionally-supported. 2499 // Compilers support it in C++03 too, though, because it's necessary for 2500 // casting the return value of dlsym() and GetProcAddress(). 2501 // FIXME: Conditionally-supported behavior should be configurable in the 2502 // TargetInfo or similar. 2503 Self.Diag(OpRange.getBegin(), 2504 Self.getLangOpts().CPlusPlus11 ? 2505 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2506 << OpRange; 2507 return SuccessResult; 2508 } 2509 2510 if (DestType->isFunctionPointerType()) { 2511 // See above. 2512 Self.Diag(OpRange.getBegin(), 2513 Self.getLangOpts().CPlusPlus11 ? 2514 diag::warn_cxx98_compat_cast_fn_obj : diag::ext_cast_fn_obj) 2515 << OpRange; 2516 return SuccessResult; 2517 } 2518 2519 // Diagnose address space conversion in nested pointers. 2520 QualType DestPtee = DestType->getPointeeType().isNull() 2521 ? DestType->getPointeeType() 2522 : DestType->getPointeeType()->getPointeeType(); 2523 QualType SrcPtee = SrcType->getPointeeType().isNull() 2524 ? SrcType->getPointeeType() 2525 : SrcType->getPointeeType()->getPointeeType(); 2526 while (!DestPtee.isNull() && !SrcPtee.isNull()) { 2527 if (DestPtee.getAddressSpace() != SrcPtee.getAddressSpace()) { 2528 Self.Diag(OpRange.getBegin(), 2529 diag::warn_bad_cxx_cast_nested_pointer_addr_space) 2530 << CStyle << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2531 break; 2532 } 2533 DestPtee = DestPtee->getPointeeType(); 2534 SrcPtee = SrcPtee->getPointeeType(); 2535 } 2536 2537 // C++ 5.2.10p7: A pointer to an object can be explicitly converted to 2538 // a pointer to an object of different type. 2539 // Void pointers are not specified, but supported by every compiler out there. 2540 // So we finish by allowing everything that remains - it's got to be two 2541 // object pointers. 2542 return SuccessResult; 2543 } 2544 2545 static TryCastResult TryAddressSpaceCast(Sema &Self, ExprResult &SrcExpr, 2546 QualType DestType, bool CStyle, 2547 unsigned &msg, CastKind &Kind) { 2548 if (!Self.getLangOpts().OpenCL) 2549 // FIXME: As compiler doesn't have any information about overlapping addr 2550 // spaces at the moment we have to be permissive here. 2551 return TC_NotApplicable; 2552 // Even though the logic below is general enough and can be applied to 2553 // non-OpenCL mode too, we fast-path above because no other languages 2554 // define overlapping address spaces currently. 2555 auto SrcType = SrcExpr.get()->getType(); 2556 // FIXME: Should this be generalized to references? The reference parameter 2557 // however becomes a reference pointee type here and therefore rejected. 2558 // Perhaps this is the right behavior though according to C++. 2559 auto SrcPtrType = SrcType->getAs<PointerType>(); 2560 if (!SrcPtrType) 2561 return TC_NotApplicable; 2562 auto DestPtrType = DestType->getAs<PointerType>(); 2563 if (!DestPtrType) 2564 return TC_NotApplicable; 2565 auto SrcPointeeType = SrcPtrType->getPointeeType(); 2566 auto DestPointeeType = DestPtrType->getPointeeType(); 2567 if (!DestPointeeType.isAddressSpaceOverlapping(SrcPointeeType)) { 2568 msg = diag::err_bad_cxx_cast_addr_space_mismatch; 2569 return TC_Failed; 2570 } 2571 auto SrcPointeeTypeWithoutAS = 2572 Self.Context.removeAddrSpaceQualType(SrcPointeeType.getCanonicalType()); 2573 auto DestPointeeTypeWithoutAS = 2574 Self.Context.removeAddrSpaceQualType(DestPointeeType.getCanonicalType()); 2575 if (Self.Context.hasSameType(SrcPointeeTypeWithoutAS, 2576 DestPointeeTypeWithoutAS)) { 2577 Kind = SrcPointeeType.getAddressSpace() == DestPointeeType.getAddressSpace() 2578 ? CK_NoOp 2579 : CK_AddressSpaceConversion; 2580 return TC_Success; 2581 } else { 2582 return TC_NotApplicable; 2583 } 2584 } 2585 2586 void CastOperation::checkAddressSpaceCast(QualType SrcType, QualType DestType) { 2587 // In OpenCL only conversions between pointers to objects in overlapping 2588 // addr spaces are allowed. v2.0 s6.5.5 - Generic addr space overlaps 2589 // with any named one, except for constant. 2590 2591 // Converting the top level pointee addrspace is permitted for compatible 2592 // addrspaces (such as 'generic int *' to 'local int *' or vice versa), but 2593 // if any of the nested pointee addrspaces differ, we emit a warning 2594 // regardless of addrspace compatibility. This makes 2595 // local int ** p; 2596 // return (generic int **) p; 2597 // warn even though local -> generic is permitted. 2598 if (Self.getLangOpts().OpenCL) { 2599 const Type *DestPtr, *SrcPtr; 2600 bool Nested = false; 2601 unsigned DiagID = diag::err_typecheck_incompatible_address_space; 2602 DestPtr = Self.getASTContext().getCanonicalType(DestType.getTypePtr()), 2603 SrcPtr = Self.getASTContext().getCanonicalType(SrcType.getTypePtr()); 2604 2605 while (isa<PointerType>(DestPtr) && isa<PointerType>(SrcPtr)) { 2606 const PointerType *DestPPtr = cast<PointerType>(DestPtr); 2607 const PointerType *SrcPPtr = cast<PointerType>(SrcPtr); 2608 QualType DestPPointee = DestPPtr->getPointeeType(); 2609 QualType SrcPPointee = SrcPPtr->getPointeeType(); 2610 if (Nested 2611 ? DestPPointee.getAddressSpace() != SrcPPointee.getAddressSpace() 2612 : !DestPPointee.isAddressSpaceOverlapping(SrcPPointee)) { 2613 Self.Diag(OpRange.getBegin(), DiagID) 2614 << SrcType << DestType << Sema::AA_Casting 2615 << SrcExpr.get()->getSourceRange(); 2616 if (!Nested) 2617 SrcExpr = ExprError(); 2618 return; 2619 } 2620 2621 DestPtr = DestPPtr->getPointeeType().getTypePtr(); 2622 SrcPtr = SrcPPtr->getPointeeType().getTypePtr(); 2623 Nested = true; 2624 DiagID = diag::ext_nested_pointer_qualifier_mismatch; 2625 } 2626 } 2627 } 2628 2629 bool Sema::ShouldSplatAltivecScalarInCast(const VectorType *VecTy) { 2630 bool SrcCompatXL = this->getLangOpts().getAltivecSrcCompat() == 2631 LangOptions::AltivecSrcCompatKind::XL; 2632 VectorType::VectorKind VKind = VecTy->getVectorKind(); 2633 2634 if ((VKind == VectorType::AltiVecVector) || 2635 (SrcCompatXL && ((VKind == VectorType::AltiVecBool) || 2636 (VKind == VectorType::AltiVecPixel)))) { 2637 return true; 2638 } 2639 return false; 2640 } 2641 2642 bool Sema::CheckAltivecInitFromScalar(SourceRange R, QualType VecTy, 2643 QualType SrcTy) { 2644 bool SrcCompatGCC = this->getLangOpts().getAltivecSrcCompat() == 2645 LangOptions::AltivecSrcCompatKind::GCC; 2646 if (this->getLangOpts().AltiVec && SrcCompatGCC) { 2647 this->Diag(R.getBegin(), 2648 diag::err_invalid_conversion_between_vector_and_integer) 2649 << VecTy << SrcTy << R; 2650 return true; 2651 } 2652 return false; 2653 } 2654 2655 void CastOperation::CheckCXXCStyleCast(bool FunctionalStyle, 2656 bool ListInitialization) { 2657 assert(Self.getLangOpts().CPlusPlus); 2658 2659 // Handle placeholders. 2660 if (isPlaceholder()) { 2661 // C-style casts can resolve __unknown_any types. 2662 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2663 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2664 SrcExpr.get(), Kind, 2665 ValueKind, BasePath); 2666 return; 2667 } 2668 2669 checkNonOverloadPlaceholders(); 2670 if (SrcExpr.isInvalid()) 2671 return; 2672 } 2673 2674 // C++ 5.2.9p4: Any expression can be explicitly converted to type "cv void". 2675 // This test is outside everything else because it's the only case where 2676 // a non-lvalue-reference target type does not lead to decay. 2677 if (DestType->isVoidType()) { 2678 Kind = CK_ToVoid; 2679 2680 if (claimPlaceholder(BuiltinType::Overload)) { 2681 Self.ResolveAndFixSingleFunctionTemplateSpecialization( 2682 SrcExpr, /* Decay Function to ptr */ false, 2683 /* Complain */ true, DestRange, DestType, 2684 diag::err_bad_cstyle_cast_overload); 2685 if (SrcExpr.isInvalid()) 2686 return; 2687 } 2688 2689 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2690 return; 2691 } 2692 2693 // If the type is dependent, we won't do any other semantic analysis now. 2694 if (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2695 SrcExpr.get()->isValueDependent()) { 2696 assert(Kind == CK_Dependent); 2697 return; 2698 } 2699 2700 if (ValueKind == VK_PRValue && !DestType->isRecordType() && 2701 !isPlaceholder(BuiltinType::Overload)) { 2702 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2703 if (SrcExpr.isInvalid()) 2704 return; 2705 } 2706 2707 // AltiVec vector initialization with a single literal. 2708 if (const VectorType *vecTy = DestType->getAs<VectorType>()) { 2709 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, 2710 SrcExpr.get()->getType())) { 2711 SrcExpr = ExprError(); 2712 return; 2713 } 2714 if (Self.ShouldSplatAltivecScalarInCast(vecTy) && 2715 (SrcExpr.get()->getType()->isIntegerType() || 2716 SrcExpr.get()->getType()->isFloatingType())) { 2717 Kind = CK_VectorSplat; 2718 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 2719 return; 2720 } 2721 } 2722 2723 // C++ [expr.cast]p5: The conversions performed by 2724 // - a const_cast, 2725 // - a static_cast, 2726 // - a static_cast followed by a const_cast, 2727 // - a reinterpret_cast, or 2728 // - a reinterpret_cast followed by a const_cast, 2729 // can be performed using the cast notation of explicit type conversion. 2730 // [...] If a conversion can be interpreted in more than one of the ways 2731 // listed above, the interpretation that appears first in the list is used, 2732 // even if a cast resulting from that interpretation is ill-formed. 2733 // In plain language, this means trying a const_cast ... 2734 // Note that for address space we check compatibility after const_cast. 2735 unsigned msg = diag::err_bad_cxx_cast_generic; 2736 TryCastResult tcr = TryConstCast(Self, SrcExpr, DestType, 2737 /*CStyle*/ true, msg); 2738 if (SrcExpr.isInvalid()) 2739 return; 2740 if (isValidCast(tcr)) 2741 Kind = CK_NoOp; 2742 2743 Sema::CheckedConversionKind CCK = 2744 FunctionalStyle ? Sema::CCK_FunctionalCast : Sema::CCK_CStyleCast; 2745 if (tcr == TC_NotApplicable) { 2746 tcr = TryAddressSpaceCast(Self, SrcExpr, DestType, /*CStyle*/ true, msg, 2747 Kind); 2748 if (SrcExpr.isInvalid()) 2749 return; 2750 2751 if (tcr == TC_NotApplicable) { 2752 // ... or if that is not possible, a static_cast, ignoring const and 2753 // addr space, ... 2754 tcr = TryStaticCast(Self, SrcExpr, DestType, CCK, OpRange, msg, Kind, 2755 BasePath, ListInitialization); 2756 if (SrcExpr.isInvalid()) 2757 return; 2758 2759 if (tcr == TC_NotApplicable) { 2760 // ... and finally a reinterpret_cast, ignoring const and addr space. 2761 tcr = TryReinterpretCast(Self, SrcExpr, DestType, /*CStyle*/ true, 2762 OpRange, msg, Kind); 2763 if (SrcExpr.isInvalid()) 2764 return; 2765 } 2766 } 2767 } 2768 2769 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && 2770 isValidCast(tcr)) 2771 checkObjCConversion(CCK); 2772 2773 if (tcr != TC_Success && msg != 0) { 2774 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2775 DeclAccessPair Found; 2776 FunctionDecl *Fn = Self.ResolveAddressOfOverloadedFunction(SrcExpr.get(), 2777 DestType, 2778 /*Complain*/ true, 2779 Found); 2780 if (Fn) { 2781 // If DestType is a function type (not to be confused with the function 2782 // pointer type), it will be possible to resolve the function address, 2783 // but the type cast should be considered as failure. 2784 OverloadExpr *OE = OverloadExpr::find(SrcExpr.get()).Expression; 2785 Self.Diag(OpRange.getBegin(), diag::err_bad_cstyle_cast_overload) 2786 << OE->getName() << DestType << OpRange 2787 << OE->getQualifierLoc().getSourceRange(); 2788 Self.NoteAllOverloadCandidates(SrcExpr.get()); 2789 } 2790 } else { 2791 diagnoseBadCast(Self, msg, (FunctionalStyle ? CT_Functional : CT_CStyle), 2792 OpRange, SrcExpr.get(), DestType, ListInitialization); 2793 } 2794 } 2795 2796 if (isValidCast(tcr)) { 2797 if (Kind == CK_BitCast) 2798 checkCastAlign(); 2799 2800 if (!checkCastFunctionType(Self, SrcExpr, DestType)) 2801 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type) 2802 << SrcExpr.get()->getType() << DestType << OpRange; 2803 2804 } else { 2805 SrcExpr = ExprError(); 2806 } 2807 } 2808 2809 /// DiagnoseBadFunctionCast - Warn whenever a function call is cast to a 2810 /// non-matching type. Such as enum function call to int, int call to 2811 /// pointer; etc. Cast to 'void' is an exception. 2812 static void DiagnoseBadFunctionCast(Sema &Self, const ExprResult &SrcExpr, 2813 QualType DestType) { 2814 if (Self.Diags.isIgnored(diag::warn_bad_function_cast, 2815 SrcExpr.get()->getExprLoc())) 2816 return; 2817 2818 if (!isa<CallExpr>(SrcExpr.get())) 2819 return; 2820 2821 QualType SrcType = SrcExpr.get()->getType(); 2822 if (DestType.getUnqualifiedType()->isVoidType()) 2823 return; 2824 if ((SrcType->isAnyPointerType() || SrcType->isBlockPointerType()) 2825 && (DestType->isAnyPointerType() || DestType->isBlockPointerType())) 2826 return; 2827 if (SrcType->isIntegerType() && DestType->isIntegerType() && 2828 (SrcType->isBooleanType() == DestType->isBooleanType()) && 2829 (SrcType->isEnumeralType() == DestType->isEnumeralType())) 2830 return; 2831 if (SrcType->isRealFloatingType() && DestType->isRealFloatingType()) 2832 return; 2833 if (SrcType->isEnumeralType() && DestType->isEnumeralType()) 2834 return; 2835 if (SrcType->isComplexType() && DestType->isComplexType()) 2836 return; 2837 if (SrcType->isComplexIntegerType() && DestType->isComplexIntegerType()) 2838 return; 2839 if (SrcType->isFixedPointType() && DestType->isFixedPointType()) 2840 return; 2841 2842 Self.Diag(SrcExpr.get()->getExprLoc(), 2843 diag::warn_bad_function_cast) 2844 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 2845 } 2846 2847 /// Check the semantics of a C-style cast operation, in C. 2848 void CastOperation::CheckCStyleCast() { 2849 assert(!Self.getLangOpts().CPlusPlus); 2850 2851 // C-style casts can resolve __unknown_any types. 2852 if (claimPlaceholder(BuiltinType::UnknownAny)) { 2853 SrcExpr = Self.checkUnknownAnyCast(DestRange, DestType, 2854 SrcExpr.get(), Kind, 2855 ValueKind, BasePath); 2856 return; 2857 } 2858 2859 // C99 6.5.4p2: the cast type needs to be void or scalar and the expression 2860 // type needs to be scalar. 2861 if (DestType->isVoidType()) { 2862 // We don't necessarily do lvalue-to-rvalue conversions on this. 2863 SrcExpr = Self.IgnoredValueConversions(SrcExpr.get()); 2864 if (SrcExpr.isInvalid()) 2865 return; 2866 2867 // Cast to void allows any expr type. 2868 Kind = CK_ToVoid; 2869 return; 2870 } 2871 2872 // If the type is dependent, we won't do any other semantic analysis now. 2873 if (Self.getASTContext().isDependenceAllowed() && 2874 (DestType->isDependentType() || SrcExpr.get()->isTypeDependent() || 2875 SrcExpr.get()->isValueDependent())) { 2876 assert((DestType->containsErrors() || SrcExpr.get()->containsErrors() || 2877 SrcExpr.get()->containsErrors()) && 2878 "should only occur in error-recovery path."); 2879 assert(Kind == CK_Dependent); 2880 return; 2881 } 2882 2883 // Overloads are allowed with C extensions, so we need to support them. 2884 if (SrcExpr.get()->getType() == Self.Context.OverloadTy) { 2885 DeclAccessPair DAP; 2886 if (FunctionDecl *FD = Self.ResolveAddressOfOverloadedFunction( 2887 SrcExpr.get(), DestType, /*Complain=*/true, DAP)) 2888 SrcExpr = Self.FixOverloadedFunctionReference(SrcExpr.get(), DAP, FD); 2889 else 2890 return; 2891 assert(SrcExpr.isUsable()); 2892 } 2893 SrcExpr = Self.DefaultFunctionArrayLvalueConversion(SrcExpr.get()); 2894 if (SrcExpr.isInvalid()) 2895 return; 2896 QualType SrcType = SrcExpr.get()->getType(); 2897 2898 assert(!SrcType->isPlaceholderType()); 2899 2900 checkAddressSpaceCast(SrcType, DestType); 2901 if (SrcExpr.isInvalid()) 2902 return; 2903 2904 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 2905 diag::err_typecheck_cast_to_incomplete)) { 2906 SrcExpr = ExprError(); 2907 return; 2908 } 2909 2910 // Allow casting a sizeless built-in type to itself. 2911 if (DestType->isSizelessBuiltinType() && 2912 Self.Context.hasSameUnqualifiedType(DestType, SrcType)) { 2913 Kind = CK_NoOp; 2914 return; 2915 } 2916 2917 // Allow bitcasting between compatible SVE vector types. 2918 if ((SrcType->isVectorType() || DestType->isVectorType()) && 2919 Self.isValidSveBitcast(SrcType, DestType)) { 2920 Kind = CK_BitCast; 2921 return; 2922 } 2923 2924 if (!DestType->isScalarType() && !DestType->isVectorType() && 2925 !DestType->isMatrixType()) { 2926 const RecordType *DestRecordTy = DestType->getAs<RecordType>(); 2927 2928 if (DestRecordTy && Self.Context.hasSameUnqualifiedType(DestType, SrcType)){ 2929 // GCC struct/union extension: allow cast to self. 2930 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_nonscalar) 2931 << DestType << SrcExpr.get()->getSourceRange(); 2932 Kind = CK_NoOp; 2933 return; 2934 } 2935 2936 // GCC's cast to union extension. 2937 if (DestRecordTy && DestRecordTy->getDecl()->isUnion()) { 2938 RecordDecl *RD = DestRecordTy->getDecl(); 2939 if (CastExpr::getTargetFieldForToUnionCast(RD, SrcType)) { 2940 Self.Diag(OpRange.getBegin(), diag::ext_typecheck_cast_to_union) 2941 << SrcExpr.get()->getSourceRange(); 2942 Kind = CK_ToUnion; 2943 return; 2944 } else { 2945 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cast_to_union_no_type) 2946 << SrcType << SrcExpr.get()->getSourceRange(); 2947 SrcExpr = ExprError(); 2948 return; 2949 } 2950 } 2951 2952 // OpenCL v2.0 s6.13.10 - Allow casts from '0' to event_t type. 2953 if (Self.getLangOpts().OpenCL && DestType->isEventT()) { 2954 Expr::EvalResult Result; 2955 if (SrcExpr.get()->EvaluateAsInt(Result, Self.Context)) { 2956 llvm::APSInt CastInt = Result.Val.getInt(); 2957 if (0 == CastInt) { 2958 Kind = CK_ZeroToOCLOpaqueType; 2959 return; 2960 } 2961 Self.Diag(OpRange.getBegin(), 2962 diag::err_opencl_cast_non_zero_to_event_t) 2963 << toString(CastInt, 10) << SrcExpr.get()->getSourceRange(); 2964 SrcExpr = ExprError(); 2965 return; 2966 } 2967 } 2968 2969 // Reject any other conversions to non-scalar types. 2970 Self.Diag(OpRange.getBegin(), diag::err_typecheck_cond_expect_scalar) 2971 << DestType << SrcExpr.get()->getSourceRange(); 2972 SrcExpr = ExprError(); 2973 return; 2974 } 2975 2976 // The type we're casting to is known to be a scalar, a vector, or a matrix. 2977 2978 // Require the operand to be a scalar, a vector, or a matrix. 2979 if (!SrcType->isScalarType() && !SrcType->isVectorType() && 2980 !SrcType->isMatrixType()) { 2981 Self.Diag(SrcExpr.get()->getExprLoc(), 2982 diag::err_typecheck_expect_scalar_operand) 2983 << SrcType << SrcExpr.get()->getSourceRange(); 2984 SrcExpr = ExprError(); 2985 return; 2986 } 2987 2988 if (DestType->isExtVectorType()) { 2989 SrcExpr = Self.CheckExtVectorCast(OpRange, DestType, SrcExpr.get(), Kind); 2990 return; 2991 } 2992 2993 if (DestType->getAs<MatrixType>() || SrcType->getAs<MatrixType>()) { 2994 if (Self.CheckMatrixCast(OpRange, DestType, SrcType, Kind)) 2995 SrcExpr = ExprError(); 2996 return; 2997 } 2998 2999 if (const VectorType *DestVecTy = DestType->getAs<VectorType>()) { 3000 if (Self.CheckAltivecInitFromScalar(OpRange, DestType, SrcType)) { 3001 SrcExpr = ExprError(); 3002 return; 3003 } 3004 if (Self.ShouldSplatAltivecScalarInCast(DestVecTy) && 3005 (SrcType->isIntegerType() || SrcType->isFloatingType())) { 3006 Kind = CK_VectorSplat; 3007 SrcExpr = Self.prepareVectorSplat(DestType, SrcExpr.get()); 3008 } else if (Self.CheckVectorCast(OpRange, DestType, SrcType, Kind)) { 3009 SrcExpr = ExprError(); 3010 } 3011 return; 3012 } 3013 3014 if (SrcType->isVectorType()) { 3015 if (Self.CheckVectorCast(OpRange, SrcType, DestType, Kind)) 3016 SrcExpr = ExprError(); 3017 return; 3018 } 3019 3020 // The source and target types are both scalars, i.e. 3021 // - arithmetic types (fundamental, enum, and complex) 3022 // - all kinds of pointers 3023 // Note that member pointers were filtered out with C++, above. 3024 3025 if (isa<ObjCSelectorExpr>(SrcExpr.get())) { 3026 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_selector_expr); 3027 SrcExpr = ExprError(); 3028 return; 3029 } 3030 3031 // Can't cast to or from bfloat 3032 if (DestType->isBFloat16Type() && !SrcType->isBFloat16Type()) { 3033 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_to_bfloat16) 3034 << SrcExpr.get()->getSourceRange(); 3035 SrcExpr = ExprError(); 3036 return; 3037 } 3038 if (SrcType->isBFloat16Type() && !DestType->isBFloat16Type()) { 3039 Self.Diag(SrcExpr.get()->getExprLoc(), diag::err_cast_from_bfloat16) 3040 << SrcExpr.get()->getSourceRange(); 3041 SrcExpr = ExprError(); 3042 return; 3043 } 3044 3045 // If either type is a pointer, the other type has to be either an 3046 // integer or a pointer. 3047 if (!DestType->isArithmeticType()) { 3048 if (!SrcType->isIntegralType(Self.Context) && SrcType->isArithmeticType()) { 3049 Self.Diag(SrcExpr.get()->getExprLoc(), 3050 diag::err_cast_pointer_from_non_pointer_int) 3051 << SrcType << SrcExpr.get()->getSourceRange(); 3052 SrcExpr = ExprError(); 3053 return; 3054 } 3055 checkIntToPointerCast(/* CStyle */ true, OpRange, SrcExpr.get(), DestType, 3056 Self); 3057 } else if (!SrcType->isArithmeticType()) { 3058 if (!DestType->isIntegralType(Self.Context) && 3059 DestType->isArithmeticType()) { 3060 Self.Diag(SrcExpr.get()->getBeginLoc(), 3061 diag::err_cast_pointer_to_non_pointer_int) 3062 << DestType << SrcExpr.get()->getSourceRange(); 3063 SrcExpr = ExprError(); 3064 return; 3065 } 3066 3067 if ((Self.Context.getTypeSize(SrcType) > 3068 Self.Context.getTypeSize(DestType)) && 3069 !DestType->isBooleanType()) { 3070 // C 6.3.2.3p6: Any pointer type may be converted to an integer type. 3071 // Except as previously specified, the result is implementation-defined. 3072 // If the result cannot be represented in the integer type, the behavior 3073 // is undefined. The result need not be in the range of values of any 3074 // integer type. 3075 unsigned Diag; 3076 if (SrcType->isVoidPointerType()) 3077 Diag = DestType->isEnumeralType() ? diag::warn_void_pointer_to_enum_cast 3078 : diag::warn_void_pointer_to_int_cast; 3079 else if (DestType->isEnumeralType()) 3080 Diag = diag::warn_pointer_to_enum_cast; 3081 else 3082 Diag = diag::warn_pointer_to_int_cast; 3083 Self.Diag(OpRange.getBegin(), Diag) << SrcType << DestType << OpRange; 3084 } 3085 } 3086 3087 if (Self.getLangOpts().OpenCL && !Self.getOpenCLOptions().isAvailableOption( 3088 "cl_khr_fp16", Self.getLangOpts())) { 3089 if (DestType->isHalfType()) { 3090 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::err_opencl_cast_to_half) 3091 << DestType << SrcExpr.get()->getSourceRange(); 3092 SrcExpr = ExprError(); 3093 return; 3094 } 3095 } 3096 3097 // ARC imposes extra restrictions on casts. 3098 if (Self.getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) { 3099 checkObjCConversion(Sema::CCK_CStyleCast); 3100 if (SrcExpr.isInvalid()) 3101 return; 3102 3103 const PointerType *CastPtr = DestType->getAs<PointerType>(); 3104 if (Self.getLangOpts().ObjCAutoRefCount && CastPtr) { 3105 if (const PointerType *ExprPtr = SrcType->getAs<PointerType>()) { 3106 Qualifiers CastQuals = CastPtr->getPointeeType().getQualifiers(); 3107 Qualifiers ExprQuals = ExprPtr->getPointeeType().getQualifiers(); 3108 if (CastPtr->getPointeeType()->isObjCLifetimeType() && 3109 ExprPtr->getPointeeType()->isObjCLifetimeType() && 3110 !CastQuals.compatiblyIncludesObjCLifetime(ExprQuals)) { 3111 Self.Diag(SrcExpr.get()->getBeginLoc(), 3112 diag::err_typecheck_incompatible_ownership) 3113 << SrcType << DestType << Sema::AA_Casting 3114 << SrcExpr.get()->getSourceRange(); 3115 return; 3116 } 3117 } 3118 } 3119 else if (!Self.CheckObjCARCUnavailableWeakConversion(DestType, SrcType)) { 3120 Self.Diag(SrcExpr.get()->getBeginLoc(), 3121 diag::err_arc_convesion_of_weak_unavailable) 3122 << 1 << SrcType << DestType << SrcExpr.get()->getSourceRange(); 3123 SrcExpr = ExprError(); 3124 return; 3125 } 3126 } 3127 3128 if (!checkCastFunctionType(Self, SrcExpr, DestType)) 3129 Self.Diag(OpRange.getBegin(), diag::warn_cast_function_type) 3130 << SrcType << DestType << OpRange; 3131 3132 DiagnoseCastOfObjCSEL(Self, SrcExpr, DestType); 3133 DiagnoseCallingConvCast(Self, SrcExpr, DestType, OpRange); 3134 DiagnoseBadFunctionCast(Self, SrcExpr, DestType); 3135 Kind = Self.PrepareScalarCast(SrcExpr, DestType); 3136 if (SrcExpr.isInvalid()) 3137 return; 3138 3139 if (Kind == CK_BitCast) 3140 checkCastAlign(); 3141 } 3142 3143 void CastOperation::CheckBuiltinBitCast() { 3144 QualType SrcType = SrcExpr.get()->getType(); 3145 3146 if (Self.RequireCompleteType(OpRange.getBegin(), DestType, 3147 diag::err_typecheck_cast_to_incomplete) || 3148 Self.RequireCompleteType(OpRange.getBegin(), SrcType, 3149 diag::err_incomplete_type)) { 3150 SrcExpr = ExprError(); 3151 return; 3152 } 3153 3154 if (SrcExpr.get()->isPRValue()) 3155 SrcExpr = Self.CreateMaterializeTemporaryExpr(SrcType, SrcExpr.get(), 3156 /*IsLValueReference=*/false); 3157 3158 CharUnits DestSize = Self.Context.getTypeSizeInChars(DestType); 3159 CharUnits SourceSize = Self.Context.getTypeSizeInChars(SrcType); 3160 if (DestSize != SourceSize) { 3161 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_type_size_mismatch) 3162 << (int)SourceSize.getQuantity() << (int)DestSize.getQuantity(); 3163 SrcExpr = ExprError(); 3164 return; 3165 } 3166 3167 if (!DestType.isTriviallyCopyableType(Self.Context)) { 3168 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 3169 << 1; 3170 SrcExpr = ExprError(); 3171 return; 3172 } 3173 3174 if (!SrcType.isTriviallyCopyableType(Self.Context)) { 3175 Self.Diag(OpRange.getBegin(), diag::err_bit_cast_non_trivially_copyable) 3176 << 0; 3177 SrcExpr = ExprError(); 3178 return; 3179 } 3180 3181 Kind = CK_LValueToRValueBitCast; 3182 } 3183 3184 /// DiagnoseCastQual - Warn whenever casts discards a qualifiers, be it either 3185 /// const, volatile or both. 3186 static void DiagnoseCastQual(Sema &Self, const ExprResult &SrcExpr, 3187 QualType DestType) { 3188 if (SrcExpr.isInvalid()) 3189 return; 3190 3191 QualType SrcType = SrcExpr.get()->getType(); 3192 if (!((SrcType->isAnyPointerType() && DestType->isAnyPointerType()) || 3193 DestType->isLValueReferenceType())) 3194 return; 3195 3196 QualType TheOffendingSrcType, TheOffendingDestType; 3197 Qualifiers CastAwayQualifiers; 3198 if (CastsAwayConstness(Self, SrcType, DestType, true, false, 3199 &TheOffendingSrcType, &TheOffendingDestType, 3200 &CastAwayQualifiers) != 3201 CastAwayConstnessKind::CACK_Similar) 3202 return; 3203 3204 // FIXME: 'restrict' is not properly handled here. 3205 int qualifiers = -1; 3206 if (CastAwayQualifiers.hasConst() && CastAwayQualifiers.hasVolatile()) { 3207 qualifiers = 0; 3208 } else if (CastAwayQualifiers.hasConst()) { 3209 qualifiers = 1; 3210 } else if (CastAwayQualifiers.hasVolatile()) { 3211 qualifiers = 2; 3212 } 3213 // This is a variant of int **x; const int **y = (const int **)x; 3214 if (qualifiers == -1) 3215 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual2) 3216 << SrcType << DestType; 3217 else 3218 Self.Diag(SrcExpr.get()->getBeginLoc(), diag::warn_cast_qual) 3219 << TheOffendingSrcType << TheOffendingDestType << qualifiers; 3220 } 3221 3222 ExprResult Sema::BuildCStyleCastExpr(SourceLocation LPLoc, 3223 TypeSourceInfo *CastTypeInfo, 3224 SourceLocation RPLoc, 3225 Expr *CastExpr) { 3226 CastOperation Op(*this, CastTypeInfo->getType(), CastExpr); 3227 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3228 Op.OpRange = SourceRange(LPLoc, CastExpr->getEndLoc()); 3229 3230 if (getLangOpts().CPlusPlus) { 3231 Op.CheckCXXCStyleCast(/*FunctionalCast=*/ false, 3232 isa<InitListExpr>(CastExpr)); 3233 } else { 3234 Op.CheckCStyleCast(); 3235 } 3236 3237 if (Op.SrcExpr.isInvalid()) 3238 return ExprError(); 3239 3240 // -Wcast-qual 3241 DiagnoseCastQual(Op.Self, Op.SrcExpr, Op.DestType); 3242 3243 return Op.complete(CStyleCastExpr::Create( 3244 Context, Op.ResultType, Op.ValueKind, Op.Kind, Op.SrcExpr.get(), 3245 &Op.BasePath, CurFPFeatureOverrides(), CastTypeInfo, LPLoc, RPLoc)); 3246 } 3247 3248 ExprResult Sema::BuildCXXFunctionalCastExpr(TypeSourceInfo *CastTypeInfo, 3249 QualType Type, 3250 SourceLocation LPLoc, 3251 Expr *CastExpr, 3252 SourceLocation RPLoc) { 3253 assert(LPLoc.isValid() && "List-initialization shouldn't get here."); 3254 CastOperation Op(*this, Type, CastExpr); 3255 Op.DestRange = CastTypeInfo->getTypeLoc().getSourceRange(); 3256 Op.OpRange = SourceRange(Op.DestRange.getBegin(), CastExpr->getEndLoc()); 3257 3258 Op.CheckCXXCStyleCast(/*FunctionalCast=*/true, /*ListInit=*/false); 3259 if (Op.SrcExpr.isInvalid()) 3260 return ExprError(); 3261 3262 auto *SubExpr = Op.SrcExpr.get(); 3263 if (auto *BindExpr = dyn_cast<CXXBindTemporaryExpr>(SubExpr)) 3264 SubExpr = BindExpr->getSubExpr(); 3265 if (auto *ConstructExpr = dyn_cast<CXXConstructExpr>(SubExpr)) 3266 ConstructExpr->setParenOrBraceRange(SourceRange(LPLoc, RPLoc)); 3267 3268 return Op.complete(CXXFunctionalCastExpr::Create( 3269 Context, Op.ResultType, Op.ValueKind, CastTypeInfo, Op.Kind, 3270 Op.SrcExpr.get(), &Op.BasePath, CurFPFeatureOverrides(), LPLoc, RPLoc)); 3271 } 3272