xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCXXScopeSpec.cpp (revision f5b7695d2d5abd735064870ad43f4b9c723940c1)
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ semantic analysis for scope specifiers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/NestedNameSpecifier.h"
18 #include "clang/Basic/PartialDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/Template.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 
26 /// Find the current instantiation that associated with the given type.
27 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                 DeclContext *CurContext) {
29   if (T.isNull())
30     return nullptr;
31 
32   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35     if (!Record->isDependentContext() ||
36         Record->isCurrentInstantiation(CurContext))
37       return Record;
38 
39     return nullptr;
40   } else if (isa<InjectedClassNameType>(Ty))
41     return cast<InjectedClassNameType>(Ty)->getDecl();
42   else
43     return nullptr;
44 }
45 
46 /// Compute the DeclContext that is associated with the given type.
47 ///
48 /// \param T the type for which we are attempting to find a DeclContext.
49 ///
50 /// \returns the declaration context represented by the type T,
51 /// or NULL if the declaration context cannot be computed (e.g., because it is
52 /// dependent and not the current instantiation).
53 DeclContext *Sema::computeDeclContext(QualType T) {
54   if (!T->isDependentType())
55     if (const TagType *Tag = T->getAs<TagType>())
56       return Tag->getDecl();
57 
58   return ::getCurrentInstantiationOf(T, CurContext);
59 }
60 
61 /// Compute the DeclContext that is associated with the given
62 /// scope specifier.
63 ///
64 /// \param SS the C++ scope specifier as it appears in the source
65 ///
66 /// \param EnteringContext when true, we will be entering the context of
67 /// this scope specifier, so we can retrieve the declaration context of a
68 /// class template or class template partial specialization even if it is
69 /// not the current instantiation.
70 ///
71 /// \returns the declaration context represented by the scope specifier @p SS,
72 /// or NULL if the declaration context cannot be computed (e.g., because it is
73 /// dependent and not the current instantiation).
74 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75                                       bool EnteringContext) {
76   if (!SS.isSet() || SS.isInvalid())
77     return nullptr;
78 
79   NestedNameSpecifier *NNS = SS.getScopeRep();
80   if (NNS->isDependent()) {
81     // If this nested-name-specifier refers to the current
82     // instantiation, return its DeclContext.
83     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84       return Record;
85 
86     if (EnteringContext) {
87       const Type *NNSType = NNS->getAsType();
88       if (!NNSType) {
89         return nullptr;
90       }
91 
92       // Look through type alias templates, per C++0x [temp.dep.type]p1.
93       NNSType = Context.getCanonicalType(NNSType);
94       if (const TemplateSpecializationType *SpecType
95             = NNSType->getAs<TemplateSpecializationType>()) {
96         // We are entering the context of the nested name specifier, so try to
97         // match the nested name specifier to either a primary class template
98         // or a class template partial specialization.
99         if (ClassTemplateDecl *ClassTemplate
100               = dyn_cast_or_null<ClassTemplateDecl>(
101                             SpecType->getTemplateName().getAsTemplateDecl())) {
102           QualType ContextType
103             = Context.getCanonicalType(QualType(SpecType, 0));
104 
105           // If the type of the nested name specifier is the same as the
106           // injected class name of the named class template, we're entering
107           // into that class template definition.
108           QualType Injected
109             = ClassTemplate->getInjectedClassNameSpecialization();
110           if (Context.hasSameType(Injected, ContextType))
111             return ClassTemplate->getTemplatedDecl();
112 
113           // If the type of the nested name specifier is the same as the
114           // type of one of the class template's class template partial
115           // specializations, we're entering into the definition of that
116           // class template partial specialization.
117           if (ClassTemplatePartialSpecializationDecl *PartialSpec
118                 = ClassTemplate->findPartialSpecialization(ContextType)) {
119             // A declaration of the partial specialization must be visible.
120             // We can always recover here, because this only happens when we're
121             // entering the context, and that can't happen in a SFINAE context.
122             assert(!isSFINAEContext() &&
123                    "partial specialization scope specifier in SFINAE context?");
124             if (!hasVisibleDeclaration(PartialSpec))
125               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
126                                     MissingImportKind::PartialSpecialization,
127                                     /*Recover*/true);
128             return PartialSpec;
129           }
130         }
131       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
132         // The nested name specifier refers to a member of a class template.
133         return RecordT->getDecl();
134       }
135     }
136 
137     return nullptr;
138   }
139 
140   switch (NNS->getKind()) {
141   case NestedNameSpecifier::Identifier:
142     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
143 
144   case NestedNameSpecifier::Namespace:
145     return NNS->getAsNamespace();
146 
147   case NestedNameSpecifier::NamespaceAlias:
148     return NNS->getAsNamespaceAlias()->getNamespace();
149 
150   case NestedNameSpecifier::TypeSpec:
151   case NestedNameSpecifier::TypeSpecWithTemplate: {
152     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
153     assert(Tag && "Non-tag type in nested-name-specifier");
154     return Tag->getDecl();
155   }
156 
157   case NestedNameSpecifier::Global:
158     return Context.getTranslationUnitDecl();
159 
160   case NestedNameSpecifier::Super:
161     return NNS->getAsRecordDecl();
162   }
163 
164   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
165 }
166 
167 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
168   if (!SS.isSet() || SS.isInvalid())
169     return false;
170 
171   return SS.getScopeRep()->isDependent();
172 }
173 
174 /// If the given nested name specifier refers to the current
175 /// instantiation, return the declaration that corresponds to that
176 /// current instantiation (C++0x [temp.dep.type]p1).
177 ///
178 /// \param NNS a dependent nested name specifier.
179 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
180   assert(getLangOpts().CPlusPlus && "Only callable in C++");
181   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
182 
183   if (!NNS->getAsType())
184     return nullptr;
185 
186   QualType T = QualType(NNS->getAsType(), 0);
187   return ::getCurrentInstantiationOf(T, CurContext);
188 }
189 
190 /// Require that the context specified by SS be complete.
191 ///
192 /// If SS refers to a type, this routine checks whether the type is
193 /// complete enough (or can be made complete enough) for name lookup
194 /// into the DeclContext. A type that is not yet completed can be
195 /// considered "complete enough" if it is a class/struct/union/enum
196 /// that is currently being defined. Or, if we have a type that names
197 /// a class template specialization that is not a complete type, we
198 /// will attempt to instantiate that class template.
199 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
200                                       DeclContext *DC) {
201   assert(DC && "given null context");
202 
203   TagDecl *tag = dyn_cast<TagDecl>(DC);
204 
205   // If this is a dependent type, then we consider it complete.
206   // FIXME: This is wrong; we should require a (visible) definition to
207   // exist in this case too.
208   if (!tag || tag->isDependentContext())
209     return false;
210 
211   // Grab the tag definition, if there is one.
212   QualType type = Context.getTypeDeclType(tag);
213   tag = type->getAsTagDecl();
214 
215   // If we're currently defining this type, then lookup into the
216   // type is okay: don't complain that it isn't complete yet.
217   if (tag->isBeingDefined())
218     return false;
219 
220   SourceLocation loc = SS.getLastQualifierNameLoc();
221   if (loc.isInvalid()) loc = SS.getRange().getBegin();
222 
223   // The type must be complete.
224   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225                           SS.getRange())) {
226     SS.SetInvalid(SS.getRange());
227     return true;
228   }
229 
230   // Fixed enum types are complete, but they aren't valid as scopes
231   // until we see a definition, so awkwardly pull out this special
232   // case.
233   auto *EnumD = dyn_cast<EnumDecl>(tag);
234   if (!EnumD)
235     return false;
236   if (EnumD->isCompleteDefinition()) {
237     // If we know about the definition but it is not visible, complain.
238     NamedDecl *SuggestedDef = nullptr;
239     if (!hasVisibleDefinition(EnumD, &SuggestedDef,
240                               /*OnlyNeedComplete*/false)) {
241       // If the user is going to see an error here, recover by making the
242       // definition visible.
243       bool TreatAsComplete = !isSFINAEContext();
244       diagnoseMissingImport(loc, SuggestedDef, MissingImportKind::Definition,
245                             /*Recover*/TreatAsComplete);
246       return !TreatAsComplete;
247     }
248     return false;
249   }
250 
251   // Try to instantiate the definition, if this is a specialization of an
252   // enumeration temploid.
253   if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
254     MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
255     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
256       if (InstantiateEnum(loc, EnumD, Pattern,
257                           getTemplateInstantiationArgs(EnumD),
258                           TSK_ImplicitInstantiation)) {
259         SS.SetInvalid(SS.getRange());
260         return true;
261       }
262       return false;
263     }
264   }
265 
266   Diag(loc, diag::err_incomplete_nested_name_spec)
267     << type << SS.getRange();
268   SS.SetInvalid(SS.getRange());
269   return true;
270 }
271 
272 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
273                                         CXXScopeSpec &SS) {
274   SS.MakeGlobal(Context, CCLoc);
275   return false;
276 }
277 
278 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
279                                     SourceLocation ColonColonLoc,
280                                     CXXScopeSpec &SS) {
281   CXXRecordDecl *RD = nullptr;
282   for (Scope *S = getCurScope(); S; S = S->getParent()) {
283     if (S->isFunctionScope()) {
284       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
285         RD = MD->getParent();
286       break;
287     }
288     if (S->isClassScope()) {
289       RD = cast<CXXRecordDecl>(S->getEntity());
290       break;
291     }
292   }
293 
294   if (!RD) {
295     Diag(SuperLoc, diag::err_invalid_super_scope);
296     return true;
297   } else if (RD->isLambda()) {
298     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
299     return true;
300   } else if (RD->getNumBases() == 0) {
301     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
302     return true;
303   }
304 
305   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
306   return false;
307 }
308 
309 /// Determines whether the given declaration is an valid acceptable
310 /// result for name lookup of a nested-name-specifier.
311 /// \param SD Declaration checked for nested-name-specifier.
312 /// \param IsExtension If not null and the declaration is accepted as an
313 /// extension, the pointed variable is assigned true.
314 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
315                                            bool *IsExtension) {
316   if (!SD)
317     return false;
318 
319   SD = SD->getUnderlyingDecl();
320 
321   // Namespace and namespace aliases are fine.
322   if (isa<NamespaceDecl>(SD))
323     return true;
324 
325   if (!isa<TypeDecl>(SD))
326     return false;
327 
328   // Determine whether we have a class (or, in C++11, an enum) or
329   // a typedef thereof. If so, build the nested-name-specifier.
330   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
331   if (T->isDependentType())
332     return true;
333   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
334     if (TD->getUnderlyingType()->isRecordType())
335       return true;
336     if (TD->getUnderlyingType()->isEnumeralType()) {
337       if (Context.getLangOpts().CPlusPlus11)
338         return true;
339       if (IsExtension)
340         *IsExtension = true;
341     }
342   } else if (isa<RecordDecl>(SD)) {
343     return true;
344   } else if (isa<EnumDecl>(SD)) {
345     if (Context.getLangOpts().CPlusPlus11)
346       return true;
347     if (IsExtension)
348       *IsExtension = true;
349   }
350 
351   return false;
352 }
353 
354 /// If the given nested-name-specifier begins with a bare identifier
355 /// (e.g., Base::), perform name lookup for that identifier as a
356 /// nested-name-specifier within the given scope, and return the result of that
357 /// name lookup.
358 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
359   if (!S || !NNS)
360     return nullptr;
361 
362   while (NNS->getPrefix())
363     NNS = NNS->getPrefix();
364 
365   if (NNS->getKind() != NestedNameSpecifier::Identifier)
366     return nullptr;
367 
368   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
369                      LookupNestedNameSpecifierName);
370   LookupName(Found, S);
371   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
372 
373   if (!Found.isSingleResult())
374     return nullptr;
375 
376   NamedDecl *Result = Found.getFoundDecl();
377   if (isAcceptableNestedNameSpecifier(Result))
378     return Result;
379 
380   return nullptr;
381 }
382 
383 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
384                                         NestedNameSpecInfo &IdInfo) {
385   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
386   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
387                      LookupNestedNameSpecifierName);
388 
389   // Determine where to perform name lookup
390   DeclContext *LookupCtx = nullptr;
391   bool isDependent = false;
392   if (!ObjectType.isNull()) {
393     // This nested-name-specifier occurs in a member access expression, e.g.,
394     // x->B::f, and we are looking into the type of the object.
395     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
396     LookupCtx = computeDeclContext(ObjectType);
397     isDependent = ObjectType->isDependentType();
398   } else if (SS.isSet()) {
399     // This nested-name-specifier occurs after another nested-name-specifier,
400     // so long into the context associated with the prior nested-name-specifier.
401     LookupCtx = computeDeclContext(SS, false);
402     isDependent = isDependentScopeSpecifier(SS);
403     Found.setContextRange(SS.getRange());
404   }
405 
406   if (LookupCtx) {
407     // Perform "qualified" name lookup into the declaration context we
408     // computed, which is either the type of the base of a member access
409     // expression or the declaration context associated with a prior
410     // nested-name-specifier.
411 
412     // The declaration context must be complete.
413     if (!LookupCtx->isDependentContext() &&
414         RequireCompleteDeclContext(SS, LookupCtx))
415       return false;
416 
417     LookupQualifiedName(Found, LookupCtx);
418   } else if (isDependent) {
419     return false;
420   } else {
421     LookupName(Found, S);
422   }
423   Found.suppressDiagnostics();
424 
425   return Found.getAsSingle<NamespaceDecl>();
426 }
427 
428 namespace {
429 
430 // Callback to only accept typo corrections that can be a valid C++ member
431 // intializer: either a non-static field member or a base class.
432 class NestedNameSpecifierValidatorCCC final
433     : public CorrectionCandidateCallback {
434 public:
435   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
436       : SRef(SRef) {}
437 
438   bool ValidateCandidate(const TypoCorrection &candidate) override {
439     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
440   }
441 
442   std::unique_ptr<CorrectionCandidateCallback> clone() override {
443     return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
444   }
445 
446  private:
447   Sema &SRef;
448 };
449 
450 }
451 
452 /// Build a new nested-name-specifier for "identifier::", as described
453 /// by ActOnCXXNestedNameSpecifier.
454 ///
455 /// \param S Scope in which the nested-name-specifier occurs.
456 /// \param IdInfo Parser information about an identifier in the
457 ///        nested-name-spec.
458 /// \param EnteringContext If true, enter the context specified by the
459 ///        nested-name-specifier.
460 /// \param SS Optional nested name specifier preceding the identifier.
461 /// \param ScopeLookupResult Provides the result of name lookup within the
462 ///        scope of the nested-name-specifier that was computed at template
463 ///        definition time.
464 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
465 ///        error recovery and what kind of recovery is performed.
466 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
467 ///        are allowed.  The bool value pointed by this parameter is set to
468 ///       'true' if the identifier is treated as if it was followed by ':',
469 ///        not '::'.
470 /// \param OnlyNamespace If true, only considers namespaces in lookup.
471 ///
472 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
473 /// that it contains an extra parameter \p ScopeLookupResult, which provides
474 /// the result of name lookup within the scope of the nested-name-specifier
475 /// that was computed at template definition time.
476 ///
477 /// If ErrorRecoveryLookup is true, then this call is used to improve error
478 /// recovery.  This means that it should not emit diagnostics, it should
479 /// just return true on failure.  It also means it should only return a valid
480 /// scope if it *knows* that the result is correct.  It should not return in a
481 /// dependent context, for example. Nor will it extend \p SS with the scope
482 /// specifier.
483 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
484                                        bool EnteringContext, CXXScopeSpec &SS,
485                                        NamedDecl *ScopeLookupResult,
486                                        bool ErrorRecoveryLookup,
487                                        bool *IsCorrectedToColon,
488                                        bool OnlyNamespace) {
489   if (IdInfo.Identifier->isEditorPlaceholder())
490     return true;
491   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
492                      OnlyNamespace ? LookupNamespaceName
493                                    : LookupNestedNameSpecifierName);
494   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
495 
496   // Determine where to perform name lookup
497   DeclContext *LookupCtx = nullptr;
498   bool isDependent = false;
499   if (IsCorrectedToColon)
500     *IsCorrectedToColon = false;
501   if (!ObjectType.isNull()) {
502     // This nested-name-specifier occurs in a member access expression, e.g.,
503     // x->B::f, and we are looking into the type of the object.
504     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
505     LookupCtx = computeDeclContext(ObjectType);
506     isDependent = ObjectType->isDependentType();
507   } else if (SS.isSet()) {
508     // This nested-name-specifier occurs after another nested-name-specifier,
509     // so look into the context associated with the prior nested-name-specifier.
510     LookupCtx = computeDeclContext(SS, EnteringContext);
511     isDependent = isDependentScopeSpecifier(SS);
512     Found.setContextRange(SS.getRange());
513   }
514 
515   bool ObjectTypeSearchedInScope = false;
516   if (LookupCtx) {
517     // Perform "qualified" name lookup into the declaration context we
518     // computed, which is either the type of the base of a member access
519     // expression or the declaration context associated with a prior
520     // nested-name-specifier.
521 
522     // The declaration context must be complete.
523     if (!LookupCtx->isDependentContext() &&
524         RequireCompleteDeclContext(SS, LookupCtx))
525       return true;
526 
527     LookupQualifiedName(Found, LookupCtx);
528 
529     if (!ObjectType.isNull() && Found.empty()) {
530       // C++ [basic.lookup.classref]p4:
531       //   If the id-expression in a class member access is a qualified-id of
532       //   the form
533       //
534       //        class-name-or-namespace-name::...
535       //
536       //   the class-name-or-namespace-name following the . or -> operator is
537       //   looked up both in the context of the entire postfix-expression and in
538       //   the scope of the class of the object expression. If the name is found
539       //   only in the scope of the class of the object expression, the name
540       //   shall refer to a class-name. If the name is found only in the
541       //   context of the entire postfix-expression, the name shall refer to a
542       //   class-name or namespace-name. [...]
543       //
544       // Qualified name lookup into a class will not find a namespace-name,
545       // so we do not need to diagnose that case specifically. However,
546       // this qualified name lookup may find nothing. In that case, perform
547       // unqualified name lookup in the given scope (if available) or
548       // reconstruct the result from when name lookup was performed at template
549       // definition time.
550       if (S)
551         LookupName(Found, S);
552       else if (ScopeLookupResult)
553         Found.addDecl(ScopeLookupResult);
554 
555       ObjectTypeSearchedInScope = true;
556     }
557   } else if (!isDependent) {
558     // Perform unqualified name lookup in the current scope.
559     LookupName(Found, S);
560   }
561 
562   if (Found.isAmbiguous())
563     return true;
564 
565   // If we performed lookup into a dependent context and did not find anything,
566   // that's fine: just build a dependent nested-name-specifier.
567   if (Found.empty() && isDependent &&
568       !(LookupCtx && LookupCtx->isRecord() &&
569         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
570          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
571     // Don't speculate if we're just trying to improve error recovery.
572     if (ErrorRecoveryLookup)
573       return true;
574 
575     // We were not able to compute the declaration context for a dependent
576     // base object type or prior nested-name-specifier, so this
577     // nested-name-specifier refers to an unknown specialization. Just build
578     // a dependent nested-name-specifier.
579     SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
580     return false;
581   }
582 
583   if (Found.empty() && !ErrorRecoveryLookup) {
584     // If identifier is not found as class-name-or-namespace-name, but is found
585     // as other entity, don't look for typos.
586     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
587     if (LookupCtx)
588       LookupQualifiedName(R, LookupCtx);
589     else if (S && !isDependent)
590       LookupName(R, S);
591     if (!R.empty()) {
592       // Don't diagnose problems with this speculative lookup.
593       R.suppressDiagnostics();
594       // The identifier is found in ordinary lookup. If correction to colon is
595       // allowed, suggest replacement to ':'.
596       if (IsCorrectedToColon) {
597         *IsCorrectedToColon = true;
598         Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
599             << IdInfo.Identifier << getLangOpts().CPlusPlus
600             << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
601         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
602           Diag(ND->getLocation(), diag::note_declared_at);
603         return true;
604       }
605       // Replacement '::' -> ':' is not allowed, just issue respective error.
606       Diag(R.getNameLoc(), OnlyNamespace
607                                ? unsigned(diag::err_expected_namespace_name)
608                                : unsigned(diag::err_expected_class_or_namespace))
609           << IdInfo.Identifier << getLangOpts().CPlusPlus;
610       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
611         Diag(ND->getLocation(), diag::note_entity_declared_at)
612             << IdInfo.Identifier;
613       return true;
614     }
615   }
616 
617   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
618     // We haven't found anything, and we're not recovering from a
619     // different kind of error, so look for typos.
620     DeclarationName Name = Found.getLookupName();
621     Found.clear();
622     NestedNameSpecifierValidatorCCC CCC(*this);
623     if (TypoCorrection Corrected = CorrectTypo(
624             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
625             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
626       if (LookupCtx) {
627         bool DroppedSpecifier =
628             Corrected.WillReplaceSpecifier() &&
629             Name.getAsString() == Corrected.getAsString(getLangOpts());
630         if (DroppedSpecifier)
631           SS.clear();
632         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
633                                   << Name << LookupCtx << DroppedSpecifier
634                                   << SS.getRange());
635       } else
636         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
637                                   << Name);
638 
639       if (Corrected.getCorrectionSpecifier())
640         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
641                        SourceRange(Found.getNameLoc()));
642 
643       if (NamedDecl *ND = Corrected.getFoundDecl())
644         Found.addDecl(ND);
645       Found.setLookupName(Corrected.getCorrection());
646     } else {
647       Found.setLookupName(IdInfo.Identifier);
648     }
649   }
650 
651   NamedDecl *SD =
652       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
653   bool IsExtension = false;
654   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
655   if (!AcceptSpec && IsExtension) {
656     AcceptSpec = true;
657     Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
658   }
659   if (AcceptSpec) {
660     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
661         !getLangOpts().CPlusPlus11) {
662       // C++03 [basic.lookup.classref]p4:
663       //   [...] If the name is found in both contexts, the
664       //   class-name-or-namespace-name shall refer to the same entity.
665       //
666       // We already found the name in the scope of the object. Now, look
667       // into the current scope (the scope of the postfix-expression) to
668       // see if we can find the same name there. As above, if there is no
669       // scope, reconstruct the result from the template instantiation itself.
670       //
671       // Note that C++11 does *not* perform this redundant lookup.
672       NamedDecl *OuterDecl;
673       if (S) {
674         LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
675                                 LookupNestedNameSpecifierName);
676         LookupName(FoundOuter, S);
677         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
678       } else
679         OuterDecl = ScopeLookupResult;
680 
681       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
682           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
683           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
684            !Context.hasSameType(
685                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
686                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
687         if (ErrorRecoveryLookup)
688           return true;
689 
690          Diag(IdInfo.IdentifierLoc,
691               diag::err_nested_name_member_ref_lookup_ambiguous)
692            << IdInfo.Identifier;
693          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
694            << ObjectType;
695          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
696 
697          // Fall through so that we'll pick the name we found in the object
698          // type, since that's probably what the user wanted anyway.
699        }
700     }
701 
702     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
703       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
704 
705     // If we're just performing this lookup for error-recovery purposes,
706     // don't extend the nested-name-specifier. Just return now.
707     if (ErrorRecoveryLookup)
708       return false;
709 
710     // The use of a nested name specifier may trigger deprecation warnings.
711     DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
712 
713     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
714       SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
715       return false;
716     }
717 
718     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
719       SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
720       return false;
721     }
722 
723     QualType T =
724         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
725     TypeLocBuilder TLB;
726     if (isa<InjectedClassNameType>(T)) {
727       InjectedClassNameTypeLoc InjectedTL
728         = TLB.push<InjectedClassNameTypeLoc>(T);
729       InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
730     } else if (isa<RecordType>(T)) {
731       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
732       RecordTL.setNameLoc(IdInfo.IdentifierLoc);
733     } else if (isa<TypedefType>(T)) {
734       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
735       TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
736     } else if (isa<EnumType>(T)) {
737       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
738       EnumTL.setNameLoc(IdInfo.IdentifierLoc);
739     } else if (isa<TemplateTypeParmType>(T)) {
740       TemplateTypeParmTypeLoc TemplateTypeTL
741         = TLB.push<TemplateTypeParmTypeLoc>(T);
742       TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
743     } else if (isa<UnresolvedUsingType>(T)) {
744       UnresolvedUsingTypeLoc UnresolvedTL
745         = TLB.push<UnresolvedUsingTypeLoc>(T);
746       UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
747     } else if (isa<SubstTemplateTypeParmType>(T)) {
748       SubstTemplateTypeParmTypeLoc TL
749         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
750       TL.setNameLoc(IdInfo.IdentifierLoc);
751     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
752       SubstTemplateTypeParmPackTypeLoc TL
753         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
754       TL.setNameLoc(IdInfo.IdentifierLoc);
755     } else {
756       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
757     }
758 
759     if (T->isEnumeralType())
760       Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
761 
762     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
763               IdInfo.CCLoc);
764     return false;
765   }
766 
767   // Otherwise, we have an error case.  If we don't want diagnostics, just
768   // return an error now.
769   if (ErrorRecoveryLookup)
770     return true;
771 
772   // If we didn't find anything during our lookup, try again with
773   // ordinary name lookup, which can help us produce better error
774   // messages.
775   if (Found.empty()) {
776     Found.clear(LookupOrdinaryName);
777     LookupName(Found, S);
778   }
779 
780   // In Microsoft mode, if we are within a templated function and we can't
781   // resolve Identifier, then extend the SS with Identifier. This will have
782   // the effect of resolving Identifier during template instantiation.
783   // The goal is to be able to resolve a function call whose
784   // nested-name-specifier is located inside a dependent base class.
785   // Example:
786   //
787   // class C {
788   // public:
789   //    static void foo2() {  }
790   // };
791   // template <class T> class A { public: typedef C D; };
792   //
793   // template <class T> class B : public A<T> {
794   // public:
795   //   void foo() { D::foo2(); }
796   // };
797   if (getLangOpts().MSVCCompat) {
798     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
799     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
800       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
801       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
802         Diag(IdInfo.IdentifierLoc,
803              diag::ext_undeclared_unqual_id_with_dependent_base)
804             << IdInfo.Identifier << ContainingClass;
805         SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
806                   IdInfo.CCLoc);
807         return false;
808       }
809     }
810   }
811 
812   if (!Found.empty()) {
813     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
814       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
815           << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
816     else {
817       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
818           << IdInfo.Identifier << getLangOpts().CPlusPlus;
819       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
820         Diag(ND->getLocation(), diag::note_entity_declared_at)
821             << IdInfo.Identifier;
822     }
823   } else if (SS.isSet())
824     Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
825         << LookupCtx << SS.getRange();
826   else
827     Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
828         << IdInfo.Identifier;
829 
830   return true;
831 }
832 
833 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
834                                        bool EnteringContext, CXXScopeSpec &SS,
835                                        bool ErrorRecoveryLookup,
836                                        bool *IsCorrectedToColon,
837                                        bool OnlyNamespace) {
838   if (SS.isInvalid())
839     return true;
840 
841   return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
842                                      /*ScopeLookupResult=*/nullptr, false,
843                                      IsCorrectedToColon, OnlyNamespace);
844 }
845 
846 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
847                                                const DeclSpec &DS,
848                                                SourceLocation ColonColonLoc) {
849   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
850     return true;
851 
852   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
853 
854   QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
855   if (T.isNull())
856     return true;
857 
858   if (!T->isDependentType() && !T->getAs<TagType>()) {
859     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
860       << T << getLangOpts().CPlusPlus;
861     return true;
862   }
863 
864   TypeLocBuilder TLB;
865   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
866   DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
867   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
868             ColonColonLoc);
869   return false;
870 }
871 
872 /// IsInvalidUnlessNestedName - This method is used for error recovery
873 /// purposes to determine whether the specified identifier is only valid as
874 /// a nested name specifier, for example a namespace name.  It is
875 /// conservatively correct to always return false from this method.
876 ///
877 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
878 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
879                                      NestedNameSpecInfo &IdInfo,
880                                      bool EnteringContext) {
881   if (SS.isInvalid())
882     return false;
883 
884   return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
885                                       /*ScopeLookupResult=*/nullptr, true);
886 }
887 
888 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
889                                        CXXScopeSpec &SS,
890                                        SourceLocation TemplateKWLoc,
891                                        TemplateTy OpaqueTemplate,
892                                        SourceLocation TemplateNameLoc,
893                                        SourceLocation LAngleLoc,
894                                        ASTTemplateArgsPtr TemplateArgsIn,
895                                        SourceLocation RAngleLoc,
896                                        SourceLocation CCLoc,
897                                        bool EnteringContext) {
898   if (SS.isInvalid())
899     return true;
900 
901   TemplateName Template = OpaqueTemplate.get();
902 
903   // Translate the parser's template argument list in our AST format.
904   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
905   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
906 
907   DependentTemplateName *DTN = Template.getAsDependentTemplateName();
908   if (DTN && DTN->isIdentifier()) {
909     // Handle a dependent template specialization for which we cannot resolve
910     // the template name.
911     assert(DTN->getQualifier() == SS.getScopeRep());
912     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
913                                                           DTN->getQualifier(),
914                                                           DTN->getIdentifier(),
915                                                                 TemplateArgs);
916 
917     // Create source-location information for this type.
918     TypeLocBuilder Builder;
919     DependentTemplateSpecializationTypeLoc SpecTL
920       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
921     SpecTL.setElaboratedKeywordLoc(SourceLocation());
922     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
923     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
924     SpecTL.setTemplateNameLoc(TemplateNameLoc);
925     SpecTL.setLAngleLoc(LAngleLoc);
926     SpecTL.setRAngleLoc(RAngleLoc);
927     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
928       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
929 
930     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
931               CCLoc);
932     return false;
933   }
934 
935   // If we assumed an undeclared identifier was a template name, try to
936   // typo-correct it now.
937   if (Template.getAsAssumedTemplateName() &&
938       resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
939     return true;
940 
941   TemplateDecl *TD = Template.getAsTemplateDecl();
942   if (Template.getAsOverloadedTemplate() || DTN ||
943       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
944     SourceRange R(TemplateNameLoc, RAngleLoc);
945     if (SS.getRange().isValid())
946       R.setBegin(SS.getRange().getBegin());
947 
948     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
949       << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
950     NoteAllFoundTemplates(Template);
951     return true;
952   }
953 
954   // We were able to resolve the template name to an actual template.
955   // Build an appropriate nested-name-specifier.
956   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
957   if (T.isNull())
958     return true;
959 
960   // Alias template specializations can produce types which are not valid
961   // nested name specifiers.
962   if (!T->isDependentType() && !T->getAs<TagType>()) {
963     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
964     NoteAllFoundTemplates(Template);
965     return true;
966   }
967 
968   // Provide source-location information for the template specialization type.
969   TypeLocBuilder Builder;
970   TemplateSpecializationTypeLoc SpecTL
971     = Builder.push<TemplateSpecializationTypeLoc>(T);
972   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
973   SpecTL.setTemplateNameLoc(TemplateNameLoc);
974   SpecTL.setLAngleLoc(LAngleLoc);
975   SpecTL.setRAngleLoc(RAngleLoc);
976   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
977     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
978 
979 
980   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
981             CCLoc);
982   return false;
983 }
984 
985 namespace {
986   /// A structure that stores a nested-name-specifier annotation,
987   /// including both the nested-name-specifier
988   struct NestedNameSpecifierAnnotation {
989     NestedNameSpecifier *NNS;
990   };
991 }
992 
993 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
994   if (SS.isEmpty() || SS.isInvalid())
995     return nullptr;
996 
997   void *Mem = Context.Allocate(
998       (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
999       alignof(NestedNameSpecifierAnnotation));
1000   NestedNameSpecifierAnnotation *Annotation
1001     = new (Mem) NestedNameSpecifierAnnotation;
1002   Annotation->NNS = SS.getScopeRep();
1003   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1004   return Annotation;
1005 }
1006 
1007 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1008                                                 SourceRange AnnotationRange,
1009                                                 CXXScopeSpec &SS) {
1010   if (!AnnotationPtr) {
1011     SS.SetInvalid(AnnotationRange);
1012     return;
1013   }
1014 
1015   NestedNameSpecifierAnnotation *Annotation
1016     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1017   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1018 }
1019 
1020 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1021   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1022 
1023   // Don't enter a declarator context when the current context is an Objective-C
1024   // declaration.
1025   if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1026     return false;
1027 
1028   NestedNameSpecifier *Qualifier = SS.getScopeRep();
1029 
1030   // There are only two places a well-formed program may qualify a
1031   // declarator: first, when defining a namespace or class member
1032   // out-of-line, and second, when naming an explicitly-qualified
1033   // friend function.  The latter case is governed by
1034   // C++03 [basic.lookup.unqual]p10:
1035   //   In a friend declaration naming a member function, a name used
1036   //   in the function declarator and not part of a template-argument
1037   //   in a template-id is first looked up in the scope of the member
1038   //   function's class. If it is not found, or if the name is part of
1039   //   a template-argument in a template-id, the look up is as
1040   //   described for unqualified names in the definition of the class
1041   //   granting friendship.
1042   // i.e. we don't push a scope unless it's a class member.
1043 
1044   switch (Qualifier->getKind()) {
1045   case NestedNameSpecifier::Global:
1046   case NestedNameSpecifier::Namespace:
1047   case NestedNameSpecifier::NamespaceAlias:
1048     // These are always namespace scopes.  We never want to enter a
1049     // namespace scope from anything but a file context.
1050     return CurContext->getRedeclContext()->isFileContext();
1051 
1052   case NestedNameSpecifier::Identifier:
1053   case NestedNameSpecifier::TypeSpec:
1054   case NestedNameSpecifier::TypeSpecWithTemplate:
1055   case NestedNameSpecifier::Super:
1056     // These are never namespace scopes.
1057     return true;
1058   }
1059 
1060   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1061 }
1062 
1063 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1064 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1065 /// After this method is called, according to [C++ 3.4.3p3], names should be
1066 /// looked up in the declarator-id's scope, until the declarator is parsed and
1067 /// ActOnCXXExitDeclaratorScope is called.
1068 /// The 'SS' should be a non-empty valid CXXScopeSpec.
1069 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1070   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1071 
1072   if (SS.isInvalid()) return true;
1073 
1074   DeclContext *DC = computeDeclContext(SS, true);
1075   if (!DC) return true;
1076 
1077   // Before we enter a declarator's context, we need to make sure that
1078   // it is a complete declaration context.
1079   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1080     return true;
1081 
1082   EnterDeclaratorContext(S, DC);
1083 
1084   // Rebuild the nested name specifier for the new scope.
1085   if (DC->isDependentContext())
1086     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1087 
1088   return false;
1089 }
1090 
1091 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1092 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1093 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1094 /// Used to indicate that names should revert to being looked up in the
1095 /// defining scope.
1096 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1097   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1098   if (SS.isInvalid())
1099     return;
1100   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1101          "exiting declarator scope we never really entered");
1102   ExitDeclaratorContext(S);
1103 }
1104