xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCXXScopeSpec.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 //===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements C++ semantic analysis for scope specifiers.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclTemplate.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/NestedNameSpecifier.h"
18 #include "clang/Basic/PartialDiagnostic.h"
19 #include "clang/Sema/DeclSpec.h"
20 #include "clang/Sema/Lookup.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/Template.h"
23 #include "llvm/ADT/STLExtras.h"
24 using namespace clang;
25 
26 /// Find the current instantiation that associated with the given type.
27 static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28                                                 DeclContext *CurContext) {
29   if (T.isNull())
30     return nullptr;
31 
32   const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33   if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34     CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35     if (!Record->isDependentContext() ||
36         Record->isCurrentInstantiation(CurContext))
37       return Record;
38 
39     return nullptr;
40   } else if (isa<InjectedClassNameType>(Ty))
41     return cast<InjectedClassNameType>(Ty)->getDecl();
42   else
43     return nullptr;
44 }
45 
46 /// Compute the DeclContext that is associated with the given type.
47 ///
48 /// \param T the type for which we are attempting to find a DeclContext.
49 ///
50 /// \returns the declaration context represented by the type T,
51 /// or NULL if the declaration context cannot be computed (e.g., because it is
52 /// dependent and not the current instantiation).
53 DeclContext *Sema::computeDeclContext(QualType T) {
54   if (!T->isDependentType())
55     if (const TagType *Tag = T->getAs<TagType>())
56       return Tag->getDecl();
57 
58   return ::getCurrentInstantiationOf(T, CurContext);
59 }
60 
61 /// Compute the DeclContext that is associated with the given
62 /// scope specifier.
63 ///
64 /// \param SS the C++ scope specifier as it appears in the source
65 ///
66 /// \param EnteringContext when true, we will be entering the context of
67 /// this scope specifier, so we can retrieve the declaration context of a
68 /// class template or class template partial specialization even if it is
69 /// not the current instantiation.
70 ///
71 /// \returns the declaration context represented by the scope specifier @p SS,
72 /// or NULL if the declaration context cannot be computed (e.g., because it is
73 /// dependent and not the current instantiation).
74 DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75                                       bool EnteringContext) {
76   if (!SS.isSet() || SS.isInvalid())
77     return nullptr;
78 
79   NestedNameSpecifier *NNS = SS.getScopeRep();
80   if (NNS->isDependent()) {
81     // If this nested-name-specifier refers to the current
82     // instantiation, return its DeclContext.
83     if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84       return Record;
85 
86     if (EnteringContext) {
87       const Type *NNSType = NNS->getAsType();
88       if (!NNSType) {
89         return nullptr;
90       }
91 
92       // Look through type alias templates, per C++0x [temp.dep.type]p1.
93       NNSType = Context.getCanonicalType(NNSType);
94       if (const TemplateSpecializationType *SpecType
95             = NNSType->getAs<TemplateSpecializationType>()) {
96         // We are entering the context of the nested name specifier, so try to
97         // match the nested name specifier to either a primary class template
98         // or a class template partial specialization.
99         if (ClassTemplateDecl *ClassTemplate
100               = dyn_cast_or_null<ClassTemplateDecl>(
101                             SpecType->getTemplateName().getAsTemplateDecl())) {
102           QualType ContextType
103             = Context.getCanonicalType(QualType(SpecType, 0));
104 
105           // If the type of the nested name specifier is the same as the
106           // injected class name of the named class template, we're entering
107           // into that class template definition.
108           QualType Injected
109             = ClassTemplate->getInjectedClassNameSpecialization();
110           if (Context.hasSameType(Injected, ContextType))
111             return ClassTemplate->getTemplatedDecl();
112 
113           // If the type of the nested name specifier is the same as the
114           // type of one of the class template's class template partial
115           // specializations, we're entering into the definition of that
116           // class template partial specialization.
117           if (ClassTemplatePartialSpecializationDecl *PartialSpec
118                 = ClassTemplate->findPartialSpecialization(ContextType)) {
119             // A declaration of the partial specialization must be visible.
120             // We can always recover here, because this only happens when we're
121             // entering the context, and that can't happen in a SFINAE context.
122             assert(!isSFINAEContext() &&
123                    "partial specialization scope specifier in SFINAE context?");
124             if (!hasVisibleDeclaration(PartialSpec))
125               diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
126                                     MissingImportKind::PartialSpecialization,
127                                     /*Recover*/true);
128             return PartialSpec;
129           }
130         }
131       } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
132         // The nested name specifier refers to a member of a class template.
133         return RecordT->getDecl();
134       }
135     }
136 
137     return nullptr;
138   }
139 
140   switch (NNS->getKind()) {
141   case NestedNameSpecifier::Identifier:
142     llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
143 
144   case NestedNameSpecifier::Namespace:
145     return NNS->getAsNamespace();
146 
147   case NestedNameSpecifier::NamespaceAlias:
148     return NNS->getAsNamespaceAlias()->getNamespace();
149 
150   case NestedNameSpecifier::TypeSpec:
151   case NestedNameSpecifier::TypeSpecWithTemplate: {
152     const TagType *Tag = NNS->getAsType()->getAs<TagType>();
153     assert(Tag && "Non-tag type in nested-name-specifier");
154     return Tag->getDecl();
155   }
156 
157   case NestedNameSpecifier::Global:
158     return Context.getTranslationUnitDecl();
159 
160   case NestedNameSpecifier::Super:
161     return NNS->getAsRecordDecl();
162   }
163 
164   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
165 }
166 
167 bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
168   if (!SS.isSet() || SS.isInvalid())
169     return false;
170 
171   return SS.getScopeRep()->isDependent();
172 }
173 
174 /// If the given nested name specifier refers to the current
175 /// instantiation, return the declaration that corresponds to that
176 /// current instantiation (C++0x [temp.dep.type]p1).
177 ///
178 /// \param NNS a dependent nested name specifier.
179 CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
180   assert(getLangOpts().CPlusPlus && "Only callable in C++");
181   assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
182 
183   if (!NNS->getAsType())
184     return nullptr;
185 
186   QualType T = QualType(NNS->getAsType(), 0);
187   return ::getCurrentInstantiationOf(T, CurContext);
188 }
189 
190 /// Require that the context specified by SS be complete.
191 ///
192 /// If SS refers to a type, this routine checks whether the type is
193 /// complete enough (or can be made complete enough) for name lookup
194 /// into the DeclContext. A type that is not yet completed can be
195 /// considered "complete enough" if it is a class/struct/union/enum
196 /// that is currently being defined. Or, if we have a type that names
197 /// a class template specialization that is not a complete type, we
198 /// will attempt to instantiate that class template.
199 bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
200                                       DeclContext *DC) {
201   assert(DC && "given null context");
202 
203   TagDecl *tag = dyn_cast<TagDecl>(DC);
204 
205   // If this is a dependent type, then we consider it complete.
206   // FIXME: This is wrong; we should require a (visible) definition to
207   // exist in this case too.
208   if (!tag || tag->isDependentContext())
209     return false;
210 
211   // Grab the tag definition, if there is one.
212   QualType type = Context.getTypeDeclType(tag);
213   tag = type->getAsTagDecl();
214 
215   // If we're currently defining this type, then lookup into the
216   // type is okay: don't complain that it isn't complete yet.
217   if (tag->isBeingDefined())
218     return false;
219 
220   SourceLocation loc = SS.getLastQualifierNameLoc();
221   if (loc.isInvalid()) loc = SS.getRange().getBegin();
222 
223   // The type must be complete.
224   if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
225                           SS.getRange())) {
226     SS.SetInvalid(SS.getRange());
227     return true;
228   }
229 
230   if (auto *EnumD = dyn_cast<EnumDecl>(tag))
231     // Fixed enum types and scoped enum instantiations are complete, but they
232     // aren't valid as scopes until we see or instantiate their definition.
233     return RequireCompleteEnumDecl(EnumD, loc, &SS);
234 
235   return false;
236 }
237 
238 /// Require that the EnumDecl is completed with its enumerators defined or
239 /// instantiated. SS, if provided, is the ScopeRef parsed.
240 ///
241 bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
242                                    CXXScopeSpec *SS) {
243   if (EnumD->isCompleteDefinition()) {
244     // If we know about the definition but it is not visible, complain.
245     NamedDecl *SuggestedDef = nullptr;
246     if (!hasVisibleDefinition(EnumD, &SuggestedDef,
247                               /*OnlyNeedComplete*/false)) {
248       // If the user is going to see an error here, recover by making the
249       // definition visible.
250       bool TreatAsComplete = !isSFINAEContext();
251       diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
252                             /*Recover*/ TreatAsComplete);
253       return !TreatAsComplete;
254     }
255     return false;
256   }
257 
258   // Try to instantiate the definition, if this is a specialization of an
259   // enumeration temploid.
260   if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
261     MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
262     if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
263       if (InstantiateEnum(L, EnumD, Pattern,
264                           getTemplateInstantiationArgs(EnumD),
265                           TSK_ImplicitInstantiation)) {
266         if (SS)
267           SS->SetInvalid(SS->getRange());
268         return true;
269       }
270       return false;
271     }
272   }
273 
274   if (SS) {
275     Diag(L, diag::err_incomplete_nested_name_spec)
276         << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
277     SS->SetInvalid(SS->getRange());
278   } else {
279     Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
280     Diag(EnumD->getLocation(), diag::note_declared_at);
281   }
282 
283   return true;
284 }
285 
286 bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
287                                         CXXScopeSpec &SS) {
288   SS.MakeGlobal(Context, CCLoc);
289   return false;
290 }
291 
292 bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
293                                     SourceLocation ColonColonLoc,
294                                     CXXScopeSpec &SS) {
295   CXXRecordDecl *RD = nullptr;
296   for (Scope *S = getCurScope(); S; S = S->getParent()) {
297     if (S->isFunctionScope()) {
298       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
299         RD = MD->getParent();
300       break;
301     }
302     if (S->isClassScope()) {
303       RD = cast<CXXRecordDecl>(S->getEntity());
304       break;
305     }
306   }
307 
308   if (!RD) {
309     Diag(SuperLoc, diag::err_invalid_super_scope);
310     return true;
311   } else if (RD->isLambda()) {
312     Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
313     return true;
314   } else if (RD->getNumBases() == 0) {
315     Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
316     return true;
317   }
318 
319   SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
320   return false;
321 }
322 
323 /// Determines whether the given declaration is an valid acceptable
324 /// result for name lookup of a nested-name-specifier.
325 /// \param SD Declaration checked for nested-name-specifier.
326 /// \param IsExtension If not null and the declaration is accepted as an
327 /// extension, the pointed variable is assigned true.
328 bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
329                                            bool *IsExtension) {
330   if (!SD)
331     return false;
332 
333   SD = SD->getUnderlyingDecl();
334 
335   // Namespace and namespace aliases are fine.
336   if (isa<NamespaceDecl>(SD))
337     return true;
338 
339   if (!isa<TypeDecl>(SD))
340     return false;
341 
342   // Determine whether we have a class (or, in C++11, an enum) or
343   // a typedef thereof. If so, build the nested-name-specifier.
344   QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
345   if (T->isDependentType())
346     return true;
347   if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
348     if (TD->getUnderlyingType()->isRecordType())
349       return true;
350     if (TD->getUnderlyingType()->isEnumeralType()) {
351       if (Context.getLangOpts().CPlusPlus11)
352         return true;
353       if (IsExtension)
354         *IsExtension = true;
355     }
356   } else if (isa<RecordDecl>(SD)) {
357     return true;
358   } else if (isa<EnumDecl>(SD)) {
359     if (Context.getLangOpts().CPlusPlus11)
360       return true;
361     if (IsExtension)
362       *IsExtension = true;
363   }
364 
365   return false;
366 }
367 
368 /// If the given nested-name-specifier begins with a bare identifier
369 /// (e.g., Base::), perform name lookup for that identifier as a
370 /// nested-name-specifier within the given scope, and return the result of that
371 /// name lookup.
372 NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
373   if (!S || !NNS)
374     return nullptr;
375 
376   while (NNS->getPrefix())
377     NNS = NNS->getPrefix();
378 
379   if (NNS->getKind() != NestedNameSpecifier::Identifier)
380     return nullptr;
381 
382   LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
383                      LookupNestedNameSpecifierName);
384   LookupName(Found, S);
385   assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
386 
387   if (!Found.isSingleResult())
388     return nullptr;
389 
390   NamedDecl *Result = Found.getFoundDecl();
391   if (isAcceptableNestedNameSpecifier(Result))
392     return Result;
393 
394   return nullptr;
395 }
396 
397 bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
398                                         NestedNameSpecInfo &IdInfo) {
399   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
400   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
401                      LookupNestedNameSpecifierName);
402 
403   // Determine where to perform name lookup
404   DeclContext *LookupCtx = nullptr;
405   bool isDependent = false;
406   if (!ObjectType.isNull()) {
407     // This nested-name-specifier occurs in a member access expression, e.g.,
408     // x->B::f, and we are looking into the type of the object.
409     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
410     LookupCtx = computeDeclContext(ObjectType);
411     isDependent = ObjectType->isDependentType();
412   } else if (SS.isSet()) {
413     // This nested-name-specifier occurs after another nested-name-specifier,
414     // so long into the context associated with the prior nested-name-specifier.
415     LookupCtx = computeDeclContext(SS, false);
416     isDependent = isDependentScopeSpecifier(SS);
417     Found.setContextRange(SS.getRange());
418   }
419 
420   if (LookupCtx) {
421     // Perform "qualified" name lookup into the declaration context we
422     // computed, which is either the type of the base of a member access
423     // expression or the declaration context associated with a prior
424     // nested-name-specifier.
425 
426     // The declaration context must be complete.
427     if (!LookupCtx->isDependentContext() &&
428         RequireCompleteDeclContext(SS, LookupCtx))
429       return false;
430 
431     LookupQualifiedName(Found, LookupCtx);
432   } else if (isDependent) {
433     return false;
434   } else {
435     LookupName(Found, S);
436   }
437   Found.suppressDiagnostics();
438 
439   return Found.getAsSingle<NamespaceDecl>();
440 }
441 
442 namespace {
443 
444 // Callback to only accept typo corrections that can be a valid C++ member
445 // initializer: either a non-static field member or a base class.
446 class NestedNameSpecifierValidatorCCC final
447     : public CorrectionCandidateCallback {
448 public:
449   explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
450       : SRef(SRef) {}
451 
452   bool ValidateCandidate(const TypoCorrection &candidate) override {
453     return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
454   }
455 
456   std::unique_ptr<CorrectionCandidateCallback> clone() override {
457     return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
458   }
459 
460  private:
461   Sema &SRef;
462 };
463 
464 }
465 
466 /// Build a new nested-name-specifier for "identifier::", as described
467 /// by ActOnCXXNestedNameSpecifier.
468 ///
469 /// \param S Scope in which the nested-name-specifier occurs.
470 /// \param IdInfo Parser information about an identifier in the
471 ///        nested-name-spec.
472 /// \param EnteringContext If true, enter the context specified by the
473 ///        nested-name-specifier.
474 /// \param SS Optional nested name specifier preceding the identifier.
475 /// \param ScopeLookupResult Provides the result of name lookup within the
476 ///        scope of the nested-name-specifier that was computed at template
477 ///        definition time.
478 /// \param ErrorRecoveryLookup Specifies if the method is called to improve
479 ///        error recovery and what kind of recovery is performed.
480 /// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
481 ///        are allowed.  The bool value pointed by this parameter is set to
482 ///       'true' if the identifier is treated as if it was followed by ':',
483 ///        not '::'.
484 /// \param OnlyNamespace If true, only considers namespaces in lookup.
485 ///
486 /// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
487 /// that it contains an extra parameter \p ScopeLookupResult, which provides
488 /// the result of name lookup within the scope of the nested-name-specifier
489 /// that was computed at template definition time.
490 ///
491 /// If ErrorRecoveryLookup is true, then this call is used to improve error
492 /// recovery.  This means that it should not emit diagnostics, it should
493 /// just return true on failure.  It also means it should only return a valid
494 /// scope if it *knows* that the result is correct.  It should not return in a
495 /// dependent context, for example. Nor will it extend \p SS with the scope
496 /// specifier.
497 bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
498                                        bool EnteringContext, CXXScopeSpec &SS,
499                                        NamedDecl *ScopeLookupResult,
500                                        bool ErrorRecoveryLookup,
501                                        bool *IsCorrectedToColon,
502                                        bool OnlyNamespace) {
503   if (IdInfo.Identifier->isEditorPlaceholder())
504     return true;
505   LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
506                      OnlyNamespace ? LookupNamespaceName
507                                    : LookupNestedNameSpecifierName);
508   QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
509 
510   // Determine where to perform name lookup
511   DeclContext *LookupCtx = nullptr;
512   bool isDependent = false;
513   if (IsCorrectedToColon)
514     *IsCorrectedToColon = false;
515   if (!ObjectType.isNull()) {
516     // This nested-name-specifier occurs in a member access expression, e.g.,
517     // x->B::f, and we are looking into the type of the object.
518     assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
519     LookupCtx = computeDeclContext(ObjectType);
520     isDependent = ObjectType->isDependentType();
521   } else if (SS.isSet()) {
522     // This nested-name-specifier occurs after another nested-name-specifier,
523     // so look into the context associated with the prior nested-name-specifier.
524     LookupCtx = computeDeclContext(SS, EnteringContext);
525     isDependent = isDependentScopeSpecifier(SS);
526     Found.setContextRange(SS.getRange());
527   }
528 
529   bool ObjectTypeSearchedInScope = false;
530   if (LookupCtx) {
531     // Perform "qualified" name lookup into the declaration context we
532     // computed, which is either the type of the base of a member access
533     // expression or the declaration context associated with a prior
534     // nested-name-specifier.
535 
536     // The declaration context must be complete.
537     if (!LookupCtx->isDependentContext() &&
538         RequireCompleteDeclContext(SS, LookupCtx))
539       return true;
540 
541     LookupQualifiedName(Found, LookupCtx);
542 
543     if (!ObjectType.isNull() && Found.empty()) {
544       // C++ [basic.lookup.classref]p4:
545       //   If the id-expression in a class member access is a qualified-id of
546       //   the form
547       //
548       //        class-name-or-namespace-name::...
549       //
550       //   the class-name-or-namespace-name following the . or -> operator is
551       //   looked up both in the context of the entire postfix-expression and in
552       //   the scope of the class of the object expression. If the name is found
553       //   only in the scope of the class of the object expression, the name
554       //   shall refer to a class-name. If the name is found only in the
555       //   context of the entire postfix-expression, the name shall refer to a
556       //   class-name or namespace-name. [...]
557       //
558       // Qualified name lookup into a class will not find a namespace-name,
559       // so we do not need to diagnose that case specifically. However,
560       // this qualified name lookup may find nothing. In that case, perform
561       // unqualified name lookup in the given scope (if available) or
562       // reconstruct the result from when name lookup was performed at template
563       // definition time.
564       if (S)
565         LookupName(Found, S);
566       else if (ScopeLookupResult)
567         Found.addDecl(ScopeLookupResult);
568 
569       ObjectTypeSearchedInScope = true;
570     }
571   } else if (!isDependent) {
572     // Perform unqualified name lookup in the current scope.
573     LookupName(Found, S);
574   }
575 
576   if (Found.isAmbiguous())
577     return true;
578 
579   // If we performed lookup into a dependent context and did not find anything,
580   // that's fine: just build a dependent nested-name-specifier.
581   if (Found.empty() && isDependent &&
582       !(LookupCtx && LookupCtx->isRecord() &&
583         (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
584          !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
585     // Don't speculate if we're just trying to improve error recovery.
586     if (ErrorRecoveryLookup)
587       return true;
588 
589     // We were not able to compute the declaration context for a dependent
590     // base object type or prior nested-name-specifier, so this
591     // nested-name-specifier refers to an unknown specialization. Just build
592     // a dependent nested-name-specifier.
593     SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
594     return false;
595   }
596 
597   if (Found.empty() && !ErrorRecoveryLookup) {
598     // If identifier is not found as class-name-or-namespace-name, but is found
599     // as other entity, don't look for typos.
600     LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
601     if (LookupCtx)
602       LookupQualifiedName(R, LookupCtx);
603     else if (S && !isDependent)
604       LookupName(R, S);
605     if (!R.empty()) {
606       // Don't diagnose problems with this speculative lookup.
607       R.suppressDiagnostics();
608       // The identifier is found in ordinary lookup. If correction to colon is
609       // allowed, suggest replacement to ':'.
610       if (IsCorrectedToColon) {
611         *IsCorrectedToColon = true;
612         Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
613             << IdInfo.Identifier << getLangOpts().CPlusPlus
614             << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
615         if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
616           Diag(ND->getLocation(), diag::note_declared_at);
617         return true;
618       }
619       // Replacement '::' -> ':' is not allowed, just issue respective error.
620       Diag(R.getNameLoc(), OnlyNamespace
621                                ? unsigned(diag::err_expected_namespace_name)
622                                : unsigned(diag::err_expected_class_or_namespace))
623           << IdInfo.Identifier << getLangOpts().CPlusPlus;
624       if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
625         Diag(ND->getLocation(), diag::note_entity_declared_at)
626             << IdInfo.Identifier;
627       return true;
628     }
629   }
630 
631   if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
632     // We haven't found anything, and we're not recovering from a
633     // different kind of error, so look for typos.
634     DeclarationName Name = Found.getLookupName();
635     Found.clear();
636     NestedNameSpecifierValidatorCCC CCC(*this);
637     if (TypoCorrection Corrected = CorrectTypo(
638             Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
639             CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
640       if (LookupCtx) {
641         bool DroppedSpecifier =
642             Corrected.WillReplaceSpecifier() &&
643             Name.getAsString() == Corrected.getAsString(getLangOpts());
644         if (DroppedSpecifier)
645           SS.clear();
646         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
647                                   << Name << LookupCtx << DroppedSpecifier
648                                   << SS.getRange());
649       } else
650         diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
651                                   << Name);
652 
653       if (Corrected.getCorrectionSpecifier())
654         SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
655                        SourceRange(Found.getNameLoc()));
656 
657       if (NamedDecl *ND = Corrected.getFoundDecl())
658         Found.addDecl(ND);
659       Found.setLookupName(Corrected.getCorrection());
660     } else {
661       Found.setLookupName(IdInfo.Identifier);
662     }
663   }
664 
665   NamedDecl *SD =
666       Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
667   bool IsExtension = false;
668   bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
669   if (!AcceptSpec && IsExtension) {
670     AcceptSpec = true;
671     Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
672   }
673   if (AcceptSpec) {
674     if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
675         !getLangOpts().CPlusPlus11) {
676       // C++03 [basic.lookup.classref]p4:
677       //   [...] If the name is found in both contexts, the
678       //   class-name-or-namespace-name shall refer to the same entity.
679       //
680       // We already found the name in the scope of the object. Now, look
681       // into the current scope (the scope of the postfix-expression) to
682       // see if we can find the same name there. As above, if there is no
683       // scope, reconstruct the result from the template instantiation itself.
684       //
685       // Note that C++11 does *not* perform this redundant lookup.
686       NamedDecl *OuterDecl;
687       if (S) {
688         LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
689                                 LookupNestedNameSpecifierName);
690         LookupName(FoundOuter, S);
691         OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
692       } else
693         OuterDecl = ScopeLookupResult;
694 
695       if (isAcceptableNestedNameSpecifier(OuterDecl) &&
696           OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
697           (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
698            !Context.hasSameType(
699                             Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
700                                Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
701         if (ErrorRecoveryLookup)
702           return true;
703 
704          Diag(IdInfo.IdentifierLoc,
705               diag::err_nested_name_member_ref_lookup_ambiguous)
706            << IdInfo.Identifier;
707          Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
708            << ObjectType;
709          Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
710 
711          // Fall through so that we'll pick the name we found in the object
712          // type, since that's probably what the user wanted anyway.
713        }
714     }
715 
716     if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
717       MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
718 
719     // If we're just performing this lookup for error-recovery purposes,
720     // don't extend the nested-name-specifier. Just return now.
721     if (ErrorRecoveryLookup)
722       return false;
723 
724     // The use of a nested name specifier may trigger deprecation warnings.
725     DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
726 
727     if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
728       SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
729       return false;
730     }
731 
732     if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
733       SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
734       return false;
735     }
736 
737     QualType T =
738         Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
739 
740     if (T->isEnumeralType())
741       Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
742 
743     TypeLocBuilder TLB;
744     if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
745       T = Context.getUsingType(USD, T);
746       TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
747     } else if (isa<InjectedClassNameType>(T)) {
748       InjectedClassNameTypeLoc InjectedTL
749         = TLB.push<InjectedClassNameTypeLoc>(T);
750       InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
751     } else if (isa<RecordType>(T)) {
752       RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
753       RecordTL.setNameLoc(IdInfo.IdentifierLoc);
754     } else if (isa<TypedefType>(T)) {
755       TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
756       TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
757     } else if (isa<EnumType>(T)) {
758       EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
759       EnumTL.setNameLoc(IdInfo.IdentifierLoc);
760     } else if (isa<TemplateTypeParmType>(T)) {
761       TemplateTypeParmTypeLoc TemplateTypeTL
762         = TLB.push<TemplateTypeParmTypeLoc>(T);
763       TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
764     } else if (isa<UnresolvedUsingType>(T)) {
765       UnresolvedUsingTypeLoc UnresolvedTL
766         = TLB.push<UnresolvedUsingTypeLoc>(T);
767       UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
768     } else if (isa<SubstTemplateTypeParmType>(T)) {
769       SubstTemplateTypeParmTypeLoc TL
770         = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
771       TL.setNameLoc(IdInfo.IdentifierLoc);
772     } else if (isa<SubstTemplateTypeParmPackType>(T)) {
773       SubstTemplateTypeParmPackTypeLoc TL
774         = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
775       TL.setNameLoc(IdInfo.IdentifierLoc);
776     } else {
777       llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
778     }
779 
780     SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
781               IdInfo.CCLoc);
782     return false;
783   }
784 
785   // Otherwise, we have an error case.  If we don't want diagnostics, just
786   // return an error now.
787   if (ErrorRecoveryLookup)
788     return true;
789 
790   // If we didn't find anything during our lookup, try again with
791   // ordinary name lookup, which can help us produce better error
792   // messages.
793   if (Found.empty()) {
794     Found.clear(LookupOrdinaryName);
795     LookupName(Found, S);
796   }
797 
798   // In Microsoft mode, if we are within a templated function and we can't
799   // resolve Identifier, then extend the SS with Identifier. This will have
800   // the effect of resolving Identifier during template instantiation.
801   // The goal is to be able to resolve a function call whose
802   // nested-name-specifier is located inside a dependent base class.
803   // Example:
804   //
805   // class C {
806   // public:
807   //    static void foo2() {  }
808   // };
809   // template <class T> class A { public: typedef C D; };
810   //
811   // template <class T> class B : public A<T> {
812   // public:
813   //   void foo() { D::foo2(); }
814   // };
815   if (getLangOpts().MSVCCompat) {
816     DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
817     if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
818       CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
819       if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
820         Diag(IdInfo.IdentifierLoc,
821              diag::ext_undeclared_unqual_id_with_dependent_base)
822             << IdInfo.Identifier << ContainingClass;
823         SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
824                   IdInfo.CCLoc);
825         return false;
826       }
827     }
828   }
829 
830   if (!Found.empty()) {
831     if (TypeDecl *TD = Found.getAsSingle<TypeDecl>())
832       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
833           << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
834     else {
835       Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
836           << IdInfo.Identifier << getLangOpts().CPlusPlus;
837       if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
838         Diag(ND->getLocation(), diag::note_entity_declared_at)
839             << IdInfo.Identifier;
840     }
841   } else if (SS.isSet())
842     Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
843         << LookupCtx << SS.getRange();
844   else
845     Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
846         << IdInfo.Identifier;
847 
848   return true;
849 }
850 
851 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
852                                        bool EnteringContext, CXXScopeSpec &SS,
853                                        bool ErrorRecoveryLookup,
854                                        bool *IsCorrectedToColon,
855                                        bool OnlyNamespace) {
856   if (SS.isInvalid())
857     return true;
858 
859   return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
860                                      /*ScopeLookupResult=*/nullptr, false,
861                                      IsCorrectedToColon, OnlyNamespace);
862 }
863 
864 bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
865                                                const DeclSpec &DS,
866                                                SourceLocation ColonColonLoc) {
867   if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
868     return true;
869 
870   assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
871 
872   QualType T = BuildDecltypeType(DS.getRepAsExpr());
873   if (T.isNull())
874     return true;
875 
876   if (!T->isDependentType() && !T->getAs<TagType>()) {
877     Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
878       << T << getLangOpts().CPlusPlus;
879     return true;
880   }
881 
882   TypeLocBuilder TLB;
883   DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
884   DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
885   DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
886   SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
887             ColonColonLoc);
888   return false;
889 }
890 
891 /// IsInvalidUnlessNestedName - This method is used for error recovery
892 /// purposes to determine whether the specified identifier is only valid as
893 /// a nested name specifier, for example a namespace name.  It is
894 /// conservatively correct to always return false from this method.
895 ///
896 /// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
897 bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
898                                      NestedNameSpecInfo &IdInfo,
899                                      bool EnteringContext) {
900   if (SS.isInvalid())
901     return false;
902 
903   return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
904                                       /*ScopeLookupResult=*/nullptr, true);
905 }
906 
907 bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
908                                        CXXScopeSpec &SS,
909                                        SourceLocation TemplateKWLoc,
910                                        TemplateTy OpaqueTemplate,
911                                        SourceLocation TemplateNameLoc,
912                                        SourceLocation LAngleLoc,
913                                        ASTTemplateArgsPtr TemplateArgsIn,
914                                        SourceLocation RAngleLoc,
915                                        SourceLocation CCLoc,
916                                        bool EnteringContext) {
917   if (SS.isInvalid())
918     return true;
919 
920   TemplateName Template = OpaqueTemplate.get();
921 
922   // Translate the parser's template argument list in our AST format.
923   TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
924   translateTemplateArguments(TemplateArgsIn, TemplateArgs);
925 
926   DependentTemplateName *DTN = Template.getAsDependentTemplateName();
927   if (DTN && DTN->isIdentifier()) {
928     // Handle a dependent template specialization for which we cannot resolve
929     // the template name.
930     assert(DTN->getQualifier() == SS.getScopeRep());
931     QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
932                                                           DTN->getQualifier(),
933                                                           DTN->getIdentifier(),
934                                                                 TemplateArgs);
935 
936     // Create source-location information for this type.
937     TypeLocBuilder Builder;
938     DependentTemplateSpecializationTypeLoc SpecTL
939       = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
940     SpecTL.setElaboratedKeywordLoc(SourceLocation());
941     SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
942     SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
943     SpecTL.setTemplateNameLoc(TemplateNameLoc);
944     SpecTL.setLAngleLoc(LAngleLoc);
945     SpecTL.setRAngleLoc(RAngleLoc);
946     for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
947       SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
948 
949     SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
950               CCLoc);
951     return false;
952   }
953 
954   // If we assumed an undeclared identifier was a template name, try to
955   // typo-correct it now.
956   if (Template.getAsAssumedTemplateName() &&
957       resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
958     return true;
959 
960   TemplateDecl *TD = Template.getAsTemplateDecl();
961   if (Template.getAsOverloadedTemplate() || DTN ||
962       isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
963     SourceRange R(TemplateNameLoc, RAngleLoc);
964     if (SS.getRange().isValid())
965       R.setBegin(SS.getRange().getBegin());
966 
967     Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
968       << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
969     NoteAllFoundTemplates(Template);
970     return true;
971   }
972 
973   // We were able to resolve the template name to an actual template.
974   // Build an appropriate nested-name-specifier.
975   QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
976   if (T.isNull())
977     return true;
978 
979   // Alias template specializations can produce types which are not valid
980   // nested name specifiers.
981   if (!T->isDependentType() && !T->getAs<TagType>()) {
982     Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
983     NoteAllFoundTemplates(Template);
984     return true;
985   }
986 
987   // Provide source-location information for the template specialization type.
988   TypeLocBuilder Builder;
989   TemplateSpecializationTypeLoc SpecTL
990     = Builder.push<TemplateSpecializationTypeLoc>(T);
991   SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
992   SpecTL.setTemplateNameLoc(TemplateNameLoc);
993   SpecTL.setLAngleLoc(LAngleLoc);
994   SpecTL.setRAngleLoc(RAngleLoc);
995   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
996     SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
997 
998 
999   SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
1000             CCLoc);
1001   return false;
1002 }
1003 
1004 namespace {
1005   /// A structure that stores a nested-name-specifier annotation,
1006   /// including both the nested-name-specifier
1007   struct NestedNameSpecifierAnnotation {
1008     NestedNameSpecifier *NNS;
1009   };
1010 }
1011 
1012 void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
1013   if (SS.isEmpty() || SS.isInvalid())
1014     return nullptr;
1015 
1016   void *Mem = Context.Allocate(
1017       (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
1018       alignof(NestedNameSpecifierAnnotation));
1019   NestedNameSpecifierAnnotation *Annotation
1020     = new (Mem) NestedNameSpecifierAnnotation;
1021   Annotation->NNS = SS.getScopeRep();
1022   memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1023   return Annotation;
1024 }
1025 
1026 void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1027                                                 SourceRange AnnotationRange,
1028                                                 CXXScopeSpec &SS) {
1029   if (!AnnotationPtr) {
1030     SS.SetInvalid(AnnotationRange);
1031     return;
1032   }
1033 
1034   NestedNameSpecifierAnnotation *Annotation
1035     = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1036   SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1037 }
1038 
1039 bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1040   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1041 
1042   // Don't enter a declarator context when the current context is an Objective-C
1043   // declaration.
1044   if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1045     return false;
1046 
1047   NestedNameSpecifier *Qualifier = SS.getScopeRep();
1048 
1049   // There are only two places a well-formed program may qualify a
1050   // declarator: first, when defining a namespace or class member
1051   // out-of-line, and second, when naming an explicitly-qualified
1052   // friend function.  The latter case is governed by
1053   // C++03 [basic.lookup.unqual]p10:
1054   //   In a friend declaration naming a member function, a name used
1055   //   in the function declarator and not part of a template-argument
1056   //   in a template-id is first looked up in the scope of the member
1057   //   function's class. If it is not found, or if the name is part of
1058   //   a template-argument in a template-id, the look up is as
1059   //   described for unqualified names in the definition of the class
1060   //   granting friendship.
1061   // i.e. we don't push a scope unless it's a class member.
1062 
1063   switch (Qualifier->getKind()) {
1064   case NestedNameSpecifier::Global:
1065   case NestedNameSpecifier::Namespace:
1066   case NestedNameSpecifier::NamespaceAlias:
1067     // These are always namespace scopes.  We never want to enter a
1068     // namespace scope from anything but a file context.
1069     return CurContext->getRedeclContext()->isFileContext();
1070 
1071   case NestedNameSpecifier::Identifier:
1072   case NestedNameSpecifier::TypeSpec:
1073   case NestedNameSpecifier::TypeSpecWithTemplate:
1074   case NestedNameSpecifier::Super:
1075     // These are never namespace scopes.
1076     return true;
1077   }
1078 
1079   llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1080 }
1081 
1082 /// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1083 /// scope or nested-name-specifier) is parsed, part of a declarator-id.
1084 /// After this method is called, according to [C++ 3.4.3p3], names should be
1085 /// looked up in the declarator-id's scope, until the declarator is parsed and
1086 /// ActOnCXXExitDeclaratorScope is called.
1087 /// The 'SS' should be a non-empty valid CXXScopeSpec.
1088 bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1089   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1090 
1091   if (SS.isInvalid()) return true;
1092 
1093   DeclContext *DC = computeDeclContext(SS, true);
1094   if (!DC) return true;
1095 
1096   // Before we enter a declarator's context, we need to make sure that
1097   // it is a complete declaration context.
1098   if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1099     return true;
1100 
1101   EnterDeclaratorContext(S, DC);
1102 
1103   // Rebuild the nested name specifier for the new scope.
1104   if (DC->isDependentContext())
1105     RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1106 
1107   return false;
1108 }
1109 
1110 /// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1111 /// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1112 /// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1113 /// Used to indicate that names should revert to being looked up in the
1114 /// defining scope.
1115 void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1116   assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1117   if (SS.isInvalid())
1118     return;
1119   assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1120          "exiting declarator scope we never really entered");
1121   ExitDeclaratorContext(S);
1122 }
1123