xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCUDA.cpp (revision f976241773df2260e6170317080761d1c5814fe5)
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Lex/Preprocessor.h"
18 #include "clang/Sema/Lookup.h"
19 #include "clang/Sema/Sema.h"
20 #include "clang/Sema/SemaDiagnostic.h"
21 #include "clang/Sema/SemaInternal.h"
22 #include "clang/Sema/Template.h"
23 #include "llvm/ADT/Optional.h"
24 #include "llvm/ADT/SmallVector.h"
25 using namespace clang;
26 
27 void Sema::PushForceCUDAHostDevice() {
28   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
29   ForceCUDAHostDeviceDepth++;
30 }
31 
32 bool Sema::PopForceCUDAHostDevice() {
33   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
34   if (ForceCUDAHostDeviceDepth == 0)
35     return false;
36   ForceCUDAHostDeviceDepth--;
37   return true;
38 }
39 
40 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
41                                          MultiExprArg ExecConfig,
42                                          SourceLocation GGGLoc) {
43   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
44   if (!ConfigDecl)
45     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
46                      << getCudaConfigureFuncName());
47   QualType ConfigQTy = ConfigDecl->getType();
48 
49   DeclRefExpr *ConfigDR = new (Context)
50       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
51   MarkFunctionReferenced(LLLLoc, ConfigDecl);
52 
53   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
54                        /*IsExecConfig=*/true);
55 }
56 
57 Sema::CUDAFunctionTarget
58 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
59   bool HasHostAttr = false;
60   bool HasDeviceAttr = false;
61   bool HasGlobalAttr = false;
62   bool HasInvalidTargetAttr = false;
63   for (const ParsedAttr &AL : Attrs) {
64     switch (AL.getKind()) {
65     case ParsedAttr::AT_CUDAGlobal:
66       HasGlobalAttr = true;
67       break;
68     case ParsedAttr::AT_CUDAHost:
69       HasHostAttr = true;
70       break;
71     case ParsedAttr::AT_CUDADevice:
72       HasDeviceAttr = true;
73       break;
74     case ParsedAttr::AT_CUDAInvalidTarget:
75       HasInvalidTargetAttr = true;
76       break;
77     default:
78       break;
79     }
80   }
81 
82   if (HasInvalidTargetAttr)
83     return CFT_InvalidTarget;
84 
85   if (HasGlobalAttr)
86     return CFT_Global;
87 
88   if (HasHostAttr && HasDeviceAttr)
89     return CFT_HostDevice;
90 
91   if (HasDeviceAttr)
92     return CFT_Device;
93 
94   return CFT_Host;
95 }
96 
97 template <typename A>
98 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
99   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
100            return isa<A>(Attribute) &&
101                   !(IgnoreImplicitAttr && Attribute->isImplicit());
102          });
103 }
104 
105 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
106 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
107                                                   bool IgnoreImplicitHDAttr) {
108   // Code that lives outside a function is run on the host.
109   if (D == nullptr)
110     return CFT_Host;
111 
112   if (D->hasAttr<CUDAInvalidTargetAttr>())
113     return CFT_InvalidTarget;
114 
115   if (D->hasAttr<CUDAGlobalAttr>())
116     return CFT_Global;
117 
118   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
119     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
120       return CFT_HostDevice;
121     return CFT_Device;
122   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
123     return CFT_Host;
124   } else if (D->isImplicit() && !IgnoreImplicitHDAttr) {
125     // Some implicit declarations (like intrinsic functions) are not marked.
126     // Set the most lenient target on them for maximal flexibility.
127     return CFT_HostDevice;
128   }
129 
130   return CFT_Host;
131 }
132 
133 // * CUDA Call preference table
134 //
135 // F - from,
136 // T - to
137 // Ph - preference in host mode
138 // Pd - preference in device mode
139 // H  - handled in (x)
140 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
141 //
142 // | F  | T  | Ph  | Pd  |  H  |
143 // |----+----+-----+-----+-----+
144 // | d  | d  | N   | N   | (c) |
145 // | d  | g  | --  | --  | (a) |
146 // | d  | h  | --  | --  | (e) |
147 // | d  | hd | HD  | HD  | (b) |
148 // | g  | d  | N   | N   | (c) |
149 // | g  | g  | --  | --  | (a) |
150 // | g  | h  | --  | --  | (e) |
151 // | g  | hd | HD  | HD  | (b) |
152 // | h  | d  | --  | --  | (e) |
153 // | h  | g  | N   | N   | (c) |
154 // | h  | h  | N   | N   | (c) |
155 // | h  | hd | HD  | HD  | (b) |
156 // | hd | d  | WS  | SS  | (d) |
157 // | hd | g  | SS  | --  |(d/a)|
158 // | hd | h  | SS  | WS  | (d) |
159 // | hd | hd | HD  | HD  | (b) |
160 
161 Sema::CUDAFunctionPreference
162 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
163                              const FunctionDecl *Callee) {
164   assert(Callee && "Callee must be valid.");
165   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
166   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
167 
168   // If one of the targets is invalid, the check always fails, no matter what
169   // the other target is.
170   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
171     return CFP_Never;
172 
173   // (a) Can't call global from some contexts until we support CUDA's
174   // dynamic parallelism.
175   if (CalleeTarget == CFT_Global &&
176       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
177     return CFP_Never;
178 
179   // (b) Calling HostDevice is OK for everyone.
180   if (CalleeTarget == CFT_HostDevice)
181     return CFP_HostDevice;
182 
183   // (c) Best case scenarios
184   if (CalleeTarget == CallerTarget ||
185       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
186       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
187     return CFP_Native;
188 
189   // (d) HostDevice behavior depends on compilation mode.
190   if (CallerTarget == CFT_HostDevice) {
191     // It's OK to call a compilation-mode matching function from an HD one.
192     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
193         (!getLangOpts().CUDAIsDevice &&
194          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
195       return CFP_SameSide;
196 
197     // Calls from HD to non-mode-matching functions (i.e., to host functions
198     // when compiling in device mode or to device functions when compiling in
199     // host mode) are allowed at the sema level, but eventually rejected if
200     // they're ever codegened.  TODO: Reject said calls earlier.
201     return CFP_WrongSide;
202   }
203 
204   // (e) Calling across device/host boundary is not something you should do.
205   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
206       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
207       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
208     return CFP_Never;
209 
210   llvm_unreachable("All cases should've been handled by now.");
211 }
212 
213 void Sema::EraseUnwantedCUDAMatches(
214     const FunctionDecl *Caller,
215     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
216   if (Matches.size() <= 1)
217     return;
218 
219   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
220 
221   // Gets the CUDA function preference for a call from Caller to Match.
222   auto GetCFP = [&](const Pair &Match) {
223     return IdentifyCUDAPreference(Caller, Match.second);
224   };
225 
226   // Find the best call preference among the functions in Matches.
227   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
228       Matches.begin(), Matches.end(),
229       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
230 
231   // Erase all functions with lower priority.
232   llvm::erase_if(Matches,
233                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
234 }
235 
236 /// When an implicitly-declared special member has to invoke more than one
237 /// base/field special member, conflicts may occur in the targets of these
238 /// members. For example, if one base's member __host__ and another's is
239 /// __device__, it's a conflict.
240 /// This function figures out if the given targets \param Target1 and
241 /// \param Target2 conflict, and if they do not it fills in
242 /// \param ResolvedTarget with a target that resolves for both calls.
243 /// \return true if there's a conflict, false otherwise.
244 static bool
245 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
246                                 Sema::CUDAFunctionTarget Target2,
247                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
248   // Only free functions and static member functions may be global.
249   assert(Target1 != Sema::CFT_Global);
250   assert(Target2 != Sema::CFT_Global);
251 
252   if (Target1 == Sema::CFT_HostDevice) {
253     *ResolvedTarget = Target2;
254   } else if (Target2 == Sema::CFT_HostDevice) {
255     *ResolvedTarget = Target1;
256   } else if (Target1 != Target2) {
257     return true;
258   } else {
259     *ResolvedTarget = Target1;
260   }
261 
262   return false;
263 }
264 
265 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
266                                                    CXXSpecialMember CSM,
267                                                    CXXMethodDecl *MemberDecl,
268                                                    bool ConstRHS,
269                                                    bool Diagnose) {
270   llvm::Optional<CUDAFunctionTarget> InferredTarget;
271 
272   // We're going to invoke special member lookup; mark that these special
273   // members are called from this one, and not from its caller.
274   ContextRAII MethodContext(*this, MemberDecl);
275 
276   // Look for special members in base classes that should be invoked from here.
277   // Infer the target of this member base on the ones it should call.
278   // Skip direct and indirect virtual bases for abstract classes.
279   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
280   for (const auto &B : ClassDecl->bases()) {
281     if (!B.isVirtual()) {
282       Bases.push_back(&B);
283     }
284   }
285 
286   if (!ClassDecl->isAbstract()) {
287     for (const auto &VB : ClassDecl->vbases()) {
288       Bases.push_back(&VB);
289     }
290   }
291 
292   for (const auto *B : Bases) {
293     const RecordType *BaseType = B->getType()->getAs<RecordType>();
294     if (!BaseType) {
295       continue;
296     }
297 
298     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
299     Sema::SpecialMemberOverloadResult SMOR =
300         LookupSpecialMember(BaseClassDecl, CSM,
301                             /* ConstArg */ ConstRHS,
302                             /* VolatileArg */ false,
303                             /* RValueThis */ false,
304                             /* ConstThis */ false,
305                             /* VolatileThis */ false);
306 
307     if (!SMOR.getMethod())
308       continue;
309 
310     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
311     if (!InferredTarget.hasValue()) {
312       InferredTarget = BaseMethodTarget;
313     } else {
314       bool ResolutionError = resolveCalleeCUDATargetConflict(
315           InferredTarget.getValue(), BaseMethodTarget,
316           InferredTarget.getPointer());
317       if (ResolutionError) {
318         if (Diagnose) {
319           Diag(ClassDecl->getLocation(),
320                diag::note_implicit_member_target_infer_collision)
321               << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
322         }
323         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
324         return true;
325       }
326     }
327   }
328 
329   // Same as for bases, but now for special members of fields.
330   for (const auto *F : ClassDecl->fields()) {
331     if (F->isInvalidDecl()) {
332       continue;
333     }
334 
335     const RecordType *FieldType =
336         Context.getBaseElementType(F->getType())->getAs<RecordType>();
337     if (!FieldType) {
338       continue;
339     }
340 
341     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
342     Sema::SpecialMemberOverloadResult SMOR =
343         LookupSpecialMember(FieldRecDecl, CSM,
344                             /* ConstArg */ ConstRHS && !F->isMutable(),
345                             /* VolatileArg */ false,
346                             /* RValueThis */ false,
347                             /* ConstThis */ false,
348                             /* VolatileThis */ false);
349 
350     if (!SMOR.getMethod())
351       continue;
352 
353     CUDAFunctionTarget FieldMethodTarget =
354         IdentifyCUDATarget(SMOR.getMethod());
355     if (!InferredTarget.hasValue()) {
356       InferredTarget = FieldMethodTarget;
357     } else {
358       bool ResolutionError = resolveCalleeCUDATargetConflict(
359           InferredTarget.getValue(), FieldMethodTarget,
360           InferredTarget.getPointer());
361       if (ResolutionError) {
362         if (Diagnose) {
363           Diag(ClassDecl->getLocation(),
364                diag::note_implicit_member_target_infer_collision)
365               << (unsigned)CSM << InferredTarget.getValue()
366               << FieldMethodTarget;
367         }
368         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
369         return true;
370       }
371     }
372   }
373 
374   if (InferredTarget.hasValue()) {
375     if (InferredTarget.getValue() == CFT_Device) {
376       MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
377     } else if (InferredTarget.getValue() == CFT_Host) {
378       MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
379     } else {
380       MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
381       MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
382     }
383   } else {
384     // If no target was inferred, mark this member as __host__ __device__;
385     // it's the least restrictive option that can be invoked from any target.
386     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
387     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
388   }
389 
390   return false;
391 }
392 
393 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
394   if (!CD->isDefined() && CD->isTemplateInstantiation())
395     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
396 
397   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
398   // empty at a point in the translation unit, if it is either a
399   // trivial constructor
400   if (CD->isTrivial())
401     return true;
402 
403   // ... or it satisfies all of the following conditions:
404   // The constructor function has been defined.
405   // The constructor function has no parameters,
406   // and the function body is an empty compound statement.
407   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
408     return false;
409 
410   // Its class has no virtual functions and no virtual base classes.
411   if (CD->getParent()->isDynamicClass())
412     return false;
413 
414   // The only form of initializer allowed is an empty constructor.
415   // This will recursively check all base classes and member initializers
416   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
417         if (const CXXConstructExpr *CE =
418                 dyn_cast<CXXConstructExpr>(CI->getInit()))
419           return isEmptyCudaConstructor(Loc, CE->getConstructor());
420         return false;
421       }))
422     return false;
423 
424   return true;
425 }
426 
427 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
428   // No destructor -> no problem.
429   if (!DD)
430     return true;
431 
432   if (!DD->isDefined() && DD->isTemplateInstantiation())
433     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
434 
435   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
436   // empty at a point in the translation unit, if it is either a
437   // trivial constructor
438   if (DD->isTrivial())
439     return true;
440 
441   // ... or it satisfies all of the following conditions:
442   // The destructor function has been defined.
443   // and the function body is an empty compound statement.
444   if (!DD->hasTrivialBody())
445     return false;
446 
447   const CXXRecordDecl *ClassDecl = DD->getParent();
448 
449   // Its class has no virtual functions and no virtual base classes.
450   if (ClassDecl->isDynamicClass())
451     return false;
452 
453   // Only empty destructors are allowed. This will recursively check
454   // destructors for all base classes...
455   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
456         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
457           return isEmptyCudaDestructor(Loc, RD->getDestructor());
458         return true;
459       }))
460     return false;
461 
462   // ... and member fields.
463   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
464         if (CXXRecordDecl *RD = Field->getType()
465                                     ->getBaseElementTypeUnsafe()
466                                     ->getAsCXXRecordDecl())
467           return isEmptyCudaDestructor(Loc, RD->getDestructor());
468         return true;
469       }))
470     return false;
471 
472   return true;
473 }
474 
475 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
476   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
477     return;
478   const Expr *Init = VD->getInit();
479   if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
480       VD->hasAttr<CUDASharedAttr>()) {
481     assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
482     bool AllowedInit = false;
483     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
484       AllowedInit =
485           isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
486     // We'll allow constant initializers even if it's a non-empty
487     // constructor according to CUDA rules. This deviates from NVCC,
488     // but allows us to handle things like constexpr constructors.
489     if (!AllowedInit &&
490         (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
491       AllowedInit = VD->getInit()->isConstantInitializer(
492           Context, VD->getType()->isReferenceType());
493 
494     // Also make sure that destructor, if there is one, is empty.
495     if (AllowedInit)
496       if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
497         AllowedInit =
498             isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
499 
500     if (!AllowedInit) {
501       Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
502                                   ? diag::err_shared_var_init
503                                   : diag::err_dynamic_var_init)
504           << Init->getSourceRange();
505       VD->setInvalidDecl();
506     }
507   } else {
508     // This is a host-side global variable.  Check that the initializer is
509     // callable from the host side.
510     const FunctionDecl *InitFn = nullptr;
511     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
512       InitFn = CE->getConstructor();
513     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
514       InitFn = CE->getDirectCallee();
515     }
516     if (InitFn) {
517       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
518       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
519         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
520             << InitFnTarget << InitFn;
521         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
522         VD->setInvalidDecl();
523       }
524     }
525   }
526 }
527 
528 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
529 // treated as implicitly __host__ __device__, unless:
530 //  * it is a variadic function (device-side variadic functions are not
531 //    allowed), or
532 //  * a __device__ function with this signature was already declared, in which
533 //    case in which case we output an error, unless the __device__ decl is in a
534 //    system header, in which case we leave the constexpr function unattributed.
535 //
536 // In addition, all function decls are treated as __host__ __device__ when
537 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
538 //   #pragma clang force_cuda_host_device_begin/end
539 // pair).
540 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
541                                        const LookupResult &Previous) {
542   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
543 
544   if (ForceCUDAHostDeviceDepth > 0) {
545     if (!NewD->hasAttr<CUDAHostAttr>())
546       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
547     if (!NewD->hasAttr<CUDADeviceAttr>())
548       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
549     return;
550   }
551 
552   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
553       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
554       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
555     return;
556 
557   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
558   // attributes?
559   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
560     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
561       D = Using->getTargetDecl();
562     FunctionDecl *OldD = D->getAsFunction();
563     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
564            !OldD->hasAttr<CUDAHostAttr>() &&
565            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
566                        /* ConsiderCudaAttrs = */ false);
567   };
568   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
569   if (It != Previous.end()) {
570     // We found a __device__ function with the same name and signature as NewD
571     // (ignoring CUDA attrs).  This is an error unless that function is defined
572     // in a system header, in which case we simply return without making NewD
573     // host+device.
574     NamedDecl *Match = *It;
575     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
576       Diag(NewD->getLocation(),
577            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
578           << NewD;
579       Diag(Match->getLocation(),
580            diag::note_cuda_conflicting_device_function_declared_here);
581     }
582     return;
583   }
584 
585   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
586   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
587 }
588 
589 // Do we know that we will eventually codegen the given function?
590 static bool IsKnownEmitted(Sema &S, FunctionDecl *FD) {
591   // Templates are emitted when they're instantiated.
592   if (FD->isDependentContext())
593     return false;
594 
595   // When compiling for device, host functions are never emitted.  Similarly,
596   // when compiling for host, device and global functions are never emitted.
597   // (Technically, we do emit a host-side stub for global functions, but this
598   // doesn't count for our purposes here.)
599   Sema::CUDAFunctionTarget T = S.IdentifyCUDATarget(FD);
600   if (S.getLangOpts().CUDAIsDevice && T == Sema::CFT_Host)
601     return false;
602   if (!S.getLangOpts().CUDAIsDevice &&
603       (T == Sema::CFT_Device || T == Sema::CFT_Global))
604     return false;
605 
606   // Check whether this function is externally visible -- if so, it's
607   // known-emitted.
608   //
609   // We have to check the GVA linkage of the function's *definition* -- if we
610   // only have a declaration, we don't know whether or not the function will be
611   // emitted, because (say) the definition could include "inline".
612   FunctionDecl *Def = FD->getDefinition();
613 
614   if (Def &&
615       !isDiscardableGVALinkage(S.getASTContext().GetGVALinkageForFunction(Def)))
616     return true;
617 
618   // Otherwise, the function is known-emitted if it's in our set of
619   // known-emitted functions.
620   return S.DeviceKnownEmittedFns.count(FD) > 0;
621 }
622 
623 Sema::DeviceDiagBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
624                                                    unsigned DiagID) {
625   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
626   DeviceDiagBuilder::Kind DiagKind = [this] {
627     switch (CurrentCUDATarget()) {
628     case CFT_Global:
629     case CFT_Device:
630       return DeviceDiagBuilder::K_Immediate;
631     case CFT_HostDevice:
632       // An HD function counts as host code if we're compiling for host, and
633       // device code if we're compiling for device.  Defer any errors in device
634       // mode until the function is known-emitted.
635       if (getLangOpts().CUDAIsDevice) {
636         return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
637                    ? DeviceDiagBuilder::K_ImmediateWithCallStack
638                    : DeviceDiagBuilder::K_Deferred;
639       }
640       return DeviceDiagBuilder::K_Nop;
641 
642     default:
643       return DeviceDiagBuilder::K_Nop;
644     }
645   }();
646   return DeviceDiagBuilder(DiagKind, Loc, DiagID,
647                            dyn_cast<FunctionDecl>(CurContext), *this);
648 }
649 
650 Sema::DeviceDiagBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
651                                                  unsigned DiagID) {
652   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
653   DeviceDiagBuilder::Kind DiagKind = [this] {
654     switch (CurrentCUDATarget()) {
655     case CFT_Host:
656       return DeviceDiagBuilder::K_Immediate;
657     case CFT_HostDevice:
658       // An HD function counts as host code if we're compiling for host, and
659       // device code if we're compiling for device.  Defer any errors in device
660       // mode until the function is known-emitted.
661       if (getLangOpts().CUDAIsDevice)
662         return DeviceDiagBuilder::K_Nop;
663 
664       return IsKnownEmitted(*this, dyn_cast<FunctionDecl>(CurContext))
665                  ? DeviceDiagBuilder::K_ImmediateWithCallStack
666                  : DeviceDiagBuilder::K_Deferred;
667     default:
668       return DeviceDiagBuilder::K_Nop;
669     }
670   }();
671   return DeviceDiagBuilder(DiagKind, Loc, DiagID,
672                            dyn_cast<FunctionDecl>(CurContext), *this);
673 }
674 
675 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
676   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
677   assert(Callee && "Callee may not be null.");
678 
679   auto &ExprEvalCtx = ExprEvalContexts.back();
680   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
681     return true;
682 
683   // FIXME: Is bailing out early correct here?  Should we instead assume that
684   // the caller is a global initializer?
685   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
686   if (!Caller)
687     return true;
688 
689   // If the caller is known-emitted, mark the callee as known-emitted.
690   // Otherwise, mark the call in our call graph so we can traverse it later.
691   bool CallerKnownEmitted = IsKnownEmitted(*this, Caller);
692   if (CallerKnownEmitted) {
693     // Host-side references to a __global__ function refer to the stub, so the
694     // function itself is never emitted and therefore should not be marked.
695     if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
696       markKnownEmitted(*this, Caller, Callee, Loc, IsKnownEmitted);
697   } else {
698     // If we have
699     //   host fn calls kernel fn calls host+device,
700     // the HD function does not get instantiated on the host.  We model this by
701     // omitting at the call to the kernel from the callgraph.  This ensures
702     // that, when compiling for host, only HD functions actually called from the
703     // host get marked as known-emitted.
704     if (getLangOpts().CUDAIsDevice || IdentifyCUDATarget(Callee) != CFT_Global)
705       DeviceCallGraph[Caller].insert({Callee, Loc});
706   }
707 
708   DeviceDiagBuilder::Kind DiagKind = [this, Caller, Callee,
709                                       CallerKnownEmitted] {
710     switch (IdentifyCUDAPreference(Caller, Callee)) {
711     case CFP_Never:
712       return DeviceDiagBuilder::K_Immediate;
713     case CFP_WrongSide:
714       assert(Caller && "WrongSide calls require a non-null caller");
715       // If we know the caller will be emitted, we know this wrong-side call
716       // will be emitted, so it's an immediate error.  Otherwise, defer the
717       // error until we know the caller is emitted.
718       return CallerKnownEmitted ? DeviceDiagBuilder::K_ImmediateWithCallStack
719                                 : DeviceDiagBuilder::K_Deferred;
720     default:
721       return DeviceDiagBuilder::K_Nop;
722     }
723   }();
724 
725   if (DiagKind == DeviceDiagBuilder::K_Nop)
726     return true;
727 
728   // Avoid emitting this error twice for the same location.  Using a hashtable
729   // like this is unfortunate, but because we must continue parsing as normal
730   // after encountering a deferred error, it's otherwise very tricky for us to
731   // ensure that we only emit this deferred error once.
732   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
733     return true;
734 
735   DeviceDiagBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
736       << IdentifyCUDATarget(Callee) << Callee << IdentifyCUDATarget(Caller);
737   DeviceDiagBuilder(DiagKind, Callee->getLocation(), diag::note_previous_decl,
738                     Caller, *this)
739       << Callee;
740   return DiagKind != DeviceDiagBuilder::K_Immediate &&
741          DiagKind != DeviceDiagBuilder::K_ImmediateWithCallStack;
742 }
743 
744 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
745   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
746   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
747     return;
748   FunctionDecl *CurFn = dyn_cast<FunctionDecl>(CurContext);
749   if (!CurFn)
750     return;
751   CUDAFunctionTarget Target = IdentifyCUDATarget(CurFn);
752   if (Target == CFT_Global || Target == CFT_Device) {
753     Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
754   } else if (Target == CFT_HostDevice) {
755     Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
756     Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
757   }
758 }
759 
760 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
761                                    const LookupResult &Previous) {
762   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
763   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
764   for (NamedDecl *OldND : Previous) {
765     FunctionDecl *OldFD = OldND->getAsFunction();
766     if (!OldFD)
767       continue;
768 
769     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
770     // Don't allow HD and global functions to overload other functions with the
771     // same signature.  We allow overloading based on CUDA attributes so that
772     // functions can have different implementations on the host and device, but
773     // HD/global functions "exist" in some sense on both the host and device, so
774     // should have the same implementation on both sides.
775     if (NewTarget != OldTarget &&
776         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
777          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
778         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
779                     /* ConsiderCudaAttrs = */ false)) {
780       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
781           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
782       Diag(OldFD->getLocation(), diag::note_previous_declaration);
783       NewFD->setInvalidDecl();
784       break;
785     }
786   }
787 }
788 
789 template <typename AttrTy>
790 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
791                               const FunctionDecl &TemplateFD) {
792   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
793     AttrTy *Clone = Attribute->clone(S.Context);
794     Clone->setInherited(true);
795     FD->addAttr(Clone);
796   }
797 }
798 
799 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
800                                   const FunctionTemplateDecl &TD) {
801   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
802   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
803   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
804   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
805 }
806 
807 std::string Sema::getCudaConfigureFuncName() const {
808   if (getLangOpts().HIP)
809     return "hipConfigureCall";
810 
811   // New CUDA kernel launch sequence.
812   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
813                          CudaFeature::CUDA_USES_NEW_LAUNCH))
814     return "__cudaPushCallConfiguration";
815 
816   // Legacy CUDA kernel configuration call
817   return "cudaConfigureCall";
818 }
819