xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaCUDA.cpp (revision a3266ba2697a383d2ede56803320d941866c7e76)
1 //===--- SemaCUDA.cpp - Semantic Analysis for CUDA constructs -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements semantic analysis for CUDA constructs.
10 ///
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/Cuda.h"
17 #include "clang/Basic/TargetInfo.h"
18 #include "clang/Lex/Preprocessor.h"
19 #include "clang/Sema/Lookup.h"
20 #include "clang/Sema/ScopeInfo.h"
21 #include "clang/Sema/Sema.h"
22 #include "clang/Sema/SemaDiagnostic.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "clang/Sema/Template.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/SmallVector.h"
27 using namespace clang;
28 
29 void Sema::PushForceCUDAHostDevice() {
30   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
31   ForceCUDAHostDeviceDepth++;
32 }
33 
34 bool Sema::PopForceCUDAHostDevice() {
35   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
36   if (ForceCUDAHostDeviceDepth == 0)
37     return false;
38   ForceCUDAHostDeviceDepth--;
39   return true;
40 }
41 
42 ExprResult Sema::ActOnCUDAExecConfigExpr(Scope *S, SourceLocation LLLLoc,
43                                          MultiExprArg ExecConfig,
44                                          SourceLocation GGGLoc) {
45   FunctionDecl *ConfigDecl = Context.getcudaConfigureCallDecl();
46   if (!ConfigDecl)
47     return ExprError(Diag(LLLLoc, diag::err_undeclared_var_use)
48                      << getCudaConfigureFuncName());
49   QualType ConfigQTy = ConfigDecl->getType();
50 
51   DeclRefExpr *ConfigDR = new (Context)
52       DeclRefExpr(Context, ConfigDecl, false, ConfigQTy, VK_LValue, LLLLoc);
53   MarkFunctionReferenced(LLLLoc, ConfigDecl);
54 
55   return BuildCallExpr(S, ConfigDR, LLLLoc, ExecConfig, GGGLoc, nullptr,
56                        /*IsExecConfig=*/true);
57 }
58 
59 Sema::CUDAFunctionTarget
60 Sema::IdentifyCUDATarget(const ParsedAttributesView &Attrs) {
61   bool HasHostAttr = false;
62   bool HasDeviceAttr = false;
63   bool HasGlobalAttr = false;
64   bool HasInvalidTargetAttr = false;
65   for (const ParsedAttr &AL : Attrs) {
66     switch (AL.getKind()) {
67     case ParsedAttr::AT_CUDAGlobal:
68       HasGlobalAttr = true;
69       break;
70     case ParsedAttr::AT_CUDAHost:
71       HasHostAttr = true;
72       break;
73     case ParsedAttr::AT_CUDADevice:
74       HasDeviceAttr = true;
75       break;
76     case ParsedAttr::AT_CUDAInvalidTarget:
77       HasInvalidTargetAttr = true;
78       break;
79     default:
80       break;
81     }
82   }
83 
84   if (HasInvalidTargetAttr)
85     return CFT_InvalidTarget;
86 
87   if (HasGlobalAttr)
88     return CFT_Global;
89 
90   if (HasHostAttr && HasDeviceAttr)
91     return CFT_HostDevice;
92 
93   if (HasDeviceAttr)
94     return CFT_Device;
95 
96   return CFT_Host;
97 }
98 
99 template <typename A>
100 static bool hasAttr(const FunctionDecl *D, bool IgnoreImplicitAttr) {
101   return D->hasAttrs() && llvm::any_of(D->getAttrs(), [&](Attr *Attribute) {
102            return isa<A>(Attribute) &&
103                   !(IgnoreImplicitAttr && Attribute->isImplicit());
104          });
105 }
106 
107 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
108 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D,
109                                                   bool IgnoreImplicitHDAttr) {
110   // Code that lives outside a function is run on the host.
111   if (D == nullptr)
112     return CFT_Host;
113 
114   if (D->hasAttr<CUDAInvalidTargetAttr>())
115     return CFT_InvalidTarget;
116 
117   if (D->hasAttr<CUDAGlobalAttr>())
118     return CFT_Global;
119 
120   if (hasAttr<CUDADeviceAttr>(D, IgnoreImplicitHDAttr)) {
121     if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr))
122       return CFT_HostDevice;
123     return CFT_Device;
124   } else if (hasAttr<CUDAHostAttr>(D, IgnoreImplicitHDAttr)) {
125     return CFT_Host;
126   } else if ((D->isImplicit() || !D->isUserProvided()) &&
127              !IgnoreImplicitHDAttr) {
128     // Some implicit declarations (like intrinsic functions) are not marked.
129     // Set the most lenient target on them for maximal flexibility.
130     return CFT_HostDevice;
131   }
132 
133   return CFT_Host;
134 }
135 
136 // * CUDA Call preference table
137 //
138 // F - from,
139 // T - to
140 // Ph - preference in host mode
141 // Pd - preference in device mode
142 // H  - handled in (x)
143 // Preferences: N:native, SS:same side, HD:host-device, WS:wrong side, --:never.
144 //
145 // | F  | T  | Ph  | Pd  |  H  |
146 // |----+----+-----+-----+-----+
147 // | d  | d  | N   | N   | (c) |
148 // | d  | g  | --  | --  | (a) |
149 // | d  | h  | --  | --  | (e) |
150 // | d  | hd | HD  | HD  | (b) |
151 // | g  | d  | N   | N   | (c) |
152 // | g  | g  | --  | --  | (a) |
153 // | g  | h  | --  | --  | (e) |
154 // | g  | hd | HD  | HD  | (b) |
155 // | h  | d  | --  | --  | (e) |
156 // | h  | g  | N   | N   | (c) |
157 // | h  | h  | N   | N   | (c) |
158 // | h  | hd | HD  | HD  | (b) |
159 // | hd | d  | WS  | SS  | (d) |
160 // | hd | g  | SS  | --  |(d/a)|
161 // | hd | h  | SS  | WS  | (d) |
162 // | hd | hd | HD  | HD  | (b) |
163 
164 Sema::CUDAFunctionPreference
165 Sema::IdentifyCUDAPreference(const FunctionDecl *Caller,
166                              const FunctionDecl *Callee) {
167   assert(Callee && "Callee must be valid.");
168   CUDAFunctionTarget CallerTarget = IdentifyCUDATarget(Caller);
169   CUDAFunctionTarget CalleeTarget = IdentifyCUDATarget(Callee);
170 
171   // If one of the targets is invalid, the check always fails, no matter what
172   // the other target is.
173   if (CallerTarget == CFT_InvalidTarget || CalleeTarget == CFT_InvalidTarget)
174     return CFP_Never;
175 
176   // (a) Can't call global from some contexts until we support CUDA's
177   // dynamic parallelism.
178   if (CalleeTarget == CFT_Global &&
179       (CallerTarget == CFT_Global || CallerTarget == CFT_Device))
180     return CFP_Never;
181 
182   // (b) Calling HostDevice is OK for everyone.
183   if (CalleeTarget == CFT_HostDevice)
184     return CFP_HostDevice;
185 
186   // (c) Best case scenarios
187   if (CalleeTarget == CallerTarget ||
188       (CallerTarget == CFT_Host && CalleeTarget == CFT_Global) ||
189       (CallerTarget == CFT_Global && CalleeTarget == CFT_Device))
190     return CFP_Native;
191 
192   // (d) HostDevice behavior depends on compilation mode.
193   if (CallerTarget == CFT_HostDevice) {
194     // It's OK to call a compilation-mode matching function from an HD one.
195     if ((getLangOpts().CUDAIsDevice && CalleeTarget == CFT_Device) ||
196         (!getLangOpts().CUDAIsDevice &&
197          (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global)))
198       return CFP_SameSide;
199 
200     // Calls from HD to non-mode-matching functions (i.e., to host functions
201     // when compiling in device mode or to device functions when compiling in
202     // host mode) are allowed at the sema level, but eventually rejected if
203     // they're ever codegened.  TODO: Reject said calls earlier.
204     return CFP_WrongSide;
205   }
206 
207   // (e) Calling across device/host boundary is not something you should do.
208   if ((CallerTarget == CFT_Host && CalleeTarget == CFT_Device) ||
209       (CallerTarget == CFT_Device && CalleeTarget == CFT_Host) ||
210       (CallerTarget == CFT_Global && CalleeTarget == CFT_Host))
211     return CFP_Never;
212 
213   llvm_unreachable("All cases should've been handled by now.");
214 }
215 
216 template <typename AttrT> static bool hasImplicitAttr(const FunctionDecl *D) {
217   if (!D)
218     return false;
219   if (auto *A = D->getAttr<AttrT>())
220     return A->isImplicit();
221   return D->isImplicit();
222 }
223 
224 bool Sema::isCUDAImplicitHostDeviceFunction(const FunctionDecl *D) {
225   bool IsImplicitDevAttr = hasImplicitAttr<CUDADeviceAttr>(D);
226   bool IsImplicitHostAttr = hasImplicitAttr<CUDAHostAttr>(D);
227   return IsImplicitDevAttr && IsImplicitHostAttr;
228 }
229 
230 void Sema::EraseUnwantedCUDAMatches(
231     const FunctionDecl *Caller,
232     SmallVectorImpl<std::pair<DeclAccessPair, FunctionDecl *>> &Matches) {
233   if (Matches.size() <= 1)
234     return;
235 
236   using Pair = std::pair<DeclAccessPair, FunctionDecl*>;
237 
238   // Gets the CUDA function preference for a call from Caller to Match.
239   auto GetCFP = [&](const Pair &Match) {
240     return IdentifyCUDAPreference(Caller, Match.second);
241   };
242 
243   // Find the best call preference among the functions in Matches.
244   CUDAFunctionPreference BestCFP = GetCFP(*std::max_element(
245       Matches.begin(), Matches.end(),
246       [&](const Pair &M1, const Pair &M2) { return GetCFP(M1) < GetCFP(M2); }));
247 
248   // Erase all functions with lower priority.
249   llvm::erase_if(Matches,
250                  [&](const Pair &Match) { return GetCFP(Match) < BestCFP; });
251 }
252 
253 /// When an implicitly-declared special member has to invoke more than one
254 /// base/field special member, conflicts may occur in the targets of these
255 /// members. For example, if one base's member __host__ and another's is
256 /// __device__, it's a conflict.
257 /// This function figures out if the given targets \param Target1 and
258 /// \param Target2 conflict, and if they do not it fills in
259 /// \param ResolvedTarget with a target that resolves for both calls.
260 /// \return true if there's a conflict, false otherwise.
261 static bool
262 resolveCalleeCUDATargetConflict(Sema::CUDAFunctionTarget Target1,
263                                 Sema::CUDAFunctionTarget Target2,
264                                 Sema::CUDAFunctionTarget *ResolvedTarget) {
265   // Only free functions and static member functions may be global.
266   assert(Target1 != Sema::CFT_Global);
267   assert(Target2 != Sema::CFT_Global);
268 
269   if (Target1 == Sema::CFT_HostDevice) {
270     *ResolvedTarget = Target2;
271   } else if (Target2 == Sema::CFT_HostDevice) {
272     *ResolvedTarget = Target1;
273   } else if (Target1 != Target2) {
274     return true;
275   } else {
276     *ResolvedTarget = Target1;
277   }
278 
279   return false;
280 }
281 
282 bool Sema::inferCUDATargetForImplicitSpecialMember(CXXRecordDecl *ClassDecl,
283                                                    CXXSpecialMember CSM,
284                                                    CXXMethodDecl *MemberDecl,
285                                                    bool ConstRHS,
286                                                    bool Diagnose) {
287   // If the defaulted special member is defined lexically outside of its
288   // owning class, or the special member already has explicit device or host
289   // attributes, do not infer.
290   bool InClass = MemberDecl->getLexicalParent() == MemberDecl->getParent();
291   bool HasH = MemberDecl->hasAttr<CUDAHostAttr>();
292   bool HasD = MemberDecl->hasAttr<CUDADeviceAttr>();
293   bool HasExplicitAttr =
294       (HasD && !MemberDecl->getAttr<CUDADeviceAttr>()->isImplicit()) ||
295       (HasH && !MemberDecl->getAttr<CUDAHostAttr>()->isImplicit());
296   if (!InClass || HasExplicitAttr)
297     return false;
298 
299   llvm::Optional<CUDAFunctionTarget> InferredTarget;
300 
301   // We're going to invoke special member lookup; mark that these special
302   // members are called from this one, and not from its caller.
303   ContextRAII MethodContext(*this, MemberDecl);
304 
305   // Look for special members in base classes that should be invoked from here.
306   // Infer the target of this member base on the ones it should call.
307   // Skip direct and indirect virtual bases for abstract classes.
308   llvm::SmallVector<const CXXBaseSpecifier *, 16> Bases;
309   for (const auto &B : ClassDecl->bases()) {
310     if (!B.isVirtual()) {
311       Bases.push_back(&B);
312     }
313   }
314 
315   if (!ClassDecl->isAbstract()) {
316     for (const auto &VB : ClassDecl->vbases()) {
317       Bases.push_back(&VB);
318     }
319   }
320 
321   for (const auto *B : Bases) {
322     const RecordType *BaseType = B->getType()->getAs<RecordType>();
323     if (!BaseType) {
324       continue;
325     }
326 
327     CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
328     Sema::SpecialMemberOverloadResult SMOR =
329         LookupSpecialMember(BaseClassDecl, CSM,
330                             /* ConstArg */ ConstRHS,
331                             /* VolatileArg */ false,
332                             /* RValueThis */ false,
333                             /* ConstThis */ false,
334                             /* VolatileThis */ false);
335 
336     if (!SMOR.getMethod())
337       continue;
338 
339     CUDAFunctionTarget BaseMethodTarget = IdentifyCUDATarget(SMOR.getMethod());
340     if (!InferredTarget.hasValue()) {
341       InferredTarget = BaseMethodTarget;
342     } else {
343       bool ResolutionError = resolveCalleeCUDATargetConflict(
344           InferredTarget.getValue(), BaseMethodTarget,
345           InferredTarget.getPointer());
346       if (ResolutionError) {
347         if (Diagnose) {
348           Diag(ClassDecl->getLocation(),
349                diag::note_implicit_member_target_infer_collision)
350               << (unsigned)CSM << InferredTarget.getValue() << BaseMethodTarget;
351         }
352         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
353         return true;
354       }
355     }
356   }
357 
358   // Same as for bases, but now for special members of fields.
359   for (const auto *F : ClassDecl->fields()) {
360     if (F->isInvalidDecl()) {
361       continue;
362     }
363 
364     const RecordType *FieldType =
365         Context.getBaseElementType(F->getType())->getAs<RecordType>();
366     if (!FieldType) {
367       continue;
368     }
369 
370     CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(FieldType->getDecl());
371     Sema::SpecialMemberOverloadResult SMOR =
372         LookupSpecialMember(FieldRecDecl, CSM,
373                             /* ConstArg */ ConstRHS && !F->isMutable(),
374                             /* VolatileArg */ false,
375                             /* RValueThis */ false,
376                             /* ConstThis */ false,
377                             /* VolatileThis */ false);
378 
379     if (!SMOR.getMethod())
380       continue;
381 
382     CUDAFunctionTarget FieldMethodTarget =
383         IdentifyCUDATarget(SMOR.getMethod());
384     if (!InferredTarget.hasValue()) {
385       InferredTarget = FieldMethodTarget;
386     } else {
387       bool ResolutionError = resolveCalleeCUDATargetConflict(
388           InferredTarget.getValue(), FieldMethodTarget,
389           InferredTarget.getPointer());
390       if (ResolutionError) {
391         if (Diagnose) {
392           Diag(ClassDecl->getLocation(),
393                diag::note_implicit_member_target_infer_collision)
394               << (unsigned)CSM << InferredTarget.getValue()
395               << FieldMethodTarget;
396         }
397         MemberDecl->addAttr(CUDAInvalidTargetAttr::CreateImplicit(Context));
398         return true;
399       }
400     }
401   }
402 
403 
404   // If no target was inferred, mark this member as __host__ __device__;
405   // it's the least restrictive option that can be invoked from any target.
406   bool NeedsH = true, NeedsD = true;
407   if (InferredTarget.hasValue()) {
408     if (InferredTarget.getValue() == CFT_Device)
409       NeedsH = false;
410     else if (InferredTarget.getValue() == CFT_Host)
411       NeedsD = false;
412   }
413 
414   // We either setting attributes first time, or the inferred ones must match
415   // previously set ones.
416   if (NeedsD && !HasD)
417     MemberDecl->addAttr(CUDADeviceAttr::CreateImplicit(Context));
418   if (NeedsH && !HasH)
419     MemberDecl->addAttr(CUDAHostAttr::CreateImplicit(Context));
420 
421   return false;
422 }
423 
424 bool Sema::isEmptyCudaConstructor(SourceLocation Loc, CXXConstructorDecl *CD) {
425   if (!CD->isDefined() && CD->isTemplateInstantiation())
426     InstantiateFunctionDefinition(Loc, CD->getFirstDecl());
427 
428   // (E.2.3.1, CUDA 7.5) A constructor for a class type is considered
429   // empty at a point in the translation unit, if it is either a
430   // trivial constructor
431   if (CD->isTrivial())
432     return true;
433 
434   // ... or it satisfies all of the following conditions:
435   // The constructor function has been defined.
436   // The constructor function has no parameters,
437   // and the function body is an empty compound statement.
438   if (!(CD->hasTrivialBody() && CD->getNumParams() == 0))
439     return false;
440 
441   // Its class has no virtual functions and no virtual base classes.
442   if (CD->getParent()->isDynamicClass())
443     return false;
444 
445   // Union ctor does not call ctors of its data members.
446   if (CD->getParent()->isUnion())
447     return true;
448 
449   // The only form of initializer allowed is an empty constructor.
450   // This will recursively check all base classes and member initializers
451   if (!llvm::all_of(CD->inits(), [&](const CXXCtorInitializer *CI) {
452         if (const CXXConstructExpr *CE =
453                 dyn_cast<CXXConstructExpr>(CI->getInit()))
454           return isEmptyCudaConstructor(Loc, CE->getConstructor());
455         return false;
456       }))
457     return false;
458 
459   return true;
460 }
461 
462 bool Sema::isEmptyCudaDestructor(SourceLocation Loc, CXXDestructorDecl *DD) {
463   // No destructor -> no problem.
464   if (!DD)
465     return true;
466 
467   if (!DD->isDefined() && DD->isTemplateInstantiation())
468     InstantiateFunctionDefinition(Loc, DD->getFirstDecl());
469 
470   // (E.2.3.1, CUDA 7.5) A destructor for a class type is considered
471   // empty at a point in the translation unit, if it is either a
472   // trivial constructor
473   if (DD->isTrivial())
474     return true;
475 
476   // ... or it satisfies all of the following conditions:
477   // The destructor function has been defined.
478   // and the function body is an empty compound statement.
479   if (!DD->hasTrivialBody())
480     return false;
481 
482   const CXXRecordDecl *ClassDecl = DD->getParent();
483 
484   // Its class has no virtual functions and no virtual base classes.
485   if (ClassDecl->isDynamicClass())
486     return false;
487 
488   // Union does not have base class and union dtor does not call dtors of its
489   // data members.
490   if (DD->getParent()->isUnion())
491     return true;
492 
493   // Only empty destructors are allowed. This will recursively check
494   // destructors for all base classes...
495   if (!llvm::all_of(ClassDecl->bases(), [&](const CXXBaseSpecifier &BS) {
496         if (CXXRecordDecl *RD = BS.getType()->getAsCXXRecordDecl())
497           return isEmptyCudaDestructor(Loc, RD->getDestructor());
498         return true;
499       }))
500     return false;
501 
502   // ... and member fields.
503   if (!llvm::all_of(ClassDecl->fields(), [&](const FieldDecl *Field) {
504         if (CXXRecordDecl *RD = Field->getType()
505                                     ->getBaseElementTypeUnsafe()
506                                     ->getAsCXXRecordDecl())
507           return isEmptyCudaDestructor(Loc, RD->getDestructor());
508         return true;
509       }))
510     return false;
511 
512   return true;
513 }
514 
515 void Sema::checkAllowedCUDAInitializer(VarDecl *VD) {
516   if (VD->isInvalidDecl() || !VD->hasInit() || !VD->hasGlobalStorage())
517     return;
518   const Expr *Init = VD->getInit();
519   if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
520       VD->hasAttr<CUDASharedAttr>()) {
521     if (LangOpts.GPUAllowDeviceInit)
522       return;
523     bool AllowedInit = false;
524     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
525       AllowedInit =
526           isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
527     // We'll allow constant initializers even if it's a non-empty
528     // constructor according to CUDA rules. This deviates from NVCC,
529     // but allows us to handle things like constexpr constructors.
530     if (!AllowedInit &&
531         (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) {
532       auto *Init = VD->getInit();
533       AllowedInit =
534           ((VD->getType()->isDependentType() || Init->isValueDependent()) &&
535            VD->isConstexpr()) ||
536           Init->isConstantInitializer(Context,
537                                       VD->getType()->isReferenceType());
538     }
539 
540     // Also make sure that destructor, if there is one, is empty.
541     if (AllowedInit)
542       if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
543         AllowedInit =
544             isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
545 
546     if (!AllowedInit) {
547       Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
548                                   ? diag::err_shared_var_init
549                                   : diag::err_dynamic_var_init)
550           << Init->getSourceRange();
551       VD->setInvalidDecl();
552     }
553   } else {
554     // This is a host-side global variable.  Check that the initializer is
555     // callable from the host side.
556     const FunctionDecl *InitFn = nullptr;
557     if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
558       InitFn = CE->getConstructor();
559     } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
560       InitFn = CE->getDirectCallee();
561     }
562     if (InitFn) {
563       CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
564       if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
565         Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
566             << InitFnTarget << InitFn;
567         Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
568         VD->setInvalidDecl();
569       }
570     }
571   }
572 }
573 
574 // With -fcuda-host-device-constexpr, an unattributed constexpr function is
575 // treated as implicitly __host__ __device__, unless:
576 //  * it is a variadic function (device-side variadic functions are not
577 //    allowed), or
578 //  * a __device__ function with this signature was already declared, in which
579 //    case in which case we output an error, unless the __device__ decl is in a
580 //    system header, in which case we leave the constexpr function unattributed.
581 //
582 // In addition, all function decls are treated as __host__ __device__ when
583 // ForceCUDAHostDeviceDepth > 0 (corresponding to code within a
584 //   #pragma clang force_cuda_host_device_begin/end
585 // pair).
586 void Sema::maybeAddCUDAHostDeviceAttrs(FunctionDecl *NewD,
587                                        const LookupResult &Previous) {
588   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
589 
590   if (ForceCUDAHostDeviceDepth > 0) {
591     if (!NewD->hasAttr<CUDAHostAttr>())
592       NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
593     if (!NewD->hasAttr<CUDADeviceAttr>())
594       NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
595     return;
596   }
597 
598   if (!getLangOpts().CUDAHostDeviceConstexpr || !NewD->isConstexpr() ||
599       NewD->isVariadic() || NewD->hasAttr<CUDAHostAttr>() ||
600       NewD->hasAttr<CUDADeviceAttr>() || NewD->hasAttr<CUDAGlobalAttr>())
601     return;
602 
603   // Is D a __device__ function with the same signature as NewD, ignoring CUDA
604   // attributes?
605   auto IsMatchingDeviceFn = [&](NamedDecl *D) {
606     if (UsingShadowDecl *Using = dyn_cast<UsingShadowDecl>(D))
607       D = Using->getTargetDecl();
608     FunctionDecl *OldD = D->getAsFunction();
609     return OldD && OldD->hasAttr<CUDADeviceAttr>() &&
610            !OldD->hasAttr<CUDAHostAttr>() &&
611            !IsOverload(NewD, OldD, /* UseMemberUsingDeclRules = */ false,
612                        /* ConsiderCudaAttrs = */ false);
613   };
614   auto It = llvm::find_if(Previous, IsMatchingDeviceFn);
615   if (It != Previous.end()) {
616     // We found a __device__ function with the same name and signature as NewD
617     // (ignoring CUDA attrs).  This is an error unless that function is defined
618     // in a system header, in which case we simply return without making NewD
619     // host+device.
620     NamedDecl *Match = *It;
621     if (!getSourceManager().isInSystemHeader(Match->getLocation())) {
622       Diag(NewD->getLocation(),
623            diag::err_cuda_unattributed_constexpr_cannot_overload_device)
624           << NewD;
625       Diag(Match->getLocation(),
626            diag::note_cuda_conflicting_device_function_declared_here);
627     }
628     return;
629   }
630 
631   NewD->addAttr(CUDAHostAttr::CreateImplicit(Context));
632   NewD->addAttr(CUDADeviceAttr::CreateImplicit(Context));
633 }
634 
635 void Sema::MaybeAddCUDAConstantAttr(VarDecl *VD) {
636   if (getLangOpts().CUDAIsDevice && VD->isConstexpr() &&
637       (VD->isFileVarDecl() || VD->isStaticDataMember())) {
638     VD->addAttr(CUDAConstantAttr::CreateImplicit(getASTContext()));
639   }
640 }
641 
642 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfDeviceCode(SourceLocation Loc,
643                                                        unsigned DiagID) {
644   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
645   SemaDiagnosticBuilder::Kind DiagKind = [&] {
646     if (!isa<FunctionDecl>(CurContext))
647       return SemaDiagnosticBuilder::K_Nop;
648     switch (CurrentCUDATarget()) {
649     case CFT_Global:
650     case CFT_Device:
651       return SemaDiagnosticBuilder::K_Immediate;
652     case CFT_HostDevice:
653       // An HD function counts as host code if we're compiling for host, and
654       // device code if we're compiling for device.  Defer any errors in device
655       // mode until the function is known-emitted.
656       if (!getLangOpts().CUDAIsDevice)
657         return SemaDiagnosticBuilder::K_Nop;
658       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
659         return SemaDiagnosticBuilder::K_Immediate;
660       return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
661               FunctionEmissionStatus::Emitted)
662                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
663                  : SemaDiagnosticBuilder::K_Deferred;
664     default:
665       return SemaDiagnosticBuilder::K_Nop;
666     }
667   }();
668   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID,
669                                dyn_cast<FunctionDecl>(CurContext), *this);
670 }
671 
672 Sema::SemaDiagnosticBuilder Sema::CUDADiagIfHostCode(SourceLocation Loc,
673                                                      unsigned DiagID) {
674   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
675   SemaDiagnosticBuilder::Kind DiagKind = [&] {
676     if (!isa<FunctionDecl>(CurContext))
677       return SemaDiagnosticBuilder::K_Nop;
678     switch (CurrentCUDATarget()) {
679     case CFT_Host:
680       return SemaDiagnosticBuilder::K_Immediate;
681     case CFT_HostDevice:
682       // An HD function counts as host code if we're compiling for host, and
683       // device code if we're compiling for device.  Defer any errors in device
684       // mode until the function is known-emitted.
685       if (getLangOpts().CUDAIsDevice)
686         return SemaDiagnosticBuilder::K_Nop;
687       if (IsLastErrorImmediate && Diags.getDiagnosticIDs()->isBuiltinNote(DiagID))
688         return SemaDiagnosticBuilder::K_Immediate;
689       return (getEmissionStatus(cast<FunctionDecl>(CurContext)) ==
690               FunctionEmissionStatus::Emitted)
691                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
692                  : SemaDiagnosticBuilder::K_Deferred;
693     default:
694       return SemaDiagnosticBuilder::K_Nop;
695     }
696   }();
697   return SemaDiagnosticBuilder(DiagKind, Loc, DiagID,
698                                dyn_cast<FunctionDecl>(CurContext), *this);
699 }
700 
701 bool Sema::CheckCUDACall(SourceLocation Loc, FunctionDecl *Callee) {
702   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
703   assert(Callee && "Callee may not be null.");
704 
705   auto &ExprEvalCtx = ExprEvalContexts.back();
706   if (ExprEvalCtx.isUnevaluated() || ExprEvalCtx.isConstantEvaluated())
707     return true;
708 
709   // FIXME: Is bailing out early correct here?  Should we instead assume that
710   // the caller is a global initializer?
711   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
712   if (!Caller)
713     return true;
714 
715   // If the caller is known-emitted, mark the callee as known-emitted.
716   // Otherwise, mark the call in our call graph so we can traverse it later.
717   bool CallerKnownEmitted =
718       getEmissionStatus(Caller) == FunctionEmissionStatus::Emitted;
719   SemaDiagnosticBuilder::Kind DiagKind = [this, Caller, Callee,
720                                           CallerKnownEmitted] {
721     switch (IdentifyCUDAPreference(Caller, Callee)) {
722     case CFP_Never:
723     case CFP_WrongSide:
724       assert(Caller && "Never/wrongSide calls require a non-null caller");
725       // If we know the caller will be emitted, we know this wrong-side call
726       // will be emitted, so it's an immediate error.  Otherwise, defer the
727       // error until we know the caller is emitted.
728       return CallerKnownEmitted
729                  ? SemaDiagnosticBuilder::K_ImmediateWithCallStack
730                  : SemaDiagnosticBuilder::K_Deferred;
731     default:
732       return SemaDiagnosticBuilder::K_Nop;
733     }
734   }();
735 
736   if (DiagKind == SemaDiagnosticBuilder::K_Nop)
737     return true;
738 
739   // Avoid emitting this error twice for the same location.  Using a hashtable
740   // like this is unfortunate, but because we must continue parsing as normal
741   // after encountering a deferred error, it's otherwise very tricky for us to
742   // ensure that we only emit this deferred error once.
743   if (!LocsWithCUDACallDiags.insert({Caller, Loc}).second)
744     return true;
745 
746   SemaDiagnosticBuilder(DiagKind, Loc, diag::err_ref_bad_target, Caller, *this)
747       << IdentifyCUDATarget(Callee) << /*function*/ 0 << Callee
748       << IdentifyCUDATarget(Caller);
749   if (!Callee->getBuiltinID())
750     SemaDiagnosticBuilder(DiagKind, Callee->getLocation(),
751                           diag::note_previous_decl, Caller, *this)
752         << Callee;
753   return DiagKind != SemaDiagnosticBuilder::K_Immediate &&
754          DiagKind != SemaDiagnosticBuilder::K_ImmediateWithCallStack;
755 }
756 
757 // Check the wrong-sided reference capture of lambda for CUDA/HIP.
758 // A lambda function may capture a stack variable by reference when it is
759 // defined and uses the capture by reference when the lambda is called. When
760 // the capture and use happen on different sides, the capture is invalid and
761 // should be diagnosed.
762 void Sema::CUDACheckLambdaCapture(CXXMethodDecl *Callee,
763                                   const sema::Capture &Capture) {
764   // In host compilation we only need to check lambda functions emitted on host
765   // side. In such lambda functions, a reference capture is invalid only
766   // if the lambda structure is populated by a device function or kernel then
767   // is passed to and called by a host function. However that is impossible,
768   // since a device function or kernel can only call a device function, also a
769   // kernel cannot pass a lambda back to a host function since we cannot
770   // define a kernel argument type which can hold the lambda before the lambda
771   // itself is defined.
772   if (!LangOpts.CUDAIsDevice)
773     return;
774 
775   // File-scope lambda can only do init captures for global variables, which
776   // results in passing by value for these global variables.
777   FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext);
778   if (!Caller)
779     return;
780 
781   // In device compilation, we only need to check lambda functions which are
782   // emitted on device side. For such lambdas, a reference capture is invalid
783   // only if the lambda structure is populated by a host function then passed
784   // to and called in a device function or kernel.
785   bool CalleeIsDevice = Callee->hasAttr<CUDADeviceAttr>();
786   bool CallerIsHost =
787       !Caller->hasAttr<CUDAGlobalAttr>() && !Caller->hasAttr<CUDADeviceAttr>();
788   bool ShouldCheck = CalleeIsDevice && CallerIsHost;
789   if (!ShouldCheck || !Capture.isReferenceCapture())
790     return;
791   auto DiagKind = SemaDiagnosticBuilder::K_Deferred;
792   if (Capture.isVariableCapture()) {
793     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
794                           diag::err_capture_bad_target, Callee, *this)
795         << Capture.getVariable();
796   } else if (Capture.isThisCapture()) {
797     SemaDiagnosticBuilder(DiagKind, Capture.getLocation(),
798                           diag::err_capture_bad_target_this_ptr, Callee, *this);
799   }
800   return;
801 }
802 
803 void Sema::CUDASetLambdaAttrs(CXXMethodDecl *Method) {
804   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
805   if (Method->hasAttr<CUDAHostAttr>() || Method->hasAttr<CUDADeviceAttr>())
806     return;
807   Method->addAttr(CUDADeviceAttr::CreateImplicit(Context));
808   Method->addAttr(CUDAHostAttr::CreateImplicit(Context));
809 }
810 
811 void Sema::checkCUDATargetOverload(FunctionDecl *NewFD,
812                                    const LookupResult &Previous) {
813   assert(getLangOpts().CUDA && "Should only be called during CUDA compilation");
814   CUDAFunctionTarget NewTarget = IdentifyCUDATarget(NewFD);
815   for (NamedDecl *OldND : Previous) {
816     FunctionDecl *OldFD = OldND->getAsFunction();
817     if (!OldFD)
818       continue;
819 
820     CUDAFunctionTarget OldTarget = IdentifyCUDATarget(OldFD);
821     // Don't allow HD and global functions to overload other functions with the
822     // same signature.  We allow overloading based on CUDA attributes so that
823     // functions can have different implementations on the host and device, but
824     // HD/global functions "exist" in some sense on both the host and device, so
825     // should have the same implementation on both sides.
826     if (NewTarget != OldTarget &&
827         ((NewTarget == CFT_HostDevice) || (OldTarget == CFT_HostDevice) ||
828          (NewTarget == CFT_Global) || (OldTarget == CFT_Global)) &&
829         !IsOverload(NewFD, OldFD, /* UseMemberUsingDeclRules = */ false,
830                     /* ConsiderCudaAttrs = */ false)) {
831       Diag(NewFD->getLocation(), diag::err_cuda_ovl_target)
832           << NewTarget << NewFD->getDeclName() << OldTarget << OldFD;
833       Diag(OldFD->getLocation(), diag::note_previous_declaration);
834       NewFD->setInvalidDecl();
835       break;
836     }
837   }
838 }
839 
840 template <typename AttrTy>
841 static void copyAttrIfPresent(Sema &S, FunctionDecl *FD,
842                               const FunctionDecl &TemplateFD) {
843   if (AttrTy *Attribute = TemplateFD.getAttr<AttrTy>()) {
844     AttrTy *Clone = Attribute->clone(S.Context);
845     Clone->setInherited(true);
846     FD->addAttr(Clone);
847   }
848 }
849 
850 void Sema::inheritCUDATargetAttrs(FunctionDecl *FD,
851                                   const FunctionTemplateDecl &TD) {
852   const FunctionDecl &TemplateFD = *TD.getTemplatedDecl();
853   copyAttrIfPresent<CUDAGlobalAttr>(*this, FD, TemplateFD);
854   copyAttrIfPresent<CUDAHostAttr>(*this, FD, TemplateFD);
855   copyAttrIfPresent<CUDADeviceAttr>(*this, FD, TemplateFD);
856 }
857 
858 std::string Sema::getCudaConfigureFuncName() const {
859   if (getLangOpts().HIP)
860     return getLangOpts().HIPUseNewLaunchAPI ? "__hipPushCallConfiguration"
861                                             : "hipConfigureCall";
862 
863   // New CUDA kernel launch sequence.
864   if (CudaFeatureEnabled(Context.getTargetInfo().getSDKVersion(),
865                          CudaFeature::CUDA_USES_NEW_LAUNCH))
866     return "__cudaPushCallConfiguration";
867 
868   // Legacy CUDA kernel configuration call
869   return "cudaConfigureCall";
870 }
871