xref: /freebsd/contrib/llvm-project/clang/lib/Sema/SemaAccess.cpp (revision 53120fbb68952b7d620c2c0e1cf05c5017fc1b27)
1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides Sema routines for C++ access control semantics.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Basic/Specifiers.h"
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25 
26 using namespace clang;
27 using namespace sema;
28 
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31   AR_accessible,
32   AR_inaccessible,
33   AR_dependent
34 };
35 
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                     NamedDecl *PrevMemberDecl,
41                                     AccessSpecifier LexicalAS) {
42   if (!PrevMemberDecl) {
43     // Use the lexical access specifier.
44     MemberDecl->setAccess(LexicalAS);
45     return false;
46   }
47 
48   // C++ [class.access.spec]p3: When a member is redeclared its access
49   // specifier must be same as its initial declaration.
50   if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51     Diag(MemberDecl->getLocation(),
52          diag::err_class_redeclared_with_different_access)
53       << MemberDecl << LexicalAS;
54     Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55       << PrevMemberDecl << PrevMemberDecl->getAccess();
56 
57     MemberDecl->setAccess(LexicalAS);
58     return true;
59   }
60 
61   MemberDecl->setAccess(PrevMemberDecl->getAccess());
62   return false;
63 }
64 
65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66   DeclContext *DC = D->getDeclContext();
67 
68   // This can only happen at top: enum decls only "publish" their
69   // immediate members.
70   if (isa<EnumDecl>(DC))
71     DC = cast<EnumDecl>(DC)->getDeclContext();
72 
73   CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74   while (DeclaringClass->isAnonymousStructOrUnion())
75     DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76   return DeclaringClass;
77 }
78 
79 namespace {
80 struct EffectiveContext {
81   EffectiveContext() : Inner(nullptr), Dependent(false) {}
82 
83   explicit EffectiveContext(DeclContext *DC)
84     : Inner(DC),
85       Dependent(DC->isDependentContext()) {
86 
87     // An implicit deduction guide is semantically in the context enclosing the
88     // class template, but for access purposes behaves like the constructor
89     // from which it was produced.
90     if (auto *DGD = dyn_cast<CXXDeductionGuideDecl>(DC)) {
91       if (DGD->isImplicit()) {
92         DC = DGD->getCorrespondingConstructor();
93         if (!DC) {
94           // The copy deduction candidate doesn't have a corresponding
95           // constructor.
96           DC = cast<DeclContext>(DGD->getDeducedTemplate()->getTemplatedDecl());
97         }
98       }
99     }
100 
101     // C++11 [class.access.nest]p1:
102     //   A nested class is a member and as such has the same access
103     //   rights as any other member.
104     // C++11 [class.access]p2:
105     //   A member of a class can also access all the names to which
106     //   the class has access.  A local class of a member function
107     //   may access the same names that the member function itself
108     //   may access.
109     // This almost implies that the privileges of nesting are transitive.
110     // Technically it says nothing about the local classes of non-member
111     // functions (which can gain privileges through friendship), but we
112     // take that as an oversight.
113     while (true) {
114       // We want to add canonical declarations to the EC lists for
115       // simplicity of checking, but we need to walk up through the
116       // actual current DC chain.  Otherwise, something like a local
117       // extern or friend which happens to be the canonical
118       // declaration will really mess us up.
119 
120       if (isa<CXXRecordDecl>(DC)) {
121         CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
122         Records.push_back(Record->getCanonicalDecl());
123         DC = Record->getDeclContext();
124       } else if (isa<FunctionDecl>(DC)) {
125         FunctionDecl *Function = cast<FunctionDecl>(DC);
126         Functions.push_back(Function->getCanonicalDecl());
127         if (Function->getFriendObjectKind())
128           DC = Function->getLexicalDeclContext();
129         else
130           DC = Function->getDeclContext();
131       } else if (DC->isFileContext()) {
132         break;
133       } else {
134         DC = DC->getParent();
135       }
136     }
137   }
138 
139   bool isDependent() const { return Dependent; }
140 
141   bool includesClass(const CXXRecordDecl *R) const {
142     R = R->getCanonicalDecl();
143     return llvm::is_contained(Records, R);
144   }
145 
146   /// Retrieves the innermost "useful" context.  Can be null if we're
147   /// doing access-control without privileges.
148   DeclContext *getInnerContext() const {
149     return Inner;
150   }
151 
152   typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
153 
154   DeclContext *Inner;
155   SmallVector<FunctionDecl*, 4> Functions;
156   SmallVector<CXXRecordDecl*, 4> Records;
157   bool Dependent;
158 };
159 
160 /// Like sema::AccessedEntity, but kindly lets us scribble all over
161 /// it.
162 struct AccessTarget : public AccessedEntity {
163   AccessTarget(const AccessedEntity &Entity)
164     : AccessedEntity(Entity) {
165     initialize();
166   }
167 
168   AccessTarget(ASTContext &Context,
169                MemberNonce _,
170                CXXRecordDecl *NamingClass,
171                DeclAccessPair FoundDecl,
172                QualType BaseObjectType)
173     : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
174                      FoundDecl, BaseObjectType) {
175     initialize();
176   }
177 
178   AccessTarget(ASTContext &Context,
179                BaseNonce _,
180                CXXRecordDecl *BaseClass,
181                CXXRecordDecl *DerivedClass,
182                AccessSpecifier Access)
183     : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
184                      Access) {
185     initialize();
186   }
187 
188   bool isInstanceMember() const {
189     return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
190   }
191 
192   bool hasInstanceContext() const {
193     return HasInstanceContext;
194   }
195 
196   class SavedInstanceContext {
197   public:
198     SavedInstanceContext(SavedInstanceContext &&S)
199         : Target(S.Target), Has(S.Has) {
200       S.Target = nullptr;
201     }
202 
203     // The move assignment operator is defined as deleted pending further
204     // motivation.
205     SavedInstanceContext &operator=(SavedInstanceContext &&) = delete;
206 
207     // The copy constrcutor and copy assignment operator is defined as deleted
208     // pending further motivation.
209     SavedInstanceContext(const SavedInstanceContext &) = delete;
210     SavedInstanceContext &operator=(const SavedInstanceContext &) = delete;
211 
212     ~SavedInstanceContext() {
213       if (Target)
214         Target->HasInstanceContext = Has;
215     }
216 
217   private:
218     friend struct AccessTarget;
219     explicit SavedInstanceContext(AccessTarget &Target)
220         : Target(&Target), Has(Target.HasInstanceContext) {}
221     AccessTarget *Target;
222     bool Has;
223   };
224 
225   SavedInstanceContext saveInstanceContext() {
226     return SavedInstanceContext(*this);
227   }
228 
229   void suppressInstanceContext() {
230     HasInstanceContext = false;
231   }
232 
233   const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
234     assert(HasInstanceContext);
235     if (CalculatedInstanceContext)
236       return InstanceContext;
237 
238     CalculatedInstanceContext = true;
239     DeclContext *IC = S.computeDeclContext(getBaseObjectType());
240     InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
241                           : nullptr);
242     return InstanceContext;
243   }
244 
245   const CXXRecordDecl *getDeclaringClass() const {
246     return DeclaringClass;
247   }
248 
249   /// The "effective" naming class is the canonical non-anonymous
250   /// class containing the actual naming class.
251   const CXXRecordDecl *getEffectiveNamingClass() const {
252     const CXXRecordDecl *namingClass = getNamingClass();
253     while (namingClass->isAnonymousStructOrUnion())
254       namingClass = cast<CXXRecordDecl>(namingClass->getParent());
255     return namingClass->getCanonicalDecl();
256   }
257 
258 private:
259   void initialize() {
260     HasInstanceContext = (isMemberAccess() &&
261                           !getBaseObjectType().isNull() &&
262                           getTargetDecl()->isCXXInstanceMember());
263     CalculatedInstanceContext = false;
264     InstanceContext = nullptr;
265 
266     if (isMemberAccess())
267       DeclaringClass = FindDeclaringClass(getTargetDecl());
268     else
269       DeclaringClass = getBaseClass();
270     DeclaringClass = DeclaringClass->getCanonicalDecl();
271   }
272 
273   bool HasInstanceContext : 1;
274   mutable bool CalculatedInstanceContext : 1;
275   mutable const CXXRecordDecl *InstanceContext;
276   const CXXRecordDecl *DeclaringClass;
277 };
278 
279 }
280 
281 /// Checks whether one class might instantiate to the other.
282 static bool MightInstantiateTo(const CXXRecordDecl *From,
283                                const CXXRecordDecl *To) {
284   // Declaration names are always preserved by instantiation.
285   if (From->getDeclName() != To->getDeclName())
286     return false;
287 
288   const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
289   const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
290   if (FromDC == ToDC) return true;
291   if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
292 
293   // Be conservative.
294   return true;
295 }
296 
297 /// Checks whether one class is derived from another, inclusively.
298 /// Properly indicates when it couldn't be determined due to
299 /// dependence.
300 ///
301 /// This should probably be donated to AST or at least Sema.
302 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
303                                            const CXXRecordDecl *Target) {
304   assert(Derived->getCanonicalDecl() == Derived);
305   assert(Target->getCanonicalDecl() == Target);
306 
307   if (Derived == Target) return AR_accessible;
308 
309   bool CheckDependent = Derived->isDependentContext();
310   if (CheckDependent && MightInstantiateTo(Derived, Target))
311     return AR_dependent;
312 
313   AccessResult OnFailure = AR_inaccessible;
314   SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
315 
316   while (true) {
317     if (Derived->isDependentContext() && !Derived->hasDefinition() &&
318         !Derived->isLambda())
319       return AR_dependent;
320 
321     for (const auto &I : Derived->bases()) {
322       const CXXRecordDecl *RD;
323 
324       QualType T = I.getType();
325       if (const RecordType *RT = T->getAs<RecordType>()) {
326         RD = cast<CXXRecordDecl>(RT->getDecl());
327       } else if (const InjectedClassNameType *IT
328                    = T->getAs<InjectedClassNameType>()) {
329         RD = IT->getDecl();
330       } else {
331         assert(T->isDependentType() && "non-dependent base wasn't a record?");
332         OnFailure = AR_dependent;
333         continue;
334       }
335 
336       RD = RD->getCanonicalDecl();
337       if (RD == Target) return AR_accessible;
338       if (CheckDependent && MightInstantiateTo(RD, Target))
339         OnFailure = AR_dependent;
340 
341       Queue.push_back(RD);
342     }
343 
344     if (Queue.empty()) break;
345 
346     Derived = Queue.pop_back_val();
347   }
348 
349   return OnFailure;
350 }
351 
352 
353 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
354                                DeclContext *Friend) {
355   if (Friend == Context)
356     return true;
357 
358   assert(!Friend->isDependentContext() &&
359          "can't handle friends with dependent contexts here");
360 
361   if (!Context->isDependentContext())
362     return false;
363 
364   if (Friend->isFileContext())
365     return false;
366 
367   // TODO: this is very conservative
368   return true;
369 }
370 
371 // Asks whether the type in 'context' can ever instantiate to the type
372 // in 'friend'.
373 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
374   if (Friend == Context)
375     return true;
376 
377   if (!Friend->isDependentType() && !Context->isDependentType())
378     return false;
379 
380   // TODO: this is very conservative.
381   return true;
382 }
383 
384 static bool MightInstantiateTo(Sema &S,
385                                FunctionDecl *Context,
386                                FunctionDecl *Friend) {
387   if (Context->getDeclName() != Friend->getDeclName())
388     return false;
389 
390   if (!MightInstantiateTo(S,
391                           Context->getDeclContext(),
392                           Friend->getDeclContext()))
393     return false;
394 
395   CanQual<FunctionProtoType> FriendTy
396     = S.Context.getCanonicalType(Friend->getType())
397          ->getAs<FunctionProtoType>();
398   CanQual<FunctionProtoType> ContextTy
399     = S.Context.getCanonicalType(Context->getType())
400          ->getAs<FunctionProtoType>();
401 
402   // There isn't any way that I know of to add qualifiers
403   // during instantiation.
404   if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
405     return false;
406 
407   if (FriendTy->getNumParams() != ContextTy->getNumParams())
408     return false;
409 
410   if (!MightInstantiateTo(S, ContextTy->getReturnType(),
411                           FriendTy->getReturnType()))
412     return false;
413 
414   for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
415     if (!MightInstantiateTo(S, ContextTy->getParamType(I),
416                             FriendTy->getParamType(I)))
417       return false;
418 
419   return true;
420 }
421 
422 static bool MightInstantiateTo(Sema &S,
423                                FunctionTemplateDecl *Context,
424                                FunctionTemplateDecl *Friend) {
425   return MightInstantiateTo(S,
426                             Context->getTemplatedDecl(),
427                             Friend->getTemplatedDecl());
428 }
429 
430 static AccessResult MatchesFriend(Sema &S,
431                                   const EffectiveContext &EC,
432                                   const CXXRecordDecl *Friend) {
433   if (EC.includesClass(Friend))
434     return AR_accessible;
435 
436   if (EC.isDependent()) {
437     for (const CXXRecordDecl *Context : EC.Records) {
438       if (MightInstantiateTo(Context, Friend))
439         return AR_dependent;
440     }
441   }
442 
443   return AR_inaccessible;
444 }
445 
446 static AccessResult MatchesFriend(Sema &S,
447                                   const EffectiveContext &EC,
448                                   CanQualType Friend) {
449   if (const RecordType *RT = Friend->getAs<RecordType>())
450     return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
451 
452   // TODO: we can do better than this
453   if (Friend->isDependentType())
454     return AR_dependent;
455 
456   return AR_inaccessible;
457 }
458 
459 /// Determines whether the given friend class template matches
460 /// anything in the effective context.
461 static AccessResult MatchesFriend(Sema &S,
462                                   const EffectiveContext &EC,
463                                   ClassTemplateDecl *Friend) {
464   AccessResult OnFailure = AR_inaccessible;
465 
466   // Check whether the friend is the template of a class in the
467   // context chain.
468   for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
469          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
470     CXXRecordDecl *Record = *I;
471 
472     // Figure out whether the current class has a template:
473     ClassTemplateDecl *CTD;
474 
475     // A specialization of the template...
476     if (isa<ClassTemplateSpecializationDecl>(Record)) {
477       CTD = cast<ClassTemplateSpecializationDecl>(Record)
478         ->getSpecializedTemplate();
479 
480     // ... or the template pattern itself.
481     } else {
482       CTD = Record->getDescribedClassTemplate();
483       if (!CTD) continue;
484     }
485 
486     // It's a match.
487     if (Friend == CTD->getCanonicalDecl())
488       return AR_accessible;
489 
490     // If the context isn't dependent, it can't be a dependent match.
491     if (!EC.isDependent())
492       continue;
493 
494     // If the template names don't match, it can't be a dependent
495     // match.
496     if (CTD->getDeclName() != Friend->getDeclName())
497       continue;
498 
499     // If the class's context can't instantiate to the friend's
500     // context, it can't be a dependent match.
501     if (!MightInstantiateTo(S, CTD->getDeclContext(),
502                             Friend->getDeclContext()))
503       continue;
504 
505     // Otherwise, it's a dependent match.
506     OnFailure = AR_dependent;
507   }
508 
509   return OnFailure;
510 }
511 
512 /// Determines whether the given friend function matches anything in
513 /// the effective context.
514 static AccessResult MatchesFriend(Sema &S,
515                                   const EffectiveContext &EC,
516                                   FunctionDecl *Friend) {
517   AccessResult OnFailure = AR_inaccessible;
518 
519   for (SmallVectorImpl<FunctionDecl*>::const_iterator
520          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
521     if (Friend == *I)
522       return AR_accessible;
523 
524     if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
525       OnFailure = AR_dependent;
526   }
527 
528   return OnFailure;
529 }
530 
531 /// Determines whether the given friend function template matches
532 /// anything in the effective context.
533 static AccessResult MatchesFriend(Sema &S,
534                                   const EffectiveContext &EC,
535                                   FunctionTemplateDecl *Friend) {
536   if (EC.Functions.empty()) return AR_inaccessible;
537 
538   AccessResult OnFailure = AR_inaccessible;
539 
540   for (SmallVectorImpl<FunctionDecl*>::const_iterator
541          I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
542 
543     FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
544     if (!FTD)
545       FTD = (*I)->getDescribedFunctionTemplate();
546     if (!FTD)
547       continue;
548 
549     FTD = FTD->getCanonicalDecl();
550 
551     if (Friend == FTD)
552       return AR_accessible;
553 
554     if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
555       OnFailure = AR_dependent;
556   }
557 
558   return OnFailure;
559 }
560 
561 /// Determines whether the given friend declaration matches anything
562 /// in the effective context.
563 static AccessResult MatchesFriend(Sema &S,
564                                   const EffectiveContext &EC,
565                                   FriendDecl *FriendD) {
566   // Whitelist accesses if there's an invalid or unsupported friend
567   // declaration.
568   if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
569     return AR_accessible;
570 
571   if (TypeSourceInfo *T = FriendD->getFriendType())
572     return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
573 
574   NamedDecl *Friend
575     = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
576 
577   // FIXME: declarations with dependent or templated scope.
578 
579   if (isa<ClassTemplateDecl>(Friend))
580     return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
581 
582   if (isa<FunctionTemplateDecl>(Friend))
583     return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
584 
585   if (isa<CXXRecordDecl>(Friend))
586     return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
587 
588   assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
589   return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
590 }
591 
592 static AccessResult GetFriendKind(Sema &S,
593                                   const EffectiveContext &EC,
594                                   const CXXRecordDecl *Class) {
595   AccessResult OnFailure = AR_inaccessible;
596 
597   // Okay, check friends.
598   for (auto *Friend : Class->friends()) {
599     switch (MatchesFriend(S, EC, Friend)) {
600     case AR_accessible:
601       return AR_accessible;
602 
603     case AR_inaccessible:
604       continue;
605 
606     case AR_dependent:
607       OnFailure = AR_dependent;
608       break;
609     }
610   }
611 
612   // That's it, give up.
613   return OnFailure;
614 }
615 
616 namespace {
617 
618 /// A helper class for checking for a friend which will grant access
619 /// to a protected instance member.
620 struct ProtectedFriendContext {
621   Sema &S;
622   const EffectiveContext &EC;
623   const CXXRecordDecl *NamingClass;
624   bool CheckDependent;
625   bool EverDependent;
626 
627   /// The path down to the current base class.
628   SmallVector<const CXXRecordDecl*, 20> CurPath;
629 
630   ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
631                          const CXXRecordDecl *InstanceContext,
632                          const CXXRecordDecl *NamingClass)
633     : S(S), EC(EC), NamingClass(NamingClass),
634       CheckDependent(InstanceContext->isDependentContext() ||
635                      NamingClass->isDependentContext()),
636       EverDependent(false) {}
637 
638   /// Check classes in the current path for friendship, starting at
639   /// the given index.
640   bool checkFriendshipAlongPath(unsigned I) {
641     assert(I < CurPath.size());
642     for (unsigned E = CurPath.size(); I != E; ++I) {
643       switch (GetFriendKind(S, EC, CurPath[I])) {
644       case AR_accessible:   return true;
645       case AR_inaccessible: continue;
646       case AR_dependent:    EverDependent = true; continue;
647       }
648     }
649     return false;
650   }
651 
652   /// Perform a search starting at the given class.
653   ///
654   /// PrivateDepth is the index of the last (least derived) class
655   /// along the current path such that a notional public member of
656   /// the final class in the path would have access in that class.
657   bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
658     // If we ever reach the naming class, check the current path for
659     // friendship.  We can also stop recursing because we obviously
660     // won't find the naming class there again.
661     if (Cur == NamingClass)
662       return checkFriendshipAlongPath(PrivateDepth);
663 
664     if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
665       EverDependent = true;
666 
667     // Recurse into the base classes.
668     for (const auto &I : Cur->bases()) {
669       // If this is private inheritance, then a public member of the
670       // base will not have any access in classes derived from Cur.
671       unsigned BasePrivateDepth = PrivateDepth;
672       if (I.getAccessSpecifier() == AS_private)
673         BasePrivateDepth = CurPath.size() - 1;
674 
675       const CXXRecordDecl *RD;
676 
677       QualType T = I.getType();
678       if (const RecordType *RT = T->getAs<RecordType>()) {
679         RD = cast<CXXRecordDecl>(RT->getDecl());
680       } else if (const InjectedClassNameType *IT
681                    = T->getAs<InjectedClassNameType>()) {
682         RD = IT->getDecl();
683       } else {
684         assert(T->isDependentType() && "non-dependent base wasn't a record?");
685         EverDependent = true;
686         continue;
687       }
688 
689       // Recurse.  We don't need to clean up if this returns true.
690       CurPath.push_back(RD);
691       if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
692         return true;
693       CurPath.pop_back();
694     }
695 
696     return false;
697   }
698 
699   bool findFriendship(const CXXRecordDecl *Cur) {
700     assert(CurPath.empty());
701     CurPath.push_back(Cur);
702     return findFriendship(Cur, 0);
703   }
704 };
705 }
706 
707 /// Search for a class P that EC is a friend of, under the constraint
708 ///   InstanceContext <= P
709 /// if InstanceContext exists, or else
710 ///   NamingClass <= P
711 /// and with the additional restriction that a protected member of
712 /// NamingClass would have some natural access in P, which implicitly
713 /// imposes the constraint that P <= NamingClass.
714 ///
715 /// This isn't quite the condition laid out in the standard.
716 /// Instead of saying that a notional protected member of NamingClass
717 /// would have to have some natural access in P, it says the actual
718 /// target has to have some natural access in P, which opens up the
719 /// possibility that the target (which is not necessarily a member
720 /// of NamingClass) might be more accessible along some path not
721 /// passing through it.  That's really a bad idea, though, because it
722 /// introduces two problems:
723 ///   - Most importantly, it breaks encapsulation because you can
724 ///     access a forbidden base class's members by directly subclassing
725 ///     it elsewhere.
726 ///   - It also makes access substantially harder to compute because it
727 ///     breaks the hill-climbing algorithm: knowing that the target is
728 ///     accessible in some base class would no longer let you change
729 ///     the question solely to whether the base class is accessible,
730 ///     because the original target might have been more accessible
731 ///     because of crazy subclassing.
732 /// So we don't implement that.
733 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
734                                            const CXXRecordDecl *InstanceContext,
735                                            const CXXRecordDecl *NamingClass) {
736   assert(InstanceContext == nullptr ||
737          InstanceContext->getCanonicalDecl() == InstanceContext);
738   assert(NamingClass->getCanonicalDecl() == NamingClass);
739 
740   // If we don't have an instance context, our constraints give us
741   // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
742   // This is just the usual friendship check.
743   if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
744 
745   ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
746   if (PRC.findFriendship(InstanceContext)) return AR_accessible;
747   if (PRC.EverDependent) return AR_dependent;
748   return AR_inaccessible;
749 }
750 
751 static AccessResult HasAccess(Sema &S,
752                               const EffectiveContext &EC,
753                               const CXXRecordDecl *NamingClass,
754                               AccessSpecifier Access,
755                               const AccessTarget &Target) {
756   assert(NamingClass->getCanonicalDecl() == NamingClass &&
757          "declaration should be canonicalized before being passed here");
758 
759   if (Access == AS_public) return AR_accessible;
760   assert(Access == AS_private || Access == AS_protected);
761 
762   AccessResult OnFailure = AR_inaccessible;
763 
764   for (EffectiveContext::record_iterator
765          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
766     // All the declarations in EC have been canonicalized, so pointer
767     // equality from this point on will work fine.
768     const CXXRecordDecl *ECRecord = *I;
769 
770     // [B2] and [M2]
771     if (Access == AS_private) {
772       if (ECRecord == NamingClass)
773         return AR_accessible;
774 
775       if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
776         OnFailure = AR_dependent;
777 
778     // [B3] and [M3]
779     } else {
780       assert(Access == AS_protected);
781       switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
782       case AR_accessible: break;
783       case AR_inaccessible: continue;
784       case AR_dependent: OnFailure = AR_dependent; continue;
785       }
786 
787       // C++ [class.protected]p1:
788       //   An additional access check beyond those described earlier in
789       //   [class.access] is applied when a non-static data member or
790       //   non-static member function is a protected member of its naming
791       //   class.  As described earlier, access to a protected member is
792       //   granted because the reference occurs in a friend or member of
793       //   some class C.  If the access is to form a pointer to member,
794       //   the nested-name-specifier shall name C or a class derived from
795       //   C. All other accesses involve a (possibly implicit) object
796       //   expression. In this case, the class of the object expression
797       //   shall be C or a class derived from C.
798       //
799       // We interpret this as a restriction on [M3].
800 
801       // In this part of the code, 'C' is just our context class ECRecord.
802 
803       // These rules are different if we don't have an instance context.
804       if (!Target.hasInstanceContext()) {
805         // If it's not an instance member, these restrictions don't apply.
806         if (!Target.isInstanceMember()) return AR_accessible;
807 
808         // If it's an instance member, use the pointer-to-member rule
809         // that the naming class has to be derived from the effective
810         // context.
811 
812         // Emulate a MSVC bug where the creation of pointer-to-member
813         // to protected member of base class is allowed but only from
814         // static member functions.
815         if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
816           if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
817             if (MD->isStatic()) return AR_accessible;
818 
819         // Despite the standard's confident wording, there is a case
820         // where you can have an instance member that's neither in a
821         // pointer-to-member expression nor in a member access:  when
822         // it names a field in an unevaluated context that can't be an
823         // implicit member.  Pending clarification, we just apply the
824         // same naming-class restriction here.
825         //   FIXME: we're probably not correctly adding the
826         //   protected-member restriction when we retroactively convert
827         //   an expression to being evaluated.
828 
829         // We know that ECRecord derives from NamingClass.  The
830         // restriction says to check whether NamingClass derives from
831         // ECRecord, but that's not really necessary: two distinct
832         // classes can't be recursively derived from each other.  So
833         // along this path, we just need to check whether the classes
834         // are equal.
835         if (NamingClass == ECRecord) return AR_accessible;
836 
837         // Otherwise, this context class tells us nothing;  on to the next.
838         continue;
839       }
840 
841       assert(Target.isInstanceMember());
842 
843       const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
844       if (!InstanceContext) {
845         OnFailure = AR_dependent;
846         continue;
847       }
848 
849       switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
850       case AR_accessible: return AR_accessible;
851       case AR_inaccessible: continue;
852       case AR_dependent: OnFailure = AR_dependent; continue;
853       }
854     }
855   }
856 
857   // [M3] and [B3] say that, if the target is protected in N, we grant
858   // access if the access occurs in a friend or member of some class P
859   // that's a subclass of N and where the target has some natural
860   // access in P.  The 'member' aspect is easy to handle because P
861   // would necessarily be one of the effective-context records, and we
862   // address that above.  The 'friend' aspect is completely ridiculous
863   // to implement because there are no restrictions at all on P
864   // *unless* the [class.protected] restriction applies.  If it does,
865   // however, we should ignore whether the naming class is a friend,
866   // and instead rely on whether any potential P is a friend.
867   if (Access == AS_protected && Target.isInstanceMember()) {
868     // Compute the instance context if possible.
869     const CXXRecordDecl *InstanceContext = nullptr;
870     if (Target.hasInstanceContext()) {
871       InstanceContext = Target.resolveInstanceContext(S);
872       if (!InstanceContext) return AR_dependent;
873     }
874 
875     switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
876     case AR_accessible: return AR_accessible;
877     case AR_inaccessible: return OnFailure;
878     case AR_dependent: return AR_dependent;
879     }
880     llvm_unreachable("impossible friendship kind");
881   }
882 
883   switch (GetFriendKind(S, EC, NamingClass)) {
884   case AR_accessible: return AR_accessible;
885   case AR_inaccessible: return OnFailure;
886   case AR_dependent: return AR_dependent;
887   }
888 
889   // Silence bogus warnings
890   llvm_unreachable("impossible friendship kind");
891 }
892 
893 /// Finds the best path from the naming class to the declaring class,
894 /// taking friend declarations into account.
895 ///
896 /// C++0x [class.access.base]p5:
897 ///   A member m is accessible at the point R when named in class N if
898 ///   [M1] m as a member of N is public, or
899 ///   [M2] m as a member of N is private, and R occurs in a member or
900 ///        friend of class N, or
901 ///   [M3] m as a member of N is protected, and R occurs in a member or
902 ///        friend of class N, or in a member or friend of a class P
903 ///        derived from N, where m as a member of P is public, private,
904 ///        or protected, or
905 ///   [M4] there exists a base class B of N that is accessible at R, and
906 ///        m is accessible at R when named in class B.
907 ///
908 /// C++0x [class.access.base]p4:
909 ///   A base class B of N is accessible at R, if
910 ///   [B1] an invented public member of B would be a public member of N, or
911 ///   [B2] R occurs in a member or friend of class N, and an invented public
912 ///        member of B would be a private or protected member of N, or
913 ///   [B3] R occurs in a member or friend of a class P derived from N, and an
914 ///        invented public member of B would be a private or protected member
915 ///        of P, or
916 ///   [B4] there exists a class S such that B is a base class of S accessible
917 ///        at R and S is a base class of N accessible at R.
918 ///
919 /// Along a single inheritance path we can restate both of these
920 /// iteratively:
921 ///
922 /// First, we note that M1-4 are equivalent to B1-4 if the member is
923 /// treated as a notional base of its declaring class with inheritance
924 /// access equivalent to the member's access.  Therefore we need only
925 /// ask whether a class B is accessible from a class N in context R.
926 ///
927 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
928 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
929 /// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
930 /// closest accessible base in the path:
931 ///   Access(a, b) = (* access on the base specifier from a to b *)
932 ///   Merge(a, forbidden) = forbidden
933 ///   Merge(a, private) = forbidden
934 ///   Merge(a, b) = min(a,b)
935 ///   Accessible(c, forbidden) = false
936 ///   Accessible(c, private) = (R is c) || IsFriend(c, R)
937 ///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
938 ///   Accessible(c, public) = true
939 ///   ACAB(n) = public
940 ///   ACAB(i) =
941 ///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
942 ///     if Accessible(B_i, AccessToBase) then public else AccessToBase
943 ///
944 /// B is an accessible base of N at R iff ACAB(1) = public.
945 ///
946 /// \param FinalAccess the access of the "final step", or AS_public if
947 ///   there is no final step.
948 /// \return null if friendship is dependent
949 static CXXBasePath *FindBestPath(Sema &S,
950                                  const EffectiveContext &EC,
951                                  AccessTarget &Target,
952                                  AccessSpecifier FinalAccess,
953                                  CXXBasePaths &Paths) {
954   // Derive the paths to the desired base.
955   const CXXRecordDecl *Derived = Target.getNamingClass();
956   const CXXRecordDecl *Base = Target.getDeclaringClass();
957 
958   // FIXME: fail correctly when there are dependent paths.
959   bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
960                                           Paths);
961   assert(isDerived && "derived class not actually derived from base");
962   (void) isDerived;
963 
964   CXXBasePath *BestPath = nullptr;
965 
966   assert(FinalAccess != AS_none && "forbidden access after declaring class");
967 
968   bool AnyDependent = false;
969 
970   // Derive the friend-modified access along each path.
971   for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
972          PI != PE; ++PI) {
973     AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
974 
975     // Walk through the path backwards.
976     AccessSpecifier PathAccess = FinalAccess;
977     CXXBasePath::iterator I = PI->end(), E = PI->begin();
978     while (I != E) {
979       --I;
980 
981       assert(PathAccess != AS_none);
982 
983       // If the declaration is a private member of a base class, there
984       // is no level of friendship in derived classes that can make it
985       // accessible.
986       if (PathAccess == AS_private) {
987         PathAccess = AS_none;
988         break;
989       }
990 
991       const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
992 
993       AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
994       PathAccess = std::max(PathAccess, BaseAccess);
995 
996       switch (HasAccess(S, EC, NC, PathAccess, Target)) {
997       case AR_inaccessible: break;
998       case AR_accessible:
999         PathAccess = AS_public;
1000 
1001         // Future tests are not against members and so do not have
1002         // instance context.
1003         Target.suppressInstanceContext();
1004         break;
1005       case AR_dependent:
1006         AnyDependent = true;
1007         goto Next;
1008       }
1009     }
1010 
1011     // Note that we modify the path's Access field to the
1012     // friend-modified access.
1013     if (BestPath == nullptr || PathAccess < BestPath->Access) {
1014       BestPath = &*PI;
1015       BestPath->Access = PathAccess;
1016 
1017       // Short-circuit if we found a public path.
1018       if (BestPath->Access == AS_public)
1019         return BestPath;
1020     }
1021 
1022   Next: ;
1023   }
1024 
1025   assert((!BestPath || BestPath->Access != AS_public) &&
1026          "fell out of loop with public path");
1027 
1028   // We didn't find a public path, but at least one path was subject
1029   // to dependent friendship, so delay the check.
1030   if (AnyDependent)
1031     return nullptr;
1032 
1033   return BestPath;
1034 }
1035 
1036 /// Given that an entity has protected natural access, check whether
1037 /// access might be denied because of the protected member access
1038 /// restriction.
1039 ///
1040 /// \return true if a note was emitted
1041 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1042                                        AccessTarget &Target) {
1043   // Only applies to instance accesses.
1044   if (!Target.isInstanceMember())
1045     return false;
1046 
1047   assert(Target.isMemberAccess());
1048 
1049   const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1050 
1051   for (EffectiveContext::record_iterator
1052          I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1053     const CXXRecordDecl *ECRecord = *I;
1054     switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1055     case AR_accessible: break;
1056     case AR_inaccessible: continue;
1057     case AR_dependent: continue;
1058     }
1059 
1060     // The effective context is a subclass of the declaring class.
1061     // Check whether the [class.protected] restriction is limiting
1062     // access.
1063 
1064     // To get this exactly right, this might need to be checked more
1065     // holistically;  it's not necessarily the case that gaining
1066     // access here would grant us access overall.
1067 
1068     NamedDecl *D = Target.getTargetDecl();
1069 
1070     // If we don't have an instance context, [class.protected] says the
1071     // naming class has to equal the context class.
1072     if (!Target.hasInstanceContext()) {
1073       // If it does, the restriction doesn't apply.
1074       if (NamingClass == ECRecord) continue;
1075 
1076       // TODO: it would be great to have a fixit here, since this is
1077       // such an obvious error.
1078       S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1079         << S.Context.getTypeDeclType(ECRecord);
1080       return true;
1081     }
1082 
1083     const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1084     assert(InstanceContext && "diagnosing dependent access");
1085 
1086     switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1087     case AR_accessible: continue;
1088     case AR_dependent: continue;
1089     case AR_inaccessible:
1090       break;
1091     }
1092 
1093     // Okay, the restriction seems to be what's limiting us.
1094 
1095     // Use a special diagnostic for constructors and destructors.
1096     if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1097         (isa<FunctionTemplateDecl>(D) &&
1098          isa<CXXConstructorDecl>(
1099                 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1100       return S.Diag(D->getLocation(),
1101                     diag::note_access_protected_restricted_ctordtor)
1102              << isa<CXXDestructorDecl>(D->getAsFunction());
1103     }
1104 
1105     // Otherwise, use the generic diagnostic.
1106     return S.Diag(D->getLocation(),
1107                   diag::note_access_protected_restricted_object)
1108            << S.Context.getTypeDeclType(ECRecord);
1109   }
1110 
1111   return false;
1112 }
1113 
1114 /// We are unable to access a given declaration due to its direct
1115 /// access control;  diagnose that.
1116 static void diagnoseBadDirectAccess(Sema &S,
1117                                     const EffectiveContext &EC,
1118                                     AccessTarget &entity) {
1119   assert(entity.isMemberAccess());
1120   NamedDecl *D = entity.getTargetDecl();
1121 
1122   if (D->getAccess() == AS_protected &&
1123       TryDiagnoseProtectedAccess(S, EC, entity))
1124     return;
1125 
1126   // Find an original declaration.
1127   while (D->isOutOfLine()) {
1128     NamedDecl *PrevDecl = nullptr;
1129     if (VarDecl *VD = dyn_cast<VarDecl>(D))
1130       PrevDecl = VD->getPreviousDecl();
1131     else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1132       PrevDecl = FD->getPreviousDecl();
1133     else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1134       PrevDecl = TND->getPreviousDecl();
1135     else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1136       if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1137         break;
1138       PrevDecl = TD->getPreviousDecl();
1139     }
1140     if (!PrevDecl) break;
1141     D = PrevDecl;
1142   }
1143 
1144   CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1145   Decl *ImmediateChild;
1146   if (D->getDeclContext() == DeclaringClass)
1147     ImmediateChild = D;
1148   else {
1149     DeclContext *DC = D->getDeclContext();
1150     while (DC->getParent() != DeclaringClass)
1151       DC = DC->getParent();
1152     ImmediateChild = cast<Decl>(DC);
1153   }
1154 
1155   // Check whether there's an AccessSpecDecl preceding this in the
1156   // chain of the DeclContext.
1157   bool isImplicit = true;
1158   for (const auto *I : DeclaringClass->decls()) {
1159     if (I == ImmediateChild) break;
1160     if (isa<AccessSpecDecl>(I)) {
1161       isImplicit = false;
1162       break;
1163     }
1164   }
1165 
1166   S.Diag(D->getLocation(), diag::note_access_natural)
1167     << (unsigned) (D->getAccess() == AS_protected)
1168     << isImplicit;
1169 }
1170 
1171 /// Diagnose the path which caused the given declaration or base class
1172 /// to become inaccessible.
1173 static void DiagnoseAccessPath(Sema &S,
1174                                const EffectiveContext &EC,
1175                                AccessTarget &entity) {
1176   // Save the instance context to preserve invariants.
1177   AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1178 
1179   // This basically repeats the main algorithm but keeps some more
1180   // information.
1181 
1182   // The natural access so far.
1183   AccessSpecifier accessSoFar = AS_public;
1184 
1185   // Check whether we have special rights to the declaring class.
1186   if (entity.isMemberAccess()) {
1187     NamedDecl *D = entity.getTargetDecl();
1188     accessSoFar = D->getAccess();
1189     const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1190 
1191     switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1192     // If the declaration is accessible when named in its declaring
1193     // class, then we must be constrained by the path.
1194     case AR_accessible:
1195       accessSoFar = AS_public;
1196       entity.suppressInstanceContext();
1197       break;
1198 
1199     case AR_inaccessible:
1200       if (accessSoFar == AS_private ||
1201           declaringClass == entity.getEffectiveNamingClass())
1202         return diagnoseBadDirectAccess(S, EC, entity);
1203       break;
1204 
1205     case AR_dependent:
1206       llvm_unreachable("cannot diagnose dependent access");
1207     }
1208   }
1209 
1210   CXXBasePaths paths;
1211   CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1212   assert(path.Access != AS_public);
1213 
1214   CXXBasePath::iterator i = path.end(), e = path.begin();
1215   CXXBasePath::iterator constrainingBase = i;
1216   while (i != e) {
1217     --i;
1218 
1219     assert(accessSoFar != AS_none && accessSoFar != AS_private);
1220 
1221     // Is the entity accessible when named in the deriving class, as
1222     // modified by the base specifier?
1223     const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1224     const CXXBaseSpecifier *base = i->Base;
1225 
1226     // If the access to this base is worse than the access we have to
1227     // the declaration, remember it.
1228     AccessSpecifier baseAccess = base->getAccessSpecifier();
1229     if (baseAccess > accessSoFar) {
1230       constrainingBase = i;
1231       accessSoFar = baseAccess;
1232     }
1233 
1234     switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1235     case AR_inaccessible: break;
1236     case AR_accessible:
1237       accessSoFar = AS_public;
1238       entity.suppressInstanceContext();
1239       constrainingBase = nullptr;
1240       break;
1241     case AR_dependent:
1242       llvm_unreachable("cannot diagnose dependent access");
1243     }
1244 
1245     // If this was private inheritance, but we don't have access to
1246     // the deriving class, we're done.
1247     if (accessSoFar == AS_private) {
1248       assert(baseAccess == AS_private);
1249       assert(constrainingBase == i);
1250       break;
1251     }
1252   }
1253 
1254   // If we don't have a constraining base, the access failure must be
1255   // due to the original declaration.
1256   if (constrainingBase == path.end())
1257     return diagnoseBadDirectAccess(S, EC, entity);
1258 
1259   // We're constrained by inheritance, but we want to say
1260   // "declared private here" if we're diagnosing a hierarchy
1261   // conversion and this is the final step.
1262   unsigned diagnostic;
1263   if (entity.isMemberAccess() ||
1264       constrainingBase + 1 != path.end()) {
1265     diagnostic = diag::note_access_constrained_by_path;
1266   } else {
1267     diagnostic = diag::note_access_natural;
1268   }
1269 
1270   const CXXBaseSpecifier *base = constrainingBase->Base;
1271 
1272   S.Diag(base->getSourceRange().getBegin(), diagnostic)
1273     << base->getSourceRange()
1274     << (base->getAccessSpecifier() == AS_protected)
1275     << (base->getAccessSpecifierAsWritten() == AS_none);
1276 
1277   if (entity.isMemberAccess())
1278     S.Diag(entity.getTargetDecl()->getLocation(),
1279            diag::note_member_declared_at);
1280 }
1281 
1282 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1283                               const EffectiveContext &EC,
1284                               AccessTarget &Entity) {
1285   const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1286   const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1287   NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1288 
1289   S.Diag(Loc, Entity.getDiag())
1290     << (Entity.getAccess() == AS_protected)
1291     << (D ? D->getDeclName() : DeclarationName())
1292     << S.Context.getTypeDeclType(NamingClass)
1293     << S.Context.getTypeDeclType(DeclaringClass);
1294   DiagnoseAccessPath(S, EC, Entity);
1295 }
1296 
1297 /// MSVC has a bug where if during an using declaration name lookup,
1298 /// the declaration found is unaccessible (private) and that declaration
1299 /// was bring into scope via another using declaration whose target
1300 /// declaration is accessible (public) then no error is generated.
1301 /// Example:
1302 ///   class A {
1303 ///   public:
1304 ///     int f();
1305 ///   };
1306 ///   class B : public A {
1307 ///   private:
1308 ///     using A::f;
1309 ///   };
1310 ///   class C : public B {
1311 ///   private:
1312 ///     using B::f;
1313 ///   };
1314 ///
1315 /// Here, B::f is private so this should fail in Standard C++, but
1316 /// because B::f refers to A::f which is public MSVC accepts it.
1317 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1318                                                  SourceLocation AccessLoc,
1319                                                  AccessTarget &Entity) {
1320   if (UsingShadowDecl *Shadow =
1321           dyn_cast<UsingShadowDecl>(Entity.getTargetDecl()))
1322     if (UsingDecl *UD = dyn_cast<UsingDecl>(Shadow->getIntroducer())) {
1323       const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1324       if (Entity.getTargetDecl()->getAccess() == AS_private &&
1325           (OrigDecl->getAccess() == AS_public ||
1326            OrigDecl->getAccess() == AS_protected)) {
1327         S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1328             << UD->getQualifiedNameAsString()
1329             << OrigDecl->getQualifiedNameAsString();
1330         return true;
1331       }
1332     }
1333   return false;
1334 }
1335 
1336 /// Determines whether the accessed entity is accessible.  Public members
1337 /// have been weeded out by this point.
1338 static AccessResult IsAccessible(Sema &S,
1339                                  const EffectiveContext &EC,
1340                                  AccessTarget &Entity) {
1341   // Determine the actual naming class.
1342   const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1343 
1344   AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1345   assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1346 
1347   // Before we try to recalculate access paths, try to white-list
1348   // accesses which just trade in on the final step, i.e. accesses
1349   // which don't require [M4] or [B4]. These are by far the most
1350   // common forms of privileged access.
1351   if (UnprivilegedAccess != AS_none) {
1352     switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1353     case AR_dependent:
1354       // This is actually an interesting policy decision.  We don't
1355       // *have* to delay immediately here: we can do the full access
1356       // calculation in the hope that friendship on some intermediate
1357       // class will make the declaration accessible non-dependently.
1358       // But that's not cheap, and odds are very good (note: assertion
1359       // made without data) that the friend declaration will determine
1360       // access.
1361       return AR_dependent;
1362 
1363     case AR_accessible: return AR_accessible;
1364     case AR_inaccessible: break;
1365     }
1366   }
1367 
1368   AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1369 
1370   // We lower member accesses to base accesses by pretending that the
1371   // member is a base class of its declaring class.
1372   AccessSpecifier FinalAccess;
1373 
1374   if (Entity.isMemberAccess()) {
1375     // Determine if the declaration is accessible from EC when named
1376     // in its declaring class.
1377     NamedDecl *Target = Entity.getTargetDecl();
1378     const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1379 
1380     FinalAccess = Target->getAccess();
1381     switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1382     case AR_accessible:
1383       // Target is accessible at EC when named in its declaring class.
1384       // We can now hill-climb and simply check whether the declaring
1385       // class is accessible as a base of the naming class.  This is
1386       // equivalent to checking the access of a notional public
1387       // member with no instance context.
1388       FinalAccess = AS_public;
1389       Entity.suppressInstanceContext();
1390       break;
1391     case AR_inaccessible: break;
1392     case AR_dependent: return AR_dependent; // see above
1393     }
1394 
1395     if (DeclaringClass == NamingClass)
1396       return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1397   } else {
1398     FinalAccess = AS_public;
1399   }
1400 
1401   assert(Entity.getDeclaringClass() != NamingClass);
1402 
1403   // Append the declaration's access if applicable.
1404   CXXBasePaths Paths;
1405   CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1406   if (!Path)
1407     return AR_dependent;
1408 
1409   assert(Path->Access <= UnprivilegedAccess &&
1410          "access along best path worse than direct?");
1411   if (Path->Access == AS_public)
1412     return AR_accessible;
1413   return AR_inaccessible;
1414 }
1415 
1416 static void DelayDependentAccess(Sema &S,
1417                                  const EffectiveContext &EC,
1418                                  SourceLocation Loc,
1419                                  const AccessTarget &Entity) {
1420   assert(EC.isDependent() && "delaying non-dependent access");
1421   DeclContext *DC = EC.getInnerContext();
1422   assert(DC->isDependentContext() && "delaying non-dependent access");
1423   DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1424                               Loc,
1425                               Entity.isMemberAccess(),
1426                               Entity.getAccess(),
1427                               Entity.getTargetDecl(),
1428                               Entity.getNamingClass(),
1429                               Entity.getBaseObjectType(),
1430                               Entity.getDiag());
1431 }
1432 
1433 /// Checks access to an entity from the given effective context.
1434 static AccessResult CheckEffectiveAccess(Sema &S,
1435                                          const EffectiveContext &EC,
1436                                          SourceLocation Loc,
1437                                          AccessTarget &Entity) {
1438   assert(Entity.getAccess() != AS_public && "called for public access!");
1439 
1440   switch (IsAccessible(S, EC, Entity)) {
1441   case AR_dependent:
1442     DelayDependentAccess(S, EC, Loc, Entity);
1443     return AR_dependent;
1444 
1445   case AR_inaccessible:
1446     if (S.getLangOpts().MSVCCompat &&
1447         IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1448       return AR_accessible;
1449     if (!Entity.isQuiet())
1450       DiagnoseBadAccess(S, Loc, EC, Entity);
1451     return AR_inaccessible;
1452 
1453   case AR_accessible:
1454     return AR_accessible;
1455   }
1456 
1457   // silence unnecessary warning
1458   llvm_unreachable("invalid access result");
1459 }
1460 
1461 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1462                                       AccessTarget &Entity) {
1463   // If the access path is public, it's accessible everywhere.
1464   if (Entity.getAccess() == AS_public)
1465     return Sema::AR_accessible;
1466 
1467   // If we're currently parsing a declaration, we may need to delay
1468   // access control checking, because our effective context might be
1469   // different based on what the declaration comes out as.
1470   //
1471   // For example, we might be parsing a declaration with a scope
1472   // specifier, like this:
1473   //   A::private_type A::foo() { ... }
1474   //
1475   // Or we might be parsing something that will turn out to be a friend:
1476   //   void foo(A::private_type);
1477   //   void B::foo(A::private_type);
1478   if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1479     S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1480     return Sema::AR_delayed;
1481   }
1482 
1483   EffectiveContext EC(S.CurContext);
1484   switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1485   case AR_accessible: return Sema::AR_accessible;
1486   case AR_inaccessible: return Sema::AR_inaccessible;
1487   case AR_dependent: return Sema::AR_dependent;
1488   }
1489   llvm_unreachable("invalid access result");
1490 }
1491 
1492 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1493   // Access control for names used in the declarations of functions
1494   // and function templates should normally be evaluated in the context
1495   // of the declaration, just in case it's a friend of something.
1496   // However, this does not apply to local extern declarations.
1497 
1498   DeclContext *DC = D->getDeclContext();
1499   if (D->isLocalExternDecl()) {
1500     DC = D->getLexicalDeclContext();
1501   } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1502     DC = FN;
1503   } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1504     if (isa<DeclContext>(TD->getTemplatedDecl()))
1505       DC = cast<DeclContext>(TD->getTemplatedDecl());
1506   } else if (auto *RD = dyn_cast<RequiresExprBodyDecl>(D)) {
1507     DC = RD;
1508   }
1509 
1510   EffectiveContext EC(DC);
1511 
1512   AccessTarget Target(DD.getAccessData());
1513 
1514   if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1515     DD.Triggered = true;
1516 }
1517 
1518 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1519                         const MultiLevelTemplateArgumentList &TemplateArgs) {
1520   SourceLocation Loc = DD.getAccessLoc();
1521   AccessSpecifier Access = DD.getAccess();
1522 
1523   Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1524                                        TemplateArgs);
1525   if (!NamingD) return;
1526   Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1527                                        TemplateArgs);
1528   if (!TargetD) return;
1529 
1530   if (DD.isAccessToMember()) {
1531     CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1532     NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1533     QualType BaseObjectType = DD.getAccessBaseObjectType();
1534     if (!BaseObjectType.isNull()) {
1535       BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1536                                  DeclarationName());
1537       if (BaseObjectType.isNull()) return;
1538     }
1539 
1540     AccessTarget Entity(Context,
1541                         AccessTarget::Member,
1542                         NamingClass,
1543                         DeclAccessPair::make(TargetDecl, Access),
1544                         BaseObjectType);
1545     Entity.setDiag(DD.getDiagnostic());
1546     CheckAccess(*this, Loc, Entity);
1547   } else {
1548     AccessTarget Entity(Context,
1549                         AccessTarget::Base,
1550                         cast<CXXRecordDecl>(TargetD),
1551                         cast<CXXRecordDecl>(NamingD),
1552                         Access);
1553     Entity.setDiag(DD.getDiagnostic());
1554     CheckAccess(*this, Loc, Entity);
1555   }
1556 }
1557 
1558 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1559                                                      DeclAccessPair Found) {
1560   if (!getLangOpts().AccessControl ||
1561       !E->getNamingClass() ||
1562       Found.getAccess() == AS_public)
1563     return AR_accessible;
1564 
1565   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1566                       Found, QualType());
1567   Entity.setDiag(diag::err_access) << E->getSourceRange();
1568 
1569   return CheckAccess(*this, E->getNameLoc(), Entity);
1570 }
1571 
1572 /// Perform access-control checking on a previously-unresolved member
1573 /// access which has now been resolved to a member.
1574 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1575                                                      DeclAccessPair Found) {
1576   if (!getLangOpts().AccessControl ||
1577       Found.getAccess() == AS_public)
1578     return AR_accessible;
1579 
1580   QualType BaseType = E->getBaseType();
1581   if (E->isArrow())
1582     BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1583 
1584   AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1585                       Found, BaseType);
1586   Entity.setDiag(diag::err_access) << E->getSourceRange();
1587 
1588   return CheckAccess(*this, E->getMemberLoc(), Entity);
1589 }
1590 
1591 /// Is the given member accessible for the purposes of deciding whether to
1592 /// define a special member function as deleted?
1593 bool Sema::isMemberAccessibleForDeletion(CXXRecordDecl *NamingClass,
1594                                          DeclAccessPair Found,
1595                                          QualType ObjectType,
1596                                          SourceLocation Loc,
1597                                          const PartialDiagnostic &Diag) {
1598   // Fast path.
1599   if (Found.getAccess() == AS_public || !getLangOpts().AccessControl)
1600     return true;
1601 
1602   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1603                       ObjectType);
1604 
1605   // Suppress diagnostics.
1606   Entity.setDiag(Diag);
1607 
1608   switch (CheckAccess(*this, Loc, Entity)) {
1609   case AR_accessible: return true;
1610   case AR_inaccessible: return false;
1611   case AR_dependent: llvm_unreachable("dependent for =delete computation");
1612   case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1613   }
1614   llvm_unreachable("bad access result");
1615 }
1616 
1617 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1618                                                CXXDestructorDecl *Dtor,
1619                                                const PartialDiagnostic &PDiag,
1620                                                QualType ObjectTy) {
1621   if (!getLangOpts().AccessControl)
1622     return AR_accessible;
1623 
1624   // There's never a path involved when checking implicit destructor access.
1625   AccessSpecifier Access = Dtor->getAccess();
1626   if (Access == AS_public)
1627     return AR_accessible;
1628 
1629   CXXRecordDecl *NamingClass = Dtor->getParent();
1630   if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1631 
1632   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1633                       DeclAccessPair::make(Dtor, Access),
1634                       ObjectTy);
1635   Entity.setDiag(PDiag); // TODO: avoid copy
1636 
1637   return CheckAccess(*this, Loc, Entity);
1638 }
1639 
1640 /// Checks access to a constructor.
1641 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1642                                                 CXXConstructorDecl *Constructor,
1643                                                 DeclAccessPair Found,
1644                                                 const InitializedEntity &Entity,
1645                                                 bool IsCopyBindingRefToTemp) {
1646   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1647     return AR_accessible;
1648 
1649   PartialDiagnostic PD(PDiag());
1650   switch (Entity.getKind()) {
1651   default:
1652     PD = PDiag(IsCopyBindingRefToTemp
1653                  ? diag::ext_rvalue_to_reference_access_ctor
1654                  : diag::err_access_ctor);
1655 
1656     break;
1657 
1658   case InitializedEntity::EK_Base:
1659     PD = PDiag(diag::err_access_base_ctor);
1660     PD << Entity.isInheritedVirtualBase()
1661        << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1662     break;
1663 
1664   case InitializedEntity::EK_Member:
1665   case InitializedEntity::EK_ParenAggInitMember: {
1666     const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1667     PD = PDiag(diag::err_access_field_ctor);
1668     PD << Field->getType() << getSpecialMember(Constructor);
1669     break;
1670   }
1671 
1672   case InitializedEntity::EK_LambdaCapture: {
1673     StringRef VarName = Entity.getCapturedVarName();
1674     PD = PDiag(diag::err_access_lambda_capture);
1675     PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1676     break;
1677   }
1678 
1679   }
1680 
1681   return CheckConstructorAccess(UseLoc, Constructor, Found, Entity, PD);
1682 }
1683 
1684 /// Checks access to a constructor.
1685 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1686                                                 CXXConstructorDecl *Constructor,
1687                                                 DeclAccessPair Found,
1688                                                 const InitializedEntity &Entity,
1689                                                 const PartialDiagnostic &PD) {
1690   if (!getLangOpts().AccessControl ||
1691       Found.getAccess() == AS_public)
1692     return AR_accessible;
1693 
1694   CXXRecordDecl *NamingClass = Constructor->getParent();
1695 
1696   // Initializing a base sub-object is an instance method call on an
1697   // object of the derived class.  Otherwise, we have an instance method
1698   // call on an object of the constructed type.
1699   //
1700   // FIXME: If we have a parent, we're initializing the base class subobject
1701   // in aggregate initialization. It's not clear whether the object class
1702   // should be the base class or the derived class in that case.
1703   CXXRecordDecl *ObjectClass;
1704   if ((Entity.getKind() == InitializedEntity::EK_Base ||
1705        Entity.getKind() == InitializedEntity::EK_Delegating) &&
1706       !Entity.getParent()) {
1707     ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1708   } else if (auto *Shadow =
1709                  dyn_cast<ConstructorUsingShadowDecl>(Found.getDecl())) {
1710     // If we're using an inheriting constructor to construct an object,
1711     // the object class is the derived class, not the base class.
1712     ObjectClass = Shadow->getParent();
1713   } else {
1714     ObjectClass = NamingClass;
1715   }
1716 
1717   AccessTarget AccessEntity(
1718       Context, AccessTarget::Member, NamingClass,
1719       DeclAccessPair::make(Constructor, Found.getAccess()),
1720       Context.getTypeDeclType(ObjectClass));
1721   AccessEntity.setDiag(PD);
1722 
1723   return CheckAccess(*this, UseLoc, AccessEntity);
1724 }
1725 
1726 /// Checks access to an overloaded operator new or delete.
1727 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1728                                                SourceRange PlacementRange,
1729                                                CXXRecordDecl *NamingClass,
1730                                                DeclAccessPair Found,
1731                                                bool Diagnose) {
1732   if (!getLangOpts().AccessControl ||
1733       !NamingClass ||
1734       Found.getAccess() == AS_public)
1735     return AR_accessible;
1736 
1737   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1738                       QualType());
1739   if (Diagnose)
1740     Entity.setDiag(diag::err_access)
1741       << PlacementRange;
1742 
1743   return CheckAccess(*this, OpLoc, Entity);
1744 }
1745 
1746 /// Checks access to a member.
1747 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1748                                            CXXRecordDecl *NamingClass,
1749                                            DeclAccessPair Found) {
1750   if (!getLangOpts().AccessControl ||
1751       !NamingClass ||
1752       Found.getAccess() == AS_public)
1753     return AR_accessible;
1754 
1755   AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1756                       Found, QualType());
1757 
1758   return CheckAccess(*this, UseLoc, Entity);
1759 }
1760 
1761 /// Checks implicit access to a member in a structured binding.
1762 Sema::AccessResult
1763 Sema::CheckStructuredBindingMemberAccess(SourceLocation UseLoc,
1764                                          CXXRecordDecl *DecomposedClass,
1765                                          DeclAccessPair Field) {
1766   if (!getLangOpts().AccessControl ||
1767       Field.getAccess() == AS_public)
1768     return AR_accessible;
1769 
1770   AccessTarget Entity(Context, AccessTarget::Member, DecomposedClass, Field,
1771                       Context.getRecordType(DecomposedClass));
1772   Entity.setDiag(diag::err_decomp_decl_inaccessible_field);
1773 
1774   return CheckAccess(*this, UseLoc, Entity);
1775 }
1776 
1777 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1778                                                    Expr *ObjectExpr,
1779                                                    const SourceRange &Range,
1780                                                    DeclAccessPair Found) {
1781   if (!getLangOpts().AccessControl || Found.getAccess() == AS_public)
1782     return AR_accessible;
1783 
1784   const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1785   CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1786 
1787   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1788                       ObjectExpr->getType());
1789   Entity.setDiag(diag::err_access) << ObjectExpr->getSourceRange() << Range;
1790 
1791   return CheckAccess(*this, OpLoc, Entity);
1792 }
1793 
1794 /// Checks access to an overloaded member operator, including
1795 /// conversion operators.
1796 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1797                                                    Expr *ObjectExpr,
1798                                                    Expr *ArgExpr,
1799                                                    DeclAccessPair Found) {
1800   return CheckMemberOperatorAccess(
1801       OpLoc, ObjectExpr, ArgExpr ? ArgExpr->getSourceRange() : SourceRange(),
1802       Found);
1803 }
1804 
1805 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1806                                                    Expr *ObjectExpr,
1807                                                    ArrayRef<Expr *> ArgExprs,
1808                                                    DeclAccessPair FoundDecl) {
1809   SourceRange R;
1810   if (!ArgExprs.empty()) {
1811     R = SourceRange(ArgExprs.front()->getBeginLoc(),
1812                     ArgExprs.back()->getEndLoc());
1813   }
1814 
1815   return CheckMemberOperatorAccess(OpLoc, ObjectExpr, R, FoundDecl);
1816 }
1817 
1818 /// Checks access to the target of a friend declaration.
1819 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1820   assert(isa<CXXMethodDecl>(target->getAsFunction()));
1821 
1822   // Friendship lookup is a redeclaration lookup, so there's never an
1823   // inheritance path modifying access.
1824   AccessSpecifier access = target->getAccess();
1825 
1826   if (!getLangOpts().AccessControl || access == AS_public)
1827     return AR_accessible;
1828 
1829   CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1830 
1831   AccessTarget entity(Context, AccessTarget::Member,
1832                       cast<CXXRecordDecl>(target->getDeclContext()),
1833                       DeclAccessPair::make(target, access),
1834                       /*no instance context*/ QualType());
1835   entity.setDiag(diag::err_access_friend_function)
1836       << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1837                                  : method->getNameInfo().getSourceRange());
1838 
1839   // We need to bypass delayed-diagnostics because we might be called
1840   // while the ParsingDeclarator is active.
1841   EffectiveContext EC(CurContext);
1842   switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1843   case ::AR_accessible: return Sema::AR_accessible;
1844   case ::AR_inaccessible: return Sema::AR_inaccessible;
1845   case ::AR_dependent: return Sema::AR_dependent;
1846   }
1847   llvm_unreachable("invalid access result");
1848 }
1849 
1850 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1851                                                     DeclAccessPair Found) {
1852   if (!getLangOpts().AccessControl ||
1853       Found.getAccess() == AS_none ||
1854       Found.getAccess() == AS_public)
1855     return AR_accessible;
1856 
1857   OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1858   CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1859 
1860   AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1861                       /*no instance context*/ QualType());
1862   Entity.setDiag(diag::err_access)
1863     << Ovl->getSourceRange();
1864 
1865   return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1866 }
1867 
1868 /// Checks access for a hierarchy conversion.
1869 ///
1870 /// \param ForceCheck true if this check should be performed even if access
1871 ///     control is disabled;  some things rely on this for semantics
1872 /// \param ForceUnprivileged true if this check should proceed as if the
1873 ///     context had no special privileges
1874 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1875                                               QualType Base,
1876                                               QualType Derived,
1877                                               const CXXBasePath &Path,
1878                                               unsigned DiagID,
1879                                               bool ForceCheck,
1880                                               bool ForceUnprivileged) {
1881   if (!ForceCheck && !getLangOpts().AccessControl)
1882     return AR_accessible;
1883 
1884   if (Path.Access == AS_public)
1885     return AR_accessible;
1886 
1887   CXXRecordDecl *BaseD, *DerivedD;
1888   BaseD = cast<CXXRecordDecl>(Base->castAs<RecordType>()->getDecl());
1889   DerivedD = cast<CXXRecordDecl>(Derived->castAs<RecordType>()->getDecl());
1890 
1891   AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1892                       Path.Access);
1893   if (DiagID)
1894     Entity.setDiag(DiagID) << Derived << Base;
1895 
1896   if (ForceUnprivileged) {
1897     switch (CheckEffectiveAccess(*this, EffectiveContext(),
1898                                  AccessLoc, Entity)) {
1899     case ::AR_accessible: return Sema::AR_accessible;
1900     case ::AR_inaccessible: return Sema::AR_inaccessible;
1901     case ::AR_dependent: return Sema::AR_dependent;
1902     }
1903     llvm_unreachable("unexpected result from CheckEffectiveAccess");
1904   }
1905   return CheckAccess(*this, AccessLoc, Entity);
1906 }
1907 
1908 /// Checks access to all the declarations in the given result set.
1909 void Sema::CheckLookupAccess(const LookupResult &R) {
1910   assert(getLangOpts().AccessControl
1911          && "performing access check without access control");
1912   assert(R.getNamingClass() && "performing access check without naming class");
1913 
1914   for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1915     if (I.getAccess() != AS_public) {
1916       AccessTarget Entity(Context, AccessedEntity::Member,
1917                           R.getNamingClass(), I.getPair(),
1918                           R.getBaseObjectType());
1919       Entity.setDiag(diag::err_access);
1920       CheckAccess(*this, R.getNameLoc(), Entity);
1921     }
1922   }
1923 }
1924 
1925 /// Checks access to Target from the given class. The check will take access
1926 /// specifiers into account, but no member access expressions and such.
1927 ///
1928 /// \param Target the declaration to check if it can be accessed
1929 /// \param NamingClass the class in which the lookup was started.
1930 /// \param BaseType type of the left side of member access expression.
1931 ///        \p BaseType and \p NamingClass are used for C++ access control.
1932 ///        Depending on the lookup case, they should be set to the following:
1933 ///        - lhs.target (member access without a qualifier):
1934 ///          \p BaseType and \p NamingClass are both the type of 'lhs'.
1935 ///        - lhs.X::target (member access with a qualifier):
1936 ///          BaseType is the type of 'lhs', NamingClass is 'X'
1937 ///        - X::target (qualified lookup without member access):
1938 ///          BaseType is null, NamingClass is 'X'.
1939 ///        - target (unqualified lookup).
1940 ///          BaseType is null, NamingClass is the parent class of 'target'.
1941 /// \return true if the Target is accessible from the Class, false otherwise.
1942 bool Sema::IsSimplyAccessible(NamedDecl *Target, CXXRecordDecl *NamingClass,
1943                               QualType BaseType) {
1944   // Perform the C++ accessibility checks first.
1945   if (Target->isCXXClassMember() && NamingClass) {
1946     if (!getLangOpts().CPlusPlus)
1947       return false;
1948     // The unprivileged access is AS_none as we don't know how the member was
1949     // accessed, which is described by the access in DeclAccessPair.
1950     // `IsAccessible` will examine the actual access of Target (i.e.
1951     // Decl->getAccess()) when calculating the access.
1952     AccessTarget Entity(Context, AccessedEntity::Member, NamingClass,
1953                         DeclAccessPair::make(Target, AS_none), BaseType);
1954     EffectiveContext EC(CurContext);
1955     return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1956   }
1957 
1958   if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Target)) {
1959     // @public and @package ivars are always accessible.
1960     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1961         Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1962       return true;
1963 
1964     // If we are inside a class or category implementation, determine the
1965     // interface we're in.
1966     ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1967     if (ObjCMethodDecl *MD = getCurMethodDecl())
1968       ClassOfMethodDecl =  MD->getClassInterface();
1969     else if (FunctionDecl *FD = getCurFunctionDecl()) {
1970       if (ObjCImplDecl *Impl
1971             = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1972         if (ObjCImplementationDecl *IMPD
1973               = dyn_cast<ObjCImplementationDecl>(Impl))
1974           ClassOfMethodDecl = IMPD->getClassInterface();
1975         else if (ObjCCategoryImplDecl* CatImplClass
1976                    = dyn_cast<ObjCCategoryImplDecl>(Impl))
1977           ClassOfMethodDecl = CatImplClass->getClassInterface();
1978       }
1979     }
1980 
1981     // If we're not in an interface, this ivar is inaccessible.
1982     if (!ClassOfMethodDecl)
1983       return false;
1984 
1985     // If we're inside the same interface that owns the ivar, we're fine.
1986     if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1987       return true;
1988 
1989     // If the ivar is private, it's inaccessible.
1990     if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1991       return false;
1992 
1993     return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1994   }
1995 
1996   return true;
1997 }
1998