1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the JumpScopeChecker class, which is used to diagnose 10 // jumps that enter a protected scope in an invalid way. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/StmtCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/StmtOpenACC.h" 20 #include "clang/AST/StmtOpenMP.h" 21 #include "clang/Basic/SourceLocation.h" 22 #include "clang/Sema/SemaInternal.h" 23 #include "llvm/ADT/BitVector.h" 24 using namespace clang; 25 26 namespace { 27 28 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps 29 /// into VLA and other protected scopes. For example, this rejects: 30 /// goto L; 31 /// int a[n]; 32 /// L: 33 /// 34 /// We also detect jumps out of protected scopes when it's not possible to do 35 /// cleanups properly. Indirect jumps and ASM jumps can't do cleanups because 36 /// the target is unknown. Return statements with \c [[clang::musttail]] cannot 37 /// handle any cleanups due to the nature of a tail call. 38 class JumpScopeChecker { 39 Sema &S; 40 41 /// Permissive - True when recovering from errors, in which case precautions 42 /// are taken to handle incomplete scope information. 43 const bool Permissive; 44 45 /// GotoScope - This is a record that we use to keep track of all of the 46 /// scopes that are introduced by VLAs and other things that scope jumps like 47 /// gotos. This scope tree has nothing to do with the source scope tree, 48 /// because you can have multiple VLA scopes per compound statement, and most 49 /// compound statements don't introduce any scopes. 50 struct GotoScope { 51 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for 52 /// the parent scope is the function body. 53 unsigned ParentScope; 54 55 /// InDiag - The note to emit if there is a jump into this scope. 56 unsigned InDiag; 57 58 /// OutDiag - The note to emit if there is an indirect jump out 59 /// of this scope. Direct jumps always clean up their current scope 60 /// in an orderly way. 61 unsigned OutDiag; 62 63 /// Loc - Location to emit the diagnostic. 64 SourceLocation Loc; 65 66 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, 67 SourceLocation L) 68 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} 69 }; 70 71 SmallVector<GotoScope, 48> Scopes; 72 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; 73 SmallVector<Stmt*, 16> Jumps; 74 75 SmallVector<Stmt*, 4> IndirectJumps; 76 SmallVector<LabelDecl *, 4> IndirectJumpTargets; 77 SmallVector<AttributedStmt *, 4> MustTailStmts; 78 79 public: 80 JumpScopeChecker(Stmt *Body, Sema &S); 81 private: 82 void BuildScopeInformation(Decl *D, unsigned &ParentScope); 83 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 84 unsigned &ParentScope); 85 void BuildScopeInformation(CompoundLiteralExpr *CLE, unsigned &ParentScope); 86 void BuildScopeInformation(Stmt *S, unsigned &origParentScope); 87 88 void VerifyJumps(); 89 void VerifyIndirectJumps(); 90 void VerifyMustTailStmts(); 91 void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes); 92 void DiagnoseIndirectOrAsmJump(Stmt *IG, unsigned IGScope, LabelDecl *Target, 93 unsigned TargetScope); 94 void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 95 unsigned JumpDiag, unsigned JumpDiagWarning, 96 unsigned JumpDiagCXX98Compat); 97 void CheckGotoStmt(GotoStmt *GS); 98 const Attr *GetMustTailAttr(AttributedStmt *AS); 99 100 unsigned GetDeepestCommonScope(unsigned A, unsigned B); 101 }; 102 } // end anonymous namespace 103 104 #define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x))) 105 106 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) 107 : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) { 108 // Add a scope entry for function scope. 109 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); 110 111 // Build information for the top level compound statement, so that we have a 112 // defined scope record for every "goto" and label. 113 unsigned BodyParentScope = 0; 114 BuildScopeInformation(Body, BodyParentScope); 115 116 // Check that all jumps we saw are kosher. 117 VerifyJumps(); 118 VerifyIndirectJumps(); 119 VerifyMustTailStmts(); 120 } 121 122 /// GetDeepestCommonScope - Finds the innermost scope enclosing the 123 /// two scopes. 124 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { 125 while (A != B) { 126 // Inner scopes are created after outer scopes and therefore have 127 // higher indices. 128 if (A < B) { 129 assert(Scopes[B].ParentScope < B); 130 B = Scopes[B].ParentScope; 131 } else { 132 assert(Scopes[A].ParentScope < A); 133 A = Scopes[A].ParentScope; 134 } 135 } 136 return A; 137 } 138 139 typedef std::pair<unsigned,unsigned> ScopePair; 140 141 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a 142 /// diagnostic that should be emitted if control goes over it. If not, return 0. 143 static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) { 144 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 145 unsigned InDiag = 0; 146 unsigned OutDiag = 0; 147 148 if (VD->getType()->isVariablyModifiedType()) 149 InDiag = diag::note_protected_by_vla; 150 151 if (VD->hasAttr<BlocksAttr>()) 152 return ScopePair(diag::note_protected_by___block, 153 diag::note_exits___block); 154 155 if (VD->hasAttr<CleanupAttr>()) 156 return ScopePair(diag::note_protected_by_cleanup, 157 diag::note_exits_cleanup); 158 159 if (VD->hasLocalStorage()) { 160 switch (VD->getType().isDestructedType()) { 161 case QualType::DK_objc_strong_lifetime: 162 return ScopePair(diag::note_protected_by_objc_strong_init, 163 diag::note_exits_objc_strong); 164 165 case QualType::DK_objc_weak_lifetime: 166 return ScopePair(diag::note_protected_by_objc_weak_init, 167 diag::note_exits_objc_weak); 168 169 case QualType::DK_nontrivial_c_struct: 170 return ScopePair(diag::note_protected_by_non_trivial_c_struct_init, 171 diag::note_exits_dtor); 172 173 case QualType::DK_cxx_destructor: 174 OutDiag = diag::note_exits_dtor; 175 break; 176 177 case QualType::DK_none: 178 break; 179 } 180 } 181 182 const Expr *Init = VD->getInit(); 183 if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init && 184 !Init->containsErrors()) { 185 // C++11 [stmt.dcl]p3: 186 // A program that jumps from a point where a variable with automatic 187 // storage duration is not in scope to a point where it is in scope 188 // is ill-formed unless the variable has scalar type, class type with 189 // a trivial default constructor and a trivial destructor, a 190 // cv-qualified version of one of these types, or an array of one of 191 // the preceding types and is declared without an initializer. 192 193 // C++03 [stmt.dcl.p3: 194 // A program that jumps from a point where a local variable 195 // with automatic storage duration is not in scope to a point 196 // where it is in scope is ill-formed unless the variable has 197 // POD type and is declared without an initializer. 198 199 InDiag = diag::note_protected_by_variable_init; 200 201 // For a variable of (array of) class type declared without an 202 // initializer, we will have call-style initialization and the initializer 203 // will be the CXXConstructExpr with no intervening nodes. 204 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 205 const CXXConstructorDecl *Ctor = CCE->getConstructor(); 206 if (Ctor->isTrivial() && Ctor->isDefaultConstructor() && 207 VD->getInitStyle() == VarDecl::CallInit) { 208 if (OutDiag) 209 InDiag = diag::note_protected_by_variable_nontriv_destructor; 210 else if (!Ctor->getParent()->isPOD()) 211 InDiag = diag::note_protected_by_variable_non_pod; 212 else 213 InDiag = 0; 214 } 215 } 216 } 217 218 return ScopePair(InDiag, OutDiag); 219 } 220 221 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 222 if (TD->getUnderlyingType()->isVariablyModifiedType()) 223 return ScopePair(isa<TypedefDecl>(TD) 224 ? diag::note_protected_by_vla_typedef 225 : diag::note_protected_by_vla_type_alias, 226 0); 227 } 228 229 return ScopePair(0U, 0U); 230 } 231 232 /// Build scope information for a declaration that is part of a DeclStmt. 233 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { 234 // If this decl causes a new scope, push and switch to it. 235 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D); 236 if (Diags.first || Diags.second) { 237 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, 238 D->getLocation())); 239 ParentScope = Scopes.size()-1; 240 } 241 242 // If the decl has an initializer, walk it with the potentially new 243 // scope we just installed. 244 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 245 if (Expr *Init = VD->getInit()) 246 BuildScopeInformation(Init, ParentScope); 247 } 248 249 /// Build scope information for a captured block literal variables. 250 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 251 const BlockDecl *BDecl, 252 unsigned &ParentScope) { 253 // exclude captured __block variables; there's no destructor 254 // associated with the block literal for them. 255 if (D->hasAttr<BlocksAttr>()) 256 return; 257 QualType T = D->getType(); 258 QualType::DestructionKind destructKind = T.isDestructedType(); 259 if (destructKind != QualType::DK_none) { 260 std::pair<unsigned,unsigned> Diags; 261 switch (destructKind) { 262 case QualType::DK_cxx_destructor: 263 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj, 264 diag::note_exits_block_captures_cxx_obj); 265 break; 266 case QualType::DK_objc_strong_lifetime: 267 Diags = ScopePair(diag::note_enters_block_captures_strong, 268 diag::note_exits_block_captures_strong); 269 break; 270 case QualType::DK_objc_weak_lifetime: 271 Diags = ScopePair(diag::note_enters_block_captures_weak, 272 diag::note_exits_block_captures_weak); 273 break; 274 case QualType::DK_nontrivial_c_struct: 275 Diags = ScopePair(diag::note_enters_block_captures_non_trivial_c_struct, 276 diag::note_exits_block_captures_non_trivial_c_struct); 277 break; 278 case QualType::DK_none: 279 llvm_unreachable("non-lifetime captured variable"); 280 } 281 SourceLocation Loc = D->getLocation(); 282 if (Loc.isInvalid()) 283 Loc = BDecl->getLocation(); 284 Scopes.push_back(GotoScope(ParentScope, 285 Diags.first, Diags.second, Loc)); 286 ParentScope = Scopes.size()-1; 287 } 288 } 289 290 /// Build scope information for compound literals of C struct types that are 291 /// non-trivial to destruct. 292 void JumpScopeChecker::BuildScopeInformation(CompoundLiteralExpr *CLE, 293 unsigned &ParentScope) { 294 unsigned InDiag = diag::note_enters_compound_literal_scope; 295 unsigned OutDiag = diag::note_exits_compound_literal_scope; 296 Scopes.push_back(GotoScope(ParentScope, InDiag, OutDiag, CLE->getExprLoc())); 297 ParentScope = Scopes.size() - 1; 298 } 299 300 /// BuildScopeInformation - The statements from CI to CE are known to form a 301 /// coherent VLA scope with a specified parent node. Walk through the 302 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively 303 /// walking the AST as needed. 304 void JumpScopeChecker::BuildScopeInformation(Stmt *S, 305 unsigned &origParentScope) { 306 // If this is a statement, rather than an expression, scopes within it don't 307 // propagate out into the enclosing scope. Otherwise we have to worry 308 // about block literals, which have the lifetime of their enclosing statement. 309 unsigned independentParentScope = origParentScope; 310 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 311 ? origParentScope : independentParentScope); 312 313 unsigned StmtsToSkip = 0u; 314 315 // If we found a label, remember that it is in ParentScope scope. 316 switch (S->getStmtClass()) { 317 case Stmt::AddrLabelExprClass: 318 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); 319 break; 320 321 case Stmt::ObjCForCollectionStmtClass: { 322 auto *CS = cast<ObjCForCollectionStmt>(S); 323 unsigned Diag = diag::note_protected_by_objc_fast_enumeration; 324 unsigned NewParentScope = Scopes.size(); 325 Scopes.push_back(GotoScope(ParentScope, Diag, 0, S->getBeginLoc())); 326 BuildScopeInformation(CS->getBody(), NewParentScope); 327 return; 328 } 329 330 case Stmt::IndirectGotoStmtClass: 331 // "goto *&&lbl;" is a special case which we treat as equivalent 332 // to a normal goto. In addition, we don't calculate scope in the 333 // operand (to avoid recording the address-of-label use), which 334 // works only because of the restricted set of expressions which 335 // we detect as constant targets. 336 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) 337 goto RecordJumpScope; 338 339 LabelAndGotoScopes[S] = ParentScope; 340 IndirectJumps.push_back(S); 341 break; 342 343 case Stmt::SwitchStmtClass: 344 // Evaluate the C++17 init stmt and condition variable 345 // before entering the scope of the switch statement. 346 if (Stmt *Init = cast<SwitchStmt>(S)->getInit()) { 347 BuildScopeInformation(Init, ParentScope); 348 ++StmtsToSkip; 349 } 350 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) { 351 BuildScopeInformation(Var, ParentScope); 352 ++StmtsToSkip; 353 } 354 goto RecordJumpScope; 355 356 case Stmt::GCCAsmStmtClass: 357 if (!cast<GCCAsmStmt>(S)->isAsmGoto()) 358 break; 359 [[fallthrough]]; 360 361 case Stmt::GotoStmtClass: 362 RecordJumpScope: 363 // Remember both what scope a goto is in as well as the fact that we have 364 // it. This makes the second scan not have to walk the AST again. 365 LabelAndGotoScopes[S] = ParentScope; 366 Jumps.push_back(S); 367 break; 368 369 case Stmt::IfStmtClass: { 370 IfStmt *IS = cast<IfStmt>(S); 371 if (!(IS->isConstexpr() || IS->isConsteval() || 372 IS->isObjCAvailabilityCheck())) 373 break; 374 375 unsigned Diag = diag::note_protected_by_if_available; 376 if (IS->isConstexpr()) 377 Diag = diag::note_protected_by_constexpr_if; 378 else if (IS->isConsteval()) 379 Diag = diag::note_protected_by_consteval_if; 380 381 if (VarDecl *Var = IS->getConditionVariable()) 382 BuildScopeInformation(Var, ParentScope); 383 384 // Cannot jump into the middle of the condition. 385 unsigned NewParentScope = Scopes.size(); 386 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 387 388 if (!IS->isConsteval()) 389 BuildScopeInformation(IS->getCond(), NewParentScope); 390 391 // Jumps into either arm of an 'if constexpr' are not allowed. 392 NewParentScope = Scopes.size(); 393 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 394 BuildScopeInformation(IS->getThen(), NewParentScope); 395 if (Stmt *Else = IS->getElse()) { 396 NewParentScope = Scopes.size(); 397 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 398 BuildScopeInformation(Else, NewParentScope); 399 } 400 return; 401 } 402 403 case Stmt::CXXTryStmtClass: { 404 CXXTryStmt *TS = cast<CXXTryStmt>(S); 405 { 406 unsigned NewParentScope = Scopes.size(); 407 Scopes.push_back(GotoScope(ParentScope, 408 diag::note_protected_by_cxx_try, 409 diag::note_exits_cxx_try, 410 TS->getSourceRange().getBegin())); 411 if (Stmt *TryBlock = TS->getTryBlock()) 412 BuildScopeInformation(TryBlock, NewParentScope); 413 } 414 415 // Jump from the catch into the try is not allowed either. 416 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { 417 CXXCatchStmt *CS = TS->getHandler(I); 418 unsigned NewParentScope = Scopes.size(); 419 Scopes.push_back(GotoScope(ParentScope, 420 diag::note_protected_by_cxx_catch, 421 diag::note_exits_cxx_catch, 422 CS->getSourceRange().getBegin())); 423 BuildScopeInformation(CS->getHandlerBlock(), NewParentScope); 424 } 425 return; 426 } 427 428 case Stmt::SEHTryStmtClass: { 429 SEHTryStmt *TS = cast<SEHTryStmt>(S); 430 { 431 unsigned NewParentScope = Scopes.size(); 432 Scopes.push_back(GotoScope(ParentScope, 433 diag::note_protected_by_seh_try, 434 diag::note_exits_seh_try, 435 TS->getSourceRange().getBegin())); 436 if (Stmt *TryBlock = TS->getTryBlock()) 437 BuildScopeInformation(TryBlock, NewParentScope); 438 } 439 440 // Jump from __except or __finally into the __try are not allowed either. 441 if (SEHExceptStmt *Except = TS->getExceptHandler()) { 442 unsigned NewParentScope = Scopes.size(); 443 Scopes.push_back(GotoScope(ParentScope, 444 diag::note_protected_by_seh_except, 445 diag::note_exits_seh_except, 446 Except->getSourceRange().getBegin())); 447 BuildScopeInformation(Except->getBlock(), NewParentScope); 448 } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) { 449 unsigned NewParentScope = Scopes.size(); 450 Scopes.push_back(GotoScope(ParentScope, 451 diag::note_protected_by_seh_finally, 452 diag::note_exits_seh_finally, 453 Finally->getSourceRange().getBegin())); 454 BuildScopeInformation(Finally->getBlock(), NewParentScope); 455 } 456 457 return; 458 } 459 460 case Stmt::DeclStmtClass: { 461 // If this is a declstmt with a VLA definition, it defines a scope from here 462 // to the end of the containing context. 463 DeclStmt *DS = cast<DeclStmt>(S); 464 // The decl statement creates a scope if any of the decls in it are VLAs 465 // or have the cleanup attribute. 466 for (auto *I : DS->decls()) 467 BuildScopeInformation(I, origParentScope); 468 return; 469 } 470 471 case Stmt::StmtExprClass: { 472 // [GNU] 473 // Jumping into a statement expression with goto or using 474 // a switch statement outside the statement expression with 475 // a case or default label inside the statement expression is not permitted. 476 // Jumping out of a statement expression is permitted. 477 StmtExpr *SE = cast<StmtExpr>(S); 478 unsigned NewParentScope = Scopes.size(); 479 Scopes.push_back(GotoScope(ParentScope, 480 diag::note_enters_statement_expression, 481 /*OutDiag=*/0, SE->getBeginLoc())); 482 BuildScopeInformation(SE->getSubStmt(), NewParentScope); 483 return; 484 } 485 486 case Stmt::ObjCAtTryStmtClass: { 487 // Disallow jumps into any part of an @try statement by pushing a scope and 488 // walking all sub-stmts in that scope. 489 ObjCAtTryStmt *AT = cast<ObjCAtTryStmt>(S); 490 // Recursively walk the AST for the @try part. 491 { 492 unsigned NewParentScope = Scopes.size(); 493 Scopes.push_back(GotoScope(ParentScope, 494 diag::note_protected_by_objc_try, 495 diag::note_exits_objc_try, 496 AT->getAtTryLoc())); 497 if (Stmt *TryPart = AT->getTryBody()) 498 BuildScopeInformation(TryPart, NewParentScope); 499 } 500 501 // Jump from the catch to the finally or try is not valid. 502 for (ObjCAtCatchStmt *AC : AT->catch_stmts()) { 503 unsigned NewParentScope = Scopes.size(); 504 Scopes.push_back(GotoScope(ParentScope, 505 diag::note_protected_by_objc_catch, 506 diag::note_exits_objc_catch, 507 AC->getAtCatchLoc())); 508 // @catches are nested and it isn't 509 BuildScopeInformation(AC->getCatchBody(), NewParentScope); 510 } 511 512 // Jump from the finally to the try or catch is not valid. 513 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { 514 unsigned NewParentScope = Scopes.size(); 515 Scopes.push_back(GotoScope(ParentScope, 516 diag::note_protected_by_objc_finally, 517 diag::note_exits_objc_finally, 518 AF->getAtFinallyLoc())); 519 BuildScopeInformation(AF, NewParentScope); 520 } 521 522 return; 523 } 524 525 case Stmt::ObjCAtSynchronizedStmtClass: { 526 // Disallow jumps into the protected statement of an @synchronized, but 527 // allow jumps into the object expression it protects. 528 ObjCAtSynchronizedStmt *AS = cast<ObjCAtSynchronizedStmt>(S); 529 // Recursively walk the AST for the @synchronized object expr, it is 530 // evaluated in the normal scope. 531 BuildScopeInformation(AS->getSynchExpr(), ParentScope); 532 533 // Recursively walk the AST for the @synchronized part, protected by a new 534 // scope. 535 unsigned NewParentScope = Scopes.size(); 536 Scopes.push_back(GotoScope(ParentScope, 537 diag::note_protected_by_objc_synchronized, 538 diag::note_exits_objc_synchronized, 539 AS->getAtSynchronizedLoc())); 540 BuildScopeInformation(AS->getSynchBody(), NewParentScope); 541 return; 542 } 543 544 case Stmt::ObjCAutoreleasePoolStmtClass: { 545 // Disallow jumps into the protected statement of an @autoreleasepool. 546 ObjCAutoreleasePoolStmt *AS = cast<ObjCAutoreleasePoolStmt>(S); 547 // Recursively walk the AST for the @autoreleasepool part, protected by a 548 // new scope. 549 unsigned NewParentScope = Scopes.size(); 550 Scopes.push_back(GotoScope(ParentScope, 551 diag::note_protected_by_objc_autoreleasepool, 552 diag::note_exits_objc_autoreleasepool, 553 AS->getAtLoc())); 554 BuildScopeInformation(AS->getSubStmt(), NewParentScope); 555 return; 556 } 557 558 case Stmt::ExprWithCleanupsClass: { 559 // Disallow jumps past full-expressions that use blocks with 560 // non-trivial cleanups of their captures. This is theoretically 561 // implementable but a lot of work which we haven't felt up to doing. 562 ExprWithCleanups *EWC = cast<ExprWithCleanups>(S); 563 for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) { 564 if (auto *BDecl = EWC->getObject(i).dyn_cast<BlockDecl *>()) 565 for (const auto &CI : BDecl->captures()) { 566 VarDecl *variable = CI.getVariable(); 567 BuildScopeInformation(variable, BDecl, origParentScope); 568 } 569 else if (auto *CLE = EWC->getObject(i).dyn_cast<CompoundLiteralExpr *>()) 570 BuildScopeInformation(CLE, origParentScope); 571 else 572 llvm_unreachable("unexpected cleanup object type"); 573 } 574 break; 575 } 576 577 case Stmt::MaterializeTemporaryExprClass: { 578 // Disallow jumps out of scopes containing temporaries lifetime-extended to 579 // automatic storage duration. 580 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S); 581 if (MTE->getStorageDuration() == SD_Automatic) { 582 const Expr *ExtendedObject = 583 MTE->getSubExpr()->skipRValueSubobjectAdjustments(); 584 if (ExtendedObject->getType().isDestructedType()) { 585 Scopes.push_back(GotoScope(ParentScope, 0, 586 diag::note_exits_temporary_dtor, 587 ExtendedObject->getExprLoc())); 588 origParentScope = Scopes.size()-1; 589 } 590 } 591 break; 592 } 593 594 case Stmt::CaseStmtClass: 595 case Stmt::DefaultStmtClass: 596 case Stmt::LabelStmtClass: 597 LabelAndGotoScopes[S] = ParentScope; 598 break; 599 600 case Stmt::AttributedStmtClass: { 601 AttributedStmt *AS = cast<AttributedStmt>(S); 602 if (GetMustTailAttr(AS)) { 603 LabelAndGotoScopes[AS] = ParentScope; 604 MustTailStmts.push_back(AS); 605 } 606 break; 607 } 608 609 case Stmt::OpenACCComputeConstructClass: { 610 unsigned NewParentScope = Scopes.size(); 611 OpenACCComputeConstruct *CC = cast<OpenACCComputeConstruct>(S); 612 Scopes.push_back(GotoScope( 613 ParentScope, diag::note_acc_branch_into_compute_construct, 614 diag::note_acc_branch_out_of_compute_construct, CC->getBeginLoc())); 615 BuildScopeInformation(CC->getStructuredBlock(), NewParentScope); 616 return; 617 } 618 619 default: 620 if (auto *ED = dyn_cast<OMPExecutableDirective>(S)) { 621 if (!ED->isStandaloneDirective()) { 622 unsigned NewParentScope = Scopes.size(); 623 Scopes.emplace_back(ParentScope, 624 diag::note_omp_protected_structured_block, 625 diag::note_omp_exits_structured_block, 626 ED->getStructuredBlock()->getBeginLoc()); 627 BuildScopeInformation(ED->getStructuredBlock(), NewParentScope); 628 return; 629 } 630 } 631 break; 632 } 633 634 for (Stmt *SubStmt : S->children()) { 635 if (!SubStmt) 636 continue; 637 if (StmtsToSkip) { 638 --StmtsToSkip; 639 continue; 640 } 641 642 // Cases, labels, and defaults aren't "scope parents". It's also 643 // important to handle these iteratively instead of recursively in 644 // order to avoid blowing out the stack. 645 while (true) { 646 Stmt *Next; 647 if (SwitchCase *SC = dyn_cast<SwitchCase>(SubStmt)) 648 Next = SC->getSubStmt(); 649 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt)) 650 Next = LS->getSubStmt(); 651 else 652 break; 653 654 LabelAndGotoScopes[SubStmt] = ParentScope; 655 SubStmt = Next; 656 } 657 658 // Recursively walk the AST. 659 BuildScopeInformation(SubStmt, ParentScope); 660 } 661 } 662 663 /// VerifyJumps - Verify each element of the Jumps array to see if they are 664 /// valid, emitting diagnostics if not. 665 void JumpScopeChecker::VerifyJumps() { 666 while (!Jumps.empty()) { 667 Stmt *Jump = Jumps.pop_back_val(); 668 669 // With a goto, 670 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { 671 // The label may not have a statement if it's coming from inline MS ASM. 672 if (GS->getLabel()->getStmt()) { 673 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(), 674 diag::err_goto_into_protected_scope, 675 diag::ext_goto_into_protected_scope, 676 diag::warn_cxx98_compat_goto_into_protected_scope); 677 } 678 CheckGotoStmt(GS); 679 continue; 680 } 681 682 // If an asm goto jumps to a different scope, things like destructors or 683 // initializers might not be run which may be suprising to users. Perhaps 684 // this behavior can be changed in the future, but today Clang will not 685 // generate such code. Produce a diagnostic instead. See also the 686 // discussion here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110728. 687 if (auto *G = dyn_cast<GCCAsmStmt>(Jump)) { 688 for (AddrLabelExpr *L : G->labels()) { 689 LabelDecl *LD = L->getLabel(); 690 unsigned JumpScope = LabelAndGotoScopes[G]; 691 unsigned TargetScope = LabelAndGotoScopes[LD->getStmt()]; 692 if (JumpScope != TargetScope) 693 DiagnoseIndirectOrAsmJump(G, JumpScope, LD, TargetScope); 694 } 695 continue; 696 } 697 698 // We only get indirect gotos here when they have a constant target. 699 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) { 700 LabelDecl *Target = IGS->getConstantTarget(); 701 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(), 702 diag::err_goto_into_protected_scope, 703 diag::ext_goto_into_protected_scope, 704 diag::warn_cxx98_compat_goto_into_protected_scope); 705 continue; 706 } 707 708 SwitchStmt *SS = cast<SwitchStmt>(Jump); 709 for (SwitchCase *SC = SS->getSwitchCaseList(); SC; 710 SC = SC->getNextSwitchCase()) { 711 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC))) 712 continue; 713 SourceLocation Loc; 714 if (CaseStmt *CS = dyn_cast<CaseStmt>(SC)) 715 Loc = CS->getBeginLoc(); 716 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) 717 Loc = DS->getBeginLoc(); 718 else 719 Loc = SC->getBeginLoc(); 720 CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0, 721 diag::warn_cxx98_compat_switch_into_protected_scope); 722 } 723 } 724 } 725 726 /// VerifyIndirectJumps - Verify whether any possible indirect goto jump might 727 /// cross a protection boundary. Unlike direct jumps, indirect goto jumps 728 /// count cleanups as protection boundaries: since there's no way to know where 729 /// the jump is going, we can't implicitly run the right cleanups the way we 730 /// can with direct jumps. Thus, an indirect/asm jump is "trivial" if it 731 /// bypasses no initializations and no teardowns. More formally, an 732 /// indirect/asm jump from A to B is trivial if the path out from A to DCA(A,B) 733 /// is trivial and the path in from DCA(A,B) to B is trivial, where DCA(A,B) is 734 /// the deepest common ancestor of A and B. Jump-triviality is transitive but 735 /// asymmetric. 736 /// 737 /// A path in is trivial if none of the entered scopes have an InDiag. 738 /// A path out is trivial is none of the exited scopes have an OutDiag. 739 /// 740 /// Under these definitions, this function checks that the indirect 741 /// jump between A and B is trivial for every indirect goto statement A 742 /// and every label B whose address was taken in the function. 743 void JumpScopeChecker::VerifyIndirectJumps() { 744 if (IndirectJumps.empty()) 745 return; 746 // If there aren't any address-of-label expressions in this function, 747 // complain about the first indirect goto. 748 if (IndirectJumpTargets.empty()) { 749 S.Diag(IndirectJumps[0]->getBeginLoc(), 750 diag::err_indirect_goto_without_addrlabel); 751 return; 752 } 753 // Collect a single representative of every scope containing an indirect 754 // goto. For most code bases, this substantially cuts down on the number of 755 // jump sites we'll have to consider later. 756 using JumpScope = std::pair<unsigned, Stmt *>; 757 SmallVector<JumpScope, 32> JumpScopes; 758 { 759 llvm::DenseMap<unsigned, Stmt*> JumpScopesMap; 760 for (Stmt *IG : IndirectJumps) { 761 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG))) 762 continue; 763 unsigned IGScope = LabelAndGotoScopes[IG]; 764 if (!JumpScopesMap.contains(IGScope)) 765 JumpScopesMap[IGScope] = IG; 766 } 767 JumpScopes.reserve(JumpScopesMap.size()); 768 for (auto &Pair : JumpScopesMap) 769 JumpScopes.emplace_back(Pair); 770 } 771 772 // Collect a single representative of every scope containing a 773 // label whose address was taken somewhere in the function. 774 // For most code bases, there will be only one such scope. 775 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes; 776 for (LabelDecl *TheLabel : IndirectJumpTargets) { 777 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt()))) 778 continue; 779 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()]; 780 if (!TargetScopes.contains(LabelScope)) 781 TargetScopes[LabelScope] = TheLabel; 782 } 783 784 // For each target scope, make sure it's trivially reachable from 785 // every scope containing a jump site. 786 // 787 // A path between scopes always consists of exitting zero or more 788 // scopes, then entering zero or more scopes. We build a set of 789 // of scopes S from which the target scope can be trivially 790 // entered, then verify that every jump scope can be trivially 791 // exitted to reach a scope in S. 792 llvm::BitVector Reachable(Scopes.size(), false); 793 for (auto [TargetScope, TargetLabel] : TargetScopes) { 794 Reachable.reset(); 795 796 // Mark all the enclosing scopes from which you can safely jump 797 // into the target scope. 'Min' will end up being the index of 798 // the shallowest such scope. 799 unsigned Min = TargetScope; 800 while (true) { 801 Reachable.set(Min); 802 803 // Don't go beyond the outermost scope. 804 if (Min == 0) break; 805 806 // Stop if we can't trivially enter the current scope. 807 if (Scopes[Min].InDiag) break; 808 809 Min = Scopes[Min].ParentScope; 810 } 811 812 // Walk through all the jump sites, checking that they can trivially 813 // reach this label scope. 814 for (auto [JumpScope, JumpStmt] : JumpScopes) { 815 unsigned Scope = JumpScope; 816 // Walk out the "scope chain" for this scope, looking for a scope 817 // we've marked reachable. For well-formed code this amortizes 818 // to O(JumpScopes.size() / Scopes.size()): we only iterate 819 // when we see something unmarked, and in well-formed code we 820 // mark everything we iterate past. 821 bool IsReachable = false; 822 while (true) { 823 if (Reachable.test(Scope)) { 824 // If we find something reachable, mark all the scopes we just 825 // walked through as reachable. 826 for (unsigned S = JumpScope; S != Scope; S = Scopes[S].ParentScope) 827 Reachable.set(S); 828 IsReachable = true; 829 break; 830 } 831 832 // Don't walk out if we've reached the top-level scope or we've 833 // gotten shallower than the shallowest reachable scope. 834 if (Scope == 0 || Scope < Min) break; 835 836 // Don't walk out through an out-diagnostic. 837 if (Scopes[Scope].OutDiag) break; 838 839 Scope = Scopes[Scope].ParentScope; 840 } 841 842 // Only diagnose if we didn't find something. 843 if (IsReachable) continue; 844 845 DiagnoseIndirectOrAsmJump(JumpStmt, JumpScope, TargetLabel, TargetScope); 846 } 847 } 848 } 849 850 /// Return true if a particular error+note combination must be downgraded to a 851 /// warning in Microsoft mode. 852 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) { 853 return (JumpDiag == diag::err_goto_into_protected_scope && 854 (InDiagNote == diag::note_protected_by_variable_init || 855 InDiagNote == diag::note_protected_by_variable_nontriv_destructor)); 856 } 857 858 /// Return true if a particular note should be downgraded to a compatibility 859 /// warning in C++11 mode. 860 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) { 861 return S.getLangOpts().CPlusPlus11 && 862 InDiagNote == diag::note_protected_by_variable_non_pod; 863 } 864 865 /// Produce primary diagnostic for an indirect jump statement. 866 static void DiagnoseIndirectOrAsmJumpStmt(Sema &S, Stmt *Jump, 867 LabelDecl *Target, bool &Diagnosed) { 868 if (Diagnosed) 869 return; 870 bool IsAsmGoto = isa<GCCAsmStmt>(Jump); 871 S.Diag(Jump->getBeginLoc(), diag::err_indirect_goto_in_protected_scope) 872 << IsAsmGoto; 873 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target) 874 << IsAsmGoto; 875 Diagnosed = true; 876 } 877 878 /// Produce note diagnostics for a jump into a protected scope. 879 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) { 880 if (CHECK_PERMISSIVE(ToScopes.empty())) 881 return; 882 for (unsigned I = 0, E = ToScopes.size(); I != E; ++I) 883 if (Scopes[ToScopes[I]].InDiag) 884 S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag); 885 } 886 887 /// Diagnose an indirect jump which is known to cross scopes. 888 void JumpScopeChecker::DiagnoseIndirectOrAsmJump(Stmt *Jump, unsigned JumpScope, 889 LabelDecl *Target, 890 unsigned TargetScope) { 891 if (CHECK_PERMISSIVE(JumpScope == TargetScope)) 892 return; 893 894 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); 895 bool Diagnosed = false; 896 897 // Walk out the scope chain until we reach the common ancestor. 898 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) 899 if (Scopes[I].OutDiag) { 900 DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed); 901 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 902 } 903 904 SmallVector<unsigned, 10> ToScopesCXX98Compat; 905 906 // Now walk into the scopes containing the label whose address was taken. 907 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) 908 if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 909 ToScopesCXX98Compat.push_back(I); 910 else if (Scopes[I].InDiag) { 911 DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed); 912 S.Diag(Scopes[I].Loc, Scopes[I].InDiag); 913 } 914 915 // Diagnose this jump if it would be ill-formed in C++98. 916 if (!Diagnosed && !ToScopesCXX98Compat.empty()) { 917 bool IsAsmGoto = isa<GCCAsmStmt>(Jump); 918 S.Diag(Jump->getBeginLoc(), 919 diag::warn_cxx98_compat_indirect_goto_in_protected_scope) 920 << IsAsmGoto; 921 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target) 922 << IsAsmGoto; 923 NoteJumpIntoScopes(ToScopesCXX98Compat); 924 } 925 } 926 927 /// CheckJump - Validate that the specified jump statement is valid: that it is 928 /// jumping within or out of its current scope, not into a deeper one. 929 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 930 unsigned JumpDiagError, unsigned JumpDiagWarning, 931 unsigned JumpDiagCXX98Compat) { 932 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From))) 933 return; 934 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To))) 935 return; 936 937 unsigned FromScope = LabelAndGotoScopes[From]; 938 unsigned ToScope = LabelAndGotoScopes[To]; 939 940 // Common case: exactly the same scope, which is fine. 941 if (FromScope == ToScope) return; 942 943 // Warn on gotos out of __finally blocks. 944 if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) { 945 // If FromScope > ToScope, FromScope is more nested and the jump goes to a 946 // less nested scope. Check if it crosses a __finally along the way. 947 for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) { 948 if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) { 949 S.Diag(From->getBeginLoc(), diag::warn_jump_out_of_seh_finally); 950 break; 951 } else if (Scopes[I].InDiag == 952 diag::note_omp_protected_structured_block) { 953 S.Diag(From->getBeginLoc(), diag::err_goto_into_protected_scope); 954 S.Diag(To->getBeginLoc(), diag::note_omp_exits_structured_block); 955 break; 956 } else if (Scopes[I].InDiag == 957 diag::note_acc_branch_into_compute_construct) { 958 S.Diag(From->getBeginLoc(), diag::err_goto_into_protected_scope); 959 S.Diag(Scopes[I].Loc, diag::note_acc_branch_out_of_compute_construct); 960 return; 961 } 962 } 963 } 964 965 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); 966 967 // It's okay to jump out from a nested scope. 968 if (CommonScope == ToScope) return; 969 970 // Pull out (and reverse) any scopes we might need to diagnose skipping. 971 SmallVector<unsigned, 10> ToScopesCXX98Compat; 972 SmallVector<unsigned, 10> ToScopesError; 973 SmallVector<unsigned, 10> ToScopesWarning; 974 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) { 975 if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 && 976 IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag)) 977 ToScopesWarning.push_back(I); 978 else if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 979 ToScopesCXX98Compat.push_back(I); 980 else if (Scopes[I].InDiag) 981 ToScopesError.push_back(I); 982 } 983 984 // Handle warnings. 985 if (!ToScopesWarning.empty()) { 986 S.Diag(DiagLoc, JumpDiagWarning); 987 NoteJumpIntoScopes(ToScopesWarning); 988 assert(isa<LabelStmt>(To)); 989 LabelStmt *Label = cast<LabelStmt>(To); 990 Label->setSideEntry(true); 991 } 992 993 // Handle errors. 994 if (!ToScopesError.empty()) { 995 S.Diag(DiagLoc, JumpDiagError); 996 NoteJumpIntoScopes(ToScopesError); 997 } 998 999 // Handle -Wc++98-compat warnings if the jump is well-formed. 1000 if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) { 1001 S.Diag(DiagLoc, JumpDiagCXX98Compat); 1002 NoteJumpIntoScopes(ToScopesCXX98Compat); 1003 } 1004 } 1005 1006 void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) { 1007 if (GS->getLabel()->isMSAsmLabel()) { 1008 S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label) 1009 << GS->getLabel()->getIdentifier(); 1010 S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label) 1011 << GS->getLabel()->getIdentifier(); 1012 } 1013 } 1014 1015 void JumpScopeChecker::VerifyMustTailStmts() { 1016 for (AttributedStmt *AS : MustTailStmts) { 1017 for (unsigned I = LabelAndGotoScopes[AS]; I; I = Scopes[I].ParentScope) { 1018 if (Scopes[I].OutDiag) { 1019 S.Diag(AS->getBeginLoc(), diag::err_musttail_scope); 1020 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 1021 } 1022 } 1023 } 1024 } 1025 1026 const Attr *JumpScopeChecker::GetMustTailAttr(AttributedStmt *AS) { 1027 ArrayRef<const Attr *> Attrs = AS->getAttrs(); 1028 const auto *Iter = 1029 llvm::find_if(Attrs, [](const Attr *A) { return isa<MustTailAttr>(A); }); 1030 return Iter != Attrs.end() ? *Iter : nullptr; 1031 } 1032 1033 void Sema::DiagnoseInvalidJumps(Stmt *Body) { 1034 (void)JumpScopeChecker(Body, *this); 1035 } 1036