1 //===--- JumpDiagnostics.cpp - Protected scope jump analysis ------*- C++ -*-=// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the JumpScopeChecker class, which is used to diagnose 10 // jumps that enter a protected scope in an invalid way. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/DeclCXX.h" 15 #include "clang/AST/Expr.h" 16 #include "clang/AST/ExprCXX.h" 17 #include "clang/AST/StmtCXX.h" 18 #include "clang/AST/StmtObjC.h" 19 #include "clang/AST/StmtOpenMP.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Sema/SemaInternal.h" 22 #include "llvm/ADT/BitVector.h" 23 using namespace clang; 24 25 namespace { 26 27 /// JumpScopeChecker - This object is used by Sema to diagnose invalid jumps 28 /// into VLA and other protected scopes. For example, this rejects: 29 /// goto L; 30 /// int a[n]; 31 /// L: 32 /// 33 /// We also detect jumps out of protected scopes when it's not possible to do 34 /// cleanups properly. Indirect jumps and ASM jumps can't do cleanups because 35 /// the target is unknown. Return statements with \c [[clang::musttail]] cannot 36 /// handle any cleanups due to the nature of a tail call. 37 class JumpScopeChecker { 38 Sema &S; 39 40 /// Permissive - True when recovering from errors, in which case precautions 41 /// are taken to handle incomplete scope information. 42 const bool Permissive; 43 44 /// GotoScope - This is a record that we use to keep track of all of the 45 /// scopes that are introduced by VLAs and other things that scope jumps like 46 /// gotos. This scope tree has nothing to do with the source scope tree, 47 /// because you can have multiple VLA scopes per compound statement, and most 48 /// compound statements don't introduce any scopes. 49 struct GotoScope { 50 /// ParentScope - The index in ScopeMap of the parent scope. This is 0 for 51 /// the parent scope is the function body. 52 unsigned ParentScope; 53 54 /// InDiag - The note to emit if there is a jump into this scope. 55 unsigned InDiag; 56 57 /// OutDiag - The note to emit if there is an indirect jump out 58 /// of this scope. Direct jumps always clean up their current scope 59 /// in an orderly way. 60 unsigned OutDiag; 61 62 /// Loc - Location to emit the diagnostic. 63 SourceLocation Loc; 64 65 GotoScope(unsigned parentScope, unsigned InDiag, unsigned OutDiag, 66 SourceLocation L) 67 : ParentScope(parentScope), InDiag(InDiag), OutDiag(OutDiag), Loc(L) {} 68 }; 69 70 SmallVector<GotoScope, 48> Scopes; 71 llvm::DenseMap<Stmt*, unsigned> LabelAndGotoScopes; 72 SmallVector<Stmt*, 16> Jumps; 73 74 SmallVector<Stmt*, 4> IndirectJumps; 75 SmallVector<Stmt*, 4> AsmJumps; 76 SmallVector<AttributedStmt *, 4> MustTailStmts; 77 SmallVector<LabelDecl*, 4> IndirectJumpTargets; 78 SmallVector<LabelDecl*, 4> AsmJumpTargets; 79 public: 80 JumpScopeChecker(Stmt *Body, Sema &S); 81 private: 82 void BuildScopeInformation(Decl *D, unsigned &ParentScope); 83 void BuildScopeInformation(VarDecl *D, const BlockDecl *BDecl, 84 unsigned &ParentScope); 85 void BuildScopeInformation(CompoundLiteralExpr *CLE, unsigned &ParentScope); 86 void BuildScopeInformation(Stmt *S, unsigned &origParentScope); 87 88 void VerifyJumps(); 89 void VerifyIndirectOrAsmJumps(bool IsAsmGoto); 90 void VerifyMustTailStmts(); 91 void NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes); 92 void DiagnoseIndirectOrAsmJump(Stmt *IG, unsigned IGScope, LabelDecl *Target, 93 unsigned TargetScope); 94 void CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 95 unsigned JumpDiag, unsigned JumpDiagWarning, 96 unsigned JumpDiagCXX98Compat); 97 void CheckGotoStmt(GotoStmt *GS); 98 const Attr *GetMustTailAttr(AttributedStmt *AS); 99 100 unsigned GetDeepestCommonScope(unsigned A, unsigned B); 101 }; 102 } // end anonymous namespace 103 104 #define CHECK_PERMISSIVE(x) (assert(Permissive || !(x)), (Permissive && (x))) 105 106 JumpScopeChecker::JumpScopeChecker(Stmt *Body, Sema &s) 107 : S(s), Permissive(s.hasAnyUnrecoverableErrorsInThisFunction()) { 108 // Add a scope entry for function scope. 109 Scopes.push_back(GotoScope(~0U, ~0U, ~0U, SourceLocation())); 110 111 // Build information for the top level compound statement, so that we have a 112 // defined scope record for every "goto" and label. 113 unsigned BodyParentScope = 0; 114 BuildScopeInformation(Body, BodyParentScope); 115 116 // Check that all jumps we saw are kosher. 117 VerifyJumps(); 118 VerifyIndirectOrAsmJumps(false); 119 VerifyIndirectOrAsmJumps(true); 120 VerifyMustTailStmts(); 121 } 122 123 /// GetDeepestCommonScope - Finds the innermost scope enclosing the 124 /// two scopes. 125 unsigned JumpScopeChecker::GetDeepestCommonScope(unsigned A, unsigned B) { 126 while (A != B) { 127 // Inner scopes are created after outer scopes and therefore have 128 // higher indices. 129 if (A < B) { 130 assert(Scopes[B].ParentScope < B); 131 B = Scopes[B].ParentScope; 132 } else { 133 assert(Scopes[A].ParentScope < A); 134 A = Scopes[A].ParentScope; 135 } 136 } 137 return A; 138 } 139 140 typedef std::pair<unsigned,unsigned> ScopePair; 141 142 /// GetDiagForGotoScopeDecl - If this decl induces a new goto scope, return a 143 /// diagnostic that should be emitted if control goes over it. If not, return 0. 144 static ScopePair GetDiagForGotoScopeDecl(Sema &S, const Decl *D) { 145 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 146 unsigned InDiag = 0; 147 unsigned OutDiag = 0; 148 149 if (VD->getType()->isVariablyModifiedType()) 150 InDiag = diag::note_protected_by_vla; 151 152 if (VD->hasAttr<BlocksAttr>()) 153 return ScopePair(diag::note_protected_by___block, 154 diag::note_exits___block); 155 156 if (VD->hasAttr<CleanupAttr>()) 157 return ScopePair(diag::note_protected_by_cleanup, 158 diag::note_exits_cleanup); 159 160 if (VD->hasLocalStorage()) { 161 switch (VD->getType().isDestructedType()) { 162 case QualType::DK_objc_strong_lifetime: 163 return ScopePair(diag::note_protected_by_objc_strong_init, 164 diag::note_exits_objc_strong); 165 166 case QualType::DK_objc_weak_lifetime: 167 return ScopePair(diag::note_protected_by_objc_weak_init, 168 diag::note_exits_objc_weak); 169 170 case QualType::DK_nontrivial_c_struct: 171 return ScopePair(diag::note_protected_by_non_trivial_c_struct_init, 172 diag::note_exits_dtor); 173 174 case QualType::DK_cxx_destructor: 175 OutDiag = diag::note_exits_dtor; 176 break; 177 178 case QualType::DK_none: 179 break; 180 } 181 } 182 183 const Expr *Init = VD->getInit(); 184 if (S.Context.getLangOpts().CPlusPlus && VD->hasLocalStorage() && Init) { 185 // C++11 [stmt.dcl]p3: 186 // A program that jumps from a point where a variable with automatic 187 // storage duration is not in scope to a point where it is in scope 188 // is ill-formed unless the variable has scalar type, class type with 189 // a trivial default constructor and a trivial destructor, a 190 // cv-qualified version of one of these types, or an array of one of 191 // the preceding types and is declared without an initializer. 192 193 // C++03 [stmt.dcl.p3: 194 // A program that jumps from a point where a local variable 195 // with automatic storage duration is not in scope to a point 196 // where it is in scope is ill-formed unless the variable has 197 // POD type and is declared without an initializer. 198 199 InDiag = diag::note_protected_by_variable_init; 200 201 // For a variable of (array of) class type declared without an 202 // initializer, we will have call-style initialization and the initializer 203 // will be the CXXConstructExpr with no intervening nodes. 204 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { 205 const CXXConstructorDecl *Ctor = CCE->getConstructor(); 206 if (Ctor->isTrivial() && Ctor->isDefaultConstructor() && 207 VD->getInitStyle() == VarDecl::CallInit) { 208 if (OutDiag) 209 InDiag = diag::note_protected_by_variable_nontriv_destructor; 210 else if (!Ctor->getParent()->isPOD()) 211 InDiag = diag::note_protected_by_variable_non_pod; 212 else 213 InDiag = 0; 214 } 215 } 216 } 217 218 return ScopePair(InDiag, OutDiag); 219 } 220 221 if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) { 222 if (TD->getUnderlyingType()->isVariablyModifiedType()) 223 return ScopePair(isa<TypedefDecl>(TD) 224 ? diag::note_protected_by_vla_typedef 225 : diag::note_protected_by_vla_type_alias, 226 0); 227 } 228 229 return ScopePair(0U, 0U); 230 } 231 232 /// Build scope information for a declaration that is part of a DeclStmt. 233 void JumpScopeChecker::BuildScopeInformation(Decl *D, unsigned &ParentScope) { 234 // If this decl causes a new scope, push and switch to it. 235 std::pair<unsigned,unsigned> Diags = GetDiagForGotoScopeDecl(S, D); 236 if (Diags.first || Diags.second) { 237 Scopes.push_back(GotoScope(ParentScope, Diags.first, Diags.second, 238 D->getLocation())); 239 ParentScope = Scopes.size()-1; 240 } 241 242 // If the decl has an initializer, walk it with the potentially new 243 // scope we just installed. 244 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 245 if (Expr *Init = VD->getInit()) 246 BuildScopeInformation(Init, ParentScope); 247 } 248 249 /// Build scope information for a captured block literal variables. 250 void JumpScopeChecker::BuildScopeInformation(VarDecl *D, 251 const BlockDecl *BDecl, 252 unsigned &ParentScope) { 253 // exclude captured __block variables; there's no destructor 254 // associated with the block literal for them. 255 if (D->hasAttr<BlocksAttr>()) 256 return; 257 QualType T = D->getType(); 258 QualType::DestructionKind destructKind = T.isDestructedType(); 259 if (destructKind != QualType::DK_none) { 260 std::pair<unsigned,unsigned> Diags; 261 switch (destructKind) { 262 case QualType::DK_cxx_destructor: 263 Diags = ScopePair(diag::note_enters_block_captures_cxx_obj, 264 diag::note_exits_block_captures_cxx_obj); 265 break; 266 case QualType::DK_objc_strong_lifetime: 267 Diags = ScopePair(diag::note_enters_block_captures_strong, 268 diag::note_exits_block_captures_strong); 269 break; 270 case QualType::DK_objc_weak_lifetime: 271 Diags = ScopePair(diag::note_enters_block_captures_weak, 272 diag::note_exits_block_captures_weak); 273 break; 274 case QualType::DK_nontrivial_c_struct: 275 Diags = ScopePair(diag::note_enters_block_captures_non_trivial_c_struct, 276 diag::note_exits_block_captures_non_trivial_c_struct); 277 break; 278 case QualType::DK_none: 279 llvm_unreachable("non-lifetime captured variable"); 280 } 281 SourceLocation Loc = D->getLocation(); 282 if (Loc.isInvalid()) 283 Loc = BDecl->getLocation(); 284 Scopes.push_back(GotoScope(ParentScope, 285 Diags.first, Diags.second, Loc)); 286 ParentScope = Scopes.size()-1; 287 } 288 } 289 290 /// Build scope information for compound literals of C struct types that are 291 /// non-trivial to destruct. 292 void JumpScopeChecker::BuildScopeInformation(CompoundLiteralExpr *CLE, 293 unsigned &ParentScope) { 294 unsigned InDiag = diag::note_enters_compound_literal_scope; 295 unsigned OutDiag = diag::note_exits_compound_literal_scope; 296 Scopes.push_back(GotoScope(ParentScope, InDiag, OutDiag, CLE->getExprLoc())); 297 ParentScope = Scopes.size() - 1; 298 } 299 300 /// BuildScopeInformation - The statements from CI to CE are known to form a 301 /// coherent VLA scope with a specified parent node. Walk through the 302 /// statements, adding any labels or gotos to LabelAndGotoScopes and recursively 303 /// walking the AST as needed. 304 void JumpScopeChecker::BuildScopeInformation(Stmt *S, 305 unsigned &origParentScope) { 306 // If this is a statement, rather than an expression, scopes within it don't 307 // propagate out into the enclosing scope. Otherwise we have to worry 308 // about block literals, which have the lifetime of their enclosing statement. 309 unsigned independentParentScope = origParentScope; 310 unsigned &ParentScope = ((isa<Expr>(S) && !isa<StmtExpr>(S)) 311 ? origParentScope : independentParentScope); 312 313 unsigned StmtsToSkip = 0u; 314 315 // If we found a label, remember that it is in ParentScope scope. 316 switch (S->getStmtClass()) { 317 case Stmt::AddrLabelExprClass: 318 IndirectJumpTargets.push_back(cast<AddrLabelExpr>(S)->getLabel()); 319 break; 320 321 case Stmt::ObjCForCollectionStmtClass: { 322 auto *CS = cast<ObjCForCollectionStmt>(S); 323 unsigned Diag = diag::note_protected_by_objc_fast_enumeration; 324 unsigned NewParentScope = Scopes.size(); 325 Scopes.push_back(GotoScope(ParentScope, Diag, 0, S->getBeginLoc())); 326 BuildScopeInformation(CS->getBody(), NewParentScope); 327 return; 328 } 329 330 case Stmt::IndirectGotoStmtClass: 331 // "goto *&&lbl;" is a special case which we treat as equivalent 332 // to a normal goto. In addition, we don't calculate scope in the 333 // operand (to avoid recording the address-of-label use), which 334 // works only because of the restricted set of expressions which 335 // we detect as constant targets. 336 if (cast<IndirectGotoStmt>(S)->getConstantTarget()) { 337 LabelAndGotoScopes[S] = ParentScope; 338 Jumps.push_back(S); 339 return; 340 } 341 342 LabelAndGotoScopes[S] = ParentScope; 343 IndirectJumps.push_back(S); 344 break; 345 346 case Stmt::SwitchStmtClass: 347 // Evaluate the C++17 init stmt and condition variable 348 // before entering the scope of the switch statement. 349 if (Stmt *Init = cast<SwitchStmt>(S)->getInit()) { 350 BuildScopeInformation(Init, ParentScope); 351 ++StmtsToSkip; 352 } 353 if (VarDecl *Var = cast<SwitchStmt>(S)->getConditionVariable()) { 354 BuildScopeInformation(Var, ParentScope); 355 ++StmtsToSkip; 356 } 357 LLVM_FALLTHROUGH; 358 359 case Stmt::GotoStmtClass: 360 // Remember both what scope a goto is in as well as the fact that we have 361 // it. This makes the second scan not have to walk the AST again. 362 LabelAndGotoScopes[S] = ParentScope; 363 Jumps.push_back(S); 364 break; 365 366 case Stmt::GCCAsmStmtClass: 367 if (auto *GS = dyn_cast<GCCAsmStmt>(S)) 368 if (GS->isAsmGoto()) { 369 // Remember both what scope a goto is in as well as the fact that we 370 // have it. This makes the second scan not have to walk the AST again. 371 LabelAndGotoScopes[S] = ParentScope; 372 AsmJumps.push_back(GS); 373 for (auto *E : GS->labels()) 374 AsmJumpTargets.push_back(E->getLabel()); 375 } 376 break; 377 378 case Stmt::IfStmtClass: { 379 IfStmt *IS = cast<IfStmt>(S); 380 if (!(IS->isConstexpr() || IS->isObjCAvailabilityCheck())) 381 break; 382 383 unsigned Diag = IS->isConstexpr() ? diag::note_protected_by_constexpr_if 384 : diag::note_protected_by_if_available; 385 386 if (VarDecl *Var = IS->getConditionVariable()) 387 BuildScopeInformation(Var, ParentScope); 388 389 // Cannot jump into the middle of the condition. 390 unsigned NewParentScope = Scopes.size(); 391 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 392 BuildScopeInformation(IS->getCond(), NewParentScope); 393 394 // Jumps into either arm of an 'if constexpr' are not allowed. 395 NewParentScope = Scopes.size(); 396 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 397 BuildScopeInformation(IS->getThen(), NewParentScope); 398 if (Stmt *Else = IS->getElse()) { 399 NewParentScope = Scopes.size(); 400 Scopes.push_back(GotoScope(ParentScope, Diag, 0, IS->getBeginLoc())); 401 BuildScopeInformation(Else, NewParentScope); 402 } 403 return; 404 } 405 406 case Stmt::CXXTryStmtClass: { 407 CXXTryStmt *TS = cast<CXXTryStmt>(S); 408 { 409 unsigned NewParentScope = Scopes.size(); 410 Scopes.push_back(GotoScope(ParentScope, 411 diag::note_protected_by_cxx_try, 412 diag::note_exits_cxx_try, 413 TS->getSourceRange().getBegin())); 414 if (Stmt *TryBlock = TS->getTryBlock()) 415 BuildScopeInformation(TryBlock, NewParentScope); 416 } 417 418 // Jump from the catch into the try is not allowed either. 419 for (unsigned I = 0, E = TS->getNumHandlers(); I != E; ++I) { 420 CXXCatchStmt *CS = TS->getHandler(I); 421 unsigned NewParentScope = Scopes.size(); 422 Scopes.push_back(GotoScope(ParentScope, 423 diag::note_protected_by_cxx_catch, 424 diag::note_exits_cxx_catch, 425 CS->getSourceRange().getBegin())); 426 BuildScopeInformation(CS->getHandlerBlock(), NewParentScope); 427 } 428 return; 429 } 430 431 case Stmt::SEHTryStmtClass: { 432 SEHTryStmt *TS = cast<SEHTryStmt>(S); 433 { 434 unsigned NewParentScope = Scopes.size(); 435 Scopes.push_back(GotoScope(ParentScope, 436 diag::note_protected_by_seh_try, 437 diag::note_exits_seh_try, 438 TS->getSourceRange().getBegin())); 439 if (Stmt *TryBlock = TS->getTryBlock()) 440 BuildScopeInformation(TryBlock, NewParentScope); 441 } 442 443 // Jump from __except or __finally into the __try are not allowed either. 444 if (SEHExceptStmt *Except = TS->getExceptHandler()) { 445 unsigned NewParentScope = Scopes.size(); 446 Scopes.push_back(GotoScope(ParentScope, 447 diag::note_protected_by_seh_except, 448 diag::note_exits_seh_except, 449 Except->getSourceRange().getBegin())); 450 BuildScopeInformation(Except->getBlock(), NewParentScope); 451 } else if (SEHFinallyStmt *Finally = TS->getFinallyHandler()) { 452 unsigned NewParentScope = Scopes.size(); 453 Scopes.push_back(GotoScope(ParentScope, 454 diag::note_protected_by_seh_finally, 455 diag::note_exits_seh_finally, 456 Finally->getSourceRange().getBegin())); 457 BuildScopeInformation(Finally->getBlock(), NewParentScope); 458 } 459 460 return; 461 } 462 463 case Stmt::DeclStmtClass: { 464 // If this is a declstmt with a VLA definition, it defines a scope from here 465 // to the end of the containing context. 466 DeclStmt *DS = cast<DeclStmt>(S); 467 // The decl statement creates a scope if any of the decls in it are VLAs 468 // or have the cleanup attribute. 469 for (auto *I : DS->decls()) 470 BuildScopeInformation(I, origParentScope); 471 return; 472 } 473 474 case Stmt::ObjCAtTryStmtClass: { 475 // Disallow jumps into any part of an @try statement by pushing a scope and 476 // walking all sub-stmts in that scope. 477 ObjCAtTryStmt *AT = cast<ObjCAtTryStmt>(S); 478 // Recursively walk the AST for the @try part. 479 { 480 unsigned NewParentScope = Scopes.size(); 481 Scopes.push_back(GotoScope(ParentScope, 482 diag::note_protected_by_objc_try, 483 diag::note_exits_objc_try, 484 AT->getAtTryLoc())); 485 if (Stmt *TryPart = AT->getTryBody()) 486 BuildScopeInformation(TryPart, NewParentScope); 487 } 488 489 // Jump from the catch to the finally or try is not valid. 490 for (unsigned I = 0, N = AT->getNumCatchStmts(); I != N; ++I) { 491 ObjCAtCatchStmt *AC = AT->getCatchStmt(I); 492 unsigned NewParentScope = Scopes.size(); 493 Scopes.push_back(GotoScope(ParentScope, 494 diag::note_protected_by_objc_catch, 495 diag::note_exits_objc_catch, 496 AC->getAtCatchLoc())); 497 // @catches are nested and it isn't 498 BuildScopeInformation(AC->getCatchBody(), NewParentScope); 499 } 500 501 // Jump from the finally to the try or catch is not valid. 502 if (ObjCAtFinallyStmt *AF = AT->getFinallyStmt()) { 503 unsigned NewParentScope = Scopes.size(); 504 Scopes.push_back(GotoScope(ParentScope, 505 diag::note_protected_by_objc_finally, 506 diag::note_exits_objc_finally, 507 AF->getAtFinallyLoc())); 508 BuildScopeInformation(AF, NewParentScope); 509 } 510 511 return; 512 } 513 514 case Stmt::ObjCAtSynchronizedStmtClass: { 515 // Disallow jumps into the protected statement of an @synchronized, but 516 // allow jumps into the object expression it protects. 517 ObjCAtSynchronizedStmt *AS = cast<ObjCAtSynchronizedStmt>(S); 518 // Recursively walk the AST for the @synchronized object expr, it is 519 // evaluated in the normal scope. 520 BuildScopeInformation(AS->getSynchExpr(), ParentScope); 521 522 // Recursively walk the AST for the @synchronized part, protected by a new 523 // scope. 524 unsigned NewParentScope = Scopes.size(); 525 Scopes.push_back(GotoScope(ParentScope, 526 diag::note_protected_by_objc_synchronized, 527 diag::note_exits_objc_synchronized, 528 AS->getAtSynchronizedLoc())); 529 BuildScopeInformation(AS->getSynchBody(), NewParentScope); 530 return; 531 } 532 533 case Stmt::ObjCAutoreleasePoolStmtClass: { 534 // Disallow jumps into the protected statement of an @autoreleasepool. 535 ObjCAutoreleasePoolStmt *AS = cast<ObjCAutoreleasePoolStmt>(S); 536 // Recursively walk the AST for the @autoreleasepool part, protected by a 537 // new scope. 538 unsigned NewParentScope = Scopes.size(); 539 Scopes.push_back(GotoScope(ParentScope, 540 diag::note_protected_by_objc_autoreleasepool, 541 diag::note_exits_objc_autoreleasepool, 542 AS->getAtLoc())); 543 BuildScopeInformation(AS->getSubStmt(), NewParentScope); 544 return; 545 } 546 547 case Stmt::ExprWithCleanupsClass: { 548 // Disallow jumps past full-expressions that use blocks with 549 // non-trivial cleanups of their captures. This is theoretically 550 // implementable but a lot of work which we haven't felt up to doing. 551 ExprWithCleanups *EWC = cast<ExprWithCleanups>(S); 552 for (unsigned i = 0, e = EWC->getNumObjects(); i != e; ++i) { 553 if (auto *BDecl = EWC->getObject(i).dyn_cast<BlockDecl *>()) 554 for (const auto &CI : BDecl->captures()) { 555 VarDecl *variable = CI.getVariable(); 556 BuildScopeInformation(variable, BDecl, origParentScope); 557 } 558 else if (auto *CLE = EWC->getObject(i).dyn_cast<CompoundLiteralExpr *>()) 559 BuildScopeInformation(CLE, origParentScope); 560 else 561 llvm_unreachable("unexpected cleanup object type"); 562 } 563 break; 564 } 565 566 case Stmt::MaterializeTemporaryExprClass: { 567 // Disallow jumps out of scopes containing temporaries lifetime-extended to 568 // automatic storage duration. 569 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S); 570 if (MTE->getStorageDuration() == SD_Automatic) { 571 SmallVector<const Expr *, 4> CommaLHS; 572 SmallVector<SubobjectAdjustment, 4> Adjustments; 573 const Expr *ExtendedObject = 574 MTE->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHS, 575 Adjustments); 576 if (ExtendedObject->getType().isDestructedType()) { 577 Scopes.push_back(GotoScope(ParentScope, 0, 578 diag::note_exits_temporary_dtor, 579 ExtendedObject->getExprLoc())); 580 origParentScope = Scopes.size()-1; 581 } 582 } 583 break; 584 } 585 586 case Stmt::CaseStmtClass: 587 case Stmt::DefaultStmtClass: 588 case Stmt::LabelStmtClass: 589 LabelAndGotoScopes[S] = ParentScope; 590 break; 591 592 case Stmt::AttributedStmtClass: { 593 AttributedStmt *AS = cast<AttributedStmt>(S); 594 if (GetMustTailAttr(AS)) { 595 LabelAndGotoScopes[AS] = ParentScope; 596 MustTailStmts.push_back(AS); 597 } 598 break; 599 } 600 601 default: 602 if (auto *ED = dyn_cast<OMPExecutableDirective>(S)) { 603 if (!ED->isStandaloneDirective()) { 604 unsigned NewParentScope = Scopes.size(); 605 Scopes.emplace_back(ParentScope, 606 diag::note_omp_protected_structured_block, 607 diag::note_omp_exits_structured_block, 608 ED->getStructuredBlock()->getBeginLoc()); 609 BuildScopeInformation(ED->getStructuredBlock(), NewParentScope); 610 return; 611 } 612 } 613 break; 614 } 615 616 for (Stmt *SubStmt : S->children()) { 617 if (!SubStmt) 618 continue; 619 if (StmtsToSkip) { 620 --StmtsToSkip; 621 continue; 622 } 623 624 // Cases, labels, and defaults aren't "scope parents". It's also 625 // important to handle these iteratively instead of recursively in 626 // order to avoid blowing out the stack. 627 while (true) { 628 Stmt *Next; 629 if (SwitchCase *SC = dyn_cast<SwitchCase>(SubStmt)) 630 Next = SC->getSubStmt(); 631 else if (LabelStmt *LS = dyn_cast<LabelStmt>(SubStmt)) 632 Next = LS->getSubStmt(); 633 else 634 break; 635 636 LabelAndGotoScopes[SubStmt] = ParentScope; 637 SubStmt = Next; 638 } 639 640 // Recursively walk the AST. 641 BuildScopeInformation(SubStmt, ParentScope); 642 } 643 } 644 645 /// VerifyJumps - Verify each element of the Jumps array to see if they are 646 /// valid, emitting diagnostics if not. 647 void JumpScopeChecker::VerifyJumps() { 648 while (!Jumps.empty()) { 649 Stmt *Jump = Jumps.pop_back_val(); 650 651 // With a goto, 652 if (GotoStmt *GS = dyn_cast<GotoStmt>(Jump)) { 653 // The label may not have a statement if it's coming from inline MS ASM. 654 if (GS->getLabel()->getStmt()) { 655 CheckJump(GS, GS->getLabel()->getStmt(), GS->getGotoLoc(), 656 diag::err_goto_into_protected_scope, 657 diag::ext_goto_into_protected_scope, 658 diag::warn_cxx98_compat_goto_into_protected_scope); 659 } 660 CheckGotoStmt(GS); 661 continue; 662 } 663 664 // We only get indirect gotos here when they have a constant target. 665 if (IndirectGotoStmt *IGS = dyn_cast<IndirectGotoStmt>(Jump)) { 666 LabelDecl *Target = IGS->getConstantTarget(); 667 CheckJump(IGS, Target->getStmt(), IGS->getGotoLoc(), 668 diag::err_goto_into_protected_scope, 669 diag::ext_goto_into_protected_scope, 670 diag::warn_cxx98_compat_goto_into_protected_scope); 671 continue; 672 } 673 674 SwitchStmt *SS = cast<SwitchStmt>(Jump); 675 for (SwitchCase *SC = SS->getSwitchCaseList(); SC; 676 SC = SC->getNextSwitchCase()) { 677 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(SC))) 678 continue; 679 SourceLocation Loc; 680 if (CaseStmt *CS = dyn_cast<CaseStmt>(SC)) 681 Loc = CS->getBeginLoc(); 682 else if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) 683 Loc = DS->getBeginLoc(); 684 else 685 Loc = SC->getBeginLoc(); 686 CheckJump(SS, SC, Loc, diag::err_switch_into_protected_scope, 0, 687 diag::warn_cxx98_compat_switch_into_protected_scope); 688 } 689 } 690 } 691 692 /// VerifyIndirectOrAsmJumps - Verify whether any possible indirect goto or 693 /// asm goto jump might cross a protection boundary. Unlike direct jumps, 694 /// indirect or asm goto jumps count cleanups as protection boundaries: 695 /// since there's no way to know where the jump is going, we can't implicitly 696 /// run the right cleanups the way we can with direct jumps. 697 /// Thus, an indirect/asm jump is "trivial" if it bypasses no 698 /// initializations and no teardowns. More formally, an indirect/asm jump 699 /// from A to B is trivial if the path out from A to DCA(A,B) is 700 /// trivial and the path in from DCA(A,B) to B is trivial, where 701 /// DCA(A,B) is the deepest common ancestor of A and B. 702 /// Jump-triviality is transitive but asymmetric. 703 /// 704 /// A path in is trivial if none of the entered scopes have an InDiag. 705 /// A path out is trivial is none of the exited scopes have an OutDiag. 706 /// 707 /// Under these definitions, this function checks that the indirect 708 /// jump between A and B is trivial for every indirect goto statement A 709 /// and every label B whose address was taken in the function. 710 void JumpScopeChecker::VerifyIndirectOrAsmJumps(bool IsAsmGoto) { 711 SmallVector<Stmt*, 4> GotoJumps = IsAsmGoto ? AsmJumps : IndirectJumps; 712 if (GotoJumps.empty()) 713 return; 714 SmallVector<LabelDecl *, 4> JumpTargets = 715 IsAsmGoto ? AsmJumpTargets : IndirectJumpTargets; 716 // If there aren't any address-of-label expressions in this function, 717 // complain about the first indirect goto. 718 if (JumpTargets.empty()) { 719 assert(!IsAsmGoto &&"only indirect goto can get here"); 720 S.Diag(GotoJumps[0]->getBeginLoc(), 721 diag::err_indirect_goto_without_addrlabel); 722 return; 723 } 724 // Collect a single representative of every scope containing an 725 // indirect or asm goto. For most code bases, this substantially cuts 726 // down on the number of jump sites we'll have to consider later. 727 typedef std::pair<unsigned, Stmt*> JumpScope; 728 SmallVector<JumpScope, 32> JumpScopes; 729 { 730 llvm::DenseMap<unsigned, Stmt*> JumpScopesMap; 731 for (SmallVectorImpl<Stmt *>::iterator I = GotoJumps.begin(), 732 E = GotoJumps.end(); 733 I != E; ++I) { 734 Stmt *IG = *I; 735 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(IG))) 736 continue; 737 unsigned IGScope = LabelAndGotoScopes[IG]; 738 Stmt *&Entry = JumpScopesMap[IGScope]; 739 if (!Entry) Entry = IG; 740 } 741 JumpScopes.reserve(JumpScopesMap.size()); 742 for (llvm::DenseMap<unsigned, Stmt *>::iterator I = JumpScopesMap.begin(), 743 E = JumpScopesMap.end(); 744 I != E; ++I) 745 JumpScopes.push_back(*I); 746 } 747 748 // Collect a single representative of every scope containing a 749 // label whose address was taken somewhere in the function. 750 // For most code bases, there will be only one such scope. 751 llvm::DenseMap<unsigned, LabelDecl*> TargetScopes; 752 for (SmallVectorImpl<LabelDecl *>::iterator I = JumpTargets.begin(), 753 E = JumpTargets.end(); 754 I != E; ++I) { 755 LabelDecl *TheLabel = *I; 756 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(TheLabel->getStmt()))) 757 continue; 758 unsigned LabelScope = LabelAndGotoScopes[TheLabel->getStmt()]; 759 LabelDecl *&Target = TargetScopes[LabelScope]; 760 if (!Target) Target = TheLabel; 761 } 762 763 // For each target scope, make sure it's trivially reachable from 764 // every scope containing a jump site. 765 // 766 // A path between scopes always consists of exitting zero or more 767 // scopes, then entering zero or more scopes. We build a set of 768 // of scopes S from which the target scope can be trivially 769 // entered, then verify that every jump scope can be trivially 770 // exitted to reach a scope in S. 771 llvm::BitVector Reachable(Scopes.size(), false); 772 for (llvm::DenseMap<unsigned,LabelDecl*>::iterator 773 TI = TargetScopes.begin(), TE = TargetScopes.end(); TI != TE; ++TI) { 774 unsigned TargetScope = TI->first; 775 LabelDecl *TargetLabel = TI->second; 776 777 Reachable.reset(); 778 779 // Mark all the enclosing scopes from which you can safely jump 780 // into the target scope. 'Min' will end up being the index of 781 // the shallowest such scope. 782 unsigned Min = TargetScope; 783 while (true) { 784 Reachable.set(Min); 785 786 // Don't go beyond the outermost scope. 787 if (Min == 0) break; 788 789 // Stop if we can't trivially enter the current scope. 790 if (Scopes[Min].InDiag) break; 791 792 Min = Scopes[Min].ParentScope; 793 } 794 795 // Walk through all the jump sites, checking that they can trivially 796 // reach this label scope. 797 for (SmallVectorImpl<JumpScope>::iterator 798 I = JumpScopes.begin(), E = JumpScopes.end(); I != E; ++I) { 799 unsigned Scope = I->first; 800 801 // Walk out the "scope chain" for this scope, looking for a scope 802 // we've marked reachable. For well-formed code this amortizes 803 // to O(JumpScopes.size() / Scopes.size()): we only iterate 804 // when we see something unmarked, and in well-formed code we 805 // mark everything we iterate past. 806 bool IsReachable = false; 807 while (true) { 808 if (Reachable.test(Scope)) { 809 // If we find something reachable, mark all the scopes we just 810 // walked through as reachable. 811 for (unsigned S = I->first; S != Scope; S = Scopes[S].ParentScope) 812 Reachable.set(S); 813 IsReachable = true; 814 break; 815 } 816 817 // Don't walk out if we've reached the top-level scope or we've 818 // gotten shallower than the shallowest reachable scope. 819 if (Scope == 0 || Scope < Min) break; 820 821 // Don't walk out through an out-diagnostic. 822 if (Scopes[Scope].OutDiag) break; 823 824 Scope = Scopes[Scope].ParentScope; 825 } 826 827 // Only diagnose if we didn't find something. 828 if (IsReachable) continue; 829 830 DiagnoseIndirectOrAsmJump(I->second, I->first, TargetLabel, TargetScope); 831 } 832 } 833 } 834 835 /// Return true if a particular error+note combination must be downgraded to a 836 /// warning in Microsoft mode. 837 static bool IsMicrosoftJumpWarning(unsigned JumpDiag, unsigned InDiagNote) { 838 return (JumpDiag == diag::err_goto_into_protected_scope && 839 (InDiagNote == diag::note_protected_by_variable_init || 840 InDiagNote == diag::note_protected_by_variable_nontriv_destructor)); 841 } 842 843 /// Return true if a particular note should be downgraded to a compatibility 844 /// warning in C++11 mode. 845 static bool IsCXX98CompatWarning(Sema &S, unsigned InDiagNote) { 846 return S.getLangOpts().CPlusPlus11 && 847 InDiagNote == diag::note_protected_by_variable_non_pod; 848 } 849 850 /// Produce primary diagnostic for an indirect jump statement. 851 static void DiagnoseIndirectOrAsmJumpStmt(Sema &S, Stmt *Jump, 852 LabelDecl *Target, bool &Diagnosed) { 853 if (Diagnosed) 854 return; 855 bool IsAsmGoto = isa<GCCAsmStmt>(Jump); 856 S.Diag(Jump->getBeginLoc(), diag::err_indirect_goto_in_protected_scope) 857 << IsAsmGoto; 858 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target) 859 << IsAsmGoto; 860 Diagnosed = true; 861 } 862 863 /// Produce note diagnostics for a jump into a protected scope. 864 void JumpScopeChecker::NoteJumpIntoScopes(ArrayRef<unsigned> ToScopes) { 865 if (CHECK_PERMISSIVE(ToScopes.empty())) 866 return; 867 for (unsigned I = 0, E = ToScopes.size(); I != E; ++I) 868 if (Scopes[ToScopes[I]].InDiag) 869 S.Diag(Scopes[ToScopes[I]].Loc, Scopes[ToScopes[I]].InDiag); 870 } 871 872 /// Diagnose an indirect jump which is known to cross scopes. 873 void JumpScopeChecker::DiagnoseIndirectOrAsmJump(Stmt *Jump, unsigned JumpScope, 874 LabelDecl *Target, 875 unsigned TargetScope) { 876 if (CHECK_PERMISSIVE(JumpScope == TargetScope)) 877 return; 878 879 unsigned Common = GetDeepestCommonScope(JumpScope, TargetScope); 880 bool Diagnosed = false; 881 882 // Walk out the scope chain until we reach the common ancestor. 883 for (unsigned I = JumpScope; I != Common; I = Scopes[I].ParentScope) 884 if (Scopes[I].OutDiag) { 885 DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed); 886 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 887 } 888 889 SmallVector<unsigned, 10> ToScopesCXX98Compat; 890 891 // Now walk into the scopes containing the label whose address was taken. 892 for (unsigned I = TargetScope; I != Common; I = Scopes[I].ParentScope) 893 if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 894 ToScopesCXX98Compat.push_back(I); 895 else if (Scopes[I].InDiag) { 896 DiagnoseIndirectOrAsmJumpStmt(S, Jump, Target, Diagnosed); 897 S.Diag(Scopes[I].Loc, Scopes[I].InDiag); 898 } 899 900 // Diagnose this jump if it would be ill-formed in C++98. 901 if (!Diagnosed && !ToScopesCXX98Compat.empty()) { 902 bool IsAsmGoto = isa<GCCAsmStmt>(Jump); 903 S.Diag(Jump->getBeginLoc(), 904 diag::warn_cxx98_compat_indirect_goto_in_protected_scope) 905 << IsAsmGoto; 906 S.Diag(Target->getStmt()->getIdentLoc(), diag::note_indirect_goto_target) 907 << IsAsmGoto; 908 NoteJumpIntoScopes(ToScopesCXX98Compat); 909 } 910 } 911 912 /// CheckJump - Validate that the specified jump statement is valid: that it is 913 /// jumping within or out of its current scope, not into a deeper one. 914 void JumpScopeChecker::CheckJump(Stmt *From, Stmt *To, SourceLocation DiagLoc, 915 unsigned JumpDiagError, unsigned JumpDiagWarning, 916 unsigned JumpDiagCXX98Compat) { 917 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(From))) 918 return; 919 if (CHECK_PERMISSIVE(!LabelAndGotoScopes.count(To))) 920 return; 921 922 unsigned FromScope = LabelAndGotoScopes[From]; 923 unsigned ToScope = LabelAndGotoScopes[To]; 924 925 // Common case: exactly the same scope, which is fine. 926 if (FromScope == ToScope) return; 927 928 // Warn on gotos out of __finally blocks. 929 if (isa<GotoStmt>(From) || isa<IndirectGotoStmt>(From)) { 930 // If FromScope > ToScope, FromScope is more nested and the jump goes to a 931 // less nested scope. Check if it crosses a __finally along the way. 932 for (unsigned I = FromScope; I > ToScope; I = Scopes[I].ParentScope) { 933 if (Scopes[I].InDiag == diag::note_protected_by_seh_finally) { 934 S.Diag(From->getBeginLoc(), diag::warn_jump_out_of_seh_finally); 935 break; 936 } 937 if (Scopes[I].InDiag == diag::note_omp_protected_structured_block) { 938 S.Diag(From->getBeginLoc(), diag::err_goto_into_protected_scope); 939 S.Diag(To->getBeginLoc(), diag::note_omp_exits_structured_block); 940 break; 941 } 942 } 943 } 944 945 unsigned CommonScope = GetDeepestCommonScope(FromScope, ToScope); 946 947 // It's okay to jump out from a nested scope. 948 if (CommonScope == ToScope) return; 949 950 // Pull out (and reverse) any scopes we might need to diagnose skipping. 951 SmallVector<unsigned, 10> ToScopesCXX98Compat; 952 SmallVector<unsigned, 10> ToScopesError; 953 SmallVector<unsigned, 10> ToScopesWarning; 954 for (unsigned I = ToScope; I != CommonScope; I = Scopes[I].ParentScope) { 955 if (S.getLangOpts().MSVCCompat && JumpDiagWarning != 0 && 956 IsMicrosoftJumpWarning(JumpDiagError, Scopes[I].InDiag)) 957 ToScopesWarning.push_back(I); 958 else if (IsCXX98CompatWarning(S, Scopes[I].InDiag)) 959 ToScopesCXX98Compat.push_back(I); 960 else if (Scopes[I].InDiag) 961 ToScopesError.push_back(I); 962 } 963 964 // Handle warnings. 965 if (!ToScopesWarning.empty()) { 966 S.Diag(DiagLoc, JumpDiagWarning); 967 NoteJumpIntoScopes(ToScopesWarning); 968 assert(isa<LabelStmt>(To)); 969 LabelStmt *Label = cast<LabelStmt>(To); 970 Label->setSideEntry(true); 971 } 972 973 // Handle errors. 974 if (!ToScopesError.empty()) { 975 S.Diag(DiagLoc, JumpDiagError); 976 NoteJumpIntoScopes(ToScopesError); 977 } 978 979 // Handle -Wc++98-compat warnings if the jump is well-formed. 980 if (ToScopesError.empty() && !ToScopesCXX98Compat.empty()) { 981 S.Diag(DiagLoc, JumpDiagCXX98Compat); 982 NoteJumpIntoScopes(ToScopesCXX98Compat); 983 } 984 } 985 986 void JumpScopeChecker::CheckGotoStmt(GotoStmt *GS) { 987 if (GS->getLabel()->isMSAsmLabel()) { 988 S.Diag(GS->getGotoLoc(), diag::err_goto_ms_asm_label) 989 << GS->getLabel()->getIdentifier(); 990 S.Diag(GS->getLabel()->getLocation(), diag::note_goto_ms_asm_label) 991 << GS->getLabel()->getIdentifier(); 992 } 993 } 994 995 void JumpScopeChecker::VerifyMustTailStmts() { 996 for (AttributedStmt *AS : MustTailStmts) { 997 for (unsigned I = LabelAndGotoScopes[AS]; I; I = Scopes[I].ParentScope) { 998 if (Scopes[I].OutDiag) { 999 S.Diag(AS->getBeginLoc(), diag::err_musttail_scope); 1000 S.Diag(Scopes[I].Loc, Scopes[I].OutDiag); 1001 } 1002 } 1003 } 1004 } 1005 1006 const Attr *JumpScopeChecker::GetMustTailAttr(AttributedStmt *AS) { 1007 ArrayRef<const Attr *> Attrs = AS->getAttrs(); 1008 const auto *Iter = 1009 llvm::find_if(Attrs, [](const Attr *A) { return isa<MustTailAttr>(A); }); 1010 return Iter != Attrs.end() ? *Iter : nullptr; 1011 } 1012 1013 void Sema::DiagnoseInvalidJumps(Stmt *Body) { 1014 (void)JumpScopeChecker(Body, *this); 1015 } 1016