1 //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the DeltaTree and related classes. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Rewrite/Core/DeltaTree.h" 14 #include "clang/Basic/LLVM.h" 15 #include "llvm/Support/Casting.h" 16 #include <cassert> 17 #include <cstring> 18 19 using namespace clang; 20 21 /// The DeltaTree class is a multiway search tree (BTree) structure with some 22 /// fancy features. B-Trees are generally more memory and cache efficient 23 /// than binary trees, because they store multiple keys/values in each node. 24 /// 25 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing 26 /// fast lookup by FileIndex. However, an added (important) bonus is that it 27 /// can also efficiently tell us the full accumulated delta for a specific 28 /// file offset as well, without traversing the whole tree. 29 /// 30 /// The nodes of the tree are made up of instances of two classes: 31 /// DeltaTreeNode and DeltaTreeInteriorNode. The later subclasses the 32 /// former and adds children pointers. Each node knows the full delta of all 33 /// entries (recursively) contained inside of it, which allows us to get the 34 /// full delta implied by a whole subtree in constant time. 35 36 namespace { 37 38 /// SourceDelta - As code in the original input buffer is added and deleted, 39 /// SourceDelta records are used to keep track of how the input SourceLocation 40 /// object is mapped into the output buffer. 41 struct SourceDelta { 42 unsigned FileLoc; 43 int Delta; 44 45 static SourceDelta get(unsigned Loc, int D) { 46 SourceDelta Delta; 47 Delta.FileLoc = Loc; 48 Delta.Delta = D; 49 return Delta; 50 } 51 }; 52 53 /// DeltaTreeNode - The common part of all nodes. 54 /// 55 class DeltaTreeNode { 56 public: 57 struct InsertResult { 58 DeltaTreeNode *LHS, *RHS; 59 SourceDelta Split; 60 }; 61 62 private: 63 friend class DeltaTreeInteriorNode; 64 65 /// WidthFactor - This controls the number of K/V slots held in the BTree: 66 /// how wide it is. Each level of the BTree is guaranteed to have at least 67 /// WidthFactor-1 K/V pairs (except the root) and may have at most 68 /// 2*WidthFactor-1 K/V pairs. 69 enum { WidthFactor = 8 }; 70 71 /// Values - This tracks the SourceDelta's currently in this node. 72 SourceDelta Values[2*WidthFactor-1]; 73 74 /// NumValuesUsed - This tracks the number of values this node currently 75 /// holds. 76 unsigned char NumValuesUsed = 0; 77 78 /// IsLeaf - This is true if this is a leaf of the btree. If false, this is 79 /// an interior node, and is actually an instance of DeltaTreeInteriorNode. 80 bool IsLeaf; 81 82 /// FullDelta - This is the full delta of all the values in this node and 83 /// all children nodes. 84 int FullDelta = 0; 85 86 public: 87 DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {} 88 89 bool isLeaf() const { return IsLeaf; } 90 int getFullDelta() const { return FullDelta; } 91 bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; } 92 93 unsigned getNumValuesUsed() const { return NumValuesUsed; } 94 95 const SourceDelta &getValue(unsigned i) const { 96 assert(i < NumValuesUsed && "Invalid value #"); 97 return Values[i]; 98 } 99 100 SourceDelta &getValue(unsigned i) { 101 assert(i < NumValuesUsed && "Invalid value #"); 102 return Values[i]; 103 } 104 105 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 106 /// this node. If insertion is easy, do it and return false. Otherwise, 107 /// split the node, populate InsertRes with info about the split, and return 108 /// true. 109 bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes); 110 111 void DoSplit(InsertResult &InsertRes); 112 113 114 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 115 /// local walk over our contained deltas. 116 void RecomputeFullDeltaLocally(); 117 118 void Destroy(); 119 }; 120 121 /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers. 122 /// This class tracks them. 123 class DeltaTreeInteriorNode : public DeltaTreeNode { 124 friend class DeltaTreeNode; 125 126 DeltaTreeNode *Children[2*WidthFactor]; 127 128 ~DeltaTreeInteriorNode() { 129 for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i) 130 Children[i]->Destroy(); 131 } 132 133 public: 134 DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {} 135 136 DeltaTreeInteriorNode(const InsertResult &IR) 137 : DeltaTreeNode(false /*nonleaf*/) { 138 Children[0] = IR.LHS; 139 Children[1] = IR.RHS; 140 Values[0] = IR.Split; 141 FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta; 142 NumValuesUsed = 1; 143 } 144 145 const DeltaTreeNode *getChild(unsigned i) const { 146 assert(i < getNumValuesUsed()+1 && "Invalid child"); 147 return Children[i]; 148 } 149 150 DeltaTreeNode *getChild(unsigned i) { 151 assert(i < getNumValuesUsed()+1 && "Invalid child"); 152 return Children[i]; 153 } 154 155 static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); } 156 }; 157 158 } // namespace 159 160 /// Destroy - A 'virtual' destructor. 161 void DeltaTreeNode::Destroy() { 162 if (isLeaf()) 163 delete this; 164 else 165 delete cast<DeltaTreeInteriorNode>(this); 166 } 167 168 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a 169 /// local walk over our contained deltas. 170 void DeltaTreeNode::RecomputeFullDeltaLocally() { 171 int NewFullDelta = 0; 172 for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i) 173 NewFullDelta += Values[i].Delta; 174 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) 175 for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i) 176 NewFullDelta += IN->getChild(i)->getFullDelta(); 177 FullDelta = NewFullDelta; 178 } 179 180 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into 181 /// this node. If insertion is easy, do it and return false. Otherwise, 182 /// split the node, populate InsertRes with info about the split, and return 183 /// true. 184 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta, 185 InsertResult *InsertRes) { 186 // Maintain full delta for this node. 187 FullDelta += Delta; 188 189 // Find the insertion point, the first delta whose index is >= FileIndex. 190 unsigned i = 0, e = getNumValuesUsed(); 191 while (i != e && FileIndex > getValue(i).FileLoc) 192 ++i; 193 194 // If we found an a record for exactly this file index, just merge this 195 // value into the pre-existing record and finish early. 196 if (i != e && getValue(i).FileLoc == FileIndex) { 197 // NOTE: Delta could drop to zero here. This means that the delta entry is 198 // useless and could be removed. Supporting erases is more complex than 199 // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in 200 // the tree. 201 Values[i].Delta += Delta; 202 return false; 203 } 204 205 // Otherwise, we found an insertion point, and we know that the value at the 206 // specified index is > FileIndex. Handle the leaf case first. 207 if (isLeaf()) { 208 if (!isFull()) { 209 // For an insertion into a non-full leaf node, just insert the value in 210 // its sorted position. This requires moving later values over. 211 if (i != e) 212 memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i)); 213 Values[i] = SourceDelta::get(FileIndex, Delta); 214 ++NumValuesUsed; 215 return false; 216 } 217 218 // Otherwise, if this is leaf is full, split the node at its median, insert 219 // the value into one of the children, and return the result. 220 assert(InsertRes && "No result location specified"); 221 DoSplit(*InsertRes); 222 223 if (InsertRes->Split.FileLoc > FileIndex) 224 InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 225 else 226 InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/); 227 return true; 228 } 229 230 // Otherwise, this is an interior node. Send the request down the tree. 231 auto *IN = cast<DeltaTreeInteriorNode>(this); 232 if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes)) 233 return false; // If there was space in the child, just return. 234 235 // Okay, this split the subtree, producing a new value and two children to 236 // insert here. If this node is non-full, we can just insert it directly. 237 if (!isFull()) { 238 // Now that we have two nodes and a new element, insert the perclated value 239 // into ourself by moving all the later values/children down, then inserting 240 // the new one. 241 if (i != e) 242 memmove(&IN->Children[i+2], &IN->Children[i+1], 243 (e-i)*sizeof(IN->Children[0])); 244 IN->Children[i] = InsertRes->LHS; 245 IN->Children[i+1] = InsertRes->RHS; 246 247 if (e != i) 248 memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0])); 249 Values[i] = InsertRes->Split; 250 ++NumValuesUsed; 251 return false; 252 } 253 254 // Finally, if this interior node was full and a node is percolated up, split 255 // ourself and return that up the chain. Start by saving all our info to 256 // avoid having the split clobber it. 257 IN->Children[i] = InsertRes->LHS; 258 DeltaTreeNode *SubRHS = InsertRes->RHS; 259 SourceDelta SubSplit = InsertRes->Split; 260 261 // Do the split. 262 DoSplit(*InsertRes); 263 264 // Figure out where to insert SubRHS/NewSplit. 265 DeltaTreeInteriorNode *InsertSide; 266 if (SubSplit.FileLoc < InsertRes->Split.FileLoc) 267 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS); 268 else 269 InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS); 270 271 // We now have a non-empty interior node 'InsertSide' to insert 272 // SubRHS/SubSplit into. Find out where to insert SubSplit. 273 274 // Find the insertion point, the first delta whose index is >SubSplit.FileLoc. 275 i = 0; e = InsertSide->getNumValuesUsed(); 276 while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc) 277 ++i; 278 279 // Now we know that i is the place to insert the split value into. Insert it 280 // and the child right after it. 281 if (i != e) 282 memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1], 283 (e-i)*sizeof(IN->Children[0])); 284 InsertSide->Children[i+1] = SubRHS; 285 286 if (e != i) 287 memmove(&InsertSide->Values[i+1], &InsertSide->Values[i], 288 (e-i)*sizeof(Values[0])); 289 InsertSide->Values[i] = SubSplit; 290 ++InsertSide->NumValuesUsed; 291 InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta(); 292 return true; 293 } 294 295 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values) 296 /// into two subtrees each with "WidthFactor-1" values and a pivot value. 297 /// Return the pieces in InsertRes. 298 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) { 299 assert(isFull() && "Why split a non-full node?"); 300 301 // Since this node is full, it contains 2*WidthFactor-1 values. We move 302 // the first 'WidthFactor-1' values to the LHS child (which we leave in this 303 // node), propagate one value up, and move the last 'WidthFactor-1' values 304 // into the RHS child. 305 306 // Create the new child node. 307 DeltaTreeNode *NewNode; 308 if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) { 309 // If this is an interior node, also move over 'WidthFactor' children 310 // into the new node. 311 DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode(); 312 memcpy(&New->Children[0], &IN->Children[WidthFactor], 313 WidthFactor*sizeof(IN->Children[0])); 314 NewNode = New; 315 } else { 316 // Just create the new leaf node. 317 NewNode = new DeltaTreeNode(); 318 } 319 320 // Move over the last 'WidthFactor-1' values from here to NewNode. 321 memcpy(&NewNode->Values[0], &Values[WidthFactor], 322 (WidthFactor-1)*sizeof(Values[0])); 323 324 // Decrease the number of values in the two nodes. 325 NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1; 326 327 // Recompute the two nodes' full delta. 328 NewNode->RecomputeFullDeltaLocally(); 329 RecomputeFullDeltaLocally(); 330 331 InsertRes.LHS = this; 332 InsertRes.RHS = NewNode; 333 InsertRes.Split = Values[WidthFactor-1]; 334 } 335 336 //===----------------------------------------------------------------------===// 337 // DeltaTree Implementation 338 //===----------------------------------------------------------------------===// 339 340 //#define VERIFY_TREE 341 342 #ifdef VERIFY_TREE 343 /// VerifyTree - Walk the btree performing assertions on various properties to 344 /// verify consistency. This is useful for debugging new changes to the tree. 345 static void VerifyTree(const DeltaTreeNode *N) { 346 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N); 347 if (IN == 0) { 348 // Verify leaves, just ensure that FullDelta matches up and the elements 349 // are in proper order. 350 int FullDelta = 0; 351 for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) { 352 if (i) 353 assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc); 354 FullDelta += N->getValue(i).Delta; 355 } 356 assert(FullDelta == N->getFullDelta()); 357 return; 358 } 359 360 // Verify interior nodes: Ensure that FullDelta matches up and the 361 // elements are in proper order and the children are in proper order. 362 int FullDelta = 0; 363 for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) { 364 const SourceDelta &IVal = N->getValue(i); 365 const DeltaTreeNode *IChild = IN->getChild(i); 366 if (i) 367 assert(IN->getValue(i-1).FileLoc < IVal.FileLoc); 368 FullDelta += IVal.Delta; 369 FullDelta += IChild->getFullDelta(); 370 371 // The largest value in child #i should be smaller than FileLoc. 372 assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc < 373 IVal.FileLoc); 374 375 // The smallest value in child #i+1 should be larger than FileLoc. 376 assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc); 377 VerifyTree(IChild); 378 } 379 380 FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta(); 381 382 assert(FullDelta == N->getFullDelta()); 383 } 384 #endif // VERIFY_TREE 385 386 static DeltaTreeNode *getRoot(void *Root) { 387 return (DeltaTreeNode*)Root; 388 } 389 390 DeltaTree::DeltaTree() { 391 Root = new DeltaTreeNode(); 392 } 393 394 DeltaTree::DeltaTree(const DeltaTree &RHS) { 395 // Currently we only support copying when the RHS is empty. 396 assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 && 397 "Can only copy empty tree"); 398 Root = new DeltaTreeNode(); 399 } 400 401 DeltaTree::~DeltaTree() { 402 getRoot(Root)->Destroy(); 403 } 404 405 /// getDeltaAt - Return the accumulated delta at the specified file offset. 406 /// This includes all insertions or delections that occurred *before* the 407 /// specified file index. 408 int DeltaTree::getDeltaAt(unsigned FileIndex) const { 409 const DeltaTreeNode *Node = getRoot(Root); 410 411 int Result = 0; 412 413 // Walk down the tree. 414 while (true) { 415 // For all nodes, include any local deltas before the specified file 416 // index by summing them up directly. Keep track of how many were 417 // included. 418 unsigned NumValsGreater = 0; 419 for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e; 420 ++NumValsGreater) { 421 const SourceDelta &Val = Node->getValue(NumValsGreater); 422 423 if (Val.FileLoc >= FileIndex) 424 break; 425 Result += Val.Delta; 426 } 427 428 // If we have an interior node, include information about children and 429 // recurse. Otherwise, if we have a leaf, we're done. 430 const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node); 431 if (!IN) return Result; 432 433 // Include any children to the left of the values we skipped, all of 434 // their deltas should be included as well. 435 for (unsigned i = 0; i != NumValsGreater; ++i) 436 Result += IN->getChild(i)->getFullDelta(); 437 438 // If we found exactly the value we were looking for, break off the 439 // search early. There is no need to search the RHS of the value for 440 // partial results. 441 if (NumValsGreater != Node->getNumValuesUsed() && 442 Node->getValue(NumValsGreater).FileLoc == FileIndex) 443 return Result+IN->getChild(NumValsGreater)->getFullDelta(); 444 445 // Otherwise, traverse down the tree. The selected subtree may be 446 // partially included in the range. 447 Node = IN->getChild(NumValsGreater); 448 } 449 // NOT REACHED. 450 } 451 452 /// AddDelta - When a change is made that shifts around the text buffer, 453 /// this method is used to record that info. It inserts a delta of 'Delta' 454 /// into the current DeltaTree at offset FileIndex. 455 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) { 456 assert(Delta && "Adding a noop?"); 457 DeltaTreeNode *MyRoot = getRoot(Root); 458 459 DeltaTreeNode::InsertResult InsertRes; 460 if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) { 461 Root = MyRoot = new DeltaTreeInteriorNode(InsertRes); 462 } 463 464 #ifdef VERIFY_TREE 465 VerifyTree(MyRoot); 466 #endif 467 } 468