xref: /freebsd/contrib/llvm-project/clang/lib/Rewrite/DeltaTree.cpp (revision 62cfcf62f627e5093fb37026a6d8c98e4d2ef04c)
1 //===- DeltaTree.cpp - B-Tree for Rewrite Delta tracking ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the DeltaTree and related classes.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Rewrite/Core/DeltaTree.h"
14 #include "clang/Basic/LLVM.h"
15 #include "llvm/Support/Casting.h"
16 #include <cassert>
17 #include <cstring>
18 
19 using namespace clang;
20 
21 /// The DeltaTree class is a multiway search tree (BTree) structure with some
22 /// fancy features.  B-Trees are generally more memory and cache efficient
23 /// than binary trees, because they store multiple keys/values in each node.
24 ///
25 /// DeltaTree implements a key/value mapping from FileIndex to Delta, allowing
26 /// fast lookup by FileIndex.  However, an added (important) bonus is that it
27 /// can also efficiently tell us the full accumulated delta for a specific
28 /// file offset as well, without traversing the whole tree.
29 ///
30 /// The nodes of the tree are made up of instances of two classes:
31 /// DeltaTreeNode and DeltaTreeInteriorNode.  The later subclasses the
32 /// former and adds children pointers.  Each node knows the full delta of all
33 /// entries (recursively) contained inside of it, which allows us to get the
34 /// full delta implied by a whole subtree in constant time.
35 
36 namespace {
37 
38   /// SourceDelta - As code in the original input buffer is added and deleted,
39   /// SourceDelta records are used to keep track of how the input SourceLocation
40   /// object is mapped into the output buffer.
41   struct SourceDelta {
42     unsigned FileLoc;
43     int Delta;
44 
45     static SourceDelta get(unsigned Loc, int D) {
46       SourceDelta Delta;
47       Delta.FileLoc = Loc;
48       Delta.Delta = D;
49       return Delta;
50     }
51   };
52 
53   /// DeltaTreeNode - The common part of all nodes.
54   ///
55   class DeltaTreeNode {
56   public:
57     struct InsertResult {
58       DeltaTreeNode *LHS, *RHS;
59       SourceDelta Split;
60     };
61 
62   private:
63     friend class DeltaTreeInteriorNode;
64 
65     /// WidthFactor - This controls the number of K/V slots held in the BTree:
66     /// how wide it is.  Each level of the BTree is guaranteed to have at least
67     /// WidthFactor-1 K/V pairs (except the root) and may have at most
68     /// 2*WidthFactor-1 K/V pairs.
69     enum { WidthFactor = 8 };
70 
71     /// Values - This tracks the SourceDelta's currently in this node.
72     SourceDelta Values[2*WidthFactor-1];
73 
74     /// NumValuesUsed - This tracks the number of values this node currently
75     /// holds.
76     unsigned char NumValuesUsed = 0;
77 
78     /// IsLeaf - This is true if this is a leaf of the btree.  If false, this is
79     /// an interior node, and is actually an instance of DeltaTreeInteriorNode.
80     bool IsLeaf;
81 
82     /// FullDelta - This is the full delta of all the values in this node and
83     /// all children nodes.
84     int FullDelta = 0;
85 
86   public:
87     DeltaTreeNode(bool isLeaf = true) : IsLeaf(isLeaf) {}
88 
89     bool isLeaf() const { return IsLeaf; }
90     int getFullDelta() const { return FullDelta; }
91     bool isFull() const { return NumValuesUsed == 2*WidthFactor-1; }
92 
93     unsigned getNumValuesUsed() const { return NumValuesUsed; }
94 
95     const SourceDelta &getValue(unsigned i) const {
96       assert(i < NumValuesUsed && "Invalid value #");
97       return Values[i];
98     }
99 
100     SourceDelta &getValue(unsigned i) {
101       assert(i < NumValuesUsed && "Invalid value #");
102       return Values[i];
103     }
104 
105     /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
106     /// this node.  If insertion is easy, do it and return false.  Otherwise,
107     /// split the node, populate InsertRes with info about the split, and return
108     /// true.
109     bool DoInsertion(unsigned FileIndex, int Delta, InsertResult *InsertRes);
110 
111     void DoSplit(InsertResult &InsertRes);
112 
113 
114     /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
115     /// local walk over our contained deltas.
116     void RecomputeFullDeltaLocally();
117 
118     void Destroy();
119   };
120 
121   /// DeltaTreeInteriorNode - When isLeaf = false, a node has child pointers.
122   /// This class tracks them.
123   class DeltaTreeInteriorNode : public DeltaTreeNode {
124     friend class DeltaTreeNode;
125 
126     DeltaTreeNode *Children[2*WidthFactor];
127 
128     ~DeltaTreeInteriorNode() {
129       for (unsigned i = 0, e = NumValuesUsed+1; i != e; ++i)
130         Children[i]->Destroy();
131     }
132 
133   public:
134     DeltaTreeInteriorNode() : DeltaTreeNode(false /*nonleaf*/) {}
135 
136     DeltaTreeInteriorNode(const InsertResult &IR)
137         : DeltaTreeNode(false /*nonleaf*/) {
138       Children[0] = IR.LHS;
139       Children[1] = IR.RHS;
140       Values[0] = IR.Split;
141       FullDelta = IR.LHS->getFullDelta()+IR.RHS->getFullDelta()+IR.Split.Delta;
142       NumValuesUsed = 1;
143     }
144 
145     const DeltaTreeNode *getChild(unsigned i) const {
146       assert(i < getNumValuesUsed()+1 && "Invalid child");
147       return Children[i];
148     }
149 
150     DeltaTreeNode *getChild(unsigned i) {
151       assert(i < getNumValuesUsed()+1 && "Invalid child");
152       return Children[i];
153     }
154 
155     static bool classof(const DeltaTreeNode *N) { return !N->isLeaf(); }
156   };
157 
158 } // namespace
159 
160 /// Destroy - A 'virtual' destructor.
161 void DeltaTreeNode::Destroy() {
162   if (isLeaf())
163     delete this;
164   else
165     delete cast<DeltaTreeInteriorNode>(this);
166 }
167 
168 /// RecomputeFullDeltaLocally - Recompute the FullDelta field by doing a
169 /// local walk over our contained deltas.
170 void DeltaTreeNode::RecomputeFullDeltaLocally() {
171   int NewFullDelta = 0;
172   for (unsigned i = 0, e = getNumValuesUsed(); i != e; ++i)
173     NewFullDelta += Values[i].Delta;
174   if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this))
175     for (unsigned i = 0, e = getNumValuesUsed()+1; i != e; ++i)
176       NewFullDelta += IN->getChild(i)->getFullDelta();
177   FullDelta = NewFullDelta;
178 }
179 
180 /// DoInsertion - Do an insertion of the specified FileIndex/Delta pair into
181 /// this node.  If insertion is easy, do it and return false.  Otherwise,
182 /// split the node, populate InsertRes with info about the split, and return
183 /// true.
184 bool DeltaTreeNode::DoInsertion(unsigned FileIndex, int Delta,
185                                 InsertResult *InsertRes) {
186   // Maintain full delta for this node.
187   FullDelta += Delta;
188 
189   // Find the insertion point, the first delta whose index is >= FileIndex.
190   unsigned i = 0, e = getNumValuesUsed();
191   while (i != e && FileIndex > getValue(i).FileLoc)
192     ++i;
193 
194   // If we found an a record for exactly this file index, just merge this
195   // value into the pre-existing record and finish early.
196   if (i != e && getValue(i).FileLoc == FileIndex) {
197     // NOTE: Delta could drop to zero here.  This means that the delta entry is
198     // useless and could be removed.  Supporting erases is more complex than
199     // leaving an entry with Delta=0, so we just leave an entry with Delta=0 in
200     // the tree.
201     Values[i].Delta += Delta;
202     return false;
203   }
204 
205   // Otherwise, we found an insertion point, and we know that the value at the
206   // specified index is > FileIndex.  Handle the leaf case first.
207   if (isLeaf()) {
208     if (!isFull()) {
209       // For an insertion into a non-full leaf node, just insert the value in
210       // its sorted position.  This requires moving later values over.
211       if (i != e)
212         memmove(&Values[i+1], &Values[i], sizeof(Values[0])*(e-i));
213       Values[i] = SourceDelta::get(FileIndex, Delta);
214       ++NumValuesUsed;
215       return false;
216     }
217 
218     // Otherwise, if this is leaf is full, split the node at its median, insert
219     // the value into one of the children, and return the result.
220     assert(InsertRes && "No result location specified");
221     DoSplit(*InsertRes);
222 
223     if (InsertRes->Split.FileLoc > FileIndex)
224       InsertRes->LHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
225     else
226       InsertRes->RHS->DoInsertion(FileIndex, Delta, nullptr /*can't fail*/);
227     return true;
228   }
229 
230   // Otherwise, this is an interior node.  Send the request down the tree.
231   auto *IN = cast<DeltaTreeInteriorNode>(this);
232   if (!IN->Children[i]->DoInsertion(FileIndex, Delta, InsertRes))
233     return false; // If there was space in the child, just return.
234 
235   // Okay, this split the subtree, producing a new value and two children to
236   // insert here.  If this node is non-full, we can just insert it directly.
237   if (!isFull()) {
238     // Now that we have two nodes and a new element, insert the perclated value
239     // into ourself by moving all the later values/children down, then inserting
240     // the new one.
241     if (i != e)
242       memmove(&IN->Children[i+2], &IN->Children[i+1],
243               (e-i)*sizeof(IN->Children[0]));
244     IN->Children[i] = InsertRes->LHS;
245     IN->Children[i+1] = InsertRes->RHS;
246 
247     if (e != i)
248       memmove(&Values[i+1], &Values[i], (e-i)*sizeof(Values[0]));
249     Values[i] = InsertRes->Split;
250     ++NumValuesUsed;
251     return false;
252   }
253 
254   // Finally, if this interior node was full and a node is percolated up, split
255   // ourself and return that up the chain.  Start by saving all our info to
256   // avoid having the split clobber it.
257   IN->Children[i] = InsertRes->LHS;
258   DeltaTreeNode *SubRHS = InsertRes->RHS;
259   SourceDelta SubSplit = InsertRes->Split;
260 
261   // Do the split.
262   DoSplit(*InsertRes);
263 
264   // Figure out where to insert SubRHS/NewSplit.
265   DeltaTreeInteriorNode *InsertSide;
266   if (SubSplit.FileLoc < InsertRes->Split.FileLoc)
267     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->LHS);
268   else
269     InsertSide = cast<DeltaTreeInteriorNode>(InsertRes->RHS);
270 
271   // We now have a non-empty interior node 'InsertSide' to insert
272   // SubRHS/SubSplit into.  Find out where to insert SubSplit.
273 
274   // Find the insertion point, the first delta whose index is >SubSplit.FileLoc.
275   i = 0; e = InsertSide->getNumValuesUsed();
276   while (i != e && SubSplit.FileLoc > InsertSide->getValue(i).FileLoc)
277     ++i;
278 
279   // Now we know that i is the place to insert the split value into.  Insert it
280   // and the child right after it.
281   if (i != e)
282     memmove(&InsertSide->Children[i+2], &InsertSide->Children[i+1],
283             (e-i)*sizeof(IN->Children[0]));
284   InsertSide->Children[i+1] = SubRHS;
285 
286   if (e != i)
287     memmove(&InsertSide->Values[i+1], &InsertSide->Values[i],
288             (e-i)*sizeof(Values[0]));
289   InsertSide->Values[i] = SubSplit;
290   ++InsertSide->NumValuesUsed;
291   InsertSide->FullDelta += SubSplit.Delta + SubRHS->getFullDelta();
292   return true;
293 }
294 
295 /// DoSplit - Split the currently full node (which has 2*WidthFactor-1 values)
296 /// into two subtrees each with "WidthFactor-1" values and a pivot value.
297 /// Return the pieces in InsertRes.
298 void DeltaTreeNode::DoSplit(InsertResult &InsertRes) {
299   assert(isFull() && "Why split a non-full node?");
300 
301   // Since this node is full, it contains 2*WidthFactor-1 values.  We move
302   // the first 'WidthFactor-1' values to the LHS child (which we leave in this
303   // node), propagate one value up, and move the last 'WidthFactor-1' values
304   // into the RHS child.
305 
306   // Create the new child node.
307   DeltaTreeNode *NewNode;
308   if (auto *IN = dyn_cast<DeltaTreeInteriorNode>(this)) {
309     // If this is an interior node, also move over 'WidthFactor' children
310     // into the new node.
311     DeltaTreeInteriorNode *New = new DeltaTreeInteriorNode();
312     memcpy(&New->Children[0], &IN->Children[WidthFactor],
313            WidthFactor*sizeof(IN->Children[0]));
314     NewNode = New;
315   } else {
316     // Just create the new leaf node.
317     NewNode = new DeltaTreeNode();
318   }
319 
320   // Move over the last 'WidthFactor-1' values from here to NewNode.
321   memcpy(&NewNode->Values[0], &Values[WidthFactor],
322          (WidthFactor-1)*sizeof(Values[0]));
323 
324   // Decrease the number of values in the two nodes.
325   NewNode->NumValuesUsed = NumValuesUsed = WidthFactor-1;
326 
327   // Recompute the two nodes' full delta.
328   NewNode->RecomputeFullDeltaLocally();
329   RecomputeFullDeltaLocally();
330 
331   InsertRes.LHS = this;
332   InsertRes.RHS = NewNode;
333   InsertRes.Split = Values[WidthFactor-1];
334 }
335 
336 //===----------------------------------------------------------------------===//
337 //                        DeltaTree Implementation
338 //===----------------------------------------------------------------------===//
339 
340 //#define VERIFY_TREE
341 
342 #ifdef VERIFY_TREE
343 /// VerifyTree - Walk the btree performing assertions on various properties to
344 /// verify consistency.  This is useful for debugging new changes to the tree.
345 static void VerifyTree(const DeltaTreeNode *N) {
346   const auto *IN = dyn_cast<DeltaTreeInteriorNode>(N);
347   if (IN == 0) {
348     // Verify leaves, just ensure that FullDelta matches up and the elements
349     // are in proper order.
350     int FullDelta = 0;
351     for (unsigned i = 0, e = N->getNumValuesUsed(); i != e; ++i) {
352       if (i)
353         assert(N->getValue(i-1).FileLoc < N->getValue(i).FileLoc);
354       FullDelta += N->getValue(i).Delta;
355     }
356     assert(FullDelta == N->getFullDelta());
357     return;
358   }
359 
360   // Verify interior nodes: Ensure that FullDelta matches up and the
361   // elements are in proper order and the children are in proper order.
362   int FullDelta = 0;
363   for (unsigned i = 0, e = IN->getNumValuesUsed(); i != e; ++i) {
364     const SourceDelta &IVal = N->getValue(i);
365     const DeltaTreeNode *IChild = IN->getChild(i);
366     if (i)
367       assert(IN->getValue(i-1).FileLoc < IVal.FileLoc);
368     FullDelta += IVal.Delta;
369     FullDelta += IChild->getFullDelta();
370 
371     // The largest value in child #i should be smaller than FileLoc.
372     assert(IChild->getValue(IChild->getNumValuesUsed()-1).FileLoc <
373            IVal.FileLoc);
374 
375     // The smallest value in child #i+1 should be larger than FileLoc.
376     assert(IN->getChild(i+1)->getValue(0).FileLoc > IVal.FileLoc);
377     VerifyTree(IChild);
378   }
379 
380   FullDelta += IN->getChild(IN->getNumValuesUsed())->getFullDelta();
381 
382   assert(FullDelta == N->getFullDelta());
383 }
384 #endif  // VERIFY_TREE
385 
386 static DeltaTreeNode *getRoot(void *Root) {
387   return (DeltaTreeNode*)Root;
388 }
389 
390 DeltaTree::DeltaTree() {
391   Root = new DeltaTreeNode();
392 }
393 
394 DeltaTree::DeltaTree(const DeltaTree &RHS) {
395   // Currently we only support copying when the RHS is empty.
396   assert(getRoot(RHS.Root)->getNumValuesUsed() == 0 &&
397          "Can only copy empty tree");
398   Root = new DeltaTreeNode();
399 }
400 
401 DeltaTree::~DeltaTree() {
402   getRoot(Root)->Destroy();
403 }
404 
405 /// getDeltaAt - Return the accumulated delta at the specified file offset.
406 /// This includes all insertions or delections that occurred *before* the
407 /// specified file index.
408 int DeltaTree::getDeltaAt(unsigned FileIndex) const {
409   const DeltaTreeNode *Node = getRoot(Root);
410 
411   int Result = 0;
412 
413   // Walk down the tree.
414   while (true) {
415     // For all nodes, include any local deltas before the specified file
416     // index by summing them up directly.  Keep track of how many were
417     // included.
418     unsigned NumValsGreater = 0;
419     for (unsigned e = Node->getNumValuesUsed(); NumValsGreater != e;
420          ++NumValsGreater) {
421       const SourceDelta &Val = Node->getValue(NumValsGreater);
422 
423       if (Val.FileLoc >= FileIndex)
424         break;
425       Result += Val.Delta;
426     }
427 
428     // If we have an interior node, include information about children and
429     // recurse.  Otherwise, if we have a leaf, we're done.
430     const auto *IN = dyn_cast<DeltaTreeInteriorNode>(Node);
431     if (!IN) return Result;
432 
433     // Include any children to the left of the values we skipped, all of
434     // their deltas should be included as well.
435     for (unsigned i = 0; i != NumValsGreater; ++i)
436       Result += IN->getChild(i)->getFullDelta();
437 
438     // If we found exactly the value we were looking for, break off the
439     // search early.  There is no need to search the RHS of the value for
440     // partial results.
441     if (NumValsGreater != Node->getNumValuesUsed() &&
442         Node->getValue(NumValsGreater).FileLoc == FileIndex)
443       return Result+IN->getChild(NumValsGreater)->getFullDelta();
444 
445     // Otherwise, traverse down the tree.  The selected subtree may be
446     // partially included in the range.
447     Node = IN->getChild(NumValsGreater);
448   }
449   // NOT REACHED.
450 }
451 
452 /// AddDelta - When a change is made that shifts around the text buffer,
453 /// this method is used to record that info.  It inserts a delta of 'Delta'
454 /// into the current DeltaTree at offset FileIndex.
455 void DeltaTree::AddDelta(unsigned FileIndex, int Delta) {
456   assert(Delta && "Adding a noop?");
457   DeltaTreeNode *MyRoot = getRoot(Root);
458 
459   DeltaTreeNode::InsertResult InsertRes;
460   if (MyRoot->DoInsertion(FileIndex, Delta, &InsertRes)) {
461     Root = MyRoot = new DeltaTreeInteriorNode(InsertRes);
462   }
463 
464 #ifdef VERIFY_TREE
465   VerifyTree(MyRoot);
466 #endif
467 }
468