1 //===--- Parser.cpp - C Language Family Parser ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Parser interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Parse/Parser.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/DeclTemplate.h" 18 #include "clang/Basic/FileManager.h" 19 #include "clang/Parse/ParseDiagnostic.h" 20 #include "clang/Parse/RAIIObjectsForParser.h" 21 #include "clang/Sema/DeclSpec.h" 22 #include "clang/Sema/ParsedTemplate.h" 23 #include "clang/Sema/Scope.h" 24 #include "clang/Sema/SemaCodeCompletion.h" 25 #include "llvm/Support/Path.h" 26 #include "llvm/Support/TimeProfiler.h" 27 using namespace clang; 28 29 30 namespace { 31 /// A comment handler that passes comments found by the preprocessor 32 /// to the parser action. 33 class ActionCommentHandler : public CommentHandler { 34 Sema &S; 35 36 public: 37 explicit ActionCommentHandler(Sema &S) : S(S) { } 38 39 bool HandleComment(Preprocessor &PP, SourceRange Comment) override { 40 S.ActOnComment(Comment); 41 return false; 42 } 43 }; 44 } // end anonymous namespace 45 46 IdentifierInfo *Parser::getSEHExceptKeyword() { 47 // __except is accepted as a (contextual) keyword 48 if (!Ident__except && (getLangOpts().MicrosoftExt || getLangOpts().Borland)) 49 Ident__except = PP.getIdentifierInfo("__except"); 50 51 return Ident__except; 52 } 53 54 Parser::Parser(Preprocessor &pp, Sema &actions, bool skipFunctionBodies) 55 : PP(pp), PreferredType(pp.isCodeCompletionEnabled()), Actions(actions), 56 Diags(PP.getDiagnostics()), GreaterThanIsOperator(true), 57 ColonIsSacred(false), InMessageExpression(false), 58 TemplateParameterDepth(0), ParsingInObjCContainer(false) { 59 SkipFunctionBodies = pp.isCodeCompletionEnabled() || skipFunctionBodies; 60 Tok.startToken(); 61 Tok.setKind(tok::eof); 62 Actions.CurScope = nullptr; 63 NumCachedScopes = 0; 64 CurParsedObjCImpl = nullptr; 65 66 // Add #pragma handlers. These are removed and destroyed in the 67 // destructor. 68 initializePragmaHandlers(); 69 70 CommentSemaHandler.reset(new ActionCommentHandler(actions)); 71 PP.addCommentHandler(CommentSemaHandler.get()); 72 73 PP.setCodeCompletionHandler(*this); 74 75 Actions.ParseTypeFromStringCallback = 76 [this](StringRef TypeStr, StringRef Context, SourceLocation IncludeLoc) { 77 return this->ParseTypeFromString(TypeStr, Context, IncludeLoc); 78 }; 79 } 80 81 DiagnosticBuilder Parser::Diag(SourceLocation Loc, unsigned DiagID) { 82 return Diags.Report(Loc, DiagID); 83 } 84 85 DiagnosticBuilder Parser::Diag(const Token &Tok, unsigned DiagID) { 86 return Diag(Tok.getLocation(), DiagID); 87 } 88 89 /// Emits a diagnostic suggesting parentheses surrounding a 90 /// given range. 91 /// 92 /// \param Loc The location where we'll emit the diagnostic. 93 /// \param DK The kind of diagnostic to emit. 94 /// \param ParenRange Source range enclosing code that should be parenthesized. 95 void Parser::SuggestParentheses(SourceLocation Loc, unsigned DK, 96 SourceRange ParenRange) { 97 SourceLocation EndLoc = PP.getLocForEndOfToken(ParenRange.getEnd()); 98 if (!ParenRange.getEnd().isFileID() || EndLoc.isInvalid()) { 99 // We can't display the parentheses, so just dig the 100 // warning/error and return. 101 Diag(Loc, DK); 102 return; 103 } 104 105 Diag(Loc, DK) 106 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(") 107 << FixItHint::CreateInsertion(EndLoc, ")"); 108 } 109 110 static bool IsCommonTypo(tok::TokenKind ExpectedTok, const Token &Tok) { 111 switch (ExpectedTok) { 112 case tok::semi: 113 return Tok.is(tok::colon) || Tok.is(tok::comma); // : or , for ; 114 default: return false; 115 } 116 } 117 118 bool Parser::ExpectAndConsume(tok::TokenKind ExpectedTok, unsigned DiagID, 119 StringRef Msg) { 120 if (Tok.is(ExpectedTok) || Tok.is(tok::code_completion)) { 121 ConsumeAnyToken(); 122 return false; 123 } 124 125 // Detect common single-character typos and resume. 126 if (IsCommonTypo(ExpectedTok, Tok)) { 127 SourceLocation Loc = Tok.getLocation(); 128 { 129 DiagnosticBuilder DB = Diag(Loc, DiagID); 130 DB << FixItHint::CreateReplacement( 131 SourceRange(Loc), tok::getPunctuatorSpelling(ExpectedTok)); 132 if (DiagID == diag::err_expected) 133 DB << ExpectedTok; 134 else if (DiagID == diag::err_expected_after) 135 DB << Msg << ExpectedTok; 136 else 137 DB << Msg; 138 } 139 140 // Pretend there wasn't a problem. 141 ConsumeAnyToken(); 142 return false; 143 } 144 145 SourceLocation EndLoc = PP.getLocForEndOfToken(PrevTokLocation); 146 const char *Spelling = nullptr; 147 if (EndLoc.isValid()) 148 Spelling = tok::getPunctuatorSpelling(ExpectedTok); 149 150 DiagnosticBuilder DB = 151 Spelling 152 ? Diag(EndLoc, DiagID) << FixItHint::CreateInsertion(EndLoc, Spelling) 153 : Diag(Tok, DiagID); 154 if (DiagID == diag::err_expected) 155 DB << ExpectedTok; 156 else if (DiagID == diag::err_expected_after) 157 DB << Msg << ExpectedTok; 158 else 159 DB << Msg; 160 161 return true; 162 } 163 164 bool Parser::ExpectAndConsumeSemi(unsigned DiagID, StringRef TokenUsed) { 165 if (TryConsumeToken(tok::semi)) 166 return false; 167 168 if (Tok.is(tok::code_completion)) { 169 handleUnexpectedCodeCompletionToken(); 170 return false; 171 } 172 173 if ((Tok.is(tok::r_paren) || Tok.is(tok::r_square)) && 174 NextToken().is(tok::semi)) { 175 Diag(Tok, diag::err_extraneous_token_before_semi) 176 << PP.getSpelling(Tok) 177 << FixItHint::CreateRemoval(Tok.getLocation()); 178 ConsumeAnyToken(); // The ')' or ']'. 179 ConsumeToken(); // The ';'. 180 return false; 181 } 182 183 return ExpectAndConsume(tok::semi, DiagID , TokenUsed); 184 } 185 186 void Parser::ConsumeExtraSemi(ExtraSemiKind Kind, DeclSpec::TST TST) { 187 if (!Tok.is(tok::semi)) return; 188 189 bool HadMultipleSemis = false; 190 SourceLocation StartLoc = Tok.getLocation(); 191 SourceLocation EndLoc = Tok.getLocation(); 192 ConsumeToken(); 193 194 while ((Tok.is(tok::semi) && !Tok.isAtStartOfLine())) { 195 HadMultipleSemis = true; 196 EndLoc = Tok.getLocation(); 197 ConsumeToken(); 198 } 199 200 // C++11 allows extra semicolons at namespace scope, but not in any of the 201 // other contexts. 202 if (Kind == OutsideFunction && getLangOpts().CPlusPlus) { 203 if (getLangOpts().CPlusPlus11) 204 Diag(StartLoc, diag::warn_cxx98_compat_top_level_semi) 205 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 206 else 207 Diag(StartLoc, diag::ext_extra_semi_cxx11) 208 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 209 return; 210 } 211 212 if (Kind != AfterMemberFunctionDefinition || HadMultipleSemis) 213 Diag(StartLoc, diag::ext_extra_semi) 214 << Kind << DeclSpec::getSpecifierName(TST, 215 Actions.getASTContext().getPrintingPolicy()) 216 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 217 else 218 // A single semicolon is valid after a member function definition. 219 Diag(StartLoc, diag::warn_extra_semi_after_mem_fn_def) 220 << FixItHint::CreateRemoval(SourceRange(StartLoc, EndLoc)); 221 } 222 223 bool Parser::expectIdentifier() { 224 if (Tok.is(tok::identifier)) 225 return false; 226 if (const auto *II = Tok.getIdentifierInfo()) { 227 if (II->isCPlusPlusKeyword(getLangOpts())) { 228 Diag(Tok, diag::err_expected_token_instead_of_objcxx_keyword) 229 << tok::identifier << Tok.getIdentifierInfo(); 230 // Objective-C++: Recover by treating this keyword as a valid identifier. 231 return false; 232 } 233 } 234 Diag(Tok, diag::err_expected) << tok::identifier; 235 return true; 236 } 237 238 void Parser::checkCompoundToken(SourceLocation FirstTokLoc, 239 tok::TokenKind FirstTokKind, CompoundToken Op) { 240 if (FirstTokLoc.isInvalid()) 241 return; 242 SourceLocation SecondTokLoc = Tok.getLocation(); 243 244 // If either token is in a macro, we expect both tokens to come from the same 245 // macro expansion. 246 if ((FirstTokLoc.isMacroID() || SecondTokLoc.isMacroID()) && 247 PP.getSourceManager().getFileID(FirstTokLoc) != 248 PP.getSourceManager().getFileID(SecondTokLoc)) { 249 Diag(FirstTokLoc, diag::warn_compound_token_split_by_macro) 250 << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() 251 << static_cast<int>(Op) << SourceRange(FirstTokLoc); 252 Diag(SecondTokLoc, diag::note_compound_token_split_second_token_here) 253 << (FirstTokKind == Tok.getKind()) << Tok.getKind() 254 << SourceRange(SecondTokLoc); 255 return; 256 } 257 258 // We expect the tokens to abut. 259 if (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()) { 260 SourceLocation SpaceLoc = PP.getLocForEndOfToken(FirstTokLoc); 261 if (SpaceLoc.isInvalid()) 262 SpaceLoc = FirstTokLoc; 263 Diag(SpaceLoc, diag::warn_compound_token_split_by_whitespace) 264 << (FirstTokKind == Tok.getKind()) << FirstTokKind << Tok.getKind() 265 << static_cast<int>(Op) << SourceRange(FirstTokLoc, SecondTokLoc); 266 return; 267 } 268 } 269 270 //===----------------------------------------------------------------------===// 271 // Error recovery. 272 //===----------------------------------------------------------------------===// 273 274 static bool HasFlagsSet(Parser::SkipUntilFlags L, Parser::SkipUntilFlags R) { 275 return (static_cast<unsigned>(L) & static_cast<unsigned>(R)) != 0; 276 } 277 278 /// SkipUntil - Read tokens until we get to the specified token, then consume 279 /// it (unless no flag StopBeforeMatch). Because we cannot guarantee that the 280 /// token will ever occur, this skips to the next token, or to some likely 281 /// good stopping point. If StopAtSemi is true, skipping will stop at a ';' 282 /// character. 283 /// 284 /// If SkipUntil finds the specified token, it returns true, otherwise it 285 /// returns false. 286 bool Parser::SkipUntil(ArrayRef<tok::TokenKind> Toks, SkipUntilFlags Flags) { 287 // We always want this function to skip at least one token if the first token 288 // isn't T and if not at EOF. 289 bool isFirstTokenSkipped = true; 290 while (true) { 291 // If we found one of the tokens, stop and return true. 292 for (unsigned i = 0, NumToks = Toks.size(); i != NumToks; ++i) { 293 if (Tok.is(Toks[i])) { 294 if (HasFlagsSet(Flags, StopBeforeMatch)) { 295 // Noop, don't consume the token. 296 } else { 297 ConsumeAnyToken(); 298 } 299 return true; 300 } 301 } 302 303 // Important special case: The caller has given up and just wants us to 304 // skip the rest of the file. Do this without recursing, since we can 305 // get here precisely because the caller detected too much recursion. 306 if (Toks.size() == 1 && Toks[0] == tok::eof && 307 !HasFlagsSet(Flags, StopAtSemi) && 308 !HasFlagsSet(Flags, StopAtCodeCompletion)) { 309 while (Tok.isNot(tok::eof)) 310 ConsumeAnyToken(); 311 return true; 312 } 313 314 switch (Tok.getKind()) { 315 case tok::eof: 316 // Ran out of tokens. 317 return false; 318 319 case tok::annot_pragma_openmp: 320 case tok::annot_attr_openmp: 321 case tok::annot_pragma_openmp_end: 322 // Stop before an OpenMP pragma boundary. 323 if (OpenMPDirectiveParsing) 324 return false; 325 ConsumeAnnotationToken(); 326 break; 327 case tok::annot_pragma_openacc: 328 case tok::annot_pragma_openacc_end: 329 // Stop before an OpenACC pragma boundary. 330 if (OpenACCDirectiveParsing) 331 return false; 332 ConsumeAnnotationToken(); 333 break; 334 case tok::annot_module_begin: 335 case tok::annot_module_end: 336 case tok::annot_module_include: 337 case tok::annot_repl_input_end: 338 // Stop before we change submodules. They generally indicate a "good" 339 // place to pick up parsing again (except in the special case where 340 // we're trying to skip to EOF). 341 return false; 342 343 case tok::code_completion: 344 if (!HasFlagsSet(Flags, StopAtCodeCompletion)) 345 handleUnexpectedCodeCompletionToken(); 346 return false; 347 348 case tok::l_paren: 349 // Recursively skip properly-nested parens. 350 ConsumeParen(); 351 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 352 SkipUntil(tok::r_paren, StopAtCodeCompletion); 353 else 354 SkipUntil(tok::r_paren); 355 break; 356 case tok::l_square: 357 // Recursively skip properly-nested square brackets. 358 ConsumeBracket(); 359 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 360 SkipUntil(tok::r_square, StopAtCodeCompletion); 361 else 362 SkipUntil(tok::r_square); 363 break; 364 case tok::l_brace: 365 // Recursively skip properly-nested braces. 366 ConsumeBrace(); 367 if (HasFlagsSet(Flags, StopAtCodeCompletion)) 368 SkipUntil(tok::r_brace, StopAtCodeCompletion); 369 else 370 SkipUntil(tok::r_brace); 371 break; 372 case tok::question: 373 // Recursively skip ? ... : pairs; these function as brackets. But 374 // still stop at a semicolon if requested. 375 ConsumeToken(); 376 SkipUntil(tok::colon, 377 SkipUntilFlags(unsigned(Flags) & 378 unsigned(StopAtCodeCompletion | StopAtSemi))); 379 break; 380 381 // Okay, we found a ']' or '}' or ')', which we think should be balanced. 382 // Since the user wasn't looking for this token (if they were, it would 383 // already be handled), this isn't balanced. If there is a LHS token at a 384 // higher level, we will assume that this matches the unbalanced token 385 // and return it. Otherwise, this is a spurious RHS token, which we skip. 386 case tok::r_paren: 387 if (ParenCount && !isFirstTokenSkipped) 388 return false; // Matches something. 389 ConsumeParen(); 390 break; 391 case tok::r_square: 392 if (BracketCount && !isFirstTokenSkipped) 393 return false; // Matches something. 394 ConsumeBracket(); 395 break; 396 case tok::r_brace: 397 if (BraceCount && !isFirstTokenSkipped) 398 return false; // Matches something. 399 ConsumeBrace(); 400 break; 401 402 case tok::semi: 403 if (HasFlagsSet(Flags, StopAtSemi)) 404 return false; 405 [[fallthrough]]; 406 default: 407 // Skip this token. 408 ConsumeAnyToken(); 409 break; 410 } 411 isFirstTokenSkipped = false; 412 } 413 } 414 415 //===----------------------------------------------------------------------===// 416 // Scope manipulation 417 //===----------------------------------------------------------------------===// 418 419 /// EnterScope - Start a new scope. 420 void Parser::EnterScope(unsigned ScopeFlags) { 421 if (NumCachedScopes) { 422 Scope *N = ScopeCache[--NumCachedScopes]; 423 N->Init(getCurScope(), ScopeFlags); 424 Actions.CurScope = N; 425 } else { 426 Actions.CurScope = new Scope(getCurScope(), ScopeFlags, Diags); 427 } 428 } 429 430 /// ExitScope - Pop a scope off the scope stack. 431 void Parser::ExitScope() { 432 assert(getCurScope() && "Scope imbalance!"); 433 434 // Inform the actions module that this scope is going away if there are any 435 // decls in it. 436 Actions.ActOnPopScope(Tok.getLocation(), getCurScope()); 437 438 Scope *OldScope = getCurScope(); 439 Actions.CurScope = OldScope->getParent(); 440 441 if (NumCachedScopes == ScopeCacheSize) 442 delete OldScope; 443 else 444 ScopeCache[NumCachedScopes++] = OldScope; 445 } 446 447 /// Set the flags for the current scope to ScopeFlags. If ManageFlags is false, 448 /// this object does nothing. 449 Parser::ParseScopeFlags::ParseScopeFlags(Parser *Self, unsigned ScopeFlags, 450 bool ManageFlags) 451 : CurScope(ManageFlags ? Self->getCurScope() : nullptr) { 452 if (CurScope) { 453 OldFlags = CurScope->getFlags(); 454 CurScope->setFlags(ScopeFlags); 455 } 456 } 457 458 /// Restore the flags for the current scope to what they were before this 459 /// object overrode them. 460 Parser::ParseScopeFlags::~ParseScopeFlags() { 461 if (CurScope) 462 CurScope->setFlags(OldFlags); 463 } 464 465 466 //===----------------------------------------------------------------------===// 467 // C99 6.9: External Definitions. 468 //===----------------------------------------------------------------------===// 469 470 Parser::~Parser() { 471 // If we still have scopes active, delete the scope tree. 472 delete getCurScope(); 473 Actions.CurScope = nullptr; 474 475 // Free the scope cache. 476 for (unsigned i = 0, e = NumCachedScopes; i != e; ++i) 477 delete ScopeCache[i]; 478 479 resetPragmaHandlers(); 480 481 PP.removeCommentHandler(CommentSemaHandler.get()); 482 483 PP.clearCodeCompletionHandler(); 484 485 DestroyTemplateIds(); 486 } 487 488 /// Initialize - Warm up the parser. 489 /// 490 void Parser::Initialize() { 491 // Create the translation unit scope. Install it as the current scope. 492 assert(getCurScope() == nullptr && "A scope is already active?"); 493 EnterScope(Scope::DeclScope); 494 Actions.ActOnTranslationUnitScope(getCurScope()); 495 496 // Initialization for Objective-C context sensitive keywords recognition. 497 // Referenced in Parser::ParseObjCTypeQualifierList. 498 if (getLangOpts().ObjC) { 499 ObjCTypeQuals[objc_in] = &PP.getIdentifierTable().get("in"); 500 ObjCTypeQuals[objc_out] = &PP.getIdentifierTable().get("out"); 501 ObjCTypeQuals[objc_inout] = &PP.getIdentifierTable().get("inout"); 502 ObjCTypeQuals[objc_oneway] = &PP.getIdentifierTable().get("oneway"); 503 ObjCTypeQuals[objc_bycopy] = &PP.getIdentifierTable().get("bycopy"); 504 ObjCTypeQuals[objc_byref] = &PP.getIdentifierTable().get("byref"); 505 ObjCTypeQuals[objc_nonnull] = &PP.getIdentifierTable().get("nonnull"); 506 ObjCTypeQuals[objc_nullable] = &PP.getIdentifierTable().get("nullable"); 507 ObjCTypeQuals[objc_null_unspecified] 508 = &PP.getIdentifierTable().get("null_unspecified"); 509 } 510 511 Ident_instancetype = nullptr; 512 Ident_final = nullptr; 513 Ident_sealed = nullptr; 514 Ident_abstract = nullptr; 515 Ident_override = nullptr; 516 Ident_GNU_final = nullptr; 517 Ident_import = nullptr; 518 Ident_module = nullptr; 519 520 Ident_super = &PP.getIdentifierTable().get("super"); 521 522 Ident_vector = nullptr; 523 Ident_bool = nullptr; 524 Ident_Bool = nullptr; 525 Ident_pixel = nullptr; 526 if (getLangOpts().AltiVec || getLangOpts().ZVector) { 527 Ident_vector = &PP.getIdentifierTable().get("vector"); 528 Ident_bool = &PP.getIdentifierTable().get("bool"); 529 Ident_Bool = &PP.getIdentifierTable().get("_Bool"); 530 } 531 if (getLangOpts().AltiVec) 532 Ident_pixel = &PP.getIdentifierTable().get("pixel"); 533 534 Ident_introduced = nullptr; 535 Ident_deprecated = nullptr; 536 Ident_obsoleted = nullptr; 537 Ident_unavailable = nullptr; 538 Ident_strict = nullptr; 539 Ident_replacement = nullptr; 540 541 Ident_language = Ident_defined_in = Ident_generated_declaration = Ident_USR = 542 nullptr; 543 544 Ident__except = nullptr; 545 546 Ident__exception_code = Ident__exception_info = nullptr; 547 Ident__abnormal_termination = Ident___exception_code = nullptr; 548 Ident___exception_info = Ident___abnormal_termination = nullptr; 549 Ident_GetExceptionCode = Ident_GetExceptionInfo = nullptr; 550 Ident_AbnormalTermination = nullptr; 551 552 if(getLangOpts().Borland) { 553 Ident__exception_info = PP.getIdentifierInfo("_exception_info"); 554 Ident___exception_info = PP.getIdentifierInfo("__exception_info"); 555 Ident_GetExceptionInfo = PP.getIdentifierInfo("GetExceptionInformation"); 556 Ident__exception_code = PP.getIdentifierInfo("_exception_code"); 557 Ident___exception_code = PP.getIdentifierInfo("__exception_code"); 558 Ident_GetExceptionCode = PP.getIdentifierInfo("GetExceptionCode"); 559 Ident__abnormal_termination = PP.getIdentifierInfo("_abnormal_termination"); 560 Ident___abnormal_termination = PP.getIdentifierInfo("__abnormal_termination"); 561 Ident_AbnormalTermination = PP.getIdentifierInfo("AbnormalTermination"); 562 563 PP.SetPoisonReason(Ident__exception_code,diag::err_seh___except_block); 564 PP.SetPoisonReason(Ident___exception_code,diag::err_seh___except_block); 565 PP.SetPoisonReason(Ident_GetExceptionCode,diag::err_seh___except_block); 566 PP.SetPoisonReason(Ident__exception_info,diag::err_seh___except_filter); 567 PP.SetPoisonReason(Ident___exception_info,diag::err_seh___except_filter); 568 PP.SetPoisonReason(Ident_GetExceptionInfo,diag::err_seh___except_filter); 569 PP.SetPoisonReason(Ident__abnormal_termination,diag::err_seh___finally_block); 570 PP.SetPoisonReason(Ident___abnormal_termination,diag::err_seh___finally_block); 571 PP.SetPoisonReason(Ident_AbnormalTermination,diag::err_seh___finally_block); 572 } 573 574 if (getLangOpts().CPlusPlusModules) { 575 Ident_import = PP.getIdentifierInfo("import"); 576 Ident_module = PP.getIdentifierInfo("module"); 577 } 578 579 Actions.Initialize(); 580 581 // Prime the lexer look-ahead. 582 ConsumeToken(); 583 } 584 585 void Parser::DestroyTemplateIds() { 586 for (TemplateIdAnnotation *Id : TemplateIds) 587 Id->Destroy(); 588 TemplateIds.clear(); 589 } 590 591 /// Parse the first top-level declaration in a translation unit. 592 /// 593 /// translation-unit: 594 /// [C] external-declaration 595 /// [C] translation-unit external-declaration 596 /// [C++] top-level-declaration-seq[opt] 597 /// [C++20] global-module-fragment[opt] module-declaration 598 /// top-level-declaration-seq[opt] private-module-fragment[opt] 599 /// 600 /// Note that in C, it is an error if there is no first declaration. 601 bool Parser::ParseFirstTopLevelDecl(DeclGroupPtrTy &Result, 602 Sema::ModuleImportState &ImportState) { 603 Actions.ActOnStartOfTranslationUnit(); 604 605 // For C++20 modules, a module decl must be the first in the TU. We also 606 // need to track module imports. 607 ImportState = Sema::ModuleImportState::FirstDecl; 608 bool NoTopLevelDecls = ParseTopLevelDecl(Result, ImportState); 609 610 // C11 6.9p1 says translation units must have at least one top-level 611 // declaration. C++ doesn't have this restriction. We also don't want to 612 // complain if we have a precompiled header, although technically if the PCH 613 // is empty we should still emit the (pedantic) diagnostic. 614 // If the main file is a header, we're only pretending it's a TU; don't warn. 615 if (NoTopLevelDecls && !Actions.getASTContext().getExternalSource() && 616 !getLangOpts().CPlusPlus && !getLangOpts().IsHeaderFile) 617 Diag(diag::ext_empty_translation_unit); 618 619 return NoTopLevelDecls; 620 } 621 622 /// ParseTopLevelDecl - Parse one top-level declaration, return whatever the 623 /// action tells us to. This returns true if the EOF was encountered. 624 /// 625 /// top-level-declaration: 626 /// declaration 627 /// [C++20] module-import-declaration 628 bool Parser::ParseTopLevelDecl(DeclGroupPtrTy &Result, 629 Sema::ModuleImportState &ImportState) { 630 DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); 631 632 // Skip over the EOF token, flagging end of previous input for incremental 633 // processing 634 if (PP.isIncrementalProcessingEnabled() && Tok.is(tok::eof)) 635 ConsumeToken(); 636 637 Result = nullptr; 638 switch (Tok.getKind()) { 639 case tok::annot_pragma_unused: 640 HandlePragmaUnused(); 641 return false; 642 643 case tok::kw_export: 644 switch (NextToken().getKind()) { 645 case tok::kw_module: 646 goto module_decl; 647 648 // Note: no need to handle kw_import here. We only form kw_import under 649 // the Standard C++ Modules, and in that case 'export import' is parsed as 650 // an export-declaration containing an import-declaration. 651 652 // Recognize context-sensitive C++20 'export module' and 'export import' 653 // declarations. 654 case tok::identifier: { 655 IdentifierInfo *II = NextToken().getIdentifierInfo(); 656 if ((II == Ident_module || II == Ident_import) && 657 GetLookAheadToken(2).isNot(tok::coloncolon)) { 658 if (II == Ident_module) 659 goto module_decl; 660 else 661 goto import_decl; 662 } 663 break; 664 } 665 666 default: 667 break; 668 } 669 break; 670 671 case tok::kw_module: 672 module_decl: 673 Result = ParseModuleDecl(ImportState); 674 return false; 675 676 case tok::kw_import: 677 import_decl: { 678 Decl *ImportDecl = ParseModuleImport(SourceLocation(), ImportState); 679 Result = Actions.ConvertDeclToDeclGroup(ImportDecl); 680 return false; 681 } 682 683 case tok::annot_module_include: { 684 auto Loc = Tok.getLocation(); 685 Module *Mod = reinterpret_cast<Module *>(Tok.getAnnotationValue()); 686 // FIXME: We need a better way to disambiguate C++ clang modules and 687 // standard C++ modules. 688 if (!getLangOpts().CPlusPlusModules || !Mod->isHeaderUnit()) 689 Actions.ActOnAnnotModuleInclude(Loc, Mod); 690 else { 691 DeclResult Import = 692 Actions.ActOnModuleImport(Loc, SourceLocation(), Loc, Mod); 693 Decl *ImportDecl = Import.isInvalid() ? nullptr : Import.get(); 694 Result = Actions.ConvertDeclToDeclGroup(ImportDecl); 695 } 696 ConsumeAnnotationToken(); 697 return false; 698 } 699 700 case tok::annot_module_begin: 701 Actions.ActOnAnnotModuleBegin( 702 Tok.getLocation(), 703 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 704 ConsumeAnnotationToken(); 705 ImportState = Sema::ModuleImportState::NotACXX20Module; 706 return false; 707 708 case tok::annot_module_end: 709 Actions.ActOnAnnotModuleEnd( 710 Tok.getLocation(), 711 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 712 ConsumeAnnotationToken(); 713 ImportState = Sema::ModuleImportState::NotACXX20Module; 714 return false; 715 716 case tok::eof: 717 case tok::annot_repl_input_end: 718 // Check whether -fmax-tokens= was reached. 719 if (PP.getMaxTokens() != 0 && PP.getTokenCount() > PP.getMaxTokens()) { 720 PP.Diag(Tok.getLocation(), diag::warn_max_tokens_total) 721 << PP.getTokenCount() << PP.getMaxTokens(); 722 SourceLocation OverrideLoc = PP.getMaxTokensOverrideLoc(); 723 if (OverrideLoc.isValid()) { 724 PP.Diag(OverrideLoc, diag::note_max_tokens_total_override); 725 } 726 } 727 728 // Late template parsing can begin. 729 Actions.SetLateTemplateParser(LateTemplateParserCallback, nullptr, this); 730 Actions.ActOnEndOfTranslationUnit(); 731 //else don't tell Sema that we ended parsing: more input might come. 732 return true; 733 734 case tok::identifier: 735 // C++2a [basic.link]p3: 736 // A token sequence beginning with 'export[opt] module' or 737 // 'export[opt] import' and not immediately followed by '::' 738 // is never interpreted as the declaration of a top-level-declaration. 739 if ((Tok.getIdentifierInfo() == Ident_module || 740 Tok.getIdentifierInfo() == Ident_import) && 741 NextToken().isNot(tok::coloncolon)) { 742 if (Tok.getIdentifierInfo() == Ident_module) 743 goto module_decl; 744 else 745 goto import_decl; 746 } 747 break; 748 749 default: 750 break; 751 } 752 753 ParsedAttributes DeclAttrs(AttrFactory); 754 ParsedAttributes DeclSpecAttrs(AttrFactory); 755 // GNU attributes are applied to the declaration specification while the 756 // standard attributes are applied to the declaration. We parse the two 757 // attribute sets into different containters so we can apply them during 758 // the regular parsing process. 759 while (MaybeParseCXX11Attributes(DeclAttrs) || 760 MaybeParseGNUAttributes(DeclSpecAttrs)) 761 ; 762 763 Result = ParseExternalDeclaration(DeclAttrs, DeclSpecAttrs); 764 // An empty Result might mean a line with ';' or some parsing error, ignore 765 // it. 766 if (Result) { 767 if (ImportState == Sema::ModuleImportState::FirstDecl) 768 // First decl was not modular. 769 ImportState = Sema::ModuleImportState::NotACXX20Module; 770 else if (ImportState == Sema::ModuleImportState::ImportAllowed) 771 // Non-imports disallow further imports. 772 ImportState = Sema::ModuleImportState::ImportFinished; 773 else if (ImportState == 774 Sema::ModuleImportState::PrivateFragmentImportAllowed) 775 // Non-imports disallow further imports. 776 ImportState = Sema::ModuleImportState::PrivateFragmentImportFinished; 777 } 778 return false; 779 } 780 781 /// ParseExternalDeclaration: 782 /// 783 /// The `Attrs` that are passed in are C++11 attributes and appertain to the 784 /// declaration. 785 /// 786 /// external-declaration: [C99 6.9], declaration: [C++ dcl.dcl] 787 /// function-definition 788 /// declaration 789 /// [GNU] asm-definition 790 /// [GNU] __extension__ external-declaration 791 /// [OBJC] objc-class-definition 792 /// [OBJC] objc-class-declaration 793 /// [OBJC] objc-alias-declaration 794 /// [OBJC] objc-protocol-definition 795 /// [OBJC] objc-method-definition 796 /// [OBJC] @end 797 /// [C++] linkage-specification 798 /// [GNU] asm-definition: 799 /// simple-asm-expr ';' 800 /// [C++11] empty-declaration 801 /// [C++11] attribute-declaration 802 /// 803 /// [C++11] empty-declaration: 804 /// ';' 805 /// 806 /// [C++0x/GNU] 'extern' 'template' declaration 807 /// 808 /// [C++20] module-import-declaration 809 /// 810 Parser::DeclGroupPtrTy 811 Parser::ParseExternalDeclaration(ParsedAttributes &Attrs, 812 ParsedAttributes &DeclSpecAttrs, 813 ParsingDeclSpec *DS) { 814 DestroyTemplateIdAnnotationsRAIIObj CleanupRAII(*this); 815 ParenBraceBracketBalancer BalancerRAIIObj(*this); 816 817 if (PP.isCodeCompletionReached()) { 818 cutOffParsing(); 819 return nullptr; 820 } 821 822 Decl *SingleDecl = nullptr; 823 switch (Tok.getKind()) { 824 case tok::annot_pragma_vis: 825 HandlePragmaVisibility(); 826 return nullptr; 827 case tok::annot_pragma_pack: 828 HandlePragmaPack(); 829 return nullptr; 830 case tok::annot_pragma_msstruct: 831 HandlePragmaMSStruct(); 832 return nullptr; 833 case tok::annot_pragma_align: 834 HandlePragmaAlign(); 835 return nullptr; 836 case tok::annot_pragma_weak: 837 HandlePragmaWeak(); 838 return nullptr; 839 case tok::annot_pragma_weakalias: 840 HandlePragmaWeakAlias(); 841 return nullptr; 842 case tok::annot_pragma_redefine_extname: 843 HandlePragmaRedefineExtname(); 844 return nullptr; 845 case tok::annot_pragma_fp_contract: 846 HandlePragmaFPContract(); 847 return nullptr; 848 case tok::annot_pragma_fenv_access: 849 case tok::annot_pragma_fenv_access_ms: 850 HandlePragmaFEnvAccess(); 851 return nullptr; 852 case tok::annot_pragma_fenv_round: 853 HandlePragmaFEnvRound(); 854 return nullptr; 855 case tok::annot_pragma_cx_limited_range: 856 HandlePragmaCXLimitedRange(); 857 return nullptr; 858 case tok::annot_pragma_float_control: 859 HandlePragmaFloatControl(); 860 return nullptr; 861 case tok::annot_pragma_fp: 862 HandlePragmaFP(); 863 break; 864 case tok::annot_pragma_opencl_extension: 865 HandlePragmaOpenCLExtension(); 866 return nullptr; 867 case tok::annot_attr_openmp: 868 case tok::annot_pragma_openmp: { 869 AccessSpecifier AS = AS_none; 870 return ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); 871 } 872 case tok::annot_pragma_openacc: 873 return ParseOpenACCDirectiveDecl(); 874 case tok::annot_pragma_ms_pointers_to_members: 875 HandlePragmaMSPointersToMembers(); 876 return nullptr; 877 case tok::annot_pragma_ms_vtordisp: 878 HandlePragmaMSVtorDisp(); 879 return nullptr; 880 case tok::annot_pragma_ms_pragma: 881 HandlePragmaMSPragma(); 882 return nullptr; 883 case tok::annot_pragma_dump: 884 HandlePragmaDump(); 885 return nullptr; 886 case tok::annot_pragma_attribute: 887 HandlePragmaAttribute(); 888 return nullptr; 889 case tok::semi: 890 // Either a C++11 empty-declaration or attribute-declaration. 891 SingleDecl = 892 Actions.ActOnEmptyDeclaration(getCurScope(), Attrs, Tok.getLocation()); 893 ConsumeExtraSemi(OutsideFunction); 894 break; 895 case tok::r_brace: 896 Diag(Tok, diag::err_extraneous_closing_brace); 897 ConsumeBrace(); 898 return nullptr; 899 case tok::eof: 900 Diag(Tok, diag::err_expected_external_declaration); 901 return nullptr; 902 case tok::kw___extension__: { 903 // __extension__ silences extension warnings in the subexpression. 904 ExtensionRAIIObject O(Diags); // Use RAII to do this. 905 ConsumeToken(); 906 return ParseExternalDeclaration(Attrs, DeclSpecAttrs); 907 } 908 case tok::kw_asm: { 909 ProhibitAttributes(Attrs); 910 911 SourceLocation StartLoc = Tok.getLocation(); 912 SourceLocation EndLoc; 913 914 ExprResult Result(ParseSimpleAsm(/*ForAsmLabel*/ false, &EndLoc)); 915 916 // Check if GNU-style InlineAsm is disabled. 917 // Empty asm string is allowed because it will not introduce 918 // any assembly code. 919 if (!(getLangOpts().GNUAsm || Result.isInvalid())) { 920 const auto *SL = cast<StringLiteral>(Result.get()); 921 if (!SL->getString().trim().empty()) 922 Diag(StartLoc, diag::err_gnu_inline_asm_disabled); 923 } 924 925 ExpectAndConsume(tok::semi, diag::err_expected_after, 926 "top-level asm block"); 927 928 if (Result.isInvalid()) 929 return nullptr; 930 SingleDecl = Actions.ActOnFileScopeAsmDecl(Result.get(), StartLoc, EndLoc); 931 break; 932 } 933 case tok::at: 934 return ParseObjCAtDirectives(Attrs, DeclSpecAttrs); 935 case tok::minus: 936 case tok::plus: 937 if (!getLangOpts().ObjC) { 938 Diag(Tok, diag::err_expected_external_declaration); 939 ConsumeToken(); 940 return nullptr; 941 } 942 SingleDecl = ParseObjCMethodDefinition(); 943 break; 944 case tok::code_completion: 945 cutOffParsing(); 946 if (CurParsedObjCImpl) { 947 // Code-complete Objective-C methods even without leading '-'/'+' prefix. 948 Actions.CodeCompletion().CodeCompleteObjCMethodDecl( 949 getCurScope(), 950 /*IsInstanceMethod=*/std::nullopt, 951 /*ReturnType=*/nullptr); 952 } 953 954 SemaCodeCompletion::ParserCompletionContext PCC; 955 if (CurParsedObjCImpl) { 956 PCC = SemaCodeCompletion::PCC_ObjCImplementation; 957 } else if (PP.isIncrementalProcessingEnabled()) { 958 PCC = SemaCodeCompletion::PCC_TopLevelOrExpression; 959 } else { 960 PCC = SemaCodeCompletion::PCC_Namespace; 961 }; 962 Actions.CodeCompletion().CodeCompleteOrdinaryName(getCurScope(), PCC); 963 return nullptr; 964 case tok::kw_import: { 965 Sema::ModuleImportState IS = Sema::ModuleImportState::NotACXX20Module; 966 if (getLangOpts().CPlusPlusModules) { 967 llvm_unreachable("not expecting a c++20 import here"); 968 ProhibitAttributes(Attrs); 969 } 970 SingleDecl = ParseModuleImport(SourceLocation(), IS); 971 } break; 972 case tok::kw_export: 973 if (getLangOpts().CPlusPlusModules || getLangOpts().HLSL) { 974 ProhibitAttributes(Attrs); 975 SingleDecl = ParseExportDeclaration(); 976 break; 977 } 978 // This must be 'export template'. Parse it so we can diagnose our lack 979 // of support. 980 [[fallthrough]]; 981 case tok::kw_using: 982 case tok::kw_namespace: 983 case tok::kw_typedef: 984 case tok::kw_template: 985 case tok::kw_static_assert: 986 case tok::kw__Static_assert: 987 // A function definition cannot start with any of these keywords. 988 { 989 SourceLocation DeclEnd; 990 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 991 DeclSpecAttrs); 992 } 993 994 case tok::kw_cbuffer: 995 case tok::kw_tbuffer: 996 if (getLangOpts().HLSL) { 997 SourceLocation DeclEnd; 998 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 999 DeclSpecAttrs); 1000 } 1001 goto dont_know; 1002 1003 case tok::kw_static: 1004 // Parse (then ignore) 'static' prior to a template instantiation. This is 1005 // a GCC extension that we intentionally do not support. 1006 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { 1007 Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) 1008 << 0; 1009 SourceLocation DeclEnd; 1010 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1011 DeclSpecAttrs); 1012 } 1013 goto dont_know; 1014 1015 case tok::kw_inline: 1016 if (getLangOpts().CPlusPlus) { 1017 tok::TokenKind NextKind = NextToken().getKind(); 1018 1019 // Inline namespaces. Allowed as an extension even in C++03. 1020 if (NextKind == tok::kw_namespace) { 1021 SourceLocation DeclEnd; 1022 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1023 DeclSpecAttrs); 1024 } 1025 1026 // Parse (then ignore) 'inline' prior to a template instantiation. This is 1027 // a GCC extension that we intentionally do not support. 1028 if (NextKind == tok::kw_template) { 1029 Diag(ConsumeToken(), diag::warn_static_inline_explicit_inst_ignored) 1030 << 1; 1031 SourceLocation DeclEnd; 1032 return ParseDeclaration(DeclaratorContext::File, DeclEnd, Attrs, 1033 DeclSpecAttrs); 1034 } 1035 } 1036 goto dont_know; 1037 1038 case tok::kw_extern: 1039 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_template)) { 1040 // Extern templates 1041 SourceLocation ExternLoc = ConsumeToken(); 1042 SourceLocation TemplateLoc = ConsumeToken(); 1043 Diag(ExternLoc, getLangOpts().CPlusPlus11 ? 1044 diag::warn_cxx98_compat_extern_template : 1045 diag::ext_extern_template) << SourceRange(ExternLoc, TemplateLoc); 1046 SourceLocation DeclEnd; 1047 return ParseExplicitInstantiation(DeclaratorContext::File, ExternLoc, 1048 TemplateLoc, DeclEnd, Attrs); 1049 } 1050 goto dont_know; 1051 1052 case tok::kw___if_exists: 1053 case tok::kw___if_not_exists: 1054 ParseMicrosoftIfExistsExternalDeclaration(); 1055 return nullptr; 1056 1057 case tok::kw_module: 1058 Diag(Tok, diag::err_unexpected_module_decl); 1059 SkipUntil(tok::semi); 1060 return nullptr; 1061 1062 default: 1063 dont_know: 1064 if (Tok.isEditorPlaceholder()) { 1065 ConsumeToken(); 1066 return nullptr; 1067 } 1068 if (getLangOpts().IncrementalExtensions && 1069 !isDeclarationStatement(/*DisambiguatingWithExpression=*/true)) 1070 return ParseTopLevelStmtDecl(); 1071 1072 // We can't tell whether this is a function-definition or declaration yet. 1073 if (!SingleDecl) 1074 return ParseDeclarationOrFunctionDefinition(Attrs, DeclSpecAttrs, DS); 1075 } 1076 1077 // This routine returns a DeclGroup, if the thing we parsed only contains a 1078 // single decl, convert it now. 1079 return Actions.ConvertDeclToDeclGroup(SingleDecl); 1080 } 1081 1082 /// Determine whether the current token, if it occurs after a 1083 /// declarator, continues a declaration or declaration list. 1084 bool Parser::isDeclarationAfterDeclarator() { 1085 // Check for '= delete' or '= default' 1086 if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { 1087 const Token &KW = NextToken(); 1088 if (KW.is(tok::kw_default) || KW.is(tok::kw_delete)) 1089 return false; 1090 } 1091 1092 return Tok.is(tok::equal) || // int X()= -> not a function def 1093 Tok.is(tok::comma) || // int X(), -> not a function def 1094 Tok.is(tok::semi) || // int X(); -> not a function def 1095 Tok.is(tok::kw_asm) || // int X() __asm__ -> not a function def 1096 Tok.is(tok::kw___attribute) || // int X() __attr__ -> not a function def 1097 (getLangOpts().CPlusPlus && 1098 Tok.is(tok::l_paren)); // int X(0) -> not a function def [C++] 1099 } 1100 1101 /// Determine whether the current token, if it occurs after a 1102 /// declarator, indicates the start of a function definition. 1103 bool Parser::isStartOfFunctionDefinition(const ParsingDeclarator &Declarator) { 1104 assert(Declarator.isFunctionDeclarator() && "Isn't a function declarator"); 1105 if (Tok.is(tok::l_brace)) // int X() {} 1106 return true; 1107 1108 // Handle K&R C argument lists: int X(f) int f; {} 1109 if (!getLangOpts().CPlusPlus && 1110 Declarator.getFunctionTypeInfo().isKNRPrototype()) 1111 return isDeclarationSpecifier(ImplicitTypenameContext::No); 1112 1113 if (getLangOpts().CPlusPlus && Tok.is(tok::equal)) { 1114 const Token &KW = NextToken(); 1115 return KW.is(tok::kw_default) || KW.is(tok::kw_delete); 1116 } 1117 1118 return Tok.is(tok::colon) || // X() : Base() {} (used for ctors) 1119 Tok.is(tok::kw_try); // X() try { ... } 1120 } 1121 1122 /// Parse either a function-definition or a declaration. We can't tell which 1123 /// we have until we read up to the compound-statement in function-definition. 1124 /// TemplateParams, if non-NULL, provides the template parameters when we're 1125 /// parsing a C++ template-declaration. 1126 /// 1127 /// function-definition: [C99 6.9.1] 1128 /// decl-specs declarator declaration-list[opt] compound-statement 1129 /// [C90] function-definition: [C99 6.7.1] - implicit int result 1130 /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement 1131 /// 1132 /// declaration: [C99 6.7] 1133 /// declaration-specifiers init-declarator-list[opt] ';' 1134 /// [!C99] init-declarator-list ';' [TODO: warn in c99 mode] 1135 /// [OMP] threadprivate-directive 1136 /// [OMP] allocate-directive [TODO] 1137 /// 1138 Parser::DeclGroupPtrTy Parser::ParseDeclOrFunctionDefInternal( 1139 ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, 1140 ParsingDeclSpec &DS, AccessSpecifier AS) { 1141 // Because we assume that the DeclSpec has not yet been initialised, we simply 1142 // overwrite the source range and attribute the provided leading declspec 1143 // attributes. 1144 assert(DS.getSourceRange().isInvalid() && 1145 "expected uninitialised source range"); 1146 DS.SetRangeStart(DeclSpecAttrs.Range.getBegin()); 1147 DS.SetRangeEnd(DeclSpecAttrs.Range.getEnd()); 1148 DS.takeAttributesFrom(DeclSpecAttrs); 1149 1150 ParsedTemplateInfo TemplateInfo; 1151 MaybeParseMicrosoftAttributes(DS.getAttributes()); 1152 // Parse the common declaration-specifiers piece. 1153 ParseDeclarationSpecifiers(DS, TemplateInfo, AS, 1154 DeclSpecContext::DSC_top_level); 1155 1156 // If we had a free-standing type definition with a missing semicolon, we 1157 // may get this far before the problem becomes obvious. 1158 if (DS.hasTagDefinition() && DiagnoseMissingSemiAfterTagDefinition( 1159 DS, AS, DeclSpecContext::DSC_top_level)) 1160 return nullptr; 1161 1162 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" 1163 // declaration-specifiers init-declarator-list[opt] ';' 1164 if (Tok.is(tok::semi)) { 1165 auto LengthOfTSTToken = [](DeclSpec::TST TKind) { 1166 assert(DeclSpec::isDeclRep(TKind)); 1167 switch(TKind) { 1168 case DeclSpec::TST_class: 1169 return 5; 1170 case DeclSpec::TST_struct: 1171 return 6; 1172 case DeclSpec::TST_union: 1173 return 5; 1174 case DeclSpec::TST_enum: 1175 return 4; 1176 case DeclSpec::TST_interface: 1177 return 9; 1178 default: 1179 llvm_unreachable("we only expect to get the length of the class/struct/union/enum"); 1180 } 1181 1182 }; 1183 // Suggest correct location to fix '[[attrib]] struct' to 'struct [[attrib]]' 1184 SourceLocation CorrectLocationForAttributes = 1185 DeclSpec::isDeclRep(DS.getTypeSpecType()) 1186 ? DS.getTypeSpecTypeLoc().getLocWithOffset( 1187 LengthOfTSTToken(DS.getTypeSpecType())) 1188 : SourceLocation(); 1189 ProhibitAttributes(Attrs, CorrectLocationForAttributes); 1190 ConsumeToken(); 1191 RecordDecl *AnonRecord = nullptr; 1192 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec( 1193 getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord); 1194 DS.complete(TheDecl); 1195 Actions.ActOnDefinedDeclarationSpecifier(TheDecl); 1196 if (AnonRecord) { 1197 Decl* decls[] = {AnonRecord, TheDecl}; 1198 return Actions.BuildDeclaratorGroup(decls); 1199 } 1200 return Actions.ConvertDeclToDeclGroup(TheDecl); 1201 } 1202 1203 if (DS.hasTagDefinition()) 1204 Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl()); 1205 1206 // ObjC2 allows prefix attributes on class interfaces and protocols. 1207 // FIXME: This still needs better diagnostics. We should only accept 1208 // attributes here, no types, etc. 1209 if (getLangOpts().ObjC && Tok.is(tok::at)) { 1210 SourceLocation AtLoc = ConsumeToken(); // the "@" 1211 if (!Tok.isObjCAtKeyword(tok::objc_interface) && 1212 !Tok.isObjCAtKeyword(tok::objc_protocol) && 1213 !Tok.isObjCAtKeyword(tok::objc_implementation)) { 1214 Diag(Tok, diag::err_objc_unexpected_attr); 1215 SkipUntil(tok::semi); 1216 return nullptr; 1217 } 1218 1219 DS.abort(); 1220 DS.takeAttributesFrom(Attrs); 1221 1222 const char *PrevSpec = nullptr; 1223 unsigned DiagID; 1224 if (DS.SetTypeSpecType(DeclSpec::TST_unspecified, AtLoc, PrevSpec, DiagID, 1225 Actions.getASTContext().getPrintingPolicy())) 1226 Diag(AtLoc, DiagID) << PrevSpec; 1227 1228 if (Tok.isObjCAtKeyword(tok::objc_protocol)) 1229 return ParseObjCAtProtocolDeclaration(AtLoc, DS.getAttributes()); 1230 1231 if (Tok.isObjCAtKeyword(tok::objc_implementation)) 1232 return ParseObjCAtImplementationDeclaration(AtLoc, DS.getAttributes()); 1233 1234 return Actions.ConvertDeclToDeclGroup( 1235 ParseObjCAtInterfaceDeclaration(AtLoc, DS.getAttributes())); 1236 } 1237 1238 // If the declspec consisted only of 'extern' and we have a string 1239 // literal following it, this must be a C++ linkage specifier like 1240 // 'extern "C"'. 1241 if (getLangOpts().CPlusPlus && isTokenStringLiteral() && 1242 DS.getStorageClassSpec() == DeclSpec::SCS_extern && 1243 DS.getParsedSpecifiers() == DeclSpec::PQ_StorageClassSpecifier) { 1244 ProhibitAttributes(Attrs); 1245 Decl *TheDecl = ParseLinkage(DS, DeclaratorContext::File); 1246 return Actions.ConvertDeclToDeclGroup(TheDecl); 1247 } 1248 1249 return ParseDeclGroup(DS, DeclaratorContext::File, Attrs, TemplateInfo); 1250 } 1251 1252 Parser::DeclGroupPtrTy Parser::ParseDeclarationOrFunctionDefinition( 1253 ParsedAttributes &Attrs, ParsedAttributes &DeclSpecAttrs, 1254 ParsingDeclSpec *DS, AccessSpecifier AS) { 1255 // Add an enclosing time trace scope for a bunch of small scopes with 1256 // "EvaluateAsConstExpr". 1257 llvm::TimeTraceScope TimeScope("ParseDeclarationOrFunctionDefinition", [&]() { 1258 return Tok.getLocation().printToString( 1259 Actions.getASTContext().getSourceManager()); 1260 }); 1261 1262 if (DS) { 1263 return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, *DS, AS); 1264 } else { 1265 ParsingDeclSpec PDS(*this); 1266 // Must temporarily exit the objective-c container scope for 1267 // parsing c constructs and re-enter objc container scope 1268 // afterwards. 1269 ObjCDeclContextSwitch ObjCDC(*this); 1270 1271 return ParseDeclOrFunctionDefInternal(Attrs, DeclSpecAttrs, PDS, AS); 1272 } 1273 } 1274 1275 /// ParseFunctionDefinition - We parsed and verified that the specified 1276 /// Declarator is well formed. If this is a K&R-style function, read the 1277 /// parameters declaration-list, then start the compound-statement. 1278 /// 1279 /// function-definition: [C99 6.9.1] 1280 /// decl-specs declarator declaration-list[opt] compound-statement 1281 /// [C90] function-definition: [C99 6.7.1] - implicit int result 1282 /// [C90] decl-specs[opt] declarator declaration-list[opt] compound-statement 1283 /// [C++] function-definition: [C++ 8.4] 1284 /// decl-specifier-seq[opt] declarator ctor-initializer[opt] 1285 /// function-body 1286 /// [C++] function-definition: [C++ 8.4] 1287 /// decl-specifier-seq[opt] declarator function-try-block 1288 /// 1289 Decl *Parser::ParseFunctionDefinition(ParsingDeclarator &D, 1290 const ParsedTemplateInfo &TemplateInfo, 1291 LateParsedAttrList *LateParsedAttrs) { 1292 llvm::TimeTraceScope TimeScope("ParseFunctionDefinition", [&]() { 1293 return Actions.GetNameForDeclarator(D).getName().getAsString(); 1294 }); 1295 1296 // Poison SEH identifiers so they are flagged as illegal in function bodies. 1297 PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true); 1298 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 1299 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1300 1301 // If this is C89 and the declspecs were completely missing, fudge in an 1302 // implicit int. We do this here because this is the only place where 1303 // declaration-specifiers are completely optional in the grammar. 1304 if (getLangOpts().isImplicitIntRequired() && D.getDeclSpec().isEmpty()) { 1305 Diag(D.getIdentifierLoc(), diag::warn_missing_type_specifier) 1306 << D.getDeclSpec().getSourceRange(); 1307 const char *PrevSpec; 1308 unsigned DiagID; 1309 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); 1310 D.getMutableDeclSpec().SetTypeSpecType(DeclSpec::TST_int, 1311 D.getIdentifierLoc(), 1312 PrevSpec, DiagID, 1313 Policy); 1314 D.SetRangeBegin(D.getDeclSpec().getSourceRange().getBegin()); 1315 } 1316 1317 // If this declaration was formed with a K&R-style identifier list for the 1318 // arguments, parse declarations for all of the args next. 1319 // int foo(a,b) int a; float b; {} 1320 if (FTI.isKNRPrototype()) 1321 ParseKNRParamDeclarations(D); 1322 1323 // We should have either an opening brace or, in a C++ constructor, 1324 // we may have a colon. 1325 if (Tok.isNot(tok::l_brace) && 1326 (!getLangOpts().CPlusPlus || 1327 (Tok.isNot(tok::colon) && Tok.isNot(tok::kw_try) && 1328 Tok.isNot(tok::equal)))) { 1329 Diag(Tok, diag::err_expected_fn_body); 1330 1331 // Skip over garbage, until we get to '{'. Don't eat the '{'. 1332 SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch); 1333 1334 // If we didn't find the '{', bail out. 1335 if (Tok.isNot(tok::l_brace)) 1336 return nullptr; 1337 } 1338 1339 // Check to make sure that any normal attributes are allowed to be on 1340 // a definition. Late parsed attributes are checked at the end. 1341 if (Tok.isNot(tok::equal)) { 1342 for (const ParsedAttr &AL : D.getAttributes()) 1343 if (AL.isKnownToGCC() && !AL.isStandardAttributeSyntax()) 1344 Diag(AL.getLoc(), diag::warn_attribute_on_function_definition) << AL; 1345 } 1346 1347 // In delayed template parsing mode, for function template we consume the 1348 // tokens and store them for late parsing at the end of the translation unit. 1349 if (getLangOpts().DelayedTemplateParsing && Tok.isNot(tok::equal) && 1350 TemplateInfo.Kind == ParsedTemplateInfo::Template && 1351 Actions.canDelayFunctionBody(D)) { 1352 MultiTemplateParamsArg TemplateParameterLists(*TemplateInfo.TemplateParams); 1353 1354 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1355 Scope::CompoundStmtScope); 1356 Scope *ParentScope = getCurScope()->getParent(); 1357 1358 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 1359 Decl *DP = Actions.HandleDeclarator(ParentScope, D, 1360 TemplateParameterLists); 1361 D.complete(DP); 1362 D.getMutableDeclSpec().abort(); 1363 1364 if (SkipFunctionBodies && (!DP || Actions.canSkipFunctionBody(DP)) && 1365 trySkippingFunctionBody()) { 1366 BodyScope.Exit(); 1367 return Actions.ActOnSkippedFunctionBody(DP); 1368 } 1369 1370 CachedTokens Toks; 1371 LexTemplateFunctionForLateParsing(Toks); 1372 1373 if (DP) { 1374 FunctionDecl *FnD = DP->getAsFunction(); 1375 Actions.CheckForFunctionRedefinition(FnD); 1376 Actions.MarkAsLateParsedTemplate(FnD, DP, Toks); 1377 } 1378 return DP; 1379 } 1380 else if (CurParsedObjCImpl && 1381 !TemplateInfo.TemplateParams && 1382 (Tok.is(tok::l_brace) || Tok.is(tok::kw_try) || 1383 Tok.is(tok::colon)) && 1384 Actions.CurContext->isTranslationUnit()) { 1385 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1386 Scope::CompoundStmtScope); 1387 Scope *ParentScope = getCurScope()->getParent(); 1388 1389 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 1390 Decl *FuncDecl = Actions.HandleDeclarator(ParentScope, D, 1391 MultiTemplateParamsArg()); 1392 D.complete(FuncDecl); 1393 D.getMutableDeclSpec().abort(); 1394 if (FuncDecl) { 1395 // Consume the tokens and store them for later parsing. 1396 StashAwayMethodOrFunctionBodyTokens(FuncDecl); 1397 CurParsedObjCImpl->HasCFunction = true; 1398 return FuncDecl; 1399 } 1400 // FIXME: Should we really fall through here? 1401 } 1402 1403 // Enter a scope for the function body. 1404 ParseScope BodyScope(this, Scope::FnScope | Scope::DeclScope | 1405 Scope::CompoundStmtScope); 1406 1407 // Parse function body eagerly if it is either '= delete;' or '= default;' as 1408 // ActOnStartOfFunctionDef needs to know whether the function is deleted. 1409 StringLiteral *DeletedMessage = nullptr; 1410 Sema::FnBodyKind BodyKind = Sema::FnBodyKind::Other; 1411 SourceLocation KWLoc; 1412 if (TryConsumeToken(tok::equal)) { 1413 assert(getLangOpts().CPlusPlus && "Only C++ function definitions have '='"); 1414 1415 if (TryConsumeToken(tok::kw_delete, KWLoc)) { 1416 Diag(KWLoc, getLangOpts().CPlusPlus11 1417 ? diag::warn_cxx98_compat_defaulted_deleted_function 1418 : diag::ext_defaulted_deleted_function) 1419 << 1 /* deleted */; 1420 BodyKind = Sema::FnBodyKind::Delete; 1421 DeletedMessage = ParseCXXDeletedFunctionMessage(); 1422 } else if (TryConsumeToken(tok::kw_default, KWLoc)) { 1423 Diag(KWLoc, getLangOpts().CPlusPlus11 1424 ? diag::warn_cxx98_compat_defaulted_deleted_function 1425 : diag::ext_defaulted_deleted_function) 1426 << 0 /* defaulted */; 1427 BodyKind = Sema::FnBodyKind::Default; 1428 } else { 1429 llvm_unreachable("function definition after = not 'delete' or 'default'"); 1430 } 1431 1432 if (Tok.is(tok::comma)) { 1433 Diag(KWLoc, diag::err_default_delete_in_multiple_declaration) 1434 << (BodyKind == Sema::FnBodyKind::Delete); 1435 SkipUntil(tok::semi); 1436 } else if (ExpectAndConsume(tok::semi, diag::err_expected_after, 1437 BodyKind == Sema::FnBodyKind::Delete 1438 ? "delete" 1439 : "default")) { 1440 SkipUntil(tok::semi); 1441 } 1442 } 1443 1444 Sema::FPFeaturesStateRAII SaveFPFeatures(Actions); 1445 1446 // Tell the actions module that we have entered a function definition with the 1447 // specified Declarator for the function. 1448 SkipBodyInfo SkipBody; 1449 Decl *Res = Actions.ActOnStartOfFunctionDef(getCurScope(), D, 1450 TemplateInfo.TemplateParams 1451 ? *TemplateInfo.TemplateParams 1452 : MultiTemplateParamsArg(), 1453 &SkipBody, BodyKind); 1454 1455 if (SkipBody.ShouldSkip) { 1456 // Do NOT enter SkipFunctionBody if we already consumed the tokens. 1457 if (BodyKind == Sema::FnBodyKind::Other) 1458 SkipFunctionBody(); 1459 1460 // ExpressionEvaluationContext is pushed in ActOnStartOfFunctionDef 1461 // and it would be popped in ActOnFinishFunctionBody. 1462 // We pop it explcitly here since ActOnFinishFunctionBody won't get called. 1463 // 1464 // Do not call PopExpressionEvaluationContext() if it is a lambda because 1465 // one is already popped when finishing the lambda in BuildLambdaExpr(). 1466 // 1467 // FIXME: It looks not easy to balance PushExpressionEvaluationContext() 1468 // and PopExpressionEvaluationContext(). 1469 if (!isLambdaCallOperator(dyn_cast_if_present<FunctionDecl>(Res))) 1470 Actions.PopExpressionEvaluationContext(); 1471 return Res; 1472 } 1473 1474 // Break out of the ParsingDeclarator context before we parse the body. 1475 D.complete(Res); 1476 1477 // Break out of the ParsingDeclSpec context, too. This const_cast is 1478 // safe because we're always the sole owner. 1479 D.getMutableDeclSpec().abort(); 1480 1481 if (BodyKind != Sema::FnBodyKind::Other) { 1482 Actions.SetFunctionBodyKind(Res, KWLoc, BodyKind, DeletedMessage); 1483 Stmt *GeneratedBody = Res ? Res->getBody() : nullptr; 1484 Actions.ActOnFinishFunctionBody(Res, GeneratedBody, false); 1485 return Res; 1486 } 1487 1488 // With abbreviated function templates - we need to explicitly add depth to 1489 // account for the implicit template parameter list induced by the template. 1490 if (const auto *Template = dyn_cast_if_present<FunctionTemplateDecl>(Res); 1491 Template && Template->isAbbreviated() && 1492 Template->getTemplateParameters()->getParam(0)->isImplicit()) 1493 // First template parameter is implicit - meaning no explicit template 1494 // parameter list was specified. 1495 CurTemplateDepthTracker.addDepth(1); 1496 1497 if (SkipFunctionBodies && (!Res || Actions.canSkipFunctionBody(Res)) && 1498 trySkippingFunctionBody()) { 1499 BodyScope.Exit(); 1500 Actions.ActOnSkippedFunctionBody(Res); 1501 return Actions.ActOnFinishFunctionBody(Res, nullptr, false); 1502 } 1503 1504 if (Tok.is(tok::kw_try)) 1505 return ParseFunctionTryBlock(Res, BodyScope); 1506 1507 // If we have a colon, then we're probably parsing a C++ 1508 // ctor-initializer. 1509 if (Tok.is(tok::colon)) { 1510 ParseConstructorInitializer(Res); 1511 1512 // Recover from error. 1513 if (!Tok.is(tok::l_brace)) { 1514 BodyScope.Exit(); 1515 Actions.ActOnFinishFunctionBody(Res, nullptr); 1516 return Res; 1517 } 1518 } else 1519 Actions.ActOnDefaultCtorInitializers(Res); 1520 1521 // Late attributes are parsed in the same scope as the function body. 1522 if (LateParsedAttrs) 1523 ParseLexedAttributeList(*LateParsedAttrs, Res, false, true); 1524 1525 return ParseFunctionStatementBody(Res, BodyScope); 1526 } 1527 1528 void Parser::SkipFunctionBody() { 1529 if (Tok.is(tok::equal)) { 1530 SkipUntil(tok::semi); 1531 return; 1532 } 1533 1534 bool IsFunctionTryBlock = Tok.is(tok::kw_try); 1535 if (IsFunctionTryBlock) 1536 ConsumeToken(); 1537 1538 CachedTokens Skipped; 1539 if (ConsumeAndStoreFunctionPrologue(Skipped)) 1540 SkipMalformedDecl(); 1541 else { 1542 SkipUntil(tok::r_brace); 1543 while (IsFunctionTryBlock && Tok.is(tok::kw_catch)) { 1544 SkipUntil(tok::l_brace); 1545 SkipUntil(tok::r_brace); 1546 } 1547 } 1548 } 1549 1550 /// ParseKNRParamDeclarations - Parse 'declaration-list[opt]' which provides 1551 /// types for a function with a K&R-style identifier list for arguments. 1552 void Parser::ParseKNRParamDeclarations(Declarator &D) { 1553 // We know that the top-level of this declarator is a function. 1554 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 1555 1556 // Enter function-declaration scope, limiting any declarators to the 1557 // function prototype scope, including parameter declarators. 1558 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | 1559 Scope::FunctionDeclarationScope | Scope::DeclScope); 1560 1561 // Read all the argument declarations. 1562 while (isDeclarationSpecifier(ImplicitTypenameContext::No)) { 1563 SourceLocation DSStart = Tok.getLocation(); 1564 1565 // Parse the common declaration-specifiers piece. 1566 DeclSpec DS(AttrFactory); 1567 ParsedTemplateInfo TemplateInfo; 1568 ParseDeclarationSpecifiers(DS, TemplateInfo); 1569 1570 // C99 6.9.1p6: 'each declaration in the declaration list shall have at 1571 // least one declarator'. 1572 // NOTE: GCC just makes this an ext-warn. It's not clear what it does with 1573 // the declarations though. It's trivial to ignore them, really hard to do 1574 // anything else with them. 1575 if (TryConsumeToken(tok::semi)) { 1576 Diag(DSStart, diag::err_declaration_does_not_declare_param); 1577 continue; 1578 } 1579 1580 // C99 6.9.1p6: Declarations shall contain no storage-class specifiers other 1581 // than register. 1582 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 1583 DS.getStorageClassSpec() != DeclSpec::SCS_register) { 1584 Diag(DS.getStorageClassSpecLoc(), 1585 diag::err_invalid_storage_class_in_func_decl); 1586 DS.ClearStorageClassSpecs(); 1587 } 1588 if (DS.getThreadStorageClassSpec() != DeclSpec::TSCS_unspecified) { 1589 Diag(DS.getThreadStorageClassSpecLoc(), 1590 diag::err_invalid_storage_class_in_func_decl); 1591 DS.ClearStorageClassSpecs(); 1592 } 1593 1594 // Parse the first declarator attached to this declspec. 1595 Declarator ParmDeclarator(DS, ParsedAttributesView::none(), 1596 DeclaratorContext::KNRTypeList); 1597 ParseDeclarator(ParmDeclarator); 1598 1599 // Handle the full declarator list. 1600 while (true) { 1601 // If attributes are present, parse them. 1602 MaybeParseGNUAttributes(ParmDeclarator); 1603 1604 // Ask the actions module to compute the type for this declarator. 1605 Decl *Param = 1606 Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); 1607 1608 if (Param && 1609 // A missing identifier has already been diagnosed. 1610 ParmDeclarator.getIdentifier()) { 1611 1612 // Scan the argument list looking for the correct param to apply this 1613 // type. 1614 for (unsigned i = 0; ; ++i) { 1615 // C99 6.9.1p6: those declarators shall declare only identifiers from 1616 // the identifier list. 1617 if (i == FTI.NumParams) { 1618 Diag(ParmDeclarator.getIdentifierLoc(), diag::err_no_matching_param) 1619 << ParmDeclarator.getIdentifier(); 1620 break; 1621 } 1622 1623 if (FTI.Params[i].Ident == ParmDeclarator.getIdentifier()) { 1624 // Reject redefinitions of parameters. 1625 if (FTI.Params[i].Param) { 1626 Diag(ParmDeclarator.getIdentifierLoc(), 1627 diag::err_param_redefinition) 1628 << ParmDeclarator.getIdentifier(); 1629 } else { 1630 FTI.Params[i].Param = Param; 1631 } 1632 break; 1633 } 1634 } 1635 } 1636 1637 // If we don't have a comma, it is either the end of the list (a ';') or 1638 // an error, bail out. 1639 if (Tok.isNot(tok::comma)) 1640 break; 1641 1642 ParmDeclarator.clear(); 1643 1644 // Consume the comma. 1645 ParmDeclarator.setCommaLoc(ConsumeToken()); 1646 1647 // Parse the next declarator. 1648 ParseDeclarator(ParmDeclarator); 1649 } 1650 1651 // Consume ';' and continue parsing. 1652 if (!ExpectAndConsumeSemi(diag::err_expected_semi_declaration)) 1653 continue; 1654 1655 // Otherwise recover by skipping to next semi or mandatory function body. 1656 if (SkipUntil(tok::l_brace, StopAtSemi | StopBeforeMatch)) 1657 break; 1658 TryConsumeToken(tok::semi); 1659 } 1660 1661 // The actions module must verify that all arguments were declared. 1662 Actions.ActOnFinishKNRParamDeclarations(getCurScope(), D, Tok.getLocation()); 1663 } 1664 1665 1666 /// ParseAsmStringLiteral - This is just a normal string-literal, but is not 1667 /// allowed to be a wide string, and is not subject to character translation. 1668 /// Unlike GCC, we also diagnose an empty string literal when parsing for an 1669 /// asm label as opposed to an asm statement, because such a construct does not 1670 /// behave well. 1671 /// 1672 /// [GNU] asm-string-literal: 1673 /// string-literal 1674 /// 1675 ExprResult Parser::ParseAsmStringLiteral(bool ForAsmLabel) { 1676 if (!isTokenStringLiteral()) { 1677 Diag(Tok, diag::err_expected_string_literal) 1678 << /*Source='in...'*/0 << "'asm'"; 1679 return ExprError(); 1680 } 1681 1682 ExprResult AsmString(ParseStringLiteralExpression()); 1683 if (!AsmString.isInvalid()) { 1684 const auto *SL = cast<StringLiteral>(AsmString.get()); 1685 if (!SL->isOrdinary()) { 1686 Diag(Tok, diag::err_asm_operand_wide_string_literal) 1687 << SL->isWide() 1688 << SL->getSourceRange(); 1689 return ExprError(); 1690 } 1691 if (ForAsmLabel && SL->getString().empty()) { 1692 Diag(Tok, diag::err_asm_operand_wide_string_literal) 1693 << 2 /* an empty */ << SL->getSourceRange(); 1694 return ExprError(); 1695 } 1696 } 1697 return AsmString; 1698 } 1699 1700 /// ParseSimpleAsm 1701 /// 1702 /// [GNU] simple-asm-expr: 1703 /// 'asm' '(' asm-string-literal ')' 1704 /// 1705 ExprResult Parser::ParseSimpleAsm(bool ForAsmLabel, SourceLocation *EndLoc) { 1706 assert(Tok.is(tok::kw_asm) && "Not an asm!"); 1707 SourceLocation Loc = ConsumeToken(); 1708 1709 if (isGNUAsmQualifier(Tok)) { 1710 // Remove from the end of 'asm' to the end of the asm qualifier. 1711 SourceRange RemovalRange(PP.getLocForEndOfToken(Loc), 1712 PP.getLocForEndOfToken(Tok.getLocation())); 1713 Diag(Tok, diag::err_global_asm_qualifier_ignored) 1714 << GNUAsmQualifiers::getQualifierName(getGNUAsmQualifier(Tok)) 1715 << FixItHint::CreateRemoval(RemovalRange); 1716 ConsumeToken(); 1717 } 1718 1719 BalancedDelimiterTracker T(*this, tok::l_paren); 1720 if (T.consumeOpen()) { 1721 Diag(Tok, diag::err_expected_lparen_after) << "asm"; 1722 return ExprError(); 1723 } 1724 1725 ExprResult Result(ParseAsmStringLiteral(ForAsmLabel)); 1726 1727 if (!Result.isInvalid()) { 1728 // Close the paren and get the location of the end bracket 1729 T.consumeClose(); 1730 if (EndLoc) 1731 *EndLoc = T.getCloseLocation(); 1732 } else if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) { 1733 if (EndLoc) 1734 *EndLoc = Tok.getLocation(); 1735 ConsumeParen(); 1736 } 1737 1738 return Result; 1739 } 1740 1741 /// Get the TemplateIdAnnotation from the token and put it in the 1742 /// cleanup pool so that it gets destroyed when parsing the current top level 1743 /// declaration is finished. 1744 TemplateIdAnnotation *Parser::takeTemplateIdAnnotation(const Token &tok) { 1745 assert(tok.is(tok::annot_template_id) && "Expected template-id token"); 1746 TemplateIdAnnotation * 1747 Id = static_cast<TemplateIdAnnotation *>(tok.getAnnotationValue()); 1748 return Id; 1749 } 1750 1751 void Parser::AnnotateScopeToken(CXXScopeSpec &SS, bool IsNewAnnotation) { 1752 // Push the current token back into the token stream (or revert it if it is 1753 // cached) and use an annotation scope token for current token. 1754 if (PP.isBacktrackEnabled()) 1755 PP.RevertCachedTokens(1); 1756 else 1757 PP.EnterToken(Tok, /*IsReinject=*/true); 1758 Tok.setKind(tok::annot_cxxscope); 1759 Tok.setAnnotationValue(Actions.SaveNestedNameSpecifierAnnotation(SS)); 1760 Tok.setAnnotationRange(SS.getRange()); 1761 1762 // In case the tokens were cached, have Preprocessor replace them 1763 // with the annotation token. We don't need to do this if we've 1764 // just reverted back to a prior state. 1765 if (IsNewAnnotation) 1766 PP.AnnotateCachedTokens(Tok); 1767 } 1768 1769 /// Attempt to classify the name at the current token position. This may 1770 /// form a type, scope or primary expression annotation, or replace the token 1771 /// with a typo-corrected keyword. This is only appropriate when the current 1772 /// name must refer to an entity which has already been declared. 1773 /// 1774 /// \param CCC Indicates how to perform typo-correction for this name. If NULL, 1775 /// no typo correction will be performed. 1776 /// \param AllowImplicitTypename Whether we are in a context where a dependent 1777 /// nested-name-specifier without typename is treated as a type (e.g. 1778 /// T::type). 1779 Parser::AnnotatedNameKind 1780 Parser::TryAnnotateName(CorrectionCandidateCallback *CCC, 1781 ImplicitTypenameContext AllowImplicitTypename) { 1782 assert(Tok.is(tok::identifier) || Tok.is(tok::annot_cxxscope)); 1783 1784 const bool EnteringContext = false; 1785 const bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); 1786 1787 CXXScopeSpec SS; 1788 if (getLangOpts().CPlusPlus && 1789 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1790 /*ObjectHasErrors=*/false, 1791 EnteringContext)) 1792 return ANK_Error; 1793 1794 if (Tok.isNot(tok::identifier) || SS.isInvalid()) { 1795 if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 1796 AllowImplicitTypename)) 1797 return ANK_Error; 1798 return ANK_Unresolved; 1799 } 1800 1801 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1802 SourceLocation NameLoc = Tok.getLocation(); 1803 1804 // FIXME: Move the tentative declaration logic into ClassifyName so we can 1805 // typo-correct to tentatively-declared identifiers. 1806 if (isTentativelyDeclared(Name) && SS.isEmpty()) { 1807 // Identifier has been tentatively declared, and thus cannot be resolved as 1808 // an expression. Fall back to annotating it as a type. 1809 if (TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 1810 AllowImplicitTypename)) 1811 return ANK_Error; 1812 return Tok.is(tok::annot_typename) ? ANK_Success : ANK_TentativeDecl; 1813 } 1814 1815 Token Next = NextToken(); 1816 1817 // Look up and classify the identifier. We don't perform any typo-correction 1818 // after a scope specifier, because in general we can't recover from typos 1819 // there (eg, after correcting 'A::template B<X>::C' [sic], we would need to 1820 // jump back into scope specifier parsing). 1821 Sema::NameClassification Classification = Actions.ClassifyName( 1822 getCurScope(), SS, Name, NameLoc, Next, SS.isEmpty() ? CCC : nullptr); 1823 1824 // If name lookup found nothing and we guessed that this was a template name, 1825 // double-check before committing to that interpretation. C++20 requires that 1826 // we interpret this as a template-id if it can be, but if it can't be, then 1827 // this is an error recovery case. 1828 if (Classification.getKind() == Sema::NC_UndeclaredTemplate && 1829 isTemplateArgumentList(1) == TPResult::False) { 1830 // It's not a template-id; re-classify without the '<' as a hint. 1831 Token FakeNext = Next; 1832 FakeNext.setKind(tok::unknown); 1833 Classification = 1834 Actions.ClassifyName(getCurScope(), SS, Name, NameLoc, FakeNext, 1835 SS.isEmpty() ? CCC : nullptr); 1836 } 1837 1838 switch (Classification.getKind()) { 1839 case Sema::NC_Error: 1840 return ANK_Error; 1841 1842 case Sema::NC_Keyword: 1843 // The identifier was typo-corrected to a keyword. 1844 Tok.setIdentifierInfo(Name); 1845 Tok.setKind(Name->getTokenID()); 1846 PP.TypoCorrectToken(Tok); 1847 if (SS.isNotEmpty()) 1848 AnnotateScopeToken(SS, !WasScopeAnnotation); 1849 // We've "annotated" this as a keyword. 1850 return ANK_Success; 1851 1852 case Sema::NC_Unknown: 1853 // It's not something we know about. Leave it unannotated. 1854 break; 1855 1856 case Sema::NC_Type: { 1857 if (TryAltiVecVectorToken()) 1858 // vector has been found as a type id when altivec is enabled but 1859 // this is followed by a declaration specifier so this is really the 1860 // altivec vector token. Leave it unannotated. 1861 break; 1862 SourceLocation BeginLoc = NameLoc; 1863 if (SS.isNotEmpty()) 1864 BeginLoc = SS.getBeginLoc(); 1865 1866 /// An Objective-C object type followed by '<' is a specialization of 1867 /// a parameterized class type or a protocol-qualified type. 1868 ParsedType Ty = Classification.getType(); 1869 if (getLangOpts().ObjC && NextToken().is(tok::less) && 1870 (Ty.get()->isObjCObjectType() || 1871 Ty.get()->isObjCObjectPointerType())) { 1872 // Consume the name. 1873 SourceLocation IdentifierLoc = ConsumeToken(); 1874 SourceLocation NewEndLoc; 1875 TypeResult NewType 1876 = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, 1877 /*consumeLastToken=*/false, 1878 NewEndLoc); 1879 if (NewType.isUsable()) 1880 Ty = NewType.get(); 1881 else if (Tok.is(tok::eof)) // Nothing to do here, bail out... 1882 return ANK_Error; 1883 } 1884 1885 Tok.setKind(tok::annot_typename); 1886 setTypeAnnotation(Tok, Ty); 1887 Tok.setAnnotationEndLoc(Tok.getLocation()); 1888 Tok.setLocation(BeginLoc); 1889 PP.AnnotateCachedTokens(Tok); 1890 return ANK_Success; 1891 } 1892 1893 case Sema::NC_OverloadSet: 1894 Tok.setKind(tok::annot_overload_set); 1895 setExprAnnotation(Tok, Classification.getExpression()); 1896 Tok.setAnnotationEndLoc(NameLoc); 1897 if (SS.isNotEmpty()) 1898 Tok.setLocation(SS.getBeginLoc()); 1899 PP.AnnotateCachedTokens(Tok); 1900 return ANK_Success; 1901 1902 case Sema::NC_NonType: 1903 if (TryAltiVecVectorToken()) 1904 // vector has been found as a non-type id when altivec is enabled but 1905 // this is followed by a declaration specifier so this is really the 1906 // altivec vector token. Leave it unannotated. 1907 break; 1908 Tok.setKind(tok::annot_non_type); 1909 setNonTypeAnnotation(Tok, Classification.getNonTypeDecl()); 1910 Tok.setLocation(NameLoc); 1911 Tok.setAnnotationEndLoc(NameLoc); 1912 PP.AnnotateCachedTokens(Tok); 1913 if (SS.isNotEmpty()) 1914 AnnotateScopeToken(SS, !WasScopeAnnotation); 1915 return ANK_Success; 1916 1917 case Sema::NC_UndeclaredNonType: 1918 case Sema::NC_DependentNonType: 1919 Tok.setKind(Classification.getKind() == Sema::NC_UndeclaredNonType 1920 ? tok::annot_non_type_undeclared 1921 : tok::annot_non_type_dependent); 1922 setIdentifierAnnotation(Tok, Name); 1923 Tok.setLocation(NameLoc); 1924 Tok.setAnnotationEndLoc(NameLoc); 1925 PP.AnnotateCachedTokens(Tok); 1926 if (SS.isNotEmpty()) 1927 AnnotateScopeToken(SS, !WasScopeAnnotation); 1928 return ANK_Success; 1929 1930 case Sema::NC_TypeTemplate: 1931 if (Next.isNot(tok::less)) { 1932 // This may be a type template being used as a template template argument. 1933 if (SS.isNotEmpty()) 1934 AnnotateScopeToken(SS, !WasScopeAnnotation); 1935 return ANK_TemplateName; 1936 } 1937 [[fallthrough]]; 1938 case Sema::NC_Concept: 1939 case Sema::NC_VarTemplate: 1940 case Sema::NC_FunctionTemplate: 1941 case Sema::NC_UndeclaredTemplate: { 1942 bool IsConceptName = Classification.getKind() == Sema::NC_Concept; 1943 // We have a template name followed by '<'. Consume the identifier token so 1944 // we reach the '<' and annotate it. 1945 if (Next.is(tok::less)) 1946 ConsumeToken(); 1947 UnqualifiedId Id; 1948 Id.setIdentifier(Name, NameLoc); 1949 if (AnnotateTemplateIdToken( 1950 TemplateTy::make(Classification.getTemplateName()), 1951 Classification.getTemplateNameKind(), SS, SourceLocation(), Id, 1952 /*AllowTypeAnnotation=*/!IsConceptName, 1953 /*TypeConstraint=*/IsConceptName)) 1954 return ANK_Error; 1955 if (SS.isNotEmpty()) 1956 AnnotateScopeToken(SS, !WasScopeAnnotation); 1957 return ANK_Success; 1958 } 1959 } 1960 1961 // Unable to classify the name, but maybe we can annotate a scope specifier. 1962 if (SS.isNotEmpty()) 1963 AnnotateScopeToken(SS, !WasScopeAnnotation); 1964 return ANK_Unresolved; 1965 } 1966 1967 bool Parser::TryKeywordIdentFallback(bool DisableKeyword) { 1968 assert(Tok.isNot(tok::identifier)); 1969 Diag(Tok, diag::ext_keyword_as_ident) 1970 << PP.getSpelling(Tok) 1971 << DisableKeyword; 1972 if (DisableKeyword) 1973 Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); 1974 Tok.setKind(tok::identifier); 1975 return true; 1976 } 1977 1978 /// TryAnnotateTypeOrScopeToken - If the current token position is on a 1979 /// typename (possibly qualified in C++) or a C++ scope specifier not followed 1980 /// by a typename, TryAnnotateTypeOrScopeToken will replace one or more tokens 1981 /// with a single annotation token representing the typename or C++ scope 1982 /// respectively. 1983 /// This simplifies handling of C++ scope specifiers and allows efficient 1984 /// backtracking without the need to re-parse and resolve nested-names and 1985 /// typenames. 1986 /// It will mainly be called when we expect to treat identifiers as typenames 1987 /// (if they are typenames). For example, in C we do not expect identifiers 1988 /// inside expressions to be treated as typenames so it will not be called 1989 /// for expressions in C. 1990 /// The benefit for C/ObjC is that a typename will be annotated and 1991 /// Actions.getTypeName will not be needed to be called again (e.g. getTypeName 1992 /// will not be called twice, once to check whether we have a declaration 1993 /// specifier, and another one to get the actual type inside 1994 /// ParseDeclarationSpecifiers). 1995 /// 1996 /// This returns true if an error occurred. 1997 /// 1998 /// Note that this routine emits an error if you call it with ::new or ::delete 1999 /// as the current tokens, so only call it in contexts where these are invalid. 2000 bool Parser::TryAnnotateTypeOrScopeToken( 2001 ImplicitTypenameContext AllowImplicitTypename) { 2002 assert((Tok.is(tok::identifier) || Tok.is(tok::coloncolon) || 2003 Tok.is(tok::kw_typename) || Tok.is(tok::annot_cxxscope) || 2004 Tok.is(tok::kw_decltype) || Tok.is(tok::annot_template_id) || 2005 Tok.is(tok::kw___super) || Tok.is(tok::kw_auto) || 2006 Tok.is(tok::annot_pack_indexing_type)) && 2007 "Cannot be a type or scope token!"); 2008 2009 if (Tok.is(tok::kw_typename)) { 2010 // MSVC lets you do stuff like: 2011 // typename typedef T_::D D; 2012 // 2013 // We will consume the typedef token here and put it back after we have 2014 // parsed the first identifier, transforming it into something more like: 2015 // typename T_::D typedef D; 2016 if (getLangOpts().MSVCCompat && NextToken().is(tok::kw_typedef)) { 2017 Token TypedefToken; 2018 PP.Lex(TypedefToken); 2019 bool Result = TryAnnotateTypeOrScopeToken(AllowImplicitTypename); 2020 PP.EnterToken(Tok, /*IsReinject=*/true); 2021 Tok = TypedefToken; 2022 if (!Result) 2023 Diag(Tok.getLocation(), diag::warn_expected_qualified_after_typename); 2024 return Result; 2025 } 2026 2027 // Parse a C++ typename-specifier, e.g., "typename T::type". 2028 // 2029 // typename-specifier: 2030 // 'typename' '::' [opt] nested-name-specifier identifier 2031 // 'typename' '::' [opt] nested-name-specifier template [opt] 2032 // simple-template-id 2033 SourceLocation TypenameLoc = ConsumeToken(); 2034 CXXScopeSpec SS; 2035 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2036 /*ObjectHasErrors=*/false, 2037 /*EnteringContext=*/false, nullptr, 2038 /*IsTypename*/ true)) 2039 return true; 2040 if (SS.isEmpty()) { 2041 if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id) || 2042 Tok.is(tok::annot_decltype)) { 2043 // Attempt to recover by skipping the invalid 'typename' 2044 if (Tok.is(tok::annot_decltype) || 2045 (!TryAnnotateTypeOrScopeToken(AllowImplicitTypename) && 2046 Tok.isAnnotation())) { 2047 unsigned DiagID = diag::err_expected_qualified_after_typename; 2048 // MS compatibility: MSVC permits using known types with typename. 2049 // e.g. "typedef typename T* pointer_type" 2050 if (getLangOpts().MicrosoftExt) 2051 DiagID = diag::warn_expected_qualified_after_typename; 2052 Diag(Tok.getLocation(), DiagID); 2053 return false; 2054 } 2055 } 2056 if (Tok.isEditorPlaceholder()) 2057 return true; 2058 2059 Diag(Tok.getLocation(), diag::err_expected_qualified_after_typename); 2060 return true; 2061 } 2062 2063 bool TemplateKWPresent = false; 2064 if (Tok.is(tok::kw_template)) { 2065 ConsumeToken(); 2066 TemplateKWPresent = true; 2067 } 2068 2069 TypeResult Ty; 2070 if (Tok.is(tok::identifier)) { 2071 if (TemplateKWPresent && NextToken().isNot(tok::less)) { 2072 Diag(Tok.getLocation(), 2073 diag::missing_template_arg_list_after_template_kw); 2074 return true; 2075 } 2076 Ty = Actions.ActOnTypenameType(getCurScope(), TypenameLoc, SS, 2077 *Tok.getIdentifierInfo(), 2078 Tok.getLocation()); 2079 } else if (Tok.is(tok::annot_template_id)) { 2080 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2081 if (!TemplateId->mightBeType()) { 2082 Diag(Tok, diag::err_typename_refers_to_non_type_template) 2083 << Tok.getAnnotationRange(); 2084 return true; 2085 } 2086 2087 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 2088 TemplateId->NumArgs); 2089 2090 Ty = TemplateId->isInvalid() 2091 ? TypeError() 2092 : Actions.ActOnTypenameType( 2093 getCurScope(), TypenameLoc, SS, TemplateId->TemplateKWLoc, 2094 TemplateId->Template, TemplateId->Name, 2095 TemplateId->TemplateNameLoc, TemplateId->LAngleLoc, 2096 TemplateArgsPtr, TemplateId->RAngleLoc); 2097 } else { 2098 Diag(Tok, diag::err_expected_type_name_after_typename) 2099 << SS.getRange(); 2100 return true; 2101 } 2102 2103 SourceLocation EndLoc = Tok.getLastLoc(); 2104 Tok.setKind(tok::annot_typename); 2105 setTypeAnnotation(Tok, Ty); 2106 Tok.setAnnotationEndLoc(EndLoc); 2107 Tok.setLocation(TypenameLoc); 2108 PP.AnnotateCachedTokens(Tok); 2109 return false; 2110 } 2111 2112 // Remembers whether the token was originally a scope annotation. 2113 bool WasScopeAnnotation = Tok.is(tok::annot_cxxscope); 2114 2115 CXXScopeSpec SS; 2116 if (getLangOpts().CPlusPlus) 2117 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2118 /*ObjectHasErrors=*/false, 2119 /*EnteringContext*/ false)) 2120 return true; 2121 2122 return TryAnnotateTypeOrScopeTokenAfterScopeSpec(SS, !WasScopeAnnotation, 2123 AllowImplicitTypename); 2124 } 2125 2126 /// Try to annotate a type or scope token, having already parsed an 2127 /// optional scope specifier. \p IsNewScope should be \c true unless the scope 2128 /// specifier was extracted from an existing tok::annot_cxxscope annotation. 2129 bool Parser::TryAnnotateTypeOrScopeTokenAfterScopeSpec( 2130 CXXScopeSpec &SS, bool IsNewScope, 2131 ImplicitTypenameContext AllowImplicitTypename) { 2132 if (Tok.is(tok::identifier)) { 2133 // Determine whether the identifier is a type name. 2134 if (ParsedType Ty = Actions.getTypeName( 2135 *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), &SS, 2136 false, NextToken().is(tok::period), nullptr, 2137 /*IsCtorOrDtorName=*/false, 2138 /*NonTrivialTypeSourceInfo=*/true, 2139 /*IsClassTemplateDeductionContext=*/true, AllowImplicitTypename)) { 2140 SourceLocation BeginLoc = Tok.getLocation(); 2141 if (SS.isNotEmpty()) // it was a C++ qualified type name. 2142 BeginLoc = SS.getBeginLoc(); 2143 2144 /// An Objective-C object type followed by '<' is a specialization of 2145 /// a parameterized class type or a protocol-qualified type. 2146 if (getLangOpts().ObjC && NextToken().is(tok::less) && 2147 (Ty.get()->isObjCObjectType() || 2148 Ty.get()->isObjCObjectPointerType())) { 2149 // Consume the name. 2150 SourceLocation IdentifierLoc = ConsumeToken(); 2151 SourceLocation NewEndLoc; 2152 TypeResult NewType 2153 = parseObjCTypeArgsAndProtocolQualifiers(IdentifierLoc, Ty, 2154 /*consumeLastToken=*/false, 2155 NewEndLoc); 2156 if (NewType.isUsable()) 2157 Ty = NewType.get(); 2158 else if (Tok.is(tok::eof)) // Nothing to do here, bail out... 2159 return false; 2160 } 2161 2162 // This is a typename. Replace the current token in-place with an 2163 // annotation type token. 2164 Tok.setKind(tok::annot_typename); 2165 setTypeAnnotation(Tok, Ty); 2166 Tok.setAnnotationEndLoc(Tok.getLocation()); 2167 Tok.setLocation(BeginLoc); 2168 2169 // In case the tokens were cached, have Preprocessor replace 2170 // them with the annotation token. 2171 PP.AnnotateCachedTokens(Tok); 2172 return false; 2173 } 2174 2175 if (!getLangOpts().CPlusPlus) { 2176 // If we're in C, the only place we can have :: tokens is C23 2177 // attribute which is parsed elsewhere. If the identifier is not a type, 2178 // then it can't be scope either, just early exit. 2179 return false; 2180 } 2181 2182 // If this is a template-id, annotate with a template-id or type token. 2183 // FIXME: This appears to be dead code. We already have formed template-id 2184 // tokens when parsing the scope specifier; this can never form a new one. 2185 if (NextToken().is(tok::less)) { 2186 TemplateTy Template; 2187 UnqualifiedId TemplateName; 2188 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 2189 bool MemberOfUnknownSpecialization; 2190 if (TemplateNameKind TNK = Actions.isTemplateName( 2191 getCurScope(), SS, 2192 /*hasTemplateKeyword=*/false, TemplateName, 2193 /*ObjectType=*/nullptr, /*EnteringContext*/false, Template, 2194 MemberOfUnknownSpecialization)) { 2195 // Only annotate an undeclared template name as a template-id if the 2196 // following tokens have the form of a template argument list. 2197 if (TNK != TNK_Undeclared_template || 2198 isTemplateArgumentList(1) != TPResult::False) { 2199 // Consume the identifier. 2200 ConsumeToken(); 2201 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 2202 TemplateName)) { 2203 // If an unrecoverable error occurred, we need to return true here, 2204 // because the token stream is in a damaged state. We may not 2205 // return a valid identifier. 2206 return true; 2207 } 2208 } 2209 } 2210 } 2211 2212 // The current token, which is either an identifier or a 2213 // template-id, is not part of the annotation. Fall through to 2214 // push that token back into the stream and complete the C++ scope 2215 // specifier annotation. 2216 } 2217 2218 if (Tok.is(tok::annot_template_id)) { 2219 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2220 if (TemplateId->Kind == TNK_Type_template) { 2221 // A template-id that refers to a type was parsed into a 2222 // template-id annotation in a context where we weren't allowed 2223 // to produce a type annotation token. Update the template-id 2224 // annotation token to a type annotation token now. 2225 AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); 2226 return false; 2227 } 2228 } 2229 2230 if (SS.isEmpty()) 2231 return false; 2232 2233 // A C++ scope specifier that isn't followed by a typename. 2234 AnnotateScopeToken(SS, IsNewScope); 2235 return false; 2236 } 2237 2238 /// TryAnnotateScopeToken - Like TryAnnotateTypeOrScopeToken but only 2239 /// annotates C++ scope specifiers and template-ids. This returns 2240 /// true if there was an error that could not be recovered from. 2241 /// 2242 /// Note that this routine emits an error if you call it with ::new or ::delete 2243 /// as the current tokens, so only call it in contexts where these are invalid. 2244 bool Parser::TryAnnotateCXXScopeToken(bool EnteringContext) { 2245 assert(getLangOpts().CPlusPlus && 2246 "Call sites of this function should be guarded by checking for C++"); 2247 assert(MightBeCXXScopeToken() && "Cannot be a type or scope token!"); 2248 2249 CXXScopeSpec SS; 2250 if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 2251 /*ObjectHasErrors=*/false, 2252 EnteringContext)) 2253 return true; 2254 if (SS.isEmpty()) 2255 return false; 2256 2257 AnnotateScopeToken(SS, true); 2258 return false; 2259 } 2260 2261 bool Parser::isTokenEqualOrEqualTypo() { 2262 tok::TokenKind Kind = Tok.getKind(); 2263 switch (Kind) { 2264 default: 2265 return false; 2266 case tok::ampequal: // &= 2267 case tok::starequal: // *= 2268 case tok::plusequal: // += 2269 case tok::minusequal: // -= 2270 case tok::exclaimequal: // != 2271 case tok::slashequal: // /= 2272 case tok::percentequal: // %= 2273 case tok::lessequal: // <= 2274 case tok::lesslessequal: // <<= 2275 case tok::greaterequal: // >= 2276 case tok::greatergreaterequal: // >>= 2277 case tok::caretequal: // ^= 2278 case tok::pipeequal: // |= 2279 case tok::equalequal: // == 2280 Diag(Tok, diag::err_invalid_token_after_declarator_suggest_equal) 2281 << Kind 2282 << FixItHint::CreateReplacement(SourceRange(Tok.getLocation()), "="); 2283 [[fallthrough]]; 2284 case tok::equal: 2285 return true; 2286 } 2287 } 2288 2289 SourceLocation Parser::handleUnexpectedCodeCompletionToken() { 2290 assert(Tok.is(tok::code_completion)); 2291 PrevTokLocation = Tok.getLocation(); 2292 2293 for (Scope *S = getCurScope(); S; S = S->getParent()) { 2294 if (S->isFunctionScope()) { 2295 cutOffParsing(); 2296 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2297 getCurScope(), SemaCodeCompletion::PCC_RecoveryInFunction); 2298 return PrevTokLocation; 2299 } 2300 2301 if (S->isClassScope()) { 2302 cutOffParsing(); 2303 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2304 getCurScope(), SemaCodeCompletion::PCC_Class); 2305 return PrevTokLocation; 2306 } 2307 } 2308 2309 cutOffParsing(); 2310 Actions.CodeCompletion().CodeCompleteOrdinaryName( 2311 getCurScope(), SemaCodeCompletion::PCC_Namespace); 2312 return PrevTokLocation; 2313 } 2314 2315 // Code-completion pass-through functions 2316 2317 void Parser::CodeCompleteDirective(bool InConditional) { 2318 Actions.CodeCompletion().CodeCompletePreprocessorDirective(InConditional); 2319 } 2320 2321 void Parser::CodeCompleteInConditionalExclusion() { 2322 Actions.CodeCompletion().CodeCompleteInPreprocessorConditionalExclusion( 2323 getCurScope()); 2324 } 2325 2326 void Parser::CodeCompleteMacroName(bool IsDefinition) { 2327 Actions.CodeCompletion().CodeCompletePreprocessorMacroName(IsDefinition); 2328 } 2329 2330 void Parser::CodeCompletePreprocessorExpression() { 2331 Actions.CodeCompletion().CodeCompletePreprocessorExpression(); 2332 } 2333 2334 void Parser::CodeCompleteMacroArgument(IdentifierInfo *Macro, 2335 MacroInfo *MacroInfo, 2336 unsigned ArgumentIndex) { 2337 Actions.CodeCompletion().CodeCompletePreprocessorMacroArgument( 2338 getCurScope(), Macro, MacroInfo, ArgumentIndex); 2339 } 2340 2341 void Parser::CodeCompleteIncludedFile(llvm::StringRef Dir, bool IsAngled) { 2342 Actions.CodeCompletion().CodeCompleteIncludedFile(Dir, IsAngled); 2343 } 2344 2345 void Parser::CodeCompleteNaturalLanguage() { 2346 Actions.CodeCompletion().CodeCompleteNaturalLanguage(); 2347 } 2348 2349 bool Parser::ParseMicrosoftIfExistsCondition(IfExistsCondition& Result) { 2350 assert((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists)) && 2351 "Expected '__if_exists' or '__if_not_exists'"); 2352 Result.IsIfExists = Tok.is(tok::kw___if_exists); 2353 Result.KeywordLoc = ConsumeToken(); 2354 2355 BalancedDelimiterTracker T(*this, tok::l_paren); 2356 if (T.consumeOpen()) { 2357 Diag(Tok, diag::err_expected_lparen_after) 2358 << (Result.IsIfExists? "__if_exists" : "__if_not_exists"); 2359 return true; 2360 } 2361 2362 // Parse nested-name-specifier. 2363 if (getLangOpts().CPlusPlus) 2364 ParseOptionalCXXScopeSpecifier(Result.SS, /*ObjectType=*/nullptr, 2365 /*ObjectHasErrors=*/false, 2366 /*EnteringContext=*/false); 2367 2368 // Check nested-name specifier. 2369 if (Result.SS.isInvalid()) { 2370 T.skipToEnd(); 2371 return true; 2372 } 2373 2374 // Parse the unqualified-id. 2375 SourceLocation TemplateKWLoc; // FIXME: parsed, but unused. 2376 if (ParseUnqualifiedId(Result.SS, /*ObjectType=*/nullptr, 2377 /*ObjectHadErrors=*/false, /*EnteringContext*/ false, 2378 /*AllowDestructorName*/ true, 2379 /*AllowConstructorName*/ true, 2380 /*AllowDeductionGuide*/ false, &TemplateKWLoc, 2381 Result.Name)) { 2382 T.skipToEnd(); 2383 return true; 2384 } 2385 2386 if (T.consumeClose()) 2387 return true; 2388 2389 // Check if the symbol exists. 2390 switch (Actions.CheckMicrosoftIfExistsSymbol(getCurScope(), Result.KeywordLoc, 2391 Result.IsIfExists, Result.SS, 2392 Result.Name)) { 2393 case Sema::IER_Exists: 2394 Result.Behavior = Result.IsIfExists ? IEB_Parse : IEB_Skip; 2395 break; 2396 2397 case Sema::IER_DoesNotExist: 2398 Result.Behavior = !Result.IsIfExists ? IEB_Parse : IEB_Skip; 2399 break; 2400 2401 case Sema::IER_Dependent: 2402 Result.Behavior = IEB_Dependent; 2403 break; 2404 2405 case Sema::IER_Error: 2406 return true; 2407 } 2408 2409 return false; 2410 } 2411 2412 void Parser::ParseMicrosoftIfExistsExternalDeclaration() { 2413 IfExistsCondition Result; 2414 if (ParseMicrosoftIfExistsCondition(Result)) 2415 return; 2416 2417 BalancedDelimiterTracker Braces(*this, tok::l_brace); 2418 if (Braces.consumeOpen()) { 2419 Diag(Tok, diag::err_expected) << tok::l_brace; 2420 return; 2421 } 2422 2423 switch (Result.Behavior) { 2424 case IEB_Parse: 2425 // Parse declarations below. 2426 break; 2427 2428 case IEB_Dependent: 2429 llvm_unreachable("Cannot have a dependent external declaration"); 2430 2431 case IEB_Skip: 2432 Braces.skipToEnd(); 2433 return; 2434 } 2435 2436 // Parse the declarations. 2437 // FIXME: Support module import within __if_exists? 2438 while (Tok.isNot(tok::r_brace) && !isEofOrEom()) { 2439 ParsedAttributes Attrs(AttrFactory); 2440 MaybeParseCXX11Attributes(Attrs); 2441 ParsedAttributes EmptyDeclSpecAttrs(AttrFactory); 2442 DeclGroupPtrTy Result = ParseExternalDeclaration(Attrs, EmptyDeclSpecAttrs); 2443 if (Result && !getCurScope()->getParent()) 2444 Actions.getASTConsumer().HandleTopLevelDecl(Result.get()); 2445 } 2446 Braces.consumeClose(); 2447 } 2448 2449 /// Parse a declaration beginning with the 'module' keyword or C++20 2450 /// context-sensitive keyword (optionally preceded by 'export'). 2451 /// 2452 /// module-declaration: [C++20] 2453 /// 'export'[opt] 'module' module-name attribute-specifier-seq[opt] ';' 2454 /// 2455 /// global-module-fragment: [C++2a] 2456 /// 'module' ';' top-level-declaration-seq[opt] 2457 /// module-declaration: [C++2a] 2458 /// 'export'[opt] 'module' module-name module-partition[opt] 2459 /// attribute-specifier-seq[opt] ';' 2460 /// private-module-fragment: [C++2a] 2461 /// 'module' ':' 'private' ';' top-level-declaration-seq[opt] 2462 Parser::DeclGroupPtrTy 2463 Parser::ParseModuleDecl(Sema::ModuleImportState &ImportState) { 2464 SourceLocation StartLoc = Tok.getLocation(); 2465 2466 Sema::ModuleDeclKind MDK = TryConsumeToken(tok::kw_export) 2467 ? Sema::ModuleDeclKind::Interface 2468 : Sema::ModuleDeclKind::Implementation; 2469 2470 assert( 2471 (Tok.is(tok::kw_module) || 2472 (Tok.is(tok::identifier) && Tok.getIdentifierInfo() == Ident_module)) && 2473 "not a module declaration"); 2474 SourceLocation ModuleLoc = ConsumeToken(); 2475 2476 // Attributes appear after the module name, not before. 2477 // FIXME: Suggest moving the attributes later with a fixit. 2478 DiagnoseAndSkipCXX11Attributes(); 2479 2480 // Parse a global-module-fragment, if present. 2481 if (getLangOpts().CPlusPlusModules && Tok.is(tok::semi)) { 2482 SourceLocation SemiLoc = ConsumeToken(); 2483 if (ImportState != Sema::ModuleImportState::FirstDecl) { 2484 Diag(StartLoc, diag::err_global_module_introducer_not_at_start) 2485 << SourceRange(StartLoc, SemiLoc); 2486 return nullptr; 2487 } 2488 if (MDK == Sema::ModuleDeclKind::Interface) { 2489 Diag(StartLoc, diag::err_module_fragment_exported) 2490 << /*global*/0 << FixItHint::CreateRemoval(StartLoc); 2491 } 2492 ImportState = Sema::ModuleImportState::GlobalFragment; 2493 return Actions.ActOnGlobalModuleFragmentDecl(ModuleLoc); 2494 } 2495 2496 // Parse a private-module-fragment, if present. 2497 if (getLangOpts().CPlusPlusModules && Tok.is(tok::colon) && 2498 NextToken().is(tok::kw_private)) { 2499 if (MDK == Sema::ModuleDeclKind::Interface) { 2500 Diag(StartLoc, diag::err_module_fragment_exported) 2501 << /*private*/1 << FixItHint::CreateRemoval(StartLoc); 2502 } 2503 ConsumeToken(); 2504 SourceLocation PrivateLoc = ConsumeToken(); 2505 DiagnoseAndSkipCXX11Attributes(); 2506 ExpectAndConsumeSemi(diag::err_private_module_fragment_expected_semi); 2507 ImportState = ImportState == Sema::ModuleImportState::ImportAllowed 2508 ? Sema::ModuleImportState::PrivateFragmentImportAllowed 2509 : Sema::ModuleImportState::PrivateFragmentImportFinished; 2510 return Actions.ActOnPrivateModuleFragmentDecl(ModuleLoc, PrivateLoc); 2511 } 2512 2513 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2514 if (ParseModuleName(ModuleLoc, Path, /*IsImport*/ false)) 2515 return nullptr; 2516 2517 // Parse the optional module-partition. 2518 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Partition; 2519 if (Tok.is(tok::colon)) { 2520 SourceLocation ColonLoc = ConsumeToken(); 2521 if (!getLangOpts().CPlusPlusModules) 2522 Diag(ColonLoc, diag::err_unsupported_module_partition) 2523 << SourceRange(ColonLoc, Partition.back().second); 2524 // Recover by ignoring the partition name. 2525 else if (ParseModuleName(ModuleLoc, Partition, /*IsImport*/ false)) 2526 return nullptr; 2527 } 2528 2529 // We don't support any module attributes yet; just parse them and diagnose. 2530 ParsedAttributes Attrs(AttrFactory); 2531 MaybeParseCXX11Attributes(Attrs); 2532 ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_module_attr, 2533 diag::err_keyword_not_module_attr, 2534 /*DiagnoseEmptyAttrs=*/false, 2535 /*WarnOnUnknownAttrs=*/true); 2536 2537 ExpectAndConsumeSemi(diag::err_module_expected_semi); 2538 2539 return Actions.ActOnModuleDecl(StartLoc, ModuleLoc, MDK, Path, Partition, 2540 ImportState); 2541 } 2542 2543 /// Parse a module import declaration. This is essentially the same for 2544 /// Objective-C and C++20 except for the leading '@' (in ObjC) and the 2545 /// trailing optional attributes (in C++). 2546 /// 2547 /// [ObjC] @import declaration: 2548 /// '@' 'import' module-name ';' 2549 /// [ModTS] module-import-declaration: 2550 /// 'import' module-name attribute-specifier-seq[opt] ';' 2551 /// [C++20] module-import-declaration: 2552 /// 'export'[opt] 'import' module-name 2553 /// attribute-specifier-seq[opt] ';' 2554 /// 'export'[opt] 'import' module-partition 2555 /// attribute-specifier-seq[opt] ';' 2556 /// 'export'[opt] 'import' header-name 2557 /// attribute-specifier-seq[opt] ';' 2558 Decl *Parser::ParseModuleImport(SourceLocation AtLoc, 2559 Sema::ModuleImportState &ImportState) { 2560 SourceLocation StartLoc = AtLoc.isInvalid() ? Tok.getLocation() : AtLoc; 2561 2562 SourceLocation ExportLoc; 2563 TryConsumeToken(tok::kw_export, ExportLoc); 2564 2565 assert((AtLoc.isInvalid() ? Tok.isOneOf(tok::kw_import, tok::identifier) 2566 : Tok.isObjCAtKeyword(tok::objc_import)) && 2567 "Improper start to module import"); 2568 bool IsObjCAtImport = Tok.isObjCAtKeyword(tok::objc_import); 2569 SourceLocation ImportLoc = ConsumeToken(); 2570 2571 // For C++20 modules, we can have "name" or ":Partition name" as valid input. 2572 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2573 bool IsPartition = false; 2574 Module *HeaderUnit = nullptr; 2575 if (Tok.is(tok::header_name)) { 2576 // This is a header import that the preprocessor decided we should skip 2577 // because it was malformed in some way. Parse and ignore it; it's already 2578 // been diagnosed. 2579 ConsumeToken(); 2580 } else if (Tok.is(tok::annot_header_unit)) { 2581 // This is a header import that the preprocessor mapped to a module import. 2582 HeaderUnit = reinterpret_cast<Module *>(Tok.getAnnotationValue()); 2583 ConsumeAnnotationToken(); 2584 } else if (Tok.is(tok::colon)) { 2585 SourceLocation ColonLoc = ConsumeToken(); 2586 if (!getLangOpts().CPlusPlusModules) 2587 Diag(ColonLoc, diag::err_unsupported_module_partition) 2588 << SourceRange(ColonLoc, Path.back().second); 2589 // Recover by leaving partition empty. 2590 else if (ParseModuleName(ColonLoc, Path, /*IsImport*/ true)) 2591 return nullptr; 2592 else 2593 IsPartition = true; 2594 } else { 2595 if (ParseModuleName(ImportLoc, Path, /*IsImport*/ true)) 2596 return nullptr; 2597 } 2598 2599 ParsedAttributes Attrs(AttrFactory); 2600 MaybeParseCXX11Attributes(Attrs); 2601 // We don't support any module import attributes yet. 2602 ProhibitCXX11Attributes(Attrs, diag::err_attribute_not_import_attr, 2603 diag::err_keyword_not_import_attr, 2604 /*DiagnoseEmptyAttrs=*/false, 2605 /*WarnOnUnknownAttrs=*/true); 2606 2607 if (PP.hadModuleLoaderFatalFailure()) { 2608 // With a fatal failure in the module loader, we abort parsing. 2609 cutOffParsing(); 2610 return nullptr; 2611 } 2612 2613 // Diagnose mis-imports. 2614 bool SeenError = true; 2615 switch (ImportState) { 2616 case Sema::ModuleImportState::ImportAllowed: 2617 SeenError = false; 2618 break; 2619 case Sema::ModuleImportState::FirstDecl: 2620 // If we found an import decl as the first declaration, we must be not in 2621 // a C++20 module unit or we are in an invalid state. 2622 ImportState = Sema::ModuleImportState::NotACXX20Module; 2623 [[fallthrough]]; 2624 case Sema::ModuleImportState::NotACXX20Module: 2625 // We can only import a partition within a module purview. 2626 if (IsPartition) 2627 Diag(ImportLoc, diag::err_partition_import_outside_module); 2628 else 2629 SeenError = false; 2630 break; 2631 case Sema::ModuleImportState::GlobalFragment: 2632 case Sema::ModuleImportState::PrivateFragmentImportAllowed: 2633 // We can only have pre-processor directives in the global module fragment 2634 // which allows pp-import, but not of a partition (since the global module 2635 // does not have partitions). 2636 // We cannot import a partition into a private module fragment, since 2637 // [module.private.frag]/1 disallows private module fragments in a multi- 2638 // TU module. 2639 if (IsPartition || (HeaderUnit && HeaderUnit->Kind != 2640 Module::ModuleKind::ModuleHeaderUnit)) 2641 Diag(ImportLoc, diag::err_import_in_wrong_fragment) 2642 << IsPartition 2643 << (ImportState == Sema::ModuleImportState::GlobalFragment ? 0 : 1); 2644 else 2645 SeenError = false; 2646 break; 2647 case Sema::ModuleImportState::ImportFinished: 2648 case Sema::ModuleImportState::PrivateFragmentImportFinished: 2649 if (getLangOpts().CPlusPlusModules) 2650 Diag(ImportLoc, diag::err_import_not_allowed_here); 2651 else 2652 SeenError = false; 2653 break; 2654 } 2655 if (SeenError) { 2656 ExpectAndConsumeSemi(diag::err_module_expected_semi); 2657 return nullptr; 2658 } 2659 2660 DeclResult Import; 2661 if (HeaderUnit) 2662 Import = 2663 Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, HeaderUnit); 2664 else if (!Path.empty()) 2665 Import = Actions.ActOnModuleImport(StartLoc, ExportLoc, ImportLoc, Path, 2666 IsPartition); 2667 ExpectAndConsumeSemi(diag::err_module_expected_semi); 2668 if (Import.isInvalid()) 2669 return nullptr; 2670 2671 // Using '@import' in framework headers requires modules to be enabled so that 2672 // the header is parseable. Emit a warning to make the user aware. 2673 if (IsObjCAtImport && AtLoc.isValid()) { 2674 auto &SrcMgr = PP.getSourceManager(); 2675 auto FE = SrcMgr.getFileEntryRefForID(SrcMgr.getFileID(AtLoc)); 2676 if (FE && llvm::sys::path::parent_path(FE->getDir().getName()) 2677 .ends_with(".framework")) 2678 Diags.Report(AtLoc, diag::warn_atimport_in_framework_header); 2679 } 2680 2681 return Import.get(); 2682 } 2683 2684 /// Parse a C++ / Objective-C module name (both forms use the same 2685 /// grammar). 2686 /// 2687 /// module-name: 2688 /// module-name-qualifier[opt] identifier 2689 /// module-name-qualifier: 2690 /// module-name-qualifier[opt] identifier '.' 2691 bool Parser::ParseModuleName( 2692 SourceLocation UseLoc, 2693 SmallVectorImpl<std::pair<IdentifierInfo *, SourceLocation>> &Path, 2694 bool IsImport) { 2695 // Parse the module path. 2696 while (true) { 2697 if (!Tok.is(tok::identifier)) { 2698 if (Tok.is(tok::code_completion)) { 2699 cutOffParsing(); 2700 Actions.CodeCompletion().CodeCompleteModuleImport(UseLoc, Path); 2701 return true; 2702 } 2703 2704 Diag(Tok, diag::err_module_expected_ident) << IsImport; 2705 SkipUntil(tok::semi); 2706 return true; 2707 } 2708 2709 // Record this part of the module path. 2710 Path.push_back(std::make_pair(Tok.getIdentifierInfo(), Tok.getLocation())); 2711 ConsumeToken(); 2712 2713 if (Tok.isNot(tok::period)) 2714 return false; 2715 2716 ConsumeToken(); 2717 } 2718 } 2719 2720 /// Try recover parser when module annotation appears where it must not 2721 /// be found. 2722 /// \returns false if the recover was successful and parsing may be continued, or 2723 /// true if parser must bail out to top level and handle the token there. 2724 bool Parser::parseMisplacedModuleImport() { 2725 while (true) { 2726 switch (Tok.getKind()) { 2727 case tok::annot_module_end: 2728 // If we recovered from a misplaced module begin, we expect to hit a 2729 // misplaced module end too. Stay in the current context when this 2730 // happens. 2731 if (MisplacedModuleBeginCount) { 2732 --MisplacedModuleBeginCount; 2733 Actions.ActOnAnnotModuleEnd( 2734 Tok.getLocation(), 2735 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2736 ConsumeAnnotationToken(); 2737 continue; 2738 } 2739 // Inform caller that recovery failed, the error must be handled at upper 2740 // level. This will generate the desired "missing '}' at end of module" 2741 // diagnostics on the way out. 2742 return true; 2743 case tok::annot_module_begin: 2744 // Recover by entering the module (Sema will diagnose). 2745 Actions.ActOnAnnotModuleBegin( 2746 Tok.getLocation(), 2747 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2748 ConsumeAnnotationToken(); 2749 ++MisplacedModuleBeginCount; 2750 continue; 2751 case tok::annot_module_include: 2752 // Module import found where it should not be, for instance, inside a 2753 // namespace. Recover by importing the module. 2754 Actions.ActOnAnnotModuleInclude( 2755 Tok.getLocation(), 2756 reinterpret_cast<Module *>(Tok.getAnnotationValue())); 2757 ConsumeAnnotationToken(); 2758 // If there is another module import, process it. 2759 continue; 2760 default: 2761 return false; 2762 } 2763 } 2764 return false; 2765 } 2766 2767 void Parser::diagnoseUseOfC11Keyword(const Token &Tok) { 2768 // Warn that this is a C11 extension if in an older mode or if in C++. 2769 // Otherwise, warn that it is incompatible with standards before C11 if in 2770 // C11 or later. 2771 Diag(Tok, getLangOpts().C11 ? diag::warn_c11_compat_keyword 2772 : diag::ext_c11_feature) 2773 << Tok.getName(); 2774 } 2775 2776 bool BalancedDelimiterTracker::diagnoseOverflow() { 2777 P.Diag(P.Tok, diag::err_bracket_depth_exceeded) 2778 << P.getLangOpts().BracketDepth; 2779 P.Diag(P.Tok, diag::note_bracket_depth); 2780 P.cutOffParsing(); 2781 return true; 2782 } 2783 2784 bool BalancedDelimiterTracker::expectAndConsume(unsigned DiagID, 2785 const char *Msg, 2786 tok::TokenKind SkipToTok) { 2787 LOpen = P.Tok.getLocation(); 2788 if (P.ExpectAndConsume(Kind, DiagID, Msg)) { 2789 if (SkipToTok != tok::unknown) 2790 P.SkipUntil(SkipToTok, Parser::StopAtSemi); 2791 return true; 2792 } 2793 2794 if (getDepth() < P.getLangOpts().BracketDepth) 2795 return false; 2796 2797 return diagnoseOverflow(); 2798 } 2799 2800 bool BalancedDelimiterTracker::diagnoseMissingClose() { 2801 assert(!P.Tok.is(Close) && "Should have consumed closing delimiter"); 2802 2803 if (P.Tok.is(tok::annot_module_end)) 2804 P.Diag(P.Tok, diag::err_missing_before_module_end) << Close; 2805 else 2806 P.Diag(P.Tok, diag::err_expected) << Close; 2807 P.Diag(LOpen, diag::note_matching) << Kind; 2808 2809 // If we're not already at some kind of closing bracket, skip to our closing 2810 // token. 2811 if (P.Tok.isNot(tok::r_paren) && P.Tok.isNot(tok::r_brace) && 2812 P.Tok.isNot(tok::r_square) && 2813 P.SkipUntil(Close, FinalToken, 2814 Parser::StopAtSemi | Parser::StopBeforeMatch) && 2815 P.Tok.is(Close)) 2816 LClose = P.ConsumeAnyToken(); 2817 return true; 2818 } 2819 2820 void BalancedDelimiterTracker::skipToEnd() { 2821 P.SkipUntil(Close, Parser::StopBeforeMatch); 2822 consumeClose(); 2823 } 2824