xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExprCXX.cpp (revision e32fecd0c2c3ee37c47ee100f169e7eb0282a873)
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Parse/RAIIObjectsForParser.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/ParsedTemplate.h"
23 #include "clang/Sema/Scope.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <numeric>
26 
27 using namespace clang;
28 
29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30   switch (Kind) {
31     // template name
32     case tok::unknown:             return 0;
33     // casts
34     case tok::kw_addrspace_cast:   return 1;
35     case tok::kw_const_cast:       return 2;
36     case tok::kw_dynamic_cast:     return 3;
37     case tok::kw_reinterpret_cast: return 4;
38     case tok::kw_static_cast:      return 5;
39     default:
40       llvm_unreachable("Unknown type for digraph error message.");
41   }
42 }
43 
44 // Are the two tokens adjacent in the same source file?
45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46   SourceManager &SM = PP.getSourceManager();
47   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50 }
51 
52 // Suggest fixit for "<::" after a cast.
53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55   // Pull '<:' and ':' off token stream.
56   if (!AtDigraph)
57     PP.Lex(DigraphToken);
58   PP.Lex(ColonToken);
59 
60   SourceRange Range;
61   Range.setBegin(DigraphToken.getLocation());
62   Range.setEnd(ColonToken.getLocation());
63   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64       << SelectDigraphErrorMessage(Kind)
65       << FixItHint::CreateReplacement(Range, "< ::");
66 
67   // Update token information to reflect their change in token type.
68   ColonToken.setKind(tok::coloncolon);
69   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70   ColonToken.setLength(2);
71   DigraphToken.setKind(tok::less);
72   DigraphToken.setLength(1);
73 
74   // Push new tokens back to token stream.
75   PP.EnterToken(ColonToken, /*IsReinject*/ true);
76   if (!AtDigraph)
77     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78 }
79 
80 // Check for '<::' which should be '< ::' instead of '[:' when following
81 // a template name.
82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83                                         bool EnteringContext,
84                                         IdentifierInfo &II, CXXScopeSpec &SS) {
85   if (!Next.is(tok::l_square) || Next.getLength() != 2)
86     return;
87 
88   Token SecondToken = GetLookAheadToken(2);
89   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90     return;
91 
92   TemplateTy Template;
93   UnqualifiedId TemplateName;
94   TemplateName.setIdentifier(&II, Tok.getLocation());
95   bool MemberOfUnknownSpecialization;
96   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97                               TemplateName, ObjectType, EnteringContext,
98                               Template, MemberOfUnknownSpecialization))
99     return;
100 
101   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102              /*AtDigraph*/false);
103 }
104 
105 /// Parse global scope or nested-name-specifier if present.
106 ///
107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108 /// may be preceded by '::'). Note that this routine will not parse ::new or
109 /// ::delete; it will just leave them in the token stream.
110 ///
111 ///       '::'[opt] nested-name-specifier
112 ///       '::'
113 ///
114 ///       nested-name-specifier:
115 ///         type-name '::'
116 ///         namespace-name '::'
117 ///         nested-name-specifier identifier '::'
118 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
119 ///
120 ///
121 /// \param SS the scope specifier that will be set to the parsed
122 /// nested-name-specifier (or empty)
123 ///
124 /// \param ObjectType if this nested-name-specifier is being parsed following
125 /// the "." or "->" of a member access expression, this parameter provides the
126 /// type of the object whose members are being accessed.
127 ///
128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
129 /// expression, indicates whether the original subexpressions had any errors.
130 /// When true, diagnostics for missing 'template' keyword will be supressed.
131 ///
132 /// \param EnteringContext whether we will be entering into the context of
133 /// the nested-name-specifier after parsing it.
134 ///
135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
136 /// indicates whether this nested-name-specifier may be part of a
137 /// pseudo-destructor name. In this case, the flag will be set false
138 /// if we don't actually end up parsing a destructor name. Moreover,
139 /// if we do end up determining that we are parsing a destructor name,
140 /// the last component of the nested-name-specifier is not parsed as
141 /// part of the scope specifier.
142 ///
143 /// \param IsTypename If \c true, this nested-name-specifier is known to be
144 /// part of a type name. This is used to improve error recovery.
145 ///
146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147 /// filled in with the leading identifier in the last component of the
148 /// nested-name-specifier, if any.
149 ///
150 /// \param OnlyNamespace If true, only considers namespaces in lookup.
151 ///
152 ///
153 /// \returns true if there was an error parsing a scope specifier
154 bool Parser::ParseOptionalCXXScopeSpecifier(
155     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157     IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158   assert(getLangOpts().CPlusPlus &&
159          "Call sites of this function should be guarded by checking for C++");
160 
161   if (Tok.is(tok::annot_cxxscope)) {
162     assert(!LastII && "want last identifier but have already annotated scope");
163     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
164     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165                                                  Tok.getAnnotationRange(),
166                                                  SS);
167     ConsumeAnnotationToken();
168     return false;
169   }
170 
171   // Has to happen before any "return false"s in this function.
172   bool CheckForDestructor = false;
173   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174     CheckForDestructor = true;
175     *MayBePseudoDestructor = false;
176   }
177 
178   if (LastII)
179     *LastII = nullptr;
180 
181   bool HasScopeSpecifier = false;
182 
183   if (Tok.is(tok::coloncolon)) {
184     // ::new and ::delete aren't nested-name-specifiers.
185     tok::TokenKind NextKind = NextToken().getKind();
186     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187       return false;
188 
189     if (NextKind == tok::l_brace) {
190       // It is invalid to have :: {, consume the scope qualifier and pretend
191       // like we never saw it.
192       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193     } else {
194       // '::' - Global scope qualifier.
195       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196         return true;
197 
198       HasScopeSpecifier = true;
199     }
200   }
201 
202   if (Tok.is(tok::kw___super)) {
203     SourceLocation SuperLoc = ConsumeToken();
204     if (!Tok.is(tok::coloncolon)) {
205       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206       return true;
207     }
208 
209     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210   }
211 
212   if (!HasScopeSpecifier &&
213       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214     DeclSpec DS(AttrFactory);
215     SourceLocation DeclLoc = Tok.getLocation();
216     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
217 
218     SourceLocation CCLoc;
219     // Work around a standard defect: 'decltype(auto)::' is not a
220     // nested-name-specifier.
221     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222         !TryConsumeToken(tok::coloncolon, CCLoc)) {
223       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224       return false;
225     }
226 
227     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229 
230     HasScopeSpecifier = true;
231   }
232 
233   // Preferred type might change when parsing qualifiers, we need the original.
234   auto SavedType = PreferredType;
235   while (true) {
236     if (HasScopeSpecifier) {
237       if (Tok.is(tok::code_completion)) {
238         cutOffParsing();
239         // Code completion for a nested-name-specifier, where the code
240         // completion token follows the '::'.
241         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242                                         InUsingDeclaration, ObjectType.get(),
243                                         SavedType.get(SS.getBeginLoc()));
244         // Include code completion token into the range of the scope otherwise
245         // when we try to annotate the scope tokens the dangling code completion
246         // token will cause assertion in
247         // Preprocessor::AnnotatePreviousCachedTokens.
248         SS.setEndLoc(Tok.getLocation());
249         return true;
250       }
251 
252       // C++ [basic.lookup.classref]p5:
253       //   If the qualified-id has the form
254       //
255       //       ::class-name-or-namespace-name::...
256       //
257       //   the class-name-or-namespace-name is looked up in global scope as a
258       //   class-name or namespace-name.
259       //
260       // To implement this, we clear out the object type as soon as we've
261       // seen a leading '::' or part of a nested-name-specifier.
262       ObjectType = nullptr;
263     }
264 
265     // nested-name-specifier:
266     //   nested-name-specifier 'template'[opt] simple-template-id '::'
267 
268     // Parse the optional 'template' keyword, then make sure we have
269     // 'identifier <' after it.
270     if (Tok.is(tok::kw_template)) {
271       // If we don't have a scope specifier or an object type, this isn't a
272       // nested-name-specifier, since they aren't allowed to start with
273       // 'template'.
274       if (!HasScopeSpecifier && !ObjectType)
275         break;
276 
277       TentativeParsingAction TPA(*this);
278       SourceLocation TemplateKWLoc = ConsumeToken();
279 
280       UnqualifiedId TemplateName;
281       if (Tok.is(tok::identifier)) {
282         // Consume the identifier.
283         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284         ConsumeToken();
285       } else if (Tok.is(tok::kw_operator)) {
286         // We don't need to actually parse the unqualified-id in this case,
287         // because a simple-template-id cannot start with 'operator', but
288         // go ahead and parse it anyway for consistency with the case where
289         // we already annotated the template-id.
290         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291                                        TemplateName)) {
292           TPA.Commit();
293           break;
294         }
295 
296         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298           Diag(TemplateName.getSourceRange().getBegin(),
299                diag::err_id_after_template_in_nested_name_spec)
300             << TemplateName.getSourceRange();
301           TPA.Commit();
302           break;
303         }
304       } else {
305         TPA.Revert();
306         break;
307       }
308 
309       // If the next token is not '<', we have a qualified-id that refers
310       // to a template name, such as T::template apply, but is not a
311       // template-id.
312       if (Tok.isNot(tok::less)) {
313         TPA.Revert();
314         break;
315       }
316 
317       // Commit to parsing the template-id.
318       TPA.Commit();
319       TemplateTy Template;
320       TemplateNameKind TNK = Actions.ActOnTemplateName(
321           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322           EnteringContext, Template, /*AllowInjectedClassName*/ true);
323       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324                                   TemplateName, false))
325         return true;
326 
327       continue;
328     }
329 
330     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331       // We have
332       //
333       //   template-id '::'
334       //
335       // So we need to check whether the template-id is a simple-template-id of
336       // the right kind (it should name a type or be dependent), and then
337       // convert it into a type within the nested-name-specifier.
338       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340         *MayBePseudoDestructor = true;
341         return false;
342       }
343 
344       if (LastII)
345         *LastII = TemplateId->Name;
346 
347       // Consume the template-id token.
348       ConsumeAnnotationToken();
349 
350       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
351       SourceLocation CCLoc = ConsumeToken();
352 
353       HasScopeSpecifier = true;
354 
355       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356                                          TemplateId->NumArgs);
357 
358       if (TemplateId->isInvalid() ||
359           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360                                               SS,
361                                               TemplateId->TemplateKWLoc,
362                                               TemplateId->Template,
363                                               TemplateId->TemplateNameLoc,
364                                               TemplateId->LAngleLoc,
365                                               TemplateArgsPtr,
366                                               TemplateId->RAngleLoc,
367                                               CCLoc,
368                                               EnteringContext)) {
369         SourceLocation StartLoc
370           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371                                       : TemplateId->TemplateNameLoc;
372         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373       }
374 
375       continue;
376     }
377 
378     // The rest of the nested-name-specifier possibilities start with
379     // tok::identifier.
380     if (Tok.isNot(tok::identifier))
381       break;
382 
383     IdentifierInfo &II = *Tok.getIdentifierInfo();
384 
385     // nested-name-specifier:
386     //   type-name '::'
387     //   namespace-name '::'
388     //   nested-name-specifier identifier '::'
389     Token Next = NextToken();
390     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391                                     ObjectType);
392 
393     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
394     // and emit a fixit hint for it.
395     if (Next.is(tok::colon) && !ColonIsSacred) {
396       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397                                             EnteringContext) &&
398           // If the token after the colon isn't an identifier, it's still an
399           // error, but they probably meant something else strange so don't
400           // recover like this.
401           PP.LookAhead(1).is(tok::identifier)) {
402         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403           << FixItHint::CreateReplacement(Next.getLocation(), "::");
404         // Recover as if the user wrote '::'.
405         Next.setKind(tok::coloncolon);
406       }
407     }
408 
409     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410       // It is invalid to have :: {, consume the scope qualifier and pretend
411       // like we never saw it.
412       Token Identifier = Tok; // Stash away the identifier.
413       ConsumeToken();         // Eat the identifier, current token is now '::'.
414       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415           << tok::identifier;
416       UnconsumeToken(Identifier); // Stick the identifier back.
417       Next = NextToken();         // Point Next at the '{' token.
418     }
419 
420     if (Next.is(tok::coloncolon)) {
421       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422         *MayBePseudoDestructor = true;
423         return false;
424       }
425 
426       if (ColonIsSacred) {
427         const Token &Next2 = GetLookAheadToken(2);
428         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431               << Next2.getName()
432               << FixItHint::CreateReplacement(Next.getLocation(), ":");
433           Token ColonColon;
434           PP.Lex(ColonColon);
435           ColonColon.setKind(tok::colon);
436           PP.EnterToken(ColonColon, /*IsReinject*/ true);
437           break;
438         }
439       }
440 
441       if (LastII)
442         *LastII = &II;
443 
444       // We have an identifier followed by a '::'. Lookup this name
445       // as the name in a nested-name-specifier.
446       Token Identifier = Tok;
447       SourceLocation IdLoc = ConsumeToken();
448       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
449              "NextToken() not working properly!");
450       Token ColonColon = Tok;
451       SourceLocation CCLoc = ConsumeToken();
452 
453       bool IsCorrectedToColon = false;
454       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455       if (Actions.ActOnCXXNestedNameSpecifier(
456               getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
457               OnlyNamespace)) {
458         // Identifier is not recognized as a nested name, but we can have
459         // mistyped '::' instead of ':'.
460         if (CorrectionFlagPtr && IsCorrectedToColon) {
461           ColonColon.setKind(tok::colon);
462           PP.EnterToken(Tok, /*IsReinject*/ true);
463           PP.EnterToken(ColonColon, /*IsReinject*/ true);
464           Tok = Identifier;
465           break;
466         }
467         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468       }
469       HasScopeSpecifier = true;
470       continue;
471     }
472 
473     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474 
475     // nested-name-specifier:
476     //   type-name '<'
477     if (Next.is(tok::less)) {
478 
479       TemplateTy Template;
480       UnqualifiedId TemplateName;
481       TemplateName.setIdentifier(&II, Tok.getLocation());
482       bool MemberOfUnknownSpecialization;
483       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484                                               /*hasTemplateKeyword=*/false,
485                                                         TemplateName,
486                                                         ObjectType,
487                                                         EnteringContext,
488                                                         Template,
489                                               MemberOfUnknownSpecialization)) {
490         // If lookup didn't find anything, we treat the name as a template-name
491         // anyway. C++20 requires this, and in prior language modes it improves
492         // error recovery. But before we commit to this, check that we actually
493         // have something that looks like a template-argument-list next.
494         if (!IsTypename && TNK == TNK_Undeclared_template &&
495             isTemplateArgumentList(1) == TPResult::False)
496           break;
497 
498         // We have found a template name, so annotate this token
499         // with a template-id annotation. We do not permit the
500         // template-id to be translated into a type annotation,
501         // because some clients (e.g., the parsing of class template
502         // specializations) still want to see the original template-id
503         // token, and it might not be a type at all (e.g. a concept name in a
504         // type-constraint).
505         ConsumeToken();
506         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507                                     TemplateName, false))
508           return true;
509         continue;
510       }
511 
512       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514         // If we had errors before, ObjectType can be dependent even without any
515         // templates. Do not report missing template keyword in that case.
516         if (!ObjectHadErrors) {
517           // We have something like t::getAs<T>, where getAs is a
518           // member of an unknown specialization. However, this will only
519           // parse correctly as a template, so suggest the keyword 'template'
520           // before 'getAs' and treat this as a dependent template name.
521           unsigned DiagID = diag::err_missing_dependent_template_keyword;
522           if (getLangOpts().MicrosoftExt)
523             DiagID = diag::warn_missing_dependent_template_keyword;
524 
525           Diag(Tok.getLocation(), DiagID)
526               << II.getName()
527               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528         }
529 
530         SourceLocation TemplateNameLoc = ConsumeToken();
531 
532         TemplateNameKind TNK = Actions.ActOnTemplateName(
533             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534             EnteringContext, Template, /*AllowInjectedClassName*/ true);
535         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536                                     TemplateName, false))
537           return true;
538 
539         continue;
540       }
541     }
542 
543     // We don't have any tokens that form the beginning of a
544     // nested-name-specifier, so we're done.
545     break;
546   }
547 
548   // Even if we didn't see any pieces of a nested-name-specifier, we
549   // still check whether there is a tilde in this position, which
550   // indicates a potential pseudo-destructor.
551   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552     *MayBePseudoDestructor = true;
553 
554   return false;
555 }
556 
557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558                                            bool isAddressOfOperand,
559                                            Token &Replacement) {
560   ExprResult E;
561 
562   // We may have already annotated this id-expression.
563   switch (Tok.getKind()) {
564   case tok::annot_non_type: {
565     NamedDecl *ND = getNonTypeAnnotation(Tok);
566     SourceLocation Loc = ConsumeAnnotationToken();
567     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568     break;
569   }
570 
571   case tok::annot_non_type_dependent: {
572     IdentifierInfo *II = getIdentifierAnnotation(Tok);
573     SourceLocation Loc = ConsumeAnnotationToken();
574 
575     // This is only the direct operand of an & operator if it is not
576     // followed by a postfix-expression suffix.
577     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578       isAddressOfOperand = false;
579 
580     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581                                                       isAddressOfOperand);
582     break;
583   }
584 
585   case tok::annot_non_type_undeclared: {
586     assert(SS.isEmpty() &&
587            "undeclared non-type annotation should be unqualified");
588     IdentifierInfo *II = getIdentifierAnnotation(Tok);
589     SourceLocation Loc = ConsumeAnnotationToken();
590     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591     break;
592   }
593 
594   default:
595     SourceLocation TemplateKWLoc;
596     UnqualifiedId Name;
597     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598                            /*ObjectHadErrors=*/false,
599                            /*EnteringContext=*/false,
600                            /*AllowDestructorName=*/false,
601                            /*AllowConstructorName=*/false,
602                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603       return ExprError();
604 
605     // This is only the direct operand of an & operator if it is not
606     // followed by a postfix-expression suffix.
607     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608       isAddressOfOperand = false;
609 
610     E = Actions.ActOnIdExpression(
611         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613         &Replacement);
614     break;
615   }
616 
617   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618     checkPotentialAngleBracket(E);
619   return E;
620 }
621 
622 /// ParseCXXIdExpression - Handle id-expression.
623 ///
624 ///       id-expression:
625 ///         unqualified-id
626 ///         qualified-id
627 ///
628 ///       qualified-id:
629 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630 ///         '::' identifier
631 ///         '::' operator-function-id
632 ///         '::' template-id
633 ///
634 /// NOTE: The standard specifies that, for qualified-id, the parser does not
635 /// expect:
636 ///
637 ///   '::' conversion-function-id
638 ///   '::' '~' class-name
639 ///
640 /// This may cause a slight inconsistency on diagnostics:
641 ///
642 /// class C {};
643 /// namespace A {}
644 /// void f() {
645 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
646 ///                  // namespace.
647 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
648 /// }
649 ///
650 /// We simplify the parser a bit and make it work like:
651 ///
652 ///       qualified-id:
653 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654 ///         '::' unqualified-id
655 ///
656 /// That way Sema can handle and report similar errors for namespaces and the
657 /// global scope.
658 ///
659 /// The isAddressOfOperand parameter indicates that this id-expression is a
660 /// direct operand of the address-of operator. This is, besides member contexts,
661 /// the only place where a qualified-id naming a non-static class member may
662 /// appear.
663 ///
664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665   // qualified-id:
666   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667   //   '::' unqualified-id
668   //
669   CXXScopeSpec SS;
670   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671                                  /*ObjectHasErrors=*/false,
672                                  /*EnteringContext=*/false);
673 
674   Token Replacement;
675   ExprResult Result =
676       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677   if (Result.isUnset()) {
678     // If the ExprResult is valid but null, then typo correction suggested a
679     // keyword replacement that needs to be reparsed.
680     UnconsumeToken(Replacement);
681     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682   }
683   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
684                               "for a previous keyword suggestion");
685   return Result;
686 }
687 
688 /// ParseLambdaExpression - Parse a C++11 lambda expression.
689 ///
690 ///       lambda-expression:
691 ///         lambda-introducer lambda-declarator compound-statement
692 ///         lambda-introducer '<' template-parameter-list '>'
693 ///             requires-clause[opt] lambda-declarator compound-statement
694 ///
695 ///       lambda-introducer:
696 ///         '[' lambda-capture[opt] ']'
697 ///
698 ///       lambda-capture:
699 ///         capture-default
700 ///         capture-list
701 ///         capture-default ',' capture-list
702 ///
703 ///       capture-default:
704 ///         '&'
705 ///         '='
706 ///
707 ///       capture-list:
708 ///         capture
709 ///         capture-list ',' capture
710 ///
711 ///       capture:
712 ///         simple-capture
713 ///         init-capture     [C++1y]
714 ///
715 ///       simple-capture:
716 ///         identifier
717 ///         '&' identifier
718 ///         'this'
719 ///
720 ///       init-capture:      [C++1y]
721 ///         identifier initializer
722 ///         '&' identifier initializer
723 ///
724 ///       lambda-declarator:
725 ///         lambda-specifiers     [C++2b]
726 ///         '(' parameter-declaration-clause ')' lambda-specifiers
727 ///             requires-clause[opt]
728 ///
729 ///       lambda-specifiers:
730 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
731 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
732 ///
733 ExprResult Parser::ParseLambdaExpression() {
734   // Parse lambda-introducer.
735   LambdaIntroducer Intro;
736   if (ParseLambdaIntroducer(Intro)) {
737     SkipUntil(tok::r_square, StopAtSemi);
738     SkipUntil(tok::l_brace, StopAtSemi);
739     SkipUntil(tok::r_brace, StopAtSemi);
740     return ExprError();
741   }
742 
743   return ParseLambdaExpressionAfterIntroducer(Intro);
744 }
745 
746 /// Use lookahead and potentially tentative parsing to determine if we are
747 /// looking at a C++11 lambda expression, and parse it if we are.
748 ///
749 /// If we are not looking at a lambda expression, returns ExprError().
750 ExprResult Parser::TryParseLambdaExpression() {
751   assert(getLangOpts().CPlusPlus11
752          && Tok.is(tok::l_square)
753          && "Not at the start of a possible lambda expression.");
754 
755   const Token Next = NextToken();
756   if (Next.is(tok::eof)) // Nothing else to lookup here...
757     return ExprEmpty();
758 
759   const Token After = GetLookAheadToken(2);
760   // If lookahead indicates this is a lambda...
761   if (Next.is(tok::r_square) ||     // []
762       Next.is(tok::equal) ||        // [=
763       (Next.is(tok::amp) &&         // [&] or [&,
764        After.isOneOf(tok::r_square, tok::comma)) ||
765       (Next.is(tok::identifier) &&  // [identifier]
766        After.is(tok::r_square)) ||
767       Next.is(tok::ellipsis)) {     // [...
768     return ParseLambdaExpression();
769   }
770 
771   // If lookahead indicates an ObjC message send...
772   // [identifier identifier
773   if (Next.is(tok::identifier) && After.is(tok::identifier))
774     return ExprEmpty();
775 
776   // Here, we're stuck: lambda introducers and Objective-C message sends are
777   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
778   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
779   // writing two routines to parse a lambda introducer, just try to parse
780   // a lambda introducer first, and fall back if that fails.
781   LambdaIntroducer Intro;
782   {
783     TentativeParsingAction TPA(*this);
784     LambdaIntroducerTentativeParse Tentative;
785     if (ParseLambdaIntroducer(Intro, &Tentative)) {
786       TPA.Commit();
787       return ExprError();
788     }
789 
790     switch (Tentative) {
791     case LambdaIntroducerTentativeParse::Success:
792       TPA.Commit();
793       break;
794 
795     case LambdaIntroducerTentativeParse::Incomplete:
796       // Didn't fully parse the lambda-introducer, try again with a
797       // non-tentative parse.
798       TPA.Revert();
799       Intro = LambdaIntroducer();
800       if (ParseLambdaIntroducer(Intro))
801         return ExprError();
802       break;
803 
804     case LambdaIntroducerTentativeParse::MessageSend:
805     case LambdaIntroducerTentativeParse::Invalid:
806       // Not a lambda-introducer, might be a message send.
807       TPA.Revert();
808       return ExprEmpty();
809     }
810   }
811 
812   return ParseLambdaExpressionAfterIntroducer(Intro);
813 }
814 
815 /// Parse a lambda introducer.
816 /// \param Intro A LambdaIntroducer filled in with information about the
817 ///        contents of the lambda-introducer.
818 /// \param Tentative If non-null, we are disambiguating between a
819 ///        lambda-introducer and some other construct. In this mode, we do not
820 ///        produce any diagnostics or take any other irreversible action unless
821 ///        we're sure that this is a lambda-expression.
822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823 ///         the caller should bail out / recover.
824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825                                    LambdaIntroducerTentativeParse *Tentative) {
826   if (Tentative)
827     *Tentative = LambdaIntroducerTentativeParse::Success;
828 
829   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
830   BalancedDelimiterTracker T(*this, tok::l_square);
831   T.consumeOpen();
832 
833   Intro.Range.setBegin(T.getOpenLocation());
834 
835   bool First = true;
836 
837   // Produce a diagnostic if we're not tentatively parsing; otherwise track
838   // that our parse has failed.
839   auto Invalid = [&](llvm::function_ref<void()> Action) {
840     if (Tentative) {
841       *Tentative = LambdaIntroducerTentativeParse::Invalid;
842       return false;
843     }
844     Action();
845     return true;
846   };
847 
848   // Perform some irreversible action if this is a non-tentative parse;
849   // otherwise note that our actions were incomplete.
850   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851     if (Tentative)
852       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853     else
854       Action();
855   };
856 
857   // Parse capture-default.
858   if (Tok.is(tok::amp) &&
859       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860     Intro.Default = LCD_ByRef;
861     Intro.DefaultLoc = ConsumeToken();
862     First = false;
863     if (!Tok.getIdentifierInfo()) {
864       // This can only be a lambda; no need for tentative parsing any more.
865       // '[[and]]' can still be an attribute, though.
866       Tentative = nullptr;
867     }
868   } else if (Tok.is(tok::equal)) {
869     Intro.Default = LCD_ByCopy;
870     Intro.DefaultLoc = ConsumeToken();
871     First = false;
872     Tentative = nullptr;
873   }
874 
875   while (Tok.isNot(tok::r_square)) {
876     if (!First) {
877       if (Tok.isNot(tok::comma)) {
878         // Provide a completion for a lambda introducer here. Except
879         // in Objective-C, where this is Almost Surely meant to be a message
880         // send. In that case, fail here and let the ObjC message
881         // expression parser perform the completion.
882         if (Tok.is(tok::code_completion) &&
883             !(getLangOpts().ObjC && Tentative)) {
884           cutOffParsing();
885           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886                                                /*AfterAmpersand=*/false);
887           break;
888         }
889 
890         return Invalid([&] {
891           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892         });
893       }
894       ConsumeToken();
895     }
896 
897     if (Tok.is(tok::code_completion)) {
898       cutOffParsing();
899       // If we're in Objective-C++ and we have a bare '[', then this is more
900       // likely to be a message receiver.
901       if (getLangOpts().ObjC && Tentative && First)
902         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903       else
904         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905                                              /*AfterAmpersand=*/false);
906       break;
907     }
908 
909     First = false;
910 
911     // Parse capture.
912     LambdaCaptureKind Kind = LCK_ByCopy;
913     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914     SourceLocation Loc;
915     IdentifierInfo *Id = nullptr;
916     SourceLocation EllipsisLocs[4];
917     ExprResult Init;
918     SourceLocation LocStart = Tok.getLocation();
919 
920     if (Tok.is(tok::star)) {
921       Loc = ConsumeToken();
922       if (Tok.is(tok::kw_this)) {
923         ConsumeToken();
924         Kind = LCK_StarThis;
925       } else {
926         return Invalid([&] {
927           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928         });
929       }
930     } else if (Tok.is(tok::kw_this)) {
931       Kind = LCK_This;
932       Loc = ConsumeToken();
933     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934                NextToken().isOneOf(tok::comma, tok::r_square) &&
935                Intro.Default == LCD_None) {
936       // We have a lone "&" or "=" which is either a misplaced capture-default
937       // or the start of a capture (in the "&" case) with the rest of the
938       // capture missing. Both are an error but a misplaced capture-default
939       // is more likely if we don't already have a capture default.
940       return Invalid(
941           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942     } else {
943       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944 
945       if (Tok.is(tok::amp)) {
946         Kind = LCK_ByRef;
947         ConsumeToken();
948 
949         if (Tok.is(tok::code_completion)) {
950           cutOffParsing();
951           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952                                                /*AfterAmpersand=*/true);
953           break;
954         }
955       }
956 
957       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958 
959       if (Tok.is(tok::identifier)) {
960         Id = Tok.getIdentifierInfo();
961         Loc = ConsumeToken();
962       } else if (Tok.is(tok::kw_this)) {
963         return Invalid([&] {
964           // FIXME: Suggest a fixit here.
965           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966         });
967       } else {
968         return Invalid([&] {
969           Diag(Tok.getLocation(), diag::err_expected_capture);
970         });
971       }
972 
973       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974 
975       if (Tok.is(tok::l_paren)) {
976         BalancedDelimiterTracker Parens(*this, tok::l_paren);
977         Parens.consumeOpen();
978 
979         InitKind = LambdaCaptureInitKind::DirectInit;
980 
981         ExprVector Exprs;
982         CommaLocsTy Commas;
983         if (Tentative) {
984           Parens.skipToEnd();
985           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986         } else if (ParseExpressionList(Exprs, Commas)) {
987           Parens.skipToEnd();
988           Init = ExprError();
989         } else {
990           Parens.consumeClose();
991           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992                                             Parens.getCloseLocation(),
993                                             Exprs);
994         }
995       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996         // Each lambda init-capture forms its own full expression, which clears
997         // Actions.MaybeODRUseExprs. So create an expression evaluation context
998         // to save the necessary state, and restore it later.
999         EnterExpressionEvaluationContext EC(
1000             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001 
1002         if (TryConsumeToken(tok::equal))
1003           InitKind = LambdaCaptureInitKind::CopyInit;
1004         else
1005           InitKind = LambdaCaptureInitKind::ListInit;
1006 
1007         if (!Tentative) {
1008           Init = ParseInitializer();
1009         } else if (Tok.is(tok::l_brace)) {
1010           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011           Braces.consumeOpen();
1012           Braces.skipToEnd();
1013           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014         } else {
1015           // We're disambiguating this:
1016           //
1017           //   [..., x = expr
1018           //
1019           // We need to find the end of the following expression in order to
1020           // determine whether this is an Obj-C message send's receiver, a
1021           // C99 designator, or a lambda init-capture.
1022           //
1023           // Parse the expression to find where it ends, and annotate it back
1024           // onto the tokens. We would have parsed this expression the same way
1025           // in either case: both the RHS of an init-capture and the RHS of an
1026           // assignment expression are parsed as an initializer-clause, and in
1027           // neither case can anything be added to the scope between the '[' and
1028           // here.
1029           //
1030           // FIXME: This is horrible. Adding a mechanism to skip an expression
1031           // would be much cleaner.
1032           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033           // that instead. (And if we see a ':' with no matching '?', we can
1034           // classify this as an Obj-C message send.)
1035           SourceLocation StartLoc = Tok.getLocation();
1036           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037           Init = ParseInitializer();
1038           if (!Init.isInvalid())
1039             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040 
1041           if (Tok.getLocation() != StartLoc) {
1042             // Back out the lexing of the token after the initializer.
1043             PP.RevertCachedTokens(1);
1044 
1045             // Replace the consumed tokens with an appropriate annotation.
1046             Tok.setLocation(StartLoc);
1047             Tok.setKind(tok::annot_primary_expr);
1048             setExprAnnotation(Tok, Init);
1049             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050             PP.AnnotateCachedTokens(Tok);
1051 
1052             // Consume the annotated initializer.
1053             ConsumeAnnotationToken();
1054           }
1055         }
1056       }
1057 
1058       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059     }
1060 
1061     // Check if this is a message send before we act on a possible init-capture.
1062     if (Tentative && Tok.is(tok::identifier) &&
1063         NextToken().isOneOf(tok::colon, tok::r_square)) {
1064       // This can only be a message send. We're done with disambiguation.
1065       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066       return false;
1067     }
1068 
1069     // Ensure that any ellipsis was in the right place.
1070     SourceLocation EllipsisLoc;
1071     if (llvm::any_of(EllipsisLocs,
1072                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1073       // The '...' should appear before the identifier in an init-capture, and
1074       // after the identifier otherwise.
1075       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076       SourceLocation *ExpectedEllipsisLoc =
1077           !InitCapture      ? &EllipsisLocs[2] :
1078           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079                               &EllipsisLocs[0];
1080       EllipsisLoc = *ExpectedEllipsisLoc;
1081 
1082       unsigned DiagID = 0;
1083       if (EllipsisLoc.isInvalid()) {
1084         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085         for (SourceLocation Loc : EllipsisLocs) {
1086           if (Loc.isValid())
1087             EllipsisLoc = Loc;
1088         }
1089       } else {
1090         unsigned NumEllipses = std::accumulate(
1091             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093         if (NumEllipses > 1)
1094           DiagID = diag::err_lambda_capture_multiple_ellipses;
1095       }
1096       if (DiagID) {
1097         NonTentativeAction([&] {
1098           // Point the diagnostic at the first misplaced ellipsis.
1099           SourceLocation DiagLoc;
1100           for (SourceLocation &Loc : EllipsisLocs) {
1101             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102               DiagLoc = Loc;
1103               break;
1104             }
1105           }
1106           assert(DiagLoc.isValid() && "no location for diagnostic");
1107 
1108           // Issue the diagnostic and produce fixits showing where the ellipsis
1109           // should have been written.
1110           auto &&D = Diag(DiagLoc, DiagID);
1111           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112             SourceLocation ExpectedLoc =
1113                 InitCapture ? Loc
1114                             : Lexer::getLocForEndOfToken(
1115                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1116             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117           }
1118           for (SourceLocation &Loc : EllipsisLocs) {
1119             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120               D << FixItHint::CreateRemoval(Loc);
1121           }
1122         });
1123       }
1124     }
1125 
1126     // Process the init-capture initializers now rather than delaying until we
1127     // form the lambda-expression so that they can be handled in the context
1128     // enclosing the lambda-expression, rather than in the context of the
1129     // lambda-expression itself.
1130     ParsedType InitCaptureType;
1131     if (Init.isUsable())
1132       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133     if (Init.isUsable()) {
1134       NonTentativeAction([&] {
1135         // Get the pointer and store it in an lvalue, so we can use it as an
1136         // out argument.
1137         Expr *InitExpr = Init.get();
1138         // This performs any lvalue-to-rvalue conversions if necessary, which
1139         // can affect what gets captured in the containing decl-context.
1140         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142         Init = InitExpr;
1143       });
1144     }
1145 
1146     SourceLocation LocEnd = PrevTokLocation;
1147 
1148     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149                      InitCaptureType, SourceRange(LocStart, LocEnd));
1150   }
1151 
1152   T.consumeClose();
1153   Intro.Range.setEnd(T.getCloseLocation());
1154   return false;
1155 }
1156 
1157 static void tryConsumeLambdaSpecifierToken(Parser &P,
1158                                            SourceLocation &MutableLoc,
1159                                            SourceLocation &ConstexprLoc,
1160                                            SourceLocation &ConstevalLoc,
1161                                            SourceLocation &DeclEndLoc) {
1162   assert(MutableLoc.isInvalid());
1163   assert(ConstexprLoc.isInvalid());
1164   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165   // to the final of those locations. Emit an error if we have multiple
1166   // copies of those keywords and recover.
1167 
1168   while (true) {
1169     switch (P.getCurToken().getKind()) {
1170     case tok::kw_mutable: {
1171       if (MutableLoc.isValid()) {
1172         P.Diag(P.getCurToken().getLocation(),
1173                diag::err_lambda_decl_specifier_repeated)
1174             << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175       }
1176       MutableLoc = P.ConsumeToken();
1177       DeclEndLoc = MutableLoc;
1178       break /*switch*/;
1179     }
1180     case tok::kw_constexpr:
1181       if (ConstexprLoc.isValid()) {
1182         P.Diag(P.getCurToken().getLocation(),
1183                diag::err_lambda_decl_specifier_repeated)
1184             << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185       }
1186       ConstexprLoc = P.ConsumeToken();
1187       DeclEndLoc = ConstexprLoc;
1188       break /*switch*/;
1189     case tok::kw_consteval:
1190       if (ConstevalLoc.isValid()) {
1191         P.Diag(P.getCurToken().getLocation(),
1192                diag::err_lambda_decl_specifier_repeated)
1193             << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194       }
1195       ConstevalLoc = P.ConsumeToken();
1196       DeclEndLoc = ConstevalLoc;
1197       break /*switch*/;
1198     default:
1199       return;
1200     }
1201   }
1202 }
1203 
1204 static void
1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206                                   DeclSpec &DS) {
1207   if (ConstexprLoc.isValid()) {
1208     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209                              ? diag::ext_constexpr_on_lambda_cxx17
1210                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1211     const char *PrevSpec = nullptr;
1212     unsigned DiagID = 0;
1213     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214                         DiagID);
1215     assert(PrevSpec == nullptr && DiagID == 0 &&
1216            "Constexpr cannot have been set previously!");
1217   }
1218 }
1219 
1220 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221                                               SourceLocation ConstevalLoc,
1222                                               DeclSpec &DS) {
1223   if (ConstevalLoc.isValid()) {
1224     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225     const char *PrevSpec = nullptr;
1226     unsigned DiagID = 0;
1227     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228                         DiagID);
1229     if (DiagID != 0)
1230       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231   }
1232 }
1233 
1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235 /// expression.
1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237                      LambdaIntroducer &Intro) {
1238   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240 
1241   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242                                 "lambda expression parsing");
1243 
1244 
1245 
1246   // FIXME: Call into Actions to add any init-capture declarations to the
1247   // scope while parsing the lambda-declarator and compound-statement.
1248 
1249   // Parse lambda-declarator[opt].
1250   DeclSpec DS(AttrFactory);
1251   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1252   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253   Actions.PushLambdaScope();
1254 
1255   ParsedAttributes Attr(AttrFactory);
1256   if (getLangOpts().CUDA) {
1257     // In CUDA code, GNU attributes are allowed to appear immediately after the
1258     // "[...]", even if there is no "(...)" before the lambda body.
1259     MaybeParseGNUAttributes(D);
1260   }
1261 
1262   // Helper to emit a warning if we see a CUDA host/device/global attribute
1263   // after '(...)'. nvcc doesn't accept this.
1264   auto WarnIfHasCUDATargetAttr = [&] {
1265     if (getLangOpts().CUDA)
1266       for (const ParsedAttr &A : Attr)
1267         if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268             A.getKind() == ParsedAttr::AT_CUDAHost ||
1269             A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270           Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271               << A.getAttrName()->getName();
1272   };
1273 
1274   MultiParseScope TemplateParamScope(*this);
1275   if (Tok.is(tok::less)) {
1276     Diag(Tok, getLangOpts().CPlusPlus20
1277                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278                   : diag::ext_lambda_template_parameter_list);
1279 
1280     SmallVector<NamedDecl*, 4> TemplateParams;
1281     SourceLocation LAngleLoc, RAngleLoc;
1282     if (ParseTemplateParameters(TemplateParamScope,
1283                                 CurTemplateDepthTracker.getDepth(),
1284                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1285       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286       return ExprError();
1287     }
1288 
1289     if (TemplateParams.empty()) {
1290       Diag(RAngleLoc,
1291            diag::err_lambda_template_parameter_list_empty);
1292     } else {
1293       ExprResult RequiresClause;
1294       if (TryConsumeToken(tok::kw_requires)) {
1295         RequiresClause =
1296             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297                 /*IsTrailingRequiresClause=*/false));
1298         if (RequiresClause.isInvalid())
1299           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300       }
1301 
1302       Actions.ActOnLambdaExplicitTemplateParameterList(
1303           LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304       ++CurTemplateDepthTracker;
1305     }
1306   }
1307 
1308   // Implement WG21 P2173, which allows attributes immediately before the
1309   // lambda declarator and applies them to the corresponding function operator
1310   // or operator template declaration. We accept this as a conforming extension
1311   // in all language modes that support lambdas.
1312   if (isCXX11AttributeSpecifier()) {
1313     Diag(Tok, getLangOpts().CPlusPlus2b
1314                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315                   : diag::ext_decl_attrs_on_lambda);
1316     MaybeParseCXX11Attributes(D);
1317   }
1318 
1319   TypeResult TrailingReturnType;
1320   SourceLocation TrailingReturnTypeLoc;
1321 
1322   auto ParseLambdaSpecifiers =
1323       [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324           MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325           SourceLocation EllipsisLoc) {
1326         SourceLocation DeclEndLoc = RParenLoc;
1327 
1328         // GNU-style attributes must be parsed before the mutable specifier to
1329         // be compatible with GCC. MSVC-style attributes must be parsed before
1330         // the mutable specifier to be compatible with MSVC.
1331         MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332 
1333         // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334         // the DeclEndLoc.
1335         SourceLocation MutableLoc;
1336         SourceLocation ConstexprLoc;
1337         SourceLocation ConstevalLoc;
1338         tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339                                        ConstevalLoc, DeclEndLoc);
1340 
1341         addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342         addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343         // Parse exception-specification[opt].
1344         ExceptionSpecificationType ESpecType = EST_None;
1345         SourceRange ESpecRange;
1346         SmallVector<ParsedType, 2> DynamicExceptions;
1347         SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348         ExprResult NoexceptExpr;
1349         CachedTokens *ExceptionSpecTokens;
1350         ESpecType = tryParseExceptionSpecification(
1351             /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352             DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353 
1354         if (ESpecType != EST_None)
1355           DeclEndLoc = ESpecRange.getEnd();
1356 
1357         // Parse attribute-specifier[opt].
1358         if (MaybeParseCXX11Attributes(Attr))
1359           DeclEndLoc = Attr.Range.getEnd();
1360 
1361         // Parse OpenCL addr space attribute.
1362         if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1363                         tok::kw___constant, tok::kw___generic)) {
1364           ParseOpenCLQualifiers(DS.getAttributes());
1365           ConsumeToken();
1366         }
1367 
1368         SourceLocation FunLocalRangeEnd = DeclEndLoc;
1369 
1370         // Parse trailing-return-type[opt].
1371         if (Tok.is(tok::arrow)) {
1372           FunLocalRangeEnd = Tok.getLocation();
1373           SourceRange Range;
1374           TrailingReturnType = ParseTrailingReturnType(
1375               Range, /*MayBeFollowedByDirectInit*/ false);
1376           TrailingReturnTypeLoc = Range.getBegin();
1377           if (Range.getEnd().isValid())
1378             DeclEndLoc = Range.getEnd();
1379         }
1380 
1381         SourceLocation NoLoc;
1382         D.AddTypeInfo(
1383             DeclaratorChunk::getFunction(
1384                 /*HasProto=*/true,
1385                 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1386                 ParamInfo.size(), EllipsisLoc, RParenLoc,
1387                 /*RefQualifierIsLvalueRef=*/true,
1388                 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1389                 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1390                 DynamicExceptions.size(),
1391                 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1392                 /*ExceptionSpecTokens*/ nullptr,
1393                 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1394                 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1395             std::move(Attr), DeclEndLoc);
1396       };
1397 
1398   if (Tok.is(tok::l_paren)) {
1399     ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1400                                         Scope::FunctionDeclarationScope |
1401                                         Scope::DeclScope);
1402 
1403     BalancedDelimiterTracker T(*this, tok::l_paren);
1404     T.consumeOpen();
1405     SourceLocation LParenLoc = T.getOpenLocation();
1406 
1407     // Parse parameter-declaration-clause.
1408     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1409     SourceLocation EllipsisLoc;
1410 
1411     if (Tok.isNot(tok::r_paren)) {
1412       Actions.RecordParsingTemplateParameterDepth(
1413           CurTemplateDepthTracker.getOriginalDepth());
1414 
1415       ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1416                                       EllipsisLoc);
1417       // For a generic lambda, each 'auto' within the parameter declaration
1418       // clause creates a template type parameter, so increment the depth.
1419       // If we've parsed any explicit template parameters, then the depth will
1420       // have already been incremented. So we make sure that at most a single
1421       // depth level is added.
1422       if (Actions.getCurGenericLambda())
1423         CurTemplateDepthTracker.setAddedDepth(1);
1424     }
1425 
1426     T.consumeClose();
1427 
1428     // Parse lambda-specifiers.
1429     ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1430                           ParamInfo, EllipsisLoc);
1431 
1432     // Parse requires-clause[opt].
1433     if (Tok.is(tok::kw_requires))
1434       ParseTrailingRequiresClause(D);
1435   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1436                          tok::kw_constexpr, tok::kw_consteval,
1437                          tok::kw___private, tok::kw___global, tok::kw___local,
1438                          tok::kw___constant, tok::kw___generic,
1439                          tok::kw_requires, tok::kw_noexcept) ||
1440              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1441     if (!getLangOpts().CPlusPlus2b)
1442       // It's common to forget that one needs '()' before 'mutable', an
1443       // attribute specifier, the result type, or the requires clause. Deal with
1444       // this.
1445       Diag(Tok, diag::ext_lambda_missing_parens)
1446           << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1447 
1448     SourceLocation NoLoc;
1449     // Parse lambda-specifiers.
1450     std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1451     ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1452                           EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1453   }
1454 
1455   WarnIfHasCUDATargetAttr();
1456 
1457   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1458   // it.
1459   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1460                         Scope::CompoundStmtScope;
1461   ParseScope BodyScope(this, ScopeFlags);
1462 
1463   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1464 
1465   // Parse compound-statement.
1466   if (!Tok.is(tok::l_brace)) {
1467     Diag(Tok, diag::err_expected_lambda_body);
1468     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1469     return ExprError();
1470   }
1471 
1472   StmtResult Stmt(ParseCompoundStatementBody());
1473   BodyScope.Exit();
1474   TemplateParamScope.Exit();
1475 
1476   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1477     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1478 
1479   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1480   return ExprError();
1481 }
1482 
1483 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1484 /// type.
1485 ///
1486 ///       postfix-expression: [C++ 5.2p1]
1487 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1488 ///         'static_cast' '<' type-name '>' '(' expression ')'
1489 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1490 ///         'const_cast' '<' type-name '>' '(' expression ')'
1491 ///
1492 /// C++ for OpenCL s2.3.1 adds:
1493 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
1494 ExprResult Parser::ParseCXXCasts() {
1495   tok::TokenKind Kind = Tok.getKind();
1496   const char *CastName = nullptr; // For error messages
1497 
1498   switch (Kind) {
1499   default: llvm_unreachable("Unknown C++ cast!");
1500   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1501   case tok::kw_const_cast:       CastName = "const_cast";       break;
1502   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1503   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1504   case tok::kw_static_cast:      CastName = "static_cast";      break;
1505   }
1506 
1507   SourceLocation OpLoc = ConsumeToken();
1508   SourceLocation LAngleBracketLoc = Tok.getLocation();
1509 
1510   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1511   // diagnose error, suggest fix, and recover parsing.
1512   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1513     Token Next = NextToken();
1514     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1515       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1516   }
1517 
1518   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1519     return ExprError();
1520 
1521   // Parse the common declaration-specifiers piece.
1522   DeclSpec DS(AttrFactory);
1523   ParseSpecifierQualifierList(DS);
1524 
1525   // Parse the abstract-declarator, if present.
1526   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1527                             DeclaratorContext::TypeName);
1528   ParseDeclarator(DeclaratorInfo);
1529 
1530   SourceLocation RAngleBracketLoc = Tok.getLocation();
1531 
1532   if (ExpectAndConsume(tok::greater))
1533     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1534 
1535   BalancedDelimiterTracker T(*this, tok::l_paren);
1536 
1537   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1538     return ExprError();
1539 
1540   ExprResult Result = ParseExpression();
1541 
1542   // Match the ')'.
1543   T.consumeClose();
1544 
1545   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1546     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1547                                        LAngleBracketLoc, DeclaratorInfo,
1548                                        RAngleBracketLoc,
1549                                        T.getOpenLocation(), Result.get(),
1550                                        T.getCloseLocation());
1551 
1552   return Result;
1553 }
1554 
1555 /// ParseCXXTypeid - This handles the C++ typeid expression.
1556 ///
1557 ///       postfix-expression: [C++ 5.2p1]
1558 ///         'typeid' '(' expression ')'
1559 ///         'typeid' '(' type-id ')'
1560 ///
1561 ExprResult Parser::ParseCXXTypeid() {
1562   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1563 
1564   SourceLocation OpLoc = ConsumeToken();
1565   SourceLocation LParenLoc, RParenLoc;
1566   BalancedDelimiterTracker T(*this, tok::l_paren);
1567 
1568   // typeid expressions are always parenthesized.
1569   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1570     return ExprError();
1571   LParenLoc = T.getOpenLocation();
1572 
1573   ExprResult Result;
1574 
1575   // C++0x [expr.typeid]p3:
1576   //   When typeid is applied to an expression other than an lvalue of a
1577   //   polymorphic class type [...] The expression is an unevaluated
1578   //   operand (Clause 5).
1579   //
1580   // Note that we can't tell whether the expression is an lvalue of a
1581   // polymorphic class type until after we've parsed the expression; we
1582   // speculatively assume the subexpression is unevaluated, and fix it up
1583   // later.
1584   //
1585   // We enter the unevaluated context before trying to determine whether we
1586   // have a type-id, because the tentative parse logic will try to resolve
1587   // names, and must treat them as unevaluated.
1588   EnterExpressionEvaluationContext Unevaluated(
1589       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1590       Sema::ReuseLambdaContextDecl);
1591 
1592   if (isTypeIdInParens()) {
1593     TypeResult Ty = ParseTypeName();
1594 
1595     // Match the ')'.
1596     T.consumeClose();
1597     RParenLoc = T.getCloseLocation();
1598     if (Ty.isInvalid() || RParenLoc.isInvalid())
1599       return ExprError();
1600 
1601     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1602                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1603   } else {
1604     Result = ParseExpression();
1605 
1606     // Match the ')'.
1607     if (Result.isInvalid())
1608       SkipUntil(tok::r_paren, StopAtSemi);
1609     else {
1610       T.consumeClose();
1611       RParenLoc = T.getCloseLocation();
1612       if (RParenLoc.isInvalid())
1613         return ExprError();
1614 
1615       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1616                                       Result.get(), RParenLoc);
1617     }
1618   }
1619 
1620   return Result;
1621 }
1622 
1623 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1624 ///
1625 ///         '__uuidof' '(' expression ')'
1626 ///         '__uuidof' '(' type-id ')'
1627 ///
1628 ExprResult Parser::ParseCXXUuidof() {
1629   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1630 
1631   SourceLocation OpLoc = ConsumeToken();
1632   BalancedDelimiterTracker T(*this, tok::l_paren);
1633 
1634   // __uuidof expressions are always parenthesized.
1635   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1636     return ExprError();
1637 
1638   ExprResult Result;
1639 
1640   if (isTypeIdInParens()) {
1641     TypeResult Ty = ParseTypeName();
1642 
1643     // Match the ')'.
1644     T.consumeClose();
1645 
1646     if (Ty.isInvalid())
1647       return ExprError();
1648 
1649     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1650                                     Ty.get().getAsOpaquePtr(),
1651                                     T.getCloseLocation());
1652   } else {
1653     EnterExpressionEvaluationContext Unevaluated(
1654         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1655     Result = ParseExpression();
1656 
1657     // Match the ')'.
1658     if (Result.isInvalid())
1659       SkipUntil(tok::r_paren, StopAtSemi);
1660     else {
1661       T.consumeClose();
1662 
1663       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1664                                       /*isType=*/false,
1665                                       Result.get(), T.getCloseLocation());
1666     }
1667   }
1668 
1669   return Result;
1670 }
1671 
1672 /// Parse a C++ pseudo-destructor expression after the base,
1673 /// . or -> operator, and nested-name-specifier have already been
1674 /// parsed. We're handling this fragment of the grammar:
1675 ///
1676 ///       postfix-expression: [C++2a expr.post]
1677 ///         postfix-expression . template[opt] id-expression
1678 ///         postfix-expression -> template[opt] id-expression
1679 ///
1680 ///       id-expression:
1681 ///         qualified-id
1682 ///         unqualified-id
1683 ///
1684 ///       qualified-id:
1685 ///         nested-name-specifier template[opt] unqualified-id
1686 ///
1687 ///       nested-name-specifier:
1688 ///         type-name ::
1689 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1690 ///                                         allowed in C++ grammar by accident
1691 ///         nested-name-specifier identifier ::
1692 ///         nested-name-specifier template[opt] simple-template-id ::
1693 ///         [...]
1694 ///
1695 ///       unqualified-id:
1696 ///         ~ type-name
1697 ///         ~ decltype-specifier
1698 ///         [...]
1699 ///
1700 /// ... where the all but the last component of the nested-name-specifier
1701 /// has already been parsed, and the base expression is not of a non-dependent
1702 /// class type.
1703 ExprResult
1704 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1705                                  tok::TokenKind OpKind,
1706                                  CXXScopeSpec &SS,
1707                                  ParsedType ObjectType) {
1708   // If the last component of the (optional) nested-name-specifier is
1709   // template[opt] simple-template-id, it has already been annotated.
1710   UnqualifiedId FirstTypeName;
1711   SourceLocation CCLoc;
1712   if (Tok.is(tok::identifier)) {
1713     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1714     ConsumeToken();
1715     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1716     CCLoc = ConsumeToken();
1717   } else if (Tok.is(tok::annot_template_id)) {
1718     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1719     // FIXME: Carry on and build an AST representation for tooling.
1720     if (TemplateId->isInvalid())
1721       return ExprError();
1722     FirstTypeName.setTemplateId(TemplateId);
1723     ConsumeAnnotationToken();
1724     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1725     CCLoc = ConsumeToken();
1726   } else {
1727     assert(SS.isEmpty() && "missing last component of nested name specifier");
1728     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1729   }
1730 
1731   // Parse the tilde.
1732   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1733   SourceLocation TildeLoc = ConsumeToken();
1734 
1735   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1736     DeclSpec DS(AttrFactory);
1737     ParseDecltypeSpecifier(DS);
1738     if (DS.getTypeSpecType() == TST_error)
1739       return ExprError();
1740     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1741                                              TildeLoc, DS);
1742   }
1743 
1744   if (!Tok.is(tok::identifier)) {
1745     Diag(Tok, diag::err_destructor_tilde_identifier);
1746     return ExprError();
1747   }
1748 
1749   // Parse the second type.
1750   UnqualifiedId SecondTypeName;
1751   IdentifierInfo *Name = Tok.getIdentifierInfo();
1752   SourceLocation NameLoc = ConsumeToken();
1753   SecondTypeName.setIdentifier(Name, NameLoc);
1754 
1755   // If there is a '<', the second type name is a template-id. Parse
1756   // it as such.
1757   //
1758   // FIXME: This is not a context in which a '<' is assumed to start a template
1759   // argument list. This affects examples such as
1760   //   void f(auto *p) { p->~X<int>(); }
1761   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1762   // example, so we accept it anyway.
1763   if (Tok.is(tok::less) &&
1764       ParseUnqualifiedIdTemplateId(
1765           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1766           Name, NameLoc, false, SecondTypeName,
1767           /*AssumeTemplateId=*/true))
1768     return ExprError();
1769 
1770   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1771                                            SS, FirstTypeName, CCLoc, TildeLoc,
1772                                            SecondTypeName);
1773 }
1774 
1775 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1776 ///
1777 ///       boolean-literal: [C++ 2.13.5]
1778 ///         'true'
1779 ///         'false'
1780 ExprResult Parser::ParseCXXBoolLiteral() {
1781   tok::TokenKind Kind = Tok.getKind();
1782   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1783 }
1784 
1785 /// ParseThrowExpression - This handles the C++ throw expression.
1786 ///
1787 ///       throw-expression: [C++ 15]
1788 ///         'throw' assignment-expression[opt]
1789 ExprResult Parser::ParseThrowExpression() {
1790   assert(Tok.is(tok::kw_throw) && "Not throw!");
1791   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1792 
1793   // If the current token isn't the start of an assignment-expression,
1794   // then the expression is not present.  This handles things like:
1795   //   "C ? throw : (void)42", which is crazy but legal.
1796   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1797   case tok::semi:
1798   case tok::r_paren:
1799   case tok::r_square:
1800   case tok::r_brace:
1801   case tok::colon:
1802   case tok::comma:
1803     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1804 
1805   default:
1806     ExprResult Expr(ParseAssignmentExpression());
1807     if (Expr.isInvalid()) return Expr;
1808     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1809   }
1810 }
1811 
1812 /// Parse the C++ Coroutines co_yield expression.
1813 ///
1814 ///       co_yield-expression:
1815 ///         'co_yield' assignment-expression[opt]
1816 ExprResult Parser::ParseCoyieldExpression() {
1817   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1818 
1819   SourceLocation Loc = ConsumeToken();
1820   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1821                                          : ParseAssignmentExpression();
1822   if (!Expr.isInvalid())
1823     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1824   return Expr;
1825 }
1826 
1827 /// ParseCXXThis - This handles the C++ 'this' pointer.
1828 ///
1829 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1830 /// a non-lvalue expression whose value is the address of the object for which
1831 /// the function is called.
1832 ExprResult Parser::ParseCXXThis() {
1833   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1834   SourceLocation ThisLoc = ConsumeToken();
1835   return Actions.ActOnCXXThis(ThisLoc);
1836 }
1837 
1838 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1839 /// Can be interpreted either as function-style casting ("int(x)")
1840 /// or class type construction ("ClassType(x,y,z)")
1841 /// or creation of a value-initialized type ("int()").
1842 /// See [C++ 5.2.3].
1843 ///
1844 ///       postfix-expression: [C++ 5.2p1]
1845 ///         simple-type-specifier '(' expression-list[opt] ')'
1846 /// [C++0x] simple-type-specifier braced-init-list
1847 ///         typename-specifier '(' expression-list[opt] ')'
1848 /// [C++0x] typename-specifier braced-init-list
1849 ///
1850 /// In C++1z onwards, the type specifier can also be a template-name.
1851 ExprResult
1852 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1853   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1854                             DeclaratorContext::FunctionalCast);
1855   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1856 
1857   assert((Tok.is(tok::l_paren) ||
1858           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1859          && "Expected '(' or '{'!");
1860 
1861   if (Tok.is(tok::l_brace)) {
1862     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1863     ExprResult Init = ParseBraceInitializer();
1864     if (Init.isInvalid())
1865       return Init;
1866     Expr *InitList = Init.get();
1867     return Actions.ActOnCXXTypeConstructExpr(
1868         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1869         InitList->getEndLoc(), /*ListInitialization=*/true);
1870   } else {
1871     BalancedDelimiterTracker T(*this, tok::l_paren);
1872     T.consumeOpen();
1873 
1874     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1875 
1876     ExprVector Exprs;
1877     CommaLocsTy CommaLocs;
1878 
1879     auto RunSignatureHelp = [&]() {
1880       QualType PreferredType;
1881       if (TypeRep)
1882         PreferredType = Actions.ProduceConstructorSignatureHelp(
1883             TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1884             T.getOpenLocation(), /*Braced=*/false);
1885       CalledSignatureHelp = true;
1886       return PreferredType;
1887     };
1888 
1889     if (Tok.isNot(tok::r_paren)) {
1890       if (ParseExpressionList(Exprs, CommaLocs, [&] {
1891             PreferredType.enterFunctionArgument(Tok.getLocation(),
1892                                                 RunSignatureHelp);
1893           })) {
1894         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1895           RunSignatureHelp();
1896         SkipUntil(tok::r_paren, StopAtSemi);
1897         return ExprError();
1898       }
1899     }
1900 
1901     // Match the ')'.
1902     T.consumeClose();
1903 
1904     // TypeRep could be null, if it references an invalid typedef.
1905     if (!TypeRep)
1906       return ExprError();
1907 
1908     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1909            "Unexpected number of commas!");
1910     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1911                                              Exprs, T.getCloseLocation(),
1912                                              /*ListInitialization=*/false);
1913   }
1914 }
1915 
1916 Parser::DeclGroupPtrTy
1917 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1918                                              ParsedAttributes &Attrs) {
1919   assert(Tok.is(tok::kw_using) && "Expected using");
1920   assert((Context == DeclaratorContext::ForInit ||
1921           Context == DeclaratorContext::SelectionInit) &&
1922          "Unexpected Declarator Context");
1923   DeclGroupPtrTy DG;
1924   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1925 
1926   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1927   if (!DG)
1928     return DG;
1929 
1930   Diag(DeclStart, !getLangOpts().CPlusPlus2b
1931                       ? diag::ext_alias_in_init_statement
1932                       : diag::warn_cxx20_alias_in_init_statement)
1933       << SourceRange(DeclStart, DeclEnd);
1934 
1935   return DG;
1936 }
1937 
1938 /// ParseCXXCondition - if/switch/while condition expression.
1939 ///
1940 ///       condition:
1941 ///         expression
1942 ///         type-specifier-seq declarator '=' assignment-expression
1943 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1944 /// [C++11] type-specifier-seq declarator braced-init-list
1945 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1946 ///             brace-or-equal-initializer
1947 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1948 ///             '=' assignment-expression
1949 ///
1950 /// In C++1z, a condition may in some contexts be preceded by an
1951 /// optional init-statement. This function will parse that too.
1952 ///
1953 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1954 /// will be parsed and stored here.
1955 ///
1956 /// \param Loc The location of the start of the statement that requires this
1957 /// condition, e.g., the "for" in a for loop.
1958 ///
1959 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
1960 /// it is considered an error to be recovered from.
1961 ///
1962 /// \param FRI If non-null, a for range declaration is permitted, and if
1963 /// present will be parsed and stored here, and a null result will be returned.
1964 ///
1965 /// \param EnterForConditionScope If true, enter a continue/break scope at the
1966 /// appropriate moment for a 'for' loop.
1967 ///
1968 /// \returns The parsed condition.
1969 Sema::ConditionResult
1970 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
1971                           Sema::ConditionKind CK, bool MissingOK,
1972                           ForRangeInfo *FRI, bool EnterForConditionScope) {
1973   // Helper to ensure we always enter a continue/break scope if requested.
1974   struct ForConditionScopeRAII {
1975     Scope *S;
1976     void enter(bool IsConditionVariable) {
1977       if (S) {
1978         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1979         S->setIsConditionVarScope(IsConditionVariable);
1980       }
1981     }
1982     ~ForConditionScopeRAII() {
1983       if (S)
1984         S->setIsConditionVarScope(false);
1985     }
1986   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
1987 
1988   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1989   PreferredType.enterCondition(Actions, Tok.getLocation());
1990 
1991   if (Tok.is(tok::code_completion)) {
1992     cutOffParsing();
1993     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1994     return Sema::ConditionError();
1995   }
1996 
1997   ParsedAttributes attrs(AttrFactory);
1998   MaybeParseCXX11Attributes(attrs);
1999 
2000   const auto WarnOnInit = [this, &CK] {
2001     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2002                                 ? diag::warn_cxx14_compat_init_statement
2003                                 : diag::ext_init_statement)
2004         << (CK == Sema::ConditionKind::Switch);
2005   };
2006 
2007   // Determine what kind of thing we have.
2008   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2009   case ConditionOrInitStatement::Expression: {
2010     // If this is a for loop, we're entering its condition.
2011     ForConditionScope.enter(/*IsConditionVariable=*/false);
2012 
2013     ProhibitAttributes(attrs);
2014 
2015     // We can have an empty expression here.
2016     //   if (; true);
2017     if (InitStmt && Tok.is(tok::semi)) {
2018       WarnOnInit();
2019       SourceLocation SemiLoc = Tok.getLocation();
2020       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2021         Diag(SemiLoc, diag::warn_empty_init_statement)
2022             << (CK == Sema::ConditionKind::Switch)
2023             << FixItHint::CreateRemoval(SemiLoc);
2024       }
2025       ConsumeToken();
2026       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2027       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2028     }
2029 
2030     // Parse the expression.
2031     ExprResult Expr = ParseExpression(); // expression
2032     if (Expr.isInvalid())
2033       return Sema::ConditionError();
2034 
2035     if (InitStmt && Tok.is(tok::semi)) {
2036       WarnOnInit();
2037       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2038       ConsumeToken();
2039       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2040     }
2041 
2042     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2043                                   MissingOK);
2044   }
2045 
2046   case ConditionOrInitStatement::InitStmtDecl: {
2047     WarnOnInit();
2048     DeclGroupPtrTy DG;
2049     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2050     if (Tok.is(tok::kw_using))
2051       DG = ParseAliasDeclarationInInitStatement(
2052           DeclaratorContext::SelectionInit, attrs);
2053     else {
2054       ParsedAttributes DeclSpecAttrs(AttrFactory);
2055       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2056                                   attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2057     }
2058     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2059     return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2060   }
2061 
2062   case ConditionOrInitStatement::ForRangeDecl: {
2063     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2064     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2065     // permitted here.
2066     assert(FRI && "should not parse a for range declaration here");
2067     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2068     ParsedAttributes DeclSpecAttrs(AttrFactory);
2069     DeclGroupPtrTy DG = ParseSimpleDeclaration(
2070         DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2071     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2072     assert((FRI->ColonLoc.isValid() || !DG) &&
2073            "cannot find for range declaration");
2074     return Sema::ConditionResult();
2075   }
2076 
2077   case ConditionOrInitStatement::ConditionDecl:
2078   case ConditionOrInitStatement::Error:
2079     break;
2080   }
2081 
2082   // If this is a for loop, we're entering its condition.
2083   ForConditionScope.enter(/*IsConditionVariable=*/true);
2084 
2085   // type-specifier-seq
2086   DeclSpec DS(AttrFactory);
2087   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2088 
2089   // declarator
2090   Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2091   ParseDeclarator(DeclaratorInfo);
2092 
2093   // simple-asm-expr[opt]
2094   if (Tok.is(tok::kw_asm)) {
2095     SourceLocation Loc;
2096     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2097     if (AsmLabel.isInvalid()) {
2098       SkipUntil(tok::semi, StopAtSemi);
2099       return Sema::ConditionError();
2100     }
2101     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2102     DeclaratorInfo.SetRangeEnd(Loc);
2103   }
2104 
2105   // If attributes are present, parse them.
2106   MaybeParseGNUAttributes(DeclaratorInfo);
2107 
2108   // Type-check the declaration itself.
2109   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2110                                                         DeclaratorInfo);
2111   if (Dcl.isInvalid())
2112     return Sema::ConditionError();
2113   Decl *DeclOut = Dcl.get();
2114 
2115   // '=' assignment-expression
2116   // If a '==' or '+=' is found, suggest a fixit to '='.
2117   bool CopyInitialization = isTokenEqualOrEqualTypo();
2118   if (CopyInitialization)
2119     ConsumeToken();
2120 
2121   ExprResult InitExpr = ExprError();
2122   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2123     Diag(Tok.getLocation(),
2124          diag::warn_cxx98_compat_generalized_initializer_lists);
2125     InitExpr = ParseBraceInitializer();
2126   } else if (CopyInitialization) {
2127     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2128     InitExpr = ParseAssignmentExpression();
2129   } else if (Tok.is(tok::l_paren)) {
2130     // This was probably an attempt to initialize the variable.
2131     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2132     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2133       RParen = ConsumeParen();
2134     Diag(DeclOut->getLocation(),
2135          diag::err_expected_init_in_condition_lparen)
2136       << SourceRange(LParen, RParen);
2137   } else {
2138     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2139   }
2140 
2141   if (!InitExpr.isInvalid())
2142     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2143   else
2144     Actions.ActOnInitializerError(DeclOut);
2145 
2146   Actions.FinalizeDeclaration(DeclOut);
2147   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2148 }
2149 
2150 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2151 /// This should only be called when the current token is known to be part of
2152 /// simple-type-specifier.
2153 ///
2154 ///       simple-type-specifier:
2155 ///         '::'[opt] nested-name-specifier[opt] type-name
2156 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2157 ///         char
2158 ///         wchar_t
2159 ///         bool
2160 ///         short
2161 ///         int
2162 ///         long
2163 ///         signed
2164 ///         unsigned
2165 ///         float
2166 ///         double
2167 ///         void
2168 /// [GNU]   typeof-specifier
2169 /// [C++0x] auto               [TODO]
2170 ///
2171 ///       type-name:
2172 ///         class-name
2173 ///         enum-name
2174 ///         typedef-name
2175 ///
2176 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2177   DS.SetRangeStart(Tok.getLocation());
2178   const char *PrevSpec;
2179   unsigned DiagID;
2180   SourceLocation Loc = Tok.getLocation();
2181   const clang::PrintingPolicy &Policy =
2182       Actions.getASTContext().getPrintingPolicy();
2183 
2184   switch (Tok.getKind()) {
2185   case tok::identifier:   // foo::bar
2186   case tok::coloncolon:   // ::foo::bar
2187     llvm_unreachable("Annotation token should already be formed!");
2188   default:
2189     llvm_unreachable("Not a simple-type-specifier token!");
2190 
2191   // type-name
2192   case tok::annot_typename: {
2193     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2194                        getTypeAnnotation(Tok), Policy);
2195     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2196     ConsumeAnnotationToken();
2197 
2198     DS.Finish(Actions, Policy);
2199     return;
2200   }
2201 
2202   case tok::kw__ExtInt:
2203   case tok::kw__BitInt: {
2204     DiagnoseBitIntUse(Tok);
2205     ExprResult ER = ParseExtIntegerArgument();
2206     if (ER.isInvalid())
2207       DS.SetTypeSpecError();
2208     else
2209       DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2210 
2211     // Do this here because we have already consumed the close paren.
2212     DS.SetRangeEnd(PrevTokLocation);
2213     DS.Finish(Actions, Policy);
2214     return;
2215   }
2216 
2217   // builtin types
2218   case tok::kw_short:
2219     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2220                         Policy);
2221     break;
2222   case tok::kw_long:
2223     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2224                         Policy);
2225     break;
2226   case tok::kw___int64:
2227     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2228                         Policy);
2229     break;
2230   case tok::kw_signed:
2231     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2232     break;
2233   case tok::kw_unsigned:
2234     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2235     break;
2236   case tok::kw_void:
2237     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2238     break;
2239   case tok::kw_auto:
2240     DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2241     break;
2242   case tok::kw_char:
2243     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2244     break;
2245   case tok::kw_int:
2246     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2247     break;
2248   case tok::kw___int128:
2249     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2250     break;
2251   case tok::kw___bf16:
2252     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2253     break;
2254   case tok::kw_half:
2255     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2256     break;
2257   case tok::kw_float:
2258     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2259     break;
2260   case tok::kw_double:
2261     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2262     break;
2263   case tok::kw__Float16:
2264     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2265     break;
2266   case tok::kw___float128:
2267     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2268     break;
2269   case tok::kw___ibm128:
2270     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2271     break;
2272   case tok::kw_wchar_t:
2273     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2274     break;
2275   case tok::kw_char8_t:
2276     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2277     break;
2278   case tok::kw_char16_t:
2279     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2280     break;
2281   case tok::kw_char32_t:
2282     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2283     break;
2284   case tok::kw_bool:
2285     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2286     break;
2287 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2288   case tok::kw_##ImgType##_t:                                                  \
2289     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2290                        Policy);                                                \
2291     break;
2292 #include "clang/Basic/OpenCLImageTypes.def"
2293 
2294   case tok::annot_decltype:
2295   case tok::kw_decltype:
2296     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2297     return DS.Finish(Actions, Policy);
2298 
2299   // GNU typeof support.
2300   case tok::kw_typeof:
2301     ParseTypeofSpecifier(DS);
2302     DS.Finish(Actions, Policy);
2303     return;
2304   }
2305   ConsumeAnyToken();
2306   DS.SetRangeEnd(PrevTokLocation);
2307   DS.Finish(Actions, Policy);
2308 }
2309 
2310 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2311 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2312 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2313 /// by parsing the type-specifier-seq, because these sequences are
2314 /// typically followed by some form of declarator. Returns true and
2315 /// emits diagnostics if this is not a type-specifier-seq, false
2316 /// otherwise.
2317 ///
2318 ///   type-specifier-seq: [C++ 8.1]
2319 ///     type-specifier type-specifier-seq[opt]
2320 ///
2321 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2322   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2323   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2324   return false;
2325 }
2326 
2327 /// Finish parsing a C++ unqualified-id that is a template-id of
2328 /// some form.
2329 ///
2330 /// This routine is invoked when a '<' is encountered after an identifier or
2331 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2332 /// whether the unqualified-id is actually a template-id. This routine will
2333 /// then parse the template arguments and form the appropriate template-id to
2334 /// return to the caller.
2335 ///
2336 /// \param SS the nested-name-specifier that precedes this template-id, if
2337 /// we're actually parsing a qualified-id.
2338 ///
2339 /// \param ObjectType if this unqualified-id occurs within a member access
2340 /// expression, the type of the base object whose member is being accessed.
2341 ///
2342 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2343 /// expression, indicates whether the original subexpressions had any errors.
2344 ///
2345 /// \param Name for constructor and destructor names, this is the actual
2346 /// identifier that may be a template-name.
2347 ///
2348 /// \param NameLoc the location of the class-name in a constructor or
2349 /// destructor.
2350 ///
2351 /// \param EnteringContext whether we're entering the scope of the
2352 /// nested-name-specifier.
2353 ///
2354 /// \param Id as input, describes the template-name or operator-function-id
2355 /// that precedes the '<'. If template arguments were parsed successfully,
2356 /// will be updated with the template-id.
2357 ///
2358 /// \param AssumeTemplateId When true, this routine will assume that the name
2359 /// refers to a template without performing name lookup to verify.
2360 ///
2361 /// \returns true if a parse error occurred, false otherwise.
2362 bool Parser::ParseUnqualifiedIdTemplateId(
2363     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2364     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2365     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2366   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2367 
2368   TemplateTy Template;
2369   TemplateNameKind TNK = TNK_Non_template;
2370   switch (Id.getKind()) {
2371   case UnqualifiedIdKind::IK_Identifier:
2372   case UnqualifiedIdKind::IK_OperatorFunctionId:
2373   case UnqualifiedIdKind::IK_LiteralOperatorId:
2374     if (AssumeTemplateId) {
2375       // We defer the injected-class-name checks until we've found whether
2376       // this template-id is used to form a nested-name-specifier or not.
2377       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2378                                       ObjectType, EnteringContext, Template,
2379                                       /*AllowInjectedClassName*/ true);
2380     } else {
2381       bool MemberOfUnknownSpecialization;
2382       TNK = Actions.isTemplateName(getCurScope(), SS,
2383                                    TemplateKWLoc.isValid(), Id,
2384                                    ObjectType, EnteringContext, Template,
2385                                    MemberOfUnknownSpecialization);
2386       // If lookup found nothing but we're assuming that this is a template
2387       // name, double-check that makes sense syntactically before committing
2388       // to it.
2389       if (TNK == TNK_Undeclared_template &&
2390           isTemplateArgumentList(0) == TPResult::False)
2391         return false;
2392 
2393       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2394           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2395         // If we had errors before, ObjectType can be dependent even without any
2396         // templates, do not report missing template keyword in that case.
2397         if (!ObjectHadErrors) {
2398           // We have something like t->getAs<T>(), where getAs is a
2399           // member of an unknown specialization. However, this will only
2400           // parse correctly as a template, so suggest the keyword 'template'
2401           // before 'getAs' and treat this as a dependent template name.
2402           std::string Name;
2403           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2404             Name = std::string(Id.Identifier->getName());
2405           else {
2406             Name = "operator ";
2407             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2408               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2409             else
2410               Name += Id.Identifier->getName();
2411           }
2412           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2413               << Name
2414               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2415         }
2416         TNK = Actions.ActOnTemplateName(
2417             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2418             Template, /*AllowInjectedClassName*/ true);
2419       } else if (TNK == TNK_Non_template) {
2420         return false;
2421       }
2422     }
2423     break;
2424 
2425   case UnqualifiedIdKind::IK_ConstructorName: {
2426     UnqualifiedId TemplateName;
2427     bool MemberOfUnknownSpecialization;
2428     TemplateName.setIdentifier(Name, NameLoc);
2429     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2430                                  TemplateName, ObjectType,
2431                                  EnteringContext, Template,
2432                                  MemberOfUnknownSpecialization);
2433     if (TNK == TNK_Non_template)
2434       return false;
2435     break;
2436   }
2437 
2438   case UnqualifiedIdKind::IK_DestructorName: {
2439     UnqualifiedId TemplateName;
2440     bool MemberOfUnknownSpecialization;
2441     TemplateName.setIdentifier(Name, NameLoc);
2442     if (ObjectType) {
2443       TNK = Actions.ActOnTemplateName(
2444           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2445           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2446     } else {
2447       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2448                                    TemplateName, ObjectType,
2449                                    EnteringContext, Template,
2450                                    MemberOfUnknownSpecialization);
2451 
2452       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2453         Diag(NameLoc, diag::err_destructor_template_id)
2454           << Name << SS.getRange();
2455         // Carry on to parse the template arguments before bailing out.
2456       }
2457     }
2458     break;
2459   }
2460 
2461   default:
2462     return false;
2463   }
2464 
2465   // Parse the enclosed template argument list.
2466   SourceLocation LAngleLoc, RAngleLoc;
2467   TemplateArgList TemplateArgs;
2468   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2469                                        Template))
2470     return true;
2471 
2472   // If this is a non-template, we already issued a diagnostic.
2473   if (TNK == TNK_Non_template)
2474     return true;
2475 
2476   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2477       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2478       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2479     // Form a parsed representation of the template-id to be stored in the
2480     // UnqualifiedId.
2481 
2482     // FIXME: Store name for literal operator too.
2483     IdentifierInfo *TemplateII =
2484         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2485                                                          : nullptr;
2486     OverloadedOperatorKind OpKind =
2487         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2488             ? OO_None
2489             : Id.OperatorFunctionId.Operator;
2490 
2491     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2492         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2493         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2494 
2495     Id.setTemplateId(TemplateId);
2496     return false;
2497   }
2498 
2499   // Bundle the template arguments together.
2500   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2501 
2502   // Constructor and destructor names.
2503   TypeResult Type = Actions.ActOnTemplateIdType(
2504       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2505       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2506   if (Type.isInvalid())
2507     return true;
2508 
2509   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2510     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2511   else
2512     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2513 
2514   return false;
2515 }
2516 
2517 /// Parse an operator-function-id or conversion-function-id as part
2518 /// of a C++ unqualified-id.
2519 ///
2520 /// This routine is responsible only for parsing the operator-function-id or
2521 /// conversion-function-id; it does not handle template arguments in any way.
2522 ///
2523 /// \code
2524 ///       operator-function-id: [C++ 13.5]
2525 ///         'operator' operator
2526 ///
2527 ///       operator: one of
2528 ///            new   delete  new[]   delete[]
2529 ///            +     -    *  /    %  ^    &   |   ~
2530 ///            !     =    <  >    += -=   *=  /=  %=
2531 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2532 ///            <=    >=   && ||   ++ --   ,   ->* ->
2533 ///            ()    []   <=>
2534 ///
2535 ///       conversion-function-id: [C++ 12.3.2]
2536 ///         operator conversion-type-id
2537 ///
2538 ///       conversion-type-id:
2539 ///         type-specifier-seq conversion-declarator[opt]
2540 ///
2541 ///       conversion-declarator:
2542 ///         ptr-operator conversion-declarator[opt]
2543 /// \endcode
2544 ///
2545 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2546 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2547 ///
2548 /// \param EnteringContext whether we are entering the scope of the
2549 /// nested-name-specifier.
2550 ///
2551 /// \param ObjectType if this unqualified-id occurs within a member access
2552 /// expression, the type of the base object whose member is being accessed.
2553 ///
2554 /// \param Result on a successful parse, contains the parsed unqualified-id.
2555 ///
2556 /// \returns true if parsing fails, false otherwise.
2557 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2558                                         ParsedType ObjectType,
2559                                         UnqualifiedId &Result) {
2560   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2561 
2562   // Consume the 'operator' keyword.
2563   SourceLocation KeywordLoc = ConsumeToken();
2564 
2565   // Determine what kind of operator name we have.
2566   unsigned SymbolIdx = 0;
2567   SourceLocation SymbolLocations[3];
2568   OverloadedOperatorKind Op = OO_None;
2569   switch (Tok.getKind()) {
2570     case tok::kw_new:
2571     case tok::kw_delete: {
2572       bool isNew = Tok.getKind() == tok::kw_new;
2573       // Consume the 'new' or 'delete'.
2574       SymbolLocations[SymbolIdx++] = ConsumeToken();
2575       // Check for array new/delete.
2576       if (Tok.is(tok::l_square) &&
2577           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2578         // Consume the '[' and ']'.
2579         BalancedDelimiterTracker T(*this, tok::l_square);
2580         T.consumeOpen();
2581         T.consumeClose();
2582         if (T.getCloseLocation().isInvalid())
2583           return true;
2584 
2585         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2586         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2587         Op = isNew? OO_Array_New : OO_Array_Delete;
2588       } else {
2589         Op = isNew? OO_New : OO_Delete;
2590       }
2591       break;
2592     }
2593 
2594 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2595     case tok::Token:                                                     \
2596       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2597       Op = OO_##Name;                                                    \
2598       break;
2599 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2600 #include "clang/Basic/OperatorKinds.def"
2601 
2602     case tok::l_paren: {
2603       // Consume the '(' and ')'.
2604       BalancedDelimiterTracker T(*this, tok::l_paren);
2605       T.consumeOpen();
2606       T.consumeClose();
2607       if (T.getCloseLocation().isInvalid())
2608         return true;
2609 
2610       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2611       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2612       Op = OO_Call;
2613       break;
2614     }
2615 
2616     case tok::l_square: {
2617       // Consume the '[' and ']'.
2618       BalancedDelimiterTracker T(*this, tok::l_square);
2619       T.consumeOpen();
2620       T.consumeClose();
2621       if (T.getCloseLocation().isInvalid())
2622         return true;
2623 
2624       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2625       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2626       Op = OO_Subscript;
2627       break;
2628     }
2629 
2630     case tok::code_completion: {
2631       // Don't try to parse any further.
2632       cutOffParsing();
2633       // Code completion for the operator name.
2634       Actions.CodeCompleteOperatorName(getCurScope());
2635       return true;
2636     }
2637 
2638     default:
2639       break;
2640   }
2641 
2642   if (Op != OO_None) {
2643     // We have parsed an operator-function-id.
2644     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2645     return false;
2646   }
2647 
2648   // Parse a literal-operator-id.
2649   //
2650   //   literal-operator-id: C++11 [over.literal]
2651   //     operator string-literal identifier
2652   //     operator user-defined-string-literal
2653 
2654   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2655     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2656 
2657     SourceLocation DiagLoc;
2658     unsigned DiagId = 0;
2659 
2660     // We're past translation phase 6, so perform string literal concatenation
2661     // before checking for "".
2662     SmallVector<Token, 4> Toks;
2663     SmallVector<SourceLocation, 4> TokLocs;
2664     while (isTokenStringLiteral()) {
2665       if (!Tok.is(tok::string_literal) && !DiagId) {
2666         // C++11 [over.literal]p1:
2667         //   The string-literal or user-defined-string-literal in a
2668         //   literal-operator-id shall have no encoding-prefix [...].
2669         DiagLoc = Tok.getLocation();
2670         DiagId = diag::err_literal_operator_string_prefix;
2671       }
2672       Toks.push_back(Tok);
2673       TokLocs.push_back(ConsumeStringToken());
2674     }
2675 
2676     StringLiteralParser Literal(Toks, PP);
2677     if (Literal.hadError)
2678       return true;
2679 
2680     // Grab the literal operator's suffix, which will be either the next token
2681     // or a ud-suffix from the string literal.
2682     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2683     IdentifierInfo *II = nullptr;
2684     SourceLocation SuffixLoc;
2685     if (IsUDSuffix) {
2686       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2687       SuffixLoc =
2688         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2689                                        Literal.getUDSuffixOffset(),
2690                                        PP.getSourceManager(), getLangOpts());
2691     } else if (Tok.is(tok::identifier)) {
2692       II = Tok.getIdentifierInfo();
2693       SuffixLoc = ConsumeToken();
2694       TokLocs.push_back(SuffixLoc);
2695     } else {
2696       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2697       return true;
2698     }
2699 
2700     // The string literal must be empty.
2701     if (!Literal.GetString().empty() || Literal.Pascal) {
2702       // C++11 [over.literal]p1:
2703       //   The string-literal or user-defined-string-literal in a
2704       //   literal-operator-id shall [...] contain no characters
2705       //   other than the implicit terminating '\0'.
2706       DiagLoc = TokLocs.front();
2707       DiagId = diag::err_literal_operator_string_not_empty;
2708     }
2709 
2710     if (DiagId) {
2711       // This isn't a valid literal-operator-id, but we think we know
2712       // what the user meant. Tell them what they should have written.
2713       SmallString<32> Str;
2714       Str += "\"\"";
2715       Str += II->getName();
2716       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2717           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2718     }
2719 
2720     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2721 
2722     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2723   }
2724 
2725   // Parse a conversion-function-id.
2726   //
2727   //   conversion-function-id: [C++ 12.3.2]
2728   //     operator conversion-type-id
2729   //
2730   //   conversion-type-id:
2731   //     type-specifier-seq conversion-declarator[opt]
2732   //
2733   //   conversion-declarator:
2734   //     ptr-operator conversion-declarator[opt]
2735 
2736   // Parse the type-specifier-seq.
2737   DeclSpec DS(AttrFactory);
2738   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2739     return true;
2740 
2741   // Parse the conversion-declarator, which is merely a sequence of
2742   // ptr-operators.
2743   Declarator D(DS, ParsedAttributesView::none(),
2744                DeclaratorContext::ConversionId);
2745   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2746 
2747   // Finish up the type.
2748   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2749   if (Ty.isInvalid())
2750     return true;
2751 
2752   // Note that this is a conversion-function-id.
2753   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2754                                  D.getSourceRange().getEnd());
2755   return false;
2756 }
2757 
2758 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2759 /// name of an entity.
2760 ///
2761 /// \code
2762 ///       unqualified-id: [C++ expr.prim.general]
2763 ///         identifier
2764 ///         operator-function-id
2765 ///         conversion-function-id
2766 /// [C++0x] literal-operator-id [TODO]
2767 ///         ~ class-name
2768 ///         template-id
2769 ///
2770 /// \endcode
2771 ///
2772 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2773 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2774 ///
2775 /// \param ObjectType if this unqualified-id occurs within a member access
2776 /// expression, the type of the base object whose member is being accessed.
2777 ///
2778 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2779 /// expression, indicates whether the original subexpressions had any errors.
2780 /// When true, diagnostics for missing 'template' keyword will be supressed.
2781 ///
2782 /// \param EnteringContext whether we are entering the scope of the
2783 /// nested-name-specifier.
2784 ///
2785 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2786 ///
2787 /// \param AllowConstructorName whether we allow parsing a constructor name.
2788 ///
2789 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2790 ///
2791 /// \param Result on a successful parse, contains the parsed unqualified-id.
2792 ///
2793 /// \returns true if parsing fails, false otherwise.
2794 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2795                                 bool ObjectHadErrors, bool EnteringContext,
2796                                 bool AllowDestructorName,
2797                                 bool AllowConstructorName,
2798                                 bool AllowDeductionGuide,
2799                                 SourceLocation *TemplateKWLoc,
2800                                 UnqualifiedId &Result) {
2801   if (TemplateKWLoc)
2802     *TemplateKWLoc = SourceLocation();
2803 
2804   // Handle 'A::template B'. This is for template-ids which have not
2805   // already been annotated by ParseOptionalCXXScopeSpecifier().
2806   bool TemplateSpecified = false;
2807   if (Tok.is(tok::kw_template)) {
2808     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2809       TemplateSpecified = true;
2810       *TemplateKWLoc = ConsumeToken();
2811     } else {
2812       SourceLocation TemplateLoc = ConsumeToken();
2813       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2814         << FixItHint::CreateRemoval(TemplateLoc);
2815     }
2816   }
2817 
2818   // unqualified-id:
2819   //   identifier
2820   //   template-id (when it hasn't already been annotated)
2821   if (Tok.is(tok::identifier)) {
2822     // Consume the identifier.
2823     IdentifierInfo *Id = Tok.getIdentifierInfo();
2824     SourceLocation IdLoc = ConsumeToken();
2825 
2826     if (!getLangOpts().CPlusPlus) {
2827       // If we're not in C++, only identifiers matter. Record the
2828       // identifier and return.
2829       Result.setIdentifier(Id, IdLoc);
2830       return false;
2831     }
2832 
2833     ParsedTemplateTy TemplateName;
2834     if (AllowConstructorName &&
2835         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2836       // We have parsed a constructor name.
2837       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2838                                                  EnteringContext);
2839       if (!Ty)
2840         return true;
2841       Result.setConstructorName(Ty, IdLoc, IdLoc);
2842     } else if (getLangOpts().CPlusPlus17 &&
2843                AllowDeductionGuide && SS.isEmpty() &&
2844                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2845                                             &TemplateName)) {
2846       // We have parsed a template-name naming a deduction guide.
2847       Result.setDeductionGuideName(TemplateName, IdLoc);
2848     } else {
2849       // We have parsed an identifier.
2850       Result.setIdentifier(Id, IdLoc);
2851     }
2852 
2853     // If the next token is a '<', we may have a template.
2854     TemplateTy Template;
2855     if (Tok.is(tok::less))
2856       return ParseUnqualifiedIdTemplateId(
2857           SS, ObjectType, ObjectHadErrors,
2858           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2859           EnteringContext, Result, TemplateSpecified);
2860     else if (TemplateSpecified &&
2861              Actions.ActOnTemplateName(
2862                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2863                  EnteringContext, Template,
2864                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2865       return true;
2866 
2867     return false;
2868   }
2869 
2870   // unqualified-id:
2871   //   template-id (already parsed and annotated)
2872   if (Tok.is(tok::annot_template_id)) {
2873     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2874 
2875     // FIXME: Consider passing invalid template-ids on to callers; they may
2876     // be able to recover better than we can.
2877     if (TemplateId->isInvalid()) {
2878       ConsumeAnnotationToken();
2879       return true;
2880     }
2881 
2882     // If the template-name names the current class, then this is a constructor
2883     if (AllowConstructorName && TemplateId->Name &&
2884         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2885       if (SS.isSet()) {
2886         // C++ [class.qual]p2 specifies that a qualified template-name
2887         // is taken as the constructor name where a constructor can be
2888         // declared. Thus, the template arguments are extraneous, so
2889         // complain about them and remove them entirely.
2890         Diag(TemplateId->TemplateNameLoc,
2891              diag::err_out_of_line_constructor_template_id)
2892           << TemplateId->Name
2893           << FixItHint::CreateRemoval(
2894                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2895         ParsedType Ty = Actions.getConstructorName(
2896             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2897             EnteringContext);
2898         if (!Ty)
2899           return true;
2900         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2901                                   TemplateId->RAngleLoc);
2902         ConsumeAnnotationToken();
2903         return false;
2904       }
2905 
2906       Result.setConstructorTemplateId(TemplateId);
2907       ConsumeAnnotationToken();
2908       return false;
2909     }
2910 
2911     // We have already parsed a template-id; consume the annotation token as
2912     // our unqualified-id.
2913     Result.setTemplateId(TemplateId);
2914     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2915     if (TemplateLoc.isValid()) {
2916       if (TemplateKWLoc && (ObjectType || SS.isSet()))
2917         *TemplateKWLoc = TemplateLoc;
2918       else
2919         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2920             << FixItHint::CreateRemoval(TemplateLoc);
2921     }
2922     ConsumeAnnotationToken();
2923     return false;
2924   }
2925 
2926   // unqualified-id:
2927   //   operator-function-id
2928   //   conversion-function-id
2929   if (Tok.is(tok::kw_operator)) {
2930     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2931       return true;
2932 
2933     // If we have an operator-function-id or a literal-operator-id and the next
2934     // token is a '<', we may have a
2935     //
2936     //   template-id:
2937     //     operator-function-id < template-argument-list[opt] >
2938     TemplateTy Template;
2939     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2940          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2941         Tok.is(tok::less))
2942       return ParseUnqualifiedIdTemplateId(
2943           SS, ObjectType, ObjectHadErrors,
2944           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2945           SourceLocation(), EnteringContext, Result, TemplateSpecified);
2946     else if (TemplateSpecified &&
2947              Actions.ActOnTemplateName(
2948                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2949                  EnteringContext, Template,
2950                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2951       return true;
2952 
2953     return false;
2954   }
2955 
2956   if (getLangOpts().CPlusPlus &&
2957       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2958     // C++ [expr.unary.op]p10:
2959     //   There is an ambiguity in the unary-expression ~X(), where X is a
2960     //   class-name. The ambiguity is resolved in favor of treating ~ as a
2961     //    unary complement rather than treating ~X as referring to a destructor.
2962 
2963     // Parse the '~'.
2964     SourceLocation TildeLoc = ConsumeToken();
2965 
2966     if (TemplateSpecified) {
2967       // C++ [temp.names]p3:
2968       //   A name prefixed by the keyword template shall be a template-id [...]
2969       //
2970       // A template-id cannot begin with a '~' token. This would never work
2971       // anyway: x.~A<int>() would specify that the destructor is a template,
2972       // not that 'A' is a template.
2973       //
2974       // FIXME: Suggest replacing the attempted destructor name with a correct
2975       // destructor name and recover. (This is not trivial if this would become
2976       // a pseudo-destructor name).
2977       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2978         << Tok.getLocation();
2979       return true;
2980     }
2981 
2982     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2983       DeclSpec DS(AttrFactory);
2984       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2985       if (ParsedType Type =
2986               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2987         Result.setDestructorName(TildeLoc, Type, EndLoc);
2988         return false;
2989       }
2990       return true;
2991     }
2992 
2993     // Parse the class-name.
2994     if (Tok.isNot(tok::identifier)) {
2995       Diag(Tok, diag::err_destructor_tilde_identifier);
2996       return true;
2997     }
2998 
2999     // If the user wrote ~T::T, correct it to T::~T.
3000     DeclaratorScopeObj DeclScopeObj(*this, SS);
3001     if (NextToken().is(tok::coloncolon)) {
3002       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3003       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3004       // it will confuse this recovery logic.
3005       ColonProtectionRAIIObject ColonRAII(*this, false);
3006 
3007       if (SS.isSet()) {
3008         AnnotateScopeToken(SS, /*NewAnnotation*/true);
3009         SS.clear();
3010       }
3011       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3012                                          EnteringContext))
3013         return true;
3014       if (SS.isNotEmpty())
3015         ObjectType = nullptr;
3016       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3017           !SS.isSet()) {
3018         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3019         return true;
3020       }
3021 
3022       // Recover as if the tilde had been written before the identifier.
3023       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3024         << FixItHint::CreateRemoval(TildeLoc)
3025         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3026 
3027       // Temporarily enter the scope for the rest of this function.
3028       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3029         DeclScopeObj.EnterDeclaratorScope();
3030     }
3031 
3032     // Parse the class-name (or template-name in a simple-template-id).
3033     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3034     SourceLocation ClassNameLoc = ConsumeToken();
3035 
3036     if (Tok.is(tok::less)) {
3037       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3038       return ParseUnqualifiedIdTemplateId(
3039           SS, ObjectType, ObjectHadErrors,
3040           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3041           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3042     }
3043 
3044     // Note that this is a destructor name.
3045     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3046                                               ClassNameLoc, getCurScope(),
3047                                               SS, ObjectType,
3048                                               EnteringContext);
3049     if (!Ty)
3050       return true;
3051 
3052     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3053     return false;
3054   }
3055 
3056   Diag(Tok, diag::err_expected_unqualified_id)
3057     << getLangOpts().CPlusPlus;
3058   return true;
3059 }
3060 
3061 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3062 /// memory in a typesafe manner and call constructors.
3063 ///
3064 /// This method is called to parse the new expression after the optional :: has
3065 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3066 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3067 ///
3068 ///        new-expression:
3069 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3070 ///                                     new-initializer[opt]
3071 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3072 ///                                     new-initializer[opt]
3073 ///
3074 ///        new-placement:
3075 ///                   '(' expression-list ')'
3076 ///
3077 ///        new-type-id:
3078 ///                   type-specifier-seq new-declarator[opt]
3079 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3080 ///
3081 ///        new-declarator:
3082 ///                   ptr-operator new-declarator[opt]
3083 ///                   direct-new-declarator
3084 ///
3085 ///        new-initializer:
3086 ///                   '(' expression-list[opt] ')'
3087 /// [C++0x]           braced-init-list
3088 ///
3089 ExprResult
3090 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3091   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3092   ConsumeToken();   // Consume 'new'
3093 
3094   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3095   // second form of new-expression. It can't be a new-type-id.
3096 
3097   ExprVector PlacementArgs;
3098   SourceLocation PlacementLParen, PlacementRParen;
3099 
3100   SourceRange TypeIdParens;
3101   DeclSpec DS(AttrFactory);
3102   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3103                             DeclaratorContext::CXXNew);
3104   if (Tok.is(tok::l_paren)) {
3105     // If it turns out to be a placement, we change the type location.
3106     BalancedDelimiterTracker T(*this, tok::l_paren);
3107     T.consumeOpen();
3108     PlacementLParen = T.getOpenLocation();
3109     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3110       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3111       return ExprError();
3112     }
3113 
3114     T.consumeClose();
3115     PlacementRParen = T.getCloseLocation();
3116     if (PlacementRParen.isInvalid()) {
3117       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3118       return ExprError();
3119     }
3120 
3121     if (PlacementArgs.empty()) {
3122       // Reset the placement locations. There was no placement.
3123       TypeIdParens = T.getRange();
3124       PlacementLParen = PlacementRParen = SourceLocation();
3125     } else {
3126       // We still need the type.
3127       if (Tok.is(tok::l_paren)) {
3128         BalancedDelimiterTracker T(*this, tok::l_paren);
3129         T.consumeOpen();
3130         MaybeParseGNUAttributes(DeclaratorInfo);
3131         ParseSpecifierQualifierList(DS);
3132         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3133         ParseDeclarator(DeclaratorInfo);
3134         T.consumeClose();
3135         TypeIdParens = T.getRange();
3136       } else {
3137         MaybeParseGNUAttributes(DeclaratorInfo);
3138         if (ParseCXXTypeSpecifierSeq(DS))
3139           DeclaratorInfo.setInvalidType(true);
3140         else {
3141           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3142           ParseDeclaratorInternal(DeclaratorInfo,
3143                                   &Parser::ParseDirectNewDeclarator);
3144         }
3145       }
3146     }
3147   } else {
3148     // A new-type-id is a simplified type-id, where essentially the
3149     // direct-declarator is replaced by a direct-new-declarator.
3150     MaybeParseGNUAttributes(DeclaratorInfo);
3151     if (ParseCXXTypeSpecifierSeq(DS))
3152       DeclaratorInfo.setInvalidType(true);
3153     else {
3154       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3155       ParseDeclaratorInternal(DeclaratorInfo,
3156                               &Parser::ParseDirectNewDeclarator);
3157     }
3158   }
3159   if (DeclaratorInfo.isInvalidType()) {
3160     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3161     return ExprError();
3162   }
3163 
3164   ExprResult Initializer;
3165 
3166   if (Tok.is(tok::l_paren)) {
3167     SourceLocation ConstructorLParen, ConstructorRParen;
3168     ExprVector ConstructorArgs;
3169     BalancedDelimiterTracker T(*this, tok::l_paren);
3170     T.consumeOpen();
3171     ConstructorLParen = T.getOpenLocation();
3172     if (Tok.isNot(tok::r_paren)) {
3173       CommaLocsTy CommaLocs;
3174       auto RunSignatureHelp = [&]() {
3175         ParsedType TypeRep =
3176             Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3177         QualType PreferredType;
3178         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3179         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3180         // `new decltype(invalid) (^)`.
3181         if (TypeRep)
3182           PreferredType = Actions.ProduceConstructorSignatureHelp(
3183               TypeRep.get()->getCanonicalTypeInternal(),
3184               DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3185               /*Braced=*/false);
3186         CalledSignatureHelp = true;
3187         return PreferredType;
3188       };
3189       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3190             PreferredType.enterFunctionArgument(Tok.getLocation(),
3191                                                 RunSignatureHelp);
3192           })) {
3193         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3194           RunSignatureHelp();
3195         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3196         return ExprError();
3197       }
3198     }
3199     T.consumeClose();
3200     ConstructorRParen = T.getCloseLocation();
3201     if (ConstructorRParen.isInvalid()) {
3202       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3203       return ExprError();
3204     }
3205     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3206                                              ConstructorRParen,
3207                                              ConstructorArgs);
3208   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3209     Diag(Tok.getLocation(),
3210          diag::warn_cxx98_compat_generalized_initializer_lists);
3211     Initializer = ParseBraceInitializer();
3212   }
3213   if (Initializer.isInvalid())
3214     return Initializer;
3215 
3216   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3217                              PlacementArgs, PlacementRParen,
3218                              TypeIdParens, DeclaratorInfo, Initializer.get());
3219 }
3220 
3221 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3222 /// passed to ParseDeclaratorInternal.
3223 ///
3224 ///        direct-new-declarator:
3225 ///                   '[' expression[opt] ']'
3226 ///                   direct-new-declarator '[' constant-expression ']'
3227 ///
3228 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3229   // Parse the array dimensions.
3230   bool First = true;
3231   while (Tok.is(tok::l_square)) {
3232     // An array-size expression can't start with a lambda.
3233     if (CheckProhibitedCXX11Attribute())
3234       continue;
3235 
3236     BalancedDelimiterTracker T(*this, tok::l_square);
3237     T.consumeOpen();
3238 
3239     ExprResult Size =
3240         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3241               : ParseConstantExpression();
3242     if (Size.isInvalid()) {
3243       // Recover
3244       SkipUntil(tok::r_square, StopAtSemi);
3245       return;
3246     }
3247     First = false;
3248 
3249     T.consumeClose();
3250 
3251     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3252     ParsedAttributes Attrs(AttrFactory);
3253     MaybeParseCXX11Attributes(Attrs);
3254 
3255     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3256                                             /*isStatic=*/false, /*isStar=*/false,
3257                                             Size.get(), T.getOpenLocation(),
3258                                             T.getCloseLocation()),
3259                   std::move(Attrs), T.getCloseLocation());
3260 
3261     if (T.getCloseLocation().isInvalid())
3262       return;
3263   }
3264 }
3265 
3266 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3267 /// This ambiguity appears in the syntax of the C++ new operator.
3268 ///
3269 ///        new-expression:
3270 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3271 ///                                     new-initializer[opt]
3272 ///
3273 ///        new-placement:
3274 ///                   '(' expression-list ')'
3275 ///
3276 bool Parser::ParseExpressionListOrTypeId(
3277                                    SmallVectorImpl<Expr*> &PlacementArgs,
3278                                          Declarator &D) {
3279   // The '(' was already consumed.
3280   if (isTypeIdInParens()) {
3281     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3282     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3283     ParseDeclarator(D);
3284     return D.isInvalidType();
3285   }
3286 
3287   // It's not a type, it has to be an expression list.
3288   // Discard the comma locations - ActOnCXXNew has enough parameters.
3289   CommaLocsTy CommaLocs;
3290   return ParseExpressionList(PlacementArgs, CommaLocs);
3291 }
3292 
3293 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3294 /// to free memory allocated by new.
3295 ///
3296 /// This method is called to parse the 'delete' expression after the optional
3297 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3298 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3299 /// 'delete' token.
3300 ///
3301 ///        delete-expression:
3302 ///                   '::'[opt] 'delete' cast-expression
3303 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3304 ExprResult
3305 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3306   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3307   ConsumeToken(); // Consume 'delete'
3308 
3309   // Array delete?
3310   bool ArrayDelete = false;
3311   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3312     // C++11 [expr.delete]p1:
3313     //   Whenever the delete keyword is followed by empty square brackets, it
3314     //   shall be interpreted as [array delete].
3315     //   [Footnote: A lambda expression with a lambda-introducer that consists
3316     //              of empty square brackets can follow the delete keyword if
3317     //              the lambda expression is enclosed in parentheses.]
3318 
3319     const Token Next = GetLookAheadToken(2);
3320 
3321     // Basic lookahead to check if we have a lambda expression.
3322     if (Next.isOneOf(tok::l_brace, tok::less) ||
3323         (Next.is(tok::l_paren) &&
3324          (GetLookAheadToken(3).is(tok::r_paren) ||
3325           (GetLookAheadToken(3).is(tok::identifier) &&
3326            GetLookAheadToken(4).is(tok::identifier))))) {
3327       TentativeParsingAction TPA(*this);
3328       SourceLocation LSquareLoc = Tok.getLocation();
3329       SourceLocation RSquareLoc = NextToken().getLocation();
3330 
3331       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3332       // case.
3333       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3334       SourceLocation RBraceLoc;
3335       bool EmitFixIt = false;
3336       if (Tok.is(tok::l_brace)) {
3337         ConsumeBrace();
3338         SkipUntil(tok::r_brace, StopBeforeMatch);
3339         RBraceLoc = Tok.getLocation();
3340         EmitFixIt = true;
3341       }
3342 
3343       TPA.Revert();
3344 
3345       if (EmitFixIt)
3346         Diag(Start, diag::err_lambda_after_delete)
3347             << SourceRange(Start, RSquareLoc)
3348             << FixItHint::CreateInsertion(LSquareLoc, "(")
3349             << FixItHint::CreateInsertion(
3350                    Lexer::getLocForEndOfToken(
3351                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3352                    ")");
3353       else
3354         Diag(Start, diag::err_lambda_after_delete)
3355             << SourceRange(Start, RSquareLoc);
3356 
3357       // Warn that the non-capturing lambda isn't surrounded by parentheses
3358       // to disambiguate it from 'delete[]'.
3359       ExprResult Lambda = ParseLambdaExpression();
3360       if (Lambda.isInvalid())
3361         return ExprError();
3362 
3363       // Evaluate any postfix expressions used on the lambda.
3364       Lambda = ParsePostfixExpressionSuffix(Lambda);
3365       if (Lambda.isInvalid())
3366         return ExprError();
3367       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3368                                     Lambda.get());
3369     }
3370 
3371     ArrayDelete = true;
3372     BalancedDelimiterTracker T(*this, tok::l_square);
3373 
3374     T.consumeOpen();
3375     T.consumeClose();
3376     if (T.getCloseLocation().isInvalid())
3377       return ExprError();
3378   }
3379 
3380   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3381   if (Operand.isInvalid())
3382     return Operand;
3383 
3384   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3385 }
3386 
3387 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3388 /// C++2a [expr.prim.req]p1
3389 ///     A requires-expression provides a concise way to express requirements on
3390 ///     template arguments. A requirement is one that can be checked by name
3391 ///     lookup (6.4) or by checking properties of types and expressions.
3392 ///
3393 ///     requires-expression:
3394 ///         'requires' requirement-parameter-list[opt] requirement-body
3395 ///
3396 ///     requirement-parameter-list:
3397 ///         '(' parameter-declaration-clause[opt] ')'
3398 ///
3399 ///     requirement-body:
3400 ///         '{' requirement-seq '}'
3401 ///
3402 ///     requirement-seq:
3403 ///         requirement
3404 ///         requirement-seq requirement
3405 ///
3406 ///     requirement:
3407 ///         simple-requirement
3408 ///         type-requirement
3409 ///         compound-requirement
3410 ///         nested-requirement
3411 ExprResult Parser::ParseRequiresExpression() {
3412   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3413   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3414 
3415   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3416   if (Tok.is(tok::l_paren)) {
3417     // requirement parameter list is present.
3418     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3419                                     Scope::DeclScope);
3420     BalancedDelimiterTracker Parens(*this, tok::l_paren);
3421     Parens.consumeOpen();
3422     if (!Tok.is(tok::r_paren)) {
3423       ParsedAttributes FirstArgAttrs(getAttrFactory());
3424       SourceLocation EllipsisLoc;
3425       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3426       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3427                                       FirstArgAttrs, LocalParameters,
3428                                       EllipsisLoc);
3429       if (EllipsisLoc.isValid())
3430         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3431       for (auto &ParamInfo : LocalParameters)
3432         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3433     }
3434     Parens.consumeClose();
3435   }
3436 
3437   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3438   if (Braces.expectAndConsume())
3439     return ExprError();
3440 
3441   // Start of requirement list
3442   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3443 
3444   // C++2a [expr.prim.req]p2
3445   //   Expressions appearing within a requirement-body are unevaluated operands.
3446   EnterExpressionEvaluationContext Ctx(
3447       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3448 
3449   ParseScope BodyScope(this, Scope::DeclScope);
3450   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3451       RequiresKWLoc, LocalParameterDecls, getCurScope());
3452 
3453   if (Tok.is(tok::r_brace)) {
3454     // Grammar does not allow an empty body.
3455     // requirement-body:
3456     //   { requirement-seq }
3457     // requirement-seq:
3458     //   requirement
3459     //   requirement-seq requirement
3460     Diag(Tok, diag::err_empty_requires_expr);
3461     // Continue anyway and produce a requires expr with no requirements.
3462   } else {
3463     while (!Tok.is(tok::r_brace)) {
3464       switch (Tok.getKind()) {
3465       case tok::l_brace: {
3466         // Compound requirement
3467         // C++ [expr.prim.req.compound]
3468         //     compound-requirement:
3469         //         '{' expression '}' 'noexcept'[opt]
3470         //             return-type-requirement[opt] ';'
3471         //     return-type-requirement:
3472         //         trailing-return-type
3473         //         '->' cv-qualifier-seq[opt] constrained-parameter
3474         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3475         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3476         ExprBraces.consumeOpen();
3477         ExprResult Expression =
3478             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3479         if (!Expression.isUsable()) {
3480           ExprBraces.skipToEnd();
3481           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3482           break;
3483         }
3484         if (ExprBraces.consumeClose())
3485           ExprBraces.skipToEnd();
3486 
3487         concepts::Requirement *Req = nullptr;
3488         SourceLocation NoexceptLoc;
3489         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3490         if (Tok.is(tok::semi)) {
3491           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3492           if (Req)
3493             Requirements.push_back(Req);
3494           break;
3495         }
3496         if (!TryConsumeToken(tok::arrow))
3497           // User probably forgot the arrow, remind them and try to continue.
3498           Diag(Tok, diag::err_requires_expr_missing_arrow)
3499               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3500         // Try to parse a 'type-constraint'
3501         if (TryAnnotateTypeConstraint()) {
3502           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3503           break;
3504         }
3505         if (!isTypeConstraintAnnotation()) {
3506           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3507           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3508           break;
3509         }
3510         CXXScopeSpec SS;
3511         if (Tok.is(tok::annot_cxxscope)) {
3512           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3513                                                        Tok.getAnnotationRange(),
3514                                                        SS);
3515           ConsumeAnnotationToken();
3516         }
3517 
3518         Req = Actions.ActOnCompoundRequirement(
3519             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3520             TemplateParameterDepth);
3521         ConsumeAnnotationToken();
3522         if (Req)
3523           Requirements.push_back(Req);
3524         break;
3525       }
3526       default: {
3527         bool PossibleRequiresExprInSimpleRequirement = false;
3528         if (Tok.is(tok::kw_requires)) {
3529           auto IsNestedRequirement = [&] {
3530             RevertingTentativeParsingAction TPA(*this);
3531             ConsumeToken(); // 'requires'
3532             if (Tok.is(tok::l_brace))
3533               // This is a requires expression
3534               // requires (T t) {
3535               //   requires { t++; };
3536               //   ...      ^
3537               // }
3538               return false;
3539             if (Tok.is(tok::l_paren)) {
3540               // This might be the parameter list of a requires expression
3541               ConsumeParen();
3542               auto Res = TryParseParameterDeclarationClause();
3543               if (Res != TPResult::False) {
3544                 // Skip to the closing parenthesis
3545                 // FIXME: Don't traverse these tokens twice (here and in
3546                 //  TryParseParameterDeclarationClause).
3547                 unsigned Depth = 1;
3548                 while (Depth != 0) {
3549                   if (Tok.is(tok::l_paren))
3550                     Depth++;
3551                   else if (Tok.is(tok::r_paren))
3552                     Depth--;
3553                   ConsumeAnyToken();
3554                 }
3555                 // requires (T t) {
3556                 //   requires () ?
3557                 //   ...         ^
3558                 //   - OR -
3559                 //   requires (int x) ?
3560                 //   ...              ^
3561                 // }
3562                 if (Tok.is(tok::l_brace))
3563                   // requires (...) {
3564                   //                ^ - a requires expression as a
3565                   //                    simple-requirement.
3566                   return false;
3567               }
3568             }
3569             return true;
3570           };
3571           if (IsNestedRequirement()) {
3572             ConsumeToken();
3573             // Nested requirement
3574             // C++ [expr.prim.req.nested]
3575             //     nested-requirement:
3576             //         'requires' constraint-expression ';'
3577             ExprResult ConstraintExpr =
3578                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3579             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3580               SkipUntil(tok::semi, tok::r_brace,
3581                         SkipUntilFlags::StopBeforeMatch);
3582               break;
3583             }
3584             if (auto *Req =
3585                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3586               Requirements.push_back(Req);
3587             else {
3588               SkipUntil(tok::semi, tok::r_brace,
3589                         SkipUntilFlags::StopBeforeMatch);
3590               break;
3591             }
3592             break;
3593           } else
3594             PossibleRequiresExprInSimpleRequirement = true;
3595         } else if (Tok.is(tok::kw_typename)) {
3596           // This might be 'typename T::value_type;' (a type requirement) or
3597           // 'typename T::value_type{};' (a simple requirement).
3598           TentativeParsingAction TPA(*this);
3599 
3600           // We need to consume the typename to allow 'requires { typename a; }'
3601           SourceLocation TypenameKWLoc = ConsumeToken();
3602           if (TryAnnotateOptionalCXXScopeToken()) {
3603             TPA.Commit();
3604             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3605             break;
3606           }
3607           CXXScopeSpec SS;
3608           if (Tok.is(tok::annot_cxxscope)) {
3609             Actions.RestoreNestedNameSpecifierAnnotation(
3610                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3611             ConsumeAnnotationToken();
3612           }
3613 
3614           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3615               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3616             TPA.Commit();
3617             SourceLocation NameLoc = Tok.getLocation();
3618             IdentifierInfo *II = nullptr;
3619             TemplateIdAnnotation *TemplateId = nullptr;
3620             if (Tok.is(tok::identifier)) {
3621               II = Tok.getIdentifierInfo();
3622               ConsumeToken();
3623             } else {
3624               TemplateId = takeTemplateIdAnnotation(Tok);
3625               ConsumeAnnotationToken();
3626               if (TemplateId->isInvalid())
3627                 break;
3628             }
3629 
3630             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3631                                                          NameLoc, II,
3632                                                          TemplateId)) {
3633               Requirements.push_back(Req);
3634             }
3635             break;
3636           }
3637           TPA.Revert();
3638         }
3639         // Simple requirement
3640         // C++ [expr.prim.req.simple]
3641         //     simple-requirement:
3642         //         expression ';'
3643         SourceLocation StartLoc = Tok.getLocation();
3644         ExprResult Expression =
3645             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3646         if (!Expression.isUsable()) {
3647           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3648           break;
3649         }
3650         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3651           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3652               << FixItHint::CreateInsertion(StartLoc, "requires");
3653         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3654           Requirements.push_back(Req);
3655         else {
3656           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3657           break;
3658         }
3659         // User may have tried to put some compound requirement stuff here
3660         if (Tok.is(tok::kw_noexcept)) {
3661           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3662               << FixItHint::CreateInsertion(StartLoc, "{")
3663               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3664           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3665           break;
3666         }
3667         break;
3668       }
3669       }
3670       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3671         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3672         TryConsumeToken(tok::semi);
3673         break;
3674       }
3675     }
3676     if (Requirements.empty()) {
3677       // Don't emit an empty requires expr here to avoid confusing the user with
3678       // other diagnostics quoting an empty requires expression they never
3679       // wrote.
3680       Braces.consumeClose();
3681       Actions.ActOnFinishRequiresExpr();
3682       return ExprError();
3683     }
3684   }
3685   Braces.consumeClose();
3686   Actions.ActOnFinishRequiresExpr();
3687   return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3688                                    Requirements, Braces.getCloseLocation());
3689 }
3690 
3691 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3692   switch (kind) {
3693   default: llvm_unreachable("Not a known type trait");
3694 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3695 case tok::kw_ ## Spelling: return UTT_ ## Name;
3696 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3697 case tok::kw_ ## Spelling: return BTT_ ## Name;
3698 #include "clang/Basic/TokenKinds.def"
3699 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3700   case tok::kw_ ## Spelling: return TT_ ## Name;
3701 #include "clang/Basic/TokenKinds.def"
3702   }
3703 }
3704 
3705 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3706   switch (kind) {
3707   default:
3708     llvm_unreachable("Not a known array type trait");
3709 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3710   case tok::kw_##Spelling:                                                     \
3711     return ATT_##Name;
3712 #include "clang/Basic/TokenKinds.def"
3713   }
3714 }
3715 
3716 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3717   switch (kind) {
3718   default:
3719     llvm_unreachable("Not a known unary expression trait.");
3720 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3721   case tok::kw_##Spelling:                                                     \
3722     return ET_##Name;
3723 #include "clang/Basic/TokenKinds.def"
3724   }
3725 }
3726 
3727 static unsigned TypeTraitArity(tok::TokenKind kind) {
3728   switch (kind) {
3729     default: llvm_unreachable("Not a known type trait");
3730 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3731 #include "clang/Basic/TokenKinds.def"
3732   }
3733 }
3734 
3735 /// Parse the built-in type-trait pseudo-functions that allow
3736 /// implementation of the TR1/C++11 type traits templates.
3737 ///
3738 ///       primary-expression:
3739 ///          unary-type-trait '(' type-id ')'
3740 ///          binary-type-trait '(' type-id ',' type-id ')'
3741 ///          type-trait '(' type-id-seq ')'
3742 ///
3743 ///       type-id-seq:
3744 ///          type-id ...[opt] type-id-seq[opt]
3745 ///
3746 ExprResult Parser::ParseTypeTrait() {
3747   tok::TokenKind Kind = Tok.getKind();
3748   unsigned Arity = TypeTraitArity(Kind);
3749 
3750   SourceLocation Loc = ConsumeToken();
3751 
3752   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3753   if (Parens.expectAndConsume())
3754     return ExprError();
3755 
3756   SmallVector<ParsedType, 2> Args;
3757   do {
3758     // Parse the next type.
3759     TypeResult Ty = ParseTypeName();
3760     if (Ty.isInvalid()) {
3761       Parens.skipToEnd();
3762       return ExprError();
3763     }
3764 
3765     // Parse the ellipsis, if present.
3766     if (Tok.is(tok::ellipsis)) {
3767       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3768       if (Ty.isInvalid()) {
3769         Parens.skipToEnd();
3770         return ExprError();
3771       }
3772     }
3773 
3774     // Add this type to the list of arguments.
3775     Args.push_back(Ty.get());
3776   } while (TryConsumeToken(tok::comma));
3777 
3778   if (Parens.consumeClose())
3779     return ExprError();
3780 
3781   SourceLocation EndLoc = Parens.getCloseLocation();
3782 
3783   if (Arity && Args.size() != Arity) {
3784     Diag(EndLoc, diag::err_type_trait_arity)
3785       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3786     return ExprError();
3787   }
3788 
3789   if (!Arity && Args.empty()) {
3790     Diag(EndLoc, diag::err_type_trait_arity)
3791       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3792     return ExprError();
3793   }
3794 
3795   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3796 }
3797 
3798 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3799 /// pseudo-functions.
3800 ///
3801 ///       primary-expression:
3802 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3803 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3804 ///
3805 ExprResult Parser::ParseArrayTypeTrait() {
3806   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3807   SourceLocation Loc = ConsumeToken();
3808 
3809   BalancedDelimiterTracker T(*this, tok::l_paren);
3810   if (T.expectAndConsume())
3811     return ExprError();
3812 
3813   TypeResult Ty = ParseTypeName();
3814   if (Ty.isInvalid()) {
3815     SkipUntil(tok::comma, StopAtSemi);
3816     SkipUntil(tok::r_paren, StopAtSemi);
3817     return ExprError();
3818   }
3819 
3820   switch (ATT) {
3821   case ATT_ArrayRank: {
3822     T.consumeClose();
3823     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3824                                        T.getCloseLocation());
3825   }
3826   case ATT_ArrayExtent: {
3827     if (ExpectAndConsume(tok::comma)) {
3828       SkipUntil(tok::r_paren, StopAtSemi);
3829       return ExprError();
3830     }
3831 
3832     ExprResult DimExpr = ParseExpression();
3833     T.consumeClose();
3834 
3835     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3836                                        T.getCloseLocation());
3837   }
3838   }
3839   llvm_unreachable("Invalid ArrayTypeTrait!");
3840 }
3841 
3842 /// ParseExpressionTrait - Parse built-in expression-trait
3843 /// pseudo-functions like __is_lvalue_expr( xxx ).
3844 ///
3845 ///       primary-expression:
3846 /// [Embarcadero]     expression-trait '(' expression ')'
3847 ///
3848 ExprResult Parser::ParseExpressionTrait() {
3849   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3850   SourceLocation Loc = ConsumeToken();
3851 
3852   BalancedDelimiterTracker T(*this, tok::l_paren);
3853   if (T.expectAndConsume())
3854     return ExprError();
3855 
3856   ExprResult Expr = ParseExpression();
3857 
3858   T.consumeClose();
3859 
3860   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3861                                       T.getCloseLocation());
3862 }
3863 
3864 
3865 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3866 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3867 /// based on the context past the parens.
3868 ExprResult
3869 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3870                                          ParsedType &CastTy,
3871                                          BalancedDelimiterTracker &Tracker,
3872                                          ColonProtectionRAIIObject &ColonProt) {
3873   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3874   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3875   assert(isTypeIdInParens() && "Not a type-id!");
3876 
3877   ExprResult Result(true);
3878   CastTy = nullptr;
3879 
3880   // We need to disambiguate a very ugly part of the C++ syntax:
3881   //
3882   // (T())x;  - type-id
3883   // (T())*x; - type-id
3884   // (T())/x; - expression
3885   // (T());   - expression
3886   //
3887   // The bad news is that we cannot use the specialized tentative parser, since
3888   // it can only verify that the thing inside the parens can be parsed as
3889   // type-id, it is not useful for determining the context past the parens.
3890   //
3891   // The good news is that the parser can disambiguate this part without
3892   // making any unnecessary Action calls.
3893   //
3894   // It uses a scheme similar to parsing inline methods. The parenthesized
3895   // tokens are cached, the context that follows is determined (possibly by
3896   // parsing a cast-expression), and then we re-introduce the cached tokens
3897   // into the token stream and parse them appropriately.
3898 
3899   ParenParseOption ParseAs;
3900   CachedTokens Toks;
3901 
3902   // Store the tokens of the parentheses. We will parse them after we determine
3903   // the context that follows them.
3904   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3905     // We didn't find the ')' we expected.
3906     Tracker.consumeClose();
3907     return ExprError();
3908   }
3909 
3910   if (Tok.is(tok::l_brace)) {
3911     ParseAs = CompoundLiteral;
3912   } else {
3913     bool NotCastExpr;
3914     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3915       NotCastExpr = true;
3916     } else {
3917       // Try parsing the cast-expression that may follow.
3918       // If it is not a cast-expression, NotCastExpr will be true and no token
3919       // will be consumed.
3920       ColonProt.restore();
3921       Result = ParseCastExpression(AnyCastExpr,
3922                                    false/*isAddressofOperand*/,
3923                                    NotCastExpr,
3924                                    // type-id has priority.
3925                                    IsTypeCast);
3926     }
3927 
3928     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3929     // an expression.
3930     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3931   }
3932 
3933   // Create a fake EOF to mark end of Toks buffer.
3934   Token AttrEnd;
3935   AttrEnd.startToken();
3936   AttrEnd.setKind(tok::eof);
3937   AttrEnd.setLocation(Tok.getLocation());
3938   AttrEnd.setEofData(Toks.data());
3939   Toks.push_back(AttrEnd);
3940 
3941   // The current token should go after the cached tokens.
3942   Toks.push_back(Tok);
3943   // Re-enter the stored parenthesized tokens into the token stream, so we may
3944   // parse them now.
3945   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3946                       /*IsReinject*/ true);
3947   // Drop the current token and bring the first cached one. It's the same token
3948   // as when we entered this function.
3949   ConsumeAnyToken();
3950 
3951   if (ParseAs >= CompoundLiteral) {
3952     // Parse the type declarator.
3953     DeclSpec DS(AttrFactory);
3954     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3955                               DeclaratorContext::TypeName);
3956     {
3957       ColonProtectionRAIIObject InnerColonProtection(*this);
3958       ParseSpecifierQualifierList(DS);
3959       ParseDeclarator(DeclaratorInfo);
3960     }
3961 
3962     // Match the ')'.
3963     Tracker.consumeClose();
3964     ColonProt.restore();
3965 
3966     // Consume EOF marker for Toks buffer.
3967     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3968     ConsumeAnyToken();
3969 
3970     if (ParseAs == CompoundLiteral) {
3971       ExprType = CompoundLiteral;
3972       if (DeclaratorInfo.isInvalidType())
3973         return ExprError();
3974 
3975       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3976       return ParseCompoundLiteralExpression(Ty.get(),
3977                                             Tracker.getOpenLocation(),
3978                                             Tracker.getCloseLocation());
3979     }
3980 
3981     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3982     assert(ParseAs == CastExpr);
3983 
3984     if (DeclaratorInfo.isInvalidType())
3985       return ExprError();
3986 
3987     // Result is what ParseCastExpression returned earlier.
3988     if (!Result.isInvalid())
3989       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3990                                     DeclaratorInfo, CastTy,
3991                                     Tracker.getCloseLocation(), Result.get());
3992     return Result;
3993   }
3994 
3995   // Not a compound literal, and not followed by a cast-expression.
3996   assert(ParseAs == SimpleExpr);
3997 
3998   ExprType = SimpleExpr;
3999   Result = ParseExpression();
4000   if (!Result.isInvalid() && Tok.is(tok::r_paren))
4001     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4002                                     Tok.getLocation(), Result.get());
4003 
4004   // Match the ')'.
4005   if (Result.isInvalid()) {
4006     while (Tok.isNot(tok::eof))
4007       ConsumeAnyToken();
4008     assert(Tok.getEofData() == AttrEnd.getEofData());
4009     ConsumeAnyToken();
4010     return ExprError();
4011   }
4012 
4013   Tracker.consumeClose();
4014   // Consume EOF marker for Toks buffer.
4015   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4016   ConsumeAnyToken();
4017   return Result;
4018 }
4019 
4020 /// Parse a __builtin_bit_cast(T, E).
4021 ExprResult Parser::ParseBuiltinBitCast() {
4022   SourceLocation KWLoc = ConsumeToken();
4023 
4024   BalancedDelimiterTracker T(*this, tok::l_paren);
4025   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4026     return ExprError();
4027 
4028   // Parse the common declaration-specifiers piece.
4029   DeclSpec DS(AttrFactory);
4030   ParseSpecifierQualifierList(DS);
4031 
4032   // Parse the abstract-declarator, if present.
4033   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4034                             DeclaratorContext::TypeName);
4035   ParseDeclarator(DeclaratorInfo);
4036 
4037   if (ExpectAndConsume(tok::comma)) {
4038     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4039     SkipUntil(tok::r_paren, StopAtSemi);
4040     return ExprError();
4041   }
4042 
4043   ExprResult Operand = ParseExpression();
4044 
4045   if (T.consumeClose())
4046     return ExprError();
4047 
4048   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4049     return ExprError();
4050 
4051   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4052                                          T.getCloseLocation());
4053 }
4054