1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Expression parsing implementation for C++. 10 // 11 //===----------------------------------------------------------------------===// 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/AST/DeclTemplate.h" 15 #include "clang/AST/ExprCXX.h" 16 #include "clang/Basic/PrettyStackTrace.h" 17 #include "clang/Lex/LiteralSupport.h" 18 #include "clang/Parse/ParseDiagnostic.h" 19 #include "clang/Parse/Parser.h" 20 #include "clang/Parse/RAIIObjectsForParser.h" 21 #include "clang/Sema/DeclSpec.h" 22 #include "clang/Sema/ParsedTemplate.h" 23 #include "clang/Sema/Scope.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include <numeric> 26 27 using namespace clang; 28 29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) { 30 switch (Kind) { 31 // template name 32 case tok::unknown: return 0; 33 // casts 34 case tok::kw_addrspace_cast: return 1; 35 case tok::kw_const_cast: return 2; 36 case tok::kw_dynamic_cast: return 3; 37 case tok::kw_reinterpret_cast: return 4; 38 case tok::kw_static_cast: return 5; 39 default: 40 llvm_unreachable("Unknown type for digraph error message."); 41 } 42 } 43 44 // Are the two tokens adjacent in the same source file? 45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { 46 SourceManager &SM = PP.getSourceManager(); 47 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); 48 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); 49 return FirstEnd == SM.getSpellingLoc(Second.getLocation()); 50 } 51 52 // Suggest fixit for "<::" after a cast. 53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, 54 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { 55 // Pull '<:' and ':' off token stream. 56 if (!AtDigraph) 57 PP.Lex(DigraphToken); 58 PP.Lex(ColonToken); 59 60 SourceRange Range; 61 Range.setBegin(DigraphToken.getLocation()); 62 Range.setEnd(ColonToken.getLocation()); 63 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) 64 << SelectDigraphErrorMessage(Kind) 65 << FixItHint::CreateReplacement(Range, "< ::"); 66 67 // Update token information to reflect their change in token type. 68 ColonToken.setKind(tok::coloncolon); 69 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); 70 ColonToken.setLength(2); 71 DigraphToken.setKind(tok::less); 72 DigraphToken.setLength(1); 73 74 // Push new tokens back to token stream. 75 PP.EnterToken(ColonToken, /*IsReinject*/ true); 76 if (!AtDigraph) 77 PP.EnterToken(DigraphToken, /*IsReinject*/ true); 78 } 79 80 // Check for '<::' which should be '< ::' instead of '[:' when following 81 // a template name. 82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, 83 bool EnteringContext, 84 IdentifierInfo &II, CXXScopeSpec &SS) { 85 if (!Next.is(tok::l_square) || Next.getLength() != 2) 86 return; 87 88 Token SecondToken = GetLookAheadToken(2); 89 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) 90 return; 91 92 TemplateTy Template; 93 UnqualifiedId TemplateName; 94 TemplateName.setIdentifier(&II, Tok.getLocation()); 95 bool MemberOfUnknownSpecialization; 96 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, 97 TemplateName, ObjectType, EnteringContext, 98 Template, MemberOfUnknownSpecialization)) 99 return; 100 101 FixDigraph(*this, PP, Next, SecondToken, tok::unknown, 102 /*AtDigraph*/false); 103 } 104 105 /// Parse global scope or nested-name-specifier if present. 106 /// 107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which 108 /// may be preceded by '::'). Note that this routine will not parse ::new or 109 /// ::delete; it will just leave them in the token stream. 110 /// 111 /// '::'[opt] nested-name-specifier 112 /// '::' 113 /// 114 /// nested-name-specifier: 115 /// type-name '::' 116 /// namespace-name '::' 117 /// nested-name-specifier identifier '::' 118 /// nested-name-specifier 'template'[opt] simple-template-id '::' 119 /// 120 /// 121 /// \param SS the scope specifier that will be set to the parsed 122 /// nested-name-specifier (or empty) 123 /// 124 /// \param ObjectType if this nested-name-specifier is being parsed following 125 /// the "." or "->" of a member access expression, this parameter provides the 126 /// type of the object whose members are being accessed. 127 /// 128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access 129 /// expression, indicates whether the original subexpressions had any errors. 130 /// When true, diagnostics for missing 'template' keyword will be supressed. 131 /// 132 /// \param EnteringContext whether we will be entering into the context of 133 /// the nested-name-specifier after parsing it. 134 /// 135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that 136 /// indicates whether this nested-name-specifier may be part of a 137 /// pseudo-destructor name. In this case, the flag will be set false 138 /// if we don't actually end up parsing a destructor name. Moreover, 139 /// if we do end up determining that we are parsing a destructor name, 140 /// the last component of the nested-name-specifier is not parsed as 141 /// part of the scope specifier. 142 /// 143 /// \param IsTypename If \c true, this nested-name-specifier is known to be 144 /// part of a type name. This is used to improve error recovery. 145 /// 146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be 147 /// filled in with the leading identifier in the last component of the 148 /// nested-name-specifier, if any. 149 /// 150 /// \param OnlyNamespace If true, only considers namespaces in lookup. 151 /// 152 /// 153 /// \returns true if there was an error parsing a scope specifier 154 bool Parser::ParseOptionalCXXScopeSpecifier( 155 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors, 156 bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename, 157 IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) { 158 assert(getLangOpts().CPlusPlus && 159 "Call sites of this function should be guarded by checking for C++"); 160 161 if (Tok.is(tok::annot_cxxscope)) { 162 assert(!LastII && "want last identifier but have already annotated scope"); 163 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope"); 164 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 165 Tok.getAnnotationRange(), 166 SS); 167 ConsumeAnnotationToken(); 168 return false; 169 } 170 171 // Has to happen before any "return false"s in this function. 172 bool CheckForDestructor = false; 173 if (MayBePseudoDestructor && *MayBePseudoDestructor) { 174 CheckForDestructor = true; 175 *MayBePseudoDestructor = false; 176 } 177 178 if (LastII) 179 *LastII = nullptr; 180 181 bool HasScopeSpecifier = false; 182 183 if (Tok.is(tok::coloncolon)) { 184 // ::new and ::delete aren't nested-name-specifiers. 185 tok::TokenKind NextKind = NextToken().getKind(); 186 if (NextKind == tok::kw_new || NextKind == tok::kw_delete) 187 return false; 188 189 if (NextKind == tok::l_brace) { 190 // It is invalid to have :: {, consume the scope qualifier and pretend 191 // like we never saw it. 192 Diag(ConsumeToken(), diag::err_expected) << tok::identifier; 193 } else { 194 // '::' - Global scope qualifier. 195 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS)) 196 return true; 197 198 HasScopeSpecifier = true; 199 } 200 } 201 202 if (Tok.is(tok::kw___super)) { 203 SourceLocation SuperLoc = ConsumeToken(); 204 if (!Tok.is(tok::coloncolon)) { 205 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super); 206 return true; 207 } 208 209 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS); 210 } 211 212 if (!HasScopeSpecifier && 213 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) { 214 DeclSpec DS(AttrFactory); 215 SourceLocation DeclLoc = Tok.getLocation(); 216 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 217 218 SourceLocation CCLoc; 219 // Work around a standard defect: 'decltype(auto)::' is not a 220 // nested-name-specifier. 221 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto || 222 !TryConsumeToken(tok::coloncolon, CCLoc)) { 223 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); 224 return false; 225 } 226 227 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) 228 SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); 229 230 HasScopeSpecifier = true; 231 } 232 233 // Preferred type might change when parsing qualifiers, we need the original. 234 auto SavedType = PreferredType; 235 while (true) { 236 if (HasScopeSpecifier) { 237 if (Tok.is(tok::code_completion)) { 238 cutOffParsing(); 239 // Code completion for a nested-name-specifier, where the code 240 // completion token follows the '::'. 241 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext, 242 InUsingDeclaration, ObjectType.get(), 243 SavedType.get(SS.getBeginLoc())); 244 // Include code completion token into the range of the scope otherwise 245 // when we try to annotate the scope tokens the dangling code completion 246 // token will cause assertion in 247 // Preprocessor::AnnotatePreviousCachedTokens. 248 SS.setEndLoc(Tok.getLocation()); 249 return true; 250 } 251 252 // C++ [basic.lookup.classref]p5: 253 // If the qualified-id has the form 254 // 255 // ::class-name-or-namespace-name::... 256 // 257 // the class-name-or-namespace-name is looked up in global scope as a 258 // class-name or namespace-name. 259 // 260 // To implement this, we clear out the object type as soon as we've 261 // seen a leading '::' or part of a nested-name-specifier. 262 ObjectType = nullptr; 263 } 264 265 // nested-name-specifier: 266 // nested-name-specifier 'template'[opt] simple-template-id '::' 267 268 // Parse the optional 'template' keyword, then make sure we have 269 // 'identifier <' after it. 270 if (Tok.is(tok::kw_template)) { 271 // If we don't have a scope specifier or an object type, this isn't a 272 // nested-name-specifier, since they aren't allowed to start with 273 // 'template'. 274 if (!HasScopeSpecifier && !ObjectType) 275 break; 276 277 TentativeParsingAction TPA(*this); 278 SourceLocation TemplateKWLoc = ConsumeToken(); 279 280 UnqualifiedId TemplateName; 281 if (Tok.is(tok::identifier)) { 282 // Consume the identifier. 283 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 284 ConsumeToken(); 285 } else if (Tok.is(tok::kw_operator)) { 286 // We don't need to actually parse the unqualified-id in this case, 287 // because a simple-template-id cannot start with 'operator', but 288 // go ahead and parse it anyway for consistency with the case where 289 // we already annotated the template-id. 290 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 291 TemplateName)) { 292 TPA.Commit(); 293 break; 294 } 295 296 if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId && 297 TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) { 298 Diag(TemplateName.getSourceRange().getBegin(), 299 diag::err_id_after_template_in_nested_name_spec) 300 << TemplateName.getSourceRange(); 301 TPA.Commit(); 302 break; 303 } 304 } else { 305 TPA.Revert(); 306 break; 307 } 308 309 // If the next token is not '<', we have a qualified-id that refers 310 // to a template name, such as T::template apply, but is not a 311 // template-id. 312 if (Tok.isNot(tok::less)) { 313 TPA.Revert(); 314 break; 315 } 316 317 // Commit to parsing the template-id. 318 TPA.Commit(); 319 TemplateTy Template; 320 TemplateNameKind TNK = Actions.ActOnTemplateName( 321 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType, 322 EnteringContext, Template, /*AllowInjectedClassName*/ true); 323 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, 324 TemplateName, false)) 325 return true; 326 327 continue; 328 } 329 330 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { 331 // We have 332 // 333 // template-id '::' 334 // 335 // So we need to check whether the template-id is a simple-template-id of 336 // the right kind (it should name a type or be dependent), and then 337 // convert it into a type within the nested-name-specifier. 338 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 339 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 340 *MayBePseudoDestructor = true; 341 return false; 342 } 343 344 if (LastII) 345 *LastII = TemplateId->Name; 346 347 // Consume the template-id token. 348 ConsumeAnnotationToken(); 349 350 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); 351 SourceLocation CCLoc = ConsumeToken(); 352 353 HasScopeSpecifier = true; 354 355 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 356 TemplateId->NumArgs); 357 358 if (TemplateId->isInvalid() || 359 Actions.ActOnCXXNestedNameSpecifier(getCurScope(), 360 SS, 361 TemplateId->TemplateKWLoc, 362 TemplateId->Template, 363 TemplateId->TemplateNameLoc, 364 TemplateId->LAngleLoc, 365 TemplateArgsPtr, 366 TemplateId->RAngleLoc, 367 CCLoc, 368 EnteringContext)) { 369 SourceLocation StartLoc 370 = SS.getBeginLoc().isValid()? SS.getBeginLoc() 371 : TemplateId->TemplateNameLoc; 372 SS.SetInvalid(SourceRange(StartLoc, CCLoc)); 373 } 374 375 continue; 376 } 377 378 // The rest of the nested-name-specifier possibilities start with 379 // tok::identifier. 380 if (Tok.isNot(tok::identifier)) 381 break; 382 383 IdentifierInfo &II = *Tok.getIdentifierInfo(); 384 385 // nested-name-specifier: 386 // type-name '::' 387 // namespace-name '::' 388 // nested-name-specifier identifier '::' 389 Token Next = NextToken(); 390 Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(), 391 ObjectType); 392 393 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover 394 // and emit a fixit hint for it. 395 if (Next.is(tok::colon) && !ColonIsSacred) { 396 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo, 397 EnteringContext) && 398 // If the token after the colon isn't an identifier, it's still an 399 // error, but they probably meant something else strange so don't 400 // recover like this. 401 PP.LookAhead(1).is(tok::identifier)) { 402 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec) 403 << FixItHint::CreateReplacement(Next.getLocation(), "::"); 404 // Recover as if the user wrote '::'. 405 Next.setKind(tok::coloncolon); 406 } 407 } 408 409 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) { 410 // It is invalid to have :: {, consume the scope qualifier and pretend 411 // like we never saw it. 412 Token Identifier = Tok; // Stash away the identifier. 413 ConsumeToken(); // Eat the identifier, current token is now '::'. 414 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected) 415 << tok::identifier; 416 UnconsumeToken(Identifier); // Stick the identifier back. 417 Next = NextToken(); // Point Next at the '{' token. 418 } 419 420 if (Next.is(tok::coloncolon)) { 421 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 422 *MayBePseudoDestructor = true; 423 return false; 424 } 425 426 if (ColonIsSacred) { 427 const Token &Next2 = GetLookAheadToken(2); 428 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) || 429 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) { 430 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec) 431 << Next2.getName() 432 << FixItHint::CreateReplacement(Next.getLocation(), ":"); 433 Token ColonColon; 434 PP.Lex(ColonColon); 435 ColonColon.setKind(tok::colon); 436 PP.EnterToken(ColonColon, /*IsReinject*/ true); 437 break; 438 } 439 } 440 441 if (LastII) 442 *LastII = &II; 443 444 // We have an identifier followed by a '::'. Lookup this name 445 // as the name in a nested-name-specifier. 446 Token Identifier = Tok; 447 SourceLocation IdLoc = ConsumeToken(); 448 assert(Tok.isOneOf(tok::coloncolon, tok::colon) && 449 "NextToken() not working properly!"); 450 Token ColonColon = Tok; 451 SourceLocation CCLoc = ConsumeToken(); 452 453 bool IsCorrectedToColon = false; 454 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr; 455 if (Actions.ActOnCXXNestedNameSpecifier( 456 getCurScope(), IdInfo, EnteringContext, SS, false, 457 CorrectionFlagPtr, OnlyNamespace)) { 458 // Identifier is not recognized as a nested name, but we can have 459 // mistyped '::' instead of ':'. 460 if (CorrectionFlagPtr && IsCorrectedToColon) { 461 ColonColon.setKind(tok::colon); 462 PP.EnterToken(Tok, /*IsReinject*/ true); 463 PP.EnterToken(ColonColon, /*IsReinject*/ true); 464 Tok = Identifier; 465 break; 466 } 467 SS.SetInvalid(SourceRange(IdLoc, CCLoc)); 468 } 469 HasScopeSpecifier = true; 470 continue; 471 } 472 473 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); 474 475 // nested-name-specifier: 476 // type-name '<' 477 if (Next.is(tok::less)) { 478 479 TemplateTy Template; 480 UnqualifiedId TemplateName; 481 TemplateName.setIdentifier(&II, Tok.getLocation()); 482 bool MemberOfUnknownSpecialization; 483 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 484 /*hasTemplateKeyword=*/false, 485 TemplateName, 486 ObjectType, 487 EnteringContext, 488 Template, 489 MemberOfUnknownSpecialization)) { 490 // If lookup didn't find anything, we treat the name as a template-name 491 // anyway. C++20 requires this, and in prior language modes it improves 492 // error recovery. But before we commit to this, check that we actually 493 // have something that looks like a template-argument-list next. 494 if (!IsTypename && TNK == TNK_Undeclared_template && 495 isTemplateArgumentList(1) == TPResult::False) 496 break; 497 498 // We have found a template name, so annotate this token 499 // with a template-id annotation. We do not permit the 500 // template-id to be translated into a type annotation, 501 // because some clients (e.g., the parsing of class template 502 // specializations) still want to see the original template-id 503 // token, and it might not be a type at all (e.g. a concept name in a 504 // type-constraint). 505 ConsumeToken(); 506 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 507 TemplateName, false)) 508 return true; 509 continue; 510 } 511 512 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 513 (IsTypename || isTemplateArgumentList(1) == TPResult::True)) { 514 // If we had errors before, ObjectType can be dependent even without any 515 // templates. Do not report missing template keyword in that case. 516 if (!ObjectHadErrors) { 517 // We have something like t::getAs<T>, where getAs is a 518 // member of an unknown specialization. However, this will only 519 // parse correctly as a template, so suggest the keyword 'template' 520 // before 'getAs' and treat this as a dependent template name. 521 unsigned DiagID = diag::err_missing_dependent_template_keyword; 522 if (getLangOpts().MicrosoftExt) 523 DiagID = diag::warn_missing_dependent_template_keyword; 524 525 Diag(Tok.getLocation(), DiagID) 526 << II.getName() 527 << FixItHint::CreateInsertion(Tok.getLocation(), "template "); 528 } 529 530 SourceLocation TemplateNameLoc = ConsumeToken(); 531 532 TemplateNameKind TNK = Actions.ActOnTemplateName( 533 getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType, 534 EnteringContext, Template, /*AllowInjectedClassName*/ true); 535 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 536 TemplateName, false)) 537 return true; 538 539 continue; 540 } 541 } 542 543 // We don't have any tokens that form the beginning of a 544 // nested-name-specifier, so we're done. 545 break; 546 } 547 548 // Even if we didn't see any pieces of a nested-name-specifier, we 549 // still check whether there is a tilde in this position, which 550 // indicates a potential pseudo-destructor. 551 if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde)) 552 *MayBePseudoDestructor = true; 553 554 return false; 555 } 556 557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, 558 bool isAddressOfOperand, 559 Token &Replacement) { 560 ExprResult E; 561 562 // We may have already annotated this id-expression. 563 switch (Tok.getKind()) { 564 case tok::annot_non_type: { 565 NamedDecl *ND = getNonTypeAnnotation(Tok); 566 SourceLocation Loc = ConsumeAnnotationToken(); 567 E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok); 568 break; 569 } 570 571 case tok::annot_non_type_dependent: { 572 IdentifierInfo *II = getIdentifierAnnotation(Tok); 573 SourceLocation Loc = ConsumeAnnotationToken(); 574 575 // This is only the direct operand of an & operator if it is not 576 // followed by a postfix-expression suffix. 577 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 578 isAddressOfOperand = false; 579 580 E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc, 581 isAddressOfOperand); 582 break; 583 } 584 585 case tok::annot_non_type_undeclared: { 586 assert(SS.isEmpty() && 587 "undeclared non-type annotation should be unqualified"); 588 IdentifierInfo *II = getIdentifierAnnotation(Tok); 589 SourceLocation Loc = ConsumeAnnotationToken(); 590 E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc); 591 break; 592 } 593 594 default: 595 SourceLocation TemplateKWLoc; 596 UnqualifiedId Name; 597 if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr, 598 /*ObjectHadErrors=*/false, 599 /*EnteringContext=*/false, 600 /*AllowDestructorName=*/false, 601 /*AllowConstructorName=*/false, 602 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) 603 return ExprError(); 604 605 // This is only the direct operand of an & operator if it is not 606 // followed by a postfix-expression suffix. 607 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 608 isAddressOfOperand = false; 609 610 E = Actions.ActOnIdExpression( 611 getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren), 612 isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false, 613 &Replacement); 614 break; 615 } 616 617 if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less)) 618 checkPotentialAngleBracket(E); 619 return E; 620 } 621 622 /// ParseCXXIdExpression - Handle id-expression. 623 /// 624 /// id-expression: 625 /// unqualified-id 626 /// qualified-id 627 /// 628 /// qualified-id: 629 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 630 /// '::' identifier 631 /// '::' operator-function-id 632 /// '::' template-id 633 /// 634 /// NOTE: The standard specifies that, for qualified-id, the parser does not 635 /// expect: 636 /// 637 /// '::' conversion-function-id 638 /// '::' '~' class-name 639 /// 640 /// This may cause a slight inconsistency on diagnostics: 641 /// 642 /// class C {}; 643 /// namespace A {} 644 /// void f() { 645 /// :: A :: ~ C(); // Some Sema error about using destructor with a 646 /// // namespace. 647 /// :: ~ C(); // Some Parser error like 'unexpected ~'. 648 /// } 649 /// 650 /// We simplify the parser a bit and make it work like: 651 /// 652 /// qualified-id: 653 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 654 /// '::' unqualified-id 655 /// 656 /// That way Sema can handle and report similar errors for namespaces and the 657 /// global scope. 658 /// 659 /// The isAddressOfOperand parameter indicates that this id-expression is a 660 /// direct operand of the address-of operator. This is, besides member contexts, 661 /// the only place where a qualified-id naming a non-static class member may 662 /// appear. 663 /// 664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { 665 // qualified-id: 666 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 667 // '::' unqualified-id 668 // 669 CXXScopeSpec SS; 670 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 671 /*ObjectHasErrors=*/false, 672 /*EnteringContext=*/false); 673 674 Token Replacement; 675 ExprResult Result = 676 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 677 if (Result.isUnset()) { 678 // If the ExprResult is valid but null, then typo correction suggested a 679 // keyword replacement that needs to be reparsed. 680 UnconsumeToken(Replacement); 681 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 682 } 683 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement " 684 "for a previous keyword suggestion"); 685 return Result; 686 } 687 688 /// ParseLambdaExpression - Parse a C++11 lambda expression. 689 /// 690 /// lambda-expression: 691 /// lambda-introducer lambda-declarator compound-statement 692 /// lambda-introducer '<' template-parameter-list '>' 693 /// requires-clause[opt] lambda-declarator compound-statement 694 /// 695 /// lambda-introducer: 696 /// '[' lambda-capture[opt] ']' 697 /// 698 /// lambda-capture: 699 /// capture-default 700 /// capture-list 701 /// capture-default ',' capture-list 702 /// 703 /// capture-default: 704 /// '&' 705 /// '=' 706 /// 707 /// capture-list: 708 /// capture 709 /// capture-list ',' capture 710 /// 711 /// capture: 712 /// simple-capture 713 /// init-capture [C++1y] 714 /// 715 /// simple-capture: 716 /// identifier 717 /// '&' identifier 718 /// 'this' 719 /// 720 /// init-capture: [C++1y] 721 /// identifier initializer 722 /// '&' identifier initializer 723 /// 724 /// lambda-declarator: 725 /// lambda-specifiers [C++2b] 726 /// '(' parameter-declaration-clause ')' lambda-specifiers 727 /// requires-clause[opt] 728 /// 729 /// lambda-specifiers: 730 /// decl-specifier-seq[opt] noexcept-specifier[opt] 731 /// attribute-specifier-seq[opt] trailing-return-type[opt] 732 /// 733 ExprResult Parser::ParseLambdaExpression() { 734 // Parse lambda-introducer. 735 LambdaIntroducer Intro; 736 if (ParseLambdaIntroducer(Intro)) { 737 SkipUntil(tok::r_square, StopAtSemi); 738 SkipUntil(tok::l_brace, StopAtSemi); 739 SkipUntil(tok::r_brace, StopAtSemi); 740 return ExprError(); 741 } 742 743 return ParseLambdaExpressionAfterIntroducer(Intro); 744 } 745 746 /// Use lookahead and potentially tentative parsing to determine if we are 747 /// looking at a C++11 lambda expression, and parse it if we are. 748 /// 749 /// If we are not looking at a lambda expression, returns ExprError(). 750 ExprResult Parser::TryParseLambdaExpression() { 751 assert(getLangOpts().CPlusPlus11 752 && Tok.is(tok::l_square) 753 && "Not at the start of a possible lambda expression."); 754 755 const Token Next = NextToken(); 756 if (Next.is(tok::eof)) // Nothing else to lookup here... 757 return ExprEmpty(); 758 759 const Token After = GetLookAheadToken(2); 760 // If lookahead indicates this is a lambda... 761 if (Next.is(tok::r_square) || // [] 762 Next.is(tok::equal) || // [= 763 (Next.is(tok::amp) && // [&] or [&, 764 After.isOneOf(tok::r_square, tok::comma)) || 765 (Next.is(tok::identifier) && // [identifier] 766 After.is(tok::r_square)) || 767 Next.is(tok::ellipsis)) { // [... 768 return ParseLambdaExpression(); 769 } 770 771 // If lookahead indicates an ObjC message send... 772 // [identifier identifier 773 if (Next.is(tok::identifier) && After.is(tok::identifier)) 774 return ExprEmpty(); 775 776 // Here, we're stuck: lambda introducers and Objective-C message sends are 777 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a 778 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of 779 // writing two routines to parse a lambda introducer, just try to parse 780 // a lambda introducer first, and fall back if that fails. 781 LambdaIntroducer Intro; 782 { 783 TentativeParsingAction TPA(*this); 784 LambdaIntroducerTentativeParse Tentative; 785 if (ParseLambdaIntroducer(Intro, &Tentative)) { 786 TPA.Commit(); 787 return ExprError(); 788 } 789 790 switch (Tentative) { 791 case LambdaIntroducerTentativeParse::Success: 792 TPA.Commit(); 793 break; 794 795 case LambdaIntroducerTentativeParse::Incomplete: 796 // Didn't fully parse the lambda-introducer, try again with a 797 // non-tentative parse. 798 TPA.Revert(); 799 Intro = LambdaIntroducer(); 800 if (ParseLambdaIntroducer(Intro)) 801 return ExprError(); 802 break; 803 804 case LambdaIntroducerTentativeParse::MessageSend: 805 case LambdaIntroducerTentativeParse::Invalid: 806 // Not a lambda-introducer, might be a message send. 807 TPA.Revert(); 808 return ExprEmpty(); 809 } 810 } 811 812 return ParseLambdaExpressionAfterIntroducer(Intro); 813 } 814 815 /// Parse a lambda introducer. 816 /// \param Intro A LambdaIntroducer filled in with information about the 817 /// contents of the lambda-introducer. 818 /// \param Tentative If non-null, we are disambiguating between a 819 /// lambda-introducer and some other construct. In this mode, we do not 820 /// produce any diagnostics or take any other irreversible action unless 821 /// we're sure that this is a lambda-expression. 822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and 823 /// the caller should bail out / recover. 824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, 825 LambdaIntroducerTentativeParse *Tentative) { 826 if (Tentative) 827 *Tentative = LambdaIntroducerTentativeParse::Success; 828 829 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); 830 BalancedDelimiterTracker T(*this, tok::l_square); 831 T.consumeOpen(); 832 833 Intro.Range.setBegin(T.getOpenLocation()); 834 835 bool First = true; 836 837 // Produce a diagnostic if we're not tentatively parsing; otherwise track 838 // that our parse has failed. 839 auto Invalid = [&](llvm::function_ref<void()> Action) { 840 if (Tentative) { 841 *Tentative = LambdaIntroducerTentativeParse::Invalid; 842 return false; 843 } 844 Action(); 845 return true; 846 }; 847 848 // Perform some irreversible action if this is a non-tentative parse; 849 // otherwise note that our actions were incomplete. 850 auto NonTentativeAction = [&](llvm::function_ref<void()> Action) { 851 if (Tentative) 852 *Tentative = LambdaIntroducerTentativeParse::Incomplete; 853 else 854 Action(); 855 }; 856 857 // Parse capture-default. 858 if (Tok.is(tok::amp) && 859 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { 860 Intro.Default = LCD_ByRef; 861 Intro.DefaultLoc = ConsumeToken(); 862 First = false; 863 if (!Tok.getIdentifierInfo()) { 864 // This can only be a lambda; no need for tentative parsing any more. 865 // '[[and]]' can still be an attribute, though. 866 Tentative = nullptr; 867 } 868 } else if (Tok.is(tok::equal)) { 869 Intro.Default = LCD_ByCopy; 870 Intro.DefaultLoc = ConsumeToken(); 871 First = false; 872 Tentative = nullptr; 873 } 874 875 while (Tok.isNot(tok::r_square)) { 876 if (!First) { 877 if (Tok.isNot(tok::comma)) { 878 // Provide a completion for a lambda introducer here. Except 879 // in Objective-C, where this is Almost Surely meant to be a message 880 // send. In that case, fail here and let the ObjC message 881 // expression parser perform the completion. 882 if (Tok.is(tok::code_completion) && 883 !(getLangOpts().ObjC && Tentative)) { 884 cutOffParsing(); 885 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 886 /*AfterAmpersand=*/false); 887 break; 888 } 889 890 return Invalid([&] { 891 Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare); 892 }); 893 } 894 ConsumeToken(); 895 } 896 897 if (Tok.is(tok::code_completion)) { 898 cutOffParsing(); 899 // If we're in Objective-C++ and we have a bare '[', then this is more 900 // likely to be a message receiver. 901 if (getLangOpts().ObjC && Tentative && First) 902 Actions.CodeCompleteObjCMessageReceiver(getCurScope()); 903 else 904 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 905 /*AfterAmpersand=*/false); 906 break; 907 } 908 909 First = false; 910 911 // Parse capture. 912 LambdaCaptureKind Kind = LCK_ByCopy; 913 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit; 914 SourceLocation Loc; 915 IdentifierInfo *Id = nullptr; 916 SourceLocation EllipsisLocs[4]; 917 ExprResult Init; 918 SourceLocation LocStart = Tok.getLocation(); 919 920 if (Tok.is(tok::star)) { 921 Loc = ConsumeToken(); 922 if (Tok.is(tok::kw_this)) { 923 ConsumeToken(); 924 Kind = LCK_StarThis; 925 } else { 926 return Invalid([&] { 927 Diag(Tok.getLocation(), diag::err_expected_star_this_capture); 928 }); 929 } 930 } else if (Tok.is(tok::kw_this)) { 931 Kind = LCK_This; 932 Loc = ConsumeToken(); 933 } else if (Tok.isOneOf(tok::amp, tok::equal) && 934 NextToken().isOneOf(tok::comma, tok::r_square) && 935 Intro.Default == LCD_None) { 936 // We have a lone "&" or "=" which is either a misplaced capture-default 937 // or the start of a capture (in the "&" case) with the rest of the 938 // capture missing. Both are an error but a misplaced capture-default 939 // is more likely if we don't already have a capture default. 940 return Invalid( 941 [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); }); 942 } else { 943 TryConsumeToken(tok::ellipsis, EllipsisLocs[0]); 944 945 if (Tok.is(tok::amp)) { 946 Kind = LCK_ByRef; 947 ConsumeToken(); 948 949 if (Tok.is(tok::code_completion)) { 950 cutOffParsing(); 951 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 952 /*AfterAmpersand=*/true); 953 break; 954 } 955 } 956 957 TryConsumeToken(tok::ellipsis, EllipsisLocs[1]); 958 959 if (Tok.is(tok::identifier)) { 960 Id = Tok.getIdentifierInfo(); 961 Loc = ConsumeToken(); 962 } else if (Tok.is(tok::kw_this)) { 963 return Invalid([&] { 964 // FIXME: Suggest a fixit here. 965 Diag(Tok.getLocation(), diag::err_this_captured_by_reference); 966 }); 967 } else { 968 return Invalid([&] { 969 Diag(Tok.getLocation(), diag::err_expected_capture); 970 }); 971 } 972 973 TryConsumeToken(tok::ellipsis, EllipsisLocs[2]); 974 975 if (Tok.is(tok::l_paren)) { 976 BalancedDelimiterTracker Parens(*this, tok::l_paren); 977 Parens.consumeOpen(); 978 979 InitKind = LambdaCaptureInitKind::DirectInit; 980 981 ExprVector Exprs; 982 CommaLocsTy Commas; 983 if (Tentative) { 984 Parens.skipToEnd(); 985 *Tentative = LambdaIntroducerTentativeParse::Incomplete; 986 } else if (ParseExpressionList(Exprs, Commas)) { 987 Parens.skipToEnd(); 988 Init = ExprError(); 989 } else { 990 Parens.consumeClose(); 991 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), 992 Parens.getCloseLocation(), 993 Exprs); 994 } 995 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) { 996 // Each lambda init-capture forms its own full expression, which clears 997 // Actions.MaybeODRUseExprs. So create an expression evaluation context 998 // to save the necessary state, and restore it later. 999 EnterExpressionEvaluationContext EC( 1000 Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated); 1001 1002 if (TryConsumeToken(tok::equal)) 1003 InitKind = LambdaCaptureInitKind::CopyInit; 1004 else 1005 InitKind = LambdaCaptureInitKind::ListInit; 1006 1007 if (!Tentative) { 1008 Init = ParseInitializer(); 1009 } else if (Tok.is(tok::l_brace)) { 1010 BalancedDelimiterTracker Braces(*this, tok::l_brace); 1011 Braces.consumeOpen(); 1012 Braces.skipToEnd(); 1013 *Tentative = LambdaIntroducerTentativeParse::Incomplete; 1014 } else { 1015 // We're disambiguating this: 1016 // 1017 // [..., x = expr 1018 // 1019 // We need to find the end of the following expression in order to 1020 // determine whether this is an Obj-C message send's receiver, a 1021 // C99 designator, or a lambda init-capture. 1022 // 1023 // Parse the expression to find where it ends, and annotate it back 1024 // onto the tokens. We would have parsed this expression the same way 1025 // in either case: both the RHS of an init-capture and the RHS of an 1026 // assignment expression are parsed as an initializer-clause, and in 1027 // neither case can anything be added to the scope between the '[' and 1028 // here. 1029 // 1030 // FIXME: This is horrible. Adding a mechanism to skip an expression 1031 // would be much cleaner. 1032 // FIXME: If there is a ',' before the next ']' or ':', we can skip to 1033 // that instead. (And if we see a ':' with no matching '?', we can 1034 // classify this as an Obj-C message send.) 1035 SourceLocation StartLoc = Tok.getLocation(); 1036 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); 1037 Init = ParseInitializer(); 1038 if (!Init.isInvalid()) 1039 Init = Actions.CorrectDelayedTyposInExpr(Init.get()); 1040 1041 if (Tok.getLocation() != StartLoc) { 1042 // Back out the lexing of the token after the initializer. 1043 PP.RevertCachedTokens(1); 1044 1045 // Replace the consumed tokens with an appropriate annotation. 1046 Tok.setLocation(StartLoc); 1047 Tok.setKind(tok::annot_primary_expr); 1048 setExprAnnotation(Tok, Init); 1049 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); 1050 PP.AnnotateCachedTokens(Tok); 1051 1052 // Consume the annotated initializer. 1053 ConsumeAnnotationToken(); 1054 } 1055 } 1056 } 1057 1058 TryConsumeToken(tok::ellipsis, EllipsisLocs[3]); 1059 } 1060 1061 // Check if this is a message send before we act on a possible init-capture. 1062 if (Tentative && Tok.is(tok::identifier) && 1063 NextToken().isOneOf(tok::colon, tok::r_square)) { 1064 // This can only be a message send. We're done with disambiguation. 1065 *Tentative = LambdaIntroducerTentativeParse::MessageSend; 1066 return false; 1067 } 1068 1069 // Ensure that any ellipsis was in the right place. 1070 SourceLocation EllipsisLoc; 1071 if (llvm::any_of(EllipsisLocs, 1072 [](SourceLocation Loc) { return Loc.isValid(); })) { 1073 // The '...' should appear before the identifier in an init-capture, and 1074 // after the identifier otherwise. 1075 bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit; 1076 SourceLocation *ExpectedEllipsisLoc = 1077 !InitCapture ? &EllipsisLocs[2] : 1078 Kind == LCK_ByRef ? &EllipsisLocs[1] : 1079 &EllipsisLocs[0]; 1080 EllipsisLoc = *ExpectedEllipsisLoc; 1081 1082 unsigned DiagID = 0; 1083 if (EllipsisLoc.isInvalid()) { 1084 DiagID = diag::err_lambda_capture_misplaced_ellipsis; 1085 for (SourceLocation Loc : EllipsisLocs) { 1086 if (Loc.isValid()) 1087 EllipsisLoc = Loc; 1088 } 1089 } else { 1090 unsigned NumEllipses = std::accumulate( 1091 std::begin(EllipsisLocs), std::end(EllipsisLocs), 0, 1092 [](int N, SourceLocation Loc) { return N + Loc.isValid(); }); 1093 if (NumEllipses > 1) 1094 DiagID = diag::err_lambda_capture_multiple_ellipses; 1095 } 1096 if (DiagID) { 1097 NonTentativeAction([&] { 1098 // Point the diagnostic at the first misplaced ellipsis. 1099 SourceLocation DiagLoc; 1100 for (SourceLocation &Loc : EllipsisLocs) { 1101 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) { 1102 DiagLoc = Loc; 1103 break; 1104 } 1105 } 1106 assert(DiagLoc.isValid() && "no location for diagnostic"); 1107 1108 // Issue the diagnostic and produce fixits showing where the ellipsis 1109 // should have been written. 1110 auto &&D = Diag(DiagLoc, DiagID); 1111 if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) { 1112 SourceLocation ExpectedLoc = 1113 InitCapture ? Loc 1114 : Lexer::getLocForEndOfToken( 1115 Loc, 0, PP.getSourceManager(), getLangOpts()); 1116 D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "..."); 1117 } 1118 for (SourceLocation &Loc : EllipsisLocs) { 1119 if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) 1120 D << FixItHint::CreateRemoval(Loc); 1121 } 1122 }); 1123 } 1124 } 1125 1126 // Process the init-capture initializers now rather than delaying until we 1127 // form the lambda-expression so that they can be handled in the context 1128 // enclosing the lambda-expression, rather than in the context of the 1129 // lambda-expression itself. 1130 ParsedType InitCaptureType; 1131 if (Init.isUsable()) 1132 Init = Actions.CorrectDelayedTyposInExpr(Init.get()); 1133 if (Init.isUsable()) { 1134 NonTentativeAction([&] { 1135 // Get the pointer and store it in an lvalue, so we can use it as an 1136 // out argument. 1137 Expr *InitExpr = Init.get(); 1138 // This performs any lvalue-to-rvalue conversions if necessary, which 1139 // can affect what gets captured in the containing decl-context. 1140 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization( 1141 Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr); 1142 Init = InitExpr; 1143 }); 1144 } 1145 1146 SourceLocation LocEnd = PrevTokLocation; 1147 1148 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init, 1149 InitCaptureType, SourceRange(LocStart, LocEnd)); 1150 } 1151 1152 T.consumeClose(); 1153 Intro.Range.setEnd(T.getCloseLocation()); 1154 return false; 1155 } 1156 1157 static void tryConsumeLambdaSpecifierToken(Parser &P, 1158 SourceLocation &MutableLoc, 1159 SourceLocation &ConstexprLoc, 1160 SourceLocation &ConstevalLoc, 1161 SourceLocation &DeclEndLoc) { 1162 assert(MutableLoc.isInvalid()); 1163 assert(ConstexprLoc.isInvalid()); 1164 // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc 1165 // to the final of those locations. Emit an error if we have multiple 1166 // copies of those keywords and recover. 1167 1168 while (true) { 1169 switch (P.getCurToken().getKind()) { 1170 case tok::kw_mutable: { 1171 if (MutableLoc.isValid()) { 1172 P.Diag(P.getCurToken().getLocation(), 1173 diag::err_lambda_decl_specifier_repeated) 1174 << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation()); 1175 } 1176 MutableLoc = P.ConsumeToken(); 1177 DeclEndLoc = MutableLoc; 1178 break /*switch*/; 1179 } 1180 case tok::kw_constexpr: 1181 if (ConstexprLoc.isValid()) { 1182 P.Diag(P.getCurToken().getLocation(), 1183 diag::err_lambda_decl_specifier_repeated) 1184 << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation()); 1185 } 1186 ConstexprLoc = P.ConsumeToken(); 1187 DeclEndLoc = ConstexprLoc; 1188 break /*switch*/; 1189 case tok::kw_consteval: 1190 if (ConstevalLoc.isValid()) { 1191 P.Diag(P.getCurToken().getLocation(), 1192 diag::err_lambda_decl_specifier_repeated) 1193 << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation()); 1194 } 1195 ConstevalLoc = P.ConsumeToken(); 1196 DeclEndLoc = ConstevalLoc; 1197 break /*switch*/; 1198 default: 1199 return; 1200 } 1201 } 1202 } 1203 1204 static void 1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc, 1206 DeclSpec &DS) { 1207 if (ConstexprLoc.isValid()) { 1208 P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17 1209 ? diag::ext_constexpr_on_lambda_cxx17 1210 : diag::warn_cxx14_compat_constexpr_on_lambda); 1211 const char *PrevSpec = nullptr; 1212 unsigned DiagID = 0; 1213 DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec, 1214 DiagID); 1215 assert(PrevSpec == nullptr && DiagID == 0 && 1216 "Constexpr cannot have been set previously!"); 1217 } 1218 } 1219 1220 static void addConstevalToLambdaDeclSpecifier(Parser &P, 1221 SourceLocation ConstevalLoc, 1222 DeclSpec &DS) { 1223 if (ConstevalLoc.isValid()) { 1224 P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval); 1225 const char *PrevSpec = nullptr; 1226 unsigned DiagID = 0; 1227 DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec, 1228 DiagID); 1229 if (DiagID != 0) 1230 P.Diag(ConstevalLoc, DiagID) << PrevSpec; 1231 } 1232 } 1233 1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda 1235 /// expression. 1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer( 1237 LambdaIntroducer &Intro) { 1238 SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); 1239 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); 1240 1241 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, 1242 "lambda expression parsing"); 1243 1244 1245 1246 // FIXME: Call into Actions to add any init-capture declarations to the 1247 // scope while parsing the lambda-declarator and compound-statement. 1248 1249 // Parse lambda-declarator[opt]. 1250 DeclSpec DS(AttrFactory); 1251 Declarator D(DS, DeclaratorContext::LambdaExpr); 1252 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1253 Actions.PushLambdaScope(); 1254 1255 ParsedAttributes Attr(AttrFactory); 1256 if (getLangOpts().CUDA) { 1257 // In CUDA code, GNU attributes are allowed to appear immediately after the 1258 // "[...]", even if there is no "(...)" before the lambda body. 1259 MaybeParseGNUAttributes(D); 1260 } 1261 1262 // Helper to emit a warning if we see a CUDA host/device/global attribute 1263 // after '(...)'. nvcc doesn't accept this. 1264 auto WarnIfHasCUDATargetAttr = [&] { 1265 if (getLangOpts().CUDA) 1266 for (const ParsedAttr &A : Attr) 1267 if (A.getKind() == ParsedAttr::AT_CUDADevice || 1268 A.getKind() == ParsedAttr::AT_CUDAHost || 1269 A.getKind() == ParsedAttr::AT_CUDAGlobal) 1270 Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position) 1271 << A.getAttrName()->getName(); 1272 }; 1273 1274 MultiParseScope TemplateParamScope(*this); 1275 if (Tok.is(tok::less)) { 1276 Diag(Tok, getLangOpts().CPlusPlus20 1277 ? diag::warn_cxx17_compat_lambda_template_parameter_list 1278 : diag::ext_lambda_template_parameter_list); 1279 1280 SmallVector<NamedDecl*, 4> TemplateParams; 1281 SourceLocation LAngleLoc, RAngleLoc; 1282 if (ParseTemplateParameters(TemplateParamScope, 1283 CurTemplateDepthTracker.getDepth(), 1284 TemplateParams, LAngleLoc, RAngleLoc)) { 1285 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1286 return ExprError(); 1287 } 1288 1289 if (TemplateParams.empty()) { 1290 Diag(RAngleLoc, 1291 diag::err_lambda_template_parameter_list_empty); 1292 } else { 1293 ExprResult RequiresClause; 1294 if (TryConsumeToken(tok::kw_requires)) { 1295 RequiresClause = 1296 Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression( 1297 /*IsTrailingRequiresClause=*/false)); 1298 if (RequiresClause.isInvalid()) 1299 SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch); 1300 } 1301 1302 Actions.ActOnLambdaExplicitTemplateParameterList( 1303 LAngleLoc, TemplateParams, RAngleLoc, RequiresClause); 1304 ++CurTemplateDepthTracker; 1305 } 1306 } 1307 1308 // Implement WG21 P2173, which allows attributes immediately before the 1309 // lambda declarator and applies them to the corresponding function operator 1310 // or operator template declaration. We accept this as a conforming extension 1311 // in all language modes that support lambdas. 1312 if (isCXX11AttributeSpecifier()) { 1313 Diag(Tok, getLangOpts().CPlusPlus2b 1314 ? diag::warn_cxx20_compat_decl_attrs_on_lambda 1315 : diag::ext_decl_attrs_on_lambda); 1316 MaybeParseCXX11Attributes(D); 1317 } 1318 1319 TypeResult TrailingReturnType; 1320 SourceLocation TrailingReturnTypeLoc; 1321 1322 auto ParseLambdaSpecifiers = 1323 [&](SourceLocation LParenLoc, SourceLocation RParenLoc, 1324 MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo, 1325 SourceLocation EllipsisLoc) { 1326 SourceLocation DeclEndLoc = RParenLoc; 1327 1328 // GNU-style attributes must be parsed before the mutable specifier to 1329 // be compatible with GCC. MSVC-style attributes must be parsed before 1330 // the mutable specifier to be compatible with MSVC. 1331 MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr); 1332 1333 // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update 1334 // the DeclEndLoc. 1335 SourceLocation MutableLoc; 1336 SourceLocation ConstexprLoc; 1337 SourceLocation ConstevalLoc; 1338 tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc, 1339 ConstevalLoc, DeclEndLoc); 1340 1341 addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS); 1342 addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS); 1343 // Parse exception-specification[opt]. 1344 ExceptionSpecificationType ESpecType = EST_None; 1345 SourceRange ESpecRange; 1346 SmallVector<ParsedType, 2> DynamicExceptions; 1347 SmallVector<SourceRange, 2> DynamicExceptionRanges; 1348 ExprResult NoexceptExpr; 1349 CachedTokens *ExceptionSpecTokens; 1350 ESpecType = tryParseExceptionSpecification( 1351 /*Delayed=*/false, ESpecRange, DynamicExceptions, 1352 DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens); 1353 1354 if (ESpecType != EST_None) 1355 DeclEndLoc = ESpecRange.getEnd(); 1356 1357 // Parse attribute-specifier[opt]. 1358 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1359 1360 // Parse OpenCL addr space attribute. 1361 if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local, 1362 tok::kw___constant, tok::kw___generic)) { 1363 ParseOpenCLQualifiers(DS.getAttributes()); 1364 ConsumeToken(); 1365 } 1366 1367 SourceLocation FunLocalRangeEnd = DeclEndLoc; 1368 1369 // Parse trailing-return-type[opt]. 1370 if (Tok.is(tok::arrow)) { 1371 FunLocalRangeEnd = Tok.getLocation(); 1372 SourceRange Range; 1373 TrailingReturnType = ParseTrailingReturnType( 1374 Range, /*MayBeFollowedByDirectInit*/ false); 1375 TrailingReturnTypeLoc = Range.getBegin(); 1376 if (Range.getEnd().isValid()) 1377 DeclEndLoc = Range.getEnd(); 1378 } 1379 1380 SourceLocation NoLoc; 1381 D.AddTypeInfo( 1382 DeclaratorChunk::getFunction( 1383 /*HasProto=*/true, 1384 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(), 1385 ParamInfo.size(), EllipsisLoc, RParenLoc, 1386 /*RefQualifierIsLvalueRef=*/true, 1387 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange, 1388 DynamicExceptions.data(), DynamicExceptionRanges.data(), 1389 DynamicExceptions.size(), 1390 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, 1391 /*ExceptionSpecTokens*/ nullptr, 1392 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D, 1393 TrailingReturnType, TrailingReturnTypeLoc, &DS), 1394 std::move(Attr), DeclEndLoc); 1395 }; 1396 1397 if (Tok.is(tok::l_paren)) { 1398 ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope | 1399 Scope::FunctionDeclarationScope | 1400 Scope::DeclScope); 1401 1402 BalancedDelimiterTracker T(*this, tok::l_paren); 1403 T.consumeOpen(); 1404 SourceLocation LParenLoc = T.getOpenLocation(); 1405 1406 // Parse parameter-declaration-clause. 1407 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 1408 SourceLocation EllipsisLoc; 1409 1410 if (Tok.isNot(tok::r_paren)) { 1411 Actions.RecordParsingTemplateParameterDepth( 1412 CurTemplateDepthTracker.getOriginalDepth()); 1413 1414 ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo, 1415 EllipsisLoc); 1416 // For a generic lambda, each 'auto' within the parameter declaration 1417 // clause creates a template type parameter, so increment the depth. 1418 // If we've parsed any explicit template parameters, then the depth will 1419 // have already been incremented. So we make sure that at most a single 1420 // depth level is added. 1421 if (Actions.getCurGenericLambda()) 1422 CurTemplateDepthTracker.setAddedDepth(1); 1423 } 1424 1425 T.consumeClose(); 1426 1427 // Parse lambda-specifiers. 1428 ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(), 1429 ParamInfo, EllipsisLoc); 1430 1431 // Parse requires-clause[opt]. 1432 if (Tok.is(tok::kw_requires)) 1433 ParseTrailingRequiresClause(D); 1434 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute, 1435 tok::kw_constexpr, tok::kw_consteval, 1436 tok::kw___private, tok::kw___global, tok::kw___local, 1437 tok::kw___constant, tok::kw___generic, 1438 tok::kw_requires, tok::kw_noexcept) || 1439 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) { 1440 if (!getLangOpts().CPlusPlus2b) 1441 // It's common to forget that one needs '()' before 'mutable', an 1442 // attribute specifier, the result type, or the requires clause. Deal with 1443 // this. 1444 Diag(Tok, diag::ext_lambda_missing_parens) 1445 << FixItHint::CreateInsertion(Tok.getLocation(), "() "); 1446 1447 SourceLocation NoLoc; 1448 // Parse lambda-specifiers. 1449 std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo; 1450 ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc, 1451 EmptyParamInfo, /*EllipsisLoc=*/NoLoc); 1452 } 1453 1454 WarnIfHasCUDATargetAttr(); 1455 1456 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using 1457 // it. 1458 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope | 1459 Scope::CompoundStmtScope; 1460 ParseScope BodyScope(this, ScopeFlags); 1461 1462 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); 1463 1464 // Parse compound-statement. 1465 if (!Tok.is(tok::l_brace)) { 1466 Diag(Tok, diag::err_expected_lambda_body); 1467 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1468 return ExprError(); 1469 } 1470 1471 StmtResult Stmt(ParseCompoundStatementBody()); 1472 BodyScope.Exit(); 1473 TemplateParamScope.Exit(); 1474 1475 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid()) 1476 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope()); 1477 1478 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1479 return ExprError(); 1480 } 1481 1482 /// ParseCXXCasts - This handles the various ways to cast expressions to another 1483 /// type. 1484 /// 1485 /// postfix-expression: [C++ 5.2p1] 1486 /// 'dynamic_cast' '<' type-name '>' '(' expression ')' 1487 /// 'static_cast' '<' type-name '>' '(' expression ')' 1488 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' 1489 /// 'const_cast' '<' type-name '>' '(' expression ')' 1490 /// 1491 /// C++ for OpenCL s2.3.1 adds: 1492 /// 'addrspace_cast' '<' type-name '>' '(' expression ')' 1493 ExprResult Parser::ParseCXXCasts() { 1494 tok::TokenKind Kind = Tok.getKind(); 1495 const char *CastName = nullptr; // For error messages 1496 1497 switch (Kind) { 1498 default: llvm_unreachable("Unknown C++ cast!"); 1499 case tok::kw_addrspace_cast: CastName = "addrspace_cast"; break; 1500 case tok::kw_const_cast: CastName = "const_cast"; break; 1501 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; 1502 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; 1503 case tok::kw_static_cast: CastName = "static_cast"; break; 1504 } 1505 1506 SourceLocation OpLoc = ConsumeToken(); 1507 SourceLocation LAngleBracketLoc = Tok.getLocation(); 1508 1509 // Check for "<::" which is parsed as "[:". If found, fix token stream, 1510 // diagnose error, suggest fix, and recover parsing. 1511 if (Tok.is(tok::l_square) && Tok.getLength() == 2) { 1512 Token Next = NextToken(); 1513 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) 1514 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); 1515 } 1516 1517 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) 1518 return ExprError(); 1519 1520 // Parse the common declaration-specifiers piece. 1521 DeclSpec DS(AttrFactory); 1522 ParseSpecifierQualifierList(DS); 1523 1524 // Parse the abstract-declarator, if present. 1525 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 1526 ParseDeclarator(DeclaratorInfo); 1527 1528 SourceLocation RAngleBracketLoc = Tok.getLocation(); 1529 1530 if (ExpectAndConsume(tok::greater)) 1531 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less); 1532 1533 BalancedDelimiterTracker T(*this, tok::l_paren); 1534 1535 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) 1536 return ExprError(); 1537 1538 ExprResult Result = ParseExpression(); 1539 1540 // Match the ')'. 1541 T.consumeClose(); 1542 1543 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) 1544 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, 1545 LAngleBracketLoc, DeclaratorInfo, 1546 RAngleBracketLoc, 1547 T.getOpenLocation(), Result.get(), 1548 T.getCloseLocation()); 1549 1550 return Result; 1551 } 1552 1553 /// ParseCXXTypeid - This handles the C++ typeid expression. 1554 /// 1555 /// postfix-expression: [C++ 5.2p1] 1556 /// 'typeid' '(' expression ')' 1557 /// 'typeid' '(' type-id ')' 1558 /// 1559 ExprResult Parser::ParseCXXTypeid() { 1560 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); 1561 1562 SourceLocation OpLoc = ConsumeToken(); 1563 SourceLocation LParenLoc, RParenLoc; 1564 BalancedDelimiterTracker T(*this, tok::l_paren); 1565 1566 // typeid expressions are always parenthesized. 1567 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) 1568 return ExprError(); 1569 LParenLoc = T.getOpenLocation(); 1570 1571 ExprResult Result; 1572 1573 // C++0x [expr.typeid]p3: 1574 // When typeid is applied to an expression other than an lvalue of a 1575 // polymorphic class type [...] The expression is an unevaluated 1576 // operand (Clause 5). 1577 // 1578 // Note that we can't tell whether the expression is an lvalue of a 1579 // polymorphic class type until after we've parsed the expression; we 1580 // speculatively assume the subexpression is unevaluated, and fix it up 1581 // later. 1582 // 1583 // We enter the unevaluated context before trying to determine whether we 1584 // have a type-id, because the tentative parse logic will try to resolve 1585 // names, and must treat them as unevaluated. 1586 EnterExpressionEvaluationContext Unevaluated( 1587 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 1588 Sema::ReuseLambdaContextDecl); 1589 1590 if (isTypeIdInParens()) { 1591 TypeResult Ty = ParseTypeName(); 1592 1593 // Match the ')'. 1594 T.consumeClose(); 1595 RParenLoc = T.getCloseLocation(); 1596 if (Ty.isInvalid() || RParenLoc.isInvalid()) 1597 return ExprError(); 1598 1599 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, 1600 Ty.get().getAsOpaquePtr(), RParenLoc); 1601 } else { 1602 Result = ParseExpression(); 1603 1604 // Match the ')'. 1605 if (Result.isInvalid()) 1606 SkipUntil(tok::r_paren, StopAtSemi); 1607 else { 1608 T.consumeClose(); 1609 RParenLoc = T.getCloseLocation(); 1610 if (RParenLoc.isInvalid()) 1611 return ExprError(); 1612 1613 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, 1614 Result.get(), RParenLoc); 1615 } 1616 } 1617 1618 return Result; 1619 } 1620 1621 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. 1622 /// 1623 /// '__uuidof' '(' expression ')' 1624 /// '__uuidof' '(' type-id ')' 1625 /// 1626 ExprResult Parser::ParseCXXUuidof() { 1627 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); 1628 1629 SourceLocation OpLoc = ConsumeToken(); 1630 BalancedDelimiterTracker T(*this, tok::l_paren); 1631 1632 // __uuidof expressions are always parenthesized. 1633 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) 1634 return ExprError(); 1635 1636 ExprResult Result; 1637 1638 if (isTypeIdInParens()) { 1639 TypeResult Ty = ParseTypeName(); 1640 1641 // Match the ')'. 1642 T.consumeClose(); 1643 1644 if (Ty.isInvalid()) 1645 return ExprError(); 1646 1647 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, 1648 Ty.get().getAsOpaquePtr(), 1649 T.getCloseLocation()); 1650 } else { 1651 EnterExpressionEvaluationContext Unevaluated( 1652 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1653 Result = ParseExpression(); 1654 1655 // Match the ')'. 1656 if (Result.isInvalid()) 1657 SkipUntil(tok::r_paren, StopAtSemi); 1658 else { 1659 T.consumeClose(); 1660 1661 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), 1662 /*isType=*/false, 1663 Result.get(), T.getCloseLocation()); 1664 } 1665 } 1666 1667 return Result; 1668 } 1669 1670 /// Parse a C++ pseudo-destructor expression after the base, 1671 /// . or -> operator, and nested-name-specifier have already been 1672 /// parsed. We're handling this fragment of the grammar: 1673 /// 1674 /// postfix-expression: [C++2a expr.post] 1675 /// postfix-expression . template[opt] id-expression 1676 /// postfix-expression -> template[opt] id-expression 1677 /// 1678 /// id-expression: 1679 /// qualified-id 1680 /// unqualified-id 1681 /// 1682 /// qualified-id: 1683 /// nested-name-specifier template[opt] unqualified-id 1684 /// 1685 /// nested-name-specifier: 1686 /// type-name :: 1687 /// decltype-specifier :: FIXME: not implemented, but probably only 1688 /// allowed in C++ grammar by accident 1689 /// nested-name-specifier identifier :: 1690 /// nested-name-specifier template[opt] simple-template-id :: 1691 /// [...] 1692 /// 1693 /// unqualified-id: 1694 /// ~ type-name 1695 /// ~ decltype-specifier 1696 /// [...] 1697 /// 1698 /// ... where the all but the last component of the nested-name-specifier 1699 /// has already been parsed, and the base expression is not of a non-dependent 1700 /// class type. 1701 ExprResult 1702 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc, 1703 tok::TokenKind OpKind, 1704 CXXScopeSpec &SS, 1705 ParsedType ObjectType) { 1706 // If the last component of the (optional) nested-name-specifier is 1707 // template[opt] simple-template-id, it has already been annotated. 1708 UnqualifiedId FirstTypeName; 1709 SourceLocation CCLoc; 1710 if (Tok.is(tok::identifier)) { 1711 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 1712 ConsumeToken(); 1713 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1714 CCLoc = ConsumeToken(); 1715 } else if (Tok.is(tok::annot_template_id)) { 1716 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1717 // FIXME: Carry on and build an AST representation for tooling. 1718 if (TemplateId->isInvalid()) 1719 return ExprError(); 1720 FirstTypeName.setTemplateId(TemplateId); 1721 ConsumeAnnotationToken(); 1722 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1723 CCLoc = ConsumeToken(); 1724 } else { 1725 assert(SS.isEmpty() && "missing last component of nested name specifier"); 1726 FirstTypeName.setIdentifier(nullptr, SourceLocation()); 1727 } 1728 1729 // Parse the tilde. 1730 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); 1731 SourceLocation TildeLoc = ConsumeToken(); 1732 1733 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) { 1734 DeclSpec DS(AttrFactory); 1735 ParseDecltypeSpecifier(DS); 1736 if (DS.getTypeSpecType() == TST_error) 1737 return ExprError(); 1738 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1739 TildeLoc, DS); 1740 } 1741 1742 if (!Tok.is(tok::identifier)) { 1743 Diag(Tok, diag::err_destructor_tilde_identifier); 1744 return ExprError(); 1745 } 1746 1747 // Parse the second type. 1748 UnqualifiedId SecondTypeName; 1749 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1750 SourceLocation NameLoc = ConsumeToken(); 1751 SecondTypeName.setIdentifier(Name, NameLoc); 1752 1753 // If there is a '<', the second type name is a template-id. Parse 1754 // it as such. 1755 // 1756 // FIXME: This is not a context in which a '<' is assumed to start a template 1757 // argument list. This affects examples such as 1758 // void f(auto *p) { p->~X<int>(); } 1759 // ... but there's no ambiguity, and nowhere to write 'template' in such an 1760 // example, so we accept it anyway. 1761 if (Tok.is(tok::less) && 1762 ParseUnqualifiedIdTemplateId( 1763 SS, ObjectType, Base && Base->containsErrors(), SourceLocation(), 1764 Name, NameLoc, false, SecondTypeName, 1765 /*AssumeTemplateId=*/true)) 1766 return ExprError(); 1767 1768 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1769 SS, FirstTypeName, CCLoc, TildeLoc, 1770 SecondTypeName); 1771 } 1772 1773 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. 1774 /// 1775 /// boolean-literal: [C++ 2.13.5] 1776 /// 'true' 1777 /// 'false' 1778 ExprResult Parser::ParseCXXBoolLiteral() { 1779 tok::TokenKind Kind = Tok.getKind(); 1780 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); 1781 } 1782 1783 /// ParseThrowExpression - This handles the C++ throw expression. 1784 /// 1785 /// throw-expression: [C++ 15] 1786 /// 'throw' assignment-expression[opt] 1787 ExprResult Parser::ParseThrowExpression() { 1788 assert(Tok.is(tok::kw_throw) && "Not throw!"); 1789 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. 1790 1791 // If the current token isn't the start of an assignment-expression, 1792 // then the expression is not present. This handles things like: 1793 // "C ? throw : (void)42", which is crazy but legal. 1794 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. 1795 case tok::semi: 1796 case tok::r_paren: 1797 case tok::r_square: 1798 case tok::r_brace: 1799 case tok::colon: 1800 case tok::comma: 1801 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr); 1802 1803 default: 1804 ExprResult Expr(ParseAssignmentExpression()); 1805 if (Expr.isInvalid()) return Expr; 1806 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get()); 1807 } 1808 } 1809 1810 /// Parse the C++ Coroutines co_yield expression. 1811 /// 1812 /// co_yield-expression: 1813 /// 'co_yield' assignment-expression[opt] 1814 ExprResult Parser::ParseCoyieldExpression() { 1815 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!"); 1816 1817 SourceLocation Loc = ConsumeToken(); 1818 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer() 1819 : ParseAssignmentExpression(); 1820 if (!Expr.isInvalid()) 1821 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get()); 1822 return Expr; 1823 } 1824 1825 /// ParseCXXThis - This handles the C++ 'this' pointer. 1826 /// 1827 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is 1828 /// a non-lvalue expression whose value is the address of the object for which 1829 /// the function is called. 1830 ExprResult Parser::ParseCXXThis() { 1831 assert(Tok.is(tok::kw_this) && "Not 'this'!"); 1832 SourceLocation ThisLoc = ConsumeToken(); 1833 return Actions.ActOnCXXThis(ThisLoc); 1834 } 1835 1836 /// ParseCXXTypeConstructExpression - Parse construction of a specified type. 1837 /// Can be interpreted either as function-style casting ("int(x)") 1838 /// or class type construction ("ClassType(x,y,z)") 1839 /// or creation of a value-initialized type ("int()"). 1840 /// See [C++ 5.2.3]. 1841 /// 1842 /// postfix-expression: [C++ 5.2p1] 1843 /// simple-type-specifier '(' expression-list[opt] ')' 1844 /// [C++0x] simple-type-specifier braced-init-list 1845 /// typename-specifier '(' expression-list[opt] ')' 1846 /// [C++0x] typename-specifier braced-init-list 1847 /// 1848 /// In C++1z onwards, the type specifier can also be a template-name. 1849 ExprResult 1850 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { 1851 Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast); 1852 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 1853 1854 assert((Tok.is(tok::l_paren) || 1855 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) 1856 && "Expected '(' or '{'!"); 1857 1858 if (Tok.is(tok::l_brace)) { 1859 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get()); 1860 ExprResult Init = ParseBraceInitializer(); 1861 if (Init.isInvalid()) 1862 return Init; 1863 Expr *InitList = Init.get(); 1864 return Actions.ActOnCXXTypeConstructExpr( 1865 TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1), 1866 InitList->getEndLoc(), /*ListInitialization=*/true); 1867 } else { 1868 BalancedDelimiterTracker T(*this, tok::l_paren); 1869 T.consumeOpen(); 1870 1871 PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get()); 1872 1873 ExprVector Exprs; 1874 CommaLocsTy CommaLocs; 1875 1876 auto RunSignatureHelp = [&]() { 1877 QualType PreferredType; 1878 if (TypeRep) 1879 PreferredType = Actions.ProduceConstructorSignatureHelp( 1880 TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs, 1881 T.getOpenLocation(), /*Braced=*/false); 1882 CalledSignatureHelp = true; 1883 return PreferredType; 1884 }; 1885 1886 if (Tok.isNot(tok::r_paren)) { 1887 if (ParseExpressionList(Exprs, CommaLocs, [&] { 1888 PreferredType.enterFunctionArgument(Tok.getLocation(), 1889 RunSignatureHelp); 1890 })) { 1891 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 1892 RunSignatureHelp(); 1893 SkipUntil(tok::r_paren, StopAtSemi); 1894 return ExprError(); 1895 } 1896 } 1897 1898 // Match the ')'. 1899 T.consumeClose(); 1900 1901 // TypeRep could be null, if it references an invalid typedef. 1902 if (!TypeRep) 1903 return ExprError(); 1904 1905 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& 1906 "Unexpected number of commas!"); 1907 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 1908 Exprs, T.getCloseLocation(), 1909 /*ListInitialization=*/false); 1910 } 1911 } 1912 1913 Parser::DeclGroupPtrTy 1914 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context, 1915 ParsedAttributesWithRange &Attrs) { 1916 assert(Tok.is(tok::kw_using) && "Expected using"); 1917 assert((Context == DeclaratorContext::ForInit || 1918 Context == DeclaratorContext::SelectionInit) && 1919 "Unexpected Declarator Context"); 1920 DeclGroupPtrTy DG; 1921 SourceLocation DeclStart = ConsumeToken(), DeclEnd; 1922 1923 DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none); 1924 if (!DG) 1925 return DG; 1926 1927 Diag(DeclStart, !getLangOpts().CPlusPlus2b 1928 ? diag::ext_alias_in_init_statement 1929 : diag::warn_cxx20_alias_in_init_statement) 1930 << SourceRange(DeclStart, DeclEnd); 1931 1932 return DG; 1933 } 1934 1935 /// ParseCXXCondition - if/switch/while condition expression. 1936 /// 1937 /// condition: 1938 /// expression 1939 /// type-specifier-seq declarator '=' assignment-expression 1940 /// [C++11] type-specifier-seq declarator '=' initializer-clause 1941 /// [C++11] type-specifier-seq declarator braced-init-list 1942 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']' 1943 /// brace-or-equal-initializer 1944 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] 1945 /// '=' assignment-expression 1946 /// 1947 /// In C++1z, a condition may in some contexts be preceded by an 1948 /// optional init-statement. This function will parse that too. 1949 /// 1950 /// \param InitStmt If non-null, an init-statement is permitted, and if present 1951 /// will be parsed and stored here. 1952 /// 1953 /// \param Loc The location of the start of the statement that requires this 1954 /// condition, e.g., the "for" in a for loop. 1955 /// 1956 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise 1957 /// it is considered an error to be recovered from. 1958 /// 1959 /// \param FRI If non-null, a for range declaration is permitted, and if 1960 /// present will be parsed and stored here, and a null result will be returned. 1961 /// 1962 /// \param EnterForConditionScope If true, enter a continue/break scope at the 1963 /// appropriate moment for a 'for' loop. 1964 /// 1965 /// \returns The parsed condition. 1966 Sema::ConditionResult 1967 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc, 1968 Sema::ConditionKind CK, bool MissingOK, 1969 ForRangeInfo *FRI, bool EnterForConditionScope) { 1970 // Helper to ensure we always enter a continue/break scope if requested. 1971 struct ForConditionScopeRAII { 1972 Scope *S; 1973 void enter(bool IsConditionVariable) { 1974 if (S) { 1975 S->AddFlags(Scope::BreakScope | Scope::ContinueScope); 1976 S->setIsConditionVarScope(IsConditionVariable); 1977 } 1978 } 1979 ~ForConditionScopeRAII() { 1980 if (S) 1981 S->setIsConditionVarScope(false); 1982 } 1983 } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr}; 1984 1985 ParenBraceBracketBalancer BalancerRAIIObj(*this); 1986 PreferredType.enterCondition(Actions, Tok.getLocation()); 1987 1988 if (Tok.is(tok::code_completion)) { 1989 cutOffParsing(); 1990 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); 1991 return Sema::ConditionError(); 1992 } 1993 1994 ParsedAttributesWithRange attrs(AttrFactory); 1995 MaybeParseCXX11Attributes(attrs); 1996 1997 const auto WarnOnInit = [this, &CK] { 1998 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 1999 ? diag::warn_cxx14_compat_init_statement 2000 : diag::ext_init_statement) 2001 << (CK == Sema::ConditionKind::Switch); 2002 }; 2003 2004 // Determine what kind of thing we have. 2005 switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) { 2006 case ConditionOrInitStatement::Expression: { 2007 // If this is a for loop, we're entering its condition. 2008 ForConditionScope.enter(/*IsConditionVariable=*/false); 2009 2010 ProhibitAttributes(attrs); 2011 2012 // We can have an empty expression here. 2013 // if (; true); 2014 if (InitStmt && Tok.is(tok::semi)) { 2015 WarnOnInit(); 2016 SourceLocation SemiLoc = Tok.getLocation(); 2017 if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) { 2018 Diag(SemiLoc, diag::warn_empty_init_statement) 2019 << (CK == Sema::ConditionKind::Switch) 2020 << FixItHint::CreateRemoval(SemiLoc); 2021 } 2022 ConsumeToken(); 2023 *InitStmt = Actions.ActOnNullStmt(SemiLoc); 2024 return ParseCXXCondition(nullptr, Loc, CK, MissingOK); 2025 } 2026 2027 // Parse the expression. 2028 ExprResult Expr = ParseExpression(); // expression 2029 if (Expr.isInvalid()) 2030 return Sema::ConditionError(); 2031 2032 if (InitStmt && Tok.is(tok::semi)) { 2033 WarnOnInit(); 2034 *InitStmt = Actions.ActOnExprStmt(Expr.get()); 2035 ConsumeToken(); 2036 return ParseCXXCondition(nullptr, Loc, CK, MissingOK); 2037 } 2038 2039 return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK, 2040 MissingOK); 2041 } 2042 2043 case ConditionOrInitStatement::InitStmtDecl: { 2044 WarnOnInit(); 2045 DeclGroupPtrTy DG; 2046 SourceLocation DeclStart = Tok.getLocation(), DeclEnd; 2047 if (Tok.is(tok::kw_using)) 2048 DG = ParseAliasDeclarationInInitStatement( 2049 DeclaratorContext::SelectionInit, attrs); 2050 else 2051 DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd, 2052 attrs, /*RequireSemi=*/true); 2053 *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd); 2054 return ParseCXXCondition(nullptr, Loc, CK, MissingOK); 2055 } 2056 2057 case ConditionOrInitStatement::ForRangeDecl: { 2058 // This is 'for (init-stmt; for-range-decl : range-expr)'. 2059 // We're not actually in a for loop yet, so 'break' and 'continue' aren't 2060 // permitted here. 2061 assert(FRI && "should not parse a for range declaration here"); 2062 SourceLocation DeclStart = Tok.getLocation(), DeclEnd; 2063 DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit, 2064 DeclEnd, attrs, false, FRI); 2065 FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation()); 2066 assert((FRI->ColonLoc.isValid() || !DG) && 2067 "cannot find for range declaration"); 2068 return Sema::ConditionResult(); 2069 } 2070 2071 case ConditionOrInitStatement::ConditionDecl: 2072 case ConditionOrInitStatement::Error: 2073 break; 2074 } 2075 2076 // If this is a for loop, we're entering its condition. 2077 ForConditionScope.enter(/*IsConditionVariable=*/true); 2078 2079 // type-specifier-seq 2080 DeclSpec DS(AttrFactory); 2081 DS.takeAttributesFrom(attrs); 2082 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition); 2083 2084 // declarator 2085 Declarator DeclaratorInfo(DS, DeclaratorContext::Condition); 2086 ParseDeclarator(DeclaratorInfo); 2087 2088 // simple-asm-expr[opt] 2089 if (Tok.is(tok::kw_asm)) { 2090 SourceLocation Loc; 2091 ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc)); 2092 if (AsmLabel.isInvalid()) { 2093 SkipUntil(tok::semi, StopAtSemi); 2094 return Sema::ConditionError(); 2095 } 2096 DeclaratorInfo.setAsmLabel(AsmLabel.get()); 2097 DeclaratorInfo.SetRangeEnd(Loc); 2098 } 2099 2100 // If attributes are present, parse them. 2101 MaybeParseGNUAttributes(DeclaratorInfo); 2102 2103 // Type-check the declaration itself. 2104 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 2105 DeclaratorInfo); 2106 if (Dcl.isInvalid()) 2107 return Sema::ConditionError(); 2108 Decl *DeclOut = Dcl.get(); 2109 2110 // '=' assignment-expression 2111 // If a '==' or '+=' is found, suggest a fixit to '='. 2112 bool CopyInitialization = isTokenEqualOrEqualTypo(); 2113 if (CopyInitialization) 2114 ConsumeToken(); 2115 2116 ExprResult InitExpr = ExprError(); 2117 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 2118 Diag(Tok.getLocation(), 2119 diag::warn_cxx98_compat_generalized_initializer_lists); 2120 InitExpr = ParseBraceInitializer(); 2121 } else if (CopyInitialization) { 2122 PreferredType.enterVariableInit(Tok.getLocation(), DeclOut); 2123 InitExpr = ParseAssignmentExpression(); 2124 } else if (Tok.is(tok::l_paren)) { 2125 // This was probably an attempt to initialize the variable. 2126 SourceLocation LParen = ConsumeParen(), RParen = LParen; 2127 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) 2128 RParen = ConsumeParen(); 2129 Diag(DeclOut->getLocation(), 2130 diag::err_expected_init_in_condition_lparen) 2131 << SourceRange(LParen, RParen); 2132 } else { 2133 Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition); 2134 } 2135 2136 if (!InitExpr.isInvalid()) 2137 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization); 2138 else 2139 Actions.ActOnInitializerError(DeclOut); 2140 2141 Actions.FinalizeDeclaration(DeclOut); 2142 return Actions.ActOnConditionVariable(DeclOut, Loc, CK); 2143 } 2144 2145 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. 2146 /// This should only be called when the current token is known to be part of 2147 /// simple-type-specifier. 2148 /// 2149 /// simple-type-specifier: 2150 /// '::'[opt] nested-name-specifier[opt] type-name 2151 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] 2152 /// char 2153 /// wchar_t 2154 /// bool 2155 /// short 2156 /// int 2157 /// long 2158 /// signed 2159 /// unsigned 2160 /// float 2161 /// double 2162 /// void 2163 /// [GNU] typeof-specifier 2164 /// [C++0x] auto [TODO] 2165 /// 2166 /// type-name: 2167 /// class-name 2168 /// enum-name 2169 /// typedef-name 2170 /// 2171 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { 2172 DS.SetRangeStart(Tok.getLocation()); 2173 const char *PrevSpec; 2174 unsigned DiagID; 2175 SourceLocation Loc = Tok.getLocation(); 2176 const clang::PrintingPolicy &Policy = 2177 Actions.getASTContext().getPrintingPolicy(); 2178 2179 switch (Tok.getKind()) { 2180 case tok::identifier: // foo::bar 2181 case tok::coloncolon: // ::foo::bar 2182 llvm_unreachable("Annotation token should already be formed!"); 2183 default: 2184 llvm_unreachable("Not a simple-type-specifier token!"); 2185 2186 // type-name 2187 case tok::annot_typename: { 2188 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, 2189 getTypeAnnotation(Tok), Policy); 2190 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 2191 ConsumeAnnotationToken(); 2192 2193 DS.Finish(Actions, Policy); 2194 return; 2195 } 2196 2197 case tok::kw__ExtInt: 2198 case tok::kw__BitInt: { 2199 DiagnoseBitIntUse(Tok); 2200 ExprResult ER = ParseExtIntegerArgument(); 2201 if (ER.isInvalid()) 2202 DS.SetTypeSpecError(); 2203 else 2204 DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy); 2205 2206 // Do this here because we have already consumed the close paren. 2207 DS.SetRangeEnd(PrevTokLocation); 2208 DS.Finish(Actions, Policy); 2209 return; 2210 } 2211 2212 // builtin types 2213 case tok::kw_short: 2214 DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID, 2215 Policy); 2216 break; 2217 case tok::kw_long: 2218 DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID, 2219 Policy); 2220 break; 2221 case tok::kw___int64: 2222 DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID, 2223 Policy); 2224 break; 2225 case tok::kw_signed: 2226 DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID); 2227 break; 2228 case tok::kw_unsigned: 2229 DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID); 2230 break; 2231 case tok::kw_void: 2232 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); 2233 break; 2234 case tok::kw_char: 2235 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); 2236 break; 2237 case tok::kw_int: 2238 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); 2239 break; 2240 case tok::kw___int128: 2241 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); 2242 break; 2243 case tok::kw___bf16: 2244 DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy); 2245 break; 2246 case tok::kw_half: 2247 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); 2248 break; 2249 case tok::kw_float: 2250 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); 2251 break; 2252 case tok::kw_double: 2253 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); 2254 break; 2255 case tok::kw__Float16: 2256 DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy); 2257 break; 2258 case tok::kw___float128: 2259 DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy); 2260 break; 2261 case tok::kw___ibm128: 2262 DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy); 2263 break; 2264 case tok::kw_wchar_t: 2265 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); 2266 break; 2267 case tok::kw_char8_t: 2268 DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy); 2269 break; 2270 case tok::kw_char16_t: 2271 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); 2272 break; 2273 case tok::kw_char32_t: 2274 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); 2275 break; 2276 case tok::kw_bool: 2277 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); 2278 break; 2279 #define GENERIC_IMAGE_TYPE(ImgType, Id) \ 2280 case tok::kw_##ImgType##_t: \ 2281 DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID, \ 2282 Policy); \ 2283 break; 2284 #include "clang/Basic/OpenCLImageTypes.def" 2285 2286 case tok::annot_decltype: 2287 case tok::kw_decltype: 2288 DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); 2289 return DS.Finish(Actions, Policy); 2290 2291 // GNU typeof support. 2292 case tok::kw_typeof: 2293 ParseTypeofSpecifier(DS); 2294 DS.Finish(Actions, Policy); 2295 return; 2296 } 2297 ConsumeAnyToken(); 2298 DS.SetRangeEnd(PrevTokLocation); 2299 DS.Finish(Actions, Policy); 2300 } 2301 2302 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ 2303 /// [dcl.name]), which is a non-empty sequence of type-specifiers, 2304 /// e.g., "const short int". Note that the DeclSpec is *not* finished 2305 /// by parsing the type-specifier-seq, because these sequences are 2306 /// typically followed by some form of declarator. Returns true and 2307 /// emits diagnostics if this is not a type-specifier-seq, false 2308 /// otherwise. 2309 /// 2310 /// type-specifier-seq: [C++ 8.1] 2311 /// type-specifier type-specifier-seq[opt] 2312 /// 2313 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { 2314 ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier); 2315 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); 2316 return false; 2317 } 2318 2319 /// Finish parsing a C++ unqualified-id that is a template-id of 2320 /// some form. 2321 /// 2322 /// This routine is invoked when a '<' is encountered after an identifier or 2323 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine 2324 /// whether the unqualified-id is actually a template-id. This routine will 2325 /// then parse the template arguments and form the appropriate template-id to 2326 /// return to the caller. 2327 /// 2328 /// \param SS the nested-name-specifier that precedes this template-id, if 2329 /// we're actually parsing a qualified-id. 2330 /// 2331 /// \param ObjectType if this unqualified-id occurs within a member access 2332 /// expression, the type of the base object whose member is being accessed. 2333 /// 2334 /// \param ObjectHadErrors this unqualified-id occurs within a member access 2335 /// expression, indicates whether the original subexpressions had any errors. 2336 /// 2337 /// \param Name for constructor and destructor names, this is the actual 2338 /// identifier that may be a template-name. 2339 /// 2340 /// \param NameLoc the location of the class-name in a constructor or 2341 /// destructor. 2342 /// 2343 /// \param EnteringContext whether we're entering the scope of the 2344 /// nested-name-specifier. 2345 /// 2346 /// \param Id as input, describes the template-name or operator-function-id 2347 /// that precedes the '<'. If template arguments were parsed successfully, 2348 /// will be updated with the template-id. 2349 /// 2350 /// \param AssumeTemplateId When true, this routine will assume that the name 2351 /// refers to a template without performing name lookup to verify. 2352 /// 2353 /// \returns true if a parse error occurred, false otherwise. 2354 bool Parser::ParseUnqualifiedIdTemplateId( 2355 CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors, 2356 SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc, 2357 bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) { 2358 assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id"); 2359 2360 TemplateTy Template; 2361 TemplateNameKind TNK = TNK_Non_template; 2362 switch (Id.getKind()) { 2363 case UnqualifiedIdKind::IK_Identifier: 2364 case UnqualifiedIdKind::IK_OperatorFunctionId: 2365 case UnqualifiedIdKind::IK_LiteralOperatorId: 2366 if (AssumeTemplateId) { 2367 // We defer the injected-class-name checks until we've found whether 2368 // this template-id is used to form a nested-name-specifier or not. 2369 TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id, 2370 ObjectType, EnteringContext, Template, 2371 /*AllowInjectedClassName*/ true); 2372 } else { 2373 bool MemberOfUnknownSpecialization; 2374 TNK = Actions.isTemplateName(getCurScope(), SS, 2375 TemplateKWLoc.isValid(), Id, 2376 ObjectType, EnteringContext, Template, 2377 MemberOfUnknownSpecialization); 2378 // If lookup found nothing but we're assuming that this is a template 2379 // name, double-check that makes sense syntactically before committing 2380 // to it. 2381 if (TNK == TNK_Undeclared_template && 2382 isTemplateArgumentList(0) == TPResult::False) 2383 return false; 2384 2385 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && 2386 ObjectType && isTemplateArgumentList(0) == TPResult::True) { 2387 // If we had errors before, ObjectType can be dependent even without any 2388 // templates, do not report missing template keyword in that case. 2389 if (!ObjectHadErrors) { 2390 // We have something like t->getAs<T>(), where getAs is a 2391 // member of an unknown specialization. However, this will only 2392 // parse correctly as a template, so suggest the keyword 'template' 2393 // before 'getAs' and treat this as a dependent template name. 2394 std::string Name; 2395 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier) 2396 Name = std::string(Id.Identifier->getName()); 2397 else { 2398 Name = "operator "; 2399 if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId) 2400 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); 2401 else 2402 Name += Id.Identifier->getName(); 2403 } 2404 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) 2405 << Name 2406 << FixItHint::CreateInsertion(Id.StartLocation, "template "); 2407 } 2408 TNK = Actions.ActOnTemplateName( 2409 getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext, 2410 Template, /*AllowInjectedClassName*/ true); 2411 } else if (TNK == TNK_Non_template) { 2412 return false; 2413 } 2414 } 2415 break; 2416 2417 case UnqualifiedIdKind::IK_ConstructorName: { 2418 UnqualifiedId TemplateName; 2419 bool MemberOfUnknownSpecialization; 2420 TemplateName.setIdentifier(Name, NameLoc); 2421 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2422 TemplateName, ObjectType, 2423 EnteringContext, Template, 2424 MemberOfUnknownSpecialization); 2425 if (TNK == TNK_Non_template) 2426 return false; 2427 break; 2428 } 2429 2430 case UnqualifiedIdKind::IK_DestructorName: { 2431 UnqualifiedId TemplateName; 2432 bool MemberOfUnknownSpecialization; 2433 TemplateName.setIdentifier(Name, NameLoc); 2434 if (ObjectType) { 2435 TNK = Actions.ActOnTemplateName( 2436 getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType, 2437 EnteringContext, Template, /*AllowInjectedClassName*/ true); 2438 } else { 2439 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2440 TemplateName, ObjectType, 2441 EnteringContext, Template, 2442 MemberOfUnknownSpecialization); 2443 2444 if (TNK == TNK_Non_template && !Id.DestructorName.get()) { 2445 Diag(NameLoc, diag::err_destructor_template_id) 2446 << Name << SS.getRange(); 2447 // Carry on to parse the template arguments before bailing out. 2448 } 2449 } 2450 break; 2451 } 2452 2453 default: 2454 return false; 2455 } 2456 2457 // Parse the enclosed template argument list. 2458 SourceLocation LAngleLoc, RAngleLoc; 2459 TemplateArgList TemplateArgs; 2460 if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc, 2461 Template)) 2462 return true; 2463 2464 // If this is a non-template, we already issued a diagnostic. 2465 if (TNK == TNK_Non_template) 2466 return true; 2467 2468 if (Id.getKind() == UnqualifiedIdKind::IK_Identifier || 2469 Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId || 2470 Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) { 2471 // Form a parsed representation of the template-id to be stored in the 2472 // UnqualifiedId. 2473 2474 // FIXME: Store name for literal operator too. 2475 IdentifierInfo *TemplateII = 2476 Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier 2477 : nullptr; 2478 OverloadedOperatorKind OpKind = 2479 Id.getKind() == UnqualifiedIdKind::IK_Identifier 2480 ? OO_None 2481 : Id.OperatorFunctionId.Operator; 2482 2483 TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create( 2484 TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK, 2485 LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds); 2486 2487 Id.setTemplateId(TemplateId); 2488 return false; 2489 } 2490 2491 // Bundle the template arguments together. 2492 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); 2493 2494 // Constructor and destructor names. 2495 TypeResult Type = Actions.ActOnTemplateIdType( 2496 getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc, 2497 TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true); 2498 if (Type.isInvalid()) 2499 return true; 2500 2501 if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName) 2502 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); 2503 else 2504 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); 2505 2506 return false; 2507 } 2508 2509 /// Parse an operator-function-id or conversion-function-id as part 2510 /// of a C++ unqualified-id. 2511 /// 2512 /// This routine is responsible only for parsing the operator-function-id or 2513 /// conversion-function-id; it does not handle template arguments in any way. 2514 /// 2515 /// \code 2516 /// operator-function-id: [C++ 13.5] 2517 /// 'operator' operator 2518 /// 2519 /// operator: one of 2520 /// new delete new[] delete[] 2521 /// + - * / % ^ & | ~ 2522 /// ! = < > += -= *= /= %= 2523 /// ^= &= |= << >> >>= <<= == != 2524 /// <= >= && || ++ -- , ->* -> 2525 /// () [] <=> 2526 /// 2527 /// conversion-function-id: [C++ 12.3.2] 2528 /// operator conversion-type-id 2529 /// 2530 /// conversion-type-id: 2531 /// type-specifier-seq conversion-declarator[opt] 2532 /// 2533 /// conversion-declarator: 2534 /// ptr-operator conversion-declarator[opt] 2535 /// \endcode 2536 /// 2537 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2538 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2539 /// 2540 /// \param EnteringContext whether we are entering the scope of the 2541 /// nested-name-specifier. 2542 /// 2543 /// \param ObjectType if this unqualified-id occurs within a member access 2544 /// expression, the type of the base object whose member is being accessed. 2545 /// 2546 /// \param Result on a successful parse, contains the parsed unqualified-id. 2547 /// 2548 /// \returns true if parsing fails, false otherwise. 2549 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, 2550 ParsedType ObjectType, 2551 UnqualifiedId &Result) { 2552 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); 2553 2554 // Consume the 'operator' keyword. 2555 SourceLocation KeywordLoc = ConsumeToken(); 2556 2557 // Determine what kind of operator name we have. 2558 unsigned SymbolIdx = 0; 2559 SourceLocation SymbolLocations[3]; 2560 OverloadedOperatorKind Op = OO_None; 2561 switch (Tok.getKind()) { 2562 case tok::kw_new: 2563 case tok::kw_delete: { 2564 bool isNew = Tok.getKind() == tok::kw_new; 2565 // Consume the 'new' or 'delete'. 2566 SymbolLocations[SymbolIdx++] = ConsumeToken(); 2567 // Check for array new/delete. 2568 if (Tok.is(tok::l_square) && 2569 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { 2570 // Consume the '[' and ']'. 2571 BalancedDelimiterTracker T(*this, tok::l_square); 2572 T.consumeOpen(); 2573 T.consumeClose(); 2574 if (T.getCloseLocation().isInvalid()) 2575 return true; 2576 2577 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2578 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2579 Op = isNew? OO_Array_New : OO_Array_Delete; 2580 } else { 2581 Op = isNew? OO_New : OO_Delete; 2582 } 2583 break; 2584 } 2585 2586 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 2587 case tok::Token: \ 2588 SymbolLocations[SymbolIdx++] = ConsumeToken(); \ 2589 Op = OO_##Name; \ 2590 break; 2591 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) 2592 #include "clang/Basic/OperatorKinds.def" 2593 2594 case tok::l_paren: { 2595 // Consume the '(' and ')'. 2596 BalancedDelimiterTracker T(*this, tok::l_paren); 2597 T.consumeOpen(); 2598 T.consumeClose(); 2599 if (T.getCloseLocation().isInvalid()) 2600 return true; 2601 2602 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2603 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2604 Op = OO_Call; 2605 break; 2606 } 2607 2608 case tok::l_square: { 2609 // Consume the '[' and ']'. 2610 BalancedDelimiterTracker T(*this, tok::l_square); 2611 T.consumeOpen(); 2612 T.consumeClose(); 2613 if (T.getCloseLocation().isInvalid()) 2614 return true; 2615 2616 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2617 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2618 Op = OO_Subscript; 2619 break; 2620 } 2621 2622 case tok::code_completion: { 2623 // Don't try to parse any further. 2624 cutOffParsing(); 2625 // Code completion for the operator name. 2626 Actions.CodeCompleteOperatorName(getCurScope()); 2627 return true; 2628 } 2629 2630 default: 2631 break; 2632 } 2633 2634 if (Op != OO_None) { 2635 // We have parsed an operator-function-id. 2636 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); 2637 return false; 2638 } 2639 2640 // Parse a literal-operator-id. 2641 // 2642 // literal-operator-id: C++11 [over.literal] 2643 // operator string-literal identifier 2644 // operator user-defined-string-literal 2645 2646 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { 2647 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); 2648 2649 SourceLocation DiagLoc; 2650 unsigned DiagId = 0; 2651 2652 // We're past translation phase 6, so perform string literal concatenation 2653 // before checking for "". 2654 SmallVector<Token, 4> Toks; 2655 SmallVector<SourceLocation, 4> TokLocs; 2656 while (isTokenStringLiteral()) { 2657 if (!Tok.is(tok::string_literal) && !DiagId) { 2658 // C++11 [over.literal]p1: 2659 // The string-literal or user-defined-string-literal in a 2660 // literal-operator-id shall have no encoding-prefix [...]. 2661 DiagLoc = Tok.getLocation(); 2662 DiagId = diag::err_literal_operator_string_prefix; 2663 } 2664 Toks.push_back(Tok); 2665 TokLocs.push_back(ConsumeStringToken()); 2666 } 2667 2668 StringLiteralParser Literal(Toks, PP); 2669 if (Literal.hadError) 2670 return true; 2671 2672 // Grab the literal operator's suffix, which will be either the next token 2673 // or a ud-suffix from the string literal. 2674 bool IsUDSuffix = !Literal.getUDSuffix().empty(); 2675 IdentifierInfo *II = nullptr; 2676 SourceLocation SuffixLoc; 2677 if (IsUDSuffix) { 2678 II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); 2679 SuffixLoc = 2680 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], 2681 Literal.getUDSuffixOffset(), 2682 PP.getSourceManager(), getLangOpts()); 2683 } else if (Tok.is(tok::identifier)) { 2684 II = Tok.getIdentifierInfo(); 2685 SuffixLoc = ConsumeToken(); 2686 TokLocs.push_back(SuffixLoc); 2687 } else { 2688 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 2689 return true; 2690 } 2691 2692 // The string literal must be empty. 2693 if (!Literal.GetString().empty() || Literal.Pascal) { 2694 // C++11 [over.literal]p1: 2695 // The string-literal or user-defined-string-literal in a 2696 // literal-operator-id shall [...] contain no characters 2697 // other than the implicit terminating '\0'. 2698 DiagLoc = TokLocs.front(); 2699 DiagId = diag::err_literal_operator_string_not_empty; 2700 } 2701 2702 if (DiagId) { 2703 // This isn't a valid literal-operator-id, but we think we know 2704 // what the user meant. Tell them what they should have written. 2705 SmallString<32> Str; 2706 Str += "\"\""; 2707 Str += II->getName(); 2708 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( 2709 SourceRange(TokLocs.front(), TokLocs.back()), Str); 2710 } 2711 2712 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); 2713 2714 return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix); 2715 } 2716 2717 // Parse a conversion-function-id. 2718 // 2719 // conversion-function-id: [C++ 12.3.2] 2720 // operator conversion-type-id 2721 // 2722 // conversion-type-id: 2723 // type-specifier-seq conversion-declarator[opt] 2724 // 2725 // conversion-declarator: 2726 // ptr-operator conversion-declarator[opt] 2727 2728 // Parse the type-specifier-seq. 2729 DeclSpec DS(AttrFactory); 2730 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? 2731 return true; 2732 2733 // Parse the conversion-declarator, which is merely a sequence of 2734 // ptr-operators. 2735 Declarator D(DS, DeclaratorContext::ConversionId); 2736 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr); 2737 2738 // Finish up the type. 2739 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); 2740 if (Ty.isInvalid()) 2741 return true; 2742 2743 // Note that this is a conversion-function-id. 2744 Result.setConversionFunctionId(KeywordLoc, Ty.get(), 2745 D.getSourceRange().getEnd()); 2746 return false; 2747 } 2748 2749 /// Parse a C++ unqualified-id (or a C identifier), which describes the 2750 /// name of an entity. 2751 /// 2752 /// \code 2753 /// unqualified-id: [C++ expr.prim.general] 2754 /// identifier 2755 /// operator-function-id 2756 /// conversion-function-id 2757 /// [C++0x] literal-operator-id [TODO] 2758 /// ~ class-name 2759 /// template-id 2760 /// 2761 /// \endcode 2762 /// 2763 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2764 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2765 /// 2766 /// \param ObjectType if this unqualified-id occurs within a member access 2767 /// expression, the type of the base object whose member is being accessed. 2768 /// 2769 /// \param ObjectHadErrors if this unqualified-id occurs within a member access 2770 /// expression, indicates whether the original subexpressions had any errors. 2771 /// When true, diagnostics for missing 'template' keyword will be supressed. 2772 /// 2773 /// \param EnteringContext whether we are entering the scope of the 2774 /// nested-name-specifier. 2775 /// 2776 /// \param AllowDestructorName whether we allow parsing of a destructor name. 2777 /// 2778 /// \param AllowConstructorName whether we allow parsing a constructor name. 2779 /// 2780 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name. 2781 /// 2782 /// \param Result on a successful parse, contains the parsed unqualified-id. 2783 /// 2784 /// \returns true if parsing fails, false otherwise. 2785 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType, 2786 bool ObjectHadErrors, bool EnteringContext, 2787 bool AllowDestructorName, 2788 bool AllowConstructorName, 2789 bool AllowDeductionGuide, 2790 SourceLocation *TemplateKWLoc, 2791 UnqualifiedId &Result) { 2792 if (TemplateKWLoc) 2793 *TemplateKWLoc = SourceLocation(); 2794 2795 // Handle 'A::template B'. This is for template-ids which have not 2796 // already been annotated by ParseOptionalCXXScopeSpecifier(). 2797 bool TemplateSpecified = false; 2798 if (Tok.is(tok::kw_template)) { 2799 if (TemplateKWLoc && (ObjectType || SS.isSet())) { 2800 TemplateSpecified = true; 2801 *TemplateKWLoc = ConsumeToken(); 2802 } else { 2803 SourceLocation TemplateLoc = ConsumeToken(); 2804 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id) 2805 << FixItHint::CreateRemoval(TemplateLoc); 2806 } 2807 } 2808 2809 // unqualified-id: 2810 // identifier 2811 // template-id (when it hasn't already been annotated) 2812 if (Tok.is(tok::identifier)) { 2813 // Consume the identifier. 2814 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2815 SourceLocation IdLoc = ConsumeToken(); 2816 2817 if (!getLangOpts().CPlusPlus) { 2818 // If we're not in C++, only identifiers matter. Record the 2819 // identifier and return. 2820 Result.setIdentifier(Id, IdLoc); 2821 return false; 2822 } 2823 2824 ParsedTemplateTy TemplateName; 2825 if (AllowConstructorName && 2826 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { 2827 // We have parsed a constructor name. 2828 ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS, 2829 EnteringContext); 2830 if (!Ty) 2831 return true; 2832 Result.setConstructorName(Ty, IdLoc, IdLoc); 2833 } else if (getLangOpts().CPlusPlus17 && 2834 AllowDeductionGuide && SS.isEmpty() && 2835 Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc, 2836 &TemplateName)) { 2837 // We have parsed a template-name naming a deduction guide. 2838 Result.setDeductionGuideName(TemplateName, IdLoc); 2839 } else { 2840 // We have parsed an identifier. 2841 Result.setIdentifier(Id, IdLoc); 2842 } 2843 2844 // If the next token is a '<', we may have a template. 2845 TemplateTy Template; 2846 if (Tok.is(tok::less)) 2847 return ParseUnqualifiedIdTemplateId( 2848 SS, ObjectType, ObjectHadErrors, 2849 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc, 2850 EnteringContext, Result, TemplateSpecified); 2851 else if (TemplateSpecified && 2852 Actions.ActOnTemplateName( 2853 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType, 2854 EnteringContext, Template, 2855 /*AllowInjectedClassName*/ true) == TNK_Non_template) 2856 return true; 2857 2858 return false; 2859 } 2860 2861 // unqualified-id: 2862 // template-id (already parsed and annotated) 2863 if (Tok.is(tok::annot_template_id)) { 2864 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2865 2866 // FIXME: Consider passing invalid template-ids on to callers; they may 2867 // be able to recover better than we can. 2868 if (TemplateId->isInvalid()) { 2869 ConsumeAnnotationToken(); 2870 return true; 2871 } 2872 2873 // If the template-name names the current class, then this is a constructor 2874 if (AllowConstructorName && TemplateId->Name && 2875 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { 2876 if (SS.isSet()) { 2877 // C++ [class.qual]p2 specifies that a qualified template-name 2878 // is taken as the constructor name where a constructor can be 2879 // declared. Thus, the template arguments are extraneous, so 2880 // complain about them and remove them entirely. 2881 Diag(TemplateId->TemplateNameLoc, 2882 diag::err_out_of_line_constructor_template_id) 2883 << TemplateId->Name 2884 << FixItHint::CreateRemoval( 2885 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); 2886 ParsedType Ty = Actions.getConstructorName( 2887 *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS, 2888 EnteringContext); 2889 if (!Ty) 2890 return true; 2891 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, 2892 TemplateId->RAngleLoc); 2893 ConsumeAnnotationToken(); 2894 return false; 2895 } 2896 2897 Result.setConstructorTemplateId(TemplateId); 2898 ConsumeAnnotationToken(); 2899 return false; 2900 } 2901 2902 // We have already parsed a template-id; consume the annotation token as 2903 // our unqualified-id. 2904 Result.setTemplateId(TemplateId); 2905 SourceLocation TemplateLoc = TemplateId->TemplateKWLoc; 2906 if (TemplateLoc.isValid()) { 2907 if (TemplateKWLoc && (ObjectType || SS.isSet())) 2908 *TemplateKWLoc = TemplateLoc; 2909 else 2910 Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id) 2911 << FixItHint::CreateRemoval(TemplateLoc); 2912 } 2913 ConsumeAnnotationToken(); 2914 return false; 2915 } 2916 2917 // unqualified-id: 2918 // operator-function-id 2919 // conversion-function-id 2920 if (Tok.is(tok::kw_operator)) { 2921 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) 2922 return true; 2923 2924 // If we have an operator-function-id or a literal-operator-id and the next 2925 // token is a '<', we may have a 2926 // 2927 // template-id: 2928 // operator-function-id < template-argument-list[opt] > 2929 TemplateTy Template; 2930 if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId || 2931 Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) && 2932 Tok.is(tok::less)) 2933 return ParseUnqualifiedIdTemplateId( 2934 SS, ObjectType, ObjectHadErrors, 2935 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr, 2936 SourceLocation(), EnteringContext, Result, TemplateSpecified); 2937 else if (TemplateSpecified && 2938 Actions.ActOnTemplateName( 2939 getCurScope(), SS, *TemplateKWLoc, Result, ObjectType, 2940 EnteringContext, Template, 2941 /*AllowInjectedClassName*/ true) == TNK_Non_template) 2942 return true; 2943 2944 return false; 2945 } 2946 2947 if (getLangOpts().CPlusPlus && 2948 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { 2949 // C++ [expr.unary.op]p10: 2950 // There is an ambiguity in the unary-expression ~X(), where X is a 2951 // class-name. The ambiguity is resolved in favor of treating ~ as a 2952 // unary complement rather than treating ~X as referring to a destructor. 2953 2954 // Parse the '~'. 2955 SourceLocation TildeLoc = ConsumeToken(); 2956 2957 if (TemplateSpecified) { 2958 // C++ [temp.names]p3: 2959 // A name prefixed by the keyword template shall be a template-id [...] 2960 // 2961 // A template-id cannot begin with a '~' token. This would never work 2962 // anyway: x.~A<int>() would specify that the destructor is a template, 2963 // not that 'A' is a template. 2964 // 2965 // FIXME: Suggest replacing the attempted destructor name with a correct 2966 // destructor name and recover. (This is not trivial if this would become 2967 // a pseudo-destructor name). 2968 Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name) 2969 << Tok.getLocation(); 2970 return true; 2971 } 2972 2973 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { 2974 DeclSpec DS(AttrFactory); 2975 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 2976 if (ParsedType Type = 2977 Actions.getDestructorTypeForDecltype(DS, ObjectType)) { 2978 Result.setDestructorName(TildeLoc, Type, EndLoc); 2979 return false; 2980 } 2981 return true; 2982 } 2983 2984 // Parse the class-name. 2985 if (Tok.isNot(tok::identifier)) { 2986 Diag(Tok, diag::err_destructor_tilde_identifier); 2987 return true; 2988 } 2989 2990 // If the user wrote ~T::T, correct it to T::~T. 2991 DeclaratorScopeObj DeclScopeObj(*this, SS); 2992 if (NextToken().is(tok::coloncolon)) { 2993 // Don't let ParseOptionalCXXScopeSpecifier() "correct" 2994 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`, 2995 // it will confuse this recovery logic. 2996 ColonProtectionRAIIObject ColonRAII(*this, false); 2997 2998 if (SS.isSet()) { 2999 AnnotateScopeToken(SS, /*NewAnnotation*/true); 3000 SS.clear(); 3001 } 3002 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors, 3003 EnteringContext)) 3004 return true; 3005 if (SS.isNotEmpty()) 3006 ObjectType = nullptr; 3007 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) || 3008 !SS.isSet()) { 3009 Diag(TildeLoc, diag::err_destructor_tilde_scope); 3010 return true; 3011 } 3012 3013 // Recover as if the tilde had been written before the identifier. 3014 Diag(TildeLoc, diag::err_destructor_tilde_scope) 3015 << FixItHint::CreateRemoval(TildeLoc) 3016 << FixItHint::CreateInsertion(Tok.getLocation(), "~"); 3017 3018 // Temporarily enter the scope for the rest of this function. 3019 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) 3020 DeclScopeObj.EnterDeclaratorScope(); 3021 } 3022 3023 // Parse the class-name (or template-name in a simple-template-id). 3024 IdentifierInfo *ClassName = Tok.getIdentifierInfo(); 3025 SourceLocation ClassNameLoc = ConsumeToken(); 3026 3027 if (Tok.is(tok::less)) { 3028 Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc); 3029 return ParseUnqualifiedIdTemplateId( 3030 SS, ObjectType, ObjectHadErrors, 3031 TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName, 3032 ClassNameLoc, EnteringContext, Result, TemplateSpecified); 3033 } 3034 3035 // Note that this is a destructor name. 3036 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 3037 ClassNameLoc, getCurScope(), 3038 SS, ObjectType, 3039 EnteringContext); 3040 if (!Ty) 3041 return true; 3042 3043 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); 3044 return false; 3045 } 3046 3047 Diag(Tok, diag::err_expected_unqualified_id) 3048 << getLangOpts().CPlusPlus; 3049 return true; 3050 } 3051 3052 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate 3053 /// memory in a typesafe manner and call constructors. 3054 /// 3055 /// This method is called to parse the new expression after the optional :: has 3056 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" 3057 /// is its location. Otherwise, "Start" is the location of the 'new' token. 3058 /// 3059 /// new-expression: 3060 /// '::'[opt] 'new' new-placement[opt] new-type-id 3061 /// new-initializer[opt] 3062 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 3063 /// new-initializer[opt] 3064 /// 3065 /// new-placement: 3066 /// '(' expression-list ')' 3067 /// 3068 /// new-type-id: 3069 /// type-specifier-seq new-declarator[opt] 3070 /// [GNU] attributes type-specifier-seq new-declarator[opt] 3071 /// 3072 /// new-declarator: 3073 /// ptr-operator new-declarator[opt] 3074 /// direct-new-declarator 3075 /// 3076 /// new-initializer: 3077 /// '(' expression-list[opt] ')' 3078 /// [C++0x] braced-init-list 3079 /// 3080 ExprResult 3081 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { 3082 assert(Tok.is(tok::kw_new) && "expected 'new' token"); 3083 ConsumeToken(); // Consume 'new' 3084 3085 // A '(' now can be a new-placement or the '(' wrapping the type-id in the 3086 // second form of new-expression. It can't be a new-type-id. 3087 3088 ExprVector PlacementArgs; 3089 SourceLocation PlacementLParen, PlacementRParen; 3090 3091 SourceRange TypeIdParens; 3092 DeclSpec DS(AttrFactory); 3093 Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew); 3094 if (Tok.is(tok::l_paren)) { 3095 // If it turns out to be a placement, we change the type location. 3096 BalancedDelimiterTracker T(*this, tok::l_paren); 3097 T.consumeOpen(); 3098 PlacementLParen = T.getOpenLocation(); 3099 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { 3100 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 3101 return ExprError(); 3102 } 3103 3104 T.consumeClose(); 3105 PlacementRParen = T.getCloseLocation(); 3106 if (PlacementRParen.isInvalid()) { 3107 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 3108 return ExprError(); 3109 } 3110 3111 if (PlacementArgs.empty()) { 3112 // Reset the placement locations. There was no placement. 3113 TypeIdParens = T.getRange(); 3114 PlacementLParen = PlacementRParen = SourceLocation(); 3115 } else { 3116 // We still need the type. 3117 if (Tok.is(tok::l_paren)) { 3118 BalancedDelimiterTracker T(*this, tok::l_paren); 3119 T.consumeOpen(); 3120 MaybeParseGNUAttributes(DeclaratorInfo); 3121 ParseSpecifierQualifierList(DS); 3122 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 3123 ParseDeclarator(DeclaratorInfo); 3124 T.consumeClose(); 3125 TypeIdParens = T.getRange(); 3126 } else { 3127 MaybeParseGNUAttributes(DeclaratorInfo); 3128 if (ParseCXXTypeSpecifierSeq(DS)) 3129 DeclaratorInfo.setInvalidType(true); 3130 else { 3131 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 3132 ParseDeclaratorInternal(DeclaratorInfo, 3133 &Parser::ParseDirectNewDeclarator); 3134 } 3135 } 3136 } 3137 } else { 3138 // A new-type-id is a simplified type-id, where essentially the 3139 // direct-declarator is replaced by a direct-new-declarator. 3140 MaybeParseGNUAttributes(DeclaratorInfo); 3141 if (ParseCXXTypeSpecifierSeq(DS)) 3142 DeclaratorInfo.setInvalidType(true); 3143 else { 3144 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 3145 ParseDeclaratorInternal(DeclaratorInfo, 3146 &Parser::ParseDirectNewDeclarator); 3147 } 3148 } 3149 if (DeclaratorInfo.isInvalidType()) { 3150 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 3151 return ExprError(); 3152 } 3153 3154 ExprResult Initializer; 3155 3156 if (Tok.is(tok::l_paren)) { 3157 SourceLocation ConstructorLParen, ConstructorRParen; 3158 ExprVector ConstructorArgs; 3159 BalancedDelimiterTracker T(*this, tok::l_paren); 3160 T.consumeOpen(); 3161 ConstructorLParen = T.getOpenLocation(); 3162 if (Tok.isNot(tok::r_paren)) { 3163 CommaLocsTy CommaLocs; 3164 auto RunSignatureHelp = [&]() { 3165 ParsedType TypeRep = 3166 Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 3167 QualType PreferredType; 3168 // ActOnTypeName might adjust DeclaratorInfo and return a null type even 3169 // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on 3170 // `new decltype(invalid) (^)`. 3171 if (TypeRep) 3172 PreferredType = Actions.ProduceConstructorSignatureHelp( 3173 TypeRep.get()->getCanonicalTypeInternal(), 3174 DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen, 3175 /*Braced=*/false); 3176 CalledSignatureHelp = true; 3177 return PreferredType; 3178 }; 3179 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] { 3180 PreferredType.enterFunctionArgument(Tok.getLocation(), 3181 RunSignatureHelp); 3182 })) { 3183 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 3184 RunSignatureHelp(); 3185 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 3186 return ExprError(); 3187 } 3188 } 3189 T.consumeClose(); 3190 ConstructorRParen = T.getCloseLocation(); 3191 if (ConstructorRParen.isInvalid()) { 3192 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 3193 return ExprError(); 3194 } 3195 Initializer = Actions.ActOnParenListExpr(ConstructorLParen, 3196 ConstructorRParen, 3197 ConstructorArgs); 3198 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { 3199 Diag(Tok.getLocation(), 3200 diag::warn_cxx98_compat_generalized_initializer_lists); 3201 Initializer = ParseBraceInitializer(); 3202 } 3203 if (Initializer.isInvalid()) 3204 return Initializer; 3205 3206 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, 3207 PlacementArgs, PlacementRParen, 3208 TypeIdParens, DeclaratorInfo, Initializer.get()); 3209 } 3210 3211 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be 3212 /// passed to ParseDeclaratorInternal. 3213 /// 3214 /// direct-new-declarator: 3215 /// '[' expression[opt] ']' 3216 /// direct-new-declarator '[' constant-expression ']' 3217 /// 3218 void Parser::ParseDirectNewDeclarator(Declarator &D) { 3219 // Parse the array dimensions. 3220 bool First = true; 3221 while (Tok.is(tok::l_square)) { 3222 // An array-size expression can't start with a lambda. 3223 if (CheckProhibitedCXX11Attribute()) 3224 continue; 3225 3226 BalancedDelimiterTracker T(*this, tok::l_square); 3227 T.consumeOpen(); 3228 3229 ExprResult Size = 3230 First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression()) 3231 : ParseConstantExpression(); 3232 if (Size.isInvalid()) { 3233 // Recover 3234 SkipUntil(tok::r_square, StopAtSemi); 3235 return; 3236 } 3237 First = false; 3238 3239 T.consumeClose(); 3240 3241 // Attributes here appertain to the array type. C++11 [expr.new]p5. 3242 ParsedAttributes Attrs(AttrFactory); 3243 MaybeParseCXX11Attributes(Attrs); 3244 3245 D.AddTypeInfo(DeclaratorChunk::getArray(0, 3246 /*isStatic=*/false, /*isStar=*/false, 3247 Size.get(), T.getOpenLocation(), 3248 T.getCloseLocation()), 3249 std::move(Attrs), T.getCloseLocation()); 3250 3251 if (T.getCloseLocation().isInvalid()) 3252 return; 3253 } 3254 } 3255 3256 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. 3257 /// This ambiguity appears in the syntax of the C++ new operator. 3258 /// 3259 /// new-expression: 3260 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 3261 /// new-initializer[opt] 3262 /// 3263 /// new-placement: 3264 /// '(' expression-list ')' 3265 /// 3266 bool Parser::ParseExpressionListOrTypeId( 3267 SmallVectorImpl<Expr*> &PlacementArgs, 3268 Declarator &D) { 3269 // The '(' was already consumed. 3270 if (isTypeIdInParens()) { 3271 ParseSpecifierQualifierList(D.getMutableDeclSpec()); 3272 D.SetSourceRange(D.getDeclSpec().getSourceRange()); 3273 ParseDeclarator(D); 3274 return D.isInvalidType(); 3275 } 3276 3277 // It's not a type, it has to be an expression list. 3278 // Discard the comma locations - ActOnCXXNew has enough parameters. 3279 CommaLocsTy CommaLocs; 3280 return ParseExpressionList(PlacementArgs, CommaLocs); 3281 } 3282 3283 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used 3284 /// to free memory allocated by new. 3285 /// 3286 /// This method is called to parse the 'delete' expression after the optional 3287 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true 3288 /// and "Start" is its location. Otherwise, "Start" is the location of the 3289 /// 'delete' token. 3290 /// 3291 /// delete-expression: 3292 /// '::'[opt] 'delete' cast-expression 3293 /// '::'[opt] 'delete' '[' ']' cast-expression 3294 ExprResult 3295 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { 3296 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); 3297 ConsumeToken(); // Consume 'delete' 3298 3299 // Array delete? 3300 bool ArrayDelete = false; 3301 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { 3302 // C++11 [expr.delete]p1: 3303 // Whenever the delete keyword is followed by empty square brackets, it 3304 // shall be interpreted as [array delete]. 3305 // [Footnote: A lambda expression with a lambda-introducer that consists 3306 // of empty square brackets can follow the delete keyword if 3307 // the lambda expression is enclosed in parentheses.] 3308 3309 const Token Next = GetLookAheadToken(2); 3310 3311 // Basic lookahead to check if we have a lambda expression. 3312 if (Next.isOneOf(tok::l_brace, tok::less) || 3313 (Next.is(tok::l_paren) && 3314 (GetLookAheadToken(3).is(tok::r_paren) || 3315 (GetLookAheadToken(3).is(tok::identifier) && 3316 GetLookAheadToken(4).is(tok::identifier))))) { 3317 TentativeParsingAction TPA(*this); 3318 SourceLocation LSquareLoc = Tok.getLocation(); 3319 SourceLocation RSquareLoc = NextToken().getLocation(); 3320 3321 // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this 3322 // case. 3323 SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch); 3324 SourceLocation RBraceLoc; 3325 bool EmitFixIt = false; 3326 if (Tok.is(tok::l_brace)) { 3327 ConsumeBrace(); 3328 SkipUntil(tok::r_brace, StopBeforeMatch); 3329 RBraceLoc = Tok.getLocation(); 3330 EmitFixIt = true; 3331 } 3332 3333 TPA.Revert(); 3334 3335 if (EmitFixIt) 3336 Diag(Start, diag::err_lambda_after_delete) 3337 << SourceRange(Start, RSquareLoc) 3338 << FixItHint::CreateInsertion(LSquareLoc, "(") 3339 << FixItHint::CreateInsertion( 3340 Lexer::getLocForEndOfToken( 3341 RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()), 3342 ")"); 3343 else 3344 Diag(Start, diag::err_lambda_after_delete) 3345 << SourceRange(Start, RSquareLoc); 3346 3347 // Warn that the non-capturing lambda isn't surrounded by parentheses 3348 // to disambiguate it from 'delete[]'. 3349 ExprResult Lambda = ParseLambdaExpression(); 3350 if (Lambda.isInvalid()) 3351 return ExprError(); 3352 3353 // Evaluate any postfix expressions used on the lambda. 3354 Lambda = ParsePostfixExpressionSuffix(Lambda); 3355 if (Lambda.isInvalid()) 3356 return ExprError(); 3357 return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false, 3358 Lambda.get()); 3359 } 3360 3361 ArrayDelete = true; 3362 BalancedDelimiterTracker T(*this, tok::l_square); 3363 3364 T.consumeOpen(); 3365 T.consumeClose(); 3366 if (T.getCloseLocation().isInvalid()) 3367 return ExprError(); 3368 } 3369 3370 ExprResult Operand(ParseCastExpression(AnyCastExpr)); 3371 if (Operand.isInvalid()) 3372 return Operand; 3373 3374 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get()); 3375 } 3376 3377 /// ParseRequiresExpression - Parse a C++2a requires-expression. 3378 /// C++2a [expr.prim.req]p1 3379 /// A requires-expression provides a concise way to express requirements on 3380 /// template arguments. A requirement is one that can be checked by name 3381 /// lookup (6.4) or by checking properties of types and expressions. 3382 /// 3383 /// requires-expression: 3384 /// 'requires' requirement-parameter-list[opt] requirement-body 3385 /// 3386 /// requirement-parameter-list: 3387 /// '(' parameter-declaration-clause[opt] ')' 3388 /// 3389 /// requirement-body: 3390 /// '{' requirement-seq '}' 3391 /// 3392 /// requirement-seq: 3393 /// requirement 3394 /// requirement-seq requirement 3395 /// 3396 /// requirement: 3397 /// simple-requirement 3398 /// type-requirement 3399 /// compound-requirement 3400 /// nested-requirement 3401 ExprResult Parser::ParseRequiresExpression() { 3402 assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword"); 3403 SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires' 3404 3405 llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls; 3406 if (Tok.is(tok::l_paren)) { 3407 // requirement parameter list is present. 3408 ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope | 3409 Scope::DeclScope); 3410 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3411 Parens.consumeOpen(); 3412 if (!Tok.is(tok::r_paren)) { 3413 ParsedAttributes FirstArgAttrs(getAttrFactory()); 3414 SourceLocation EllipsisLoc; 3415 llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters; 3416 ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr, 3417 FirstArgAttrs, LocalParameters, 3418 EllipsisLoc); 3419 if (EllipsisLoc.isValid()) 3420 Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis); 3421 for (auto &ParamInfo : LocalParameters) 3422 LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param)); 3423 } 3424 Parens.consumeClose(); 3425 } 3426 3427 BalancedDelimiterTracker Braces(*this, tok::l_brace); 3428 if (Braces.expectAndConsume()) 3429 return ExprError(); 3430 3431 // Start of requirement list 3432 llvm::SmallVector<concepts::Requirement *, 2> Requirements; 3433 3434 // C++2a [expr.prim.req]p2 3435 // Expressions appearing within a requirement-body are unevaluated operands. 3436 EnterExpressionEvaluationContext Ctx( 3437 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3438 3439 ParseScope BodyScope(this, Scope::DeclScope); 3440 RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr( 3441 RequiresKWLoc, LocalParameterDecls, getCurScope()); 3442 3443 if (Tok.is(tok::r_brace)) { 3444 // Grammar does not allow an empty body. 3445 // requirement-body: 3446 // { requirement-seq } 3447 // requirement-seq: 3448 // requirement 3449 // requirement-seq requirement 3450 Diag(Tok, diag::err_empty_requires_expr); 3451 // Continue anyway and produce a requires expr with no requirements. 3452 } else { 3453 while (!Tok.is(tok::r_brace)) { 3454 switch (Tok.getKind()) { 3455 case tok::l_brace: { 3456 // Compound requirement 3457 // C++ [expr.prim.req.compound] 3458 // compound-requirement: 3459 // '{' expression '}' 'noexcept'[opt] 3460 // return-type-requirement[opt] ';' 3461 // return-type-requirement: 3462 // trailing-return-type 3463 // '->' cv-qualifier-seq[opt] constrained-parameter 3464 // cv-qualifier-seq[opt] abstract-declarator[opt] 3465 BalancedDelimiterTracker ExprBraces(*this, tok::l_brace); 3466 ExprBraces.consumeOpen(); 3467 ExprResult Expression = 3468 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3469 if (!Expression.isUsable()) { 3470 ExprBraces.skipToEnd(); 3471 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3472 break; 3473 } 3474 if (ExprBraces.consumeClose()) 3475 ExprBraces.skipToEnd(); 3476 3477 concepts::Requirement *Req = nullptr; 3478 SourceLocation NoexceptLoc; 3479 TryConsumeToken(tok::kw_noexcept, NoexceptLoc); 3480 if (Tok.is(tok::semi)) { 3481 Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc); 3482 if (Req) 3483 Requirements.push_back(Req); 3484 break; 3485 } 3486 if (!TryConsumeToken(tok::arrow)) 3487 // User probably forgot the arrow, remind them and try to continue. 3488 Diag(Tok, diag::err_requires_expr_missing_arrow) 3489 << FixItHint::CreateInsertion(Tok.getLocation(), "->"); 3490 // Try to parse a 'type-constraint' 3491 if (TryAnnotateTypeConstraint()) { 3492 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3493 break; 3494 } 3495 if (!isTypeConstraintAnnotation()) { 3496 Diag(Tok, diag::err_requires_expr_expected_type_constraint); 3497 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3498 break; 3499 } 3500 CXXScopeSpec SS; 3501 if (Tok.is(tok::annot_cxxscope)) { 3502 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 3503 Tok.getAnnotationRange(), 3504 SS); 3505 ConsumeAnnotationToken(); 3506 } 3507 3508 Req = Actions.ActOnCompoundRequirement( 3509 Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok), 3510 TemplateParameterDepth); 3511 ConsumeAnnotationToken(); 3512 if (Req) 3513 Requirements.push_back(Req); 3514 break; 3515 } 3516 default: { 3517 bool PossibleRequiresExprInSimpleRequirement = false; 3518 if (Tok.is(tok::kw_requires)) { 3519 auto IsNestedRequirement = [&] { 3520 RevertingTentativeParsingAction TPA(*this); 3521 ConsumeToken(); // 'requires' 3522 if (Tok.is(tok::l_brace)) 3523 // This is a requires expression 3524 // requires (T t) { 3525 // requires { t++; }; 3526 // ... ^ 3527 // } 3528 return false; 3529 if (Tok.is(tok::l_paren)) { 3530 // This might be the parameter list of a requires expression 3531 ConsumeParen(); 3532 auto Res = TryParseParameterDeclarationClause(); 3533 if (Res != TPResult::False) { 3534 // Skip to the closing parenthesis 3535 // FIXME: Don't traverse these tokens twice (here and in 3536 // TryParseParameterDeclarationClause). 3537 unsigned Depth = 1; 3538 while (Depth != 0) { 3539 if (Tok.is(tok::l_paren)) 3540 Depth++; 3541 else if (Tok.is(tok::r_paren)) 3542 Depth--; 3543 ConsumeAnyToken(); 3544 } 3545 // requires (T t) { 3546 // requires () ? 3547 // ... ^ 3548 // - OR - 3549 // requires (int x) ? 3550 // ... ^ 3551 // } 3552 if (Tok.is(tok::l_brace)) 3553 // requires (...) { 3554 // ^ - a requires expression as a 3555 // simple-requirement. 3556 return false; 3557 } 3558 } 3559 return true; 3560 }; 3561 if (IsNestedRequirement()) { 3562 ConsumeToken(); 3563 // Nested requirement 3564 // C++ [expr.prim.req.nested] 3565 // nested-requirement: 3566 // 'requires' constraint-expression ';' 3567 ExprResult ConstraintExpr = 3568 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression()); 3569 if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) { 3570 SkipUntil(tok::semi, tok::r_brace, 3571 SkipUntilFlags::StopBeforeMatch); 3572 break; 3573 } 3574 if (auto *Req = 3575 Actions.ActOnNestedRequirement(ConstraintExpr.get())) 3576 Requirements.push_back(Req); 3577 else { 3578 SkipUntil(tok::semi, tok::r_brace, 3579 SkipUntilFlags::StopBeforeMatch); 3580 break; 3581 } 3582 break; 3583 } else 3584 PossibleRequiresExprInSimpleRequirement = true; 3585 } else if (Tok.is(tok::kw_typename)) { 3586 // This might be 'typename T::value_type;' (a type requirement) or 3587 // 'typename T::value_type{};' (a simple requirement). 3588 TentativeParsingAction TPA(*this); 3589 3590 // We need to consume the typename to allow 'requires { typename a; }' 3591 SourceLocation TypenameKWLoc = ConsumeToken(); 3592 if (TryAnnotateOptionalCXXScopeToken()) { 3593 TPA.Commit(); 3594 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3595 break; 3596 } 3597 CXXScopeSpec SS; 3598 if (Tok.is(tok::annot_cxxscope)) { 3599 Actions.RestoreNestedNameSpecifierAnnotation( 3600 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); 3601 ConsumeAnnotationToken(); 3602 } 3603 3604 if (Tok.isOneOf(tok::identifier, tok::annot_template_id) && 3605 !NextToken().isOneOf(tok::l_brace, tok::l_paren)) { 3606 TPA.Commit(); 3607 SourceLocation NameLoc = Tok.getLocation(); 3608 IdentifierInfo *II = nullptr; 3609 TemplateIdAnnotation *TemplateId = nullptr; 3610 if (Tok.is(tok::identifier)) { 3611 II = Tok.getIdentifierInfo(); 3612 ConsumeToken(); 3613 } else { 3614 TemplateId = takeTemplateIdAnnotation(Tok); 3615 ConsumeAnnotationToken(); 3616 if (TemplateId->isInvalid()) 3617 break; 3618 } 3619 3620 if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS, 3621 NameLoc, II, 3622 TemplateId)) { 3623 Requirements.push_back(Req); 3624 } 3625 break; 3626 } 3627 TPA.Revert(); 3628 } 3629 // Simple requirement 3630 // C++ [expr.prim.req.simple] 3631 // simple-requirement: 3632 // expression ';' 3633 SourceLocation StartLoc = Tok.getLocation(); 3634 ExprResult Expression = 3635 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3636 if (!Expression.isUsable()) { 3637 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3638 break; 3639 } 3640 if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement) 3641 Diag(StartLoc, diag::err_requires_expr_in_simple_requirement) 3642 << FixItHint::CreateInsertion(StartLoc, "requires"); 3643 if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get())) 3644 Requirements.push_back(Req); 3645 else { 3646 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3647 break; 3648 } 3649 // User may have tried to put some compound requirement stuff here 3650 if (Tok.is(tok::kw_noexcept)) { 3651 Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept) 3652 << FixItHint::CreateInsertion(StartLoc, "{") 3653 << FixItHint::CreateInsertion(Tok.getLocation(), "}"); 3654 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3655 break; 3656 } 3657 break; 3658 } 3659 } 3660 if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) { 3661 SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch); 3662 TryConsumeToken(tok::semi); 3663 break; 3664 } 3665 } 3666 if (Requirements.empty()) { 3667 // Don't emit an empty requires expr here to avoid confusing the user with 3668 // other diagnostics quoting an empty requires expression they never 3669 // wrote. 3670 Braces.consumeClose(); 3671 Actions.ActOnFinishRequiresExpr(); 3672 return ExprError(); 3673 } 3674 } 3675 Braces.consumeClose(); 3676 Actions.ActOnFinishRequiresExpr(); 3677 return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls, 3678 Requirements, Braces.getCloseLocation()); 3679 } 3680 3681 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { 3682 switch (kind) { 3683 default: llvm_unreachable("Not a known type trait"); 3684 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 3685 case tok::kw_ ## Spelling: return UTT_ ## Name; 3686 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 3687 case tok::kw_ ## Spelling: return BTT_ ## Name; 3688 #include "clang/Basic/TokenKinds.def" 3689 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 3690 case tok::kw_ ## Spelling: return TT_ ## Name; 3691 #include "clang/Basic/TokenKinds.def" 3692 } 3693 } 3694 3695 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { 3696 switch (kind) { 3697 default: 3698 llvm_unreachable("Not a known array type trait"); 3699 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \ 3700 case tok::kw_##Spelling: \ 3701 return ATT_##Name; 3702 #include "clang/Basic/TokenKinds.def" 3703 } 3704 } 3705 3706 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { 3707 switch (kind) { 3708 default: 3709 llvm_unreachable("Not a known unary expression trait."); 3710 #define EXPRESSION_TRAIT(Spelling, Name, Key) \ 3711 case tok::kw_##Spelling: \ 3712 return ET_##Name; 3713 #include "clang/Basic/TokenKinds.def" 3714 } 3715 } 3716 3717 static unsigned TypeTraitArity(tok::TokenKind kind) { 3718 switch (kind) { 3719 default: llvm_unreachable("Not a known type trait"); 3720 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N; 3721 #include "clang/Basic/TokenKinds.def" 3722 } 3723 } 3724 3725 /// Parse the built-in type-trait pseudo-functions that allow 3726 /// implementation of the TR1/C++11 type traits templates. 3727 /// 3728 /// primary-expression: 3729 /// unary-type-trait '(' type-id ')' 3730 /// binary-type-trait '(' type-id ',' type-id ')' 3731 /// type-trait '(' type-id-seq ')' 3732 /// 3733 /// type-id-seq: 3734 /// type-id ...[opt] type-id-seq[opt] 3735 /// 3736 ExprResult Parser::ParseTypeTrait() { 3737 tok::TokenKind Kind = Tok.getKind(); 3738 unsigned Arity = TypeTraitArity(Kind); 3739 3740 SourceLocation Loc = ConsumeToken(); 3741 3742 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3743 if (Parens.expectAndConsume()) 3744 return ExprError(); 3745 3746 SmallVector<ParsedType, 2> Args; 3747 do { 3748 // Parse the next type. 3749 TypeResult Ty = ParseTypeName(); 3750 if (Ty.isInvalid()) { 3751 Parens.skipToEnd(); 3752 return ExprError(); 3753 } 3754 3755 // Parse the ellipsis, if present. 3756 if (Tok.is(tok::ellipsis)) { 3757 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); 3758 if (Ty.isInvalid()) { 3759 Parens.skipToEnd(); 3760 return ExprError(); 3761 } 3762 } 3763 3764 // Add this type to the list of arguments. 3765 Args.push_back(Ty.get()); 3766 } while (TryConsumeToken(tok::comma)); 3767 3768 if (Parens.consumeClose()) 3769 return ExprError(); 3770 3771 SourceLocation EndLoc = Parens.getCloseLocation(); 3772 3773 if (Arity && Args.size() != Arity) { 3774 Diag(EndLoc, diag::err_type_trait_arity) 3775 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc); 3776 return ExprError(); 3777 } 3778 3779 if (!Arity && Args.empty()) { 3780 Diag(EndLoc, diag::err_type_trait_arity) 3781 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc); 3782 return ExprError(); 3783 } 3784 3785 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc); 3786 } 3787 3788 /// ParseArrayTypeTrait - Parse the built-in array type-trait 3789 /// pseudo-functions. 3790 /// 3791 /// primary-expression: 3792 /// [Embarcadero] '__array_rank' '(' type-id ')' 3793 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' 3794 /// 3795 ExprResult Parser::ParseArrayTypeTrait() { 3796 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); 3797 SourceLocation Loc = ConsumeToken(); 3798 3799 BalancedDelimiterTracker T(*this, tok::l_paren); 3800 if (T.expectAndConsume()) 3801 return ExprError(); 3802 3803 TypeResult Ty = ParseTypeName(); 3804 if (Ty.isInvalid()) { 3805 SkipUntil(tok::comma, StopAtSemi); 3806 SkipUntil(tok::r_paren, StopAtSemi); 3807 return ExprError(); 3808 } 3809 3810 switch (ATT) { 3811 case ATT_ArrayRank: { 3812 T.consumeClose(); 3813 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr, 3814 T.getCloseLocation()); 3815 } 3816 case ATT_ArrayExtent: { 3817 if (ExpectAndConsume(tok::comma)) { 3818 SkipUntil(tok::r_paren, StopAtSemi); 3819 return ExprError(); 3820 } 3821 3822 ExprResult DimExpr = ParseExpression(); 3823 T.consumeClose(); 3824 3825 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), 3826 T.getCloseLocation()); 3827 } 3828 } 3829 llvm_unreachable("Invalid ArrayTypeTrait!"); 3830 } 3831 3832 /// ParseExpressionTrait - Parse built-in expression-trait 3833 /// pseudo-functions like __is_lvalue_expr( xxx ). 3834 /// 3835 /// primary-expression: 3836 /// [Embarcadero] expression-trait '(' expression ')' 3837 /// 3838 ExprResult Parser::ParseExpressionTrait() { 3839 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); 3840 SourceLocation Loc = ConsumeToken(); 3841 3842 BalancedDelimiterTracker T(*this, tok::l_paren); 3843 if (T.expectAndConsume()) 3844 return ExprError(); 3845 3846 ExprResult Expr = ParseExpression(); 3847 3848 T.consumeClose(); 3849 3850 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), 3851 T.getCloseLocation()); 3852 } 3853 3854 3855 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a 3856 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate 3857 /// based on the context past the parens. 3858 ExprResult 3859 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, 3860 ParsedType &CastTy, 3861 BalancedDelimiterTracker &Tracker, 3862 ColonProtectionRAIIObject &ColonProt) { 3863 assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); 3864 assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); 3865 assert(isTypeIdInParens() && "Not a type-id!"); 3866 3867 ExprResult Result(true); 3868 CastTy = nullptr; 3869 3870 // We need to disambiguate a very ugly part of the C++ syntax: 3871 // 3872 // (T())x; - type-id 3873 // (T())*x; - type-id 3874 // (T())/x; - expression 3875 // (T()); - expression 3876 // 3877 // The bad news is that we cannot use the specialized tentative parser, since 3878 // it can only verify that the thing inside the parens can be parsed as 3879 // type-id, it is not useful for determining the context past the parens. 3880 // 3881 // The good news is that the parser can disambiguate this part without 3882 // making any unnecessary Action calls. 3883 // 3884 // It uses a scheme similar to parsing inline methods. The parenthesized 3885 // tokens are cached, the context that follows is determined (possibly by 3886 // parsing a cast-expression), and then we re-introduce the cached tokens 3887 // into the token stream and parse them appropriately. 3888 3889 ParenParseOption ParseAs; 3890 CachedTokens Toks; 3891 3892 // Store the tokens of the parentheses. We will parse them after we determine 3893 // the context that follows them. 3894 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { 3895 // We didn't find the ')' we expected. 3896 Tracker.consumeClose(); 3897 return ExprError(); 3898 } 3899 3900 if (Tok.is(tok::l_brace)) { 3901 ParseAs = CompoundLiteral; 3902 } else { 3903 bool NotCastExpr; 3904 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { 3905 NotCastExpr = true; 3906 } else { 3907 // Try parsing the cast-expression that may follow. 3908 // If it is not a cast-expression, NotCastExpr will be true and no token 3909 // will be consumed. 3910 ColonProt.restore(); 3911 Result = ParseCastExpression(AnyCastExpr, 3912 false/*isAddressofOperand*/, 3913 NotCastExpr, 3914 // type-id has priority. 3915 IsTypeCast); 3916 } 3917 3918 // If we parsed a cast-expression, it's really a type-id, otherwise it's 3919 // an expression. 3920 ParseAs = NotCastExpr ? SimpleExpr : CastExpr; 3921 } 3922 3923 // Create a fake EOF to mark end of Toks buffer. 3924 Token AttrEnd; 3925 AttrEnd.startToken(); 3926 AttrEnd.setKind(tok::eof); 3927 AttrEnd.setLocation(Tok.getLocation()); 3928 AttrEnd.setEofData(Toks.data()); 3929 Toks.push_back(AttrEnd); 3930 3931 // The current token should go after the cached tokens. 3932 Toks.push_back(Tok); 3933 // Re-enter the stored parenthesized tokens into the token stream, so we may 3934 // parse them now. 3935 PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true, 3936 /*IsReinject*/ true); 3937 // Drop the current token and bring the first cached one. It's the same token 3938 // as when we entered this function. 3939 ConsumeAnyToken(); 3940 3941 if (ParseAs >= CompoundLiteral) { 3942 // Parse the type declarator. 3943 DeclSpec DS(AttrFactory); 3944 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 3945 { 3946 ColonProtectionRAIIObject InnerColonProtection(*this); 3947 ParseSpecifierQualifierList(DS); 3948 ParseDeclarator(DeclaratorInfo); 3949 } 3950 3951 // Match the ')'. 3952 Tracker.consumeClose(); 3953 ColonProt.restore(); 3954 3955 // Consume EOF marker for Toks buffer. 3956 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()); 3957 ConsumeAnyToken(); 3958 3959 if (ParseAs == CompoundLiteral) { 3960 ExprType = CompoundLiteral; 3961 if (DeclaratorInfo.isInvalidType()) 3962 return ExprError(); 3963 3964 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3965 return ParseCompoundLiteralExpression(Ty.get(), 3966 Tracker.getOpenLocation(), 3967 Tracker.getCloseLocation()); 3968 } 3969 3970 // We parsed '(' type-id ')' and the thing after it wasn't a '{'. 3971 assert(ParseAs == CastExpr); 3972 3973 if (DeclaratorInfo.isInvalidType()) 3974 return ExprError(); 3975 3976 // Result is what ParseCastExpression returned earlier. 3977 if (!Result.isInvalid()) 3978 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(), 3979 DeclaratorInfo, CastTy, 3980 Tracker.getCloseLocation(), Result.get()); 3981 return Result; 3982 } 3983 3984 // Not a compound literal, and not followed by a cast-expression. 3985 assert(ParseAs == SimpleExpr); 3986 3987 ExprType = SimpleExpr; 3988 Result = ParseExpression(); 3989 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3990 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 3991 Tok.getLocation(), Result.get()); 3992 3993 // Match the ')'. 3994 if (Result.isInvalid()) { 3995 while (Tok.isNot(tok::eof)) 3996 ConsumeAnyToken(); 3997 assert(Tok.getEofData() == AttrEnd.getEofData()); 3998 ConsumeAnyToken(); 3999 return ExprError(); 4000 } 4001 4002 Tracker.consumeClose(); 4003 // Consume EOF marker for Toks buffer. 4004 assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()); 4005 ConsumeAnyToken(); 4006 return Result; 4007 } 4008 4009 /// Parse a __builtin_bit_cast(T, E). 4010 ExprResult Parser::ParseBuiltinBitCast() { 4011 SourceLocation KWLoc = ConsumeToken(); 4012 4013 BalancedDelimiterTracker T(*this, tok::l_paren); 4014 if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast")) 4015 return ExprError(); 4016 4017 // Parse the common declaration-specifiers piece. 4018 DeclSpec DS(AttrFactory); 4019 ParseSpecifierQualifierList(DS); 4020 4021 // Parse the abstract-declarator, if present. 4022 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 4023 ParseDeclarator(DeclaratorInfo); 4024 4025 if (ExpectAndConsume(tok::comma)) { 4026 Diag(Tok.getLocation(), diag::err_expected) << tok::comma; 4027 SkipUntil(tok::r_paren, StopAtSemi); 4028 return ExprError(); 4029 } 4030 4031 ExprResult Operand = ParseExpression(); 4032 4033 if (T.consumeClose()) 4034 return ExprError(); 4035 4036 if (Operand.isInvalid() || DeclaratorInfo.isInvalidType()) 4037 return ExprError(); 4038 4039 return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand, 4040 T.getCloseLocation()); 4041 } 4042