xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExprCXX.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Lex/LiteralSupport.h"
18 #include "clang/Parse/ParseDiagnostic.h"
19 #include "clang/Parse/Parser.h"
20 #include "clang/Parse/RAIIObjectsForParser.h"
21 #include "clang/Sema/DeclSpec.h"
22 #include "clang/Sema/ParsedTemplate.h"
23 #include "clang/Sema/Scope.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include <numeric>
26 
27 using namespace clang;
28 
29 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
30   switch (Kind) {
31     // template name
32     case tok::unknown:             return 0;
33     // casts
34     case tok::kw_addrspace_cast:   return 1;
35     case tok::kw_const_cast:       return 2;
36     case tok::kw_dynamic_cast:     return 3;
37     case tok::kw_reinterpret_cast: return 4;
38     case tok::kw_static_cast:      return 5;
39     default:
40       llvm_unreachable("Unknown type for digraph error message.");
41   }
42 }
43 
44 // Are the two tokens adjacent in the same source file?
45 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
46   SourceManager &SM = PP.getSourceManager();
47   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
48   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
49   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
50 }
51 
52 // Suggest fixit for "<::" after a cast.
53 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
54                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
55   // Pull '<:' and ':' off token stream.
56   if (!AtDigraph)
57     PP.Lex(DigraphToken);
58   PP.Lex(ColonToken);
59 
60   SourceRange Range;
61   Range.setBegin(DigraphToken.getLocation());
62   Range.setEnd(ColonToken.getLocation());
63   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
64       << SelectDigraphErrorMessage(Kind)
65       << FixItHint::CreateReplacement(Range, "< ::");
66 
67   // Update token information to reflect their change in token type.
68   ColonToken.setKind(tok::coloncolon);
69   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
70   ColonToken.setLength(2);
71   DigraphToken.setKind(tok::less);
72   DigraphToken.setLength(1);
73 
74   // Push new tokens back to token stream.
75   PP.EnterToken(ColonToken, /*IsReinject*/ true);
76   if (!AtDigraph)
77     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
78 }
79 
80 // Check for '<::' which should be '< ::' instead of '[:' when following
81 // a template name.
82 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
83                                         bool EnteringContext,
84                                         IdentifierInfo &II, CXXScopeSpec &SS) {
85   if (!Next.is(tok::l_square) || Next.getLength() != 2)
86     return;
87 
88   Token SecondToken = GetLookAheadToken(2);
89   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
90     return;
91 
92   TemplateTy Template;
93   UnqualifiedId TemplateName;
94   TemplateName.setIdentifier(&II, Tok.getLocation());
95   bool MemberOfUnknownSpecialization;
96   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
97                               TemplateName, ObjectType, EnteringContext,
98                               Template, MemberOfUnknownSpecialization))
99     return;
100 
101   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
102              /*AtDigraph*/false);
103 }
104 
105 /// Parse global scope or nested-name-specifier if present.
106 ///
107 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
108 /// may be preceded by '::'). Note that this routine will not parse ::new or
109 /// ::delete; it will just leave them in the token stream.
110 ///
111 ///       '::'[opt] nested-name-specifier
112 ///       '::'
113 ///
114 ///       nested-name-specifier:
115 ///         type-name '::'
116 ///         namespace-name '::'
117 ///         nested-name-specifier identifier '::'
118 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
119 ///
120 ///
121 /// \param SS the scope specifier that will be set to the parsed
122 /// nested-name-specifier (or empty)
123 ///
124 /// \param ObjectType if this nested-name-specifier is being parsed following
125 /// the "." or "->" of a member access expression, this parameter provides the
126 /// type of the object whose members are being accessed.
127 ///
128 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
129 /// expression, indicates whether the original subexpressions had any errors.
130 /// When true, diagnostics for missing 'template' keyword will be supressed.
131 ///
132 /// \param EnteringContext whether we will be entering into the context of
133 /// the nested-name-specifier after parsing it.
134 ///
135 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
136 /// indicates whether this nested-name-specifier may be part of a
137 /// pseudo-destructor name. In this case, the flag will be set false
138 /// if we don't actually end up parsing a destructor name. Moreover,
139 /// if we do end up determining that we are parsing a destructor name,
140 /// the last component of the nested-name-specifier is not parsed as
141 /// part of the scope specifier.
142 ///
143 /// \param IsTypename If \c true, this nested-name-specifier is known to be
144 /// part of a type name. This is used to improve error recovery.
145 ///
146 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
147 /// filled in with the leading identifier in the last component of the
148 /// nested-name-specifier, if any.
149 ///
150 /// \param OnlyNamespace If true, only considers namespaces in lookup.
151 ///
152 ///
153 /// \returns true if there was an error parsing a scope specifier
154 bool Parser::ParseOptionalCXXScopeSpecifier(
155     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
156     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
157     IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
158   assert(getLangOpts().CPlusPlus &&
159          "Call sites of this function should be guarded by checking for C++");
160 
161   if (Tok.is(tok::annot_cxxscope)) {
162     assert(!LastII && "want last identifier but have already annotated scope");
163     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
164     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
165                                                  Tok.getAnnotationRange(),
166                                                  SS);
167     ConsumeAnnotationToken();
168     return false;
169   }
170 
171   // Has to happen before any "return false"s in this function.
172   bool CheckForDestructor = false;
173   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
174     CheckForDestructor = true;
175     *MayBePseudoDestructor = false;
176   }
177 
178   if (LastII)
179     *LastII = nullptr;
180 
181   bool HasScopeSpecifier = false;
182 
183   if (Tok.is(tok::coloncolon)) {
184     // ::new and ::delete aren't nested-name-specifiers.
185     tok::TokenKind NextKind = NextToken().getKind();
186     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
187       return false;
188 
189     if (NextKind == tok::l_brace) {
190       // It is invalid to have :: {, consume the scope qualifier and pretend
191       // like we never saw it.
192       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
193     } else {
194       // '::' - Global scope qualifier.
195       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
196         return true;
197 
198       HasScopeSpecifier = true;
199     }
200   }
201 
202   if (Tok.is(tok::kw___super)) {
203     SourceLocation SuperLoc = ConsumeToken();
204     if (!Tok.is(tok::coloncolon)) {
205       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
206       return true;
207     }
208 
209     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
210   }
211 
212   if (!HasScopeSpecifier &&
213       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
214     DeclSpec DS(AttrFactory);
215     SourceLocation DeclLoc = Tok.getLocation();
216     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
217 
218     SourceLocation CCLoc;
219     // Work around a standard defect: 'decltype(auto)::' is not a
220     // nested-name-specifier.
221     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
222         !TryConsumeToken(tok::coloncolon, CCLoc)) {
223       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
224       return false;
225     }
226 
227     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
228       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
229 
230     HasScopeSpecifier = true;
231   }
232 
233   // Preferred type might change when parsing qualifiers, we need the original.
234   auto SavedType = PreferredType;
235   while (true) {
236     if (HasScopeSpecifier) {
237       if (Tok.is(tok::code_completion)) {
238         cutOffParsing();
239         // Code completion for a nested-name-specifier, where the code
240         // completion token follows the '::'.
241         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
242                                         InUsingDeclaration, ObjectType.get(),
243                                         SavedType.get(SS.getBeginLoc()));
244         // Include code completion token into the range of the scope otherwise
245         // when we try to annotate the scope tokens the dangling code completion
246         // token will cause assertion in
247         // Preprocessor::AnnotatePreviousCachedTokens.
248         SS.setEndLoc(Tok.getLocation());
249         return true;
250       }
251 
252       // C++ [basic.lookup.classref]p5:
253       //   If the qualified-id has the form
254       //
255       //       ::class-name-or-namespace-name::...
256       //
257       //   the class-name-or-namespace-name is looked up in global scope as a
258       //   class-name or namespace-name.
259       //
260       // To implement this, we clear out the object type as soon as we've
261       // seen a leading '::' or part of a nested-name-specifier.
262       ObjectType = nullptr;
263     }
264 
265     // nested-name-specifier:
266     //   nested-name-specifier 'template'[opt] simple-template-id '::'
267 
268     // Parse the optional 'template' keyword, then make sure we have
269     // 'identifier <' after it.
270     if (Tok.is(tok::kw_template)) {
271       // If we don't have a scope specifier or an object type, this isn't a
272       // nested-name-specifier, since they aren't allowed to start with
273       // 'template'.
274       if (!HasScopeSpecifier && !ObjectType)
275         break;
276 
277       TentativeParsingAction TPA(*this);
278       SourceLocation TemplateKWLoc = ConsumeToken();
279 
280       UnqualifiedId TemplateName;
281       if (Tok.is(tok::identifier)) {
282         // Consume the identifier.
283         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
284         ConsumeToken();
285       } else if (Tok.is(tok::kw_operator)) {
286         // We don't need to actually parse the unqualified-id in this case,
287         // because a simple-template-id cannot start with 'operator', but
288         // go ahead and parse it anyway for consistency with the case where
289         // we already annotated the template-id.
290         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
291                                        TemplateName)) {
292           TPA.Commit();
293           break;
294         }
295 
296         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
297             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
298           Diag(TemplateName.getSourceRange().getBegin(),
299                diag::err_id_after_template_in_nested_name_spec)
300             << TemplateName.getSourceRange();
301           TPA.Commit();
302           break;
303         }
304       } else {
305         TPA.Revert();
306         break;
307       }
308 
309       // If the next token is not '<', we have a qualified-id that refers
310       // to a template name, such as T::template apply, but is not a
311       // template-id.
312       if (Tok.isNot(tok::less)) {
313         TPA.Revert();
314         break;
315       }
316 
317       // Commit to parsing the template-id.
318       TPA.Commit();
319       TemplateTy Template;
320       TemplateNameKind TNK = Actions.ActOnTemplateName(
321           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
322           EnteringContext, Template, /*AllowInjectedClassName*/ true);
323       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
324                                   TemplateName, false))
325         return true;
326 
327       continue;
328     }
329 
330     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
331       // We have
332       //
333       //   template-id '::'
334       //
335       // So we need to check whether the template-id is a simple-template-id of
336       // the right kind (it should name a type or be dependent), and then
337       // convert it into a type within the nested-name-specifier.
338       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
339       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
340         *MayBePseudoDestructor = true;
341         return false;
342       }
343 
344       if (LastII)
345         *LastII = TemplateId->Name;
346 
347       // Consume the template-id token.
348       ConsumeAnnotationToken();
349 
350       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
351       SourceLocation CCLoc = ConsumeToken();
352 
353       HasScopeSpecifier = true;
354 
355       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
356                                          TemplateId->NumArgs);
357 
358       if (TemplateId->isInvalid() ||
359           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
360                                               SS,
361                                               TemplateId->TemplateKWLoc,
362                                               TemplateId->Template,
363                                               TemplateId->TemplateNameLoc,
364                                               TemplateId->LAngleLoc,
365                                               TemplateArgsPtr,
366                                               TemplateId->RAngleLoc,
367                                               CCLoc,
368                                               EnteringContext)) {
369         SourceLocation StartLoc
370           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
371                                       : TemplateId->TemplateNameLoc;
372         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
373       }
374 
375       continue;
376     }
377 
378     // The rest of the nested-name-specifier possibilities start with
379     // tok::identifier.
380     if (Tok.isNot(tok::identifier))
381       break;
382 
383     IdentifierInfo &II = *Tok.getIdentifierInfo();
384 
385     // nested-name-specifier:
386     //   type-name '::'
387     //   namespace-name '::'
388     //   nested-name-specifier identifier '::'
389     Token Next = NextToken();
390     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
391                                     ObjectType);
392 
393     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
394     // and emit a fixit hint for it.
395     if (Next.is(tok::colon) && !ColonIsSacred) {
396       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
397                                             EnteringContext) &&
398           // If the token after the colon isn't an identifier, it's still an
399           // error, but they probably meant something else strange so don't
400           // recover like this.
401           PP.LookAhead(1).is(tok::identifier)) {
402         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
403           << FixItHint::CreateReplacement(Next.getLocation(), "::");
404         // Recover as if the user wrote '::'.
405         Next.setKind(tok::coloncolon);
406       }
407     }
408 
409     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
410       // It is invalid to have :: {, consume the scope qualifier and pretend
411       // like we never saw it.
412       Token Identifier = Tok; // Stash away the identifier.
413       ConsumeToken();         // Eat the identifier, current token is now '::'.
414       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
415           << tok::identifier;
416       UnconsumeToken(Identifier); // Stick the identifier back.
417       Next = NextToken();         // Point Next at the '{' token.
418     }
419 
420     if (Next.is(tok::coloncolon)) {
421       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
422         *MayBePseudoDestructor = true;
423         return false;
424       }
425 
426       if (ColonIsSacred) {
427         const Token &Next2 = GetLookAheadToken(2);
428         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
429             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
430           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
431               << Next2.getName()
432               << FixItHint::CreateReplacement(Next.getLocation(), ":");
433           Token ColonColon;
434           PP.Lex(ColonColon);
435           ColonColon.setKind(tok::colon);
436           PP.EnterToken(ColonColon, /*IsReinject*/ true);
437           break;
438         }
439       }
440 
441       if (LastII)
442         *LastII = &II;
443 
444       // We have an identifier followed by a '::'. Lookup this name
445       // as the name in a nested-name-specifier.
446       Token Identifier = Tok;
447       SourceLocation IdLoc = ConsumeToken();
448       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
449              "NextToken() not working properly!");
450       Token ColonColon = Tok;
451       SourceLocation CCLoc = ConsumeToken();
452 
453       bool IsCorrectedToColon = false;
454       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
455       if (Actions.ActOnCXXNestedNameSpecifier(
456               getCurScope(), IdInfo, EnteringContext, SS, false,
457               CorrectionFlagPtr, OnlyNamespace)) {
458         // Identifier is not recognized as a nested name, but we can have
459         // mistyped '::' instead of ':'.
460         if (CorrectionFlagPtr && IsCorrectedToColon) {
461           ColonColon.setKind(tok::colon);
462           PP.EnterToken(Tok, /*IsReinject*/ true);
463           PP.EnterToken(ColonColon, /*IsReinject*/ true);
464           Tok = Identifier;
465           break;
466         }
467         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
468       }
469       HasScopeSpecifier = true;
470       continue;
471     }
472 
473     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
474 
475     // nested-name-specifier:
476     //   type-name '<'
477     if (Next.is(tok::less)) {
478 
479       TemplateTy Template;
480       UnqualifiedId TemplateName;
481       TemplateName.setIdentifier(&II, Tok.getLocation());
482       bool MemberOfUnknownSpecialization;
483       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
484                                               /*hasTemplateKeyword=*/false,
485                                                         TemplateName,
486                                                         ObjectType,
487                                                         EnteringContext,
488                                                         Template,
489                                               MemberOfUnknownSpecialization)) {
490         // If lookup didn't find anything, we treat the name as a template-name
491         // anyway. C++20 requires this, and in prior language modes it improves
492         // error recovery. But before we commit to this, check that we actually
493         // have something that looks like a template-argument-list next.
494         if (!IsTypename && TNK == TNK_Undeclared_template &&
495             isTemplateArgumentList(1) == TPResult::False)
496           break;
497 
498         // We have found a template name, so annotate this token
499         // with a template-id annotation. We do not permit the
500         // template-id to be translated into a type annotation,
501         // because some clients (e.g., the parsing of class template
502         // specializations) still want to see the original template-id
503         // token, and it might not be a type at all (e.g. a concept name in a
504         // type-constraint).
505         ConsumeToken();
506         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
507                                     TemplateName, false))
508           return true;
509         continue;
510       }
511 
512       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
513           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
514         // If we had errors before, ObjectType can be dependent even without any
515         // templates. Do not report missing template keyword in that case.
516         if (!ObjectHadErrors) {
517           // We have something like t::getAs<T>, where getAs is a
518           // member of an unknown specialization. However, this will only
519           // parse correctly as a template, so suggest the keyword 'template'
520           // before 'getAs' and treat this as a dependent template name.
521           unsigned DiagID = diag::err_missing_dependent_template_keyword;
522           if (getLangOpts().MicrosoftExt)
523             DiagID = diag::warn_missing_dependent_template_keyword;
524 
525           Diag(Tok.getLocation(), DiagID)
526               << II.getName()
527               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
528         }
529 
530         SourceLocation TemplateNameLoc = ConsumeToken();
531 
532         TemplateNameKind TNK = Actions.ActOnTemplateName(
533             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
534             EnteringContext, Template, /*AllowInjectedClassName*/ true);
535         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
536                                     TemplateName, false))
537           return true;
538 
539         continue;
540       }
541     }
542 
543     // We don't have any tokens that form the beginning of a
544     // nested-name-specifier, so we're done.
545     break;
546   }
547 
548   // Even if we didn't see any pieces of a nested-name-specifier, we
549   // still check whether there is a tilde in this position, which
550   // indicates a potential pseudo-destructor.
551   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
552     *MayBePseudoDestructor = true;
553 
554   return false;
555 }
556 
557 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
558                                            bool isAddressOfOperand,
559                                            Token &Replacement) {
560   ExprResult E;
561 
562   // We may have already annotated this id-expression.
563   switch (Tok.getKind()) {
564   case tok::annot_non_type: {
565     NamedDecl *ND = getNonTypeAnnotation(Tok);
566     SourceLocation Loc = ConsumeAnnotationToken();
567     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
568     break;
569   }
570 
571   case tok::annot_non_type_dependent: {
572     IdentifierInfo *II = getIdentifierAnnotation(Tok);
573     SourceLocation Loc = ConsumeAnnotationToken();
574 
575     // This is only the direct operand of an & operator if it is not
576     // followed by a postfix-expression suffix.
577     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
578       isAddressOfOperand = false;
579 
580     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
581                                                       isAddressOfOperand);
582     break;
583   }
584 
585   case tok::annot_non_type_undeclared: {
586     assert(SS.isEmpty() &&
587            "undeclared non-type annotation should be unqualified");
588     IdentifierInfo *II = getIdentifierAnnotation(Tok);
589     SourceLocation Loc = ConsumeAnnotationToken();
590     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
591     break;
592   }
593 
594   default:
595     SourceLocation TemplateKWLoc;
596     UnqualifiedId Name;
597     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
598                            /*ObjectHadErrors=*/false,
599                            /*EnteringContext=*/false,
600                            /*AllowDestructorName=*/false,
601                            /*AllowConstructorName=*/false,
602                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
603       return ExprError();
604 
605     // This is only the direct operand of an & operator if it is not
606     // followed by a postfix-expression suffix.
607     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
608       isAddressOfOperand = false;
609 
610     E = Actions.ActOnIdExpression(
611         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
612         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
613         &Replacement);
614     break;
615   }
616 
617   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
618     checkPotentialAngleBracket(E);
619   return E;
620 }
621 
622 /// ParseCXXIdExpression - Handle id-expression.
623 ///
624 ///       id-expression:
625 ///         unqualified-id
626 ///         qualified-id
627 ///
628 ///       qualified-id:
629 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
630 ///         '::' identifier
631 ///         '::' operator-function-id
632 ///         '::' template-id
633 ///
634 /// NOTE: The standard specifies that, for qualified-id, the parser does not
635 /// expect:
636 ///
637 ///   '::' conversion-function-id
638 ///   '::' '~' class-name
639 ///
640 /// This may cause a slight inconsistency on diagnostics:
641 ///
642 /// class C {};
643 /// namespace A {}
644 /// void f() {
645 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
646 ///                  // namespace.
647 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
648 /// }
649 ///
650 /// We simplify the parser a bit and make it work like:
651 ///
652 ///       qualified-id:
653 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
654 ///         '::' unqualified-id
655 ///
656 /// That way Sema can handle and report similar errors for namespaces and the
657 /// global scope.
658 ///
659 /// The isAddressOfOperand parameter indicates that this id-expression is a
660 /// direct operand of the address-of operator. This is, besides member contexts,
661 /// the only place where a qualified-id naming a non-static class member may
662 /// appear.
663 ///
664 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
665   // qualified-id:
666   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
667   //   '::' unqualified-id
668   //
669   CXXScopeSpec SS;
670   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
671                                  /*ObjectHadErrors=*/false,
672                                  /*EnteringContext=*/false);
673 
674   Token Replacement;
675   ExprResult Result =
676       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
677   if (Result.isUnset()) {
678     // If the ExprResult is valid but null, then typo correction suggested a
679     // keyword replacement that needs to be reparsed.
680     UnconsumeToken(Replacement);
681     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
682   }
683   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
684                               "for a previous keyword suggestion");
685   return Result;
686 }
687 
688 /// ParseLambdaExpression - Parse a C++11 lambda expression.
689 ///
690 ///       lambda-expression:
691 ///         lambda-introducer lambda-declarator compound-statement
692 ///         lambda-introducer '<' template-parameter-list '>'
693 ///             requires-clause[opt] lambda-declarator compound-statement
694 ///
695 ///       lambda-introducer:
696 ///         '[' lambda-capture[opt] ']'
697 ///
698 ///       lambda-capture:
699 ///         capture-default
700 ///         capture-list
701 ///         capture-default ',' capture-list
702 ///
703 ///       capture-default:
704 ///         '&'
705 ///         '='
706 ///
707 ///       capture-list:
708 ///         capture
709 ///         capture-list ',' capture
710 ///
711 ///       capture:
712 ///         simple-capture
713 ///         init-capture     [C++1y]
714 ///
715 ///       simple-capture:
716 ///         identifier
717 ///         '&' identifier
718 ///         'this'
719 ///
720 ///       init-capture:      [C++1y]
721 ///         identifier initializer
722 ///         '&' identifier initializer
723 ///
724 ///       lambda-declarator:
725 ///         lambda-specifiers     [C++2b]
726 ///         '(' parameter-declaration-clause ')' lambda-specifiers
727 ///             requires-clause[opt]
728 ///
729 ///       lambda-specifiers:
730 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
731 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
732 ///
733 ExprResult Parser::ParseLambdaExpression() {
734   // Parse lambda-introducer.
735   LambdaIntroducer Intro;
736   if (ParseLambdaIntroducer(Intro)) {
737     SkipUntil(tok::r_square, StopAtSemi);
738     SkipUntil(tok::l_brace, StopAtSemi);
739     SkipUntil(tok::r_brace, StopAtSemi);
740     return ExprError();
741   }
742 
743   return ParseLambdaExpressionAfterIntroducer(Intro);
744 }
745 
746 /// Use lookahead and potentially tentative parsing to determine if we are
747 /// looking at a C++11 lambda expression, and parse it if we are.
748 ///
749 /// If we are not looking at a lambda expression, returns ExprError().
750 ExprResult Parser::TryParseLambdaExpression() {
751   assert(getLangOpts().CPlusPlus11
752          && Tok.is(tok::l_square)
753          && "Not at the start of a possible lambda expression.");
754 
755   const Token Next = NextToken();
756   if (Next.is(tok::eof)) // Nothing else to lookup here...
757     return ExprEmpty();
758 
759   const Token After = GetLookAheadToken(2);
760   // If lookahead indicates this is a lambda...
761   if (Next.is(tok::r_square) ||     // []
762       Next.is(tok::equal) ||        // [=
763       (Next.is(tok::amp) &&         // [&] or [&,
764        After.isOneOf(tok::r_square, tok::comma)) ||
765       (Next.is(tok::identifier) &&  // [identifier]
766        After.is(tok::r_square)) ||
767       Next.is(tok::ellipsis)) {     // [...
768     return ParseLambdaExpression();
769   }
770 
771   // If lookahead indicates an ObjC message send...
772   // [identifier identifier
773   if (Next.is(tok::identifier) && After.is(tok::identifier))
774     return ExprEmpty();
775 
776   // Here, we're stuck: lambda introducers and Objective-C message sends are
777   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
778   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
779   // writing two routines to parse a lambda introducer, just try to parse
780   // a lambda introducer first, and fall back if that fails.
781   LambdaIntroducer Intro;
782   {
783     TentativeParsingAction TPA(*this);
784     LambdaIntroducerTentativeParse Tentative;
785     if (ParseLambdaIntroducer(Intro, &Tentative)) {
786       TPA.Commit();
787       return ExprError();
788     }
789 
790     switch (Tentative) {
791     case LambdaIntroducerTentativeParse::Success:
792       TPA.Commit();
793       break;
794 
795     case LambdaIntroducerTentativeParse::Incomplete:
796       // Didn't fully parse the lambda-introducer, try again with a
797       // non-tentative parse.
798       TPA.Revert();
799       Intro = LambdaIntroducer();
800       if (ParseLambdaIntroducer(Intro))
801         return ExprError();
802       break;
803 
804     case LambdaIntroducerTentativeParse::MessageSend:
805     case LambdaIntroducerTentativeParse::Invalid:
806       // Not a lambda-introducer, might be a message send.
807       TPA.Revert();
808       return ExprEmpty();
809     }
810   }
811 
812   return ParseLambdaExpressionAfterIntroducer(Intro);
813 }
814 
815 /// Parse a lambda introducer.
816 /// \param Intro A LambdaIntroducer filled in with information about the
817 ///        contents of the lambda-introducer.
818 /// \param Tentative If non-null, we are disambiguating between a
819 ///        lambda-introducer and some other construct. In this mode, we do not
820 ///        produce any diagnostics or take any other irreversible action unless
821 ///        we're sure that this is a lambda-expression.
822 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
823 ///         the caller should bail out / recover.
824 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
825                                    LambdaIntroducerTentativeParse *Tentative) {
826   if (Tentative)
827     *Tentative = LambdaIntroducerTentativeParse::Success;
828 
829   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
830   BalancedDelimiterTracker T(*this, tok::l_square);
831   T.consumeOpen();
832 
833   Intro.Range.setBegin(T.getOpenLocation());
834 
835   bool First = true;
836 
837   // Produce a diagnostic if we're not tentatively parsing; otherwise track
838   // that our parse has failed.
839   auto Invalid = [&](llvm::function_ref<void()> Action) {
840     if (Tentative) {
841       *Tentative = LambdaIntroducerTentativeParse::Invalid;
842       return false;
843     }
844     Action();
845     return true;
846   };
847 
848   // Perform some irreversible action if this is a non-tentative parse;
849   // otherwise note that our actions were incomplete.
850   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
851     if (Tentative)
852       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
853     else
854       Action();
855   };
856 
857   // Parse capture-default.
858   if (Tok.is(tok::amp) &&
859       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
860     Intro.Default = LCD_ByRef;
861     Intro.DefaultLoc = ConsumeToken();
862     First = false;
863     if (!Tok.getIdentifierInfo()) {
864       // This can only be a lambda; no need for tentative parsing any more.
865       // '[[and]]' can still be an attribute, though.
866       Tentative = nullptr;
867     }
868   } else if (Tok.is(tok::equal)) {
869     Intro.Default = LCD_ByCopy;
870     Intro.DefaultLoc = ConsumeToken();
871     First = false;
872     Tentative = nullptr;
873   }
874 
875   while (Tok.isNot(tok::r_square)) {
876     if (!First) {
877       if (Tok.isNot(tok::comma)) {
878         // Provide a completion for a lambda introducer here. Except
879         // in Objective-C, where this is Almost Surely meant to be a message
880         // send. In that case, fail here and let the ObjC message
881         // expression parser perform the completion.
882         if (Tok.is(tok::code_completion) &&
883             !(getLangOpts().ObjC && Tentative)) {
884           cutOffParsing();
885           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
886                                                /*AfterAmpersand=*/false);
887           break;
888         }
889 
890         return Invalid([&] {
891           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
892         });
893       }
894       ConsumeToken();
895     }
896 
897     if (Tok.is(tok::code_completion)) {
898       cutOffParsing();
899       // If we're in Objective-C++ and we have a bare '[', then this is more
900       // likely to be a message receiver.
901       if (getLangOpts().ObjC && Tentative && First)
902         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
903       else
904         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
905                                              /*AfterAmpersand=*/false);
906       break;
907     }
908 
909     First = false;
910 
911     // Parse capture.
912     LambdaCaptureKind Kind = LCK_ByCopy;
913     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
914     SourceLocation Loc;
915     IdentifierInfo *Id = nullptr;
916     SourceLocation EllipsisLocs[4];
917     ExprResult Init;
918     SourceLocation LocStart = Tok.getLocation();
919 
920     if (Tok.is(tok::star)) {
921       Loc = ConsumeToken();
922       if (Tok.is(tok::kw_this)) {
923         ConsumeToken();
924         Kind = LCK_StarThis;
925       } else {
926         return Invalid([&] {
927           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
928         });
929       }
930     } else if (Tok.is(tok::kw_this)) {
931       Kind = LCK_This;
932       Loc = ConsumeToken();
933     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
934                NextToken().isOneOf(tok::comma, tok::r_square) &&
935                Intro.Default == LCD_None) {
936       // We have a lone "&" or "=" which is either a misplaced capture-default
937       // or the start of a capture (in the "&" case) with the rest of the
938       // capture missing. Both are an error but a misplaced capture-default
939       // is more likely if we don't already have a capture default.
940       return Invalid(
941           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
942     } else {
943       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
944 
945       if (Tok.is(tok::amp)) {
946         Kind = LCK_ByRef;
947         ConsumeToken();
948 
949         if (Tok.is(tok::code_completion)) {
950           cutOffParsing();
951           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
952                                                /*AfterAmpersand=*/true);
953           break;
954         }
955       }
956 
957       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
958 
959       if (Tok.is(tok::identifier)) {
960         Id = Tok.getIdentifierInfo();
961         Loc = ConsumeToken();
962       } else if (Tok.is(tok::kw_this)) {
963         return Invalid([&] {
964           // FIXME: Suggest a fixit here.
965           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
966         });
967       } else {
968         return Invalid([&] {
969           Diag(Tok.getLocation(), diag::err_expected_capture);
970         });
971       }
972 
973       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
974 
975       if (Tok.is(tok::l_paren)) {
976         BalancedDelimiterTracker Parens(*this, tok::l_paren);
977         Parens.consumeOpen();
978 
979         InitKind = LambdaCaptureInitKind::DirectInit;
980 
981         ExprVector Exprs;
982         CommaLocsTy Commas;
983         if (Tentative) {
984           Parens.skipToEnd();
985           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
986         } else if (ParseExpressionList(Exprs, Commas)) {
987           Parens.skipToEnd();
988           Init = ExprError();
989         } else {
990           Parens.consumeClose();
991           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
992                                             Parens.getCloseLocation(),
993                                             Exprs);
994         }
995       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
996         // Each lambda init-capture forms its own full expression, which clears
997         // Actions.MaybeODRUseExprs. So create an expression evaluation context
998         // to save the necessary state, and restore it later.
999         EnterExpressionEvaluationContext EC(
1000             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1001 
1002         if (TryConsumeToken(tok::equal))
1003           InitKind = LambdaCaptureInitKind::CopyInit;
1004         else
1005           InitKind = LambdaCaptureInitKind::ListInit;
1006 
1007         if (!Tentative) {
1008           Init = ParseInitializer();
1009         } else if (Tok.is(tok::l_brace)) {
1010           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1011           Braces.consumeOpen();
1012           Braces.skipToEnd();
1013           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1014         } else {
1015           // We're disambiguating this:
1016           //
1017           //   [..., x = expr
1018           //
1019           // We need to find the end of the following expression in order to
1020           // determine whether this is an Obj-C message send's receiver, a
1021           // C99 designator, or a lambda init-capture.
1022           //
1023           // Parse the expression to find where it ends, and annotate it back
1024           // onto the tokens. We would have parsed this expression the same way
1025           // in either case: both the RHS of an init-capture and the RHS of an
1026           // assignment expression are parsed as an initializer-clause, and in
1027           // neither case can anything be added to the scope between the '[' and
1028           // here.
1029           //
1030           // FIXME: This is horrible. Adding a mechanism to skip an expression
1031           // would be much cleaner.
1032           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1033           // that instead. (And if we see a ':' with no matching '?', we can
1034           // classify this as an Obj-C message send.)
1035           SourceLocation StartLoc = Tok.getLocation();
1036           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1037           Init = ParseInitializer();
1038           if (!Init.isInvalid())
1039             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1040 
1041           if (Tok.getLocation() != StartLoc) {
1042             // Back out the lexing of the token after the initializer.
1043             PP.RevertCachedTokens(1);
1044 
1045             // Replace the consumed tokens with an appropriate annotation.
1046             Tok.setLocation(StartLoc);
1047             Tok.setKind(tok::annot_primary_expr);
1048             setExprAnnotation(Tok, Init);
1049             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1050             PP.AnnotateCachedTokens(Tok);
1051 
1052             // Consume the annotated initializer.
1053             ConsumeAnnotationToken();
1054           }
1055         }
1056       }
1057 
1058       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1059     }
1060 
1061     // Check if this is a message send before we act on a possible init-capture.
1062     if (Tentative && Tok.is(tok::identifier) &&
1063         NextToken().isOneOf(tok::colon, tok::r_square)) {
1064       // This can only be a message send. We're done with disambiguation.
1065       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1066       return false;
1067     }
1068 
1069     // Ensure that any ellipsis was in the right place.
1070     SourceLocation EllipsisLoc;
1071     if (llvm::any_of(EllipsisLocs,
1072                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1073       // The '...' should appear before the identifier in an init-capture, and
1074       // after the identifier otherwise.
1075       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1076       SourceLocation *ExpectedEllipsisLoc =
1077           !InitCapture      ? &EllipsisLocs[2] :
1078           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1079                               &EllipsisLocs[0];
1080       EllipsisLoc = *ExpectedEllipsisLoc;
1081 
1082       unsigned DiagID = 0;
1083       if (EllipsisLoc.isInvalid()) {
1084         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1085         for (SourceLocation Loc : EllipsisLocs) {
1086           if (Loc.isValid())
1087             EllipsisLoc = Loc;
1088         }
1089       } else {
1090         unsigned NumEllipses = std::accumulate(
1091             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1092             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1093         if (NumEllipses > 1)
1094           DiagID = diag::err_lambda_capture_multiple_ellipses;
1095       }
1096       if (DiagID) {
1097         NonTentativeAction([&] {
1098           // Point the diagnostic at the first misplaced ellipsis.
1099           SourceLocation DiagLoc;
1100           for (SourceLocation &Loc : EllipsisLocs) {
1101             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1102               DiagLoc = Loc;
1103               break;
1104             }
1105           }
1106           assert(DiagLoc.isValid() && "no location for diagnostic");
1107 
1108           // Issue the diagnostic and produce fixits showing where the ellipsis
1109           // should have been written.
1110           auto &&D = Diag(DiagLoc, DiagID);
1111           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1112             SourceLocation ExpectedLoc =
1113                 InitCapture ? Loc
1114                             : Lexer::getLocForEndOfToken(
1115                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1116             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1117           }
1118           for (SourceLocation &Loc : EllipsisLocs) {
1119             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1120               D << FixItHint::CreateRemoval(Loc);
1121           }
1122         });
1123       }
1124     }
1125 
1126     // Process the init-capture initializers now rather than delaying until we
1127     // form the lambda-expression so that they can be handled in the context
1128     // enclosing the lambda-expression, rather than in the context of the
1129     // lambda-expression itself.
1130     ParsedType InitCaptureType;
1131     if (Init.isUsable())
1132       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1133     if (Init.isUsable()) {
1134       NonTentativeAction([&] {
1135         // Get the pointer and store it in an lvalue, so we can use it as an
1136         // out argument.
1137         Expr *InitExpr = Init.get();
1138         // This performs any lvalue-to-rvalue conversions if necessary, which
1139         // can affect what gets captured in the containing decl-context.
1140         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1141             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1142         Init = InitExpr;
1143       });
1144     }
1145 
1146     SourceLocation LocEnd = PrevTokLocation;
1147 
1148     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1149                      InitCaptureType, SourceRange(LocStart, LocEnd));
1150   }
1151 
1152   T.consumeClose();
1153   Intro.Range.setEnd(T.getCloseLocation());
1154   return false;
1155 }
1156 
1157 static void tryConsumeLambdaSpecifierToken(Parser &P,
1158                                            SourceLocation &MutableLoc,
1159                                            SourceLocation &ConstexprLoc,
1160                                            SourceLocation &ConstevalLoc,
1161                                            SourceLocation &DeclEndLoc) {
1162   assert(MutableLoc.isInvalid());
1163   assert(ConstexprLoc.isInvalid());
1164   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1165   // to the final of those locations. Emit an error if we have multiple
1166   // copies of those keywords and recover.
1167 
1168   while (true) {
1169     switch (P.getCurToken().getKind()) {
1170     case tok::kw_mutable: {
1171       if (MutableLoc.isValid()) {
1172         P.Diag(P.getCurToken().getLocation(),
1173                diag::err_lambda_decl_specifier_repeated)
1174             << 0 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1175       }
1176       MutableLoc = P.ConsumeToken();
1177       DeclEndLoc = MutableLoc;
1178       break /*switch*/;
1179     }
1180     case tok::kw_constexpr:
1181       if (ConstexprLoc.isValid()) {
1182         P.Diag(P.getCurToken().getLocation(),
1183                diag::err_lambda_decl_specifier_repeated)
1184             << 1 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1185       }
1186       ConstexprLoc = P.ConsumeToken();
1187       DeclEndLoc = ConstexprLoc;
1188       break /*switch*/;
1189     case tok::kw_consteval:
1190       if (ConstevalLoc.isValid()) {
1191         P.Diag(P.getCurToken().getLocation(),
1192                diag::err_lambda_decl_specifier_repeated)
1193             << 2 << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1194       }
1195       ConstevalLoc = P.ConsumeToken();
1196       DeclEndLoc = ConstevalLoc;
1197       break /*switch*/;
1198     default:
1199       return;
1200     }
1201   }
1202 }
1203 
1204 static void
1205 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1206                                   DeclSpec &DS) {
1207   if (ConstexprLoc.isValid()) {
1208     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1209                              ? diag::ext_constexpr_on_lambda_cxx17
1210                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1211     const char *PrevSpec = nullptr;
1212     unsigned DiagID = 0;
1213     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1214                         DiagID);
1215     assert(PrevSpec == nullptr && DiagID == 0 &&
1216            "Constexpr cannot have been set previously!");
1217   }
1218 }
1219 
1220 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1221                                               SourceLocation ConstevalLoc,
1222                                               DeclSpec &DS) {
1223   if (ConstevalLoc.isValid()) {
1224     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1225     const char *PrevSpec = nullptr;
1226     unsigned DiagID = 0;
1227     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1228                         DiagID);
1229     if (DiagID != 0)
1230       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1231   }
1232 }
1233 
1234 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1235 /// expression.
1236 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1237                      LambdaIntroducer &Intro) {
1238   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1239   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1240 
1241   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1242                                 "lambda expression parsing");
1243 
1244 
1245 
1246   // FIXME: Call into Actions to add any init-capture declarations to the
1247   // scope while parsing the lambda-declarator and compound-statement.
1248 
1249   // Parse lambda-declarator[opt].
1250   DeclSpec DS(AttrFactory);
1251   Declarator D(DS, DeclaratorContext::LambdaExpr);
1252   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1253   Actions.PushLambdaScope();
1254 
1255   ParsedAttributes Attr(AttrFactory);
1256   if (getLangOpts().CUDA) {
1257     // In CUDA code, GNU attributes are allowed to appear immediately after the
1258     // "[...]", even if there is no "(...)" before the lambda body.
1259     MaybeParseGNUAttributes(D);
1260   }
1261 
1262   // Helper to emit a warning if we see a CUDA host/device/global attribute
1263   // after '(...)'. nvcc doesn't accept this.
1264   auto WarnIfHasCUDATargetAttr = [&] {
1265     if (getLangOpts().CUDA)
1266       for (const ParsedAttr &A : Attr)
1267         if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1268             A.getKind() == ParsedAttr::AT_CUDAHost ||
1269             A.getKind() == ParsedAttr::AT_CUDAGlobal)
1270           Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1271               << A.getAttrName()->getName();
1272   };
1273 
1274   MultiParseScope TemplateParamScope(*this);
1275   if (Tok.is(tok::less)) {
1276     Diag(Tok, getLangOpts().CPlusPlus20
1277                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1278                   : diag::ext_lambda_template_parameter_list);
1279 
1280     SmallVector<NamedDecl*, 4> TemplateParams;
1281     SourceLocation LAngleLoc, RAngleLoc;
1282     if (ParseTemplateParameters(TemplateParamScope,
1283                                 CurTemplateDepthTracker.getDepth(),
1284                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1285       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1286       return ExprError();
1287     }
1288 
1289     if (TemplateParams.empty()) {
1290       Diag(RAngleLoc,
1291            diag::err_lambda_template_parameter_list_empty);
1292     } else {
1293       ExprResult RequiresClause;
1294       if (TryConsumeToken(tok::kw_requires)) {
1295         RequiresClause =
1296             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1297                 /*IsTrailingRequiresClause=*/false));
1298         if (RequiresClause.isInvalid())
1299           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1300       }
1301 
1302       Actions.ActOnLambdaExplicitTemplateParameterList(
1303           LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1304       ++CurTemplateDepthTracker;
1305     }
1306   }
1307 
1308   // Implement WG21 P2173, which allows attributes immediately before the
1309   // lambda declarator and applies them to the corresponding function operator
1310   // or operator template declaration. We accept this as a conforming extension
1311   // in all language modes that support lambdas.
1312   if (isCXX11AttributeSpecifier()) {
1313     Diag(Tok, getLangOpts().CPlusPlus2b
1314                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1315                   : diag::ext_decl_attrs_on_lambda);
1316     MaybeParseCXX11Attributes(D);
1317   }
1318 
1319   TypeResult TrailingReturnType;
1320   SourceLocation TrailingReturnTypeLoc;
1321 
1322   auto ParseLambdaSpecifiers =
1323       [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1324           MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1325           SourceLocation EllipsisLoc) {
1326         SourceLocation DeclEndLoc = RParenLoc;
1327 
1328         // GNU-style attributes must be parsed before the mutable specifier to
1329         // be compatible with GCC. MSVC-style attributes must be parsed before
1330         // the mutable specifier to be compatible with MSVC.
1331         MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1332 
1333         // Parse mutable-opt and/or constexpr-opt or consteval-opt, and update
1334         // the DeclEndLoc.
1335         SourceLocation MutableLoc;
1336         SourceLocation ConstexprLoc;
1337         SourceLocation ConstevalLoc;
1338         tryConsumeLambdaSpecifierToken(*this, MutableLoc, ConstexprLoc,
1339                                        ConstevalLoc, DeclEndLoc);
1340 
1341         addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1342         addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1343         // Parse exception-specification[opt].
1344         ExceptionSpecificationType ESpecType = EST_None;
1345         SourceRange ESpecRange;
1346         SmallVector<ParsedType, 2> DynamicExceptions;
1347         SmallVector<SourceRange, 2> DynamicExceptionRanges;
1348         ExprResult NoexceptExpr;
1349         CachedTokens *ExceptionSpecTokens;
1350         ESpecType = tryParseExceptionSpecification(
1351             /*Delayed=*/false, ESpecRange, DynamicExceptions,
1352             DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1353 
1354         if (ESpecType != EST_None)
1355           DeclEndLoc = ESpecRange.getEnd();
1356 
1357         // Parse attribute-specifier[opt].
1358         MaybeParseCXX11Attributes(Attr, &DeclEndLoc);
1359 
1360         // Parse OpenCL addr space attribute.
1361         if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1362                         tok::kw___constant, tok::kw___generic)) {
1363           ParseOpenCLQualifiers(DS.getAttributes());
1364           ConsumeToken();
1365         }
1366 
1367         SourceLocation FunLocalRangeEnd = DeclEndLoc;
1368 
1369         // Parse trailing-return-type[opt].
1370         if (Tok.is(tok::arrow)) {
1371           FunLocalRangeEnd = Tok.getLocation();
1372           SourceRange Range;
1373           TrailingReturnType = ParseTrailingReturnType(
1374               Range, /*MayBeFollowedByDirectInit*/ false);
1375           TrailingReturnTypeLoc = Range.getBegin();
1376           if (Range.getEnd().isValid())
1377             DeclEndLoc = Range.getEnd();
1378         }
1379 
1380         SourceLocation NoLoc;
1381         D.AddTypeInfo(
1382             DeclaratorChunk::getFunction(
1383                 /*HasProto=*/true,
1384                 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1385                 ParamInfo.size(), EllipsisLoc, RParenLoc,
1386                 /*RefQualifierIsLvalueRef=*/true,
1387                 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1388                 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1389                 DynamicExceptions.size(),
1390                 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1391                 /*ExceptionSpecTokens*/ nullptr,
1392                 /*DeclsInPrototype=*/None, LParenLoc, FunLocalRangeEnd, D,
1393                 TrailingReturnType, TrailingReturnTypeLoc, &DS),
1394             std::move(Attr), DeclEndLoc);
1395       };
1396 
1397   if (Tok.is(tok::l_paren)) {
1398     ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1399                                         Scope::FunctionDeclarationScope |
1400                                         Scope::DeclScope);
1401 
1402     BalancedDelimiterTracker T(*this, tok::l_paren);
1403     T.consumeOpen();
1404     SourceLocation LParenLoc = T.getOpenLocation();
1405 
1406     // Parse parameter-declaration-clause.
1407     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1408     SourceLocation EllipsisLoc;
1409 
1410     if (Tok.isNot(tok::r_paren)) {
1411       Actions.RecordParsingTemplateParameterDepth(
1412           CurTemplateDepthTracker.getOriginalDepth());
1413 
1414       ParseParameterDeclarationClause(D.getContext(), Attr, ParamInfo,
1415                                       EllipsisLoc);
1416       // For a generic lambda, each 'auto' within the parameter declaration
1417       // clause creates a template type parameter, so increment the depth.
1418       // If we've parsed any explicit template parameters, then the depth will
1419       // have already been incremented. So we make sure that at most a single
1420       // depth level is added.
1421       if (Actions.getCurGenericLambda())
1422         CurTemplateDepthTracker.setAddedDepth(1);
1423     }
1424 
1425     T.consumeClose();
1426 
1427     // Parse lambda-specifiers.
1428     ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1429                           ParamInfo, EllipsisLoc);
1430 
1431     // Parse requires-clause[opt].
1432     if (Tok.is(tok::kw_requires))
1433       ParseTrailingRequiresClause(D);
1434   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1435                          tok::kw_constexpr, tok::kw_consteval,
1436                          tok::kw___private, tok::kw___global, tok::kw___local,
1437                          tok::kw___constant, tok::kw___generic,
1438                          tok::kw_requires, tok::kw_noexcept) ||
1439              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1440     if (!getLangOpts().CPlusPlus2b)
1441       // It's common to forget that one needs '()' before 'mutable', an
1442       // attribute specifier, the result type, or the requires clause. Deal with
1443       // this.
1444       Diag(Tok, diag::ext_lambda_missing_parens)
1445           << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1446 
1447     SourceLocation NoLoc;
1448     // Parse lambda-specifiers.
1449     std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1450     ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1451                           EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1452   }
1453 
1454   WarnIfHasCUDATargetAttr();
1455 
1456   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1457   // it.
1458   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1459                         Scope::CompoundStmtScope;
1460   ParseScope BodyScope(this, ScopeFlags);
1461 
1462   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1463 
1464   // Parse compound-statement.
1465   if (!Tok.is(tok::l_brace)) {
1466     Diag(Tok, diag::err_expected_lambda_body);
1467     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1468     return ExprError();
1469   }
1470 
1471   StmtResult Stmt(ParseCompoundStatementBody());
1472   BodyScope.Exit();
1473   TemplateParamScope.Exit();
1474 
1475   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1476     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1477 
1478   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1479   return ExprError();
1480 }
1481 
1482 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1483 /// type.
1484 ///
1485 ///       postfix-expression: [C++ 5.2p1]
1486 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1487 ///         'static_cast' '<' type-name '>' '(' expression ')'
1488 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1489 ///         'const_cast' '<' type-name '>' '(' expression ')'
1490 ///
1491 /// C++ for OpenCL s2.3.1 adds:
1492 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
1493 ExprResult Parser::ParseCXXCasts() {
1494   tok::TokenKind Kind = Tok.getKind();
1495   const char *CastName = nullptr; // For error messages
1496 
1497   switch (Kind) {
1498   default: llvm_unreachable("Unknown C++ cast!");
1499   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1500   case tok::kw_const_cast:       CastName = "const_cast";       break;
1501   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1502   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1503   case tok::kw_static_cast:      CastName = "static_cast";      break;
1504   }
1505 
1506   SourceLocation OpLoc = ConsumeToken();
1507   SourceLocation LAngleBracketLoc = Tok.getLocation();
1508 
1509   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1510   // diagnose error, suggest fix, and recover parsing.
1511   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1512     Token Next = NextToken();
1513     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1514       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1515   }
1516 
1517   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1518     return ExprError();
1519 
1520   // Parse the common declaration-specifiers piece.
1521   DeclSpec DS(AttrFactory);
1522   ParseSpecifierQualifierList(DS);
1523 
1524   // Parse the abstract-declarator, if present.
1525   Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
1526   ParseDeclarator(DeclaratorInfo);
1527 
1528   SourceLocation RAngleBracketLoc = Tok.getLocation();
1529 
1530   if (ExpectAndConsume(tok::greater))
1531     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1532 
1533   BalancedDelimiterTracker T(*this, tok::l_paren);
1534 
1535   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1536     return ExprError();
1537 
1538   ExprResult Result = ParseExpression();
1539 
1540   // Match the ')'.
1541   T.consumeClose();
1542 
1543   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1544     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1545                                        LAngleBracketLoc, DeclaratorInfo,
1546                                        RAngleBracketLoc,
1547                                        T.getOpenLocation(), Result.get(),
1548                                        T.getCloseLocation());
1549 
1550   return Result;
1551 }
1552 
1553 /// ParseCXXTypeid - This handles the C++ typeid expression.
1554 ///
1555 ///       postfix-expression: [C++ 5.2p1]
1556 ///         'typeid' '(' expression ')'
1557 ///         'typeid' '(' type-id ')'
1558 ///
1559 ExprResult Parser::ParseCXXTypeid() {
1560   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1561 
1562   SourceLocation OpLoc = ConsumeToken();
1563   SourceLocation LParenLoc, RParenLoc;
1564   BalancedDelimiterTracker T(*this, tok::l_paren);
1565 
1566   // typeid expressions are always parenthesized.
1567   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1568     return ExprError();
1569   LParenLoc = T.getOpenLocation();
1570 
1571   ExprResult Result;
1572 
1573   // C++0x [expr.typeid]p3:
1574   //   When typeid is applied to an expression other than an lvalue of a
1575   //   polymorphic class type [...] The expression is an unevaluated
1576   //   operand (Clause 5).
1577   //
1578   // Note that we can't tell whether the expression is an lvalue of a
1579   // polymorphic class type until after we've parsed the expression; we
1580   // speculatively assume the subexpression is unevaluated, and fix it up
1581   // later.
1582   //
1583   // We enter the unevaluated context before trying to determine whether we
1584   // have a type-id, because the tentative parse logic will try to resolve
1585   // names, and must treat them as unevaluated.
1586   EnterExpressionEvaluationContext Unevaluated(
1587       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1588       Sema::ReuseLambdaContextDecl);
1589 
1590   if (isTypeIdInParens()) {
1591     TypeResult Ty = ParseTypeName();
1592 
1593     // Match the ')'.
1594     T.consumeClose();
1595     RParenLoc = T.getCloseLocation();
1596     if (Ty.isInvalid() || RParenLoc.isInvalid())
1597       return ExprError();
1598 
1599     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1600                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1601   } else {
1602     Result = ParseExpression();
1603 
1604     // Match the ')'.
1605     if (Result.isInvalid())
1606       SkipUntil(tok::r_paren, StopAtSemi);
1607     else {
1608       T.consumeClose();
1609       RParenLoc = T.getCloseLocation();
1610       if (RParenLoc.isInvalid())
1611         return ExprError();
1612 
1613       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1614                                       Result.get(), RParenLoc);
1615     }
1616   }
1617 
1618   return Result;
1619 }
1620 
1621 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1622 ///
1623 ///         '__uuidof' '(' expression ')'
1624 ///         '__uuidof' '(' type-id ')'
1625 ///
1626 ExprResult Parser::ParseCXXUuidof() {
1627   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1628 
1629   SourceLocation OpLoc = ConsumeToken();
1630   BalancedDelimiterTracker T(*this, tok::l_paren);
1631 
1632   // __uuidof expressions are always parenthesized.
1633   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1634     return ExprError();
1635 
1636   ExprResult Result;
1637 
1638   if (isTypeIdInParens()) {
1639     TypeResult Ty = ParseTypeName();
1640 
1641     // Match the ')'.
1642     T.consumeClose();
1643 
1644     if (Ty.isInvalid())
1645       return ExprError();
1646 
1647     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1648                                     Ty.get().getAsOpaquePtr(),
1649                                     T.getCloseLocation());
1650   } else {
1651     EnterExpressionEvaluationContext Unevaluated(
1652         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1653     Result = ParseExpression();
1654 
1655     // Match the ')'.
1656     if (Result.isInvalid())
1657       SkipUntil(tok::r_paren, StopAtSemi);
1658     else {
1659       T.consumeClose();
1660 
1661       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1662                                       /*isType=*/false,
1663                                       Result.get(), T.getCloseLocation());
1664     }
1665   }
1666 
1667   return Result;
1668 }
1669 
1670 /// Parse a C++ pseudo-destructor expression after the base,
1671 /// . or -> operator, and nested-name-specifier have already been
1672 /// parsed. We're handling this fragment of the grammar:
1673 ///
1674 ///       postfix-expression: [C++2a expr.post]
1675 ///         postfix-expression . template[opt] id-expression
1676 ///         postfix-expression -> template[opt] id-expression
1677 ///
1678 ///       id-expression:
1679 ///         qualified-id
1680 ///         unqualified-id
1681 ///
1682 ///       qualified-id:
1683 ///         nested-name-specifier template[opt] unqualified-id
1684 ///
1685 ///       nested-name-specifier:
1686 ///         type-name ::
1687 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1688 ///                                         allowed in C++ grammar by accident
1689 ///         nested-name-specifier identifier ::
1690 ///         nested-name-specifier template[opt] simple-template-id ::
1691 ///         [...]
1692 ///
1693 ///       unqualified-id:
1694 ///         ~ type-name
1695 ///         ~ decltype-specifier
1696 ///         [...]
1697 ///
1698 /// ... where the all but the last component of the nested-name-specifier
1699 /// has already been parsed, and the base expression is not of a non-dependent
1700 /// class type.
1701 ExprResult
1702 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1703                                  tok::TokenKind OpKind,
1704                                  CXXScopeSpec &SS,
1705                                  ParsedType ObjectType) {
1706   // If the last component of the (optional) nested-name-specifier is
1707   // template[opt] simple-template-id, it has already been annotated.
1708   UnqualifiedId FirstTypeName;
1709   SourceLocation CCLoc;
1710   if (Tok.is(tok::identifier)) {
1711     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1712     ConsumeToken();
1713     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1714     CCLoc = ConsumeToken();
1715   } else if (Tok.is(tok::annot_template_id)) {
1716     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1717     // FIXME: Carry on and build an AST representation for tooling.
1718     if (TemplateId->isInvalid())
1719       return ExprError();
1720     FirstTypeName.setTemplateId(TemplateId);
1721     ConsumeAnnotationToken();
1722     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1723     CCLoc = ConsumeToken();
1724   } else {
1725     assert(SS.isEmpty() && "missing last component of nested name specifier");
1726     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1727   }
1728 
1729   // Parse the tilde.
1730   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1731   SourceLocation TildeLoc = ConsumeToken();
1732 
1733   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1734     DeclSpec DS(AttrFactory);
1735     ParseDecltypeSpecifier(DS);
1736     if (DS.getTypeSpecType() == TST_error)
1737       return ExprError();
1738     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1739                                              TildeLoc, DS);
1740   }
1741 
1742   if (!Tok.is(tok::identifier)) {
1743     Diag(Tok, diag::err_destructor_tilde_identifier);
1744     return ExprError();
1745   }
1746 
1747   // Parse the second type.
1748   UnqualifiedId SecondTypeName;
1749   IdentifierInfo *Name = Tok.getIdentifierInfo();
1750   SourceLocation NameLoc = ConsumeToken();
1751   SecondTypeName.setIdentifier(Name, NameLoc);
1752 
1753   // If there is a '<', the second type name is a template-id. Parse
1754   // it as such.
1755   //
1756   // FIXME: This is not a context in which a '<' is assumed to start a template
1757   // argument list. This affects examples such as
1758   //   void f(auto *p) { p->~X<int>(); }
1759   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1760   // example, so we accept it anyway.
1761   if (Tok.is(tok::less) &&
1762       ParseUnqualifiedIdTemplateId(
1763           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1764           Name, NameLoc, false, SecondTypeName,
1765           /*AssumeTemplateId=*/true))
1766     return ExprError();
1767 
1768   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1769                                            SS, FirstTypeName, CCLoc, TildeLoc,
1770                                            SecondTypeName);
1771 }
1772 
1773 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1774 ///
1775 ///       boolean-literal: [C++ 2.13.5]
1776 ///         'true'
1777 ///         'false'
1778 ExprResult Parser::ParseCXXBoolLiteral() {
1779   tok::TokenKind Kind = Tok.getKind();
1780   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1781 }
1782 
1783 /// ParseThrowExpression - This handles the C++ throw expression.
1784 ///
1785 ///       throw-expression: [C++ 15]
1786 ///         'throw' assignment-expression[opt]
1787 ExprResult Parser::ParseThrowExpression() {
1788   assert(Tok.is(tok::kw_throw) && "Not throw!");
1789   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1790 
1791   // If the current token isn't the start of an assignment-expression,
1792   // then the expression is not present.  This handles things like:
1793   //   "C ? throw : (void)42", which is crazy but legal.
1794   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1795   case tok::semi:
1796   case tok::r_paren:
1797   case tok::r_square:
1798   case tok::r_brace:
1799   case tok::colon:
1800   case tok::comma:
1801     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1802 
1803   default:
1804     ExprResult Expr(ParseAssignmentExpression());
1805     if (Expr.isInvalid()) return Expr;
1806     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1807   }
1808 }
1809 
1810 /// Parse the C++ Coroutines co_yield expression.
1811 ///
1812 ///       co_yield-expression:
1813 ///         'co_yield' assignment-expression[opt]
1814 ExprResult Parser::ParseCoyieldExpression() {
1815   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1816 
1817   SourceLocation Loc = ConsumeToken();
1818   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1819                                          : ParseAssignmentExpression();
1820   if (!Expr.isInvalid())
1821     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1822   return Expr;
1823 }
1824 
1825 /// ParseCXXThis - This handles the C++ 'this' pointer.
1826 ///
1827 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1828 /// a non-lvalue expression whose value is the address of the object for which
1829 /// the function is called.
1830 ExprResult Parser::ParseCXXThis() {
1831   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1832   SourceLocation ThisLoc = ConsumeToken();
1833   return Actions.ActOnCXXThis(ThisLoc);
1834 }
1835 
1836 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1837 /// Can be interpreted either as function-style casting ("int(x)")
1838 /// or class type construction ("ClassType(x,y,z)")
1839 /// or creation of a value-initialized type ("int()").
1840 /// See [C++ 5.2.3].
1841 ///
1842 ///       postfix-expression: [C++ 5.2p1]
1843 ///         simple-type-specifier '(' expression-list[opt] ')'
1844 /// [C++0x] simple-type-specifier braced-init-list
1845 ///         typename-specifier '(' expression-list[opt] ')'
1846 /// [C++0x] typename-specifier braced-init-list
1847 ///
1848 /// In C++1z onwards, the type specifier can also be a template-name.
1849 ExprResult
1850 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1851   Declarator DeclaratorInfo(DS, DeclaratorContext::FunctionalCast);
1852   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1853 
1854   assert((Tok.is(tok::l_paren) ||
1855           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1856          && "Expected '(' or '{'!");
1857 
1858   if (Tok.is(tok::l_brace)) {
1859     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1860     ExprResult Init = ParseBraceInitializer();
1861     if (Init.isInvalid())
1862       return Init;
1863     Expr *InitList = Init.get();
1864     return Actions.ActOnCXXTypeConstructExpr(
1865         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1866         InitList->getEndLoc(), /*ListInitialization=*/true);
1867   } else {
1868     BalancedDelimiterTracker T(*this, tok::l_paren);
1869     T.consumeOpen();
1870 
1871     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1872 
1873     ExprVector Exprs;
1874     CommaLocsTy CommaLocs;
1875 
1876     auto RunSignatureHelp = [&]() {
1877       QualType PreferredType;
1878       if (TypeRep)
1879         PreferredType = Actions.ProduceConstructorSignatureHelp(
1880             getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
1881             DS.getEndLoc(), Exprs, T.getOpenLocation());
1882       CalledSignatureHelp = true;
1883       return PreferredType;
1884     };
1885 
1886     if (Tok.isNot(tok::r_paren)) {
1887       if (ParseExpressionList(Exprs, CommaLocs, [&] {
1888             PreferredType.enterFunctionArgument(Tok.getLocation(),
1889                                                 RunSignatureHelp);
1890           })) {
1891         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1892           RunSignatureHelp();
1893         SkipUntil(tok::r_paren, StopAtSemi);
1894         return ExprError();
1895       }
1896     }
1897 
1898     // Match the ')'.
1899     T.consumeClose();
1900 
1901     // TypeRep could be null, if it references an invalid typedef.
1902     if (!TypeRep)
1903       return ExprError();
1904 
1905     assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1906            "Unexpected number of commas!");
1907     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1908                                              Exprs, T.getCloseLocation(),
1909                                              /*ListInitialization=*/false);
1910   }
1911 }
1912 
1913 Parser::DeclGroupPtrTy
1914 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1915                                              ParsedAttributesWithRange &Attrs) {
1916   assert(Tok.is(tok::kw_using) && "Expected using");
1917   assert((Context == DeclaratorContext::ForInit ||
1918           Context == DeclaratorContext::SelectionInit) &&
1919          "Unexpected Declarator Context");
1920   DeclGroupPtrTy DG;
1921   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1922 
1923   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1924   if (!DG)
1925     return DG;
1926 
1927   Diag(DeclStart, !getLangOpts().CPlusPlus2b
1928                       ? diag::ext_alias_in_init_statement
1929                       : diag::warn_cxx20_alias_in_init_statement)
1930       << SourceRange(DeclStart, DeclEnd);
1931 
1932   return DG;
1933 }
1934 
1935 /// ParseCXXCondition - if/switch/while condition expression.
1936 ///
1937 ///       condition:
1938 ///         expression
1939 ///         type-specifier-seq declarator '=' assignment-expression
1940 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1941 /// [C++11] type-specifier-seq declarator braced-init-list
1942 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1943 ///             brace-or-equal-initializer
1944 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1945 ///             '=' assignment-expression
1946 ///
1947 /// In C++1z, a condition may in some contexts be preceded by an
1948 /// optional init-statement. This function will parse that too.
1949 ///
1950 /// \param InitStmt If non-null, an init-statement is permitted, and if present
1951 /// will be parsed and stored here.
1952 ///
1953 /// \param Loc The location of the start of the statement that requires this
1954 /// condition, e.g., the "for" in a for loop.
1955 ///
1956 /// \param FRI If non-null, a for range declaration is permitted, and if
1957 /// present will be parsed and stored here, and a null result will be returned.
1958 ///
1959 /// \param EnterForConditionScope If true, enter a continue/break scope at the
1960 /// appropriate moment for a 'for' loop.
1961 ///
1962 /// \returns The parsed condition.
1963 Sema::ConditionResult Parser::ParseCXXCondition(StmtResult *InitStmt,
1964                                                 SourceLocation Loc,
1965                                                 Sema::ConditionKind CK,
1966                                                 ForRangeInfo *FRI,
1967                                                 bool EnterForConditionScope) {
1968   // Helper to ensure we always enter a continue/break scope if requested.
1969   struct ForConditionScopeRAII {
1970     Scope *S;
1971     void enter(bool IsConditionVariable) {
1972       if (S) {
1973         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
1974         S->setIsConditionVarScope(IsConditionVariable);
1975       }
1976     }
1977     ~ForConditionScopeRAII() {
1978       if (S)
1979         S->setIsConditionVarScope(false);
1980     }
1981   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
1982 
1983   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1984   PreferredType.enterCondition(Actions, Tok.getLocation());
1985 
1986   if (Tok.is(tok::code_completion)) {
1987     cutOffParsing();
1988     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1989     return Sema::ConditionError();
1990   }
1991 
1992   ParsedAttributesWithRange attrs(AttrFactory);
1993   MaybeParseCXX11Attributes(attrs);
1994 
1995   const auto WarnOnInit = [this, &CK] {
1996     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
1997                                 ? diag::warn_cxx14_compat_init_statement
1998                                 : diag::ext_init_statement)
1999         << (CK == Sema::ConditionKind::Switch);
2000   };
2001 
2002   // Determine what kind of thing we have.
2003   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2004   case ConditionOrInitStatement::Expression: {
2005     // If this is a for loop, we're entering its condition.
2006     ForConditionScope.enter(/*IsConditionVariable=*/false);
2007 
2008     ProhibitAttributes(attrs);
2009 
2010     // We can have an empty expression here.
2011     //   if (; true);
2012     if (InitStmt && Tok.is(tok::semi)) {
2013       WarnOnInit();
2014       SourceLocation SemiLoc = Tok.getLocation();
2015       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2016         Diag(SemiLoc, diag::warn_empty_init_statement)
2017             << (CK == Sema::ConditionKind::Switch)
2018             << FixItHint::CreateRemoval(SemiLoc);
2019       }
2020       ConsumeToken();
2021       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2022       return ParseCXXCondition(nullptr, Loc, CK);
2023     }
2024 
2025     // Parse the expression.
2026     ExprResult Expr = ParseExpression(); // expression
2027     if (Expr.isInvalid())
2028       return Sema::ConditionError();
2029 
2030     if (InitStmt && Tok.is(tok::semi)) {
2031       WarnOnInit();
2032       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2033       ConsumeToken();
2034       return ParseCXXCondition(nullptr, Loc, CK);
2035     }
2036 
2037     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK);
2038   }
2039 
2040   case ConditionOrInitStatement::InitStmtDecl: {
2041     WarnOnInit();
2042     DeclGroupPtrTy DG;
2043     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2044     if (Tok.is(tok::kw_using))
2045       DG = ParseAliasDeclarationInInitStatement(
2046           DeclaratorContext::SelectionInit, attrs);
2047     else
2048       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2049                                   attrs, /*RequireSemi=*/true);
2050     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2051     return ParseCXXCondition(nullptr, Loc, CK);
2052   }
2053 
2054   case ConditionOrInitStatement::ForRangeDecl: {
2055     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2056     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2057     // permitted here.
2058     assert(FRI && "should not parse a for range declaration here");
2059     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2060     DeclGroupPtrTy DG = ParseSimpleDeclaration(DeclaratorContext::ForInit,
2061                                                DeclEnd, attrs, false, FRI);
2062     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2063     assert((FRI->ColonLoc.isValid() || !DG) &&
2064            "cannot find for range declaration");
2065     return Sema::ConditionResult();
2066   }
2067 
2068   case ConditionOrInitStatement::ConditionDecl:
2069   case ConditionOrInitStatement::Error:
2070     break;
2071   }
2072 
2073   // If this is a for loop, we're entering its condition.
2074   ForConditionScope.enter(/*IsConditionVariable=*/true);
2075 
2076   // type-specifier-seq
2077   DeclSpec DS(AttrFactory);
2078   DS.takeAttributesFrom(attrs);
2079   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2080 
2081   // declarator
2082   Declarator DeclaratorInfo(DS, DeclaratorContext::Condition);
2083   ParseDeclarator(DeclaratorInfo);
2084 
2085   // simple-asm-expr[opt]
2086   if (Tok.is(tok::kw_asm)) {
2087     SourceLocation Loc;
2088     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2089     if (AsmLabel.isInvalid()) {
2090       SkipUntil(tok::semi, StopAtSemi);
2091       return Sema::ConditionError();
2092     }
2093     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2094     DeclaratorInfo.SetRangeEnd(Loc);
2095   }
2096 
2097   // If attributes are present, parse them.
2098   MaybeParseGNUAttributes(DeclaratorInfo);
2099 
2100   // Type-check the declaration itself.
2101   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2102                                                         DeclaratorInfo);
2103   if (Dcl.isInvalid())
2104     return Sema::ConditionError();
2105   Decl *DeclOut = Dcl.get();
2106 
2107   // '=' assignment-expression
2108   // If a '==' or '+=' is found, suggest a fixit to '='.
2109   bool CopyInitialization = isTokenEqualOrEqualTypo();
2110   if (CopyInitialization)
2111     ConsumeToken();
2112 
2113   ExprResult InitExpr = ExprError();
2114   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2115     Diag(Tok.getLocation(),
2116          diag::warn_cxx98_compat_generalized_initializer_lists);
2117     InitExpr = ParseBraceInitializer();
2118   } else if (CopyInitialization) {
2119     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2120     InitExpr = ParseAssignmentExpression();
2121   } else if (Tok.is(tok::l_paren)) {
2122     // This was probably an attempt to initialize the variable.
2123     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2124     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2125       RParen = ConsumeParen();
2126     Diag(DeclOut->getLocation(),
2127          diag::err_expected_init_in_condition_lparen)
2128       << SourceRange(LParen, RParen);
2129   } else {
2130     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2131   }
2132 
2133   if (!InitExpr.isInvalid())
2134     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2135   else
2136     Actions.ActOnInitializerError(DeclOut);
2137 
2138   Actions.FinalizeDeclaration(DeclOut);
2139   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2140 }
2141 
2142 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2143 /// This should only be called when the current token is known to be part of
2144 /// simple-type-specifier.
2145 ///
2146 ///       simple-type-specifier:
2147 ///         '::'[opt] nested-name-specifier[opt] type-name
2148 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2149 ///         char
2150 ///         wchar_t
2151 ///         bool
2152 ///         short
2153 ///         int
2154 ///         long
2155 ///         signed
2156 ///         unsigned
2157 ///         float
2158 ///         double
2159 ///         void
2160 /// [GNU]   typeof-specifier
2161 /// [C++0x] auto               [TODO]
2162 ///
2163 ///       type-name:
2164 ///         class-name
2165 ///         enum-name
2166 ///         typedef-name
2167 ///
2168 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2169   DS.SetRangeStart(Tok.getLocation());
2170   const char *PrevSpec;
2171   unsigned DiagID;
2172   SourceLocation Loc = Tok.getLocation();
2173   const clang::PrintingPolicy &Policy =
2174       Actions.getASTContext().getPrintingPolicy();
2175 
2176   switch (Tok.getKind()) {
2177   case tok::identifier:   // foo::bar
2178   case tok::coloncolon:   // ::foo::bar
2179     llvm_unreachable("Annotation token should already be formed!");
2180   default:
2181     llvm_unreachable("Not a simple-type-specifier token!");
2182 
2183   // type-name
2184   case tok::annot_typename: {
2185     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2186                        getTypeAnnotation(Tok), Policy);
2187     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2188     ConsumeAnnotationToken();
2189 
2190     DS.Finish(Actions, Policy);
2191     return;
2192   }
2193 
2194   case tok::kw__ExtInt: {
2195     ExprResult ER = ParseExtIntegerArgument();
2196     if (ER.isInvalid())
2197       DS.SetTypeSpecError();
2198     else
2199       DS.SetExtIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2200 
2201     // Do this here because we have already consumed the close paren.
2202     DS.SetRangeEnd(PrevTokLocation);
2203     DS.Finish(Actions, Policy);
2204     return;
2205   }
2206 
2207   // builtin types
2208   case tok::kw_short:
2209     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2210                         Policy);
2211     break;
2212   case tok::kw_long:
2213     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2214                         Policy);
2215     break;
2216   case tok::kw___int64:
2217     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2218                         Policy);
2219     break;
2220   case tok::kw_signed:
2221     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2222     break;
2223   case tok::kw_unsigned:
2224     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2225     break;
2226   case tok::kw_void:
2227     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2228     break;
2229   case tok::kw_char:
2230     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2231     break;
2232   case tok::kw_int:
2233     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2234     break;
2235   case tok::kw___int128:
2236     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2237     break;
2238   case tok::kw___bf16:
2239     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2240     break;
2241   case tok::kw_half:
2242     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2243     break;
2244   case tok::kw_float:
2245     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2246     break;
2247   case tok::kw_double:
2248     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2249     break;
2250   case tok::kw__Float16:
2251     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2252     break;
2253   case tok::kw___float128:
2254     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2255     break;
2256   case tok::kw___ibm128:
2257     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2258     break;
2259   case tok::kw_wchar_t:
2260     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2261     break;
2262   case tok::kw_char8_t:
2263     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2264     break;
2265   case tok::kw_char16_t:
2266     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2267     break;
2268   case tok::kw_char32_t:
2269     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2270     break;
2271   case tok::kw_bool:
2272     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2273     break;
2274 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2275   case tok::kw_##ImgType##_t:                                                  \
2276     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2277                        Policy);                                                \
2278     break;
2279 #include "clang/Basic/OpenCLImageTypes.def"
2280 
2281   case tok::annot_decltype:
2282   case tok::kw_decltype:
2283     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2284     return DS.Finish(Actions, Policy);
2285 
2286   // GNU typeof support.
2287   case tok::kw_typeof:
2288     ParseTypeofSpecifier(DS);
2289     DS.Finish(Actions, Policy);
2290     return;
2291   }
2292   ConsumeAnyToken();
2293   DS.SetRangeEnd(PrevTokLocation);
2294   DS.Finish(Actions, Policy);
2295 }
2296 
2297 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2298 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2299 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2300 /// by parsing the type-specifier-seq, because these sequences are
2301 /// typically followed by some form of declarator. Returns true and
2302 /// emits diagnostics if this is not a type-specifier-seq, false
2303 /// otherwise.
2304 ///
2305 ///   type-specifier-seq: [C++ 8.1]
2306 ///     type-specifier type-specifier-seq[opt]
2307 ///
2308 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
2309   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_type_specifier);
2310   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2311   return false;
2312 }
2313 
2314 /// Finish parsing a C++ unqualified-id that is a template-id of
2315 /// some form.
2316 ///
2317 /// This routine is invoked when a '<' is encountered after an identifier or
2318 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2319 /// whether the unqualified-id is actually a template-id. This routine will
2320 /// then parse the template arguments and form the appropriate template-id to
2321 /// return to the caller.
2322 ///
2323 /// \param SS the nested-name-specifier that precedes this template-id, if
2324 /// we're actually parsing a qualified-id.
2325 ///
2326 /// \param ObjectType if this unqualified-id occurs within a member access
2327 /// expression, the type of the base object whose member is being accessed.
2328 ///
2329 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2330 /// expression, indicates whether the original subexpressions had any errors.
2331 ///
2332 /// \param Name for constructor and destructor names, this is the actual
2333 /// identifier that may be a template-name.
2334 ///
2335 /// \param NameLoc the location of the class-name in a constructor or
2336 /// destructor.
2337 ///
2338 /// \param EnteringContext whether we're entering the scope of the
2339 /// nested-name-specifier.
2340 ///
2341 /// \param Id as input, describes the template-name or operator-function-id
2342 /// that precedes the '<'. If template arguments were parsed successfully,
2343 /// will be updated with the template-id.
2344 ///
2345 /// \param AssumeTemplateId When true, this routine will assume that the name
2346 /// refers to a template without performing name lookup to verify.
2347 ///
2348 /// \returns true if a parse error occurred, false otherwise.
2349 bool Parser::ParseUnqualifiedIdTemplateId(
2350     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2351     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2352     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2353   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2354 
2355   TemplateTy Template;
2356   TemplateNameKind TNK = TNK_Non_template;
2357   switch (Id.getKind()) {
2358   case UnqualifiedIdKind::IK_Identifier:
2359   case UnqualifiedIdKind::IK_OperatorFunctionId:
2360   case UnqualifiedIdKind::IK_LiteralOperatorId:
2361     if (AssumeTemplateId) {
2362       // We defer the injected-class-name checks until we've found whether
2363       // this template-id is used to form a nested-name-specifier or not.
2364       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2365                                       ObjectType, EnteringContext, Template,
2366                                       /*AllowInjectedClassName*/ true);
2367     } else {
2368       bool MemberOfUnknownSpecialization;
2369       TNK = Actions.isTemplateName(getCurScope(), SS,
2370                                    TemplateKWLoc.isValid(), Id,
2371                                    ObjectType, EnteringContext, Template,
2372                                    MemberOfUnknownSpecialization);
2373       // If lookup found nothing but we're assuming that this is a template
2374       // name, double-check that makes sense syntactically before committing
2375       // to it.
2376       if (TNK == TNK_Undeclared_template &&
2377           isTemplateArgumentList(0) == TPResult::False)
2378         return false;
2379 
2380       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2381           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2382         // If we had errors before, ObjectType can be dependent even without any
2383         // templates, do not report missing template keyword in that case.
2384         if (!ObjectHadErrors) {
2385           // We have something like t->getAs<T>(), where getAs is a
2386           // member of an unknown specialization. However, this will only
2387           // parse correctly as a template, so suggest the keyword 'template'
2388           // before 'getAs' and treat this as a dependent template name.
2389           std::string Name;
2390           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2391             Name = std::string(Id.Identifier->getName());
2392           else {
2393             Name = "operator ";
2394             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2395               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2396             else
2397               Name += Id.Identifier->getName();
2398           }
2399           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2400               << Name
2401               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2402         }
2403         TNK = Actions.ActOnTemplateName(
2404             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2405             Template, /*AllowInjectedClassName*/ true);
2406       } else if (TNK == TNK_Non_template) {
2407         return false;
2408       }
2409     }
2410     break;
2411 
2412   case UnqualifiedIdKind::IK_ConstructorName: {
2413     UnqualifiedId TemplateName;
2414     bool MemberOfUnknownSpecialization;
2415     TemplateName.setIdentifier(Name, NameLoc);
2416     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2417                                  TemplateName, ObjectType,
2418                                  EnteringContext, Template,
2419                                  MemberOfUnknownSpecialization);
2420     if (TNK == TNK_Non_template)
2421       return false;
2422     break;
2423   }
2424 
2425   case UnqualifiedIdKind::IK_DestructorName: {
2426     UnqualifiedId TemplateName;
2427     bool MemberOfUnknownSpecialization;
2428     TemplateName.setIdentifier(Name, NameLoc);
2429     if (ObjectType) {
2430       TNK = Actions.ActOnTemplateName(
2431           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2432           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2433     } else {
2434       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2435                                    TemplateName, ObjectType,
2436                                    EnteringContext, Template,
2437                                    MemberOfUnknownSpecialization);
2438 
2439       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2440         Diag(NameLoc, diag::err_destructor_template_id)
2441           << Name << SS.getRange();
2442         // Carry on to parse the template arguments before bailing out.
2443       }
2444     }
2445     break;
2446   }
2447 
2448   default:
2449     return false;
2450   }
2451 
2452   // Parse the enclosed template argument list.
2453   SourceLocation LAngleLoc, RAngleLoc;
2454   TemplateArgList TemplateArgs;
2455   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs,
2456                                        RAngleLoc))
2457     return true;
2458 
2459   // If this is a non-template, we already issued a diagnostic.
2460   if (TNK == TNK_Non_template)
2461     return true;
2462 
2463   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2464       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2465       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2466     // Form a parsed representation of the template-id to be stored in the
2467     // UnqualifiedId.
2468 
2469     // FIXME: Store name for literal operator too.
2470     IdentifierInfo *TemplateII =
2471         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2472                                                          : nullptr;
2473     OverloadedOperatorKind OpKind =
2474         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2475             ? OO_None
2476             : Id.OperatorFunctionId.Operator;
2477 
2478     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2479         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2480         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2481 
2482     Id.setTemplateId(TemplateId);
2483     return false;
2484   }
2485 
2486   // Bundle the template arguments together.
2487   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2488 
2489   // Constructor and destructor names.
2490   TypeResult Type = Actions.ActOnTemplateIdType(
2491       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2492       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2493   if (Type.isInvalid())
2494     return true;
2495 
2496   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2497     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2498   else
2499     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2500 
2501   return false;
2502 }
2503 
2504 /// Parse an operator-function-id or conversion-function-id as part
2505 /// of a C++ unqualified-id.
2506 ///
2507 /// This routine is responsible only for parsing the operator-function-id or
2508 /// conversion-function-id; it does not handle template arguments in any way.
2509 ///
2510 /// \code
2511 ///       operator-function-id: [C++ 13.5]
2512 ///         'operator' operator
2513 ///
2514 ///       operator: one of
2515 ///            new   delete  new[]   delete[]
2516 ///            +     -    *  /    %  ^    &   |   ~
2517 ///            !     =    <  >    += -=   *=  /=  %=
2518 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2519 ///            <=    >=   && ||   ++ --   ,   ->* ->
2520 ///            ()    []   <=>
2521 ///
2522 ///       conversion-function-id: [C++ 12.3.2]
2523 ///         operator conversion-type-id
2524 ///
2525 ///       conversion-type-id:
2526 ///         type-specifier-seq conversion-declarator[opt]
2527 ///
2528 ///       conversion-declarator:
2529 ///         ptr-operator conversion-declarator[opt]
2530 /// \endcode
2531 ///
2532 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2533 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2534 ///
2535 /// \param EnteringContext whether we are entering the scope of the
2536 /// nested-name-specifier.
2537 ///
2538 /// \param ObjectType if this unqualified-id occurs within a member access
2539 /// expression, the type of the base object whose member is being accessed.
2540 ///
2541 /// \param Result on a successful parse, contains the parsed unqualified-id.
2542 ///
2543 /// \returns true if parsing fails, false otherwise.
2544 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2545                                         ParsedType ObjectType,
2546                                         UnqualifiedId &Result) {
2547   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2548 
2549   // Consume the 'operator' keyword.
2550   SourceLocation KeywordLoc = ConsumeToken();
2551 
2552   // Determine what kind of operator name we have.
2553   unsigned SymbolIdx = 0;
2554   SourceLocation SymbolLocations[3];
2555   OverloadedOperatorKind Op = OO_None;
2556   switch (Tok.getKind()) {
2557     case tok::kw_new:
2558     case tok::kw_delete: {
2559       bool isNew = Tok.getKind() == tok::kw_new;
2560       // Consume the 'new' or 'delete'.
2561       SymbolLocations[SymbolIdx++] = ConsumeToken();
2562       // Check for array new/delete.
2563       if (Tok.is(tok::l_square) &&
2564           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2565         // Consume the '[' and ']'.
2566         BalancedDelimiterTracker T(*this, tok::l_square);
2567         T.consumeOpen();
2568         T.consumeClose();
2569         if (T.getCloseLocation().isInvalid())
2570           return true;
2571 
2572         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2573         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2574         Op = isNew? OO_Array_New : OO_Array_Delete;
2575       } else {
2576         Op = isNew? OO_New : OO_Delete;
2577       }
2578       break;
2579     }
2580 
2581 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2582     case tok::Token:                                                     \
2583       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2584       Op = OO_##Name;                                                    \
2585       break;
2586 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2587 #include "clang/Basic/OperatorKinds.def"
2588 
2589     case tok::l_paren: {
2590       // Consume the '(' and ')'.
2591       BalancedDelimiterTracker T(*this, tok::l_paren);
2592       T.consumeOpen();
2593       T.consumeClose();
2594       if (T.getCloseLocation().isInvalid())
2595         return true;
2596 
2597       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2598       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2599       Op = OO_Call;
2600       break;
2601     }
2602 
2603     case tok::l_square: {
2604       // Consume the '[' and ']'.
2605       BalancedDelimiterTracker T(*this, tok::l_square);
2606       T.consumeOpen();
2607       T.consumeClose();
2608       if (T.getCloseLocation().isInvalid())
2609         return true;
2610 
2611       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2612       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2613       Op = OO_Subscript;
2614       break;
2615     }
2616 
2617     case tok::code_completion: {
2618       // Don't try to parse any further.
2619       cutOffParsing();
2620       // Code completion for the operator name.
2621       Actions.CodeCompleteOperatorName(getCurScope());
2622       return true;
2623     }
2624 
2625     default:
2626       break;
2627   }
2628 
2629   if (Op != OO_None) {
2630     // We have parsed an operator-function-id.
2631     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2632     return false;
2633   }
2634 
2635   // Parse a literal-operator-id.
2636   //
2637   //   literal-operator-id: C++11 [over.literal]
2638   //     operator string-literal identifier
2639   //     operator user-defined-string-literal
2640 
2641   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2642     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2643 
2644     SourceLocation DiagLoc;
2645     unsigned DiagId = 0;
2646 
2647     // We're past translation phase 6, so perform string literal concatenation
2648     // before checking for "".
2649     SmallVector<Token, 4> Toks;
2650     SmallVector<SourceLocation, 4> TokLocs;
2651     while (isTokenStringLiteral()) {
2652       if (!Tok.is(tok::string_literal) && !DiagId) {
2653         // C++11 [over.literal]p1:
2654         //   The string-literal or user-defined-string-literal in a
2655         //   literal-operator-id shall have no encoding-prefix [...].
2656         DiagLoc = Tok.getLocation();
2657         DiagId = diag::err_literal_operator_string_prefix;
2658       }
2659       Toks.push_back(Tok);
2660       TokLocs.push_back(ConsumeStringToken());
2661     }
2662 
2663     StringLiteralParser Literal(Toks, PP);
2664     if (Literal.hadError)
2665       return true;
2666 
2667     // Grab the literal operator's suffix, which will be either the next token
2668     // or a ud-suffix from the string literal.
2669     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2670     IdentifierInfo *II = nullptr;
2671     SourceLocation SuffixLoc;
2672     if (IsUDSuffix) {
2673       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2674       SuffixLoc =
2675         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2676                                        Literal.getUDSuffixOffset(),
2677                                        PP.getSourceManager(), getLangOpts());
2678     } else if (Tok.is(tok::identifier)) {
2679       II = Tok.getIdentifierInfo();
2680       SuffixLoc = ConsumeToken();
2681       TokLocs.push_back(SuffixLoc);
2682     } else {
2683       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2684       return true;
2685     }
2686 
2687     // The string literal must be empty.
2688     if (!Literal.GetString().empty() || Literal.Pascal) {
2689       // C++11 [over.literal]p1:
2690       //   The string-literal or user-defined-string-literal in a
2691       //   literal-operator-id shall [...] contain no characters
2692       //   other than the implicit terminating '\0'.
2693       DiagLoc = TokLocs.front();
2694       DiagId = diag::err_literal_operator_string_not_empty;
2695     }
2696 
2697     if (DiagId) {
2698       // This isn't a valid literal-operator-id, but we think we know
2699       // what the user meant. Tell them what they should have written.
2700       SmallString<32> Str;
2701       Str += "\"\"";
2702       Str += II->getName();
2703       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2704           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2705     }
2706 
2707     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2708 
2709     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2710   }
2711 
2712   // Parse a conversion-function-id.
2713   //
2714   //   conversion-function-id: [C++ 12.3.2]
2715   //     operator conversion-type-id
2716   //
2717   //   conversion-type-id:
2718   //     type-specifier-seq conversion-declarator[opt]
2719   //
2720   //   conversion-declarator:
2721   //     ptr-operator conversion-declarator[opt]
2722 
2723   // Parse the type-specifier-seq.
2724   DeclSpec DS(AttrFactory);
2725   if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
2726     return true;
2727 
2728   // Parse the conversion-declarator, which is merely a sequence of
2729   // ptr-operators.
2730   Declarator D(DS, DeclaratorContext::ConversionId);
2731   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2732 
2733   // Finish up the type.
2734   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2735   if (Ty.isInvalid())
2736     return true;
2737 
2738   // Note that this is a conversion-function-id.
2739   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2740                                  D.getSourceRange().getEnd());
2741   return false;
2742 }
2743 
2744 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2745 /// name of an entity.
2746 ///
2747 /// \code
2748 ///       unqualified-id: [C++ expr.prim.general]
2749 ///         identifier
2750 ///         operator-function-id
2751 ///         conversion-function-id
2752 /// [C++0x] literal-operator-id [TODO]
2753 ///         ~ class-name
2754 ///         template-id
2755 ///
2756 /// \endcode
2757 ///
2758 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2759 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2760 ///
2761 /// \param ObjectType if this unqualified-id occurs within a member access
2762 /// expression, the type of the base object whose member is being accessed.
2763 ///
2764 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2765 /// expression, indicates whether the original subexpressions had any errors.
2766 /// When true, diagnostics for missing 'template' keyword will be supressed.
2767 ///
2768 /// \param EnteringContext whether we are entering the scope of the
2769 /// nested-name-specifier.
2770 ///
2771 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2772 ///
2773 /// \param AllowConstructorName whether we allow parsing a constructor name.
2774 ///
2775 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2776 ///
2777 /// \param Result on a successful parse, contains the parsed unqualified-id.
2778 ///
2779 /// \returns true if parsing fails, false otherwise.
2780 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2781                                 bool ObjectHadErrors, bool EnteringContext,
2782                                 bool AllowDestructorName,
2783                                 bool AllowConstructorName,
2784                                 bool AllowDeductionGuide,
2785                                 SourceLocation *TemplateKWLoc,
2786                                 UnqualifiedId &Result) {
2787   if (TemplateKWLoc)
2788     *TemplateKWLoc = SourceLocation();
2789 
2790   // Handle 'A::template B'. This is for template-ids which have not
2791   // already been annotated by ParseOptionalCXXScopeSpecifier().
2792   bool TemplateSpecified = false;
2793   if (Tok.is(tok::kw_template)) {
2794     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2795       TemplateSpecified = true;
2796       *TemplateKWLoc = ConsumeToken();
2797     } else {
2798       SourceLocation TemplateLoc = ConsumeToken();
2799       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2800         << FixItHint::CreateRemoval(TemplateLoc);
2801     }
2802   }
2803 
2804   // unqualified-id:
2805   //   identifier
2806   //   template-id (when it hasn't already been annotated)
2807   if (Tok.is(tok::identifier)) {
2808     // Consume the identifier.
2809     IdentifierInfo *Id = Tok.getIdentifierInfo();
2810     SourceLocation IdLoc = ConsumeToken();
2811 
2812     if (!getLangOpts().CPlusPlus) {
2813       // If we're not in C++, only identifiers matter. Record the
2814       // identifier and return.
2815       Result.setIdentifier(Id, IdLoc);
2816       return false;
2817     }
2818 
2819     ParsedTemplateTy TemplateName;
2820     if (AllowConstructorName &&
2821         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2822       // We have parsed a constructor name.
2823       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2824                                                  EnteringContext);
2825       if (!Ty)
2826         return true;
2827       Result.setConstructorName(Ty, IdLoc, IdLoc);
2828     } else if (getLangOpts().CPlusPlus17 &&
2829                AllowDeductionGuide && SS.isEmpty() &&
2830                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2831                                             &TemplateName)) {
2832       // We have parsed a template-name naming a deduction guide.
2833       Result.setDeductionGuideName(TemplateName, IdLoc);
2834     } else {
2835       // We have parsed an identifier.
2836       Result.setIdentifier(Id, IdLoc);
2837     }
2838 
2839     // If the next token is a '<', we may have a template.
2840     TemplateTy Template;
2841     if (Tok.is(tok::less))
2842       return ParseUnqualifiedIdTemplateId(
2843           SS, ObjectType, ObjectHadErrors,
2844           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2845           EnteringContext, Result, TemplateSpecified);
2846     else if (TemplateSpecified &&
2847              Actions.ActOnTemplateName(
2848                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2849                  EnteringContext, Template,
2850                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2851       return true;
2852 
2853     return false;
2854   }
2855 
2856   // unqualified-id:
2857   //   template-id (already parsed and annotated)
2858   if (Tok.is(tok::annot_template_id)) {
2859     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2860 
2861     // FIXME: Consider passing invalid template-ids on to callers; they may
2862     // be able to recover better than we can.
2863     if (TemplateId->isInvalid()) {
2864       ConsumeAnnotationToken();
2865       return true;
2866     }
2867 
2868     // If the template-name names the current class, then this is a constructor
2869     if (AllowConstructorName && TemplateId->Name &&
2870         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2871       if (SS.isSet()) {
2872         // C++ [class.qual]p2 specifies that a qualified template-name
2873         // is taken as the constructor name where a constructor can be
2874         // declared. Thus, the template arguments are extraneous, so
2875         // complain about them and remove them entirely.
2876         Diag(TemplateId->TemplateNameLoc,
2877              diag::err_out_of_line_constructor_template_id)
2878           << TemplateId->Name
2879           << FixItHint::CreateRemoval(
2880                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2881         ParsedType Ty = Actions.getConstructorName(
2882             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2883             EnteringContext);
2884         if (!Ty)
2885           return true;
2886         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2887                                   TemplateId->RAngleLoc);
2888         ConsumeAnnotationToken();
2889         return false;
2890       }
2891 
2892       Result.setConstructorTemplateId(TemplateId);
2893       ConsumeAnnotationToken();
2894       return false;
2895     }
2896 
2897     // We have already parsed a template-id; consume the annotation token as
2898     // our unqualified-id.
2899     Result.setTemplateId(TemplateId);
2900     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2901     if (TemplateLoc.isValid()) {
2902       if (TemplateKWLoc && (ObjectType || SS.isSet()))
2903         *TemplateKWLoc = TemplateLoc;
2904       else
2905         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2906             << FixItHint::CreateRemoval(TemplateLoc);
2907     }
2908     ConsumeAnnotationToken();
2909     return false;
2910   }
2911 
2912   // unqualified-id:
2913   //   operator-function-id
2914   //   conversion-function-id
2915   if (Tok.is(tok::kw_operator)) {
2916     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2917       return true;
2918 
2919     // If we have an operator-function-id or a literal-operator-id and the next
2920     // token is a '<', we may have a
2921     //
2922     //   template-id:
2923     //     operator-function-id < template-argument-list[opt] >
2924     TemplateTy Template;
2925     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2926          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2927         Tok.is(tok::less))
2928       return ParseUnqualifiedIdTemplateId(
2929           SS, ObjectType, ObjectHadErrors,
2930           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2931           SourceLocation(), EnteringContext, Result, TemplateSpecified);
2932     else if (TemplateSpecified &&
2933              Actions.ActOnTemplateName(
2934                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2935                  EnteringContext, Template,
2936                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2937       return true;
2938 
2939     return false;
2940   }
2941 
2942   if (getLangOpts().CPlusPlus &&
2943       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2944     // C++ [expr.unary.op]p10:
2945     //   There is an ambiguity in the unary-expression ~X(), where X is a
2946     //   class-name. The ambiguity is resolved in favor of treating ~ as a
2947     //    unary complement rather than treating ~X as referring to a destructor.
2948 
2949     // Parse the '~'.
2950     SourceLocation TildeLoc = ConsumeToken();
2951 
2952     if (TemplateSpecified) {
2953       // C++ [temp.names]p3:
2954       //   A name prefixed by the keyword template shall be a template-id [...]
2955       //
2956       // A template-id cannot begin with a '~' token. This would never work
2957       // anyway: x.~A<int>() would specify that the destructor is a template,
2958       // not that 'A' is a template.
2959       //
2960       // FIXME: Suggest replacing the attempted destructor name with a correct
2961       // destructor name and recover. (This is not trivial if this would become
2962       // a pseudo-destructor name).
2963       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
2964         << Tok.getLocation();
2965       return true;
2966     }
2967 
2968     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2969       DeclSpec DS(AttrFactory);
2970       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2971       if (ParsedType Type =
2972               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
2973         Result.setDestructorName(TildeLoc, Type, EndLoc);
2974         return false;
2975       }
2976       return true;
2977     }
2978 
2979     // Parse the class-name.
2980     if (Tok.isNot(tok::identifier)) {
2981       Diag(Tok, diag::err_destructor_tilde_identifier);
2982       return true;
2983     }
2984 
2985     // If the user wrote ~T::T, correct it to T::~T.
2986     DeclaratorScopeObj DeclScopeObj(*this, SS);
2987     if (NextToken().is(tok::coloncolon)) {
2988       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
2989       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
2990       // it will confuse this recovery logic.
2991       ColonProtectionRAIIObject ColonRAII(*this, false);
2992 
2993       if (SS.isSet()) {
2994         AnnotateScopeToken(SS, /*NewAnnotation*/true);
2995         SS.clear();
2996       }
2997       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
2998                                          EnteringContext))
2999         return true;
3000       if (SS.isNotEmpty())
3001         ObjectType = nullptr;
3002       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3003           !SS.isSet()) {
3004         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3005         return true;
3006       }
3007 
3008       // Recover as if the tilde had been written before the identifier.
3009       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3010         << FixItHint::CreateRemoval(TildeLoc)
3011         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3012 
3013       // Temporarily enter the scope for the rest of this function.
3014       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3015         DeclScopeObj.EnterDeclaratorScope();
3016     }
3017 
3018     // Parse the class-name (or template-name in a simple-template-id).
3019     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3020     SourceLocation ClassNameLoc = ConsumeToken();
3021 
3022     if (Tok.is(tok::less)) {
3023       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3024       return ParseUnqualifiedIdTemplateId(
3025           SS, ObjectType, ObjectHadErrors,
3026           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3027           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3028     }
3029 
3030     // Note that this is a destructor name.
3031     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3032                                               ClassNameLoc, getCurScope(),
3033                                               SS, ObjectType,
3034                                               EnteringContext);
3035     if (!Ty)
3036       return true;
3037 
3038     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3039     return false;
3040   }
3041 
3042   Diag(Tok, diag::err_expected_unqualified_id)
3043     << getLangOpts().CPlusPlus;
3044   return true;
3045 }
3046 
3047 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3048 /// memory in a typesafe manner and call constructors.
3049 ///
3050 /// This method is called to parse the new expression after the optional :: has
3051 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3052 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3053 ///
3054 ///        new-expression:
3055 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3056 ///                                     new-initializer[opt]
3057 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3058 ///                                     new-initializer[opt]
3059 ///
3060 ///        new-placement:
3061 ///                   '(' expression-list ')'
3062 ///
3063 ///        new-type-id:
3064 ///                   type-specifier-seq new-declarator[opt]
3065 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3066 ///
3067 ///        new-declarator:
3068 ///                   ptr-operator new-declarator[opt]
3069 ///                   direct-new-declarator
3070 ///
3071 ///        new-initializer:
3072 ///                   '(' expression-list[opt] ')'
3073 /// [C++0x]           braced-init-list
3074 ///
3075 ExprResult
3076 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3077   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3078   ConsumeToken();   // Consume 'new'
3079 
3080   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3081   // second form of new-expression. It can't be a new-type-id.
3082 
3083   ExprVector PlacementArgs;
3084   SourceLocation PlacementLParen, PlacementRParen;
3085 
3086   SourceRange TypeIdParens;
3087   DeclSpec DS(AttrFactory);
3088   Declarator DeclaratorInfo(DS, DeclaratorContext::CXXNew);
3089   if (Tok.is(tok::l_paren)) {
3090     // If it turns out to be a placement, we change the type location.
3091     BalancedDelimiterTracker T(*this, tok::l_paren);
3092     T.consumeOpen();
3093     PlacementLParen = T.getOpenLocation();
3094     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3095       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3096       return ExprError();
3097     }
3098 
3099     T.consumeClose();
3100     PlacementRParen = T.getCloseLocation();
3101     if (PlacementRParen.isInvalid()) {
3102       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3103       return ExprError();
3104     }
3105 
3106     if (PlacementArgs.empty()) {
3107       // Reset the placement locations. There was no placement.
3108       TypeIdParens = T.getRange();
3109       PlacementLParen = PlacementRParen = SourceLocation();
3110     } else {
3111       // We still need the type.
3112       if (Tok.is(tok::l_paren)) {
3113         BalancedDelimiterTracker T(*this, tok::l_paren);
3114         T.consumeOpen();
3115         MaybeParseGNUAttributes(DeclaratorInfo);
3116         ParseSpecifierQualifierList(DS);
3117         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3118         ParseDeclarator(DeclaratorInfo);
3119         T.consumeClose();
3120         TypeIdParens = T.getRange();
3121       } else {
3122         MaybeParseGNUAttributes(DeclaratorInfo);
3123         if (ParseCXXTypeSpecifierSeq(DS))
3124           DeclaratorInfo.setInvalidType(true);
3125         else {
3126           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3127           ParseDeclaratorInternal(DeclaratorInfo,
3128                                   &Parser::ParseDirectNewDeclarator);
3129         }
3130       }
3131     }
3132   } else {
3133     // A new-type-id is a simplified type-id, where essentially the
3134     // direct-declarator is replaced by a direct-new-declarator.
3135     MaybeParseGNUAttributes(DeclaratorInfo);
3136     if (ParseCXXTypeSpecifierSeq(DS))
3137       DeclaratorInfo.setInvalidType(true);
3138     else {
3139       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3140       ParseDeclaratorInternal(DeclaratorInfo,
3141                               &Parser::ParseDirectNewDeclarator);
3142     }
3143   }
3144   if (DeclaratorInfo.isInvalidType()) {
3145     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3146     return ExprError();
3147   }
3148 
3149   ExprResult Initializer;
3150 
3151   if (Tok.is(tok::l_paren)) {
3152     SourceLocation ConstructorLParen, ConstructorRParen;
3153     ExprVector ConstructorArgs;
3154     BalancedDelimiterTracker T(*this, tok::l_paren);
3155     T.consumeOpen();
3156     ConstructorLParen = T.getOpenLocation();
3157     if (Tok.isNot(tok::r_paren)) {
3158       CommaLocsTy CommaLocs;
3159       auto RunSignatureHelp = [&]() {
3160         ParsedType TypeRep =
3161             Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3162         QualType PreferredType;
3163         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3164         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3165         // `new decltype(invalid) (^)`.
3166         if (TypeRep)
3167           PreferredType = Actions.ProduceConstructorSignatureHelp(
3168               getCurScope(), TypeRep.get()->getCanonicalTypeInternal(),
3169               DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen);
3170         CalledSignatureHelp = true;
3171         return PreferredType;
3172       };
3173       if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] {
3174             PreferredType.enterFunctionArgument(Tok.getLocation(),
3175                                                 RunSignatureHelp);
3176           })) {
3177         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3178           RunSignatureHelp();
3179         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3180         return ExprError();
3181       }
3182     }
3183     T.consumeClose();
3184     ConstructorRParen = T.getCloseLocation();
3185     if (ConstructorRParen.isInvalid()) {
3186       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3187       return ExprError();
3188     }
3189     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3190                                              ConstructorRParen,
3191                                              ConstructorArgs);
3192   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3193     Diag(Tok.getLocation(),
3194          diag::warn_cxx98_compat_generalized_initializer_lists);
3195     Initializer = ParseBraceInitializer();
3196   }
3197   if (Initializer.isInvalid())
3198     return Initializer;
3199 
3200   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3201                              PlacementArgs, PlacementRParen,
3202                              TypeIdParens, DeclaratorInfo, Initializer.get());
3203 }
3204 
3205 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3206 /// passed to ParseDeclaratorInternal.
3207 ///
3208 ///        direct-new-declarator:
3209 ///                   '[' expression[opt] ']'
3210 ///                   direct-new-declarator '[' constant-expression ']'
3211 ///
3212 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3213   // Parse the array dimensions.
3214   bool First = true;
3215   while (Tok.is(tok::l_square)) {
3216     // An array-size expression can't start with a lambda.
3217     if (CheckProhibitedCXX11Attribute())
3218       continue;
3219 
3220     BalancedDelimiterTracker T(*this, tok::l_square);
3221     T.consumeOpen();
3222 
3223     ExprResult Size =
3224         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3225               : ParseConstantExpression();
3226     if (Size.isInvalid()) {
3227       // Recover
3228       SkipUntil(tok::r_square, StopAtSemi);
3229       return;
3230     }
3231     First = false;
3232 
3233     T.consumeClose();
3234 
3235     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3236     ParsedAttributes Attrs(AttrFactory);
3237     MaybeParseCXX11Attributes(Attrs);
3238 
3239     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3240                                             /*isStatic=*/false, /*isStar=*/false,
3241                                             Size.get(), T.getOpenLocation(),
3242                                             T.getCloseLocation()),
3243                   std::move(Attrs), T.getCloseLocation());
3244 
3245     if (T.getCloseLocation().isInvalid())
3246       return;
3247   }
3248 }
3249 
3250 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3251 /// This ambiguity appears in the syntax of the C++ new operator.
3252 ///
3253 ///        new-expression:
3254 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3255 ///                                     new-initializer[opt]
3256 ///
3257 ///        new-placement:
3258 ///                   '(' expression-list ')'
3259 ///
3260 bool Parser::ParseExpressionListOrTypeId(
3261                                    SmallVectorImpl<Expr*> &PlacementArgs,
3262                                          Declarator &D) {
3263   // The '(' was already consumed.
3264   if (isTypeIdInParens()) {
3265     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3266     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3267     ParseDeclarator(D);
3268     return D.isInvalidType();
3269   }
3270 
3271   // It's not a type, it has to be an expression list.
3272   // Discard the comma locations - ActOnCXXNew has enough parameters.
3273   CommaLocsTy CommaLocs;
3274   return ParseExpressionList(PlacementArgs, CommaLocs);
3275 }
3276 
3277 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3278 /// to free memory allocated by new.
3279 ///
3280 /// This method is called to parse the 'delete' expression after the optional
3281 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3282 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3283 /// 'delete' token.
3284 ///
3285 ///        delete-expression:
3286 ///                   '::'[opt] 'delete' cast-expression
3287 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3288 ExprResult
3289 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3290   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3291   ConsumeToken(); // Consume 'delete'
3292 
3293   // Array delete?
3294   bool ArrayDelete = false;
3295   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3296     // C++11 [expr.delete]p1:
3297     //   Whenever the delete keyword is followed by empty square brackets, it
3298     //   shall be interpreted as [array delete].
3299     //   [Footnote: A lambda expression with a lambda-introducer that consists
3300     //              of empty square brackets can follow the delete keyword if
3301     //              the lambda expression is enclosed in parentheses.]
3302 
3303     const Token Next = GetLookAheadToken(2);
3304 
3305     // Basic lookahead to check if we have a lambda expression.
3306     if (Next.isOneOf(tok::l_brace, tok::less) ||
3307         (Next.is(tok::l_paren) &&
3308          (GetLookAheadToken(3).is(tok::r_paren) ||
3309           (GetLookAheadToken(3).is(tok::identifier) &&
3310            GetLookAheadToken(4).is(tok::identifier))))) {
3311       TentativeParsingAction TPA(*this);
3312       SourceLocation LSquareLoc = Tok.getLocation();
3313       SourceLocation RSquareLoc = NextToken().getLocation();
3314 
3315       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3316       // case.
3317       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3318       SourceLocation RBraceLoc;
3319       bool EmitFixIt = false;
3320       if (Tok.is(tok::l_brace)) {
3321         ConsumeBrace();
3322         SkipUntil(tok::r_brace, StopBeforeMatch);
3323         RBraceLoc = Tok.getLocation();
3324         EmitFixIt = true;
3325       }
3326 
3327       TPA.Revert();
3328 
3329       if (EmitFixIt)
3330         Diag(Start, diag::err_lambda_after_delete)
3331             << SourceRange(Start, RSquareLoc)
3332             << FixItHint::CreateInsertion(LSquareLoc, "(")
3333             << FixItHint::CreateInsertion(
3334                    Lexer::getLocForEndOfToken(
3335                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3336                    ")");
3337       else
3338         Diag(Start, diag::err_lambda_after_delete)
3339             << SourceRange(Start, RSquareLoc);
3340 
3341       // Warn that the non-capturing lambda isn't surrounded by parentheses
3342       // to disambiguate it from 'delete[]'.
3343       ExprResult Lambda = ParseLambdaExpression();
3344       if (Lambda.isInvalid())
3345         return ExprError();
3346 
3347       // Evaluate any postfix expressions used on the lambda.
3348       Lambda = ParsePostfixExpressionSuffix(Lambda);
3349       if (Lambda.isInvalid())
3350         return ExprError();
3351       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3352                                     Lambda.get());
3353     }
3354 
3355     ArrayDelete = true;
3356     BalancedDelimiterTracker T(*this, tok::l_square);
3357 
3358     T.consumeOpen();
3359     T.consumeClose();
3360     if (T.getCloseLocation().isInvalid())
3361       return ExprError();
3362   }
3363 
3364   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3365   if (Operand.isInvalid())
3366     return Operand;
3367 
3368   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3369 }
3370 
3371 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3372 /// C++2a [expr.prim.req]p1
3373 ///     A requires-expression provides a concise way to express requirements on
3374 ///     template arguments. A requirement is one that can be checked by name
3375 ///     lookup (6.4) or by checking properties of types and expressions.
3376 ///
3377 ///     requires-expression:
3378 ///         'requires' requirement-parameter-list[opt] requirement-body
3379 ///
3380 ///     requirement-parameter-list:
3381 ///         '(' parameter-declaration-clause[opt] ')'
3382 ///
3383 ///     requirement-body:
3384 ///         '{' requirement-seq '}'
3385 ///
3386 ///     requirement-seq:
3387 ///         requirement
3388 ///         requirement-seq requirement
3389 ///
3390 ///     requirement:
3391 ///         simple-requirement
3392 ///         type-requirement
3393 ///         compound-requirement
3394 ///         nested-requirement
3395 ExprResult Parser::ParseRequiresExpression() {
3396   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3397   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3398 
3399   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3400   if (Tok.is(tok::l_paren)) {
3401     // requirement parameter list is present.
3402     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3403                                     Scope::DeclScope);
3404     BalancedDelimiterTracker Parens(*this, tok::l_paren);
3405     Parens.consumeOpen();
3406     if (!Tok.is(tok::r_paren)) {
3407       ParsedAttributes FirstArgAttrs(getAttrFactory());
3408       SourceLocation EllipsisLoc;
3409       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3410       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3411                                       FirstArgAttrs, LocalParameters,
3412                                       EllipsisLoc);
3413       if (EllipsisLoc.isValid())
3414         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3415       for (auto &ParamInfo : LocalParameters)
3416         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3417     }
3418     Parens.consumeClose();
3419   }
3420 
3421   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3422   if (Braces.expectAndConsume())
3423     return ExprError();
3424 
3425   // Start of requirement list
3426   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3427 
3428   // C++2a [expr.prim.req]p2
3429   //   Expressions appearing within a requirement-body are unevaluated operands.
3430   EnterExpressionEvaluationContext Ctx(
3431       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3432 
3433   ParseScope BodyScope(this, Scope::DeclScope);
3434   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3435       RequiresKWLoc, LocalParameterDecls, getCurScope());
3436 
3437   if (Tok.is(tok::r_brace)) {
3438     // Grammar does not allow an empty body.
3439     // requirement-body:
3440     //   { requirement-seq }
3441     // requirement-seq:
3442     //   requirement
3443     //   requirement-seq requirement
3444     Diag(Tok, diag::err_empty_requires_expr);
3445     // Continue anyway and produce a requires expr with no requirements.
3446   } else {
3447     while (!Tok.is(tok::r_brace)) {
3448       switch (Tok.getKind()) {
3449       case tok::l_brace: {
3450         // Compound requirement
3451         // C++ [expr.prim.req.compound]
3452         //     compound-requirement:
3453         //         '{' expression '}' 'noexcept'[opt]
3454         //             return-type-requirement[opt] ';'
3455         //     return-type-requirement:
3456         //         trailing-return-type
3457         //         '->' cv-qualifier-seq[opt] constrained-parameter
3458         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3459         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3460         ExprBraces.consumeOpen();
3461         ExprResult Expression =
3462             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3463         if (!Expression.isUsable()) {
3464           ExprBraces.skipToEnd();
3465           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3466           break;
3467         }
3468         if (ExprBraces.consumeClose())
3469           ExprBraces.skipToEnd();
3470 
3471         concepts::Requirement *Req = nullptr;
3472         SourceLocation NoexceptLoc;
3473         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3474         if (Tok.is(tok::semi)) {
3475           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3476           if (Req)
3477             Requirements.push_back(Req);
3478           break;
3479         }
3480         if (!TryConsumeToken(tok::arrow))
3481           // User probably forgot the arrow, remind them and try to continue.
3482           Diag(Tok, diag::err_requires_expr_missing_arrow)
3483               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3484         // Try to parse a 'type-constraint'
3485         if (TryAnnotateTypeConstraint()) {
3486           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3487           break;
3488         }
3489         if (!isTypeConstraintAnnotation()) {
3490           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3491           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3492           break;
3493         }
3494         CXXScopeSpec SS;
3495         if (Tok.is(tok::annot_cxxscope)) {
3496           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3497                                                        Tok.getAnnotationRange(),
3498                                                        SS);
3499           ConsumeAnnotationToken();
3500         }
3501 
3502         Req = Actions.ActOnCompoundRequirement(
3503             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3504             TemplateParameterDepth);
3505         ConsumeAnnotationToken();
3506         if (Req)
3507           Requirements.push_back(Req);
3508         break;
3509       }
3510       default: {
3511         bool PossibleRequiresExprInSimpleRequirement = false;
3512         if (Tok.is(tok::kw_requires)) {
3513           auto IsNestedRequirement = [&] {
3514             RevertingTentativeParsingAction TPA(*this);
3515             ConsumeToken(); // 'requires'
3516             if (Tok.is(tok::l_brace))
3517               // This is a requires expression
3518               // requires (T t) {
3519               //   requires { t++; };
3520               //   ...      ^
3521               // }
3522               return false;
3523             if (Tok.is(tok::l_paren)) {
3524               // This might be the parameter list of a requires expression
3525               ConsumeParen();
3526               auto Res = TryParseParameterDeclarationClause();
3527               if (Res != TPResult::False) {
3528                 // Skip to the closing parenthesis
3529                 // FIXME: Don't traverse these tokens twice (here and in
3530                 //  TryParseParameterDeclarationClause).
3531                 unsigned Depth = 1;
3532                 while (Depth != 0) {
3533                   if (Tok.is(tok::l_paren))
3534                     Depth++;
3535                   else if (Tok.is(tok::r_paren))
3536                     Depth--;
3537                   ConsumeAnyToken();
3538                 }
3539                 // requires (T t) {
3540                 //   requires () ?
3541                 //   ...         ^
3542                 //   - OR -
3543                 //   requires (int x) ?
3544                 //   ...              ^
3545                 // }
3546                 if (Tok.is(tok::l_brace))
3547                   // requires (...) {
3548                   //                ^ - a requires expression as a
3549                   //                    simple-requirement.
3550                   return false;
3551               }
3552             }
3553             return true;
3554           };
3555           if (IsNestedRequirement()) {
3556             ConsumeToken();
3557             // Nested requirement
3558             // C++ [expr.prim.req.nested]
3559             //     nested-requirement:
3560             //         'requires' constraint-expression ';'
3561             ExprResult ConstraintExpr =
3562                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3563             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3564               SkipUntil(tok::semi, tok::r_brace,
3565                         SkipUntilFlags::StopBeforeMatch);
3566               break;
3567             }
3568             if (auto *Req =
3569                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3570               Requirements.push_back(Req);
3571             else {
3572               SkipUntil(tok::semi, tok::r_brace,
3573                         SkipUntilFlags::StopBeforeMatch);
3574               break;
3575             }
3576             break;
3577           } else
3578             PossibleRequiresExprInSimpleRequirement = true;
3579         } else if (Tok.is(tok::kw_typename)) {
3580           // This might be 'typename T::value_type;' (a type requirement) or
3581           // 'typename T::value_type{};' (a simple requirement).
3582           TentativeParsingAction TPA(*this);
3583 
3584           // We need to consume the typename to allow 'requires { typename a; }'
3585           SourceLocation TypenameKWLoc = ConsumeToken();
3586           if (TryAnnotateCXXScopeToken()) {
3587             TPA.Commit();
3588             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3589             break;
3590           }
3591           CXXScopeSpec SS;
3592           if (Tok.is(tok::annot_cxxscope)) {
3593             Actions.RestoreNestedNameSpecifierAnnotation(
3594                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3595             ConsumeAnnotationToken();
3596           }
3597 
3598           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3599               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3600             TPA.Commit();
3601             SourceLocation NameLoc = Tok.getLocation();
3602             IdentifierInfo *II = nullptr;
3603             TemplateIdAnnotation *TemplateId = nullptr;
3604             if (Tok.is(tok::identifier)) {
3605               II = Tok.getIdentifierInfo();
3606               ConsumeToken();
3607             } else {
3608               TemplateId = takeTemplateIdAnnotation(Tok);
3609               ConsumeAnnotationToken();
3610               if (TemplateId->isInvalid())
3611                 break;
3612             }
3613 
3614             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3615                                                          NameLoc, II,
3616                                                          TemplateId)) {
3617               Requirements.push_back(Req);
3618             }
3619             break;
3620           }
3621           TPA.Revert();
3622         }
3623         // Simple requirement
3624         // C++ [expr.prim.req.simple]
3625         //     simple-requirement:
3626         //         expression ';'
3627         SourceLocation StartLoc = Tok.getLocation();
3628         ExprResult Expression =
3629             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3630         if (!Expression.isUsable()) {
3631           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3632           break;
3633         }
3634         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3635           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3636               << FixItHint::CreateInsertion(StartLoc, "requires");
3637         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3638           Requirements.push_back(Req);
3639         else {
3640           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3641           break;
3642         }
3643         // User may have tried to put some compound requirement stuff here
3644         if (Tok.is(tok::kw_noexcept)) {
3645           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3646               << FixItHint::CreateInsertion(StartLoc, "{")
3647               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3648           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3649           break;
3650         }
3651         break;
3652       }
3653       }
3654       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3655         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3656         TryConsumeToken(tok::semi);
3657         break;
3658       }
3659     }
3660     if (Requirements.empty()) {
3661       // Don't emit an empty requires expr here to avoid confusing the user with
3662       // other diagnostics quoting an empty requires expression they never
3663       // wrote.
3664       Braces.consumeClose();
3665       Actions.ActOnFinishRequiresExpr();
3666       return ExprError();
3667     }
3668   }
3669   Braces.consumeClose();
3670   Actions.ActOnFinishRequiresExpr();
3671   return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3672                                    Requirements, Braces.getCloseLocation());
3673 }
3674 
3675 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3676   switch (kind) {
3677   default: llvm_unreachable("Not a known type trait");
3678 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3679 case tok::kw_ ## Spelling: return UTT_ ## Name;
3680 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3681 case tok::kw_ ## Spelling: return BTT_ ## Name;
3682 #include "clang/Basic/TokenKinds.def"
3683 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3684   case tok::kw_ ## Spelling: return TT_ ## Name;
3685 #include "clang/Basic/TokenKinds.def"
3686   }
3687 }
3688 
3689 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3690   switch (kind) {
3691   default:
3692     llvm_unreachable("Not a known array type trait");
3693 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3694   case tok::kw_##Spelling:                                                     \
3695     return ATT_##Name;
3696 #include "clang/Basic/TokenKinds.def"
3697   }
3698 }
3699 
3700 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3701   switch (kind) {
3702   default:
3703     llvm_unreachable("Not a known unary expression trait.");
3704 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3705   case tok::kw_##Spelling:                                                     \
3706     return ET_##Name;
3707 #include "clang/Basic/TokenKinds.def"
3708   }
3709 }
3710 
3711 static unsigned TypeTraitArity(tok::TokenKind kind) {
3712   switch (kind) {
3713     default: llvm_unreachable("Not a known type trait");
3714 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N;
3715 #include "clang/Basic/TokenKinds.def"
3716   }
3717 }
3718 
3719 /// Parse the built-in type-trait pseudo-functions that allow
3720 /// implementation of the TR1/C++11 type traits templates.
3721 ///
3722 ///       primary-expression:
3723 ///          unary-type-trait '(' type-id ')'
3724 ///          binary-type-trait '(' type-id ',' type-id ')'
3725 ///          type-trait '(' type-id-seq ')'
3726 ///
3727 ///       type-id-seq:
3728 ///          type-id ...[opt] type-id-seq[opt]
3729 ///
3730 ExprResult Parser::ParseTypeTrait() {
3731   tok::TokenKind Kind = Tok.getKind();
3732   unsigned Arity = TypeTraitArity(Kind);
3733 
3734   SourceLocation Loc = ConsumeToken();
3735 
3736   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3737   if (Parens.expectAndConsume())
3738     return ExprError();
3739 
3740   SmallVector<ParsedType, 2> Args;
3741   do {
3742     // Parse the next type.
3743     TypeResult Ty = ParseTypeName();
3744     if (Ty.isInvalid()) {
3745       Parens.skipToEnd();
3746       return ExprError();
3747     }
3748 
3749     // Parse the ellipsis, if present.
3750     if (Tok.is(tok::ellipsis)) {
3751       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3752       if (Ty.isInvalid()) {
3753         Parens.skipToEnd();
3754         return ExprError();
3755       }
3756     }
3757 
3758     // Add this type to the list of arguments.
3759     Args.push_back(Ty.get());
3760   } while (TryConsumeToken(tok::comma));
3761 
3762   if (Parens.consumeClose())
3763     return ExprError();
3764 
3765   SourceLocation EndLoc = Parens.getCloseLocation();
3766 
3767   if (Arity && Args.size() != Arity) {
3768     Diag(EndLoc, diag::err_type_trait_arity)
3769       << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc);
3770     return ExprError();
3771   }
3772 
3773   if (!Arity && Args.empty()) {
3774     Diag(EndLoc, diag::err_type_trait_arity)
3775       << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc);
3776     return ExprError();
3777   }
3778 
3779   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3780 }
3781 
3782 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3783 /// pseudo-functions.
3784 ///
3785 ///       primary-expression:
3786 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3787 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3788 ///
3789 ExprResult Parser::ParseArrayTypeTrait() {
3790   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3791   SourceLocation Loc = ConsumeToken();
3792 
3793   BalancedDelimiterTracker T(*this, tok::l_paren);
3794   if (T.expectAndConsume())
3795     return ExprError();
3796 
3797   TypeResult Ty = ParseTypeName();
3798   if (Ty.isInvalid()) {
3799     SkipUntil(tok::comma, StopAtSemi);
3800     SkipUntil(tok::r_paren, StopAtSemi);
3801     return ExprError();
3802   }
3803 
3804   switch (ATT) {
3805   case ATT_ArrayRank: {
3806     T.consumeClose();
3807     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3808                                        T.getCloseLocation());
3809   }
3810   case ATT_ArrayExtent: {
3811     if (ExpectAndConsume(tok::comma)) {
3812       SkipUntil(tok::r_paren, StopAtSemi);
3813       return ExprError();
3814     }
3815 
3816     ExprResult DimExpr = ParseExpression();
3817     T.consumeClose();
3818 
3819     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3820                                        T.getCloseLocation());
3821   }
3822   }
3823   llvm_unreachable("Invalid ArrayTypeTrait!");
3824 }
3825 
3826 /// ParseExpressionTrait - Parse built-in expression-trait
3827 /// pseudo-functions like __is_lvalue_expr( xxx ).
3828 ///
3829 ///       primary-expression:
3830 /// [Embarcadero]     expression-trait '(' expression ')'
3831 ///
3832 ExprResult Parser::ParseExpressionTrait() {
3833   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3834   SourceLocation Loc = ConsumeToken();
3835 
3836   BalancedDelimiterTracker T(*this, tok::l_paren);
3837   if (T.expectAndConsume())
3838     return ExprError();
3839 
3840   ExprResult Expr = ParseExpression();
3841 
3842   T.consumeClose();
3843 
3844   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3845                                       T.getCloseLocation());
3846 }
3847 
3848 
3849 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3850 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3851 /// based on the context past the parens.
3852 ExprResult
3853 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3854                                          ParsedType &CastTy,
3855                                          BalancedDelimiterTracker &Tracker,
3856                                          ColonProtectionRAIIObject &ColonProt) {
3857   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3858   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3859   assert(isTypeIdInParens() && "Not a type-id!");
3860 
3861   ExprResult Result(true);
3862   CastTy = nullptr;
3863 
3864   // We need to disambiguate a very ugly part of the C++ syntax:
3865   //
3866   // (T())x;  - type-id
3867   // (T())*x; - type-id
3868   // (T())/x; - expression
3869   // (T());   - expression
3870   //
3871   // The bad news is that we cannot use the specialized tentative parser, since
3872   // it can only verify that the thing inside the parens can be parsed as
3873   // type-id, it is not useful for determining the context past the parens.
3874   //
3875   // The good news is that the parser can disambiguate this part without
3876   // making any unnecessary Action calls.
3877   //
3878   // It uses a scheme similar to parsing inline methods. The parenthesized
3879   // tokens are cached, the context that follows is determined (possibly by
3880   // parsing a cast-expression), and then we re-introduce the cached tokens
3881   // into the token stream and parse them appropriately.
3882 
3883   ParenParseOption ParseAs;
3884   CachedTokens Toks;
3885 
3886   // Store the tokens of the parentheses. We will parse them after we determine
3887   // the context that follows them.
3888   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3889     // We didn't find the ')' we expected.
3890     Tracker.consumeClose();
3891     return ExprError();
3892   }
3893 
3894   if (Tok.is(tok::l_brace)) {
3895     ParseAs = CompoundLiteral;
3896   } else {
3897     bool NotCastExpr;
3898     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3899       NotCastExpr = true;
3900     } else {
3901       // Try parsing the cast-expression that may follow.
3902       // If it is not a cast-expression, NotCastExpr will be true and no token
3903       // will be consumed.
3904       ColonProt.restore();
3905       Result = ParseCastExpression(AnyCastExpr,
3906                                    false/*isAddressofOperand*/,
3907                                    NotCastExpr,
3908                                    // type-id has priority.
3909                                    IsTypeCast);
3910     }
3911 
3912     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3913     // an expression.
3914     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3915   }
3916 
3917   // Create a fake EOF to mark end of Toks buffer.
3918   Token AttrEnd;
3919   AttrEnd.startToken();
3920   AttrEnd.setKind(tok::eof);
3921   AttrEnd.setLocation(Tok.getLocation());
3922   AttrEnd.setEofData(Toks.data());
3923   Toks.push_back(AttrEnd);
3924 
3925   // The current token should go after the cached tokens.
3926   Toks.push_back(Tok);
3927   // Re-enter the stored parenthesized tokens into the token stream, so we may
3928   // parse them now.
3929   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3930                       /*IsReinject*/ true);
3931   // Drop the current token and bring the first cached one. It's the same token
3932   // as when we entered this function.
3933   ConsumeAnyToken();
3934 
3935   if (ParseAs >= CompoundLiteral) {
3936     // Parse the type declarator.
3937     DeclSpec DS(AttrFactory);
3938     Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
3939     {
3940       ColonProtectionRAIIObject InnerColonProtection(*this);
3941       ParseSpecifierQualifierList(DS);
3942       ParseDeclarator(DeclaratorInfo);
3943     }
3944 
3945     // Match the ')'.
3946     Tracker.consumeClose();
3947     ColonProt.restore();
3948 
3949     // Consume EOF marker for Toks buffer.
3950     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3951     ConsumeAnyToken();
3952 
3953     if (ParseAs == CompoundLiteral) {
3954       ExprType = CompoundLiteral;
3955       if (DeclaratorInfo.isInvalidType())
3956         return ExprError();
3957 
3958       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3959       return ParseCompoundLiteralExpression(Ty.get(),
3960                                             Tracker.getOpenLocation(),
3961                                             Tracker.getCloseLocation());
3962     }
3963 
3964     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
3965     assert(ParseAs == CastExpr);
3966 
3967     if (DeclaratorInfo.isInvalidType())
3968       return ExprError();
3969 
3970     // Result is what ParseCastExpression returned earlier.
3971     if (!Result.isInvalid())
3972       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
3973                                     DeclaratorInfo, CastTy,
3974                                     Tracker.getCloseLocation(), Result.get());
3975     return Result;
3976   }
3977 
3978   // Not a compound literal, and not followed by a cast-expression.
3979   assert(ParseAs == SimpleExpr);
3980 
3981   ExprType = SimpleExpr;
3982   Result = ParseExpression();
3983   if (!Result.isInvalid() && Tok.is(tok::r_paren))
3984     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
3985                                     Tok.getLocation(), Result.get());
3986 
3987   // Match the ')'.
3988   if (Result.isInvalid()) {
3989     while (Tok.isNot(tok::eof))
3990       ConsumeAnyToken();
3991     assert(Tok.getEofData() == AttrEnd.getEofData());
3992     ConsumeAnyToken();
3993     return ExprError();
3994   }
3995 
3996   Tracker.consumeClose();
3997   // Consume EOF marker for Toks buffer.
3998   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
3999   ConsumeAnyToken();
4000   return Result;
4001 }
4002 
4003 /// Parse a __builtin_bit_cast(T, E).
4004 ExprResult Parser::ParseBuiltinBitCast() {
4005   SourceLocation KWLoc = ConsumeToken();
4006 
4007   BalancedDelimiterTracker T(*this, tok::l_paren);
4008   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4009     return ExprError();
4010 
4011   // Parse the common declaration-specifiers piece.
4012   DeclSpec DS(AttrFactory);
4013   ParseSpecifierQualifierList(DS);
4014 
4015   // Parse the abstract-declarator, if present.
4016   Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName);
4017   ParseDeclarator(DeclaratorInfo);
4018 
4019   if (ExpectAndConsume(tok::comma)) {
4020     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4021     SkipUntil(tok::r_paren, StopAtSemi);
4022     return ExprError();
4023   }
4024 
4025   ExprResult Operand = ParseExpression();
4026 
4027   if (T.consumeClose())
4028     return ExprError();
4029 
4030   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4031     return ExprError();
4032 
4033   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4034                                          T.getCloseLocation());
4035 }
4036