xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExprCXX.cpp (revision 4fbb9c43aa44d9145151bb5f77d302ba01fb7551)
1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Expression parsing implementation for C++.
10 //
11 //===----------------------------------------------------------------------===//
12 #include "clang/AST/ASTContext.h"
13 #include "clang/AST/Decl.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/ExprCXX.h"
16 #include "clang/Basic/PrettyStackTrace.h"
17 #include "clang/Basic/TokenKinds.h"
18 #include "clang/Lex/LiteralSupport.h"
19 #include "clang/Parse/ParseDiagnostic.h"
20 #include "clang/Parse/Parser.h"
21 #include "clang/Parse/RAIIObjectsForParser.h"
22 #include "clang/Sema/DeclSpec.h"
23 #include "clang/Sema/ParsedTemplate.h"
24 #include "clang/Sema/Scope.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <numeric>
28 
29 using namespace clang;
30 
31 static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
32   switch (Kind) {
33     // template name
34     case tok::unknown:             return 0;
35     // casts
36     case tok::kw_addrspace_cast:   return 1;
37     case tok::kw_const_cast:       return 2;
38     case tok::kw_dynamic_cast:     return 3;
39     case tok::kw_reinterpret_cast: return 4;
40     case tok::kw_static_cast:      return 5;
41     default:
42       llvm_unreachable("Unknown type for digraph error message.");
43   }
44 }
45 
46 // Are the two tokens adjacent in the same source file?
47 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
48   SourceManager &SM = PP.getSourceManager();
49   SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
50   SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
51   return FirstEnd == SM.getSpellingLoc(Second.getLocation());
52 }
53 
54 // Suggest fixit for "<::" after a cast.
55 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
56                        Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
57   // Pull '<:' and ':' off token stream.
58   if (!AtDigraph)
59     PP.Lex(DigraphToken);
60   PP.Lex(ColonToken);
61 
62   SourceRange Range;
63   Range.setBegin(DigraphToken.getLocation());
64   Range.setEnd(ColonToken.getLocation());
65   P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
66       << SelectDigraphErrorMessage(Kind)
67       << FixItHint::CreateReplacement(Range, "< ::");
68 
69   // Update token information to reflect their change in token type.
70   ColonToken.setKind(tok::coloncolon);
71   ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
72   ColonToken.setLength(2);
73   DigraphToken.setKind(tok::less);
74   DigraphToken.setLength(1);
75 
76   // Push new tokens back to token stream.
77   PP.EnterToken(ColonToken, /*IsReinject*/ true);
78   if (!AtDigraph)
79     PP.EnterToken(DigraphToken, /*IsReinject*/ true);
80 }
81 
82 // Check for '<::' which should be '< ::' instead of '[:' when following
83 // a template name.
84 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
85                                         bool EnteringContext,
86                                         IdentifierInfo &II, CXXScopeSpec &SS) {
87   if (!Next.is(tok::l_square) || Next.getLength() != 2)
88     return;
89 
90   Token SecondToken = GetLookAheadToken(2);
91   if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
92     return;
93 
94   TemplateTy Template;
95   UnqualifiedId TemplateName;
96   TemplateName.setIdentifier(&II, Tok.getLocation());
97   bool MemberOfUnknownSpecialization;
98   if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
99                               TemplateName, ObjectType, EnteringContext,
100                               Template, MemberOfUnknownSpecialization))
101     return;
102 
103   FixDigraph(*this, PP, Next, SecondToken, tok::unknown,
104              /*AtDigraph*/false);
105 }
106 
107 /// Parse global scope or nested-name-specifier if present.
108 ///
109 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
110 /// may be preceded by '::'). Note that this routine will not parse ::new or
111 /// ::delete; it will just leave them in the token stream.
112 ///
113 ///       '::'[opt] nested-name-specifier
114 ///       '::'
115 ///
116 ///       nested-name-specifier:
117 ///         type-name '::'
118 ///         namespace-name '::'
119 ///         nested-name-specifier identifier '::'
120 ///         nested-name-specifier 'template'[opt] simple-template-id '::'
121 ///
122 ///
123 /// \param SS the scope specifier that will be set to the parsed
124 /// nested-name-specifier (or empty)
125 ///
126 /// \param ObjectType if this nested-name-specifier is being parsed following
127 /// the "." or "->" of a member access expression, this parameter provides the
128 /// type of the object whose members are being accessed.
129 ///
130 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
131 /// expression, indicates whether the original subexpressions had any errors.
132 /// When true, diagnostics for missing 'template' keyword will be supressed.
133 ///
134 /// \param EnteringContext whether we will be entering into the context of
135 /// the nested-name-specifier after parsing it.
136 ///
137 /// \param MayBePseudoDestructor When non-NULL, points to a flag that
138 /// indicates whether this nested-name-specifier may be part of a
139 /// pseudo-destructor name. In this case, the flag will be set false
140 /// if we don't actually end up parsing a destructor name. Moreover,
141 /// if we do end up determining that we are parsing a destructor name,
142 /// the last component of the nested-name-specifier is not parsed as
143 /// part of the scope specifier.
144 ///
145 /// \param IsTypename If \c true, this nested-name-specifier is known to be
146 /// part of a type name. This is used to improve error recovery.
147 ///
148 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be
149 /// filled in with the leading identifier in the last component of the
150 /// nested-name-specifier, if any.
151 ///
152 /// \param OnlyNamespace If true, only considers namespaces in lookup.
153 ///
154 ///
155 /// \returns true if there was an error parsing a scope specifier
156 bool Parser::ParseOptionalCXXScopeSpecifier(
157     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
158     bool EnteringContext, bool *MayBePseudoDestructor, bool IsTypename,
159     IdentifierInfo **LastII, bool OnlyNamespace, bool InUsingDeclaration) {
160   assert(getLangOpts().CPlusPlus &&
161          "Call sites of this function should be guarded by checking for C++");
162 
163   if (Tok.is(tok::annot_cxxscope)) {
164     assert(!LastII && "want last identifier but have already annotated scope");
165     assert(!MayBePseudoDestructor && "unexpected annot_cxxscope");
166     Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
167                                                  Tok.getAnnotationRange(),
168                                                  SS);
169     ConsumeAnnotationToken();
170     return false;
171   }
172 
173   // Has to happen before any "return false"s in this function.
174   bool CheckForDestructor = false;
175   if (MayBePseudoDestructor && *MayBePseudoDestructor) {
176     CheckForDestructor = true;
177     *MayBePseudoDestructor = false;
178   }
179 
180   if (LastII)
181     *LastII = nullptr;
182 
183   bool HasScopeSpecifier = false;
184 
185   if (Tok.is(tok::coloncolon)) {
186     // ::new and ::delete aren't nested-name-specifiers.
187     tok::TokenKind NextKind = NextToken().getKind();
188     if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
189       return false;
190 
191     if (NextKind == tok::l_brace) {
192       // It is invalid to have :: {, consume the scope qualifier and pretend
193       // like we never saw it.
194       Diag(ConsumeToken(), diag::err_expected) << tok::identifier;
195     } else {
196       // '::' - Global scope qualifier.
197       if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS))
198         return true;
199 
200       HasScopeSpecifier = true;
201     }
202   }
203 
204   if (Tok.is(tok::kw___super)) {
205     SourceLocation SuperLoc = ConsumeToken();
206     if (!Tok.is(tok::coloncolon)) {
207       Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super);
208       return true;
209     }
210 
211     return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS);
212   }
213 
214   if (!HasScopeSpecifier &&
215       Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) {
216     DeclSpec DS(AttrFactory);
217     SourceLocation DeclLoc = Tok.getLocation();
218     SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
219 
220     SourceLocation CCLoc;
221     // Work around a standard defect: 'decltype(auto)::' is not a
222     // nested-name-specifier.
223     if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto ||
224         !TryConsumeToken(tok::coloncolon, CCLoc)) {
225       AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
226       return false;
227     }
228 
229     if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
230       SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
231 
232     HasScopeSpecifier = true;
233   }
234 
235   // Preferred type might change when parsing qualifiers, we need the original.
236   auto SavedType = PreferredType;
237   while (true) {
238     if (HasScopeSpecifier) {
239       if (Tok.is(tok::code_completion)) {
240         cutOffParsing();
241         // Code completion for a nested-name-specifier, where the code
242         // completion token follows the '::'.
243         Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext,
244                                         InUsingDeclaration, ObjectType.get(),
245                                         SavedType.get(SS.getBeginLoc()));
246         // Include code completion token into the range of the scope otherwise
247         // when we try to annotate the scope tokens the dangling code completion
248         // token will cause assertion in
249         // Preprocessor::AnnotatePreviousCachedTokens.
250         SS.setEndLoc(Tok.getLocation());
251         return true;
252       }
253 
254       // C++ [basic.lookup.classref]p5:
255       //   If the qualified-id has the form
256       //
257       //       ::class-name-or-namespace-name::...
258       //
259       //   the class-name-or-namespace-name is looked up in global scope as a
260       //   class-name or namespace-name.
261       //
262       // To implement this, we clear out the object type as soon as we've
263       // seen a leading '::' or part of a nested-name-specifier.
264       ObjectType = nullptr;
265     }
266 
267     // nested-name-specifier:
268     //   nested-name-specifier 'template'[opt] simple-template-id '::'
269 
270     // Parse the optional 'template' keyword, then make sure we have
271     // 'identifier <' after it.
272     if (Tok.is(tok::kw_template)) {
273       // If we don't have a scope specifier or an object type, this isn't a
274       // nested-name-specifier, since they aren't allowed to start with
275       // 'template'.
276       if (!HasScopeSpecifier && !ObjectType)
277         break;
278 
279       TentativeParsingAction TPA(*this);
280       SourceLocation TemplateKWLoc = ConsumeToken();
281 
282       UnqualifiedId TemplateName;
283       if (Tok.is(tok::identifier)) {
284         // Consume the identifier.
285         TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
286         ConsumeToken();
287       } else if (Tok.is(tok::kw_operator)) {
288         // We don't need to actually parse the unqualified-id in this case,
289         // because a simple-template-id cannot start with 'operator', but
290         // go ahead and parse it anyway for consistency with the case where
291         // we already annotated the template-id.
292         if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
293                                        TemplateName)) {
294           TPA.Commit();
295           break;
296         }
297 
298         if (TemplateName.getKind() != UnqualifiedIdKind::IK_OperatorFunctionId &&
299             TemplateName.getKind() != UnqualifiedIdKind::IK_LiteralOperatorId) {
300           Diag(TemplateName.getSourceRange().getBegin(),
301                diag::err_id_after_template_in_nested_name_spec)
302             << TemplateName.getSourceRange();
303           TPA.Commit();
304           break;
305         }
306       } else {
307         TPA.Revert();
308         break;
309       }
310 
311       // If the next token is not '<', we have a qualified-id that refers
312       // to a template name, such as T::template apply, but is not a
313       // template-id.
314       if (Tok.isNot(tok::less)) {
315         TPA.Revert();
316         break;
317       }
318 
319       // Commit to parsing the template-id.
320       TPA.Commit();
321       TemplateTy Template;
322       TemplateNameKind TNK = Actions.ActOnTemplateName(
323           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
324           EnteringContext, Template, /*AllowInjectedClassName*/ true);
325       if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
326                                   TemplateName, false))
327         return true;
328 
329       continue;
330     }
331 
332     if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
333       // We have
334       //
335       //   template-id '::'
336       //
337       // So we need to check whether the template-id is a simple-template-id of
338       // the right kind (it should name a type or be dependent), and then
339       // convert it into a type within the nested-name-specifier.
340       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
341       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
342         *MayBePseudoDestructor = true;
343         return false;
344       }
345 
346       if (LastII)
347         *LastII = TemplateId->Name;
348 
349       // Consume the template-id token.
350       ConsumeAnnotationToken();
351 
352       assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
353       SourceLocation CCLoc = ConsumeToken();
354 
355       HasScopeSpecifier = true;
356 
357       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
358                                          TemplateId->NumArgs);
359 
360       if (TemplateId->isInvalid() ||
361           Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
362                                               SS,
363                                               TemplateId->TemplateKWLoc,
364                                               TemplateId->Template,
365                                               TemplateId->TemplateNameLoc,
366                                               TemplateId->LAngleLoc,
367                                               TemplateArgsPtr,
368                                               TemplateId->RAngleLoc,
369                                               CCLoc,
370                                               EnteringContext)) {
371         SourceLocation StartLoc
372           = SS.getBeginLoc().isValid()? SS.getBeginLoc()
373                                       : TemplateId->TemplateNameLoc;
374         SS.SetInvalid(SourceRange(StartLoc, CCLoc));
375       }
376 
377       continue;
378     }
379 
380     // The rest of the nested-name-specifier possibilities start with
381     // tok::identifier.
382     if (Tok.isNot(tok::identifier))
383       break;
384 
385     IdentifierInfo &II = *Tok.getIdentifierInfo();
386 
387     // nested-name-specifier:
388     //   type-name '::'
389     //   namespace-name '::'
390     //   nested-name-specifier identifier '::'
391     Token Next = NextToken();
392     Sema::NestedNameSpecInfo IdInfo(&II, Tok.getLocation(), Next.getLocation(),
393                                     ObjectType);
394 
395     // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
396     // and emit a fixit hint for it.
397     if (Next.is(tok::colon) && !ColonIsSacred) {
398       if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, IdInfo,
399                                             EnteringContext) &&
400           // If the token after the colon isn't an identifier, it's still an
401           // error, but they probably meant something else strange so don't
402           // recover like this.
403           PP.LookAhead(1).is(tok::identifier)) {
404         Diag(Next, diag::err_unexpected_colon_in_nested_name_spec)
405           << FixItHint::CreateReplacement(Next.getLocation(), "::");
406         // Recover as if the user wrote '::'.
407         Next.setKind(tok::coloncolon);
408       }
409     }
410 
411     if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) {
412       // It is invalid to have :: {, consume the scope qualifier and pretend
413       // like we never saw it.
414       Token Identifier = Tok; // Stash away the identifier.
415       ConsumeToken();         // Eat the identifier, current token is now '::'.
416       Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected)
417           << tok::identifier;
418       UnconsumeToken(Identifier); // Stick the identifier back.
419       Next = NextToken();         // Point Next at the '{' token.
420     }
421 
422     if (Next.is(tok::coloncolon)) {
423       if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
424         *MayBePseudoDestructor = true;
425         return false;
426       }
427 
428       if (ColonIsSacred) {
429         const Token &Next2 = GetLookAheadToken(2);
430         if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) ||
431             Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) {
432           Diag(Next2, diag::err_unexpected_token_in_nested_name_spec)
433               << Next2.getName()
434               << FixItHint::CreateReplacement(Next.getLocation(), ":");
435           Token ColonColon;
436           PP.Lex(ColonColon);
437           ColonColon.setKind(tok::colon);
438           PP.EnterToken(ColonColon, /*IsReinject*/ true);
439           break;
440         }
441       }
442 
443       if (LastII)
444         *LastII = &II;
445 
446       // We have an identifier followed by a '::'. Lookup this name
447       // as the name in a nested-name-specifier.
448       Token Identifier = Tok;
449       SourceLocation IdLoc = ConsumeToken();
450       assert(Tok.isOneOf(tok::coloncolon, tok::colon) &&
451              "NextToken() not working properly!");
452       Token ColonColon = Tok;
453       SourceLocation CCLoc = ConsumeToken();
454 
455       bool IsCorrectedToColon = false;
456       bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr;
457       if (Actions.ActOnCXXNestedNameSpecifier(
458               getCurScope(), IdInfo, EnteringContext, SS, CorrectionFlagPtr,
459               OnlyNamespace)) {
460         // Identifier is not recognized as a nested name, but we can have
461         // mistyped '::' instead of ':'.
462         if (CorrectionFlagPtr && IsCorrectedToColon) {
463           ColonColon.setKind(tok::colon);
464           PP.EnterToken(Tok, /*IsReinject*/ true);
465           PP.EnterToken(ColonColon, /*IsReinject*/ true);
466           Tok = Identifier;
467           break;
468         }
469         SS.SetInvalid(SourceRange(IdLoc, CCLoc));
470       }
471       HasScopeSpecifier = true;
472       continue;
473     }
474 
475     CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
476 
477     // nested-name-specifier:
478     //   type-name '<'
479     if (Next.is(tok::less)) {
480 
481       TemplateTy Template;
482       UnqualifiedId TemplateName;
483       TemplateName.setIdentifier(&II, Tok.getLocation());
484       bool MemberOfUnknownSpecialization;
485       if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
486                                               /*hasTemplateKeyword=*/false,
487                                                         TemplateName,
488                                                         ObjectType,
489                                                         EnteringContext,
490                                                         Template,
491                                               MemberOfUnknownSpecialization)) {
492         // If lookup didn't find anything, we treat the name as a template-name
493         // anyway. C++20 requires this, and in prior language modes it improves
494         // error recovery. But before we commit to this, check that we actually
495         // have something that looks like a template-argument-list next.
496         if (!IsTypename && TNK == TNK_Undeclared_template &&
497             isTemplateArgumentList(1) == TPResult::False)
498           break;
499 
500         // We have found a template name, so annotate this token
501         // with a template-id annotation. We do not permit the
502         // template-id to be translated into a type annotation,
503         // because some clients (e.g., the parsing of class template
504         // specializations) still want to see the original template-id
505         // token, and it might not be a type at all (e.g. a concept name in a
506         // type-constraint).
507         ConsumeToken();
508         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
509                                     TemplateName, false))
510           return true;
511         continue;
512       }
513 
514       if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
515           (IsTypename || isTemplateArgumentList(1) == TPResult::True)) {
516         // If we had errors before, ObjectType can be dependent even without any
517         // templates. Do not report missing template keyword in that case.
518         if (!ObjectHadErrors) {
519           // We have something like t::getAs<T>, where getAs is a
520           // member of an unknown specialization. However, this will only
521           // parse correctly as a template, so suggest the keyword 'template'
522           // before 'getAs' and treat this as a dependent template name.
523           unsigned DiagID = diag::err_missing_dependent_template_keyword;
524           if (getLangOpts().MicrosoftExt)
525             DiagID = diag::warn_missing_dependent_template_keyword;
526 
527           Diag(Tok.getLocation(), DiagID)
528               << II.getName()
529               << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
530         }
531 
532         SourceLocation TemplateNameLoc = ConsumeToken();
533 
534         TemplateNameKind TNK = Actions.ActOnTemplateName(
535             getCurScope(), SS, TemplateNameLoc, TemplateName, ObjectType,
536             EnteringContext, Template, /*AllowInjectedClassName*/ true);
537         if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
538                                     TemplateName, false))
539           return true;
540 
541         continue;
542       }
543     }
544 
545     // We don't have any tokens that form the beginning of a
546     // nested-name-specifier, so we're done.
547     break;
548   }
549 
550   // Even if we didn't see any pieces of a nested-name-specifier, we
551   // still check whether there is a tilde in this position, which
552   // indicates a potential pseudo-destructor.
553   if (CheckForDestructor && !HasScopeSpecifier && Tok.is(tok::tilde))
554     *MayBePseudoDestructor = true;
555 
556   return false;
557 }
558 
559 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS,
560                                            bool isAddressOfOperand,
561                                            Token &Replacement) {
562   ExprResult E;
563 
564   // We may have already annotated this id-expression.
565   switch (Tok.getKind()) {
566   case tok::annot_non_type: {
567     NamedDecl *ND = getNonTypeAnnotation(Tok);
568     SourceLocation Loc = ConsumeAnnotationToken();
569     E = Actions.ActOnNameClassifiedAsNonType(getCurScope(), SS, ND, Loc, Tok);
570     break;
571   }
572 
573   case tok::annot_non_type_dependent: {
574     IdentifierInfo *II = getIdentifierAnnotation(Tok);
575     SourceLocation Loc = ConsumeAnnotationToken();
576 
577     // This is only the direct operand of an & operator if it is not
578     // followed by a postfix-expression suffix.
579     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
580       isAddressOfOperand = false;
581 
582     E = Actions.ActOnNameClassifiedAsDependentNonType(SS, II, Loc,
583                                                       isAddressOfOperand);
584     break;
585   }
586 
587   case tok::annot_non_type_undeclared: {
588     assert(SS.isEmpty() &&
589            "undeclared non-type annotation should be unqualified");
590     IdentifierInfo *II = getIdentifierAnnotation(Tok);
591     SourceLocation Loc = ConsumeAnnotationToken();
592     E = Actions.ActOnNameClassifiedAsUndeclaredNonType(II, Loc);
593     break;
594   }
595 
596   default:
597     SourceLocation TemplateKWLoc;
598     UnqualifiedId Name;
599     if (ParseUnqualifiedId(SS, /*ObjectType=*/nullptr,
600                            /*ObjectHadErrors=*/false,
601                            /*EnteringContext=*/false,
602                            /*AllowDestructorName=*/false,
603                            /*AllowConstructorName=*/false,
604                            /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name))
605       return ExprError();
606 
607     // This is only the direct operand of an & operator if it is not
608     // followed by a postfix-expression suffix.
609     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
610       isAddressOfOperand = false;
611 
612     E = Actions.ActOnIdExpression(
613         getCurScope(), SS, TemplateKWLoc, Name, Tok.is(tok::l_paren),
614         isAddressOfOperand, /*CCC=*/nullptr, /*IsInlineAsmIdentifier=*/false,
615         &Replacement);
616     break;
617   }
618 
619   if (!E.isInvalid() && !E.isUnset() && Tok.is(tok::less))
620     checkPotentialAngleBracket(E);
621   return E;
622 }
623 
624 /// ParseCXXIdExpression - Handle id-expression.
625 ///
626 ///       id-expression:
627 ///         unqualified-id
628 ///         qualified-id
629 ///
630 ///       qualified-id:
631 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
632 ///         '::' identifier
633 ///         '::' operator-function-id
634 ///         '::' template-id
635 ///
636 /// NOTE: The standard specifies that, for qualified-id, the parser does not
637 /// expect:
638 ///
639 ///   '::' conversion-function-id
640 ///   '::' '~' class-name
641 ///
642 /// This may cause a slight inconsistency on diagnostics:
643 ///
644 /// class C {};
645 /// namespace A {}
646 /// void f() {
647 ///   :: A :: ~ C(); // Some Sema error about using destructor with a
648 ///                  // namespace.
649 ///   :: ~ C(); // Some Parser error like 'unexpected ~'.
650 /// }
651 ///
652 /// We simplify the parser a bit and make it work like:
653 ///
654 ///       qualified-id:
655 ///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
656 ///         '::' unqualified-id
657 ///
658 /// That way Sema can handle and report similar errors for namespaces and the
659 /// global scope.
660 ///
661 /// The isAddressOfOperand parameter indicates that this id-expression is a
662 /// direct operand of the address-of operator. This is, besides member contexts,
663 /// the only place where a qualified-id naming a non-static class member may
664 /// appear.
665 ///
666 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
667   // qualified-id:
668   //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
669   //   '::' unqualified-id
670   //
671   CXXScopeSpec SS;
672   ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
673                                  /*ObjectHasErrors=*/false,
674                                  /*EnteringContext=*/false);
675 
676   Token Replacement;
677   ExprResult Result =
678       tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
679   if (Result.isUnset()) {
680     // If the ExprResult is valid but null, then typo correction suggested a
681     // keyword replacement that needs to be reparsed.
682     UnconsumeToken(Replacement);
683     Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
684   }
685   assert(!Result.isUnset() && "Typo correction suggested a keyword replacement "
686                               "for a previous keyword suggestion");
687   return Result;
688 }
689 
690 /// ParseLambdaExpression - Parse a C++11 lambda expression.
691 ///
692 ///       lambda-expression:
693 ///         lambda-introducer lambda-declarator compound-statement
694 ///         lambda-introducer '<' template-parameter-list '>'
695 ///             requires-clause[opt] lambda-declarator compound-statement
696 ///
697 ///       lambda-introducer:
698 ///         '[' lambda-capture[opt] ']'
699 ///
700 ///       lambda-capture:
701 ///         capture-default
702 ///         capture-list
703 ///         capture-default ',' capture-list
704 ///
705 ///       capture-default:
706 ///         '&'
707 ///         '='
708 ///
709 ///       capture-list:
710 ///         capture
711 ///         capture-list ',' capture
712 ///
713 ///       capture:
714 ///         simple-capture
715 ///         init-capture     [C++1y]
716 ///
717 ///       simple-capture:
718 ///         identifier
719 ///         '&' identifier
720 ///         'this'
721 ///
722 ///       init-capture:      [C++1y]
723 ///         identifier initializer
724 ///         '&' identifier initializer
725 ///
726 ///       lambda-declarator:
727 ///         lambda-specifiers     [C++2b]
728 ///         '(' parameter-declaration-clause ')' lambda-specifiers
729 ///             requires-clause[opt]
730 ///
731 ///       lambda-specifiers:
732 ///         decl-specifier-seq[opt] noexcept-specifier[opt]
733 ///             attribute-specifier-seq[opt] trailing-return-type[opt]
734 ///
735 ExprResult Parser::ParseLambdaExpression() {
736   // Parse lambda-introducer.
737   LambdaIntroducer Intro;
738   if (ParseLambdaIntroducer(Intro)) {
739     SkipUntil(tok::r_square, StopAtSemi);
740     SkipUntil(tok::l_brace, StopAtSemi);
741     SkipUntil(tok::r_brace, StopAtSemi);
742     return ExprError();
743   }
744 
745   return ParseLambdaExpressionAfterIntroducer(Intro);
746 }
747 
748 /// Use lookahead and potentially tentative parsing to determine if we are
749 /// looking at a C++11 lambda expression, and parse it if we are.
750 ///
751 /// If we are not looking at a lambda expression, returns ExprError().
752 ExprResult Parser::TryParseLambdaExpression() {
753   assert(getLangOpts().CPlusPlus11
754          && Tok.is(tok::l_square)
755          && "Not at the start of a possible lambda expression.");
756 
757   const Token Next = NextToken();
758   if (Next.is(tok::eof)) // Nothing else to lookup here...
759     return ExprEmpty();
760 
761   const Token After = GetLookAheadToken(2);
762   // If lookahead indicates this is a lambda...
763   if (Next.is(tok::r_square) ||     // []
764       Next.is(tok::equal) ||        // [=
765       (Next.is(tok::amp) &&         // [&] or [&,
766        After.isOneOf(tok::r_square, tok::comma)) ||
767       (Next.is(tok::identifier) &&  // [identifier]
768        After.is(tok::r_square)) ||
769       Next.is(tok::ellipsis)) {     // [...
770     return ParseLambdaExpression();
771   }
772 
773   // If lookahead indicates an ObjC message send...
774   // [identifier identifier
775   if (Next.is(tok::identifier) && After.is(tok::identifier))
776     return ExprEmpty();
777 
778   // Here, we're stuck: lambda introducers and Objective-C message sends are
779   // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
780   // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
781   // writing two routines to parse a lambda introducer, just try to parse
782   // a lambda introducer first, and fall back if that fails.
783   LambdaIntroducer Intro;
784   {
785     TentativeParsingAction TPA(*this);
786     LambdaIntroducerTentativeParse Tentative;
787     if (ParseLambdaIntroducer(Intro, &Tentative)) {
788       TPA.Commit();
789       return ExprError();
790     }
791 
792     switch (Tentative) {
793     case LambdaIntroducerTentativeParse::Success:
794       TPA.Commit();
795       break;
796 
797     case LambdaIntroducerTentativeParse::Incomplete:
798       // Didn't fully parse the lambda-introducer, try again with a
799       // non-tentative parse.
800       TPA.Revert();
801       Intro = LambdaIntroducer();
802       if (ParseLambdaIntroducer(Intro))
803         return ExprError();
804       break;
805 
806     case LambdaIntroducerTentativeParse::MessageSend:
807     case LambdaIntroducerTentativeParse::Invalid:
808       // Not a lambda-introducer, might be a message send.
809       TPA.Revert();
810       return ExprEmpty();
811     }
812   }
813 
814   return ParseLambdaExpressionAfterIntroducer(Intro);
815 }
816 
817 /// Parse a lambda introducer.
818 /// \param Intro A LambdaIntroducer filled in with information about the
819 ///        contents of the lambda-introducer.
820 /// \param Tentative If non-null, we are disambiguating between a
821 ///        lambda-introducer and some other construct. In this mode, we do not
822 ///        produce any diagnostics or take any other irreversible action unless
823 ///        we're sure that this is a lambda-expression.
824 /// \return \c true if parsing (or disambiguation) failed with a diagnostic and
825 ///         the caller should bail out / recover.
826 bool Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro,
827                                    LambdaIntroducerTentativeParse *Tentative) {
828   if (Tentative)
829     *Tentative = LambdaIntroducerTentativeParse::Success;
830 
831   assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
832   BalancedDelimiterTracker T(*this, tok::l_square);
833   T.consumeOpen();
834 
835   Intro.Range.setBegin(T.getOpenLocation());
836 
837   bool First = true;
838 
839   // Produce a diagnostic if we're not tentatively parsing; otherwise track
840   // that our parse has failed.
841   auto Invalid = [&](llvm::function_ref<void()> Action) {
842     if (Tentative) {
843       *Tentative = LambdaIntroducerTentativeParse::Invalid;
844       return false;
845     }
846     Action();
847     return true;
848   };
849 
850   // Perform some irreversible action if this is a non-tentative parse;
851   // otherwise note that our actions were incomplete.
852   auto NonTentativeAction = [&](llvm::function_ref<void()> Action) {
853     if (Tentative)
854       *Tentative = LambdaIntroducerTentativeParse::Incomplete;
855     else
856       Action();
857   };
858 
859   // Parse capture-default.
860   if (Tok.is(tok::amp) &&
861       (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
862     Intro.Default = LCD_ByRef;
863     Intro.DefaultLoc = ConsumeToken();
864     First = false;
865     if (!Tok.getIdentifierInfo()) {
866       // This can only be a lambda; no need for tentative parsing any more.
867       // '[[and]]' can still be an attribute, though.
868       Tentative = nullptr;
869     }
870   } else if (Tok.is(tok::equal)) {
871     Intro.Default = LCD_ByCopy;
872     Intro.DefaultLoc = ConsumeToken();
873     First = false;
874     Tentative = nullptr;
875   }
876 
877   while (Tok.isNot(tok::r_square)) {
878     if (!First) {
879       if (Tok.isNot(tok::comma)) {
880         // Provide a completion for a lambda introducer here. Except
881         // in Objective-C, where this is Almost Surely meant to be a message
882         // send. In that case, fail here and let the ObjC message
883         // expression parser perform the completion.
884         if (Tok.is(tok::code_completion) &&
885             !(getLangOpts().ObjC && Tentative)) {
886           cutOffParsing();
887           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
888                                                /*AfterAmpersand=*/false);
889           break;
890         }
891 
892         return Invalid([&] {
893           Diag(Tok.getLocation(), diag::err_expected_comma_or_rsquare);
894         });
895       }
896       ConsumeToken();
897     }
898 
899     if (Tok.is(tok::code_completion)) {
900       cutOffParsing();
901       // If we're in Objective-C++ and we have a bare '[', then this is more
902       // likely to be a message receiver.
903       if (getLangOpts().ObjC && Tentative && First)
904         Actions.CodeCompleteObjCMessageReceiver(getCurScope());
905       else
906         Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
907                                              /*AfterAmpersand=*/false);
908       break;
909     }
910 
911     First = false;
912 
913     // Parse capture.
914     LambdaCaptureKind Kind = LCK_ByCopy;
915     LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit;
916     SourceLocation Loc;
917     IdentifierInfo *Id = nullptr;
918     SourceLocation EllipsisLocs[4];
919     ExprResult Init;
920     SourceLocation LocStart = Tok.getLocation();
921 
922     if (Tok.is(tok::star)) {
923       Loc = ConsumeToken();
924       if (Tok.is(tok::kw_this)) {
925         ConsumeToken();
926         Kind = LCK_StarThis;
927       } else {
928         return Invalid([&] {
929           Diag(Tok.getLocation(), diag::err_expected_star_this_capture);
930         });
931       }
932     } else if (Tok.is(tok::kw_this)) {
933       Kind = LCK_This;
934       Loc = ConsumeToken();
935     } else if (Tok.isOneOf(tok::amp, tok::equal) &&
936                NextToken().isOneOf(tok::comma, tok::r_square) &&
937                Intro.Default == LCD_None) {
938       // We have a lone "&" or "=" which is either a misplaced capture-default
939       // or the start of a capture (in the "&" case) with the rest of the
940       // capture missing. Both are an error but a misplaced capture-default
941       // is more likely if we don't already have a capture default.
942       return Invalid(
943           [&] { Diag(Tok.getLocation(), diag::err_capture_default_first); });
944     } else {
945       TryConsumeToken(tok::ellipsis, EllipsisLocs[0]);
946 
947       if (Tok.is(tok::amp)) {
948         Kind = LCK_ByRef;
949         ConsumeToken();
950 
951         if (Tok.is(tok::code_completion)) {
952           cutOffParsing();
953           Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
954                                                /*AfterAmpersand=*/true);
955           break;
956         }
957       }
958 
959       TryConsumeToken(tok::ellipsis, EllipsisLocs[1]);
960 
961       if (Tok.is(tok::identifier)) {
962         Id = Tok.getIdentifierInfo();
963         Loc = ConsumeToken();
964       } else if (Tok.is(tok::kw_this)) {
965         return Invalid([&] {
966           // FIXME: Suggest a fixit here.
967           Diag(Tok.getLocation(), diag::err_this_captured_by_reference);
968         });
969       } else {
970         return Invalid([&] {
971           Diag(Tok.getLocation(), diag::err_expected_capture);
972         });
973       }
974 
975       TryConsumeToken(tok::ellipsis, EllipsisLocs[2]);
976 
977       if (Tok.is(tok::l_paren)) {
978         BalancedDelimiterTracker Parens(*this, tok::l_paren);
979         Parens.consumeOpen();
980 
981         InitKind = LambdaCaptureInitKind::DirectInit;
982 
983         ExprVector Exprs;
984         if (Tentative) {
985           Parens.skipToEnd();
986           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
987         } else if (ParseExpressionList(Exprs)) {
988           Parens.skipToEnd();
989           Init = ExprError();
990         } else {
991           Parens.consumeClose();
992           Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(),
993                                             Parens.getCloseLocation(),
994                                             Exprs);
995         }
996       } else if (Tok.isOneOf(tok::l_brace, tok::equal)) {
997         // Each lambda init-capture forms its own full expression, which clears
998         // Actions.MaybeODRUseExprs. So create an expression evaluation context
999         // to save the necessary state, and restore it later.
1000         EnterExpressionEvaluationContext EC(
1001             Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
1002 
1003         if (TryConsumeToken(tok::equal))
1004           InitKind = LambdaCaptureInitKind::CopyInit;
1005         else
1006           InitKind = LambdaCaptureInitKind::ListInit;
1007 
1008         if (!Tentative) {
1009           Init = ParseInitializer();
1010         } else if (Tok.is(tok::l_brace)) {
1011           BalancedDelimiterTracker Braces(*this, tok::l_brace);
1012           Braces.consumeOpen();
1013           Braces.skipToEnd();
1014           *Tentative = LambdaIntroducerTentativeParse::Incomplete;
1015         } else {
1016           // We're disambiguating this:
1017           //
1018           //   [..., x = expr
1019           //
1020           // We need to find the end of the following expression in order to
1021           // determine whether this is an Obj-C message send's receiver, a
1022           // C99 designator, or a lambda init-capture.
1023           //
1024           // Parse the expression to find where it ends, and annotate it back
1025           // onto the tokens. We would have parsed this expression the same way
1026           // in either case: both the RHS of an init-capture and the RHS of an
1027           // assignment expression are parsed as an initializer-clause, and in
1028           // neither case can anything be added to the scope between the '[' and
1029           // here.
1030           //
1031           // FIXME: This is horrible. Adding a mechanism to skip an expression
1032           // would be much cleaner.
1033           // FIXME: If there is a ',' before the next ']' or ':', we can skip to
1034           // that instead. (And if we see a ':' with no matching '?', we can
1035           // classify this as an Obj-C message send.)
1036           SourceLocation StartLoc = Tok.getLocation();
1037           InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true);
1038           Init = ParseInitializer();
1039           if (!Init.isInvalid())
1040             Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1041 
1042           if (Tok.getLocation() != StartLoc) {
1043             // Back out the lexing of the token after the initializer.
1044             PP.RevertCachedTokens(1);
1045 
1046             // Replace the consumed tokens with an appropriate annotation.
1047             Tok.setLocation(StartLoc);
1048             Tok.setKind(tok::annot_primary_expr);
1049             setExprAnnotation(Tok, Init);
1050             Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation());
1051             PP.AnnotateCachedTokens(Tok);
1052 
1053             // Consume the annotated initializer.
1054             ConsumeAnnotationToken();
1055           }
1056         }
1057       }
1058 
1059       TryConsumeToken(tok::ellipsis, EllipsisLocs[3]);
1060     }
1061 
1062     // Check if this is a message send before we act on a possible init-capture.
1063     if (Tentative && Tok.is(tok::identifier) &&
1064         NextToken().isOneOf(tok::colon, tok::r_square)) {
1065       // This can only be a message send. We're done with disambiguation.
1066       *Tentative = LambdaIntroducerTentativeParse::MessageSend;
1067       return false;
1068     }
1069 
1070     // Ensure that any ellipsis was in the right place.
1071     SourceLocation EllipsisLoc;
1072     if (llvm::any_of(EllipsisLocs,
1073                      [](SourceLocation Loc) { return Loc.isValid(); })) {
1074       // The '...' should appear before the identifier in an init-capture, and
1075       // after the identifier otherwise.
1076       bool InitCapture = InitKind != LambdaCaptureInitKind::NoInit;
1077       SourceLocation *ExpectedEllipsisLoc =
1078           !InitCapture      ? &EllipsisLocs[2] :
1079           Kind == LCK_ByRef ? &EllipsisLocs[1] :
1080                               &EllipsisLocs[0];
1081       EllipsisLoc = *ExpectedEllipsisLoc;
1082 
1083       unsigned DiagID = 0;
1084       if (EllipsisLoc.isInvalid()) {
1085         DiagID = diag::err_lambda_capture_misplaced_ellipsis;
1086         for (SourceLocation Loc : EllipsisLocs) {
1087           if (Loc.isValid())
1088             EllipsisLoc = Loc;
1089         }
1090       } else {
1091         unsigned NumEllipses = std::accumulate(
1092             std::begin(EllipsisLocs), std::end(EllipsisLocs), 0,
1093             [](int N, SourceLocation Loc) { return N + Loc.isValid(); });
1094         if (NumEllipses > 1)
1095           DiagID = diag::err_lambda_capture_multiple_ellipses;
1096       }
1097       if (DiagID) {
1098         NonTentativeAction([&] {
1099           // Point the diagnostic at the first misplaced ellipsis.
1100           SourceLocation DiagLoc;
1101           for (SourceLocation &Loc : EllipsisLocs) {
1102             if (&Loc != ExpectedEllipsisLoc && Loc.isValid()) {
1103               DiagLoc = Loc;
1104               break;
1105             }
1106           }
1107           assert(DiagLoc.isValid() && "no location for diagnostic");
1108 
1109           // Issue the diagnostic and produce fixits showing where the ellipsis
1110           // should have been written.
1111           auto &&D = Diag(DiagLoc, DiagID);
1112           if (DiagID == diag::err_lambda_capture_misplaced_ellipsis) {
1113             SourceLocation ExpectedLoc =
1114                 InitCapture ? Loc
1115                             : Lexer::getLocForEndOfToken(
1116                                   Loc, 0, PP.getSourceManager(), getLangOpts());
1117             D << InitCapture << FixItHint::CreateInsertion(ExpectedLoc, "...");
1118           }
1119           for (SourceLocation &Loc : EllipsisLocs) {
1120             if (&Loc != ExpectedEllipsisLoc && Loc.isValid())
1121               D << FixItHint::CreateRemoval(Loc);
1122           }
1123         });
1124       }
1125     }
1126 
1127     // Process the init-capture initializers now rather than delaying until we
1128     // form the lambda-expression so that they can be handled in the context
1129     // enclosing the lambda-expression, rather than in the context of the
1130     // lambda-expression itself.
1131     ParsedType InitCaptureType;
1132     if (Init.isUsable())
1133       Init = Actions.CorrectDelayedTyposInExpr(Init.get());
1134     if (Init.isUsable()) {
1135       NonTentativeAction([&] {
1136         // Get the pointer and store it in an lvalue, so we can use it as an
1137         // out argument.
1138         Expr *InitExpr = Init.get();
1139         // This performs any lvalue-to-rvalue conversions if necessary, which
1140         // can affect what gets captured in the containing decl-context.
1141         InitCaptureType = Actions.actOnLambdaInitCaptureInitialization(
1142             Loc, Kind == LCK_ByRef, EllipsisLoc, Id, InitKind, InitExpr);
1143         Init = InitExpr;
1144       });
1145     }
1146 
1147     SourceLocation LocEnd = PrevTokLocation;
1148 
1149     Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init,
1150                      InitCaptureType, SourceRange(LocStart, LocEnd));
1151   }
1152 
1153   T.consumeClose();
1154   Intro.Range.setEnd(T.getCloseLocation());
1155   return false;
1156 }
1157 
1158 static void tryConsumeLambdaSpecifierToken(Parser &P,
1159                                            SourceLocation &MutableLoc,
1160                                            SourceLocation &StaticLoc,
1161                                            SourceLocation &ConstexprLoc,
1162                                            SourceLocation &ConstevalLoc,
1163                                            SourceLocation &DeclEndLoc) {
1164   assert(MutableLoc.isInvalid());
1165   assert(StaticLoc.isInvalid());
1166   assert(ConstexprLoc.isInvalid());
1167   assert(ConstevalLoc.isInvalid());
1168   // Consume constexpr-opt mutable-opt in any sequence, and set the DeclEndLoc
1169   // to the final of those locations. Emit an error if we have multiple
1170   // copies of those keywords and recover.
1171 
1172   auto ConsumeLocation = [&P, &DeclEndLoc](SourceLocation &SpecifierLoc,
1173                                            int DiagIndex) {
1174     if (SpecifierLoc.isValid()) {
1175       P.Diag(P.getCurToken().getLocation(),
1176              diag::err_lambda_decl_specifier_repeated)
1177           << DiagIndex
1178           << FixItHint::CreateRemoval(P.getCurToken().getLocation());
1179     }
1180     SpecifierLoc = P.ConsumeToken();
1181     DeclEndLoc = SpecifierLoc;
1182   };
1183 
1184   while (true) {
1185     switch (P.getCurToken().getKind()) {
1186     case tok::kw_mutable:
1187       ConsumeLocation(MutableLoc, 0);
1188       break;
1189     case tok::kw_static:
1190       ConsumeLocation(StaticLoc, 1);
1191       break;
1192     case tok::kw_constexpr:
1193       ConsumeLocation(ConstexprLoc, 2);
1194       break;
1195     case tok::kw_consteval:
1196       ConsumeLocation(ConstevalLoc, 3);
1197       break;
1198     default:
1199       return;
1200     }
1201   }
1202 }
1203 
1204 static void addStaticToLambdaDeclSpecifier(Parser &P, SourceLocation StaticLoc,
1205                                            DeclSpec &DS) {
1206   if (StaticLoc.isValid()) {
1207     P.Diag(StaticLoc, !P.getLangOpts().CPlusPlus2b
1208                           ? diag::err_static_lambda
1209                           : diag::warn_cxx20_compat_static_lambda);
1210     const char *PrevSpec = nullptr;
1211     unsigned DiagID = 0;
1212     DS.SetStorageClassSpec(P.getActions(), DeclSpec::SCS_static, StaticLoc,
1213                            PrevSpec, DiagID,
1214                            P.getActions().getASTContext().getPrintingPolicy());
1215     assert(PrevSpec == nullptr && DiagID == 0 &&
1216            "Static cannot have been set previously!");
1217   }
1218 }
1219 
1220 static void
1221 addConstexprToLambdaDeclSpecifier(Parser &P, SourceLocation ConstexprLoc,
1222                                   DeclSpec &DS) {
1223   if (ConstexprLoc.isValid()) {
1224     P.Diag(ConstexprLoc, !P.getLangOpts().CPlusPlus17
1225                              ? diag::ext_constexpr_on_lambda_cxx17
1226                              : diag::warn_cxx14_compat_constexpr_on_lambda);
1227     const char *PrevSpec = nullptr;
1228     unsigned DiagID = 0;
1229     DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, ConstexprLoc, PrevSpec,
1230                         DiagID);
1231     assert(PrevSpec == nullptr && DiagID == 0 &&
1232            "Constexpr cannot have been set previously!");
1233   }
1234 }
1235 
1236 static void addConstevalToLambdaDeclSpecifier(Parser &P,
1237                                               SourceLocation ConstevalLoc,
1238                                               DeclSpec &DS) {
1239   if (ConstevalLoc.isValid()) {
1240     P.Diag(ConstevalLoc, diag::warn_cxx20_compat_consteval);
1241     const char *PrevSpec = nullptr;
1242     unsigned DiagID = 0;
1243     DS.SetConstexprSpec(ConstexprSpecKind::Consteval, ConstevalLoc, PrevSpec,
1244                         DiagID);
1245     if (DiagID != 0)
1246       P.Diag(ConstevalLoc, DiagID) << PrevSpec;
1247   }
1248 }
1249 
1250 static void DiagnoseStaticSpecifierRestrictions(Parser &P,
1251                                                 SourceLocation StaticLoc,
1252                                                 SourceLocation MutableLoc,
1253                                                 const LambdaIntroducer &Intro) {
1254   if (StaticLoc.isInvalid())
1255     return;
1256 
1257   // [expr.prim.lambda.general] p4
1258   // The lambda-specifier-seq shall not contain both mutable and static.
1259   // If the lambda-specifier-seq contains static, there shall be no
1260   // lambda-capture.
1261   if (MutableLoc.isValid())
1262     P.Diag(StaticLoc, diag::err_static_mutable_lambda);
1263   if (Intro.hasLambdaCapture()) {
1264     P.Diag(StaticLoc, diag::err_static_lambda_captures);
1265   }
1266 }
1267 
1268 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
1269 /// expression.
1270 ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
1271                      LambdaIntroducer &Intro) {
1272   SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
1273   Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
1274 
1275   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
1276                                 "lambda expression parsing");
1277 
1278 
1279 
1280   // FIXME: Call into Actions to add any init-capture declarations to the
1281   // scope while parsing the lambda-declarator and compound-statement.
1282 
1283   // Parse lambda-declarator[opt].
1284   DeclSpec DS(AttrFactory);
1285   Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::LambdaExpr);
1286   TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth);
1287   Actions.PushLambdaScope();
1288 
1289   ParsedAttributes Attr(AttrFactory);
1290   if (getLangOpts().CUDA) {
1291     // In CUDA code, GNU attributes are allowed to appear immediately after the
1292     // "[...]", even if there is no "(...)" before the lambda body.
1293     //
1294     // Note that we support __noinline__ as a keyword in this mode and thus
1295     // it has to be separately handled.
1296     while (true) {
1297       if (Tok.is(tok::kw___noinline__)) {
1298         IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1299         SourceLocation AttrNameLoc = ConsumeToken();
1300         Attr.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1301                     ParsedAttr::AS_Keyword);
1302       } else if (Tok.is(tok::kw___attribute))
1303         ParseGNUAttributes(Attr, nullptr, &D);
1304       else
1305         break;
1306     }
1307 
1308     D.takeAttributes(Attr);
1309   }
1310 
1311   // Helper to emit a warning if we see a CUDA host/device/global attribute
1312   // after '(...)'. nvcc doesn't accept this.
1313   auto WarnIfHasCUDATargetAttr = [&] {
1314     if (getLangOpts().CUDA)
1315       for (const ParsedAttr &A : Attr)
1316         if (A.getKind() == ParsedAttr::AT_CUDADevice ||
1317             A.getKind() == ParsedAttr::AT_CUDAHost ||
1318             A.getKind() == ParsedAttr::AT_CUDAGlobal)
1319           Diag(A.getLoc(), diag::warn_cuda_attr_lambda_position)
1320               << A.getAttrName()->getName();
1321   };
1322 
1323   MultiParseScope TemplateParamScope(*this);
1324   if (Tok.is(tok::less)) {
1325     Diag(Tok, getLangOpts().CPlusPlus20
1326                   ? diag::warn_cxx17_compat_lambda_template_parameter_list
1327                   : diag::ext_lambda_template_parameter_list);
1328 
1329     SmallVector<NamedDecl*, 4> TemplateParams;
1330     SourceLocation LAngleLoc, RAngleLoc;
1331     if (ParseTemplateParameters(TemplateParamScope,
1332                                 CurTemplateDepthTracker.getDepth(),
1333                                 TemplateParams, LAngleLoc, RAngleLoc)) {
1334       Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1335       return ExprError();
1336     }
1337 
1338     if (TemplateParams.empty()) {
1339       Diag(RAngleLoc,
1340            diag::err_lambda_template_parameter_list_empty);
1341     } else {
1342       ExprResult RequiresClause;
1343       if (TryConsumeToken(tok::kw_requires)) {
1344         RequiresClause =
1345             Actions.ActOnRequiresClause(ParseConstraintLogicalOrExpression(
1346                 /*IsTrailingRequiresClause=*/false));
1347         if (RequiresClause.isInvalid())
1348           SkipUntil({tok::l_brace, tok::l_paren}, StopAtSemi | StopBeforeMatch);
1349       }
1350 
1351       Actions.ActOnLambdaExplicitTemplateParameterList(
1352           LAngleLoc, TemplateParams, RAngleLoc, RequiresClause);
1353       ++CurTemplateDepthTracker;
1354     }
1355   }
1356 
1357   // Implement WG21 P2173, which allows attributes immediately before the
1358   // lambda declarator and applies them to the corresponding function operator
1359   // or operator template declaration. We accept this as a conforming extension
1360   // in all language modes that support lambdas.
1361   if (isCXX11AttributeSpecifier()) {
1362     Diag(Tok, getLangOpts().CPlusPlus2b
1363                   ? diag::warn_cxx20_compat_decl_attrs_on_lambda
1364                   : diag::ext_decl_attrs_on_lambda);
1365     MaybeParseCXX11Attributes(D);
1366   }
1367 
1368   TypeResult TrailingReturnType;
1369   SourceLocation TrailingReturnTypeLoc;
1370 
1371   auto ParseLambdaSpecifiers =
1372       [&](SourceLocation LParenLoc, SourceLocation RParenLoc,
1373           MutableArrayRef<DeclaratorChunk::ParamInfo> ParamInfo,
1374           SourceLocation EllipsisLoc) {
1375         SourceLocation DeclEndLoc = RParenLoc;
1376 
1377         // GNU-style attributes must be parsed before the mutable specifier to
1378         // be compatible with GCC. MSVC-style attributes must be parsed before
1379         // the mutable specifier to be compatible with MSVC.
1380         MaybeParseAttributes(PAKM_GNU | PAKM_Declspec, Attr);
1381 
1382         // Parse lambda specifiers and update the DeclEndLoc.
1383         SourceLocation MutableLoc;
1384         SourceLocation StaticLoc;
1385         SourceLocation ConstexprLoc;
1386         SourceLocation ConstevalLoc;
1387         tryConsumeLambdaSpecifierToken(*this, MutableLoc, StaticLoc,
1388                                        ConstexprLoc, ConstevalLoc, DeclEndLoc);
1389 
1390         DiagnoseStaticSpecifierRestrictions(*this, StaticLoc, MutableLoc,
1391                                             Intro);
1392 
1393         addStaticToLambdaDeclSpecifier(*this, StaticLoc, DS);
1394         addConstexprToLambdaDeclSpecifier(*this, ConstexprLoc, DS);
1395         addConstevalToLambdaDeclSpecifier(*this, ConstevalLoc, DS);
1396         // Parse exception-specification[opt].
1397         ExceptionSpecificationType ESpecType = EST_None;
1398         SourceRange ESpecRange;
1399         SmallVector<ParsedType, 2> DynamicExceptions;
1400         SmallVector<SourceRange, 2> DynamicExceptionRanges;
1401         ExprResult NoexceptExpr;
1402         CachedTokens *ExceptionSpecTokens;
1403         ESpecType = tryParseExceptionSpecification(
1404             /*Delayed=*/false, ESpecRange, DynamicExceptions,
1405             DynamicExceptionRanges, NoexceptExpr, ExceptionSpecTokens);
1406 
1407         if (ESpecType != EST_None)
1408           DeclEndLoc = ESpecRange.getEnd();
1409 
1410         // Parse attribute-specifier[opt].
1411         if (MaybeParseCXX11Attributes(Attr))
1412           DeclEndLoc = Attr.Range.getEnd();
1413 
1414         // Parse OpenCL addr space attribute.
1415         if (Tok.isOneOf(tok::kw___private, tok::kw___global, tok::kw___local,
1416                         tok::kw___constant, tok::kw___generic)) {
1417           ParseOpenCLQualifiers(DS.getAttributes());
1418           ConsumeToken();
1419         }
1420 
1421         SourceLocation FunLocalRangeEnd = DeclEndLoc;
1422 
1423         // Parse trailing-return-type[opt].
1424         if (Tok.is(tok::arrow)) {
1425           FunLocalRangeEnd = Tok.getLocation();
1426           SourceRange Range;
1427           TrailingReturnType = ParseTrailingReturnType(
1428               Range, /*MayBeFollowedByDirectInit*/ false);
1429           TrailingReturnTypeLoc = Range.getBegin();
1430           if (Range.getEnd().isValid())
1431             DeclEndLoc = Range.getEnd();
1432         }
1433 
1434         SourceLocation NoLoc;
1435         D.AddTypeInfo(
1436             DeclaratorChunk::getFunction(
1437                 /*HasProto=*/true,
1438                 /*IsAmbiguous=*/false, LParenLoc, ParamInfo.data(),
1439                 ParamInfo.size(), EllipsisLoc, RParenLoc,
1440                 /*RefQualifierIsLvalueRef=*/true,
1441                 /*RefQualifierLoc=*/NoLoc, MutableLoc, ESpecType, ESpecRange,
1442                 DynamicExceptions.data(), DynamicExceptionRanges.data(),
1443                 DynamicExceptions.size(),
1444                 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
1445                 /*ExceptionSpecTokens*/ nullptr,
1446                 /*DeclsInPrototype=*/std::nullopt, LParenLoc, FunLocalRangeEnd,
1447                 D, TrailingReturnType, TrailingReturnTypeLoc, &DS),
1448             std::move(Attr), DeclEndLoc);
1449       };
1450 
1451   if (Tok.is(tok::l_paren)) {
1452     ParseScope PrototypeScope(this, Scope::FunctionPrototypeScope |
1453                                         Scope::FunctionDeclarationScope |
1454                                         Scope::DeclScope);
1455 
1456     BalancedDelimiterTracker T(*this, tok::l_paren);
1457     T.consumeOpen();
1458     SourceLocation LParenLoc = T.getOpenLocation();
1459 
1460     // Parse parameter-declaration-clause.
1461     SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1462     SourceLocation EllipsisLoc;
1463 
1464     if (Tok.isNot(tok::r_paren)) {
1465       Actions.RecordParsingTemplateParameterDepth(
1466           CurTemplateDepthTracker.getOriginalDepth());
1467 
1468       ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
1469       // For a generic lambda, each 'auto' within the parameter declaration
1470       // clause creates a template type parameter, so increment the depth.
1471       // If we've parsed any explicit template parameters, then the depth will
1472       // have already been incremented. So we make sure that at most a single
1473       // depth level is added.
1474       if (Actions.getCurGenericLambda())
1475         CurTemplateDepthTracker.setAddedDepth(1);
1476     }
1477 
1478     T.consumeClose();
1479 
1480     // Parse lambda-specifiers.
1481     ParseLambdaSpecifiers(LParenLoc, /*DeclEndLoc=*/T.getCloseLocation(),
1482                           ParamInfo, EllipsisLoc);
1483 
1484     // Parse requires-clause[opt].
1485     if (Tok.is(tok::kw_requires))
1486       ParseTrailingRequiresClause(D);
1487   } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute,
1488                          tok::kw_constexpr, tok::kw_consteval, tok::kw_static,
1489                          tok::kw___private, tok::kw___global, tok::kw___local,
1490                          tok::kw___constant, tok::kw___generic,
1491                          tok::kw_groupshared, tok::kw_requires,
1492                          tok::kw_noexcept) ||
1493              (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) {
1494     if (!getLangOpts().CPlusPlus2b)
1495       // It's common to forget that one needs '()' before 'mutable', an
1496       // attribute specifier, the result type, or the requires clause. Deal with
1497       // this.
1498       Diag(Tok, diag::ext_lambda_missing_parens)
1499           << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
1500 
1501     SourceLocation NoLoc;
1502     // Parse lambda-specifiers.
1503     std::vector<DeclaratorChunk::ParamInfo> EmptyParamInfo;
1504     ParseLambdaSpecifiers(/*LParenLoc=*/NoLoc, /*RParenLoc=*/NoLoc,
1505                           EmptyParamInfo, /*EllipsisLoc=*/NoLoc);
1506   }
1507 
1508   WarnIfHasCUDATargetAttr();
1509 
1510   // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
1511   // it.
1512   unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope |
1513                         Scope::CompoundStmtScope;
1514   ParseScope BodyScope(this, ScopeFlags);
1515 
1516   Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
1517 
1518   // Parse compound-statement.
1519   if (!Tok.is(tok::l_brace)) {
1520     Diag(Tok, diag::err_expected_lambda_body);
1521     Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1522     return ExprError();
1523   }
1524 
1525   StmtResult Stmt(ParseCompoundStatementBody());
1526   BodyScope.Exit();
1527   TemplateParamScope.Exit();
1528 
1529   if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid())
1530     return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope());
1531 
1532   Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
1533   return ExprError();
1534 }
1535 
1536 /// ParseCXXCasts - This handles the various ways to cast expressions to another
1537 /// type.
1538 ///
1539 ///       postfix-expression: [C++ 5.2p1]
1540 ///         'dynamic_cast' '<' type-name '>' '(' expression ')'
1541 ///         'static_cast' '<' type-name '>' '(' expression ')'
1542 ///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
1543 ///         'const_cast' '<' type-name '>' '(' expression ')'
1544 ///
1545 /// C++ for OpenCL s2.3.1 adds:
1546 ///         'addrspace_cast' '<' type-name '>' '(' expression ')'
1547 ExprResult Parser::ParseCXXCasts() {
1548   tok::TokenKind Kind = Tok.getKind();
1549   const char *CastName = nullptr; // For error messages
1550 
1551   switch (Kind) {
1552   default: llvm_unreachable("Unknown C++ cast!");
1553   case tok::kw_addrspace_cast:   CastName = "addrspace_cast";   break;
1554   case tok::kw_const_cast:       CastName = "const_cast";       break;
1555   case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
1556   case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
1557   case tok::kw_static_cast:      CastName = "static_cast";      break;
1558   }
1559 
1560   SourceLocation OpLoc = ConsumeToken();
1561   SourceLocation LAngleBracketLoc = Tok.getLocation();
1562 
1563   // Check for "<::" which is parsed as "[:".  If found, fix token stream,
1564   // diagnose error, suggest fix, and recover parsing.
1565   if (Tok.is(tok::l_square) && Tok.getLength() == 2) {
1566     Token Next = NextToken();
1567     if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next))
1568       FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
1569   }
1570 
1571   if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
1572     return ExprError();
1573 
1574   // Parse the common declaration-specifiers piece.
1575   DeclSpec DS(AttrFactory);
1576   ParseSpecifierQualifierList(DS, /*AccessSpecifier=*/AS_none,
1577                               DeclSpecContext::DSC_type_specifier);
1578 
1579   // Parse the abstract-declarator, if present.
1580   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1581                             DeclaratorContext::TypeName);
1582   ParseDeclarator(DeclaratorInfo);
1583 
1584   SourceLocation RAngleBracketLoc = Tok.getLocation();
1585 
1586   if (ExpectAndConsume(tok::greater))
1587     return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less);
1588 
1589   BalancedDelimiterTracker T(*this, tok::l_paren);
1590 
1591   if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
1592     return ExprError();
1593 
1594   ExprResult Result = ParseExpression();
1595 
1596   // Match the ')'.
1597   T.consumeClose();
1598 
1599   if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
1600     Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
1601                                        LAngleBracketLoc, DeclaratorInfo,
1602                                        RAngleBracketLoc,
1603                                        T.getOpenLocation(), Result.get(),
1604                                        T.getCloseLocation());
1605 
1606   return Result;
1607 }
1608 
1609 /// ParseCXXTypeid - This handles the C++ typeid expression.
1610 ///
1611 ///       postfix-expression: [C++ 5.2p1]
1612 ///         'typeid' '(' expression ')'
1613 ///         'typeid' '(' type-id ')'
1614 ///
1615 ExprResult Parser::ParseCXXTypeid() {
1616   assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
1617 
1618   SourceLocation OpLoc = ConsumeToken();
1619   SourceLocation LParenLoc, RParenLoc;
1620   BalancedDelimiterTracker T(*this, tok::l_paren);
1621 
1622   // typeid expressions are always parenthesized.
1623   if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
1624     return ExprError();
1625   LParenLoc = T.getOpenLocation();
1626 
1627   ExprResult Result;
1628 
1629   // C++0x [expr.typeid]p3:
1630   //   When typeid is applied to an expression other than an lvalue of a
1631   //   polymorphic class type [...] The expression is an unevaluated
1632   //   operand (Clause 5).
1633   //
1634   // Note that we can't tell whether the expression is an lvalue of a
1635   // polymorphic class type until after we've parsed the expression; we
1636   // speculatively assume the subexpression is unevaluated, and fix it up
1637   // later.
1638   //
1639   // We enter the unevaluated context before trying to determine whether we
1640   // have a type-id, because the tentative parse logic will try to resolve
1641   // names, and must treat them as unevaluated.
1642   EnterExpressionEvaluationContext Unevaluated(
1643       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
1644       Sema::ReuseLambdaContextDecl);
1645 
1646   if (isTypeIdInParens()) {
1647     TypeResult Ty = ParseTypeName();
1648 
1649     // Match the ')'.
1650     T.consumeClose();
1651     RParenLoc = T.getCloseLocation();
1652     if (Ty.isInvalid() || RParenLoc.isInvalid())
1653       return ExprError();
1654 
1655     Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
1656                                     Ty.get().getAsOpaquePtr(), RParenLoc);
1657   } else {
1658     Result = ParseExpression();
1659 
1660     // Match the ')'.
1661     if (Result.isInvalid())
1662       SkipUntil(tok::r_paren, StopAtSemi);
1663     else {
1664       T.consumeClose();
1665       RParenLoc = T.getCloseLocation();
1666       if (RParenLoc.isInvalid())
1667         return ExprError();
1668 
1669       Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1670                                       Result.get(), RParenLoc);
1671     }
1672   }
1673 
1674   return Result;
1675 }
1676 
1677 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1678 ///
1679 ///         '__uuidof' '(' expression ')'
1680 ///         '__uuidof' '(' type-id ')'
1681 ///
1682 ExprResult Parser::ParseCXXUuidof() {
1683   assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1684 
1685   SourceLocation OpLoc = ConsumeToken();
1686   BalancedDelimiterTracker T(*this, tok::l_paren);
1687 
1688   // __uuidof expressions are always parenthesized.
1689   if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1690     return ExprError();
1691 
1692   ExprResult Result;
1693 
1694   if (isTypeIdInParens()) {
1695     TypeResult Ty = ParseTypeName();
1696 
1697     // Match the ')'.
1698     T.consumeClose();
1699 
1700     if (Ty.isInvalid())
1701       return ExprError();
1702 
1703     Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1704                                     Ty.get().getAsOpaquePtr(),
1705                                     T.getCloseLocation());
1706   } else {
1707     EnterExpressionEvaluationContext Unevaluated(
1708         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1709     Result = ParseExpression();
1710 
1711     // Match the ')'.
1712     if (Result.isInvalid())
1713       SkipUntil(tok::r_paren, StopAtSemi);
1714     else {
1715       T.consumeClose();
1716 
1717       Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1718                                       /*isType=*/false,
1719                                       Result.get(), T.getCloseLocation());
1720     }
1721   }
1722 
1723   return Result;
1724 }
1725 
1726 /// Parse a C++ pseudo-destructor expression after the base,
1727 /// . or -> operator, and nested-name-specifier have already been
1728 /// parsed. We're handling this fragment of the grammar:
1729 ///
1730 ///       postfix-expression: [C++2a expr.post]
1731 ///         postfix-expression . template[opt] id-expression
1732 ///         postfix-expression -> template[opt] id-expression
1733 ///
1734 ///       id-expression:
1735 ///         qualified-id
1736 ///         unqualified-id
1737 ///
1738 ///       qualified-id:
1739 ///         nested-name-specifier template[opt] unqualified-id
1740 ///
1741 ///       nested-name-specifier:
1742 ///         type-name ::
1743 ///         decltype-specifier ::    FIXME: not implemented, but probably only
1744 ///                                         allowed in C++ grammar by accident
1745 ///         nested-name-specifier identifier ::
1746 ///         nested-name-specifier template[opt] simple-template-id ::
1747 ///         [...]
1748 ///
1749 ///       unqualified-id:
1750 ///         ~ type-name
1751 ///         ~ decltype-specifier
1752 ///         [...]
1753 ///
1754 /// ... where the all but the last component of the nested-name-specifier
1755 /// has already been parsed, and the base expression is not of a non-dependent
1756 /// class type.
1757 ExprResult
1758 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc,
1759                                  tok::TokenKind OpKind,
1760                                  CXXScopeSpec &SS,
1761                                  ParsedType ObjectType) {
1762   // If the last component of the (optional) nested-name-specifier is
1763   // template[opt] simple-template-id, it has already been annotated.
1764   UnqualifiedId FirstTypeName;
1765   SourceLocation CCLoc;
1766   if (Tok.is(tok::identifier)) {
1767     FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1768     ConsumeToken();
1769     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1770     CCLoc = ConsumeToken();
1771   } else if (Tok.is(tok::annot_template_id)) {
1772     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1773     // FIXME: Carry on and build an AST representation for tooling.
1774     if (TemplateId->isInvalid())
1775       return ExprError();
1776     FirstTypeName.setTemplateId(TemplateId);
1777     ConsumeAnnotationToken();
1778     assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1779     CCLoc = ConsumeToken();
1780   } else {
1781     assert(SS.isEmpty() && "missing last component of nested name specifier");
1782     FirstTypeName.setIdentifier(nullptr, SourceLocation());
1783   }
1784 
1785   // Parse the tilde.
1786   assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1787   SourceLocation TildeLoc = ConsumeToken();
1788 
1789   if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid()) {
1790     DeclSpec DS(AttrFactory);
1791     ParseDecltypeSpecifier(DS);
1792     if (DS.getTypeSpecType() == TST_error)
1793       return ExprError();
1794     return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1795                                              TildeLoc, DS);
1796   }
1797 
1798   if (!Tok.is(tok::identifier)) {
1799     Diag(Tok, diag::err_destructor_tilde_identifier);
1800     return ExprError();
1801   }
1802 
1803   // Parse the second type.
1804   UnqualifiedId SecondTypeName;
1805   IdentifierInfo *Name = Tok.getIdentifierInfo();
1806   SourceLocation NameLoc = ConsumeToken();
1807   SecondTypeName.setIdentifier(Name, NameLoc);
1808 
1809   // If there is a '<', the second type name is a template-id. Parse
1810   // it as such.
1811   //
1812   // FIXME: This is not a context in which a '<' is assumed to start a template
1813   // argument list. This affects examples such as
1814   //   void f(auto *p) { p->~X<int>(); }
1815   // ... but there's no ambiguity, and nowhere to write 'template' in such an
1816   // example, so we accept it anyway.
1817   if (Tok.is(tok::less) &&
1818       ParseUnqualifiedIdTemplateId(
1819           SS, ObjectType, Base && Base->containsErrors(), SourceLocation(),
1820           Name, NameLoc, false, SecondTypeName,
1821           /*AssumeTemplateId=*/true))
1822     return ExprError();
1823 
1824   return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind,
1825                                            SS, FirstTypeName, CCLoc, TildeLoc,
1826                                            SecondTypeName);
1827 }
1828 
1829 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1830 ///
1831 ///       boolean-literal: [C++ 2.13.5]
1832 ///         'true'
1833 ///         'false'
1834 ExprResult Parser::ParseCXXBoolLiteral() {
1835   tok::TokenKind Kind = Tok.getKind();
1836   return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1837 }
1838 
1839 /// ParseThrowExpression - This handles the C++ throw expression.
1840 ///
1841 ///       throw-expression: [C++ 15]
1842 ///         'throw' assignment-expression[opt]
1843 ExprResult Parser::ParseThrowExpression() {
1844   assert(Tok.is(tok::kw_throw) && "Not throw!");
1845   SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1846 
1847   // If the current token isn't the start of an assignment-expression,
1848   // then the expression is not present.  This handles things like:
1849   //   "C ? throw : (void)42", which is crazy but legal.
1850   switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1851   case tok::semi:
1852   case tok::r_paren:
1853   case tok::r_square:
1854   case tok::r_brace:
1855   case tok::colon:
1856   case tok::comma:
1857     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr);
1858 
1859   default:
1860     ExprResult Expr(ParseAssignmentExpression());
1861     if (Expr.isInvalid()) return Expr;
1862     return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get());
1863   }
1864 }
1865 
1866 /// Parse the C++ Coroutines co_yield expression.
1867 ///
1868 ///       co_yield-expression:
1869 ///         'co_yield' assignment-expression[opt]
1870 ExprResult Parser::ParseCoyieldExpression() {
1871   assert(Tok.is(tok::kw_co_yield) && "Not co_yield!");
1872 
1873   SourceLocation Loc = ConsumeToken();
1874   ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer()
1875                                          : ParseAssignmentExpression();
1876   if (!Expr.isInvalid())
1877     Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get());
1878   return Expr;
1879 }
1880 
1881 /// ParseCXXThis - This handles the C++ 'this' pointer.
1882 ///
1883 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1884 /// a non-lvalue expression whose value is the address of the object for which
1885 /// the function is called.
1886 ExprResult Parser::ParseCXXThis() {
1887   assert(Tok.is(tok::kw_this) && "Not 'this'!");
1888   SourceLocation ThisLoc = ConsumeToken();
1889   return Actions.ActOnCXXThis(ThisLoc);
1890 }
1891 
1892 /// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1893 /// Can be interpreted either as function-style casting ("int(x)")
1894 /// or class type construction ("ClassType(x,y,z)")
1895 /// or creation of a value-initialized type ("int()").
1896 /// See [C++ 5.2.3].
1897 ///
1898 ///       postfix-expression: [C++ 5.2p1]
1899 ///         simple-type-specifier '(' expression-list[opt] ')'
1900 /// [C++0x] simple-type-specifier braced-init-list
1901 ///         typename-specifier '(' expression-list[opt] ')'
1902 /// [C++0x] typename-specifier braced-init-list
1903 ///
1904 /// In C++1z onwards, the type specifier can also be a template-name.
1905 ExprResult
1906 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1907   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1908                             DeclaratorContext::FunctionalCast);
1909   ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1910 
1911   assert((Tok.is(tok::l_paren) ||
1912           (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)))
1913          && "Expected '(' or '{'!");
1914 
1915   if (Tok.is(tok::l_brace)) {
1916     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1917     ExprResult Init = ParseBraceInitializer();
1918     if (Init.isInvalid())
1919       return Init;
1920     Expr *InitList = Init.get();
1921     return Actions.ActOnCXXTypeConstructExpr(
1922         TypeRep, InitList->getBeginLoc(), MultiExprArg(&InitList, 1),
1923         InitList->getEndLoc(), /*ListInitialization=*/true);
1924   } else {
1925     BalancedDelimiterTracker T(*this, tok::l_paren);
1926     T.consumeOpen();
1927 
1928     PreferredType.enterTypeCast(Tok.getLocation(), TypeRep.get());
1929 
1930     ExprVector Exprs;
1931 
1932     auto RunSignatureHelp = [&]() {
1933       QualType PreferredType;
1934       if (TypeRep)
1935         PreferredType = Actions.ProduceConstructorSignatureHelp(
1936             TypeRep.get()->getCanonicalTypeInternal(), DS.getEndLoc(), Exprs,
1937             T.getOpenLocation(), /*Braced=*/false);
1938       CalledSignatureHelp = true;
1939       return PreferredType;
1940     };
1941 
1942     if (Tok.isNot(tok::r_paren)) {
1943       if (ParseExpressionList(Exprs, [&] {
1944             PreferredType.enterFunctionArgument(Tok.getLocation(),
1945                                                 RunSignatureHelp);
1946           })) {
1947         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1948           RunSignatureHelp();
1949         SkipUntil(tok::r_paren, StopAtSemi);
1950         return ExprError();
1951       }
1952     }
1953 
1954     // Match the ')'.
1955     T.consumeClose();
1956 
1957     // TypeRep could be null, if it references an invalid typedef.
1958     if (!TypeRep)
1959       return ExprError();
1960 
1961     return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1962                                              Exprs, T.getCloseLocation(),
1963                                              /*ListInitialization=*/false);
1964   }
1965 }
1966 
1967 Parser::DeclGroupPtrTy
1968 Parser::ParseAliasDeclarationInInitStatement(DeclaratorContext Context,
1969                                              ParsedAttributes &Attrs) {
1970   assert(Tok.is(tok::kw_using) && "Expected using");
1971   assert((Context == DeclaratorContext::ForInit ||
1972           Context == DeclaratorContext::SelectionInit) &&
1973          "Unexpected Declarator Context");
1974   DeclGroupPtrTy DG;
1975   SourceLocation DeclStart = ConsumeToken(), DeclEnd;
1976 
1977   DG = ParseUsingDeclaration(Context, {}, DeclStart, DeclEnd, Attrs, AS_none);
1978   if (!DG)
1979     return DG;
1980 
1981   Diag(DeclStart, !getLangOpts().CPlusPlus2b
1982                       ? diag::ext_alias_in_init_statement
1983                       : diag::warn_cxx20_alias_in_init_statement)
1984       << SourceRange(DeclStart, DeclEnd);
1985 
1986   return DG;
1987 }
1988 
1989 /// ParseCXXCondition - if/switch/while condition expression.
1990 ///
1991 ///       condition:
1992 ///         expression
1993 ///         type-specifier-seq declarator '=' assignment-expression
1994 /// [C++11] type-specifier-seq declarator '=' initializer-clause
1995 /// [C++11] type-specifier-seq declarator braced-init-list
1996 /// [Clang] type-specifier-seq ref-qualifier[opt] '[' identifier-list ']'
1997 ///             brace-or-equal-initializer
1998 /// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1999 ///             '=' assignment-expression
2000 ///
2001 /// In C++1z, a condition may in some contexts be preceded by an
2002 /// optional init-statement. This function will parse that too.
2003 ///
2004 /// \param InitStmt If non-null, an init-statement is permitted, and if present
2005 /// will be parsed and stored here.
2006 ///
2007 /// \param Loc The location of the start of the statement that requires this
2008 /// condition, e.g., the "for" in a for loop.
2009 ///
2010 /// \param MissingOK Whether an empty condition is acceptable here. Otherwise
2011 /// it is considered an error to be recovered from.
2012 ///
2013 /// \param FRI If non-null, a for range declaration is permitted, and if
2014 /// present will be parsed and stored here, and a null result will be returned.
2015 ///
2016 /// \param EnterForConditionScope If true, enter a continue/break scope at the
2017 /// appropriate moment for a 'for' loop.
2018 ///
2019 /// \returns The parsed condition.
2020 Sema::ConditionResult
2021 Parser::ParseCXXCondition(StmtResult *InitStmt, SourceLocation Loc,
2022                           Sema::ConditionKind CK, bool MissingOK,
2023                           ForRangeInfo *FRI, bool EnterForConditionScope) {
2024   // Helper to ensure we always enter a continue/break scope if requested.
2025   struct ForConditionScopeRAII {
2026     Scope *S;
2027     void enter(bool IsConditionVariable) {
2028       if (S) {
2029         S->AddFlags(Scope::BreakScope | Scope::ContinueScope);
2030         S->setIsConditionVarScope(IsConditionVariable);
2031       }
2032     }
2033     ~ForConditionScopeRAII() {
2034       if (S)
2035         S->setIsConditionVarScope(false);
2036     }
2037   } ForConditionScope{EnterForConditionScope ? getCurScope() : nullptr};
2038 
2039   ParenBraceBracketBalancer BalancerRAIIObj(*this);
2040   PreferredType.enterCondition(Actions, Tok.getLocation());
2041 
2042   if (Tok.is(tok::code_completion)) {
2043     cutOffParsing();
2044     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
2045     return Sema::ConditionError();
2046   }
2047 
2048   ParsedAttributes attrs(AttrFactory);
2049   MaybeParseCXX11Attributes(attrs);
2050 
2051   const auto WarnOnInit = [this, &CK] {
2052     Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
2053                                 ? diag::warn_cxx14_compat_init_statement
2054                                 : diag::ext_init_statement)
2055         << (CK == Sema::ConditionKind::Switch);
2056   };
2057 
2058   // Determine what kind of thing we have.
2059   switch (isCXXConditionDeclarationOrInitStatement(InitStmt, FRI)) {
2060   case ConditionOrInitStatement::Expression: {
2061     // If this is a for loop, we're entering its condition.
2062     ForConditionScope.enter(/*IsConditionVariable=*/false);
2063 
2064     ProhibitAttributes(attrs);
2065 
2066     // We can have an empty expression here.
2067     //   if (; true);
2068     if (InitStmt && Tok.is(tok::semi)) {
2069       WarnOnInit();
2070       SourceLocation SemiLoc = Tok.getLocation();
2071       if (!Tok.hasLeadingEmptyMacro() && !SemiLoc.isMacroID()) {
2072         Diag(SemiLoc, diag::warn_empty_init_statement)
2073             << (CK == Sema::ConditionKind::Switch)
2074             << FixItHint::CreateRemoval(SemiLoc);
2075       }
2076       ConsumeToken();
2077       *InitStmt = Actions.ActOnNullStmt(SemiLoc);
2078       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2079     }
2080 
2081     // Parse the expression.
2082     ExprResult Expr = ParseExpression(); // expression
2083     if (Expr.isInvalid())
2084       return Sema::ConditionError();
2085 
2086     if (InitStmt && Tok.is(tok::semi)) {
2087       WarnOnInit();
2088       *InitStmt = Actions.ActOnExprStmt(Expr.get());
2089       ConsumeToken();
2090       return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2091     }
2092 
2093     return Actions.ActOnCondition(getCurScope(), Loc, Expr.get(), CK,
2094                                   MissingOK);
2095   }
2096 
2097   case ConditionOrInitStatement::InitStmtDecl: {
2098     WarnOnInit();
2099     DeclGroupPtrTy DG;
2100     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2101     if (Tok.is(tok::kw_using))
2102       DG = ParseAliasDeclarationInInitStatement(
2103           DeclaratorContext::SelectionInit, attrs);
2104     else {
2105       ParsedAttributes DeclSpecAttrs(AttrFactory);
2106       DG = ParseSimpleDeclaration(DeclaratorContext::SelectionInit, DeclEnd,
2107                                   attrs, DeclSpecAttrs, /*RequireSemi=*/true);
2108     }
2109     *InitStmt = Actions.ActOnDeclStmt(DG, DeclStart, DeclEnd);
2110     return ParseCXXCondition(nullptr, Loc, CK, MissingOK);
2111   }
2112 
2113   case ConditionOrInitStatement::ForRangeDecl: {
2114     // This is 'for (init-stmt; for-range-decl : range-expr)'.
2115     // We're not actually in a for loop yet, so 'break' and 'continue' aren't
2116     // permitted here.
2117     assert(FRI && "should not parse a for range declaration here");
2118     SourceLocation DeclStart = Tok.getLocation(), DeclEnd;
2119     ParsedAttributes DeclSpecAttrs(AttrFactory);
2120     DeclGroupPtrTy DG = ParseSimpleDeclaration(
2121         DeclaratorContext::ForInit, DeclEnd, attrs, DeclSpecAttrs, false, FRI);
2122     FRI->LoopVar = Actions.ActOnDeclStmt(DG, DeclStart, Tok.getLocation());
2123     assert((FRI->ColonLoc.isValid() || !DG) &&
2124            "cannot find for range declaration");
2125     return Sema::ConditionResult();
2126   }
2127 
2128   case ConditionOrInitStatement::ConditionDecl:
2129   case ConditionOrInitStatement::Error:
2130     break;
2131   }
2132 
2133   // If this is a for loop, we're entering its condition.
2134   ForConditionScope.enter(/*IsConditionVariable=*/true);
2135 
2136   // type-specifier-seq
2137   DeclSpec DS(AttrFactory);
2138   ParseSpecifierQualifierList(DS, AS_none, DeclSpecContext::DSC_condition);
2139 
2140   // declarator
2141   Declarator DeclaratorInfo(DS, attrs, DeclaratorContext::Condition);
2142   ParseDeclarator(DeclaratorInfo);
2143 
2144   // simple-asm-expr[opt]
2145   if (Tok.is(tok::kw_asm)) {
2146     SourceLocation Loc;
2147     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2148     if (AsmLabel.isInvalid()) {
2149       SkipUntil(tok::semi, StopAtSemi);
2150       return Sema::ConditionError();
2151     }
2152     DeclaratorInfo.setAsmLabel(AsmLabel.get());
2153     DeclaratorInfo.SetRangeEnd(Loc);
2154   }
2155 
2156   // If attributes are present, parse them.
2157   MaybeParseGNUAttributes(DeclaratorInfo);
2158 
2159   // Type-check the declaration itself.
2160   DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
2161                                                         DeclaratorInfo);
2162   if (Dcl.isInvalid())
2163     return Sema::ConditionError();
2164   Decl *DeclOut = Dcl.get();
2165 
2166   // '=' assignment-expression
2167   // If a '==' or '+=' is found, suggest a fixit to '='.
2168   bool CopyInitialization = isTokenEqualOrEqualTypo();
2169   if (CopyInitialization)
2170     ConsumeToken();
2171 
2172   ExprResult InitExpr = ExprError();
2173   if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2174     Diag(Tok.getLocation(),
2175          diag::warn_cxx98_compat_generalized_initializer_lists);
2176     InitExpr = ParseBraceInitializer();
2177   } else if (CopyInitialization) {
2178     PreferredType.enterVariableInit(Tok.getLocation(), DeclOut);
2179     InitExpr = ParseAssignmentExpression();
2180   } else if (Tok.is(tok::l_paren)) {
2181     // This was probably an attempt to initialize the variable.
2182     SourceLocation LParen = ConsumeParen(), RParen = LParen;
2183     if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch))
2184       RParen = ConsumeParen();
2185     Diag(DeclOut->getLocation(),
2186          diag::err_expected_init_in_condition_lparen)
2187       << SourceRange(LParen, RParen);
2188   } else {
2189     Diag(DeclOut->getLocation(), diag::err_expected_init_in_condition);
2190   }
2191 
2192   if (!InitExpr.isInvalid())
2193     Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization);
2194   else
2195     Actions.ActOnInitializerError(DeclOut);
2196 
2197   Actions.FinalizeDeclaration(DeclOut);
2198   return Actions.ActOnConditionVariable(DeclOut, Loc, CK);
2199 }
2200 
2201 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
2202 /// This should only be called when the current token is known to be part of
2203 /// simple-type-specifier.
2204 ///
2205 ///       simple-type-specifier:
2206 ///         '::'[opt] nested-name-specifier[opt] type-name
2207 ///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
2208 ///         char
2209 ///         wchar_t
2210 ///         bool
2211 ///         short
2212 ///         int
2213 ///         long
2214 ///         signed
2215 ///         unsigned
2216 ///         float
2217 ///         double
2218 ///         void
2219 /// [GNU]   typeof-specifier
2220 /// [C++0x] auto               [TODO]
2221 ///
2222 ///       type-name:
2223 ///         class-name
2224 ///         enum-name
2225 ///         typedef-name
2226 ///
2227 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
2228   DS.SetRangeStart(Tok.getLocation());
2229   const char *PrevSpec;
2230   unsigned DiagID;
2231   SourceLocation Loc = Tok.getLocation();
2232   const clang::PrintingPolicy &Policy =
2233       Actions.getASTContext().getPrintingPolicy();
2234 
2235   switch (Tok.getKind()) {
2236   case tok::identifier:   // foo::bar
2237   case tok::coloncolon:   // ::foo::bar
2238     llvm_unreachable("Annotation token should already be formed!");
2239   default:
2240     llvm_unreachable("Not a simple-type-specifier token!");
2241 
2242   // type-name
2243   case tok::annot_typename: {
2244     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
2245                        getTypeAnnotation(Tok), Policy);
2246     DS.SetRangeEnd(Tok.getAnnotationEndLoc());
2247     ConsumeAnnotationToken();
2248 
2249     DS.Finish(Actions, Policy);
2250     return;
2251   }
2252 
2253   case tok::kw__ExtInt:
2254   case tok::kw__BitInt: {
2255     DiagnoseBitIntUse(Tok);
2256     ExprResult ER = ParseExtIntegerArgument();
2257     if (ER.isInvalid())
2258       DS.SetTypeSpecError();
2259     else
2260       DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
2261 
2262     // Do this here because we have already consumed the close paren.
2263     DS.SetRangeEnd(PrevTokLocation);
2264     DS.Finish(Actions, Policy);
2265     return;
2266   }
2267 
2268   // builtin types
2269   case tok::kw_short:
2270     DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec, DiagID,
2271                         Policy);
2272     break;
2273   case tok::kw_long:
2274     DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec, DiagID,
2275                         Policy);
2276     break;
2277   case tok::kw___int64:
2278     DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc, PrevSpec, DiagID,
2279                         Policy);
2280     break;
2281   case tok::kw_signed:
2282     DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
2283     break;
2284   case tok::kw_unsigned:
2285     DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec, DiagID);
2286     break;
2287   case tok::kw_void:
2288     DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy);
2289     break;
2290   case tok::kw_auto:
2291     DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID, Policy);
2292     break;
2293   case tok::kw_char:
2294     DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy);
2295     break;
2296   case tok::kw_int:
2297     DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy);
2298     break;
2299   case tok::kw___int128:
2300     DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy);
2301     break;
2302   case tok::kw___bf16:
2303     DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec, DiagID, Policy);
2304     break;
2305   case tok::kw_half:
2306     DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy);
2307     break;
2308   case tok::kw_float:
2309     DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy);
2310     break;
2311   case tok::kw_double:
2312     DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy);
2313     break;
2314   case tok::kw__Float16:
2315     DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, DiagID, Policy);
2316     break;
2317   case tok::kw___float128:
2318     DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, DiagID, Policy);
2319     break;
2320   case tok::kw___ibm128:
2321     DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec, DiagID, Policy);
2322     break;
2323   case tok::kw_wchar_t:
2324     DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy);
2325     break;
2326   case tok::kw_char8_t:
2327     DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, DiagID, Policy);
2328     break;
2329   case tok::kw_char16_t:
2330     DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy);
2331     break;
2332   case tok::kw_char32_t:
2333     DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy);
2334     break;
2335   case tok::kw_bool:
2336     DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy);
2337     break;
2338 #define GENERIC_IMAGE_TYPE(ImgType, Id)                                        \
2339   case tok::kw_##ImgType##_t:                                                  \
2340     DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, DiagID,     \
2341                        Policy);                                                \
2342     break;
2343 #include "clang/Basic/OpenCLImageTypes.def"
2344 
2345   case tok::annot_decltype:
2346   case tok::kw_decltype:
2347     DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
2348     return DS.Finish(Actions, Policy);
2349 
2350   // GNU typeof support.
2351   case tok::kw_typeof:
2352     ParseTypeofSpecifier(DS);
2353     DS.Finish(Actions, Policy);
2354     return;
2355   }
2356   ConsumeAnyToken();
2357   DS.SetRangeEnd(PrevTokLocation);
2358   DS.Finish(Actions, Policy);
2359 }
2360 
2361 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
2362 /// [dcl.name]), which is a non-empty sequence of type-specifiers,
2363 /// e.g., "const short int". Note that the DeclSpec is *not* finished
2364 /// by parsing the type-specifier-seq, because these sequences are
2365 /// typically followed by some form of declarator. Returns true and
2366 /// emits diagnostics if this is not a type-specifier-seq, false
2367 /// otherwise.
2368 ///
2369 ///   type-specifier-seq: [C++ 8.1]
2370 ///     type-specifier type-specifier-seq[opt]
2371 ///
2372 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS, DeclaratorContext Context) {
2373   ParseSpecifierQualifierList(DS, AS_none,
2374                               getDeclSpecContextFromDeclaratorContext(Context));
2375   DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
2376   return false;
2377 }
2378 
2379 /// Finish parsing a C++ unqualified-id that is a template-id of
2380 /// some form.
2381 ///
2382 /// This routine is invoked when a '<' is encountered after an identifier or
2383 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
2384 /// whether the unqualified-id is actually a template-id. This routine will
2385 /// then parse the template arguments and form the appropriate template-id to
2386 /// return to the caller.
2387 ///
2388 /// \param SS the nested-name-specifier that precedes this template-id, if
2389 /// we're actually parsing a qualified-id.
2390 ///
2391 /// \param ObjectType if this unqualified-id occurs within a member access
2392 /// expression, the type of the base object whose member is being accessed.
2393 ///
2394 /// \param ObjectHadErrors this unqualified-id occurs within a member access
2395 /// expression, indicates whether the original subexpressions had any errors.
2396 ///
2397 /// \param Name for constructor and destructor names, this is the actual
2398 /// identifier that may be a template-name.
2399 ///
2400 /// \param NameLoc the location of the class-name in a constructor or
2401 /// destructor.
2402 ///
2403 /// \param EnteringContext whether we're entering the scope of the
2404 /// nested-name-specifier.
2405 ///
2406 /// \param Id as input, describes the template-name or operator-function-id
2407 /// that precedes the '<'. If template arguments were parsed successfully,
2408 /// will be updated with the template-id.
2409 ///
2410 /// \param AssumeTemplateId When true, this routine will assume that the name
2411 /// refers to a template without performing name lookup to verify.
2412 ///
2413 /// \returns true if a parse error occurred, false otherwise.
2414 bool Parser::ParseUnqualifiedIdTemplateId(
2415     CXXScopeSpec &SS, ParsedType ObjectType, bool ObjectHadErrors,
2416     SourceLocation TemplateKWLoc, IdentifierInfo *Name, SourceLocation NameLoc,
2417     bool EnteringContext, UnqualifiedId &Id, bool AssumeTemplateId) {
2418   assert(Tok.is(tok::less) && "Expected '<' to finish parsing a template-id");
2419 
2420   TemplateTy Template;
2421   TemplateNameKind TNK = TNK_Non_template;
2422   switch (Id.getKind()) {
2423   case UnqualifiedIdKind::IK_Identifier:
2424   case UnqualifiedIdKind::IK_OperatorFunctionId:
2425   case UnqualifiedIdKind::IK_LiteralOperatorId:
2426     if (AssumeTemplateId) {
2427       // We defer the injected-class-name checks until we've found whether
2428       // this template-id is used to form a nested-name-specifier or not.
2429       TNK = Actions.ActOnTemplateName(getCurScope(), SS, TemplateKWLoc, Id,
2430                                       ObjectType, EnteringContext, Template,
2431                                       /*AllowInjectedClassName*/ true);
2432     } else {
2433       bool MemberOfUnknownSpecialization;
2434       TNK = Actions.isTemplateName(getCurScope(), SS,
2435                                    TemplateKWLoc.isValid(), Id,
2436                                    ObjectType, EnteringContext, Template,
2437                                    MemberOfUnknownSpecialization);
2438       // If lookup found nothing but we're assuming that this is a template
2439       // name, double-check that makes sense syntactically before committing
2440       // to it.
2441       if (TNK == TNK_Undeclared_template &&
2442           isTemplateArgumentList(0) == TPResult::False)
2443         return false;
2444 
2445       if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
2446           ObjectType && isTemplateArgumentList(0) == TPResult::True) {
2447         // If we had errors before, ObjectType can be dependent even without any
2448         // templates, do not report missing template keyword in that case.
2449         if (!ObjectHadErrors) {
2450           // We have something like t->getAs<T>(), where getAs is a
2451           // member of an unknown specialization. However, this will only
2452           // parse correctly as a template, so suggest the keyword 'template'
2453           // before 'getAs' and treat this as a dependent template name.
2454           std::string Name;
2455           if (Id.getKind() == UnqualifiedIdKind::IK_Identifier)
2456             Name = std::string(Id.Identifier->getName());
2457           else {
2458             Name = "operator ";
2459             if (Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId)
2460               Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
2461             else
2462               Name += Id.Identifier->getName();
2463           }
2464           Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
2465               << Name
2466               << FixItHint::CreateInsertion(Id.StartLocation, "template ");
2467         }
2468         TNK = Actions.ActOnTemplateName(
2469             getCurScope(), SS, TemplateKWLoc, Id, ObjectType, EnteringContext,
2470             Template, /*AllowInjectedClassName*/ true);
2471       } else if (TNK == TNK_Non_template) {
2472         return false;
2473       }
2474     }
2475     break;
2476 
2477   case UnqualifiedIdKind::IK_ConstructorName: {
2478     UnqualifiedId TemplateName;
2479     bool MemberOfUnknownSpecialization;
2480     TemplateName.setIdentifier(Name, NameLoc);
2481     TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2482                                  TemplateName, ObjectType,
2483                                  EnteringContext, Template,
2484                                  MemberOfUnknownSpecialization);
2485     if (TNK == TNK_Non_template)
2486       return false;
2487     break;
2488   }
2489 
2490   case UnqualifiedIdKind::IK_DestructorName: {
2491     UnqualifiedId TemplateName;
2492     bool MemberOfUnknownSpecialization;
2493     TemplateName.setIdentifier(Name, NameLoc);
2494     if (ObjectType) {
2495       TNK = Actions.ActOnTemplateName(
2496           getCurScope(), SS, TemplateKWLoc, TemplateName, ObjectType,
2497           EnteringContext, Template, /*AllowInjectedClassName*/ true);
2498     } else {
2499       TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
2500                                    TemplateName, ObjectType,
2501                                    EnteringContext, Template,
2502                                    MemberOfUnknownSpecialization);
2503 
2504       if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
2505         Diag(NameLoc, diag::err_destructor_template_id)
2506           << Name << SS.getRange();
2507         // Carry on to parse the template arguments before bailing out.
2508       }
2509     }
2510     break;
2511   }
2512 
2513   default:
2514     return false;
2515   }
2516 
2517   // Parse the enclosed template argument list.
2518   SourceLocation LAngleLoc, RAngleLoc;
2519   TemplateArgList TemplateArgs;
2520   if (ParseTemplateIdAfterTemplateName(true, LAngleLoc, TemplateArgs, RAngleLoc,
2521                                        Template))
2522     return true;
2523 
2524   // If this is a non-template, we already issued a diagnostic.
2525   if (TNK == TNK_Non_template)
2526     return true;
2527 
2528   if (Id.getKind() == UnqualifiedIdKind::IK_Identifier ||
2529       Id.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2530       Id.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) {
2531     // Form a parsed representation of the template-id to be stored in the
2532     // UnqualifiedId.
2533 
2534     // FIXME: Store name for literal operator too.
2535     IdentifierInfo *TemplateII =
2536         Id.getKind() == UnqualifiedIdKind::IK_Identifier ? Id.Identifier
2537                                                          : nullptr;
2538     OverloadedOperatorKind OpKind =
2539         Id.getKind() == UnqualifiedIdKind::IK_Identifier
2540             ? OO_None
2541             : Id.OperatorFunctionId.Operator;
2542 
2543     TemplateIdAnnotation *TemplateId = TemplateIdAnnotation::Create(
2544         TemplateKWLoc, Id.StartLocation, TemplateII, OpKind, Template, TNK,
2545         LAngleLoc, RAngleLoc, TemplateArgs, /*ArgsInvalid*/false, TemplateIds);
2546 
2547     Id.setTemplateId(TemplateId);
2548     return false;
2549   }
2550 
2551   // Bundle the template arguments together.
2552   ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs);
2553 
2554   // Constructor and destructor names.
2555   TypeResult Type = Actions.ActOnTemplateIdType(
2556       getCurScope(), SS, TemplateKWLoc, Template, Name, NameLoc, LAngleLoc,
2557       TemplateArgsPtr, RAngleLoc, /*IsCtorOrDtorName=*/true);
2558   if (Type.isInvalid())
2559     return true;
2560 
2561   if (Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
2562     Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
2563   else
2564     Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
2565 
2566   return false;
2567 }
2568 
2569 /// Parse an operator-function-id or conversion-function-id as part
2570 /// of a C++ unqualified-id.
2571 ///
2572 /// This routine is responsible only for parsing the operator-function-id or
2573 /// conversion-function-id; it does not handle template arguments in any way.
2574 ///
2575 /// \code
2576 ///       operator-function-id: [C++ 13.5]
2577 ///         'operator' operator
2578 ///
2579 ///       operator: one of
2580 ///            new   delete  new[]   delete[]
2581 ///            +     -    *  /    %  ^    &   |   ~
2582 ///            !     =    <  >    += -=   *=  /=  %=
2583 ///            ^=    &=   |= <<   >> >>= <<=  ==  !=
2584 ///            <=    >=   && ||   ++ --   ,   ->* ->
2585 ///            ()    []   <=>
2586 ///
2587 ///       conversion-function-id: [C++ 12.3.2]
2588 ///         operator conversion-type-id
2589 ///
2590 ///       conversion-type-id:
2591 ///         type-specifier-seq conversion-declarator[opt]
2592 ///
2593 ///       conversion-declarator:
2594 ///         ptr-operator conversion-declarator[opt]
2595 /// \endcode
2596 ///
2597 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2598 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2599 ///
2600 /// \param EnteringContext whether we are entering the scope of the
2601 /// nested-name-specifier.
2602 ///
2603 /// \param ObjectType if this unqualified-id occurs within a member access
2604 /// expression, the type of the base object whose member is being accessed.
2605 ///
2606 /// \param Result on a successful parse, contains the parsed unqualified-id.
2607 ///
2608 /// \returns true if parsing fails, false otherwise.
2609 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
2610                                         ParsedType ObjectType,
2611                                         UnqualifiedId &Result) {
2612   assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
2613 
2614   // Consume the 'operator' keyword.
2615   SourceLocation KeywordLoc = ConsumeToken();
2616 
2617   // Determine what kind of operator name we have.
2618   unsigned SymbolIdx = 0;
2619   SourceLocation SymbolLocations[3];
2620   OverloadedOperatorKind Op = OO_None;
2621   switch (Tok.getKind()) {
2622     case tok::kw_new:
2623     case tok::kw_delete: {
2624       bool isNew = Tok.getKind() == tok::kw_new;
2625       // Consume the 'new' or 'delete'.
2626       SymbolLocations[SymbolIdx++] = ConsumeToken();
2627       // Check for array new/delete.
2628       if (Tok.is(tok::l_square) &&
2629           (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) {
2630         // Consume the '[' and ']'.
2631         BalancedDelimiterTracker T(*this, tok::l_square);
2632         T.consumeOpen();
2633         T.consumeClose();
2634         if (T.getCloseLocation().isInvalid())
2635           return true;
2636 
2637         SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2638         SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2639         Op = isNew? OO_Array_New : OO_Array_Delete;
2640       } else {
2641         Op = isNew? OO_New : OO_Delete;
2642       }
2643       break;
2644     }
2645 
2646 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2647     case tok::Token:                                                     \
2648       SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
2649       Op = OO_##Name;                                                    \
2650       break;
2651 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
2652 #include "clang/Basic/OperatorKinds.def"
2653 
2654     case tok::l_paren: {
2655       // Consume the '(' and ')'.
2656       BalancedDelimiterTracker T(*this, tok::l_paren);
2657       T.consumeOpen();
2658       T.consumeClose();
2659       if (T.getCloseLocation().isInvalid())
2660         return true;
2661 
2662       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2663       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2664       Op = OO_Call;
2665       break;
2666     }
2667 
2668     case tok::l_square: {
2669       // Consume the '[' and ']'.
2670       BalancedDelimiterTracker T(*this, tok::l_square);
2671       T.consumeOpen();
2672       T.consumeClose();
2673       if (T.getCloseLocation().isInvalid())
2674         return true;
2675 
2676       SymbolLocations[SymbolIdx++] = T.getOpenLocation();
2677       SymbolLocations[SymbolIdx++] = T.getCloseLocation();
2678       Op = OO_Subscript;
2679       break;
2680     }
2681 
2682     case tok::code_completion: {
2683       // Don't try to parse any further.
2684       cutOffParsing();
2685       // Code completion for the operator name.
2686       Actions.CodeCompleteOperatorName(getCurScope());
2687       return true;
2688     }
2689 
2690     default:
2691       break;
2692   }
2693 
2694   if (Op != OO_None) {
2695     // We have parsed an operator-function-id.
2696     Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
2697     return false;
2698   }
2699 
2700   // Parse a literal-operator-id.
2701   //
2702   //   literal-operator-id: C++11 [over.literal]
2703   //     operator string-literal identifier
2704   //     operator user-defined-string-literal
2705 
2706   if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) {
2707     Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
2708 
2709     SourceLocation DiagLoc;
2710     unsigned DiagId = 0;
2711 
2712     // We're past translation phase 6, so perform string literal concatenation
2713     // before checking for "".
2714     SmallVector<Token, 4> Toks;
2715     SmallVector<SourceLocation, 4> TokLocs;
2716     while (isTokenStringLiteral()) {
2717       if (!Tok.is(tok::string_literal) && !DiagId) {
2718         // C++11 [over.literal]p1:
2719         //   The string-literal or user-defined-string-literal in a
2720         //   literal-operator-id shall have no encoding-prefix [...].
2721         DiagLoc = Tok.getLocation();
2722         DiagId = diag::err_literal_operator_string_prefix;
2723       }
2724       Toks.push_back(Tok);
2725       TokLocs.push_back(ConsumeStringToken());
2726     }
2727 
2728     StringLiteralParser Literal(Toks, PP);
2729     if (Literal.hadError)
2730       return true;
2731 
2732     // Grab the literal operator's suffix, which will be either the next token
2733     // or a ud-suffix from the string literal.
2734     bool IsUDSuffix = !Literal.getUDSuffix().empty();
2735     IdentifierInfo *II = nullptr;
2736     SourceLocation SuffixLoc;
2737     if (IsUDSuffix) {
2738       II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
2739       SuffixLoc =
2740         Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
2741                                        Literal.getUDSuffixOffset(),
2742                                        PP.getSourceManager(), getLangOpts());
2743     } else if (Tok.is(tok::identifier)) {
2744       II = Tok.getIdentifierInfo();
2745       SuffixLoc = ConsumeToken();
2746       TokLocs.push_back(SuffixLoc);
2747     } else {
2748       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
2749       return true;
2750     }
2751 
2752     // The string literal must be empty.
2753     if (!Literal.GetString().empty() || Literal.Pascal) {
2754       // C++11 [over.literal]p1:
2755       //   The string-literal or user-defined-string-literal in a
2756       //   literal-operator-id shall [...] contain no characters
2757       //   other than the implicit terminating '\0'.
2758       DiagLoc = TokLocs.front();
2759       DiagId = diag::err_literal_operator_string_not_empty;
2760     }
2761 
2762     if (DiagId) {
2763       // This isn't a valid literal-operator-id, but we think we know
2764       // what the user meant. Tell them what they should have written.
2765       SmallString<32> Str;
2766       Str += "\"\"";
2767       Str += II->getName();
2768       Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
2769           SourceRange(TokLocs.front(), TokLocs.back()), Str);
2770     }
2771 
2772     Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
2773 
2774     return Actions.checkLiteralOperatorId(SS, Result, IsUDSuffix);
2775   }
2776 
2777   // Parse a conversion-function-id.
2778   //
2779   //   conversion-function-id: [C++ 12.3.2]
2780   //     operator conversion-type-id
2781   //
2782   //   conversion-type-id:
2783   //     type-specifier-seq conversion-declarator[opt]
2784   //
2785   //   conversion-declarator:
2786   //     ptr-operator conversion-declarator[opt]
2787 
2788   // Parse the type-specifier-seq.
2789   DeclSpec DS(AttrFactory);
2790   if (ParseCXXTypeSpecifierSeq(
2791           DS, DeclaratorContext::ConversionId)) // FIXME: ObjectType?
2792     return true;
2793 
2794   // Parse the conversion-declarator, which is merely a sequence of
2795   // ptr-operators.
2796   Declarator D(DS, ParsedAttributesView::none(),
2797                DeclaratorContext::ConversionId);
2798   ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr);
2799 
2800   // Finish up the type.
2801   TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
2802   if (Ty.isInvalid())
2803     return true;
2804 
2805   // Note that this is a conversion-function-id.
2806   Result.setConversionFunctionId(KeywordLoc, Ty.get(),
2807                                  D.getSourceRange().getEnd());
2808   return false;
2809 }
2810 
2811 /// Parse a C++ unqualified-id (or a C identifier), which describes the
2812 /// name of an entity.
2813 ///
2814 /// \code
2815 ///       unqualified-id: [C++ expr.prim.general]
2816 ///         identifier
2817 ///         operator-function-id
2818 ///         conversion-function-id
2819 /// [C++0x] literal-operator-id [TODO]
2820 ///         ~ class-name
2821 ///         template-id
2822 ///
2823 /// \endcode
2824 ///
2825 /// \param SS The nested-name-specifier that preceded this unqualified-id. If
2826 /// non-empty, then we are parsing the unqualified-id of a qualified-id.
2827 ///
2828 /// \param ObjectType if this unqualified-id occurs within a member access
2829 /// expression, the type of the base object whose member is being accessed.
2830 ///
2831 /// \param ObjectHadErrors if this unqualified-id occurs within a member access
2832 /// expression, indicates whether the original subexpressions had any errors.
2833 /// When true, diagnostics for missing 'template' keyword will be supressed.
2834 ///
2835 /// \param EnteringContext whether we are entering the scope of the
2836 /// nested-name-specifier.
2837 ///
2838 /// \param AllowDestructorName whether we allow parsing of a destructor name.
2839 ///
2840 /// \param AllowConstructorName whether we allow parsing a constructor name.
2841 ///
2842 /// \param AllowDeductionGuide whether we allow parsing a deduction guide name.
2843 ///
2844 /// \param Result on a successful parse, contains the parsed unqualified-id.
2845 ///
2846 /// \returns true if parsing fails, false otherwise.
2847 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, ParsedType ObjectType,
2848                                 bool ObjectHadErrors, bool EnteringContext,
2849                                 bool AllowDestructorName,
2850                                 bool AllowConstructorName,
2851                                 bool AllowDeductionGuide,
2852                                 SourceLocation *TemplateKWLoc,
2853                                 UnqualifiedId &Result) {
2854   if (TemplateKWLoc)
2855     *TemplateKWLoc = SourceLocation();
2856 
2857   // Handle 'A::template B'. This is for template-ids which have not
2858   // already been annotated by ParseOptionalCXXScopeSpecifier().
2859   bool TemplateSpecified = false;
2860   if (Tok.is(tok::kw_template)) {
2861     if (TemplateKWLoc && (ObjectType || SS.isSet())) {
2862       TemplateSpecified = true;
2863       *TemplateKWLoc = ConsumeToken();
2864     } else {
2865       SourceLocation TemplateLoc = ConsumeToken();
2866       Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2867         << FixItHint::CreateRemoval(TemplateLoc);
2868     }
2869   }
2870 
2871   // unqualified-id:
2872   //   identifier
2873   //   template-id (when it hasn't already been annotated)
2874   if (Tok.is(tok::identifier)) {
2875   ParseIdentifier:
2876     // Consume the identifier.
2877     IdentifierInfo *Id = Tok.getIdentifierInfo();
2878     SourceLocation IdLoc = ConsumeToken();
2879 
2880     if (!getLangOpts().CPlusPlus) {
2881       // If we're not in C++, only identifiers matter. Record the
2882       // identifier and return.
2883       Result.setIdentifier(Id, IdLoc);
2884       return false;
2885     }
2886 
2887     ParsedTemplateTy TemplateName;
2888     if (AllowConstructorName &&
2889         Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2890       // We have parsed a constructor name.
2891       ParsedType Ty = Actions.getConstructorName(*Id, IdLoc, getCurScope(), SS,
2892                                                  EnteringContext);
2893       if (!Ty)
2894         return true;
2895       Result.setConstructorName(Ty, IdLoc, IdLoc);
2896     } else if (getLangOpts().CPlusPlus17 &&
2897                AllowDeductionGuide && SS.isEmpty() &&
2898                Actions.isDeductionGuideName(getCurScope(), *Id, IdLoc,
2899                                             &TemplateName)) {
2900       // We have parsed a template-name naming a deduction guide.
2901       Result.setDeductionGuideName(TemplateName, IdLoc);
2902     } else {
2903       // We have parsed an identifier.
2904       Result.setIdentifier(Id, IdLoc);
2905     }
2906 
2907     // If the next token is a '<', we may have a template.
2908     TemplateTy Template;
2909     if (Tok.is(tok::less))
2910       return ParseUnqualifiedIdTemplateId(
2911           SS, ObjectType, ObjectHadErrors,
2912           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), Id, IdLoc,
2913           EnteringContext, Result, TemplateSpecified);
2914     else if (TemplateSpecified &&
2915              Actions.ActOnTemplateName(
2916                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
2917                  EnteringContext, Template,
2918                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
2919       return true;
2920 
2921     return false;
2922   }
2923 
2924   // unqualified-id:
2925   //   template-id (already parsed and annotated)
2926   if (Tok.is(tok::annot_template_id)) {
2927     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2928 
2929     // FIXME: Consider passing invalid template-ids on to callers; they may
2930     // be able to recover better than we can.
2931     if (TemplateId->isInvalid()) {
2932       ConsumeAnnotationToken();
2933       return true;
2934     }
2935 
2936     // If the template-name names the current class, then this is a constructor
2937     if (AllowConstructorName && TemplateId->Name &&
2938         Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2939       if (SS.isSet()) {
2940         // C++ [class.qual]p2 specifies that a qualified template-name
2941         // is taken as the constructor name where a constructor can be
2942         // declared. Thus, the template arguments are extraneous, so
2943         // complain about them and remove them entirely.
2944         Diag(TemplateId->TemplateNameLoc,
2945              diag::err_out_of_line_constructor_template_id)
2946           << TemplateId->Name
2947           << FixItHint::CreateRemoval(
2948                     SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2949         ParsedType Ty = Actions.getConstructorName(
2950             *TemplateId->Name, TemplateId->TemplateNameLoc, getCurScope(), SS,
2951             EnteringContext);
2952         if (!Ty)
2953           return true;
2954         Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2955                                   TemplateId->RAngleLoc);
2956         ConsumeAnnotationToken();
2957         return false;
2958       }
2959 
2960       Result.setConstructorTemplateId(TemplateId);
2961       ConsumeAnnotationToken();
2962       return false;
2963     }
2964 
2965     // We have already parsed a template-id; consume the annotation token as
2966     // our unqualified-id.
2967     Result.setTemplateId(TemplateId);
2968     SourceLocation TemplateLoc = TemplateId->TemplateKWLoc;
2969     if (TemplateLoc.isValid()) {
2970       if (TemplateKWLoc && (ObjectType || SS.isSet()))
2971         *TemplateKWLoc = TemplateLoc;
2972       else
2973         Diag(TemplateLoc, diag::err_unexpected_template_in_unqualified_id)
2974             << FixItHint::CreateRemoval(TemplateLoc);
2975     }
2976     ConsumeAnnotationToken();
2977     return false;
2978   }
2979 
2980   // unqualified-id:
2981   //   operator-function-id
2982   //   conversion-function-id
2983   if (Tok.is(tok::kw_operator)) {
2984     if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2985       return true;
2986 
2987     // If we have an operator-function-id or a literal-operator-id and the next
2988     // token is a '<', we may have a
2989     //
2990     //   template-id:
2991     //     operator-function-id < template-argument-list[opt] >
2992     TemplateTy Template;
2993     if ((Result.getKind() == UnqualifiedIdKind::IK_OperatorFunctionId ||
2994          Result.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId) &&
2995         Tok.is(tok::less))
2996       return ParseUnqualifiedIdTemplateId(
2997           SS, ObjectType, ObjectHadErrors,
2998           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), nullptr,
2999           SourceLocation(), EnteringContext, Result, TemplateSpecified);
3000     else if (TemplateSpecified &&
3001              Actions.ActOnTemplateName(
3002                  getCurScope(), SS, *TemplateKWLoc, Result, ObjectType,
3003                  EnteringContext, Template,
3004                  /*AllowInjectedClassName*/ true) == TNK_Non_template)
3005       return true;
3006 
3007     return false;
3008   }
3009 
3010   if (getLangOpts().CPlusPlus &&
3011       (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
3012     // C++ [expr.unary.op]p10:
3013     //   There is an ambiguity in the unary-expression ~X(), where X is a
3014     //   class-name. The ambiguity is resolved in favor of treating ~ as a
3015     //    unary complement rather than treating ~X as referring to a destructor.
3016 
3017     // Parse the '~'.
3018     SourceLocation TildeLoc = ConsumeToken();
3019 
3020     if (TemplateSpecified) {
3021       // C++ [temp.names]p3:
3022       //   A name prefixed by the keyword template shall be a template-id [...]
3023       //
3024       // A template-id cannot begin with a '~' token. This would never work
3025       // anyway: x.~A<int>() would specify that the destructor is a template,
3026       // not that 'A' is a template.
3027       //
3028       // FIXME: Suggest replacing the attempted destructor name with a correct
3029       // destructor name and recover. (This is not trivial if this would become
3030       // a pseudo-destructor name).
3031       Diag(*TemplateKWLoc, diag::err_unexpected_template_in_destructor_name)
3032         << Tok.getLocation();
3033       return true;
3034     }
3035 
3036     if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
3037       DeclSpec DS(AttrFactory);
3038       SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
3039       if (ParsedType Type =
3040               Actions.getDestructorTypeForDecltype(DS, ObjectType)) {
3041         Result.setDestructorName(TildeLoc, Type, EndLoc);
3042         return false;
3043       }
3044       return true;
3045     }
3046 
3047     // Parse the class-name.
3048     if (Tok.isNot(tok::identifier)) {
3049       Diag(Tok, diag::err_destructor_tilde_identifier);
3050       return true;
3051     }
3052 
3053     // If the user wrote ~T::T, correct it to T::~T.
3054     DeclaratorScopeObj DeclScopeObj(*this, SS);
3055     if (NextToken().is(tok::coloncolon)) {
3056       // Don't let ParseOptionalCXXScopeSpecifier() "correct"
3057       // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`,
3058       // it will confuse this recovery logic.
3059       ColonProtectionRAIIObject ColonRAII(*this, false);
3060 
3061       if (SS.isSet()) {
3062         AnnotateScopeToken(SS, /*NewAnnotation*/true);
3063         SS.clear();
3064       }
3065       if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, ObjectHadErrors,
3066                                          EnteringContext))
3067         return true;
3068       if (SS.isNotEmpty())
3069         ObjectType = nullptr;
3070       if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) ||
3071           !SS.isSet()) {
3072         Diag(TildeLoc, diag::err_destructor_tilde_scope);
3073         return true;
3074       }
3075 
3076       // Recover as if the tilde had been written before the identifier.
3077       Diag(TildeLoc, diag::err_destructor_tilde_scope)
3078         << FixItHint::CreateRemoval(TildeLoc)
3079         << FixItHint::CreateInsertion(Tok.getLocation(), "~");
3080 
3081       // Temporarily enter the scope for the rest of this function.
3082       if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
3083         DeclScopeObj.EnterDeclaratorScope();
3084     }
3085 
3086     // Parse the class-name (or template-name in a simple-template-id).
3087     IdentifierInfo *ClassName = Tok.getIdentifierInfo();
3088     SourceLocation ClassNameLoc = ConsumeToken();
3089 
3090     if (Tok.is(tok::less)) {
3091       Result.setDestructorName(TildeLoc, nullptr, ClassNameLoc);
3092       return ParseUnqualifiedIdTemplateId(
3093           SS, ObjectType, ObjectHadErrors,
3094           TemplateKWLoc ? *TemplateKWLoc : SourceLocation(), ClassName,
3095           ClassNameLoc, EnteringContext, Result, TemplateSpecified);
3096     }
3097 
3098     // Note that this is a destructor name.
3099     ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
3100                                               ClassNameLoc, getCurScope(),
3101                                               SS, ObjectType,
3102                                               EnteringContext);
3103     if (!Ty)
3104       return true;
3105 
3106     Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
3107     return false;
3108   }
3109 
3110   switch (Tok.getKind()) {
3111 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
3112 #include "clang/Basic/TransformTypeTraits.def"
3113     if (!NextToken().is(tok::l_paren)) {
3114       Tok.setKind(tok::identifier);
3115       Diag(Tok, diag::ext_keyword_as_ident)
3116           << Tok.getIdentifierInfo()->getName() << 0;
3117       goto ParseIdentifier;
3118     }
3119     [[fallthrough]];
3120   default:
3121     Diag(Tok, diag::err_expected_unqualified_id) << getLangOpts().CPlusPlus;
3122     return true;
3123   }
3124 }
3125 
3126 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
3127 /// memory in a typesafe manner and call constructors.
3128 ///
3129 /// This method is called to parse the new expression after the optional :: has
3130 /// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
3131 /// is its location.  Otherwise, "Start" is the location of the 'new' token.
3132 ///
3133 ///        new-expression:
3134 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
3135 ///                                     new-initializer[opt]
3136 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3137 ///                                     new-initializer[opt]
3138 ///
3139 ///        new-placement:
3140 ///                   '(' expression-list ')'
3141 ///
3142 ///        new-type-id:
3143 ///                   type-specifier-seq new-declarator[opt]
3144 /// [GNU]             attributes type-specifier-seq new-declarator[opt]
3145 ///
3146 ///        new-declarator:
3147 ///                   ptr-operator new-declarator[opt]
3148 ///                   direct-new-declarator
3149 ///
3150 ///        new-initializer:
3151 ///                   '(' expression-list[opt] ')'
3152 /// [C++0x]           braced-init-list
3153 ///
3154 ExprResult
3155 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
3156   assert(Tok.is(tok::kw_new) && "expected 'new' token");
3157   ConsumeToken();   // Consume 'new'
3158 
3159   // A '(' now can be a new-placement or the '(' wrapping the type-id in the
3160   // second form of new-expression. It can't be a new-type-id.
3161 
3162   ExprVector PlacementArgs;
3163   SourceLocation PlacementLParen, PlacementRParen;
3164 
3165   SourceRange TypeIdParens;
3166   DeclSpec DS(AttrFactory);
3167   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3168                             DeclaratorContext::CXXNew);
3169   if (Tok.is(tok::l_paren)) {
3170     // If it turns out to be a placement, we change the type location.
3171     BalancedDelimiterTracker T(*this, tok::l_paren);
3172     T.consumeOpen();
3173     PlacementLParen = T.getOpenLocation();
3174     if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
3175       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3176       return ExprError();
3177     }
3178 
3179     T.consumeClose();
3180     PlacementRParen = T.getCloseLocation();
3181     if (PlacementRParen.isInvalid()) {
3182       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3183       return ExprError();
3184     }
3185 
3186     if (PlacementArgs.empty()) {
3187       // Reset the placement locations. There was no placement.
3188       TypeIdParens = T.getRange();
3189       PlacementLParen = PlacementRParen = SourceLocation();
3190     } else {
3191       // We still need the type.
3192       if (Tok.is(tok::l_paren)) {
3193         BalancedDelimiterTracker T(*this, tok::l_paren);
3194         T.consumeOpen();
3195         MaybeParseGNUAttributes(DeclaratorInfo);
3196         ParseSpecifierQualifierList(DS);
3197         DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3198         ParseDeclarator(DeclaratorInfo);
3199         T.consumeClose();
3200         TypeIdParens = T.getRange();
3201       } else {
3202         MaybeParseGNUAttributes(DeclaratorInfo);
3203         if (ParseCXXTypeSpecifierSeq(DS))
3204           DeclaratorInfo.setInvalidType(true);
3205         else {
3206           DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3207           ParseDeclaratorInternal(DeclaratorInfo,
3208                                   &Parser::ParseDirectNewDeclarator);
3209         }
3210       }
3211     }
3212   } else {
3213     // A new-type-id is a simplified type-id, where essentially the
3214     // direct-declarator is replaced by a direct-new-declarator.
3215     MaybeParseGNUAttributes(DeclaratorInfo);
3216     if (ParseCXXTypeSpecifierSeq(DS))
3217       DeclaratorInfo.setInvalidType(true);
3218     else {
3219       DeclaratorInfo.SetSourceRange(DS.getSourceRange());
3220       ParseDeclaratorInternal(DeclaratorInfo,
3221                               &Parser::ParseDirectNewDeclarator);
3222     }
3223   }
3224   if (DeclaratorInfo.isInvalidType()) {
3225     SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3226     return ExprError();
3227   }
3228 
3229   ExprResult Initializer;
3230 
3231   if (Tok.is(tok::l_paren)) {
3232     SourceLocation ConstructorLParen, ConstructorRParen;
3233     ExprVector ConstructorArgs;
3234     BalancedDelimiterTracker T(*this, tok::l_paren);
3235     T.consumeOpen();
3236     ConstructorLParen = T.getOpenLocation();
3237     if (Tok.isNot(tok::r_paren)) {
3238       auto RunSignatureHelp = [&]() {
3239         ParsedType TypeRep =
3240             Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
3241         QualType PreferredType;
3242         // ActOnTypeName might adjust DeclaratorInfo and return a null type even
3243         // the passing DeclaratorInfo is valid, e.g. running SignatureHelp on
3244         // `new decltype(invalid) (^)`.
3245         if (TypeRep)
3246           PreferredType = Actions.ProduceConstructorSignatureHelp(
3247               TypeRep.get()->getCanonicalTypeInternal(),
3248               DeclaratorInfo.getEndLoc(), ConstructorArgs, ConstructorLParen,
3249               /*Braced=*/false);
3250         CalledSignatureHelp = true;
3251         return PreferredType;
3252       };
3253       if (ParseExpressionList(ConstructorArgs, [&] {
3254             PreferredType.enterFunctionArgument(Tok.getLocation(),
3255                                                 RunSignatureHelp);
3256           })) {
3257         if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
3258           RunSignatureHelp();
3259         SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3260         return ExprError();
3261       }
3262     }
3263     T.consumeClose();
3264     ConstructorRParen = T.getCloseLocation();
3265     if (ConstructorRParen.isInvalid()) {
3266       SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch);
3267       return ExprError();
3268     }
3269     Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
3270                                              ConstructorRParen,
3271                                              ConstructorArgs);
3272   } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) {
3273     Diag(Tok.getLocation(),
3274          diag::warn_cxx98_compat_generalized_initializer_lists);
3275     Initializer = ParseBraceInitializer();
3276   }
3277   if (Initializer.isInvalid())
3278     return Initializer;
3279 
3280   return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
3281                              PlacementArgs, PlacementRParen,
3282                              TypeIdParens, DeclaratorInfo, Initializer.get());
3283 }
3284 
3285 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
3286 /// passed to ParseDeclaratorInternal.
3287 ///
3288 ///        direct-new-declarator:
3289 ///                   '[' expression[opt] ']'
3290 ///                   direct-new-declarator '[' constant-expression ']'
3291 ///
3292 void Parser::ParseDirectNewDeclarator(Declarator &D) {
3293   // Parse the array dimensions.
3294   bool First = true;
3295   while (Tok.is(tok::l_square)) {
3296     // An array-size expression can't start with a lambda.
3297     if (CheckProhibitedCXX11Attribute())
3298       continue;
3299 
3300     BalancedDelimiterTracker T(*this, tok::l_square);
3301     T.consumeOpen();
3302 
3303     ExprResult Size =
3304         First ? (Tok.is(tok::r_square) ? ExprResult() : ParseExpression())
3305               : ParseConstantExpression();
3306     if (Size.isInvalid()) {
3307       // Recover
3308       SkipUntil(tok::r_square, StopAtSemi);
3309       return;
3310     }
3311     First = false;
3312 
3313     T.consumeClose();
3314 
3315     // Attributes here appertain to the array type. C++11 [expr.new]p5.
3316     ParsedAttributes Attrs(AttrFactory);
3317     MaybeParseCXX11Attributes(Attrs);
3318 
3319     D.AddTypeInfo(DeclaratorChunk::getArray(0,
3320                                             /*isStatic=*/false, /*isStar=*/false,
3321                                             Size.get(), T.getOpenLocation(),
3322                                             T.getCloseLocation()),
3323                   std::move(Attrs), T.getCloseLocation());
3324 
3325     if (T.getCloseLocation().isInvalid())
3326       return;
3327   }
3328 }
3329 
3330 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
3331 /// This ambiguity appears in the syntax of the C++ new operator.
3332 ///
3333 ///        new-expression:
3334 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
3335 ///                                     new-initializer[opt]
3336 ///
3337 ///        new-placement:
3338 ///                   '(' expression-list ')'
3339 ///
3340 bool Parser::ParseExpressionListOrTypeId(
3341                                    SmallVectorImpl<Expr*> &PlacementArgs,
3342                                          Declarator &D) {
3343   // The '(' was already consumed.
3344   if (isTypeIdInParens()) {
3345     ParseSpecifierQualifierList(D.getMutableDeclSpec());
3346     D.SetSourceRange(D.getDeclSpec().getSourceRange());
3347     ParseDeclarator(D);
3348     return D.isInvalidType();
3349   }
3350 
3351   // It's not a type, it has to be an expression list.
3352   return ParseExpressionList(PlacementArgs);
3353 }
3354 
3355 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
3356 /// to free memory allocated by new.
3357 ///
3358 /// This method is called to parse the 'delete' expression after the optional
3359 /// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
3360 /// and "Start" is its location.  Otherwise, "Start" is the location of the
3361 /// 'delete' token.
3362 ///
3363 ///        delete-expression:
3364 ///                   '::'[opt] 'delete' cast-expression
3365 ///                   '::'[opt] 'delete' '[' ']' cast-expression
3366 ExprResult
3367 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
3368   assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
3369   ConsumeToken(); // Consume 'delete'
3370 
3371   // Array delete?
3372   bool ArrayDelete = false;
3373   if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
3374     // C++11 [expr.delete]p1:
3375     //   Whenever the delete keyword is followed by empty square brackets, it
3376     //   shall be interpreted as [array delete].
3377     //   [Footnote: A lambda expression with a lambda-introducer that consists
3378     //              of empty square brackets can follow the delete keyword if
3379     //              the lambda expression is enclosed in parentheses.]
3380 
3381     const Token Next = GetLookAheadToken(2);
3382 
3383     // Basic lookahead to check if we have a lambda expression.
3384     if (Next.isOneOf(tok::l_brace, tok::less) ||
3385         (Next.is(tok::l_paren) &&
3386          (GetLookAheadToken(3).is(tok::r_paren) ||
3387           (GetLookAheadToken(3).is(tok::identifier) &&
3388            GetLookAheadToken(4).is(tok::identifier))))) {
3389       TentativeParsingAction TPA(*this);
3390       SourceLocation LSquareLoc = Tok.getLocation();
3391       SourceLocation RSquareLoc = NextToken().getLocation();
3392 
3393       // SkipUntil can't skip pairs of </*...*/>; don't emit a FixIt in this
3394       // case.
3395       SkipUntil({tok::l_brace, tok::less}, StopBeforeMatch);
3396       SourceLocation RBraceLoc;
3397       bool EmitFixIt = false;
3398       if (Tok.is(tok::l_brace)) {
3399         ConsumeBrace();
3400         SkipUntil(tok::r_brace, StopBeforeMatch);
3401         RBraceLoc = Tok.getLocation();
3402         EmitFixIt = true;
3403       }
3404 
3405       TPA.Revert();
3406 
3407       if (EmitFixIt)
3408         Diag(Start, diag::err_lambda_after_delete)
3409             << SourceRange(Start, RSquareLoc)
3410             << FixItHint::CreateInsertion(LSquareLoc, "(")
3411             << FixItHint::CreateInsertion(
3412                    Lexer::getLocForEndOfToken(
3413                        RBraceLoc, 0, Actions.getSourceManager(), getLangOpts()),
3414                    ")");
3415       else
3416         Diag(Start, diag::err_lambda_after_delete)
3417             << SourceRange(Start, RSquareLoc);
3418 
3419       // Warn that the non-capturing lambda isn't surrounded by parentheses
3420       // to disambiguate it from 'delete[]'.
3421       ExprResult Lambda = ParseLambdaExpression();
3422       if (Lambda.isInvalid())
3423         return ExprError();
3424 
3425       // Evaluate any postfix expressions used on the lambda.
3426       Lambda = ParsePostfixExpressionSuffix(Lambda);
3427       if (Lambda.isInvalid())
3428         return ExprError();
3429       return Actions.ActOnCXXDelete(Start, UseGlobal, /*ArrayForm=*/false,
3430                                     Lambda.get());
3431     }
3432 
3433     ArrayDelete = true;
3434     BalancedDelimiterTracker T(*this, tok::l_square);
3435 
3436     T.consumeOpen();
3437     T.consumeClose();
3438     if (T.getCloseLocation().isInvalid())
3439       return ExprError();
3440   }
3441 
3442   ExprResult Operand(ParseCastExpression(AnyCastExpr));
3443   if (Operand.isInvalid())
3444     return Operand;
3445 
3446   return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get());
3447 }
3448 
3449 /// ParseRequiresExpression - Parse a C++2a requires-expression.
3450 /// C++2a [expr.prim.req]p1
3451 ///     A requires-expression provides a concise way to express requirements on
3452 ///     template arguments. A requirement is one that can be checked by name
3453 ///     lookup (6.4) or by checking properties of types and expressions.
3454 ///
3455 ///     requires-expression:
3456 ///         'requires' requirement-parameter-list[opt] requirement-body
3457 ///
3458 ///     requirement-parameter-list:
3459 ///         '(' parameter-declaration-clause[opt] ')'
3460 ///
3461 ///     requirement-body:
3462 ///         '{' requirement-seq '}'
3463 ///
3464 ///     requirement-seq:
3465 ///         requirement
3466 ///         requirement-seq requirement
3467 ///
3468 ///     requirement:
3469 ///         simple-requirement
3470 ///         type-requirement
3471 ///         compound-requirement
3472 ///         nested-requirement
3473 ExprResult Parser::ParseRequiresExpression() {
3474   assert(Tok.is(tok::kw_requires) && "Expected 'requires' keyword");
3475   SourceLocation RequiresKWLoc = ConsumeToken(); // Consume 'requires'
3476 
3477   llvm::SmallVector<ParmVarDecl *, 2> LocalParameterDecls;
3478   if (Tok.is(tok::l_paren)) {
3479     // requirement parameter list is present.
3480     ParseScope LocalParametersScope(this, Scope::FunctionPrototypeScope |
3481                                     Scope::DeclScope);
3482     BalancedDelimiterTracker Parens(*this, tok::l_paren);
3483     Parens.consumeOpen();
3484     if (!Tok.is(tok::r_paren)) {
3485       ParsedAttributes FirstArgAttrs(getAttrFactory());
3486       SourceLocation EllipsisLoc;
3487       llvm::SmallVector<DeclaratorChunk::ParamInfo, 2> LocalParameters;
3488       ParseParameterDeclarationClause(DeclaratorContext::RequiresExpr,
3489                                       FirstArgAttrs, LocalParameters,
3490                                       EllipsisLoc);
3491       if (EllipsisLoc.isValid())
3492         Diag(EllipsisLoc, diag::err_requires_expr_parameter_list_ellipsis);
3493       for (auto &ParamInfo : LocalParameters)
3494         LocalParameterDecls.push_back(cast<ParmVarDecl>(ParamInfo.Param));
3495     }
3496     Parens.consumeClose();
3497   }
3498 
3499   BalancedDelimiterTracker Braces(*this, tok::l_brace);
3500   if (Braces.expectAndConsume())
3501     return ExprError();
3502 
3503   // Start of requirement list
3504   llvm::SmallVector<concepts::Requirement *, 2> Requirements;
3505 
3506   // C++2a [expr.prim.req]p2
3507   //   Expressions appearing within a requirement-body are unevaluated operands.
3508   EnterExpressionEvaluationContext Ctx(
3509       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3510 
3511   ParseScope BodyScope(this, Scope::DeclScope);
3512   // Create a separate diagnostic pool for RequiresExprBodyDecl.
3513   // Dependent diagnostics are attached to this Decl and non-depenedent
3514   // diagnostics are surfaced after this parse.
3515   ParsingDeclRAIIObject ParsingBodyDecl(*this, ParsingDeclRAIIObject::NoParent);
3516   RequiresExprBodyDecl *Body = Actions.ActOnStartRequiresExpr(
3517       RequiresKWLoc, LocalParameterDecls, getCurScope());
3518 
3519   if (Tok.is(tok::r_brace)) {
3520     // Grammar does not allow an empty body.
3521     // requirement-body:
3522     //   { requirement-seq }
3523     // requirement-seq:
3524     //   requirement
3525     //   requirement-seq requirement
3526     Diag(Tok, diag::err_empty_requires_expr);
3527     // Continue anyway and produce a requires expr with no requirements.
3528   } else {
3529     while (!Tok.is(tok::r_brace)) {
3530       switch (Tok.getKind()) {
3531       case tok::l_brace: {
3532         // Compound requirement
3533         // C++ [expr.prim.req.compound]
3534         //     compound-requirement:
3535         //         '{' expression '}' 'noexcept'[opt]
3536         //             return-type-requirement[opt] ';'
3537         //     return-type-requirement:
3538         //         trailing-return-type
3539         //         '->' cv-qualifier-seq[opt] constrained-parameter
3540         //             cv-qualifier-seq[opt] abstract-declarator[opt]
3541         BalancedDelimiterTracker ExprBraces(*this, tok::l_brace);
3542         ExprBraces.consumeOpen();
3543         ExprResult Expression =
3544             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3545         if (!Expression.isUsable()) {
3546           ExprBraces.skipToEnd();
3547           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3548           break;
3549         }
3550         if (ExprBraces.consumeClose())
3551           ExprBraces.skipToEnd();
3552 
3553         concepts::Requirement *Req = nullptr;
3554         SourceLocation NoexceptLoc;
3555         TryConsumeToken(tok::kw_noexcept, NoexceptLoc);
3556         if (Tok.is(tok::semi)) {
3557           Req = Actions.ActOnCompoundRequirement(Expression.get(), NoexceptLoc);
3558           if (Req)
3559             Requirements.push_back(Req);
3560           break;
3561         }
3562         if (!TryConsumeToken(tok::arrow))
3563           // User probably forgot the arrow, remind them and try to continue.
3564           Diag(Tok, diag::err_requires_expr_missing_arrow)
3565               << FixItHint::CreateInsertion(Tok.getLocation(), "->");
3566         // Try to parse a 'type-constraint'
3567         if (TryAnnotateTypeConstraint()) {
3568           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3569           break;
3570         }
3571         if (!isTypeConstraintAnnotation()) {
3572           Diag(Tok, diag::err_requires_expr_expected_type_constraint);
3573           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3574           break;
3575         }
3576         CXXScopeSpec SS;
3577         if (Tok.is(tok::annot_cxxscope)) {
3578           Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3579                                                        Tok.getAnnotationRange(),
3580                                                        SS);
3581           ConsumeAnnotationToken();
3582         }
3583 
3584         Req = Actions.ActOnCompoundRequirement(
3585             Expression.get(), NoexceptLoc, SS, takeTemplateIdAnnotation(Tok),
3586             TemplateParameterDepth);
3587         ConsumeAnnotationToken();
3588         if (Req)
3589           Requirements.push_back(Req);
3590         break;
3591       }
3592       default: {
3593         bool PossibleRequiresExprInSimpleRequirement = false;
3594         if (Tok.is(tok::kw_requires)) {
3595           auto IsNestedRequirement = [&] {
3596             RevertingTentativeParsingAction TPA(*this);
3597             ConsumeToken(); // 'requires'
3598             if (Tok.is(tok::l_brace))
3599               // This is a requires expression
3600               // requires (T t) {
3601               //   requires { t++; };
3602               //   ...      ^
3603               // }
3604               return false;
3605             if (Tok.is(tok::l_paren)) {
3606               // This might be the parameter list of a requires expression
3607               ConsumeParen();
3608               auto Res = TryParseParameterDeclarationClause();
3609               if (Res != TPResult::False) {
3610                 // Skip to the closing parenthesis
3611                 // FIXME: Don't traverse these tokens twice (here and in
3612                 //  TryParseParameterDeclarationClause).
3613                 unsigned Depth = 1;
3614                 while (Depth != 0) {
3615                   if (Tok.is(tok::l_paren))
3616                     Depth++;
3617                   else if (Tok.is(tok::r_paren))
3618                     Depth--;
3619                   ConsumeAnyToken();
3620                 }
3621                 // requires (T t) {
3622                 //   requires () ?
3623                 //   ...         ^
3624                 //   - OR -
3625                 //   requires (int x) ?
3626                 //   ...              ^
3627                 // }
3628                 if (Tok.is(tok::l_brace))
3629                   // requires (...) {
3630                   //                ^ - a requires expression as a
3631                   //                    simple-requirement.
3632                   return false;
3633               }
3634             }
3635             return true;
3636           };
3637           if (IsNestedRequirement()) {
3638             ConsumeToken();
3639             // Nested requirement
3640             // C++ [expr.prim.req.nested]
3641             //     nested-requirement:
3642             //         'requires' constraint-expression ';'
3643             ExprResult ConstraintExpr =
3644                 Actions.CorrectDelayedTyposInExpr(ParseConstraintExpression());
3645             if (ConstraintExpr.isInvalid() || !ConstraintExpr.isUsable()) {
3646               SkipUntil(tok::semi, tok::r_brace,
3647                         SkipUntilFlags::StopBeforeMatch);
3648               break;
3649             }
3650             if (auto *Req =
3651                     Actions.ActOnNestedRequirement(ConstraintExpr.get()))
3652               Requirements.push_back(Req);
3653             else {
3654               SkipUntil(tok::semi, tok::r_brace,
3655                         SkipUntilFlags::StopBeforeMatch);
3656               break;
3657             }
3658             break;
3659           } else
3660             PossibleRequiresExprInSimpleRequirement = true;
3661         } else if (Tok.is(tok::kw_typename)) {
3662           // This might be 'typename T::value_type;' (a type requirement) or
3663           // 'typename T::value_type{};' (a simple requirement).
3664           TentativeParsingAction TPA(*this);
3665 
3666           // We need to consume the typename to allow 'requires { typename a; }'
3667           SourceLocation TypenameKWLoc = ConsumeToken();
3668           if (TryAnnotateOptionalCXXScopeToken()) {
3669             TPA.Commit();
3670             SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3671             break;
3672           }
3673           CXXScopeSpec SS;
3674           if (Tok.is(tok::annot_cxxscope)) {
3675             Actions.RestoreNestedNameSpecifierAnnotation(
3676                 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3677             ConsumeAnnotationToken();
3678           }
3679 
3680           if (Tok.isOneOf(tok::identifier, tok::annot_template_id) &&
3681               !NextToken().isOneOf(tok::l_brace, tok::l_paren)) {
3682             TPA.Commit();
3683             SourceLocation NameLoc = Tok.getLocation();
3684             IdentifierInfo *II = nullptr;
3685             TemplateIdAnnotation *TemplateId = nullptr;
3686             if (Tok.is(tok::identifier)) {
3687               II = Tok.getIdentifierInfo();
3688               ConsumeToken();
3689             } else {
3690               TemplateId = takeTemplateIdAnnotation(Tok);
3691               ConsumeAnnotationToken();
3692               if (TemplateId->isInvalid())
3693                 break;
3694             }
3695 
3696             if (auto *Req = Actions.ActOnTypeRequirement(TypenameKWLoc, SS,
3697                                                          NameLoc, II,
3698                                                          TemplateId)) {
3699               Requirements.push_back(Req);
3700             }
3701             break;
3702           }
3703           TPA.Revert();
3704         }
3705         // Simple requirement
3706         // C++ [expr.prim.req.simple]
3707         //     simple-requirement:
3708         //         expression ';'
3709         SourceLocation StartLoc = Tok.getLocation();
3710         ExprResult Expression =
3711             Actions.CorrectDelayedTyposInExpr(ParseExpression());
3712         if (!Expression.isUsable()) {
3713           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3714           break;
3715         }
3716         if (!Expression.isInvalid() && PossibleRequiresExprInSimpleRequirement)
3717           Diag(StartLoc, diag::err_requires_expr_in_simple_requirement)
3718               << FixItHint::CreateInsertion(StartLoc, "requires");
3719         if (auto *Req = Actions.ActOnSimpleRequirement(Expression.get()))
3720           Requirements.push_back(Req);
3721         else {
3722           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3723           break;
3724         }
3725         // User may have tried to put some compound requirement stuff here
3726         if (Tok.is(tok::kw_noexcept)) {
3727           Diag(Tok, diag::err_requires_expr_simple_requirement_noexcept)
3728               << FixItHint::CreateInsertion(StartLoc, "{")
3729               << FixItHint::CreateInsertion(Tok.getLocation(), "}");
3730           SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3731           break;
3732         }
3733         break;
3734       }
3735       }
3736       if (ExpectAndConsumeSemi(diag::err_expected_semi_requirement)) {
3737         SkipUntil(tok::semi, tok::r_brace, SkipUntilFlags::StopBeforeMatch);
3738         TryConsumeToken(tok::semi);
3739         break;
3740       }
3741     }
3742     if (Requirements.empty()) {
3743       // Don't emit an empty requires expr here to avoid confusing the user with
3744       // other diagnostics quoting an empty requires expression they never
3745       // wrote.
3746       Braces.consumeClose();
3747       Actions.ActOnFinishRequiresExpr();
3748       return ExprError();
3749     }
3750   }
3751   Braces.consumeClose();
3752   Actions.ActOnFinishRequiresExpr();
3753   ParsingBodyDecl.complete(Body);
3754   return Actions.ActOnRequiresExpr(RequiresKWLoc, Body, LocalParameterDecls,
3755                                    Requirements, Braces.getCloseLocation());
3756 }
3757 
3758 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
3759   switch (kind) {
3760   default: llvm_unreachable("Not a known type trait");
3761 #define TYPE_TRAIT_1(Spelling, Name, Key) \
3762 case tok::kw_ ## Spelling: return UTT_ ## Name;
3763 #define TYPE_TRAIT_2(Spelling, Name, Key) \
3764 case tok::kw_ ## Spelling: return BTT_ ## Name;
3765 #include "clang/Basic/TokenKinds.def"
3766 #define TYPE_TRAIT_N(Spelling, Name, Key) \
3767   case tok::kw_ ## Spelling: return TT_ ## Name;
3768 #include "clang/Basic/TokenKinds.def"
3769   }
3770 }
3771 
3772 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
3773   switch (kind) {
3774   default:
3775     llvm_unreachable("Not a known array type trait");
3776 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key)                                  \
3777   case tok::kw_##Spelling:                                                     \
3778     return ATT_##Name;
3779 #include "clang/Basic/TokenKinds.def"
3780   }
3781 }
3782 
3783 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
3784   switch (kind) {
3785   default:
3786     llvm_unreachable("Not a known unary expression trait.");
3787 #define EXPRESSION_TRAIT(Spelling, Name, Key)                                  \
3788   case tok::kw_##Spelling:                                                     \
3789     return ET_##Name;
3790 #include "clang/Basic/TokenKinds.def"
3791   }
3792 }
3793 
3794 /// Parse the built-in type-trait pseudo-functions that allow
3795 /// implementation of the TR1/C++11 type traits templates.
3796 ///
3797 ///       primary-expression:
3798 ///          unary-type-trait '(' type-id ')'
3799 ///          binary-type-trait '(' type-id ',' type-id ')'
3800 ///          type-trait '(' type-id-seq ')'
3801 ///
3802 ///       type-id-seq:
3803 ///          type-id ...[opt] type-id-seq[opt]
3804 ///
3805 ExprResult Parser::ParseTypeTrait() {
3806   tok::TokenKind Kind = Tok.getKind();
3807 
3808   SourceLocation Loc = ConsumeToken();
3809 
3810   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3811   if (Parens.expectAndConsume())
3812     return ExprError();
3813 
3814   SmallVector<ParsedType, 2> Args;
3815   do {
3816     // Parse the next type.
3817     TypeResult Ty = ParseTypeName();
3818     if (Ty.isInvalid()) {
3819       Parens.skipToEnd();
3820       return ExprError();
3821     }
3822 
3823     // Parse the ellipsis, if present.
3824     if (Tok.is(tok::ellipsis)) {
3825       Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
3826       if (Ty.isInvalid()) {
3827         Parens.skipToEnd();
3828         return ExprError();
3829       }
3830     }
3831 
3832     // Add this type to the list of arguments.
3833     Args.push_back(Ty.get());
3834   } while (TryConsumeToken(tok::comma));
3835 
3836   if (Parens.consumeClose())
3837     return ExprError();
3838 
3839   SourceLocation EndLoc = Parens.getCloseLocation();
3840 
3841   return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc);
3842 }
3843 
3844 /// ParseArrayTypeTrait - Parse the built-in array type-trait
3845 /// pseudo-functions.
3846 ///
3847 ///       primary-expression:
3848 /// [Embarcadero]     '__array_rank' '(' type-id ')'
3849 /// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
3850 ///
3851 ExprResult Parser::ParseArrayTypeTrait() {
3852   ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
3853   SourceLocation Loc = ConsumeToken();
3854 
3855   BalancedDelimiterTracker T(*this, tok::l_paren);
3856   if (T.expectAndConsume())
3857     return ExprError();
3858 
3859   TypeResult Ty = ParseTypeName();
3860   if (Ty.isInvalid()) {
3861     SkipUntil(tok::comma, StopAtSemi);
3862     SkipUntil(tok::r_paren, StopAtSemi);
3863     return ExprError();
3864   }
3865 
3866   switch (ATT) {
3867   case ATT_ArrayRank: {
3868     T.consumeClose();
3869     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr,
3870                                        T.getCloseLocation());
3871   }
3872   case ATT_ArrayExtent: {
3873     if (ExpectAndConsume(tok::comma)) {
3874       SkipUntil(tok::r_paren, StopAtSemi);
3875       return ExprError();
3876     }
3877 
3878     ExprResult DimExpr = ParseExpression();
3879     T.consumeClose();
3880 
3881     return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
3882                                        T.getCloseLocation());
3883   }
3884   }
3885   llvm_unreachable("Invalid ArrayTypeTrait!");
3886 }
3887 
3888 /// ParseExpressionTrait - Parse built-in expression-trait
3889 /// pseudo-functions like __is_lvalue_expr( xxx ).
3890 ///
3891 ///       primary-expression:
3892 /// [Embarcadero]     expression-trait '(' expression ')'
3893 ///
3894 ExprResult Parser::ParseExpressionTrait() {
3895   ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
3896   SourceLocation Loc = ConsumeToken();
3897 
3898   BalancedDelimiterTracker T(*this, tok::l_paren);
3899   if (T.expectAndConsume())
3900     return ExprError();
3901 
3902   ExprResult Expr = ParseExpression();
3903 
3904   T.consumeClose();
3905 
3906   return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
3907                                       T.getCloseLocation());
3908 }
3909 
3910 
3911 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
3912 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
3913 /// based on the context past the parens.
3914 ExprResult
3915 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
3916                                          ParsedType &CastTy,
3917                                          BalancedDelimiterTracker &Tracker,
3918                                          ColonProtectionRAIIObject &ColonProt) {
3919   assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
3920   assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
3921   assert(isTypeIdInParens() && "Not a type-id!");
3922 
3923   ExprResult Result(true);
3924   CastTy = nullptr;
3925 
3926   // We need to disambiguate a very ugly part of the C++ syntax:
3927   //
3928   // (T())x;  - type-id
3929   // (T())*x; - type-id
3930   // (T())/x; - expression
3931   // (T());   - expression
3932   //
3933   // The bad news is that we cannot use the specialized tentative parser, since
3934   // it can only verify that the thing inside the parens can be parsed as
3935   // type-id, it is not useful for determining the context past the parens.
3936   //
3937   // The good news is that the parser can disambiguate this part without
3938   // making any unnecessary Action calls.
3939   //
3940   // It uses a scheme similar to parsing inline methods. The parenthesized
3941   // tokens are cached, the context that follows is determined (possibly by
3942   // parsing a cast-expression), and then we re-introduce the cached tokens
3943   // into the token stream and parse them appropriately.
3944 
3945   ParenParseOption ParseAs;
3946   CachedTokens Toks;
3947 
3948   // Store the tokens of the parentheses. We will parse them after we determine
3949   // the context that follows them.
3950   if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
3951     // We didn't find the ')' we expected.
3952     Tracker.consumeClose();
3953     return ExprError();
3954   }
3955 
3956   if (Tok.is(tok::l_brace)) {
3957     ParseAs = CompoundLiteral;
3958   } else {
3959     bool NotCastExpr;
3960     if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
3961       NotCastExpr = true;
3962     } else {
3963       // Try parsing the cast-expression that may follow.
3964       // If it is not a cast-expression, NotCastExpr will be true and no token
3965       // will be consumed.
3966       ColonProt.restore();
3967       Result = ParseCastExpression(AnyCastExpr,
3968                                    false/*isAddressofOperand*/,
3969                                    NotCastExpr,
3970                                    // type-id has priority.
3971                                    IsTypeCast);
3972     }
3973 
3974     // If we parsed a cast-expression, it's really a type-id, otherwise it's
3975     // an expression.
3976     ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
3977   }
3978 
3979   // Create a fake EOF to mark end of Toks buffer.
3980   Token AttrEnd;
3981   AttrEnd.startToken();
3982   AttrEnd.setKind(tok::eof);
3983   AttrEnd.setLocation(Tok.getLocation());
3984   AttrEnd.setEofData(Toks.data());
3985   Toks.push_back(AttrEnd);
3986 
3987   // The current token should go after the cached tokens.
3988   Toks.push_back(Tok);
3989   // Re-enter the stored parenthesized tokens into the token stream, so we may
3990   // parse them now.
3991   PP.EnterTokenStream(Toks, /*DisableMacroExpansion*/ true,
3992                       /*IsReinject*/ true);
3993   // Drop the current token and bring the first cached one. It's the same token
3994   // as when we entered this function.
3995   ConsumeAnyToken();
3996 
3997   if (ParseAs >= CompoundLiteral) {
3998     // Parse the type declarator.
3999     DeclSpec DS(AttrFactory);
4000     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4001                               DeclaratorContext::TypeName);
4002     {
4003       ColonProtectionRAIIObject InnerColonProtection(*this);
4004       ParseSpecifierQualifierList(DS);
4005       ParseDeclarator(DeclaratorInfo);
4006     }
4007 
4008     // Match the ')'.
4009     Tracker.consumeClose();
4010     ColonProt.restore();
4011 
4012     // Consume EOF marker for Toks buffer.
4013     assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4014     ConsumeAnyToken();
4015 
4016     if (ParseAs == CompoundLiteral) {
4017       ExprType = CompoundLiteral;
4018       if (DeclaratorInfo.isInvalidType())
4019         return ExprError();
4020 
4021       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
4022       return ParseCompoundLiteralExpression(Ty.get(),
4023                                             Tracker.getOpenLocation(),
4024                                             Tracker.getCloseLocation());
4025     }
4026 
4027     // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
4028     assert(ParseAs == CastExpr);
4029 
4030     if (DeclaratorInfo.isInvalidType())
4031       return ExprError();
4032 
4033     // Result is what ParseCastExpression returned earlier.
4034     if (!Result.isInvalid())
4035       Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
4036                                     DeclaratorInfo, CastTy,
4037                                     Tracker.getCloseLocation(), Result.get());
4038     return Result;
4039   }
4040 
4041   // Not a compound literal, and not followed by a cast-expression.
4042   assert(ParseAs == SimpleExpr);
4043 
4044   ExprType = SimpleExpr;
4045   Result = ParseExpression();
4046   if (!Result.isInvalid() && Tok.is(tok::r_paren))
4047     Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
4048                                     Tok.getLocation(), Result.get());
4049 
4050   // Match the ')'.
4051   if (Result.isInvalid()) {
4052     while (Tok.isNot(tok::eof))
4053       ConsumeAnyToken();
4054     assert(Tok.getEofData() == AttrEnd.getEofData());
4055     ConsumeAnyToken();
4056     return ExprError();
4057   }
4058 
4059   Tracker.consumeClose();
4060   // Consume EOF marker for Toks buffer.
4061   assert(Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData());
4062   ConsumeAnyToken();
4063   return Result;
4064 }
4065 
4066 /// Parse a __builtin_bit_cast(T, E).
4067 ExprResult Parser::ParseBuiltinBitCast() {
4068   SourceLocation KWLoc = ConsumeToken();
4069 
4070   BalancedDelimiterTracker T(*this, tok::l_paren);
4071   if (T.expectAndConsume(diag::err_expected_lparen_after, "__builtin_bit_cast"))
4072     return ExprError();
4073 
4074   // Parse the common declaration-specifiers piece.
4075   DeclSpec DS(AttrFactory);
4076   ParseSpecifierQualifierList(DS);
4077 
4078   // Parse the abstract-declarator, if present.
4079   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
4080                             DeclaratorContext::TypeName);
4081   ParseDeclarator(DeclaratorInfo);
4082 
4083   if (ExpectAndConsume(tok::comma)) {
4084     Diag(Tok.getLocation(), diag::err_expected) << tok::comma;
4085     SkipUntil(tok::r_paren, StopAtSemi);
4086     return ExprError();
4087   }
4088 
4089   ExprResult Operand = ParseExpression();
4090 
4091   if (T.consumeClose())
4092     return ExprError();
4093 
4094   if (Operand.isInvalid() || DeclaratorInfo.isInvalidType())
4095     return ExprError();
4096 
4097   return Actions.ActOnBuiltinBitCastExpr(KWLoc, DeclaratorInfo, Operand,
4098                                          T.getCloseLocation());
4099 }
4100