1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/Parse/Parser.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "clang/Parse/RAIIObjectsForParser.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/TypoCorrection.h" 32 #include "llvm/ADT/SmallVector.h" 33 using namespace clang; 34 35 /// Simple precedence-based parser for binary/ternary operators. 36 /// 37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 38 /// production. C99 specifies that the LHS of an assignment operator should be 39 /// parsed as a unary-expression, but consistency dictates that it be a 40 /// conditional-expession. In practice, the important thing here is that the 41 /// LHS of an assignment has to be an l-value, which productions between 42 /// unary-expression and conditional-expression don't produce. Because we want 43 /// consistency, we parse the LHS as a conditional-expression, then check for 44 /// l-value-ness in semantic analysis stages. 45 /// 46 /// \verbatim 47 /// pm-expression: [C++ 5.5] 48 /// cast-expression 49 /// pm-expression '.*' cast-expression 50 /// pm-expression '->*' cast-expression 51 /// 52 /// multiplicative-expression: [C99 6.5.5] 53 /// Note: in C++, apply pm-expression instead of cast-expression 54 /// cast-expression 55 /// multiplicative-expression '*' cast-expression 56 /// multiplicative-expression '/' cast-expression 57 /// multiplicative-expression '%' cast-expression 58 /// 59 /// additive-expression: [C99 6.5.6] 60 /// multiplicative-expression 61 /// additive-expression '+' multiplicative-expression 62 /// additive-expression '-' multiplicative-expression 63 /// 64 /// shift-expression: [C99 6.5.7] 65 /// additive-expression 66 /// shift-expression '<<' additive-expression 67 /// shift-expression '>>' additive-expression 68 /// 69 /// compare-expression: [C++20 expr.spaceship] 70 /// shift-expression 71 /// compare-expression '<=>' shift-expression 72 /// 73 /// relational-expression: [C99 6.5.8] 74 /// compare-expression 75 /// relational-expression '<' compare-expression 76 /// relational-expression '>' compare-expression 77 /// relational-expression '<=' compare-expression 78 /// relational-expression '>=' compare-expression 79 /// 80 /// equality-expression: [C99 6.5.9] 81 /// relational-expression 82 /// equality-expression '==' relational-expression 83 /// equality-expression '!=' relational-expression 84 /// 85 /// AND-expression: [C99 6.5.10] 86 /// equality-expression 87 /// AND-expression '&' equality-expression 88 /// 89 /// exclusive-OR-expression: [C99 6.5.11] 90 /// AND-expression 91 /// exclusive-OR-expression '^' AND-expression 92 /// 93 /// inclusive-OR-expression: [C99 6.5.12] 94 /// exclusive-OR-expression 95 /// inclusive-OR-expression '|' exclusive-OR-expression 96 /// 97 /// logical-AND-expression: [C99 6.5.13] 98 /// inclusive-OR-expression 99 /// logical-AND-expression '&&' inclusive-OR-expression 100 /// 101 /// logical-OR-expression: [C99 6.5.14] 102 /// logical-AND-expression 103 /// logical-OR-expression '||' logical-AND-expression 104 /// 105 /// conditional-expression: [C99 6.5.15] 106 /// logical-OR-expression 107 /// logical-OR-expression '?' expression ':' conditional-expression 108 /// [GNU] logical-OR-expression '?' ':' conditional-expression 109 /// [C++] the third operand is an assignment-expression 110 /// 111 /// assignment-expression: [C99 6.5.16] 112 /// conditional-expression 113 /// unary-expression assignment-operator assignment-expression 114 /// [C++] throw-expression [C++ 15] 115 /// 116 /// assignment-operator: one of 117 /// = *= /= %= += -= <<= >>= &= ^= |= 118 /// 119 /// expression: [C99 6.5.17] 120 /// assignment-expression ...[opt] 121 /// expression ',' assignment-expression ...[opt] 122 /// \endverbatim 123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 124 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 125 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 126 } 127 128 /// This routine is called when the '@' is seen and consumed. 129 /// Current token is an Identifier and is not a 'try'. This 130 /// routine is necessary to disambiguate \@try-statement from, 131 /// for example, \@encode-expression. 132 /// 133 ExprResult 134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 135 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 136 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 137 } 138 139 /// This routine is called when a leading '__extension__' is seen and 140 /// consumed. This is necessary because the token gets consumed in the 141 /// process of disambiguating between an expression and a declaration. 142 ExprResult 143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 144 ExprResult LHS(true); 145 { 146 // Silence extension warnings in the sub-expression 147 ExtensionRAIIObject O(Diags); 148 149 LHS = ParseCastExpression(AnyCastExpr); 150 } 151 152 if (!LHS.isInvalid()) 153 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 154 LHS.get()); 155 156 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 157 } 158 159 /// Parse an expr that doesn't include (top-level) commas. 160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 161 if (Tok.is(tok::code_completion)) { 162 Actions.CodeCompleteExpression(getCurScope(), 163 PreferredType.get(Tok.getLocation())); 164 cutOffParsing(); 165 return ExprError(); 166 } 167 168 if (Tok.is(tok::kw_throw)) 169 return ParseThrowExpression(); 170 if (Tok.is(tok::kw_co_yield)) 171 return ParseCoyieldExpression(); 172 173 ExprResult LHS = ParseCastExpression(AnyCastExpr, 174 /*isAddressOfOperand=*/false, 175 isTypeCast); 176 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 177 } 178 179 /// Parse an assignment expression where part of an Objective-C message 180 /// send has already been parsed. 181 /// 182 /// In this case \p LBracLoc indicates the location of the '[' of the message 183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 184 /// the receiver of the message. 185 /// 186 /// Since this handles full assignment-expression's, it handles postfix 187 /// expressions and other binary operators for these expressions as well. 188 ExprResult 189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 190 SourceLocation SuperLoc, 191 ParsedType ReceiverType, 192 Expr *ReceiverExpr) { 193 ExprResult R 194 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 195 ReceiverType, ReceiverExpr); 196 R = ParsePostfixExpressionSuffix(R); 197 return ParseRHSOfBinaryExpression(R, prec::Assignment); 198 } 199 200 ExprResult 201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 202 assert(Actions.ExprEvalContexts.back().Context == 203 Sema::ExpressionEvaluationContext::ConstantEvaluated && 204 "Call this function only if your ExpressionEvaluationContext is " 205 "already ConstantEvaluated"); 206 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 207 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 208 return Actions.ActOnConstantExpression(Res); 209 } 210 211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { 212 // C++03 [basic.def.odr]p2: 213 // An expression is potentially evaluated unless it appears where an 214 // integral constant expression is required (see 5.19) [...]. 215 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 216 EnterExpressionEvaluationContext ConstantEvaluated( 217 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 218 return ParseConstantExpressionInExprEvalContext(isTypeCast); 219 } 220 221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 222 EnterExpressionEvaluationContext ConstantEvaluated( 223 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 224 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 225 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 226 return Actions.ActOnCaseExpr(CaseLoc, Res); 227 } 228 229 /// Parse a constraint-expression. 230 /// 231 /// \verbatim 232 /// constraint-expression: C++2a[temp.constr.decl]p1 233 /// logical-or-expression 234 /// \endverbatim 235 ExprResult Parser::ParseConstraintExpression() { 236 EnterExpressionEvaluationContext ConstantEvaluated( 237 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 238 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 239 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 240 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 241 Actions.CorrectDelayedTyposInExpr(Res); 242 return ExprError(); 243 } 244 return Res; 245 } 246 247 /// \brief Parse a constraint-logical-and-expression. 248 /// 249 /// \verbatim 250 /// C++2a[temp.constr.decl]p1 251 /// constraint-logical-and-expression: 252 /// primary-expression 253 /// constraint-logical-and-expression '&&' primary-expression 254 /// 255 /// \endverbatim 256 ExprResult 257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 258 EnterExpressionEvaluationContext ConstantEvaluated( 259 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 260 bool NotPrimaryExpression = false; 261 auto ParsePrimary = [&] () { 262 ExprResult E = ParseCastExpression(PrimaryExprOnly, 263 /*isAddressOfOperand=*/false, 264 /*isTypeCast=*/NotTypeCast, 265 /*isVectorLiteral=*/false, 266 &NotPrimaryExpression); 267 if (E.isInvalid()) 268 return ExprError(); 269 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 270 E = ParsePostfixExpressionSuffix(E); 271 // Use InclusiveOr, the precedence just after '&&' to not parse the 272 // next arguments to the logical and. 273 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 274 if (!E.isInvalid()) 275 Diag(E.get()->getExprLoc(), 276 Note 277 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 278 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 279 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 280 << FixItHint::CreateInsertion( 281 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 282 << E.get()->getSourceRange(); 283 return E; 284 }; 285 286 if (NotPrimaryExpression || 287 // Check if the following tokens must be a part of a non-primary 288 // expression 289 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 290 /*CPlusPlus11=*/true) > prec::LogicalAnd || 291 // Postfix operators other than '(' (which will be checked for in 292 // CheckConstraintExpression). 293 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 294 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 295 E = RecoverFromNonPrimary(E, /*Note=*/false); 296 if (E.isInvalid()) 297 return ExprError(); 298 NotPrimaryExpression = false; 299 } 300 bool PossibleNonPrimary; 301 bool IsConstraintExpr = 302 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 303 IsTrailingRequiresClause); 304 if (!IsConstraintExpr || PossibleNonPrimary) { 305 // Atomic constraint might be an unparenthesized non-primary expression 306 // (such as a binary operator), in which case we might get here (e.g. in 307 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 308 // the rest of the addition expression). Try to parse the rest of it here. 309 if (PossibleNonPrimary) 310 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 311 Actions.CorrectDelayedTyposInExpr(E); 312 return ExprError(); 313 } 314 return E; 315 }; 316 ExprResult LHS = ParsePrimary(); 317 if (LHS.isInvalid()) 318 return ExprError(); 319 while (Tok.is(tok::ampamp)) { 320 SourceLocation LogicalAndLoc = ConsumeToken(); 321 ExprResult RHS = ParsePrimary(); 322 if (RHS.isInvalid()) { 323 Actions.CorrectDelayedTyposInExpr(LHS); 324 return ExprError(); 325 } 326 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 327 tok::ampamp, LHS.get(), RHS.get()); 328 if (!Op.isUsable()) { 329 Actions.CorrectDelayedTyposInExpr(RHS); 330 Actions.CorrectDelayedTyposInExpr(LHS); 331 return ExprError(); 332 } 333 LHS = Op; 334 } 335 return LHS; 336 } 337 338 /// \brief Parse a constraint-logical-or-expression. 339 /// 340 /// \verbatim 341 /// C++2a[temp.constr.decl]p1 342 /// constraint-logical-or-expression: 343 /// constraint-logical-and-expression 344 /// constraint-logical-or-expression '||' 345 /// constraint-logical-and-expression 346 /// 347 /// \endverbatim 348 ExprResult 349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 350 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 351 if (!LHS.isUsable()) 352 return ExprError(); 353 while (Tok.is(tok::pipepipe)) { 354 SourceLocation LogicalOrLoc = ConsumeToken(); 355 ExprResult RHS = 356 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 357 if (!RHS.isUsable()) { 358 Actions.CorrectDelayedTyposInExpr(LHS); 359 return ExprError(); 360 } 361 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 362 tok::pipepipe, LHS.get(), RHS.get()); 363 if (!Op.isUsable()) { 364 Actions.CorrectDelayedTyposInExpr(RHS); 365 Actions.CorrectDelayedTyposInExpr(LHS); 366 return ExprError(); 367 } 368 LHS = Op; 369 } 370 return LHS; 371 } 372 373 bool Parser::isNotExpressionStart() { 374 tok::TokenKind K = Tok.getKind(); 375 if (K == tok::l_brace || K == tok::r_brace || 376 K == tok::kw_for || K == tok::kw_while || 377 K == tok::kw_if || K == tok::kw_else || 378 K == tok::kw_goto || K == tok::kw_try) 379 return true; 380 // If this is a decl-specifier, we can't be at the start of an expression. 381 return isKnownToBeDeclarationSpecifier(); 382 } 383 384 bool Parser::isFoldOperator(prec::Level Level) const { 385 return Level > prec::Unknown && Level != prec::Conditional && 386 Level != prec::Spaceship; 387 } 388 389 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 390 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 391 } 392 393 /// Parse a binary expression that starts with \p LHS and has a 394 /// precedence of at least \p MinPrec. 395 ExprResult 396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 397 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 398 GreaterThanIsOperator, 399 getLangOpts().CPlusPlus11); 400 SourceLocation ColonLoc; 401 402 auto SavedType = PreferredType; 403 while (1) { 404 // Every iteration may rely on a preferred type for the whole expression. 405 PreferredType = SavedType; 406 // If this token has a lower precedence than we are allowed to parse (e.g. 407 // because we are called recursively, or because the token is not a binop), 408 // then we are done! 409 if (NextTokPrec < MinPrec) 410 return LHS; 411 412 // Consume the operator, saving the operator token for error reporting. 413 Token OpToken = Tok; 414 ConsumeToken(); 415 416 if (OpToken.is(tok::caretcaret)) { 417 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 418 } 419 420 // If we're potentially in a template-id, we may now be able to determine 421 // whether we're actually in one or not. 422 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 423 tok::greatergreatergreater) && 424 checkPotentialAngleBracketDelimiter(OpToken)) 425 return ExprError(); 426 427 // Bail out when encountering a comma followed by a token which can't 428 // possibly be the start of an expression. For instance: 429 // int f() { return 1, } 430 // We can't do this before consuming the comma, because 431 // isNotExpressionStart() looks at the token stream. 432 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 433 PP.EnterToken(Tok, /*IsReinject*/true); 434 Tok = OpToken; 435 return LHS; 436 } 437 438 // If the next token is an ellipsis, then this is a fold-expression. Leave 439 // it alone so we can handle it in the paren expression. 440 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 441 // FIXME: We can't check this via lookahead before we consume the token 442 // because that tickles a lexer bug. 443 PP.EnterToken(Tok, /*IsReinject*/true); 444 Tok = OpToken; 445 return LHS; 446 } 447 448 // In Objective-C++, alternative operator tokens can be used as keyword args 449 // in message expressions. Unconsume the token so that it can reinterpreted 450 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 451 // [foo meth:0 and:0]; 452 // [foo not_eq]; 453 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 454 Tok.isOneOf(tok::colon, tok::r_square) && 455 OpToken.getIdentifierInfo() != nullptr) { 456 PP.EnterToken(Tok, /*IsReinject*/true); 457 Tok = OpToken; 458 return LHS; 459 } 460 461 // Special case handling for the ternary operator. 462 ExprResult TernaryMiddle(true); 463 if (NextTokPrec == prec::Conditional) { 464 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 465 // Parse a braced-init-list here for error recovery purposes. 466 SourceLocation BraceLoc = Tok.getLocation(); 467 TernaryMiddle = ParseBraceInitializer(); 468 if (!TernaryMiddle.isInvalid()) { 469 Diag(BraceLoc, diag::err_init_list_bin_op) 470 << /*RHS*/ 1 << PP.getSpelling(OpToken) 471 << Actions.getExprRange(TernaryMiddle.get()); 472 TernaryMiddle = ExprError(); 473 } 474 } else if (Tok.isNot(tok::colon)) { 475 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 476 ColonProtectionRAIIObject X(*this); 477 478 // Handle this production specially: 479 // logical-OR-expression '?' expression ':' conditional-expression 480 // In particular, the RHS of the '?' is 'expression', not 481 // 'logical-OR-expression' as we might expect. 482 TernaryMiddle = ParseExpression(); 483 } else { 484 // Special case handling of "X ? Y : Z" where Y is empty: 485 // logical-OR-expression '?' ':' conditional-expression [GNU] 486 TernaryMiddle = nullptr; 487 Diag(Tok, diag::ext_gnu_conditional_expr); 488 } 489 490 if (TernaryMiddle.isInvalid()) { 491 Actions.CorrectDelayedTyposInExpr(LHS); 492 LHS = ExprError(); 493 TernaryMiddle = nullptr; 494 } 495 496 if (!TryConsumeToken(tok::colon, ColonLoc)) { 497 // Otherwise, we're missing a ':'. Assume that this was a typo that 498 // the user forgot. If we're not in a macro expansion, we can suggest 499 // a fixit hint. If there were two spaces before the current token, 500 // suggest inserting the colon in between them, otherwise insert ": ". 501 SourceLocation FILoc = Tok.getLocation(); 502 const char *FIText = ": "; 503 const SourceManager &SM = PP.getSourceManager(); 504 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 505 assert(FILoc.isFileID()); 506 bool IsInvalid = false; 507 const char *SourcePtr = 508 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 509 if (!IsInvalid && *SourcePtr == ' ') { 510 SourcePtr = 511 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 512 if (!IsInvalid && *SourcePtr == ' ') { 513 FILoc = FILoc.getLocWithOffset(-1); 514 FIText = ":"; 515 } 516 } 517 } 518 519 Diag(Tok, diag::err_expected) 520 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 521 Diag(OpToken, diag::note_matching) << tok::question; 522 ColonLoc = Tok.getLocation(); 523 } 524 } 525 526 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 527 OpToken.getKind()); 528 // Parse another leaf here for the RHS of the operator. 529 // ParseCastExpression works here because all RHS expressions in C have it 530 // as a prefix, at least. However, in C++, an assignment-expression could 531 // be a throw-expression, which is not a valid cast-expression. 532 // Therefore we need some special-casing here. 533 // Also note that the third operand of the conditional operator is 534 // an assignment-expression in C++, and in C++11, we can have a 535 // braced-init-list on the RHS of an assignment. For better diagnostics, 536 // parse as if we were allowed braced-init-lists everywhere, and check that 537 // they only appear on the RHS of assignments later. 538 ExprResult RHS; 539 bool RHSIsInitList = false; 540 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 541 RHS = ParseBraceInitializer(); 542 RHSIsInitList = true; 543 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 544 RHS = ParseAssignmentExpression(); 545 else 546 RHS = ParseCastExpression(AnyCastExpr); 547 548 if (RHS.isInvalid()) { 549 // FIXME: Errors generated by the delayed typo correction should be 550 // printed before errors from parsing the RHS, not after. 551 Actions.CorrectDelayedTyposInExpr(LHS); 552 if (TernaryMiddle.isUsable()) 553 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 554 LHS = ExprError(); 555 } 556 557 // Remember the precedence of this operator and get the precedence of the 558 // operator immediately to the right of the RHS. 559 prec::Level ThisPrec = NextTokPrec; 560 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 561 getLangOpts().CPlusPlus11); 562 563 // Assignment and conditional expressions are right-associative. 564 bool isRightAssoc = ThisPrec == prec::Conditional || 565 ThisPrec == prec::Assignment; 566 567 // Get the precedence of the operator to the right of the RHS. If it binds 568 // more tightly with RHS than we do, evaluate it completely first. 569 if (ThisPrec < NextTokPrec || 570 (ThisPrec == NextTokPrec && isRightAssoc)) { 571 if (!RHS.isInvalid() && RHSIsInitList) { 572 Diag(Tok, diag::err_init_list_bin_op) 573 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 574 RHS = ExprError(); 575 } 576 // If this is left-associative, only parse things on the RHS that bind 577 // more tightly than the current operator. If it is left-associative, it 578 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 579 // A=(B=(C=D)), where each paren is a level of recursion here. 580 // The function takes ownership of the RHS. 581 RHS = ParseRHSOfBinaryExpression(RHS, 582 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 583 RHSIsInitList = false; 584 585 if (RHS.isInvalid()) { 586 // FIXME: Errors generated by the delayed typo correction should be 587 // printed before errors from ParseRHSOfBinaryExpression, not after. 588 Actions.CorrectDelayedTyposInExpr(LHS); 589 if (TernaryMiddle.isUsable()) 590 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 591 LHS = ExprError(); 592 } 593 594 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 595 getLangOpts().CPlusPlus11); 596 } 597 598 if (!RHS.isInvalid() && RHSIsInitList) { 599 if (ThisPrec == prec::Assignment) { 600 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 601 << Actions.getExprRange(RHS.get()); 602 } else if (ColonLoc.isValid()) { 603 Diag(ColonLoc, diag::err_init_list_bin_op) 604 << /*RHS*/1 << ":" 605 << Actions.getExprRange(RHS.get()); 606 LHS = ExprError(); 607 } else { 608 Diag(OpToken, diag::err_init_list_bin_op) 609 << /*RHS*/1 << PP.getSpelling(OpToken) 610 << Actions.getExprRange(RHS.get()); 611 LHS = ExprError(); 612 } 613 } 614 615 ExprResult OrigLHS = LHS; 616 if (!LHS.isInvalid()) { 617 // Combine the LHS and RHS into the LHS (e.g. build AST). 618 if (TernaryMiddle.isInvalid()) { 619 // If we're using '>>' as an operator within a template 620 // argument list (in C++98), suggest the addition of 621 // parentheses so that the code remains well-formed in C++0x. 622 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 623 SuggestParentheses(OpToken.getLocation(), 624 diag::warn_cxx11_right_shift_in_template_arg, 625 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 626 Actions.getExprRange(RHS.get()).getEnd())); 627 628 ExprResult BinOp = 629 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 630 OpToken.getKind(), LHS.get(), RHS.get()); 631 if (BinOp.isInvalid()) 632 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 633 RHS.get()->getEndLoc(), 634 {LHS.get(), RHS.get()}); 635 636 LHS = BinOp; 637 } else { 638 ExprResult CondOp = Actions.ActOnConditionalOp( 639 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 640 RHS.get()); 641 if (CondOp.isInvalid()) { 642 std::vector<clang::Expr *> Args; 643 // TernaryMiddle can be null for the GNU conditional expr extension. 644 if (TernaryMiddle.get()) 645 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 646 else 647 Args = {LHS.get(), RHS.get()}; 648 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 649 RHS.get()->getEndLoc(), Args); 650 } 651 652 LHS = CondOp; 653 } 654 // In this case, ActOnBinOp or ActOnConditionalOp performed the 655 // CorrectDelayedTyposInExpr check. 656 if (!getLangOpts().CPlusPlus) 657 continue; 658 } 659 660 // Ensure potential typos aren't left undiagnosed. 661 if (LHS.isInvalid()) { 662 Actions.CorrectDelayedTyposInExpr(OrigLHS); 663 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 664 Actions.CorrectDelayedTyposInExpr(RHS); 665 } 666 } 667 } 668 669 /// Parse a cast-expression, unary-expression or primary-expression, based 670 /// on \p ExprType. 671 /// 672 /// \p isAddressOfOperand exists because an id-expression that is the 673 /// operand of address-of gets special treatment due to member pointers. 674 /// 675 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 676 bool isAddressOfOperand, 677 TypeCastState isTypeCast, 678 bool isVectorLiteral, 679 bool *NotPrimaryExpression) { 680 bool NotCastExpr; 681 ExprResult Res = ParseCastExpression(ParseKind, 682 isAddressOfOperand, 683 NotCastExpr, 684 isTypeCast, 685 isVectorLiteral, 686 NotPrimaryExpression); 687 if (NotCastExpr) 688 Diag(Tok, diag::err_expected_expression); 689 return Res; 690 } 691 692 namespace { 693 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 694 public: 695 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 696 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 697 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 698 } 699 700 bool ValidateCandidate(const TypoCorrection &candidate) override { 701 NamedDecl *ND = candidate.getCorrectionDecl(); 702 if (!ND) 703 return candidate.isKeyword(); 704 705 if (isa<TypeDecl>(ND)) 706 return WantTypeSpecifiers; 707 708 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 709 return false; 710 711 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 712 return true; 713 714 for (auto *C : candidate) { 715 NamedDecl *ND = C->getUnderlyingDecl(); 716 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 717 return true; 718 } 719 return false; 720 } 721 722 std::unique_ptr<CorrectionCandidateCallback> clone() override { 723 return std::make_unique<CastExpressionIdValidator>(*this); 724 } 725 726 private: 727 Token NextToken; 728 bool AllowNonTypes; 729 }; 730 } 731 732 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 733 /// a unary-expression. 734 /// 735 /// \p isAddressOfOperand exists because an id-expression that is the operand 736 /// of address-of gets special treatment due to member pointers. NotCastExpr 737 /// is set to true if the token is not the start of a cast-expression, and no 738 /// diagnostic is emitted in this case and no tokens are consumed. 739 /// 740 /// \verbatim 741 /// cast-expression: [C99 6.5.4] 742 /// unary-expression 743 /// '(' type-name ')' cast-expression 744 /// 745 /// unary-expression: [C99 6.5.3] 746 /// postfix-expression 747 /// '++' unary-expression 748 /// '--' unary-expression 749 /// [Coro] 'co_await' cast-expression 750 /// unary-operator cast-expression 751 /// 'sizeof' unary-expression 752 /// 'sizeof' '(' type-name ')' 753 /// [C++11] 'sizeof' '...' '(' identifier ')' 754 /// [GNU] '__alignof' unary-expression 755 /// [GNU] '__alignof' '(' type-name ')' 756 /// [C11] '_Alignof' '(' type-name ')' 757 /// [C++11] 'alignof' '(' type-id ')' 758 /// [GNU] '&&' identifier 759 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 760 /// [C++] new-expression 761 /// [C++] delete-expression 762 /// 763 /// unary-operator: one of 764 /// '&' '*' '+' '-' '~' '!' 765 /// [GNU] '__extension__' '__real' '__imag' 766 /// 767 /// primary-expression: [C99 6.5.1] 768 /// [C99] identifier 769 /// [C++] id-expression 770 /// constant 771 /// string-literal 772 /// [C++] boolean-literal [C++ 2.13.5] 773 /// [C++11] 'nullptr' [C++11 2.14.7] 774 /// [C++11] user-defined-literal 775 /// '(' expression ')' 776 /// [C11] generic-selection 777 /// [C++2a] requires-expression 778 /// '__func__' [C99 6.4.2.2] 779 /// [GNU] '__FUNCTION__' 780 /// [MS] '__FUNCDNAME__' 781 /// [MS] 'L__FUNCTION__' 782 /// [MS] '__FUNCSIG__' 783 /// [MS] 'L__FUNCSIG__' 784 /// [GNU] '__PRETTY_FUNCTION__' 785 /// [GNU] '(' compound-statement ')' 786 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 787 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 788 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 789 /// assign-expr ')' 790 /// [GNU] '__builtin_FILE' '(' ')' 791 /// [GNU] '__builtin_FUNCTION' '(' ')' 792 /// [GNU] '__builtin_LINE' '(' ')' 793 /// [CLANG] '__builtin_COLUMN' '(' ')' 794 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 795 /// [GNU] '__null' 796 /// [OBJC] '[' objc-message-expr ']' 797 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 798 /// [OBJC] '\@protocol' '(' identifier ')' 799 /// [OBJC] '\@encode' '(' type-name ')' 800 /// [OBJC] objc-string-literal 801 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 802 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 803 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 804 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 805 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 806 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 807 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 808 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 809 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 810 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 811 /// [C++] 'this' [C++ 9.3.2] 812 /// [G++] unary-type-trait '(' type-id ')' 813 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 814 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 815 /// [clang] '^' block-literal 816 /// 817 /// constant: [C99 6.4.4] 818 /// integer-constant 819 /// floating-constant 820 /// enumeration-constant -> identifier 821 /// character-constant 822 /// 823 /// id-expression: [C++ 5.1] 824 /// unqualified-id 825 /// qualified-id 826 /// 827 /// unqualified-id: [C++ 5.1] 828 /// identifier 829 /// operator-function-id 830 /// conversion-function-id 831 /// '~' class-name 832 /// template-id 833 /// 834 /// new-expression: [C++ 5.3.4] 835 /// '::'[opt] 'new' new-placement[opt] new-type-id 836 /// new-initializer[opt] 837 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 838 /// new-initializer[opt] 839 /// 840 /// delete-expression: [C++ 5.3.5] 841 /// '::'[opt] 'delete' cast-expression 842 /// '::'[opt] 'delete' '[' ']' cast-expression 843 /// 844 /// [GNU/Embarcadero] unary-type-trait: 845 /// '__is_arithmetic' 846 /// '__is_floating_point' 847 /// '__is_integral' 848 /// '__is_lvalue_expr' 849 /// '__is_rvalue_expr' 850 /// '__is_complete_type' 851 /// '__is_void' 852 /// '__is_array' 853 /// '__is_function' 854 /// '__is_reference' 855 /// '__is_lvalue_reference' 856 /// '__is_rvalue_reference' 857 /// '__is_fundamental' 858 /// '__is_object' 859 /// '__is_scalar' 860 /// '__is_compound' 861 /// '__is_pointer' 862 /// '__is_member_object_pointer' 863 /// '__is_member_function_pointer' 864 /// '__is_member_pointer' 865 /// '__is_const' 866 /// '__is_volatile' 867 /// '__is_trivial' 868 /// '__is_standard_layout' 869 /// '__is_signed' 870 /// '__is_unsigned' 871 /// 872 /// [GNU] unary-type-trait: 873 /// '__has_nothrow_assign' 874 /// '__has_nothrow_copy' 875 /// '__has_nothrow_constructor' 876 /// '__has_trivial_assign' [TODO] 877 /// '__has_trivial_copy' [TODO] 878 /// '__has_trivial_constructor' 879 /// '__has_trivial_destructor' 880 /// '__has_virtual_destructor' 881 /// '__is_abstract' [TODO] 882 /// '__is_class' 883 /// '__is_empty' [TODO] 884 /// '__is_enum' 885 /// '__is_final' 886 /// '__is_pod' 887 /// '__is_polymorphic' 888 /// '__is_sealed' [MS] 889 /// '__is_trivial' 890 /// '__is_union' 891 /// '__has_unique_object_representations' 892 /// 893 /// [Clang] unary-type-trait: 894 /// '__is_aggregate' 895 /// '__trivially_copyable' 896 /// 897 /// binary-type-trait: 898 /// [GNU] '__is_base_of' 899 /// [MS] '__is_convertible_to' 900 /// '__is_convertible' 901 /// '__is_same' 902 /// 903 /// [Embarcadero] array-type-trait: 904 /// '__array_rank' 905 /// '__array_extent' 906 /// 907 /// [Embarcadero] expression-trait: 908 /// '__is_lvalue_expr' 909 /// '__is_rvalue_expr' 910 /// \endverbatim 911 /// 912 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 913 bool isAddressOfOperand, 914 bool &NotCastExpr, 915 TypeCastState isTypeCast, 916 bool isVectorLiteral, 917 bool *NotPrimaryExpression) { 918 ExprResult Res; 919 tok::TokenKind SavedKind = Tok.getKind(); 920 auto SavedType = PreferredType; 921 NotCastExpr = false; 922 923 // Are postfix-expression suffix operators permitted after this 924 // cast-expression? If not, and we find some, we'll parse them anyway and 925 // diagnose them. 926 bool AllowSuffix = true; 927 928 // This handles all of cast-expression, unary-expression, postfix-expression, 929 // and primary-expression. We handle them together like this for efficiency 930 // and to simplify handling of an expression starting with a '(' token: which 931 // may be one of a parenthesized expression, cast-expression, compound literal 932 // expression, or statement expression. 933 // 934 // If the parsed tokens consist of a primary-expression, the cases below 935 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 936 // to handle the postfix expression suffixes. Cases that cannot be followed 937 // by postfix exprs should set AllowSuffix to false. 938 switch (SavedKind) { 939 case tok::l_paren: { 940 // If this expression is limited to being a unary-expression, the paren can 941 // not start a cast expression. 942 ParenParseOption ParenExprType; 943 switch (ParseKind) { 944 case CastParseKind::UnaryExprOnly: 945 if (!getLangOpts().CPlusPlus) 946 ParenExprType = CompoundLiteral; 947 LLVM_FALLTHROUGH; 948 case CastParseKind::AnyCastExpr: 949 ParenExprType = ParenParseOption::CastExpr; 950 break; 951 case CastParseKind::PrimaryExprOnly: 952 ParenExprType = FoldExpr; 953 break; 954 } 955 ParsedType CastTy; 956 SourceLocation RParenLoc; 957 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 958 isTypeCast == IsTypeCast, CastTy, RParenLoc); 959 960 // FIXME: What should we do if a vector literal is followed by a 961 // postfix-expression suffix? Usually postfix operators are permitted on 962 // literals. 963 if (isVectorLiteral) 964 return Res; 965 966 switch (ParenExprType) { 967 case SimpleExpr: break; // Nothing else to do. 968 case CompoundStmt: break; // Nothing else to do. 969 case CompoundLiteral: 970 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 971 // postfix-expression exist, parse them now. 972 break; 973 case CastExpr: 974 // We have parsed the cast-expression and no postfix-expr pieces are 975 // following. 976 return Res; 977 case FoldExpr: 978 // We only parsed a fold-expression. There might be postfix-expr pieces 979 // afterwards; parse them now. 980 break; 981 } 982 983 break; 984 } 985 986 // primary-expression 987 case tok::numeric_constant: 988 // constant: integer-constant 989 // constant: floating-constant 990 991 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 992 ConsumeToken(); 993 break; 994 995 case tok::kw_true: 996 case tok::kw_false: 997 Res = ParseCXXBoolLiteral(); 998 break; 999 1000 case tok::kw___objc_yes: 1001 case tok::kw___objc_no: 1002 Res = ParseObjCBoolLiteral(); 1003 break; 1004 1005 case tok::kw_nullptr: 1006 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1007 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1008 break; 1009 1010 case tok::annot_uneval_primary_expr: 1011 case tok::annot_primary_expr: 1012 Res = getExprAnnotation(Tok); 1013 if (SavedKind == tok::annot_uneval_primary_expr) { 1014 if (Expr *E = Res.get()) { 1015 if (!E->isTypeDependent() && !E->containsErrors()) { 1016 // TransformToPotentiallyEvaluated expects that it will still be in a 1017 // (temporary) unevaluated context and then looks through that context 1018 // to build it in the surrounding context. So we need to push an 1019 // unevaluated context to balance things out. 1020 EnterExpressionEvaluationContext Unevaluated( 1021 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 1022 Sema::ReuseLambdaContextDecl); 1023 Res = Actions.TransformToPotentiallyEvaluated(Res.get()); 1024 } 1025 } 1026 } 1027 ConsumeAnnotationToken(); 1028 if (!Res.isInvalid() && Tok.is(tok::less)) 1029 checkPotentialAngleBracket(Res); 1030 break; 1031 1032 case tok::annot_non_type: 1033 case tok::annot_non_type_dependent: 1034 case tok::annot_non_type_undeclared: { 1035 CXXScopeSpec SS; 1036 Token Replacement; 1037 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1038 assert(!Res.isUnset() && 1039 "should not perform typo correction on annotation token"); 1040 break; 1041 } 1042 1043 case tok::kw___super: 1044 case tok::kw_decltype: 1045 // Annotate the token and tail recurse. 1046 if (TryAnnotateTypeOrScopeToken()) 1047 return ExprError(); 1048 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1049 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1050 isVectorLiteral, NotPrimaryExpression); 1051 1052 case tok::identifier: { // primary-expression: identifier 1053 // unqualified-id: identifier 1054 // constant: enumeration-constant 1055 // Turn a potentially qualified name into a annot_typename or 1056 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1057 if (getLangOpts().CPlusPlus) { 1058 // Avoid the unnecessary parse-time lookup in the common case 1059 // where the syntax forbids a type. 1060 const Token &Next = NextToken(); 1061 1062 // If this identifier was reverted from a token ID, and the next token 1063 // is a parenthesis, this is likely to be a use of a type trait. Check 1064 // those tokens. 1065 if (Next.is(tok::l_paren) && 1066 Tok.is(tok::identifier) && 1067 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1068 IdentifierInfo *II = Tok.getIdentifierInfo(); 1069 // Build up the mapping of revertible type traits, for future use. 1070 if (RevertibleTypeTraits.empty()) { 1071 #define RTT_JOIN(X,Y) X##Y 1072 #define REVERTIBLE_TYPE_TRAIT(Name) \ 1073 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 1074 = RTT_JOIN(tok::kw_,Name) 1075 1076 REVERTIBLE_TYPE_TRAIT(__is_abstract); 1077 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 1078 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 1079 REVERTIBLE_TYPE_TRAIT(__is_array); 1080 REVERTIBLE_TYPE_TRAIT(__is_assignable); 1081 REVERTIBLE_TYPE_TRAIT(__is_base_of); 1082 REVERTIBLE_TYPE_TRAIT(__is_class); 1083 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 1084 REVERTIBLE_TYPE_TRAIT(__is_compound); 1085 REVERTIBLE_TYPE_TRAIT(__is_const); 1086 REVERTIBLE_TYPE_TRAIT(__is_constructible); 1087 REVERTIBLE_TYPE_TRAIT(__is_convertible); 1088 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 1089 REVERTIBLE_TYPE_TRAIT(__is_destructible); 1090 REVERTIBLE_TYPE_TRAIT(__is_empty); 1091 REVERTIBLE_TYPE_TRAIT(__is_enum); 1092 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 1093 REVERTIBLE_TYPE_TRAIT(__is_final); 1094 REVERTIBLE_TYPE_TRAIT(__is_function); 1095 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 1096 REVERTIBLE_TYPE_TRAIT(__is_integral); 1097 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 1098 REVERTIBLE_TYPE_TRAIT(__is_literal); 1099 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 1100 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 1101 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 1102 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 1103 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 1104 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 1105 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 1106 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 1107 REVERTIBLE_TYPE_TRAIT(__is_object); 1108 REVERTIBLE_TYPE_TRAIT(__is_pod); 1109 REVERTIBLE_TYPE_TRAIT(__is_pointer); 1110 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 1111 REVERTIBLE_TYPE_TRAIT(__is_reference); 1112 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 1113 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 1114 REVERTIBLE_TYPE_TRAIT(__is_same); 1115 REVERTIBLE_TYPE_TRAIT(__is_scalar); 1116 REVERTIBLE_TYPE_TRAIT(__is_sealed); 1117 REVERTIBLE_TYPE_TRAIT(__is_signed); 1118 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 1119 REVERTIBLE_TYPE_TRAIT(__is_trivial); 1120 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 1121 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 1122 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 1123 REVERTIBLE_TYPE_TRAIT(__is_union); 1124 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 1125 REVERTIBLE_TYPE_TRAIT(__is_void); 1126 REVERTIBLE_TYPE_TRAIT(__is_volatile); 1127 #undef REVERTIBLE_TYPE_TRAIT 1128 #undef RTT_JOIN 1129 } 1130 1131 // If we find that this is in fact the name of a type trait, 1132 // update the token kind in place and parse again to treat it as 1133 // the appropriate kind of type trait. 1134 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 1135 = RevertibleTypeTraits.find(II); 1136 if (Known != RevertibleTypeTraits.end()) { 1137 Tok.setKind(Known->second); 1138 return ParseCastExpression(ParseKind, isAddressOfOperand, 1139 NotCastExpr, isTypeCast, 1140 isVectorLiteral, NotPrimaryExpression); 1141 } 1142 } 1143 1144 if ((!ColonIsSacred && Next.is(tok::colon)) || 1145 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1146 tok::l_brace)) { 1147 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1148 if (TryAnnotateTypeOrScopeToken()) 1149 return ExprError(); 1150 if (!Tok.is(tok::identifier)) 1151 return ParseCastExpression(ParseKind, isAddressOfOperand, 1152 NotCastExpr, isTypeCast, 1153 isVectorLiteral, 1154 NotPrimaryExpression); 1155 } 1156 } 1157 1158 // Consume the identifier so that we can see if it is followed by a '(' or 1159 // '.'. 1160 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1161 SourceLocation ILoc = ConsumeToken(); 1162 1163 // Support 'Class.property' and 'super.property' notation. 1164 if (getLangOpts().ObjC && Tok.is(tok::period) && 1165 (Actions.getTypeName(II, ILoc, getCurScope()) || 1166 // Allow the base to be 'super' if in an objc-method. 1167 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1168 ConsumeToken(); 1169 1170 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1171 Actions.CodeCompleteObjCClassPropertyRefExpr( 1172 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1173 cutOffParsing(); 1174 return ExprError(); 1175 } 1176 // Allow either an identifier or the keyword 'class' (in C++). 1177 if (Tok.isNot(tok::identifier) && 1178 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1179 Diag(Tok, diag::err_expected_property_name); 1180 return ExprError(); 1181 } 1182 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1183 SourceLocation PropertyLoc = ConsumeToken(); 1184 1185 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 1186 ILoc, PropertyLoc); 1187 break; 1188 } 1189 1190 // In an Objective-C method, if we have "super" followed by an identifier, 1191 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1192 // that identifier, this is probably a message send with a missing open 1193 // bracket. Treat it as such. 1194 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1195 getCurScope()->isInObjcMethodScope() && 1196 ((Tok.is(tok::identifier) && 1197 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1198 Tok.is(tok::code_completion))) { 1199 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1200 nullptr); 1201 break; 1202 } 1203 1204 // If we have an Objective-C class name followed by an identifier 1205 // and either ':' or ']', this is an Objective-C class message 1206 // send that's missing the opening '['. Recovery 1207 // appropriately. Also take this path if we're performing code 1208 // completion after an Objective-C class name. 1209 if (getLangOpts().ObjC && 1210 ((Tok.is(tok::identifier) && !InMessageExpression) || 1211 Tok.is(tok::code_completion))) { 1212 const Token& Next = NextToken(); 1213 if (Tok.is(tok::code_completion) || 1214 Next.is(tok::colon) || Next.is(tok::r_square)) 1215 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1216 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1217 // Fake up a Declarator to use with ActOnTypeName. 1218 DeclSpec DS(AttrFactory); 1219 DS.SetRangeStart(ILoc); 1220 DS.SetRangeEnd(ILoc); 1221 const char *PrevSpec = nullptr; 1222 unsigned DiagID; 1223 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1224 Actions.getASTContext().getPrintingPolicy()); 1225 1226 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1227 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1228 DeclaratorInfo); 1229 if (Ty.isInvalid()) 1230 break; 1231 1232 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1233 SourceLocation(), 1234 Ty.get(), nullptr); 1235 break; 1236 } 1237 } 1238 1239 // Make sure to pass down the right value for isAddressOfOperand. 1240 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1241 isAddressOfOperand = false; 1242 1243 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1244 // need to know whether or not this identifier is a function designator or 1245 // not. 1246 UnqualifiedId Name; 1247 CXXScopeSpec ScopeSpec; 1248 SourceLocation TemplateKWLoc; 1249 Token Replacement; 1250 CastExpressionIdValidator Validator( 1251 /*Next=*/Tok, 1252 /*AllowTypes=*/isTypeCast != NotTypeCast, 1253 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1254 Validator.IsAddressOfOperand = isAddressOfOperand; 1255 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1256 Validator.WantExpressionKeywords = false; 1257 Validator.WantRemainingKeywords = false; 1258 } else { 1259 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1260 } 1261 Name.setIdentifier(&II, ILoc); 1262 Res = Actions.ActOnIdExpression( 1263 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1264 isAddressOfOperand, &Validator, 1265 /*IsInlineAsmIdentifier=*/false, 1266 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1267 if (!Res.isInvalid() && Res.isUnset()) { 1268 UnconsumeToken(Replacement); 1269 return ParseCastExpression(ParseKind, isAddressOfOperand, 1270 NotCastExpr, isTypeCast, 1271 /*isVectorLiteral=*/false, 1272 NotPrimaryExpression); 1273 } 1274 if (!Res.isInvalid() && Tok.is(tok::less)) 1275 checkPotentialAngleBracket(Res); 1276 break; 1277 } 1278 case tok::char_constant: // constant: character-constant 1279 case tok::wide_char_constant: 1280 case tok::utf8_char_constant: 1281 case tok::utf16_char_constant: 1282 case tok::utf32_char_constant: 1283 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1284 ConsumeToken(); 1285 break; 1286 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1287 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1288 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1289 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1290 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1291 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1292 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1293 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1294 ConsumeToken(); 1295 break; 1296 case tok::string_literal: // primary-expression: string-literal 1297 case tok::wide_string_literal: 1298 case tok::utf8_string_literal: 1299 case tok::utf16_string_literal: 1300 case tok::utf32_string_literal: 1301 Res = ParseStringLiteralExpression(true); 1302 break; 1303 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1304 Res = ParseGenericSelectionExpression(); 1305 break; 1306 case tok::kw___builtin_available: 1307 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1308 break; 1309 case tok::kw___builtin_va_arg: 1310 case tok::kw___builtin_offsetof: 1311 case tok::kw___builtin_choose_expr: 1312 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1313 case tok::kw___builtin_convertvector: 1314 case tok::kw___builtin_COLUMN: 1315 case tok::kw___builtin_FILE: 1316 case tok::kw___builtin_FUNCTION: 1317 case tok::kw___builtin_LINE: 1318 if (NotPrimaryExpression) 1319 *NotPrimaryExpression = true; 1320 // This parses the complete suffix; we can return early. 1321 return ParseBuiltinPrimaryExpression(); 1322 case tok::kw___null: 1323 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1324 break; 1325 1326 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1327 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1328 if (NotPrimaryExpression) 1329 *NotPrimaryExpression = true; 1330 // C++ [expr.unary] has: 1331 // unary-expression: 1332 // ++ cast-expression 1333 // -- cast-expression 1334 Token SavedTok = Tok; 1335 ConsumeToken(); 1336 1337 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1338 SavedTok.getLocation()); 1339 // One special case is implicitly handled here: if the preceding tokens are 1340 // an ambiguous cast expression, such as "(T())++", then we recurse to 1341 // determine whether the '++' is prefix or postfix. 1342 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1343 UnaryExprOnly : AnyCastExpr, 1344 /*isAddressOfOperand*/false, NotCastExpr, 1345 NotTypeCast); 1346 if (NotCastExpr) { 1347 // If we return with NotCastExpr = true, we must not consume any tokens, 1348 // so put the token back where we found it. 1349 assert(Res.isInvalid()); 1350 UnconsumeToken(SavedTok); 1351 return ExprError(); 1352 } 1353 if (!Res.isInvalid()) { 1354 Expr *Arg = Res.get(); 1355 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1356 SavedKind, Arg); 1357 if (Res.isInvalid()) 1358 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1359 Arg->getEndLoc(), Arg); 1360 } 1361 return Res; 1362 } 1363 case tok::amp: { // unary-expression: '&' cast-expression 1364 if (NotPrimaryExpression) 1365 *NotPrimaryExpression = true; 1366 // Special treatment because of member pointers 1367 SourceLocation SavedLoc = ConsumeToken(); 1368 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1369 Res = ParseCastExpression(AnyCastExpr, true); 1370 if (!Res.isInvalid()) { 1371 Expr *Arg = Res.get(); 1372 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1373 if (Res.isInvalid()) 1374 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1375 Arg); 1376 } 1377 return Res; 1378 } 1379 1380 case tok::star: // unary-expression: '*' cast-expression 1381 case tok::plus: // unary-expression: '+' cast-expression 1382 case tok::minus: // unary-expression: '-' cast-expression 1383 case tok::tilde: // unary-expression: '~' cast-expression 1384 case tok::exclaim: // unary-expression: '!' cast-expression 1385 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1386 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1387 if (NotPrimaryExpression) 1388 *NotPrimaryExpression = true; 1389 SourceLocation SavedLoc = ConsumeToken(); 1390 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1391 Res = ParseCastExpression(AnyCastExpr); 1392 if (!Res.isInvalid()) { 1393 Expr *Arg = Res.get(); 1394 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1395 if (Res.isInvalid()) 1396 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1397 } 1398 return Res; 1399 } 1400 1401 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1402 if (NotPrimaryExpression) 1403 *NotPrimaryExpression = true; 1404 SourceLocation CoawaitLoc = ConsumeToken(); 1405 Res = ParseCastExpression(AnyCastExpr); 1406 if (!Res.isInvalid()) 1407 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1408 return Res; 1409 } 1410 1411 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1412 // __extension__ silences extension warnings in the subexpression. 1413 if (NotPrimaryExpression) 1414 *NotPrimaryExpression = true; 1415 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1416 SourceLocation SavedLoc = ConsumeToken(); 1417 Res = ParseCastExpression(AnyCastExpr); 1418 if (!Res.isInvalid()) 1419 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1420 return Res; 1421 } 1422 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1423 if (!getLangOpts().C11) 1424 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 1425 LLVM_FALLTHROUGH; 1426 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1427 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1428 // unary-expression: '__alignof' '(' type-name ')' 1429 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1430 // unary-expression: 'sizeof' '(' type-name ')' 1431 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1432 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1433 case tok::kw___builtin_omp_required_simd_align: 1434 if (NotPrimaryExpression) 1435 *NotPrimaryExpression = true; 1436 AllowSuffix = false; 1437 Res = ParseUnaryExprOrTypeTraitExpression(); 1438 break; 1439 case tok::ampamp: { // unary-expression: '&&' identifier 1440 if (NotPrimaryExpression) 1441 *NotPrimaryExpression = true; 1442 SourceLocation AmpAmpLoc = ConsumeToken(); 1443 if (Tok.isNot(tok::identifier)) 1444 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1445 1446 if (getCurScope()->getFnParent() == nullptr) 1447 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1448 1449 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1450 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1451 Tok.getLocation()); 1452 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1453 ConsumeToken(); 1454 AllowSuffix = false; 1455 break; 1456 } 1457 case tok::kw_const_cast: 1458 case tok::kw_dynamic_cast: 1459 case tok::kw_reinterpret_cast: 1460 case tok::kw_static_cast: 1461 case tok::kw_addrspace_cast: 1462 if (NotPrimaryExpression) 1463 *NotPrimaryExpression = true; 1464 Res = ParseCXXCasts(); 1465 break; 1466 case tok::kw___builtin_bit_cast: 1467 if (NotPrimaryExpression) 1468 *NotPrimaryExpression = true; 1469 Res = ParseBuiltinBitCast(); 1470 break; 1471 case tok::kw_typeid: 1472 if (NotPrimaryExpression) 1473 *NotPrimaryExpression = true; 1474 Res = ParseCXXTypeid(); 1475 break; 1476 case tok::kw___uuidof: 1477 if (NotPrimaryExpression) 1478 *NotPrimaryExpression = true; 1479 Res = ParseCXXUuidof(); 1480 break; 1481 case tok::kw_this: 1482 Res = ParseCXXThis(); 1483 break; 1484 case tok::kw___builtin_unique_stable_name: 1485 Res = ParseUniqueStableNameExpression(); 1486 break; 1487 case tok::annot_typename: 1488 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1489 TypeResult Type = getTypeAnnotation(Tok); 1490 1491 // Fake up a Declarator to use with ActOnTypeName. 1492 DeclSpec DS(AttrFactory); 1493 DS.SetRangeStart(Tok.getLocation()); 1494 DS.SetRangeEnd(Tok.getLastLoc()); 1495 1496 const char *PrevSpec = nullptr; 1497 unsigned DiagID; 1498 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1499 PrevSpec, DiagID, Type, 1500 Actions.getASTContext().getPrintingPolicy()); 1501 1502 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1503 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1504 if (Ty.isInvalid()) 1505 break; 1506 1507 ConsumeAnnotationToken(); 1508 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1509 Ty.get(), nullptr); 1510 break; 1511 } 1512 LLVM_FALLTHROUGH; 1513 1514 case tok::annot_decltype: 1515 case tok::kw_char: 1516 case tok::kw_wchar_t: 1517 case tok::kw_char8_t: 1518 case tok::kw_char16_t: 1519 case tok::kw_char32_t: 1520 case tok::kw_bool: 1521 case tok::kw_short: 1522 case tok::kw_int: 1523 case tok::kw_long: 1524 case tok::kw___int64: 1525 case tok::kw___int128: 1526 case tok::kw__ExtInt: 1527 case tok::kw_signed: 1528 case tok::kw_unsigned: 1529 case tok::kw_half: 1530 case tok::kw_float: 1531 case tok::kw_double: 1532 case tok::kw___bf16: 1533 case tok::kw__Float16: 1534 case tok::kw___float128: 1535 case tok::kw_void: 1536 case tok::kw_typename: 1537 case tok::kw_typeof: 1538 case tok::kw___vector: 1539 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1540 #include "clang/Basic/OpenCLImageTypes.def" 1541 { 1542 if (!getLangOpts().CPlusPlus) { 1543 Diag(Tok, diag::err_expected_expression); 1544 return ExprError(); 1545 } 1546 1547 // Everything henceforth is a postfix-expression. 1548 if (NotPrimaryExpression) 1549 *NotPrimaryExpression = true; 1550 1551 if (SavedKind == tok::kw_typename) { 1552 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1553 // typename-specifier braced-init-list 1554 if (TryAnnotateTypeOrScopeToken()) 1555 return ExprError(); 1556 1557 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1558 // We are trying to parse a simple-type-specifier but might not get such 1559 // a token after error recovery. 1560 return ExprError(); 1561 } 1562 1563 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1564 // simple-type-specifier braced-init-list 1565 // 1566 DeclSpec DS(AttrFactory); 1567 1568 ParseCXXSimpleTypeSpecifier(DS); 1569 if (Tok.isNot(tok::l_paren) && 1570 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1571 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1572 << DS.getSourceRange()); 1573 1574 if (Tok.is(tok::l_brace)) 1575 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1576 1577 Res = ParseCXXTypeConstructExpression(DS); 1578 break; 1579 } 1580 1581 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1582 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1583 // (We can end up in this situation after tentative parsing.) 1584 if (TryAnnotateTypeOrScopeToken()) 1585 return ExprError(); 1586 if (!Tok.is(tok::annot_cxxscope)) 1587 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1588 isTypeCast, isVectorLiteral, 1589 NotPrimaryExpression); 1590 1591 Token Next = NextToken(); 1592 if (Next.is(tok::annot_template_id)) { 1593 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1594 if (TemplateId->Kind == TNK_Type_template) { 1595 // We have a qualified template-id that we know refers to a 1596 // type, translate it into a type and continue parsing as a 1597 // cast expression. 1598 CXXScopeSpec SS; 1599 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1600 /*ObjectHadErrors=*/false, 1601 /*EnteringContext=*/false); 1602 AnnotateTemplateIdTokenAsType(SS); 1603 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1604 isTypeCast, isVectorLiteral, 1605 NotPrimaryExpression); 1606 } 1607 } 1608 1609 // Parse as an id-expression. 1610 Res = ParseCXXIdExpression(isAddressOfOperand); 1611 break; 1612 } 1613 1614 case tok::annot_template_id: { // [C++] template-id 1615 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1616 if (TemplateId->Kind == TNK_Type_template) { 1617 // We have a template-id that we know refers to a type, 1618 // translate it into a type and continue parsing as a cast 1619 // expression. 1620 CXXScopeSpec SS; 1621 AnnotateTemplateIdTokenAsType(SS); 1622 return ParseCastExpression(ParseKind, isAddressOfOperand, 1623 NotCastExpr, isTypeCast, isVectorLiteral, 1624 NotPrimaryExpression); 1625 } 1626 1627 // Fall through to treat the template-id as an id-expression. 1628 LLVM_FALLTHROUGH; 1629 } 1630 1631 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1632 Res = ParseCXXIdExpression(isAddressOfOperand); 1633 break; 1634 1635 case tok::coloncolon: { 1636 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1637 // annotates the token, tail recurse. 1638 if (TryAnnotateTypeOrScopeToken()) 1639 return ExprError(); 1640 if (!Tok.is(tok::coloncolon)) 1641 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1642 isVectorLiteral, NotPrimaryExpression); 1643 1644 // ::new -> [C++] new-expression 1645 // ::delete -> [C++] delete-expression 1646 SourceLocation CCLoc = ConsumeToken(); 1647 if (Tok.is(tok::kw_new)) { 1648 if (NotPrimaryExpression) 1649 *NotPrimaryExpression = true; 1650 Res = ParseCXXNewExpression(true, CCLoc); 1651 AllowSuffix = false; 1652 break; 1653 } 1654 if (Tok.is(tok::kw_delete)) { 1655 if (NotPrimaryExpression) 1656 *NotPrimaryExpression = true; 1657 Res = ParseCXXDeleteExpression(true, CCLoc); 1658 AllowSuffix = false; 1659 break; 1660 } 1661 1662 // This is not a type name or scope specifier, it is an invalid expression. 1663 Diag(CCLoc, diag::err_expected_expression); 1664 return ExprError(); 1665 } 1666 1667 case tok::kw_new: // [C++] new-expression 1668 if (NotPrimaryExpression) 1669 *NotPrimaryExpression = true; 1670 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1671 AllowSuffix = false; 1672 break; 1673 1674 case tok::kw_delete: // [C++] delete-expression 1675 if (NotPrimaryExpression) 1676 *NotPrimaryExpression = true; 1677 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1678 AllowSuffix = false; 1679 break; 1680 1681 case tok::kw_requires: // [C++2a] requires-expression 1682 Res = ParseRequiresExpression(); 1683 AllowSuffix = false; 1684 break; 1685 1686 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1687 if (NotPrimaryExpression) 1688 *NotPrimaryExpression = true; 1689 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1690 SourceLocation KeyLoc = ConsumeToken(); 1691 BalancedDelimiterTracker T(*this, tok::l_paren); 1692 1693 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1694 return ExprError(); 1695 // C++11 [expr.unary.noexcept]p1: 1696 // The noexcept operator determines whether the evaluation of its operand, 1697 // which is an unevaluated operand, can throw an exception. 1698 EnterExpressionEvaluationContext Unevaluated( 1699 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1700 Res = ParseExpression(); 1701 1702 T.consumeClose(); 1703 1704 if (!Res.isInvalid()) 1705 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1706 T.getCloseLocation()); 1707 AllowSuffix = false; 1708 break; 1709 } 1710 1711 #define TYPE_TRAIT(N,Spelling,K) \ 1712 case tok::kw_##Spelling: 1713 #include "clang/Basic/TokenKinds.def" 1714 Res = ParseTypeTrait(); 1715 break; 1716 1717 case tok::kw___array_rank: 1718 case tok::kw___array_extent: 1719 if (NotPrimaryExpression) 1720 *NotPrimaryExpression = true; 1721 Res = ParseArrayTypeTrait(); 1722 break; 1723 1724 case tok::kw___is_lvalue_expr: 1725 case tok::kw___is_rvalue_expr: 1726 if (NotPrimaryExpression) 1727 *NotPrimaryExpression = true; 1728 Res = ParseExpressionTrait(); 1729 break; 1730 1731 case tok::at: { 1732 if (NotPrimaryExpression) 1733 *NotPrimaryExpression = true; 1734 SourceLocation AtLoc = ConsumeToken(); 1735 return ParseObjCAtExpression(AtLoc); 1736 } 1737 case tok::caret: 1738 Res = ParseBlockLiteralExpression(); 1739 break; 1740 case tok::code_completion: { 1741 Actions.CodeCompleteExpression(getCurScope(), 1742 PreferredType.get(Tok.getLocation())); 1743 cutOffParsing(); 1744 return ExprError(); 1745 } 1746 case tok::l_square: 1747 if (getLangOpts().CPlusPlus11) { 1748 if (getLangOpts().ObjC) { 1749 // C++11 lambda expressions and Objective-C message sends both start with a 1750 // square bracket. There are three possibilities here: 1751 // we have a valid lambda expression, we have an invalid lambda 1752 // expression, or we have something that doesn't appear to be a lambda. 1753 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1754 Res = TryParseLambdaExpression(); 1755 if (!Res.isInvalid() && !Res.get()) { 1756 // We assume Objective-C++ message expressions are not 1757 // primary-expressions. 1758 if (NotPrimaryExpression) 1759 *NotPrimaryExpression = true; 1760 Res = ParseObjCMessageExpression(); 1761 } 1762 break; 1763 } 1764 Res = ParseLambdaExpression(); 1765 break; 1766 } 1767 if (getLangOpts().ObjC) { 1768 Res = ParseObjCMessageExpression(); 1769 break; 1770 } 1771 LLVM_FALLTHROUGH; 1772 default: 1773 NotCastExpr = true; 1774 return ExprError(); 1775 } 1776 1777 // Check to see whether Res is a function designator only. If it is and we 1778 // are compiling for OpenCL, we need to return an error as this implies 1779 // that the address of the function is being taken, which is illegal in CL. 1780 1781 if (ParseKind == PrimaryExprOnly) 1782 // This is strictly a primary-expression - no postfix-expr pieces should be 1783 // parsed. 1784 return Res; 1785 1786 if (!AllowSuffix) { 1787 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1788 // error already. 1789 if (Res.isInvalid()) 1790 return Res; 1791 1792 switch (Tok.getKind()) { 1793 case tok::l_square: 1794 case tok::l_paren: 1795 case tok::plusplus: 1796 case tok::minusminus: 1797 // "expected ';'" or similar is probably the right diagnostic here. Let 1798 // the caller decide what to do. 1799 if (Tok.isAtStartOfLine()) 1800 return Res; 1801 1802 LLVM_FALLTHROUGH; 1803 case tok::period: 1804 case tok::arrow: 1805 break; 1806 1807 default: 1808 return Res; 1809 } 1810 1811 // This was a unary-expression for which a postfix-expression suffix is 1812 // not permitted by the grammar (eg, a sizeof expression or 1813 // new-expression or similar). Diagnose but parse the suffix anyway. 1814 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1815 << Tok.getKind() << Res.get()->getSourceRange() 1816 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1817 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1818 ")"); 1819 } 1820 1821 // These can be followed by postfix-expr pieces. 1822 PreferredType = SavedType; 1823 Res = ParsePostfixExpressionSuffix(Res); 1824 if (getLangOpts().OpenCL) 1825 if (Expr *PostfixExpr = Res.get()) { 1826 QualType Ty = PostfixExpr->getType(); 1827 if (!Ty.isNull() && Ty->isFunctionType()) { 1828 Diag(PostfixExpr->getExprLoc(), 1829 diag::err_opencl_taking_function_address_parser); 1830 return ExprError(); 1831 } 1832 } 1833 1834 return Res; 1835 } 1836 1837 /// Once the leading part of a postfix-expression is parsed, this 1838 /// method parses any suffixes that apply. 1839 /// 1840 /// \verbatim 1841 /// postfix-expression: [C99 6.5.2] 1842 /// primary-expression 1843 /// postfix-expression '[' expression ']' 1844 /// postfix-expression '[' braced-init-list ']' 1845 /// postfix-expression '(' argument-expression-list[opt] ')' 1846 /// postfix-expression '.' identifier 1847 /// postfix-expression '->' identifier 1848 /// postfix-expression '++' 1849 /// postfix-expression '--' 1850 /// '(' type-name ')' '{' initializer-list '}' 1851 /// '(' type-name ')' '{' initializer-list ',' '}' 1852 /// 1853 /// argument-expression-list: [C99 6.5.2] 1854 /// argument-expression ...[opt] 1855 /// argument-expression-list ',' assignment-expression ...[opt] 1856 /// \endverbatim 1857 ExprResult 1858 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1859 // Now that the primary-expression piece of the postfix-expression has been 1860 // parsed, see if there are any postfix-expression pieces here. 1861 SourceLocation Loc; 1862 auto SavedType = PreferredType; 1863 while (1) { 1864 // Each iteration relies on preferred type for the whole expression. 1865 PreferredType = SavedType; 1866 switch (Tok.getKind()) { 1867 case tok::code_completion: 1868 if (InMessageExpression) 1869 return LHS; 1870 1871 Actions.CodeCompletePostfixExpression( 1872 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1873 cutOffParsing(); 1874 return ExprError(); 1875 1876 case tok::identifier: 1877 // If we see identifier: after an expression, and we're not already in a 1878 // message send, then this is probably a message send with a missing 1879 // opening bracket '['. 1880 if (getLangOpts().ObjC && !InMessageExpression && 1881 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1882 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1883 nullptr, LHS.get()); 1884 break; 1885 } 1886 // Fall through; this isn't a message send. 1887 LLVM_FALLTHROUGH; 1888 1889 default: // Not a postfix-expression suffix. 1890 return LHS; 1891 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1892 // If we have a array postfix expression that starts on a new line and 1893 // Objective-C is enabled, it is highly likely that the user forgot a 1894 // semicolon after the base expression and that the array postfix-expr is 1895 // actually another message send. In this case, do some look-ahead to see 1896 // if the contents of the square brackets are obviously not a valid 1897 // expression and recover by pretending there is no suffix. 1898 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1899 isSimpleObjCMessageExpression()) 1900 return LHS; 1901 1902 // Reject array indices starting with a lambda-expression. '[[' is 1903 // reserved for attributes. 1904 if (CheckProhibitedCXX11Attribute()) { 1905 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1906 return ExprError(); 1907 } 1908 1909 BalancedDelimiterTracker T(*this, tok::l_square); 1910 T.consumeOpen(); 1911 Loc = T.getOpenLocation(); 1912 ExprResult Idx, Length, Stride; 1913 SourceLocation ColonLocFirst, ColonLocSecond; 1914 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1915 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1916 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1917 Idx = ParseBraceInitializer(); 1918 } else if (getLangOpts().OpenMP) { 1919 ColonProtectionRAIIObject RAII(*this); 1920 // Parse [: or [ expr or [ expr : 1921 if (!Tok.is(tok::colon)) { 1922 // [ expr 1923 Idx = ParseExpression(); 1924 } 1925 if (Tok.is(tok::colon)) { 1926 // Consume ':' 1927 ColonLocFirst = ConsumeToken(); 1928 if (Tok.isNot(tok::r_square) && 1929 (getLangOpts().OpenMP < 50 || 1930 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) 1931 Length = ParseExpression(); 1932 } 1933 if (getLangOpts().OpenMP >= 50 && 1934 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 1935 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 1936 Tok.is(tok::colon)) { 1937 // Consume ':' 1938 ColonLocSecond = ConsumeToken(); 1939 if (Tok.isNot(tok::r_square)) { 1940 Stride = ParseExpression(); 1941 } 1942 } 1943 } else 1944 Idx = ParseExpression(); 1945 1946 SourceLocation RLoc = Tok.getLocation(); 1947 1948 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1949 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1950 Length = Actions.CorrectDelayedTyposInExpr(Length); 1951 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() && 1952 !Stride.isInvalid() && Tok.is(tok::r_square)) { 1953 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 1954 LHS = Actions.ActOnOMPArraySectionExpr( 1955 LHS.get(), Loc, Idx.get(), ColonLocFirst, ColonLocSecond, 1956 Length.get(), Stride.get(), RLoc); 1957 } else { 1958 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 1959 Idx.get(), RLoc); 1960 } 1961 } else { 1962 LHS = ExprError(); 1963 Idx = ExprError(); 1964 } 1965 1966 // Match the ']'. 1967 T.consumeClose(); 1968 break; 1969 } 1970 1971 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 1972 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 1973 // '(' argument-expression-list[opt] ')' 1974 tok::TokenKind OpKind = Tok.getKind(); 1975 InMessageExpressionRAIIObject InMessage(*this, false); 1976 1977 Expr *ExecConfig = nullptr; 1978 1979 BalancedDelimiterTracker PT(*this, tok::l_paren); 1980 1981 if (OpKind == tok::lesslessless) { 1982 ExprVector ExecConfigExprs; 1983 CommaLocsTy ExecConfigCommaLocs; 1984 SourceLocation OpenLoc = ConsumeToken(); 1985 1986 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { 1987 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1988 LHS = ExprError(); 1989 } 1990 1991 SourceLocation CloseLoc; 1992 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 1993 } else if (LHS.isInvalid()) { 1994 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1995 } else { 1996 // There was an error closing the brackets 1997 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 1998 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 1999 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2000 LHS = ExprError(); 2001 } 2002 2003 if (!LHS.isInvalid()) { 2004 if (ExpectAndConsume(tok::l_paren)) 2005 LHS = ExprError(); 2006 else 2007 Loc = PrevTokLocation; 2008 } 2009 2010 if (!LHS.isInvalid()) { 2011 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 2012 OpenLoc, 2013 ExecConfigExprs, 2014 CloseLoc); 2015 if (ECResult.isInvalid()) 2016 LHS = ExprError(); 2017 else 2018 ExecConfig = ECResult.get(); 2019 } 2020 } else { 2021 PT.consumeOpen(); 2022 Loc = PT.getOpenLocation(); 2023 } 2024 2025 ExprVector ArgExprs; 2026 CommaLocsTy CommaLocs; 2027 auto RunSignatureHelp = [&]() -> QualType { 2028 QualType PreferredType = Actions.ProduceCallSignatureHelp( 2029 getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation()); 2030 CalledSignatureHelp = true; 2031 return PreferredType; 2032 }; 2033 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2034 if (Tok.isNot(tok::r_paren)) { 2035 if (ParseExpressionList(ArgExprs, CommaLocs, [&] { 2036 PreferredType.enterFunctionArgument(Tok.getLocation(), 2037 RunSignatureHelp); 2038 })) { 2039 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2040 // If we got an error when parsing expression list, we don't call 2041 // the CodeCompleteCall handler inside the parser. So call it here 2042 // to make sure we get overload suggestions even when we are in the 2043 // middle of a parameter. 2044 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2045 RunSignatureHelp(); 2046 LHS = ExprError(); 2047 } else if (LHS.isInvalid()) { 2048 for (auto &E : ArgExprs) 2049 Actions.CorrectDelayedTyposInExpr(E); 2050 } 2051 } 2052 } 2053 2054 // Match the ')'. 2055 if (LHS.isInvalid()) { 2056 SkipUntil(tok::r_paren, StopAtSemi); 2057 } else if (Tok.isNot(tok::r_paren)) { 2058 bool HadDelayedTypo = false; 2059 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2060 HadDelayedTypo = true; 2061 for (auto &E : ArgExprs) 2062 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2063 HadDelayedTypo = true; 2064 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2065 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2066 // the unmatched l_paren. 2067 if (HadDelayedTypo) 2068 SkipUntil(tok::r_paren, StopAtSemi); 2069 else 2070 PT.consumeClose(); 2071 LHS = ExprError(); 2072 } else { 2073 assert( 2074 (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) && 2075 "Unexpected number of commas!"); 2076 Expr *Fn = LHS.get(); 2077 SourceLocation RParLoc = Tok.getLocation(); 2078 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2079 ExecConfig); 2080 if (LHS.isInvalid()) { 2081 ArgExprs.insert(ArgExprs.begin(), Fn); 2082 LHS = 2083 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2084 } 2085 PT.consumeClose(); 2086 } 2087 2088 break; 2089 } 2090 case tok::arrow: 2091 case tok::period: { 2092 // postfix-expression: p-e '->' template[opt] id-expression 2093 // postfix-expression: p-e '.' template[opt] id-expression 2094 tok::TokenKind OpKind = Tok.getKind(); 2095 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2096 2097 CXXScopeSpec SS; 2098 ParsedType ObjectType; 2099 bool MayBePseudoDestructor = false; 2100 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2101 2102 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2103 2104 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2105 Expr *Base = OrigLHS; 2106 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2107 if (BaseType && Tok.is(tok::l_paren) && 2108 (BaseType->isFunctionType() || 2109 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2110 Diag(OpLoc, diag::err_function_is_not_record) 2111 << OpKind << Base->getSourceRange() 2112 << FixItHint::CreateRemoval(OpLoc); 2113 return ParsePostfixExpressionSuffix(Base); 2114 } 2115 2116 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2117 OpKind, ObjectType, 2118 MayBePseudoDestructor); 2119 if (LHS.isInvalid()) { 2120 // Clang will try to perform expression based completion as a 2121 // fallback, which is confusing in case of member references. So we 2122 // stop here without any completions. 2123 if (Tok.is(tok::code_completion)) { 2124 cutOffParsing(); 2125 return ExprError(); 2126 } 2127 break; 2128 } 2129 ParseOptionalCXXScopeSpecifier( 2130 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2131 /*EnteringContext=*/false, &MayBePseudoDestructor); 2132 if (SS.isNotEmpty()) 2133 ObjectType = nullptr; 2134 } 2135 2136 if (Tok.is(tok::code_completion)) { 2137 tok::TokenKind CorrectedOpKind = 2138 OpKind == tok::arrow ? tok::period : tok::arrow; 2139 ExprResult CorrectedLHS(/*Invalid=*/true); 2140 if (getLangOpts().CPlusPlus && OrigLHS) { 2141 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2142 // hack. 2143 Sema::TentativeAnalysisScope Trap(Actions); 2144 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2145 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2146 MayBePseudoDestructor); 2147 } 2148 2149 Expr *Base = LHS.get(); 2150 Expr *CorrectedBase = CorrectedLHS.get(); 2151 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2152 CorrectedBase = Base; 2153 2154 // Code completion for a member access expression. 2155 Actions.CodeCompleteMemberReferenceExpr( 2156 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2157 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2158 PreferredType.get(Tok.getLocation())); 2159 2160 cutOffParsing(); 2161 return ExprError(); 2162 } 2163 2164 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2165 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2166 ObjectType); 2167 break; 2168 } 2169 2170 // Either the action has told us that this cannot be a 2171 // pseudo-destructor expression (based on the type of base 2172 // expression), or we didn't see a '~' in the right place. We 2173 // can still parse a destructor name here, but in that case it 2174 // names a real destructor. 2175 // Allow explicit constructor calls in Microsoft mode. 2176 // FIXME: Add support for explicit call of template constructor. 2177 SourceLocation TemplateKWLoc; 2178 UnqualifiedId Name; 2179 if (getLangOpts().ObjC && OpKind == tok::period && 2180 Tok.is(tok::kw_class)) { 2181 // Objective-C++: 2182 // After a '.' in a member access expression, treat the keyword 2183 // 'class' as if it were an identifier. 2184 // 2185 // This hack allows property access to the 'class' method because it is 2186 // such a common method name. For other C++ keywords that are 2187 // Objective-C method names, one must use the message send syntax. 2188 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2189 SourceLocation Loc = ConsumeToken(); 2190 Name.setIdentifier(Id, Loc); 2191 } else if (ParseUnqualifiedId( 2192 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2193 /*EnteringContext=*/false, 2194 /*AllowDestructorName=*/true, 2195 /*AllowConstructorName=*/ 2196 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2197 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2198 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2199 LHS = ExprError(); 2200 } 2201 2202 if (!LHS.isInvalid()) 2203 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2204 OpKind, SS, TemplateKWLoc, Name, 2205 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2206 : nullptr); 2207 if (!LHS.isInvalid()) { 2208 if (Tok.is(tok::less)) 2209 checkPotentialAngleBracket(LHS); 2210 } else if (OrigLHS && Name.isValid()) { 2211 // Preserve the LHS if the RHS is an invalid member. 2212 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2213 Name.getEndLoc(), {OrigLHS}); 2214 } 2215 break; 2216 } 2217 case tok::plusplus: // postfix-expression: postfix-expression '++' 2218 case tok::minusminus: // postfix-expression: postfix-expression '--' 2219 if (!LHS.isInvalid()) { 2220 Expr *Arg = LHS.get(); 2221 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2222 Tok.getKind(), Arg); 2223 if (LHS.isInvalid()) 2224 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2225 Tok.getLocation(), Arg); 2226 } 2227 ConsumeToken(); 2228 break; 2229 } 2230 } 2231 } 2232 2233 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2234 /// vec_step and we are at the start of an expression or a parenthesized 2235 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2236 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2237 /// 2238 /// \verbatim 2239 /// unary-expression: [C99 6.5.3] 2240 /// 'sizeof' unary-expression 2241 /// 'sizeof' '(' type-name ')' 2242 /// [GNU] '__alignof' unary-expression 2243 /// [GNU] '__alignof' '(' type-name ')' 2244 /// [C11] '_Alignof' '(' type-name ')' 2245 /// [C++0x] 'alignof' '(' type-id ')' 2246 /// 2247 /// [GNU] typeof-specifier: 2248 /// typeof ( expressions ) 2249 /// typeof ( type-name ) 2250 /// [GNU/C++] typeof unary-expression 2251 /// 2252 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2253 /// vec_step ( expressions ) 2254 /// vec_step ( type-name ) 2255 /// \endverbatim 2256 ExprResult 2257 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2258 bool &isCastExpr, 2259 ParsedType &CastTy, 2260 SourceRange &CastRange) { 2261 2262 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof, 2263 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2264 tok::kw___builtin_omp_required_simd_align) && 2265 "Not a typeof/sizeof/alignof/vec_step expression!"); 2266 2267 ExprResult Operand; 2268 2269 // If the operand doesn't start with an '(', it must be an expression. 2270 if (Tok.isNot(tok::l_paren)) { 2271 // If construct allows a form without parenthesis, user may forget to put 2272 // pathenthesis around type name. 2273 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2274 tok::kw__Alignof)) { 2275 if (isTypeIdUnambiguously()) { 2276 DeclSpec DS(AttrFactory); 2277 ParseSpecifierQualifierList(DS); 2278 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 2279 ParseDeclarator(DeclaratorInfo); 2280 2281 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2282 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2283 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2284 << OpTok.getName() 2285 << FixItHint::CreateInsertion(LParenLoc, "(") 2286 << FixItHint::CreateInsertion(RParenLoc, ")"); 2287 isCastExpr = true; 2288 return ExprEmpty(); 2289 } 2290 } 2291 2292 isCastExpr = false; 2293 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { 2294 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2295 << tok::l_paren; 2296 return ExprError(); 2297 } 2298 2299 Operand = ParseCastExpression(UnaryExprOnly); 2300 } else { 2301 // If it starts with a '(', we know that it is either a parenthesized 2302 // type-name, or it is a unary-expression that starts with a compound 2303 // literal, or starts with a primary-expression that is a parenthesized 2304 // expression. 2305 ParenParseOption ExprType = CastExpr; 2306 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2307 2308 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2309 false, CastTy, RParenLoc); 2310 CastRange = SourceRange(LParenLoc, RParenLoc); 2311 2312 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2313 // a type. 2314 if (ExprType == CastExpr) { 2315 isCastExpr = true; 2316 return ExprEmpty(); 2317 } 2318 2319 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { 2320 // GNU typeof in C requires the expression to be parenthesized. Not so for 2321 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2322 // the start of a unary-expression, but doesn't include any postfix 2323 // pieces. Parse these now if present. 2324 if (!Operand.isInvalid()) 2325 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2326 } 2327 } 2328 2329 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2330 isCastExpr = false; 2331 return Operand; 2332 } 2333 2334 2335 ExprResult Parser::ParseUniqueStableNameExpression() { 2336 assert(Tok.is(tok::kw___builtin_unique_stable_name) && 2337 "Not __bulitin_unique_stable_name"); 2338 2339 SourceLocation OpLoc = ConsumeToken(); 2340 BalancedDelimiterTracker T(*this, tok::l_paren); 2341 2342 // typeid expressions are always parenthesized. 2343 if (T.expectAndConsume(diag::err_expected_lparen_after, 2344 "__builtin_unique_stable_name")) 2345 return ExprError(); 2346 2347 if (isTypeIdInParens()) { 2348 TypeResult Ty = ParseTypeName(); 2349 T.consumeClose(); 2350 2351 if (Ty.isInvalid()) 2352 return ExprError(); 2353 2354 return Actions.ActOnUniqueStableNameExpr(OpLoc, T.getOpenLocation(), 2355 T.getCloseLocation(), Ty.get()); 2356 } 2357 2358 EnterExpressionEvaluationContext Unevaluated( 2359 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 2360 ExprResult Result = ParseExpression(); 2361 2362 if (Result.isInvalid()) { 2363 SkipUntil(tok::r_paren, StopAtSemi); 2364 return Result; 2365 } 2366 2367 T.consumeClose(); 2368 return Actions.ActOnUniqueStableNameExpr(OpLoc, T.getOpenLocation(), 2369 T.getCloseLocation(), Result.get()); 2370 } 2371 2372 /// Parse a sizeof or alignof expression. 2373 /// 2374 /// \verbatim 2375 /// unary-expression: [C99 6.5.3] 2376 /// 'sizeof' unary-expression 2377 /// 'sizeof' '(' type-name ')' 2378 /// [C++11] 'sizeof' '...' '(' identifier ')' 2379 /// [GNU] '__alignof' unary-expression 2380 /// [GNU] '__alignof' '(' type-name ')' 2381 /// [C11] '_Alignof' '(' type-name ')' 2382 /// [C++11] 'alignof' '(' type-id ')' 2383 /// \endverbatim 2384 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2385 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2386 tok::kw__Alignof, tok::kw_vec_step, 2387 tok::kw___builtin_omp_required_simd_align) && 2388 "Not a sizeof/alignof/vec_step expression!"); 2389 Token OpTok = Tok; 2390 ConsumeToken(); 2391 2392 // [C++11] 'sizeof' '...' '(' identifier ')' 2393 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2394 SourceLocation EllipsisLoc = ConsumeToken(); 2395 SourceLocation LParenLoc, RParenLoc; 2396 IdentifierInfo *Name = nullptr; 2397 SourceLocation NameLoc; 2398 if (Tok.is(tok::l_paren)) { 2399 BalancedDelimiterTracker T(*this, tok::l_paren); 2400 T.consumeOpen(); 2401 LParenLoc = T.getOpenLocation(); 2402 if (Tok.is(tok::identifier)) { 2403 Name = Tok.getIdentifierInfo(); 2404 NameLoc = ConsumeToken(); 2405 T.consumeClose(); 2406 RParenLoc = T.getCloseLocation(); 2407 if (RParenLoc.isInvalid()) 2408 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2409 } else { 2410 Diag(Tok, diag::err_expected_parameter_pack); 2411 SkipUntil(tok::r_paren, StopAtSemi); 2412 } 2413 } else if (Tok.is(tok::identifier)) { 2414 Name = Tok.getIdentifierInfo(); 2415 NameLoc = ConsumeToken(); 2416 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2417 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2418 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2419 << Name 2420 << FixItHint::CreateInsertion(LParenLoc, "(") 2421 << FixItHint::CreateInsertion(RParenLoc, ")"); 2422 } else { 2423 Diag(Tok, diag::err_sizeof_parameter_pack); 2424 } 2425 2426 if (!Name) 2427 return ExprError(); 2428 2429 EnterExpressionEvaluationContext Unevaluated( 2430 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2431 Sema::ReuseLambdaContextDecl); 2432 2433 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2434 OpTok.getLocation(), 2435 *Name, NameLoc, 2436 RParenLoc); 2437 } 2438 2439 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2440 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2441 2442 EnterExpressionEvaluationContext Unevaluated( 2443 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2444 Sema::ReuseLambdaContextDecl); 2445 2446 bool isCastExpr; 2447 ParsedType CastTy; 2448 SourceRange CastRange; 2449 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2450 isCastExpr, 2451 CastTy, 2452 CastRange); 2453 2454 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2455 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2456 ExprKind = UETT_AlignOf; 2457 else if (OpTok.is(tok::kw___alignof)) 2458 ExprKind = UETT_PreferredAlignOf; 2459 else if (OpTok.is(tok::kw_vec_step)) 2460 ExprKind = UETT_VecStep; 2461 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align)) 2462 ExprKind = UETT_OpenMPRequiredSimdAlign; 2463 2464 if (isCastExpr) 2465 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2466 ExprKind, 2467 /*IsType=*/true, 2468 CastTy.getAsOpaquePtr(), 2469 CastRange); 2470 2471 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2472 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2473 2474 // If we get here, the operand to the sizeof/alignof was an expression. 2475 if (!Operand.isInvalid()) 2476 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2477 ExprKind, 2478 /*IsType=*/false, 2479 Operand.get(), 2480 CastRange); 2481 return Operand; 2482 } 2483 2484 /// ParseBuiltinPrimaryExpression 2485 /// 2486 /// \verbatim 2487 /// primary-expression: [C99 6.5.1] 2488 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2489 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2490 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2491 /// assign-expr ')' 2492 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2493 /// [GNU] '__builtin_FILE' '(' ')' 2494 /// [GNU] '__builtin_FUNCTION' '(' ')' 2495 /// [GNU] '__builtin_LINE' '(' ')' 2496 /// [CLANG] '__builtin_COLUMN' '(' ')' 2497 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2498 /// 2499 /// [GNU] offsetof-member-designator: 2500 /// [GNU] identifier 2501 /// [GNU] offsetof-member-designator '.' identifier 2502 /// [GNU] offsetof-member-designator '[' expression ']' 2503 /// \endverbatim 2504 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2505 ExprResult Res; 2506 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2507 2508 tok::TokenKind T = Tok.getKind(); 2509 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2510 2511 // All of these start with an open paren. 2512 if (Tok.isNot(tok::l_paren)) 2513 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2514 << tok::l_paren); 2515 2516 BalancedDelimiterTracker PT(*this, tok::l_paren); 2517 PT.consumeOpen(); 2518 2519 // TODO: Build AST. 2520 2521 switch (T) { 2522 default: llvm_unreachable("Not a builtin primary expression!"); 2523 case tok::kw___builtin_va_arg: { 2524 ExprResult Expr(ParseAssignmentExpression()); 2525 2526 if (ExpectAndConsume(tok::comma)) { 2527 SkipUntil(tok::r_paren, StopAtSemi); 2528 Expr = ExprError(); 2529 } 2530 2531 TypeResult Ty = ParseTypeName(); 2532 2533 if (Tok.isNot(tok::r_paren)) { 2534 Diag(Tok, diag::err_expected) << tok::r_paren; 2535 Expr = ExprError(); 2536 } 2537 2538 if (Expr.isInvalid() || Ty.isInvalid()) 2539 Res = ExprError(); 2540 else 2541 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2542 break; 2543 } 2544 case tok::kw___builtin_offsetof: { 2545 SourceLocation TypeLoc = Tok.getLocation(); 2546 TypeResult Ty = ParseTypeName(); 2547 if (Ty.isInvalid()) { 2548 SkipUntil(tok::r_paren, StopAtSemi); 2549 return ExprError(); 2550 } 2551 2552 if (ExpectAndConsume(tok::comma)) { 2553 SkipUntil(tok::r_paren, StopAtSemi); 2554 return ExprError(); 2555 } 2556 2557 // We must have at least one identifier here. 2558 if (Tok.isNot(tok::identifier)) { 2559 Diag(Tok, diag::err_expected) << tok::identifier; 2560 SkipUntil(tok::r_paren, StopAtSemi); 2561 return ExprError(); 2562 } 2563 2564 // Keep track of the various subcomponents we see. 2565 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2566 2567 Comps.push_back(Sema::OffsetOfComponent()); 2568 Comps.back().isBrackets = false; 2569 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2570 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2571 2572 // FIXME: This loop leaks the index expressions on error. 2573 while (1) { 2574 if (Tok.is(tok::period)) { 2575 // offsetof-member-designator: offsetof-member-designator '.' identifier 2576 Comps.push_back(Sema::OffsetOfComponent()); 2577 Comps.back().isBrackets = false; 2578 Comps.back().LocStart = ConsumeToken(); 2579 2580 if (Tok.isNot(tok::identifier)) { 2581 Diag(Tok, diag::err_expected) << tok::identifier; 2582 SkipUntil(tok::r_paren, StopAtSemi); 2583 return ExprError(); 2584 } 2585 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2586 Comps.back().LocEnd = ConsumeToken(); 2587 2588 } else if (Tok.is(tok::l_square)) { 2589 if (CheckProhibitedCXX11Attribute()) 2590 return ExprError(); 2591 2592 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2593 Comps.push_back(Sema::OffsetOfComponent()); 2594 Comps.back().isBrackets = true; 2595 BalancedDelimiterTracker ST(*this, tok::l_square); 2596 ST.consumeOpen(); 2597 Comps.back().LocStart = ST.getOpenLocation(); 2598 Res = ParseExpression(); 2599 if (Res.isInvalid()) { 2600 SkipUntil(tok::r_paren, StopAtSemi); 2601 return Res; 2602 } 2603 Comps.back().U.E = Res.get(); 2604 2605 ST.consumeClose(); 2606 Comps.back().LocEnd = ST.getCloseLocation(); 2607 } else { 2608 if (Tok.isNot(tok::r_paren)) { 2609 PT.consumeClose(); 2610 Res = ExprError(); 2611 } else if (Ty.isInvalid()) { 2612 Res = ExprError(); 2613 } else { 2614 PT.consumeClose(); 2615 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2616 Ty.get(), Comps, 2617 PT.getCloseLocation()); 2618 } 2619 break; 2620 } 2621 } 2622 break; 2623 } 2624 case tok::kw___builtin_choose_expr: { 2625 ExprResult Cond(ParseAssignmentExpression()); 2626 if (Cond.isInvalid()) { 2627 SkipUntil(tok::r_paren, StopAtSemi); 2628 return Cond; 2629 } 2630 if (ExpectAndConsume(tok::comma)) { 2631 SkipUntil(tok::r_paren, StopAtSemi); 2632 return ExprError(); 2633 } 2634 2635 ExprResult Expr1(ParseAssignmentExpression()); 2636 if (Expr1.isInvalid()) { 2637 SkipUntil(tok::r_paren, StopAtSemi); 2638 return Expr1; 2639 } 2640 if (ExpectAndConsume(tok::comma)) { 2641 SkipUntil(tok::r_paren, StopAtSemi); 2642 return ExprError(); 2643 } 2644 2645 ExprResult Expr2(ParseAssignmentExpression()); 2646 if (Expr2.isInvalid()) { 2647 SkipUntil(tok::r_paren, StopAtSemi); 2648 return Expr2; 2649 } 2650 if (Tok.isNot(tok::r_paren)) { 2651 Diag(Tok, diag::err_expected) << tok::r_paren; 2652 return ExprError(); 2653 } 2654 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2655 Expr2.get(), ConsumeParen()); 2656 break; 2657 } 2658 case tok::kw___builtin_astype: { 2659 // The first argument is an expression to be converted, followed by a comma. 2660 ExprResult Expr(ParseAssignmentExpression()); 2661 if (Expr.isInvalid()) { 2662 SkipUntil(tok::r_paren, StopAtSemi); 2663 return ExprError(); 2664 } 2665 2666 if (ExpectAndConsume(tok::comma)) { 2667 SkipUntil(tok::r_paren, StopAtSemi); 2668 return ExprError(); 2669 } 2670 2671 // Second argument is the type to bitcast to. 2672 TypeResult DestTy = ParseTypeName(); 2673 if (DestTy.isInvalid()) 2674 return ExprError(); 2675 2676 // Attempt to consume the r-paren. 2677 if (Tok.isNot(tok::r_paren)) { 2678 Diag(Tok, diag::err_expected) << tok::r_paren; 2679 SkipUntil(tok::r_paren, StopAtSemi); 2680 return ExprError(); 2681 } 2682 2683 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2684 ConsumeParen()); 2685 break; 2686 } 2687 case tok::kw___builtin_convertvector: { 2688 // The first argument is an expression to be converted, followed by a comma. 2689 ExprResult Expr(ParseAssignmentExpression()); 2690 if (Expr.isInvalid()) { 2691 SkipUntil(tok::r_paren, StopAtSemi); 2692 return ExprError(); 2693 } 2694 2695 if (ExpectAndConsume(tok::comma)) { 2696 SkipUntil(tok::r_paren, StopAtSemi); 2697 return ExprError(); 2698 } 2699 2700 // Second argument is the type to bitcast to. 2701 TypeResult DestTy = ParseTypeName(); 2702 if (DestTy.isInvalid()) 2703 return ExprError(); 2704 2705 // Attempt to consume the r-paren. 2706 if (Tok.isNot(tok::r_paren)) { 2707 Diag(Tok, diag::err_expected) << tok::r_paren; 2708 SkipUntil(tok::r_paren, StopAtSemi); 2709 return ExprError(); 2710 } 2711 2712 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2713 ConsumeParen()); 2714 break; 2715 } 2716 case tok::kw___builtin_COLUMN: 2717 case tok::kw___builtin_FILE: 2718 case tok::kw___builtin_FUNCTION: 2719 case tok::kw___builtin_LINE: { 2720 // Attempt to consume the r-paren. 2721 if (Tok.isNot(tok::r_paren)) { 2722 Diag(Tok, diag::err_expected) << tok::r_paren; 2723 SkipUntil(tok::r_paren, StopAtSemi); 2724 return ExprError(); 2725 } 2726 SourceLocExpr::IdentKind Kind = [&] { 2727 switch (T) { 2728 case tok::kw___builtin_FILE: 2729 return SourceLocExpr::File; 2730 case tok::kw___builtin_FUNCTION: 2731 return SourceLocExpr::Function; 2732 case tok::kw___builtin_LINE: 2733 return SourceLocExpr::Line; 2734 case tok::kw___builtin_COLUMN: 2735 return SourceLocExpr::Column; 2736 default: 2737 llvm_unreachable("invalid keyword"); 2738 } 2739 }(); 2740 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2741 break; 2742 } 2743 } 2744 2745 if (Res.isInvalid()) 2746 return ExprError(); 2747 2748 // These can be followed by postfix-expr pieces because they are 2749 // primary-expressions. 2750 return ParsePostfixExpressionSuffix(Res.get()); 2751 } 2752 2753 bool Parser::tryParseOpenMPArrayShapingCastPart() { 2754 assert(Tok.is(tok::l_square) && "Expected open bracket"); 2755 bool ErrorFound = true; 2756 TentativeParsingAction TPA(*this); 2757 do { 2758 if (Tok.isNot(tok::l_square)) 2759 break; 2760 // Consume '[' 2761 ConsumeBracket(); 2762 // Skip inner expression. 2763 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 2764 StopAtSemi | StopBeforeMatch)) 2765 ; 2766 if (Tok.isNot(tok::r_square)) 2767 break; 2768 // Consume ']' 2769 ConsumeBracket(); 2770 // Found ')' - done. 2771 if (Tok.is(tok::r_paren)) { 2772 ErrorFound = false; 2773 break; 2774 } 2775 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 2776 TPA.Revert(); 2777 return !ErrorFound; 2778 } 2779 2780 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2781 /// based on what is allowed by ExprType. The actual thing parsed is returned 2782 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2783 /// not the parsed cast-expression. 2784 /// 2785 /// \verbatim 2786 /// primary-expression: [C99 6.5.1] 2787 /// '(' expression ')' 2788 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2789 /// postfix-expression: [C99 6.5.2] 2790 /// '(' type-name ')' '{' initializer-list '}' 2791 /// '(' type-name ')' '{' initializer-list ',' '}' 2792 /// cast-expression: [C99 6.5.4] 2793 /// '(' type-name ')' cast-expression 2794 /// [ARC] bridged-cast-expression 2795 /// [ARC] bridged-cast-expression: 2796 /// (__bridge type-name) cast-expression 2797 /// (__bridge_transfer type-name) cast-expression 2798 /// (__bridge_retained type-name) cast-expression 2799 /// fold-expression: [C++1z] 2800 /// '(' cast-expression fold-operator '...' ')' 2801 /// '(' '...' fold-operator cast-expression ')' 2802 /// '(' cast-expression fold-operator '...' 2803 /// fold-operator cast-expression ')' 2804 /// [OPENMP] Array shaping operation 2805 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 2806 /// \endverbatim 2807 ExprResult 2808 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2809 bool isTypeCast, ParsedType &CastTy, 2810 SourceLocation &RParenLoc) { 2811 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2812 ColonProtectionRAIIObject ColonProtection(*this, false); 2813 BalancedDelimiterTracker T(*this, tok::l_paren); 2814 if (T.consumeOpen()) 2815 return ExprError(); 2816 SourceLocation OpenLoc = T.getOpenLocation(); 2817 2818 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2819 2820 ExprResult Result(true); 2821 bool isAmbiguousTypeId; 2822 CastTy = nullptr; 2823 2824 if (Tok.is(tok::code_completion)) { 2825 Actions.CodeCompleteExpression( 2826 getCurScope(), PreferredType.get(Tok.getLocation()), 2827 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2828 cutOffParsing(); 2829 return ExprError(); 2830 } 2831 2832 // Diagnose use of bridge casts in non-arc mode. 2833 bool BridgeCast = (getLangOpts().ObjC && 2834 Tok.isOneOf(tok::kw___bridge, 2835 tok::kw___bridge_transfer, 2836 tok::kw___bridge_retained, 2837 tok::kw___bridge_retain)); 2838 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2839 if (!TryConsumeToken(tok::kw___bridge)) { 2840 StringRef BridgeCastName = Tok.getName(); 2841 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2842 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2843 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2844 << BridgeCastName 2845 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2846 } 2847 BridgeCast = false; 2848 } 2849 2850 // None of these cases should fall through with an invalid Result 2851 // unless they've already reported an error. 2852 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2853 Diag(Tok, diag::ext_gnu_statement_expr); 2854 2855 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2856 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2857 } else { 2858 // Find the nearest non-record decl context. Variables declared in a 2859 // statement expression behave as if they were declared in the enclosing 2860 // function, block, or other code construct. 2861 DeclContext *CodeDC = Actions.CurContext; 2862 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2863 CodeDC = CodeDC->getParent(); 2864 assert(CodeDC && !CodeDC->isFileContext() && 2865 "statement expr not in code context"); 2866 } 2867 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2868 2869 Actions.ActOnStartStmtExpr(); 2870 2871 StmtResult Stmt(ParseCompoundStatement(true)); 2872 ExprType = CompoundStmt; 2873 2874 // If the substmt parsed correctly, build the AST node. 2875 if (!Stmt.isInvalid()) { 2876 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 2877 Tok.getLocation()); 2878 } else { 2879 Actions.ActOnStmtExprError(); 2880 } 2881 } 2882 } else if (ExprType >= CompoundLiteral && BridgeCast) { 2883 tok::TokenKind tokenKind = Tok.getKind(); 2884 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2885 2886 // Parse an Objective-C ARC ownership cast expression. 2887 ObjCBridgeCastKind Kind; 2888 if (tokenKind == tok::kw___bridge) 2889 Kind = OBC_Bridge; 2890 else if (tokenKind == tok::kw___bridge_transfer) 2891 Kind = OBC_BridgeTransfer; 2892 else if (tokenKind == tok::kw___bridge_retained) 2893 Kind = OBC_BridgeRetained; 2894 else { 2895 // As a hopefully temporary workaround, allow __bridge_retain as 2896 // a synonym for __bridge_retained, but only in system headers. 2897 assert(tokenKind == tok::kw___bridge_retain); 2898 Kind = OBC_BridgeRetained; 2899 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2900 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 2901 << FixItHint::CreateReplacement(BridgeKeywordLoc, 2902 "__bridge_retained"); 2903 } 2904 2905 TypeResult Ty = ParseTypeName(); 2906 T.consumeClose(); 2907 ColonProtection.restore(); 2908 RParenLoc = T.getCloseLocation(); 2909 2910 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 2911 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 2912 2913 if (Ty.isInvalid() || SubExpr.isInvalid()) 2914 return ExprError(); 2915 2916 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 2917 BridgeKeywordLoc, Ty.get(), 2918 RParenLoc, SubExpr.get()); 2919 } else if (ExprType >= CompoundLiteral && 2920 isTypeIdInParens(isAmbiguousTypeId)) { 2921 2922 // Otherwise, this is a compound literal expression or cast expression. 2923 2924 // In C++, if the type-id is ambiguous we disambiguate based on context. 2925 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 2926 // in which case we should treat it as type-id. 2927 // if stopIfCastExpr is false, we need to determine the context past the 2928 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 2929 if (isAmbiguousTypeId && !stopIfCastExpr) { 2930 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 2931 ColonProtection); 2932 RParenLoc = T.getCloseLocation(); 2933 return res; 2934 } 2935 2936 // Parse the type declarator. 2937 DeclSpec DS(AttrFactory); 2938 ParseSpecifierQualifierList(DS); 2939 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 2940 ParseDeclarator(DeclaratorInfo); 2941 2942 // If our type is followed by an identifier and either ':' or ']', then 2943 // this is probably an Objective-C message send where the leading '[' is 2944 // missing. Recover as if that were the case. 2945 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 2946 !InMessageExpression && getLangOpts().ObjC && 2947 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2948 TypeResult Ty; 2949 { 2950 InMessageExpressionRAIIObject InMessage(*this, false); 2951 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2952 } 2953 Result = ParseObjCMessageExpressionBody(SourceLocation(), 2954 SourceLocation(), 2955 Ty.get(), nullptr); 2956 } else { 2957 // Match the ')'. 2958 T.consumeClose(); 2959 ColonProtection.restore(); 2960 RParenLoc = T.getCloseLocation(); 2961 if (Tok.is(tok::l_brace)) { 2962 ExprType = CompoundLiteral; 2963 TypeResult Ty; 2964 { 2965 InMessageExpressionRAIIObject InMessage(*this, false); 2966 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2967 } 2968 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 2969 } 2970 2971 if (Tok.is(tok::l_paren)) { 2972 // This could be OpenCL vector Literals 2973 if (getLangOpts().OpenCL) 2974 { 2975 TypeResult Ty; 2976 { 2977 InMessageExpressionRAIIObject InMessage(*this, false); 2978 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2979 } 2980 if(Ty.isInvalid()) 2981 { 2982 return ExprError(); 2983 } 2984 QualType QT = Ty.get().get().getCanonicalType(); 2985 if (QT->isVectorType()) 2986 { 2987 // We parsed '(' vector-type-name ')' followed by '(' 2988 2989 // Parse the cast-expression that follows it next. 2990 // isVectorLiteral = true will make sure we don't parse any 2991 // Postfix expression yet 2992 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 2993 /*isAddressOfOperand=*/false, 2994 /*isTypeCast=*/IsTypeCast, 2995 /*isVectorLiteral=*/true); 2996 2997 if (!Result.isInvalid()) { 2998 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2999 DeclaratorInfo, CastTy, 3000 RParenLoc, Result.get()); 3001 } 3002 3003 // After we performed the cast we can check for postfix-expr pieces. 3004 if (!Result.isInvalid()) { 3005 Result = ParsePostfixExpressionSuffix(Result); 3006 } 3007 3008 return Result; 3009 } 3010 } 3011 } 3012 3013 if (ExprType == CastExpr) { 3014 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3015 3016 if (DeclaratorInfo.isInvalidType()) 3017 return ExprError(); 3018 3019 // Note that this doesn't parse the subsequent cast-expression, it just 3020 // returns the parsed type to the callee. 3021 if (stopIfCastExpr) { 3022 TypeResult Ty; 3023 { 3024 InMessageExpressionRAIIObject InMessage(*this, false); 3025 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3026 } 3027 CastTy = Ty.get(); 3028 return ExprResult(); 3029 } 3030 3031 // Reject the cast of super idiom in ObjC. 3032 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3033 Tok.getIdentifierInfo() == Ident_super && 3034 getCurScope()->isInObjcMethodScope() && 3035 GetLookAheadToken(1).isNot(tok::period)) { 3036 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3037 << SourceRange(OpenLoc, RParenLoc); 3038 return ExprError(); 3039 } 3040 3041 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3042 // Parse the cast-expression that follows it next. 3043 // TODO: For cast expression with CastTy. 3044 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3045 /*isAddressOfOperand=*/false, 3046 /*isTypeCast=*/IsTypeCast); 3047 if (!Result.isInvalid()) { 3048 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3049 DeclaratorInfo, CastTy, 3050 RParenLoc, Result.get()); 3051 } 3052 return Result; 3053 } 3054 3055 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3056 return ExprError(); 3057 } 3058 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3059 isFoldOperator(NextToken().getKind())) { 3060 ExprType = FoldExpr; 3061 return ParseFoldExpression(ExprResult(), T); 3062 } else if (isTypeCast) { 3063 // Parse the expression-list. 3064 InMessageExpressionRAIIObject InMessage(*this, false); 3065 3066 ExprVector ArgExprs; 3067 CommaLocsTy CommaLocs; 3068 3069 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) { 3070 // FIXME: If we ever support comma expressions as operands to 3071 // fold-expressions, we'll need to allow multiple ArgExprs here. 3072 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3073 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3074 ExprType = FoldExpr; 3075 return ParseFoldExpression(ArgExprs[0], T); 3076 } 3077 3078 ExprType = SimpleExpr; 3079 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3080 ArgExprs); 3081 } 3082 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3083 ExprType == CastExpr && Tok.is(tok::l_square) && 3084 tryParseOpenMPArrayShapingCastPart()) { 3085 bool ErrorFound = false; 3086 SmallVector<Expr *, 4> OMPDimensions; 3087 SmallVector<SourceRange, 4> OMPBracketsRanges; 3088 do { 3089 BalancedDelimiterTracker TS(*this, tok::l_square); 3090 TS.consumeOpen(); 3091 ExprResult NumElements = 3092 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3093 if (!NumElements.isUsable()) { 3094 ErrorFound = true; 3095 while (!SkipUntil(tok::r_square, tok::r_paren, 3096 StopAtSemi | StopBeforeMatch)) 3097 ; 3098 } 3099 TS.consumeClose(); 3100 OMPDimensions.push_back(NumElements.get()); 3101 OMPBracketsRanges.push_back(TS.getRange()); 3102 } while (Tok.isNot(tok::r_paren)); 3103 // Match the ')'. 3104 T.consumeClose(); 3105 RParenLoc = T.getCloseLocation(); 3106 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3107 if (ErrorFound) { 3108 Result = ExprError(); 3109 } else if (!Result.isInvalid()) { 3110 Result = Actions.ActOnOMPArrayShapingExpr( 3111 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3112 } 3113 return Result; 3114 } else { 3115 InMessageExpressionRAIIObject InMessage(*this, false); 3116 3117 Result = ParseExpression(MaybeTypeCast); 3118 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) { 3119 // Correct typos in non-C++ code earlier so that implicit-cast-like 3120 // expressions are parsed correctly. 3121 Result = Actions.CorrectDelayedTyposInExpr(Result); 3122 } 3123 3124 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3125 NextToken().is(tok::ellipsis)) { 3126 ExprType = FoldExpr; 3127 return ParseFoldExpression(Result, T); 3128 } 3129 ExprType = SimpleExpr; 3130 3131 // Don't build a paren expression unless we actually match a ')'. 3132 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3133 Result = 3134 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3135 } 3136 3137 // Match the ')'. 3138 if (Result.isInvalid()) { 3139 SkipUntil(tok::r_paren, StopAtSemi); 3140 return ExprError(); 3141 } 3142 3143 T.consumeClose(); 3144 RParenLoc = T.getCloseLocation(); 3145 return Result; 3146 } 3147 3148 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3149 /// and we are at the left brace. 3150 /// 3151 /// \verbatim 3152 /// postfix-expression: [C99 6.5.2] 3153 /// '(' type-name ')' '{' initializer-list '}' 3154 /// '(' type-name ')' '{' initializer-list ',' '}' 3155 /// \endverbatim 3156 ExprResult 3157 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3158 SourceLocation LParenLoc, 3159 SourceLocation RParenLoc) { 3160 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3161 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3162 Diag(LParenLoc, diag::ext_c99_compound_literal); 3163 ExprResult Result = ParseInitializer(); 3164 if (!Result.isInvalid() && Ty) 3165 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3166 return Result; 3167 } 3168 3169 /// ParseStringLiteralExpression - This handles the various token types that 3170 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3171 /// translation phase #6]. 3172 /// 3173 /// \verbatim 3174 /// primary-expression: [C99 6.5.1] 3175 /// string-literal 3176 /// \verbatim 3177 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3178 assert(isTokenStringLiteral() && "Not a string literal!"); 3179 3180 // String concat. Note that keywords like __func__ and __FUNCTION__ are not 3181 // considered to be strings for concatenation purposes. 3182 SmallVector<Token, 4> StringToks; 3183 3184 do { 3185 StringToks.push_back(Tok); 3186 ConsumeStringToken(); 3187 } while (isTokenStringLiteral()); 3188 3189 // Pass the set of string tokens, ready for concatenation, to the actions. 3190 return Actions.ActOnStringLiteral(StringToks, 3191 AllowUserDefinedLiteral ? getCurScope() 3192 : nullptr); 3193 } 3194 3195 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3196 /// [C11 6.5.1.1]. 3197 /// 3198 /// \verbatim 3199 /// generic-selection: 3200 /// _Generic ( assignment-expression , generic-assoc-list ) 3201 /// generic-assoc-list: 3202 /// generic-association 3203 /// generic-assoc-list , generic-association 3204 /// generic-association: 3205 /// type-name : assignment-expression 3206 /// default : assignment-expression 3207 /// \endverbatim 3208 ExprResult Parser::ParseGenericSelectionExpression() { 3209 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3210 if (!getLangOpts().C11) 3211 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3212 3213 SourceLocation KeyLoc = ConsumeToken(); 3214 BalancedDelimiterTracker T(*this, tok::l_paren); 3215 if (T.expectAndConsume()) 3216 return ExprError(); 3217 3218 ExprResult ControllingExpr; 3219 { 3220 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3221 // not evaluated." 3222 EnterExpressionEvaluationContext Unevaluated( 3223 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3224 ControllingExpr = 3225 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3226 if (ControllingExpr.isInvalid()) { 3227 SkipUntil(tok::r_paren, StopAtSemi); 3228 return ExprError(); 3229 } 3230 } 3231 3232 if (ExpectAndConsume(tok::comma)) { 3233 SkipUntil(tok::r_paren, StopAtSemi); 3234 return ExprError(); 3235 } 3236 3237 SourceLocation DefaultLoc; 3238 TypeVector Types; 3239 ExprVector Exprs; 3240 do { 3241 ParsedType Ty; 3242 if (Tok.is(tok::kw_default)) { 3243 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3244 // generic association." 3245 if (!DefaultLoc.isInvalid()) { 3246 Diag(Tok, diag::err_duplicate_default_assoc); 3247 Diag(DefaultLoc, diag::note_previous_default_assoc); 3248 SkipUntil(tok::r_paren, StopAtSemi); 3249 return ExprError(); 3250 } 3251 DefaultLoc = ConsumeToken(); 3252 Ty = nullptr; 3253 } else { 3254 ColonProtectionRAIIObject X(*this); 3255 TypeResult TR = ParseTypeName(); 3256 if (TR.isInvalid()) { 3257 SkipUntil(tok::r_paren, StopAtSemi); 3258 return ExprError(); 3259 } 3260 Ty = TR.get(); 3261 } 3262 Types.push_back(Ty); 3263 3264 if (ExpectAndConsume(tok::colon)) { 3265 SkipUntil(tok::r_paren, StopAtSemi); 3266 return ExprError(); 3267 } 3268 3269 // FIXME: These expressions should be parsed in a potentially potentially 3270 // evaluated context. 3271 ExprResult ER( 3272 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3273 if (ER.isInvalid()) { 3274 SkipUntil(tok::r_paren, StopAtSemi); 3275 return ExprError(); 3276 } 3277 Exprs.push_back(ER.get()); 3278 } while (TryConsumeToken(tok::comma)); 3279 3280 T.consumeClose(); 3281 if (T.getCloseLocation().isInvalid()) 3282 return ExprError(); 3283 3284 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 3285 T.getCloseLocation(), 3286 ControllingExpr.get(), 3287 Types, Exprs); 3288 } 3289 3290 /// Parse A C++1z fold-expression after the opening paren and optional 3291 /// left-hand-side expression. 3292 /// 3293 /// \verbatim 3294 /// fold-expression: 3295 /// ( cast-expression fold-operator ... ) 3296 /// ( ... fold-operator cast-expression ) 3297 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3298 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3299 BalancedDelimiterTracker &T) { 3300 if (LHS.isInvalid()) { 3301 T.skipToEnd(); 3302 return true; 3303 } 3304 3305 tok::TokenKind Kind = tok::unknown; 3306 SourceLocation FirstOpLoc; 3307 if (LHS.isUsable()) { 3308 Kind = Tok.getKind(); 3309 assert(isFoldOperator(Kind) && "missing fold-operator"); 3310 FirstOpLoc = ConsumeToken(); 3311 } 3312 3313 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3314 SourceLocation EllipsisLoc = ConsumeToken(); 3315 3316 ExprResult RHS; 3317 if (Tok.isNot(tok::r_paren)) { 3318 if (!isFoldOperator(Tok.getKind())) 3319 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3320 3321 if (Kind != tok::unknown && Tok.getKind() != Kind) 3322 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3323 << SourceRange(FirstOpLoc); 3324 Kind = Tok.getKind(); 3325 ConsumeToken(); 3326 3327 RHS = ParseExpression(); 3328 if (RHS.isInvalid()) { 3329 T.skipToEnd(); 3330 return true; 3331 } 3332 } 3333 3334 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3335 ? diag::warn_cxx14_compat_fold_expression 3336 : diag::ext_fold_expression); 3337 3338 T.consumeClose(); 3339 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind, 3340 EllipsisLoc, RHS.get(), T.getCloseLocation()); 3341 } 3342 3343 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3344 /// 3345 /// \verbatim 3346 /// argument-expression-list: 3347 /// assignment-expression 3348 /// argument-expression-list , assignment-expression 3349 /// 3350 /// [C++] expression-list: 3351 /// [C++] assignment-expression 3352 /// [C++] expression-list , assignment-expression 3353 /// 3354 /// [C++0x] expression-list: 3355 /// [C++0x] initializer-list 3356 /// 3357 /// [C++0x] initializer-list 3358 /// [C++0x] initializer-clause ...[opt] 3359 /// [C++0x] initializer-list , initializer-clause ...[opt] 3360 /// 3361 /// [C++0x] initializer-clause: 3362 /// [C++0x] assignment-expression 3363 /// [C++0x] braced-init-list 3364 /// \endverbatim 3365 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3366 SmallVectorImpl<SourceLocation> &CommaLocs, 3367 llvm::function_ref<void()> ExpressionStarts) { 3368 bool SawError = false; 3369 while (1) { 3370 if (ExpressionStarts) 3371 ExpressionStarts(); 3372 3373 ExprResult Expr; 3374 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3375 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3376 Expr = ParseBraceInitializer(); 3377 } else 3378 Expr = ParseAssignmentExpression(); 3379 3380 if (Tok.is(tok::ellipsis)) 3381 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3382 else if (Tok.is(tok::code_completion)) { 3383 // There's nothing to suggest in here as we parsed a full expression. 3384 // Instead fail and propogate the error since caller might have something 3385 // the suggest, e.g. signature help in function call. Note that this is 3386 // performed before pushing the \p Expr, so that signature help can report 3387 // current argument correctly. 3388 SawError = true; 3389 cutOffParsing(); 3390 break; 3391 } 3392 if (Expr.isInvalid()) { 3393 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3394 SawError = true; 3395 } else { 3396 Exprs.push_back(Expr.get()); 3397 } 3398 3399 if (Tok.isNot(tok::comma)) 3400 break; 3401 // Move to the next argument, remember where the comma was. 3402 Token Comma = Tok; 3403 CommaLocs.push_back(ConsumeToken()); 3404 3405 checkPotentialAngleBracketDelimiter(Comma); 3406 } 3407 if (SawError) { 3408 // Ensure typos get diagnosed when errors were encountered while parsing the 3409 // expression list. 3410 for (auto &E : Exprs) { 3411 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3412 if (Expr.isUsable()) E = Expr.get(); 3413 } 3414 } 3415 return SawError; 3416 } 3417 3418 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3419 /// used for misc language extensions. 3420 /// 3421 /// \verbatim 3422 /// simple-expression-list: 3423 /// assignment-expression 3424 /// simple-expression-list , assignment-expression 3425 /// \endverbatim 3426 bool 3427 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs, 3428 SmallVectorImpl<SourceLocation> &CommaLocs) { 3429 while (1) { 3430 ExprResult Expr = ParseAssignmentExpression(); 3431 if (Expr.isInvalid()) 3432 return true; 3433 3434 Exprs.push_back(Expr.get()); 3435 3436 if (Tok.isNot(tok::comma)) 3437 return false; 3438 3439 // Move to the next argument, remember where the comma was. 3440 Token Comma = Tok; 3441 CommaLocs.push_back(ConsumeToken()); 3442 3443 checkPotentialAngleBracketDelimiter(Comma); 3444 } 3445 } 3446 3447 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3448 /// 3449 /// \verbatim 3450 /// [clang] block-id: 3451 /// [clang] specifier-qualifier-list block-declarator 3452 /// \endverbatim 3453 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3454 if (Tok.is(tok::code_completion)) { 3455 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 3456 return cutOffParsing(); 3457 } 3458 3459 // Parse the specifier-qualifier-list piece. 3460 DeclSpec DS(AttrFactory); 3461 ParseSpecifierQualifierList(DS); 3462 3463 // Parse the block-declarator. 3464 Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext); 3465 DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition); 3466 ParseDeclarator(DeclaratorInfo); 3467 3468 MaybeParseGNUAttributes(DeclaratorInfo); 3469 3470 // Inform sema that we are starting a block. 3471 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3472 } 3473 3474 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3475 /// like ^(int x){ return x+1; } 3476 /// 3477 /// \verbatim 3478 /// block-literal: 3479 /// [clang] '^' block-args[opt] compound-statement 3480 /// [clang] '^' block-id compound-statement 3481 /// [clang] block-args: 3482 /// [clang] '(' parameter-list ')' 3483 /// \endverbatim 3484 ExprResult Parser::ParseBlockLiteralExpression() { 3485 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3486 SourceLocation CaretLoc = ConsumeToken(); 3487 3488 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3489 "block literal parsing"); 3490 3491 // Enter a scope to hold everything within the block. This includes the 3492 // argument decls, decls within the compound expression, etc. This also 3493 // allows determining whether a variable reference inside the block is 3494 // within or outside of the block. 3495 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3496 Scope::CompoundStmtScope | Scope::DeclScope); 3497 3498 // Inform sema that we are starting a block. 3499 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3500 3501 // Parse the return type if present. 3502 DeclSpec DS(AttrFactory); 3503 Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext); 3504 ParamInfo.setFunctionDefinitionKind(FDK_Definition); 3505 // FIXME: Since the return type isn't actually parsed, it can't be used to 3506 // fill ParamInfo with an initial valid range, so do it manually. 3507 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3508 3509 // If this block has arguments, parse them. There is no ambiguity here with 3510 // the expression case, because the expression case requires a parameter list. 3511 if (Tok.is(tok::l_paren)) { 3512 ParseParenDeclarator(ParamInfo); 3513 // Parse the pieces after the identifier as if we had "int(...)". 3514 // SetIdentifier sets the source range end, but in this case we're past 3515 // that location. 3516 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3517 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3518 ParamInfo.SetRangeEnd(Tmp); 3519 if (ParamInfo.isInvalidType()) { 3520 // If there was an error parsing the arguments, they may have 3521 // tried to use ^(x+y) which requires an argument list. Just 3522 // skip the whole block literal. 3523 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3524 return ExprError(); 3525 } 3526 3527 MaybeParseGNUAttributes(ParamInfo); 3528 3529 // Inform sema that we are starting a block. 3530 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3531 } else if (!Tok.is(tok::l_brace)) { 3532 ParseBlockId(CaretLoc); 3533 } else { 3534 // Otherwise, pretend we saw (void). 3535 SourceLocation NoLoc; 3536 ParamInfo.AddTypeInfo( 3537 DeclaratorChunk::getFunction(/*HasProto=*/true, 3538 /*IsAmbiguous=*/false, 3539 /*RParenLoc=*/NoLoc, 3540 /*ArgInfo=*/nullptr, 3541 /*NumParams=*/0, 3542 /*EllipsisLoc=*/NoLoc, 3543 /*RParenLoc=*/NoLoc, 3544 /*RefQualifierIsLvalueRef=*/true, 3545 /*RefQualifierLoc=*/NoLoc, 3546 /*MutableLoc=*/NoLoc, EST_None, 3547 /*ESpecRange=*/SourceRange(), 3548 /*Exceptions=*/nullptr, 3549 /*ExceptionRanges=*/nullptr, 3550 /*NumExceptions=*/0, 3551 /*NoexceptExpr=*/nullptr, 3552 /*ExceptionSpecTokens=*/nullptr, 3553 /*DeclsInPrototype=*/None, CaretLoc, 3554 CaretLoc, ParamInfo), 3555 CaretLoc); 3556 3557 MaybeParseGNUAttributes(ParamInfo); 3558 3559 // Inform sema that we are starting a block. 3560 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3561 } 3562 3563 3564 ExprResult Result(true); 3565 if (!Tok.is(tok::l_brace)) { 3566 // Saw something like: ^expr 3567 Diag(Tok, diag::err_expected_expression); 3568 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3569 return ExprError(); 3570 } 3571 3572 StmtResult Stmt(ParseCompoundStatementBody()); 3573 BlockScope.Exit(); 3574 if (!Stmt.isInvalid()) 3575 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3576 else 3577 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3578 return Result; 3579 } 3580 3581 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3582 /// 3583 /// '__objc_yes' 3584 /// '__objc_no' 3585 ExprResult Parser::ParseObjCBoolLiteral() { 3586 tok::TokenKind Kind = Tok.getKind(); 3587 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3588 } 3589 3590 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3591 /// true if invalid. 3592 static bool CheckAvailabilitySpecList(Parser &P, 3593 ArrayRef<AvailabilitySpec> AvailSpecs) { 3594 llvm::SmallSet<StringRef, 4> Platforms; 3595 bool HasOtherPlatformSpec = false; 3596 bool Valid = true; 3597 for (const auto &Spec : AvailSpecs) { 3598 if (Spec.isOtherPlatformSpec()) { 3599 if (HasOtherPlatformSpec) { 3600 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3601 Valid = false; 3602 } 3603 3604 HasOtherPlatformSpec = true; 3605 continue; 3606 } 3607 3608 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3609 if (!Inserted) { 3610 // Rule out multiple version specs referring to the same platform. 3611 // For example, we emit an error for: 3612 // @available(macos 10.10, macos 10.11, *) 3613 StringRef Platform = Spec.getPlatform(); 3614 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3615 << Spec.getEndLoc() << Platform; 3616 Valid = false; 3617 } 3618 } 3619 3620 if (!HasOtherPlatformSpec) { 3621 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3622 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3623 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3624 return true; 3625 } 3626 3627 return !Valid; 3628 } 3629 3630 /// Parse availability query specification. 3631 /// 3632 /// availability-spec: 3633 /// '*' 3634 /// identifier version-tuple 3635 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3636 if (Tok.is(tok::star)) { 3637 return AvailabilitySpec(ConsumeToken()); 3638 } else { 3639 // Parse the platform name. 3640 if (Tok.is(tok::code_completion)) { 3641 Actions.CodeCompleteAvailabilityPlatformName(); 3642 cutOffParsing(); 3643 return None; 3644 } 3645 if (Tok.isNot(tok::identifier)) { 3646 Diag(Tok, diag::err_avail_query_expected_platform_name); 3647 return None; 3648 } 3649 3650 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3651 SourceRange VersionRange; 3652 VersionTuple Version = ParseVersionTuple(VersionRange); 3653 3654 if (Version.empty()) 3655 return None; 3656 3657 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3658 StringRef Platform = 3659 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3660 3661 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3662 Diag(PlatformIdentifier->Loc, 3663 diag::err_avail_query_unrecognized_platform_name) 3664 << GivenPlatform; 3665 return None; 3666 } 3667 3668 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3669 VersionRange.getEnd()); 3670 } 3671 } 3672 3673 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3674 assert(Tok.is(tok::kw___builtin_available) || 3675 Tok.isObjCAtKeyword(tok::objc_available)); 3676 3677 // Eat the available or __builtin_available. 3678 ConsumeToken(); 3679 3680 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3681 if (Parens.expectAndConsume()) 3682 return ExprError(); 3683 3684 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3685 bool HasError = false; 3686 while (true) { 3687 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3688 if (!Spec) 3689 HasError = true; 3690 else 3691 AvailSpecs.push_back(*Spec); 3692 3693 if (!TryConsumeToken(tok::comma)) 3694 break; 3695 } 3696 3697 if (HasError) { 3698 SkipUntil(tok::r_paren, StopAtSemi); 3699 return ExprError(); 3700 } 3701 3702 CheckAvailabilitySpecList(*this, AvailSpecs); 3703 3704 if (Parens.consumeClose()) 3705 return ExprError(); 3706 3707 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3708 Parens.getCloseLocation()); 3709 } 3710