1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "clang/Lex/LiteralSupport.h" 27 #include "clang/Parse/Parser.h" 28 #include "clang/Parse/RAIIObjectsForParser.h" 29 #include "clang/Sema/DeclSpec.h" 30 #include "clang/Sema/EnterExpressionEvaluationContext.h" 31 #include "clang/Sema/ParsedTemplate.h" 32 #include "clang/Sema/Scope.h" 33 #include "clang/Sema/SemaCUDA.h" 34 #include "clang/Sema/SemaCodeCompletion.h" 35 #include "clang/Sema/SemaObjC.h" 36 #include "clang/Sema/SemaOpenACC.h" 37 #include "clang/Sema/SemaOpenMP.h" 38 #include "clang/Sema/SemaSYCL.h" 39 #include "clang/Sema/TypoCorrection.h" 40 #include "llvm/ADT/SmallVector.h" 41 #include <optional> 42 using namespace clang; 43 44 /// Simple precedence-based parser for binary/ternary operators. 45 /// 46 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 47 /// production. C99 specifies that the LHS of an assignment operator should be 48 /// parsed as a unary-expression, but consistency dictates that it be a 49 /// conditional-expession. In practice, the important thing here is that the 50 /// LHS of an assignment has to be an l-value, which productions between 51 /// unary-expression and conditional-expression don't produce. Because we want 52 /// consistency, we parse the LHS as a conditional-expression, then check for 53 /// l-value-ness in semantic analysis stages. 54 /// 55 /// \verbatim 56 /// pm-expression: [C++ 5.5] 57 /// cast-expression 58 /// pm-expression '.*' cast-expression 59 /// pm-expression '->*' cast-expression 60 /// 61 /// multiplicative-expression: [C99 6.5.5] 62 /// Note: in C++, apply pm-expression instead of cast-expression 63 /// cast-expression 64 /// multiplicative-expression '*' cast-expression 65 /// multiplicative-expression '/' cast-expression 66 /// multiplicative-expression '%' cast-expression 67 /// 68 /// additive-expression: [C99 6.5.6] 69 /// multiplicative-expression 70 /// additive-expression '+' multiplicative-expression 71 /// additive-expression '-' multiplicative-expression 72 /// 73 /// shift-expression: [C99 6.5.7] 74 /// additive-expression 75 /// shift-expression '<<' additive-expression 76 /// shift-expression '>>' additive-expression 77 /// 78 /// compare-expression: [C++20 expr.spaceship] 79 /// shift-expression 80 /// compare-expression '<=>' shift-expression 81 /// 82 /// relational-expression: [C99 6.5.8] 83 /// compare-expression 84 /// relational-expression '<' compare-expression 85 /// relational-expression '>' compare-expression 86 /// relational-expression '<=' compare-expression 87 /// relational-expression '>=' compare-expression 88 /// 89 /// equality-expression: [C99 6.5.9] 90 /// relational-expression 91 /// equality-expression '==' relational-expression 92 /// equality-expression '!=' relational-expression 93 /// 94 /// AND-expression: [C99 6.5.10] 95 /// equality-expression 96 /// AND-expression '&' equality-expression 97 /// 98 /// exclusive-OR-expression: [C99 6.5.11] 99 /// AND-expression 100 /// exclusive-OR-expression '^' AND-expression 101 /// 102 /// inclusive-OR-expression: [C99 6.5.12] 103 /// exclusive-OR-expression 104 /// inclusive-OR-expression '|' exclusive-OR-expression 105 /// 106 /// logical-AND-expression: [C99 6.5.13] 107 /// inclusive-OR-expression 108 /// logical-AND-expression '&&' inclusive-OR-expression 109 /// 110 /// logical-OR-expression: [C99 6.5.14] 111 /// logical-AND-expression 112 /// logical-OR-expression '||' logical-AND-expression 113 /// 114 /// conditional-expression: [C99 6.5.15] 115 /// logical-OR-expression 116 /// logical-OR-expression '?' expression ':' conditional-expression 117 /// [GNU] logical-OR-expression '?' ':' conditional-expression 118 /// [C++] the third operand is an assignment-expression 119 /// 120 /// assignment-expression: [C99 6.5.16] 121 /// conditional-expression 122 /// unary-expression assignment-operator assignment-expression 123 /// [C++] throw-expression [C++ 15] 124 /// 125 /// assignment-operator: one of 126 /// = *= /= %= += -= <<= >>= &= ^= |= 127 /// 128 /// expression: [C99 6.5.17] 129 /// assignment-expression ...[opt] 130 /// expression ',' assignment-expression ...[opt] 131 /// \endverbatim 132 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 133 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 134 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 135 } 136 137 /// This routine is called when the '@' is seen and consumed. 138 /// Current token is an Identifier and is not a 'try'. This 139 /// routine is necessary to disambiguate \@try-statement from, 140 /// for example, \@encode-expression. 141 /// 142 ExprResult 143 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 144 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 145 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 146 } 147 148 /// This routine is called when a leading '__extension__' is seen and 149 /// consumed. This is necessary because the token gets consumed in the 150 /// process of disambiguating between an expression and a declaration. 151 ExprResult 152 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 153 ExprResult LHS(true); 154 { 155 // Silence extension warnings in the sub-expression 156 ExtensionRAIIObject O(Diags); 157 158 LHS = ParseCastExpression(AnyCastExpr); 159 } 160 161 if (!LHS.isInvalid()) 162 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 163 LHS.get()); 164 165 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 166 } 167 168 /// Parse an expr that doesn't include (top-level) commas. 169 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 170 if (Tok.is(tok::code_completion)) { 171 cutOffParsing(); 172 Actions.CodeCompletion().CodeCompleteExpression( 173 getCurScope(), PreferredType.get(Tok.getLocation())); 174 return ExprError(); 175 } 176 177 if (Tok.is(tok::kw_throw)) 178 return ParseThrowExpression(); 179 if (Tok.is(tok::kw_co_yield)) 180 return ParseCoyieldExpression(); 181 182 ExprResult LHS = ParseCastExpression(AnyCastExpr, 183 /*isAddressOfOperand=*/false, 184 isTypeCast); 185 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 186 } 187 188 ExprResult Parser::ParseConditionalExpression() { 189 if (Tok.is(tok::code_completion)) { 190 cutOffParsing(); 191 Actions.CodeCompletion().CodeCompleteExpression( 192 getCurScope(), PreferredType.get(Tok.getLocation())); 193 return ExprError(); 194 } 195 196 ExprResult LHS = ParseCastExpression( 197 AnyCastExpr, /*isAddressOfOperand=*/false, NotTypeCast); 198 return ParseRHSOfBinaryExpression(LHS, prec::Conditional); 199 } 200 201 /// Parse an assignment expression where part of an Objective-C message 202 /// send has already been parsed. 203 /// 204 /// In this case \p LBracLoc indicates the location of the '[' of the message 205 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 206 /// the receiver of the message. 207 /// 208 /// Since this handles full assignment-expression's, it handles postfix 209 /// expressions and other binary operators for these expressions as well. 210 ExprResult 211 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 212 SourceLocation SuperLoc, 213 ParsedType ReceiverType, 214 Expr *ReceiverExpr) { 215 ExprResult R 216 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 217 ReceiverType, ReceiverExpr); 218 R = ParsePostfixExpressionSuffix(R); 219 return ParseRHSOfBinaryExpression(R, prec::Assignment); 220 } 221 222 ExprResult 223 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 224 assert(Actions.ExprEvalContexts.back().Context == 225 Sema::ExpressionEvaluationContext::ConstantEvaluated && 226 "Call this function only if your ExpressionEvaluationContext is " 227 "already ConstantEvaluated"); 228 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 229 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 230 return Actions.ActOnConstantExpression(Res); 231 } 232 233 ExprResult Parser::ParseConstantExpression() { 234 // C++03 [basic.def.odr]p2: 235 // An expression is potentially evaluated unless it appears where an 236 // integral constant expression is required (see 5.19) [...]. 237 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 238 EnterExpressionEvaluationContext ConstantEvaluated( 239 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 240 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 241 } 242 243 ExprResult Parser::ParseArrayBoundExpression() { 244 EnterExpressionEvaluationContext ConstantEvaluated( 245 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 246 // If we parse the bound of a VLA... we parse a non-constant 247 // constant-expression! 248 Actions.ExprEvalContexts.back().InConditionallyConstantEvaluateContext = true; 249 return ParseConstantExpressionInExprEvalContext(NotTypeCast); 250 } 251 252 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 253 EnterExpressionEvaluationContext ConstantEvaluated( 254 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 255 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 256 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 257 return Actions.ActOnCaseExpr(CaseLoc, Res); 258 } 259 260 /// Parse a constraint-expression. 261 /// 262 /// \verbatim 263 /// constraint-expression: C++2a[temp.constr.decl]p1 264 /// logical-or-expression 265 /// \endverbatim 266 ExprResult Parser::ParseConstraintExpression() { 267 EnterExpressionEvaluationContext ConstantEvaluated( 268 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 269 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 270 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 271 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 272 Actions.CorrectDelayedTyposInExpr(Res); 273 return ExprError(); 274 } 275 return Res; 276 } 277 278 /// \brief Parse a constraint-logical-and-expression. 279 /// 280 /// \verbatim 281 /// C++2a[temp.constr.decl]p1 282 /// constraint-logical-and-expression: 283 /// primary-expression 284 /// constraint-logical-and-expression '&&' primary-expression 285 /// 286 /// \endverbatim 287 ExprResult 288 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 289 EnterExpressionEvaluationContext ConstantEvaluated( 290 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 291 bool NotPrimaryExpression = false; 292 auto ParsePrimary = [&] () { 293 ExprResult E = ParseCastExpression(PrimaryExprOnly, 294 /*isAddressOfOperand=*/false, 295 /*isTypeCast=*/NotTypeCast, 296 /*isVectorLiteral=*/false, 297 &NotPrimaryExpression); 298 if (E.isInvalid()) 299 return ExprError(); 300 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 301 E = ParsePostfixExpressionSuffix(E); 302 // Use InclusiveOr, the precedence just after '&&' to not parse the 303 // next arguments to the logical and. 304 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 305 if (!E.isInvalid()) 306 Diag(E.get()->getExprLoc(), 307 Note 308 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 309 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 310 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 311 << FixItHint::CreateInsertion( 312 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 313 << E.get()->getSourceRange(); 314 return E; 315 }; 316 317 if (NotPrimaryExpression || 318 // Check if the following tokens must be a part of a non-primary 319 // expression 320 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 321 /*CPlusPlus11=*/true) > prec::LogicalAnd || 322 // Postfix operators other than '(' (which will be checked for in 323 // CheckConstraintExpression). 324 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 325 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 326 E = RecoverFromNonPrimary(E, /*Note=*/false); 327 if (E.isInvalid()) 328 return ExprError(); 329 NotPrimaryExpression = false; 330 } 331 bool PossibleNonPrimary; 332 bool IsConstraintExpr = 333 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 334 IsTrailingRequiresClause); 335 if (!IsConstraintExpr || PossibleNonPrimary) { 336 // Atomic constraint might be an unparenthesized non-primary expression 337 // (such as a binary operator), in which case we might get here (e.g. in 338 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 339 // the rest of the addition expression). Try to parse the rest of it here. 340 if (PossibleNonPrimary) 341 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 342 Actions.CorrectDelayedTyposInExpr(E); 343 return ExprError(); 344 } 345 return E; 346 }; 347 ExprResult LHS = ParsePrimary(); 348 if (LHS.isInvalid()) 349 return ExprError(); 350 while (Tok.is(tok::ampamp)) { 351 SourceLocation LogicalAndLoc = ConsumeToken(); 352 ExprResult RHS = ParsePrimary(); 353 if (RHS.isInvalid()) { 354 Actions.CorrectDelayedTyposInExpr(LHS); 355 return ExprError(); 356 } 357 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 358 tok::ampamp, LHS.get(), RHS.get()); 359 if (!Op.isUsable()) { 360 Actions.CorrectDelayedTyposInExpr(RHS); 361 Actions.CorrectDelayedTyposInExpr(LHS); 362 return ExprError(); 363 } 364 LHS = Op; 365 } 366 return LHS; 367 } 368 369 /// \brief Parse a constraint-logical-or-expression. 370 /// 371 /// \verbatim 372 /// C++2a[temp.constr.decl]p1 373 /// constraint-logical-or-expression: 374 /// constraint-logical-and-expression 375 /// constraint-logical-or-expression '||' 376 /// constraint-logical-and-expression 377 /// 378 /// \endverbatim 379 ExprResult 380 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 381 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 382 if (!LHS.isUsable()) 383 return ExprError(); 384 while (Tok.is(tok::pipepipe)) { 385 SourceLocation LogicalOrLoc = ConsumeToken(); 386 ExprResult RHS = 387 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 388 if (!RHS.isUsable()) { 389 Actions.CorrectDelayedTyposInExpr(LHS); 390 return ExprError(); 391 } 392 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 393 tok::pipepipe, LHS.get(), RHS.get()); 394 if (!Op.isUsable()) { 395 Actions.CorrectDelayedTyposInExpr(RHS); 396 Actions.CorrectDelayedTyposInExpr(LHS); 397 return ExprError(); 398 } 399 LHS = Op; 400 } 401 return LHS; 402 } 403 404 bool Parser::isNotExpressionStart() { 405 tok::TokenKind K = Tok.getKind(); 406 if (K == tok::l_brace || K == tok::r_brace || 407 K == tok::kw_for || K == tok::kw_while || 408 K == tok::kw_if || K == tok::kw_else || 409 K == tok::kw_goto || K == tok::kw_try) 410 return true; 411 // If this is a decl-specifier, we can't be at the start of an expression. 412 return isKnownToBeDeclarationSpecifier(); 413 } 414 415 bool Parser::isFoldOperator(prec::Level Level) const { 416 return Level > prec::Unknown && Level != prec::Conditional && 417 Level != prec::Spaceship; 418 } 419 420 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 421 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 422 } 423 424 /// Parse a binary expression that starts with \p LHS and has a 425 /// precedence of at least \p MinPrec. 426 ExprResult 427 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 428 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 429 GreaterThanIsOperator, 430 getLangOpts().CPlusPlus11); 431 SourceLocation ColonLoc; 432 433 auto SavedType = PreferredType; 434 while (true) { 435 // Every iteration may rely on a preferred type for the whole expression. 436 PreferredType = SavedType; 437 // If this token has a lower precedence than we are allowed to parse (e.g. 438 // because we are called recursively, or because the token is not a binop), 439 // then we are done! 440 if (NextTokPrec < MinPrec) 441 return LHS; 442 443 // Consume the operator, saving the operator token for error reporting. 444 Token OpToken = Tok; 445 ConsumeToken(); 446 447 if (OpToken.is(tok::caretcaret)) { 448 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 449 } 450 451 // If we're potentially in a template-id, we may now be able to determine 452 // whether we're actually in one or not. 453 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 454 tok::greatergreatergreater) && 455 checkPotentialAngleBracketDelimiter(OpToken)) 456 return ExprError(); 457 458 // Bail out when encountering a comma followed by a token which can't 459 // possibly be the start of an expression. For instance: 460 // int f() { return 1, } 461 // We can't do this before consuming the comma, because 462 // isNotExpressionStart() looks at the token stream. 463 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 464 PP.EnterToken(Tok, /*IsReinject*/true); 465 Tok = OpToken; 466 return LHS; 467 } 468 469 // If the next token is an ellipsis, then this is a fold-expression. Leave 470 // it alone so we can handle it in the paren expression. 471 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 472 // FIXME: We can't check this via lookahead before we consume the token 473 // because that tickles a lexer bug. 474 PP.EnterToken(Tok, /*IsReinject*/true); 475 Tok = OpToken; 476 return LHS; 477 } 478 479 // In Objective-C++, alternative operator tokens can be used as keyword args 480 // in message expressions. Unconsume the token so that it can reinterpreted 481 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 482 // [foo meth:0 and:0]; 483 // [foo not_eq]; 484 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 485 Tok.isOneOf(tok::colon, tok::r_square) && 486 OpToken.getIdentifierInfo() != nullptr) { 487 PP.EnterToken(Tok, /*IsReinject*/true); 488 Tok = OpToken; 489 return LHS; 490 } 491 492 // Special case handling for the ternary operator. 493 ExprResult TernaryMiddle(true); 494 if (NextTokPrec == prec::Conditional) { 495 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 496 // Parse a braced-init-list here for error recovery purposes. 497 SourceLocation BraceLoc = Tok.getLocation(); 498 TernaryMiddle = ParseBraceInitializer(); 499 if (!TernaryMiddle.isInvalid()) { 500 Diag(BraceLoc, diag::err_init_list_bin_op) 501 << /*RHS*/ 1 << PP.getSpelling(OpToken) 502 << Actions.getExprRange(TernaryMiddle.get()); 503 TernaryMiddle = ExprError(); 504 } 505 } else if (Tok.isNot(tok::colon)) { 506 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 507 ColonProtectionRAIIObject X(*this); 508 509 // Handle this production specially: 510 // logical-OR-expression '?' expression ':' conditional-expression 511 // In particular, the RHS of the '?' is 'expression', not 512 // 'logical-OR-expression' as we might expect. 513 TernaryMiddle = ParseExpression(); 514 } else { 515 // Special case handling of "X ? Y : Z" where Y is empty: 516 // logical-OR-expression '?' ':' conditional-expression [GNU] 517 TernaryMiddle = nullptr; 518 Diag(Tok, diag::ext_gnu_conditional_expr); 519 } 520 521 if (TernaryMiddle.isInvalid()) { 522 Actions.CorrectDelayedTyposInExpr(LHS); 523 LHS = ExprError(); 524 TernaryMiddle = nullptr; 525 } 526 527 if (!TryConsumeToken(tok::colon, ColonLoc)) { 528 // Otherwise, we're missing a ':'. Assume that this was a typo that 529 // the user forgot. If we're not in a macro expansion, we can suggest 530 // a fixit hint. If there were two spaces before the current token, 531 // suggest inserting the colon in between them, otherwise insert ": ". 532 SourceLocation FILoc = Tok.getLocation(); 533 const char *FIText = ": "; 534 const SourceManager &SM = PP.getSourceManager(); 535 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 536 assert(FILoc.isFileID()); 537 bool IsInvalid = false; 538 const char *SourcePtr = 539 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 540 if (!IsInvalid && *SourcePtr == ' ') { 541 SourcePtr = 542 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 543 if (!IsInvalid && *SourcePtr == ' ') { 544 FILoc = FILoc.getLocWithOffset(-1); 545 FIText = ":"; 546 } 547 } 548 } 549 550 Diag(Tok, diag::err_expected) 551 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 552 Diag(OpToken, diag::note_matching) << tok::question; 553 ColonLoc = Tok.getLocation(); 554 } 555 } 556 557 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 558 OpToken.getKind()); 559 // Parse another leaf here for the RHS of the operator. 560 // ParseCastExpression works here because all RHS expressions in C have it 561 // as a prefix, at least. However, in C++, an assignment-expression could 562 // be a throw-expression, which is not a valid cast-expression. 563 // Therefore we need some special-casing here. 564 // Also note that the third operand of the conditional operator is 565 // an assignment-expression in C++, and in C++11, we can have a 566 // braced-init-list on the RHS of an assignment. For better diagnostics, 567 // parse as if we were allowed braced-init-lists everywhere, and check that 568 // they only appear on the RHS of assignments later. 569 ExprResult RHS; 570 bool RHSIsInitList = false; 571 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 572 RHS = ParseBraceInitializer(); 573 RHSIsInitList = true; 574 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 575 RHS = ParseAssignmentExpression(); 576 else 577 RHS = ParseCastExpression(AnyCastExpr); 578 579 if (RHS.isInvalid()) { 580 // FIXME: Errors generated by the delayed typo correction should be 581 // printed before errors from parsing the RHS, not after. 582 Actions.CorrectDelayedTyposInExpr(LHS); 583 if (TernaryMiddle.isUsable()) 584 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 585 LHS = ExprError(); 586 } 587 588 // Remember the precedence of this operator and get the precedence of the 589 // operator immediately to the right of the RHS. 590 prec::Level ThisPrec = NextTokPrec; 591 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 592 getLangOpts().CPlusPlus11); 593 594 // Assignment and conditional expressions are right-associative. 595 bool isRightAssoc = ThisPrec == prec::Conditional || 596 ThisPrec == prec::Assignment; 597 598 // Get the precedence of the operator to the right of the RHS. If it binds 599 // more tightly with RHS than we do, evaluate it completely first. 600 if (ThisPrec < NextTokPrec || 601 (ThisPrec == NextTokPrec && isRightAssoc)) { 602 if (!RHS.isInvalid() && RHSIsInitList) { 603 Diag(Tok, diag::err_init_list_bin_op) 604 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 605 RHS = ExprError(); 606 } 607 // If this is left-associative, only parse things on the RHS that bind 608 // more tightly than the current operator. If it is left-associative, it 609 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 610 // A=(B=(C=D)), where each paren is a level of recursion here. 611 // The function takes ownership of the RHS. 612 RHS = ParseRHSOfBinaryExpression(RHS, 613 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 614 RHSIsInitList = false; 615 616 if (RHS.isInvalid()) { 617 // FIXME: Errors generated by the delayed typo correction should be 618 // printed before errors from ParseRHSOfBinaryExpression, not after. 619 Actions.CorrectDelayedTyposInExpr(LHS); 620 if (TernaryMiddle.isUsable()) 621 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 622 LHS = ExprError(); 623 } 624 625 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 626 getLangOpts().CPlusPlus11); 627 } 628 629 if (!RHS.isInvalid() && RHSIsInitList) { 630 if (ThisPrec == prec::Assignment) { 631 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 632 << Actions.getExprRange(RHS.get()); 633 } else if (ColonLoc.isValid()) { 634 Diag(ColonLoc, diag::err_init_list_bin_op) 635 << /*RHS*/1 << ":" 636 << Actions.getExprRange(RHS.get()); 637 LHS = ExprError(); 638 } else { 639 Diag(OpToken, diag::err_init_list_bin_op) 640 << /*RHS*/1 << PP.getSpelling(OpToken) 641 << Actions.getExprRange(RHS.get()); 642 LHS = ExprError(); 643 } 644 } 645 646 ExprResult OrigLHS = LHS; 647 if (!LHS.isInvalid()) { 648 // Combine the LHS and RHS into the LHS (e.g. build AST). 649 if (TernaryMiddle.isInvalid()) { 650 // If we're using '>>' as an operator within a template 651 // argument list (in C++98), suggest the addition of 652 // parentheses so that the code remains well-formed in C++0x. 653 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 654 SuggestParentheses(OpToken.getLocation(), 655 diag::warn_cxx11_right_shift_in_template_arg, 656 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 657 Actions.getExprRange(RHS.get()).getEnd())); 658 659 ExprResult BinOp = 660 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 661 OpToken.getKind(), LHS.get(), RHS.get()); 662 if (BinOp.isInvalid()) 663 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 664 RHS.get()->getEndLoc(), 665 {LHS.get(), RHS.get()}); 666 667 LHS = BinOp; 668 } else { 669 ExprResult CondOp = Actions.ActOnConditionalOp( 670 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 671 RHS.get()); 672 if (CondOp.isInvalid()) { 673 std::vector<clang::Expr *> Args; 674 // TernaryMiddle can be null for the GNU conditional expr extension. 675 if (TernaryMiddle.get()) 676 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 677 else 678 Args = {LHS.get(), RHS.get()}; 679 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 680 RHS.get()->getEndLoc(), Args); 681 } 682 683 LHS = CondOp; 684 } 685 // In this case, ActOnBinOp or ActOnConditionalOp performed the 686 // CorrectDelayedTyposInExpr check. 687 if (!getLangOpts().CPlusPlus) 688 continue; 689 } 690 691 // Ensure potential typos aren't left undiagnosed. 692 if (LHS.isInvalid()) { 693 Actions.CorrectDelayedTyposInExpr(OrigLHS); 694 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 695 Actions.CorrectDelayedTyposInExpr(RHS); 696 } 697 } 698 } 699 700 /// Parse a cast-expression, unary-expression or primary-expression, based 701 /// on \p ExprType. 702 /// 703 /// \p isAddressOfOperand exists because an id-expression that is the 704 /// operand of address-of gets special treatment due to member pointers. 705 /// 706 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 707 bool isAddressOfOperand, 708 TypeCastState isTypeCast, 709 bool isVectorLiteral, 710 bool *NotPrimaryExpression) { 711 bool NotCastExpr; 712 ExprResult Res = ParseCastExpression(ParseKind, 713 isAddressOfOperand, 714 NotCastExpr, 715 isTypeCast, 716 isVectorLiteral, 717 NotPrimaryExpression); 718 if (NotCastExpr) 719 Diag(Tok, diag::err_expected_expression); 720 return Res; 721 } 722 723 namespace { 724 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 725 public: 726 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 727 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 728 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 729 } 730 731 bool ValidateCandidate(const TypoCorrection &candidate) override { 732 NamedDecl *ND = candidate.getCorrectionDecl(); 733 if (!ND) 734 return candidate.isKeyword(); 735 736 if (isa<TypeDecl>(ND)) 737 return WantTypeSpecifiers; 738 739 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 740 return false; 741 742 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 743 return true; 744 745 for (auto *C : candidate) { 746 NamedDecl *ND = C->getUnderlyingDecl(); 747 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 748 return true; 749 } 750 return false; 751 } 752 753 std::unique_ptr<CorrectionCandidateCallback> clone() override { 754 return std::make_unique<CastExpressionIdValidator>(*this); 755 } 756 757 private: 758 Token NextToken; 759 bool AllowNonTypes; 760 }; 761 } 762 763 bool Parser::isRevertibleTypeTrait(const IdentifierInfo *II, 764 tok::TokenKind *Kind) { 765 if (RevertibleTypeTraits.empty()) { 766 // Revertible type trait is a feature for backwards compatibility with older 767 // standard libraries that declare their own structs with the same name as 768 // the builtins listed below. New builtins should NOT be added to this list. 769 #define RTT_JOIN(X, Y) X##Y 770 #define REVERTIBLE_TYPE_TRAIT(Name) \ 771 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] = RTT_JOIN(tok::kw_, Name) 772 773 REVERTIBLE_TYPE_TRAIT(__is_abstract); 774 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 775 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 776 REVERTIBLE_TYPE_TRAIT(__is_array); 777 REVERTIBLE_TYPE_TRAIT(__is_assignable); 778 REVERTIBLE_TYPE_TRAIT(__is_base_of); 779 REVERTIBLE_TYPE_TRAIT(__is_bounded_array); 780 REVERTIBLE_TYPE_TRAIT(__is_class); 781 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 782 REVERTIBLE_TYPE_TRAIT(__is_compound); 783 REVERTIBLE_TYPE_TRAIT(__is_const); 784 REVERTIBLE_TYPE_TRAIT(__is_constructible); 785 REVERTIBLE_TYPE_TRAIT(__is_convertible); 786 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 787 REVERTIBLE_TYPE_TRAIT(__is_destructible); 788 REVERTIBLE_TYPE_TRAIT(__is_empty); 789 REVERTIBLE_TYPE_TRAIT(__is_enum); 790 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 791 REVERTIBLE_TYPE_TRAIT(__is_final); 792 REVERTIBLE_TYPE_TRAIT(__is_function); 793 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 794 REVERTIBLE_TYPE_TRAIT(__is_integral); 795 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 796 REVERTIBLE_TYPE_TRAIT(__is_literal); 797 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 798 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 799 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 800 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 801 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 802 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 803 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 804 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 805 REVERTIBLE_TYPE_TRAIT(__is_nullptr); 806 REVERTIBLE_TYPE_TRAIT(__is_object); 807 REVERTIBLE_TYPE_TRAIT(__is_pod); 808 REVERTIBLE_TYPE_TRAIT(__is_pointer); 809 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 810 REVERTIBLE_TYPE_TRAIT(__is_reference); 811 REVERTIBLE_TYPE_TRAIT(__is_referenceable); 812 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 813 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 814 REVERTIBLE_TYPE_TRAIT(__is_same); 815 REVERTIBLE_TYPE_TRAIT(__is_scalar); 816 REVERTIBLE_TYPE_TRAIT(__is_scoped_enum); 817 REVERTIBLE_TYPE_TRAIT(__is_sealed); 818 REVERTIBLE_TYPE_TRAIT(__is_signed); 819 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 820 REVERTIBLE_TYPE_TRAIT(__is_trivial); 821 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 822 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 823 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 824 REVERTIBLE_TYPE_TRAIT(__is_unbounded_array); 825 REVERTIBLE_TYPE_TRAIT(__is_union); 826 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 827 REVERTIBLE_TYPE_TRAIT(__is_void); 828 REVERTIBLE_TYPE_TRAIT(__is_volatile); 829 REVERTIBLE_TYPE_TRAIT(__reference_binds_to_temporary); 830 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) \ 831 REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait)); 832 #include "clang/Basic/TransformTypeTraits.def" 833 #undef REVERTIBLE_TYPE_TRAIT 834 #undef RTT_JOIN 835 } 836 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known = 837 RevertibleTypeTraits.find(II); 838 if (Known != RevertibleTypeTraits.end()) { 839 if (Kind) 840 *Kind = Known->second; 841 return true; 842 } 843 return false; 844 } 845 846 ExprResult Parser::ParseBuiltinPtrauthTypeDiscriminator() { 847 SourceLocation Loc = ConsumeToken(); 848 849 BalancedDelimiterTracker T(*this, tok::l_paren); 850 if (T.expectAndConsume()) 851 return ExprError(); 852 853 TypeResult Ty = ParseTypeName(); 854 if (Ty.isInvalid()) { 855 SkipUntil(tok::r_paren, StopAtSemi); 856 return ExprError(); 857 } 858 859 SourceLocation EndLoc = Tok.getLocation(); 860 T.consumeClose(); 861 return Actions.ActOnUnaryExprOrTypeTraitExpr( 862 Loc, UETT_PtrAuthTypeDiscriminator, 863 /*isType=*/true, Ty.get().getAsOpaquePtr(), SourceRange(Loc, EndLoc)); 864 } 865 866 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 867 /// a unary-expression. 868 /// 869 /// \p isAddressOfOperand exists because an id-expression that is the operand 870 /// of address-of gets special treatment due to member pointers. NotCastExpr 871 /// is set to true if the token is not the start of a cast-expression, and no 872 /// diagnostic is emitted in this case and no tokens are consumed. 873 /// 874 /// \verbatim 875 /// cast-expression: [C99 6.5.4] 876 /// unary-expression 877 /// '(' type-name ')' cast-expression 878 /// 879 /// unary-expression: [C99 6.5.3] 880 /// postfix-expression 881 /// '++' unary-expression 882 /// '--' unary-expression 883 /// [Coro] 'co_await' cast-expression 884 /// unary-operator cast-expression 885 /// 'sizeof' unary-expression 886 /// 'sizeof' '(' type-name ')' 887 /// [C++11] 'sizeof' '...' '(' identifier ')' 888 /// [GNU] '__alignof' unary-expression 889 /// [GNU] '__alignof' '(' type-name ')' 890 /// [C11] '_Alignof' '(' type-name ')' 891 /// [C++11] 'alignof' '(' type-id ')' 892 /// [GNU] '&&' identifier 893 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 894 /// [C++] new-expression 895 /// [C++] delete-expression 896 /// 897 /// unary-operator: one of 898 /// '&' '*' '+' '-' '~' '!' 899 /// [GNU] '__extension__' '__real' '__imag' 900 /// 901 /// primary-expression: [C99 6.5.1] 902 /// [C99] identifier 903 /// [C++] id-expression 904 /// constant 905 /// string-literal 906 /// [C++] boolean-literal [C++ 2.13.5] 907 /// [C++11] 'nullptr' [C++11 2.14.7] 908 /// [C++11] user-defined-literal 909 /// '(' expression ')' 910 /// [C11] generic-selection 911 /// [C++2a] requires-expression 912 /// '__func__' [C99 6.4.2.2] 913 /// [GNU] '__FUNCTION__' 914 /// [MS] '__FUNCDNAME__' 915 /// [MS] 'L__FUNCTION__' 916 /// [MS] '__FUNCSIG__' 917 /// [MS] 'L__FUNCSIG__' 918 /// [GNU] '__PRETTY_FUNCTION__' 919 /// [GNU] '(' compound-statement ')' 920 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 921 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 922 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 923 /// assign-expr ')' 924 /// [GNU] '__builtin_FILE' '(' ')' 925 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 926 /// [GNU] '__builtin_FUNCTION' '(' ')' 927 /// [MS] '__builtin_FUNCSIG' '(' ')' 928 /// [GNU] '__builtin_LINE' '(' ')' 929 /// [CLANG] '__builtin_COLUMN' '(' ')' 930 /// [GNU] '__builtin_source_location' '(' ')' 931 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 932 /// [GNU] '__null' 933 /// [OBJC] '[' objc-message-expr ']' 934 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 935 /// [OBJC] '\@protocol' '(' identifier ')' 936 /// [OBJC] '\@encode' '(' type-name ')' 937 /// [OBJC] objc-string-literal 938 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 939 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 940 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 941 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 942 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 943 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 944 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 945 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 946 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 947 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 948 /// [C++] 'this' [C++ 9.3.2] 949 /// [G++] unary-type-trait '(' type-id ')' 950 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 951 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 952 /// [clang] '^' block-literal 953 /// 954 /// constant: [C99 6.4.4] 955 /// integer-constant 956 /// floating-constant 957 /// enumeration-constant -> identifier 958 /// character-constant 959 /// 960 /// id-expression: [C++ 5.1] 961 /// unqualified-id 962 /// qualified-id 963 /// 964 /// unqualified-id: [C++ 5.1] 965 /// identifier 966 /// operator-function-id 967 /// conversion-function-id 968 /// '~' class-name 969 /// template-id 970 /// 971 /// new-expression: [C++ 5.3.4] 972 /// '::'[opt] 'new' new-placement[opt] new-type-id 973 /// new-initializer[opt] 974 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 975 /// new-initializer[opt] 976 /// 977 /// delete-expression: [C++ 5.3.5] 978 /// '::'[opt] 'delete' cast-expression 979 /// '::'[opt] 'delete' '[' ']' cast-expression 980 /// 981 /// [GNU/Embarcadero] unary-type-trait: 982 /// '__is_arithmetic' 983 /// '__is_floating_point' 984 /// '__is_integral' 985 /// '__is_lvalue_expr' 986 /// '__is_rvalue_expr' 987 /// '__is_complete_type' 988 /// '__is_void' 989 /// '__is_array' 990 /// '__is_function' 991 /// '__is_reference' 992 /// '__is_lvalue_reference' 993 /// '__is_rvalue_reference' 994 /// '__is_fundamental' 995 /// '__is_object' 996 /// '__is_scalar' 997 /// '__is_compound' 998 /// '__is_pointer' 999 /// '__is_member_object_pointer' 1000 /// '__is_member_function_pointer' 1001 /// '__is_member_pointer' 1002 /// '__is_const' 1003 /// '__is_volatile' 1004 /// '__is_trivial' 1005 /// '__is_standard_layout' 1006 /// '__is_signed' 1007 /// '__is_unsigned' 1008 /// 1009 /// [GNU] unary-type-trait: 1010 /// '__has_nothrow_assign' 1011 /// '__has_nothrow_copy' 1012 /// '__has_nothrow_constructor' 1013 /// '__has_trivial_assign' [TODO] 1014 /// '__has_trivial_copy' [TODO] 1015 /// '__has_trivial_constructor' 1016 /// '__has_trivial_destructor' 1017 /// '__has_virtual_destructor' 1018 /// '__is_abstract' [TODO] 1019 /// '__is_class' 1020 /// '__is_empty' [TODO] 1021 /// '__is_enum' 1022 /// '__is_final' 1023 /// '__is_pod' 1024 /// '__is_polymorphic' 1025 /// '__is_sealed' [MS] 1026 /// '__is_trivial' 1027 /// '__is_union' 1028 /// '__has_unique_object_representations' 1029 /// 1030 /// [Clang] unary-type-trait: 1031 /// '__is_aggregate' 1032 /// '__trivially_copyable' 1033 /// 1034 /// binary-type-trait: 1035 /// [GNU] '__is_base_of' 1036 /// [MS] '__is_convertible_to' 1037 /// '__is_convertible' 1038 /// '__is_same' 1039 /// 1040 /// [Embarcadero] array-type-trait: 1041 /// '__array_rank' 1042 /// '__array_extent' 1043 /// 1044 /// [Embarcadero] expression-trait: 1045 /// '__is_lvalue_expr' 1046 /// '__is_rvalue_expr' 1047 /// \endverbatim 1048 /// 1049 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 1050 bool isAddressOfOperand, 1051 bool &NotCastExpr, 1052 TypeCastState isTypeCast, 1053 bool isVectorLiteral, 1054 bool *NotPrimaryExpression) { 1055 ExprResult Res; 1056 tok::TokenKind SavedKind = Tok.getKind(); 1057 auto SavedType = PreferredType; 1058 NotCastExpr = false; 1059 1060 // Are postfix-expression suffix operators permitted after this 1061 // cast-expression? If not, and we find some, we'll parse them anyway and 1062 // diagnose them. 1063 bool AllowSuffix = true; 1064 1065 // This handles all of cast-expression, unary-expression, postfix-expression, 1066 // and primary-expression. We handle them together like this for efficiency 1067 // and to simplify handling of an expression starting with a '(' token: which 1068 // may be one of a parenthesized expression, cast-expression, compound literal 1069 // expression, or statement expression. 1070 // 1071 // If the parsed tokens consist of a primary-expression, the cases below 1072 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 1073 // to handle the postfix expression suffixes. Cases that cannot be followed 1074 // by postfix exprs should set AllowSuffix to false. 1075 switch (SavedKind) { 1076 case tok::l_paren: { 1077 // If this expression is limited to being a unary-expression, the paren can 1078 // not start a cast expression. 1079 ParenParseOption ParenExprType; 1080 switch (ParseKind) { 1081 case CastParseKind::UnaryExprOnly: 1082 assert(getLangOpts().CPlusPlus && "not possible to get here in C"); 1083 [[fallthrough]]; 1084 case CastParseKind::AnyCastExpr: 1085 ParenExprType = ParenParseOption::CastExpr; 1086 break; 1087 case CastParseKind::PrimaryExprOnly: 1088 ParenExprType = FoldExpr; 1089 break; 1090 } 1091 ParsedType CastTy; 1092 SourceLocation RParenLoc; 1093 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 1094 isTypeCast == IsTypeCast, CastTy, RParenLoc); 1095 1096 // FIXME: What should we do if a vector literal is followed by a 1097 // postfix-expression suffix? Usually postfix operators are permitted on 1098 // literals. 1099 if (isVectorLiteral) 1100 return Res; 1101 1102 switch (ParenExprType) { 1103 case SimpleExpr: break; // Nothing else to do. 1104 case CompoundStmt: break; // Nothing else to do. 1105 case CompoundLiteral: 1106 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 1107 // postfix-expression exist, parse them now. 1108 break; 1109 case CastExpr: 1110 // We have parsed the cast-expression and no postfix-expr pieces are 1111 // following. 1112 return Res; 1113 case FoldExpr: 1114 // We only parsed a fold-expression. There might be postfix-expr pieces 1115 // afterwards; parse them now. 1116 break; 1117 } 1118 1119 break; 1120 } 1121 1122 // primary-expression 1123 case tok::numeric_constant: 1124 case tok::binary_data: 1125 // constant: integer-constant 1126 // constant: floating-constant 1127 1128 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 1129 ConsumeToken(); 1130 break; 1131 1132 case tok::kw_true: 1133 case tok::kw_false: 1134 Res = ParseCXXBoolLiteral(); 1135 break; 1136 1137 case tok::kw___objc_yes: 1138 case tok::kw___objc_no: 1139 Res = ParseObjCBoolLiteral(); 1140 break; 1141 1142 case tok::kw_nullptr: 1143 if (getLangOpts().CPlusPlus) 1144 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1145 else 1146 Diag(Tok, getLangOpts().C23 ? diag::warn_c23_compat_keyword 1147 : diag::ext_c_nullptr) << Tok.getName(); 1148 1149 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1150 break; 1151 1152 case tok::annot_primary_expr: 1153 case tok::annot_overload_set: 1154 Res = getExprAnnotation(Tok); 1155 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set) 1156 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get()); 1157 ConsumeAnnotationToken(); 1158 if (!Res.isInvalid() && Tok.is(tok::less)) 1159 checkPotentialAngleBracket(Res); 1160 break; 1161 1162 case tok::annot_non_type: 1163 case tok::annot_non_type_dependent: 1164 case tok::annot_non_type_undeclared: { 1165 CXXScopeSpec SS; 1166 Token Replacement; 1167 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1168 assert(!Res.isUnset() && 1169 "should not perform typo correction on annotation token"); 1170 break; 1171 } 1172 1173 case tok::annot_embed: { 1174 injectEmbedTokens(); 1175 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1176 isVectorLiteral, NotPrimaryExpression); 1177 } 1178 1179 case tok::kw___super: 1180 case tok::kw_decltype: 1181 // Annotate the token and tail recurse. 1182 if (TryAnnotateTypeOrScopeToken()) 1183 return ExprError(); 1184 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1185 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1186 isVectorLiteral, NotPrimaryExpression); 1187 1188 case tok::identifier: 1189 ParseIdentifier: { // primary-expression: identifier 1190 // unqualified-id: identifier 1191 // constant: enumeration-constant 1192 // Turn a potentially qualified name into a annot_typename or 1193 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1194 if (getLangOpts().CPlusPlus) { 1195 // Avoid the unnecessary parse-time lookup in the common case 1196 // where the syntax forbids a type. 1197 Token Next = NextToken(); 1198 1199 if (Next.is(tok::ellipsis) && Tok.is(tok::identifier) && 1200 GetLookAheadToken(2).is(tok::l_square)) { 1201 // Annotate the token and tail recurse. 1202 // If the token is not annotated, then it might be an expression pack 1203 // indexing 1204 if (!TryAnnotateTypeOrScopeToken() && 1205 Tok.is(tok::annot_pack_indexing_type)) 1206 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1207 isVectorLiteral, NotPrimaryExpression); 1208 } 1209 1210 // If this identifier was reverted from a token ID, and the next token 1211 // is a parenthesis, this is likely to be a use of a type trait. Check 1212 // those tokens. 1213 else if (Next.is(tok::l_paren) && Tok.is(tok::identifier) && 1214 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1215 IdentifierInfo *II = Tok.getIdentifierInfo(); 1216 tok::TokenKind Kind; 1217 if (isRevertibleTypeTrait(II, &Kind)) { 1218 Tok.setKind(Kind); 1219 return ParseCastExpression(ParseKind, isAddressOfOperand, 1220 NotCastExpr, isTypeCast, 1221 isVectorLiteral, NotPrimaryExpression); 1222 } 1223 } 1224 1225 else if ((!ColonIsSacred && Next.is(tok::colon)) || 1226 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1227 tok::l_brace)) { 1228 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1229 if (TryAnnotateTypeOrScopeToken()) 1230 return ExprError(); 1231 if (!Tok.is(tok::identifier)) 1232 return ParseCastExpression(ParseKind, isAddressOfOperand, 1233 NotCastExpr, isTypeCast, 1234 isVectorLiteral, 1235 NotPrimaryExpression); 1236 } 1237 } 1238 1239 // Consume the identifier so that we can see if it is followed by a '(' or 1240 // '.'. 1241 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1242 SourceLocation ILoc = ConsumeToken(); 1243 1244 // Support 'Class.property' and 'super.property' notation. 1245 if (getLangOpts().ObjC && Tok.is(tok::period) && 1246 (Actions.getTypeName(II, ILoc, getCurScope()) || 1247 // Allow the base to be 'super' if in an objc-method. 1248 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1249 ConsumeToken(); 1250 1251 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1252 cutOffParsing(); 1253 Actions.CodeCompletion().CodeCompleteObjCClassPropertyRefExpr( 1254 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1255 return ExprError(); 1256 } 1257 // Allow either an identifier or the keyword 'class' (in C++). 1258 if (Tok.isNot(tok::identifier) && 1259 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1260 Diag(Tok, diag::err_expected_property_name); 1261 return ExprError(); 1262 } 1263 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1264 SourceLocation PropertyLoc = ConsumeToken(); 1265 1266 Res = Actions.ObjC().ActOnClassPropertyRefExpr(II, PropertyName, ILoc, 1267 PropertyLoc); 1268 break; 1269 } 1270 1271 // In an Objective-C method, if we have "super" followed by an identifier, 1272 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1273 // that identifier, this is probably a message send with a missing open 1274 // bracket. Treat it as such. 1275 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1276 getCurScope()->isInObjcMethodScope() && 1277 ((Tok.is(tok::identifier) && 1278 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1279 Tok.is(tok::code_completion))) { 1280 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1281 nullptr); 1282 break; 1283 } 1284 1285 // If we have an Objective-C class name followed by an identifier 1286 // and either ':' or ']', this is an Objective-C class message 1287 // send that's missing the opening '['. Recovery 1288 // appropriately. Also take this path if we're performing code 1289 // completion after an Objective-C class name. 1290 if (getLangOpts().ObjC && 1291 ((Tok.is(tok::identifier) && !InMessageExpression) || 1292 Tok.is(tok::code_completion))) { 1293 const Token& Next = NextToken(); 1294 if (Tok.is(tok::code_completion) || 1295 Next.is(tok::colon) || Next.is(tok::r_square)) 1296 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1297 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1298 // Fake up a Declarator to use with ActOnTypeName. 1299 DeclSpec DS(AttrFactory); 1300 DS.SetRangeStart(ILoc); 1301 DS.SetRangeEnd(ILoc); 1302 const char *PrevSpec = nullptr; 1303 unsigned DiagID; 1304 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1305 Actions.getASTContext().getPrintingPolicy()); 1306 1307 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1308 DeclaratorContext::TypeName); 1309 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo); 1310 if (Ty.isInvalid()) 1311 break; 1312 1313 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1314 SourceLocation(), 1315 Ty.get(), nullptr); 1316 break; 1317 } 1318 } 1319 1320 // Make sure to pass down the right value for isAddressOfOperand. 1321 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1322 isAddressOfOperand = false; 1323 1324 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1325 // need to know whether or not this identifier is a function designator or 1326 // not. 1327 UnqualifiedId Name; 1328 CXXScopeSpec ScopeSpec; 1329 SourceLocation TemplateKWLoc; 1330 Token Replacement; 1331 CastExpressionIdValidator Validator( 1332 /*Next=*/Tok, 1333 /*AllowTypes=*/isTypeCast != NotTypeCast, 1334 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1335 Validator.IsAddressOfOperand = isAddressOfOperand; 1336 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1337 Validator.WantExpressionKeywords = false; 1338 Validator.WantRemainingKeywords = false; 1339 } else { 1340 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1341 } 1342 Name.setIdentifier(&II, ILoc); 1343 Res = Actions.ActOnIdExpression( 1344 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1345 isAddressOfOperand, &Validator, 1346 /*IsInlineAsmIdentifier=*/false, 1347 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1348 if (!Res.isInvalid() && Res.isUnset()) { 1349 UnconsumeToken(Replacement); 1350 return ParseCastExpression(ParseKind, isAddressOfOperand, 1351 NotCastExpr, isTypeCast, 1352 /*isVectorLiteral=*/false, 1353 NotPrimaryExpression); 1354 } 1355 Res = tryParseCXXPackIndexingExpression(Res); 1356 if (!Res.isInvalid() && Tok.is(tok::less)) 1357 checkPotentialAngleBracket(Res); 1358 break; 1359 } 1360 case tok::char_constant: // constant: character-constant 1361 case tok::wide_char_constant: 1362 case tok::utf8_char_constant: 1363 case tok::utf16_char_constant: 1364 case tok::utf32_char_constant: 1365 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1366 ConsumeToken(); 1367 break; 1368 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1369 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1370 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1371 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1372 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1373 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1374 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1375 // Function local predefined macros are represented by PredefinedExpr except 1376 // when Microsoft extensions are enabled and one of these macros is adjacent 1377 // to a string literal or another one of these macros. 1378 if (!(getLangOpts().MicrosoftExt && 1379 tokenIsLikeStringLiteral(Tok, getLangOpts()) && 1380 tokenIsLikeStringLiteral(NextToken(), getLangOpts()))) { 1381 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1382 ConsumeToken(); 1383 break; 1384 } 1385 [[fallthrough]]; // treat MS function local macros as concatenable strings 1386 case tok::string_literal: // primary-expression: string-literal 1387 case tok::wide_string_literal: 1388 case tok::utf8_string_literal: 1389 case tok::utf16_string_literal: 1390 case tok::utf32_string_literal: 1391 Res = ParseStringLiteralExpression(true); 1392 break; 1393 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1394 Res = ParseGenericSelectionExpression(); 1395 break; 1396 case tok::kw___builtin_available: 1397 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1398 break; 1399 case tok::kw___builtin_va_arg: 1400 case tok::kw___builtin_offsetof: 1401 case tok::kw___builtin_choose_expr: 1402 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1403 case tok::kw___builtin_convertvector: 1404 case tok::kw___builtin_COLUMN: 1405 case tok::kw___builtin_FILE: 1406 case tok::kw___builtin_FILE_NAME: 1407 case tok::kw___builtin_FUNCTION: 1408 case tok::kw___builtin_FUNCSIG: 1409 case tok::kw___builtin_LINE: 1410 case tok::kw___builtin_source_location: 1411 if (NotPrimaryExpression) 1412 *NotPrimaryExpression = true; 1413 // This parses the complete suffix; we can return early. 1414 return ParseBuiltinPrimaryExpression(); 1415 case tok::kw___null: 1416 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1417 break; 1418 1419 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1420 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1421 if (NotPrimaryExpression) 1422 *NotPrimaryExpression = true; 1423 // C++ [expr.unary] has: 1424 // unary-expression: 1425 // ++ cast-expression 1426 // -- cast-expression 1427 Token SavedTok = Tok; 1428 ConsumeToken(); 1429 1430 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1431 SavedTok.getLocation()); 1432 // One special case is implicitly handled here: if the preceding tokens are 1433 // an ambiguous cast expression, such as "(T())++", then we recurse to 1434 // determine whether the '++' is prefix or postfix. 1435 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1436 UnaryExprOnly : AnyCastExpr, 1437 /*isAddressOfOperand*/false, NotCastExpr, 1438 NotTypeCast); 1439 if (NotCastExpr) { 1440 // If we return with NotCastExpr = true, we must not consume any tokens, 1441 // so put the token back where we found it. 1442 assert(Res.isInvalid()); 1443 UnconsumeToken(SavedTok); 1444 return ExprError(); 1445 } 1446 if (!Res.isInvalid()) { 1447 Expr *Arg = Res.get(); 1448 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1449 SavedKind, Arg); 1450 if (Res.isInvalid()) 1451 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1452 Arg->getEndLoc(), Arg); 1453 } 1454 return Res; 1455 } 1456 case tok::amp: { // unary-expression: '&' cast-expression 1457 if (NotPrimaryExpression) 1458 *NotPrimaryExpression = true; 1459 // Special treatment because of member pointers 1460 SourceLocation SavedLoc = ConsumeToken(); 1461 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1462 1463 Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true); 1464 if (!Res.isInvalid()) { 1465 Expr *Arg = Res.get(); 1466 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1467 if (Res.isInvalid()) 1468 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1469 Arg); 1470 } 1471 return Res; 1472 } 1473 1474 case tok::star: // unary-expression: '*' cast-expression 1475 case tok::plus: // unary-expression: '+' cast-expression 1476 case tok::minus: // unary-expression: '-' cast-expression 1477 case tok::tilde: // unary-expression: '~' cast-expression 1478 case tok::exclaim: // unary-expression: '!' cast-expression 1479 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1480 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1481 if (NotPrimaryExpression) 1482 *NotPrimaryExpression = true; 1483 SourceLocation SavedLoc = ConsumeToken(); 1484 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1485 Res = ParseCastExpression(AnyCastExpr); 1486 if (!Res.isInvalid()) { 1487 Expr *Arg = Res.get(); 1488 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg, 1489 isAddressOfOperand); 1490 if (Res.isInvalid()) 1491 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1492 } 1493 return Res; 1494 } 1495 1496 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1497 if (NotPrimaryExpression) 1498 *NotPrimaryExpression = true; 1499 SourceLocation CoawaitLoc = ConsumeToken(); 1500 Res = ParseCastExpression(AnyCastExpr); 1501 if (!Res.isInvalid()) 1502 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1503 return Res; 1504 } 1505 1506 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1507 // __extension__ silences extension warnings in the subexpression. 1508 if (NotPrimaryExpression) 1509 *NotPrimaryExpression = true; 1510 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1511 SourceLocation SavedLoc = ConsumeToken(); 1512 Res = ParseCastExpression(AnyCastExpr); 1513 if (!Res.isInvalid()) 1514 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1515 return Res; 1516 } 1517 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1518 diagnoseUseOfC11Keyword(Tok); 1519 [[fallthrough]]; 1520 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1521 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1522 // unary-expression: '__alignof' '(' type-name ')' 1523 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1524 // unary-expression: 'sizeof' '(' type-name ')' 1525 // unary-expression: '__datasizeof' unary-expression 1526 // unary-expression: '__datasizeof' '(' type-name ')' 1527 case tok::kw___datasizeof: 1528 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1529 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1530 case tok::kw___builtin_omp_required_simd_align: 1531 case tok::kw___builtin_vectorelements: 1532 if (NotPrimaryExpression) 1533 *NotPrimaryExpression = true; 1534 AllowSuffix = false; 1535 Res = ParseUnaryExprOrTypeTraitExpression(); 1536 break; 1537 case tok::ampamp: { // unary-expression: '&&' identifier 1538 if (NotPrimaryExpression) 1539 *NotPrimaryExpression = true; 1540 SourceLocation AmpAmpLoc = ConsumeToken(); 1541 if (Tok.isNot(tok::identifier)) 1542 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1543 1544 if (getCurScope()->getFnParent() == nullptr) 1545 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1546 1547 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1548 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1549 Tok.getLocation()); 1550 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1551 ConsumeToken(); 1552 AllowSuffix = false; 1553 break; 1554 } 1555 case tok::kw_const_cast: 1556 case tok::kw_dynamic_cast: 1557 case tok::kw_reinterpret_cast: 1558 case tok::kw_static_cast: 1559 case tok::kw_addrspace_cast: 1560 if (NotPrimaryExpression) 1561 *NotPrimaryExpression = true; 1562 Res = ParseCXXCasts(); 1563 break; 1564 case tok::kw___builtin_bit_cast: 1565 if (NotPrimaryExpression) 1566 *NotPrimaryExpression = true; 1567 Res = ParseBuiltinBitCast(); 1568 break; 1569 case tok::kw_typeid: 1570 if (NotPrimaryExpression) 1571 *NotPrimaryExpression = true; 1572 Res = ParseCXXTypeid(); 1573 break; 1574 case tok::kw___uuidof: 1575 if (NotPrimaryExpression) 1576 *NotPrimaryExpression = true; 1577 Res = ParseCXXUuidof(); 1578 break; 1579 case tok::kw_this: 1580 Res = ParseCXXThis(); 1581 break; 1582 case tok::kw___builtin_sycl_unique_stable_name: 1583 Res = ParseSYCLUniqueStableNameExpression(); 1584 break; 1585 1586 case tok::annot_typename: 1587 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1588 TypeResult Type = getTypeAnnotation(Tok); 1589 1590 // Fake up a Declarator to use with ActOnTypeName. 1591 DeclSpec DS(AttrFactory); 1592 DS.SetRangeStart(Tok.getLocation()); 1593 DS.SetRangeEnd(Tok.getLastLoc()); 1594 1595 const char *PrevSpec = nullptr; 1596 unsigned DiagID; 1597 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1598 PrevSpec, DiagID, Type, 1599 Actions.getASTContext().getPrintingPolicy()); 1600 1601 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1602 DeclaratorContext::TypeName); 1603 TypeResult Ty = Actions.ActOnTypeName(DeclaratorInfo); 1604 if (Ty.isInvalid()) 1605 break; 1606 1607 ConsumeAnnotationToken(); 1608 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1609 Ty.get(), nullptr); 1610 break; 1611 } 1612 [[fallthrough]]; 1613 1614 case tok::annot_decltype: 1615 case tok::annot_pack_indexing_type: 1616 case tok::kw_char: 1617 case tok::kw_wchar_t: 1618 case tok::kw_char8_t: 1619 case tok::kw_char16_t: 1620 case tok::kw_char32_t: 1621 case tok::kw_bool: 1622 case tok::kw_short: 1623 case tok::kw_int: 1624 case tok::kw_long: 1625 case tok::kw___int64: 1626 case tok::kw___int128: 1627 case tok::kw__ExtInt: 1628 case tok::kw__BitInt: 1629 case tok::kw_signed: 1630 case tok::kw_unsigned: 1631 case tok::kw_half: 1632 case tok::kw_float: 1633 case tok::kw_double: 1634 case tok::kw___bf16: 1635 case tok::kw__Float16: 1636 case tok::kw___float128: 1637 case tok::kw___ibm128: 1638 case tok::kw_void: 1639 case tok::kw_auto: 1640 case tok::kw_typename: 1641 case tok::kw_typeof: 1642 case tok::kw___vector: 1643 case tok::kw__Accum: 1644 case tok::kw__Fract: 1645 case tok::kw__Sat: 1646 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1647 #include "clang/Basic/OpenCLImageTypes.def" 1648 { 1649 if (!getLangOpts().CPlusPlus) { 1650 Diag(Tok, diag::err_expected_expression); 1651 return ExprError(); 1652 } 1653 1654 // Everything henceforth is a postfix-expression. 1655 if (NotPrimaryExpression) 1656 *NotPrimaryExpression = true; 1657 1658 if (SavedKind == tok::kw_typename) { 1659 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1660 // typename-specifier braced-init-list 1661 if (TryAnnotateTypeOrScopeToken()) 1662 return ExprError(); 1663 1664 if (!Tok.isSimpleTypeSpecifier(getLangOpts())) 1665 // We are trying to parse a simple-type-specifier but might not get such 1666 // a token after error recovery. 1667 return ExprError(); 1668 } 1669 1670 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1671 // simple-type-specifier braced-init-list 1672 // 1673 DeclSpec DS(AttrFactory); 1674 1675 ParseCXXSimpleTypeSpecifier(DS); 1676 if (Tok.isNot(tok::l_paren) && 1677 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1678 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1679 << DS.getSourceRange()); 1680 1681 if (Tok.is(tok::l_brace)) 1682 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1683 1684 Res = ParseCXXTypeConstructExpression(DS); 1685 break; 1686 } 1687 1688 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1689 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1690 // (We can end up in this situation after tentative parsing.) 1691 if (TryAnnotateTypeOrScopeToken()) 1692 return ExprError(); 1693 if (!Tok.is(tok::annot_cxxscope)) 1694 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1695 isTypeCast, isVectorLiteral, 1696 NotPrimaryExpression); 1697 1698 Token Next = NextToken(); 1699 if (Next.is(tok::annot_template_id)) { 1700 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1701 if (TemplateId->Kind == TNK_Type_template) { 1702 // We have a qualified template-id that we know refers to a 1703 // type, translate it into a type and continue parsing as a 1704 // cast expression. 1705 CXXScopeSpec SS; 1706 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1707 /*ObjectHasErrors=*/false, 1708 /*EnteringContext=*/false); 1709 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1710 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1711 isTypeCast, isVectorLiteral, 1712 NotPrimaryExpression); 1713 } 1714 } 1715 1716 // Parse as an id-expression. 1717 Res = ParseCXXIdExpression(isAddressOfOperand); 1718 break; 1719 } 1720 1721 case tok::annot_template_id: { // [C++] template-id 1722 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1723 if (TemplateId->Kind == TNK_Type_template) { 1724 // We have a template-id that we know refers to a type, 1725 // translate it into a type and continue parsing as a cast 1726 // expression. 1727 CXXScopeSpec SS; 1728 AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes); 1729 return ParseCastExpression(ParseKind, isAddressOfOperand, 1730 NotCastExpr, isTypeCast, isVectorLiteral, 1731 NotPrimaryExpression); 1732 } 1733 1734 // Fall through to treat the template-id as an id-expression. 1735 [[fallthrough]]; 1736 } 1737 1738 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1739 Res = ParseCXXIdExpression(isAddressOfOperand); 1740 break; 1741 1742 case tok::coloncolon: { 1743 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1744 // annotates the token, tail recurse. 1745 if (TryAnnotateTypeOrScopeToken()) 1746 return ExprError(); 1747 if (!Tok.is(tok::coloncolon)) 1748 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1749 isVectorLiteral, NotPrimaryExpression); 1750 1751 // ::new -> [C++] new-expression 1752 // ::delete -> [C++] delete-expression 1753 SourceLocation CCLoc = ConsumeToken(); 1754 if (Tok.is(tok::kw_new)) { 1755 if (NotPrimaryExpression) 1756 *NotPrimaryExpression = true; 1757 Res = ParseCXXNewExpression(true, CCLoc); 1758 AllowSuffix = false; 1759 break; 1760 } 1761 if (Tok.is(tok::kw_delete)) { 1762 if (NotPrimaryExpression) 1763 *NotPrimaryExpression = true; 1764 Res = ParseCXXDeleteExpression(true, CCLoc); 1765 AllowSuffix = false; 1766 break; 1767 } 1768 1769 // This is not a type name or scope specifier, it is an invalid expression. 1770 Diag(CCLoc, diag::err_expected_expression); 1771 return ExprError(); 1772 } 1773 1774 case tok::kw_new: // [C++] new-expression 1775 if (NotPrimaryExpression) 1776 *NotPrimaryExpression = true; 1777 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1778 AllowSuffix = false; 1779 break; 1780 1781 case tok::kw_delete: // [C++] delete-expression 1782 if (NotPrimaryExpression) 1783 *NotPrimaryExpression = true; 1784 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1785 AllowSuffix = false; 1786 break; 1787 1788 case tok::kw_requires: // [C++2a] requires-expression 1789 Res = ParseRequiresExpression(); 1790 AllowSuffix = false; 1791 break; 1792 1793 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1794 if (NotPrimaryExpression) 1795 *NotPrimaryExpression = true; 1796 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1797 SourceLocation KeyLoc = ConsumeToken(); 1798 BalancedDelimiterTracker T(*this, tok::l_paren); 1799 1800 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1801 return ExprError(); 1802 // C++11 [expr.unary.noexcept]p1: 1803 // The noexcept operator determines whether the evaluation of its operand, 1804 // which is an unevaluated operand, can throw an exception. 1805 EnterExpressionEvaluationContext Unevaluated( 1806 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1807 Res = ParseExpression(); 1808 1809 T.consumeClose(); 1810 1811 if (!Res.isInvalid()) 1812 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1813 T.getCloseLocation()); 1814 AllowSuffix = false; 1815 break; 1816 } 1817 1818 #define TYPE_TRAIT(N,Spelling,K) \ 1819 case tok::kw_##Spelling: 1820 #include "clang/Basic/TokenKinds.def" 1821 Res = ParseTypeTrait(); 1822 break; 1823 1824 case tok::kw___array_rank: 1825 case tok::kw___array_extent: 1826 if (NotPrimaryExpression) 1827 *NotPrimaryExpression = true; 1828 Res = ParseArrayTypeTrait(); 1829 break; 1830 1831 case tok::kw___builtin_ptrauth_type_discriminator: 1832 return ParseBuiltinPtrauthTypeDiscriminator(); 1833 1834 case tok::kw___is_lvalue_expr: 1835 case tok::kw___is_rvalue_expr: 1836 if (NotPrimaryExpression) 1837 *NotPrimaryExpression = true; 1838 Res = ParseExpressionTrait(); 1839 break; 1840 1841 case tok::at: { 1842 if (NotPrimaryExpression) 1843 *NotPrimaryExpression = true; 1844 SourceLocation AtLoc = ConsumeToken(); 1845 return ParseObjCAtExpression(AtLoc); 1846 } 1847 case tok::caret: 1848 Res = ParseBlockLiteralExpression(); 1849 break; 1850 case tok::code_completion: { 1851 cutOffParsing(); 1852 Actions.CodeCompletion().CodeCompleteExpression( 1853 getCurScope(), PreferredType.get(Tok.getLocation())); 1854 return ExprError(); 1855 } 1856 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: 1857 #include "clang/Basic/TransformTypeTraits.def" 1858 // HACK: libstdc++ uses some of the transform-type-traits as alias 1859 // templates, so we need to work around this. 1860 if (!NextToken().is(tok::l_paren)) { 1861 Tok.setKind(tok::identifier); 1862 Diag(Tok, diag::ext_keyword_as_ident) 1863 << Tok.getIdentifierInfo()->getName() << 0; 1864 goto ParseIdentifier; 1865 } 1866 goto ExpectedExpression; 1867 case tok::l_square: 1868 if (getLangOpts().CPlusPlus) { 1869 if (getLangOpts().ObjC) { 1870 // C++11 lambda expressions and Objective-C message sends both start with a 1871 // square bracket. There are three possibilities here: 1872 // we have a valid lambda expression, we have an invalid lambda 1873 // expression, or we have something that doesn't appear to be a lambda. 1874 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1875 Res = TryParseLambdaExpression(); 1876 if (!Res.isInvalid() && !Res.get()) { 1877 // We assume Objective-C++ message expressions are not 1878 // primary-expressions. 1879 if (NotPrimaryExpression) 1880 *NotPrimaryExpression = true; 1881 Res = ParseObjCMessageExpression(); 1882 } 1883 break; 1884 } 1885 Res = ParseLambdaExpression(); 1886 break; 1887 } 1888 if (getLangOpts().ObjC) { 1889 Res = ParseObjCMessageExpression(); 1890 break; 1891 } 1892 [[fallthrough]]; 1893 default: 1894 ExpectedExpression: 1895 NotCastExpr = true; 1896 return ExprError(); 1897 } 1898 1899 // Check to see whether Res is a function designator only. If it is and we 1900 // are compiling for OpenCL, we need to return an error as this implies 1901 // that the address of the function is being taken, which is illegal in CL. 1902 1903 if (ParseKind == PrimaryExprOnly) 1904 // This is strictly a primary-expression - no postfix-expr pieces should be 1905 // parsed. 1906 return Res; 1907 1908 if (!AllowSuffix) { 1909 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1910 // error already. 1911 if (Res.isInvalid()) 1912 return Res; 1913 1914 switch (Tok.getKind()) { 1915 case tok::l_square: 1916 case tok::l_paren: 1917 case tok::plusplus: 1918 case tok::minusminus: 1919 // "expected ';'" or similar is probably the right diagnostic here. Let 1920 // the caller decide what to do. 1921 if (Tok.isAtStartOfLine()) 1922 return Res; 1923 1924 [[fallthrough]]; 1925 case tok::period: 1926 case tok::arrow: 1927 break; 1928 1929 default: 1930 return Res; 1931 } 1932 1933 // This was a unary-expression for which a postfix-expression suffix is 1934 // not permitted by the grammar (eg, a sizeof expression or 1935 // new-expression or similar). Diagnose but parse the suffix anyway. 1936 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1937 << Tok.getKind() << Res.get()->getSourceRange() 1938 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1939 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1940 ")"); 1941 } 1942 1943 // These can be followed by postfix-expr pieces. 1944 PreferredType = SavedType; 1945 Res = ParsePostfixExpressionSuffix(Res); 1946 if (getLangOpts().OpenCL && 1947 !getActions().getOpenCLOptions().isAvailableOption( 1948 "__cl_clang_function_pointers", getLangOpts())) 1949 if (Expr *PostfixExpr = Res.get()) { 1950 QualType Ty = PostfixExpr->getType(); 1951 if (!Ty.isNull() && Ty->isFunctionType()) { 1952 Diag(PostfixExpr->getExprLoc(), 1953 diag::err_opencl_taking_function_address_parser); 1954 return ExprError(); 1955 } 1956 } 1957 1958 return Res; 1959 } 1960 1961 /// Once the leading part of a postfix-expression is parsed, this 1962 /// method parses any suffixes that apply. 1963 /// 1964 /// \verbatim 1965 /// postfix-expression: [C99 6.5.2] 1966 /// primary-expression 1967 /// postfix-expression '[' expression ']' 1968 /// postfix-expression '[' braced-init-list ']' 1969 /// postfix-expression '[' expression-list [opt] ']' [C++23 12.4.5] 1970 /// postfix-expression '(' argument-expression-list[opt] ')' 1971 /// postfix-expression '.' identifier 1972 /// postfix-expression '->' identifier 1973 /// postfix-expression '++' 1974 /// postfix-expression '--' 1975 /// '(' type-name ')' '{' initializer-list '}' 1976 /// '(' type-name ')' '{' initializer-list ',' '}' 1977 /// 1978 /// argument-expression-list: [C99 6.5.2] 1979 /// argument-expression ...[opt] 1980 /// argument-expression-list ',' assignment-expression ...[opt] 1981 /// \endverbatim 1982 ExprResult 1983 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1984 // Now that the primary-expression piece of the postfix-expression has been 1985 // parsed, see if there are any postfix-expression pieces here. 1986 SourceLocation Loc; 1987 auto SavedType = PreferredType; 1988 while (true) { 1989 // Each iteration relies on preferred type for the whole expression. 1990 PreferredType = SavedType; 1991 switch (Tok.getKind()) { 1992 case tok::code_completion: 1993 if (InMessageExpression) 1994 return LHS; 1995 1996 cutOffParsing(); 1997 Actions.CodeCompletion().CodeCompletePostfixExpression( 1998 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1999 return ExprError(); 2000 2001 case tok::identifier: 2002 // If we see identifier: after an expression, and we're not already in a 2003 // message send, then this is probably a message send with a missing 2004 // opening bracket '['. 2005 if (getLangOpts().ObjC && !InMessageExpression && 2006 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2007 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 2008 nullptr, LHS.get()); 2009 break; 2010 } 2011 // Fall through; this isn't a message send. 2012 [[fallthrough]]; 2013 2014 default: // Not a postfix-expression suffix. 2015 return LHS; 2016 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 2017 // If we have a array postfix expression that starts on a new line and 2018 // Objective-C is enabled, it is highly likely that the user forgot a 2019 // semicolon after the base expression and that the array postfix-expr is 2020 // actually another message send. In this case, do some look-ahead to see 2021 // if the contents of the square brackets are obviously not a valid 2022 // expression and recover by pretending there is no suffix. 2023 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 2024 isSimpleObjCMessageExpression()) 2025 return LHS; 2026 2027 // Reject array indices starting with a lambda-expression. '[[' is 2028 // reserved for attributes. 2029 if (CheckProhibitedCXX11Attribute()) { 2030 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2031 return ExprError(); 2032 } 2033 BalancedDelimiterTracker T(*this, tok::l_square); 2034 T.consumeOpen(); 2035 Loc = T.getOpenLocation(); 2036 ExprResult Length, Stride; 2037 SourceLocation ColonLocFirst, ColonLocSecond; 2038 ExprVector ArgExprs; 2039 bool HasError = false; 2040 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 2041 2042 // We try to parse a list of indexes in all language mode first 2043 // and, in we find 0 or one index, we try to parse an OpenMP/OpenACC array 2044 // section. This allow us to support C++23 multi dimensional subscript and 2045 // OpenMP/OpenACC sections in the same language mode. 2046 if ((!getLangOpts().OpenMP && !AllowOpenACCArraySections) || 2047 Tok.isNot(tok::colon)) { 2048 if (!getLangOpts().CPlusPlus23) { 2049 ExprResult Idx; 2050 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 2051 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 2052 Idx = ParseBraceInitializer(); 2053 } else { 2054 Idx = ParseExpression(); // May be a comma expression 2055 } 2056 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2057 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 2058 if (Idx.isInvalid()) { 2059 HasError = true; 2060 } else { 2061 ArgExprs.push_back(Idx.get()); 2062 } 2063 } else if (Tok.isNot(tok::r_square)) { 2064 if (ParseExpressionList(ArgExprs)) { 2065 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2066 HasError = true; 2067 } 2068 } 2069 } 2070 2071 // Handle OpenACC first, since 'AllowOpenACCArraySections' is only enabled 2072 // when actively parsing a 'var' in a 'var-list' during clause/'cache' 2073 // parsing, so it is the most specific, and best allows us to handle 2074 // OpenACC and OpenMP at the same time. 2075 if (ArgExprs.size() <= 1 && AllowOpenACCArraySections) { 2076 ColonProtectionRAIIObject RAII(*this); 2077 if (Tok.is(tok::colon)) { 2078 // Consume ':' 2079 ColonLocFirst = ConsumeToken(); 2080 if (Tok.isNot(tok::r_square)) 2081 Length = Actions.CorrectDelayedTyposInExpr(ParseExpression()); 2082 } 2083 } else if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) { 2084 ColonProtectionRAIIObject RAII(*this); 2085 if (Tok.is(tok::colon)) { 2086 // Consume ':' 2087 ColonLocFirst = ConsumeToken(); 2088 if (Tok.isNot(tok::r_square) && 2089 (getLangOpts().OpenMP < 50 || 2090 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) { 2091 Length = ParseExpression(); 2092 Length = Actions.CorrectDelayedTyposInExpr(Length); 2093 } 2094 } 2095 if (getLangOpts().OpenMP >= 50 && 2096 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 2097 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 2098 Tok.is(tok::colon)) { 2099 // Consume ':' 2100 ColonLocSecond = ConsumeToken(); 2101 if (Tok.isNot(tok::r_square)) { 2102 Stride = ParseExpression(); 2103 } 2104 } 2105 } 2106 2107 SourceLocation RLoc = Tok.getLocation(); 2108 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 2109 2110 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() && 2111 !Stride.isInvalid() && Tok.is(tok::r_square)) { 2112 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 2113 // Like above, AllowOpenACCArraySections is 'more specific' and only 2114 // enabled when actively parsing a 'var' in a 'var-list' during 2115 // clause/'cache' construct parsing, so it is more specific. So we 2116 // should do it first, so that the correct node gets created. 2117 if (AllowOpenACCArraySections) { 2118 assert(!Stride.isUsable() && !ColonLocSecond.isValid() && 2119 "Stride/second colon not allowed for OpenACC"); 2120 LHS = Actions.OpenACC().ActOnArraySectionExpr( 2121 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 2122 ColonLocFirst, Length.get(), RLoc); 2123 } else { 2124 LHS = Actions.OpenMP().ActOnOMPArraySectionExpr( 2125 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 2126 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), 2127 RLoc); 2128 } 2129 } else { 2130 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 2131 ArgExprs, RLoc); 2132 } 2133 } else { 2134 LHS = ExprError(); 2135 } 2136 2137 // Match the ']'. 2138 T.consumeClose(); 2139 break; 2140 } 2141 2142 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 2143 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 2144 // '(' argument-expression-list[opt] ')' 2145 tok::TokenKind OpKind = Tok.getKind(); 2146 InMessageExpressionRAIIObject InMessage(*this, false); 2147 2148 Expr *ExecConfig = nullptr; 2149 2150 BalancedDelimiterTracker PT(*this, tok::l_paren); 2151 2152 if (OpKind == tok::lesslessless) { 2153 ExprVector ExecConfigExprs; 2154 SourceLocation OpenLoc = ConsumeToken(); 2155 2156 if (ParseSimpleExpressionList(ExecConfigExprs)) { 2157 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2158 LHS = ExprError(); 2159 } 2160 2161 SourceLocation CloseLoc; 2162 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 2163 } else if (LHS.isInvalid()) { 2164 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2165 } else { 2166 // There was an error closing the brackets 2167 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 2168 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 2169 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2170 LHS = ExprError(); 2171 } 2172 2173 if (!LHS.isInvalid()) { 2174 if (ExpectAndConsume(tok::l_paren)) 2175 LHS = ExprError(); 2176 else 2177 Loc = PrevTokLocation; 2178 } 2179 2180 if (!LHS.isInvalid()) { 2181 ExprResult ECResult = Actions.CUDA().ActOnExecConfigExpr( 2182 getCurScope(), OpenLoc, ExecConfigExprs, CloseLoc); 2183 if (ECResult.isInvalid()) 2184 LHS = ExprError(); 2185 else 2186 ExecConfig = ECResult.get(); 2187 } 2188 } else { 2189 PT.consumeOpen(); 2190 Loc = PT.getOpenLocation(); 2191 } 2192 2193 ExprVector ArgExprs; 2194 auto RunSignatureHelp = [&]() -> QualType { 2195 QualType PreferredType = 2196 Actions.CodeCompletion().ProduceCallSignatureHelp( 2197 LHS.get(), ArgExprs, PT.getOpenLocation()); 2198 CalledSignatureHelp = true; 2199 return PreferredType; 2200 }; 2201 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2202 if (Tok.isNot(tok::r_paren)) { 2203 if (ParseExpressionList(ArgExprs, [&] { 2204 PreferredType.enterFunctionArgument(Tok.getLocation(), 2205 RunSignatureHelp); 2206 })) { 2207 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2208 // If we got an error when parsing expression list, we don't call 2209 // the CodeCompleteCall handler inside the parser. So call it here 2210 // to make sure we get overload suggestions even when we are in the 2211 // middle of a parameter. 2212 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2213 RunSignatureHelp(); 2214 LHS = ExprError(); 2215 } else if (LHS.isInvalid()) { 2216 for (auto &E : ArgExprs) 2217 Actions.CorrectDelayedTyposInExpr(E); 2218 } 2219 } 2220 } 2221 2222 // Match the ')'. 2223 if (LHS.isInvalid()) { 2224 SkipUntil(tok::r_paren, StopAtSemi); 2225 } else if (Tok.isNot(tok::r_paren)) { 2226 bool HadDelayedTypo = false; 2227 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2228 HadDelayedTypo = true; 2229 for (auto &E : ArgExprs) 2230 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2231 HadDelayedTypo = true; 2232 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2233 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2234 // the unmatched l_paren. 2235 if (HadDelayedTypo) 2236 SkipUntil(tok::r_paren, StopAtSemi); 2237 else 2238 PT.consumeClose(); 2239 LHS = ExprError(); 2240 } else { 2241 Expr *Fn = LHS.get(); 2242 SourceLocation RParLoc = Tok.getLocation(); 2243 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2244 ExecConfig); 2245 if (LHS.isInvalid()) { 2246 ArgExprs.insert(ArgExprs.begin(), Fn); 2247 LHS = 2248 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2249 } 2250 PT.consumeClose(); 2251 } 2252 2253 break; 2254 } 2255 case tok::arrow: 2256 case tok::period: { 2257 // postfix-expression: p-e '->' template[opt] id-expression 2258 // postfix-expression: p-e '.' template[opt] id-expression 2259 tok::TokenKind OpKind = Tok.getKind(); 2260 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2261 2262 CXXScopeSpec SS; 2263 ParsedType ObjectType; 2264 bool MayBePseudoDestructor = false; 2265 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2266 2267 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2268 2269 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2270 Expr *Base = OrigLHS; 2271 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2272 if (BaseType && Tok.is(tok::l_paren) && 2273 (BaseType->isFunctionType() || 2274 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2275 Diag(OpLoc, diag::err_function_is_not_record) 2276 << OpKind << Base->getSourceRange() 2277 << FixItHint::CreateRemoval(OpLoc); 2278 return ParsePostfixExpressionSuffix(Base); 2279 } 2280 2281 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2282 OpKind, ObjectType, 2283 MayBePseudoDestructor); 2284 if (LHS.isInvalid()) { 2285 // Clang will try to perform expression based completion as a 2286 // fallback, which is confusing in case of member references. So we 2287 // stop here without any completions. 2288 if (Tok.is(tok::code_completion)) { 2289 cutOffParsing(); 2290 return ExprError(); 2291 } 2292 break; 2293 } 2294 ParseOptionalCXXScopeSpecifier( 2295 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2296 /*EnteringContext=*/false, &MayBePseudoDestructor); 2297 if (SS.isNotEmpty()) 2298 ObjectType = nullptr; 2299 } 2300 2301 if (Tok.is(tok::code_completion)) { 2302 tok::TokenKind CorrectedOpKind = 2303 OpKind == tok::arrow ? tok::period : tok::arrow; 2304 ExprResult CorrectedLHS(/*Invalid=*/true); 2305 if (getLangOpts().CPlusPlus && OrigLHS) { 2306 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2307 // hack. 2308 Sema::TentativeAnalysisScope Trap(Actions); 2309 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2310 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2311 MayBePseudoDestructor); 2312 } 2313 2314 Expr *Base = LHS.get(); 2315 Expr *CorrectedBase = CorrectedLHS.get(); 2316 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2317 CorrectedBase = Base; 2318 2319 // Code completion for a member access expression. 2320 cutOffParsing(); 2321 Actions.CodeCompletion().CodeCompleteMemberReferenceExpr( 2322 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2323 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2324 PreferredType.get(Tok.getLocation())); 2325 2326 return ExprError(); 2327 } 2328 2329 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2330 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2331 ObjectType); 2332 break; 2333 } 2334 2335 // Either the action has told us that this cannot be a 2336 // pseudo-destructor expression (based on the type of base 2337 // expression), or we didn't see a '~' in the right place. We 2338 // can still parse a destructor name here, but in that case it 2339 // names a real destructor. 2340 // Allow explicit constructor calls in Microsoft mode. 2341 // FIXME: Add support for explicit call of template constructor. 2342 SourceLocation TemplateKWLoc; 2343 UnqualifiedId Name; 2344 if (getLangOpts().ObjC && OpKind == tok::period && 2345 Tok.is(tok::kw_class)) { 2346 // Objective-C++: 2347 // After a '.' in a member access expression, treat the keyword 2348 // 'class' as if it were an identifier. 2349 // 2350 // This hack allows property access to the 'class' method because it is 2351 // such a common method name. For other C++ keywords that are 2352 // Objective-C method names, one must use the message send syntax. 2353 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2354 SourceLocation Loc = ConsumeToken(); 2355 Name.setIdentifier(Id, Loc); 2356 } else if (ParseUnqualifiedId( 2357 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2358 /*EnteringContext=*/false, 2359 /*AllowDestructorName=*/true, 2360 /*AllowConstructorName=*/ 2361 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2362 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2363 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2364 LHS = ExprError(); 2365 } 2366 2367 if (!LHS.isInvalid()) 2368 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2369 OpKind, SS, TemplateKWLoc, Name, 2370 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2371 : nullptr); 2372 if (!LHS.isInvalid()) { 2373 if (Tok.is(tok::less)) 2374 checkPotentialAngleBracket(LHS); 2375 } else if (OrigLHS && Name.isValid()) { 2376 // Preserve the LHS if the RHS is an invalid member. 2377 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2378 Name.getEndLoc(), {OrigLHS}); 2379 } 2380 break; 2381 } 2382 case tok::plusplus: // postfix-expression: postfix-expression '++' 2383 case tok::minusminus: // postfix-expression: postfix-expression '--' 2384 if (!LHS.isInvalid()) { 2385 Expr *Arg = LHS.get(); 2386 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2387 Tok.getKind(), Arg); 2388 if (LHS.isInvalid()) 2389 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2390 Tok.getLocation(), Arg); 2391 } 2392 ConsumeToken(); 2393 break; 2394 } 2395 } 2396 } 2397 2398 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2399 /// vec_step and we are at the start of an expression or a parenthesized 2400 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2401 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2402 /// 2403 /// \verbatim 2404 /// unary-expression: [C99 6.5.3] 2405 /// 'sizeof' unary-expression 2406 /// 'sizeof' '(' type-name ')' 2407 /// [Clang] '__datasizeof' unary-expression 2408 /// [Clang] '__datasizeof' '(' type-name ')' 2409 /// [GNU] '__alignof' unary-expression 2410 /// [GNU] '__alignof' '(' type-name ')' 2411 /// [C11] '_Alignof' '(' type-name ')' 2412 /// [C++0x] 'alignof' '(' type-id ')' 2413 /// 2414 /// [GNU] typeof-specifier: 2415 /// typeof ( expressions ) 2416 /// typeof ( type-name ) 2417 /// [GNU/C++] typeof unary-expression 2418 /// [C23] typeof-specifier: 2419 /// typeof '(' typeof-specifier-argument ')' 2420 /// typeof_unqual '(' typeof-specifier-argument ')' 2421 /// 2422 /// typeof-specifier-argument: 2423 /// expression 2424 /// type-name 2425 /// 2426 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2427 /// vec_step ( expressions ) 2428 /// vec_step ( type-name ) 2429 /// \endverbatim 2430 ExprResult 2431 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2432 bool &isCastExpr, 2433 ParsedType &CastTy, 2434 SourceRange &CastRange) { 2435 2436 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof, 2437 tok::kw___datasizeof, tok::kw___alignof, tok::kw_alignof, 2438 tok::kw__Alignof, tok::kw_vec_step, 2439 tok::kw___builtin_omp_required_simd_align, 2440 tok::kw___builtin_vectorelements) && 2441 "Not a typeof/sizeof/alignof/vec_step expression!"); 2442 2443 ExprResult Operand; 2444 2445 // If the operand doesn't start with an '(', it must be an expression. 2446 if (Tok.isNot(tok::l_paren)) { 2447 // If construct allows a form without parenthesis, user may forget to put 2448 // pathenthesis around type name. 2449 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2450 tok::kw_alignof, tok::kw__Alignof)) { 2451 if (isTypeIdUnambiguously()) { 2452 DeclSpec DS(AttrFactory); 2453 ParseSpecifierQualifierList(DS); 2454 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 2455 DeclaratorContext::TypeName); 2456 ParseDeclarator(DeclaratorInfo); 2457 2458 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2459 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2460 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) { 2461 Diag(OpTok.getLocation(), 2462 diag::err_expected_parentheses_around_typename) 2463 << OpTok.getName(); 2464 } else { 2465 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2466 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(") 2467 << FixItHint::CreateInsertion(RParenLoc, ")"); 2468 } 2469 isCastExpr = true; 2470 return ExprEmpty(); 2471 } 2472 } 2473 2474 isCastExpr = false; 2475 if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) && 2476 !getLangOpts().CPlusPlus) { 2477 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2478 << tok::l_paren; 2479 return ExprError(); 2480 } 2481 2482 Operand = ParseCastExpression(UnaryExprOnly); 2483 } else { 2484 // If it starts with a '(', we know that it is either a parenthesized 2485 // type-name, or it is a unary-expression that starts with a compound 2486 // literal, or starts with a primary-expression that is a parenthesized 2487 // expression. 2488 ParenParseOption ExprType = CastExpr; 2489 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2490 2491 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2492 false, CastTy, RParenLoc); 2493 CastRange = SourceRange(LParenLoc, RParenLoc); 2494 2495 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2496 // a type. 2497 if (ExprType == CastExpr) { 2498 isCastExpr = true; 2499 return ExprEmpty(); 2500 } 2501 2502 if (getLangOpts().CPlusPlus || 2503 !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) { 2504 // GNU typeof in C requires the expression to be parenthesized. Not so for 2505 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2506 // the start of a unary-expression, but doesn't include any postfix 2507 // pieces. Parse these now if present. 2508 if (!Operand.isInvalid()) 2509 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2510 } 2511 } 2512 2513 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2514 isCastExpr = false; 2515 return Operand; 2516 } 2517 2518 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as 2519 /// a parameter. 2520 ExprResult Parser::ParseSYCLUniqueStableNameExpression() { 2521 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) && 2522 "Not __builtin_sycl_unique_stable_name"); 2523 2524 SourceLocation OpLoc = ConsumeToken(); 2525 BalancedDelimiterTracker T(*this, tok::l_paren); 2526 2527 // __builtin_sycl_unique_stable_name expressions are always parenthesized. 2528 if (T.expectAndConsume(diag::err_expected_lparen_after, 2529 "__builtin_sycl_unique_stable_name")) 2530 return ExprError(); 2531 2532 TypeResult Ty = ParseTypeName(); 2533 2534 if (Ty.isInvalid()) { 2535 T.skipToEnd(); 2536 return ExprError(); 2537 } 2538 2539 if (T.consumeClose()) 2540 return ExprError(); 2541 2542 return Actions.SYCL().ActOnUniqueStableNameExpr( 2543 OpLoc, T.getOpenLocation(), T.getCloseLocation(), Ty.get()); 2544 } 2545 2546 /// Parse a sizeof or alignof expression. 2547 /// 2548 /// \verbatim 2549 /// unary-expression: [C99 6.5.3] 2550 /// 'sizeof' unary-expression 2551 /// 'sizeof' '(' type-name ')' 2552 /// [C++11] 'sizeof' '...' '(' identifier ')' 2553 /// [Clang] '__datasizeof' unary-expression 2554 /// [Clang] '__datasizeof' '(' type-name ')' 2555 /// [GNU] '__alignof' unary-expression 2556 /// [GNU] '__alignof' '(' type-name ')' 2557 /// [C11] '_Alignof' '(' type-name ')' 2558 /// [C++11] 'alignof' '(' type-id ')' 2559 /// \endverbatim 2560 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2561 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___datasizeof, tok::kw___alignof, 2562 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2563 tok::kw___builtin_omp_required_simd_align, 2564 tok::kw___builtin_vectorelements) && 2565 "Not a sizeof/alignof/vec_step expression!"); 2566 Token OpTok = Tok; 2567 ConsumeToken(); 2568 2569 // [C++11] 'sizeof' '...' '(' identifier ')' 2570 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2571 SourceLocation EllipsisLoc = ConsumeToken(); 2572 SourceLocation LParenLoc, RParenLoc; 2573 IdentifierInfo *Name = nullptr; 2574 SourceLocation NameLoc; 2575 if (Tok.is(tok::l_paren)) { 2576 BalancedDelimiterTracker T(*this, tok::l_paren); 2577 T.consumeOpen(); 2578 LParenLoc = T.getOpenLocation(); 2579 if (Tok.is(tok::identifier)) { 2580 Name = Tok.getIdentifierInfo(); 2581 NameLoc = ConsumeToken(); 2582 T.consumeClose(); 2583 RParenLoc = T.getCloseLocation(); 2584 if (RParenLoc.isInvalid()) 2585 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2586 } else { 2587 Diag(Tok, diag::err_expected_parameter_pack); 2588 SkipUntil(tok::r_paren, StopAtSemi); 2589 } 2590 } else if (Tok.is(tok::identifier)) { 2591 Name = Tok.getIdentifierInfo(); 2592 NameLoc = ConsumeToken(); 2593 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2594 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2595 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2596 << Name 2597 << FixItHint::CreateInsertion(LParenLoc, "(") 2598 << FixItHint::CreateInsertion(RParenLoc, ")"); 2599 } else { 2600 Diag(Tok, diag::err_sizeof_parameter_pack); 2601 } 2602 2603 if (!Name) 2604 return ExprError(); 2605 2606 EnterExpressionEvaluationContext Unevaluated( 2607 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2608 Sema::ReuseLambdaContextDecl); 2609 2610 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2611 OpTok.getLocation(), 2612 *Name, NameLoc, 2613 RParenLoc); 2614 } 2615 2616 if (getLangOpts().CPlusPlus && 2617 OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2618 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2619 else if (getLangOpts().C23 && OpTok.is(tok::kw_alignof)) 2620 Diag(OpTok, diag::warn_c23_compat_keyword) << OpTok.getName(); 2621 2622 EnterExpressionEvaluationContext Unevaluated( 2623 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2624 Sema::ReuseLambdaContextDecl); 2625 2626 bool isCastExpr; 2627 ParsedType CastTy; 2628 SourceRange CastRange; 2629 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2630 isCastExpr, 2631 CastTy, 2632 CastRange); 2633 2634 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2635 switch (OpTok.getKind()) { 2636 case tok::kw_alignof: 2637 case tok::kw__Alignof: 2638 ExprKind = UETT_AlignOf; 2639 break; 2640 case tok::kw___alignof: 2641 ExprKind = UETT_PreferredAlignOf; 2642 break; 2643 case tok::kw_vec_step: 2644 ExprKind = UETT_VecStep; 2645 break; 2646 case tok::kw___builtin_omp_required_simd_align: 2647 ExprKind = UETT_OpenMPRequiredSimdAlign; 2648 break; 2649 case tok::kw___datasizeof: 2650 ExprKind = UETT_DataSizeOf; 2651 break; 2652 case tok::kw___builtin_vectorelements: 2653 ExprKind = UETT_VectorElements; 2654 break; 2655 default: 2656 break; 2657 } 2658 2659 if (isCastExpr) 2660 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2661 ExprKind, 2662 /*IsType=*/true, 2663 CastTy.getAsOpaquePtr(), 2664 CastRange); 2665 2666 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2667 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2668 2669 // If we get here, the operand to the sizeof/alignof was an expression. 2670 if (!Operand.isInvalid()) 2671 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2672 ExprKind, 2673 /*IsType=*/false, 2674 Operand.get(), 2675 CastRange); 2676 return Operand; 2677 } 2678 2679 /// ParseBuiltinPrimaryExpression 2680 /// 2681 /// \verbatim 2682 /// primary-expression: [C99 6.5.1] 2683 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2684 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2685 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2686 /// assign-expr ')' 2687 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2688 /// [GNU] '__builtin_FILE' '(' ')' 2689 /// [CLANG] '__builtin_FILE_NAME' '(' ')' 2690 /// [GNU] '__builtin_FUNCTION' '(' ')' 2691 /// [MS] '__builtin_FUNCSIG' '(' ')' 2692 /// [GNU] '__builtin_LINE' '(' ')' 2693 /// [CLANG] '__builtin_COLUMN' '(' ')' 2694 /// [GNU] '__builtin_source_location' '(' ')' 2695 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2696 /// 2697 /// [GNU] offsetof-member-designator: 2698 /// [GNU] identifier 2699 /// [GNU] offsetof-member-designator '.' identifier 2700 /// [GNU] offsetof-member-designator '[' expression ']' 2701 /// \endverbatim 2702 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2703 ExprResult Res; 2704 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2705 2706 tok::TokenKind T = Tok.getKind(); 2707 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2708 2709 // All of these start with an open paren. 2710 if (Tok.isNot(tok::l_paren)) 2711 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2712 << tok::l_paren); 2713 2714 BalancedDelimiterTracker PT(*this, tok::l_paren); 2715 PT.consumeOpen(); 2716 2717 // TODO: Build AST. 2718 2719 switch (T) { 2720 default: llvm_unreachable("Not a builtin primary expression!"); 2721 case tok::kw___builtin_va_arg: { 2722 ExprResult Expr(ParseAssignmentExpression()); 2723 2724 if (ExpectAndConsume(tok::comma)) { 2725 SkipUntil(tok::r_paren, StopAtSemi); 2726 Expr = ExprError(); 2727 } 2728 2729 TypeResult Ty = ParseTypeName(); 2730 2731 if (Tok.isNot(tok::r_paren)) { 2732 Diag(Tok, diag::err_expected) << tok::r_paren; 2733 Expr = ExprError(); 2734 } 2735 2736 if (Expr.isInvalid() || Ty.isInvalid()) 2737 Res = ExprError(); 2738 else 2739 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2740 break; 2741 } 2742 case tok::kw___builtin_offsetof: { 2743 SourceLocation TypeLoc = Tok.getLocation(); 2744 auto OOK = Sema::OffsetOfKind::OOK_Builtin; 2745 if (Tok.getLocation().isMacroID()) { 2746 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics( 2747 Tok.getLocation(), PP.getSourceManager(), getLangOpts()); 2748 if (MacroName == "offsetof") 2749 OOK = Sema::OffsetOfKind::OOK_Macro; 2750 } 2751 TypeResult Ty; 2752 { 2753 OffsetOfStateRAIIObject InOffsetof(*this, OOK); 2754 Ty = ParseTypeName(); 2755 if (Ty.isInvalid()) { 2756 SkipUntil(tok::r_paren, StopAtSemi); 2757 return ExprError(); 2758 } 2759 } 2760 2761 if (ExpectAndConsume(tok::comma)) { 2762 SkipUntil(tok::r_paren, StopAtSemi); 2763 return ExprError(); 2764 } 2765 2766 // We must have at least one identifier here. 2767 if (Tok.isNot(tok::identifier)) { 2768 Diag(Tok, diag::err_expected) << tok::identifier; 2769 SkipUntil(tok::r_paren, StopAtSemi); 2770 return ExprError(); 2771 } 2772 2773 // Keep track of the various subcomponents we see. 2774 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2775 2776 Comps.push_back(Sema::OffsetOfComponent()); 2777 Comps.back().isBrackets = false; 2778 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2779 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2780 2781 // FIXME: This loop leaks the index expressions on error. 2782 while (true) { 2783 if (Tok.is(tok::period)) { 2784 // offsetof-member-designator: offsetof-member-designator '.' identifier 2785 Comps.push_back(Sema::OffsetOfComponent()); 2786 Comps.back().isBrackets = false; 2787 Comps.back().LocStart = ConsumeToken(); 2788 2789 if (Tok.isNot(tok::identifier)) { 2790 Diag(Tok, diag::err_expected) << tok::identifier; 2791 SkipUntil(tok::r_paren, StopAtSemi); 2792 return ExprError(); 2793 } 2794 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2795 Comps.back().LocEnd = ConsumeToken(); 2796 } else if (Tok.is(tok::l_square)) { 2797 if (CheckProhibitedCXX11Attribute()) 2798 return ExprError(); 2799 2800 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2801 Comps.push_back(Sema::OffsetOfComponent()); 2802 Comps.back().isBrackets = true; 2803 BalancedDelimiterTracker ST(*this, tok::l_square); 2804 ST.consumeOpen(); 2805 Comps.back().LocStart = ST.getOpenLocation(); 2806 Res = ParseExpression(); 2807 if (Res.isInvalid()) { 2808 SkipUntil(tok::r_paren, StopAtSemi); 2809 return Res; 2810 } 2811 Comps.back().U.E = Res.get(); 2812 2813 ST.consumeClose(); 2814 Comps.back().LocEnd = ST.getCloseLocation(); 2815 } else { 2816 if (Tok.isNot(tok::r_paren)) { 2817 PT.consumeClose(); 2818 Res = ExprError(); 2819 } else if (Ty.isInvalid()) { 2820 Res = ExprError(); 2821 } else { 2822 PT.consumeClose(); 2823 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2824 Ty.get(), Comps, 2825 PT.getCloseLocation()); 2826 } 2827 break; 2828 } 2829 } 2830 break; 2831 } 2832 case tok::kw___builtin_choose_expr: { 2833 ExprResult Cond(ParseAssignmentExpression()); 2834 if (Cond.isInvalid()) { 2835 SkipUntil(tok::r_paren, StopAtSemi); 2836 return Cond; 2837 } 2838 if (ExpectAndConsume(tok::comma)) { 2839 SkipUntil(tok::r_paren, StopAtSemi); 2840 return ExprError(); 2841 } 2842 2843 ExprResult Expr1(ParseAssignmentExpression()); 2844 if (Expr1.isInvalid()) { 2845 SkipUntil(tok::r_paren, StopAtSemi); 2846 return Expr1; 2847 } 2848 if (ExpectAndConsume(tok::comma)) { 2849 SkipUntil(tok::r_paren, StopAtSemi); 2850 return ExprError(); 2851 } 2852 2853 ExprResult Expr2(ParseAssignmentExpression()); 2854 if (Expr2.isInvalid()) { 2855 SkipUntil(tok::r_paren, StopAtSemi); 2856 return Expr2; 2857 } 2858 if (Tok.isNot(tok::r_paren)) { 2859 Diag(Tok, diag::err_expected) << tok::r_paren; 2860 return ExprError(); 2861 } 2862 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2863 Expr2.get(), ConsumeParen()); 2864 break; 2865 } 2866 case tok::kw___builtin_astype: { 2867 // The first argument is an expression to be converted, followed by a comma. 2868 ExprResult Expr(ParseAssignmentExpression()); 2869 if (Expr.isInvalid()) { 2870 SkipUntil(tok::r_paren, StopAtSemi); 2871 return ExprError(); 2872 } 2873 2874 if (ExpectAndConsume(tok::comma)) { 2875 SkipUntil(tok::r_paren, StopAtSemi); 2876 return ExprError(); 2877 } 2878 2879 // Second argument is the type to bitcast to. 2880 TypeResult DestTy = ParseTypeName(); 2881 if (DestTy.isInvalid()) 2882 return ExprError(); 2883 2884 // Attempt to consume the r-paren. 2885 if (Tok.isNot(tok::r_paren)) { 2886 Diag(Tok, diag::err_expected) << tok::r_paren; 2887 SkipUntil(tok::r_paren, StopAtSemi); 2888 return ExprError(); 2889 } 2890 2891 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2892 ConsumeParen()); 2893 break; 2894 } 2895 case tok::kw___builtin_convertvector: { 2896 // The first argument is an expression to be converted, followed by a comma. 2897 ExprResult Expr(ParseAssignmentExpression()); 2898 if (Expr.isInvalid()) { 2899 SkipUntil(tok::r_paren, StopAtSemi); 2900 return ExprError(); 2901 } 2902 2903 if (ExpectAndConsume(tok::comma)) { 2904 SkipUntil(tok::r_paren, StopAtSemi); 2905 return ExprError(); 2906 } 2907 2908 // Second argument is the type to bitcast to. 2909 TypeResult DestTy = ParseTypeName(); 2910 if (DestTy.isInvalid()) 2911 return ExprError(); 2912 2913 // Attempt to consume the r-paren. 2914 if (Tok.isNot(tok::r_paren)) { 2915 Diag(Tok, diag::err_expected) << tok::r_paren; 2916 SkipUntil(tok::r_paren, StopAtSemi); 2917 return ExprError(); 2918 } 2919 2920 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2921 ConsumeParen()); 2922 break; 2923 } 2924 case tok::kw___builtin_COLUMN: 2925 case tok::kw___builtin_FILE: 2926 case tok::kw___builtin_FILE_NAME: 2927 case tok::kw___builtin_FUNCTION: 2928 case tok::kw___builtin_FUNCSIG: 2929 case tok::kw___builtin_LINE: 2930 case tok::kw___builtin_source_location: { 2931 // Attempt to consume the r-paren. 2932 if (Tok.isNot(tok::r_paren)) { 2933 Diag(Tok, diag::err_expected) << tok::r_paren; 2934 SkipUntil(tok::r_paren, StopAtSemi); 2935 return ExprError(); 2936 } 2937 SourceLocIdentKind Kind = [&] { 2938 switch (T) { 2939 case tok::kw___builtin_FILE: 2940 return SourceLocIdentKind::File; 2941 case tok::kw___builtin_FILE_NAME: 2942 return SourceLocIdentKind::FileName; 2943 case tok::kw___builtin_FUNCTION: 2944 return SourceLocIdentKind::Function; 2945 case tok::kw___builtin_FUNCSIG: 2946 return SourceLocIdentKind::FuncSig; 2947 case tok::kw___builtin_LINE: 2948 return SourceLocIdentKind::Line; 2949 case tok::kw___builtin_COLUMN: 2950 return SourceLocIdentKind::Column; 2951 case tok::kw___builtin_source_location: 2952 return SourceLocIdentKind::SourceLocStruct; 2953 default: 2954 llvm_unreachable("invalid keyword"); 2955 } 2956 }(); 2957 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2958 break; 2959 } 2960 } 2961 2962 if (Res.isInvalid()) 2963 return ExprError(); 2964 2965 // These can be followed by postfix-expr pieces because they are 2966 // primary-expressions. 2967 return ParsePostfixExpressionSuffix(Res.get()); 2968 } 2969 2970 bool Parser::tryParseOpenMPArrayShapingCastPart() { 2971 assert(Tok.is(tok::l_square) && "Expected open bracket"); 2972 bool ErrorFound = true; 2973 TentativeParsingAction TPA(*this); 2974 do { 2975 if (Tok.isNot(tok::l_square)) 2976 break; 2977 // Consume '[' 2978 ConsumeBracket(); 2979 // Skip inner expression. 2980 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 2981 StopAtSemi | StopBeforeMatch)) 2982 ; 2983 if (Tok.isNot(tok::r_square)) 2984 break; 2985 // Consume ']' 2986 ConsumeBracket(); 2987 // Found ')' - done. 2988 if (Tok.is(tok::r_paren)) { 2989 ErrorFound = false; 2990 break; 2991 } 2992 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 2993 TPA.Revert(); 2994 return !ErrorFound; 2995 } 2996 2997 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2998 /// based on what is allowed by ExprType. The actual thing parsed is returned 2999 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 3000 /// not the parsed cast-expression. 3001 /// 3002 /// \verbatim 3003 /// primary-expression: [C99 6.5.1] 3004 /// '(' expression ')' 3005 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 3006 /// postfix-expression: [C99 6.5.2] 3007 /// '(' type-name ')' '{' initializer-list '}' 3008 /// '(' type-name ')' '{' initializer-list ',' '}' 3009 /// cast-expression: [C99 6.5.4] 3010 /// '(' type-name ')' cast-expression 3011 /// [ARC] bridged-cast-expression 3012 /// [ARC] bridged-cast-expression: 3013 /// (__bridge type-name) cast-expression 3014 /// (__bridge_transfer type-name) cast-expression 3015 /// (__bridge_retained type-name) cast-expression 3016 /// fold-expression: [C++1z] 3017 /// '(' cast-expression fold-operator '...' ')' 3018 /// '(' '...' fold-operator cast-expression ')' 3019 /// '(' cast-expression fold-operator '...' 3020 /// fold-operator cast-expression ')' 3021 /// [OPENMP] Array shaping operation 3022 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 3023 /// \endverbatim 3024 ExprResult 3025 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 3026 bool isTypeCast, ParsedType &CastTy, 3027 SourceLocation &RParenLoc) { 3028 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 3029 ColonProtectionRAIIObject ColonProtection(*this, false); 3030 BalancedDelimiterTracker T(*this, tok::l_paren); 3031 if (T.consumeOpen()) 3032 return ExprError(); 3033 SourceLocation OpenLoc = T.getOpenLocation(); 3034 3035 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 3036 3037 ExprResult Result(true); 3038 bool isAmbiguousTypeId; 3039 CastTy = nullptr; 3040 3041 if (Tok.is(tok::code_completion)) { 3042 cutOffParsing(); 3043 Actions.CodeCompletion().CodeCompleteExpression( 3044 getCurScope(), PreferredType.get(Tok.getLocation()), 3045 /*IsParenthesized=*/ExprType >= CompoundLiteral); 3046 return ExprError(); 3047 } 3048 3049 // Diagnose use of bridge casts in non-arc mode. 3050 bool BridgeCast = (getLangOpts().ObjC && 3051 Tok.isOneOf(tok::kw___bridge, 3052 tok::kw___bridge_transfer, 3053 tok::kw___bridge_retained, 3054 tok::kw___bridge_retain)); 3055 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 3056 if (!TryConsumeToken(tok::kw___bridge)) { 3057 StringRef BridgeCastName = Tok.getName(); 3058 SourceLocation BridgeKeywordLoc = ConsumeToken(); 3059 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 3060 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 3061 << BridgeCastName 3062 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 3063 } 3064 BridgeCast = false; 3065 } 3066 3067 // None of these cases should fall through with an invalid Result 3068 // unless they've already reported an error. 3069 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 3070 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro 3071 : diag::ext_gnu_statement_expr); 3072 3073 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin); 3074 3075 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 3076 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 3077 } else { 3078 // Find the nearest non-record decl context. Variables declared in a 3079 // statement expression behave as if they were declared in the enclosing 3080 // function, block, or other code construct. 3081 DeclContext *CodeDC = Actions.CurContext; 3082 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 3083 CodeDC = CodeDC->getParent(); 3084 assert(CodeDC && !CodeDC->isFileContext() && 3085 "statement expr not in code context"); 3086 } 3087 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 3088 3089 Actions.ActOnStartStmtExpr(); 3090 3091 StmtResult Stmt(ParseCompoundStatement(true)); 3092 ExprType = CompoundStmt; 3093 3094 // If the substmt parsed correctly, build the AST node. 3095 if (!Stmt.isInvalid()) { 3096 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 3097 Tok.getLocation()); 3098 } else { 3099 Actions.ActOnStmtExprError(); 3100 } 3101 } 3102 } else if (ExprType >= CompoundLiteral && BridgeCast) { 3103 tok::TokenKind tokenKind = Tok.getKind(); 3104 SourceLocation BridgeKeywordLoc = ConsumeToken(); 3105 3106 // Parse an Objective-C ARC ownership cast expression. 3107 ObjCBridgeCastKind Kind; 3108 if (tokenKind == tok::kw___bridge) 3109 Kind = OBC_Bridge; 3110 else if (tokenKind == tok::kw___bridge_transfer) 3111 Kind = OBC_BridgeTransfer; 3112 else if (tokenKind == tok::kw___bridge_retained) 3113 Kind = OBC_BridgeRetained; 3114 else { 3115 // As a hopefully temporary workaround, allow __bridge_retain as 3116 // a synonym for __bridge_retained, but only in system headers. 3117 assert(tokenKind == tok::kw___bridge_retain); 3118 Kind = OBC_BridgeRetained; 3119 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 3120 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 3121 << FixItHint::CreateReplacement(BridgeKeywordLoc, 3122 "__bridge_retained"); 3123 } 3124 3125 TypeResult Ty = ParseTypeName(); 3126 T.consumeClose(); 3127 ColonProtection.restore(); 3128 RParenLoc = T.getCloseLocation(); 3129 3130 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 3131 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 3132 3133 if (Ty.isInvalid() || SubExpr.isInvalid()) 3134 return ExprError(); 3135 3136 return Actions.ObjC().ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 3137 BridgeKeywordLoc, Ty.get(), 3138 RParenLoc, SubExpr.get()); 3139 } else if (ExprType >= CompoundLiteral && 3140 isTypeIdInParens(isAmbiguousTypeId)) { 3141 3142 // Otherwise, this is a compound literal expression or cast expression. 3143 3144 // In C++, if the type-id is ambiguous we disambiguate based on context. 3145 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 3146 // in which case we should treat it as type-id. 3147 // if stopIfCastExpr is false, we need to determine the context past the 3148 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 3149 if (isAmbiguousTypeId && !stopIfCastExpr) { 3150 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 3151 ColonProtection); 3152 RParenLoc = T.getCloseLocation(); 3153 return res; 3154 } 3155 3156 // Parse the type declarator. 3157 DeclSpec DS(AttrFactory); 3158 ParseSpecifierQualifierList(DS); 3159 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3160 DeclaratorContext::TypeName); 3161 ParseDeclarator(DeclaratorInfo); 3162 3163 // If our type is followed by an identifier and either ':' or ']', then 3164 // this is probably an Objective-C message send where the leading '[' is 3165 // missing. Recover as if that were the case. 3166 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 3167 !InMessageExpression && getLangOpts().ObjC && 3168 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 3169 TypeResult Ty; 3170 { 3171 InMessageExpressionRAIIObject InMessage(*this, false); 3172 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3173 } 3174 Result = ParseObjCMessageExpressionBody(SourceLocation(), 3175 SourceLocation(), 3176 Ty.get(), nullptr); 3177 } else { 3178 // Match the ')'. 3179 T.consumeClose(); 3180 ColonProtection.restore(); 3181 RParenLoc = T.getCloseLocation(); 3182 if (Tok.is(tok::l_brace)) { 3183 ExprType = CompoundLiteral; 3184 TypeResult Ty; 3185 { 3186 InMessageExpressionRAIIObject InMessage(*this, false); 3187 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3188 } 3189 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 3190 } 3191 3192 if (Tok.is(tok::l_paren)) { 3193 // This could be OpenCL vector Literals 3194 if (getLangOpts().OpenCL) 3195 { 3196 TypeResult Ty; 3197 { 3198 InMessageExpressionRAIIObject InMessage(*this, false); 3199 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3200 } 3201 if(Ty.isInvalid()) 3202 { 3203 return ExprError(); 3204 } 3205 QualType QT = Ty.get().get().getCanonicalType(); 3206 if (QT->isVectorType()) 3207 { 3208 // We parsed '(' vector-type-name ')' followed by '(' 3209 3210 // Parse the cast-expression that follows it next. 3211 // isVectorLiteral = true will make sure we don't parse any 3212 // Postfix expression yet 3213 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3214 /*isAddressOfOperand=*/false, 3215 /*isTypeCast=*/IsTypeCast, 3216 /*isVectorLiteral=*/true); 3217 3218 if (!Result.isInvalid()) { 3219 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3220 DeclaratorInfo, CastTy, 3221 RParenLoc, Result.get()); 3222 } 3223 3224 // After we performed the cast we can check for postfix-expr pieces. 3225 if (!Result.isInvalid()) { 3226 Result = ParsePostfixExpressionSuffix(Result); 3227 } 3228 3229 return Result; 3230 } 3231 } 3232 } 3233 3234 if (ExprType == CastExpr) { 3235 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3236 3237 if (DeclaratorInfo.isInvalidType()) 3238 return ExprError(); 3239 3240 // Note that this doesn't parse the subsequent cast-expression, it just 3241 // returns the parsed type to the callee. 3242 if (stopIfCastExpr) { 3243 TypeResult Ty; 3244 { 3245 InMessageExpressionRAIIObject InMessage(*this, false); 3246 Ty = Actions.ActOnTypeName(DeclaratorInfo); 3247 } 3248 CastTy = Ty.get(); 3249 return ExprResult(); 3250 } 3251 3252 // Reject the cast of super idiom in ObjC. 3253 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3254 Tok.getIdentifierInfo() == Ident_super && 3255 getCurScope()->isInObjcMethodScope() && 3256 GetLookAheadToken(1).isNot(tok::period)) { 3257 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3258 << SourceRange(OpenLoc, RParenLoc); 3259 return ExprError(); 3260 } 3261 3262 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3263 // Parse the cast-expression that follows it next. 3264 // TODO: For cast expression with CastTy. 3265 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3266 /*isAddressOfOperand=*/false, 3267 /*isTypeCast=*/IsTypeCast); 3268 if (!Result.isInvalid()) { 3269 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3270 DeclaratorInfo, CastTy, 3271 RParenLoc, Result.get()); 3272 } 3273 return Result; 3274 } 3275 3276 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3277 return ExprError(); 3278 } 3279 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3280 isFoldOperator(NextToken().getKind())) { 3281 ExprType = FoldExpr; 3282 return ParseFoldExpression(ExprResult(), T); 3283 } else if (isTypeCast) { 3284 // Parse the expression-list. 3285 InMessageExpressionRAIIObject InMessage(*this, false); 3286 ExprVector ArgExprs; 3287 3288 if (!ParseSimpleExpressionList(ArgExprs)) { 3289 // FIXME: If we ever support comma expressions as operands to 3290 // fold-expressions, we'll need to allow multiple ArgExprs here. 3291 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3292 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3293 ExprType = FoldExpr; 3294 return ParseFoldExpression(ArgExprs[0], T); 3295 } 3296 3297 ExprType = SimpleExpr; 3298 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3299 ArgExprs); 3300 } 3301 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3302 ExprType == CastExpr && Tok.is(tok::l_square) && 3303 tryParseOpenMPArrayShapingCastPart()) { 3304 bool ErrorFound = false; 3305 SmallVector<Expr *, 4> OMPDimensions; 3306 SmallVector<SourceRange, 4> OMPBracketsRanges; 3307 do { 3308 BalancedDelimiterTracker TS(*this, tok::l_square); 3309 TS.consumeOpen(); 3310 ExprResult NumElements = 3311 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3312 if (!NumElements.isUsable()) { 3313 ErrorFound = true; 3314 while (!SkipUntil(tok::r_square, tok::r_paren, 3315 StopAtSemi | StopBeforeMatch)) 3316 ; 3317 } 3318 TS.consumeClose(); 3319 OMPDimensions.push_back(NumElements.get()); 3320 OMPBracketsRanges.push_back(TS.getRange()); 3321 } while (Tok.isNot(tok::r_paren)); 3322 // Match the ')'. 3323 T.consumeClose(); 3324 RParenLoc = T.getCloseLocation(); 3325 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3326 if (ErrorFound) { 3327 Result = ExprError(); 3328 } else if (!Result.isInvalid()) { 3329 Result = Actions.OpenMP().ActOnOMPArrayShapingExpr( 3330 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3331 } 3332 return Result; 3333 } else { 3334 InMessageExpressionRAIIObject InMessage(*this, false); 3335 3336 Result = ParseExpression(MaybeTypeCast); 3337 if (!getLangOpts().CPlusPlus && Result.isUsable()) { 3338 // Correct typos in non-C++ code earlier so that implicit-cast-like 3339 // expressions are parsed correctly. 3340 Result = Actions.CorrectDelayedTyposInExpr(Result); 3341 } 3342 3343 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3344 NextToken().is(tok::ellipsis)) { 3345 ExprType = FoldExpr; 3346 return ParseFoldExpression(Result, T); 3347 } 3348 ExprType = SimpleExpr; 3349 3350 // Don't build a paren expression unless we actually match a ')'. 3351 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3352 Result = 3353 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3354 } 3355 3356 // Match the ')'. 3357 if (Result.isInvalid()) { 3358 SkipUntil(tok::r_paren, StopAtSemi); 3359 return ExprError(); 3360 } 3361 3362 T.consumeClose(); 3363 RParenLoc = T.getCloseLocation(); 3364 return Result; 3365 } 3366 3367 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3368 /// and we are at the left brace. 3369 /// 3370 /// \verbatim 3371 /// postfix-expression: [C99 6.5.2] 3372 /// '(' type-name ')' '{' initializer-list '}' 3373 /// '(' type-name ')' '{' initializer-list ',' '}' 3374 /// \endverbatim 3375 ExprResult 3376 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3377 SourceLocation LParenLoc, 3378 SourceLocation RParenLoc) { 3379 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3380 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3381 Diag(LParenLoc, diag::ext_c99_compound_literal); 3382 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get()); 3383 ExprResult Result = ParseInitializer(); 3384 if (!Result.isInvalid() && Ty) 3385 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3386 return Result; 3387 } 3388 3389 /// ParseStringLiteralExpression - This handles the various token types that 3390 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3391 /// translation phase #6]. 3392 /// 3393 /// \verbatim 3394 /// primary-expression: [C99 6.5.1] 3395 /// string-literal 3396 /// \verbatim 3397 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3398 return ParseStringLiteralExpression(AllowUserDefinedLiteral, 3399 /*Unevaluated=*/false); 3400 } 3401 3402 ExprResult Parser::ParseUnevaluatedStringLiteralExpression() { 3403 return ParseStringLiteralExpression(/*AllowUserDefinedLiteral=*/false, 3404 /*Unevaluated=*/true); 3405 } 3406 3407 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral, 3408 bool Unevaluated) { 3409 assert(tokenIsLikeStringLiteral(Tok, getLangOpts()) && 3410 "Not a string-literal-like token!"); 3411 3412 // String concatenation. 3413 // Note: some keywords like __FUNCTION__ are not considered to be strings 3414 // for concatenation purposes, unless Microsoft extensions are enabled. 3415 SmallVector<Token, 4> StringToks; 3416 3417 do { 3418 StringToks.push_back(Tok); 3419 ConsumeAnyToken(); 3420 } while (tokenIsLikeStringLiteral(Tok, getLangOpts())); 3421 3422 if (Unevaluated) { 3423 assert(!AllowUserDefinedLiteral && "UDL are always evaluated"); 3424 return Actions.ActOnUnevaluatedStringLiteral(StringToks); 3425 } 3426 3427 // Pass the set of string tokens, ready for concatenation, to the actions. 3428 return Actions.ActOnStringLiteral(StringToks, 3429 AllowUserDefinedLiteral ? getCurScope() 3430 : nullptr); 3431 } 3432 3433 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3434 /// [C11 6.5.1.1]. 3435 /// 3436 /// \verbatim 3437 /// generic-selection: 3438 /// _Generic ( assignment-expression , generic-assoc-list ) 3439 /// generic-assoc-list: 3440 /// generic-association 3441 /// generic-assoc-list , generic-association 3442 /// generic-association: 3443 /// type-name : assignment-expression 3444 /// default : assignment-expression 3445 /// \endverbatim 3446 /// 3447 /// As an extension, Clang also accepts: 3448 /// \verbatim 3449 /// generic-selection: 3450 /// _Generic ( type-name, generic-assoc-list ) 3451 /// \endverbatim 3452 ExprResult Parser::ParseGenericSelectionExpression() { 3453 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3454 3455 diagnoseUseOfC11Keyword(Tok); 3456 3457 SourceLocation KeyLoc = ConsumeToken(); 3458 BalancedDelimiterTracker T(*this, tok::l_paren); 3459 if (T.expectAndConsume()) 3460 return ExprError(); 3461 3462 // We either have a controlling expression or we have a controlling type, and 3463 // we need to figure out which it is. 3464 TypeResult ControllingType; 3465 ExprResult ControllingExpr; 3466 if (isTypeIdForGenericSelection()) { 3467 ControllingType = ParseTypeName(); 3468 if (ControllingType.isInvalid()) { 3469 SkipUntil(tok::r_paren, StopAtSemi); 3470 return ExprError(); 3471 } 3472 const auto *LIT = cast<LocInfoType>(ControllingType.get().get()); 3473 SourceLocation Loc = LIT->getTypeSourceInfo()->getTypeLoc().getBeginLoc(); 3474 Diag(Loc, getLangOpts().C2y ? diag::warn_c2y_compat_generic_with_type_arg 3475 : diag::ext_c2y_generic_with_type_arg); 3476 } else { 3477 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3478 // not evaluated." 3479 EnterExpressionEvaluationContext Unevaluated( 3480 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3481 ControllingExpr = 3482 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3483 if (ControllingExpr.isInvalid()) { 3484 SkipUntil(tok::r_paren, StopAtSemi); 3485 return ExprError(); 3486 } 3487 } 3488 3489 if (ExpectAndConsume(tok::comma)) { 3490 SkipUntil(tok::r_paren, StopAtSemi); 3491 return ExprError(); 3492 } 3493 3494 SourceLocation DefaultLoc; 3495 SmallVector<ParsedType, 12> Types; 3496 ExprVector Exprs; 3497 do { 3498 ParsedType Ty; 3499 if (Tok.is(tok::kw_default)) { 3500 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3501 // generic association." 3502 if (!DefaultLoc.isInvalid()) { 3503 Diag(Tok, diag::err_duplicate_default_assoc); 3504 Diag(DefaultLoc, diag::note_previous_default_assoc); 3505 SkipUntil(tok::r_paren, StopAtSemi); 3506 return ExprError(); 3507 } 3508 DefaultLoc = ConsumeToken(); 3509 Ty = nullptr; 3510 } else { 3511 ColonProtectionRAIIObject X(*this); 3512 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association); 3513 if (TR.isInvalid()) { 3514 SkipUntil(tok::r_paren, StopAtSemi); 3515 return ExprError(); 3516 } 3517 Ty = TR.get(); 3518 } 3519 Types.push_back(Ty); 3520 3521 if (ExpectAndConsume(tok::colon)) { 3522 SkipUntil(tok::r_paren, StopAtSemi); 3523 return ExprError(); 3524 } 3525 3526 // FIXME: These expressions should be parsed in a potentially potentially 3527 // evaluated context. 3528 ExprResult ER( 3529 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3530 if (ER.isInvalid()) { 3531 SkipUntil(tok::r_paren, StopAtSemi); 3532 return ExprError(); 3533 } 3534 Exprs.push_back(ER.get()); 3535 } while (TryConsumeToken(tok::comma)); 3536 3537 T.consumeClose(); 3538 if (T.getCloseLocation().isInvalid()) 3539 return ExprError(); 3540 3541 void *ExprOrTy = ControllingExpr.isUsable() 3542 ? ControllingExpr.get() 3543 : ControllingType.get().getAsOpaquePtr(); 3544 3545 return Actions.ActOnGenericSelectionExpr( 3546 KeyLoc, DefaultLoc, T.getCloseLocation(), ControllingExpr.isUsable(), 3547 ExprOrTy, Types, Exprs); 3548 } 3549 3550 /// Parse A C++1z fold-expression after the opening paren and optional 3551 /// left-hand-side expression. 3552 /// 3553 /// \verbatim 3554 /// fold-expression: 3555 /// ( cast-expression fold-operator ... ) 3556 /// ( ... fold-operator cast-expression ) 3557 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3558 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3559 BalancedDelimiterTracker &T) { 3560 if (LHS.isInvalid()) { 3561 T.skipToEnd(); 3562 return true; 3563 } 3564 3565 tok::TokenKind Kind = tok::unknown; 3566 SourceLocation FirstOpLoc; 3567 if (LHS.isUsable()) { 3568 Kind = Tok.getKind(); 3569 assert(isFoldOperator(Kind) && "missing fold-operator"); 3570 FirstOpLoc = ConsumeToken(); 3571 } 3572 3573 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3574 SourceLocation EllipsisLoc = ConsumeToken(); 3575 3576 ExprResult RHS; 3577 if (Tok.isNot(tok::r_paren)) { 3578 if (!isFoldOperator(Tok.getKind())) 3579 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3580 3581 if (Kind != tok::unknown && Tok.getKind() != Kind) 3582 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3583 << SourceRange(FirstOpLoc); 3584 Kind = Tok.getKind(); 3585 ConsumeToken(); 3586 3587 RHS = ParseExpression(); 3588 if (RHS.isInvalid()) { 3589 T.skipToEnd(); 3590 return true; 3591 } 3592 } 3593 3594 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3595 ? diag::warn_cxx14_compat_fold_expression 3596 : diag::ext_fold_expression); 3597 3598 T.consumeClose(); 3599 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(), 3600 Kind, EllipsisLoc, RHS.get(), 3601 T.getCloseLocation()); 3602 } 3603 3604 void Parser::injectEmbedTokens() { 3605 EmbedAnnotationData *Data = 3606 reinterpret_cast<EmbedAnnotationData *>(Tok.getAnnotationValue()); 3607 MutableArrayRef<Token> Toks(PP.getPreprocessorAllocator().Allocate<Token>( 3608 Data->BinaryData.size() * 2 - 1), 3609 Data->BinaryData.size() * 2 - 1); 3610 unsigned I = 0; 3611 for (auto &Byte : Data->BinaryData) { 3612 Toks[I].startToken(); 3613 Toks[I].setKind(tok::binary_data); 3614 Toks[I].setLocation(Tok.getLocation()); 3615 Toks[I].setLength(1); 3616 Toks[I].setLiteralData(&Byte); 3617 if (I != ((Data->BinaryData.size() - 1) * 2)) { 3618 Toks[I + 1].startToken(); 3619 Toks[I + 1].setKind(tok::comma); 3620 Toks[I + 1].setLocation(Tok.getLocation()); 3621 } 3622 I += 2; 3623 } 3624 PP.EnterTokenStream(std::move(Toks), /*DisableMacroExpansion=*/true, 3625 /*IsReinject=*/true); 3626 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); 3627 } 3628 3629 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3630 /// 3631 /// \verbatim 3632 /// argument-expression-list: 3633 /// assignment-expression 3634 /// argument-expression-list , assignment-expression 3635 /// 3636 /// [C++] expression-list: 3637 /// [C++] assignment-expression 3638 /// [C++] expression-list , assignment-expression 3639 /// 3640 /// [C++0x] expression-list: 3641 /// [C++0x] initializer-list 3642 /// 3643 /// [C++0x] initializer-list 3644 /// [C++0x] initializer-clause ...[opt] 3645 /// [C++0x] initializer-list , initializer-clause ...[opt] 3646 /// 3647 /// [C++0x] initializer-clause: 3648 /// [C++0x] assignment-expression 3649 /// [C++0x] braced-init-list 3650 /// \endverbatim 3651 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3652 llvm::function_ref<void()> ExpressionStarts, 3653 bool FailImmediatelyOnInvalidExpr, 3654 bool EarlyTypoCorrection) { 3655 bool SawError = false; 3656 while (true) { 3657 if (ExpressionStarts) 3658 ExpressionStarts(); 3659 3660 ExprResult Expr; 3661 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3662 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3663 Expr = ParseBraceInitializer(); 3664 } else 3665 Expr = ParseAssignmentExpression(); 3666 3667 if (EarlyTypoCorrection) 3668 Expr = Actions.CorrectDelayedTyposInExpr(Expr); 3669 3670 if (Tok.is(tok::ellipsis)) 3671 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3672 else if (Tok.is(tok::code_completion)) { 3673 // There's nothing to suggest in here as we parsed a full expression. 3674 // Instead fail and propagate the error since caller might have something 3675 // the suggest, e.g. signature help in function call. Note that this is 3676 // performed before pushing the \p Expr, so that signature help can report 3677 // current argument correctly. 3678 SawError = true; 3679 cutOffParsing(); 3680 break; 3681 } 3682 if (Expr.isInvalid()) { 3683 SawError = true; 3684 if (FailImmediatelyOnInvalidExpr) 3685 break; 3686 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3687 } else { 3688 Exprs.push_back(Expr.get()); 3689 } 3690 3691 if (Tok.isNot(tok::comma)) 3692 break; 3693 // Move to the next argument, remember where the comma was. 3694 Token Comma = Tok; 3695 ConsumeToken(); 3696 checkPotentialAngleBracketDelimiter(Comma); 3697 } 3698 if (SawError) { 3699 // Ensure typos get diagnosed when errors were encountered while parsing the 3700 // expression list. 3701 for (auto &E : Exprs) { 3702 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3703 if (Expr.isUsable()) E = Expr.get(); 3704 } 3705 } 3706 return SawError; 3707 } 3708 3709 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3710 /// used for misc language extensions. 3711 /// 3712 /// \verbatim 3713 /// simple-expression-list: 3714 /// assignment-expression 3715 /// simple-expression-list , assignment-expression 3716 /// \endverbatim 3717 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) { 3718 while (true) { 3719 ExprResult Expr = ParseAssignmentExpression(); 3720 if (Expr.isInvalid()) 3721 return true; 3722 3723 Exprs.push_back(Expr.get()); 3724 3725 // We might be parsing the LHS of a fold-expression. If we reached the fold 3726 // operator, stop. 3727 if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis)) 3728 return false; 3729 3730 // Move to the next argument, remember where the comma was. 3731 Token Comma = Tok; 3732 ConsumeToken(); 3733 checkPotentialAngleBracketDelimiter(Comma); 3734 } 3735 } 3736 3737 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3738 /// 3739 /// \verbatim 3740 /// [clang] block-id: 3741 /// [clang] specifier-qualifier-list block-declarator 3742 /// \endverbatim 3743 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3744 if (Tok.is(tok::code_completion)) { 3745 cutOffParsing(); 3746 Actions.CodeCompletion().CodeCompleteOrdinaryName( 3747 getCurScope(), SemaCodeCompletion::PCC_Type); 3748 return; 3749 } 3750 3751 // Parse the specifier-qualifier-list piece. 3752 DeclSpec DS(AttrFactory); 3753 ParseSpecifierQualifierList(DS); 3754 3755 // Parse the block-declarator. 3756 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3757 DeclaratorContext::BlockLiteral); 3758 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3759 ParseDeclarator(DeclaratorInfo); 3760 3761 MaybeParseGNUAttributes(DeclaratorInfo); 3762 3763 // Inform sema that we are starting a block. 3764 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3765 } 3766 3767 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3768 /// like ^(int x){ return x+1; } 3769 /// 3770 /// \verbatim 3771 /// block-literal: 3772 /// [clang] '^' block-args[opt] compound-statement 3773 /// [clang] '^' block-id compound-statement 3774 /// [clang] block-args: 3775 /// [clang] '(' parameter-list ')' 3776 /// \endverbatim 3777 ExprResult Parser::ParseBlockLiteralExpression() { 3778 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3779 SourceLocation CaretLoc = ConsumeToken(); 3780 3781 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3782 "block literal parsing"); 3783 3784 // Enter a scope to hold everything within the block. This includes the 3785 // argument decls, decls within the compound expression, etc. This also 3786 // allows determining whether a variable reference inside the block is 3787 // within or outside of the block. 3788 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3789 Scope::CompoundStmtScope | Scope::DeclScope); 3790 3791 // Inform sema that we are starting a block. 3792 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3793 3794 // Parse the return type if present. 3795 DeclSpec DS(AttrFactory); 3796 Declarator ParamInfo(DS, ParsedAttributesView::none(), 3797 DeclaratorContext::BlockLiteral); 3798 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3799 // FIXME: Since the return type isn't actually parsed, it can't be used to 3800 // fill ParamInfo with an initial valid range, so do it manually. 3801 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3802 3803 // If this block has arguments, parse them. There is no ambiguity here with 3804 // the expression case, because the expression case requires a parameter list. 3805 if (Tok.is(tok::l_paren)) { 3806 ParseParenDeclarator(ParamInfo); 3807 // Parse the pieces after the identifier as if we had "int(...)". 3808 // SetIdentifier sets the source range end, but in this case we're past 3809 // that location. 3810 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3811 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3812 ParamInfo.SetRangeEnd(Tmp); 3813 if (ParamInfo.isInvalidType()) { 3814 // If there was an error parsing the arguments, they may have 3815 // tried to use ^(x+y) which requires an argument list. Just 3816 // skip the whole block literal. 3817 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3818 return ExprError(); 3819 } 3820 3821 MaybeParseGNUAttributes(ParamInfo); 3822 3823 // Inform sema that we are starting a block. 3824 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3825 } else if (!Tok.is(tok::l_brace)) { 3826 ParseBlockId(CaretLoc); 3827 } else { 3828 // Otherwise, pretend we saw (void). 3829 SourceLocation NoLoc; 3830 ParamInfo.AddTypeInfo( 3831 DeclaratorChunk::getFunction(/*HasProto=*/true, 3832 /*IsAmbiguous=*/false, 3833 /*RParenLoc=*/NoLoc, 3834 /*ArgInfo=*/nullptr, 3835 /*NumParams=*/0, 3836 /*EllipsisLoc=*/NoLoc, 3837 /*RParenLoc=*/NoLoc, 3838 /*RefQualifierIsLvalueRef=*/true, 3839 /*RefQualifierLoc=*/NoLoc, 3840 /*MutableLoc=*/NoLoc, EST_None, 3841 /*ESpecRange=*/SourceRange(), 3842 /*Exceptions=*/nullptr, 3843 /*ExceptionRanges=*/nullptr, 3844 /*NumExceptions=*/0, 3845 /*NoexceptExpr=*/nullptr, 3846 /*ExceptionSpecTokens=*/nullptr, 3847 /*DeclsInPrototype=*/std::nullopt, 3848 CaretLoc, CaretLoc, ParamInfo), 3849 CaretLoc); 3850 3851 MaybeParseGNUAttributes(ParamInfo); 3852 3853 // Inform sema that we are starting a block. 3854 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3855 } 3856 3857 3858 ExprResult Result(true); 3859 if (!Tok.is(tok::l_brace)) { 3860 // Saw something like: ^expr 3861 Diag(Tok, diag::err_expected_expression); 3862 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3863 return ExprError(); 3864 } 3865 3866 StmtResult Stmt(ParseCompoundStatementBody()); 3867 BlockScope.Exit(); 3868 if (!Stmt.isInvalid()) 3869 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3870 else 3871 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3872 return Result; 3873 } 3874 3875 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3876 /// 3877 /// '__objc_yes' 3878 /// '__objc_no' 3879 ExprResult Parser::ParseObjCBoolLiteral() { 3880 tok::TokenKind Kind = Tok.getKind(); 3881 return Actions.ObjC().ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3882 } 3883 3884 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3885 /// true if invalid. 3886 static bool CheckAvailabilitySpecList(Parser &P, 3887 ArrayRef<AvailabilitySpec> AvailSpecs) { 3888 llvm::SmallSet<StringRef, 4> Platforms; 3889 bool HasOtherPlatformSpec = false; 3890 bool Valid = true; 3891 for (const auto &Spec : AvailSpecs) { 3892 if (Spec.isOtherPlatformSpec()) { 3893 if (HasOtherPlatformSpec) { 3894 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3895 Valid = false; 3896 } 3897 3898 HasOtherPlatformSpec = true; 3899 continue; 3900 } 3901 3902 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3903 if (!Inserted) { 3904 // Rule out multiple version specs referring to the same platform. 3905 // For example, we emit an error for: 3906 // @available(macos 10.10, macos 10.11, *) 3907 StringRef Platform = Spec.getPlatform(); 3908 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3909 << Spec.getEndLoc() << Platform; 3910 Valid = false; 3911 } 3912 } 3913 3914 if (!HasOtherPlatformSpec) { 3915 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3916 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3917 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3918 return true; 3919 } 3920 3921 return !Valid; 3922 } 3923 3924 /// Parse availability query specification. 3925 /// 3926 /// availability-spec: 3927 /// '*' 3928 /// identifier version-tuple 3929 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3930 if (Tok.is(tok::star)) { 3931 return AvailabilitySpec(ConsumeToken()); 3932 } else { 3933 // Parse the platform name. 3934 if (Tok.is(tok::code_completion)) { 3935 cutOffParsing(); 3936 Actions.CodeCompletion().CodeCompleteAvailabilityPlatformName(); 3937 return std::nullopt; 3938 } 3939 if (Tok.isNot(tok::identifier)) { 3940 Diag(Tok, diag::err_avail_query_expected_platform_name); 3941 return std::nullopt; 3942 } 3943 3944 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3945 SourceRange VersionRange; 3946 VersionTuple Version = ParseVersionTuple(VersionRange); 3947 3948 if (Version.empty()) 3949 return std::nullopt; 3950 3951 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3952 StringRef Platform = 3953 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3954 3955 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty() || 3956 (GivenPlatform.contains("xros") || GivenPlatform.contains("xrOS"))) { 3957 Diag(PlatformIdentifier->Loc, 3958 diag::err_avail_query_unrecognized_platform_name) 3959 << GivenPlatform; 3960 return std::nullopt; 3961 } 3962 3963 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3964 VersionRange.getEnd()); 3965 } 3966 } 3967 3968 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3969 assert(Tok.is(tok::kw___builtin_available) || 3970 Tok.isObjCAtKeyword(tok::objc_available)); 3971 3972 // Eat the available or __builtin_available. 3973 ConsumeToken(); 3974 3975 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3976 if (Parens.expectAndConsume()) 3977 return ExprError(); 3978 3979 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3980 bool HasError = false; 3981 while (true) { 3982 std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3983 if (!Spec) 3984 HasError = true; 3985 else 3986 AvailSpecs.push_back(*Spec); 3987 3988 if (!TryConsumeToken(tok::comma)) 3989 break; 3990 } 3991 3992 if (HasError) { 3993 SkipUntil(tok::r_paren, StopAtSemi); 3994 return ExprError(); 3995 } 3996 3997 CheckAvailabilitySpecList(*this, AvailSpecs); 3998 3999 if (Parens.consumeClose()) 4000 return ExprError(); 4001 4002 return Actions.ObjC().ActOnObjCAvailabilityCheckExpr( 4003 AvailSpecs, BeginLoc, Parens.getCloseLocation()); 4004 } 4005