1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/Parse/Parser.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "clang/Parse/RAIIObjectsForParser.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/TypoCorrection.h" 32 #include "llvm/ADT/SmallVector.h" 33 using namespace clang; 34 35 /// Simple precedence-based parser for binary/ternary operators. 36 /// 37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 38 /// production. C99 specifies that the LHS of an assignment operator should be 39 /// parsed as a unary-expression, but consistency dictates that it be a 40 /// conditional-expession. In practice, the important thing here is that the 41 /// LHS of an assignment has to be an l-value, which productions between 42 /// unary-expression and conditional-expression don't produce. Because we want 43 /// consistency, we parse the LHS as a conditional-expression, then check for 44 /// l-value-ness in semantic analysis stages. 45 /// 46 /// \verbatim 47 /// pm-expression: [C++ 5.5] 48 /// cast-expression 49 /// pm-expression '.*' cast-expression 50 /// pm-expression '->*' cast-expression 51 /// 52 /// multiplicative-expression: [C99 6.5.5] 53 /// Note: in C++, apply pm-expression instead of cast-expression 54 /// cast-expression 55 /// multiplicative-expression '*' cast-expression 56 /// multiplicative-expression '/' cast-expression 57 /// multiplicative-expression '%' cast-expression 58 /// 59 /// additive-expression: [C99 6.5.6] 60 /// multiplicative-expression 61 /// additive-expression '+' multiplicative-expression 62 /// additive-expression '-' multiplicative-expression 63 /// 64 /// shift-expression: [C99 6.5.7] 65 /// additive-expression 66 /// shift-expression '<<' additive-expression 67 /// shift-expression '>>' additive-expression 68 /// 69 /// compare-expression: [C++20 expr.spaceship] 70 /// shift-expression 71 /// compare-expression '<=>' shift-expression 72 /// 73 /// relational-expression: [C99 6.5.8] 74 /// compare-expression 75 /// relational-expression '<' compare-expression 76 /// relational-expression '>' compare-expression 77 /// relational-expression '<=' compare-expression 78 /// relational-expression '>=' compare-expression 79 /// 80 /// equality-expression: [C99 6.5.9] 81 /// relational-expression 82 /// equality-expression '==' relational-expression 83 /// equality-expression '!=' relational-expression 84 /// 85 /// AND-expression: [C99 6.5.10] 86 /// equality-expression 87 /// AND-expression '&' equality-expression 88 /// 89 /// exclusive-OR-expression: [C99 6.5.11] 90 /// AND-expression 91 /// exclusive-OR-expression '^' AND-expression 92 /// 93 /// inclusive-OR-expression: [C99 6.5.12] 94 /// exclusive-OR-expression 95 /// inclusive-OR-expression '|' exclusive-OR-expression 96 /// 97 /// logical-AND-expression: [C99 6.5.13] 98 /// inclusive-OR-expression 99 /// logical-AND-expression '&&' inclusive-OR-expression 100 /// 101 /// logical-OR-expression: [C99 6.5.14] 102 /// logical-AND-expression 103 /// logical-OR-expression '||' logical-AND-expression 104 /// 105 /// conditional-expression: [C99 6.5.15] 106 /// logical-OR-expression 107 /// logical-OR-expression '?' expression ':' conditional-expression 108 /// [GNU] logical-OR-expression '?' ':' conditional-expression 109 /// [C++] the third operand is an assignment-expression 110 /// 111 /// assignment-expression: [C99 6.5.16] 112 /// conditional-expression 113 /// unary-expression assignment-operator assignment-expression 114 /// [C++] throw-expression [C++ 15] 115 /// 116 /// assignment-operator: one of 117 /// = *= /= %= += -= <<= >>= &= ^= |= 118 /// 119 /// expression: [C99 6.5.17] 120 /// assignment-expression ...[opt] 121 /// expression ',' assignment-expression ...[opt] 122 /// \endverbatim 123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 124 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 125 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 126 } 127 128 /// This routine is called when the '@' is seen and consumed. 129 /// Current token is an Identifier and is not a 'try'. This 130 /// routine is necessary to disambiguate \@try-statement from, 131 /// for example, \@encode-expression. 132 /// 133 ExprResult 134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 135 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 136 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 137 } 138 139 /// This routine is called when a leading '__extension__' is seen and 140 /// consumed. This is necessary because the token gets consumed in the 141 /// process of disambiguating between an expression and a declaration. 142 ExprResult 143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 144 ExprResult LHS(true); 145 { 146 // Silence extension warnings in the sub-expression 147 ExtensionRAIIObject O(Diags); 148 149 LHS = ParseCastExpression(AnyCastExpr); 150 } 151 152 if (!LHS.isInvalid()) 153 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 154 LHS.get()); 155 156 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 157 } 158 159 /// Parse an expr that doesn't include (top-level) commas. 160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 161 if (Tok.is(tok::code_completion)) { 162 cutOffParsing(); 163 Actions.CodeCompleteExpression(getCurScope(), 164 PreferredType.get(Tok.getLocation())); 165 return ExprError(); 166 } 167 168 if (Tok.is(tok::kw_throw)) 169 return ParseThrowExpression(); 170 if (Tok.is(tok::kw_co_yield)) 171 return ParseCoyieldExpression(); 172 173 ExprResult LHS = ParseCastExpression(AnyCastExpr, 174 /*isAddressOfOperand=*/false, 175 isTypeCast); 176 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 177 } 178 179 /// Parse an assignment expression where part of an Objective-C message 180 /// send has already been parsed. 181 /// 182 /// In this case \p LBracLoc indicates the location of the '[' of the message 183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 184 /// the receiver of the message. 185 /// 186 /// Since this handles full assignment-expression's, it handles postfix 187 /// expressions and other binary operators for these expressions as well. 188 ExprResult 189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 190 SourceLocation SuperLoc, 191 ParsedType ReceiverType, 192 Expr *ReceiverExpr) { 193 ExprResult R 194 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 195 ReceiverType, ReceiverExpr); 196 R = ParsePostfixExpressionSuffix(R); 197 return ParseRHSOfBinaryExpression(R, prec::Assignment); 198 } 199 200 ExprResult 201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 202 assert(Actions.ExprEvalContexts.back().Context == 203 Sema::ExpressionEvaluationContext::ConstantEvaluated && 204 "Call this function only if your ExpressionEvaluationContext is " 205 "already ConstantEvaluated"); 206 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 207 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 208 return Actions.ActOnConstantExpression(Res); 209 } 210 211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { 212 // C++03 [basic.def.odr]p2: 213 // An expression is potentially evaluated unless it appears where an 214 // integral constant expression is required (see 5.19) [...]. 215 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 216 EnterExpressionEvaluationContext ConstantEvaluated( 217 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 218 return ParseConstantExpressionInExprEvalContext(isTypeCast); 219 } 220 221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 222 EnterExpressionEvaluationContext ConstantEvaluated( 223 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 224 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 225 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 226 return Actions.ActOnCaseExpr(CaseLoc, Res); 227 } 228 229 /// Parse a constraint-expression. 230 /// 231 /// \verbatim 232 /// constraint-expression: C++2a[temp.constr.decl]p1 233 /// logical-or-expression 234 /// \endverbatim 235 ExprResult Parser::ParseConstraintExpression() { 236 EnterExpressionEvaluationContext ConstantEvaluated( 237 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 238 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 239 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 240 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 241 Actions.CorrectDelayedTyposInExpr(Res); 242 return ExprError(); 243 } 244 return Res; 245 } 246 247 /// \brief Parse a constraint-logical-and-expression. 248 /// 249 /// \verbatim 250 /// C++2a[temp.constr.decl]p1 251 /// constraint-logical-and-expression: 252 /// primary-expression 253 /// constraint-logical-and-expression '&&' primary-expression 254 /// 255 /// \endverbatim 256 ExprResult 257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 258 EnterExpressionEvaluationContext ConstantEvaluated( 259 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 260 bool NotPrimaryExpression = false; 261 auto ParsePrimary = [&] () { 262 ExprResult E = ParseCastExpression(PrimaryExprOnly, 263 /*isAddressOfOperand=*/false, 264 /*isTypeCast=*/NotTypeCast, 265 /*isVectorLiteral=*/false, 266 &NotPrimaryExpression); 267 if (E.isInvalid()) 268 return ExprError(); 269 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 270 E = ParsePostfixExpressionSuffix(E); 271 // Use InclusiveOr, the precedence just after '&&' to not parse the 272 // next arguments to the logical and. 273 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 274 if (!E.isInvalid()) 275 Diag(E.get()->getExprLoc(), 276 Note 277 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 278 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 279 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 280 << FixItHint::CreateInsertion( 281 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 282 << E.get()->getSourceRange(); 283 return E; 284 }; 285 286 if (NotPrimaryExpression || 287 // Check if the following tokens must be a part of a non-primary 288 // expression 289 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 290 /*CPlusPlus11=*/true) > prec::LogicalAnd || 291 // Postfix operators other than '(' (which will be checked for in 292 // CheckConstraintExpression). 293 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 294 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 295 E = RecoverFromNonPrimary(E, /*Note=*/false); 296 if (E.isInvalid()) 297 return ExprError(); 298 NotPrimaryExpression = false; 299 } 300 bool PossibleNonPrimary; 301 bool IsConstraintExpr = 302 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 303 IsTrailingRequiresClause); 304 if (!IsConstraintExpr || PossibleNonPrimary) { 305 // Atomic constraint might be an unparenthesized non-primary expression 306 // (such as a binary operator), in which case we might get here (e.g. in 307 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 308 // the rest of the addition expression). Try to parse the rest of it here. 309 if (PossibleNonPrimary) 310 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 311 Actions.CorrectDelayedTyposInExpr(E); 312 return ExprError(); 313 } 314 return E; 315 }; 316 ExprResult LHS = ParsePrimary(); 317 if (LHS.isInvalid()) 318 return ExprError(); 319 while (Tok.is(tok::ampamp)) { 320 SourceLocation LogicalAndLoc = ConsumeToken(); 321 ExprResult RHS = ParsePrimary(); 322 if (RHS.isInvalid()) { 323 Actions.CorrectDelayedTyposInExpr(LHS); 324 return ExprError(); 325 } 326 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 327 tok::ampamp, LHS.get(), RHS.get()); 328 if (!Op.isUsable()) { 329 Actions.CorrectDelayedTyposInExpr(RHS); 330 Actions.CorrectDelayedTyposInExpr(LHS); 331 return ExprError(); 332 } 333 LHS = Op; 334 } 335 return LHS; 336 } 337 338 /// \brief Parse a constraint-logical-or-expression. 339 /// 340 /// \verbatim 341 /// C++2a[temp.constr.decl]p1 342 /// constraint-logical-or-expression: 343 /// constraint-logical-and-expression 344 /// constraint-logical-or-expression '||' 345 /// constraint-logical-and-expression 346 /// 347 /// \endverbatim 348 ExprResult 349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 350 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 351 if (!LHS.isUsable()) 352 return ExprError(); 353 while (Tok.is(tok::pipepipe)) { 354 SourceLocation LogicalOrLoc = ConsumeToken(); 355 ExprResult RHS = 356 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 357 if (!RHS.isUsable()) { 358 Actions.CorrectDelayedTyposInExpr(LHS); 359 return ExprError(); 360 } 361 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 362 tok::pipepipe, LHS.get(), RHS.get()); 363 if (!Op.isUsable()) { 364 Actions.CorrectDelayedTyposInExpr(RHS); 365 Actions.CorrectDelayedTyposInExpr(LHS); 366 return ExprError(); 367 } 368 LHS = Op; 369 } 370 return LHS; 371 } 372 373 bool Parser::isNotExpressionStart() { 374 tok::TokenKind K = Tok.getKind(); 375 if (K == tok::l_brace || K == tok::r_brace || 376 K == tok::kw_for || K == tok::kw_while || 377 K == tok::kw_if || K == tok::kw_else || 378 K == tok::kw_goto || K == tok::kw_try) 379 return true; 380 // If this is a decl-specifier, we can't be at the start of an expression. 381 return isKnownToBeDeclarationSpecifier(); 382 } 383 384 bool Parser::isFoldOperator(prec::Level Level) const { 385 return Level > prec::Unknown && Level != prec::Conditional && 386 Level != prec::Spaceship; 387 } 388 389 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 390 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 391 } 392 393 /// Parse a binary expression that starts with \p LHS and has a 394 /// precedence of at least \p MinPrec. 395 ExprResult 396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 397 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 398 GreaterThanIsOperator, 399 getLangOpts().CPlusPlus11); 400 SourceLocation ColonLoc; 401 402 auto SavedType = PreferredType; 403 while (true) { 404 // Every iteration may rely on a preferred type for the whole expression. 405 PreferredType = SavedType; 406 // If this token has a lower precedence than we are allowed to parse (e.g. 407 // because we are called recursively, or because the token is not a binop), 408 // then we are done! 409 if (NextTokPrec < MinPrec) 410 return LHS; 411 412 // Consume the operator, saving the operator token for error reporting. 413 Token OpToken = Tok; 414 ConsumeToken(); 415 416 if (OpToken.is(tok::caretcaret)) { 417 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 418 } 419 420 // If we're potentially in a template-id, we may now be able to determine 421 // whether we're actually in one or not. 422 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 423 tok::greatergreatergreater) && 424 checkPotentialAngleBracketDelimiter(OpToken)) 425 return ExprError(); 426 427 // Bail out when encountering a comma followed by a token which can't 428 // possibly be the start of an expression. For instance: 429 // int f() { return 1, } 430 // We can't do this before consuming the comma, because 431 // isNotExpressionStart() looks at the token stream. 432 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 433 PP.EnterToken(Tok, /*IsReinject*/true); 434 Tok = OpToken; 435 return LHS; 436 } 437 438 // If the next token is an ellipsis, then this is a fold-expression. Leave 439 // it alone so we can handle it in the paren expression. 440 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 441 // FIXME: We can't check this via lookahead before we consume the token 442 // because that tickles a lexer bug. 443 PP.EnterToken(Tok, /*IsReinject*/true); 444 Tok = OpToken; 445 return LHS; 446 } 447 448 // In Objective-C++, alternative operator tokens can be used as keyword args 449 // in message expressions. Unconsume the token so that it can reinterpreted 450 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 451 // [foo meth:0 and:0]; 452 // [foo not_eq]; 453 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 454 Tok.isOneOf(tok::colon, tok::r_square) && 455 OpToken.getIdentifierInfo() != nullptr) { 456 PP.EnterToken(Tok, /*IsReinject*/true); 457 Tok = OpToken; 458 return LHS; 459 } 460 461 // Special case handling for the ternary operator. 462 ExprResult TernaryMiddle(true); 463 if (NextTokPrec == prec::Conditional) { 464 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 465 // Parse a braced-init-list here for error recovery purposes. 466 SourceLocation BraceLoc = Tok.getLocation(); 467 TernaryMiddle = ParseBraceInitializer(); 468 if (!TernaryMiddle.isInvalid()) { 469 Diag(BraceLoc, diag::err_init_list_bin_op) 470 << /*RHS*/ 1 << PP.getSpelling(OpToken) 471 << Actions.getExprRange(TernaryMiddle.get()); 472 TernaryMiddle = ExprError(); 473 } 474 } else if (Tok.isNot(tok::colon)) { 475 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 476 ColonProtectionRAIIObject X(*this); 477 478 // Handle this production specially: 479 // logical-OR-expression '?' expression ':' conditional-expression 480 // In particular, the RHS of the '?' is 'expression', not 481 // 'logical-OR-expression' as we might expect. 482 TernaryMiddle = ParseExpression(); 483 } else { 484 // Special case handling of "X ? Y : Z" where Y is empty: 485 // logical-OR-expression '?' ':' conditional-expression [GNU] 486 TernaryMiddle = nullptr; 487 Diag(Tok, diag::ext_gnu_conditional_expr); 488 } 489 490 if (TernaryMiddle.isInvalid()) { 491 Actions.CorrectDelayedTyposInExpr(LHS); 492 LHS = ExprError(); 493 TernaryMiddle = nullptr; 494 } 495 496 if (!TryConsumeToken(tok::colon, ColonLoc)) { 497 // Otherwise, we're missing a ':'. Assume that this was a typo that 498 // the user forgot. If we're not in a macro expansion, we can suggest 499 // a fixit hint. If there were two spaces before the current token, 500 // suggest inserting the colon in between them, otherwise insert ": ". 501 SourceLocation FILoc = Tok.getLocation(); 502 const char *FIText = ": "; 503 const SourceManager &SM = PP.getSourceManager(); 504 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 505 assert(FILoc.isFileID()); 506 bool IsInvalid = false; 507 const char *SourcePtr = 508 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 509 if (!IsInvalid && *SourcePtr == ' ') { 510 SourcePtr = 511 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 512 if (!IsInvalid && *SourcePtr == ' ') { 513 FILoc = FILoc.getLocWithOffset(-1); 514 FIText = ":"; 515 } 516 } 517 } 518 519 Diag(Tok, diag::err_expected) 520 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 521 Diag(OpToken, diag::note_matching) << tok::question; 522 ColonLoc = Tok.getLocation(); 523 } 524 } 525 526 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 527 OpToken.getKind()); 528 // Parse another leaf here for the RHS of the operator. 529 // ParseCastExpression works here because all RHS expressions in C have it 530 // as a prefix, at least. However, in C++, an assignment-expression could 531 // be a throw-expression, which is not a valid cast-expression. 532 // Therefore we need some special-casing here. 533 // Also note that the third operand of the conditional operator is 534 // an assignment-expression in C++, and in C++11, we can have a 535 // braced-init-list on the RHS of an assignment. For better diagnostics, 536 // parse as if we were allowed braced-init-lists everywhere, and check that 537 // they only appear on the RHS of assignments later. 538 ExprResult RHS; 539 bool RHSIsInitList = false; 540 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 541 RHS = ParseBraceInitializer(); 542 RHSIsInitList = true; 543 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 544 RHS = ParseAssignmentExpression(); 545 else 546 RHS = ParseCastExpression(AnyCastExpr); 547 548 if (RHS.isInvalid()) { 549 // FIXME: Errors generated by the delayed typo correction should be 550 // printed before errors from parsing the RHS, not after. 551 Actions.CorrectDelayedTyposInExpr(LHS); 552 if (TernaryMiddle.isUsable()) 553 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 554 LHS = ExprError(); 555 } 556 557 // Remember the precedence of this operator and get the precedence of the 558 // operator immediately to the right of the RHS. 559 prec::Level ThisPrec = NextTokPrec; 560 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 561 getLangOpts().CPlusPlus11); 562 563 // Assignment and conditional expressions are right-associative. 564 bool isRightAssoc = ThisPrec == prec::Conditional || 565 ThisPrec == prec::Assignment; 566 567 // Get the precedence of the operator to the right of the RHS. If it binds 568 // more tightly with RHS than we do, evaluate it completely first. 569 if (ThisPrec < NextTokPrec || 570 (ThisPrec == NextTokPrec && isRightAssoc)) { 571 if (!RHS.isInvalid() && RHSIsInitList) { 572 Diag(Tok, diag::err_init_list_bin_op) 573 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 574 RHS = ExprError(); 575 } 576 // If this is left-associative, only parse things on the RHS that bind 577 // more tightly than the current operator. If it is left-associative, it 578 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 579 // A=(B=(C=D)), where each paren is a level of recursion here. 580 // The function takes ownership of the RHS. 581 RHS = ParseRHSOfBinaryExpression(RHS, 582 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 583 RHSIsInitList = false; 584 585 if (RHS.isInvalid()) { 586 // FIXME: Errors generated by the delayed typo correction should be 587 // printed before errors from ParseRHSOfBinaryExpression, not after. 588 Actions.CorrectDelayedTyposInExpr(LHS); 589 if (TernaryMiddle.isUsable()) 590 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 591 LHS = ExprError(); 592 } 593 594 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 595 getLangOpts().CPlusPlus11); 596 } 597 598 if (!RHS.isInvalid() && RHSIsInitList) { 599 if (ThisPrec == prec::Assignment) { 600 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 601 << Actions.getExprRange(RHS.get()); 602 } else if (ColonLoc.isValid()) { 603 Diag(ColonLoc, diag::err_init_list_bin_op) 604 << /*RHS*/1 << ":" 605 << Actions.getExprRange(RHS.get()); 606 LHS = ExprError(); 607 } else { 608 Diag(OpToken, diag::err_init_list_bin_op) 609 << /*RHS*/1 << PP.getSpelling(OpToken) 610 << Actions.getExprRange(RHS.get()); 611 LHS = ExprError(); 612 } 613 } 614 615 ExprResult OrigLHS = LHS; 616 if (!LHS.isInvalid()) { 617 // Combine the LHS and RHS into the LHS (e.g. build AST). 618 if (TernaryMiddle.isInvalid()) { 619 // If we're using '>>' as an operator within a template 620 // argument list (in C++98), suggest the addition of 621 // parentheses so that the code remains well-formed in C++0x. 622 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 623 SuggestParentheses(OpToken.getLocation(), 624 diag::warn_cxx11_right_shift_in_template_arg, 625 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 626 Actions.getExprRange(RHS.get()).getEnd())); 627 628 ExprResult BinOp = 629 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 630 OpToken.getKind(), LHS.get(), RHS.get()); 631 if (BinOp.isInvalid()) 632 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 633 RHS.get()->getEndLoc(), 634 {LHS.get(), RHS.get()}); 635 636 LHS = BinOp; 637 } else { 638 ExprResult CondOp = Actions.ActOnConditionalOp( 639 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 640 RHS.get()); 641 if (CondOp.isInvalid()) { 642 std::vector<clang::Expr *> Args; 643 // TernaryMiddle can be null for the GNU conditional expr extension. 644 if (TernaryMiddle.get()) 645 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 646 else 647 Args = {LHS.get(), RHS.get()}; 648 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 649 RHS.get()->getEndLoc(), Args); 650 } 651 652 LHS = CondOp; 653 } 654 // In this case, ActOnBinOp or ActOnConditionalOp performed the 655 // CorrectDelayedTyposInExpr check. 656 if (!getLangOpts().CPlusPlus) 657 continue; 658 } 659 660 // Ensure potential typos aren't left undiagnosed. 661 if (LHS.isInvalid()) { 662 Actions.CorrectDelayedTyposInExpr(OrigLHS); 663 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 664 Actions.CorrectDelayedTyposInExpr(RHS); 665 } 666 } 667 } 668 669 /// Parse a cast-expression, unary-expression or primary-expression, based 670 /// on \p ExprType. 671 /// 672 /// \p isAddressOfOperand exists because an id-expression that is the 673 /// operand of address-of gets special treatment due to member pointers. 674 /// 675 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 676 bool isAddressOfOperand, 677 TypeCastState isTypeCast, 678 bool isVectorLiteral, 679 bool *NotPrimaryExpression) { 680 bool NotCastExpr; 681 ExprResult Res = ParseCastExpression(ParseKind, 682 isAddressOfOperand, 683 NotCastExpr, 684 isTypeCast, 685 isVectorLiteral, 686 NotPrimaryExpression); 687 if (NotCastExpr) 688 Diag(Tok, diag::err_expected_expression); 689 return Res; 690 } 691 692 namespace { 693 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 694 public: 695 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 696 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 697 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 698 } 699 700 bool ValidateCandidate(const TypoCorrection &candidate) override { 701 NamedDecl *ND = candidate.getCorrectionDecl(); 702 if (!ND) 703 return candidate.isKeyword(); 704 705 if (isa<TypeDecl>(ND)) 706 return WantTypeSpecifiers; 707 708 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 709 return false; 710 711 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 712 return true; 713 714 for (auto *C : candidate) { 715 NamedDecl *ND = C->getUnderlyingDecl(); 716 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 717 return true; 718 } 719 return false; 720 } 721 722 std::unique_ptr<CorrectionCandidateCallback> clone() override { 723 return std::make_unique<CastExpressionIdValidator>(*this); 724 } 725 726 private: 727 Token NextToken; 728 bool AllowNonTypes; 729 }; 730 } 731 732 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 733 /// a unary-expression. 734 /// 735 /// \p isAddressOfOperand exists because an id-expression that is the operand 736 /// of address-of gets special treatment due to member pointers. NotCastExpr 737 /// is set to true if the token is not the start of a cast-expression, and no 738 /// diagnostic is emitted in this case and no tokens are consumed. 739 /// 740 /// \verbatim 741 /// cast-expression: [C99 6.5.4] 742 /// unary-expression 743 /// '(' type-name ')' cast-expression 744 /// 745 /// unary-expression: [C99 6.5.3] 746 /// postfix-expression 747 /// '++' unary-expression 748 /// '--' unary-expression 749 /// [Coro] 'co_await' cast-expression 750 /// unary-operator cast-expression 751 /// 'sizeof' unary-expression 752 /// 'sizeof' '(' type-name ')' 753 /// [C++11] 'sizeof' '...' '(' identifier ')' 754 /// [GNU] '__alignof' unary-expression 755 /// [GNU] '__alignof' '(' type-name ')' 756 /// [C11] '_Alignof' '(' type-name ')' 757 /// [C++11] 'alignof' '(' type-id ')' 758 /// [GNU] '&&' identifier 759 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 760 /// [C++] new-expression 761 /// [C++] delete-expression 762 /// 763 /// unary-operator: one of 764 /// '&' '*' '+' '-' '~' '!' 765 /// [GNU] '__extension__' '__real' '__imag' 766 /// 767 /// primary-expression: [C99 6.5.1] 768 /// [C99] identifier 769 /// [C++] id-expression 770 /// constant 771 /// string-literal 772 /// [C++] boolean-literal [C++ 2.13.5] 773 /// [C++11] 'nullptr' [C++11 2.14.7] 774 /// [C++11] user-defined-literal 775 /// '(' expression ')' 776 /// [C11] generic-selection 777 /// [C++2a] requires-expression 778 /// '__func__' [C99 6.4.2.2] 779 /// [GNU] '__FUNCTION__' 780 /// [MS] '__FUNCDNAME__' 781 /// [MS] 'L__FUNCTION__' 782 /// [MS] '__FUNCSIG__' 783 /// [MS] 'L__FUNCSIG__' 784 /// [GNU] '__PRETTY_FUNCTION__' 785 /// [GNU] '(' compound-statement ')' 786 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 787 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 788 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 789 /// assign-expr ')' 790 /// [GNU] '__builtin_FILE' '(' ')' 791 /// [GNU] '__builtin_FUNCTION' '(' ')' 792 /// [GNU] '__builtin_LINE' '(' ')' 793 /// [CLANG] '__builtin_COLUMN' '(' ')' 794 /// [GNU] '__builtin_source_location' '(' ')' 795 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 796 /// [GNU] '__null' 797 /// [OBJC] '[' objc-message-expr ']' 798 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 799 /// [OBJC] '\@protocol' '(' identifier ')' 800 /// [OBJC] '\@encode' '(' type-name ')' 801 /// [OBJC] objc-string-literal 802 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 803 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 804 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 805 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 806 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 807 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 808 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 809 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 810 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 811 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 812 /// [C++] 'this' [C++ 9.3.2] 813 /// [G++] unary-type-trait '(' type-id ')' 814 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 815 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 816 /// [clang] '^' block-literal 817 /// 818 /// constant: [C99 6.4.4] 819 /// integer-constant 820 /// floating-constant 821 /// enumeration-constant -> identifier 822 /// character-constant 823 /// 824 /// id-expression: [C++ 5.1] 825 /// unqualified-id 826 /// qualified-id 827 /// 828 /// unqualified-id: [C++ 5.1] 829 /// identifier 830 /// operator-function-id 831 /// conversion-function-id 832 /// '~' class-name 833 /// template-id 834 /// 835 /// new-expression: [C++ 5.3.4] 836 /// '::'[opt] 'new' new-placement[opt] new-type-id 837 /// new-initializer[opt] 838 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 839 /// new-initializer[opt] 840 /// 841 /// delete-expression: [C++ 5.3.5] 842 /// '::'[opt] 'delete' cast-expression 843 /// '::'[opt] 'delete' '[' ']' cast-expression 844 /// 845 /// [GNU/Embarcadero] unary-type-trait: 846 /// '__is_arithmetic' 847 /// '__is_floating_point' 848 /// '__is_integral' 849 /// '__is_lvalue_expr' 850 /// '__is_rvalue_expr' 851 /// '__is_complete_type' 852 /// '__is_void' 853 /// '__is_array' 854 /// '__is_function' 855 /// '__is_reference' 856 /// '__is_lvalue_reference' 857 /// '__is_rvalue_reference' 858 /// '__is_fundamental' 859 /// '__is_object' 860 /// '__is_scalar' 861 /// '__is_compound' 862 /// '__is_pointer' 863 /// '__is_member_object_pointer' 864 /// '__is_member_function_pointer' 865 /// '__is_member_pointer' 866 /// '__is_const' 867 /// '__is_volatile' 868 /// '__is_trivial' 869 /// '__is_standard_layout' 870 /// '__is_signed' 871 /// '__is_unsigned' 872 /// 873 /// [GNU] unary-type-trait: 874 /// '__has_nothrow_assign' 875 /// '__has_nothrow_copy' 876 /// '__has_nothrow_constructor' 877 /// '__has_trivial_assign' [TODO] 878 /// '__has_trivial_copy' [TODO] 879 /// '__has_trivial_constructor' 880 /// '__has_trivial_destructor' 881 /// '__has_virtual_destructor' 882 /// '__is_abstract' [TODO] 883 /// '__is_class' 884 /// '__is_empty' [TODO] 885 /// '__is_enum' 886 /// '__is_final' 887 /// '__is_pod' 888 /// '__is_polymorphic' 889 /// '__is_sealed' [MS] 890 /// '__is_trivial' 891 /// '__is_union' 892 /// '__has_unique_object_representations' 893 /// 894 /// [Clang] unary-type-trait: 895 /// '__is_aggregate' 896 /// '__trivially_copyable' 897 /// 898 /// binary-type-trait: 899 /// [GNU] '__is_base_of' 900 /// [MS] '__is_convertible_to' 901 /// '__is_convertible' 902 /// '__is_same' 903 /// 904 /// [Embarcadero] array-type-trait: 905 /// '__array_rank' 906 /// '__array_extent' 907 /// 908 /// [Embarcadero] expression-trait: 909 /// '__is_lvalue_expr' 910 /// '__is_rvalue_expr' 911 /// \endverbatim 912 /// 913 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 914 bool isAddressOfOperand, 915 bool &NotCastExpr, 916 TypeCastState isTypeCast, 917 bool isVectorLiteral, 918 bool *NotPrimaryExpression) { 919 ExprResult Res; 920 tok::TokenKind SavedKind = Tok.getKind(); 921 auto SavedType = PreferredType; 922 NotCastExpr = false; 923 924 // Are postfix-expression suffix operators permitted after this 925 // cast-expression? If not, and we find some, we'll parse them anyway and 926 // diagnose them. 927 bool AllowSuffix = true; 928 929 // This handles all of cast-expression, unary-expression, postfix-expression, 930 // and primary-expression. We handle them together like this for efficiency 931 // and to simplify handling of an expression starting with a '(' token: which 932 // may be one of a parenthesized expression, cast-expression, compound literal 933 // expression, or statement expression. 934 // 935 // If the parsed tokens consist of a primary-expression, the cases below 936 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 937 // to handle the postfix expression suffixes. Cases that cannot be followed 938 // by postfix exprs should set AllowSuffix to false. 939 switch (SavedKind) { 940 case tok::l_paren: { 941 // If this expression is limited to being a unary-expression, the paren can 942 // not start a cast expression. 943 ParenParseOption ParenExprType; 944 switch (ParseKind) { 945 case CastParseKind::UnaryExprOnly: 946 if (!getLangOpts().CPlusPlus) 947 ParenExprType = CompoundLiteral; 948 LLVM_FALLTHROUGH; 949 case CastParseKind::AnyCastExpr: 950 ParenExprType = ParenParseOption::CastExpr; 951 break; 952 case CastParseKind::PrimaryExprOnly: 953 ParenExprType = FoldExpr; 954 break; 955 } 956 ParsedType CastTy; 957 SourceLocation RParenLoc; 958 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 959 isTypeCast == IsTypeCast, CastTy, RParenLoc); 960 961 // FIXME: What should we do if a vector literal is followed by a 962 // postfix-expression suffix? Usually postfix operators are permitted on 963 // literals. 964 if (isVectorLiteral) 965 return Res; 966 967 switch (ParenExprType) { 968 case SimpleExpr: break; // Nothing else to do. 969 case CompoundStmt: break; // Nothing else to do. 970 case CompoundLiteral: 971 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 972 // postfix-expression exist, parse them now. 973 break; 974 case CastExpr: 975 // We have parsed the cast-expression and no postfix-expr pieces are 976 // following. 977 return Res; 978 case FoldExpr: 979 // We only parsed a fold-expression. There might be postfix-expr pieces 980 // afterwards; parse them now. 981 break; 982 } 983 984 break; 985 } 986 987 // primary-expression 988 case tok::numeric_constant: 989 // constant: integer-constant 990 // constant: floating-constant 991 992 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 993 ConsumeToken(); 994 break; 995 996 case tok::kw_true: 997 case tok::kw_false: 998 Res = ParseCXXBoolLiteral(); 999 break; 1000 1001 case tok::kw___objc_yes: 1002 case tok::kw___objc_no: 1003 Res = ParseObjCBoolLiteral(); 1004 break; 1005 1006 case tok::kw_nullptr: 1007 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1008 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1009 break; 1010 1011 case tok::annot_primary_expr: 1012 case tok::annot_overload_set: 1013 Res = getExprAnnotation(Tok); 1014 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set) 1015 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get()); 1016 ConsumeAnnotationToken(); 1017 if (!Res.isInvalid() && Tok.is(tok::less)) 1018 checkPotentialAngleBracket(Res); 1019 break; 1020 1021 case tok::annot_non_type: 1022 case tok::annot_non_type_dependent: 1023 case tok::annot_non_type_undeclared: { 1024 CXXScopeSpec SS; 1025 Token Replacement; 1026 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1027 assert(!Res.isUnset() && 1028 "should not perform typo correction on annotation token"); 1029 break; 1030 } 1031 1032 case tok::kw___super: 1033 case tok::kw_decltype: 1034 // Annotate the token and tail recurse. 1035 if (TryAnnotateTypeOrScopeToken()) 1036 return ExprError(); 1037 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1038 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1039 isVectorLiteral, NotPrimaryExpression); 1040 1041 case tok::identifier: { // primary-expression: identifier 1042 // unqualified-id: identifier 1043 // constant: enumeration-constant 1044 // Turn a potentially qualified name into a annot_typename or 1045 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1046 if (getLangOpts().CPlusPlus) { 1047 // Avoid the unnecessary parse-time lookup in the common case 1048 // where the syntax forbids a type. 1049 const Token &Next = NextToken(); 1050 1051 // If this identifier was reverted from a token ID, and the next token 1052 // is a parenthesis, this is likely to be a use of a type trait. Check 1053 // those tokens. 1054 if (Next.is(tok::l_paren) && 1055 Tok.is(tok::identifier) && 1056 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1057 IdentifierInfo *II = Tok.getIdentifierInfo(); 1058 // Build up the mapping of revertible type traits, for future use. 1059 if (RevertibleTypeTraits.empty()) { 1060 #define RTT_JOIN(X,Y) X##Y 1061 #define REVERTIBLE_TYPE_TRAIT(Name) \ 1062 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 1063 = RTT_JOIN(tok::kw_,Name) 1064 1065 REVERTIBLE_TYPE_TRAIT(__is_abstract); 1066 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 1067 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 1068 REVERTIBLE_TYPE_TRAIT(__is_array); 1069 REVERTIBLE_TYPE_TRAIT(__is_assignable); 1070 REVERTIBLE_TYPE_TRAIT(__is_base_of); 1071 REVERTIBLE_TYPE_TRAIT(__is_class); 1072 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 1073 REVERTIBLE_TYPE_TRAIT(__is_compound); 1074 REVERTIBLE_TYPE_TRAIT(__is_const); 1075 REVERTIBLE_TYPE_TRAIT(__is_constructible); 1076 REVERTIBLE_TYPE_TRAIT(__is_convertible); 1077 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 1078 REVERTIBLE_TYPE_TRAIT(__is_destructible); 1079 REVERTIBLE_TYPE_TRAIT(__is_empty); 1080 REVERTIBLE_TYPE_TRAIT(__is_enum); 1081 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 1082 REVERTIBLE_TYPE_TRAIT(__is_final); 1083 REVERTIBLE_TYPE_TRAIT(__is_function); 1084 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 1085 REVERTIBLE_TYPE_TRAIT(__is_integral); 1086 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 1087 REVERTIBLE_TYPE_TRAIT(__is_literal); 1088 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 1089 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 1090 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 1091 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 1092 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 1093 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 1094 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 1095 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 1096 REVERTIBLE_TYPE_TRAIT(__is_object); 1097 REVERTIBLE_TYPE_TRAIT(__is_pod); 1098 REVERTIBLE_TYPE_TRAIT(__is_pointer); 1099 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 1100 REVERTIBLE_TYPE_TRAIT(__is_reference); 1101 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 1102 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 1103 REVERTIBLE_TYPE_TRAIT(__is_same); 1104 REVERTIBLE_TYPE_TRAIT(__is_scalar); 1105 REVERTIBLE_TYPE_TRAIT(__is_sealed); 1106 REVERTIBLE_TYPE_TRAIT(__is_signed); 1107 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 1108 REVERTIBLE_TYPE_TRAIT(__is_trivial); 1109 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 1110 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 1111 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 1112 REVERTIBLE_TYPE_TRAIT(__is_union); 1113 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 1114 REVERTIBLE_TYPE_TRAIT(__is_void); 1115 REVERTIBLE_TYPE_TRAIT(__is_volatile); 1116 #undef REVERTIBLE_TYPE_TRAIT 1117 #undef RTT_JOIN 1118 } 1119 1120 // If we find that this is in fact the name of a type trait, 1121 // update the token kind in place and parse again to treat it as 1122 // the appropriate kind of type trait. 1123 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 1124 = RevertibleTypeTraits.find(II); 1125 if (Known != RevertibleTypeTraits.end()) { 1126 Tok.setKind(Known->second); 1127 return ParseCastExpression(ParseKind, isAddressOfOperand, 1128 NotCastExpr, isTypeCast, 1129 isVectorLiteral, NotPrimaryExpression); 1130 } 1131 } 1132 1133 if ((!ColonIsSacred && Next.is(tok::colon)) || 1134 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1135 tok::l_brace)) { 1136 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1137 if (TryAnnotateTypeOrScopeToken()) 1138 return ExprError(); 1139 if (!Tok.is(tok::identifier)) 1140 return ParseCastExpression(ParseKind, isAddressOfOperand, 1141 NotCastExpr, isTypeCast, 1142 isVectorLiteral, 1143 NotPrimaryExpression); 1144 } 1145 } 1146 1147 // Consume the identifier so that we can see if it is followed by a '(' or 1148 // '.'. 1149 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1150 SourceLocation ILoc = ConsumeToken(); 1151 1152 // Support 'Class.property' and 'super.property' notation. 1153 if (getLangOpts().ObjC && Tok.is(tok::period) && 1154 (Actions.getTypeName(II, ILoc, getCurScope()) || 1155 // Allow the base to be 'super' if in an objc-method. 1156 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1157 ConsumeToken(); 1158 1159 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1160 cutOffParsing(); 1161 Actions.CodeCompleteObjCClassPropertyRefExpr( 1162 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1163 return ExprError(); 1164 } 1165 // Allow either an identifier or the keyword 'class' (in C++). 1166 if (Tok.isNot(tok::identifier) && 1167 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1168 Diag(Tok, diag::err_expected_property_name); 1169 return ExprError(); 1170 } 1171 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1172 SourceLocation PropertyLoc = ConsumeToken(); 1173 1174 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 1175 ILoc, PropertyLoc); 1176 break; 1177 } 1178 1179 // In an Objective-C method, if we have "super" followed by an identifier, 1180 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1181 // that identifier, this is probably a message send with a missing open 1182 // bracket. Treat it as such. 1183 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1184 getCurScope()->isInObjcMethodScope() && 1185 ((Tok.is(tok::identifier) && 1186 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1187 Tok.is(tok::code_completion))) { 1188 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1189 nullptr); 1190 break; 1191 } 1192 1193 // If we have an Objective-C class name followed by an identifier 1194 // and either ':' or ']', this is an Objective-C class message 1195 // send that's missing the opening '['. Recovery 1196 // appropriately. Also take this path if we're performing code 1197 // completion after an Objective-C class name. 1198 if (getLangOpts().ObjC && 1199 ((Tok.is(tok::identifier) && !InMessageExpression) || 1200 Tok.is(tok::code_completion))) { 1201 const Token& Next = NextToken(); 1202 if (Tok.is(tok::code_completion) || 1203 Next.is(tok::colon) || Next.is(tok::r_square)) 1204 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1205 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1206 // Fake up a Declarator to use with ActOnTypeName. 1207 DeclSpec DS(AttrFactory); 1208 DS.SetRangeStart(ILoc); 1209 DS.SetRangeEnd(ILoc); 1210 const char *PrevSpec = nullptr; 1211 unsigned DiagID; 1212 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1213 Actions.getASTContext().getPrintingPolicy()); 1214 1215 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1216 DeclaratorContext::TypeName); 1217 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1218 DeclaratorInfo); 1219 if (Ty.isInvalid()) 1220 break; 1221 1222 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1223 SourceLocation(), 1224 Ty.get(), nullptr); 1225 break; 1226 } 1227 } 1228 1229 // Make sure to pass down the right value for isAddressOfOperand. 1230 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1231 isAddressOfOperand = false; 1232 1233 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1234 // need to know whether or not this identifier is a function designator or 1235 // not. 1236 UnqualifiedId Name; 1237 CXXScopeSpec ScopeSpec; 1238 SourceLocation TemplateKWLoc; 1239 Token Replacement; 1240 CastExpressionIdValidator Validator( 1241 /*Next=*/Tok, 1242 /*AllowTypes=*/isTypeCast != NotTypeCast, 1243 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1244 Validator.IsAddressOfOperand = isAddressOfOperand; 1245 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1246 Validator.WantExpressionKeywords = false; 1247 Validator.WantRemainingKeywords = false; 1248 } else { 1249 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1250 } 1251 Name.setIdentifier(&II, ILoc); 1252 Res = Actions.ActOnIdExpression( 1253 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1254 isAddressOfOperand, &Validator, 1255 /*IsInlineAsmIdentifier=*/false, 1256 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1257 if (!Res.isInvalid() && Res.isUnset()) { 1258 UnconsumeToken(Replacement); 1259 return ParseCastExpression(ParseKind, isAddressOfOperand, 1260 NotCastExpr, isTypeCast, 1261 /*isVectorLiteral=*/false, 1262 NotPrimaryExpression); 1263 } 1264 if (!Res.isInvalid() && Tok.is(tok::less)) 1265 checkPotentialAngleBracket(Res); 1266 break; 1267 } 1268 case tok::char_constant: // constant: character-constant 1269 case tok::wide_char_constant: 1270 case tok::utf8_char_constant: 1271 case tok::utf16_char_constant: 1272 case tok::utf32_char_constant: 1273 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1274 ConsumeToken(); 1275 break; 1276 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1277 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1278 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1279 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1280 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1281 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1282 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1283 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1284 ConsumeToken(); 1285 break; 1286 case tok::string_literal: // primary-expression: string-literal 1287 case tok::wide_string_literal: 1288 case tok::utf8_string_literal: 1289 case tok::utf16_string_literal: 1290 case tok::utf32_string_literal: 1291 Res = ParseStringLiteralExpression(true); 1292 break; 1293 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1294 Res = ParseGenericSelectionExpression(); 1295 break; 1296 case tok::kw___builtin_available: 1297 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1298 break; 1299 case tok::kw___builtin_va_arg: 1300 case tok::kw___builtin_offsetof: 1301 case tok::kw___builtin_choose_expr: 1302 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1303 case tok::kw___builtin_convertvector: 1304 case tok::kw___builtin_COLUMN: 1305 case tok::kw___builtin_FILE: 1306 case tok::kw___builtin_FUNCTION: 1307 case tok::kw___builtin_LINE: 1308 case tok::kw___builtin_source_location: 1309 if (NotPrimaryExpression) 1310 *NotPrimaryExpression = true; 1311 // This parses the complete suffix; we can return early. 1312 return ParseBuiltinPrimaryExpression(); 1313 case tok::kw___null: 1314 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1315 break; 1316 1317 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1318 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1319 if (NotPrimaryExpression) 1320 *NotPrimaryExpression = true; 1321 // C++ [expr.unary] has: 1322 // unary-expression: 1323 // ++ cast-expression 1324 // -- cast-expression 1325 Token SavedTok = Tok; 1326 ConsumeToken(); 1327 1328 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1329 SavedTok.getLocation()); 1330 // One special case is implicitly handled here: if the preceding tokens are 1331 // an ambiguous cast expression, such as "(T())++", then we recurse to 1332 // determine whether the '++' is prefix or postfix. 1333 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1334 UnaryExprOnly : AnyCastExpr, 1335 /*isAddressOfOperand*/false, NotCastExpr, 1336 NotTypeCast); 1337 if (NotCastExpr) { 1338 // If we return with NotCastExpr = true, we must not consume any tokens, 1339 // so put the token back where we found it. 1340 assert(Res.isInvalid()); 1341 UnconsumeToken(SavedTok); 1342 return ExprError(); 1343 } 1344 if (!Res.isInvalid()) { 1345 Expr *Arg = Res.get(); 1346 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1347 SavedKind, Arg); 1348 if (Res.isInvalid()) 1349 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1350 Arg->getEndLoc(), Arg); 1351 } 1352 return Res; 1353 } 1354 case tok::amp: { // unary-expression: '&' cast-expression 1355 if (NotPrimaryExpression) 1356 *NotPrimaryExpression = true; 1357 // Special treatment because of member pointers 1358 SourceLocation SavedLoc = ConsumeToken(); 1359 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1360 Res = ParseCastExpression(AnyCastExpr, true); 1361 if (!Res.isInvalid()) { 1362 Expr *Arg = Res.get(); 1363 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1364 if (Res.isInvalid()) 1365 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1366 Arg); 1367 } 1368 return Res; 1369 } 1370 1371 case tok::star: // unary-expression: '*' cast-expression 1372 case tok::plus: // unary-expression: '+' cast-expression 1373 case tok::minus: // unary-expression: '-' cast-expression 1374 case tok::tilde: // unary-expression: '~' cast-expression 1375 case tok::exclaim: // unary-expression: '!' cast-expression 1376 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1377 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1378 if (NotPrimaryExpression) 1379 *NotPrimaryExpression = true; 1380 SourceLocation SavedLoc = ConsumeToken(); 1381 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1382 Res = ParseCastExpression(AnyCastExpr); 1383 if (!Res.isInvalid()) { 1384 Expr *Arg = Res.get(); 1385 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1386 if (Res.isInvalid()) 1387 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1388 } 1389 return Res; 1390 } 1391 1392 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1393 if (NotPrimaryExpression) 1394 *NotPrimaryExpression = true; 1395 SourceLocation CoawaitLoc = ConsumeToken(); 1396 Res = ParseCastExpression(AnyCastExpr); 1397 if (!Res.isInvalid()) 1398 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1399 return Res; 1400 } 1401 1402 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1403 // __extension__ silences extension warnings in the subexpression. 1404 if (NotPrimaryExpression) 1405 *NotPrimaryExpression = true; 1406 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1407 SourceLocation SavedLoc = ConsumeToken(); 1408 Res = ParseCastExpression(AnyCastExpr); 1409 if (!Res.isInvalid()) 1410 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1411 return Res; 1412 } 1413 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1414 if (!getLangOpts().C11) 1415 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 1416 LLVM_FALLTHROUGH; 1417 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1418 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1419 // unary-expression: '__alignof' '(' type-name ')' 1420 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1421 // unary-expression: 'sizeof' '(' type-name ')' 1422 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1423 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1424 case tok::kw___builtin_omp_required_simd_align: 1425 if (NotPrimaryExpression) 1426 *NotPrimaryExpression = true; 1427 AllowSuffix = false; 1428 Res = ParseUnaryExprOrTypeTraitExpression(); 1429 break; 1430 case tok::ampamp: { // unary-expression: '&&' identifier 1431 if (NotPrimaryExpression) 1432 *NotPrimaryExpression = true; 1433 SourceLocation AmpAmpLoc = ConsumeToken(); 1434 if (Tok.isNot(tok::identifier)) 1435 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1436 1437 if (getCurScope()->getFnParent() == nullptr) 1438 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1439 1440 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1441 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1442 Tok.getLocation()); 1443 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1444 ConsumeToken(); 1445 AllowSuffix = false; 1446 break; 1447 } 1448 case tok::kw_const_cast: 1449 case tok::kw_dynamic_cast: 1450 case tok::kw_reinterpret_cast: 1451 case tok::kw_static_cast: 1452 case tok::kw_addrspace_cast: 1453 if (NotPrimaryExpression) 1454 *NotPrimaryExpression = true; 1455 Res = ParseCXXCasts(); 1456 break; 1457 case tok::kw___builtin_bit_cast: 1458 if (NotPrimaryExpression) 1459 *NotPrimaryExpression = true; 1460 Res = ParseBuiltinBitCast(); 1461 break; 1462 case tok::kw_typeid: 1463 if (NotPrimaryExpression) 1464 *NotPrimaryExpression = true; 1465 Res = ParseCXXTypeid(); 1466 break; 1467 case tok::kw___uuidof: 1468 if (NotPrimaryExpression) 1469 *NotPrimaryExpression = true; 1470 Res = ParseCXXUuidof(); 1471 break; 1472 case tok::kw_this: 1473 Res = ParseCXXThis(); 1474 break; 1475 case tok::kw___builtin_sycl_unique_stable_name: 1476 Res = ParseSYCLUniqueStableNameExpression(); 1477 break; 1478 1479 case tok::annot_typename: 1480 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1481 TypeResult Type = getTypeAnnotation(Tok); 1482 1483 // Fake up a Declarator to use with ActOnTypeName. 1484 DeclSpec DS(AttrFactory); 1485 DS.SetRangeStart(Tok.getLocation()); 1486 DS.SetRangeEnd(Tok.getLastLoc()); 1487 1488 const char *PrevSpec = nullptr; 1489 unsigned DiagID; 1490 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1491 PrevSpec, DiagID, Type, 1492 Actions.getASTContext().getPrintingPolicy()); 1493 1494 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 1495 DeclaratorContext::TypeName); 1496 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1497 if (Ty.isInvalid()) 1498 break; 1499 1500 ConsumeAnnotationToken(); 1501 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1502 Ty.get(), nullptr); 1503 break; 1504 } 1505 LLVM_FALLTHROUGH; 1506 1507 case tok::annot_decltype: 1508 case tok::kw_char: 1509 case tok::kw_wchar_t: 1510 case tok::kw_char8_t: 1511 case tok::kw_char16_t: 1512 case tok::kw_char32_t: 1513 case tok::kw_bool: 1514 case tok::kw_short: 1515 case tok::kw_int: 1516 case tok::kw_long: 1517 case tok::kw___int64: 1518 case tok::kw___int128: 1519 case tok::kw__ExtInt: 1520 case tok::kw__BitInt: 1521 case tok::kw_signed: 1522 case tok::kw_unsigned: 1523 case tok::kw_half: 1524 case tok::kw_float: 1525 case tok::kw_double: 1526 case tok::kw___bf16: 1527 case tok::kw__Float16: 1528 case tok::kw___float128: 1529 case tok::kw___ibm128: 1530 case tok::kw_void: 1531 case tok::kw_auto: 1532 case tok::kw_typename: 1533 case tok::kw_typeof: 1534 case tok::kw___vector: 1535 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1536 #include "clang/Basic/OpenCLImageTypes.def" 1537 { 1538 if (!getLangOpts().CPlusPlus) { 1539 Diag(Tok, diag::err_expected_expression); 1540 return ExprError(); 1541 } 1542 1543 // Everything henceforth is a postfix-expression. 1544 if (NotPrimaryExpression) 1545 *NotPrimaryExpression = true; 1546 1547 if (SavedKind == tok::kw_typename) { 1548 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1549 // typename-specifier braced-init-list 1550 if (TryAnnotateTypeOrScopeToken()) 1551 return ExprError(); 1552 1553 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1554 // We are trying to parse a simple-type-specifier but might not get such 1555 // a token after error recovery. 1556 return ExprError(); 1557 } 1558 1559 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1560 // simple-type-specifier braced-init-list 1561 // 1562 DeclSpec DS(AttrFactory); 1563 1564 ParseCXXSimpleTypeSpecifier(DS); 1565 if (Tok.isNot(tok::l_paren) && 1566 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1567 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1568 << DS.getSourceRange()); 1569 1570 if (Tok.is(tok::l_brace)) 1571 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1572 1573 Res = ParseCXXTypeConstructExpression(DS); 1574 break; 1575 } 1576 1577 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1578 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1579 // (We can end up in this situation after tentative parsing.) 1580 if (TryAnnotateTypeOrScopeToken()) 1581 return ExprError(); 1582 if (!Tok.is(tok::annot_cxxscope)) 1583 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1584 isTypeCast, isVectorLiteral, 1585 NotPrimaryExpression); 1586 1587 Token Next = NextToken(); 1588 if (Next.is(tok::annot_template_id)) { 1589 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1590 if (TemplateId->Kind == TNK_Type_template) { 1591 // We have a qualified template-id that we know refers to a 1592 // type, translate it into a type and continue parsing as a 1593 // cast expression. 1594 CXXScopeSpec SS; 1595 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1596 /*ObjectHasErrors=*/false, 1597 /*EnteringContext=*/false); 1598 AnnotateTemplateIdTokenAsType(SS); 1599 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1600 isTypeCast, isVectorLiteral, 1601 NotPrimaryExpression); 1602 } 1603 } 1604 1605 // Parse as an id-expression. 1606 Res = ParseCXXIdExpression(isAddressOfOperand); 1607 break; 1608 } 1609 1610 case tok::annot_template_id: { // [C++] template-id 1611 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1612 if (TemplateId->Kind == TNK_Type_template) { 1613 // We have a template-id that we know refers to a type, 1614 // translate it into a type and continue parsing as a cast 1615 // expression. 1616 CXXScopeSpec SS; 1617 AnnotateTemplateIdTokenAsType(SS); 1618 return ParseCastExpression(ParseKind, isAddressOfOperand, 1619 NotCastExpr, isTypeCast, isVectorLiteral, 1620 NotPrimaryExpression); 1621 } 1622 1623 // Fall through to treat the template-id as an id-expression. 1624 LLVM_FALLTHROUGH; 1625 } 1626 1627 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1628 Res = ParseCXXIdExpression(isAddressOfOperand); 1629 break; 1630 1631 case tok::coloncolon: { 1632 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1633 // annotates the token, tail recurse. 1634 if (TryAnnotateTypeOrScopeToken()) 1635 return ExprError(); 1636 if (!Tok.is(tok::coloncolon)) 1637 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1638 isVectorLiteral, NotPrimaryExpression); 1639 1640 // ::new -> [C++] new-expression 1641 // ::delete -> [C++] delete-expression 1642 SourceLocation CCLoc = ConsumeToken(); 1643 if (Tok.is(tok::kw_new)) { 1644 if (NotPrimaryExpression) 1645 *NotPrimaryExpression = true; 1646 Res = ParseCXXNewExpression(true, CCLoc); 1647 AllowSuffix = false; 1648 break; 1649 } 1650 if (Tok.is(tok::kw_delete)) { 1651 if (NotPrimaryExpression) 1652 *NotPrimaryExpression = true; 1653 Res = ParseCXXDeleteExpression(true, CCLoc); 1654 AllowSuffix = false; 1655 break; 1656 } 1657 1658 // This is not a type name or scope specifier, it is an invalid expression. 1659 Diag(CCLoc, diag::err_expected_expression); 1660 return ExprError(); 1661 } 1662 1663 case tok::kw_new: // [C++] new-expression 1664 if (NotPrimaryExpression) 1665 *NotPrimaryExpression = true; 1666 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1667 AllowSuffix = false; 1668 break; 1669 1670 case tok::kw_delete: // [C++] delete-expression 1671 if (NotPrimaryExpression) 1672 *NotPrimaryExpression = true; 1673 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1674 AllowSuffix = false; 1675 break; 1676 1677 case tok::kw_requires: // [C++2a] requires-expression 1678 Res = ParseRequiresExpression(); 1679 AllowSuffix = false; 1680 break; 1681 1682 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1683 if (NotPrimaryExpression) 1684 *NotPrimaryExpression = true; 1685 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1686 SourceLocation KeyLoc = ConsumeToken(); 1687 BalancedDelimiterTracker T(*this, tok::l_paren); 1688 1689 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1690 return ExprError(); 1691 // C++11 [expr.unary.noexcept]p1: 1692 // The noexcept operator determines whether the evaluation of its operand, 1693 // which is an unevaluated operand, can throw an exception. 1694 EnterExpressionEvaluationContext Unevaluated( 1695 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1696 Res = ParseExpression(); 1697 1698 T.consumeClose(); 1699 1700 if (!Res.isInvalid()) 1701 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1702 T.getCloseLocation()); 1703 AllowSuffix = false; 1704 break; 1705 } 1706 1707 #define TYPE_TRAIT(N,Spelling,K) \ 1708 case tok::kw_##Spelling: 1709 #include "clang/Basic/TokenKinds.def" 1710 Res = ParseTypeTrait(); 1711 break; 1712 1713 case tok::kw___array_rank: 1714 case tok::kw___array_extent: 1715 if (NotPrimaryExpression) 1716 *NotPrimaryExpression = true; 1717 Res = ParseArrayTypeTrait(); 1718 break; 1719 1720 case tok::kw___is_lvalue_expr: 1721 case tok::kw___is_rvalue_expr: 1722 if (NotPrimaryExpression) 1723 *NotPrimaryExpression = true; 1724 Res = ParseExpressionTrait(); 1725 break; 1726 1727 case tok::at: { 1728 if (NotPrimaryExpression) 1729 *NotPrimaryExpression = true; 1730 SourceLocation AtLoc = ConsumeToken(); 1731 return ParseObjCAtExpression(AtLoc); 1732 } 1733 case tok::caret: 1734 Res = ParseBlockLiteralExpression(); 1735 break; 1736 case tok::code_completion: { 1737 cutOffParsing(); 1738 Actions.CodeCompleteExpression(getCurScope(), 1739 PreferredType.get(Tok.getLocation())); 1740 return ExprError(); 1741 } 1742 case tok::l_square: 1743 if (getLangOpts().CPlusPlus11) { 1744 if (getLangOpts().ObjC) { 1745 // C++11 lambda expressions and Objective-C message sends both start with a 1746 // square bracket. There are three possibilities here: 1747 // we have a valid lambda expression, we have an invalid lambda 1748 // expression, or we have something that doesn't appear to be a lambda. 1749 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1750 Res = TryParseLambdaExpression(); 1751 if (!Res.isInvalid() && !Res.get()) { 1752 // We assume Objective-C++ message expressions are not 1753 // primary-expressions. 1754 if (NotPrimaryExpression) 1755 *NotPrimaryExpression = true; 1756 Res = ParseObjCMessageExpression(); 1757 } 1758 break; 1759 } 1760 Res = ParseLambdaExpression(); 1761 break; 1762 } 1763 if (getLangOpts().ObjC) { 1764 Res = ParseObjCMessageExpression(); 1765 break; 1766 } 1767 LLVM_FALLTHROUGH; 1768 default: 1769 NotCastExpr = true; 1770 return ExprError(); 1771 } 1772 1773 // Check to see whether Res is a function designator only. If it is and we 1774 // are compiling for OpenCL, we need to return an error as this implies 1775 // that the address of the function is being taken, which is illegal in CL. 1776 1777 if (ParseKind == PrimaryExprOnly) 1778 // This is strictly a primary-expression - no postfix-expr pieces should be 1779 // parsed. 1780 return Res; 1781 1782 if (!AllowSuffix) { 1783 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1784 // error already. 1785 if (Res.isInvalid()) 1786 return Res; 1787 1788 switch (Tok.getKind()) { 1789 case tok::l_square: 1790 case tok::l_paren: 1791 case tok::plusplus: 1792 case tok::minusminus: 1793 // "expected ';'" or similar is probably the right diagnostic here. Let 1794 // the caller decide what to do. 1795 if (Tok.isAtStartOfLine()) 1796 return Res; 1797 1798 LLVM_FALLTHROUGH; 1799 case tok::period: 1800 case tok::arrow: 1801 break; 1802 1803 default: 1804 return Res; 1805 } 1806 1807 // This was a unary-expression for which a postfix-expression suffix is 1808 // not permitted by the grammar (eg, a sizeof expression or 1809 // new-expression or similar). Diagnose but parse the suffix anyway. 1810 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1811 << Tok.getKind() << Res.get()->getSourceRange() 1812 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1813 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1814 ")"); 1815 } 1816 1817 // These can be followed by postfix-expr pieces. 1818 PreferredType = SavedType; 1819 Res = ParsePostfixExpressionSuffix(Res); 1820 if (getLangOpts().OpenCL && 1821 !getActions().getOpenCLOptions().isAvailableOption( 1822 "__cl_clang_function_pointers", getLangOpts())) 1823 if (Expr *PostfixExpr = Res.get()) { 1824 QualType Ty = PostfixExpr->getType(); 1825 if (!Ty.isNull() && Ty->isFunctionType()) { 1826 Diag(PostfixExpr->getExprLoc(), 1827 diag::err_opencl_taking_function_address_parser); 1828 return ExprError(); 1829 } 1830 } 1831 1832 return Res; 1833 } 1834 1835 /// Once the leading part of a postfix-expression is parsed, this 1836 /// method parses any suffixes that apply. 1837 /// 1838 /// \verbatim 1839 /// postfix-expression: [C99 6.5.2] 1840 /// primary-expression 1841 /// postfix-expression '[' expression ']' 1842 /// postfix-expression '[' braced-init-list ']' 1843 /// postfix-expression '[' expression-list [opt] ']' [C++2b 12.4.5] 1844 /// postfix-expression '(' argument-expression-list[opt] ')' 1845 /// postfix-expression '.' identifier 1846 /// postfix-expression '->' identifier 1847 /// postfix-expression '++' 1848 /// postfix-expression '--' 1849 /// '(' type-name ')' '{' initializer-list '}' 1850 /// '(' type-name ')' '{' initializer-list ',' '}' 1851 /// 1852 /// argument-expression-list: [C99 6.5.2] 1853 /// argument-expression ...[opt] 1854 /// argument-expression-list ',' assignment-expression ...[opt] 1855 /// \endverbatim 1856 ExprResult 1857 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1858 // Now that the primary-expression piece of the postfix-expression has been 1859 // parsed, see if there are any postfix-expression pieces here. 1860 SourceLocation Loc; 1861 auto SavedType = PreferredType; 1862 while (true) { 1863 // Each iteration relies on preferred type for the whole expression. 1864 PreferredType = SavedType; 1865 switch (Tok.getKind()) { 1866 case tok::code_completion: 1867 if (InMessageExpression) 1868 return LHS; 1869 1870 cutOffParsing(); 1871 Actions.CodeCompletePostfixExpression( 1872 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1873 return ExprError(); 1874 1875 case tok::identifier: 1876 // If we see identifier: after an expression, and we're not already in a 1877 // message send, then this is probably a message send with a missing 1878 // opening bracket '['. 1879 if (getLangOpts().ObjC && !InMessageExpression && 1880 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1881 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1882 nullptr, LHS.get()); 1883 break; 1884 } 1885 // Fall through; this isn't a message send. 1886 LLVM_FALLTHROUGH; 1887 1888 default: // Not a postfix-expression suffix. 1889 return LHS; 1890 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1891 // If we have a array postfix expression that starts on a new line and 1892 // Objective-C is enabled, it is highly likely that the user forgot a 1893 // semicolon after the base expression and that the array postfix-expr is 1894 // actually another message send. In this case, do some look-ahead to see 1895 // if the contents of the square brackets are obviously not a valid 1896 // expression and recover by pretending there is no suffix. 1897 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1898 isSimpleObjCMessageExpression()) 1899 return LHS; 1900 1901 // Reject array indices starting with a lambda-expression. '[[' is 1902 // reserved for attributes. 1903 if (CheckProhibitedCXX11Attribute()) { 1904 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1905 return ExprError(); 1906 } 1907 BalancedDelimiterTracker T(*this, tok::l_square); 1908 T.consumeOpen(); 1909 Loc = T.getOpenLocation(); 1910 ExprResult Length, Stride; 1911 SourceLocation ColonLocFirst, ColonLocSecond; 1912 ExprVector ArgExprs; 1913 bool HasError = false; 1914 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1915 1916 // We try to parse a list of indexes in all language mode first 1917 // and, in we find 0 or one index, we try to parse an OpenMP array 1918 // section. This allow us to support C++2b multi dimensional subscript and 1919 // OpenMp sections in the same language mode. 1920 if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) { 1921 if (!getLangOpts().CPlusPlus2b) { 1922 ExprResult Idx; 1923 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1924 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1925 Idx = ParseBraceInitializer(); 1926 } else { 1927 Idx = ParseExpression(); // May be a comma expression 1928 } 1929 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1930 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1931 if (Idx.isInvalid()) { 1932 HasError = true; 1933 } else { 1934 ArgExprs.push_back(Idx.get()); 1935 } 1936 } else if (Tok.isNot(tok::r_square)) { 1937 CommaLocsTy CommaLocs; 1938 if (ParseExpressionList(ArgExprs, CommaLocs)) { 1939 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1940 HasError = true; 1941 } 1942 assert( 1943 (ArgExprs.empty() || ArgExprs.size() == CommaLocs.size() + 1) && 1944 "Unexpected number of commas!"); 1945 } 1946 } 1947 1948 if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) { 1949 ColonProtectionRAIIObject RAII(*this); 1950 if (Tok.is(tok::colon)) { 1951 // Consume ':' 1952 ColonLocFirst = ConsumeToken(); 1953 if (Tok.isNot(tok::r_square) && 1954 (getLangOpts().OpenMP < 50 || 1955 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) { 1956 Length = ParseExpression(); 1957 Length = Actions.CorrectDelayedTyposInExpr(Length); 1958 } 1959 } 1960 if (getLangOpts().OpenMP >= 50 && 1961 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 1962 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 1963 Tok.is(tok::colon)) { 1964 // Consume ':' 1965 ColonLocSecond = ConsumeToken(); 1966 if (Tok.isNot(tok::r_square)) { 1967 Stride = ParseExpression(); 1968 } 1969 } 1970 } 1971 1972 SourceLocation RLoc = Tok.getLocation(); 1973 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1974 1975 if (!LHS.isInvalid() && !HasError && !Length.isInvalid() && 1976 !Stride.isInvalid() && Tok.is(tok::r_square)) { 1977 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 1978 LHS = Actions.ActOnOMPArraySectionExpr( 1979 LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0], 1980 ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc); 1981 } else { 1982 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 1983 ArgExprs, RLoc); 1984 } 1985 } else { 1986 LHS = ExprError(); 1987 } 1988 1989 // Match the ']'. 1990 T.consumeClose(); 1991 break; 1992 } 1993 1994 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 1995 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 1996 // '(' argument-expression-list[opt] ')' 1997 tok::TokenKind OpKind = Tok.getKind(); 1998 InMessageExpressionRAIIObject InMessage(*this, false); 1999 2000 Expr *ExecConfig = nullptr; 2001 2002 BalancedDelimiterTracker PT(*this, tok::l_paren); 2003 2004 if (OpKind == tok::lesslessless) { 2005 ExprVector ExecConfigExprs; 2006 CommaLocsTy ExecConfigCommaLocs; 2007 SourceLocation OpenLoc = ConsumeToken(); 2008 2009 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { 2010 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2011 LHS = ExprError(); 2012 } 2013 2014 SourceLocation CloseLoc; 2015 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 2016 } else if (LHS.isInvalid()) { 2017 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2018 } else { 2019 // There was an error closing the brackets 2020 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 2021 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 2022 SkipUntil(tok::greatergreatergreater, StopAtSemi); 2023 LHS = ExprError(); 2024 } 2025 2026 if (!LHS.isInvalid()) { 2027 if (ExpectAndConsume(tok::l_paren)) 2028 LHS = ExprError(); 2029 else 2030 Loc = PrevTokLocation; 2031 } 2032 2033 if (!LHS.isInvalid()) { 2034 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 2035 OpenLoc, 2036 ExecConfigExprs, 2037 CloseLoc); 2038 if (ECResult.isInvalid()) 2039 LHS = ExprError(); 2040 else 2041 ExecConfig = ECResult.get(); 2042 } 2043 } else { 2044 PT.consumeOpen(); 2045 Loc = PT.getOpenLocation(); 2046 } 2047 2048 ExprVector ArgExprs; 2049 CommaLocsTy CommaLocs; 2050 auto RunSignatureHelp = [&]() -> QualType { 2051 QualType PreferredType = Actions.ProduceCallSignatureHelp( 2052 LHS.get(), ArgExprs, PT.getOpenLocation()); 2053 CalledSignatureHelp = true; 2054 return PreferredType; 2055 }; 2056 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2057 if (Tok.isNot(tok::r_paren)) { 2058 if (ParseExpressionList(ArgExprs, CommaLocs, [&] { 2059 PreferredType.enterFunctionArgument(Tok.getLocation(), 2060 RunSignatureHelp); 2061 })) { 2062 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2063 // If we got an error when parsing expression list, we don't call 2064 // the CodeCompleteCall handler inside the parser. So call it here 2065 // to make sure we get overload suggestions even when we are in the 2066 // middle of a parameter. 2067 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2068 RunSignatureHelp(); 2069 LHS = ExprError(); 2070 } else if (LHS.isInvalid()) { 2071 for (auto &E : ArgExprs) 2072 Actions.CorrectDelayedTyposInExpr(E); 2073 } 2074 } 2075 } 2076 2077 // Match the ')'. 2078 if (LHS.isInvalid()) { 2079 SkipUntil(tok::r_paren, StopAtSemi); 2080 } else if (Tok.isNot(tok::r_paren)) { 2081 bool HadDelayedTypo = false; 2082 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2083 HadDelayedTypo = true; 2084 for (auto &E : ArgExprs) 2085 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2086 HadDelayedTypo = true; 2087 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2088 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2089 // the unmatched l_paren. 2090 if (HadDelayedTypo) 2091 SkipUntil(tok::r_paren, StopAtSemi); 2092 else 2093 PT.consumeClose(); 2094 LHS = ExprError(); 2095 } else { 2096 assert( 2097 (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) && 2098 "Unexpected number of commas!"); 2099 Expr *Fn = LHS.get(); 2100 SourceLocation RParLoc = Tok.getLocation(); 2101 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2102 ExecConfig); 2103 if (LHS.isInvalid()) { 2104 ArgExprs.insert(ArgExprs.begin(), Fn); 2105 LHS = 2106 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2107 } 2108 PT.consumeClose(); 2109 } 2110 2111 break; 2112 } 2113 case tok::arrow: 2114 case tok::period: { 2115 // postfix-expression: p-e '->' template[opt] id-expression 2116 // postfix-expression: p-e '.' template[opt] id-expression 2117 tok::TokenKind OpKind = Tok.getKind(); 2118 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2119 2120 CXXScopeSpec SS; 2121 ParsedType ObjectType; 2122 bool MayBePseudoDestructor = false; 2123 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2124 2125 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2126 2127 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2128 Expr *Base = OrigLHS; 2129 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2130 if (BaseType && Tok.is(tok::l_paren) && 2131 (BaseType->isFunctionType() || 2132 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2133 Diag(OpLoc, diag::err_function_is_not_record) 2134 << OpKind << Base->getSourceRange() 2135 << FixItHint::CreateRemoval(OpLoc); 2136 return ParsePostfixExpressionSuffix(Base); 2137 } 2138 2139 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2140 OpKind, ObjectType, 2141 MayBePseudoDestructor); 2142 if (LHS.isInvalid()) { 2143 // Clang will try to perform expression based completion as a 2144 // fallback, which is confusing in case of member references. So we 2145 // stop here without any completions. 2146 if (Tok.is(tok::code_completion)) { 2147 cutOffParsing(); 2148 return ExprError(); 2149 } 2150 break; 2151 } 2152 ParseOptionalCXXScopeSpecifier( 2153 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2154 /*EnteringContext=*/false, &MayBePseudoDestructor); 2155 if (SS.isNotEmpty()) 2156 ObjectType = nullptr; 2157 } 2158 2159 if (Tok.is(tok::code_completion)) { 2160 tok::TokenKind CorrectedOpKind = 2161 OpKind == tok::arrow ? tok::period : tok::arrow; 2162 ExprResult CorrectedLHS(/*Invalid=*/true); 2163 if (getLangOpts().CPlusPlus && OrigLHS) { 2164 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2165 // hack. 2166 Sema::TentativeAnalysisScope Trap(Actions); 2167 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2168 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2169 MayBePseudoDestructor); 2170 } 2171 2172 Expr *Base = LHS.get(); 2173 Expr *CorrectedBase = CorrectedLHS.get(); 2174 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2175 CorrectedBase = Base; 2176 2177 // Code completion for a member access expression. 2178 cutOffParsing(); 2179 Actions.CodeCompleteMemberReferenceExpr( 2180 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2181 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2182 PreferredType.get(Tok.getLocation())); 2183 2184 return ExprError(); 2185 } 2186 2187 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2188 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2189 ObjectType); 2190 break; 2191 } 2192 2193 // Either the action has told us that this cannot be a 2194 // pseudo-destructor expression (based on the type of base 2195 // expression), or we didn't see a '~' in the right place. We 2196 // can still parse a destructor name here, but in that case it 2197 // names a real destructor. 2198 // Allow explicit constructor calls in Microsoft mode. 2199 // FIXME: Add support for explicit call of template constructor. 2200 SourceLocation TemplateKWLoc; 2201 UnqualifiedId Name; 2202 if (getLangOpts().ObjC && OpKind == tok::period && 2203 Tok.is(tok::kw_class)) { 2204 // Objective-C++: 2205 // After a '.' in a member access expression, treat the keyword 2206 // 'class' as if it were an identifier. 2207 // 2208 // This hack allows property access to the 'class' method because it is 2209 // such a common method name. For other C++ keywords that are 2210 // Objective-C method names, one must use the message send syntax. 2211 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2212 SourceLocation Loc = ConsumeToken(); 2213 Name.setIdentifier(Id, Loc); 2214 } else if (ParseUnqualifiedId( 2215 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2216 /*EnteringContext=*/false, 2217 /*AllowDestructorName=*/true, 2218 /*AllowConstructorName=*/ 2219 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2220 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2221 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2222 LHS = ExprError(); 2223 } 2224 2225 if (!LHS.isInvalid()) 2226 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2227 OpKind, SS, TemplateKWLoc, Name, 2228 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2229 : nullptr); 2230 if (!LHS.isInvalid()) { 2231 if (Tok.is(tok::less)) 2232 checkPotentialAngleBracket(LHS); 2233 } else if (OrigLHS && Name.isValid()) { 2234 // Preserve the LHS if the RHS is an invalid member. 2235 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2236 Name.getEndLoc(), {OrigLHS}); 2237 } 2238 break; 2239 } 2240 case tok::plusplus: // postfix-expression: postfix-expression '++' 2241 case tok::minusminus: // postfix-expression: postfix-expression '--' 2242 if (!LHS.isInvalid()) { 2243 Expr *Arg = LHS.get(); 2244 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2245 Tok.getKind(), Arg); 2246 if (LHS.isInvalid()) 2247 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2248 Tok.getLocation(), Arg); 2249 } 2250 ConsumeToken(); 2251 break; 2252 } 2253 } 2254 } 2255 2256 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2257 /// vec_step and we are at the start of an expression or a parenthesized 2258 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2259 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2260 /// 2261 /// \verbatim 2262 /// unary-expression: [C99 6.5.3] 2263 /// 'sizeof' unary-expression 2264 /// 'sizeof' '(' type-name ')' 2265 /// [GNU] '__alignof' unary-expression 2266 /// [GNU] '__alignof' '(' type-name ')' 2267 /// [C11] '_Alignof' '(' type-name ')' 2268 /// [C++0x] 'alignof' '(' type-id ')' 2269 /// 2270 /// [GNU] typeof-specifier: 2271 /// typeof ( expressions ) 2272 /// typeof ( type-name ) 2273 /// [GNU/C++] typeof unary-expression 2274 /// 2275 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2276 /// vec_step ( expressions ) 2277 /// vec_step ( type-name ) 2278 /// \endverbatim 2279 ExprResult 2280 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2281 bool &isCastExpr, 2282 ParsedType &CastTy, 2283 SourceRange &CastRange) { 2284 2285 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof, 2286 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2287 tok::kw___builtin_omp_required_simd_align) && 2288 "Not a typeof/sizeof/alignof/vec_step expression!"); 2289 2290 ExprResult Operand; 2291 2292 // If the operand doesn't start with an '(', it must be an expression. 2293 if (Tok.isNot(tok::l_paren)) { 2294 // If construct allows a form without parenthesis, user may forget to put 2295 // pathenthesis around type name. 2296 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2297 tok::kw__Alignof)) { 2298 if (isTypeIdUnambiguously()) { 2299 DeclSpec DS(AttrFactory); 2300 ParseSpecifierQualifierList(DS); 2301 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 2302 DeclaratorContext::TypeName); 2303 ParseDeclarator(DeclaratorInfo); 2304 2305 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2306 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2307 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) { 2308 Diag(OpTok.getLocation(), 2309 diag::err_expected_parentheses_around_typename) 2310 << OpTok.getName(); 2311 } else { 2312 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2313 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(") 2314 << FixItHint::CreateInsertion(RParenLoc, ")"); 2315 } 2316 isCastExpr = true; 2317 return ExprEmpty(); 2318 } 2319 } 2320 2321 isCastExpr = false; 2322 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { 2323 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2324 << tok::l_paren; 2325 return ExprError(); 2326 } 2327 2328 Operand = ParseCastExpression(UnaryExprOnly); 2329 } else { 2330 // If it starts with a '(', we know that it is either a parenthesized 2331 // type-name, or it is a unary-expression that starts with a compound 2332 // literal, or starts with a primary-expression that is a parenthesized 2333 // expression. 2334 ParenParseOption ExprType = CastExpr; 2335 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2336 2337 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2338 false, CastTy, RParenLoc); 2339 CastRange = SourceRange(LParenLoc, RParenLoc); 2340 2341 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2342 // a type. 2343 if (ExprType == CastExpr) { 2344 isCastExpr = true; 2345 return ExprEmpty(); 2346 } 2347 2348 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { 2349 // GNU typeof in C requires the expression to be parenthesized. Not so for 2350 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2351 // the start of a unary-expression, but doesn't include any postfix 2352 // pieces. Parse these now if present. 2353 if (!Operand.isInvalid()) 2354 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2355 } 2356 } 2357 2358 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2359 isCastExpr = false; 2360 return Operand; 2361 } 2362 2363 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as 2364 /// a parameter. 2365 ExprResult Parser::ParseSYCLUniqueStableNameExpression() { 2366 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) && 2367 "Not __builtin_sycl_unique_stable_name"); 2368 2369 SourceLocation OpLoc = ConsumeToken(); 2370 BalancedDelimiterTracker T(*this, tok::l_paren); 2371 2372 // __builtin_sycl_unique_stable_name expressions are always parenthesized. 2373 if (T.expectAndConsume(diag::err_expected_lparen_after, 2374 "__builtin_sycl_unique_stable_name")) 2375 return ExprError(); 2376 2377 TypeResult Ty = ParseTypeName(); 2378 2379 if (Ty.isInvalid()) { 2380 T.skipToEnd(); 2381 return ExprError(); 2382 } 2383 2384 if (T.consumeClose()) 2385 return ExprError(); 2386 2387 return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(), 2388 T.getCloseLocation(), Ty.get()); 2389 } 2390 2391 /// Parse a sizeof or alignof expression. 2392 /// 2393 /// \verbatim 2394 /// unary-expression: [C99 6.5.3] 2395 /// 'sizeof' unary-expression 2396 /// 'sizeof' '(' type-name ')' 2397 /// [C++11] 'sizeof' '...' '(' identifier ')' 2398 /// [GNU] '__alignof' unary-expression 2399 /// [GNU] '__alignof' '(' type-name ')' 2400 /// [C11] '_Alignof' '(' type-name ')' 2401 /// [C++11] 'alignof' '(' type-id ')' 2402 /// \endverbatim 2403 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2404 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2405 tok::kw__Alignof, tok::kw_vec_step, 2406 tok::kw___builtin_omp_required_simd_align) && 2407 "Not a sizeof/alignof/vec_step expression!"); 2408 Token OpTok = Tok; 2409 ConsumeToken(); 2410 2411 // [C++11] 'sizeof' '...' '(' identifier ')' 2412 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2413 SourceLocation EllipsisLoc = ConsumeToken(); 2414 SourceLocation LParenLoc, RParenLoc; 2415 IdentifierInfo *Name = nullptr; 2416 SourceLocation NameLoc; 2417 if (Tok.is(tok::l_paren)) { 2418 BalancedDelimiterTracker T(*this, tok::l_paren); 2419 T.consumeOpen(); 2420 LParenLoc = T.getOpenLocation(); 2421 if (Tok.is(tok::identifier)) { 2422 Name = Tok.getIdentifierInfo(); 2423 NameLoc = ConsumeToken(); 2424 T.consumeClose(); 2425 RParenLoc = T.getCloseLocation(); 2426 if (RParenLoc.isInvalid()) 2427 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2428 } else { 2429 Diag(Tok, diag::err_expected_parameter_pack); 2430 SkipUntil(tok::r_paren, StopAtSemi); 2431 } 2432 } else if (Tok.is(tok::identifier)) { 2433 Name = Tok.getIdentifierInfo(); 2434 NameLoc = ConsumeToken(); 2435 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2436 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2437 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2438 << Name 2439 << FixItHint::CreateInsertion(LParenLoc, "(") 2440 << FixItHint::CreateInsertion(RParenLoc, ")"); 2441 } else { 2442 Diag(Tok, diag::err_sizeof_parameter_pack); 2443 } 2444 2445 if (!Name) 2446 return ExprError(); 2447 2448 EnterExpressionEvaluationContext Unevaluated( 2449 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2450 Sema::ReuseLambdaContextDecl); 2451 2452 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2453 OpTok.getLocation(), 2454 *Name, NameLoc, 2455 RParenLoc); 2456 } 2457 2458 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2459 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2460 2461 EnterExpressionEvaluationContext Unevaluated( 2462 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2463 Sema::ReuseLambdaContextDecl); 2464 2465 bool isCastExpr; 2466 ParsedType CastTy; 2467 SourceRange CastRange; 2468 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2469 isCastExpr, 2470 CastTy, 2471 CastRange); 2472 2473 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2474 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2475 ExprKind = UETT_AlignOf; 2476 else if (OpTok.is(tok::kw___alignof)) 2477 ExprKind = UETT_PreferredAlignOf; 2478 else if (OpTok.is(tok::kw_vec_step)) 2479 ExprKind = UETT_VecStep; 2480 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align)) 2481 ExprKind = UETT_OpenMPRequiredSimdAlign; 2482 2483 if (isCastExpr) 2484 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2485 ExprKind, 2486 /*IsType=*/true, 2487 CastTy.getAsOpaquePtr(), 2488 CastRange); 2489 2490 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2491 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2492 2493 // If we get here, the operand to the sizeof/alignof was an expression. 2494 if (!Operand.isInvalid()) 2495 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2496 ExprKind, 2497 /*IsType=*/false, 2498 Operand.get(), 2499 CastRange); 2500 return Operand; 2501 } 2502 2503 /// ParseBuiltinPrimaryExpression 2504 /// 2505 /// \verbatim 2506 /// primary-expression: [C99 6.5.1] 2507 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2508 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2509 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2510 /// assign-expr ')' 2511 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2512 /// [GNU] '__builtin_FILE' '(' ')' 2513 /// [GNU] '__builtin_FUNCTION' '(' ')' 2514 /// [GNU] '__builtin_LINE' '(' ')' 2515 /// [CLANG] '__builtin_COLUMN' '(' ')' 2516 /// [GNU] '__builtin_source_location' '(' ')' 2517 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2518 /// 2519 /// [GNU] offsetof-member-designator: 2520 /// [GNU] identifier 2521 /// [GNU] offsetof-member-designator '.' identifier 2522 /// [GNU] offsetof-member-designator '[' expression ']' 2523 /// \endverbatim 2524 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2525 ExprResult Res; 2526 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2527 2528 tok::TokenKind T = Tok.getKind(); 2529 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2530 2531 // All of these start with an open paren. 2532 if (Tok.isNot(tok::l_paren)) 2533 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2534 << tok::l_paren); 2535 2536 BalancedDelimiterTracker PT(*this, tok::l_paren); 2537 PT.consumeOpen(); 2538 2539 // TODO: Build AST. 2540 2541 switch (T) { 2542 default: llvm_unreachable("Not a builtin primary expression!"); 2543 case tok::kw___builtin_va_arg: { 2544 ExprResult Expr(ParseAssignmentExpression()); 2545 2546 if (ExpectAndConsume(tok::comma)) { 2547 SkipUntil(tok::r_paren, StopAtSemi); 2548 Expr = ExprError(); 2549 } 2550 2551 TypeResult Ty = ParseTypeName(); 2552 2553 if (Tok.isNot(tok::r_paren)) { 2554 Diag(Tok, diag::err_expected) << tok::r_paren; 2555 Expr = ExprError(); 2556 } 2557 2558 if (Expr.isInvalid() || Ty.isInvalid()) 2559 Res = ExprError(); 2560 else 2561 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2562 break; 2563 } 2564 case tok::kw___builtin_offsetof: { 2565 SourceLocation TypeLoc = Tok.getLocation(); 2566 TypeResult Ty = ParseTypeName(); 2567 if (Ty.isInvalid()) { 2568 SkipUntil(tok::r_paren, StopAtSemi); 2569 return ExprError(); 2570 } 2571 2572 if (ExpectAndConsume(tok::comma)) { 2573 SkipUntil(tok::r_paren, StopAtSemi); 2574 return ExprError(); 2575 } 2576 2577 // We must have at least one identifier here. 2578 if (Tok.isNot(tok::identifier)) { 2579 Diag(Tok, diag::err_expected) << tok::identifier; 2580 SkipUntil(tok::r_paren, StopAtSemi); 2581 return ExprError(); 2582 } 2583 2584 // Keep track of the various subcomponents we see. 2585 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2586 2587 Comps.push_back(Sema::OffsetOfComponent()); 2588 Comps.back().isBrackets = false; 2589 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2590 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2591 2592 // FIXME: This loop leaks the index expressions on error. 2593 while (true) { 2594 if (Tok.is(tok::period)) { 2595 // offsetof-member-designator: offsetof-member-designator '.' identifier 2596 Comps.push_back(Sema::OffsetOfComponent()); 2597 Comps.back().isBrackets = false; 2598 Comps.back().LocStart = ConsumeToken(); 2599 2600 if (Tok.isNot(tok::identifier)) { 2601 Diag(Tok, diag::err_expected) << tok::identifier; 2602 SkipUntil(tok::r_paren, StopAtSemi); 2603 return ExprError(); 2604 } 2605 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2606 Comps.back().LocEnd = ConsumeToken(); 2607 2608 } else if (Tok.is(tok::l_square)) { 2609 if (CheckProhibitedCXX11Attribute()) 2610 return ExprError(); 2611 2612 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2613 Comps.push_back(Sema::OffsetOfComponent()); 2614 Comps.back().isBrackets = true; 2615 BalancedDelimiterTracker ST(*this, tok::l_square); 2616 ST.consumeOpen(); 2617 Comps.back().LocStart = ST.getOpenLocation(); 2618 Res = ParseExpression(); 2619 if (Res.isInvalid()) { 2620 SkipUntil(tok::r_paren, StopAtSemi); 2621 return Res; 2622 } 2623 Comps.back().U.E = Res.get(); 2624 2625 ST.consumeClose(); 2626 Comps.back().LocEnd = ST.getCloseLocation(); 2627 } else { 2628 if (Tok.isNot(tok::r_paren)) { 2629 PT.consumeClose(); 2630 Res = ExprError(); 2631 } else if (Ty.isInvalid()) { 2632 Res = ExprError(); 2633 } else { 2634 PT.consumeClose(); 2635 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2636 Ty.get(), Comps, 2637 PT.getCloseLocation()); 2638 } 2639 break; 2640 } 2641 } 2642 break; 2643 } 2644 case tok::kw___builtin_choose_expr: { 2645 ExprResult Cond(ParseAssignmentExpression()); 2646 if (Cond.isInvalid()) { 2647 SkipUntil(tok::r_paren, StopAtSemi); 2648 return Cond; 2649 } 2650 if (ExpectAndConsume(tok::comma)) { 2651 SkipUntil(tok::r_paren, StopAtSemi); 2652 return ExprError(); 2653 } 2654 2655 ExprResult Expr1(ParseAssignmentExpression()); 2656 if (Expr1.isInvalid()) { 2657 SkipUntil(tok::r_paren, StopAtSemi); 2658 return Expr1; 2659 } 2660 if (ExpectAndConsume(tok::comma)) { 2661 SkipUntil(tok::r_paren, StopAtSemi); 2662 return ExprError(); 2663 } 2664 2665 ExprResult Expr2(ParseAssignmentExpression()); 2666 if (Expr2.isInvalid()) { 2667 SkipUntil(tok::r_paren, StopAtSemi); 2668 return Expr2; 2669 } 2670 if (Tok.isNot(tok::r_paren)) { 2671 Diag(Tok, diag::err_expected) << tok::r_paren; 2672 return ExprError(); 2673 } 2674 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2675 Expr2.get(), ConsumeParen()); 2676 break; 2677 } 2678 case tok::kw___builtin_astype: { 2679 // The first argument is an expression to be converted, followed by a comma. 2680 ExprResult Expr(ParseAssignmentExpression()); 2681 if (Expr.isInvalid()) { 2682 SkipUntil(tok::r_paren, StopAtSemi); 2683 return ExprError(); 2684 } 2685 2686 if (ExpectAndConsume(tok::comma)) { 2687 SkipUntil(tok::r_paren, StopAtSemi); 2688 return ExprError(); 2689 } 2690 2691 // Second argument is the type to bitcast to. 2692 TypeResult DestTy = ParseTypeName(); 2693 if (DestTy.isInvalid()) 2694 return ExprError(); 2695 2696 // Attempt to consume the r-paren. 2697 if (Tok.isNot(tok::r_paren)) { 2698 Diag(Tok, diag::err_expected) << tok::r_paren; 2699 SkipUntil(tok::r_paren, StopAtSemi); 2700 return ExprError(); 2701 } 2702 2703 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2704 ConsumeParen()); 2705 break; 2706 } 2707 case tok::kw___builtin_convertvector: { 2708 // The first argument is an expression to be converted, followed by a comma. 2709 ExprResult Expr(ParseAssignmentExpression()); 2710 if (Expr.isInvalid()) { 2711 SkipUntil(tok::r_paren, StopAtSemi); 2712 return ExprError(); 2713 } 2714 2715 if (ExpectAndConsume(tok::comma)) { 2716 SkipUntil(tok::r_paren, StopAtSemi); 2717 return ExprError(); 2718 } 2719 2720 // Second argument is the type to bitcast to. 2721 TypeResult DestTy = ParseTypeName(); 2722 if (DestTy.isInvalid()) 2723 return ExprError(); 2724 2725 // Attempt to consume the r-paren. 2726 if (Tok.isNot(tok::r_paren)) { 2727 Diag(Tok, diag::err_expected) << tok::r_paren; 2728 SkipUntil(tok::r_paren, StopAtSemi); 2729 return ExprError(); 2730 } 2731 2732 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2733 ConsumeParen()); 2734 break; 2735 } 2736 case tok::kw___builtin_COLUMN: 2737 case tok::kw___builtin_FILE: 2738 case tok::kw___builtin_FUNCTION: 2739 case tok::kw___builtin_LINE: 2740 case tok::kw___builtin_source_location: { 2741 // Attempt to consume the r-paren. 2742 if (Tok.isNot(tok::r_paren)) { 2743 Diag(Tok, diag::err_expected) << tok::r_paren; 2744 SkipUntil(tok::r_paren, StopAtSemi); 2745 return ExprError(); 2746 } 2747 SourceLocExpr::IdentKind Kind = [&] { 2748 switch (T) { 2749 case tok::kw___builtin_FILE: 2750 return SourceLocExpr::File; 2751 case tok::kw___builtin_FUNCTION: 2752 return SourceLocExpr::Function; 2753 case tok::kw___builtin_LINE: 2754 return SourceLocExpr::Line; 2755 case tok::kw___builtin_COLUMN: 2756 return SourceLocExpr::Column; 2757 case tok::kw___builtin_source_location: 2758 return SourceLocExpr::SourceLocStruct; 2759 default: 2760 llvm_unreachable("invalid keyword"); 2761 } 2762 }(); 2763 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2764 break; 2765 } 2766 } 2767 2768 if (Res.isInvalid()) 2769 return ExprError(); 2770 2771 // These can be followed by postfix-expr pieces because they are 2772 // primary-expressions. 2773 return ParsePostfixExpressionSuffix(Res.get()); 2774 } 2775 2776 bool Parser::tryParseOpenMPArrayShapingCastPart() { 2777 assert(Tok.is(tok::l_square) && "Expected open bracket"); 2778 bool ErrorFound = true; 2779 TentativeParsingAction TPA(*this); 2780 do { 2781 if (Tok.isNot(tok::l_square)) 2782 break; 2783 // Consume '[' 2784 ConsumeBracket(); 2785 // Skip inner expression. 2786 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 2787 StopAtSemi | StopBeforeMatch)) 2788 ; 2789 if (Tok.isNot(tok::r_square)) 2790 break; 2791 // Consume ']' 2792 ConsumeBracket(); 2793 // Found ')' - done. 2794 if (Tok.is(tok::r_paren)) { 2795 ErrorFound = false; 2796 break; 2797 } 2798 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 2799 TPA.Revert(); 2800 return !ErrorFound; 2801 } 2802 2803 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2804 /// based on what is allowed by ExprType. The actual thing parsed is returned 2805 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2806 /// not the parsed cast-expression. 2807 /// 2808 /// \verbatim 2809 /// primary-expression: [C99 6.5.1] 2810 /// '(' expression ')' 2811 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2812 /// postfix-expression: [C99 6.5.2] 2813 /// '(' type-name ')' '{' initializer-list '}' 2814 /// '(' type-name ')' '{' initializer-list ',' '}' 2815 /// cast-expression: [C99 6.5.4] 2816 /// '(' type-name ')' cast-expression 2817 /// [ARC] bridged-cast-expression 2818 /// [ARC] bridged-cast-expression: 2819 /// (__bridge type-name) cast-expression 2820 /// (__bridge_transfer type-name) cast-expression 2821 /// (__bridge_retained type-name) cast-expression 2822 /// fold-expression: [C++1z] 2823 /// '(' cast-expression fold-operator '...' ')' 2824 /// '(' '...' fold-operator cast-expression ')' 2825 /// '(' cast-expression fold-operator '...' 2826 /// fold-operator cast-expression ')' 2827 /// [OPENMP] Array shaping operation 2828 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 2829 /// \endverbatim 2830 ExprResult 2831 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2832 bool isTypeCast, ParsedType &CastTy, 2833 SourceLocation &RParenLoc) { 2834 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2835 ColonProtectionRAIIObject ColonProtection(*this, false); 2836 BalancedDelimiterTracker T(*this, tok::l_paren); 2837 if (T.consumeOpen()) 2838 return ExprError(); 2839 SourceLocation OpenLoc = T.getOpenLocation(); 2840 2841 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2842 2843 ExprResult Result(true); 2844 bool isAmbiguousTypeId; 2845 CastTy = nullptr; 2846 2847 if (Tok.is(tok::code_completion)) { 2848 cutOffParsing(); 2849 Actions.CodeCompleteExpression( 2850 getCurScope(), PreferredType.get(Tok.getLocation()), 2851 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2852 return ExprError(); 2853 } 2854 2855 // Diagnose use of bridge casts in non-arc mode. 2856 bool BridgeCast = (getLangOpts().ObjC && 2857 Tok.isOneOf(tok::kw___bridge, 2858 tok::kw___bridge_transfer, 2859 tok::kw___bridge_retained, 2860 tok::kw___bridge_retain)); 2861 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2862 if (!TryConsumeToken(tok::kw___bridge)) { 2863 StringRef BridgeCastName = Tok.getName(); 2864 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2865 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2866 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2867 << BridgeCastName 2868 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2869 } 2870 BridgeCast = false; 2871 } 2872 2873 // None of these cases should fall through with an invalid Result 2874 // unless they've already reported an error. 2875 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2876 Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro 2877 : diag::ext_gnu_statement_expr); 2878 2879 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin); 2880 2881 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2882 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2883 } else { 2884 // Find the nearest non-record decl context. Variables declared in a 2885 // statement expression behave as if they were declared in the enclosing 2886 // function, block, or other code construct. 2887 DeclContext *CodeDC = Actions.CurContext; 2888 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2889 CodeDC = CodeDC->getParent(); 2890 assert(CodeDC && !CodeDC->isFileContext() && 2891 "statement expr not in code context"); 2892 } 2893 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2894 2895 Actions.ActOnStartStmtExpr(); 2896 2897 StmtResult Stmt(ParseCompoundStatement(true)); 2898 ExprType = CompoundStmt; 2899 2900 // If the substmt parsed correctly, build the AST node. 2901 if (!Stmt.isInvalid()) { 2902 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 2903 Tok.getLocation()); 2904 } else { 2905 Actions.ActOnStmtExprError(); 2906 } 2907 } 2908 } else if (ExprType >= CompoundLiteral && BridgeCast) { 2909 tok::TokenKind tokenKind = Tok.getKind(); 2910 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2911 2912 // Parse an Objective-C ARC ownership cast expression. 2913 ObjCBridgeCastKind Kind; 2914 if (tokenKind == tok::kw___bridge) 2915 Kind = OBC_Bridge; 2916 else if (tokenKind == tok::kw___bridge_transfer) 2917 Kind = OBC_BridgeTransfer; 2918 else if (tokenKind == tok::kw___bridge_retained) 2919 Kind = OBC_BridgeRetained; 2920 else { 2921 // As a hopefully temporary workaround, allow __bridge_retain as 2922 // a synonym for __bridge_retained, but only in system headers. 2923 assert(tokenKind == tok::kw___bridge_retain); 2924 Kind = OBC_BridgeRetained; 2925 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2926 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 2927 << FixItHint::CreateReplacement(BridgeKeywordLoc, 2928 "__bridge_retained"); 2929 } 2930 2931 TypeResult Ty = ParseTypeName(); 2932 T.consumeClose(); 2933 ColonProtection.restore(); 2934 RParenLoc = T.getCloseLocation(); 2935 2936 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 2937 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 2938 2939 if (Ty.isInvalid() || SubExpr.isInvalid()) 2940 return ExprError(); 2941 2942 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 2943 BridgeKeywordLoc, Ty.get(), 2944 RParenLoc, SubExpr.get()); 2945 } else if (ExprType >= CompoundLiteral && 2946 isTypeIdInParens(isAmbiguousTypeId)) { 2947 2948 // Otherwise, this is a compound literal expression or cast expression. 2949 2950 // In C++, if the type-id is ambiguous we disambiguate based on context. 2951 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 2952 // in which case we should treat it as type-id. 2953 // if stopIfCastExpr is false, we need to determine the context past the 2954 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 2955 if (isAmbiguousTypeId && !stopIfCastExpr) { 2956 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 2957 ColonProtection); 2958 RParenLoc = T.getCloseLocation(); 2959 return res; 2960 } 2961 2962 // Parse the type declarator. 2963 DeclSpec DS(AttrFactory); 2964 ParseSpecifierQualifierList(DS); 2965 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 2966 DeclaratorContext::TypeName); 2967 ParseDeclarator(DeclaratorInfo); 2968 2969 // If our type is followed by an identifier and either ':' or ']', then 2970 // this is probably an Objective-C message send where the leading '[' is 2971 // missing. Recover as if that were the case. 2972 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 2973 !InMessageExpression && getLangOpts().ObjC && 2974 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2975 TypeResult Ty; 2976 { 2977 InMessageExpressionRAIIObject InMessage(*this, false); 2978 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2979 } 2980 Result = ParseObjCMessageExpressionBody(SourceLocation(), 2981 SourceLocation(), 2982 Ty.get(), nullptr); 2983 } else { 2984 // Match the ')'. 2985 T.consumeClose(); 2986 ColonProtection.restore(); 2987 RParenLoc = T.getCloseLocation(); 2988 if (Tok.is(tok::l_brace)) { 2989 ExprType = CompoundLiteral; 2990 TypeResult Ty; 2991 { 2992 InMessageExpressionRAIIObject InMessage(*this, false); 2993 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2994 } 2995 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 2996 } 2997 2998 if (Tok.is(tok::l_paren)) { 2999 // This could be OpenCL vector Literals 3000 if (getLangOpts().OpenCL) 3001 { 3002 TypeResult Ty; 3003 { 3004 InMessageExpressionRAIIObject InMessage(*this, false); 3005 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3006 } 3007 if(Ty.isInvalid()) 3008 { 3009 return ExprError(); 3010 } 3011 QualType QT = Ty.get().get().getCanonicalType(); 3012 if (QT->isVectorType()) 3013 { 3014 // We parsed '(' vector-type-name ')' followed by '(' 3015 3016 // Parse the cast-expression that follows it next. 3017 // isVectorLiteral = true will make sure we don't parse any 3018 // Postfix expression yet 3019 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3020 /*isAddressOfOperand=*/false, 3021 /*isTypeCast=*/IsTypeCast, 3022 /*isVectorLiteral=*/true); 3023 3024 if (!Result.isInvalid()) { 3025 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3026 DeclaratorInfo, CastTy, 3027 RParenLoc, Result.get()); 3028 } 3029 3030 // After we performed the cast we can check for postfix-expr pieces. 3031 if (!Result.isInvalid()) { 3032 Result = ParsePostfixExpressionSuffix(Result); 3033 } 3034 3035 return Result; 3036 } 3037 } 3038 } 3039 3040 if (ExprType == CastExpr) { 3041 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3042 3043 if (DeclaratorInfo.isInvalidType()) 3044 return ExprError(); 3045 3046 // Note that this doesn't parse the subsequent cast-expression, it just 3047 // returns the parsed type to the callee. 3048 if (stopIfCastExpr) { 3049 TypeResult Ty; 3050 { 3051 InMessageExpressionRAIIObject InMessage(*this, false); 3052 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3053 } 3054 CastTy = Ty.get(); 3055 return ExprResult(); 3056 } 3057 3058 // Reject the cast of super idiom in ObjC. 3059 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3060 Tok.getIdentifierInfo() == Ident_super && 3061 getCurScope()->isInObjcMethodScope() && 3062 GetLookAheadToken(1).isNot(tok::period)) { 3063 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3064 << SourceRange(OpenLoc, RParenLoc); 3065 return ExprError(); 3066 } 3067 3068 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3069 // Parse the cast-expression that follows it next. 3070 // TODO: For cast expression with CastTy. 3071 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3072 /*isAddressOfOperand=*/false, 3073 /*isTypeCast=*/IsTypeCast); 3074 if (!Result.isInvalid()) { 3075 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3076 DeclaratorInfo, CastTy, 3077 RParenLoc, Result.get()); 3078 } 3079 return Result; 3080 } 3081 3082 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3083 return ExprError(); 3084 } 3085 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3086 isFoldOperator(NextToken().getKind())) { 3087 ExprType = FoldExpr; 3088 return ParseFoldExpression(ExprResult(), T); 3089 } else if (isTypeCast) { 3090 // Parse the expression-list. 3091 InMessageExpressionRAIIObject InMessage(*this, false); 3092 3093 ExprVector ArgExprs; 3094 CommaLocsTy CommaLocs; 3095 3096 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) { 3097 // FIXME: If we ever support comma expressions as operands to 3098 // fold-expressions, we'll need to allow multiple ArgExprs here. 3099 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3100 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3101 ExprType = FoldExpr; 3102 return ParseFoldExpression(ArgExprs[0], T); 3103 } 3104 3105 ExprType = SimpleExpr; 3106 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3107 ArgExprs); 3108 } 3109 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3110 ExprType == CastExpr && Tok.is(tok::l_square) && 3111 tryParseOpenMPArrayShapingCastPart()) { 3112 bool ErrorFound = false; 3113 SmallVector<Expr *, 4> OMPDimensions; 3114 SmallVector<SourceRange, 4> OMPBracketsRanges; 3115 do { 3116 BalancedDelimiterTracker TS(*this, tok::l_square); 3117 TS.consumeOpen(); 3118 ExprResult NumElements = 3119 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3120 if (!NumElements.isUsable()) { 3121 ErrorFound = true; 3122 while (!SkipUntil(tok::r_square, tok::r_paren, 3123 StopAtSemi | StopBeforeMatch)) 3124 ; 3125 } 3126 TS.consumeClose(); 3127 OMPDimensions.push_back(NumElements.get()); 3128 OMPBracketsRanges.push_back(TS.getRange()); 3129 } while (Tok.isNot(tok::r_paren)); 3130 // Match the ')'. 3131 T.consumeClose(); 3132 RParenLoc = T.getCloseLocation(); 3133 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3134 if (ErrorFound) { 3135 Result = ExprError(); 3136 } else if (!Result.isInvalid()) { 3137 Result = Actions.ActOnOMPArrayShapingExpr( 3138 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3139 } 3140 return Result; 3141 } else { 3142 InMessageExpressionRAIIObject InMessage(*this, false); 3143 3144 Result = ParseExpression(MaybeTypeCast); 3145 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) { 3146 // Correct typos in non-C++ code earlier so that implicit-cast-like 3147 // expressions are parsed correctly. 3148 Result = Actions.CorrectDelayedTyposInExpr(Result); 3149 } 3150 3151 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3152 NextToken().is(tok::ellipsis)) { 3153 ExprType = FoldExpr; 3154 return ParseFoldExpression(Result, T); 3155 } 3156 ExprType = SimpleExpr; 3157 3158 // Don't build a paren expression unless we actually match a ')'. 3159 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3160 Result = 3161 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3162 } 3163 3164 // Match the ')'. 3165 if (Result.isInvalid()) { 3166 SkipUntil(tok::r_paren, StopAtSemi); 3167 return ExprError(); 3168 } 3169 3170 T.consumeClose(); 3171 RParenLoc = T.getCloseLocation(); 3172 return Result; 3173 } 3174 3175 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3176 /// and we are at the left brace. 3177 /// 3178 /// \verbatim 3179 /// postfix-expression: [C99 6.5.2] 3180 /// '(' type-name ')' '{' initializer-list '}' 3181 /// '(' type-name ')' '{' initializer-list ',' '}' 3182 /// \endverbatim 3183 ExprResult 3184 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3185 SourceLocation LParenLoc, 3186 SourceLocation RParenLoc) { 3187 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3188 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3189 Diag(LParenLoc, diag::ext_c99_compound_literal); 3190 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get()); 3191 ExprResult Result = ParseInitializer(); 3192 if (!Result.isInvalid() && Ty) 3193 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3194 return Result; 3195 } 3196 3197 /// ParseStringLiteralExpression - This handles the various token types that 3198 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3199 /// translation phase #6]. 3200 /// 3201 /// \verbatim 3202 /// primary-expression: [C99 6.5.1] 3203 /// string-literal 3204 /// \verbatim 3205 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3206 assert(isTokenStringLiteral() && "Not a string literal!"); 3207 3208 // String concat. Note that keywords like __func__ and __FUNCTION__ are not 3209 // considered to be strings for concatenation purposes. 3210 SmallVector<Token, 4> StringToks; 3211 3212 do { 3213 StringToks.push_back(Tok); 3214 ConsumeStringToken(); 3215 } while (isTokenStringLiteral()); 3216 3217 // Pass the set of string tokens, ready for concatenation, to the actions. 3218 return Actions.ActOnStringLiteral(StringToks, 3219 AllowUserDefinedLiteral ? getCurScope() 3220 : nullptr); 3221 } 3222 3223 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3224 /// [C11 6.5.1.1]. 3225 /// 3226 /// \verbatim 3227 /// generic-selection: 3228 /// _Generic ( assignment-expression , generic-assoc-list ) 3229 /// generic-assoc-list: 3230 /// generic-association 3231 /// generic-assoc-list , generic-association 3232 /// generic-association: 3233 /// type-name : assignment-expression 3234 /// default : assignment-expression 3235 /// \endverbatim 3236 ExprResult Parser::ParseGenericSelectionExpression() { 3237 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3238 if (!getLangOpts().C11) 3239 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3240 3241 SourceLocation KeyLoc = ConsumeToken(); 3242 BalancedDelimiterTracker T(*this, tok::l_paren); 3243 if (T.expectAndConsume()) 3244 return ExprError(); 3245 3246 ExprResult ControllingExpr; 3247 { 3248 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3249 // not evaluated." 3250 EnterExpressionEvaluationContext Unevaluated( 3251 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3252 ControllingExpr = 3253 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3254 if (ControllingExpr.isInvalid()) { 3255 SkipUntil(tok::r_paren, StopAtSemi); 3256 return ExprError(); 3257 } 3258 } 3259 3260 if (ExpectAndConsume(tok::comma)) { 3261 SkipUntil(tok::r_paren, StopAtSemi); 3262 return ExprError(); 3263 } 3264 3265 SourceLocation DefaultLoc; 3266 TypeVector Types; 3267 ExprVector Exprs; 3268 do { 3269 ParsedType Ty; 3270 if (Tok.is(tok::kw_default)) { 3271 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3272 // generic association." 3273 if (!DefaultLoc.isInvalid()) { 3274 Diag(Tok, diag::err_duplicate_default_assoc); 3275 Diag(DefaultLoc, diag::note_previous_default_assoc); 3276 SkipUntil(tok::r_paren, StopAtSemi); 3277 return ExprError(); 3278 } 3279 DefaultLoc = ConsumeToken(); 3280 Ty = nullptr; 3281 } else { 3282 ColonProtectionRAIIObject X(*this); 3283 TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association); 3284 if (TR.isInvalid()) { 3285 SkipUntil(tok::r_paren, StopAtSemi); 3286 return ExprError(); 3287 } 3288 Ty = TR.get(); 3289 } 3290 Types.push_back(Ty); 3291 3292 if (ExpectAndConsume(tok::colon)) { 3293 SkipUntil(tok::r_paren, StopAtSemi); 3294 return ExprError(); 3295 } 3296 3297 // FIXME: These expressions should be parsed in a potentially potentially 3298 // evaluated context. 3299 ExprResult ER( 3300 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3301 if (ER.isInvalid()) { 3302 SkipUntil(tok::r_paren, StopAtSemi); 3303 return ExprError(); 3304 } 3305 Exprs.push_back(ER.get()); 3306 } while (TryConsumeToken(tok::comma)); 3307 3308 T.consumeClose(); 3309 if (T.getCloseLocation().isInvalid()) 3310 return ExprError(); 3311 3312 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 3313 T.getCloseLocation(), 3314 ControllingExpr.get(), 3315 Types, Exprs); 3316 } 3317 3318 /// Parse A C++1z fold-expression after the opening paren and optional 3319 /// left-hand-side expression. 3320 /// 3321 /// \verbatim 3322 /// fold-expression: 3323 /// ( cast-expression fold-operator ... ) 3324 /// ( ... fold-operator cast-expression ) 3325 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3326 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3327 BalancedDelimiterTracker &T) { 3328 if (LHS.isInvalid()) { 3329 T.skipToEnd(); 3330 return true; 3331 } 3332 3333 tok::TokenKind Kind = tok::unknown; 3334 SourceLocation FirstOpLoc; 3335 if (LHS.isUsable()) { 3336 Kind = Tok.getKind(); 3337 assert(isFoldOperator(Kind) && "missing fold-operator"); 3338 FirstOpLoc = ConsumeToken(); 3339 } 3340 3341 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3342 SourceLocation EllipsisLoc = ConsumeToken(); 3343 3344 ExprResult RHS; 3345 if (Tok.isNot(tok::r_paren)) { 3346 if (!isFoldOperator(Tok.getKind())) 3347 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3348 3349 if (Kind != tok::unknown && Tok.getKind() != Kind) 3350 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3351 << SourceRange(FirstOpLoc); 3352 Kind = Tok.getKind(); 3353 ConsumeToken(); 3354 3355 RHS = ParseExpression(); 3356 if (RHS.isInvalid()) { 3357 T.skipToEnd(); 3358 return true; 3359 } 3360 } 3361 3362 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3363 ? diag::warn_cxx14_compat_fold_expression 3364 : diag::ext_fold_expression); 3365 3366 T.consumeClose(); 3367 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(), 3368 Kind, EllipsisLoc, RHS.get(), 3369 T.getCloseLocation()); 3370 } 3371 3372 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3373 /// 3374 /// \verbatim 3375 /// argument-expression-list: 3376 /// assignment-expression 3377 /// argument-expression-list , assignment-expression 3378 /// 3379 /// [C++] expression-list: 3380 /// [C++] assignment-expression 3381 /// [C++] expression-list , assignment-expression 3382 /// 3383 /// [C++0x] expression-list: 3384 /// [C++0x] initializer-list 3385 /// 3386 /// [C++0x] initializer-list 3387 /// [C++0x] initializer-clause ...[opt] 3388 /// [C++0x] initializer-list , initializer-clause ...[opt] 3389 /// 3390 /// [C++0x] initializer-clause: 3391 /// [C++0x] assignment-expression 3392 /// [C++0x] braced-init-list 3393 /// \endverbatim 3394 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3395 SmallVectorImpl<SourceLocation> &CommaLocs, 3396 llvm::function_ref<void()> ExpressionStarts, 3397 bool FailImmediatelyOnInvalidExpr, 3398 bool EarlyTypoCorrection) { 3399 bool SawError = false; 3400 while (true) { 3401 if (ExpressionStarts) 3402 ExpressionStarts(); 3403 3404 ExprResult Expr; 3405 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3406 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3407 Expr = ParseBraceInitializer(); 3408 } else 3409 Expr = ParseAssignmentExpression(); 3410 3411 if (EarlyTypoCorrection) 3412 Expr = Actions.CorrectDelayedTyposInExpr(Expr); 3413 3414 if (Tok.is(tok::ellipsis)) 3415 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3416 else if (Tok.is(tok::code_completion)) { 3417 // There's nothing to suggest in here as we parsed a full expression. 3418 // Instead fail and propogate the error since caller might have something 3419 // the suggest, e.g. signature help in function call. Note that this is 3420 // performed before pushing the \p Expr, so that signature help can report 3421 // current argument correctly. 3422 SawError = true; 3423 cutOffParsing(); 3424 break; 3425 } 3426 if (Expr.isInvalid()) { 3427 SawError = true; 3428 if (FailImmediatelyOnInvalidExpr) 3429 break; 3430 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3431 } else { 3432 Exprs.push_back(Expr.get()); 3433 } 3434 3435 if (Tok.isNot(tok::comma)) 3436 break; 3437 // Move to the next argument, remember where the comma was. 3438 Token Comma = Tok; 3439 CommaLocs.push_back(ConsumeToken()); 3440 3441 checkPotentialAngleBracketDelimiter(Comma); 3442 } 3443 if (SawError) { 3444 // Ensure typos get diagnosed when errors were encountered while parsing the 3445 // expression list. 3446 for (auto &E : Exprs) { 3447 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3448 if (Expr.isUsable()) E = Expr.get(); 3449 } 3450 } 3451 return SawError; 3452 } 3453 3454 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3455 /// used for misc language extensions. 3456 /// 3457 /// \verbatim 3458 /// simple-expression-list: 3459 /// assignment-expression 3460 /// simple-expression-list , assignment-expression 3461 /// \endverbatim 3462 bool 3463 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs, 3464 SmallVectorImpl<SourceLocation> &CommaLocs) { 3465 while (true) { 3466 ExprResult Expr = ParseAssignmentExpression(); 3467 if (Expr.isInvalid()) 3468 return true; 3469 3470 Exprs.push_back(Expr.get()); 3471 3472 if (Tok.isNot(tok::comma)) 3473 return false; 3474 3475 // Move to the next argument, remember where the comma was. 3476 Token Comma = Tok; 3477 CommaLocs.push_back(ConsumeToken()); 3478 3479 checkPotentialAngleBracketDelimiter(Comma); 3480 } 3481 } 3482 3483 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3484 /// 3485 /// \verbatim 3486 /// [clang] block-id: 3487 /// [clang] specifier-qualifier-list block-declarator 3488 /// \endverbatim 3489 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3490 if (Tok.is(tok::code_completion)) { 3491 cutOffParsing(); 3492 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 3493 return; 3494 } 3495 3496 // Parse the specifier-qualifier-list piece. 3497 DeclSpec DS(AttrFactory); 3498 ParseSpecifierQualifierList(DS); 3499 3500 // Parse the block-declarator. 3501 Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), 3502 DeclaratorContext::BlockLiteral); 3503 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3504 ParseDeclarator(DeclaratorInfo); 3505 3506 MaybeParseGNUAttributes(DeclaratorInfo); 3507 3508 // Inform sema that we are starting a block. 3509 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3510 } 3511 3512 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3513 /// like ^(int x){ return x+1; } 3514 /// 3515 /// \verbatim 3516 /// block-literal: 3517 /// [clang] '^' block-args[opt] compound-statement 3518 /// [clang] '^' block-id compound-statement 3519 /// [clang] block-args: 3520 /// [clang] '(' parameter-list ')' 3521 /// \endverbatim 3522 ExprResult Parser::ParseBlockLiteralExpression() { 3523 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3524 SourceLocation CaretLoc = ConsumeToken(); 3525 3526 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3527 "block literal parsing"); 3528 3529 // Enter a scope to hold everything within the block. This includes the 3530 // argument decls, decls within the compound expression, etc. This also 3531 // allows determining whether a variable reference inside the block is 3532 // within or outside of the block. 3533 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3534 Scope::CompoundStmtScope | Scope::DeclScope); 3535 3536 // Inform sema that we are starting a block. 3537 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3538 3539 // Parse the return type if present. 3540 DeclSpec DS(AttrFactory); 3541 Declarator ParamInfo(DS, ParsedAttributesView::none(), 3542 DeclaratorContext::BlockLiteral); 3543 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3544 // FIXME: Since the return type isn't actually parsed, it can't be used to 3545 // fill ParamInfo with an initial valid range, so do it manually. 3546 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3547 3548 // If this block has arguments, parse them. There is no ambiguity here with 3549 // the expression case, because the expression case requires a parameter list. 3550 if (Tok.is(tok::l_paren)) { 3551 ParseParenDeclarator(ParamInfo); 3552 // Parse the pieces after the identifier as if we had "int(...)". 3553 // SetIdentifier sets the source range end, but in this case we're past 3554 // that location. 3555 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3556 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3557 ParamInfo.SetRangeEnd(Tmp); 3558 if (ParamInfo.isInvalidType()) { 3559 // If there was an error parsing the arguments, they may have 3560 // tried to use ^(x+y) which requires an argument list. Just 3561 // skip the whole block literal. 3562 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3563 return ExprError(); 3564 } 3565 3566 MaybeParseGNUAttributes(ParamInfo); 3567 3568 // Inform sema that we are starting a block. 3569 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3570 } else if (!Tok.is(tok::l_brace)) { 3571 ParseBlockId(CaretLoc); 3572 } else { 3573 // Otherwise, pretend we saw (void). 3574 SourceLocation NoLoc; 3575 ParamInfo.AddTypeInfo( 3576 DeclaratorChunk::getFunction(/*HasProto=*/true, 3577 /*IsAmbiguous=*/false, 3578 /*RParenLoc=*/NoLoc, 3579 /*ArgInfo=*/nullptr, 3580 /*NumParams=*/0, 3581 /*EllipsisLoc=*/NoLoc, 3582 /*RParenLoc=*/NoLoc, 3583 /*RefQualifierIsLvalueRef=*/true, 3584 /*RefQualifierLoc=*/NoLoc, 3585 /*MutableLoc=*/NoLoc, EST_None, 3586 /*ESpecRange=*/SourceRange(), 3587 /*Exceptions=*/nullptr, 3588 /*ExceptionRanges=*/nullptr, 3589 /*NumExceptions=*/0, 3590 /*NoexceptExpr=*/nullptr, 3591 /*ExceptionSpecTokens=*/nullptr, 3592 /*DeclsInPrototype=*/None, CaretLoc, 3593 CaretLoc, ParamInfo), 3594 CaretLoc); 3595 3596 MaybeParseGNUAttributes(ParamInfo); 3597 3598 // Inform sema that we are starting a block. 3599 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3600 } 3601 3602 3603 ExprResult Result(true); 3604 if (!Tok.is(tok::l_brace)) { 3605 // Saw something like: ^expr 3606 Diag(Tok, diag::err_expected_expression); 3607 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3608 return ExprError(); 3609 } 3610 3611 StmtResult Stmt(ParseCompoundStatementBody()); 3612 BlockScope.Exit(); 3613 if (!Stmt.isInvalid()) 3614 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3615 else 3616 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3617 return Result; 3618 } 3619 3620 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3621 /// 3622 /// '__objc_yes' 3623 /// '__objc_no' 3624 ExprResult Parser::ParseObjCBoolLiteral() { 3625 tok::TokenKind Kind = Tok.getKind(); 3626 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3627 } 3628 3629 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3630 /// true if invalid. 3631 static bool CheckAvailabilitySpecList(Parser &P, 3632 ArrayRef<AvailabilitySpec> AvailSpecs) { 3633 llvm::SmallSet<StringRef, 4> Platforms; 3634 bool HasOtherPlatformSpec = false; 3635 bool Valid = true; 3636 for (const auto &Spec : AvailSpecs) { 3637 if (Spec.isOtherPlatformSpec()) { 3638 if (HasOtherPlatformSpec) { 3639 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3640 Valid = false; 3641 } 3642 3643 HasOtherPlatformSpec = true; 3644 continue; 3645 } 3646 3647 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3648 if (!Inserted) { 3649 // Rule out multiple version specs referring to the same platform. 3650 // For example, we emit an error for: 3651 // @available(macos 10.10, macos 10.11, *) 3652 StringRef Platform = Spec.getPlatform(); 3653 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3654 << Spec.getEndLoc() << Platform; 3655 Valid = false; 3656 } 3657 } 3658 3659 if (!HasOtherPlatformSpec) { 3660 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3661 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3662 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3663 return true; 3664 } 3665 3666 return !Valid; 3667 } 3668 3669 /// Parse availability query specification. 3670 /// 3671 /// availability-spec: 3672 /// '*' 3673 /// identifier version-tuple 3674 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3675 if (Tok.is(tok::star)) { 3676 return AvailabilitySpec(ConsumeToken()); 3677 } else { 3678 // Parse the platform name. 3679 if (Tok.is(tok::code_completion)) { 3680 cutOffParsing(); 3681 Actions.CodeCompleteAvailabilityPlatformName(); 3682 return None; 3683 } 3684 if (Tok.isNot(tok::identifier)) { 3685 Diag(Tok, diag::err_avail_query_expected_platform_name); 3686 return None; 3687 } 3688 3689 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3690 SourceRange VersionRange; 3691 VersionTuple Version = ParseVersionTuple(VersionRange); 3692 3693 if (Version.empty()) 3694 return None; 3695 3696 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3697 StringRef Platform = 3698 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3699 3700 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3701 Diag(PlatformIdentifier->Loc, 3702 diag::err_avail_query_unrecognized_platform_name) 3703 << GivenPlatform; 3704 return None; 3705 } 3706 3707 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3708 VersionRange.getEnd()); 3709 } 3710 } 3711 3712 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3713 assert(Tok.is(tok::kw___builtin_available) || 3714 Tok.isObjCAtKeyword(tok::objc_available)); 3715 3716 // Eat the available or __builtin_available. 3717 ConsumeToken(); 3718 3719 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3720 if (Parens.expectAndConsume()) 3721 return ExprError(); 3722 3723 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3724 bool HasError = false; 3725 while (true) { 3726 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3727 if (!Spec) 3728 HasError = true; 3729 else 3730 AvailSpecs.push_back(*Spec); 3731 3732 if (!TryConsumeToken(tok::comma)) 3733 break; 3734 } 3735 3736 if (HasError) { 3737 SkipUntil(tok::r_paren, StopAtSemi); 3738 return ExprError(); 3739 } 3740 3741 CheckAvailabilitySpecList(*this, AvailSpecs); 3742 3743 if (Parens.consumeClose()) 3744 return ExprError(); 3745 3746 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3747 Parens.getCloseLocation()); 3748 } 3749