xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExpr.cpp (revision a134ebd6e63f658f2d3d04ac0c60d23bcaa86dd7)
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Parse/RAIIObjectsForParser.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallVector.h"
33 using namespace clang;
34 
35 /// Simple precedence-based parser for binary/ternary operators.
36 ///
37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
38 /// production.  C99 specifies that the LHS of an assignment operator should be
39 /// parsed as a unary-expression, but consistency dictates that it be a
40 /// conditional-expession.  In practice, the important thing here is that the
41 /// LHS of an assignment has to be an l-value, which productions between
42 /// unary-expression and conditional-expression don't produce.  Because we want
43 /// consistency, we parse the LHS as a conditional-expression, then check for
44 /// l-value-ness in semantic analysis stages.
45 ///
46 /// \verbatim
47 ///       pm-expression: [C++ 5.5]
48 ///         cast-expression
49 ///         pm-expression '.*' cast-expression
50 ///         pm-expression '->*' cast-expression
51 ///
52 ///       multiplicative-expression: [C99 6.5.5]
53 ///     Note: in C++, apply pm-expression instead of cast-expression
54 ///         cast-expression
55 ///         multiplicative-expression '*' cast-expression
56 ///         multiplicative-expression '/' cast-expression
57 ///         multiplicative-expression '%' cast-expression
58 ///
59 ///       additive-expression: [C99 6.5.6]
60 ///         multiplicative-expression
61 ///         additive-expression '+' multiplicative-expression
62 ///         additive-expression '-' multiplicative-expression
63 ///
64 ///       shift-expression: [C99 6.5.7]
65 ///         additive-expression
66 ///         shift-expression '<<' additive-expression
67 ///         shift-expression '>>' additive-expression
68 ///
69 ///       compare-expression: [C++20 expr.spaceship]
70 ///         shift-expression
71 ///         compare-expression '<=>' shift-expression
72 ///
73 ///       relational-expression: [C99 6.5.8]
74 ///         compare-expression
75 ///         relational-expression '<' compare-expression
76 ///         relational-expression '>' compare-expression
77 ///         relational-expression '<=' compare-expression
78 ///         relational-expression '>=' compare-expression
79 ///
80 ///       equality-expression: [C99 6.5.9]
81 ///         relational-expression
82 ///         equality-expression '==' relational-expression
83 ///         equality-expression '!=' relational-expression
84 ///
85 ///       AND-expression: [C99 6.5.10]
86 ///         equality-expression
87 ///         AND-expression '&' equality-expression
88 ///
89 ///       exclusive-OR-expression: [C99 6.5.11]
90 ///         AND-expression
91 ///         exclusive-OR-expression '^' AND-expression
92 ///
93 ///       inclusive-OR-expression: [C99 6.5.12]
94 ///         exclusive-OR-expression
95 ///         inclusive-OR-expression '|' exclusive-OR-expression
96 ///
97 ///       logical-AND-expression: [C99 6.5.13]
98 ///         inclusive-OR-expression
99 ///         logical-AND-expression '&&' inclusive-OR-expression
100 ///
101 ///       logical-OR-expression: [C99 6.5.14]
102 ///         logical-AND-expression
103 ///         logical-OR-expression '||' logical-AND-expression
104 ///
105 ///       conditional-expression: [C99 6.5.15]
106 ///         logical-OR-expression
107 ///         logical-OR-expression '?' expression ':' conditional-expression
108 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
109 /// [C++] the third operand is an assignment-expression
110 ///
111 ///       assignment-expression: [C99 6.5.16]
112 ///         conditional-expression
113 ///         unary-expression assignment-operator assignment-expression
114 /// [C++]   throw-expression [C++ 15]
115 ///
116 ///       assignment-operator: one of
117 ///         = *= /= %= += -= <<= >>= &= ^= |=
118 ///
119 ///       expression: [C99 6.5.17]
120 ///         assignment-expression ...[opt]
121 ///         expression ',' assignment-expression ...[opt]
122 /// \endverbatim
123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
124   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
125   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
126 }
127 
128 /// This routine is called when the '@' is seen and consumed.
129 /// Current token is an Identifier and is not a 'try'. This
130 /// routine is necessary to disambiguate \@try-statement from,
131 /// for example, \@encode-expression.
132 ///
133 ExprResult
134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
135   ExprResult LHS(ParseObjCAtExpression(AtLoc));
136   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
137 }
138 
139 /// This routine is called when a leading '__extension__' is seen and
140 /// consumed.  This is necessary because the token gets consumed in the
141 /// process of disambiguating between an expression and a declaration.
142 ExprResult
143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
144   ExprResult LHS(true);
145   {
146     // Silence extension warnings in the sub-expression
147     ExtensionRAIIObject O(Diags);
148 
149     LHS = ParseCastExpression(AnyCastExpr);
150   }
151 
152   if (!LHS.isInvalid())
153     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
154                                LHS.get());
155 
156   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
157 }
158 
159 /// Parse an expr that doesn't include (top-level) commas.
160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
161   if (Tok.is(tok::code_completion)) {
162     Actions.CodeCompleteExpression(getCurScope(),
163                                    PreferredType.get(Tok.getLocation()));
164     cutOffParsing();
165     return ExprError();
166   }
167 
168   if (Tok.is(tok::kw_throw))
169     return ParseThrowExpression();
170   if (Tok.is(tok::kw_co_yield))
171     return ParseCoyieldExpression();
172 
173   ExprResult LHS = ParseCastExpression(AnyCastExpr,
174                                        /*isAddressOfOperand=*/false,
175                                        isTypeCast);
176   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
177 }
178 
179 /// Parse an assignment expression where part of an Objective-C message
180 /// send has already been parsed.
181 ///
182 /// In this case \p LBracLoc indicates the location of the '[' of the message
183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
184 /// the receiver of the message.
185 ///
186 /// Since this handles full assignment-expression's, it handles postfix
187 /// expressions and other binary operators for these expressions as well.
188 ExprResult
189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
190                                                     SourceLocation SuperLoc,
191                                                     ParsedType ReceiverType,
192                                                     Expr *ReceiverExpr) {
193   ExprResult R
194     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
195                                      ReceiverType, ReceiverExpr);
196   R = ParsePostfixExpressionSuffix(R);
197   return ParseRHSOfBinaryExpression(R, prec::Assignment);
198 }
199 
200 ExprResult
201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
202   assert(Actions.ExprEvalContexts.back().Context ==
203              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
204          "Call this function only if your ExpressionEvaluationContext is "
205          "already ConstantEvaluated");
206   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
207   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
208   return Actions.ActOnConstantExpression(Res);
209 }
210 
211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
212   // C++03 [basic.def.odr]p2:
213   //   An expression is potentially evaluated unless it appears where an
214   //   integral constant expression is required (see 5.19) [...].
215   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
216   EnterExpressionEvaluationContext ConstantEvaluated(
217       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
218   return ParseConstantExpressionInExprEvalContext(isTypeCast);
219 }
220 
221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
222   EnterExpressionEvaluationContext ConstantEvaluated(
223       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
224   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
225   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
226   return Actions.ActOnCaseExpr(CaseLoc, Res);
227 }
228 
229 /// Parse a constraint-expression.
230 ///
231 /// \verbatim
232 ///       constraint-expression: C++2a[temp.constr.decl]p1
233 ///         logical-or-expression
234 /// \endverbatim
235 ExprResult Parser::ParseConstraintExpression() {
236   EnterExpressionEvaluationContext ConstantEvaluated(
237       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
238   ExprResult LHS(ParseCastExpression(AnyCastExpr));
239   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
240   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
241     Actions.CorrectDelayedTyposInExpr(Res);
242     return ExprError();
243   }
244   return Res;
245 }
246 
247 /// \brief Parse a constraint-logical-and-expression.
248 ///
249 /// \verbatim
250 ///       C++2a[temp.constr.decl]p1
251 ///       constraint-logical-and-expression:
252 ///         primary-expression
253 ///         constraint-logical-and-expression '&&' primary-expression
254 ///
255 /// \endverbatim
256 ExprResult
257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
258   EnterExpressionEvaluationContext ConstantEvaluated(
259       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
260   bool NotPrimaryExpression = false;
261   auto ParsePrimary = [&] () {
262     ExprResult E = ParseCastExpression(PrimaryExprOnly,
263                                        /*isAddressOfOperand=*/false,
264                                        /*isTypeCast=*/NotTypeCast,
265                                        /*isVectorLiteral=*/false,
266                                        &NotPrimaryExpression);
267     if (E.isInvalid())
268       return ExprError();
269     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
270         E = ParsePostfixExpressionSuffix(E);
271         // Use InclusiveOr, the precedence just after '&&' to not parse the
272         // next arguments to the logical and.
273         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
274         if (!E.isInvalid())
275           Diag(E.get()->getExprLoc(),
276                Note
277                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
278                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
279                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
280                << FixItHint::CreateInsertion(
281                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
282                << E.get()->getSourceRange();
283         return E;
284     };
285 
286     if (NotPrimaryExpression ||
287         // Check if the following tokens must be a part of a non-primary
288         // expression
289         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
290                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
291         // Postfix operators other than '(' (which will be checked for in
292         // CheckConstraintExpression).
293         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
294         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
295       E = RecoverFromNonPrimary(E, /*Note=*/false);
296       if (E.isInvalid())
297         return ExprError();
298       NotPrimaryExpression = false;
299     }
300     bool PossibleNonPrimary;
301     bool IsConstraintExpr =
302         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
303                                           IsTrailingRequiresClause);
304     if (!IsConstraintExpr || PossibleNonPrimary) {
305       // Atomic constraint might be an unparenthesized non-primary expression
306       // (such as a binary operator), in which case we might get here (e.g. in
307       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
308       // the rest of the addition expression). Try to parse the rest of it here.
309       if (PossibleNonPrimary)
310         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
311       Actions.CorrectDelayedTyposInExpr(E);
312       return ExprError();
313     }
314     return E;
315   };
316   ExprResult LHS = ParsePrimary();
317   if (LHS.isInvalid())
318     return ExprError();
319   while (Tok.is(tok::ampamp)) {
320     SourceLocation LogicalAndLoc = ConsumeToken();
321     ExprResult RHS = ParsePrimary();
322     if (RHS.isInvalid()) {
323       Actions.CorrectDelayedTyposInExpr(LHS);
324       return ExprError();
325     }
326     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
327                                        tok::ampamp, LHS.get(), RHS.get());
328     if (!Op.isUsable()) {
329       Actions.CorrectDelayedTyposInExpr(RHS);
330       Actions.CorrectDelayedTyposInExpr(LHS);
331       return ExprError();
332     }
333     LHS = Op;
334   }
335   return LHS;
336 }
337 
338 /// \brief Parse a constraint-logical-or-expression.
339 ///
340 /// \verbatim
341 ///       C++2a[temp.constr.decl]p1
342 ///       constraint-logical-or-expression:
343 ///         constraint-logical-and-expression
344 ///         constraint-logical-or-expression '||'
345 ///             constraint-logical-and-expression
346 ///
347 /// \endverbatim
348 ExprResult
349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
350   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
351   if (!LHS.isUsable())
352     return ExprError();
353   while (Tok.is(tok::pipepipe)) {
354     SourceLocation LogicalOrLoc = ConsumeToken();
355     ExprResult RHS =
356         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
357     if (!RHS.isUsable()) {
358       Actions.CorrectDelayedTyposInExpr(LHS);
359       return ExprError();
360     }
361     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
362                                        tok::pipepipe, LHS.get(), RHS.get());
363     if (!Op.isUsable()) {
364       Actions.CorrectDelayedTyposInExpr(RHS);
365       Actions.CorrectDelayedTyposInExpr(LHS);
366       return ExprError();
367     }
368     LHS = Op;
369   }
370   return LHS;
371 }
372 
373 bool Parser::isNotExpressionStart() {
374   tok::TokenKind K = Tok.getKind();
375   if (K == tok::l_brace || K == tok::r_brace  ||
376       K == tok::kw_for  || K == tok::kw_while ||
377       K == tok::kw_if   || K == tok::kw_else  ||
378       K == tok::kw_goto || K == tok::kw_try)
379     return true;
380   // If this is a decl-specifier, we can't be at the start of an expression.
381   return isKnownToBeDeclarationSpecifier();
382 }
383 
384 bool Parser::isFoldOperator(prec::Level Level) const {
385   return Level > prec::Unknown && Level != prec::Conditional &&
386          Level != prec::Spaceship;
387 }
388 
389 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
390   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
391 }
392 
393 /// Parse a binary expression that starts with \p LHS and has a
394 /// precedence of at least \p MinPrec.
395 ExprResult
396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
397   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
398                                                GreaterThanIsOperator,
399                                                getLangOpts().CPlusPlus11);
400   SourceLocation ColonLoc;
401 
402   auto SavedType = PreferredType;
403   while (1) {
404     // Every iteration may rely on a preferred type for the whole expression.
405     PreferredType = SavedType;
406     // If this token has a lower precedence than we are allowed to parse (e.g.
407     // because we are called recursively, or because the token is not a binop),
408     // then we are done!
409     if (NextTokPrec < MinPrec)
410       return LHS;
411 
412     // Consume the operator, saving the operator token for error reporting.
413     Token OpToken = Tok;
414     ConsumeToken();
415 
416     if (OpToken.is(tok::caretcaret)) {
417       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
418     }
419 
420     // If we're potentially in a template-id, we may now be able to determine
421     // whether we're actually in one or not.
422     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
423                         tok::greatergreatergreater) &&
424         checkPotentialAngleBracketDelimiter(OpToken))
425       return ExprError();
426 
427     // Bail out when encountering a comma followed by a token which can't
428     // possibly be the start of an expression. For instance:
429     //   int f() { return 1, }
430     // We can't do this before consuming the comma, because
431     // isNotExpressionStart() looks at the token stream.
432     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
433       PP.EnterToken(Tok, /*IsReinject*/true);
434       Tok = OpToken;
435       return LHS;
436     }
437 
438     // If the next token is an ellipsis, then this is a fold-expression. Leave
439     // it alone so we can handle it in the paren expression.
440     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
441       // FIXME: We can't check this via lookahead before we consume the token
442       // because that tickles a lexer bug.
443       PP.EnterToken(Tok, /*IsReinject*/true);
444       Tok = OpToken;
445       return LHS;
446     }
447 
448     // In Objective-C++, alternative operator tokens can be used as keyword args
449     // in message expressions. Unconsume the token so that it can reinterpreted
450     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
451     //   [foo meth:0 and:0];
452     //   [foo not_eq];
453     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
454         Tok.isOneOf(tok::colon, tok::r_square) &&
455         OpToken.getIdentifierInfo() != nullptr) {
456       PP.EnterToken(Tok, /*IsReinject*/true);
457       Tok = OpToken;
458       return LHS;
459     }
460 
461     // Special case handling for the ternary operator.
462     ExprResult TernaryMiddle(true);
463     if (NextTokPrec == prec::Conditional) {
464       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
465         // Parse a braced-init-list here for error recovery purposes.
466         SourceLocation BraceLoc = Tok.getLocation();
467         TernaryMiddle = ParseBraceInitializer();
468         if (!TernaryMiddle.isInvalid()) {
469           Diag(BraceLoc, diag::err_init_list_bin_op)
470               << /*RHS*/ 1 << PP.getSpelling(OpToken)
471               << Actions.getExprRange(TernaryMiddle.get());
472           TernaryMiddle = ExprError();
473         }
474       } else if (Tok.isNot(tok::colon)) {
475         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
476         ColonProtectionRAIIObject X(*this);
477 
478         // Handle this production specially:
479         //   logical-OR-expression '?' expression ':' conditional-expression
480         // In particular, the RHS of the '?' is 'expression', not
481         // 'logical-OR-expression' as we might expect.
482         TernaryMiddle = ParseExpression();
483       } else {
484         // Special case handling of "X ? Y : Z" where Y is empty:
485         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
486         TernaryMiddle = nullptr;
487         Diag(Tok, diag::ext_gnu_conditional_expr);
488       }
489 
490       if (TernaryMiddle.isInvalid()) {
491         Actions.CorrectDelayedTyposInExpr(LHS);
492         LHS = ExprError();
493         TernaryMiddle = nullptr;
494       }
495 
496       if (!TryConsumeToken(tok::colon, ColonLoc)) {
497         // Otherwise, we're missing a ':'.  Assume that this was a typo that
498         // the user forgot. If we're not in a macro expansion, we can suggest
499         // a fixit hint. If there were two spaces before the current token,
500         // suggest inserting the colon in between them, otherwise insert ": ".
501         SourceLocation FILoc = Tok.getLocation();
502         const char *FIText = ": ";
503         const SourceManager &SM = PP.getSourceManager();
504         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
505           assert(FILoc.isFileID());
506           bool IsInvalid = false;
507           const char *SourcePtr =
508             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
509           if (!IsInvalid && *SourcePtr == ' ') {
510             SourcePtr =
511               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
512             if (!IsInvalid && *SourcePtr == ' ') {
513               FILoc = FILoc.getLocWithOffset(-1);
514               FIText = ":";
515             }
516           }
517         }
518 
519         Diag(Tok, diag::err_expected)
520             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
521         Diag(OpToken, diag::note_matching) << tok::question;
522         ColonLoc = Tok.getLocation();
523       }
524     }
525 
526     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
527                               OpToken.getKind());
528     // Parse another leaf here for the RHS of the operator.
529     // ParseCastExpression works here because all RHS expressions in C have it
530     // as a prefix, at least. However, in C++, an assignment-expression could
531     // be a throw-expression, which is not a valid cast-expression.
532     // Therefore we need some special-casing here.
533     // Also note that the third operand of the conditional operator is
534     // an assignment-expression in C++, and in C++11, we can have a
535     // braced-init-list on the RHS of an assignment. For better diagnostics,
536     // parse as if we were allowed braced-init-lists everywhere, and check that
537     // they only appear on the RHS of assignments later.
538     ExprResult RHS;
539     bool RHSIsInitList = false;
540     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
541       RHS = ParseBraceInitializer();
542       RHSIsInitList = true;
543     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
544       RHS = ParseAssignmentExpression();
545     else
546       RHS = ParseCastExpression(AnyCastExpr);
547 
548     if (RHS.isInvalid()) {
549       // FIXME: Errors generated by the delayed typo correction should be
550       // printed before errors from parsing the RHS, not after.
551       Actions.CorrectDelayedTyposInExpr(LHS);
552       if (TernaryMiddle.isUsable())
553         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
554       LHS = ExprError();
555     }
556 
557     // Remember the precedence of this operator and get the precedence of the
558     // operator immediately to the right of the RHS.
559     prec::Level ThisPrec = NextTokPrec;
560     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
561                                      getLangOpts().CPlusPlus11);
562 
563     // Assignment and conditional expressions are right-associative.
564     bool isRightAssoc = ThisPrec == prec::Conditional ||
565                         ThisPrec == prec::Assignment;
566 
567     // Get the precedence of the operator to the right of the RHS.  If it binds
568     // more tightly with RHS than we do, evaluate it completely first.
569     if (ThisPrec < NextTokPrec ||
570         (ThisPrec == NextTokPrec && isRightAssoc)) {
571       if (!RHS.isInvalid() && RHSIsInitList) {
572         Diag(Tok, diag::err_init_list_bin_op)
573           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
574         RHS = ExprError();
575       }
576       // If this is left-associative, only parse things on the RHS that bind
577       // more tightly than the current operator.  If it is left-associative, it
578       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
579       // A=(B=(C=D)), where each paren is a level of recursion here.
580       // The function takes ownership of the RHS.
581       RHS = ParseRHSOfBinaryExpression(RHS,
582                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
583       RHSIsInitList = false;
584 
585       if (RHS.isInvalid()) {
586         // FIXME: Errors generated by the delayed typo correction should be
587         // printed before errors from ParseRHSOfBinaryExpression, not after.
588         Actions.CorrectDelayedTyposInExpr(LHS);
589         if (TernaryMiddle.isUsable())
590           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
591         LHS = ExprError();
592       }
593 
594       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
595                                        getLangOpts().CPlusPlus11);
596     }
597 
598     if (!RHS.isInvalid() && RHSIsInitList) {
599       if (ThisPrec == prec::Assignment) {
600         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
601           << Actions.getExprRange(RHS.get());
602       } else if (ColonLoc.isValid()) {
603         Diag(ColonLoc, diag::err_init_list_bin_op)
604           << /*RHS*/1 << ":"
605           << Actions.getExprRange(RHS.get());
606         LHS = ExprError();
607       } else {
608         Diag(OpToken, diag::err_init_list_bin_op)
609           << /*RHS*/1 << PP.getSpelling(OpToken)
610           << Actions.getExprRange(RHS.get());
611         LHS = ExprError();
612       }
613     }
614 
615     ExprResult OrigLHS = LHS;
616     if (!LHS.isInvalid()) {
617       // Combine the LHS and RHS into the LHS (e.g. build AST).
618       if (TernaryMiddle.isInvalid()) {
619         // If we're using '>>' as an operator within a template
620         // argument list (in C++98), suggest the addition of
621         // parentheses so that the code remains well-formed in C++0x.
622         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
623           SuggestParentheses(OpToken.getLocation(),
624                              diag::warn_cxx11_right_shift_in_template_arg,
625                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
626                                      Actions.getExprRange(RHS.get()).getEnd()));
627 
628         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
629                                  OpToken.getKind(), LHS.get(), RHS.get());
630 
631       } else {
632         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
633                                          LHS.get(), TernaryMiddle.get(),
634                                          RHS.get());
635       }
636       // In this case, ActOnBinOp or ActOnConditionalOp performed the
637       // CorrectDelayedTyposInExpr check.
638       if (!getLangOpts().CPlusPlus)
639         continue;
640     }
641 
642     // Ensure potential typos aren't left undiagnosed.
643     if (LHS.isInvalid()) {
644       Actions.CorrectDelayedTyposInExpr(OrigLHS);
645       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
646       Actions.CorrectDelayedTyposInExpr(RHS);
647     }
648   }
649 }
650 
651 /// Parse a cast-expression, unary-expression or primary-expression, based
652 /// on \p ExprType.
653 ///
654 /// \p isAddressOfOperand exists because an id-expression that is the
655 /// operand of address-of gets special treatment due to member pointers.
656 ///
657 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
658                                        bool isAddressOfOperand,
659                                        TypeCastState isTypeCast,
660                                        bool isVectorLiteral,
661                                        bool *NotPrimaryExpression) {
662   bool NotCastExpr;
663   ExprResult Res = ParseCastExpression(ParseKind,
664                                        isAddressOfOperand,
665                                        NotCastExpr,
666                                        isTypeCast,
667                                        isVectorLiteral,
668                                        NotPrimaryExpression);
669   if (NotCastExpr)
670     Diag(Tok, diag::err_expected_expression);
671   return Res;
672 }
673 
674 namespace {
675 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
676  public:
677   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
678       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
679     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
680   }
681 
682   bool ValidateCandidate(const TypoCorrection &candidate) override {
683     NamedDecl *ND = candidate.getCorrectionDecl();
684     if (!ND)
685       return candidate.isKeyword();
686 
687     if (isa<TypeDecl>(ND))
688       return WantTypeSpecifiers;
689 
690     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
691       return false;
692 
693     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
694       return true;
695 
696     for (auto *C : candidate) {
697       NamedDecl *ND = C->getUnderlyingDecl();
698       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
699         return true;
700     }
701     return false;
702   }
703 
704   std::unique_ptr<CorrectionCandidateCallback> clone() override {
705     return std::make_unique<CastExpressionIdValidator>(*this);
706   }
707 
708  private:
709   Token NextToken;
710   bool AllowNonTypes;
711 };
712 }
713 
714 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
715 /// a unary-expression.
716 ///
717 /// \p isAddressOfOperand exists because an id-expression that is the operand
718 /// of address-of gets special treatment due to member pointers. NotCastExpr
719 /// is set to true if the token is not the start of a cast-expression, and no
720 /// diagnostic is emitted in this case and no tokens are consumed.
721 ///
722 /// \verbatim
723 ///       cast-expression: [C99 6.5.4]
724 ///         unary-expression
725 ///         '(' type-name ')' cast-expression
726 ///
727 ///       unary-expression:  [C99 6.5.3]
728 ///         postfix-expression
729 ///         '++' unary-expression
730 ///         '--' unary-expression
731 /// [Coro]  'co_await' cast-expression
732 ///         unary-operator cast-expression
733 ///         'sizeof' unary-expression
734 ///         'sizeof' '(' type-name ')'
735 /// [C++11] 'sizeof' '...' '(' identifier ')'
736 /// [GNU]   '__alignof' unary-expression
737 /// [GNU]   '__alignof' '(' type-name ')'
738 /// [C11]   '_Alignof' '(' type-name ')'
739 /// [C++11] 'alignof' '(' type-id ')'
740 /// [GNU]   '&&' identifier
741 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
742 /// [C++]   new-expression
743 /// [C++]   delete-expression
744 ///
745 ///       unary-operator: one of
746 ///         '&'  '*'  '+'  '-'  '~'  '!'
747 /// [GNU]   '__extension__'  '__real'  '__imag'
748 ///
749 ///       primary-expression: [C99 6.5.1]
750 /// [C99]   identifier
751 /// [C++]   id-expression
752 ///         constant
753 ///         string-literal
754 /// [C++]   boolean-literal  [C++ 2.13.5]
755 /// [C++11] 'nullptr'        [C++11 2.14.7]
756 /// [C++11] user-defined-literal
757 ///         '(' expression ')'
758 /// [C11]   generic-selection
759 /// [C++2a] requires-expression
760 ///         '__func__'        [C99 6.4.2.2]
761 /// [GNU]   '__FUNCTION__'
762 /// [MS]    '__FUNCDNAME__'
763 /// [MS]    'L__FUNCTION__'
764 /// [MS]    '__FUNCSIG__'
765 /// [MS]    'L__FUNCSIG__'
766 /// [GNU]   '__PRETTY_FUNCTION__'
767 /// [GNU]   '(' compound-statement ')'
768 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
769 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
770 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
771 ///                                     assign-expr ')'
772 /// [GNU]   '__builtin_FILE' '(' ')'
773 /// [GNU]   '__builtin_FUNCTION' '(' ')'
774 /// [GNU]   '__builtin_LINE' '(' ')'
775 /// [CLANG] '__builtin_COLUMN' '(' ')'
776 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
777 /// [GNU]   '__null'
778 /// [OBJC]  '[' objc-message-expr ']'
779 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
780 /// [OBJC]  '\@protocol' '(' identifier ')'
781 /// [OBJC]  '\@encode' '(' type-name ')'
782 /// [OBJC]  objc-string-literal
783 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
784 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
785 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
786 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
787 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
788 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
789 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
790 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
791 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
792 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
793 /// [C++]   'this'          [C++ 9.3.2]
794 /// [G++]   unary-type-trait '(' type-id ')'
795 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
796 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
797 /// [clang] '^' block-literal
798 ///
799 ///       constant: [C99 6.4.4]
800 ///         integer-constant
801 ///         floating-constant
802 ///         enumeration-constant -> identifier
803 ///         character-constant
804 ///
805 ///       id-expression: [C++ 5.1]
806 ///                   unqualified-id
807 ///                   qualified-id
808 ///
809 ///       unqualified-id: [C++ 5.1]
810 ///                   identifier
811 ///                   operator-function-id
812 ///                   conversion-function-id
813 ///                   '~' class-name
814 ///                   template-id
815 ///
816 ///       new-expression: [C++ 5.3.4]
817 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
818 ///                                     new-initializer[opt]
819 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
820 ///                                     new-initializer[opt]
821 ///
822 ///       delete-expression: [C++ 5.3.5]
823 ///                   '::'[opt] 'delete' cast-expression
824 ///                   '::'[opt] 'delete' '[' ']' cast-expression
825 ///
826 /// [GNU/Embarcadero] unary-type-trait:
827 ///                   '__is_arithmetic'
828 ///                   '__is_floating_point'
829 ///                   '__is_integral'
830 ///                   '__is_lvalue_expr'
831 ///                   '__is_rvalue_expr'
832 ///                   '__is_complete_type'
833 ///                   '__is_void'
834 ///                   '__is_array'
835 ///                   '__is_function'
836 ///                   '__is_reference'
837 ///                   '__is_lvalue_reference'
838 ///                   '__is_rvalue_reference'
839 ///                   '__is_fundamental'
840 ///                   '__is_object'
841 ///                   '__is_scalar'
842 ///                   '__is_compound'
843 ///                   '__is_pointer'
844 ///                   '__is_member_object_pointer'
845 ///                   '__is_member_function_pointer'
846 ///                   '__is_member_pointer'
847 ///                   '__is_const'
848 ///                   '__is_volatile'
849 ///                   '__is_trivial'
850 ///                   '__is_standard_layout'
851 ///                   '__is_signed'
852 ///                   '__is_unsigned'
853 ///
854 /// [GNU] unary-type-trait:
855 ///                   '__has_nothrow_assign'
856 ///                   '__has_nothrow_copy'
857 ///                   '__has_nothrow_constructor'
858 ///                   '__has_trivial_assign'                  [TODO]
859 ///                   '__has_trivial_copy'                    [TODO]
860 ///                   '__has_trivial_constructor'
861 ///                   '__has_trivial_destructor'
862 ///                   '__has_virtual_destructor'
863 ///                   '__is_abstract'                         [TODO]
864 ///                   '__is_class'
865 ///                   '__is_empty'                            [TODO]
866 ///                   '__is_enum'
867 ///                   '__is_final'
868 ///                   '__is_pod'
869 ///                   '__is_polymorphic'
870 ///                   '__is_sealed'                           [MS]
871 ///                   '__is_trivial'
872 ///                   '__is_union'
873 ///                   '__has_unique_object_representations'
874 ///
875 /// [Clang] unary-type-trait:
876 ///                   '__is_aggregate'
877 ///                   '__trivially_copyable'
878 ///
879 ///       binary-type-trait:
880 /// [GNU]             '__is_base_of'
881 /// [MS]              '__is_convertible_to'
882 ///                   '__is_convertible'
883 ///                   '__is_same'
884 ///
885 /// [Embarcadero] array-type-trait:
886 ///                   '__array_rank'
887 ///                   '__array_extent'
888 ///
889 /// [Embarcadero] expression-trait:
890 ///                   '__is_lvalue_expr'
891 ///                   '__is_rvalue_expr'
892 /// \endverbatim
893 ///
894 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
895                                        bool isAddressOfOperand,
896                                        bool &NotCastExpr,
897                                        TypeCastState isTypeCast,
898                                        bool isVectorLiteral,
899                                        bool *NotPrimaryExpression) {
900   ExprResult Res;
901   tok::TokenKind SavedKind = Tok.getKind();
902   auto SavedType = PreferredType;
903   NotCastExpr = false;
904 
905   // This handles all of cast-expression, unary-expression, postfix-expression,
906   // and primary-expression.  We handle them together like this for efficiency
907   // and to simplify handling of an expression starting with a '(' token: which
908   // may be one of a parenthesized expression, cast-expression, compound literal
909   // expression, or statement expression.
910   //
911   // If the parsed tokens consist of a primary-expression, the cases below
912   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
913   // to handle the postfix expression suffixes.  Cases that cannot be followed
914   // by postfix exprs should return without invoking
915   // ParsePostfixExpressionSuffix.
916   switch (SavedKind) {
917   case tok::l_paren: {
918     // If this expression is limited to being a unary-expression, the paren can
919     // not start a cast expression.
920     ParenParseOption ParenExprType;
921     switch (ParseKind) {
922       case CastParseKind::UnaryExprOnly:
923         if (!getLangOpts().CPlusPlus)
924           ParenExprType = CompoundLiteral;
925         LLVM_FALLTHROUGH;
926       case CastParseKind::AnyCastExpr:
927         ParenExprType = ParenParseOption::CastExpr;
928         break;
929       case CastParseKind::PrimaryExprOnly:
930         ParenExprType = FoldExpr;
931         break;
932     }
933     ParsedType CastTy;
934     SourceLocation RParenLoc;
935     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
936                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
937 
938     if (isVectorLiteral)
939         return Res;
940 
941     switch (ParenExprType) {
942     case SimpleExpr:   break;    // Nothing else to do.
943     case CompoundStmt: break;  // Nothing else to do.
944     case CompoundLiteral:
945       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
946       // postfix-expression exist, parse them now.
947       break;
948     case CastExpr:
949       // We have parsed the cast-expression and no postfix-expr pieces are
950       // following.
951       return Res;
952     case FoldExpr:
953       // We only parsed a fold-expression. There might be postfix-expr pieces
954       // afterwards; parse them now.
955       break;
956     }
957 
958     break;
959   }
960 
961     // primary-expression
962   case tok::numeric_constant:
963     // constant: integer-constant
964     // constant: floating-constant
965 
966     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
967     ConsumeToken();
968     break;
969 
970   case tok::kw_true:
971   case tok::kw_false:
972     Res = ParseCXXBoolLiteral();
973     break;
974 
975   case tok::kw___objc_yes:
976   case tok::kw___objc_no:
977       return ParseObjCBoolLiteral();
978 
979   case tok::kw_nullptr:
980     Diag(Tok, diag::warn_cxx98_compat_nullptr);
981     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
982 
983   case tok::annot_primary_expr:
984     Res = getExprAnnotation(Tok);
985     ConsumeAnnotationToken();
986     if (!Res.isInvalid() && Tok.is(tok::less))
987       checkPotentialAngleBracket(Res);
988     break;
989 
990   case tok::annot_non_type:
991   case tok::annot_non_type_dependent:
992   case tok::annot_non_type_undeclared: {
993     CXXScopeSpec SS;
994     Token Replacement;
995     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
996     assert(!Res.isUnset() &&
997            "should not perform typo correction on annotation token");
998     break;
999   }
1000 
1001   case tok::kw___super:
1002   case tok::kw_decltype:
1003     // Annotate the token and tail recurse.
1004     if (TryAnnotateTypeOrScopeToken())
1005       return ExprError();
1006     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1007     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1008                                isVectorLiteral, NotPrimaryExpression);
1009 
1010   case tok::identifier: {      // primary-expression: identifier
1011                                // unqualified-id: identifier
1012                                // constant: enumeration-constant
1013     // Turn a potentially qualified name into a annot_typename or
1014     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1015     if (getLangOpts().CPlusPlus) {
1016       // Avoid the unnecessary parse-time lookup in the common case
1017       // where the syntax forbids a type.
1018       const Token &Next = NextToken();
1019 
1020       // If this identifier was reverted from a token ID, and the next token
1021       // is a parenthesis, this is likely to be a use of a type trait. Check
1022       // those tokens.
1023       if (Next.is(tok::l_paren) &&
1024           Tok.is(tok::identifier) &&
1025           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1026         IdentifierInfo *II = Tok.getIdentifierInfo();
1027         // Build up the mapping of revertible type traits, for future use.
1028         if (RevertibleTypeTraits.empty()) {
1029 #define RTT_JOIN(X,Y) X##Y
1030 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
1031           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1032             = RTT_JOIN(tok::kw_,Name)
1033 
1034           REVERTIBLE_TYPE_TRAIT(__is_abstract);
1035           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1036           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1037           REVERTIBLE_TYPE_TRAIT(__is_array);
1038           REVERTIBLE_TYPE_TRAIT(__is_assignable);
1039           REVERTIBLE_TYPE_TRAIT(__is_base_of);
1040           REVERTIBLE_TYPE_TRAIT(__is_class);
1041           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1042           REVERTIBLE_TYPE_TRAIT(__is_compound);
1043           REVERTIBLE_TYPE_TRAIT(__is_const);
1044           REVERTIBLE_TYPE_TRAIT(__is_constructible);
1045           REVERTIBLE_TYPE_TRAIT(__is_convertible);
1046           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1047           REVERTIBLE_TYPE_TRAIT(__is_destructible);
1048           REVERTIBLE_TYPE_TRAIT(__is_empty);
1049           REVERTIBLE_TYPE_TRAIT(__is_enum);
1050           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1051           REVERTIBLE_TYPE_TRAIT(__is_final);
1052           REVERTIBLE_TYPE_TRAIT(__is_function);
1053           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1054           REVERTIBLE_TYPE_TRAIT(__is_integral);
1055           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1056           REVERTIBLE_TYPE_TRAIT(__is_literal);
1057           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1058           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1059           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1060           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1061           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1062           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1063           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1064           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1065           REVERTIBLE_TYPE_TRAIT(__is_object);
1066           REVERTIBLE_TYPE_TRAIT(__is_pod);
1067           REVERTIBLE_TYPE_TRAIT(__is_pointer);
1068           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1069           REVERTIBLE_TYPE_TRAIT(__is_reference);
1070           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1071           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1072           REVERTIBLE_TYPE_TRAIT(__is_same);
1073           REVERTIBLE_TYPE_TRAIT(__is_scalar);
1074           REVERTIBLE_TYPE_TRAIT(__is_sealed);
1075           REVERTIBLE_TYPE_TRAIT(__is_signed);
1076           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1077           REVERTIBLE_TYPE_TRAIT(__is_trivial);
1078           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1079           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1080           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1081           REVERTIBLE_TYPE_TRAIT(__is_union);
1082           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1083           REVERTIBLE_TYPE_TRAIT(__is_void);
1084           REVERTIBLE_TYPE_TRAIT(__is_volatile);
1085 #undef REVERTIBLE_TYPE_TRAIT
1086 #undef RTT_JOIN
1087         }
1088 
1089         // If we find that this is in fact the name of a type trait,
1090         // update the token kind in place and parse again to treat it as
1091         // the appropriate kind of type trait.
1092         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1093           = RevertibleTypeTraits.find(II);
1094         if (Known != RevertibleTypeTraits.end()) {
1095           Tok.setKind(Known->second);
1096           return ParseCastExpression(ParseKind, isAddressOfOperand,
1097                                      NotCastExpr, isTypeCast,
1098                                      isVectorLiteral, NotPrimaryExpression);
1099         }
1100       }
1101 
1102       if ((!ColonIsSacred && Next.is(tok::colon)) ||
1103           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1104                        tok::l_brace)) {
1105         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1106         if (TryAnnotateTypeOrScopeToken())
1107           return ExprError();
1108         if (!Tok.is(tok::identifier))
1109           return ParseCastExpression(ParseKind, isAddressOfOperand,
1110                                      NotCastExpr, isTypeCast,
1111                                      isVectorLiteral,
1112                                      NotPrimaryExpression);
1113       }
1114     }
1115 
1116     // Consume the identifier so that we can see if it is followed by a '(' or
1117     // '.'.
1118     IdentifierInfo &II = *Tok.getIdentifierInfo();
1119     SourceLocation ILoc = ConsumeToken();
1120 
1121     // Support 'Class.property' and 'super.property' notation.
1122     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1123         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1124          // Allow the base to be 'super' if in an objc-method.
1125          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1126       ConsumeToken();
1127 
1128       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1129         Actions.CodeCompleteObjCClassPropertyRefExpr(
1130             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1131         cutOffParsing();
1132         return ExprError();
1133       }
1134       // Allow either an identifier or the keyword 'class' (in C++).
1135       if (Tok.isNot(tok::identifier) &&
1136           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1137         Diag(Tok, diag::err_expected_property_name);
1138         return ExprError();
1139       }
1140       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1141       SourceLocation PropertyLoc = ConsumeToken();
1142 
1143       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1144                                               ILoc, PropertyLoc);
1145       break;
1146     }
1147 
1148     // In an Objective-C method, if we have "super" followed by an identifier,
1149     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1150     // that identifier, this is probably a message send with a missing open
1151     // bracket. Treat it as such.
1152     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1153         getCurScope()->isInObjcMethodScope() &&
1154         ((Tok.is(tok::identifier) &&
1155          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1156          Tok.is(tok::code_completion))) {
1157       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1158                                            nullptr);
1159       break;
1160     }
1161 
1162     // If we have an Objective-C class name followed by an identifier
1163     // and either ':' or ']', this is an Objective-C class message
1164     // send that's missing the opening '['. Recovery
1165     // appropriately. Also take this path if we're performing code
1166     // completion after an Objective-C class name.
1167     if (getLangOpts().ObjC &&
1168         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1169          Tok.is(tok::code_completion))) {
1170       const Token& Next = NextToken();
1171       if (Tok.is(tok::code_completion) ||
1172           Next.is(tok::colon) || Next.is(tok::r_square))
1173         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1174           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1175             // Fake up a Declarator to use with ActOnTypeName.
1176             DeclSpec DS(AttrFactory);
1177             DS.SetRangeStart(ILoc);
1178             DS.SetRangeEnd(ILoc);
1179             const char *PrevSpec = nullptr;
1180             unsigned DiagID;
1181             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1182                                Actions.getASTContext().getPrintingPolicy());
1183 
1184             Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1185             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1186                                                   DeclaratorInfo);
1187             if (Ty.isInvalid())
1188               break;
1189 
1190             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1191                                                  SourceLocation(),
1192                                                  Ty.get(), nullptr);
1193             break;
1194           }
1195     }
1196 
1197     // Make sure to pass down the right value for isAddressOfOperand.
1198     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1199       isAddressOfOperand = false;
1200 
1201     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1202     // need to know whether or not this identifier is a function designator or
1203     // not.
1204     UnqualifiedId Name;
1205     CXXScopeSpec ScopeSpec;
1206     SourceLocation TemplateKWLoc;
1207     Token Replacement;
1208     CastExpressionIdValidator Validator(
1209         /*Next=*/Tok,
1210         /*AllowTypes=*/isTypeCast != NotTypeCast,
1211         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1212     Validator.IsAddressOfOperand = isAddressOfOperand;
1213     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1214       Validator.WantExpressionKeywords = false;
1215       Validator.WantRemainingKeywords = false;
1216     } else {
1217       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1218     }
1219     Name.setIdentifier(&II, ILoc);
1220     Res = Actions.ActOnIdExpression(
1221         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1222         isAddressOfOperand, &Validator,
1223         /*IsInlineAsmIdentifier=*/false,
1224         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1225     if (!Res.isInvalid() && Res.isUnset()) {
1226       UnconsumeToken(Replacement);
1227       return ParseCastExpression(ParseKind, isAddressOfOperand,
1228                                  NotCastExpr, isTypeCast,
1229                                  /*isVectorLiteral=*/false,
1230                                  NotPrimaryExpression);
1231     }
1232     if (!Res.isInvalid() && Tok.is(tok::less))
1233       checkPotentialAngleBracket(Res);
1234     break;
1235   }
1236   case tok::char_constant:     // constant: character-constant
1237   case tok::wide_char_constant:
1238   case tok::utf8_char_constant:
1239   case tok::utf16_char_constant:
1240   case tok::utf32_char_constant:
1241     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1242     ConsumeToken();
1243     break;
1244   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1245   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1246   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1247   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1248   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1249   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1250   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1251     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1252     ConsumeToken();
1253     break;
1254   case tok::string_literal:    // primary-expression: string-literal
1255   case tok::wide_string_literal:
1256   case tok::utf8_string_literal:
1257   case tok::utf16_string_literal:
1258   case tok::utf32_string_literal:
1259     Res = ParseStringLiteralExpression(true);
1260     break;
1261   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1262     Res = ParseGenericSelectionExpression();
1263     break;
1264   case tok::kw___builtin_available:
1265     return ParseAvailabilityCheckExpr(Tok.getLocation());
1266   case tok::kw___builtin_va_arg:
1267   case tok::kw___builtin_offsetof:
1268   case tok::kw___builtin_choose_expr:
1269   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1270   case tok::kw___builtin_convertvector:
1271   case tok::kw___builtin_COLUMN:
1272   case tok::kw___builtin_FILE:
1273   case tok::kw___builtin_FUNCTION:
1274   case tok::kw___builtin_LINE:
1275     if (NotPrimaryExpression)
1276       *NotPrimaryExpression = true;
1277     return ParseBuiltinPrimaryExpression();
1278   case tok::kw___null:
1279     return Actions.ActOnGNUNullExpr(ConsumeToken());
1280 
1281   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1282   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1283     if (NotPrimaryExpression)
1284       *NotPrimaryExpression = true;
1285     // C++ [expr.unary] has:
1286     //   unary-expression:
1287     //     ++ cast-expression
1288     //     -- cast-expression
1289     Token SavedTok = Tok;
1290     ConsumeToken();
1291 
1292     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1293                              SavedTok.getLocation());
1294     // One special case is implicitly handled here: if the preceding tokens are
1295     // an ambiguous cast expression, such as "(T())++", then we recurse to
1296     // determine whether the '++' is prefix or postfix.
1297     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1298                                   UnaryExprOnly : AnyCastExpr,
1299                               /*isAddressOfOperand*/false, NotCastExpr,
1300                               NotTypeCast);
1301     if (NotCastExpr) {
1302       // If we return with NotCastExpr = true, we must not consume any tokens,
1303       // so put the token back where we found it.
1304       assert(Res.isInvalid());
1305       UnconsumeToken(SavedTok);
1306       return ExprError();
1307     }
1308     if (!Res.isInvalid())
1309       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1310                                  SavedKind, Res.get());
1311     return Res;
1312   }
1313   case tok::amp: {         // unary-expression: '&' cast-expression
1314     if (NotPrimaryExpression)
1315       *NotPrimaryExpression = true;
1316     // Special treatment because of member pointers
1317     SourceLocation SavedLoc = ConsumeToken();
1318     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1319     Res = ParseCastExpression(AnyCastExpr, true);
1320     if (!Res.isInvalid())
1321       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1322     return Res;
1323   }
1324 
1325   case tok::star:          // unary-expression: '*' cast-expression
1326   case tok::plus:          // unary-expression: '+' cast-expression
1327   case tok::minus:         // unary-expression: '-' cast-expression
1328   case tok::tilde:         // unary-expression: '~' cast-expression
1329   case tok::exclaim:       // unary-expression: '!' cast-expression
1330   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1331   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1332     if (NotPrimaryExpression)
1333       *NotPrimaryExpression = true;
1334     SourceLocation SavedLoc = ConsumeToken();
1335     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1336     Res = ParseCastExpression(AnyCastExpr);
1337     if (!Res.isInvalid())
1338       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1339     return Res;
1340   }
1341 
1342   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1343     if (NotPrimaryExpression)
1344       *NotPrimaryExpression = true;
1345     SourceLocation CoawaitLoc = ConsumeToken();
1346     Res = ParseCastExpression(AnyCastExpr);
1347     if (!Res.isInvalid())
1348       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1349     return Res;
1350   }
1351 
1352   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1353     // __extension__ silences extension warnings in the subexpression.
1354     if (NotPrimaryExpression)
1355       *NotPrimaryExpression = true;
1356     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1357     SourceLocation SavedLoc = ConsumeToken();
1358     Res = ParseCastExpression(AnyCastExpr);
1359     if (!Res.isInvalid())
1360       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1361     return Res;
1362   }
1363   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1364     if (!getLangOpts().C11)
1365       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1366     LLVM_FALLTHROUGH;
1367   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1368   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1369                            // unary-expression: '__alignof' '(' type-name ')'
1370   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1371                            // unary-expression: 'sizeof' '(' type-name ')'
1372   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1373   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1374   case tok::kw___builtin_omp_required_simd_align:
1375     if (NotPrimaryExpression)
1376       *NotPrimaryExpression = true;
1377     return ParseUnaryExprOrTypeTraitExpression();
1378   case tok::ampamp: {      // unary-expression: '&&' identifier
1379     if (NotPrimaryExpression)
1380       *NotPrimaryExpression = true;
1381     SourceLocation AmpAmpLoc = ConsumeToken();
1382     if (Tok.isNot(tok::identifier))
1383       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1384 
1385     if (getCurScope()->getFnParent() == nullptr)
1386       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1387 
1388     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1389     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1390                                                 Tok.getLocation());
1391     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1392     ConsumeToken();
1393     return Res;
1394   }
1395   case tok::kw_const_cast:
1396   case tok::kw_dynamic_cast:
1397   case tok::kw_reinterpret_cast:
1398   case tok::kw_static_cast:
1399     if (NotPrimaryExpression)
1400       *NotPrimaryExpression = true;
1401     Res = ParseCXXCasts();
1402     break;
1403   case tok::kw___builtin_bit_cast:
1404     if (NotPrimaryExpression)
1405       *NotPrimaryExpression = true;
1406     Res = ParseBuiltinBitCast();
1407     break;
1408   case tok::kw_typeid:
1409     if (NotPrimaryExpression)
1410       *NotPrimaryExpression = true;
1411     Res = ParseCXXTypeid();
1412     break;
1413   case tok::kw___uuidof:
1414     if (NotPrimaryExpression)
1415       *NotPrimaryExpression = true;
1416     Res = ParseCXXUuidof();
1417     break;
1418   case tok::kw_this:
1419     Res = ParseCXXThis();
1420     break;
1421 
1422   case tok::annot_typename:
1423     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1424       ParsedType Type = getTypeAnnotation(Tok);
1425 
1426       // Fake up a Declarator to use with ActOnTypeName.
1427       DeclSpec DS(AttrFactory);
1428       DS.SetRangeStart(Tok.getLocation());
1429       DS.SetRangeEnd(Tok.getLastLoc());
1430 
1431       const char *PrevSpec = nullptr;
1432       unsigned DiagID;
1433       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1434                          PrevSpec, DiagID, Type,
1435                          Actions.getASTContext().getPrintingPolicy());
1436 
1437       Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1438       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1439       if (Ty.isInvalid())
1440         break;
1441 
1442       ConsumeAnnotationToken();
1443       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1444                                            Ty.get(), nullptr);
1445       break;
1446     }
1447     LLVM_FALLTHROUGH;
1448 
1449   case tok::annot_decltype:
1450   case tok::kw_char:
1451   case tok::kw_wchar_t:
1452   case tok::kw_char8_t:
1453   case tok::kw_char16_t:
1454   case tok::kw_char32_t:
1455   case tok::kw_bool:
1456   case tok::kw_short:
1457   case tok::kw_int:
1458   case tok::kw_long:
1459   case tok::kw___int64:
1460   case tok::kw___int128:
1461   case tok::kw_signed:
1462   case tok::kw_unsigned:
1463   case tok::kw_half:
1464   case tok::kw_float:
1465   case tok::kw_double:
1466   case tok::kw__Float16:
1467   case tok::kw___float128:
1468   case tok::kw_void:
1469   case tok::kw_typename:
1470   case tok::kw_typeof:
1471   case tok::kw___vector:
1472 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1473 #include "clang/Basic/OpenCLImageTypes.def"
1474   {
1475     if (!getLangOpts().CPlusPlus) {
1476       Diag(Tok, diag::err_expected_expression);
1477       return ExprError();
1478     }
1479 
1480     // Everything henceforth is a postfix-expression.
1481     if (NotPrimaryExpression)
1482       *NotPrimaryExpression = true;
1483 
1484     if (SavedKind == tok::kw_typename) {
1485       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1486       //                     typename-specifier braced-init-list
1487       if (TryAnnotateTypeOrScopeToken())
1488         return ExprError();
1489 
1490       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1491         // We are trying to parse a simple-type-specifier but might not get such
1492         // a token after error recovery.
1493         return ExprError();
1494     }
1495 
1496     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1497     //                     simple-type-specifier braced-init-list
1498     //
1499     DeclSpec DS(AttrFactory);
1500 
1501     ParseCXXSimpleTypeSpecifier(DS);
1502     if (Tok.isNot(tok::l_paren) &&
1503         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1504       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1505                          << DS.getSourceRange());
1506 
1507     if (Tok.is(tok::l_brace))
1508       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1509 
1510     Res = ParseCXXTypeConstructExpression(DS);
1511     break;
1512   }
1513 
1514   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1515     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1516     // (We can end up in this situation after tentative parsing.)
1517     if (TryAnnotateTypeOrScopeToken())
1518       return ExprError();
1519     if (!Tok.is(tok::annot_cxxscope))
1520       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1521                                  isTypeCast, isVectorLiteral,
1522                                  NotPrimaryExpression);
1523 
1524     Token Next = NextToken();
1525     if (Next.is(tok::annot_template_id)) {
1526       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1527       if (TemplateId->Kind == TNK_Type_template) {
1528         // We have a qualified template-id that we know refers to a
1529         // type, translate it into a type and continue parsing as a
1530         // cast expression.
1531         CXXScopeSpec SS;
1532         ParseOptionalCXXScopeSpecifier(SS, nullptr,
1533                                        /*EnteringContext=*/false);
1534         AnnotateTemplateIdTokenAsType(SS);
1535         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1536                                    isTypeCast, isVectorLiteral,
1537                                    NotPrimaryExpression);
1538       }
1539     }
1540 
1541     // Parse as an id-expression.
1542     Res = ParseCXXIdExpression(isAddressOfOperand);
1543     break;
1544   }
1545 
1546   case tok::annot_template_id: { // [C++]          template-id
1547     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1548     if (TemplateId->Kind == TNK_Type_template) {
1549       // We have a template-id that we know refers to a type,
1550       // translate it into a type and continue parsing as a cast
1551       // expression.
1552       CXXScopeSpec SS;
1553       AnnotateTemplateIdTokenAsType(SS);
1554       return ParseCastExpression(ParseKind, isAddressOfOperand,
1555                                  NotCastExpr, isTypeCast, isVectorLiteral,
1556                                  NotPrimaryExpression);
1557     }
1558 
1559     // Fall through to treat the template-id as an id-expression.
1560     LLVM_FALLTHROUGH;
1561   }
1562 
1563   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1564     Res = ParseCXXIdExpression(isAddressOfOperand);
1565     break;
1566 
1567   case tok::coloncolon: {
1568     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1569     // annotates the token, tail recurse.
1570     if (TryAnnotateTypeOrScopeToken())
1571       return ExprError();
1572     if (!Tok.is(tok::coloncolon))
1573       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1574                                  isVectorLiteral, NotPrimaryExpression);
1575 
1576     // ::new -> [C++] new-expression
1577     // ::delete -> [C++] delete-expression
1578     SourceLocation CCLoc = ConsumeToken();
1579     if (Tok.is(tok::kw_new)) {
1580       if (NotPrimaryExpression)
1581         *NotPrimaryExpression = true;
1582       return ParseCXXNewExpression(true, CCLoc);
1583     }
1584     if (Tok.is(tok::kw_delete)) {
1585       if (NotPrimaryExpression)
1586         *NotPrimaryExpression = true;
1587       return ParseCXXDeleteExpression(true, CCLoc);
1588     }
1589 
1590     // This is not a type name or scope specifier, it is an invalid expression.
1591     Diag(CCLoc, diag::err_expected_expression);
1592     return ExprError();
1593   }
1594 
1595   case tok::kw_new: // [C++] new-expression
1596     if (NotPrimaryExpression)
1597       *NotPrimaryExpression = true;
1598     return ParseCXXNewExpression(false, Tok.getLocation());
1599 
1600   case tok::kw_delete: // [C++] delete-expression
1601     if (NotPrimaryExpression)
1602       *NotPrimaryExpression = true;
1603     return ParseCXXDeleteExpression(false, Tok.getLocation());
1604 
1605   case tok::kw_requires: // [C++2a] requires-expression
1606     return ParseRequiresExpression();
1607 
1608   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1609     if (NotPrimaryExpression)
1610       *NotPrimaryExpression = true;
1611     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1612     SourceLocation KeyLoc = ConsumeToken();
1613     BalancedDelimiterTracker T(*this, tok::l_paren);
1614 
1615     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1616       return ExprError();
1617     // C++11 [expr.unary.noexcept]p1:
1618     //   The noexcept operator determines whether the evaluation of its operand,
1619     //   which is an unevaluated operand, can throw an exception.
1620     EnterExpressionEvaluationContext Unevaluated(
1621         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1622     ExprResult Result = ParseExpression();
1623 
1624     T.consumeClose();
1625 
1626     if (!Result.isInvalid())
1627       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1628                                          Result.get(), T.getCloseLocation());
1629     return Result;
1630   }
1631 
1632 #define TYPE_TRAIT(N,Spelling,K) \
1633   case tok::kw_##Spelling:
1634 #include "clang/Basic/TokenKinds.def"
1635     return ParseTypeTrait();
1636 
1637   case tok::kw___array_rank:
1638   case tok::kw___array_extent:
1639     if (NotPrimaryExpression)
1640       *NotPrimaryExpression = true;
1641     return ParseArrayTypeTrait();
1642 
1643   case tok::kw___is_lvalue_expr:
1644   case tok::kw___is_rvalue_expr:
1645     if (NotPrimaryExpression)
1646       *NotPrimaryExpression = true;
1647     return ParseExpressionTrait();
1648 
1649   case tok::at: {
1650     if (NotPrimaryExpression)
1651       *NotPrimaryExpression = true;
1652     SourceLocation AtLoc = ConsumeToken();
1653     return ParseObjCAtExpression(AtLoc);
1654   }
1655   case tok::caret:
1656     Res = ParseBlockLiteralExpression();
1657     break;
1658   case tok::code_completion: {
1659     Actions.CodeCompleteExpression(getCurScope(),
1660                                    PreferredType.get(Tok.getLocation()));
1661     cutOffParsing();
1662     return ExprError();
1663   }
1664   case tok::l_square:
1665     if (getLangOpts().CPlusPlus11) {
1666       if (getLangOpts().ObjC) {
1667         // C++11 lambda expressions and Objective-C message sends both start with a
1668         // square bracket.  There are three possibilities here:
1669         // we have a valid lambda expression, we have an invalid lambda
1670         // expression, or we have something that doesn't appear to be a lambda.
1671         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1672         Res = TryParseLambdaExpression();
1673         if (!Res.isInvalid() && !Res.get()) {
1674           // We assume Objective-C++ message expressions are not
1675           // primary-expressions.
1676           if (NotPrimaryExpression)
1677             *NotPrimaryExpression = true;
1678           Res = ParseObjCMessageExpression();
1679         }
1680         break;
1681       }
1682       Res = ParseLambdaExpression();
1683       break;
1684     }
1685     if (getLangOpts().ObjC) {
1686       Res = ParseObjCMessageExpression();
1687       break;
1688     }
1689     LLVM_FALLTHROUGH;
1690   default:
1691     NotCastExpr = true;
1692     return ExprError();
1693   }
1694 
1695   // Check to see whether Res is a function designator only. If it is and we
1696   // are compiling for OpenCL, we need to return an error as this implies
1697   // that the address of the function is being taken, which is illegal in CL.
1698 
1699   if (ParseKind == PrimaryExprOnly)
1700     // This is strictly a primary-expression - no postfix-expr pieces should be
1701     // parsed.
1702     return Res;
1703 
1704   // These can be followed by postfix-expr pieces.
1705   PreferredType = SavedType;
1706   Res = ParsePostfixExpressionSuffix(Res);
1707   if (getLangOpts().OpenCL)
1708     if (Expr *PostfixExpr = Res.get()) {
1709       QualType Ty = PostfixExpr->getType();
1710       if (!Ty.isNull() && Ty->isFunctionType()) {
1711         Diag(PostfixExpr->getExprLoc(),
1712              diag::err_opencl_taking_function_address_parser);
1713         return ExprError();
1714       }
1715     }
1716 
1717   return Res;
1718 }
1719 
1720 /// Once the leading part of a postfix-expression is parsed, this
1721 /// method parses any suffixes that apply.
1722 ///
1723 /// \verbatim
1724 ///       postfix-expression: [C99 6.5.2]
1725 ///         primary-expression
1726 ///         postfix-expression '[' expression ']'
1727 ///         postfix-expression '[' braced-init-list ']'
1728 ///         postfix-expression '(' argument-expression-list[opt] ')'
1729 ///         postfix-expression '.' identifier
1730 ///         postfix-expression '->' identifier
1731 ///         postfix-expression '++'
1732 ///         postfix-expression '--'
1733 ///         '(' type-name ')' '{' initializer-list '}'
1734 ///         '(' type-name ')' '{' initializer-list ',' '}'
1735 ///
1736 ///       argument-expression-list: [C99 6.5.2]
1737 ///         argument-expression ...[opt]
1738 ///         argument-expression-list ',' assignment-expression ...[opt]
1739 /// \endverbatim
1740 ExprResult
1741 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1742   // Now that the primary-expression piece of the postfix-expression has been
1743   // parsed, see if there are any postfix-expression pieces here.
1744   SourceLocation Loc;
1745   auto SavedType = PreferredType;
1746   while (1) {
1747     // Each iteration relies on preferred type for the whole expression.
1748     PreferredType = SavedType;
1749     switch (Tok.getKind()) {
1750     case tok::code_completion:
1751       if (InMessageExpression)
1752         return LHS;
1753 
1754       Actions.CodeCompletePostfixExpression(
1755           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1756       cutOffParsing();
1757       return ExprError();
1758 
1759     case tok::identifier:
1760       // If we see identifier: after an expression, and we're not already in a
1761       // message send, then this is probably a message send with a missing
1762       // opening bracket '['.
1763       if (getLangOpts().ObjC && !InMessageExpression &&
1764           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1765         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1766                                              nullptr, LHS.get());
1767         break;
1768       }
1769       // Fall through; this isn't a message send.
1770       LLVM_FALLTHROUGH;
1771 
1772     default:  // Not a postfix-expression suffix.
1773       return LHS;
1774     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1775       // If we have a array postfix expression that starts on a new line and
1776       // Objective-C is enabled, it is highly likely that the user forgot a
1777       // semicolon after the base expression and that the array postfix-expr is
1778       // actually another message send.  In this case, do some look-ahead to see
1779       // if the contents of the square brackets are obviously not a valid
1780       // expression and recover by pretending there is no suffix.
1781       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1782           isSimpleObjCMessageExpression())
1783         return LHS;
1784 
1785       // Reject array indices starting with a lambda-expression. '[[' is
1786       // reserved for attributes.
1787       if (CheckProhibitedCXX11Attribute()) {
1788         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1789         return ExprError();
1790       }
1791 
1792       BalancedDelimiterTracker T(*this, tok::l_square);
1793       T.consumeOpen();
1794       Loc = T.getOpenLocation();
1795       ExprResult Idx, Length;
1796       SourceLocation ColonLoc;
1797       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1798       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1799         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1800         Idx = ParseBraceInitializer();
1801       } else if (getLangOpts().OpenMP) {
1802         ColonProtectionRAIIObject RAII(*this);
1803         // Parse [: or [ expr or [ expr :
1804         if (!Tok.is(tok::colon)) {
1805           // [ expr
1806           Idx = ParseExpression();
1807         }
1808         if (Tok.is(tok::colon)) {
1809           // Consume ':'
1810           ColonLoc = ConsumeToken();
1811           if (Tok.isNot(tok::r_square))
1812             Length = ParseExpression();
1813         }
1814       } else
1815         Idx = ParseExpression();
1816 
1817       SourceLocation RLoc = Tok.getLocation();
1818 
1819       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1820       Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1821       Length = Actions.CorrectDelayedTyposInExpr(Length);
1822       if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1823           Tok.is(tok::r_square)) {
1824         if (ColonLoc.isValid()) {
1825           LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1826                                                  ColonLoc, Length.get(), RLoc);
1827         } else {
1828           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1829                                                 Idx.get(), RLoc);
1830         }
1831       } else {
1832         LHS = ExprError();
1833         Idx = ExprError();
1834       }
1835 
1836       // Match the ']'.
1837       T.consumeClose();
1838       break;
1839     }
1840 
1841     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1842     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1843                                //   '(' argument-expression-list[opt] ')'
1844       tok::TokenKind OpKind = Tok.getKind();
1845       InMessageExpressionRAIIObject InMessage(*this, false);
1846 
1847       Expr *ExecConfig = nullptr;
1848 
1849       BalancedDelimiterTracker PT(*this, tok::l_paren);
1850 
1851       if (OpKind == tok::lesslessless) {
1852         ExprVector ExecConfigExprs;
1853         CommaLocsTy ExecConfigCommaLocs;
1854         SourceLocation OpenLoc = ConsumeToken();
1855 
1856         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1857           (void)Actions.CorrectDelayedTyposInExpr(LHS);
1858           LHS = ExprError();
1859         }
1860 
1861         SourceLocation CloseLoc;
1862         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1863         } else if (LHS.isInvalid()) {
1864           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1865         } else {
1866           // There was an error closing the brackets
1867           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1868           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1869           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1870           LHS = ExprError();
1871         }
1872 
1873         if (!LHS.isInvalid()) {
1874           if (ExpectAndConsume(tok::l_paren))
1875             LHS = ExprError();
1876           else
1877             Loc = PrevTokLocation;
1878         }
1879 
1880         if (!LHS.isInvalid()) {
1881           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1882                                     OpenLoc,
1883                                     ExecConfigExprs,
1884                                     CloseLoc);
1885           if (ECResult.isInvalid())
1886             LHS = ExprError();
1887           else
1888             ExecConfig = ECResult.get();
1889         }
1890       } else {
1891         PT.consumeOpen();
1892         Loc = PT.getOpenLocation();
1893       }
1894 
1895       ExprVector ArgExprs;
1896       CommaLocsTy CommaLocs;
1897       auto RunSignatureHelp = [&]() -> QualType {
1898         QualType PreferredType = Actions.ProduceCallSignatureHelp(
1899             getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
1900         CalledSignatureHelp = true;
1901         return PreferredType;
1902       };
1903       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1904         if (Tok.isNot(tok::r_paren)) {
1905           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1906                 PreferredType.enterFunctionArgument(Tok.getLocation(),
1907                                                     RunSignatureHelp);
1908               })) {
1909             (void)Actions.CorrectDelayedTyposInExpr(LHS);
1910             // If we got an error when parsing expression list, we don't call
1911             // the CodeCompleteCall handler inside the parser. So call it here
1912             // to make sure we get overload suggestions even when we are in the
1913             // middle of a parameter.
1914             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1915               RunSignatureHelp();
1916             LHS = ExprError();
1917           } else if (LHS.isInvalid()) {
1918             for (auto &E : ArgExprs)
1919               Actions.CorrectDelayedTyposInExpr(E);
1920           }
1921         }
1922       }
1923 
1924       // Match the ')'.
1925       if (LHS.isInvalid()) {
1926         SkipUntil(tok::r_paren, StopAtSemi);
1927       } else if (Tok.isNot(tok::r_paren)) {
1928         bool HadDelayedTypo = false;
1929         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1930           HadDelayedTypo = true;
1931         for (auto &E : ArgExprs)
1932           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1933             HadDelayedTypo = true;
1934         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1935         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1936         // the unmatched l_paren.
1937         if (HadDelayedTypo)
1938           SkipUntil(tok::r_paren, StopAtSemi);
1939         else
1940           PT.consumeClose();
1941         LHS = ExprError();
1942       } else {
1943         assert((ArgExprs.size() == 0 ||
1944                 ArgExprs.size()-1 == CommaLocs.size())&&
1945                "Unexpected number of commas!");
1946         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1947                                     ArgExprs, Tok.getLocation(),
1948                                     ExecConfig);
1949         PT.consumeClose();
1950       }
1951 
1952       break;
1953     }
1954     case tok::arrow:
1955     case tok::period: {
1956       // postfix-expression: p-e '->' template[opt] id-expression
1957       // postfix-expression: p-e '.' template[opt] id-expression
1958       tok::TokenKind OpKind = Tok.getKind();
1959       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1960 
1961       CXXScopeSpec SS;
1962       ParsedType ObjectType;
1963       bool MayBePseudoDestructor = false;
1964       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
1965 
1966       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
1967 
1968       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1969         Expr *Base = OrigLHS;
1970         const Type* BaseType = Base->getType().getTypePtrOrNull();
1971         if (BaseType && Tok.is(tok::l_paren) &&
1972             (BaseType->isFunctionType() ||
1973              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1974           Diag(OpLoc, diag::err_function_is_not_record)
1975               << OpKind << Base->getSourceRange()
1976               << FixItHint::CreateRemoval(OpLoc);
1977           return ParsePostfixExpressionSuffix(Base);
1978         }
1979 
1980         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1981                                                    OpLoc, OpKind, ObjectType,
1982                                                    MayBePseudoDestructor);
1983         if (LHS.isInvalid())
1984           break;
1985 
1986         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1987                                        /*EnteringContext=*/false,
1988                                        &MayBePseudoDestructor);
1989         if (SS.isNotEmpty())
1990           ObjectType = nullptr;
1991       }
1992 
1993       if (Tok.is(tok::code_completion)) {
1994         tok::TokenKind CorrectedOpKind =
1995             OpKind == tok::arrow ? tok::period : tok::arrow;
1996         ExprResult CorrectedLHS(/*Invalid=*/true);
1997         if (getLangOpts().CPlusPlus && OrigLHS) {
1998           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
1999           // hack.
2000           Sema::TentativeAnalysisScope Trap(Actions);
2001           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2002               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2003               MayBePseudoDestructor);
2004         }
2005 
2006         Expr *Base = LHS.get();
2007         Expr *CorrectedBase = CorrectedLHS.get();
2008         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2009           CorrectedBase = Base;
2010 
2011         // Code completion for a member access expression.
2012         Actions.CodeCompleteMemberReferenceExpr(
2013             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2014             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2015             PreferredType.get(Tok.getLocation()));
2016 
2017         cutOffParsing();
2018         return ExprError();
2019       }
2020 
2021       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2022         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2023                                        ObjectType);
2024         break;
2025       }
2026 
2027       // Either the action has told us that this cannot be a
2028       // pseudo-destructor expression (based on the type of base
2029       // expression), or we didn't see a '~' in the right place. We
2030       // can still parse a destructor name here, but in that case it
2031       // names a real destructor.
2032       // Allow explicit constructor calls in Microsoft mode.
2033       // FIXME: Add support for explicit call of template constructor.
2034       SourceLocation TemplateKWLoc;
2035       UnqualifiedId Name;
2036       if (getLangOpts().ObjC && OpKind == tok::period &&
2037           Tok.is(tok::kw_class)) {
2038         // Objective-C++:
2039         //   After a '.' in a member access expression, treat the keyword
2040         //   'class' as if it were an identifier.
2041         //
2042         // This hack allows property access to the 'class' method because it is
2043         // such a common method name. For other C++ keywords that are
2044         // Objective-C method names, one must use the message send syntax.
2045         IdentifierInfo *Id = Tok.getIdentifierInfo();
2046         SourceLocation Loc = ConsumeToken();
2047         Name.setIdentifier(Id, Loc);
2048       } else if (ParseUnqualifiedId(SS,
2049                                     /*EnteringContext=*/false,
2050                                     /*AllowDestructorName=*/true,
2051                                     /*AllowConstructorName=*/
2052                                     getLangOpts().MicrosoftExt &&
2053                                         SS.isNotEmpty(),
2054                                     /*AllowDeductionGuide=*/false,
2055                                     ObjectType, &TemplateKWLoc, Name)) {
2056         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2057         LHS = ExprError();
2058       }
2059 
2060       if (!LHS.isInvalid())
2061         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2062                                             OpKind, SS, TemplateKWLoc, Name,
2063                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2064                                                    : nullptr);
2065       if (!LHS.isInvalid() && Tok.is(tok::less))
2066         checkPotentialAngleBracket(LHS);
2067       break;
2068     }
2069     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2070     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2071       if (!LHS.isInvalid()) {
2072         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2073                                           Tok.getKind(), LHS.get());
2074       }
2075       ConsumeToken();
2076       break;
2077     }
2078   }
2079 }
2080 
2081 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2082 /// vec_step and we are at the start of an expression or a parenthesized
2083 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2084 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2085 ///
2086 /// \verbatim
2087 ///       unary-expression:  [C99 6.5.3]
2088 ///         'sizeof' unary-expression
2089 ///         'sizeof' '(' type-name ')'
2090 /// [GNU]   '__alignof' unary-expression
2091 /// [GNU]   '__alignof' '(' type-name ')'
2092 /// [C11]   '_Alignof' '(' type-name ')'
2093 /// [C++0x] 'alignof' '(' type-id ')'
2094 ///
2095 /// [GNU]   typeof-specifier:
2096 ///           typeof ( expressions )
2097 ///           typeof ( type-name )
2098 /// [GNU/C++] typeof unary-expression
2099 ///
2100 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2101 ///           vec_step ( expressions )
2102 ///           vec_step ( type-name )
2103 /// \endverbatim
2104 ExprResult
2105 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2106                                            bool &isCastExpr,
2107                                            ParsedType &CastTy,
2108                                            SourceRange &CastRange) {
2109 
2110   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
2111                        tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
2112                        tok::kw___builtin_omp_required_simd_align) &&
2113          "Not a typeof/sizeof/alignof/vec_step expression!");
2114 
2115   ExprResult Operand;
2116 
2117   // If the operand doesn't start with an '(', it must be an expression.
2118   if (Tok.isNot(tok::l_paren)) {
2119     // If construct allows a form without parenthesis, user may forget to put
2120     // pathenthesis around type name.
2121     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2122                       tok::kw__Alignof)) {
2123       if (isTypeIdUnambiguously()) {
2124         DeclSpec DS(AttrFactory);
2125         ParseSpecifierQualifierList(DS);
2126         Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
2127         ParseDeclarator(DeclaratorInfo);
2128 
2129         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2130         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2131         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2132           << OpTok.getName()
2133           << FixItHint::CreateInsertion(LParenLoc, "(")
2134           << FixItHint::CreateInsertion(RParenLoc, ")");
2135         isCastExpr = true;
2136         return ExprEmpty();
2137       }
2138     }
2139 
2140     isCastExpr = false;
2141     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
2142       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2143                                           << tok::l_paren;
2144       return ExprError();
2145     }
2146 
2147     Operand = ParseCastExpression(UnaryExprOnly);
2148   } else {
2149     // If it starts with a '(', we know that it is either a parenthesized
2150     // type-name, or it is a unary-expression that starts with a compound
2151     // literal, or starts with a primary-expression that is a parenthesized
2152     // expression.
2153     ParenParseOption ExprType = CastExpr;
2154     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2155 
2156     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2157                                    false, CastTy, RParenLoc);
2158     CastRange = SourceRange(LParenLoc, RParenLoc);
2159 
2160     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2161     // a type.
2162     if (ExprType == CastExpr) {
2163       isCastExpr = true;
2164       return ExprEmpty();
2165     }
2166 
2167     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
2168       // GNU typeof in C requires the expression to be parenthesized. Not so for
2169       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2170       // the start of a unary-expression, but doesn't include any postfix
2171       // pieces. Parse these now if present.
2172       if (!Operand.isInvalid())
2173         Operand = ParsePostfixExpressionSuffix(Operand.get());
2174     }
2175   }
2176 
2177   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2178   isCastExpr = false;
2179   return Operand;
2180 }
2181 
2182 
2183 /// Parse a sizeof or alignof expression.
2184 ///
2185 /// \verbatim
2186 ///       unary-expression:  [C99 6.5.3]
2187 ///         'sizeof' unary-expression
2188 ///         'sizeof' '(' type-name ')'
2189 /// [C++11] 'sizeof' '...' '(' identifier ')'
2190 /// [GNU]   '__alignof' unary-expression
2191 /// [GNU]   '__alignof' '(' type-name ')'
2192 /// [C11]   '_Alignof' '(' type-name ')'
2193 /// [C++11] 'alignof' '(' type-id ')'
2194 /// \endverbatim
2195 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2196   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2197                      tok::kw__Alignof, tok::kw_vec_step,
2198                      tok::kw___builtin_omp_required_simd_align) &&
2199          "Not a sizeof/alignof/vec_step expression!");
2200   Token OpTok = Tok;
2201   ConsumeToken();
2202 
2203   // [C++11] 'sizeof' '...' '(' identifier ')'
2204   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2205     SourceLocation EllipsisLoc = ConsumeToken();
2206     SourceLocation LParenLoc, RParenLoc;
2207     IdentifierInfo *Name = nullptr;
2208     SourceLocation NameLoc;
2209     if (Tok.is(tok::l_paren)) {
2210       BalancedDelimiterTracker T(*this, tok::l_paren);
2211       T.consumeOpen();
2212       LParenLoc = T.getOpenLocation();
2213       if (Tok.is(tok::identifier)) {
2214         Name = Tok.getIdentifierInfo();
2215         NameLoc = ConsumeToken();
2216         T.consumeClose();
2217         RParenLoc = T.getCloseLocation();
2218         if (RParenLoc.isInvalid())
2219           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2220       } else {
2221         Diag(Tok, diag::err_expected_parameter_pack);
2222         SkipUntil(tok::r_paren, StopAtSemi);
2223       }
2224     } else if (Tok.is(tok::identifier)) {
2225       Name = Tok.getIdentifierInfo();
2226       NameLoc = ConsumeToken();
2227       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2228       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2229       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2230         << Name
2231         << FixItHint::CreateInsertion(LParenLoc, "(")
2232         << FixItHint::CreateInsertion(RParenLoc, ")");
2233     } else {
2234       Diag(Tok, diag::err_sizeof_parameter_pack);
2235     }
2236 
2237     if (!Name)
2238       return ExprError();
2239 
2240     EnterExpressionEvaluationContext Unevaluated(
2241         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2242         Sema::ReuseLambdaContextDecl);
2243 
2244     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2245                                                 OpTok.getLocation(),
2246                                                 *Name, NameLoc,
2247                                                 RParenLoc);
2248   }
2249 
2250   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2251     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2252 
2253   EnterExpressionEvaluationContext Unevaluated(
2254       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2255       Sema::ReuseLambdaContextDecl);
2256 
2257   bool isCastExpr;
2258   ParsedType CastTy;
2259   SourceRange CastRange;
2260   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2261                                                           isCastExpr,
2262                                                           CastTy,
2263                                                           CastRange);
2264 
2265   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2266   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2267     ExprKind = UETT_AlignOf;
2268   else if (OpTok.is(tok::kw___alignof))
2269     ExprKind = UETT_PreferredAlignOf;
2270   else if (OpTok.is(tok::kw_vec_step))
2271     ExprKind = UETT_VecStep;
2272   else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2273     ExprKind = UETT_OpenMPRequiredSimdAlign;
2274 
2275   if (isCastExpr)
2276     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2277                                                  ExprKind,
2278                                                  /*IsType=*/true,
2279                                                  CastTy.getAsOpaquePtr(),
2280                                                  CastRange);
2281 
2282   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2283     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2284 
2285   // If we get here, the operand to the sizeof/alignof was an expression.
2286   if (!Operand.isInvalid())
2287     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2288                                                     ExprKind,
2289                                                     /*IsType=*/false,
2290                                                     Operand.get(),
2291                                                     CastRange);
2292   return Operand;
2293 }
2294 
2295 /// ParseBuiltinPrimaryExpression
2296 ///
2297 /// \verbatim
2298 ///       primary-expression: [C99 6.5.1]
2299 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2300 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2301 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2302 ///                                     assign-expr ')'
2303 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2304 /// [GNU]   '__builtin_FILE' '(' ')'
2305 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2306 /// [GNU]   '__builtin_LINE' '(' ')'
2307 /// [CLANG] '__builtin_COLUMN' '(' ')'
2308 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2309 ///
2310 /// [GNU] offsetof-member-designator:
2311 /// [GNU]   identifier
2312 /// [GNU]   offsetof-member-designator '.' identifier
2313 /// [GNU]   offsetof-member-designator '[' expression ']'
2314 /// \endverbatim
2315 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2316   ExprResult Res;
2317   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2318 
2319   tok::TokenKind T = Tok.getKind();
2320   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2321 
2322   // All of these start with an open paren.
2323   if (Tok.isNot(tok::l_paren))
2324     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2325                                                          << tok::l_paren);
2326 
2327   BalancedDelimiterTracker PT(*this, tok::l_paren);
2328   PT.consumeOpen();
2329 
2330   // TODO: Build AST.
2331 
2332   switch (T) {
2333   default: llvm_unreachable("Not a builtin primary expression!");
2334   case tok::kw___builtin_va_arg: {
2335     ExprResult Expr(ParseAssignmentExpression());
2336 
2337     if (ExpectAndConsume(tok::comma)) {
2338       SkipUntil(tok::r_paren, StopAtSemi);
2339       Expr = ExprError();
2340     }
2341 
2342     TypeResult Ty = ParseTypeName();
2343 
2344     if (Tok.isNot(tok::r_paren)) {
2345       Diag(Tok, diag::err_expected) << tok::r_paren;
2346       Expr = ExprError();
2347     }
2348 
2349     if (Expr.isInvalid() || Ty.isInvalid())
2350       Res = ExprError();
2351     else
2352       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2353     break;
2354   }
2355   case tok::kw___builtin_offsetof: {
2356     SourceLocation TypeLoc = Tok.getLocation();
2357     TypeResult Ty = ParseTypeName();
2358     if (Ty.isInvalid()) {
2359       SkipUntil(tok::r_paren, StopAtSemi);
2360       return ExprError();
2361     }
2362 
2363     if (ExpectAndConsume(tok::comma)) {
2364       SkipUntil(tok::r_paren, StopAtSemi);
2365       return ExprError();
2366     }
2367 
2368     // We must have at least one identifier here.
2369     if (Tok.isNot(tok::identifier)) {
2370       Diag(Tok, diag::err_expected) << tok::identifier;
2371       SkipUntil(tok::r_paren, StopAtSemi);
2372       return ExprError();
2373     }
2374 
2375     // Keep track of the various subcomponents we see.
2376     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2377 
2378     Comps.push_back(Sema::OffsetOfComponent());
2379     Comps.back().isBrackets = false;
2380     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2381     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2382 
2383     // FIXME: This loop leaks the index expressions on error.
2384     while (1) {
2385       if (Tok.is(tok::period)) {
2386         // offsetof-member-designator: offsetof-member-designator '.' identifier
2387         Comps.push_back(Sema::OffsetOfComponent());
2388         Comps.back().isBrackets = false;
2389         Comps.back().LocStart = ConsumeToken();
2390 
2391         if (Tok.isNot(tok::identifier)) {
2392           Diag(Tok, diag::err_expected) << tok::identifier;
2393           SkipUntil(tok::r_paren, StopAtSemi);
2394           return ExprError();
2395         }
2396         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2397         Comps.back().LocEnd = ConsumeToken();
2398 
2399       } else if (Tok.is(tok::l_square)) {
2400         if (CheckProhibitedCXX11Attribute())
2401           return ExprError();
2402 
2403         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2404         Comps.push_back(Sema::OffsetOfComponent());
2405         Comps.back().isBrackets = true;
2406         BalancedDelimiterTracker ST(*this, tok::l_square);
2407         ST.consumeOpen();
2408         Comps.back().LocStart = ST.getOpenLocation();
2409         Res = ParseExpression();
2410         if (Res.isInvalid()) {
2411           SkipUntil(tok::r_paren, StopAtSemi);
2412           return Res;
2413         }
2414         Comps.back().U.E = Res.get();
2415 
2416         ST.consumeClose();
2417         Comps.back().LocEnd = ST.getCloseLocation();
2418       } else {
2419         if (Tok.isNot(tok::r_paren)) {
2420           PT.consumeClose();
2421           Res = ExprError();
2422         } else if (Ty.isInvalid()) {
2423           Res = ExprError();
2424         } else {
2425           PT.consumeClose();
2426           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2427                                              Ty.get(), Comps,
2428                                              PT.getCloseLocation());
2429         }
2430         break;
2431       }
2432     }
2433     break;
2434   }
2435   case tok::kw___builtin_choose_expr: {
2436     ExprResult Cond(ParseAssignmentExpression());
2437     if (Cond.isInvalid()) {
2438       SkipUntil(tok::r_paren, StopAtSemi);
2439       return Cond;
2440     }
2441     if (ExpectAndConsume(tok::comma)) {
2442       SkipUntil(tok::r_paren, StopAtSemi);
2443       return ExprError();
2444     }
2445 
2446     ExprResult Expr1(ParseAssignmentExpression());
2447     if (Expr1.isInvalid()) {
2448       SkipUntil(tok::r_paren, StopAtSemi);
2449       return Expr1;
2450     }
2451     if (ExpectAndConsume(tok::comma)) {
2452       SkipUntil(tok::r_paren, StopAtSemi);
2453       return ExprError();
2454     }
2455 
2456     ExprResult Expr2(ParseAssignmentExpression());
2457     if (Expr2.isInvalid()) {
2458       SkipUntil(tok::r_paren, StopAtSemi);
2459       return Expr2;
2460     }
2461     if (Tok.isNot(tok::r_paren)) {
2462       Diag(Tok, diag::err_expected) << tok::r_paren;
2463       return ExprError();
2464     }
2465     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2466                                   Expr2.get(), ConsumeParen());
2467     break;
2468   }
2469   case tok::kw___builtin_astype: {
2470     // The first argument is an expression to be converted, followed by a comma.
2471     ExprResult Expr(ParseAssignmentExpression());
2472     if (Expr.isInvalid()) {
2473       SkipUntil(tok::r_paren, StopAtSemi);
2474       return ExprError();
2475     }
2476 
2477     if (ExpectAndConsume(tok::comma)) {
2478       SkipUntil(tok::r_paren, StopAtSemi);
2479       return ExprError();
2480     }
2481 
2482     // Second argument is the type to bitcast to.
2483     TypeResult DestTy = ParseTypeName();
2484     if (DestTy.isInvalid())
2485       return ExprError();
2486 
2487     // Attempt to consume the r-paren.
2488     if (Tok.isNot(tok::r_paren)) {
2489       Diag(Tok, diag::err_expected) << tok::r_paren;
2490       SkipUntil(tok::r_paren, StopAtSemi);
2491       return ExprError();
2492     }
2493 
2494     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2495                                   ConsumeParen());
2496     break;
2497   }
2498   case tok::kw___builtin_convertvector: {
2499     // The first argument is an expression to be converted, followed by a comma.
2500     ExprResult Expr(ParseAssignmentExpression());
2501     if (Expr.isInvalid()) {
2502       SkipUntil(tok::r_paren, StopAtSemi);
2503       return ExprError();
2504     }
2505 
2506     if (ExpectAndConsume(tok::comma)) {
2507       SkipUntil(tok::r_paren, StopAtSemi);
2508       return ExprError();
2509     }
2510 
2511     // Second argument is the type to bitcast to.
2512     TypeResult DestTy = ParseTypeName();
2513     if (DestTy.isInvalid())
2514       return ExprError();
2515 
2516     // Attempt to consume the r-paren.
2517     if (Tok.isNot(tok::r_paren)) {
2518       Diag(Tok, diag::err_expected) << tok::r_paren;
2519       SkipUntil(tok::r_paren, StopAtSemi);
2520       return ExprError();
2521     }
2522 
2523     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2524                                          ConsumeParen());
2525     break;
2526   }
2527   case tok::kw___builtin_COLUMN:
2528   case tok::kw___builtin_FILE:
2529   case tok::kw___builtin_FUNCTION:
2530   case tok::kw___builtin_LINE: {
2531     // Attempt to consume the r-paren.
2532     if (Tok.isNot(tok::r_paren)) {
2533       Diag(Tok, diag::err_expected) << tok::r_paren;
2534       SkipUntil(tok::r_paren, StopAtSemi);
2535       return ExprError();
2536     }
2537     SourceLocExpr::IdentKind Kind = [&] {
2538       switch (T) {
2539       case tok::kw___builtin_FILE:
2540         return SourceLocExpr::File;
2541       case tok::kw___builtin_FUNCTION:
2542         return SourceLocExpr::Function;
2543       case tok::kw___builtin_LINE:
2544         return SourceLocExpr::Line;
2545       case tok::kw___builtin_COLUMN:
2546         return SourceLocExpr::Column;
2547       default:
2548         llvm_unreachable("invalid keyword");
2549       }
2550     }();
2551     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2552     break;
2553   }
2554   }
2555 
2556   if (Res.isInvalid())
2557     return ExprError();
2558 
2559   // These can be followed by postfix-expr pieces because they are
2560   // primary-expressions.
2561   return ParsePostfixExpressionSuffix(Res.get());
2562 }
2563 
2564 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2565 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2566 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2567 /// not the parsed cast-expression.
2568 ///
2569 /// \verbatim
2570 ///       primary-expression: [C99 6.5.1]
2571 ///         '(' expression ')'
2572 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2573 ///       postfix-expression: [C99 6.5.2]
2574 ///         '(' type-name ')' '{' initializer-list '}'
2575 ///         '(' type-name ')' '{' initializer-list ',' '}'
2576 ///       cast-expression: [C99 6.5.4]
2577 ///         '(' type-name ')' cast-expression
2578 /// [ARC]   bridged-cast-expression
2579 /// [ARC] bridged-cast-expression:
2580 ///         (__bridge type-name) cast-expression
2581 ///         (__bridge_transfer type-name) cast-expression
2582 ///         (__bridge_retained type-name) cast-expression
2583 ///       fold-expression: [C++1z]
2584 ///         '(' cast-expression fold-operator '...' ')'
2585 ///         '(' '...' fold-operator cast-expression ')'
2586 ///         '(' cast-expression fold-operator '...'
2587 ///                 fold-operator cast-expression ')'
2588 /// \endverbatim
2589 ExprResult
2590 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2591                              bool isTypeCast, ParsedType &CastTy,
2592                              SourceLocation &RParenLoc) {
2593   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2594   ColonProtectionRAIIObject ColonProtection(*this, false);
2595   BalancedDelimiterTracker T(*this, tok::l_paren);
2596   if (T.consumeOpen())
2597     return ExprError();
2598   SourceLocation OpenLoc = T.getOpenLocation();
2599 
2600   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2601 
2602   ExprResult Result(true);
2603   bool isAmbiguousTypeId;
2604   CastTy = nullptr;
2605 
2606   if (Tok.is(tok::code_completion)) {
2607     Actions.CodeCompleteExpression(
2608         getCurScope(), PreferredType.get(Tok.getLocation()),
2609         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2610     cutOffParsing();
2611     return ExprError();
2612   }
2613 
2614   // Diagnose use of bridge casts in non-arc mode.
2615   bool BridgeCast = (getLangOpts().ObjC &&
2616                      Tok.isOneOf(tok::kw___bridge,
2617                                  tok::kw___bridge_transfer,
2618                                  tok::kw___bridge_retained,
2619                                  tok::kw___bridge_retain));
2620   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2621     if (!TryConsumeToken(tok::kw___bridge)) {
2622       StringRef BridgeCastName = Tok.getName();
2623       SourceLocation BridgeKeywordLoc = ConsumeToken();
2624       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2625         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2626           << BridgeCastName
2627           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2628     }
2629     BridgeCast = false;
2630   }
2631 
2632   // None of these cases should fall through with an invalid Result
2633   // unless they've already reported an error.
2634   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2635     Diag(Tok, diag::ext_gnu_statement_expr);
2636 
2637     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2638       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2639     } else {
2640       // Find the nearest non-record decl context. Variables declared in a
2641       // statement expression behave as if they were declared in the enclosing
2642       // function, block, or other code construct.
2643       DeclContext *CodeDC = Actions.CurContext;
2644       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2645         CodeDC = CodeDC->getParent();
2646         assert(CodeDC && !CodeDC->isFileContext() &&
2647                "statement expr not in code context");
2648       }
2649       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2650 
2651       Actions.ActOnStartStmtExpr();
2652 
2653       StmtResult Stmt(ParseCompoundStatement(true));
2654       ExprType = CompoundStmt;
2655 
2656       // If the substmt parsed correctly, build the AST node.
2657       if (!Stmt.isInvalid()) {
2658         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2659                                        Tok.getLocation());
2660       } else {
2661         Actions.ActOnStmtExprError();
2662       }
2663     }
2664   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2665     tok::TokenKind tokenKind = Tok.getKind();
2666     SourceLocation BridgeKeywordLoc = ConsumeToken();
2667 
2668     // Parse an Objective-C ARC ownership cast expression.
2669     ObjCBridgeCastKind Kind;
2670     if (tokenKind == tok::kw___bridge)
2671       Kind = OBC_Bridge;
2672     else if (tokenKind == tok::kw___bridge_transfer)
2673       Kind = OBC_BridgeTransfer;
2674     else if (tokenKind == tok::kw___bridge_retained)
2675       Kind = OBC_BridgeRetained;
2676     else {
2677       // As a hopefully temporary workaround, allow __bridge_retain as
2678       // a synonym for __bridge_retained, but only in system headers.
2679       assert(tokenKind == tok::kw___bridge_retain);
2680       Kind = OBC_BridgeRetained;
2681       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2682         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2683           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2684                                           "__bridge_retained");
2685     }
2686 
2687     TypeResult Ty = ParseTypeName();
2688     T.consumeClose();
2689     ColonProtection.restore();
2690     RParenLoc = T.getCloseLocation();
2691 
2692     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2693     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2694 
2695     if (Ty.isInvalid() || SubExpr.isInvalid())
2696       return ExprError();
2697 
2698     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2699                                         BridgeKeywordLoc, Ty.get(),
2700                                         RParenLoc, SubExpr.get());
2701   } else if (ExprType >= CompoundLiteral &&
2702              isTypeIdInParens(isAmbiguousTypeId)) {
2703 
2704     // Otherwise, this is a compound literal expression or cast expression.
2705 
2706     // In C++, if the type-id is ambiguous we disambiguate based on context.
2707     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2708     // in which case we should treat it as type-id.
2709     // if stopIfCastExpr is false, we need to determine the context past the
2710     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2711     if (isAmbiguousTypeId && !stopIfCastExpr) {
2712       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2713                                                         ColonProtection);
2714       RParenLoc = T.getCloseLocation();
2715       return res;
2716     }
2717 
2718     // Parse the type declarator.
2719     DeclSpec DS(AttrFactory);
2720     ParseSpecifierQualifierList(DS);
2721     Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
2722     ParseDeclarator(DeclaratorInfo);
2723 
2724     // If our type is followed by an identifier and either ':' or ']', then
2725     // this is probably an Objective-C message send where the leading '[' is
2726     // missing. Recover as if that were the case.
2727     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2728         !InMessageExpression && getLangOpts().ObjC &&
2729         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2730       TypeResult Ty;
2731       {
2732         InMessageExpressionRAIIObject InMessage(*this, false);
2733         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2734       }
2735       Result = ParseObjCMessageExpressionBody(SourceLocation(),
2736                                               SourceLocation(),
2737                                               Ty.get(), nullptr);
2738     } else {
2739       // Match the ')'.
2740       T.consumeClose();
2741       ColonProtection.restore();
2742       RParenLoc = T.getCloseLocation();
2743       if (Tok.is(tok::l_brace)) {
2744         ExprType = CompoundLiteral;
2745         TypeResult Ty;
2746         {
2747           InMessageExpressionRAIIObject InMessage(*this, false);
2748           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2749         }
2750         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2751       }
2752 
2753       if (Tok.is(tok::l_paren)) {
2754         // This could be OpenCL vector Literals
2755         if (getLangOpts().OpenCL)
2756         {
2757           TypeResult Ty;
2758           {
2759             InMessageExpressionRAIIObject InMessage(*this, false);
2760             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2761           }
2762           if(Ty.isInvalid())
2763           {
2764              return ExprError();
2765           }
2766           QualType QT = Ty.get().get().getCanonicalType();
2767           if (QT->isVectorType())
2768           {
2769             // We parsed '(' vector-type-name ')' followed by '('
2770 
2771             // Parse the cast-expression that follows it next.
2772             // isVectorLiteral = true will make sure we don't parse any
2773             // Postfix expression yet
2774             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
2775                                          /*isAddressOfOperand=*/false,
2776                                          /*isTypeCast=*/IsTypeCast,
2777                                          /*isVectorLiteral=*/true);
2778 
2779             if (!Result.isInvalid()) {
2780               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2781                                              DeclaratorInfo, CastTy,
2782                                              RParenLoc, Result.get());
2783             }
2784 
2785             // After we performed the cast we can check for postfix-expr pieces.
2786             if (!Result.isInvalid()) {
2787               Result = ParsePostfixExpressionSuffix(Result);
2788             }
2789 
2790             return Result;
2791           }
2792         }
2793       }
2794 
2795       if (ExprType == CastExpr) {
2796         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2797 
2798         if (DeclaratorInfo.isInvalidType())
2799           return ExprError();
2800 
2801         // Note that this doesn't parse the subsequent cast-expression, it just
2802         // returns the parsed type to the callee.
2803         if (stopIfCastExpr) {
2804           TypeResult Ty;
2805           {
2806             InMessageExpressionRAIIObject InMessage(*this, false);
2807             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2808           }
2809           CastTy = Ty.get();
2810           return ExprResult();
2811         }
2812 
2813         // Reject the cast of super idiom in ObjC.
2814         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
2815             Tok.getIdentifierInfo() == Ident_super &&
2816             getCurScope()->isInObjcMethodScope() &&
2817             GetLookAheadToken(1).isNot(tok::period)) {
2818           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2819             << SourceRange(OpenLoc, RParenLoc);
2820           return ExprError();
2821         }
2822 
2823         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
2824         // Parse the cast-expression that follows it next.
2825         // TODO: For cast expression with CastTy.
2826         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
2827                                      /*isAddressOfOperand=*/false,
2828                                      /*isTypeCast=*/IsTypeCast);
2829         if (!Result.isInvalid()) {
2830           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2831                                          DeclaratorInfo, CastTy,
2832                                          RParenLoc, Result.get());
2833         }
2834         return Result;
2835       }
2836 
2837       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2838       return ExprError();
2839     }
2840   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
2841              isFoldOperator(NextToken().getKind())) {
2842     ExprType = FoldExpr;
2843     return ParseFoldExpression(ExprResult(), T);
2844   } else if (isTypeCast) {
2845     // Parse the expression-list.
2846     InMessageExpressionRAIIObject InMessage(*this, false);
2847 
2848     ExprVector ArgExprs;
2849     CommaLocsTy CommaLocs;
2850 
2851     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2852       // FIXME: If we ever support comma expressions as operands to
2853       // fold-expressions, we'll need to allow multiple ArgExprs here.
2854       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
2855           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
2856         ExprType = FoldExpr;
2857         return ParseFoldExpression(ArgExprs[0], T);
2858       }
2859 
2860       ExprType = SimpleExpr;
2861       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2862                                           ArgExprs);
2863     }
2864   } else {
2865     InMessageExpressionRAIIObject InMessage(*this, false);
2866 
2867     Result = ParseExpression(MaybeTypeCast);
2868     if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2869       // Correct typos in non-C++ code earlier so that implicit-cast-like
2870       // expressions are parsed correctly.
2871       Result = Actions.CorrectDelayedTyposInExpr(Result);
2872     }
2873 
2874     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
2875         NextToken().is(tok::ellipsis)) {
2876       ExprType = FoldExpr;
2877       return ParseFoldExpression(Result, T);
2878     }
2879     ExprType = SimpleExpr;
2880 
2881     // Don't build a paren expression unless we actually match a ')'.
2882     if (!Result.isInvalid() && Tok.is(tok::r_paren))
2883       Result =
2884           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2885   }
2886 
2887   // Match the ')'.
2888   if (Result.isInvalid()) {
2889     SkipUntil(tok::r_paren, StopAtSemi);
2890     return ExprError();
2891   }
2892 
2893   T.consumeClose();
2894   RParenLoc = T.getCloseLocation();
2895   return Result;
2896 }
2897 
2898 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2899 /// and we are at the left brace.
2900 ///
2901 /// \verbatim
2902 ///       postfix-expression: [C99 6.5.2]
2903 ///         '(' type-name ')' '{' initializer-list '}'
2904 ///         '(' type-name ')' '{' initializer-list ',' '}'
2905 /// \endverbatim
2906 ExprResult
2907 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2908                                        SourceLocation LParenLoc,
2909                                        SourceLocation RParenLoc) {
2910   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2911   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2912     Diag(LParenLoc, diag::ext_c99_compound_literal);
2913   ExprResult Result = ParseInitializer();
2914   if (!Result.isInvalid() && Ty)
2915     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2916   return Result;
2917 }
2918 
2919 /// ParseStringLiteralExpression - This handles the various token types that
2920 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2921 /// translation phase #6].
2922 ///
2923 /// \verbatim
2924 ///       primary-expression: [C99 6.5.1]
2925 ///         string-literal
2926 /// \verbatim
2927 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2928   assert(isTokenStringLiteral() && "Not a string literal!");
2929 
2930   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2931   // considered to be strings for concatenation purposes.
2932   SmallVector<Token, 4> StringToks;
2933 
2934   do {
2935     StringToks.push_back(Tok);
2936     ConsumeStringToken();
2937   } while (isTokenStringLiteral());
2938 
2939   // Pass the set of string tokens, ready for concatenation, to the actions.
2940   return Actions.ActOnStringLiteral(StringToks,
2941                                     AllowUserDefinedLiteral ? getCurScope()
2942                                                             : nullptr);
2943 }
2944 
2945 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2946 /// [C11 6.5.1.1].
2947 ///
2948 /// \verbatim
2949 ///    generic-selection:
2950 ///           _Generic ( assignment-expression , generic-assoc-list )
2951 ///    generic-assoc-list:
2952 ///           generic-association
2953 ///           generic-assoc-list , generic-association
2954 ///    generic-association:
2955 ///           type-name : assignment-expression
2956 ///           default : assignment-expression
2957 /// \endverbatim
2958 ExprResult Parser::ParseGenericSelectionExpression() {
2959   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2960   if (!getLangOpts().C11)
2961     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
2962 
2963   SourceLocation KeyLoc = ConsumeToken();
2964   BalancedDelimiterTracker T(*this, tok::l_paren);
2965   if (T.expectAndConsume())
2966     return ExprError();
2967 
2968   ExprResult ControllingExpr;
2969   {
2970     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2971     // not evaluated."
2972     EnterExpressionEvaluationContext Unevaluated(
2973         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
2974     ControllingExpr =
2975         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2976     if (ControllingExpr.isInvalid()) {
2977       SkipUntil(tok::r_paren, StopAtSemi);
2978       return ExprError();
2979     }
2980   }
2981 
2982   if (ExpectAndConsume(tok::comma)) {
2983     SkipUntil(tok::r_paren, StopAtSemi);
2984     return ExprError();
2985   }
2986 
2987   SourceLocation DefaultLoc;
2988   TypeVector Types;
2989   ExprVector Exprs;
2990   do {
2991     ParsedType Ty;
2992     if (Tok.is(tok::kw_default)) {
2993       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2994       // generic association."
2995       if (!DefaultLoc.isInvalid()) {
2996         Diag(Tok, diag::err_duplicate_default_assoc);
2997         Diag(DefaultLoc, diag::note_previous_default_assoc);
2998         SkipUntil(tok::r_paren, StopAtSemi);
2999         return ExprError();
3000       }
3001       DefaultLoc = ConsumeToken();
3002       Ty = nullptr;
3003     } else {
3004       ColonProtectionRAIIObject X(*this);
3005       TypeResult TR = ParseTypeName();
3006       if (TR.isInvalid()) {
3007         SkipUntil(tok::r_paren, StopAtSemi);
3008         return ExprError();
3009       }
3010       Ty = TR.get();
3011     }
3012     Types.push_back(Ty);
3013 
3014     if (ExpectAndConsume(tok::colon)) {
3015       SkipUntil(tok::r_paren, StopAtSemi);
3016       return ExprError();
3017     }
3018 
3019     // FIXME: These expressions should be parsed in a potentially potentially
3020     // evaluated context.
3021     ExprResult ER(
3022         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3023     if (ER.isInvalid()) {
3024       SkipUntil(tok::r_paren, StopAtSemi);
3025       return ExprError();
3026     }
3027     Exprs.push_back(ER.get());
3028   } while (TryConsumeToken(tok::comma));
3029 
3030   T.consumeClose();
3031   if (T.getCloseLocation().isInvalid())
3032     return ExprError();
3033 
3034   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3035                                            T.getCloseLocation(),
3036                                            ControllingExpr.get(),
3037                                            Types, Exprs);
3038 }
3039 
3040 /// Parse A C++1z fold-expression after the opening paren and optional
3041 /// left-hand-side expression.
3042 ///
3043 /// \verbatim
3044 ///   fold-expression:
3045 ///       ( cast-expression fold-operator ... )
3046 ///       ( ... fold-operator cast-expression )
3047 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
3048 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3049                                        BalancedDelimiterTracker &T) {
3050   if (LHS.isInvalid()) {
3051     T.skipToEnd();
3052     return true;
3053   }
3054 
3055   tok::TokenKind Kind = tok::unknown;
3056   SourceLocation FirstOpLoc;
3057   if (LHS.isUsable()) {
3058     Kind = Tok.getKind();
3059     assert(isFoldOperator(Kind) && "missing fold-operator");
3060     FirstOpLoc = ConsumeToken();
3061   }
3062 
3063   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3064   SourceLocation EllipsisLoc = ConsumeToken();
3065 
3066   ExprResult RHS;
3067   if (Tok.isNot(tok::r_paren)) {
3068     if (!isFoldOperator(Tok.getKind()))
3069       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3070 
3071     if (Kind != tok::unknown && Tok.getKind() != Kind)
3072       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3073         << SourceRange(FirstOpLoc);
3074     Kind = Tok.getKind();
3075     ConsumeToken();
3076 
3077     RHS = ParseExpression();
3078     if (RHS.isInvalid()) {
3079       T.skipToEnd();
3080       return true;
3081     }
3082   }
3083 
3084   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3085                         ? diag::warn_cxx14_compat_fold_expression
3086                         : diag::ext_fold_expression);
3087 
3088   T.consumeClose();
3089   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
3090                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
3091 }
3092 
3093 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3094 ///
3095 /// \verbatim
3096 ///       argument-expression-list:
3097 ///         assignment-expression
3098 ///         argument-expression-list , assignment-expression
3099 ///
3100 /// [C++] expression-list:
3101 /// [C++]   assignment-expression
3102 /// [C++]   expression-list , assignment-expression
3103 ///
3104 /// [C++0x] expression-list:
3105 /// [C++0x]   initializer-list
3106 ///
3107 /// [C++0x] initializer-list
3108 /// [C++0x]   initializer-clause ...[opt]
3109 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3110 ///
3111 /// [C++0x] initializer-clause:
3112 /// [C++0x]   assignment-expression
3113 /// [C++0x]   braced-init-list
3114 /// \endverbatim
3115 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3116                                  SmallVectorImpl<SourceLocation> &CommaLocs,
3117                                  llvm::function_ref<void()> ExpressionStarts) {
3118   bool SawError = false;
3119   while (1) {
3120     if (ExpressionStarts)
3121       ExpressionStarts();
3122 
3123     ExprResult Expr;
3124     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3125       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3126       Expr = ParseBraceInitializer();
3127     } else
3128       Expr = ParseAssignmentExpression();
3129 
3130     if (Tok.is(tok::ellipsis))
3131       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3132     if (Expr.isInvalid()) {
3133       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3134       SawError = true;
3135     } else {
3136       Exprs.push_back(Expr.get());
3137     }
3138 
3139     if (Tok.isNot(tok::comma))
3140       break;
3141     // Move to the next argument, remember where the comma was.
3142     Token Comma = Tok;
3143     CommaLocs.push_back(ConsumeToken());
3144 
3145     checkPotentialAngleBracketDelimiter(Comma);
3146   }
3147   if (SawError) {
3148     // Ensure typos get diagnosed when errors were encountered while parsing the
3149     // expression list.
3150     for (auto &E : Exprs) {
3151       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3152       if (Expr.isUsable()) E = Expr.get();
3153     }
3154   }
3155   return SawError;
3156 }
3157 
3158 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3159 /// used for misc language extensions.
3160 ///
3161 /// \verbatim
3162 ///       simple-expression-list:
3163 ///         assignment-expression
3164 ///         simple-expression-list , assignment-expression
3165 /// \endverbatim
3166 bool
3167 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
3168                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
3169   while (1) {
3170     ExprResult Expr = ParseAssignmentExpression();
3171     if (Expr.isInvalid())
3172       return true;
3173 
3174     Exprs.push_back(Expr.get());
3175 
3176     if (Tok.isNot(tok::comma))
3177       return false;
3178 
3179     // Move to the next argument, remember where the comma was.
3180     Token Comma = Tok;
3181     CommaLocs.push_back(ConsumeToken());
3182 
3183     checkPotentialAngleBracketDelimiter(Comma);
3184   }
3185 }
3186 
3187 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3188 ///
3189 /// \verbatim
3190 /// [clang] block-id:
3191 /// [clang]   specifier-qualifier-list block-declarator
3192 /// \endverbatim
3193 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3194   if (Tok.is(tok::code_completion)) {
3195     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3196     return cutOffParsing();
3197   }
3198 
3199   // Parse the specifier-qualifier-list piece.
3200   DeclSpec DS(AttrFactory);
3201   ParseSpecifierQualifierList(DS);
3202 
3203   // Parse the block-declarator.
3204   Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext);
3205   DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition);
3206   ParseDeclarator(DeclaratorInfo);
3207 
3208   MaybeParseGNUAttributes(DeclaratorInfo);
3209 
3210   // Inform sema that we are starting a block.
3211   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3212 }
3213 
3214 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3215 /// like ^(int x){ return x+1; }
3216 ///
3217 /// \verbatim
3218 ///         block-literal:
3219 /// [clang]   '^' block-args[opt] compound-statement
3220 /// [clang]   '^' block-id compound-statement
3221 /// [clang] block-args:
3222 /// [clang]   '(' parameter-list ')'
3223 /// \endverbatim
3224 ExprResult Parser::ParseBlockLiteralExpression() {
3225   assert(Tok.is(tok::caret) && "block literal starts with ^");
3226   SourceLocation CaretLoc = ConsumeToken();
3227 
3228   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3229                                 "block literal parsing");
3230 
3231   // Enter a scope to hold everything within the block.  This includes the
3232   // argument decls, decls within the compound expression, etc.  This also
3233   // allows determining whether a variable reference inside the block is
3234   // within or outside of the block.
3235   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3236                                   Scope::CompoundStmtScope | Scope::DeclScope);
3237 
3238   // Inform sema that we are starting a block.
3239   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3240 
3241   // Parse the return type if present.
3242   DeclSpec DS(AttrFactory);
3243   Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext);
3244   ParamInfo.setFunctionDefinitionKind(FDK_Definition);
3245   // FIXME: Since the return type isn't actually parsed, it can't be used to
3246   // fill ParamInfo with an initial valid range, so do it manually.
3247   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3248 
3249   // If this block has arguments, parse them.  There is no ambiguity here with
3250   // the expression case, because the expression case requires a parameter list.
3251   if (Tok.is(tok::l_paren)) {
3252     ParseParenDeclarator(ParamInfo);
3253     // Parse the pieces after the identifier as if we had "int(...)".
3254     // SetIdentifier sets the source range end, but in this case we're past
3255     // that location.
3256     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3257     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3258     ParamInfo.SetRangeEnd(Tmp);
3259     if (ParamInfo.isInvalidType()) {
3260       // If there was an error parsing the arguments, they may have
3261       // tried to use ^(x+y) which requires an argument list.  Just
3262       // skip the whole block literal.
3263       Actions.ActOnBlockError(CaretLoc, getCurScope());
3264       return ExprError();
3265     }
3266 
3267     MaybeParseGNUAttributes(ParamInfo);
3268 
3269     // Inform sema that we are starting a block.
3270     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3271   } else if (!Tok.is(tok::l_brace)) {
3272     ParseBlockId(CaretLoc);
3273   } else {
3274     // Otherwise, pretend we saw (void).
3275     SourceLocation NoLoc;
3276     ParamInfo.AddTypeInfo(
3277         DeclaratorChunk::getFunction(/*HasProto=*/true,
3278                                      /*IsAmbiguous=*/false,
3279                                      /*RParenLoc=*/NoLoc,
3280                                      /*ArgInfo=*/nullptr,
3281                                      /*NumParams=*/0,
3282                                      /*EllipsisLoc=*/NoLoc,
3283                                      /*RParenLoc=*/NoLoc,
3284                                      /*RefQualifierIsLvalueRef=*/true,
3285                                      /*RefQualifierLoc=*/NoLoc,
3286                                      /*MutableLoc=*/NoLoc, EST_None,
3287                                      /*ESpecRange=*/SourceRange(),
3288                                      /*Exceptions=*/nullptr,
3289                                      /*ExceptionRanges=*/nullptr,
3290                                      /*NumExceptions=*/0,
3291                                      /*NoexceptExpr=*/nullptr,
3292                                      /*ExceptionSpecTokens=*/nullptr,
3293                                      /*DeclsInPrototype=*/None, CaretLoc,
3294                                      CaretLoc, ParamInfo),
3295         CaretLoc);
3296 
3297     MaybeParseGNUAttributes(ParamInfo);
3298 
3299     // Inform sema that we are starting a block.
3300     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3301   }
3302 
3303 
3304   ExprResult Result(true);
3305   if (!Tok.is(tok::l_brace)) {
3306     // Saw something like: ^expr
3307     Diag(Tok, diag::err_expected_expression);
3308     Actions.ActOnBlockError(CaretLoc, getCurScope());
3309     return ExprError();
3310   }
3311 
3312   StmtResult Stmt(ParseCompoundStatementBody());
3313   BlockScope.Exit();
3314   if (!Stmt.isInvalid())
3315     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3316   else
3317     Actions.ActOnBlockError(CaretLoc, getCurScope());
3318   return Result;
3319 }
3320 
3321 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3322 ///
3323 ///         '__objc_yes'
3324 ///         '__objc_no'
3325 ExprResult Parser::ParseObjCBoolLiteral() {
3326   tok::TokenKind Kind = Tok.getKind();
3327   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3328 }
3329 
3330 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3331 /// true if invalid.
3332 static bool CheckAvailabilitySpecList(Parser &P,
3333                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3334   llvm::SmallSet<StringRef, 4> Platforms;
3335   bool HasOtherPlatformSpec = false;
3336   bool Valid = true;
3337   for (const auto &Spec : AvailSpecs) {
3338     if (Spec.isOtherPlatformSpec()) {
3339       if (HasOtherPlatformSpec) {
3340         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3341         Valid = false;
3342       }
3343 
3344       HasOtherPlatformSpec = true;
3345       continue;
3346     }
3347 
3348     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3349     if (!Inserted) {
3350       // Rule out multiple version specs referring to the same platform.
3351       // For example, we emit an error for:
3352       // @available(macos 10.10, macos 10.11, *)
3353       StringRef Platform = Spec.getPlatform();
3354       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3355           << Spec.getEndLoc() << Platform;
3356       Valid = false;
3357     }
3358   }
3359 
3360   if (!HasOtherPlatformSpec) {
3361     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3362     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3363         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3364     return true;
3365   }
3366 
3367   return !Valid;
3368 }
3369 
3370 /// Parse availability query specification.
3371 ///
3372 ///  availability-spec:
3373 ///     '*'
3374 ///     identifier version-tuple
3375 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3376   if (Tok.is(tok::star)) {
3377     return AvailabilitySpec(ConsumeToken());
3378   } else {
3379     // Parse the platform name.
3380     if (Tok.is(tok::code_completion)) {
3381       Actions.CodeCompleteAvailabilityPlatformName();
3382       cutOffParsing();
3383       return None;
3384     }
3385     if (Tok.isNot(tok::identifier)) {
3386       Diag(Tok, diag::err_avail_query_expected_platform_name);
3387       return None;
3388     }
3389 
3390     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3391     SourceRange VersionRange;
3392     VersionTuple Version = ParseVersionTuple(VersionRange);
3393 
3394     if (Version.empty())
3395       return None;
3396 
3397     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3398     StringRef Platform =
3399         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3400 
3401     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3402       Diag(PlatformIdentifier->Loc,
3403            diag::err_avail_query_unrecognized_platform_name)
3404           << GivenPlatform;
3405       return None;
3406     }
3407 
3408     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3409                             VersionRange.getEnd());
3410   }
3411 }
3412 
3413 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3414   assert(Tok.is(tok::kw___builtin_available) ||
3415          Tok.isObjCAtKeyword(tok::objc_available));
3416 
3417   // Eat the available or __builtin_available.
3418   ConsumeToken();
3419 
3420   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3421   if (Parens.expectAndConsume())
3422     return ExprError();
3423 
3424   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3425   bool HasError = false;
3426   while (true) {
3427     Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3428     if (!Spec)
3429       HasError = true;
3430     else
3431       AvailSpecs.push_back(*Spec);
3432 
3433     if (!TryConsumeToken(tok::comma))
3434       break;
3435   }
3436 
3437   if (HasError) {
3438     SkipUntil(tok::r_paren, StopAtSemi);
3439     return ExprError();
3440   }
3441 
3442   CheckAvailabilitySpecList(*this, AvailSpecs);
3443 
3444   if (Parens.consumeClose())
3445     return ExprError();
3446 
3447   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3448                                                 Parens.getCloseLocation());
3449 }
3450