xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExpr.cpp (revision 85868e8a1daeaae7a0e48effb2ea2310ae3b02c6)
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/Basic/PrettyStackTrace.h"
26 #include "clang/Parse/RAIIObjectsForParser.h"
27 #include "clang/Sema/DeclSpec.h"
28 #include "clang/Sema/ParsedTemplate.h"
29 #include "clang/Sema/Scope.h"
30 #include "clang/Sema/TypoCorrection.h"
31 #include "llvm/ADT/SmallVector.h"
32 using namespace clang;
33 
34 /// Simple precedence-based parser for binary/ternary operators.
35 ///
36 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
37 /// production.  C99 specifies that the LHS of an assignment operator should be
38 /// parsed as a unary-expression, but consistency dictates that it be a
39 /// conditional-expession.  In practice, the important thing here is that the
40 /// LHS of an assignment has to be an l-value, which productions between
41 /// unary-expression and conditional-expression don't produce.  Because we want
42 /// consistency, we parse the LHS as a conditional-expression, then check for
43 /// l-value-ness in semantic analysis stages.
44 ///
45 /// \verbatim
46 ///       pm-expression: [C++ 5.5]
47 ///         cast-expression
48 ///         pm-expression '.*' cast-expression
49 ///         pm-expression '->*' cast-expression
50 ///
51 ///       multiplicative-expression: [C99 6.5.5]
52 ///     Note: in C++, apply pm-expression instead of cast-expression
53 ///         cast-expression
54 ///         multiplicative-expression '*' cast-expression
55 ///         multiplicative-expression '/' cast-expression
56 ///         multiplicative-expression '%' cast-expression
57 ///
58 ///       additive-expression: [C99 6.5.6]
59 ///         multiplicative-expression
60 ///         additive-expression '+' multiplicative-expression
61 ///         additive-expression '-' multiplicative-expression
62 ///
63 ///       shift-expression: [C99 6.5.7]
64 ///         additive-expression
65 ///         shift-expression '<<' additive-expression
66 ///         shift-expression '>>' additive-expression
67 ///
68 ///       compare-expression: [C++20 expr.spaceship]
69 ///         shift-expression
70 ///         compare-expression '<=>' shift-expression
71 ///
72 ///       relational-expression: [C99 6.5.8]
73 ///         compare-expression
74 ///         relational-expression '<' compare-expression
75 ///         relational-expression '>' compare-expression
76 ///         relational-expression '<=' compare-expression
77 ///         relational-expression '>=' compare-expression
78 ///
79 ///       equality-expression: [C99 6.5.9]
80 ///         relational-expression
81 ///         equality-expression '==' relational-expression
82 ///         equality-expression '!=' relational-expression
83 ///
84 ///       AND-expression: [C99 6.5.10]
85 ///         equality-expression
86 ///         AND-expression '&' equality-expression
87 ///
88 ///       exclusive-OR-expression: [C99 6.5.11]
89 ///         AND-expression
90 ///         exclusive-OR-expression '^' AND-expression
91 ///
92 ///       inclusive-OR-expression: [C99 6.5.12]
93 ///         exclusive-OR-expression
94 ///         inclusive-OR-expression '|' exclusive-OR-expression
95 ///
96 ///       logical-AND-expression: [C99 6.5.13]
97 ///         inclusive-OR-expression
98 ///         logical-AND-expression '&&' inclusive-OR-expression
99 ///
100 ///       logical-OR-expression: [C99 6.5.14]
101 ///         logical-AND-expression
102 ///         logical-OR-expression '||' logical-AND-expression
103 ///
104 ///       conditional-expression: [C99 6.5.15]
105 ///         logical-OR-expression
106 ///         logical-OR-expression '?' expression ':' conditional-expression
107 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
108 /// [C++] the third operand is an assignment-expression
109 ///
110 ///       assignment-expression: [C99 6.5.16]
111 ///         conditional-expression
112 ///         unary-expression assignment-operator assignment-expression
113 /// [C++]   throw-expression [C++ 15]
114 ///
115 ///       assignment-operator: one of
116 ///         = *= /= %= += -= <<= >>= &= ^= |=
117 ///
118 ///       expression: [C99 6.5.17]
119 ///         assignment-expression ...[opt]
120 ///         expression ',' assignment-expression ...[opt]
121 /// \endverbatim
122 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
123   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
124   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
125 }
126 
127 /// This routine is called when the '@' is seen and consumed.
128 /// Current token is an Identifier and is not a 'try'. This
129 /// routine is necessary to disambiguate \@try-statement from,
130 /// for example, \@encode-expression.
131 ///
132 ExprResult
133 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
134   ExprResult LHS(ParseObjCAtExpression(AtLoc));
135   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
136 }
137 
138 /// This routine is called when a leading '__extension__' is seen and
139 /// consumed.  This is necessary because the token gets consumed in the
140 /// process of disambiguating between an expression and a declaration.
141 ExprResult
142 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
143   ExprResult LHS(true);
144   {
145     // Silence extension warnings in the sub-expression
146     ExtensionRAIIObject O(Diags);
147 
148     LHS = ParseCastExpression(false);
149   }
150 
151   if (!LHS.isInvalid())
152     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
153                                LHS.get());
154 
155   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
156 }
157 
158 /// Parse an expr that doesn't include (top-level) commas.
159 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
160   if (Tok.is(tok::code_completion)) {
161     Actions.CodeCompleteExpression(getCurScope(),
162                                    PreferredType.get(Tok.getLocation()));
163     cutOffParsing();
164     return ExprError();
165   }
166 
167   if (Tok.is(tok::kw_throw))
168     return ParseThrowExpression();
169   if (Tok.is(tok::kw_co_yield))
170     return ParseCoyieldExpression();
171 
172   ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false,
173                                        /*isAddressOfOperand=*/false,
174                                        isTypeCast);
175   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
176 }
177 
178 /// Parse an assignment expression where part of an Objective-C message
179 /// send has already been parsed.
180 ///
181 /// In this case \p LBracLoc indicates the location of the '[' of the message
182 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
183 /// the receiver of the message.
184 ///
185 /// Since this handles full assignment-expression's, it handles postfix
186 /// expressions and other binary operators for these expressions as well.
187 ExprResult
188 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
189                                                     SourceLocation SuperLoc,
190                                                     ParsedType ReceiverType,
191                                                     Expr *ReceiverExpr) {
192   ExprResult R
193     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
194                                      ReceiverType, ReceiverExpr);
195   R = ParsePostfixExpressionSuffix(R);
196   return ParseRHSOfBinaryExpression(R, prec::Assignment);
197 }
198 
199 ExprResult
200 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
201   assert(Actions.ExprEvalContexts.back().Context ==
202              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
203          "Call this function only if your ExpressionEvaluationContext is "
204          "already ConstantEvaluated");
205   ExprResult LHS(ParseCastExpression(false, false, isTypeCast));
206   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
207   return Actions.ActOnConstantExpression(Res);
208 }
209 
210 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) {
211   // C++03 [basic.def.odr]p2:
212   //   An expression is potentially evaluated unless it appears where an
213   //   integral constant expression is required (see 5.19) [...].
214   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
215   EnterExpressionEvaluationContext ConstantEvaluated(
216       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
217   return ParseConstantExpressionInExprEvalContext(isTypeCast);
218 }
219 
220 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
221   EnterExpressionEvaluationContext ConstantEvaluated(
222       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
223   ExprResult LHS(ParseCastExpression(false, false, NotTypeCast));
224   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
225   return Actions.ActOnCaseExpr(CaseLoc, Res);
226 }
227 
228 /// Parse a constraint-expression.
229 ///
230 /// \verbatim
231 ///       constraint-expression: C++2a[temp.constr.decl]p1
232 ///         logical-or-expression
233 /// \endverbatim
234 ExprResult Parser::ParseConstraintExpression() {
235   EnterExpressionEvaluationContext ConstantEvaluated(
236       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
237   ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false));
238   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
239   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get()))
240     return ExprError();
241   return Res;
242 }
243 
244 bool Parser::isNotExpressionStart() {
245   tok::TokenKind K = Tok.getKind();
246   if (K == tok::l_brace || K == tok::r_brace  ||
247       K == tok::kw_for  || K == tok::kw_while ||
248       K == tok::kw_if   || K == tok::kw_else  ||
249       K == tok::kw_goto || K == tok::kw_try)
250     return true;
251   // If this is a decl-specifier, we can't be at the start of an expression.
252   return isKnownToBeDeclarationSpecifier();
253 }
254 
255 bool Parser::isFoldOperator(prec::Level Level) const {
256   return Level > prec::Unknown && Level != prec::Conditional &&
257          Level != prec::Spaceship;
258 }
259 
260 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
261   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
262 }
263 
264 /// Parse a binary expression that starts with \p LHS and has a
265 /// precedence of at least \p MinPrec.
266 ExprResult
267 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
268   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
269                                                GreaterThanIsOperator,
270                                                getLangOpts().CPlusPlus11);
271   SourceLocation ColonLoc;
272 
273   auto SavedType = PreferredType;
274   while (1) {
275     // Every iteration may rely on a preferred type for the whole expression.
276     PreferredType = SavedType;
277     // If this token has a lower precedence than we are allowed to parse (e.g.
278     // because we are called recursively, or because the token is not a binop),
279     // then we are done!
280     if (NextTokPrec < MinPrec)
281       return LHS;
282 
283     // Consume the operator, saving the operator token for error reporting.
284     Token OpToken = Tok;
285     ConsumeToken();
286 
287     if (OpToken.is(tok::caretcaret)) {
288       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
289     }
290 
291     // If we're potentially in a template-id, we may now be able to determine
292     // whether we're actually in one or not.
293     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
294                         tok::greatergreatergreater) &&
295         checkPotentialAngleBracketDelimiter(OpToken))
296       return ExprError();
297 
298     // Bail out when encountering a comma followed by a token which can't
299     // possibly be the start of an expression. For instance:
300     //   int f() { return 1, }
301     // We can't do this before consuming the comma, because
302     // isNotExpressionStart() looks at the token stream.
303     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
304       PP.EnterToken(Tok, /*IsReinject*/true);
305       Tok = OpToken;
306       return LHS;
307     }
308 
309     // If the next token is an ellipsis, then this is a fold-expression. Leave
310     // it alone so we can handle it in the paren expression.
311     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
312       // FIXME: We can't check this via lookahead before we consume the token
313       // because that tickles a lexer bug.
314       PP.EnterToken(Tok, /*IsReinject*/true);
315       Tok = OpToken;
316       return LHS;
317     }
318 
319     // In Objective-C++, alternative operator tokens can be used as keyword args
320     // in message expressions. Unconsume the token so that it can reinterpreted
321     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
322     //   [foo meth:0 and:0];
323     //   [foo not_eq];
324     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
325         Tok.isOneOf(tok::colon, tok::r_square) &&
326         OpToken.getIdentifierInfo() != nullptr) {
327       PP.EnterToken(Tok, /*IsReinject*/true);
328       Tok = OpToken;
329       return LHS;
330     }
331 
332     // Special case handling for the ternary operator.
333     ExprResult TernaryMiddle(true);
334     if (NextTokPrec == prec::Conditional) {
335       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
336         // Parse a braced-init-list here for error recovery purposes.
337         SourceLocation BraceLoc = Tok.getLocation();
338         TernaryMiddle = ParseBraceInitializer();
339         if (!TernaryMiddle.isInvalid()) {
340           Diag(BraceLoc, diag::err_init_list_bin_op)
341               << /*RHS*/ 1 << PP.getSpelling(OpToken)
342               << Actions.getExprRange(TernaryMiddle.get());
343           TernaryMiddle = ExprError();
344         }
345       } else if (Tok.isNot(tok::colon)) {
346         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
347         ColonProtectionRAIIObject X(*this);
348 
349         // Handle this production specially:
350         //   logical-OR-expression '?' expression ':' conditional-expression
351         // In particular, the RHS of the '?' is 'expression', not
352         // 'logical-OR-expression' as we might expect.
353         TernaryMiddle = ParseExpression();
354       } else {
355         // Special case handling of "X ? Y : Z" where Y is empty:
356         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
357         TernaryMiddle = nullptr;
358         Diag(Tok, diag::ext_gnu_conditional_expr);
359       }
360 
361       if (TernaryMiddle.isInvalid()) {
362         Actions.CorrectDelayedTyposInExpr(LHS);
363         LHS = ExprError();
364         TernaryMiddle = nullptr;
365       }
366 
367       if (!TryConsumeToken(tok::colon, ColonLoc)) {
368         // Otherwise, we're missing a ':'.  Assume that this was a typo that
369         // the user forgot. If we're not in a macro expansion, we can suggest
370         // a fixit hint. If there were two spaces before the current token,
371         // suggest inserting the colon in between them, otherwise insert ": ".
372         SourceLocation FILoc = Tok.getLocation();
373         const char *FIText = ": ";
374         const SourceManager &SM = PP.getSourceManager();
375         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
376           assert(FILoc.isFileID());
377           bool IsInvalid = false;
378           const char *SourcePtr =
379             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
380           if (!IsInvalid && *SourcePtr == ' ') {
381             SourcePtr =
382               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
383             if (!IsInvalid && *SourcePtr == ' ') {
384               FILoc = FILoc.getLocWithOffset(-1);
385               FIText = ":";
386             }
387           }
388         }
389 
390         Diag(Tok, diag::err_expected)
391             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
392         Diag(OpToken, diag::note_matching) << tok::question;
393         ColonLoc = Tok.getLocation();
394       }
395     }
396 
397     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
398                               OpToken.getKind());
399     // Parse another leaf here for the RHS of the operator.
400     // ParseCastExpression works here because all RHS expressions in C have it
401     // as a prefix, at least. However, in C++, an assignment-expression could
402     // be a throw-expression, which is not a valid cast-expression.
403     // Therefore we need some special-casing here.
404     // Also note that the third operand of the conditional operator is
405     // an assignment-expression in C++, and in C++11, we can have a
406     // braced-init-list on the RHS of an assignment. For better diagnostics,
407     // parse as if we were allowed braced-init-lists everywhere, and check that
408     // they only appear on the RHS of assignments later.
409     ExprResult RHS;
410     bool RHSIsInitList = false;
411     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
412       RHS = ParseBraceInitializer();
413       RHSIsInitList = true;
414     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
415       RHS = ParseAssignmentExpression();
416     else
417       RHS = ParseCastExpression(false);
418 
419     if (RHS.isInvalid()) {
420       // FIXME: Errors generated by the delayed typo correction should be
421       // printed before errors from parsing the RHS, not after.
422       Actions.CorrectDelayedTyposInExpr(LHS);
423       if (TernaryMiddle.isUsable())
424         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
425       LHS = ExprError();
426     }
427 
428     // Remember the precedence of this operator and get the precedence of the
429     // operator immediately to the right of the RHS.
430     prec::Level ThisPrec = NextTokPrec;
431     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
432                                      getLangOpts().CPlusPlus11);
433 
434     // Assignment and conditional expressions are right-associative.
435     bool isRightAssoc = ThisPrec == prec::Conditional ||
436                         ThisPrec == prec::Assignment;
437 
438     // Get the precedence of the operator to the right of the RHS.  If it binds
439     // more tightly with RHS than we do, evaluate it completely first.
440     if (ThisPrec < NextTokPrec ||
441         (ThisPrec == NextTokPrec && isRightAssoc)) {
442       if (!RHS.isInvalid() && RHSIsInitList) {
443         Diag(Tok, diag::err_init_list_bin_op)
444           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
445         RHS = ExprError();
446       }
447       // If this is left-associative, only parse things on the RHS that bind
448       // more tightly than the current operator.  If it is left-associative, it
449       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
450       // A=(B=(C=D)), where each paren is a level of recursion here.
451       // The function takes ownership of the RHS.
452       RHS = ParseRHSOfBinaryExpression(RHS,
453                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
454       RHSIsInitList = false;
455 
456       if (RHS.isInvalid()) {
457         // FIXME: Errors generated by the delayed typo correction should be
458         // printed before errors from ParseRHSOfBinaryExpression, not after.
459         Actions.CorrectDelayedTyposInExpr(LHS);
460         if (TernaryMiddle.isUsable())
461           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
462         LHS = ExprError();
463       }
464 
465       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
466                                        getLangOpts().CPlusPlus11);
467     }
468 
469     if (!RHS.isInvalid() && RHSIsInitList) {
470       if (ThisPrec == prec::Assignment) {
471         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
472           << Actions.getExprRange(RHS.get());
473       } else if (ColonLoc.isValid()) {
474         Diag(ColonLoc, diag::err_init_list_bin_op)
475           << /*RHS*/1 << ":"
476           << Actions.getExprRange(RHS.get());
477         LHS = ExprError();
478       } else {
479         Diag(OpToken, diag::err_init_list_bin_op)
480           << /*RHS*/1 << PP.getSpelling(OpToken)
481           << Actions.getExprRange(RHS.get());
482         LHS = ExprError();
483       }
484     }
485 
486     ExprResult OrigLHS = LHS;
487     if (!LHS.isInvalid()) {
488       // Combine the LHS and RHS into the LHS (e.g. build AST).
489       if (TernaryMiddle.isInvalid()) {
490         // If we're using '>>' as an operator within a template
491         // argument list (in C++98), suggest the addition of
492         // parentheses so that the code remains well-formed in C++0x.
493         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
494           SuggestParentheses(OpToken.getLocation(),
495                              diag::warn_cxx11_right_shift_in_template_arg,
496                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
497                                      Actions.getExprRange(RHS.get()).getEnd()));
498 
499         LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
500                                  OpToken.getKind(), LHS.get(), RHS.get());
501 
502       } else {
503         LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc,
504                                          LHS.get(), TernaryMiddle.get(),
505                                          RHS.get());
506       }
507       // In this case, ActOnBinOp or ActOnConditionalOp performed the
508       // CorrectDelayedTyposInExpr check.
509       if (!getLangOpts().CPlusPlus)
510         continue;
511     }
512 
513     // Ensure potential typos aren't left undiagnosed.
514     if (LHS.isInvalid()) {
515       Actions.CorrectDelayedTyposInExpr(OrigLHS);
516       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
517       Actions.CorrectDelayedTyposInExpr(RHS);
518     }
519   }
520 }
521 
522 /// Parse a cast-expression, or, if \p isUnaryExpression is true,
523 /// parse a unary-expression.
524 ///
525 /// \p isAddressOfOperand exists because an id-expression that is the
526 /// operand of address-of gets special treatment due to member pointers.
527 ///
528 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
529                                        bool isAddressOfOperand,
530                                        TypeCastState isTypeCast,
531                                        bool isVectorLiteral) {
532   bool NotCastExpr;
533   ExprResult Res = ParseCastExpression(isUnaryExpression,
534                                        isAddressOfOperand,
535                                        NotCastExpr,
536                                        isTypeCast,
537                                        isVectorLiteral);
538   if (NotCastExpr)
539     Diag(Tok, diag::err_expected_expression);
540   return Res;
541 }
542 
543 namespace {
544 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
545  public:
546   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
547       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
548     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
549   }
550 
551   bool ValidateCandidate(const TypoCorrection &candidate) override {
552     NamedDecl *ND = candidate.getCorrectionDecl();
553     if (!ND)
554       return candidate.isKeyword();
555 
556     if (isa<TypeDecl>(ND))
557       return WantTypeSpecifiers;
558 
559     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
560       return false;
561 
562     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
563       return true;
564 
565     for (auto *C : candidate) {
566       NamedDecl *ND = C->getUnderlyingDecl();
567       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
568         return true;
569     }
570     return false;
571   }
572 
573   std::unique_ptr<CorrectionCandidateCallback> clone() override {
574     return std::make_unique<CastExpressionIdValidator>(*this);
575   }
576 
577  private:
578   Token NextToken;
579   bool AllowNonTypes;
580 };
581 }
582 
583 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
584 /// a unary-expression.
585 ///
586 /// \p isAddressOfOperand exists because an id-expression that is the operand
587 /// of address-of gets special treatment due to member pointers. NotCastExpr
588 /// is set to true if the token is not the start of a cast-expression, and no
589 /// diagnostic is emitted in this case and no tokens are consumed.
590 ///
591 /// \verbatim
592 ///       cast-expression: [C99 6.5.4]
593 ///         unary-expression
594 ///         '(' type-name ')' cast-expression
595 ///
596 ///       unary-expression:  [C99 6.5.3]
597 ///         postfix-expression
598 ///         '++' unary-expression
599 ///         '--' unary-expression
600 /// [Coro]  'co_await' cast-expression
601 ///         unary-operator cast-expression
602 ///         'sizeof' unary-expression
603 ///         'sizeof' '(' type-name ')'
604 /// [C++11] 'sizeof' '...' '(' identifier ')'
605 /// [GNU]   '__alignof' unary-expression
606 /// [GNU]   '__alignof' '(' type-name ')'
607 /// [C11]   '_Alignof' '(' type-name ')'
608 /// [C++11] 'alignof' '(' type-id ')'
609 /// [GNU]   '&&' identifier
610 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
611 /// [C++]   new-expression
612 /// [C++]   delete-expression
613 ///
614 ///       unary-operator: one of
615 ///         '&'  '*'  '+'  '-'  '~'  '!'
616 /// [GNU]   '__extension__'  '__real'  '__imag'
617 ///
618 ///       primary-expression: [C99 6.5.1]
619 /// [C99]   identifier
620 /// [C++]   id-expression
621 ///         constant
622 ///         string-literal
623 /// [C++]   boolean-literal  [C++ 2.13.5]
624 /// [C++11] 'nullptr'        [C++11 2.14.7]
625 /// [C++11] user-defined-literal
626 ///         '(' expression ')'
627 /// [C11]   generic-selection
628 ///         '__func__'        [C99 6.4.2.2]
629 /// [GNU]   '__FUNCTION__'
630 /// [MS]    '__FUNCDNAME__'
631 /// [MS]    'L__FUNCTION__'
632 /// [MS]    '__FUNCSIG__'
633 /// [MS]    'L__FUNCSIG__'
634 /// [GNU]   '__PRETTY_FUNCTION__'
635 /// [GNU]   '(' compound-statement ')'
636 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
637 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
638 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
639 ///                                     assign-expr ')'
640 /// [GNU]   '__builtin_FILE' '(' ')'
641 /// [GNU]   '__builtin_FUNCTION' '(' ')'
642 /// [GNU]   '__builtin_LINE' '(' ')'
643 /// [CLANG] '__builtin_COLUMN' '(' ')'
644 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
645 /// [GNU]   '__null'
646 /// [OBJC]  '[' objc-message-expr ']'
647 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
648 /// [OBJC]  '\@protocol' '(' identifier ')'
649 /// [OBJC]  '\@encode' '(' type-name ')'
650 /// [OBJC]  objc-string-literal
651 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
652 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
653 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
654 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
655 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
656 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
657 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
658 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
659 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
660 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
661 /// [C++]   'this'          [C++ 9.3.2]
662 /// [G++]   unary-type-trait '(' type-id ')'
663 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
664 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
665 /// [clang] '^' block-literal
666 ///
667 ///       constant: [C99 6.4.4]
668 ///         integer-constant
669 ///         floating-constant
670 ///         enumeration-constant -> identifier
671 ///         character-constant
672 ///
673 ///       id-expression: [C++ 5.1]
674 ///                   unqualified-id
675 ///                   qualified-id
676 ///
677 ///       unqualified-id: [C++ 5.1]
678 ///                   identifier
679 ///                   operator-function-id
680 ///                   conversion-function-id
681 ///                   '~' class-name
682 ///                   template-id
683 ///
684 ///       new-expression: [C++ 5.3.4]
685 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
686 ///                                     new-initializer[opt]
687 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
688 ///                                     new-initializer[opt]
689 ///
690 ///       delete-expression: [C++ 5.3.5]
691 ///                   '::'[opt] 'delete' cast-expression
692 ///                   '::'[opt] 'delete' '[' ']' cast-expression
693 ///
694 /// [GNU/Embarcadero] unary-type-trait:
695 ///                   '__is_arithmetic'
696 ///                   '__is_floating_point'
697 ///                   '__is_integral'
698 ///                   '__is_lvalue_expr'
699 ///                   '__is_rvalue_expr'
700 ///                   '__is_complete_type'
701 ///                   '__is_void'
702 ///                   '__is_array'
703 ///                   '__is_function'
704 ///                   '__is_reference'
705 ///                   '__is_lvalue_reference'
706 ///                   '__is_rvalue_reference'
707 ///                   '__is_fundamental'
708 ///                   '__is_object'
709 ///                   '__is_scalar'
710 ///                   '__is_compound'
711 ///                   '__is_pointer'
712 ///                   '__is_member_object_pointer'
713 ///                   '__is_member_function_pointer'
714 ///                   '__is_member_pointer'
715 ///                   '__is_const'
716 ///                   '__is_volatile'
717 ///                   '__is_trivial'
718 ///                   '__is_standard_layout'
719 ///                   '__is_signed'
720 ///                   '__is_unsigned'
721 ///
722 /// [GNU] unary-type-trait:
723 ///                   '__has_nothrow_assign'
724 ///                   '__has_nothrow_copy'
725 ///                   '__has_nothrow_constructor'
726 ///                   '__has_trivial_assign'                  [TODO]
727 ///                   '__has_trivial_copy'                    [TODO]
728 ///                   '__has_trivial_constructor'
729 ///                   '__has_trivial_destructor'
730 ///                   '__has_virtual_destructor'
731 ///                   '__is_abstract'                         [TODO]
732 ///                   '__is_class'
733 ///                   '__is_empty'                            [TODO]
734 ///                   '__is_enum'
735 ///                   '__is_final'
736 ///                   '__is_pod'
737 ///                   '__is_polymorphic'
738 ///                   '__is_sealed'                           [MS]
739 ///                   '__is_trivial'
740 ///                   '__is_union'
741 ///                   '__has_unique_object_representations'
742 ///
743 /// [Clang] unary-type-trait:
744 ///                   '__is_aggregate'
745 ///                   '__trivially_copyable'
746 ///
747 ///       binary-type-trait:
748 /// [GNU]             '__is_base_of'
749 /// [MS]              '__is_convertible_to'
750 ///                   '__is_convertible'
751 ///                   '__is_same'
752 ///
753 /// [Embarcadero] array-type-trait:
754 ///                   '__array_rank'
755 ///                   '__array_extent'
756 ///
757 /// [Embarcadero] expression-trait:
758 ///                   '__is_lvalue_expr'
759 ///                   '__is_rvalue_expr'
760 /// \endverbatim
761 ///
762 ExprResult Parser::ParseCastExpression(bool isUnaryExpression,
763                                        bool isAddressOfOperand,
764                                        bool &NotCastExpr,
765                                        TypeCastState isTypeCast,
766                                        bool isVectorLiteral) {
767   ExprResult Res;
768   tok::TokenKind SavedKind = Tok.getKind();
769   auto SavedType = PreferredType;
770   NotCastExpr = false;
771 
772   // This handles all of cast-expression, unary-expression, postfix-expression,
773   // and primary-expression.  We handle them together like this for efficiency
774   // and to simplify handling of an expression starting with a '(' token: which
775   // may be one of a parenthesized expression, cast-expression, compound literal
776   // expression, or statement expression.
777   //
778   // If the parsed tokens consist of a primary-expression, the cases below
779   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
780   // to handle the postfix expression suffixes.  Cases that cannot be followed
781   // by postfix exprs should return without invoking
782   // ParsePostfixExpressionSuffix.
783   switch (SavedKind) {
784   case tok::l_paren: {
785     // If this expression is limited to being a unary-expression, the parent can
786     // not start a cast expression.
787     ParenParseOption ParenExprType =
788         (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral
789                                                         : CastExpr;
790     ParsedType CastTy;
791     SourceLocation RParenLoc;
792     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
793                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
794 
795     if (isVectorLiteral)
796         return Res;
797 
798     switch (ParenExprType) {
799     case SimpleExpr:   break;    // Nothing else to do.
800     case CompoundStmt: break;  // Nothing else to do.
801     case CompoundLiteral:
802       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
803       // postfix-expression exist, parse them now.
804       break;
805     case CastExpr:
806       // We have parsed the cast-expression and no postfix-expr pieces are
807       // following.
808       return Res;
809     case FoldExpr:
810       // We only parsed a fold-expression. There might be postfix-expr pieces
811       // afterwards; parse them now.
812       break;
813     }
814 
815     break;
816   }
817 
818     // primary-expression
819   case tok::numeric_constant:
820     // constant: integer-constant
821     // constant: floating-constant
822 
823     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
824     ConsumeToken();
825     break;
826 
827   case tok::kw_true:
828   case tok::kw_false:
829     Res = ParseCXXBoolLiteral();
830     break;
831 
832   case tok::kw___objc_yes:
833   case tok::kw___objc_no:
834       return ParseObjCBoolLiteral();
835 
836   case tok::kw_nullptr:
837     Diag(Tok, diag::warn_cxx98_compat_nullptr);
838     return Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
839 
840   case tok::annot_primary_expr:
841     Res = getExprAnnotation(Tok);
842     ConsumeAnnotationToken();
843     if (!Res.isInvalid() && Tok.is(tok::less))
844       checkPotentialAngleBracket(Res);
845     break;
846 
847   case tok::annot_non_type:
848   case tok::annot_non_type_dependent:
849   case tok::annot_non_type_undeclared: {
850     CXXScopeSpec SS;
851     Token Replacement;
852     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
853     assert(!Res.isUnset() &&
854            "should not perform typo correction on annotation token");
855     break;
856   }
857 
858   case tok::kw___super:
859   case tok::kw_decltype:
860     // Annotate the token and tail recurse.
861     if (TryAnnotateTypeOrScopeToken())
862       return ExprError();
863     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
864     return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
865 
866   case tok::identifier: {      // primary-expression: identifier
867                                // unqualified-id: identifier
868                                // constant: enumeration-constant
869     // Turn a potentially qualified name into a annot_typename or
870     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
871     if (getLangOpts().CPlusPlus) {
872       // Avoid the unnecessary parse-time lookup in the common case
873       // where the syntax forbids a type.
874       const Token &Next = NextToken();
875 
876       // If this identifier was reverted from a token ID, and the next token
877       // is a parenthesis, this is likely to be a use of a type trait. Check
878       // those tokens.
879       if (Next.is(tok::l_paren) &&
880           Tok.is(tok::identifier) &&
881           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
882         IdentifierInfo *II = Tok.getIdentifierInfo();
883         // Build up the mapping of revertible type traits, for future use.
884         if (RevertibleTypeTraits.empty()) {
885 #define RTT_JOIN(X,Y) X##Y
886 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
887           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
888             = RTT_JOIN(tok::kw_,Name)
889 
890           REVERTIBLE_TYPE_TRAIT(__is_abstract);
891           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
892           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
893           REVERTIBLE_TYPE_TRAIT(__is_array);
894           REVERTIBLE_TYPE_TRAIT(__is_assignable);
895           REVERTIBLE_TYPE_TRAIT(__is_base_of);
896           REVERTIBLE_TYPE_TRAIT(__is_class);
897           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
898           REVERTIBLE_TYPE_TRAIT(__is_compound);
899           REVERTIBLE_TYPE_TRAIT(__is_const);
900           REVERTIBLE_TYPE_TRAIT(__is_constructible);
901           REVERTIBLE_TYPE_TRAIT(__is_convertible);
902           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
903           REVERTIBLE_TYPE_TRAIT(__is_destructible);
904           REVERTIBLE_TYPE_TRAIT(__is_empty);
905           REVERTIBLE_TYPE_TRAIT(__is_enum);
906           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
907           REVERTIBLE_TYPE_TRAIT(__is_final);
908           REVERTIBLE_TYPE_TRAIT(__is_function);
909           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
910           REVERTIBLE_TYPE_TRAIT(__is_integral);
911           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
912           REVERTIBLE_TYPE_TRAIT(__is_literal);
913           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
914           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
915           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
916           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
917           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
918           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
919           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
920           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
921           REVERTIBLE_TYPE_TRAIT(__is_object);
922           REVERTIBLE_TYPE_TRAIT(__is_pod);
923           REVERTIBLE_TYPE_TRAIT(__is_pointer);
924           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
925           REVERTIBLE_TYPE_TRAIT(__is_reference);
926           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
927           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
928           REVERTIBLE_TYPE_TRAIT(__is_same);
929           REVERTIBLE_TYPE_TRAIT(__is_scalar);
930           REVERTIBLE_TYPE_TRAIT(__is_sealed);
931           REVERTIBLE_TYPE_TRAIT(__is_signed);
932           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
933           REVERTIBLE_TYPE_TRAIT(__is_trivial);
934           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
935           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
936           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
937           REVERTIBLE_TYPE_TRAIT(__is_union);
938           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
939           REVERTIBLE_TYPE_TRAIT(__is_void);
940           REVERTIBLE_TYPE_TRAIT(__is_volatile);
941 #undef REVERTIBLE_TYPE_TRAIT
942 #undef RTT_JOIN
943         }
944 
945         // If we find that this is in fact the name of a type trait,
946         // update the token kind in place and parse again to treat it as
947         // the appropriate kind of type trait.
948         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
949           = RevertibleTypeTraits.find(II);
950         if (Known != RevertibleTypeTraits.end()) {
951           Tok.setKind(Known->second);
952           return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
953                                      NotCastExpr, isTypeCast);
954         }
955       }
956 
957       if ((!ColonIsSacred && Next.is(tok::colon)) ||
958           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
959                        tok::l_brace)) {
960         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
961         if (TryAnnotateTypeOrScopeToken())
962           return ExprError();
963         if (!Tok.is(tok::identifier))
964           return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
965       }
966     }
967 
968     // Consume the identifier so that we can see if it is followed by a '(' or
969     // '.'.
970     IdentifierInfo &II = *Tok.getIdentifierInfo();
971     SourceLocation ILoc = ConsumeToken();
972 
973     // Support 'Class.property' and 'super.property' notation.
974     if (getLangOpts().ObjC && Tok.is(tok::period) &&
975         (Actions.getTypeName(II, ILoc, getCurScope()) ||
976          // Allow the base to be 'super' if in an objc-method.
977          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
978       ConsumeToken();
979 
980       if (Tok.is(tok::code_completion) && &II != Ident_super) {
981         Actions.CodeCompleteObjCClassPropertyRefExpr(
982             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
983         cutOffParsing();
984         return ExprError();
985       }
986       // Allow either an identifier or the keyword 'class' (in C++).
987       if (Tok.isNot(tok::identifier) &&
988           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
989         Diag(Tok, diag::err_expected_property_name);
990         return ExprError();
991       }
992       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
993       SourceLocation PropertyLoc = ConsumeToken();
994 
995       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
996                                               ILoc, PropertyLoc);
997       break;
998     }
999 
1000     // In an Objective-C method, if we have "super" followed by an identifier,
1001     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1002     // that identifier, this is probably a message send with a missing open
1003     // bracket. Treat it as such.
1004     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1005         getCurScope()->isInObjcMethodScope() &&
1006         ((Tok.is(tok::identifier) &&
1007          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1008          Tok.is(tok::code_completion))) {
1009       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1010                                            nullptr);
1011       break;
1012     }
1013 
1014     // If we have an Objective-C class name followed by an identifier
1015     // and either ':' or ']', this is an Objective-C class message
1016     // send that's missing the opening '['. Recovery
1017     // appropriately. Also take this path if we're performing code
1018     // completion after an Objective-C class name.
1019     if (getLangOpts().ObjC &&
1020         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1021          Tok.is(tok::code_completion))) {
1022       const Token& Next = NextToken();
1023       if (Tok.is(tok::code_completion) ||
1024           Next.is(tok::colon) || Next.is(tok::r_square))
1025         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1026           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1027             // Fake up a Declarator to use with ActOnTypeName.
1028             DeclSpec DS(AttrFactory);
1029             DS.SetRangeStart(ILoc);
1030             DS.SetRangeEnd(ILoc);
1031             const char *PrevSpec = nullptr;
1032             unsigned DiagID;
1033             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1034                                Actions.getASTContext().getPrintingPolicy());
1035 
1036             Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1037             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1038                                                   DeclaratorInfo);
1039             if (Ty.isInvalid())
1040               break;
1041 
1042             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1043                                                  SourceLocation(),
1044                                                  Ty.get(), nullptr);
1045             break;
1046           }
1047     }
1048 
1049     // Make sure to pass down the right value for isAddressOfOperand.
1050     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1051       isAddressOfOperand = false;
1052 
1053     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1054     // need to know whether or not this identifier is a function designator or
1055     // not.
1056     UnqualifiedId Name;
1057     CXXScopeSpec ScopeSpec;
1058     SourceLocation TemplateKWLoc;
1059     Token Replacement;
1060     CastExpressionIdValidator Validator(
1061         /*Next=*/Tok,
1062         /*AllowTypes=*/isTypeCast != NotTypeCast,
1063         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1064     Validator.IsAddressOfOperand = isAddressOfOperand;
1065     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1066       Validator.WantExpressionKeywords = false;
1067       Validator.WantRemainingKeywords = false;
1068     } else {
1069       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1070     }
1071     Name.setIdentifier(&II, ILoc);
1072     Res = Actions.ActOnIdExpression(
1073         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1074         isAddressOfOperand, &Validator,
1075         /*IsInlineAsmIdentifier=*/false,
1076         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1077     if (!Res.isInvalid() && Res.isUnset()) {
1078       UnconsumeToken(Replacement);
1079       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1080                                  NotCastExpr, isTypeCast);
1081     }
1082     if (!Res.isInvalid() && Tok.is(tok::less))
1083       checkPotentialAngleBracket(Res);
1084     break;
1085   }
1086   case tok::char_constant:     // constant: character-constant
1087   case tok::wide_char_constant:
1088   case tok::utf8_char_constant:
1089   case tok::utf16_char_constant:
1090   case tok::utf32_char_constant:
1091     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1092     ConsumeToken();
1093     break;
1094   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1095   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1096   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1097   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1098   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1099   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1100   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1101     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1102     ConsumeToken();
1103     break;
1104   case tok::string_literal:    // primary-expression: string-literal
1105   case tok::wide_string_literal:
1106   case tok::utf8_string_literal:
1107   case tok::utf16_string_literal:
1108   case tok::utf32_string_literal:
1109     Res = ParseStringLiteralExpression(true);
1110     break;
1111   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1112     Res = ParseGenericSelectionExpression();
1113     break;
1114   case tok::kw___builtin_available:
1115     return ParseAvailabilityCheckExpr(Tok.getLocation());
1116   case tok::kw___builtin_va_arg:
1117   case tok::kw___builtin_offsetof:
1118   case tok::kw___builtin_choose_expr:
1119   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1120   case tok::kw___builtin_convertvector:
1121   case tok::kw___builtin_COLUMN:
1122   case tok::kw___builtin_FILE:
1123   case tok::kw___builtin_FUNCTION:
1124   case tok::kw___builtin_LINE:
1125     return ParseBuiltinPrimaryExpression();
1126   case tok::kw___null:
1127     return Actions.ActOnGNUNullExpr(ConsumeToken());
1128 
1129   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1130   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1131     // C++ [expr.unary] has:
1132     //   unary-expression:
1133     //     ++ cast-expression
1134     //     -- cast-expression
1135     Token SavedTok = Tok;
1136     ConsumeToken();
1137 
1138     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1139                              SavedTok.getLocation());
1140     // One special case is implicitly handled here: if the preceding tokens are
1141     // an ambiguous cast expression, such as "(T())++", then we recurse to
1142     // determine whether the '++' is prefix or postfix.
1143     Res = ParseCastExpression(!getLangOpts().CPlusPlus,
1144                               /*isAddressOfOperand*/false, NotCastExpr,
1145                               NotTypeCast);
1146     if (NotCastExpr) {
1147       // If we return with NotCastExpr = true, we must not consume any tokens,
1148       // so put the token back where we found it.
1149       assert(Res.isInvalid());
1150       UnconsumeToken(SavedTok);
1151       return ExprError();
1152     }
1153     if (!Res.isInvalid())
1154       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1155                                  SavedKind, Res.get());
1156     return Res;
1157   }
1158   case tok::amp: {         // unary-expression: '&' cast-expression
1159     // Special treatment because of member pointers
1160     SourceLocation SavedLoc = ConsumeToken();
1161     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1162     Res = ParseCastExpression(false, true);
1163     if (!Res.isInvalid())
1164       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1165     return Res;
1166   }
1167 
1168   case tok::star:          // unary-expression: '*' cast-expression
1169   case tok::plus:          // unary-expression: '+' cast-expression
1170   case tok::minus:         // unary-expression: '-' cast-expression
1171   case tok::tilde:         // unary-expression: '~' cast-expression
1172   case tok::exclaim:       // unary-expression: '!' cast-expression
1173   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1174   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1175     SourceLocation SavedLoc = ConsumeToken();
1176     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1177     Res = ParseCastExpression(false);
1178     if (!Res.isInvalid())
1179       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1180     return Res;
1181   }
1182 
1183   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1184     SourceLocation CoawaitLoc = ConsumeToken();
1185     Res = ParseCastExpression(false);
1186     if (!Res.isInvalid())
1187       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1188     return Res;
1189   }
1190 
1191   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1192     // __extension__ silences extension warnings in the subexpression.
1193     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1194     SourceLocation SavedLoc = ConsumeToken();
1195     Res = ParseCastExpression(false);
1196     if (!Res.isInvalid())
1197       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1198     return Res;
1199   }
1200   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1201     if (!getLangOpts().C11)
1202       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1203     LLVM_FALLTHROUGH;
1204   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1205   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1206                            // unary-expression: '__alignof' '(' type-name ')'
1207   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1208                            // unary-expression: 'sizeof' '(' type-name ')'
1209   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1210   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1211   case tok::kw___builtin_omp_required_simd_align:
1212     return ParseUnaryExprOrTypeTraitExpression();
1213   case tok::ampamp: {      // unary-expression: '&&' identifier
1214     SourceLocation AmpAmpLoc = ConsumeToken();
1215     if (Tok.isNot(tok::identifier))
1216       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1217 
1218     if (getCurScope()->getFnParent() == nullptr)
1219       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1220 
1221     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1222     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1223                                                 Tok.getLocation());
1224     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1225     ConsumeToken();
1226     return Res;
1227   }
1228   case tok::kw_const_cast:
1229   case tok::kw_dynamic_cast:
1230   case tok::kw_reinterpret_cast:
1231   case tok::kw_static_cast:
1232     Res = ParseCXXCasts();
1233     break;
1234   case tok::kw___builtin_bit_cast:
1235     Res = ParseBuiltinBitCast();
1236     break;
1237   case tok::kw_typeid:
1238     Res = ParseCXXTypeid();
1239     break;
1240   case tok::kw___uuidof:
1241     Res = ParseCXXUuidof();
1242     break;
1243   case tok::kw_this:
1244     Res = ParseCXXThis();
1245     break;
1246 
1247   case tok::annot_typename:
1248     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1249       ParsedType Type = getTypeAnnotation(Tok);
1250 
1251       // Fake up a Declarator to use with ActOnTypeName.
1252       DeclSpec DS(AttrFactory);
1253       DS.SetRangeStart(Tok.getLocation());
1254       DS.SetRangeEnd(Tok.getLastLoc());
1255 
1256       const char *PrevSpec = nullptr;
1257       unsigned DiagID;
1258       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1259                          PrevSpec, DiagID, Type,
1260                          Actions.getASTContext().getPrintingPolicy());
1261 
1262       Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1263       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1264       if (Ty.isInvalid())
1265         break;
1266 
1267       ConsumeAnnotationToken();
1268       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1269                                            Ty.get(), nullptr);
1270       break;
1271     }
1272     LLVM_FALLTHROUGH;
1273 
1274   case tok::annot_decltype:
1275   case tok::kw_char:
1276   case tok::kw_wchar_t:
1277   case tok::kw_char8_t:
1278   case tok::kw_char16_t:
1279   case tok::kw_char32_t:
1280   case tok::kw_bool:
1281   case tok::kw_short:
1282   case tok::kw_int:
1283   case tok::kw_long:
1284   case tok::kw___int64:
1285   case tok::kw___int128:
1286   case tok::kw_signed:
1287   case tok::kw_unsigned:
1288   case tok::kw_half:
1289   case tok::kw_float:
1290   case tok::kw_double:
1291   case tok::kw__Float16:
1292   case tok::kw___float128:
1293   case tok::kw_void:
1294   case tok::kw_typename:
1295   case tok::kw_typeof:
1296   case tok::kw___vector:
1297 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1298 #include "clang/Basic/OpenCLImageTypes.def"
1299   {
1300     if (!getLangOpts().CPlusPlus) {
1301       Diag(Tok, diag::err_expected_expression);
1302       return ExprError();
1303     }
1304 
1305     if (SavedKind == tok::kw_typename) {
1306       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1307       //                     typename-specifier braced-init-list
1308       if (TryAnnotateTypeOrScopeToken())
1309         return ExprError();
1310 
1311       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1312         // We are trying to parse a simple-type-specifier but might not get such
1313         // a token after error recovery.
1314         return ExprError();
1315     }
1316 
1317     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1318     //                     simple-type-specifier braced-init-list
1319     //
1320     DeclSpec DS(AttrFactory);
1321 
1322     ParseCXXSimpleTypeSpecifier(DS);
1323     if (Tok.isNot(tok::l_paren) &&
1324         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1325       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1326                          << DS.getSourceRange());
1327 
1328     if (Tok.is(tok::l_brace))
1329       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1330 
1331     Res = ParseCXXTypeConstructExpression(DS);
1332     break;
1333   }
1334 
1335   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1336     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1337     // (We can end up in this situation after tentative parsing.)
1338     if (TryAnnotateTypeOrScopeToken())
1339       return ExprError();
1340     if (!Tok.is(tok::annot_cxxscope))
1341       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1342                                  NotCastExpr, isTypeCast);
1343 
1344     Token Next = NextToken();
1345     if (Next.is(tok::annot_template_id)) {
1346       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1347       if (TemplateId->Kind == TNK_Type_template) {
1348         // We have a qualified template-id that we know refers to a
1349         // type, translate it into a type and continue parsing as a
1350         // cast expression.
1351         CXXScopeSpec SS;
1352         ParseOptionalCXXScopeSpecifier(SS, nullptr,
1353                                        /*EnteringContext=*/false);
1354         AnnotateTemplateIdTokenAsType();
1355         return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1356                                    NotCastExpr, isTypeCast);
1357       }
1358     }
1359 
1360     // Parse as an id-expression.
1361     Res = ParseCXXIdExpression(isAddressOfOperand);
1362     break;
1363   }
1364 
1365   case tok::annot_template_id: { // [C++]          template-id
1366     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1367     if (TemplateId->Kind == TNK_Type_template) {
1368       // We have a template-id that we know refers to a type,
1369       // translate it into a type and continue parsing as a cast
1370       // expression.
1371       AnnotateTemplateIdTokenAsType();
1372       return ParseCastExpression(isUnaryExpression, isAddressOfOperand,
1373                                  NotCastExpr, isTypeCast);
1374     }
1375 
1376     // Fall through to treat the template-id as an id-expression.
1377     LLVM_FALLTHROUGH;
1378   }
1379 
1380   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1381     Res = ParseCXXIdExpression(isAddressOfOperand);
1382     break;
1383 
1384   case tok::coloncolon: {
1385     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1386     // annotates the token, tail recurse.
1387     if (TryAnnotateTypeOrScopeToken())
1388       return ExprError();
1389     if (!Tok.is(tok::coloncolon))
1390       return ParseCastExpression(isUnaryExpression, isAddressOfOperand);
1391 
1392     // ::new -> [C++] new-expression
1393     // ::delete -> [C++] delete-expression
1394     SourceLocation CCLoc = ConsumeToken();
1395     if (Tok.is(tok::kw_new))
1396       return ParseCXXNewExpression(true, CCLoc);
1397     if (Tok.is(tok::kw_delete))
1398       return ParseCXXDeleteExpression(true, CCLoc);
1399 
1400     // This is not a type name or scope specifier, it is an invalid expression.
1401     Diag(CCLoc, diag::err_expected_expression);
1402     return ExprError();
1403   }
1404 
1405   case tok::kw_new: // [C++] new-expression
1406     return ParseCXXNewExpression(false, Tok.getLocation());
1407 
1408   case tok::kw_delete: // [C++] delete-expression
1409     return ParseCXXDeleteExpression(false, Tok.getLocation());
1410 
1411   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1412     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1413     SourceLocation KeyLoc = ConsumeToken();
1414     BalancedDelimiterTracker T(*this, tok::l_paren);
1415 
1416     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1417       return ExprError();
1418     // C++11 [expr.unary.noexcept]p1:
1419     //   The noexcept operator determines whether the evaluation of its operand,
1420     //   which is an unevaluated operand, can throw an exception.
1421     EnterExpressionEvaluationContext Unevaluated(
1422         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1423     ExprResult Result = ParseExpression();
1424 
1425     T.consumeClose();
1426 
1427     if (!Result.isInvalid())
1428       Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(),
1429                                          Result.get(), T.getCloseLocation());
1430     return Result;
1431   }
1432 
1433 #define TYPE_TRAIT(N,Spelling,K) \
1434   case tok::kw_##Spelling:
1435 #include "clang/Basic/TokenKinds.def"
1436     return ParseTypeTrait();
1437 
1438   case tok::kw___array_rank:
1439   case tok::kw___array_extent:
1440     return ParseArrayTypeTrait();
1441 
1442   case tok::kw___is_lvalue_expr:
1443   case tok::kw___is_rvalue_expr:
1444     return ParseExpressionTrait();
1445 
1446   case tok::at: {
1447     SourceLocation AtLoc = ConsumeToken();
1448     return ParseObjCAtExpression(AtLoc);
1449   }
1450   case tok::caret:
1451     Res = ParseBlockLiteralExpression();
1452     break;
1453   case tok::code_completion: {
1454     Actions.CodeCompleteExpression(getCurScope(),
1455                                    PreferredType.get(Tok.getLocation()));
1456     cutOffParsing();
1457     return ExprError();
1458   }
1459   case tok::l_square:
1460     if (getLangOpts().CPlusPlus11) {
1461       if (getLangOpts().ObjC) {
1462         // C++11 lambda expressions and Objective-C message sends both start with a
1463         // square bracket.  There are three possibilities here:
1464         // we have a valid lambda expression, we have an invalid lambda
1465         // expression, or we have something that doesn't appear to be a lambda.
1466         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1467         Res = TryParseLambdaExpression();
1468         if (!Res.isInvalid() && !Res.get())
1469           Res = ParseObjCMessageExpression();
1470         break;
1471       }
1472       Res = ParseLambdaExpression();
1473       break;
1474     }
1475     if (getLangOpts().ObjC) {
1476       Res = ParseObjCMessageExpression();
1477       break;
1478     }
1479     LLVM_FALLTHROUGH;
1480   default:
1481     NotCastExpr = true;
1482     return ExprError();
1483   }
1484 
1485   // Check to see whether Res is a function designator only. If it is and we
1486   // are compiling for OpenCL, we need to return an error as this implies
1487   // that the address of the function is being taken, which is illegal in CL.
1488 
1489   // These can be followed by postfix-expr pieces.
1490   PreferredType = SavedType;
1491   Res = ParsePostfixExpressionSuffix(Res);
1492   if (getLangOpts().OpenCL)
1493     if (Expr *PostfixExpr = Res.get()) {
1494       QualType Ty = PostfixExpr->getType();
1495       if (!Ty.isNull() && Ty->isFunctionType()) {
1496         Diag(PostfixExpr->getExprLoc(),
1497              diag::err_opencl_taking_function_address_parser);
1498         return ExprError();
1499       }
1500     }
1501 
1502   return Res;
1503 }
1504 
1505 /// Once the leading part of a postfix-expression is parsed, this
1506 /// method parses any suffixes that apply.
1507 ///
1508 /// \verbatim
1509 ///       postfix-expression: [C99 6.5.2]
1510 ///         primary-expression
1511 ///         postfix-expression '[' expression ']'
1512 ///         postfix-expression '[' braced-init-list ']'
1513 ///         postfix-expression '(' argument-expression-list[opt] ')'
1514 ///         postfix-expression '.' identifier
1515 ///         postfix-expression '->' identifier
1516 ///         postfix-expression '++'
1517 ///         postfix-expression '--'
1518 ///         '(' type-name ')' '{' initializer-list '}'
1519 ///         '(' type-name ')' '{' initializer-list ',' '}'
1520 ///
1521 ///       argument-expression-list: [C99 6.5.2]
1522 ///         argument-expression ...[opt]
1523 ///         argument-expression-list ',' assignment-expression ...[opt]
1524 /// \endverbatim
1525 ExprResult
1526 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1527   // Now that the primary-expression piece of the postfix-expression has been
1528   // parsed, see if there are any postfix-expression pieces here.
1529   SourceLocation Loc;
1530   auto SavedType = PreferredType;
1531   while (1) {
1532     // Each iteration relies on preferred type for the whole expression.
1533     PreferredType = SavedType;
1534     switch (Tok.getKind()) {
1535     case tok::code_completion:
1536       if (InMessageExpression)
1537         return LHS;
1538 
1539       Actions.CodeCompletePostfixExpression(
1540           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1541       cutOffParsing();
1542       return ExprError();
1543 
1544     case tok::identifier:
1545       // If we see identifier: after an expression, and we're not already in a
1546       // message send, then this is probably a message send with a missing
1547       // opening bracket '['.
1548       if (getLangOpts().ObjC && !InMessageExpression &&
1549           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1550         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1551                                              nullptr, LHS.get());
1552         break;
1553       }
1554       // Fall through; this isn't a message send.
1555       LLVM_FALLTHROUGH;
1556 
1557     default:  // Not a postfix-expression suffix.
1558       return LHS;
1559     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1560       // If we have a array postfix expression that starts on a new line and
1561       // Objective-C is enabled, it is highly likely that the user forgot a
1562       // semicolon after the base expression and that the array postfix-expr is
1563       // actually another message send.  In this case, do some look-ahead to see
1564       // if the contents of the square brackets are obviously not a valid
1565       // expression and recover by pretending there is no suffix.
1566       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1567           isSimpleObjCMessageExpression())
1568         return LHS;
1569 
1570       // Reject array indices starting with a lambda-expression. '[[' is
1571       // reserved for attributes.
1572       if (CheckProhibitedCXX11Attribute()) {
1573         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1574         return ExprError();
1575       }
1576 
1577       BalancedDelimiterTracker T(*this, tok::l_square);
1578       T.consumeOpen();
1579       Loc = T.getOpenLocation();
1580       ExprResult Idx, Length;
1581       SourceLocation ColonLoc;
1582       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1583       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1584         Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1585         Idx = ParseBraceInitializer();
1586       } else if (getLangOpts().OpenMP) {
1587         ColonProtectionRAIIObject RAII(*this);
1588         // Parse [: or [ expr or [ expr :
1589         if (!Tok.is(tok::colon)) {
1590           // [ expr
1591           Idx = ParseExpression();
1592         }
1593         if (Tok.is(tok::colon)) {
1594           // Consume ':'
1595           ColonLoc = ConsumeToken();
1596           if (Tok.isNot(tok::r_square))
1597             Length = ParseExpression();
1598         }
1599       } else
1600         Idx = ParseExpression();
1601 
1602       SourceLocation RLoc = Tok.getLocation();
1603 
1604       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1605       Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1606       Length = Actions.CorrectDelayedTyposInExpr(Length);
1607       if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() &&
1608           Tok.is(tok::r_square)) {
1609         if (ColonLoc.isValid()) {
1610           LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(),
1611                                                  ColonLoc, Length.get(), RLoc);
1612         } else {
1613           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
1614                                                 Idx.get(), RLoc);
1615         }
1616       } else {
1617         LHS = ExprError();
1618         Idx = ExprError();
1619       }
1620 
1621       // Match the ']'.
1622       T.consumeClose();
1623       break;
1624     }
1625 
1626     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
1627     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
1628                                //   '(' argument-expression-list[opt] ')'
1629       tok::TokenKind OpKind = Tok.getKind();
1630       InMessageExpressionRAIIObject InMessage(*this, false);
1631 
1632       Expr *ExecConfig = nullptr;
1633 
1634       BalancedDelimiterTracker PT(*this, tok::l_paren);
1635 
1636       if (OpKind == tok::lesslessless) {
1637         ExprVector ExecConfigExprs;
1638         CommaLocsTy ExecConfigCommaLocs;
1639         SourceLocation OpenLoc = ConsumeToken();
1640 
1641         if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) {
1642           (void)Actions.CorrectDelayedTyposInExpr(LHS);
1643           LHS = ExprError();
1644         }
1645 
1646         SourceLocation CloseLoc;
1647         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
1648         } else if (LHS.isInvalid()) {
1649           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1650         } else {
1651           // There was an error closing the brackets
1652           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
1653           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
1654           SkipUntil(tok::greatergreatergreater, StopAtSemi);
1655           LHS = ExprError();
1656         }
1657 
1658         if (!LHS.isInvalid()) {
1659           if (ExpectAndConsume(tok::l_paren))
1660             LHS = ExprError();
1661           else
1662             Loc = PrevTokLocation;
1663         }
1664 
1665         if (!LHS.isInvalid()) {
1666           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
1667                                     OpenLoc,
1668                                     ExecConfigExprs,
1669                                     CloseLoc);
1670           if (ECResult.isInvalid())
1671             LHS = ExprError();
1672           else
1673             ExecConfig = ECResult.get();
1674         }
1675       } else {
1676         PT.consumeOpen();
1677         Loc = PT.getOpenLocation();
1678       }
1679 
1680       ExprVector ArgExprs;
1681       CommaLocsTy CommaLocs;
1682       auto RunSignatureHelp = [&]() -> QualType {
1683         QualType PreferredType = Actions.ProduceCallSignatureHelp(
1684             getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation());
1685         CalledSignatureHelp = true;
1686         return PreferredType;
1687       };
1688       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
1689         if (Tok.isNot(tok::r_paren)) {
1690           if (ParseExpressionList(ArgExprs, CommaLocs, [&] {
1691                 PreferredType.enterFunctionArgument(Tok.getLocation(),
1692                                                     RunSignatureHelp);
1693               })) {
1694             (void)Actions.CorrectDelayedTyposInExpr(LHS);
1695             // If we got an error when parsing expression list, we don't call
1696             // the CodeCompleteCall handler inside the parser. So call it here
1697             // to make sure we get overload suggestions even when we are in the
1698             // middle of a parameter.
1699             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
1700               RunSignatureHelp();
1701             LHS = ExprError();
1702           } else if (LHS.isInvalid()) {
1703             for (auto &E : ArgExprs)
1704               Actions.CorrectDelayedTyposInExpr(E);
1705           }
1706         }
1707       }
1708 
1709       // Match the ')'.
1710       if (LHS.isInvalid()) {
1711         SkipUntil(tok::r_paren, StopAtSemi);
1712       } else if (Tok.isNot(tok::r_paren)) {
1713         bool HadDelayedTypo = false;
1714         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
1715           HadDelayedTypo = true;
1716         for (auto &E : ArgExprs)
1717           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
1718             HadDelayedTypo = true;
1719         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
1720         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
1721         // the unmatched l_paren.
1722         if (HadDelayedTypo)
1723           SkipUntil(tok::r_paren, StopAtSemi);
1724         else
1725           PT.consumeClose();
1726         LHS = ExprError();
1727       } else {
1728         assert((ArgExprs.size() == 0 ||
1729                 ArgExprs.size()-1 == CommaLocs.size())&&
1730                "Unexpected number of commas!");
1731         LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc,
1732                                     ArgExprs, Tok.getLocation(),
1733                                     ExecConfig);
1734         PT.consumeClose();
1735       }
1736 
1737       break;
1738     }
1739     case tok::arrow:
1740     case tok::period: {
1741       // postfix-expression: p-e '->' template[opt] id-expression
1742       // postfix-expression: p-e '.' template[opt] id-expression
1743       tok::TokenKind OpKind = Tok.getKind();
1744       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
1745 
1746       CXXScopeSpec SS;
1747       ParsedType ObjectType;
1748       bool MayBePseudoDestructor = false;
1749       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
1750 
1751       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
1752 
1753       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
1754         Expr *Base = OrigLHS;
1755         const Type* BaseType = Base->getType().getTypePtrOrNull();
1756         if (BaseType && Tok.is(tok::l_paren) &&
1757             (BaseType->isFunctionType() ||
1758              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
1759           Diag(OpLoc, diag::err_function_is_not_record)
1760               << OpKind << Base->getSourceRange()
1761               << FixItHint::CreateRemoval(OpLoc);
1762           return ParsePostfixExpressionSuffix(Base);
1763         }
1764 
1765         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base,
1766                                                    OpLoc, OpKind, ObjectType,
1767                                                    MayBePseudoDestructor);
1768         if (LHS.isInvalid())
1769           break;
1770 
1771         ParseOptionalCXXScopeSpecifier(SS, ObjectType,
1772                                        /*EnteringContext=*/false,
1773                                        &MayBePseudoDestructor);
1774         if (SS.isNotEmpty())
1775           ObjectType = nullptr;
1776       }
1777 
1778       if (Tok.is(tok::code_completion)) {
1779         tok::TokenKind CorrectedOpKind =
1780             OpKind == tok::arrow ? tok::period : tok::arrow;
1781         ExprResult CorrectedLHS(/*Invalid=*/true);
1782         if (getLangOpts().CPlusPlus && OrigLHS) {
1783           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
1784           // hack.
1785           Sema::TentativeAnalysisScope Trap(Actions);
1786           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
1787               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
1788               MayBePseudoDestructor);
1789         }
1790 
1791         Expr *Base = LHS.get();
1792         Expr *CorrectedBase = CorrectedLHS.get();
1793         if (!CorrectedBase && !getLangOpts().CPlusPlus)
1794           CorrectedBase = Base;
1795 
1796         // Code completion for a member access expression.
1797         Actions.CodeCompleteMemberReferenceExpr(
1798             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
1799             Base && ExprStatementTokLoc == Base->getBeginLoc(),
1800             PreferredType.get(Tok.getLocation()));
1801 
1802         cutOffParsing();
1803         return ExprError();
1804       }
1805 
1806       if (MayBePseudoDestructor && !LHS.isInvalid()) {
1807         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
1808                                        ObjectType);
1809         break;
1810       }
1811 
1812       // Either the action has told us that this cannot be a
1813       // pseudo-destructor expression (based on the type of base
1814       // expression), or we didn't see a '~' in the right place. We
1815       // can still parse a destructor name here, but in that case it
1816       // names a real destructor.
1817       // Allow explicit constructor calls in Microsoft mode.
1818       // FIXME: Add support for explicit call of template constructor.
1819       SourceLocation TemplateKWLoc;
1820       UnqualifiedId Name;
1821       if (getLangOpts().ObjC && OpKind == tok::period &&
1822           Tok.is(tok::kw_class)) {
1823         // Objective-C++:
1824         //   After a '.' in a member access expression, treat the keyword
1825         //   'class' as if it were an identifier.
1826         //
1827         // This hack allows property access to the 'class' method because it is
1828         // such a common method name. For other C++ keywords that are
1829         // Objective-C method names, one must use the message send syntax.
1830         IdentifierInfo *Id = Tok.getIdentifierInfo();
1831         SourceLocation Loc = ConsumeToken();
1832         Name.setIdentifier(Id, Loc);
1833       } else if (ParseUnqualifiedId(SS,
1834                                     /*EnteringContext=*/false,
1835                                     /*AllowDestructorName=*/true,
1836                                     /*AllowConstructorName=*/
1837                                     getLangOpts().MicrosoftExt &&
1838                                         SS.isNotEmpty(),
1839                                     /*AllowDeductionGuide=*/false,
1840                                     ObjectType, &TemplateKWLoc, Name)) {
1841         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1842         LHS = ExprError();
1843       }
1844 
1845       if (!LHS.isInvalid())
1846         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
1847                                             OpKind, SS, TemplateKWLoc, Name,
1848                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
1849                                                    : nullptr);
1850       if (!LHS.isInvalid() && Tok.is(tok::less))
1851         checkPotentialAngleBracket(LHS);
1852       break;
1853     }
1854     case tok::plusplus:    // postfix-expression: postfix-expression '++'
1855     case tok::minusminus:  // postfix-expression: postfix-expression '--'
1856       if (!LHS.isInvalid()) {
1857         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
1858                                           Tok.getKind(), LHS.get());
1859       }
1860       ConsumeToken();
1861       break;
1862     }
1863   }
1864 }
1865 
1866 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
1867 /// vec_step and we are at the start of an expression or a parenthesized
1868 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
1869 /// expression (isCastExpr == false) or the type (isCastExpr == true).
1870 ///
1871 /// \verbatim
1872 ///       unary-expression:  [C99 6.5.3]
1873 ///         'sizeof' unary-expression
1874 ///         'sizeof' '(' type-name ')'
1875 /// [GNU]   '__alignof' unary-expression
1876 /// [GNU]   '__alignof' '(' type-name ')'
1877 /// [C11]   '_Alignof' '(' type-name ')'
1878 /// [C++0x] 'alignof' '(' type-id ')'
1879 ///
1880 /// [GNU]   typeof-specifier:
1881 ///           typeof ( expressions )
1882 ///           typeof ( type-name )
1883 /// [GNU/C++] typeof unary-expression
1884 ///
1885 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
1886 ///           vec_step ( expressions )
1887 ///           vec_step ( type-name )
1888 /// \endverbatim
1889 ExprResult
1890 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
1891                                            bool &isCastExpr,
1892                                            ParsedType &CastTy,
1893                                            SourceRange &CastRange) {
1894 
1895   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof,
1896                        tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step,
1897                        tok::kw___builtin_omp_required_simd_align) &&
1898          "Not a typeof/sizeof/alignof/vec_step expression!");
1899 
1900   ExprResult Operand;
1901 
1902   // If the operand doesn't start with an '(', it must be an expression.
1903   if (Tok.isNot(tok::l_paren)) {
1904     // If construct allows a form without parenthesis, user may forget to put
1905     // pathenthesis around type name.
1906     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1907                       tok::kw__Alignof)) {
1908       if (isTypeIdUnambiguously()) {
1909         DeclSpec DS(AttrFactory);
1910         ParseSpecifierQualifierList(DS);
1911         Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
1912         ParseDeclarator(DeclaratorInfo);
1913 
1914         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
1915         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
1916         Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
1917           << OpTok.getName()
1918           << FixItHint::CreateInsertion(LParenLoc, "(")
1919           << FixItHint::CreateInsertion(RParenLoc, ")");
1920         isCastExpr = true;
1921         return ExprEmpty();
1922       }
1923     }
1924 
1925     isCastExpr = false;
1926     if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) {
1927       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
1928                                           << tok::l_paren;
1929       return ExprError();
1930     }
1931 
1932     Operand = ParseCastExpression(true/*isUnaryExpression*/);
1933   } else {
1934     // If it starts with a '(', we know that it is either a parenthesized
1935     // type-name, or it is a unary-expression that starts with a compound
1936     // literal, or starts with a primary-expression that is a parenthesized
1937     // expression.
1938     ParenParseOption ExprType = CastExpr;
1939     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
1940 
1941     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
1942                                    false, CastTy, RParenLoc);
1943     CastRange = SourceRange(LParenLoc, RParenLoc);
1944 
1945     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
1946     // a type.
1947     if (ExprType == CastExpr) {
1948       isCastExpr = true;
1949       return ExprEmpty();
1950     }
1951 
1952     if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) {
1953       // GNU typeof in C requires the expression to be parenthesized. Not so for
1954       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
1955       // the start of a unary-expression, but doesn't include any postfix
1956       // pieces. Parse these now if present.
1957       if (!Operand.isInvalid())
1958         Operand = ParsePostfixExpressionSuffix(Operand.get());
1959     }
1960   }
1961 
1962   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
1963   isCastExpr = false;
1964   return Operand;
1965 }
1966 
1967 
1968 /// Parse a sizeof or alignof expression.
1969 ///
1970 /// \verbatim
1971 ///       unary-expression:  [C99 6.5.3]
1972 ///         'sizeof' unary-expression
1973 ///         'sizeof' '(' type-name ')'
1974 /// [C++11] 'sizeof' '...' '(' identifier ')'
1975 /// [GNU]   '__alignof' unary-expression
1976 /// [GNU]   '__alignof' '(' type-name ')'
1977 /// [C11]   '_Alignof' '(' type-name ')'
1978 /// [C++11] 'alignof' '(' type-id ')'
1979 /// \endverbatim
1980 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
1981   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
1982                      tok::kw__Alignof, tok::kw_vec_step,
1983                      tok::kw___builtin_omp_required_simd_align) &&
1984          "Not a sizeof/alignof/vec_step expression!");
1985   Token OpTok = Tok;
1986   ConsumeToken();
1987 
1988   // [C++11] 'sizeof' '...' '(' identifier ')'
1989   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
1990     SourceLocation EllipsisLoc = ConsumeToken();
1991     SourceLocation LParenLoc, RParenLoc;
1992     IdentifierInfo *Name = nullptr;
1993     SourceLocation NameLoc;
1994     if (Tok.is(tok::l_paren)) {
1995       BalancedDelimiterTracker T(*this, tok::l_paren);
1996       T.consumeOpen();
1997       LParenLoc = T.getOpenLocation();
1998       if (Tok.is(tok::identifier)) {
1999         Name = Tok.getIdentifierInfo();
2000         NameLoc = ConsumeToken();
2001         T.consumeClose();
2002         RParenLoc = T.getCloseLocation();
2003         if (RParenLoc.isInvalid())
2004           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2005       } else {
2006         Diag(Tok, diag::err_expected_parameter_pack);
2007         SkipUntil(tok::r_paren, StopAtSemi);
2008       }
2009     } else if (Tok.is(tok::identifier)) {
2010       Name = Tok.getIdentifierInfo();
2011       NameLoc = ConsumeToken();
2012       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2013       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2014       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2015         << Name
2016         << FixItHint::CreateInsertion(LParenLoc, "(")
2017         << FixItHint::CreateInsertion(RParenLoc, ")");
2018     } else {
2019       Diag(Tok, diag::err_sizeof_parameter_pack);
2020     }
2021 
2022     if (!Name)
2023       return ExprError();
2024 
2025     EnterExpressionEvaluationContext Unevaluated(
2026         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2027         Sema::ReuseLambdaContextDecl);
2028 
2029     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2030                                                 OpTok.getLocation(),
2031                                                 *Name, NameLoc,
2032                                                 RParenLoc);
2033   }
2034 
2035   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2036     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2037 
2038   EnterExpressionEvaluationContext Unevaluated(
2039       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2040       Sema::ReuseLambdaContextDecl);
2041 
2042   bool isCastExpr;
2043   ParsedType CastTy;
2044   SourceRange CastRange;
2045   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2046                                                           isCastExpr,
2047                                                           CastTy,
2048                                                           CastRange);
2049 
2050   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2051   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2052     ExprKind = UETT_AlignOf;
2053   else if (OpTok.is(tok::kw___alignof))
2054     ExprKind = UETT_PreferredAlignOf;
2055   else if (OpTok.is(tok::kw_vec_step))
2056     ExprKind = UETT_VecStep;
2057   else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2058     ExprKind = UETT_OpenMPRequiredSimdAlign;
2059 
2060   if (isCastExpr)
2061     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2062                                                  ExprKind,
2063                                                  /*IsType=*/true,
2064                                                  CastTy.getAsOpaquePtr(),
2065                                                  CastRange);
2066 
2067   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2068     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2069 
2070   // If we get here, the operand to the sizeof/alignof was an expression.
2071   if (!Operand.isInvalid())
2072     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2073                                                     ExprKind,
2074                                                     /*IsType=*/false,
2075                                                     Operand.get(),
2076                                                     CastRange);
2077   return Operand;
2078 }
2079 
2080 /// ParseBuiltinPrimaryExpression
2081 ///
2082 /// \verbatim
2083 ///       primary-expression: [C99 6.5.1]
2084 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2085 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2086 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2087 ///                                     assign-expr ')'
2088 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2089 /// [GNU]   '__builtin_FILE' '(' ')'
2090 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2091 /// [GNU]   '__builtin_LINE' '(' ')'
2092 /// [CLANG] '__builtin_COLUMN' '(' ')'
2093 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2094 ///
2095 /// [GNU] offsetof-member-designator:
2096 /// [GNU]   identifier
2097 /// [GNU]   offsetof-member-designator '.' identifier
2098 /// [GNU]   offsetof-member-designator '[' expression ']'
2099 /// \endverbatim
2100 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2101   ExprResult Res;
2102   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2103 
2104   tok::TokenKind T = Tok.getKind();
2105   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2106 
2107   // All of these start with an open paren.
2108   if (Tok.isNot(tok::l_paren))
2109     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2110                                                          << tok::l_paren);
2111 
2112   BalancedDelimiterTracker PT(*this, tok::l_paren);
2113   PT.consumeOpen();
2114 
2115   // TODO: Build AST.
2116 
2117   switch (T) {
2118   default: llvm_unreachable("Not a builtin primary expression!");
2119   case tok::kw___builtin_va_arg: {
2120     ExprResult Expr(ParseAssignmentExpression());
2121 
2122     if (ExpectAndConsume(tok::comma)) {
2123       SkipUntil(tok::r_paren, StopAtSemi);
2124       Expr = ExprError();
2125     }
2126 
2127     TypeResult Ty = ParseTypeName();
2128 
2129     if (Tok.isNot(tok::r_paren)) {
2130       Diag(Tok, diag::err_expected) << tok::r_paren;
2131       Expr = ExprError();
2132     }
2133 
2134     if (Expr.isInvalid() || Ty.isInvalid())
2135       Res = ExprError();
2136     else
2137       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2138     break;
2139   }
2140   case tok::kw___builtin_offsetof: {
2141     SourceLocation TypeLoc = Tok.getLocation();
2142     TypeResult Ty = ParseTypeName();
2143     if (Ty.isInvalid()) {
2144       SkipUntil(tok::r_paren, StopAtSemi);
2145       return ExprError();
2146     }
2147 
2148     if (ExpectAndConsume(tok::comma)) {
2149       SkipUntil(tok::r_paren, StopAtSemi);
2150       return ExprError();
2151     }
2152 
2153     // We must have at least one identifier here.
2154     if (Tok.isNot(tok::identifier)) {
2155       Diag(Tok, diag::err_expected) << tok::identifier;
2156       SkipUntil(tok::r_paren, StopAtSemi);
2157       return ExprError();
2158     }
2159 
2160     // Keep track of the various subcomponents we see.
2161     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2162 
2163     Comps.push_back(Sema::OffsetOfComponent());
2164     Comps.back().isBrackets = false;
2165     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2166     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2167 
2168     // FIXME: This loop leaks the index expressions on error.
2169     while (1) {
2170       if (Tok.is(tok::period)) {
2171         // offsetof-member-designator: offsetof-member-designator '.' identifier
2172         Comps.push_back(Sema::OffsetOfComponent());
2173         Comps.back().isBrackets = false;
2174         Comps.back().LocStart = ConsumeToken();
2175 
2176         if (Tok.isNot(tok::identifier)) {
2177           Diag(Tok, diag::err_expected) << tok::identifier;
2178           SkipUntil(tok::r_paren, StopAtSemi);
2179           return ExprError();
2180         }
2181         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2182         Comps.back().LocEnd = ConsumeToken();
2183 
2184       } else if (Tok.is(tok::l_square)) {
2185         if (CheckProhibitedCXX11Attribute())
2186           return ExprError();
2187 
2188         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2189         Comps.push_back(Sema::OffsetOfComponent());
2190         Comps.back().isBrackets = true;
2191         BalancedDelimiterTracker ST(*this, tok::l_square);
2192         ST.consumeOpen();
2193         Comps.back().LocStart = ST.getOpenLocation();
2194         Res = ParseExpression();
2195         if (Res.isInvalid()) {
2196           SkipUntil(tok::r_paren, StopAtSemi);
2197           return Res;
2198         }
2199         Comps.back().U.E = Res.get();
2200 
2201         ST.consumeClose();
2202         Comps.back().LocEnd = ST.getCloseLocation();
2203       } else {
2204         if (Tok.isNot(tok::r_paren)) {
2205           PT.consumeClose();
2206           Res = ExprError();
2207         } else if (Ty.isInvalid()) {
2208           Res = ExprError();
2209         } else {
2210           PT.consumeClose();
2211           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2212                                              Ty.get(), Comps,
2213                                              PT.getCloseLocation());
2214         }
2215         break;
2216       }
2217     }
2218     break;
2219   }
2220   case tok::kw___builtin_choose_expr: {
2221     ExprResult Cond(ParseAssignmentExpression());
2222     if (Cond.isInvalid()) {
2223       SkipUntil(tok::r_paren, StopAtSemi);
2224       return Cond;
2225     }
2226     if (ExpectAndConsume(tok::comma)) {
2227       SkipUntil(tok::r_paren, StopAtSemi);
2228       return ExprError();
2229     }
2230 
2231     ExprResult Expr1(ParseAssignmentExpression());
2232     if (Expr1.isInvalid()) {
2233       SkipUntil(tok::r_paren, StopAtSemi);
2234       return Expr1;
2235     }
2236     if (ExpectAndConsume(tok::comma)) {
2237       SkipUntil(tok::r_paren, StopAtSemi);
2238       return ExprError();
2239     }
2240 
2241     ExprResult Expr2(ParseAssignmentExpression());
2242     if (Expr2.isInvalid()) {
2243       SkipUntil(tok::r_paren, StopAtSemi);
2244       return Expr2;
2245     }
2246     if (Tok.isNot(tok::r_paren)) {
2247       Diag(Tok, diag::err_expected) << tok::r_paren;
2248       return ExprError();
2249     }
2250     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2251                                   Expr2.get(), ConsumeParen());
2252     break;
2253   }
2254   case tok::kw___builtin_astype: {
2255     // The first argument is an expression to be converted, followed by a comma.
2256     ExprResult Expr(ParseAssignmentExpression());
2257     if (Expr.isInvalid()) {
2258       SkipUntil(tok::r_paren, StopAtSemi);
2259       return ExprError();
2260     }
2261 
2262     if (ExpectAndConsume(tok::comma)) {
2263       SkipUntil(tok::r_paren, StopAtSemi);
2264       return ExprError();
2265     }
2266 
2267     // Second argument is the type to bitcast to.
2268     TypeResult DestTy = ParseTypeName();
2269     if (DestTy.isInvalid())
2270       return ExprError();
2271 
2272     // Attempt to consume the r-paren.
2273     if (Tok.isNot(tok::r_paren)) {
2274       Diag(Tok, diag::err_expected) << tok::r_paren;
2275       SkipUntil(tok::r_paren, StopAtSemi);
2276       return ExprError();
2277     }
2278 
2279     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2280                                   ConsumeParen());
2281     break;
2282   }
2283   case tok::kw___builtin_convertvector: {
2284     // The first argument is an expression to be converted, followed by a comma.
2285     ExprResult Expr(ParseAssignmentExpression());
2286     if (Expr.isInvalid()) {
2287       SkipUntil(tok::r_paren, StopAtSemi);
2288       return ExprError();
2289     }
2290 
2291     if (ExpectAndConsume(tok::comma)) {
2292       SkipUntil(tok::r_paren, StopAtSemi);
2293       return ExprError();
2294     }
2295 
2296     // Second argument is the type to bitcast to.
2297     TypeResult DestTy = ParseTypeName();
2298     if (DestTy.isInvalid())
2299       return ExprError();
2300 
2301     // Attempt to consume the r-paren.
2302     if (Tok.isNot(tok::r_paren)) {
2303       Diag(Tok, diag::err_expected) << tok::r_paren;
2304       SkipUntil(tok::r_paren, StopAtSemi);
2305       return ExprError();
2306     }
2307 
2308     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2309                                          ConsumeParen());
2310     break;
2311   }
2312   case tok::kw___builtin_COLUMN:
2313   case tok::kw___builtin_FILE:
2314   case tok::kw___builtin_FUNCTION:
2315   case tok::kw___builtin_LINE: {
2316     // Attempt to consume the r-paren.
2317     if (Tok.isNot(tok::r_paren)) {
2318       Diag(Tok, diag::err_expected) << tok::r_paren;
2319       SkipUntil(tok::r_paren, StopAtSemi);
2320       return ExprError();
2321     }
2322     SourceLocExpr::IdentKind Kind = [&] {
2323       switch (T) {
2324       case tok::kw___builtin_FILE:
2325         return SourceLocExpr::File;
2326       case tok::kw___builtin_FUNCTION:
2327         return SourceLocExpr::Function;
2328       case tok::kw___builtin_LINE:
2329         return SourceLocExpr::Line;
2330       case tok::kw___builtin_COLUMN:
2331         return SourceLocExpr::Column;
2332       default:
2333         llvm_unreachable("invalid keyword");
2334       }
2335     }();
2336     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2337     break;
2338   }
2339   }
2340 
2341   if (Res.isInvalid())
2342     return ExprError();
2343 
2344   // These can be followed by postfix-expr pieces because they are
2345   // primary-expressions.
2346   return ParsePostfixExpressionSuffix(Res.get());
2347 }
2348 
2349 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2350 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2351 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2352 /// not the parsed cast-expression.
2353 ///
2354 /// \verbatim
2355 ///       primary-expression: [C99 6.5.1]
2356 ///         '(' expression ')'
2357 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2358 ///       postfix-expression: [C99 6.5.2]
2359 ///         '(' type-name ')' '{' initializer-list '}'
2360 ///         '(' type-name ')' '{' initializer-list ',' '}'
2361 ///       cast-expression: [C99 6.5.4]
2362 ///         '(' type-name ')' cast-expression
2363 /// [ARC]   bridged-cast-expression
2364 /// [ARC] bridged-cast-expression:
2365 ///         (__bridge type-name) cast-expression
2366 ///         (__bridge_transfer type-name) cast-expression
2367 ///         (__bridge_retained type-name) cast-expression
2368 ///       fold-expression: [C++1z]
2369 ///         '(' cast-expression fold-operator '...' ')'
2370 ///         '(' '...' fold-operator cast-expression ')'
2371 ///         '(' cast-expression fold-operator '...'
2372 ///                 fold-operator cast-expression ')'
2373 /// \endverbatim
2374 ExprResult
2375 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2376                              bool isTypeCast, ParsedType &CastTy,
2377                              SourceLocation &RParenLoc) {
2378   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2379   ColonProtectionRAIIObject ColonProtection(*this, false);
2380   BalancedDelimiterTracker T(*this, tok::l_paren);
2381   if (T.consumeOpen())
2382     return ExprError();
2383   SourceLocation OpenLoc = T.getOpenLocation();
2384 
2385   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2386 
2387   ExprResult Result(true);
2388   bool isAmbiguousTypeId;
2389   CastTy = nullptr;
2390 
2391   if (Tok.is(tok::code_completion)) {
2392     Actions.CodeCompleteExpression(
2393         getCurScope(), PreferredType.get(Tok.getLocation()),
2394         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2395     cutOffParsing();
2396     return ExprError();
2397   }
2398 
2399   // Diagnose use of bridge casts in non-arc mode.
2400   bool BridgeCast = (getLangOpts().ObjC &&
2401                      Tok.isOneOf(tok::kw___bridge,
2402                                  tok::kw___bridge_transfer,
2403                                  tok::kw___bridge_retained,
2404                                  tok::kw___bridge_retain));
2405   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2406     if (!TryConsumeToken(tok::kw___bridge)) {
2407       StringRef BridgeCastName = Tok.getName();
2408       SourceLocation BridgeKeywordLoc = ConsumeToken();
2409       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2410         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2411           << BridgeCastName
2412           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2413     }
2414     BridgeCast = false;
2415   }
2416 
2417   // None of these cases should fall through with an invalid Result
2418   // unless they've already reported an error.
2419   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2420     Diag(Tok, diag::ext_gnu_statement_expr);
2421 
2422     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2423       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2424     } else {
2425       // Find the nearest non-record decl context. Variables declared in a
2426       // statement expression behave as if they were declared in the enclosing
2427       // function, block, or other code construct.
2428       DeclContext *CodeDC = Actions.CurContext;
2429       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2430         CodeDC = CodeDC->getParent();
2431         assert(CodeDC && !CodeDC->isFileContext() &&
2432                "statement expr not in code context");
2433       }
2434       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2435 
2436       Actions.ActOnStartStmtExpr();
2437 
2438       StmtResult Stmt(ParseCompoundStatement(true));
2439       ExprType = CompoundStmt;
2440 
2441       // If the substmt parsed correctly, build the AST node.
2442       if (!Stmt.isInvalid()) {
2443         Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation());
2444       } else {
2445         Actions.ActOnStmtExprError();
2446       }
2447     }
2448   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2449     tok::TokenKind tokenKind = Tok.getKind();
2450     SourceLocation BridgeKeywordLoc = ConsumeToken();
2451 
2452     // Parse an Objective-C ARC ownership cast expression.
2453     ObjCBridgeCastKind Kind;
2454     if (tokenKind == tok::kw___bridge)
2455       Kind = OBC_Bridge;
2456     else if (tokenKind == tok::kw___bridge_transfer)
2457       Kind = OBC_BridgeTransfer;
2458     else if (tokenKind == tok::kw___bridge_retained)
2459       Kind = OBC_BridgeRetained;
2460     else {
2461       // As a hopefully temporary workaround, allow __bridge_retain as
2462       // a synonym for __bridge_retained, but only in system headers.
2463       assert(tokenKind == tok::kw___bridge_retain);
2464       Kind = OBC_BridgeRetained;
2465       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2466         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2467           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2468                                           "__bridge_retained");
2469     }
2470 
2471     TypeResult Ty = ParseTypeName();
2472     T.consumeClose();
2473     ColonProtection.restore();
2474     RParenLoc = T.getCloseLocation();
2475 
2476     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2477     ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false);
2478 
2479     if (Ty.isInvalid() || SubExpr.isInvalid())
2480       return ExprError();
2481 
2482     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2483                                         BridgeKeywordLoc, Ty.get(),
2484                                         RParenLoc, SubExpr.get());
2485   } else if (ExprType >= CompoundLiteral &&
2486              isTypeIdInParens(isAmbiguousTypeId)) {
2487 
2488     // Otherwise, this is a compound literal expression or cast expression.
2489 
2490     // In C++, if the type-id is ambiguous we disambiguate based on context.
2491     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2492     // in which case we should treat it as type-id.
2493     // if stopIfCastExpr is false, we need to determine the context past the
2494     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2495     if (isAmbiguousTypeId && !stopIfCastExpr) {
2496       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2497                                                         ColonProtection);
2498       RParenLoc = T.getCloseLocation();
2499       return res;
2500     }
2501 
2502     // Parse the type declarator.
2503     DeclSpec DS(AttrFactory);
2504     ParseSpecifierQualifierList(DS);
2505     Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext);
2506     ParseDeclarator(DeclaratorInfo);
2507 
2508     // If our type is followed by an identifier and either ':' or ']', then
2509     // this is probably an Objective-C message send where the leading '[' is
2510     // missing. Recover as if that were the case.
2511     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
2512         !InMessageExpression && getLangOpts().ObjC &&
2513         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
2514       TypeResult Ty;
2515       {
2516         InMessageExpressionRAIIObject InMessage(*this, false);
2517         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2518       }
2519       Result = ParseObjCMessageExpressionBody(SourceLocation(),
2520                                               SourceLocation(),
2521                                               Ty.get(), nullptr);
2522     } else {
2523       // Match the ')'.
2524       T.consumeClose();
2525       ColonProtection.restore();
2526       RParenLoc = T.getCloseLocation();
2527       if (Tok.is(tok::l_brace)) {
2528         ExprType = CompoundLiteral;
2529         TypeResult Ty;
2530         {
2531           InMessageExpressionRAIIObject InMessage(*this, false);
2532           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2533         }
2534         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
2535       }
2536 
2537       if (Tok.is(tok::l_paren)) {
2538         // This could be OpenCL vector Literals
2539         if (getLangOpts().OpenCL)
2540         {
2541           TypeResult Ty;
2542           {
2543             InMessageExpressionRAIIObject InMessage(*this, false);
2544             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2545           }
2546           if(Ty.isInvalid())
2547           {
2548              return ExprError();
2549           }
2550           QualType QT = Ty.get().get().getCanonicalType();
2551           if (QT->isVectorType())
2552           {
2553             // We parsed '(' vector-type-name ')' followed by '('
2554 
2555             // Parse the cast-expression that follows it next.
2556             // isVectorLiteral = true will make sure we don't parse any
2557             // Postfix expression yet
2558             Result = ParseCastExpression(/*isUnaryExpression=*/false,
2559                                          /*isAddressOfOperand=*/false,
2560                                          /*isTypeCast=*/IsTypeCast,
2561                                          /*isVectorLiteral=*/true);
2562 
2563             if (!Result.isInvalid()) {
2564               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2565                                              DeclaratorInfo, CastTy,
2566                                              RParenLoc, Result.get());
2567             }
2568 
2569             // After we performed the cast we can check for postfix-expr pieces.
2570             if (!Result.isInvalid()) {
2571               Result = ParsePostfixExpressionSuffix(Result);
2572             }
2573 
2574             return Result;
2575           }
2576         }
2577       }
2578 
2579       if (ExprType == CastExpr) {
2580         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
2581 
2582         if (DeclaratorInfo.isInvalidType())
2583           return ExprError();
2584 
2585         // Note that this doesn't parse the subsequent cast-expression, it just
2586         // returns the parsed type to the callee.
2587         if (stopIfCastExpr) {
2588           TypeResult Ty;
2589           {
2590             InMessageExpressionRAIIObject InMessage(*this, false);
2591             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
2592           }
2593           CastTy = Ty.get();
2594           return ExprResult();
2595         }
2596 
2597         // Reject the cast of super idiom in ObjC.
2598         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
2599             Tok.getIdentifierInfo() == Ident_super &&
2600             getCurScope()->isInObjcMethodScope() &&
2601             GetLookAheadToken(1).isNot(tok::period)) {
2602           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
2603             << SourceRange(OpenLoc, RParenLoc);
2604           return ExprError();
2605         }
2606 
2607         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
2608         // Parse the cast-expression that follows it next.
2609         // TODO: For cast expression with CastTy.
2610         Result = ParseCastExpression(/*isUnaryExpression=*/false,
2611                                      /*isAddressOfOperand=*/false,
2612                                      /*isTypeCast=*/IsTypeCast);
2613         if (!Result.isInvalid()) {
2614           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
2615                                          DeclaratorInfo, CastTy,
2616                                          RParenLoc, Result.get());
2617         }
2618         return Result;
2619       }
2620 
2621       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
2622       return ExprError();
2623     }
2624   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
2625              isFoldOperator(NextToken().getKind())) {
2626     ExprType = FoldExpr;
2627     return ParseFoldExpression(ExprResult(), T);
2628   } else if (isTypeCast) {
2629     // Parse the expression-list.
2630     InMessageExpressionRAIIObject InMessage(*this, false);
2631 
2632     ExprVector ArgExprs;
2633     CommaLocsTy CommaLocs;
2634 
2635     if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) {
2636       // FIXME: If we ever support comma expressions as operands to
2637       // fold-expressions, we'll need to allow multiple ArgExprs here.
2638       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
2639           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
2640         ExprType = FoldExpr;
2641         return ParseFoldExpression(ArgExprs[0], T);
2642       }
2643 
2644       ExprType = SimpleExpr;
2645       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
2646                                           ArgExprs);
2647     }
2648   } else {
2649     InMessageExpressionRAIIObject InMessage(*this, false);
2650 
2651     Result = ParseExpression(MaybeTypeCast);
2652     if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) {
2653       // Correct typos in non-C++ code earlier so that implicit-cast-like
2654       // expressions are parsed correctly.
2655       Result = Actions.CorrectDelayedTyposInExpr(Result);
2656     }
2657 
2658     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
2659         NextToken().is(tok::ellipsis)) {
2660       ExprType = FoldExpr;
2661       return ParseFoldExpression(Result, T);
2662     }
2663     ExprType = SimpleExpr;
2664 
2665     // Don't build a paren expression unless we actually match a ')'.
2666     if (!Result.isInvalid() && Tok.is(tok::r_paren))
2667       Result =
2668           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
2669   }
2670 
2671   // Match the ')'.
2672   if (Result.isInvalid()) {
2673     SkipUntil(tok::r_paren, StopAtSemi);
2674     return ExprError();
2675   }
2676 
2677   T.consumeClose();
2678   RParenLoc = T.getCloseLocation();
2679   return Result;
2680 }
2681 
2682 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
2683 /// and we are at the left brace.
2684 ///
2685 /// \verbatim
2686 ///       postfix-expression: [C99 6.5.2]
2687 ///         '(' type-name ')' '{' initializer-list '}'
2688 ///         '(' type-name ')' '{' initializer-list ',' '}'
2689 /// \endverbatim
2690 ExprResult
2691 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
2692                                        SourceLocation LParenLoc,
2693                                        SourceLocation RParenLoc) {
2694   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
2695   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
2696     Diag(LParenLoc, diag::ext_c99_compound_literal);
2697   ExprResult Result = ParseInitializer();
2698   if (!Result.isInvalid() && Ty)
2699     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
2700   return Result;
2701 }
2702 
2703 /// ParseStringLiteralExpression - This handles the various token types that
2704 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
2705 /// translation phase #6].
2706 ///
2707 /// \verbatim
2708 ///       primary-expression: [C99 6.5.1]
2709 ///         string-literal
2710 /// \verbatim
2711 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
2712   assert(isTokenStringLiteral() && "Not a string literal!");
2713 
2714   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
2715   // considered to be strings for concatenation purposes.
2716   SmallVector<Token, 4> StringToks;
2717 
2718   do {
2719     StringToks.push_back(Tok);
2720     ConsumeStringToken();
2721   } while (isTokenStringLiteral());
2722 
2723   // Pass the set of string tokens, ready for concatenation, to the actions.
2724   return Actions.ActOnStringLiteral(StringToks,
2725                                     AllowUserDefinedLiteral ? getCurScope()
2726                                                             : nullptr);
2727 }
2728 
2729 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
2730 /// [C11 6.5.1.1].
2731 ///
2732 /// \verbatim
2733 ///    generic-selection:
2734 ///           _Generic ( assignment-expression , generic-assoc-list )
2735 ///    generic-assoc-list:
2736 ///           generic-association
2737 ///           generic-assoc-list , generic-association
2738 ///    generic-association:
2739 ///           type-name : assignment-expression
2740 ///           default : assignment-expression
2741 /// \endverbatim
2742 ExprResult Parser::ParseGenericSelectionExpression() {
2743   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
2744   if (!getLangOpts().C11)
2745     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
2746 
2747   SourceLocation KeyLoc = ConsumeToken();
2748   BalancedDelimiterTracker T(*this, tok::l_paren);
2749   if (T.expectAndConsume())
2750     return ExprError();
2751 
2752   ExprResult ControllingExpr;
2753   {
2754     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
2755     // not evaluated."
2756     EnterExpressionEvaluationContext Unevaluated(
2757         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
2758     ControllingExpr =
2759         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
2760     if (ControllingExpr.isInvalid()) {
2761       SkipUntil(tok::r_paren, StopAtSemi);
2762       return ExprError();
2763     }
2764   }
2765 
2766   if (ExpectAndConsume(tok::comma)) {
2767     SkipUntil(tok::r_paren, StopAtSemi);
2768     return ExprError();
2769   }
2770 
2771   SourceLocation DefaultLoc;
2772   TypeVector Types;
2773   ExprVector Exprs;
2774   do {
2775     ParsedType Ty;
2776     if (Tok.is(tok::kw_default)) {
2777       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
2778       // generic association."
2779       if (!DefaultLoc.isInvalid()) {
2780         Diag(Tok, diag::err_duplicate_default_assoc);
2781         Diag(DefaultLoc, diag::note_previous_default_assoc);
2782         SkipUntil(tok::r_paren, StopAtSemi);
2783         return ExprError();
2784       }
2785       DefaultLoc = ConsumeToken();
2786       Ty = nullptr;
2787     } else {
2788       ColonProtectionRAIIObject X(*this);
2789       TypeResult TR = ParseTypeName();
2790       if (TR.isInvalid()) {
2791         SkipUntil(tok::r_paren, StopAtSemi);
2792         return ExprError();
2793       }
2794       Ty = TR.get();
2795     }
2796     Types.push_back(Ty);
2797 
2798     if (ExpectAndConsume(tok::colon)) {
2799       SkipUntil(tok::r_paren, StopAtSemi);
2800       return ExprError();
2801     }
2802 
2803     // FIXME: These expressions should be parsed in a potentially potentially
2804     // evaluated context.
2805     ExprResult ER(
2806         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
2807     if (ER.isInvalid()) {
2808       SkipUntil(tok::r_paren, StopAtSemi);
2809       return ExprError();
2810     }
2811     Exprs.push_back(ER.get());
2812   } while (TryConsumeToken(tok::comma));
2813 
2814   T.consumeClose();
2815   if (T.getCloseLocation().isInvalid())
2816     return ExprError();
2817 
2818   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
2819                                            T.getCloseLocation(),
2820                                            ControllingExpr.get(),
2821                                            Types, Exprs);
2822 }
2823 
2824 /// Parse A C++1z fold-expression after the opening paren and optional
2825 /// left-hand-side expression.
2826 ///
2827 /// \verbatim
2828 ///   fold-expression:
2829 ///       ( cast-expression fold-operator ... )
2830 ///       ( ... fold-operator cast-expression )
2831 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
2832 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
2833                                        BalancedDelimiterTracker &T) {
2834   if (LHS.isInvalid()) {
2835     T.skipToEnd();
2836     return true;
2837   }
2838 
2839   tok::TokenKind Kind = tok::unknown;
2840   SourceLocation FirstOpLoc;
2841   if (LHS.isUsable()) {
2842     Kind = Tok.getKind();
2843     assert(isFoldOperator(Kind) && "missing fold-operator");
2844     FirstOpLoc = ConsumeToken();
2845   }
2846 
2847   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
2848   SourceLocation EllipsisLoc = ConsumeToken();
2849 
2850   ExprResult RHS;
2851   if (Tok.isNot(tok::r_paren)) {
2852     if (!isFoldOperator(Tok.getKind()))
2853       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
2854 
2855     if (Kind != tok::unknown && Tok.getKind() != Kind)
2856       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
2857         << SourceRange(FirstOpLoc);
2858     Kind = Tok.getKind();
2859     ConsumeToken();
2860 
2861     RHS = ParseExpression();
2862     if (RHS.isInvalid()) {
2863       T.skipToEnd();
2864       return true;
2865     }
2866   }
2867 
2868   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
2869                         ? diag::warn_cxx14_compat_fold_expression
2870                         : diag::ext_fold_expression);
2871 
2872   T.consumeClose();
2873   return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind,
2874                                   EllipsisLoc, RHS.get(), T.getCloseLocation());
2875 }
2876 
2877 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
2878 ///
2879 /// \verbatim
2880 ///       argument-expression-list:
2881 ///         assignment-expression
2882 ///         argument-expression-list , assignment-expression
2883 ///
2884 /// [C++] expression-list:
2885 /// [C++]   assignment-expression
2886 /// [C++]   expression-list , assignment-expression
2887 ///
2888 /// [C++0x] expression-list:
2889 /// [C++0x]   initializer-list
2890 ///
2891 /// [C++0x] initializer-list
2892 /// [C++0x]   initializer-clause ...[opt]
2893 /// [C++0x]   initializer-list , initializer-clause ...[opt]
2894 ///
2895 /// [C++0x] initializer-clause:
2896 /// [C++0x]   assignment-expression
2897 /// [C++0x]   braced-init-list
2898 /// \endverbatim
2899 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
2900                                  SmallVectorImpl<SourceLocation> &CommaLocs,
2901                                  llvm::function_ref<void()> ExpressionStarts) {
2902   bool SawError = false;
2903   while (1) {
2904     if (ExpressionStarts)
2905       ExpressionStarts();
2906 
2907     ExprResult Expr;
2908     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
2909       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2910       Expr = ParseBraceInitializer();
2911     } else
2912       Expr = ParseAssignmentExpression();
2913 
2914     if (Tok.is(tok::ellipsis))
2915       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
2916     if (Expr.isInvalid()) {
2917       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
2918       SawError = true;
2919     } else {
2920       Exprs.push_back(Expr.get());
2921     }
2922 
2923     if (Tok.isNot(tok::comma))
2924       break;
2925     // Move to the next argument, remember where the comma was.
2926     Token Comma = Tok;
2927     CommaLocs.push_back(ConsumeToken());
2928 
2929     checkPotentialAngleBracketDelimiter(Comma);
2930   }
2931   if (SawError) {
2932     // Ensure typos get diagnosed when errors were encountered while parsing the
2933     // expression list.
2934     for (auto &E : Exprs) {
2935       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
2936       if (Expr.isUsable()) E = Expr.get();
2937     }
2938   }
2939   return SawError;
2940 }
2941 
2942 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
2943 /// used for misc language extensions.
2944 ///
2945 /// \verbatim
2946 ///       simple-expression-list:
2947 ///         assignment-expression
2948 ///         simple-expression-list , assignment-expression
2949 /// \endverbatim
2950 bool
2951 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs,
2952                                   SmallVectorImpl<SourceLocation> &CommaLocs) {
2953   while (1) {
2954     ExprResult Expr = ParseAssignmentExpression();
2955     if (Expr.isInvalid())
2956       return true;
2957 
2958     Exprs.push_back(Expr.get());
2959 
2960     if (Tok.isNot(tok::comma))
2961       return false;
2962 
2963     // Move to the next argument, remember where the comma was.
2964     Token Comma = Tok;
2965     CommaLocs.push_back(ConsumeToken());
2966 
2967     checkPotentialAngleBracketDelimiter(Comma);
2968   }
2969 }
2970 
2971 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
2972 ///
2973 /// \verbatim
2974 /// [clang] block-id:
2975 /// [clang]   specifier-qualifier-list block-declarator
2976 /// \endverbatim
2977 void Parser::ParseBlockId(SourceLocation CaretLoc) {
2978   if (Tok.is(tok::code_completion)) {
2979     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
2980     return cutOffParsing();
2981   }
2982 
2983   // Parse the specifier-qualifier-list piece.
2984   DeclSpec DS(AttrFactory);
2985   ParseSpecifierQualifierList(DS);
2986 
2987   // Parse the block-declarator.
2988   Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext);
2989   DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition);
2990   ParseDeclarator(DeclaratorInfo);
2991 
2992   MaybeParseGNUAttributes(DeclaratorInfo);
2993 
2994   // Inform sema that we are starting a block.
2995   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
2996 }
2997 
2998 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
2999 /// like ^(int x){ return x+1; }
3000 ///
3001 /// \verbatim
3002 ///         block-literal:
3003 /// [clang]   '^' block-args[opt] compound-statement
3004 /// [clang]   '^' block-id compound-statement
3005 /// [clang] block-args:
3006 /// [clang]   '(' parameter-list ')'
3007 /// \endverbatim
3008 ExprResult Parser::ParseBlockLiteralExpression() {
3009   assert(Tok.is(tok::caret) && "block literal starts with ^");
3010   SourceLocation CaretLoc = ConsumeToken();
3011 
3012   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3013                                 "block literal parsing");
3014 
3015   // Enter a scope to hold everything within the block.  This includes the
3016   // argument decls, decls within the compound expression, etc.  This also
3017   // allows determining whether a variable reference inside the block is
3018   // within or outside of the block.
3019   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3020                                   Scope::CompoundStmtScope | Scope::DeclScope);
3021 
3022   // Inform sema that we are starting a block.
3023   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3024 
3025   // Parse the return type if present.
3026   DeclSpec DS(AttrFactory);
3027   Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext);
3028   ParamInfo.setFunctionDefinitionKind(FDK_Definition);
3029   // FIXME: Since the return type isn't actually parsed, it can't be used to
3030   // fill ParamInfo with an initial valid range, so do it manually.
3031   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3032 
3033   // If this block has arguments, parse them.  There is no ambiguity here with
3034   // the expression case, because the expression case requires a parameter list.
3035   if (Tok.is(tok::l_paren)) {
3036     ParseParenDeclarator(ParamInfo);
3037     // Parse the pieces after the identifier as if we had "int(...)".
3038     // SetIdentifier sets the source range end, but in this case we're past
3039     // that location.
3040     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3041     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3042     ParamInfo.SetRangeEnd(Tmp);
3043     if (ParamInfo.isInvalidType()) {
3044       // If there was an error parsing the arguments, they may have
3045       // tried to use ^(x+y) which requires an argument list.  Just
3046       // skip the whole block literal.
3047       Actions.ActOnBlockError(CaretLoc, getCurScope());
3048       return ExprError();
3049     }
3050 
3051     MaybeParseGNUAttributes(ParamInfo);
3052 
3053     // Inform sema that we are starting a block.
3054     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3055   } else if (!Tok.is(tok::l_brace)) {
3056     ParseBlockId(CaretLoc);
3057   } else {
3058     // Otherwise, pretend we saw (void).
3059     SourceLocation NoLoc;
3060     ParamInfo.AddTypeInfo(
3061         DeclaratorChunk::getFunction(/*HasProto=*/true,
3062                                      /*IsAmbiguous=*/false,
3063                                      /*RParenLoc=*/NoLoc,
3064                                      /*ArgInfo=*/nullptr,
3065                                      /*NumParams=*/0,
3066                                      /*EllipsisLoc=*/NoLoc,
3067                                      /*RParenLoc=*/NoLoc,
3068                                      /*RefQualifierIsLvalueRef=*/true,
3069                                      /*RefQualifierLoc=*/NoLoc,
3070                                      /*MutableLoc=*/NoLoc, EST_None,
3071                                      /*ESpecRange=*/SourceRange(),
3072                                      /*Exceptions=*/nullptr,
3073                                      /*ExceptionRanges=*/nullptr,
3074                                      /*NumExceptions=*/0,
3075                                      /*NoexceptExpr=*/nullptr,
3076                                      /*ExceptionSpecTokens=*/nullptr,
3077                                      /*DeclsInPrototype=*/None, CaretLoc,
3078                                      CaretLoc, ParamInfo),
3079         CaretLoc);
3080 
3081     MaybeParseGNUAttributes(ParamInfo);
3082 
3083     // Inform sema that we are starting a block.
3084     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3085   }
3086 
3087 
3088   ExprResult Result(true);
3089   if (!Tok.is(tok::l_brace)) {
3090     // Saw something like: ^expr
3091     Diag(Tok, diag::err_expected_expression);
3092     Actions.ActOnBlockError(CaretLoc, getCurScope());
3093     return ExprError();
3094   }
3095 
3096   StmtResult Stmt(ParseCompoundStatementBody());
3097   BlockScope.Exit();
3098   if (!Stmt.isInvalid())
3099     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3100   else
3101     Actions.ActOnBlockError(CaretLoc, getCurScope());
3102   return Result;
3103 }
3104 
3105 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3106 ///
3107 ///         '__objc_yes'
3108 ///         '__objc_no'
3109 ExprResult Parser::ParseObjCBoolLiteral() {
3110   tok::TokenKind Kind = Tok.getKind();
3111   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3112 }
3113 
3114 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3115 /// true if invalid.
3116 static bool CheckAvailabilitySpecList(Parser &P,
3117                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3118   llvm::SmallSet<StringRef, 4> Platforms;
3119   bool HasOtherPlatformSpec = false;
3120   bool Valid = true;
3121   for (const auto &Spec : AvailSpecs) {
3122     if (Spec.isOtherPlatformSpec()) {
3123       if (HasOtherPlatformSpec) {
3124         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3125         Valid = false;
3126       }
3127 
3128       HasOtherPlatformSpec = true;
3129       continue;
3130     }
3131 
3132     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3133     if (!Inserted) {
3134       // Rule out multiple version specs referring to the same platform.
3135       // For example, we emit an error for:
3136       // @available(macos 10.10, macos 10.11, *)
3137       StringRef Platform = Spec.getPlatform();
3138       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3139           << Spec.getEndLoc() << Platform;
3140       Valid = false;
3141     }
3142   }
3143 
3144   if (!HasOtherPlatformSpec) {
3145     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3146     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3147         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3148     return true;
3149   }
3150 
3151   return !Valid;
3152 }
3153 
3154 /// Parse availability query specification.
3155 ///
3156 ///  availability-spec:
3157 ///     '*'
3158 ///     identifier version-tuple
3159 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3160   if (Tok.is(tok::star)) {
3161     return AvailabilitySpec(ConsumeToken());
3162   } else {
3163     // Parse the platform name.
3164     if (Tok.is(tok::code_completion)) {
3165       Actions.CodeCompleteAvailabilityPlatformName();
3166       cutOffParsing();
3167       return None;
3168     }
3169     if (Tok.isNot(tok::identifier)) {
3170       Diag(Tok, diag::err_avail_query_expected_platform_name);
3171       return None;
3172     }
3173 
3174     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3175     SourceRange VersionRange;
3176     VersionTuple Version = ParseVersionTuple(VersionRange);
3177 
3178     if (Version.empty())
3179       return None;
3180 
3181     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3182     StringRef Platform =
3183         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3184 
3185     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3186       Diag(PlatformIdentifier->Loc,
3187            diag::err_avail_query_unrecognized_platform_name)
3188           << GivenPlatform;
3189       return None;
3190     }
3191 
3192     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3193                             VersionRange.getEnd());
3194   }
3195 }
3196 
3197 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3198   assert(Tok.is(tok::kw___builtin_available) ||
3199          Tok.isObjCAtKeyword(tok::objc_available));
3200 
3201   // Eat the available or __builtin_available.
3202   ConsumeToken();
3203 
3204   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3205   if (Parens.expectAndConsume())
3206     return ExprError();
3207 
3208   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3209   bool HasError = false;
3210   while (true) {
3211     Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3212     if (!Spec)
3213       HasError = true;
3214     else
3215       AvailSpecs.push_back(*Spec);
3216 
3217     if (!TryConsumeToken(tok::comma))
3218       break;
3219   }
3220 
3221   if (HasError) {
3222     SkipUntil(tok::r_paren, StopAtSemi);
3223     return ExprError();
3224   }
3225 
3226   CheckAvailabilitySpecList(*this, AvailSpecs);
3227 
3228   if (Parens.consumeClose())
3229     return ExprError();
3230 
3231   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3232                                                 Parens.getCloseLocation());
3233 }
3234